
Conductivities of magnetic chains with
(non-)magnetic impurities

!"#"$ %&'()#' 

 

      

Alexandros Metavitsiadis

Physics Department, University of Crete

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Supervisor: Xenophon Zotos

July 2010

mailto:metavits@physics.uoc.gr
http://www.physics.uoc.gr
http://users.physics.uoc.gr/~zotos/index.html




We approve the thesis of Alexandros Metavitsiadis

Signature

Christos Panagopoulos
Associate Professor of Condensed matter physics

Nikos Papanicolaou
Professor of Theoretical high energy physics

Ilias Perakis
Professor of Condensed matter physics

Peter Prelovšek
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Abstract

The field of low dimensional quantum systems remains active for decades for both
theoretical and experimental research. This work is a contribution to the theoretical
study of one-dimensional quantum magnets. In parallel with our theoretical study,
several experimental teams all around the globe work to fabricate novel materials which
are highly anisotropic and can be considered as good realizations of one-dimensional
systems. Moreover, the unconventional transport properties of these systems makes
them very promising candidates for technological applications.

We focus on the transport properties of one-dimensional quantum magnets de-
scribed by the celebrated anisotropic Heisenberg Hamiltonian. In the pure spin-1

2
Heisenberg model, which is an integrable model, heat transport is really unique since
the energy current is a constant of motion leading to ballistic heat transport. Thus,
the interplay of integrability and defects is theoretically challenging and we attempt to
shed light on various aspects of this issue employing primarily numerical diagonalization
techniques.

First, we discuss the effect of static disorder accounting for the onset of Anderson
localization. In a many body system interactions can delocalize the localized states
leading the system to a diffusive state. The main conclusion is that the dc transport
of the many body system is finite for any finite temperature. On the contrary, at zero
temperature for the interacting system or at any temperature for the non-interacting
one, spin and thermal dc conductivities vanish in the strong disorder regime.

Second, we consider the more subtle effect of a single non-magnetic impurity and
whether this perturbation is capable to break the integrability of the system. We use
as criteria for the breaking of integrability the level statistics of the system and the spin
stiffness in the easy plane regime. Moreover, for a single impurity case it turns out that
the thermal conductivity is a unique probe since the only scattering mechanism for the
thermal transport comes from the impurity. We show that a single impurity in a many
body system renders ballistic transport incoherent at high energies in contrast with the
non-interacting case where the impurity only renormalizes the charge stiffness.

Third, is the effect of a single magnetic impurity of spin S disturbing the spin-1
2

Heisenberg chain. We consider the impurity to be located either out of the chain or
to be embedded to it. In the former case, we find a universal scaling with both the
lattice size, and the perturbation strength. On the other hand, the embedded impurity
in the chain is a severe perturbation and dominates easily the behavior of the transport
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quantities. Useful conclusions can be obtained by analytical arguments in the strong
host-impurity coupling limit.

Last, as far as the temperature dependence is concerned for the single impurity
cases, we seek cutting-healing phenomena. More particularly, for decreasing tempera-
ture we find that the chain is (cut)healed for (anti)ferromagnetic easy axis anisotropy
for all types of single impurities—single weak link, local field, magnetic impurity out
of the chain, magnetic impurity embedded in the chain. In the same concept is the
(cutting)healing of the isotropic Heisenberg chain with decreasing temperature in the
presence of (a single)two consecutive weak links.
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The 1D world

Low dimensional quantum systems are of high theoretical interest since the reduced
dimensionality, interactions, and quantum fluctuations assign fascinating properties to
them in comparison with the normal, the three dimensional ones. Especially in one
dimension (1D) strong quantum fluctuations modify the properties of these systems
leading to new kinds of excitations. The ordinary quasiparticle Fermi liquid theory
breaks down in 1D since the discontinuity at the Fermi surface vanishes and quasi-
particles are not well defined. The counterpart of the Fermi liquid theory in 1D is the
so-called Luttinger liquid (LL) [1–5]. Within LL the low energy excitations of fermionic
systems are holons and spinons [6, 7] with the remarkable prediction of spin charge sep-
aration [8, 9]—the spin and charge degrees of freedom of an electron can be separated
since the elementary excitations of each degree of freedom propagate with a different
velocity.

There are several 1D effective lattice models proposed to describe various physi-
cal systems [10], but we choose to present here explicitly only three of them:1 The
anisotropic spin Heisenberg model,

HS = J
∑
l

(
S+
l S
−
l+1 + S−l S

+
l+1

)
+ Jz

∑
l

Szl S
z
l+1 ,

with the isotropic point given for Jz = 2J . The t-V model, which describes interacting
tight binding spinless fermions with an intersite interaction,

Ht−V = −t
∑
l

(
c†l cl+1 + c†l+1cl

)
+ V

∑
l

nlnl+1 .

Note that the Heisenberg model and the t-V model are exact mapping of one another
using the celebrated Jordan Wigner transformation which corresponds fermionic op-
erators to spin operators and vice versa. Lastly, the Hubbard model, which describes
interacting tight binding fermions with intrasite interactions,

HH = −t
∑
l

(
c†lσcl+1σ + c†l+1σclσ

)
+ U

∑
l

nl↑nl↓ .

1Let us for completeness describe here the notation. l denotes a lattice site and σ, ↑, ↓ the spin
degrees of freedom. For the spin model, HS , S+(S−) are raising(lowering) operators and Sz the z
component of the spin operator. For the fermionic models, Ht−V and HH , c†(c) creates(annihilates) a
fermion and n = c†c.



2 The 1D world

The above models describe many body systems and their Hamiltonian consists of a
kinetic term, the first term in each equation (proportional to J and t), and a term
describing the interactions between the components of the system, the second term in
each equation (proportional to Jz, V, U respectively). Besides the lattice models, there
are also continuum models which focus on the low energy regime of the system and
provide valuable information for the low lying excitations although they neglect the
effect of the lattice; however, one can restore it by considering an external periodic
potential.

All the systems mentioned above are integrable in the sense that they possess a
macroscopic number of conservation laws, which are connected to the exact solubility
of the model [11] and assign very interesting properties to them [12, 13]. First, the
macroscopic number of conservation laws leads to level crossing [11] and consequently
the energy spectrum obeys the Poisson distribution while non-integrable systems ex-
hibit the Wigner Dyson due to level repulsion [14]. Moreover, these conservation laws
may have a great impact on the transport properties of the system. For one thing, for
the spin-1

2 Heisenberg model the energy current is a constant of motion—the current-
current correlation does not decay in time despite the many body character of the
Hamiltonian—leading to a divergence of thermal conductivity at zero frequency, namely
ballistic heat transport. Even if a current (it could be any of the particle, spin, energy
currents) is not conserved a finite overlap with the conservation laws of the system may
prevent the decay of the current-current correlation, leading again to a divergence at
zero frequency for the corresponding conductivity [15].

However, integrability does not ensure the existence of ballistic transport in the
system. A striking example is the case where some modes of the system propagate bal-
listically while some others do not. Such an example is the Heisenberg model where in
the gapless phase (easy plane), Jz < 2J , both the spin and thermal transport are ballis-
tic, while in the gapped phase (easy axis), Jz > 2J , the spin transport is normal unlike
the thermal transport which remains ballistic for any Jz [15, 16]. Moreover, the influ-
ence of defects, longer range interactions, scattering with other modes (e.g. phonons),
and so on, and the interplay of these scattering mechanisms with the integrability is
not always trivial [17–20]. Naturally, in real 1D systems many scattering mechanisms
will be present, thus the theoretical study of the above pure models in the presence of
defects is rather imperative. Despite the difficulty to solve analytically a many body
problem in the presence of impurities there has been impressive progress leading to
rigorous results for the properties of these systems for several kinds of impurities.

First, for a non-interacting 1D system in the presence of disorder all states are lo-
calized for any finite disorder [21]. However, on switching on the interactions between
the components of the system the behavior of the system may change drastically delo-
calizing the localized states. Moreover, the temperature could play an important role
since there could be a thermally activated dc transport above a critical temperature or
at any finite temperature.

In the opposite regime, i.e., a single impurity in a pure system, it was shown that
even a single non-magnetic impurity, a potential barrier or a weak link, in a LL with
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repulsive interactions effectively obstructs dc transport leading to an insulating ground
state [22]. On the contrary, for attractive interactions between the fermions the system
is healed and becomes an ideal conductor at zero temperature (perfectly transmit-
ting ground state) despite the presence of the impurity. This is in contrast to the
non-interacting case where the impurity only renormalizes the transmission coefficient
through the obstacle leading to a finite conductance (in a Landauer framework). Since
Ht−V and HS are exact mapping of one another, one can plausible seek the same be-
havior in a spin model. The role of the repulsive/attractive interactions V will play
the antiferromagnetic/ferromagnetic easy axis anisotropy Jz. Indeed, this behavior is
observed as well in spin models, described by the Heisenberg Hamiltonian where in the
presence of magnetic or non-magnetic impurities the chain is either cut or healed ac-
cording to the sign of the easy axis anisotropy (Ref. [23] and present work). Numerical
calculations, using the thermal conductivity as a probe, performed on finite lattices
and for finite temperatures verify the analytical predictions [24]. Hence, one can claim
that the cutting-healing behavior of a 1D system in the presence of a single impurity
is quite universal.

Despite the progress made in analytical techniques, providing the energy spectrum
and the elementary excitations of the system, there is still plenty of open issues, contro-
versies and debates. Thus, numerical techniques (like: Quantum Monte Carlo (QMC),
Density Matrix Renormalization Group (DMRG) and numerical diagonalization tech-
niques) can play an important role to these issues. However, as far as the numerical
diagonalization techniques are concerned, the major problem one has to confront with
is the rapid increase of the Hilbert space for a many body system. Thus, the devel-
opment of new numerical techniques could be crucial in order to have more efficient
numerical algorithms [25–27].

Besides the theoretical interest about low dimensional systems there is a revived
experimental interest as well for systems which form magnetic structures with reduced
dimensionality. These materials are normal three dimensional bulk materials with a
high anisotropy in the magnetic moment interactions, forming quasi-one-dimensional
spin systems (or quasi-two-dimensional systems). They attract the attention of two
branches of condensed matter physicists since they are promising candidates for high
Tc superconductivity as well as they exhibit exceptionally high and anisotropic thermal
conductivity, due to the low dimensional magnetic structures.

There is a large number of such novel materials. A big category are the cuprates
comprising compounds like the spin-1

2 zig-zag compound SrCuO2, the chain compounds
Sr2CuO3, CaCu2O3 and the two-leg spin-1

2 ladder compounds, (Sr,Ca,La)14Cu24O41,
Ca9La5Cu24O41, Fig. 1, [28–30]. The origin for the 1D structures is the superexchange
coupling of the Cu−O− Cu atoms [31] and they are described via the Heisenberg
Hamiltonian. One can arrive to the Heisenberg Hamiltonian starting from the Hub-
bard Hamiltonian at half filling considering a large on-site repulsive interaction U � t.
Within second order perturbation theory one arrives at the spin-1

2 Heisenberg Hamil-
tonian with 2J = Jz = 4t2

U [3, 10, 32].In order to obtain the anisotropic Heisenberg
model with J 6= 2Jz one has to take into account spin orbit coupling. The fact that
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J⊥

J‖

J

Figure 1: Schematic representation of a two-leg spin ladder(top) and a spin chain
(bottom).

the Heisenberg Hamiltonian is obtained from the large U limit of the Hubbard model
at half filling, which describes Mott insulators, indicates that materials which are de-
scribed by the Heisenberg Hamiltonian are insulators, or poor conducting materials
since there is a virtual hopping involved, cf. as well Ref. [31]. This feature makes
these materials unique since on the one hand they are electric insulators and on the
other hand they are very good heat conductors with a thermal conductivity along the
chain/ladder direction of metallic order or even higher.

The theoretical prediction for the spin-1
2 Heisenberg Hamiltonian, as we have al-

ready mentioned, is that exhibits ballistic thermal transport. On the other hand for
spin-1 chain compounds, like the AgVP2S6, or two-leg spin-1

2 ladder compounds the
transport is normal, Refs. [33, 34] and [29]. Despite the theoretical predictions, in real
materials there are numerous scattering mechanisms, like flaws in the production proce-
dure, phonons, impurities, and so on, which would render even ballistic transport nor-
mal. Consequently the purity of these systems turns out to be crucial as it was realized
recently [35]. Notwithstanding, the large exchange coupling, (J, J‖)/kB ∼ O(103)K,
between neighboring spins accounts for an extraordinary high and anisotropic thermal
conductivity. It should be noted that longer range interactions or interactions with
the transverse directions are orders of magnitude smaller than the nearest neighbor in-
chain interactions. The large anisotropy in thermal transport holds for a wide variety
of temperatures, from a few decades of degrees—where magnetic contribution becomes
significant—up to room temperature. However, we should also mention that there are
materials which exhibit anisotropic heat transport due to magnetic excitations but with
a much weaker exchange coupling, like the CuGeO3 spin-Peierls compound.

To recapitulate, the study of low dimensional strongly correlated systems is a long
standing problem. Besides its theoretical interest there is a revived experimental inter-
est in the field due to developments like, fabrication of quasi-low dimensional quantum
magnets, carbon nanotubes, quantum wires and so on. Finally, along with the fun-
damental research interest it turns out that there are very promising technological
applications which can arise by exploiting the fascinating low dimensional physics.
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Chapter 1

Static disorder

1.1 Introduction

The concept of vanishing transport in condensed matter physics due to the localiza-
tion of single particle states, was first introduced by Anderson [1] with a pathbreaking
article in 1958. The phenomenon of localization in disordered systems has a big im-
pact on physics research, although it was not immediately recognized [2]. Nowadays
the phenomenon is observed not only in condensed matter systems but in a variety
of other physical systems as well, involving matter, optical, acoustic or even seismic
waves, extending from meso- to macro- scopic scales. The common attribute behind
all these physical systems is their wave nature, where the incoherent scattering from
the disordered medium localizes these waves, destroying transport.

The dc transport properties of non-interacting disordered electron systems are the-
oretically well understood using various techniques (such as: random matrix theory,
renormalization group, diagrammatic analysis) and experimentally verified in many
condensed matter systems [3]. The main idea is that disorder localizes the wavefunc-
tions preventing diffusion. Actually it has been shown that in 1D any amount of
disorder would localize all states leading to vanishing dc transport [4, 5]. In order to
have non-vanishing dc transport in 1D, scattering mechanisms like electron-phonon or
electron-electron interactions have to be introduced.

The effect of correlations on localized states is also a long standing problem [6]
which still attracts both, theoretical [7] and experimental [8] interest. In contrast
to the non-interacting case where all states are localized and dc transport vanishes
at any temperature, the introduction of correlations could lead to different possible
scenarios. First, at zero temperature, T = 0, numerical results for fermions with
repulsive interactions in a disordered system reveal that localization persists in spite
of correlations [9, 10] although some types of interactions might destroy the localized
states driving the system to a normal diffusive state or even one with diverging low-
frequency conductivity [11, 12]. Even if the system remains localized at T = 0, an
arbitrary low temperature could delocalize it or a finite critical temperature [13, 14]
might be needed to drive it to a normal state at high temperatures. There are also
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indications that in the presence of large disorder even at high temperatures many-body
states can appear effectively localized [15, 16].

1.2 Model

To explore the issue of transport in a system with correlations and disorder, we consider
the anisotropic spin-1/2 Heisenberg Hamiltonian with nearest neighbor interactions
either in the presence of a random configuration of magnetic fields (on-site disorder),
or a random modification of the exchange coupling of nearest neighbors (bond disorder).
The Hamiltonian for the pure system is given by the sum of local interaction energies
between neighboring spins

H0 =
∑
l

hl , hl = J(Sxl S
x
l+1 + Syl S

y
l+1 + ∆Szl S

z
l+1) , (1.1)

which in the case of bond disorder is modified as

H =
∑
l

hl , hl = Jl (Sl ·∆ · Sl+1) . (1.2)

For the sake of brevity we have used a slightly different notation for the local energies hl,
with Sl being the vector for the local operator of the spin-1/2 at site l with components
(Sx, Sy, Sz) and ∆ is the diagonal tensor of the anisotropy. Considering the interactions
to be anisotropic only in the z-axis, as indicated by Hamiltonian (1.1) we have ∆x,y = 1,
∆z = ∆, i.e. ,

∆ =

 1 0 0
0 1 0
0 0 ∆

 . (1.3)

Jl is the exchange coupling between two adjacent spins at sites l, l + 1 which in the
absence of bond disorder is constant, with Jl = J .

Note that spin operators in the XY plane can be replaced by the raising S+, lowering
S−, operators using the relation

S± = Sx ± iSy , (1.4)

which gives a kinetic interpretation of the Sx,y terms.
Furthermore, the Jordan-Wigner transformation [17, 18] maps spin-1/2 operators

into fermionic operators; the transformation relations are

Szl = c†l cl −
1
2
, S+

l = e−iφlc†l , S−l = eiφlcl , with φl = π
∑
`<l

c†`c` , (1.5)

where cl(c
†
l ) annihilates(creates) a fermion at the l lattice site. Plugging (1.5) into (1.1)

we arrive at

Ht−V =
∑
l

(
− t
(
c†l cl+1 + c†l+1cl

)
+ V nlnl+1

)
+ const. , (1.6)
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where t = −J/2, V = J∆, and the constant is −J∆(Nf − 1
4), with Nf the number of

fermions in the system. Note that (1.6) is always correct to order O(1/L). Hamiltonian
(1.6) describes the so-called t-V model. The previous mapping of the spin-1/2 operators
indicates that Sx,y are kinetic terms while the SzSz product denotes the interactions
of the system, which are determined by the anisotropy parameter ∆.

For the bond disorder case the Hamiltonian is given by Eq. (1.2) with the neigh-
boring exchange interactions Jl modified in a random way. On the other hand, on-site
disorder is induced by a random distribution of local magnetic fields bl, pointing at the
z-direction, which yield the perturbation Hamiltonian

H1 =
∑
l

blS
z
l . (1.7)

Thus the total Hamiltonian will be

H = H +H1 . (1.8)

Spin s and energy ε currents are obtained using the respective dipole operator [17]

P s =
∑
l

rlS
z
l , P ε =

∑
l

rlhl ,

with rl being the corresponding coordinates while the local energies hl are modified to
take into account the possibility of on-site disorder (hl → hl + blS

z
l ). The spin, energy

currents are obtained from the time derivative of the respective dipole operator,

s =
i

}
∑
l,m

rl[hm, Szl ], ε =
i

}
∑
l,m

rl[hm, hl] .

It is straightforward to see that the spin current operator will be given by

s =
∑
l

sl , sl = aJl (Sl × Sl+1) · êz , (1.9)

where a is the lattice constant and êz is the unit vector along the z-axis. The energy
current consists of two terms in the presence of on-site disorder; the first one arises
from Hamiltonian (1.2) and the second one from the magnetic field distribution, Eq.
(1.7), where the latter involves the local spin current operators sl

ε =
∑
l

εl +
bl
2

(sl−1 + sl ) , εl = aJl−1Jl Sl ·
(
∆ · Sl+1 ×∆ · Sl−1

)
. (1.10)

The real parts of the dynamical spin σ and thermal κ, conductivities can be written
in the linear response theory framework [19, 20] (cf. Appx. A) as,

σ′(ω) = 2πDsδ(ω) + σ(ω) , κ′(ω) = 2πDhδ(ω) + κ(ω) . (1.11)
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δ(ω) is the Dirac δ-function, and Ds(Dh) is the corresponding spin(energy) stiffness,
where a non-vanishing stiffness implies ballistic transport for the corresponding modes.
However, in the presence of strong disorder coherent transport vanishes and the non-
trivial quantities are the regular components of the conductivities σ(ω), κ(ω), which
can be written using the respective current-current susceptibility as

σ(ω) =
1
L
= lim
η→0+

χss(z)
z

, κ(ω) =
1
LT
= lim
η→0+

χεε(z)
z

, (1.12)

with z = ω + iη. The susceptibility for the response of an observable Ôp due to a
perturbation which is coupled with an operator Ôq is defined within standard linear
response theory as

χÔpÔq(z) =
i

}

∫ ∞
0

dt eizt 〈[Ôp(t), Ôq]〉 . (1.13)

The angle brackets denote both the thermodynamic average,

〈Ô〉th =
Tr e−βHÔ

Tr e−βH
, (1.14)

and an average over the random distribution of impurities. β = 1/kBT , with kB being
the Boltzmann constant and T the temperature.

1.3 On-site disorder

Let us first consider the case of on-site disorder. In that case we restrict ourselves in
a homogeneous exchange coupling, i.e., Jl = J and H = H0 with H0 the Heisenberg
Hamiltonian for the pure anisotropic Heisenberg model (1.1). The disorder is induced
in the pure Heisenberg model by considering a local magnetic field whose values are
given by a uniform random distribution in the interval −W/2 < bl < +W/2 , with W
being the strength of the disorder, Eq. (1.7).

1.3.1 Frequency moments

Before proceeding with numerical results, the analytical calculation of the first two
frequency moments could offer quite rough, but rather valuable information for the spin
and energy conductivity. Taking a short time expansion, one can write conductivities
as a sum of powers of 1/ω, for 1/ω → 0, (cf. Appx. A)

σ(ω) ∼ 1
ω

(
σ̃0 +

σ̃2

ω2
+ . . .

)
, κ(ω) ∼ 1

ω

(
κ̃0 +

κ̃2

ω2
+ . . .

)
, (1.15)

with the coefficients σ̃n, κ̃n being the frequency moments which are given by

σ̃n =
∫ ∞
−∞

ωnσ(ω) dω , κ̃n =
∫ ∞
−∞

ωnκ(ω) dω . (1.16)
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In the high temperature limit, one can easily express the spin, energy moments as
thermodynamic averages of the respective currents and their time derivatives,

σ̃n = πβ}σn , κ̃n = πkB}β2κn , (1.17)

where for the two lowest moments we have

σ0 =
1
L
〈ss〉 , σ2 =

1
L
〈̇ṡs〉 , ̇s =

i

}
[H, s] , (1.18a)

κ0 =
1
L
〈εε〉 , κ2 =

1
L
〈̇ε̇ε〉 , ̇ε =

i

}
[H, ε] . (1.18b)

The operators ̇s, ̇ε—the so-called force operators—are the time derivatives of the re-
spective spin s, energy ε currents and signify the scattering processes that occur in a
system, whether these processes originate from external perturbations or if they come
from intrinsic scattering mechanisms of the system.

In order to calculate the thermodynamic averages in Eqs. (1.18), we will take the
infinite temperature limit, T →∞, where the thermodynamic averages can be replaced
by traces, 〈Ô〉th → Tr Ô/Tr1, yielding for the spin, energy frequency moments

σ0 =
J2

8
, (1.19a)

σ2 =
1
16

(
J4∆2 + 4J2〈b2〉

)
, (1.19b)

κ0 =
1
32

[(
1 + 2∆2

)
J4 + 2J2〈b2〉

]
, (1.19c)

κ2 =
J4

64

(
3 + 10∆2

)
〈b2〉+

J2

16

(
〈b4〉 − 〈b2〉2

)
, (1.19d)

where 〈b2〉 = W 2/12 and 〈b4〉 = W 4/80. In the above formulas we have omitted some
awkward } factors. However, one can easily restore the correct dimensions by simply
replacing the powers of J by Jn → Jn}n+2.

Without disorder the anisotropic XXZ model is integrable using the Bethe ansatz
method for any value of the anisotropy and it is known to show ideal spin (in the
easy-plane) and thermal (for any anisotropy) conductivities at all temperatures [21].
This difference between spin and thermal conductivity is already implied in the infinite
temperature calculation of the frequency moments. We can see that the finite dispersion
δε =

√
κ2/κ0 of κ(ω) is induced solely by a non zero value of W , whereas δs =

√
σ2/σ0

remains finite even for W = 0. Moreover, the absence of a J6 term in κ2 reflects the
fact that in the pure Heisenberg model the energy current is a constant of motion and
the force operator vanishes.
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Figure 1.1: Dynamical spin conductivity σ(ω) at T →∞ for local disorder W = 2 and
various ∆ (curves normalized to unity) evaluated via ED (L = 14) .

1.3.2 Numerical results

Although the lowest-frequency moments can serve as a reference, they are insufficient
to reveal the most challenging ω → 0 behavior. For the latter we have to rely on
numerical calculations. The most favorable case for simulations on a finite-size lattice
is the strong disorder limit where we expect the localization length ξ to be shortest.
In the following we consider W = 2, where an estimate of T = 0 localization length ξ
exists in the literature [10], which suggests that ξ is less than ten sites in the cases we
are studying.

For this part, we will use state of the art numerical diagonalization techniques—the
exact diagonalization (ED), the finite-temperature Lanczos method (FTLM) (Ref. [22])
and the microcanonical Lanczos method (MCLM)(Ref. [23])—to see what they can offer
on this issue of disorder and correlations. While we will study the spin and thermal
conductivity of the spin-1/2 anisotropic Heisenberg model, the spin conductivity maps
directly to that of the charge conductivity of the t-V model. For the numerical results
and from now on we use a system of units where }, kB, a = 1.

In Figs. 1.1 and 1.2 we present results for the spin σ(ω) and thermal κ(ω) conduc-
tivity, respectively, where curves are normalized to unity. The data for L = 14, with a
Hilbert-space dimension of DH = 3432 states in the Sz = 0 subsector, were obtained by
exact (full) diagonalization (ED). The peaks at the excitation frequencies are binned
in windows δω = 0.01, which also gives the frequency resolution of the spectra. There
is an average over Nr = 10 random-field configurations. In the same plots, we show
the noninteracting case for L = 1000 and averaging Nr = 1000, where we expect the
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Figure 1.2: Dynamical thermal conductivity κ(ω) at T →∞ for local disorder W = 2
and various ∆ (curves normalized to unity) evaluated via ED (L = 14).

dc conductivities σdc = σ(ω → 0) and κdc = κ(ω → 0) to vanish.
These results clearly reveal that apart from the XY limit, ∆ = 0, the system is

conducting, i.e., both spin and thermal dc conductivities are finite. Nevertheless, due
to the large disorder W the dynamics is non-Drude type since the maximum of σ(ω)
as well as of κ(ω) appears at a finite ω∗ > 0, in analogy with the localization at ∆ = 0.
Hence, at ∆ > 0 and large W we are dealing with pseudolocalized dynamics [15, 16].
Another feature of this regime appears to be a generic (nonanalytic) cusplike behavior
at low frequencies, σ(ω) ' σdc+α|ω| and κ(ω) ' κdc+γ|ω|, for which so far we cannot
offer an explanation. It might be attributed to long-time tail effects although, in such a
case, the low-frequency drop of the conductivity was found to be only a few percent [24]
and not as large as in our case. Such a frequency dependence is strongly reminiscent
of the behavior in strongly disordered two-dimensional systems as has been analyzed
theoretically and observed experimentally [25].

Apart from a qualitative similarity between σ(ω) and κ(ω) in Figs. 1.1 and 1.2
there are also some differences. σ(ω) is more sensitive to ∆, as it is already evident
from the moments Eqs. (1.19) and the corresponding δs. The origin of these differences
comes from the fact that even at W = 0 σ(ω → 0) changes qualitatively at ∆ = 1 [26],
not being the case for κ(ω → 0) [21].

As our numerical simulations indicate, a similar qualitative behavior persists by
decreasing the disorder to W = 1.0 (not shown). With decreasingW the pseudolocalized
form gives way to a more Drude-like form with ω∗ → 0 and strongly increased σdc and
κdc. However, reducing the disorder further we are running to long localization lengths
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Figure 1.3: Dynamical spin σ(ω) (left) and thermal κ(ω) (right) conductivity evaluated
via ED (L = 14), at T →∞ for a weak on-site disorder W = 0.8 and various values of
the anisotropy ∆ (curves are normalized to unity).

and in general less controllable finite-size effects preventing reliable conclusions.

Notwithstanding, to give a qualitative picture of the difference between spin and
thermal conductivity, as far as their dependence on the anisotropy ∆ is concerned, we
present in Fig. 1.3 results for spin (left) and thermal (right) conductivity for a weak
disorder W = 0.8 with a number of realizations Nr = 10 and for various values of
the parameter ∆; curves are normalized to unity. In the XY regime (∆ < 1) and for
the pure Heisenberg model the spin conductivity exhibits a finite spin stiffness at any
temperature, manifesting dissipationless dc transport, while it vanishes in the gapped
phase (∆ > 1). Thus, in the XY regime and for weak disorder it is expected that the
spin conductivity will show a more Drude-like behavior. On the contrary for ∆ > 1
the spin conductivity shows a strongly non-monotonic behavior, present already in the
absence of impurities. Thus, the low frequency behavior for ∆ > 1 shown in Fig.
1.3 (left) is attributed to the properties of the pure Heisenberg model in the gapped
phase and not to the presence of the disorder—as it is implied by the low frequency
non-linear behavior of σ(ω) as well. For the thermal conductivity, Fig. 1.3 (right),
we observe that the Drude-like behavior is maintained for any value of the anisotropy
parameter ∆, since the conservation of the energy current in the pure model leads to a
finite thermal stiffness at any temperature and for any anisotropy.
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Figure 1.4: T → ∞ results for σ(ω) and for ∆ = 1 and different bond disorder W
(curves are normalized).
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Figure 1.5: T → ∞ results for κ(ω) and for ∆ = 1 and different bond disorder W
(curves are normalized).
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1.4 Bond disorder

In connection to existing 1D magnetic compounds [27] more relevant appears to be
the spin-1/2 anisotropic Hamiltonian with bond disorder, i.e., disorder in exchange
couplings. This is formulated by taking Jl = J(1−sl) in (1.2) where −W/2 < sl < W/2
are uniformly distributed random numbers and bl = 0 in Eq. (1.7). Such a disorder can
be induced, e.g., by coupling to static lattice displacements [28]. An open question is
whether a 1D spin chain with bond disorder [11, 12] behaves qualitatively different to
the site disorder discussed above. Our results indicate that it is not the case.

In Figs. 1.4 and 1.5 we present T → ∞ results for σ(ω) as well as κ(ω) for ∆ = 1
and different bond disorder strengths W = 0.5, 1, 1.5. Results were obtained using the
MCLM method on L = 20 sites. Results for larger W = 1, 1.5 are well converged with
size and clearly indicate that we are again dealing with finite dc limits σdc > 0 and
κdc > 0. With respect to the site disorder case in Figs. 1.1 and 1.2 there are similarities
and also differences as follows: (a) for bond disorder we are restricted to W < 2 to have
a meaningful model without a possibility of a broken bond, (b) the pseudolocalization
is less pronounced at least for σ(ω) and shows up only closer to W = 2, e.g., for κ(ω)
at W = 1.5, (c) κ(ω) in Fig. 1.5 reveals a quite abrupt crossover with disorder strength
from a Drude-type response at W = 0.5 to a localized-like one with ω∗ > 0 at W = 1.0,
and (d) at least for σ(ω) two energy scales are evident in Fig. 1.4 which are not present
in the random-field case, (e) for weak disorder, e.g., W = 0.5, in the XY regime (∆ < 1)
the spin conductivity resembles the behavior of the thermal conductivity which remains
qualitatively similar for any value of the anisotropy ∆.

1.5 Temperature dependence

The next issue is the temperature dependence of the dynamical (in particular dc)
conductivity and the eventual existence of a critical temperature Tc below which the
system becomes insulating [13, 14]. To study this question we employed the FTLM for
L = 20 with 400 Lanczos steps for high-frequency resolution and Nr = 100. The FTLM
method, properly interpolating between the T = 0 (ground-state) Lanczos method and
T > 0 behavior, is more reliable for small T < 0.5 due to larger L and denser low-energy
spectra. Results for σ(ω) and κ(ω) in the isotropic case ∆ = 1 and at fixed W = 2 are
shown in Figs. 1.6 and 1.7 for various T = 0 − 2 and L = 20 being essentially equal
to the results obtained for L = 16 . The data again indicate that σdc and κdc remain
finite at all T > 0 and vanish only at T = 0. A rather abrupt drop of σdc appears
at T ∼ 0.1 which is however in the range of finite-size temperature Tfs for available
L = 20 below which the FTLM results are not to be trusted [22]. These data suggest
a zero critical temperature of localization-delocalization transition, although of course
we cannot exclude an exponentially small one, which is beyond the reach of actual
numerical simulations.

Note that the finite σdc in Fig. 1.6 is a result of the finite system size. On the other
hand κdc ' 0 (Fig. 1.7) since κdc ∝ CV , where CV is the specific heat, and vanishes
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Figure 1.6: Spin conductivity σ(ω) for ∆ = 1 and W = 2 for various temperatures.
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Figure 1.7: Thermal conductivity κ(ω) for ∆ = 1 and W = 2 for various temperatures.

independently of the localization length. More refined results are shown in Ref. [29].
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1.6 Perturbative approximations - XY model

The next issue we would like to discuss is the weak perturbation regime for the non-
interacting case, ∆ = 0. For weak disorder one expects localization effects to be
insignificant—the localization length to be quite large so that conductivities exhibit a
Lorentzian like form at high frequencies and a possible sharp drop at the very low ones.
This provides the opportunity to discuss the problem using perturbative approxima-
tions to obtain the scattering time which will completely determine the high frequency
behavior of the conductivities. This analysis applies only to the bulk of the conduc-
tivity before localization sets in at low frequencies. We exploit the memory function
approach, cf. Ref. [30] or App. B, in order to discuss the effect of many impurities on
the XY model. In addition we also use diagrammatic analysis to compare the charge,
energy scattering rates with those obtained by the memory function approach.

As we have already mentioned the spin Heisenberg model can be mapped into a
spin-less tight binding fermion one (1.6). Particularly for the XY model (∆ = 0) the
Jordan-Wigner transformation maps the spin system into a non-interacting (V = 0)
spin-less tight binding fermionic system at half filling. Thus, starting from the XY
model, Eq. (1.1) for ∆ = 0, we arrive at

H0 = −t
∑
l

c†l cl+1 + h.c. , (1.20)

where t = −J/2 is the hopping amplitude of the tight binding fermions and c†(c) are
creation (annihilation) operators. Using the Fourier transform

c†l =
1√
L

∑
p

e−ilpc†p , (1.21)

the Hamiltonian H0 can be diagonalized to obtain

H0 =
∑
p

εpc
†
pcp . (1.22)

The eigenvalues of the pure model εp are given by

εp = −2t cos p , with p =
2π
L
n , n = 0,±1,±2, . . . ,±(L/2− 1), L/2 , (1.23)

while since the chemical potential is µ = 0 (half filling) the magnitude of the Fermi
wavevector is pF = π/2 .

Applying the Jordan-Wigner transformation to the perturbation Hamiltonian, Eq.
(1.7), we obtain

H1 =
∑
l

blnl + const. , nl = c†l cl , (1.24)

with bl being the local field distribution. Although in the previous sections we modeled
the on-site disorder with a continuum distribution of random fields here we will consider
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a finite concentration cI = NI/L (NI is the number of impurities in the system) of
identical impurities each of them which yields a scattering potential b. The perturbation
Hamiltonian in the momentum space after using the Fourier transform (1.21) will be

H1 =
∑
p,p′

bpp′c
†
pcp′ , bpp′ ≡

1
L

∑
l

ble
−i(p−p′)l (1.25)

and the total Hamiltonian will be given by the sum

H = H0 +H1 . (1.26)

Despite the differences of the continuum distribution model to the finite concentra-
tion model, for weak perturbations the first few frequency moments would be sufficient
to describe the behavior of the conductivities of the two models, at least at higher
frequencies. Thus one could require the field distributions to have the same second
moment which yields a constrain of the strength of the random distribution W , the
concentration cI and the local potential b, assumed for the finite concentration model.
Choosing b = W/

√
12cI , which satisfies the condition that the two distribution fields

have the same second moment, we obtain numerically similar conductivities for the two
models, in the weak perturbation regime.

In order to obtain the particle, energy current operators we proceed as in the XXZ
model using the respective dipole operators,

P =
∑
l

rlnl, P ε =
∑
l

rlhl , (1.27)

where rl are the corresponding coordinates and nl, hl the particle and the energy density
operators respectively. Hence the particle, energy currents will be

 =
∑
l

l, ε =
∑
l

εl +
bl
2

(l−1 + l) , (1.28)

where the local currents l, εl are given by

l = −it(c†l cl+1 − h.c.) , εl = +it2(c†l−1cl+1 − h.c.) . (1.29)

Using the Fourier transform (1.21) for the creation, annihilation operators which appear
in l, we have for the particle current

 =
∑
p

vpc
†
pcp , where , vp = 2t sin p . (1.30)

For the energy current where an extra term ε1 has emerged due to the perturbation
H1, we will have using (1.21)

ε = ε0 + ε1 , ε0 =
∑
p

εpvpc
†
pcp, ε1 =

∑
p,p′

ϑpp′c
†
pcp′ (1.31)

with

ϑpp′ =
vp + vp′

2
bpp′ = 2t sin

(
p+ p′

2

)
cos
(
p− p′

2

)
bpp′ . (1.32)
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1.6.1 Diagrammatic analysis - particle relaxation rate

The problem of scattering of non-interacting fermions on static impurities is presented
in many standard many-particle textbooks [17, 31–33]. We follow here the diagram-
matic approach to explore the scattering of the 1D tight binding fermions on static
impurities. Although Eqs. (1.24), (1.25) were obtained directly from the spin model
using the Jordan-Wigner transformation we would like to reformulate the scattering
Hamiltonian in an equivalent way, which allows to be more compatible with the liter-
ature.

Let us consider a number NI of impurities being present in the system and each
of which yields an extended potential on which fermions are scattered. This can be
formulated by writing the perturbation Hamiltonian H as

H =
∑′

l′

∑
l

bll′c
†
l cl , (1.33)

which reduces to H1, Eq. (1.25), for bll′ ∼ δll′ . The prime at the first sum denotes that
the sum does not extend through the whole system but only through the locations of
the impurities l′, while the sum without the prime extends through all system sites.
The subscript ll′ of the field b denotes the distance of a given point l of the lattice from
the location l′ of the impurity.

Using the Fourier transform (1.21), we arrive at the Hamiltonian

H =
∑
pp′

b̃pp′c
†
pcp′ , (1.34)

where the scattering potential b̃pp′ is given by

b̃pp′ ≡
∑′

l

e−i(p−p
′)lbpp′ , bpp′ ≡

1
L

∑
l

bll′e
−i(p−p′)(l−l′) . (1.35)

Finally, in order to calculate the particle, energy current relaxation rates and in order
to handle simultaneously both, we consider a current J of the form

J =
∑
p

pc
†
pcp. (1.36)

For charge transport p = vp while for energy transport p = εpvp, i.e., we neglect
the extra non-diagonal term ε1 of the energy current. The latter assumption can be
justified using the memory function approach, cf. Sec. 1.6.3.

It is necessary before proceeding with the current relaxation rate to evaluate the
single particle relaxation rate. We start with the definition of the one-particle retarded
Green’s function

Gpp′(t) ≡ −iθ(t)〈{cp(t), c†p′}〉 (1.37)
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where θ(t) is the step function and the braces denote the anticommutator of the enclosed
fermionic operators. Writing the equation of motion for Gpp′(t) and taking the Fourier
transform we obtain the following equation

Gpp′(z) = δpp′G
0
p(z) +G0

p(z)
∑
q

b̃pqGqp′(z) , (1.38)

where z = ε+ iη (η > 0); the Fourier transform and the inverse Fourier transform for
a function g are given by

g(t) =
∫ ∞
−∞

dε

2π
e−iεtg(ε) , g(ε) =

∫ ∞
−∞

dte+iεtg(t) , (1.39)

δpp′ is the Kronecker δ−function and G0
p is the Green’s function (1.37) calculated in

the unperturbed system

G0
p(z) =

1
z − εp

. (1.40)

Eq. (1.38) can be expanded in an infinite series of terms where only the free propagator
G0 will be involved. Writing only up to second order terms of this expansion, with
respect to the Born scattering b̃, the full propagator Gpp′ can be written

Gpp′(z) = δpp′G
0
p(z) + G0

p(z) b̃pp′ G
0
p′(z)

+ G0
p(z)

∑
q

b̃pqG
0
q(z)b̃qp′ G

0
p′(z) + . . . . (1.41)

We will now implement the standard trick of averaging over the random distribu-
tions of impurities. To become more concrete, assume the averaged Green’s function
Gpp′ , where the line over the Green’s function denotes an average over the possible
random distributions of impurities. G0

p(z) is the propagator in the pure system and
consequently it does not depend on the impurity distribution. Thus, the only quantity
in Eq. (1.41) that depends on the impurity distribution is the scattering potential b̃.
Performing the average over the random configurations of impurities for a term where a
single b̃pp′ field appears the exponential factor of the potential b̃pp′ (1.35) will be [17, 31]∑′

l

e−i(p−p′)l = NI e−i(p−p
′)l = NIδpp′ .

In second order with respect to the scattering potential, terms which involve the product
of two such exponential factors have to be averaged, i.e. ,∑′

l

e−i(p−p′)l +
∑′

l 6=l′
e−i(q−p)l−i(p′−q)l′ ' NIδpp′ +N2

I δqpδp′q ,

and so on for the highest order terms. Omitting the line for the averaged propagator,
G→ G, we will have from Eq. (1.41)

Gpp′(z) = δpp′G
0
p(z) +G0

p(z) ·NIbpp′δpp′ ·G0
p′(z) (1.42)

+ G0
p(z) ·

∑
q

bpqG
0
q(z)

(
NIδpp′ +N2

I δqpδp′q
)
bqp′ ·G0

p′(z) + . . . .
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From the above, it is clear that the averaging over the impurity distributions makes
the Green’s function diagonal to the indices pp′, Gpp′(z)→ Gp(z).

Eq. (1.42) can be represented in a diagrammatic way

Gp(z) =

�

p
(1.43)

+�

p p

bpp

NI

+�

p

bpp bpp

p p

NI NI

+�
p

bpq bqp

q p

NI

+ · · · ,

where each solid line with an arrow denotes a free propagator G0 (1.40) with the
corresponding labeled momentum, the dashed lines denote a factor of the impurity
scattering potential as defined in Eq. (1.35) while each cross multiplies a diagram with
a factor NI . Finally, a sum over all the internal momenta (which are not equal with the
external) should be taken. Considering a dilute concentration of impurities a significant
simplification occurs. In this approximation high order in concentration cI diagrams
can be neglected. Thus in the dilute concentration limit diagrams with only one cross
will contribute to the retarded Green’s function, since these will be the only ones linear
in the concentration cI . This means that diagrams like the one in the middle of the
bottom line of Eq. (1.43) will be neglected. On the other hand the first and the third
diagrams of the bottom line of Eq. (1.43) are linear in concentration cI although they
might be of different order with respect to the scattering potential b.

Furthermore, introducing the concept of the irreducible1, retarded self energy Σp(z),
one can write the Dyson’s equation for the propagator Gp(z) [31, 34]

Gp(z) = G0
p(z) +G0

p(z)Σp(z)Gp(z) ⇒ Gp(ε) =
1

ε− εp − Σp(ε)
. (1.44)

The diagrams which contribute to the self energy are the same with those of the Green’s
function except that the external lines have been removed. Hence, for the self energy
we will have (presenting diagrams O(b3))

Σp(z) ' �
bpp

NI

+ �bpq bqp

q

NI

+ �bpq1 bq1q2 bq2p

q1 q2

NI

+ · · ·

(1.45)

If we assume a weak scattering potential then we will be interested in terms up to
second order in Born scattering, i.e., we should take into account only the first two
diagrams of the self energy (1.45). However, let us not truncate the series of the self

1As a matter of fact, since we have kept the lowest order diagrams in concentration all the self
energy diagrams that have to be taken into account are irreducible.
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energy but instead consider the contribution of a self energy diagram which corresponds
to an arbitrary order of the perturbation theory with respect to the scattering poten-
tial. That diagram would be

Σ(n+1)
p (z) =

�bpq1 . . . . . . bqnp

q1 q2 qn

NI

, n ≥ 1 . (1.46)

Let us mention once again that even though this diagram represents an arbitrary or-
der of perturbation with respect to the scattering potential b it is only linear to the
concentration of impurities cI . The contribution of this term to the self energy will be

Σ(n+1)
p (z) = NI

∑
q1,...,qn

bpq1bq1q2 . . . bqnp
(z − εq1)(z − εq2) . . . (z − εqn)

. (1.47)

Taking the potential scattering to be of the form bll′ = bδll′ we revert to the initial
form for the scattering potential (1.24), (1.25) where the distribution of fields consists of
NI constant fields bl = b distributed in a random way. Thus the scattering potential will
be constant in the momentum space which simplifies farther the problem and permits
the calculation of the sum of Eq. (1.47). Summations in Eq. (1.47) will decouple, hence

Σ(n+1)
p (z) = cIb

(
1
L

∑
q

b

z − εq

)n
. (1.48)

In the thermodynamic limit the summation can be replaced by an integral over the
first Brillouin zone. The (n+1) term of the self energy will be proportional to the nth
power of this integral I, Σ(n+1)

p ∝ In, which will be of the form

I =
∫ π

−π

dq

α− cos q
, (1.49)

with α being a complex constant. It is easy calculate this integral in the complex plane
with the suitable change of variable w = exp(iq) after which the integral becomes

I = 2i
∮
C

dw

w2 − 2αw + 1
,

where the contour of integration C is the unit circle. Apparently only one of the two
roots w± of the polynomial in the denominator of the integrand will be inside the
contour of integration. Hence using the residue theorem the result will be

I = ± −4π
w+ − w−

,
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with the sign chosen regarding to which root is in the contour. The roots of the
polynomial are

w± = α±
√
α2 − 1 ,

and the one which is in the circle is the w−. Finally, the integral will be

I =
2π√
α2 − 1

, (1.50)

and Eq. (1.48) becomes

Σ(n+1)
p (z) = cIb

 b

2t
1√(

z
2t

)2 − 1

n

. (1.51)

Result (1.51) is the contribution to the self energy up to an arbitrary (n+1) order with
respect to the potential scattering b.

The quantity in the parenthesis of Eq. (1.51) resembles the density of states per
volume for the pure one dimensional tight binding model which is given by

ρ(ε) =
1

2πt
1√

1−
( ε

2t

)2
. (1.52)

Using (1.45), (1.51) and (1.52) we obtain for the self energy in the lowest order of the
concentration cI

Σp(z) = cIb

(
1 +

∞∑
n=0

(−iπbρ(z))n
)
, (1.53)

which according to the previous is independent of the index p. In Ref. [31] a similar
formula for the self energy is obtained, evaluated in second order but independently of
the particular model or its dimensionality.

Considering a quasi particle picture the scattering relaxation rate can be defined
from the retarded self energy as [17, 18, 31]

1
τ
≡ −2=Σp(ε)

∣∣∣
ε→0

. (1.54)

Within second order Born approximation we obtain

1
τ

= 2cI

(
b2

2t

)
, (1.55)

while if we sum up all the terms for the self energy we have

τ∞ = τ

(
1 +

(
b

2t

)2
)
. (1.56)
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1.6.2 Diagrammatic analysis - transport relaxation rate

The next step is to evaluate the particle and thermal conductivities in the presence of
impurities using the diagrammatic technique. The regular parts of the particle, energy
conductivities are related to the corresponding susceptibility, Eqs. (1.12), (1.13). It
is clear that the current-current susceptibility is the retarded current-current Green’s
function

− χJJ(t) = GJJ(t) ≡ −iθ(t)〈[J(t), J]〉 , (1.57)

where this time the commutator of the two operators is involved since we are dealing
with a two-particle Green’s function. Recall that the current J is given by Eq. (1.36).

However, instead of proceeding with the retarded Green’s function we choose to
work with the thermal Green’s function, defined as

− χTJJ(λ) = GJJ(λ) ≡ −〈T(J(λ)J)〉 . (1.58)

The time ordering operator T for two operators Ôp, Ôq is defined as

T(Ôp(λ)Ôq) ≡ θ(λ)Ôp(λ)Ôq ± θ(−λ)ÔqÔp(λ) ; (1.59)

the sign is chosen appropriately for bosonic (+) or fermionic (−) operators. The imag-
inary time evolution of an operator Ô is obtained by

Ô(λ) = eλHÔ e−λH . (1.60)

Finally the retarded Green’s function will be obtained from the thermal one by imple-
menting an analytical continuation in the frequency domain.

It is useful to define here the imaginary time Fourier transform

g(λ) =
1
β

∞∑
n=−∞

e−iωnλg(iωn) , g(iωn) =
∫ β

0
dλe+iωnλg(λ) , (1.61)

where the Matsubara frequencies ωn are given by

ωn =


2nπ
β

, bosonic

with n ∈ Z .
(2n+ 1)π

β
, fermionic

(1.62)

Starting from the definition of the current-current thermal Green’s function (1.58)
one can express the two-particle Green’s function as a product of two one-particle
Green’s functions

GJJ(λ) =
∑
pp′

pp′ ,Gpp′(λ)Gp′p(−λ) , (1.63)
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with the single-particle thermal Green’s function defined as

Gpp′(λ) ≡ −〈T(cp(λ)c†p′)〉 . (1.64)

The Fourier component of the thermal Green’s function in the frequency domain
GJJ(iωn) will be given by

GJJ(iωn) =
1
β

∑
pp′

pp′
∑
m

Gpp′(iωn + iωm)Gp′p(iωm) . (1.65)

Our aim now is to expand the one-particle thermal Green’s function Gpp′(iωn) in a
series which contains products of the one-particle Green’s function which is calculated
in the unperturbed system,

G0
pp′(iωn) = δpp′G

0
p(iωn) , G0

p(iωn) =
1

iωn − εp
, (1.66)

similarly with the procedure we followed for the the evaluation of the single particle
relaxation rate. Eqs. (1.38), (1.41) which were obtained for the one-particle retarded
Green’s function hold as well for the thermal one, with G → G and z → iωn. We
plug the corresponding for the thermal Green’s functions Eq. (1.41) into Eq. (1.65) and
consider again an average over the random distribution of impurities. The result of this
procedure can be described by the following equation

βGJJ(iωn) =

�
, (1.67)

where the shaded box denotes all the diagrams which contribute to the thermal Green’s
function, the solid lines with the arrows denote the single particle free propagators
G0
p(iωl), where ωl is either ωl = ωm + ωn or ωl = ωm, the empty circles denote the

current matrix element p, while the indices of the left and the right free propagators
are not necessarily the same.

We can classify the diagrams that contribute to GJJ into two categories. The one-
particle scattering diagrams, which are diagrams where the upper propagators are not
connected with the lower ones, for instance

�

q

p

p

bpq bqp

p

p p

NI
,

�

q

p

q′

p

bpq bqp

p

bpq′
bq′p

p

p pNI NI
.
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The second category consists of diagrams where the two particles are scattered from
the same impurity, i.e., the upper lines are connected with the lower ones, for example

�
p

p′

bpp′

bp′p

p′

p

p p′NI
,

�
p

q

p′

q

bpq bqp′

bp′qbqp

p′

p

p p′

NI
.

The reason we made the previous discrimination is that the single particle scattering
diagrams can be summed by replacing the bare propagators G0 with the corresponding
one-particle dressed propagators G. Thus, we end up in summing only diagrams which
connect the upper and the lower lines but the cost we have to pay is that we are not
dealing any more with the free propagators. Now we have an infinite series of diagrams
which have to be summed up and each of these diagrams will be a two-particle diagram
but the scattering events are connected with the full one-particle propagators. In the
lowest order approximation with respect to the concentration of impurities and to the
scattering potential the current-current thermal Green’s function will be given by the
infinite sum of ladder diagrams [31–33]

βGJJ(iωn) = (1.68)

�
+

�
+

�
+ · · · ,

where the double lines represent the full single particle propagators Gp. Eq. (1.68) can
be written with the aid of the vertex function Γ as

βGJJ(iωn) =

�
p

p

p Γ (1.69)

≡ −
∑
p

∑
m

Γ0
p Gp(iωm + iωn)Gp(iωm)Γp(iωm + iωn, iωm)

where Γ0
p = p and the vertex function Γp = Γpp is given by

�Γ = Γ0
p +NI

∑
q

|bpq|2 Gq(iωm + iωn)Gq(iωm)Γq(iωm + iωn, iωm)

(1.70)
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Figure 1.8: The contour of integration which is used to evaluate the sum in Eq. (1.73).
The poles of f are denoted with ~, poles of g are denoted with ⊗ while the points
where the contour intersects the imaginary axis are denoted with •.

Hence, the current-current thermal Green’s function will be given by Eq. (1.69) where
the Γ-function will be given by Eq. (1.70).

Let us now proceed with the evaluation of the current-current Green’s function
and start with the sum over the Matsubara frequencies. The sum over the Matsubara
frequencies is performed by a contour integration in the complex plane. Consider the
generic function g(iωm + iωn, iωm) and the summation over the Matsubara frequencies
S(iωn), corresponding to the summation that appears in Eq. (1.69), given by

S(iωn) =
1
β

∑
m

g(iωm + iωn, iωm) . (1.71)

Using the Fermi-Dirac distribution f(ε),

f(ε) =
1

eβε + 1
, (1.72)

one can show that the sum S will be given by the integral

S(iωn) = −
∫
C

dz

2πi
f(z)g(z + iωn, z) . (1.73)

The contour of integration C is depicted in Fig. 1.8. It consists of two semicircles of
radius R, one in the upper and one in the lower complex plane, and a rectangle of
length R. The poles of the generic function g are denoted with the symbol ⊗ while
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those of f with ~. The symbol • stands for the points where the contour intersects the
imaginary axis (except those with z ∼ iR.) Taking the limit R → ∞ and at the end
performing an analytical continuation of the frequency variable iωn → ω+ iη we arrive
at

S(ω + iη) = i

∫ ∞
−∞

dε

2π

[
(f(ε+ ω)− f(ε))g(ε+ ω + iη, ε− iη) (1.74)

+f(ε)g(ε+ ω + iη, ε+ iη)− f(ε+ ω)g(ε+ ω − iη, ε− iη)
]
.

Since we are interested in the low frequency behavior of the conductivity, we can
expand the Fermi-Dirac distribution with respect to the frequency ω, set ω = 0 in the
function g and using Eqs. (1.12), (1.13), (1.57) we obtain for the conductivity of the
current J

σJ(ω → 0) = − 1
L
<
∑
p

p

∫ ∞
−∞

dε

2π
f ′(ε)|Gp(ε)|2Γp(ε+ i0+, ε+ i0−) . (1.75)

Terms which are proportional to G2
p have been thrown away in the formula for the

conductivity above (see discussion in Ref. [33]) and f ′ denotes the derivative of the
Fermi-Dirac distribution with respect to ε. The retarded Green’s function can be
written using the retarded self energy (1.44). Furthermore exploiting the property for
the magnitude of any complex number w∣∣∣∣ 1

w

∣∣∣∣2 =
1
=w∗

= 1
w
, (1.76)

the magnitude of the retarded Green’s function will be

|Gp(ε)|2 = τAp(ε) . (1.77)

The scattering time τ is defined in Eq. (1.54), its value is given in second order by
(1.55) and Ap(ε) is the spectral function which is defined as

Ap(ε) ≡ i(Gp(ε)−G∗p(ε)) = −2=Gp(ε) . (1.78)

Hence the dc conductivity will become

σJ
dc = −τ 1

L

∑
p

p

∫ ∞
−∞

dε

2π
f ′(ε)Ap(ε)Γp(ε+ i0+, ε+ i0−) . (1.79)

The simplest way to evaluate the integral giving the conductivity is to neglect the
vertex corrections, i.e. take Γp ' Γ0

p = p and approximate the spectral function with
its unperturbed form, Ap(ε) ' 2πδ(ε − εp). Taking the thermodynamic limit, the
conductivity of the current J will be

σJ
dc ∼ τ

(
χJ

0

L

)
, χJ

0 = β〈JJ〉 , (1.80)
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implying that the relaxation rate of the current J is the same one as the particle
relaxation rate, given by Eq. (1.55). Another important conclusion is that the relaxation
rate depends only on the general form that was initially assumed for the current J (1.36).
In other words the relaxation rate of the charge and the energy current will be the same,
which is consistent with the well known Wiedemann-Franz law

τ ε = τ , with
1
τ

= 2cI

(
b2

2t

)
, (1.81)

while charge and thermal conductivity will be given by

σdc = τ
(χ0

L

)
, Tκdc = τ

(
χε0
L

)
. (1.82)

The assumption we have made that there is only elastic scattering on the impurities
accounts for the fact that we arrive at the same scattering time for the particle and the
energy currents.

If we do not neglect the vertex corrections, we can still proceed with the evaluation
of the integral in the low temperature limit. At low temperatures the Fermi-Dirac
distribution can be approximated with a step function as f(ε) ' 1 − θ(ε) and the
integral in Eq. (1.79) becomes

σJ
dc =

τ

4π2

∫ π

−π
pAp(0)Γp(i0+, i0−)dp . (1.83)

Using Eq. (1.70) the Γ-function will be given by

Γp(i0+, i0−) = p + cIτb
2

∫ π

−π

dq

2π
Aq(0)Γq(i0+, i0−) . (1.84)

Approximating again the spectral function with a δ-function we can see that the vertex
corrections vanish for p = ±pF . Thus, for this particular model in the low temperature
limit vertex corrections do not contribute to the transport scattering rate.

1.6.3 Scattering time via memory function approach

After evaluating the dc conductivities via the diagrammatic analysis in the previous
paragraphs we would like to perform the same calculation using this time the memory
function (MF) approach [30]. We choose to repeat this calculation in order to compare
and test the memory function approach since it will be used in cases where analytical
calculations are not possible. The gist of the memory function approach is that one can
evaluate the scattering time, in the lowest order with respect to the concentration of
impurities cI , assuming that only a single impurity is present in the system. To obtain
the scattering rate in the presence of NI impurities one should multiply the scattering
rate of the single impurity with the concentration cI . The perturbative memory function
(scattering rate) is calculated from the force-force susceptibility where the particle ̇
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and the energy ̇ε force operators (dots over the current operators denote the derivative
with respect to time) are given from (neglecting second order in concentration terms)

̇ =
∑
p,p′

φpp′c
†
pcp′ , φpp′ = i(vp − vp′)bpp′ , (1.85a)

̇ε =
∑
p,p′

φεpp′c
†
pcp′ , φεpp′ = i(εpvp − εp′vp′)bpp′ − (εp − εp′)ϑpp′ . (1.85b)

The imaginary part of the respective particle M0 and energy N0 memory functions
(Eq. B.11) are given by

M ′′0 (ω) = π
cI

(χ0/L)
1− e−βω

ω

∑
p,p′

|φpp′ |2fp(1− fp′)δ(εp′ − εp − ω) ,

(1.86a)

N ′′0 (ω) = π
cI

(χε0/L)
1− e−βω

ω

∑
p,p′

|φεpp′ |2fp(1− fp′)δ(εp′ − εp − ω) ,

(1.86b)

where the subscript 0 denotes that memory functions are calculated in the unperturbed
system and fp is the Fermi-Dirac distribution

fp =
1

eβεp + 1
.

Since only one impurity is considered to be present in the system we can choose to place
it at the origin of the system, i.e. bl = bδl,0. The scattering potential in momentum
space bpp′ will be constant, bpp′ = b/L. After evaluating the corresponding memory
functions the particle and energy conductivities are obtained using Eq. (B.3)

σ̃(z) =
i(χ0/L)
z +M0(z)

, κ̃(z) =
1
T

i(χε0/L)
z +N0(z)

, (1.87)

where we use the symbols σ̃, κ̃ for the complex particle and thermal conductivities
respectively.

The corresponding τ, τ ε scattering rates are obtained by taking the limit ω → 0 in
Eqs. (1.86) as imposed by Eq (1.87) (see also discussion in Appx. B which ends up in
Eqs. (B.4), (B.6)), hence,

1
τ

= M ′′(ω → 0) = πβ
cI

(χ0/L)

∑
p,p′

|φpp′ |2fp(1− fp′)δ(εp′ − εp) , (1.88a)

1
τ ε

= N ′′(ω → 0) = πβ
cI

(χε0/L)

∑
p,p′

|φεpp′ |2fp(1− fp′)δ(εp′ − εp) . (1.88b)
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Taking the thermodynamic limit and using the property of the δ-function which has as
an argument a function g(p) with roots pi,

δ(g(p)) =
∑
i

δ(p− pi)
|g′(pi)|

, g′(p) =
d

dp
g(p) ,

we conclude that from the integral over the momentum p′ only two values will con-
tribute, the p′ = ±p. Looking at the force operators’ matrix elements (1.85) we can
conclude that only terms with p′ = −p will contribute to the memory function for both
the particle and the energy current. Furthermore for the case of the energy current it
is easy to observe that the term which is proportional to ϑ vanishes for p′ = ±p (1.32),
(1.85b). This leads to the conclusion that the perturbative current ε1, Eq. (1.31), which
had emerged due to the perturbation does not contribute to the scattering time, sup-
porting the result for the energy scattering rate with the diagrammatic analysis where
it was considered only the diagonal term of the energy current. Finally, at low temper-
atures only transitions from states around p = ±pF will occur. Expanding the energy
eigenvalues εp and the velocity vp around the points p = ±pF we will have

εp ' ±vF p , vp ' ±vF , vF = 2t (1.89)

Performing the integrals (1.88) in addition with the low temperature assumptions we
arrive at

1
τ

= πβ
cI

(χ0/L)

(
b2

2
π2
T

)
,

1
τ ε

= πβ
cI

(χε0/L)

(
2
3
b2T 3

)
(1.90)

with
χ0 =

vF
π
L , χε0 =

π

3
vFLT

2 . (1.91)

Combining Eqs. (1.90), (1.91) we are led to the scattering time which was obtained by
the quite bothersome diagrammatic analysis Eq. (1.81)

τ ε = τ , with
1
τ

= 2cI

(
b2

2t

)
,

while for the Wiedemann-Franz law we will have (cf. Ref. [35]).

κ(T )
σ(T )

=
π2

3
T . (1.92)

Scattering times can also be evaluated via memory function in the high temperature
regime (β → 0). Starting from Eq. (B.11) we have for the imaginary part of the
corresponding memory functions

M ′′0 (ω) = π
cI

(χ0/L)

∑
p,p′

|φpp′ |2
fp − fp′

ω
δ(εp′ − εp − ω) , (1.93a)

N ′′0 (ω) = π
cI

(χε0/L)

∑
p,p′

|φεpp′ |2
fp − fp′

ω
δ(εp′ − εp − ω) . (1.93b)
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Figure 1.9: a) The ratio of the imaginary part of the particle over the energy memory
function at zero frequency as a function of the inverse temperature 2t/T . Frequency
dependence of the particle, energy memory function for a low (b), high (c) temperature.
The analytical results for the corresponding scattering rates are presented as well. The
parameters of the system are t = 0.5, L = 1000, b/t = 0.5, c = 10%.

Expanding the Fermi-Dirac distribution with respect to β and keeping only linear terms
we arrive at

M ′′0 (ω) = π
β

4
cI

(χ0/L)

∑
p,p′

|φpp′ |2δ(εp′ − εp − ω) , (1.94a)

N ′′0 (ω) = π
β

4
cI

(χε0/L)

∑
p,p′

|φεpp′ |2δ(εp′ − εp − ω) . (1.94b)

The static limit (ω → 0) of Eqs. (1.94) will be in the thermodynamic limit (L→∞),

1
τ

=
8
π
cI

b2

2t
,

1
τ ε

=
32
3π

cI
b2

2t
, (1.95)

and the ratio of the scattering rates is not 1 but

1/τ
1/τ ε

=
3
4
. (1.96)

In Fig. 1.9 we present the imaginary part of the particle, energy memory function
for two temperatures, T/2t = 0.1 Fig. 1.9(b), and β → 0 Fig. 1.9(c), in the low
frequency regime. In the same figures the scattering rates evaluated from the analytical



36 Static disorder

calculations (1.81), (1.95) are also shown. The parameter for the particular system,
shown in Fig. 1.9 are: t = 0.5, L = 1000, b/t = 0.5, c = 10%. Moreover we bin the
δ-functions in windows of width δω = 0.005 and we smooth our results with an extra
broadening paramterer η, where η = 0.01. For the high temperature as well for the
low one we observe that numerical results are in good agreement with the analytical
calculations. From Fig. 1.9(a) we can see that at high temperatures the ratio of the
two scattering rates, as obtained from the numerical results using the memory function
approach, is consistent with the analytical evaluation M ′′(ω → 0)/N ′′(ω → 0) ' 0.75.
For decreasing temperature the ratio increases towards ∼ 1 with its value for the
lowest available temperature to be ∼ 0.95. Numerical limitations prevent us from
presenting results for even lower temperatures, however, the behavior of the ratio of
the two scattering rates with temperature makes plausible the conjecture that at very
low temperatures it will be ∼ 1 as it was analytically derived (Eq. (1.81)) using
diagrammatic analysis and the memory function approach.

Although the transport scattering rates are not equal at high temperatures this
does not necessarily mean that the Wiedemann-Franz law does not hold. Instead it
could signify that our approximations failed at some point of the evaluation of the
scattering rates. On the other hand for the lower temperature we obtain a ratio of
the two scattering rates which is closer to unity as it was also predicted from the low
temperature analytical calculation.

In order to test the perturbative approximations we present in Figs. 1.10, 1.11 results
for particle and for the thermal conductivity as well, obtained either by extracting them
from the respective memory function, Eqs. (1.86), (1.87), labeled as “perturbative” or
calculated by diagonalizing the full Hamiltonian H (1.26); exact results are labeled as
“exact”. The formulas for the conductivities obtained for the full system are (cf. Appx.
A, Eqs. (A.17a), (A.19a))

σ(ω) =
π

L
P

(
1
ω

)∑
p,p′

|pp′ |2(fp − fp′)δ(εp′ − εp − ω) , (1.97a)

κ(ω) =
π

TL
P

(
1
ω

)∑
p,p′

|εpp′ |2(fp − fp′)δ(εp′ − εp − ω) . (1.97b)

where the εp are the eigenvalues of the full Hamiltonian and are obtained by numerical
diagonalization and the matrix elements for the current operators can be obtained
using Eqs. (1.28), (1.29) and (A.16). We have used a system of L = 1000 sites, a
concentration cI = 5%, T/t = 0.1(Fig. 1.10) and cI = 10%, T/t = 1(Fig. 1.11) and
Nr = 1000 configurations, while t = 0.5, b/t = 0.5.

From Figs. 1.10, 1.11 we can infer that the structureless low frequency behavior of
the memory functions leads to Drude-type behavior for the conductivities which ex-
hibit a Lorentzian form. The perturbative memory function approximation reproduces
with good accuracy the high frequency behavior of the conductivities for both values
of the concentration cI = 5%, 10%. Nevertheless, a discrepancy between perturbative
approximation and exact results comes up at low frequencies for cI = 10%, Fig. 1.11.
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Figure 1.10: Frequency dependence of the particle (left) and thermal (right) conduc-
tivity calculated using the exact formulas (1.97), labeled as “exact” and extracted from
the corresponding memory functions Eqs. (1.86),(1.87), labeled as “perturbative”. The
data were obtained for a system of L = 1000 sites, t = 0.5, b/t = 0.5, cI = 5%,
Nr = 1000 and T/t = 0.1.

Weak localization effects cause a sharp drop in conductivities at low frequencies and
cannot be revealed by the memory function approach which does not take into account
correlations among the impurities and consequently cannot reveal localization phenom-
ena. On the other hand for the lower concentration c = 5% we observe that localization
phenomena are not present and consequently the memory function approach is in very
good agreement with the exact numerical results. The conclusion is that a dilute con-
centration of impurities and a weak scattering potential is needed, for a non-interacting
system, to be well described by the perturbative approximations we presented in the
previous sections.

For a stronger field b localization phenomena become even stronger and even for
the dilute case of a impurity concentration, cI = 5%, there will be a sharp drop on
the low frequency behavior of particle and thermal conductivity. Moreover, we propose
that the particle and thermal conductivities will obey a universal scaling with respect
to the concentration of impurities cI with the concentration independent quantity to be
cIσ(ω/cI) and similarly for the thermal conductivity. The proposed scaling is expected
to be valid in the absence of localization phenomena where conductivities exhibit a
Drude-type form or in the strong localization regime where the sharp reduction at low
frequencies is present. For intermediate cases the shape of conductivities will change
with increasing/decreasing concentration cI and the sharp reduction at low frequencies
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Figure 1.11: Frequency dependence of the particle (left) and thermal (right) conduc-
tivity calculated using the exact formulas (1.97), labeled as “exact” and extracted from
the corresponding memory functions Eqs. (1.86),(1.87), labeled as “perturbative”. The
data are obtained for a system of L = 1000 sites, t = 0.5, b/t = 0.5, cI = 10%,
Nr = 1000 and T/t = 1.

may appear/disappear and the proposed scaling cannot be valid. In Fig. 1.12 we plot
the particle conductivity scaled as cIσ(ω/cI) for a field b/t = 1 (t = 0.5), a lattice size
of L = 1000 sites and various concentrations of impurities cI = 5%, 10%, 20%. More-
over, we plot the scaled particle conductivity for two more lattice sizes L = 500, 2000
and a concentration cI = 10%. A random configuration sampling Nr = 1000 was
taken while the temperature is T/2t = 1. The numerical results shown in Fig. 1.12
verify the proposed scaling with the concentration while they show that results are well
converged with the lattice size. Similar are the results for the thermal conductivity
as well. For weak impurities where conductivities are expected to have a Drude-type
form this scaling is rather trivial since the behavior of the corresponding conductivity
is determined only by one parameter, the scattering rate, which is proportional to the
impurity concentration cI .

1.7 Conclusions

In conclusion, our results of numerical simulations on the interplay of disorder and
correlations in the spin and thermal transport within Heisenberg spin chains can be
summarized by the following scenario:

• Finite random-field disorder W > 0 induces localization and vanishing dc trans-
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Figure 1.12: Frequency dependence of the scaled particle conductivity cIσ(ω/cI) ob-
tained via ED for L = 1000 and various concentrations cI = 5%, 10%, 20% while for a
concentration cI = 10% the lattice sizes L = 500, 2000 are shown as well. The rest of
the parameters are t = 0.5, b/t = 1, Nr = 1000 and T/2t = 1.

port at any T in the XY limit, corresponding to noninteracting fermions [5].

• In the weak disorder regime we are led to Lorentzian-like forms, at least at high
frequencies, for the particle, thermal conductivities. The high frequency behav-
ior is determined by the scattering rate, evaluated analytically at low and high
temperatures.

• In the absence of localization phenomena or in the presence of strong localiza-
tion we obtain a universal scaling with the concentration of impurities for the
conductivities as cIσ(ω/cI), cIκ(ω/cI).

• Vanishing dc transport is induced in the XXZ model (∆ > 0), as well, by the
finite random disorder (W > 0), but only at T = 0 Refs. [9] [10].

• Apart from the two limits, ∆ = 0 any T or T = 0 and any ∆, the system appears
to behave as a normal conductor with finite σdc > 0 and κdc > 0 both for various
∆ > 0 and T > 0; in particular, we do not find any evidence for a phase transition
by varying T or W .

• Dynamical transport at least for larger disorder reveals a generic cusplike non-
analytic behavior, analogous to long-time tails in classical dynamical systems in
low-dimensional [36] or 2D strongly disordered systems.
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• With increasing disorder the system reveals a crossover from the Drude-type to
a pseudolocalized dynamics with very low σdc and κdc (Ref. [16]).

• Similar conclusions seem to hold for the bond disorder.

Clearly, several caveats are in order. The considered cases mostly correspond to
substantial disorder, where the finite-size effects are well under control and results
converged within available L, at least for T > Tfs and not too small ∆ > 0. Also,
numerical results cannot exclude the localization on a very long scale ξ � L although
we do not find any signature of such a development.
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[22] J. Jaklič and P. Prelovšek, Finite-temperature properties of doped antiferromag-
nets, Advances in Physics 49, 1–92 (2000).
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Chapter 2

Single non-magnetic impurity

2.1 Introduction

Transport properties of one dimensional systems are of particular interest due to their
unusual transport properties [1–4]. For one thing, in a one dimensional model with
only nearest neighbor interactions, a broken bond in a spin chain, or the vanishing of
one hopping amplitude in a particle system, leads to vanishing dc transport despite
the fact that the defect is only one in a macroscopic system. On the other hand,
pure one dimensional systems could be ideal electric, spin or heat conductors, a fact
which arises from the integrability of these systems, i.e., the existence of a macroscopic
number of conservation laws [5–7]. For an integrable model, even if a current is not a
constant of motion and its autocorrelation decays in time the coupling of this particular
current with the existing conservation laws might lead to infinite dc transport of the
corresponding modes [8, 9]. Furthermore, the coexistence of both, diffusive and ballistic
transport channels [10] or even the divergence of a conductivity at zero frequency in
the presence of perturbations incapable to break the integrability of the system [11]
is discussed in the literature. Finally, we would like to mention the exotic “cutting-
healing” behavior of one dimensional many body systems in the presence of defects
[12–16]. For a Luttinger liquid [17] it was shown that in the presence of a single barrier
or a weak link the transmission through the defect renormalizes to (zero)one, at zero
temperature, for (repulsive)attractive interactions [12, 13]. Similarly, for spin chains
in the presence of magnetic impurities the cutting(healing) behavior is observed for
antiferromagnetic(ferromagnetic) easy axis anisotropy [14, 15]. In the same context,
for the spin-1/2 isotropic Heisenberg model, the cutting, healing behavior was shown
for a single, two consecutive weak links, respectively [16].

According to the above, the effect of a single non-magnetic impurity in a finite
system is of high theoretical interest. The problem of a single impurity could also be
appealing for experiments as well—although not so directly relevant—considering a
dilute concentration of impurities so that there would not be any correlations among
the impurities.



46 Single non-magnetic impurity

2.2 Model

To explore the issues mentioned previously, we consider a one dimensional (1D) spin-
1/2 system of L sites in the presence of a single non-magnetic impurity. The pure
anisotropic Heisenberg model (AHM), in the absence of any impurities (external local
fields or weak links), is described by the Hamiltonian

H0 =
∑
l

hl , hl = Jl(Sxl S
x
l+1 + Syl S

y
l+1 + ∆Szl S

z
l+1) (Jl = J) , (2.1)

where, Sα, α = x, y, z, are spin-1/2 operators, J is the anti-ferromagnetic (J > 0) ex-
change coupling and ∆ the anisotropy parameter, which is taken either anti-ferromagnetic
(∆ > 0) or ferromagnetic (∆ < 0) in order to investigate the “cutting-healing” effects,
while we consider periodic boundary conditions (SL = S0).

Considering a local magnetic field b0 applied at the zeroth site coupled with the
spin z-component, we are led to the local perturbation Hamiltonian

H1 = b0S
z
0 . (2.2)

On the other hand, for the single weak link perturbation one could take the couplings
Jl of the spins at sites l, l + 1 in Eq. (2.1) to be Jl 6=0 = J and J0 = J ′.

One can obtain the spin s and the energy ε currents from relations (1.9), (1.10)
of Ch. 1 for the disordered chains; we repeat them here,

s =
∑

sl , sl = Jl

(
Sl × Sl+1

)
· êz , (2.3a)

ε =
∑
l

εl +
bl
2

(
sl−1 + sl

)
, εl = Jl−1Jl Sl ·

(
∆ · Sl+1 ×∆ · Sl−1

)
. (2.3b)

For the single impurity case the distributions bl, Jl will be: bl = b0δl,0 and Jl = J , for
the local field case, or bl = 0 and Jl = J − (J − J ′)δl,0 , for the single weak link case .
Let us recall that ∆ is the anisotropy tensor, êz the unit vector along the z-axis while
we work in a system of units where a, }, kB = 1.

2.3 Level statistics

The distinction between integrable and non-integrable models is closely related to the
statistics of many-body levels [18], which follow the Poisson level distribution for an
integrable system and the Wigner-Dyson (WD) distribution for a generic non-integrable
one [19]. In the absence of the impurity the AHM, Eq. (2.1), is integrable and its level
statistics follows the Poisson level distribution (cf. Ref. [19])

Pp(s) = exp(−s) , s =
εn+1 − εn

δε
, (2.4)

where s is the dimensionless parameter proportional to the energy difference of consec-
utive eigenvalues and δε is the average (energy) level spacing. Broken integrability is
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Figure 2.1: Poisson and Wigner-Dyson distributions. s0 = 0.473 is the point of the
intersection of the two curves.

expected to change the level statistics from Poisson to Wigner-Dyson (WD) distribu-
tion, given by

Pwd(s) =
πs

2
exp

(
−πs

2

4

)
. (2.5)

One can immediately notice one of the most important differences of the two distri-
butions by taking the limit, s → 0. While in the Poisson distribution the probability
exhibits its maximum value for s = 0, the WD one vanishes. In other words, in the WD
distribution it is unlikely to have a degenerate spectrum (because of level repulsion) in
contrast to the Poisson distribution (level crossing) [20].

The perturbation of a next nearest neighbor interaction has been discussed in the
literature for both integrable systems, the fermionic t − V model (cf. Ch. 1)[21] and
the spin Heisenberg model [11, 19, 22]. In Refs. [21, 22] the next nearest neighbor
interactions were considered only at the diagonal terms, i.e., terms of the form J ′Szl S

z
l+2,

V ′nlnl+2 were included respectively. While in both works it was observed that there is a
crossover behavior from Poisson to WD level statistics, in Ref. [21] it was also observed
that even in the presence of the next nearest term, for some parts of the spectrum there
were deviations from the WD distribution indicating the existence of an integrable
effective Hamiltonian. In Refs. [11, 19] the next nearest neighbor interactions were
taken in the kinetic as well as in the diagonal terms. Using the level statistics analysis
in Ref. [19] it was concluded that the perturbation breaks integrability, rendering the
consecutive level spacing distribution of the WD form. On the other hand in Ref. [11],
using the memory function framework to determine thermal transport coefficients, the
next nearest neighbor perturbation was shown to be insufficient to break integrability
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Figure 2.2: Parameter η for the deviation from the WD level distribution vs impurity
field b0 for ∆ = 0.8 and various L.

in leading order of the perturbation parameter J ′/J . From the previous discussion it
can be seen that breaking the integrability is not as trivial as someone would expect,
making the effect of a single non magnetic impurity on a chain of L sites to be far from
obvious.

In order to investigate the effect of a single static impurity, Eq. (2.2), in the pure
1D anisotropic Heisenberg model (AHM) within the level statistics framework we use
the (full) exact diagonalization (ED) technique. We diagonalize system with lattice size
L = 10 − 16, obtaining the full energy spectrum in the Sztot = 0 subsector, where the
dimension of the Hilbert space varies from DH ∼ 102−104 states and the corresponding
average level spacing δε ∼ 2× 10−2 − 5× 10−4.

η-parameter
To be concrete we present here two standard tests for the closeness of the RMT.

The first one is the parameter η [23, 24] measuring the normalized distance to the WD
distribution,

η =

∫ s0
0

(
P (s)− Pwd(s)

)
ds∫ s0

0

(
Pp(s)− Pwd(s)

)
ds

, (2.6)

where P (s) is the actual level distribution and s0 = 0.473 is chosen to be the intersection
of Pp(s) and Pwd(s). In order to stay within the regime of homogeneous density of states
we analyze only one half of the intermediate many-body states, as relevant for the high
temperature (T � J) properties discussed here. In Fig. 2.2 we present ED results for
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Figure 2.3: Level fluctuation parameter ∆3(N) for fixed ∆ = 0.8 and b0 = 0.8 and
different system length L. For comparison the RMT result is presented (dashed line).

the parameter η as a function of b0 for chosen intermediate ∆ = 0.8 (metallic regime)
and for different L = 12 − 16. To avoid the effect of higher degeneracy of levels at
Sztot = 0, b0 = 0 presented results in Fig. 2.2 are for Sztot = 1. In the absence of
impurity (b0 = 0) we obtain η = 1 since P (s) = Pp(s) due to the integrability of the
pure AHM. The most important conclusion is that a rather weak impurity b0 ∼ 0.2 in
the largest L = 16 causes a fast drop to η ∼ 0, i.e., to P (s) ∼ Pwd(s). The threshold
value of b0 is decreasing with L so that for the largest L = 16 reachable with ED we get
P (s) ∼ Pwd(s) in the range 0.2 < b0 < 1.5. On the other hand, it is quite remarkable
that η starts to recover toward η ∼ 1 for large b0. This can be easily explained by
noting that a large b0 effectively cuts the ring and leads to the AHM with open ends
which is again an integrable model.

∆3-parameter
Even stronger probe of the level statistics is the correlation ∆3 measuring the level

fluctuations beyond the nearest neighbor levels [25, 26]. In fact ∆3 is the mean square
deviation of the number of states N(ε), with energy up to ε, from a linear fit (Aε+B)
without any constraints for A,B

∆3 =
1

2N
min
A,B

∫ N

−N

(
N(ε)−Aε−B

)2
dε , ε =

ε

δε
. (2.7)

∆3 should behave as ∆3 ∼ N/15 for Poisson distribution, and asymptotically as ∆3 ∼
lnN/π2 within the RMT [25, 27].
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In Fig. 2.3 we present results for ∆3(N) for fixed ∆ = 0.8 and b0 = 0.8 as obtained
for different L = 12 − 16. A comparison with the result expected from the RMT
shows that ∆3(N) approaches the latter very accurately in an interval N < N∗(L)
with N∗ exponentially increasing with L, while the deviation into a Poisson-like linear
dependence ∆3 ∝ N appears for N > N∗(L) . Such a generic crossover has been
observed also in other systems [21] and one can discuss the relevance of the related
crossover energy scale ε∗ = N∗ · δε. Fast increase in N∗(L) can be understood by
noting that the perturbation, being L independent, mixes up many-body levels [23, 24]
within the interval ε∗ whereby separation between many-body levels decreases as δε ∝
exp(−L). We can estimate b0/4L within the XY (∆ = 0) model which gives right order
of magnitude for observed N∗ in Fig. 2.3. More detailed analysis in analogy to other
systems [23, 24] is difficult due to the complicated nature of states at intermediate ∆.

2.4 Spin stiffness

It has been shown [6, 7] that pure 1D integrable models of interacting fermions exhibit in
spite of umklapp scattering at any T > 0 dissipationless ballistic transport manifested,
for example, in a finite charge stiffness D(T > 0) > 0. Closely related to the onset
of the WD distribution by a single impurity is the vanishing of the T > 0 coherent
(ballistic) transport characteristic for integrable systems.

The real part of spin and thermal conductivities can be written as the sum of a
non-dissipative term denoting the free acceleration of the corresponding fluxes and a
dissipative term, which represents transport due to transitions between states with
different energy [28, 29],

σ′(ω) = 2πDsδ(ω) + σreg(ω), κ′(ω) = 2πDhδ(ω) + κreg(ω) . (2.8)

The stiffnesses Ds, Dh manifest coherent transport, namely, whether ballistic transport
exists in a system or not. For an integrable system, with a macroscopic number of
conservation laws, the corresponding stiffness of a particular current could be finite
either because this current coincides with one of these conservation laws, or because
it has a finite coupling with the conservation laws of the system [7–9] . In Appx.
A it is shown that the spin, energy stiffness are given by the imaginary part of the
corresponding conductivity, σ′′, κ′′, using the relations

Ds =
1
2

lim
ω→0

ωσ′′(ω) , Dh =
1
2

lim
ω→0

ωκ′′(ω) . (2.9)

For the pure AHM the spin stiffness remains finite, at a finite temperature, in the
metallic regime 0 < |∆| < 1, despite the fact that the spin current is not conserved
for ∆ 6= 0. On the other hand, for the heat transport, where the energy current is
conserved for any ∆, the corresponding stiffness remains finite at any temperature
[6, 7]. The measure of the coherent dissipationless component for the spin transport
Ds(T ), equivalent to the charge stiffness for the related fermionic model, can be defined
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via the gauge phase φ into the spin-flip terms in Eq. (2.1), using Eq. (1.4) as well, i.e.,

Sxl S
x
l+1 + Syl S

y
l+1 −→ eiφS+

l S
−
l+1 + h.c. .

Subsequently, the spin stiffness can be expressed at finite temperatures (T > 0) by the
derivative of the Hamiltonian eigenvalues with respect to the flux φ [6] via,

Ds =
1

2L

∑
n

pn
∂2εn
∂φ2

(2.10)

∂2F

∂φ2
= 0 ⇒ Ds ∼

β

2L

∑
n

pn

(
∂εn
∂φ

)2

(2.11)

where β is the inverse temperature, β = 1/T , pn are the corresponding Boltzmann
weights

pn = exp(−βεn)/Z , with Z =
∑
n

exp(−βεn) , (2.12)

and F the free energy, F = −T lnZ. The relation for the spin stiffness (2.11) becomes
an equality provided that the susceptibility for persistent currents vanishes (for finite
systems at large enough temperatures). On the other hand, Ds still depends on the
value of φ where derivatives in Eq. (2.11) are taken.

XY model
For the XY model (∆ = 0) the spin Hamiltonian can be mapped via the Jordan-

Wigner transformation into tight-binding non-interacting (NI) fermions since V ∝ ∆ =
0 in Eq. (1.6). Implementing the same transformation for the perturbation Hamiltonian
(2.2), the Sz operator is replaced by Sz → c†c− 1/2, we arrive at the Hamiltonian

H = −t
∑
l

|l〉〈l + 1|+ |l〉〈l − 1|+ ε0|0〉〈0| + const. , (2.13)

where |l〉 are the localized states of the lattice sites, t is the hopping amplitude and
ε0 = b0 the local potential at the zeroth site. Taking the eigenvalue equation for
Hamiltonian (2.13) and expanding its eigenstates as linear combination of the localized
sates |l〉 with corresponding weights ψn(l) (eigenfunctions) we obtain the equation

ψn(l + 1) + ψn(l − 1) +
εn − εlδl,0

t
ψn(l) = 0 . (2.14)

For vanishing impurity, ε0 = 0, the energy eigenvalues are given by (cf. sec. 1.6)

εn = −2t cos pn , pn =
2π
L
n , n = 0,±1,±2, . . . . (2.15)

Assuming a standard scattering process where plane waves are scattered on the
impurity which is located at site l = 0 we can write for the eigenfunctions

ψp(l) =


tpe

+ipl , for l ≥ 0
,

e+ipl + rpe
−ipl , for l ≤ 0

(2.16)
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where |rp|2, |tp|2 are the reflection and transmission coefficients respectively while we
omit the integer index n, i.e., pn → p. Using (2.14), (2.16) we calculate the transmission
coefficient to be

|tp|2 =
4t2 sin2 p

4t2 sin2 p+ ε20
. (2.17)

One can establish the relation with the transmission through the barrier, as used
also in connection with the evaluation of the 1D conductance at T = 0 [30]. For general
T > 0 one gets in the case of NI fermions in accordance with [6] that charge (spin)
stiffness is given by

D =
1

2L

∑
p

fp
∂2εp(φ)
∂φ2

, (2.18)

where fp is the Fermi-Dirac distribution at half filling (µ = 0) and εp now are the single
particle eigenvalues for the Hamiltonian in the presence of the flux

fp =
1

eβεp + 1
, εp(φ) = −2t cos(p+ q(φ)) . (2.19)

Assuming the absence of persistent currents in the thermodynamic limit we obtain

∂2Ω
∂φ2

' 0 ⇒ D ' β

2L

∑
p

fp(1− fp)
(
∂εp(φ)
∂φ

)2

. (2.20)

Following Ref. [31] we calculate the derivative of the eigenvalues with respect to the
flux, that appears in Eq. (2.20), to be(

∂εp(φ)
∂φ

)2

= 4t2gp sin2 p , gp =
|tp|2 sin2(Lφ)

1− |tp|2 cos2(Lφ)
. (2.21)

Numerically we recover the behavior D(φ) as follows from Eqs. (2.17), (2.20) and (2.21)
for arbitrary b0 as far as ∆→ 0.

XXZ model
For ∆ > 0 the dependence on φ remains qualitatively similar, although irregular due

to the strong dependence on L. In the following we calculate Ds(L) for fixed φ = π/2L.
Results for ∆ > 0 are nontrivial for any temperature. Since results of ED are better
at high temperatures, we restrict ourselves here to the limit β → 0. It has been shown
for the pure model that Ds/β remains finite and nontrivial in the thermodynamic limit
L→∞ due to the integrability of the model [7].

In Fig. 2.4 we show results for Ds/β vs 1/L for chosen ∆ = 0.8 and for four cases
b0 = 0, 0.5, 1, 2. It is evident from Fig. 2.4 that b0 > 0 cases are qualitatively different
from the b0 = 0 where Ds scales linearly in 1/L toward a finite Ds/β ∼ 0.035. In
contrast, b0 > 0 induces an exponential-like decay of Ds → 0, at least for large enough
L > L∗ . This is closely related to the onset of the WD distribution and the effective
breaking of the integrability. Here, L∗ is presumably related to the transport mean-free
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Figure 2.4: High temperature spin stiffness Ds/β vs 1/L for various values of the
impurity field.

path, on the other hand such an interpretation is not straightforward. We expect that
the exponential decay is generic for any finite b0 > 0 although it would be difficult to
establish numerically for weak b0 due to L∗ increasing beyond available system sizes L.
Let us mention that we arrive at a similar behavior for the thermal stiffness as well.

2.5 Incoherent transport - High temperatures

Rapid (exponential) vanishing of Ds at T > 0 is the indication that the transport is
not ballistic and becomes incoherent (resistive) beyond a characteristic L∗ . In order to
test this directly we evaluate dynamical spin and thermal conductivities from relations
(A.5) (we repeat them here),

σ(z) =
i

zL
(χs0 − χss(z)) , κ(z) =

i

zTL
(χε0 − χεε(z)), (2.22)

with the corresponding susceptibility of the operators Ôp, Ôq defined as in Appx. A,
Eq. (A.2),

χÔpÔq(z) = i

∫ ∞
0

dt eizt 〈[Ôp(t), Ôq(0)]〉 , z = ω + iη . (2.23)

χs0, χ
ε
0 can be expressed as the thermodynamic average of the “stress tensor” and the

“thermal operator” respectively [29] or by taking the high frequency regime of the
imaginary part of the corresponding conductivity (A.13).
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For further discussion it is convenient to present and analyze also the corresponding
spin M and energy N memory functions defined respectively as in Ref. [32] (cf. Appx.
B as well)

σ̄(z) =
i(χs0/L)
z +M(z)

, κ̄(z) =
1
T

i(χε0/L)
z +N(z)

, (2.24)

where the bars over the conductivities denote complex functions. Memory functions
are complex functions as well with their real part being an antisymmetric function of
frequency, while the imaginary part is symmetric.

Note that a finite component D represents the weight of the δ(ω) contribution to
the real part of conductivities, requiring the static limit of the respective susceptibility
to be less than the respective χ0, i.e.,

χss(ω → 0) < χs0 , χεε(ω → 0) < χε0 .

Furthermore, for non-dissipative cases we can conclude from Eq. (2.24) that the static
value of the imaginary part of the respective memory function will be zero (M ′′(0) = 0,
N ′′(0) = 0). On the other hand, any finite value for M ′′(0), N ′′(0) denotes the finite
decay rate of the spin, energy current and a finite dc conductivity as well, i.e., strictly
Ds, Dh = 0.

We use further the advantage of studying closer the real part of the thermal con-
ductivity, κ(ω) = <κ̄(ω), instead of the spin conductivity, σ(ω) = <σ̄(ω), since ε is
a conserved quantity in the pure AHM, hence N(ω) = 0, and consequently N(ω) 6= 0
appears only due to b0 6= 0. On the other hand, the spin current, s, is not conserved in
the pure system exhibiting a non-trivial (M(b0 = 0) = M 6= 0) memory function even
in the absence of impurities. However, in the metallic regime (∆ < 1) M(ω = 0) = 0
at any temperature as required to obtain Ds(T ) > 0.

In the following paragraphs we evaluate spin and thermal conductivity in the high
temperature regime (T � J) using the exact diagonalization technique (ED) for lattice
sizes up to L = 14. δ-functions corresponding to the excitation spectra are summed
in bins of width δω = 0.01 while we introduce an extra broadening γ = 0.03 using the
Kramers-Kronig relations (A.23). The knowledge of the spin and thermal conductivity
allows the evaluation of the respective memory functions M(ω), N(ω) inverting Eq.
(2.24).

For relatively weak perturbations (b0 < 1) we also evaluate the energy memory
function within the perturbative approach, Ref. [32], using the force-force correlation
(B.11),

N0(z) =
1
zχε0

(χfεfε(z)− χfεfε(0)) , f ε = i[H, ε] , (2.25)

where f ε is the so called force operator, which is given by the time derivative of the
respective current. In this perturbative approach the energy force operator is evaluated
as f ε ' i[H0, 

ε
1] + i[H1, 

ε
0], i.e., the energy force operator is linear in the field b0 while

the states of the pure Hamiltonian, Eq. (2.1), are used. An attempt for a similar
perturbative approach for the spin transport would fail due to the non-conservation of
the spin current and the domination of the bulk scattering, which is manifested in M.
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Figure 2.5: Frequency dependence of the imaginary part of the energy memory function
divided by b20, for various values of the impurity and ∆ = 1, L = 14, T/J = 100. The
local minima are located at a frequency approximately equal to ωm ' 2π/L.

2.5.1 Memory function

Let us first discuss the spin memory function since we will focus on the thermal trans-
port later on. One can discuss a possible decomposition of the spin memory function
into two parts, one for each scattering mechanism according to Matthiessen’s rule ,
1/τ = 1/τbulk + 1/τimp, i.e.,

M(ω → 0) = M(ω → 0) +
1
L
M̃(ω → 0) . (2.26)

However, in the gapped phase ∆ > 1, we obtain from Eq. (2.26) a negative imag-
inary part for the memory function corresponding to the impurity scattering at low
frequencies. In the gapless phase ∆ ≤ 1, which is the metallic regime, memory func-
tion is positive at low frequencies, however, even for weak perturbations the agreement
with the perturbative calculation M0(ω) defined similarly to N0 (with fs ∼ [H1, 

s])
is not satisfactory, indicating that such a decomposition would probably fail or that
Matthiessen’s rule holds as an inequality. The only case that the perturbative evalua-
tion could be in agreement with the exact results would be for ∆ = 0 where M = 0.
However, this is not the case again since a single non-magnetic impurity does not de-
stroy ballistic transport for a non-interacting system. The latter is in contrast to the
magnetic impurity case where a single magnetic impurity renders coherent transport
incoherent even for ∆ = 0, cf. sec. 3.3.3.

On the contrary, the relaxation rate for the energy current is induced solely by the
impurity, as we have already mentioned, which makes the interpretation of the effect
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of the single impurity on heat transport easier. In Fig. 2.5 we present results for the
imaginary part of the energy memory function for a wide variety of the impurity field
b0 = 0.2−1.5. The lattice size is L = 14 and results are obtained using ED diagonaliza-
tion at high temperatures T/J � 1. N ′′0 (ω), evaluated using the perturbation theory
(2.25), for b0 = 1 is plotted as well in Fig. 2.5 to compare the two methods. Although
we present here results for the isotropic Heisenberg model, the behavior of N ′′(ω) is
similar apart from the isotropic point.

From Fig. 2.5 one can claim that the energy memory function scales as N(ω) ∼ b20
overall. However, it is also evident from Fig. 2.5 that the imaginary part of the energy
memory function reveals some structure at higher frequencies, ωm ∼ 2π/L, with the
appearance of conspicuous local minima even for weak perturbations (b0 & 0.5). In
addition the position of the minima is independent of the impurity, while it appears to
shift towards lower frequencies as ∆ is dwindled. Note that this structure cannot be
revealed by perturbation theory since one has to include second order in concentration
terms and moreover to let the system evolve in time with the full Hamiltonian H =
H0 +H1, instead of H0 to let this structure on.

Starting from the lowest value of b0, b0 = 0.5, in Fig. 2.5 we see that memory
function approaches its zero frequency value N ′′(ω → 0) with a minimal or even zero
slope. This gives support to the argument that the imaginary part of memory function
will provide a well defined, frequency independent, scattering rate, 1/τ ε ∼ N ′′(ω → 0),
for weak perturbations, and thermal conductivity will be described from the standard
Drude theory, exhibiting a Lorentzian form, i.e.,

κ(ω) =
κdc

1 + (ωτ ε)2
. (2.27)

Considering a dilute concentration of impurities cI , so that one can neglect correlations
among impurities, the scattering rate will be proportional to the concentration 1/τ ∝ cI ,
as indicated by the memory function formalism (B.11) while for the single impurity case
it will be τ ε ∝ L. Furthermore, perturbative results are in very good agreement with
the exact ones for not so strong perturbations. However, perturbation theory starts to
fail as this characteristic structure, the local minima at frequencies ∼ 2π/L, becomes
more and more pronounced.

So far we have ignored the contribution of the real part of the memory function to
the conductivity (Eqs. (2.24), (2.27)). The complete form for the thermal conductivity
written in terms of the real and the imaginary part of the energy memory function will
be

κ(ω) =
(
χε0
LT

)
N ′′(ω)

(ω +N ′(ω))2 + (N ′′(ω))2
. (2.28)

For weak perturbations the real part will only renormalize the scattering time, with the
renormalization constant being approximately equal to one. In Fig. 2.6 we show the
more relevant quantity ω +N ′(ω), instead of N ′(ω), for various values of the impurity
b0 = 0.2 − 1.5 and L = 14, ∆ = 1, T/J � 1. We can see that for relatively weak
perturbations (b0 ∼ 1), at low frequencies (ω < 1), curves scarcely deviate from the
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Figure 2.6: Frequency dependence of ω + N ′(ω) for various impurities b0 and ∆ = 1,
L = 14, T/J = 100.

linear behavior, illustrating the negligible contribution of the real part of the energy
memory function to the thermal conductivity.

On the other hand, for strong perturbations we can see from Fig. 2.5 that the imag-
inary part of the memory function exhibits a rapid increase at low frequencies which
inevitably will lead to a drastic reduction in the low frequency thermal conductivity.
In addition the minimum value of the quantity |ω+N ′(ω)| (Fig. 2.6) for strong pertur-
bations is not any more at zero frequency but at some finite frequency giving support
to the argument that the thermal conductivity will not be a monotonic function of
frequency. For strong perturbations we are led to the conclusion that the frequency de-
pendent thermal conductivity will no more be a Lorentzian but rather a non-monotonic
function of frequency. The maximum of the thermal conductivity will occur at some
finite frequency, which actually is very close to the frequency where ω +N ′(ω) = 0.

From all the above we would summarize that for weak perturbations (b0/J < 1)
and in the low frequency regime the real and imaginary part of the energy memory
function will be

ω +N ′(ω) ' ω , N ′′(ω) ' N ′′(0) ' 1/τ ε , (ω � 1) (2.29)

with the scattering time τ ε being very close to the one obtained from the perturbation
theory indicating that it scales—as it is clear from Eq. (2.25)—as 1/τ ε ∼ b20/L. More
accurately, one can perform a Taylor expansion at low frequencies ω � 1 for the
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memory function to obtain

N ′(ω) =

(
d

dω
N ′(ω)

∣∣∣
ω=0

)
ω +O(ω2) , N ′′(ω) = N ′′(ω = 0) +O(ω2) . (2.30)

In that case the Drude form (2.27) is still valid with the same κdc,

κdc =
(
χε0
TL

)
1

N ′′(0)
,

but the scattering time τ ε will be renormalized as

1/τ ε → α/τ ε , α = 1 +
d

dω
N ′(ω)

∣∣∣
ω=0

. (2.31)

However, the renormalization constant is α ' 1.
In contrast to the low frequency behavior of the memory function, which is struc-

tureless for the imaginary part and negligible for the real part, the high frequency
behavior of the memory function exhibits a strong dependence on the frequency ω.
Apparently the high frequency structure of the memory function will not be significant
for the thermal conductivity in the sense that ω/N ′′(ω)� 1. Finally, the low frequency
fluctuations of the imaginary part of the memory function are not significant to affect
the behavior of the thermal conductivity as long as they are small in comparison to the
magnitude of the memory function itself.

2.5.2 Thermal conductivity

Weak perturbations
In Fig. 2.7 we present results for the real part of the thermal conductivity, T 2κ(ω),

for two values of the impurity field b0 = 0.5, 0.8 using the ED technique at high tem-
peratures (T/J � 1) for the isotropic Heisenberg model, ∆ = 1, and for L = 14 sites.
The black solid lines with the label “exact”, correspond to the thermal conductivity,
calculated by the exact formula (A.10b) with the energy current given by (2.3b) with
Jl = J and bl = b0δl,0,

κ(ω) =
πβ

L

1− e−βω

ω

∑
n,m

(εn 6=εm)

pn|〈n|ε|m〉|2δ(εm − εn − ω) . (2.32)

The red dotted curves with the label “perturbative” correspond to the thermal con-
ductivity, extracted from

κ(ω) =
1
T

i(χε0/L)
ω +N0(ω)

, (2.33)

using for the perturbative calculation of the memory function Eq. (2.25), where the
force operator is linear in the impurity field b0—yielding trivially the behavior N ∼ b20.
The green dashed lines, correspond to a two parameter Lorentzian fit.
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Figure 2.7: Frequency dependence of the real part of the thermal conductivity, T 2κ(ω),
for two values of the impurity field b0 = 0.5, 0.8 and ∆ = 1, L = 14, T/J = 100. In
addition results from perturbation theory as well as a Lorentzian fit are also shown.

From the previous analysis for the respective energy memory function in the weak
coupling regime we reached various conclusions for the thermal conductivity, which
now are seen to be consistent with the numerical results. The thermal conductivity
indeed exhibits a Lorentzian form for relatively weak perturbations and the scattering
rate, 1/τ ε, is given by the zero frequency value of the memory function. For increasing
impurity field, b0, the thermal conductivity becomes a wider Lorentzian and its dc
value is decreased. This can be quantified by exploiting the fact that if the thermal
conductivity exhibits a Lorentzian form, Eq. (2.27), we can write for its dc value

κdc =
τ ε

π

∫ ∞
−∞

κ(ω)dω . (2.34)

In the infinite temperature limit where the sumrule will be ∝ κ0, with κ0 given by (1.19)
taking 〈b2〉 = b20/L for the single impurity problem.1 On the other hand 1/τ ε ∼ b20 as
it is implied by the memory function approach. Thus we conclude that the dc value
of the thermal conductivity will scale with the impurity field, for weak perturbations
(and a given lattice size), as

κdc ∼
2
L

+
(
1 + 2∆2

)( J
b0

)2

. (2.35)

1 For a many but dilute impurity problem with a concentration cI the same discussion is valid with
〈b2〉 = cIb

2
0.
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Figure 2.8: Frequency dependence of the thermal conductivity, T 2κ(ω), for various
values of the local field, b0 = 0.5− 2.0 and L = 14, ∆ = 1, T/J = 100. In addition the
thermal conductivity for an open chain is shown. Inset: frequency dependence of the
thermal conductivity for a pure chain (b0 = 0) with open boundary conditions as well
with the un-smoothed data for a chain with an impurity b0 = 4.

Taking into account that for these systems the thermal conductivity exhibits a trivial
1/T 2 temperature dependence for T & J , we could assume that the behavior shown in
Eq. (2.35) is valid for a quite wide range of temperatures, and not only for the infinite
temperature limit where it was evaluated.

We can also remark that while for b0 = 0.5 the agreement is almost excellent
between perturbation theory and exact results, for the higher field, b0 = 0.8, in Fig.
2.7, some deviations appear indicating the limitations of the perturbative approach.
Note that despite the term “weak perturbations” that we have coined for local fields
up to b0 ∼ 1, due to the lorentzian shape of the thermal conductivity, the ratio of the
impurity strength b0 to the unit of energy of the system J is not so small that would
justify the term “weak”. Furthermore, the ratio of the impurity to the whole energy
span is also not negligible, affecting a large part of the spectrum.

Strong perturbations
Leaving the weak coupling regime and entering into the strong one, we run into a

totally different behavior. First of all, as it is expected in this regime perturbation
theory breaks down. The thermal conductivity exhibits a depletion at low frequencies,
the maximum is shifted at a finite frequency and it is not any more a monotonic function
of frequency, which is exactly what was expected from the memory function analysis,
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Fig. 2.8.
In Fig. 2.8 we show results for the thermal conductivity for different values of the

local field b0 = 0.8−2.0 obtained via ED at high temperatures T/J � 1 and for L = 14,
∆ = 1. For the lowest value of the impurity field, b0 = 0.8, we can see that we are still
in the weak coupling regime where the thermal conductivity exhibits a Lorentzian form.
As the impurity field is increased a depletion appears at low frequencies and becomes
more and more pronounced for a farther increase of the field b0. Apparently due to local
excitations of the impurity there will be some structure at higher frequencies ω ∼ b0,
nevertheless, the part that comes from the bulk of the chain will more and more tend
to the curve of the open chain. Hence, the conclusion is that a significant part of the
weight which was centered around the origin, ω = 0, for weak perturbations, will be
shifted at a finite frequency for stronger perturbations, with ω ∼ π/L being a limiting
frequency shift for very strong perturbations.

To verify this we show in the inset of Fig. 2.8 the thermal conductivity for a
chain with open boundary conditions and the thermal conductivity for a ring in the
presence of a severe perturbation, b0 = 4. For very strong perturbations, like b0 ∼ 4,
the un-smoothed spectra reproduce besides the dominant peak of the open chain and
the smaller ones which are located at lower frequencies, indicating that the chain is
cut. In the strong coupling limit the picture is that the bulk of the chain reproduces
the thermal conductivity of a chain with open boundary conditions, while there is also
some structure at frequencies ω ∼ b0 due to local excitations attributed to the impurity.
This is in agreement with the level statistics analysis where it was proposed that a very
strong impurity cuts the chain leading to the integrable Heisenberg chain with open
boundary conditions.

Let us clarify here a subtle point. So far we have plotted curves which were smoothed
using the Kramers-Kronig relations (see Eq. (A.21) and discussion in Appx. C). Thus
the finite dc value for the thermal conductivity that we obtain in Fig. 2.8 is only an
artifact of the finite damping γ. This is verified in the inset where the dc value of
the thermal conductivity vanishes for the un-smoothed data. Moreover, in the inset of
Fig. 2.8 where we plot the thermal conductivity without implementing any smoothing
procedure one can observe that the thermal conductivity of the ring in the presence of
the impurity reproduces not only the overall shape of the open chain but the narrower
secondary peaks as well, which correspond to the excitations of the open chain. Ap-
parently, apart from the “integrable” points, b0 → 0,∞, the smoothing procedure does
not affect the results in a way that could lead to erroneous conclusions.

2.5.3 Anisotropy dependence

The next issue we would like to discuss is how results depend on the anisotropy param-
eter ∆. For the case of spin conductivity the anisotropy parameter plays a crucial role,
changing dramatically the behavior of the spin conductivity from the gapless (∆ < 1)
to the gapped (∆ > 1) phase. On the contrary, for the thermal conductivity where the
thermal stiffness is finite in the pure AHM for any value of the anisotropy parameter
∆, the picture remains qualitatively similar to the isotropic point, which was discussed
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Figure 2.9: Frequency dependence of thermal conductivity for various values of the
anisotropy parameter ∆ and b0 = 0.5, L = 14, T/J = 100. Inset top: The static
limit of the imaginary part of the energy memory function, N ′′(ω → 0), is shown as
a function of the anisotropy ∆. Inset bottom: The dc thermal conductivity, T 2κdc, is
shown as a function of the anisotropy parameter ∆.

previously. For a weak perturbation b0 = 0.5 the thermal conductivity obtained via
ED at high temperatures T/J � 1 for various values of the anisotropy parameter
∆ = 0.5− 1.5 is shown in Fig. 2.9. In addition, two insets are included. In the one at
the bottom the dc value of the thermal conductivity is plotted, while in the other one
the zero frequency value of the imaginary part of the memory function—the scattering
rate—is plotted. The picture is that for a given weak perturbation b0 the behavior of
the thermal conductivity remains qualitatively the same, i.e., the δ-function is broad-
ened into a Lorentzian while quantitatively the results change significantly since the
flux of the energy that is transfered changes with ∆.

However, ∆ seems also to determine whether the perturbation is weak or strong for
the system. The conclusion is that even for weak perturbations if ∆ . b0 the thermal
conductivity becomes a non-monotonic function of frequency, exhibiting a drop at low
frequencies as it was mentioned in the previous paragraphs, which is an indication that
the system is strongly disturbed by the impurity. For one thing, notice the increase
of the scattering rate (N ′′(ω = 0)) in the inset of Fig. 2.9 for ∆ = 0.5. Furthermore,
compare the high temperature thermal conductivity in Figs. 2.8, 2.10 for b0 = 1 but
different anisotropy ∆ = 1, 0.5 respectively.
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Figure 2.10: Frequency dependence of the normalized thermal conductivity for a rela-
tively strong perturbation b0 = 1 and for positive, ∆ = +0.5, and negative, ∆ = −0.5,
anisotropy. The FTLM method is used and three temperatures T = 0.4, 2, 50 are
shown for L = 20 sites.

2.6 Temperature dependence

The last issue we would like to explore is the temperature dependence of the transport
properties of the Heisenberg model in the presence of a single non-magnetic impurity.
The cutting-healing behavior that was proposed by Kane and Fisher (KF) [12, 33] can
be investigated in the Heisenberg chain by letting the anisotropy parameter ∆ to take
positive and negative values as well. We have seen that the Jordan-Wigner transforma-
tion maps the spin system into a fermionic Luttinger liquid, with the interaction param-
eter V being proportional to the anisotropy parameter ∆, Eq. (1.6). Antiferromagnetic
anisotropy (∆ > 0) corresponds to repulsive interactions between fermions, ferromag-
netic anisotropy (∆ < 0) corresponds to attractive interactions between fermions, while
∆ = 0 corresponds to non-interacting tight binding fermions which is expected to be
an intermediate situation, i.e., there will be a finite conductance but it will be reduced
in comparison with the one of the pure model.

In order to investigate temperature dependent effects like the cutting or the healing
of the host chain from the impurity, the finite temperature Lanczos method (FTLM)
is used (Ref. [34]), to compute dynamical transport quantities in systems with L > 16.
Typically, NL = 500 Lanczos steps are used to obtain spectra with high frequency
resolution, with an additional broadening, γ = 0.03.
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Thermal conductivity
Before proceeding with the analysis of the temperature dependence let us summa-

rize the conclusions that were obtained by the analysis in the previous sections. The
thermal conductivity consists only of a δ-function located at the origin for vanishing
impurity field. For weak perturbations the δ-function is broadened, where the role of
the broadening parameter plays the scattering rate 1/τ ε, and the thermal conductiv-
ity exhibits a Lorentzian form. As we increase farther the perturbation, both level
statistics and numerical results for the thermal conductivity and its memory function
indicate that the chain is cut due to the impurity, for ∆ 6= 0, and the dc value of
the thermal conductivity decreases with the development of a characteristic peak at
a finite frequency; this behavior resembles the frequency dependence of a chain with
open boundary conditions [35].

The strong dependence of the thermal conductivity on the temperature prevents
definite conclusions for the cutting or the healing of the ring by looking only at κdc(T )
for a given value of the field b0. However, the normalized dc value of the thermal con-
ductivity, κdc(T )

/∫
κ(ω)dω, or the static limit of the imaginary part of the memory

function, N ′′(ω → 0), could be more suitable since trivial temperature factors are elim-
inated making transparent the effect of the impurity on the system. On the other hand,
the difference of the shape that we described in the previous paragraphs, monotonic for
weak perturbations and non-monotonic for strong perturbations, can provide a valuable
criterion for the cutting or the healing of the chain with lowering temperature. Let us
become more specific. Suppose a given form for the thermal conductivity at a high
temperature, either monotonic with the maximum at zero frequency or non-monotonic
with the maximum at a finite frequency. An indication for the cutting behavior with
decreasing temperature would be either the appearance of a depletion at low frequencies
if it does not exist at high temperatures, or to become more pronounced in cases where
it already exists at high temperatures. On the other hand, if the chain screens the
impurity as the temperatures decreases we expect the depletion to disappear and the
thermal conductivity to establish a Lorentzian behavior, characteristic for weak per-
turbations, or to retain its high temperature Lorentzian form. Unfortunately, for finite
size systems limitations occur about the lowest achievable temperature with FTLM,
where below the limiting temperature Tfs results are not to be trusted; we estimate
Tfs/J ' 0.3. As a result, we are not able to observe the complete healing of the chain
leading to a zero frequency δ-function but rather to observe the tendency for healing in-
dicated as well by the opposite behavior for ∆ ≷ 0. Finally, due to the sparse spectrum
the zero temperature Lanczos method cannot offer anything to this discussion.

We would like now to exploit this different behavior of the form of the thermal
conductivity depending on whether the system is in the strong or in the weak cou-
pling limit. In Fig. 2.10 we present results for the normalized thermal conductivity,
κ(ω)

/∫
κ(ω)dω, obtained for a system of L = 20 sites via the FTLM. The reason why

we present the normalized thermal conductivity instead of the un-normalized one, is
that we are interested in how the total weight of the thermal conductivity is distributed
throughout the frequency range and how this distribution changes with temperature.



Temperature dependence 65

0 0.2 0.4 0.6 0.8 1
ω

0

0.5

1

1.5

2

2.5

3
σ

(ω
)

Δ=+0.5, Τ=50
Δ=−0.5, Τ=50
Δ=+0.5, Τ=2
Δ=−0.5, Τ=2
Δ=+0.5, Τ=0.4
Δ=−0.5, Τ=0.4

Figure 2.11: Frequency dependence of the normalized spin conductivity for a relatively
strong perturbation b0 = 1 and for positive, ∆ = +0.5, and negative, ∆ = −0.5,
anisotropy. The FTLM method is used and three temperatures T = 0.4, 2, 50 are
shown for L = 20 sites.

The exact magnitude of the conductivity is irrelevant for this approach. In Fig. 2.10
we consider an impurity field b0 = 1 where it appears that for ∆ = ±0.5 we are in
the strong coupling limit (∆ < b0) at high temperatures since the depletion is present.
While at high temperature (T/J = 50) the curves for positive and negative ∆ coincide,
as the temperature is lowered (T/J = 2) they separate from each other. At the lowest
temperature T/J = 0.4 the difference is more than sharp. While for positive (anti-
ferromagnetic) ∆ the systems couples stronger and stronger with the impurity as the
temperature is reduced, in the ferromagnetic case the system seems to screen the im-
purity leaving from the strong coupling limit and entering into the weak one. Although
a small depletion is still present at the lowest temperature, T/J = 0.4, for ∆ < 0 and
consequently the thermal conductivity does not exhibit a Lorentzian form, the width
of the curve as well with the contrast of the anti-ferromagnetic case (∆ > 0) manifest
the cutting-healing behavior.

Spin conductivity
So far we have used only the thermal conductivity as a probe for the cutting-healing

effects due to its simple interpretation, since the only scattering mechanism is induced
solely by the impurity. However, for a pure Heisenberg chain the spin conductivity ex-
hibits a finite Drude weight in the metallic regime (∆ < 1) despite the non-conservation
of the spin current. We can again seek cutting-healing effects exploiting this Drude
weight which could possible lead to a low frequency behavior for the spin conductivity
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that would resemble the one of the thermal conductivity, despite the more complicated
high frequency structure. Concentrating on the low frequency behavior of the spin
conductivity we would expect the δ-function to be broadened into a Lorentzian-like
form in the weak coupling regime while for strong couplings the low frequency deple-
tion should appear similarly to the thermal conductivity. In Fig. 2.11 we indeed verify
this behavior where the results are obtained via FTLM for a chain of L = 20 sites,
∆ = ±0.5, while three characteristic temperatures are presented, T/J = 50, 2, 0.4. For
the highest temperature (T/J = 50) curves for ferromagnetic and anti-ferromagnetic
anisotropy coincide, while as the temperature is lowered (T/J = 2, 0.4) curves separate
from each other with the ∆ > 0 curves having the tendency to become wider with a
more prominent depletion as well. On the other hand the curves for ∆ < 0, despite the
fact that the depletion does not disappear, become narrower resembling the behavior
of a Lorentzian who tends to become a δ-function.

2.6.1 Single weak link

Similarly to the local field perturbation the Heisenberg chain can be healed or cut by
a single weak link as it was proposed by KF. We show this behavior in Fig. 2.12 where
the normalized thermal conductivity is plotted. The Hamiltonian and the spin, energy
currents are given by (2.1), (2.3) where Jl 6=0 = J and J0 = J ′. In the present case
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we have taken J ′/J = 0.5 and ∆ = ±0.8. Moreover in the inset of Fig. 2.12 we plot
the normalized dc thermal conductivity which could be seen as the scattering time
τ ε(ω → 0) as well. The inset indicates that we cannot discuss a crossover temperature,
below which the cutting-healing behavior occurs, since the curves incline to separate
from very high temperatures already.

2.7 Conclusions

To summarize, we have primarily used numerical techniques to study the effect of a
single non magnetic impurity on a Heisenberg chain. We have used as probes the level
statistics analysis, studying particularly the parameters η (2.6) and ∆3 (2.7), the spin
stiffness Ds (2.11) in the metallic regime ∆ < 1 and the charge stiffness for ∆ = 0
(2.20) and finally the spin, thermal conductivities (2.22), and the corresponding spin,
energy memory functions as well (2.24), (2.25). The conclusions are:

• We have shown that a single static impurity induces incoherent transport mani-
fested in the level statistics analysis, the spin stiffness in the metallic regime and
the well-defined energy current relaxation time. This should be contrasted with
the case of noninteracting fermions in Eq. (2.20) where a single impurity only
reduces the stiffness Ds but does not lead to current relaxation within the ring at
any T . The fundamental difference seems to come from the umklapp processes
which are revived by the impurity and lead to the decoherence between successive
scattering events on the impurity.

• In this sense it is also plausible that for a finite but low concentration of static
impurities, cI , in a chain as relevant for experiments we expect that our results
can be simply generalized as 1/τ ε ∝ cI , as it is evident also from the lowest-order
perturbation theory, Eq. (2.25).

• Moreover as far as the temperature dependence is concerned, we explored the
“cutting-healing” effects that were proposed theoretically for two models, a po-
tential barrier and a single weak link. We indeed verify the proposed crossover
behavior with lowering temperature for both models, proposing as a criterion the
form of physical quantities like the spin (only for |∆| < 1) or the thermal conduc-
tivity. First, for the local barrier case, the spin chain is healed in the presence
of the impurity for ferromagnetic anisotropy (∆ < 0) in contrast to the anti-
ferromagnetic case (∆ > 0) where the impurity blocks the dc transport leading
to a severe reduction of the low frequency conductivities. Second, for the AHM
with a modified link, we again verify the cutting healing behavior depending on
the sign of the anisotropy parameter ∆.

• Finally, finite size numerical limitations prevent us from discussing the limiting
behavior T → 0 as well as the existence of a crossover temperature below which
the cutting-healing behavior occurs.
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Chapter 3

Single magnetic impurity

3.1 Introduction

A (non) magnetic impurity coupled to a spin-1/2 Heisenberg chain is a prototype
system that exemplifies “Kondo”-type effects in a correlated system. Starting with the
proposal of Kane-Fisher [1], a weak link in a repulsive (attractive) Luttinger liquid was
shown to lead to an insulating (transmitting) ground state. The cutting or healing of
spin chains by a variety of (non) magnetic defects has also been established [2–5] as well
as the effect of a magnetic impurity on the ground state of the anisotropic easy-plane
Heisenberg chain [6]. Generically, a weak link or coupling to a magnetic impurity in a
Heisenberg antiferromagnetic chain leads to a ground state corresponding to two open
chains. In the exceptional case of two adjacent links or a ferromagnetic (attractive in
the fermionic language) easy axis anisotropy a healing of the defect is conjectured [6].
This screening effect is characterized by a Kondo-like temperature and screening length
[3, 4]. These phenomena have so far mostly been studied either as they are reflected
on ground state properties, e.g. finite size gaps, entanglement or, somewhat indirectly,
as a temperature dependent induced staggered susceptibility [3].

The thermal transport in the spin-1/2 Heisenberg chain is truly singular providing
an exceptional physical probe to study these effects. Although the Heisenberg model
describes a strongly correlated system, the thermal conductivity is purely ballistic as
the energy current commutes with the Hamiltonian [7], a result that is related to the
integrability of this model.1 Thus the only scattering present is due to the defect
and thus its frequency/temperature/coupling strength dependence can be isolated and
clearly analyzed. In this context it was already found that a single potential impurity
renders the thermal transport incoherent [8] (Ch. 2) with the frequency dependence of
the thermal conductivity well described by a Lorentzian, at least for a weak impurity.
This is in sharp contrast to the case of a non-interacting system where in spite of the
impurity the transport remains coherent described within the Landauer formalism by
a finite transmission coefficient through the impurity. Thus a single static impurity

1It should be noted that a tower of integrable Hamiltonians exist for every value of spin, where the
energy current is a conserved quantity, but these Hamiltonians have no obvious physical realizations.
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Figure 3.1: The Heisenberg spin-1/2 chain coupled to a spin-S magnetic impurity
located out of the chain.

materializes the many-body character of scattering states.
Besides its theoretical interest, the effect of (non)magnetic impurities on the ther-

mal transport of quasi-one dimensional materials as SrCuO2, Sr2CuO3 and the ladder
compound La5Ca9Cu24O41 has recently become possible to explore experimentally [9].
Particularly, evidence for ballistic transport was consolidated using samples of very
high purity [10]. Moreover, the screening of the impurity by the chain [2], was verified
in magnetic susceptibility measurements on Ni-doped Sr2CuO3 cuprate, Ref. [11].

3.2 Model

We consider two models where the pure one dimensional anisotropic spin-1/2 Heisen-
berg model (AHM) is disturbed by a single magnetic impurity. In the first case, we
assume that a spin-S impurity is located out of the chain (SOC model) and it is coupled
with only one of the spins of the chain—say the one at the zeroth site. The Hamiltonian
which describes this model, which is depicted in Fig. 3.1, can be separated into two
terms: one for the pure model and one for the local perturbation,

H = H0 +H1 (3.1)

H0 = J
∑
l

sl ·∆ · sl+1 , H1 = J ′
(
s0 ·∆′ · S

)
(3.2)

where s are the chain spin-1/2 operators, J > 0 the in-chain magnetic exchange cou-
pling, J ′ the chain-impurity coupling, ∆,∆′ the easy axis anisotropy parameters (cf.
Ch. 1 and particularly Eq. (1.3)), and S a spin-S magnetic-impurity operator.2 In addi-
tion, we assume periodic boundary conditions, sL = s0, and interactions only between
nearest neighbors. We vary the anisotropy parameters ∆,∆′, with ∆ = ∆′ in order to
look for the cutting-healing of the chain effects mentioned above.

Spin s, energy ε currents are determined by the hydrodynamic q → 0 limit of the
respective continuity equation, Ṡzq = −iqsq, Ḣq = −iqεq, with s = sq→0, ε = εq→0

[12]. Ôq is the q component of the Fourier transform of the local operator Ôl, with
Ô =

∑
l Ôl, given by

Ôq =
∑
l

e−iqlÔl , (3.3)

2Recall that we use a system of units where the lattice constant a, the Planck and Boltzmann
constants are a,}, kB=1. The quantity ∆ · s represents the vector (sx, sy,∆sz), cf. Ch. 1.
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Figure 3.2: The Heisenberg spin-1/2 chain with an embedded spin-S magnetic impurity.

For the spin current we get

Ṡzq ∼ −iq

(
J
∑
l

Sxl S
y
l+1 − S

y
l S

x
l+1

)
,

⇒ s =
∑
l

sl , sl = J(sl × sl+1) · êz , (3.4)

where êz is the unit vector along the z-axis. Similarly for the energy transport we arrive
at

ε = ε0 + ε1 , (3.5a)

where,

ε0 =
∑
l

εl with εl = J2 sl · (∆ · sl+1 ×∆ · sl−1) , (3.5b)

ε1 =
JJ ′

2
s0 · (∆′ · S×∆ · sL−1) +

JJ ′

2
s0 · (∆ · s1 ×∆′ · S). (3.5c)

As a second model we consider the case where one of the spins of the chain is
substituted by a spin-S magnetic impurity (SIC model) as shown in Fig. 3.2 (say the
impurity is located at the l = 0 site). The Hamiltonian in that case is

H =
∑′

l

J (sl ·∆ · sl+1) + J ′1 (s1 ·∆′ · S) + J ′L−1 (sL−1 ·∆′ · S) , (3.6)

where the prime at the sum denotes that the sum extends over the whole lattice except
the sites l = 0, L − 1. We mostly take J ′1 = J ′L−1 except for the case of a single weak
link, cf. Ch. 2. The corresponding spin, energy currents will be

s =
∑′

l

J(sl × sl+1) · êz + J ′L−1(sL−1 × S) · êz + J ′1(S× s1) · êz (3.7a)

ε =
∑′′

l

J2 sl · (∆ · sl+1 ×∆ · sl−1) + J ′1J
′
L−1S · (∆′ · s1 ×∆′ · sL−1)

+ JJ ′L−1 sL−1 · (∆′ · S×∆ · sL−2) + JJ ′1 s1 · (∆ · s2 ×∆′ · S) , (3.7b)

where the double prime at the sum means that the sum extends from l = 2 to l = L−2.
Let us repeat here the linear response theory formulas for the real regular compo-

nents of the spin σ, thermal κ conductivities (cf. Appx. A)

σ(ω) = = lim
η→0+

χss(z)
z

, κ(ω) =
1
T
= lim
η→0+

χεε(z)
z

, (3.8)
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with z = ω+ iη and T the temperature. In addition, the susceptibility of the operators
Ôp, Ôq will be

χÔpÔq(z) =
i

L

∫ ∞
0

dt eizt 〈[Ôp(t), Ôq]〉 . (3.9)

Notice that for posterior convenience the susceptibility is multiplied by an extra 1/L
factor. The thermodynamic average for an operator Ô, denoted by the angle brackets
in (3.9), is given by

〈Ô〉 =
Tr e−βHÔ

Tr e−βH
, with β = 1/T.

3.3 Spin out of the chain

3.3.1 High temperature limit

Starting from the high temperature (β → 0) limit we can obtain a first impression on
the behavior of the frequency dependence of σ(ω), κ(ω) from the respective 0th and
2nd moments given by,

σ̃n =
∫ ∞
−∞

ωnσ(ω) dω , κ̃n =
∫ ∞
−∞

ωnκ(ω) dω . (3.10)

One can easily express the spin, energy moments as thermodynamic average of the
respective current and its derivatives; whereupon the first two frequency moments will
be given σ̃n = πβσn, κ̃n = πβ2κn where (cf. Ch. 1 Eqs. (1.15)-(1.18))

σ0 =
1
L
〈ss〉 , σ2 =

1
L
〈fsfs〉 , fs = i[H, s] (3.11a)

κ0 =
1
L
〈εε〉 , κ2 =

1
L
〈f εf ε〉 , f ε = i[H, ε] . (3.11b)

The operators fs, f ε are the so-called force operators. Performing an analytical calcu-
lation at the infinite temperature limit, T →∞, we get for the two lowest spin, energy
frequency moments

σ0 =
J2

8
(3.12a)

σ2 =
J2

16

[
J2∆2 +

1
L

4B2(1 + ∆′2)
]

(3.12b)

κ0 =
J2

32

[
J2(1 + 2∆2) +

1
L

2B2(1 + ∆2 + ∆′ 2)
]

(3.12c)
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κ2 =
1
L

J4

64
B2

[
10 + 16∆2 + 3∆′ 2 + 10(∆∆′)2 − 12∆∆′

(
J ′

J

)
+

1
5
(
−7 + 8∆2 + 21∆′ 2 − 3(∆∆′)2 − 4∆′ 4

)(J ′
J

)2

+
3
5
(
16 + 16∆2 + 12∆′ 2 + 4(∆∆′)2 + 12∆′ 4

)(B

J

)2
]

(3.12d)

where B2 = (J ′ 2/3)S(S + 1) is the characteristic impurity spin dependence.
As we have already mentioned there is no intrinsic scattering mechanism for the

thermal transport in the pure Heisenberg model. Normal (incoherent) thermal trans-
port is induced in the chain solely by defects and one could expect the 2nd moment to re-
flect the width of κ(ω) and thus to be related to the inverse scattering time 1/τ . We note
that for this impurity problem an assumption of a Gaussian form κ(ω) = κdc exp−(ωτ)2

would imply from the L dependence of κ0,2 that κdc = κ(ω → 0) would scale as
√
L and

1/τ ∼ 1/
√
L. This is, however, incorrect as is also evident from the disagreement with

higher moments, n > 2, which behave all as κn ∝ 1/L. For weak-coupling cases, such
as a single impurity weakly coupled to the host chain, we should therefore rather ex-
pect a Lorentzian-like frequency dependence with a static κ(0) ∝ L and a characteristic
frequency width 1/τ ∝ 1/L.

In Fig. 3.3 we show the frequency dependence of the thermal conductivity, nor-
malized and appropriately scaled with system size. Note that in the high-T (β → 0)
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Figure 3.4: Frequency dependence of the thermal conductivity T 2κ(ωL)/L in the high
temperature limit for various values of the coupling J ′/J = 0.8− 4.0 and ∆ = 1.0.

limit the relevant (but still nontrivial) quantity is T 2κ(ω) which is implicitly extracted
by the normalization. We thus present results of the normalized κ(ωL)/L for a weak,
J ′ = 0.5J and strong, J ′ = 2J coupling case respectively. The data up to L = 16 were
obtained by (full) exact diagonalization (ED) while for L = 18−22 the Microcanonical
Lanczos method (MCLM) was used [13] in the Sz = 0 subsector. The δ−peaks at the
excitation frequencies are binned in windows δω = 0.01, which also gives the frequency
resolution of the spectra. An additional broadening η ' 0.03 is introduced using the
Kramers-Kroning relations (A.23). For J ′ = 0.5J we find a simple Lorentzian form
while in the strong coupling case the behavior is nonmonotonic with a maximum at a
finite frequency O(1/L). In both cases the proposed L scaling is indeed realized.

Next we would like to show how the system flows from the weak coupling regime
into the strong one, with increasing the perturbation parameter J ′/J , and eventually
how the behavior of the thermal conductivity resembles the behavior of the thermal
conductivity of a chain with open boundary conditions. In Fig. 3.4 we present results
for the thermal conductivity of a chain of L = 16 sites obtained using ED in the
high temperature limit for various couplings J ′ and S = 1/2. In addition we show
the thermal conductivity of a uniform chain with open boundary conditions. Fig. 3.4
illustrates the flow of the system from a Drude like behavior (weak coupling) to a chain
with open boundary conditions (strong coupling), which was already proposed for a
single non-magnetic impurity (a local field) from the level statistics analysis [8] (cf. Ch.
2). We choose to present the jagged results, i.e., without implementing any smoothing
procedure, in order not to wash out the development of the narrow peaks corresponding
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Figure 3.5: Frequency dependence of the normalized thermal conductivity κ(ωL)/L in
the high-T limit for a variety of impurity spin values S = 1/2, 1, 3/2, 2 and for: (a)
J ′/J = 0.5, 0.3, 0.22, 0.18 corresponding to the weak coupling B2 = (J ′ 2/3)S(S + 1) '
0.06, (b) J ′/J = 1.5, 0.92, 0.67, 0.53 corresponding to the stronger coupling B2 ' 0.57.

to the excitations of the open chain. For the strong coupling cases there is some rather
significant structure at frequencies ω ∼ J ′ which correspond to local excitations of the
impurity. However, these excitations are irrelevant for the effect of the impurity on the
chain which is studied here.

As for the scaling with impurity spin S suggested by the proportionality of the 2nd
moment to B2 = (J ′ 2/3)S(S + 1) we show in Fig. 3.5 MCLM results for κ(ωL)/L
for a series of S-values and couplings J ′ so that the effective perturbation strength
B2 retains its value. The lattice size is L = 19, 20 depending on whether we have a
half-integer or an integer spin-S magnetic impurity. For the strong coupling case the
thermal conductivity exhibits a depletion at low frequencies characteristic of the strong
coupling of the chain with the impurity and the effective cutting of the former. We find
indeed that at both weak as well as strong coupling the scaling is well obeyed, giving
a wider applicability to our results. They can be applied to a range of impurity spin
values becoming directly relevant in the interpretation of experiments.

The spin conductivity on the other hand is more complicated due to the non-
conservation of the spin current in the pure model—[H0, 

s] 6= 0 as long as ∆ 6= 0,
see σ2 (3.12b)—which is the dominant scattering mechanism at least for not so strong
perturbations. Similarly to Fig. 3.5 we present in Fig. 3.6 the frequency dependence
of the normalized spin conductivity obtained for different magnetic impurities in the
strong coupling limit B2 ' 0.57. Not only is the B2 scaling obeyed by σ(ω) but in
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addition it changes only slightly within a wide range of values of the parameter B2

(not shown). Clearly even a strong perturbation scarcely affects the spin conductivity
since it is only a 1/L effect, in contrast to the thermal conductivity whose behavior is
entirely determined by the perturbation of the magnetic impurity due to the absence
of any other scattering mechanisms.

In order to illustrate the effect of the magnetic impurity on the spin conductivity we
present in Fig. 3.7 ED results for Tσ(ω) (un-smoothed spectra) for an S = 1/2 impurity
out of the chain and host-impurity couplings J ′/J = 0, 0.2, 1 (L = 14, β → 0). Although
results for J ′ = 0 are not to be trusted at low frequencies, since ∆ = 1 is a long standing
problem for the spin conductivity, we can see that the impurity does not affect at all
the high frequency behavior. At low frequencies, whether a finite stiffness exists or not,
the impurity washes out the singularities (like the δ-function at zero frequency or a
sharp drop in the regular part) leading to a rather smooth low frequency regime.

3.3.2 Lattice size scaling

Now let us focus again only on the thermal conductivity and address the generic L→∞
behavior. We can discuss it by considering the memory function N(ω) representation
defined via the general complex function κ̄(ω),

κ̄(ω) = iβ
χ0

ω +N(ω)
, χ0 = χ(ω → 0). (3.13)
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where the real κ(ω) = κ̄′(ω) and N ′′(ω) ∼ 1/τ plays the role of the (frequency depen-
dent) thermal-current relaxation rate. The lowest moments κn can be evaluated (in
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principle) exactly in the high-T limit [14] on a finite size lattice of L sites. Involving
only local quantities, at least for 0 < n < L/2, they should behave as κn = κ̃n/L
whereby κ̃n is size independent for n < L/2. It is plausible that also higher moments,
n > L/2, behave as κn ∝ 1/L. If κ̃n for n > L/2 would be also size independent, then
this would imply the scaling N(ω) = 1

LÑ(ω), with a universal (size independent) Ñ(ω).
Consequently

κ̄(ω) =
iβχ0L

(ωL) + Ñ(ω)
, (3.14)

with the real part κ(ω) for L→∞ and ω → 0 obeying the Lorentzian scaling relation,

κ(ωL)
L

=
βχ0Ñ

′′(ω → 0)
(ωL)2 + Ñ ′′(ω → 0)2

, (3.15)

provided that N ′′(ω → 0) is finite. This is, however, clearly not what we observe in Fig.
3.3, where from the non-Lorentzian shape we must conclude that the memory function
also scales as Ñ(ωL) and thus,

κ(ωL)
L

=
βχ0Ñ

′′(ωL)
(ωL+ Ñ ′(ωL))2 + Ñ ′′(ωL)2

. (3.16)

This is not in contradiction with the moments argument, since the higher moments, n >
L/2, determine the low frequency behavior. So we can argue that at high frequencies
Ñ(ω) scales as ω while at low frequencies as ωL. This scenario is indeed verified in Fig.
3.8 at the low/high frequency regimes, where N(ω) is extracted from the κ(ω) data.
The Finite temperature Lanczos method (FTLM) [15] is used for lattice sizes L ≥ 16
with ML = 500 Lanczos steps and smoothed with an additional frequency broadening
η ' 0.03. On the other hand, we can also explain the observed general κ(ωL)/L scaling
with the similarity to a noninteracting system—with an impurity. In the latter case,
the characteristic scaling Lω is signature of “free” oscillations in the system.

3.3.3 Perturbative memory function approach

In this section we would like to compare results for the spin, thermal conductivities
obtained in the full system described by the HamiltonianH (3.1) with the corresponding
conductivities extracted from the spin M0, energy N0 memory functions which are
evaluated using the eigenstates of the Hamiltonian H0 (3.2) of the unperturbed system
[16] (cf. Appx. A); the relevant formulas are

M̃0(z) =
1
zχs0

(χfsfs(z)− χfsfs(0)) ,
(
M̃0(z) = LM0(z)

)
(3.17a)

Ñ0(z) =
1
zχε0

(χfεfε(z)− χfεfε(0)) ,
(
Ñ0(z) = LN0(z)

)
(3.17b)

with the force operators being linear in the perturbative coupling J ′ and conductivities
are extracted using

σ̄(z) = i
χs0

z +M0(z)
, κ̄(z) =

i

T

χε0
z +N0(z)

. (3.18)
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To study the crossover from weak to strong coupling regime we show in Fig. 3.9 the
evolution of the relaxation-rate function Ñ ′′(ωL) with impurity coupling J ′ along with
a perturbative evaluation Ñ ′′0 (ωL). It is interesting that the memory function shows an
increasingly pronounced structure with minima at approximately the same frequencies,
multiples of 2π/L independently of J ′ and which are not present in the perturbative
calculation. In particular the characteristic frequency of the minima decreases as the
anisotropy parameter ∆ decreases and thus it is apparently related to the velocity
of elementary excitations (spinons) in the system. We can conjecture that this peak
structure is due to a resonant mode, created by multiple forward/backward scattering
on the impurity, characteristic of an noninteracting system. It is remarkable that
this happens even in this high temperature limit. This effect has already been seen
in integrable systems where a perturbation seems to affect the totality of the energy
spectrum [14]. Now the picture is clear, Ñ ′′(ω) increases as J ′2, scales as ωL at low
frequencies and at the same time develops a structure that dominates the behavior
of κ(ωL) turning the Lorentzian weak-coupling shape to a nontrivial one at strong
coupling.

As long as the perturbation is not very strong, roughly speaking J ′ . 0.8J for a spin-
1/2 impurity, the perturbative approach is in good agreement with the exact results.
We illustrate the validity of the memory function approach in Fig. 3.10 where the results
were obtained using the ED technique for a system with L = 16, J ′/J = 0.5, ∆ = 1.0,
β → 0. The thermal conductivity obtained with the exact numerical calculation (Eq.
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Figure 3.10: Frequency dependence of the thermal conductivity T 2κ(ω) calculated in
the full system via Eq. (3.8) (black solid line or extracted from the perturbative memory
function Eq. (3.18) (green dashed line) where L = 16, J ′/J = 0.5, ∆ = 1.0, β → 0.

(3.8)) is labeled as “exact” while the thermal conductivity which is extracted from
the perturbative memory function (Eq. (3.18)) is labeled as “perturbative”. The
agreement between the two approaches is remarkably good. This can be also justified
from Fig. 3.9 where for the lowest J ′ coupling the memory function is quite smooth
despite some structure which does not affect κ(ω). The occurrence of this structure in
the memory function as extracted from the thermal conductivity is not significant since
the deviations are negligible with respect to its magnitude. Moreover for the real part
of the memory function, we obtain a similar behavior as we did in Ch. 2 for the local
field case, Fig. 2.6; hence a Drude-like behavior is established for weak perturbations.

On the other hand the behavior of the spin conductivity is completely different since
the spin current relaxation is dominated by the bulk scattering and the anisotropy pa-
rameter ∆ plays the major role in its behavior. Nevertheless, for ∆ = 0 the spin current
commutes with the unperturbed Hamiltonian H0(∆ = 0) and the memory function ap-
proach becomes applicable. An important attribute of the magnetic impurity, which
is in sharp contrast to the non-magnetic impurity (e.g. the case of one local field), is
that even for ∆ = 0 the spectrum of the system retains its many body features. Thus
the level spacing is exponentially small ∼ e−L and we obtain smooth curves for the
finite system we study. Recall that for the XY model even in the presence of a single
non-magnetic impurity ballistic transport is not destroyed, manifested in a finite Drude
weight. From Fig. 3.11, where the spin conductivity (σ(ω)) is shown, it can be inferred
that a magnetic impurity renders ballistic transport incoherent even for ∆ = 0. For
Fig. 3.11 we have used the ED technique for a system with L = 16, J ′/J = 0.5, ∆ = 0
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Figure 3.11: Frequency dependence of the spin conductivity σ(ω) calculated in the
full system via Eq. (3.8) (black solid line) or extracted from the perturbative memory
function Eq. (3.18) (green dashed line) where L = 16, J ′/J = 0.5, ∆ = 0, β → 0.

and β → 0. Moreover we present the perturbative spin conductivity as extracted from
the memory function M0 which clearly is in very good agreement with the exact results.
Let us mention here that while for the spin conductivity the agreement between exact
and perturbative results deteriorates as |∆| is increased, for the thermal conductivity
case the agreement is contingent only on the perturbation strength and the anisotropy
parameter does not affect its qualitative behavior.

3.3.4 Finite temperature

Now we can study the effect of lowering the temperature on the scattering by a magnetic
impurity. According to Eggert and Affleck (EA) [2] it leads to cutting the chain at T = 0
irrespective of the sign of J ′. This proposal was extended by Furusaki and Hikihara
[6] to the anisotropic spin chain −1 < ∆ ≤ 1 where they furthermore proposed that
for −1 < ∆ < 0 (attractive case in the fermionic language) there is “healing” of the
impurity.

In the Kondo problem the characteristic temperature in the weak coupling limit is
given by TK ∼ v exp(−c/J ′) with c being a constant, v the velocity of spin excitations
and J ′ the Kondo coupling. In the case of a spin-1/2 chain it was shown [17] that
the exponential dependence is replaced by TK ∼ exp(−π

√
1/J ′ − (S′ + 1/2)2) and a

next-nearest neighbor coupling J2 ' 0.2412 is needed to recover the traditional Kondo
case. We should note that in the model studied the impurity spin is attached only
at the end of the chain - in contrast to our model - but plausibly the behavior is
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qualitatively similar. To get a qualitative idea of orders of magnitude for our problem
[5] for J ′ = 0.3J , TK ∼ 0.014, ξK ∼ 40, for J ′ = 0.6J , TK ∼ 0.388, ξK ∼ 4 and
J ′ = J , ξK = 0.65. As in our study we are limited to T ≥ 0.4 in order to see a “Kondo”
crossover we must consider a coupling J ′ ≥ 0.5J and thus we are in the relatively strong
coupling regime, with typical screening length of the order ξK ∼ 1.

In Fig. 3.12 we show κ(ωL)/L for a chain of L = 22 sites at strong coupling J ′ = 2J
and two representative cases ∆ = ±0.5 as we lower the temperature. Indeed we find
at low frequencies the gradual development of the corresponding “cutting/healing”
behavior which we exemplify in the inset by Ñ ′′(0) as a function of temperature both
for ∆ = ±0.5 and the most typical isotropic case ∆ = +1.0. It is remarkable that
the tendency to increase-decrease the scattering time is already evident from high T ,
presumably due to the local character of the effect because of the strong J ′ coupling.
We note in passing that the ωL scaling is found not just at high T but rather at all T
(not shown).

Next in Fig. 3.13 we show Ñ ′′(0) as a function of T for a series of increasing J ′

couplings. The “cutting” effect for the repulsive case ∆ = +0.5 is present for all values
of J ′ with no easily distinguishable “Kondo” temperature. We are always dealing with
screening lengths well less than the system size where presumably no subtle many-body
effects come into play. On the other hand, in the attractive case ∆ = −0.5, we do not
observe “healing” for the weakest coupling J ′ = +0.5 where the screening length is
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expected to be several lattice sites.
Finally, in Fig. 3.14 we summarize the T -dependence of κdc/L for a variety of

coupling strengths J ′/J and ∆ = ±0.5. The experimentally most interesting case
∆ = +1 corresponding to isotropic antiferromagnetic as well as ferromagnetic impurity
coupling is shown in Fig. 3.15. For ∆ > 0 we observe in Fig. 3.14a and Fig. 3.15
a continuous decrease of the κdc with increasing J ′. This can be explained with the
formation of a local singlet, at least for T < J ′ which blocks the current through the
impurity region. On the other hand, the ∆ < 0 case in Fig. 3.14b reveals a saturation
of κdc with J ′, at least for intermediate large J ′. However, for severe perturbations
(J ′ � J) the impurity cannot be healed by the chain leading inevitably to a further
decrease of the κdc.

3.4 Weak links - finite temperature

Next, we would like to proceed with the study of the Heisenberg spin-1/2 chain in the
presence of two consecutive modified bonds. This model can be considered as a special
case of the SIC model. For one thing, the substitution of an ion of the chain with
another one of different species with spin S = 1/2 could lead to a spin-1/2 Heisenberg
chain but with two altered bonds. Thus, the Hamiltonian and the current operators
will be given by Eqs. (3.6) and (3.7) with J ′L−1 = J̃ = J ′1. In addition it is interesting
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Figure 3.16: Frequency dependence of: (a) the normalized thermal conductivity
κ(ωL)/L, (b) the extracted memory function Ñ ′′(ωL), for a chain of L = 22 sites with
one weak link J̃ = 0.7J and various T/J = 0.3− 2.0 . (c) Temperature dependence of
κdc(T )/L.

to compare the behavior of the the thermal conductivity as we lower the temperature
for this model with the case where only one link is modified. In Ch. 2 it was shown
that in the presence of a single modified link the chain is healed for a ferromagnetic
(∆ < 0) anisotropy while it is cut for antiferromagnetic (∆ > 0). Particularly for the
isotropic model, Kane-Fisher [1] for a Luttinger liquid and Eggert and Affleck [2] for
the isotropic spin-1/2 Heisenberg chain, proposed that a weak link leads to an open
chain (cutting) in the low energy limit. In contrast, a defect of two adjacent weak links
is “healed” leading to a uniform chain at T = 0 [3]. To analyze this effect we consider
the isotropic Heisenberg chain with only one weak link, i.e., the operators are given
again by Eqs. (3.6) and (3.7) but this time J ′L−1 = J and J ′1 = J̃ . In what follows we
attempt to analyze the different influence of a single versus two adjacent modified links
on the thermal conductivity of the spin-1/2 Heisenberg chain.

The characteristic Kane-Fisher temperature is given in the weak coupling limit by
TKF ∼ (J− J̃)2/J . In Fig. 3.16a we show the corresponding κ(ωL)/L for J̃ = 0.7J and
a series of temperatures. The data are obtained using the FTLM method for a chain of
L = 22 spins, by ML = 2000 Lanczos steps and smoothed by an additional frequency
broadening η ' 0.007. From Fig. 3.16a we notice that κ(ωL)/L develops a strongly
nonmonotonic frequency dependence by lowering the temperature, with a maximum
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Figure 3.17: Frequency dependence of: (a) the normalized thermal conductivity
κ(ωL)/L, (b) the extracted memory function Ñ ′′(ωL) for a chain of L = 22 sites
with two adjacent weak links J̃ = 0.7J and various T/J = 0.3− 2.0. (c) Temperature
dependence of κdc(T )/L.

at a finite frequency that suggests a flow to the strong coupling limit similar to the
one discussed before by increasing J ′. In Fig. 3.16b, the extracted Ñ ′′(ωL) for various
T is presented, with the development of a characteristic structure that explains the
nonmonotonic behavior of κ(ω). The increasing value of Ñ ′′(0) ∼ 1/τ with decreasing
temperature indeed corresponds to the effect of “cutting” of the chain.

Nonmonotonic is also the frequency dependence of κ(ωL)/L for the case of two
adjacent equal weaker links, J ′L−1 = J ′1 = J̃ = 0.7J , as shown in Fig. 3.17a. However,
in this case we observe in Fig. 3.17b the opposite behavior of Ñ ′′(ω). Namely “healing”
of the double defect deduced by the decreasing Ñ ′′(0) as the temperature is lowered in
agreement with theoretical prediction [2]. We should note that both cutting/healing
are low frequency effects at frequencies ωL O(1).

To summarize the observed behavior we show in Fig. 3.18, the T -dependence of the
relaxation rate Ñ ′′(0) for two different couplings J̃/J = 0.5, 0.7, for one and two weak
links, respectively. The presented results confirm the existence of the cutting behavior
at low T for a single link, as well as the healing by lowering T for two adjacent and
equal links. As expected, both effects appear only at low T/J < 1 while the dependence
of the characteristic TKF on J̃/J is less pronounced.
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Figure 3.18: Temperature dependence of Ñ ′′(0) for J̃ = 0.5, 0.7J showing cut-
ting/healing behavior for one and two weak links.

3.5 Spin-1 impurity in the chain

Let us now proceed with the generic spin-S magnetic impurity embedded in the spin-1/2
chain and particularly start with the spin-1 case, which is the most appealing doping—
besides spin-1/2 impurities—for experiments. The Hamiltonian and the spin, energy
current operators are given by (3.6), (3.7) with S = 1, J ′L−1 = J ′ = J ′1 and we consider
the case where ∆ = ∆′.

In Fig. 3.19 we present results obtained via ED for a spin S = 1 impurity and
for the isotropic (∆ = 1) Heisenberg model. On the left part of Fig. 3.19 we present
the frequency dependence of the thermal conductivity T 2κ(ω) where the impurity is
coupled with the spin-1/2 chain with a host-impurity coupling J ′ = 0.8J , for which
the dc thermal conductivity, κdc = κ(ω → 0), exhibits its maximum value, see the
inset of the left part of Fig. 3.19. In addition, in the same figure a Lorentzian fit is
presented which signifies that the thermal conductivity exhibits a Lorentzian behavior.
The thermal conductivity retains its Lorentzian behavior,

κ(ω) =
κdc

1 + (ωτ ε)
,

roughly, in the interval of values of the host-impurity coupling, 0.6 . J ′/J . 1.0.
Using the FTLM method we obtain the same Lorentzian behavior, with a constant
scattering time, for temperatures as low as Tfs, where Tfs is the temperature for a finite
system below which FTLM results become unreliable; we estimate this temperature to
be approximately Tfs/J ' 0.3 for these systems. Although for a spin-1 impurity
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Figure 3.19: Frequency dependence of the thermal conductivity T 2κ(ω) of the isotropic
(∆ = 1) Heisenberg model in the presence of a spin-1 magnetic impurity at high
temperatures, β → 0. On the left part of the figure the thermal conductivity for a
perturbative coupling J ′/J = 0.8 is shown in addition with a Lorentzian fit. In the
inset of the left part of the figure the dc value of the thermal conductivity is shown as
a function of the ratio J ′/J . On the right part of the figure the thermal conductivity
for J ′/J = 0.4, 1.2, 2.0 is shown.

and J ′ = 1.2J , Fig. 3.19 (right), the low frequency depletion—characteristic of the
strong coupling regime—is not present, the Lorentzian behavior is destroyed by the
conspicuous local excitations of the impurity.

For extreme values of the coupling J ′, either strong or weak, the thermal conductiv-
ity exhibits a strongly non-monotonic behavior, Fig. 3.19 (right). The non-monotonic
behavior, as it is insinuated by the results for the spin out of chain (SOC) or the weak
link (WL) models, is an indication that the system has flown to the strong coupling
regime, while a Lorentzian form of κ(ω) is an indication of a weak perturbation. From
Fig. 3.19 (right) it can be inferred that the system couples strongly with the impu-
rity for extreme values of the host-impurity coupling. Whereupon, the low frequency
behavior, corresponding to an open-like chain, is the same for a strong as well as for
a weak J ′—notice the difference, |J ′ − J | = 0.6J , from the uniform coupling in the
weak coupling case. On the other hand, the high frequency behavior of the thermal
conductivity for a weak and a strong J ′ is strikingly different due to the emergence
of a conspicuous secondary structure, Fig. 3.19(b). The frequency of this structure
shifts with J ′, indicating that its origin is local excitations of the impurity. Moreover,
the larger the J ′ the more weight is accumulated in this structure, which becomes
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Figure 3.20: Frequency dependence of the normalized thermal conductivity scaled with
the lattice size as κ(ωL)/L in the presence of a spin-1 impurity for L = 15, 19, 21 and
for: a weak J ′/J = 0.8 (left) and a strong J ′/J = 1.5 (right) perturbation.

the prevalent contribution to the thermal conductivity for fairly strong couplings (Fig.
3.19(b) J ′ = 2J) despite being only a 1/L effect.

Taking all the above into account we could infer that a spin-1 impurity in the
chain is a relatively weak perturbation for the thermal transport yielding a Drude-like
behavior as long as the coupling of the impurity with the chain J ′ extends within a
certain range of values.

3.5.1 Lattice size scaling

As far as the lattice size scaling of the thermal conductivity for the SIC model is
concerned, we examine the scaling κ(ωL)/L similarly to the SOC model, sec. 3.3.1.
For the latter, we have seen that the thermal conductivity exhibits a universal scaling
with L and κ(ωL)/L is the size independent quantity. For the SIC model, a Lorentzian
κ(ω), like the one on the left part of Fig. 3.20, obeys trivially a universal L scaling,
since κdc, τ ε ∼ L, and the size independent quantity is again κ(ωL)/L. On the other
hand for strong J ′, the prominent impurity contribution at ω ∼ J ′, which is O(1),
does not scale with L, Fig. 3.20 (right).3 Nonetheless, the low frequency, ω ∼ 1/L,
bulk contribution to κ(ω) obeys the scaling κ(ωL)/L even in the strong perturbation

3 Note that for the SOC model, one has to assume a very strong host-impurity coupling to yield
a conspicuous secondary structure at high frequencies which will not obey the scaling with the lattice
size L.
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Figure 3.21: Frequency dependence of the thermal conductivity T 2κ(ω) for different
magnetic impurities, S = 1, 3/2, 2, 5/2 and J ′ = J , ∆ = 1, at high temperatures,
β → 0.

regime. Moreover, Fig. 3.20 (right) signifies that the contribution of a single impurity
dwindles with respect to the bulk contribution with increasing L, becoming negligible
in the limit L → ∞. However, in an experimental realization with a finite but dilute
impurity concentration cI , so that correlations among impurities can be neglected, one
could plausibly assume that κ(ω) will obey the same scaling behaviors, in the weak and
strong perturbation regimes, with the substitution 1/L→ cI .

3.6 Spin-S impurity in the chain

So far we have presented some basic properties of the spin-1/2 Heisenberg chain with
an embedded spin-1/2 and spin-1 magnetic impurity. Let us now present how a generic
spin-S magnetic impurity affects the transport properties of the spin-1/2 Heisenberg
chain.

To start with, a spin-S magnetic impurity with S > 1 constitutes a strong pertur-
bation for the Heisenberg chain. For any value of the host-impurity coupling J ′ the
low frequency depletion is present yielding a non-Lorentzian behavior. Moreover, as we
have seen from the spin-1 impurity, when the chain is strongly coupled to the impurity
the thermal conductivity exhibits a conspicuous high frequency structure at frequencies
ω ∼ J ′. Similarly with the spin-1 impurity this structure is present for spin-S impu-
rities with S > 1, and moreover the larger the impurity spin S the more prominent it
becomes. In Fig. 3.21 we plot as an illustrative example the frequency dependence of
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the thermal conductivity T 2κ(ω) for the isotropic Heisenberg model (∆ = 1), J ′ = J ,
S = 1, 3/2, 2, 5/2, in the high temperature regime (β → 0), using the ED technique.
For the lowest impurity spin, S = 1, the thermal conductivity is roughly described by a
Lorentzian despite the subtle presence of a secondary structure. As the impurity spin S
is increased this structure gains more weight which becomes comparable with the weight
at low frequencies which arises from the bulk contribution of the chain. Eventually, for
stronger perturbations, whose strength is given by the parameter B2 = J ′2

3 S(S+1) , the
secondary structure will become the prevalent contribution to the thermal conductivity
despite being a 1/L effect.

The fact that the contribution of a 1/L effect to thermal conductivity surpasses the
bulk contribution may seem quite bizarre, however, we can comprehend the origin of
this effect from the analytical expression of the sumrule of κ(ω), κ̃0 = πβ2κ0, where κ0

is given by4

κ0 =
(

1− 3
L

)
J4

32
(1 + 2∆2) +

4
L

(
2
J2

32
(1 + ∆2 + ∆′2)B2 +

J ′2

32
(1 + 2∆′2)B2

)
, (3.20)

as evaluated at the infinite temperature limit, β → 0. The bulk contribution to κ0,
manifested by the J4 term, is compensated by the impurity contribution, ∝ J ′2B2 ∝
J ′4, for a coupling J ′ > J∗ , where J∗ is given by

J∗ = 4

√
3
4

L− 3
S(S + 1)

. (3.21)

Note that we took into account only the local energy current term

̃ε = J ′2S · (∆′ · s1 ×∆′ · sL−1) , (3.22)

which is ∝ J ′2. The evaluation of J∗ implies that for finite systems like the ones studied
here via ED J∗ would be J∗ ' 1.45 for S = 1, L = 15 and J∗ ' 1.05 for S = 2, L = 13.
Hence, for a spin S = 2 impurity and a coupling J ′ ' J the dominant contribution
to the thermal conductivity for a finite system of L = 13 sites will come from terms
which involve transitions between states ∼ J ′. Thus, as the host-impurity coupling J ′

is increased, the excitations at ω ∼ J ′ will separate from the bulk contribution located
at ω ∼ 1/L, while the corresponding weight accumulated at ω ∼ J ′ will surpass the
bulk contribution creating resonant modes at frequencies ω ∼ J ′.

On the other hand the spin conductivity seems to be less sensitive than the thermal
conductivity to the presence of the magnetic impurity, especially for ∆ ≥ 1. A signifi-
cant change in the spin conductivity becomes perceptible only for strong couplings or
high impurity spin S due to the high frequency contribution of the impurity. In Fig.

4The sumrule of the spin conductivity σ̃0 is given by

σ̃0 = πβ

„
J2

8

„
1− 2

L

«
+

B2

L

«
(3.19)
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Figure 3.22: Frequency dependence of the spin conductivity Tσ(ω) for different mag-
netic impurities, S = 1, 3/2, 2, 5/2 and J ′ = J , as well with the case S = 1, J ′ = 1.5 for
∆ = 1 at high temperatures, β → 0 via ED. Inset: The dc spin conductivity Tσdc for
S = 1 is shown as a function of the perturbation coupling J ′.

3.22 we present ED results for the frequency dependent spin conductivity obtained at
the high temperature limit (β → 0), at the isotropic point (∆ = 1), for J ′ = J and
various impurities, S = 1 − 5/2. In addition, for S = 1 the J ′ = 1.5J case is shown.
Moreover, in the inset we present the dc value of the spin conductivity, σdc = σ(ω → 0),
for an S = 1 impurity as a function of the ratio J ′/J for ∆ = 0.8, 1.

Despite the conspicuous high frequency contribution of the impurity to the spin
conductivity the low frequency σ(ω → 0) remains virtually unaffected for ∆ = 1 for a
wide range of couplings J ′ and/or impurity spin S, Fig. 3.22. In the gapless regime,
Fig. 3.22 (∆ = 0.8) the behavior of the dc spin conductivity resembles qualitatively the
behavior of κdc, Fig. 3.19, as a function of the ratio J ′/J . However, the maximum of
σdc is obtained for a quite weak host-impurity coupling, J ′ = J/2. Another difference
between spin and thermal conductivities is that for the range of values of the J ′ coupling,
shown in the inset of Fig. 3.22, the former changes less than three times from its
minimum to its maximum value while the latter changes more than ten times.

For S = 1, ∆ = 0.8 and J ′ = J/2 where the spin conductivity exhibits its maximum
dc value, we show in Fig. 3.23 the frequency dependence of the spin conductivity.
In addition, we present for the same J ′ the spin conductivity of different magnetic
impurities including the S = 1/2 case. The results are obtained via ED in the high
temperature regime. It is interesting that the S = 1 case exhibits the highest σdc, even
higher than the S = 1/2 case.
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β → 0, obtained via ED

3.6.1 Strong coupling limit

The high frequency structure that emerges, in both the spin and the thermal conduc-
tivity, due to a strong perturbation ∼ B2, ∼ J ′2B2, respectively, can be well understood
by taking the limit J ′ → ∞. Starting from Eq. (3.6) for the isotropic point (∆ = 1)
and taking J = 0 we arrive at the local Hamiltonian describing the system consisting
of the impurity and its two nearest neighbors

H = J ′(sL−1 + s1) · S . (3.23)

Since the Heisenberg Hamiltonian conserves the total Sz component we can diagonalize
(3.23) analytically separating it into different Sz subsectors. In the maximum total Sz
subsector for the three spin system, Sz = S + 1, there is only one state, | ↑ S ↑〉,
where the first and the second arrows denote the z-component of the sL−1, s1 spin-1/2
operators respectively while between these two arrows the z-component of the impurity
is denoted by S.

The second highest Sz = S subsector is a 3-dimensional subspace consisting of the
states |S, 1〉 = | ↑ S − 1 ↑〉, |S, 2〉 = | ↑ S ↓〉, |S, 3〉 = | ↓ S ↑〉. The eigenvalues of the
Hamiltonian (3.23) within the Sz = S subsector are

ε0 = 0 , ε± =
J ′

2
(S − 1± (S + 1)) , (3.24)
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Figure 3.24: The energy spectrum of the 3-spin system at the isotropic point.

while the eigenstates have the form

|S, ε0〉 =
1√
2

(|S, 2〉 − |S, 3〉) , |S, ε±〉 = c′1|S, 1〉+ c′2 (|S, 2〉+ |S, 3〉) (3.25)

with c′1,2 being functions of the impurity spin S.
Let us focus on the thermal transport and particularly on the matrix elements of the

local energy current operator ̃ε (3.22). The form of the eigenstates imposes that there
are no energy current matrix elements of the operator ̃ε between the |S, ε±〉 states.
Particularly for the isotropic (∆ = 1) local Hamiltonian 3.23 there in not a transition
between |S, ε−〉 and |S, ε0〉 hence, the only non-vanishing transition is between the states
|S, ε0〉, |S, ε+〉 which is a transition of an energy difference δε = ±J ′. Apparently the
same conclusions hold for the corresponding Sz = −(S + 1),−S subsectors.

The rest 2S̃ + 1 Sz subsectors, with S̃ = S − 1, are 4-dimensional spaces consisting
of the states |Sz, 1〉 = | ↑ Sz − 1 ↑〉, |Sz, 2〉 = | ↑ Sz ↓〉, |Sz, 3〉 = | ↓ Sz ↑〉,
|Sz, 4〉 = | ↓ Sz + 1 ↓〉, leading to the following eigenvalues

ε2= − J ′, ε3 = 0, ε1,4 = −J
′

2
(1± (2S + 1)) (3.26)

where the + sign corresponds to the lowest ε1 eigenstate and the − sign to ε4. The
ground state of the 3-spin system is εg = ε1; the energy spectrum for the isotropic point
is shown in Fig. 3.24.

The Hamiltonian of the 4-dimensional subspaces imposes that the eigenstates will
be

|Sz, εn〉 =


1√
2

(|Sz, 2〉 − |Sz, 3〉) for εn = 0 ,

c1|Sz, 1〉+ c2 (|Sz, 2〉+ |Sz, 3〉) + c4|Sz, 4〉 for εn 6= 0 ,

(3.27)

with c1,2,4 being functions of S, Sz.
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Figure 3.25: Frequency dependence of the normalized thermal conductivity κ(ω) ob-
tained via the FTLM for a strong perturbation S = 2, J ′ = 2J , for ∆ = 1 and various
temperatures, T/J = 50, 2, 1, 0.4.

Likewise the 3-dimensional subspaces, the matrix elements of ̃ε are zero except
〈Sz, ε2|̃ε|Sz, ε3〉 which is again a transition of energy δε = ±J ′. Note that for the
anisotropic Heisenberg Hamiltonian (∆ 6= 1) the matrix elements of the energy current
operator ̃ε vanish only for transitions between states which correspond to non-zero
eigenvalues, similarly to the Sz = ±S subspaces. Thus the property that there will
be non-zero energy current matrix elements only between states that correspond to
transitions of energy δε = ±J ′ is a unique property of the isotropic Heisenberg model.

The previous conclusions are depicted in Fig. 3.25 were the frequency dependence
of the normalized thermal conductivity κ(ω) is shown for various temperatures. The
results were obtained using the FTLM method for a strong perturbation S = 2, J ′ = 2J ,
a system of L = 19 sites and ∆ = 1. At high temperatures there is a significant weight
centered at ω = J ′/J as it is expected from the analysis of the 3-spin model. Moreover,
the position of this resonant mode at ω = J ′/J is independent of the spin of the
impurity, as indicated by the previous analysis for the strong J ′ coupling, Figs. 3.19
(S = 1), 3.25 (S = 2). As the temperature is decreased and the system flows to the
ground state the peak at ω = J ′/J vanishes gradually. This is expected since the
transitions that yield the peak at ω = J ′/J are between elevated eigenstates which
will not be occupied as the temperature is decreased. For ∆ 6= 1 where there are fewer
forbidden transitions there will be more than one high frequency peaks; see for example
Fig. 3.27. For the spin current there are more allowed transitions than for the energy
current, Fig. 3.22; particularly there are transitions involving the ground state, thus, at
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Figure 3.26: Comparison of the frequency dependent thermal conductivity Tκ(ω)
(left) and the spin conductivity σ(ω) (right) at a low temperature T/J = 0.7 for
S = 1, J ′/J = −0.25 and S = 2, J ′/J = 2 (L = 19, ∆ = 1).

low temperatures there will be resonant modes at the corresponding frequencies, Fig.
3.26. Let us remark here that Fig. 3.25 may lead to the erroneous conclusion that the
high frequency weight is shifted at lower frequencies, but this is an artifact only due to
the unit integral of the curves.

At low energies the properties of the system will be described by the ground state
which is (2S̃ + 1)-fold degenerate implying that the degrees of freedom of the 3-spin
system, at low energies, will be described by a pseudo spin S̃ = S− 1 coupled with the
chain with an effective coupling J̃ [2]. Thus, at low energies one can assume that the
system will be described by states of the form |Sz, εg〉 ⊗ |chain〉 where |Sz, εg〉 is given
by (3.27), while |chain〉 represents the state of the rest L − 3 spins. One can evaluate
the effective coupling J̃ of the pseudo spin S̃ with the chain by considering the matrix
element 〈S′z, εg| ⊗ 〈chain′|Js1 · s2|Sz, εg〉 ⊗ |chain〉 [18] to obtain

J̃z =
c1(Sz)2 − c4(Sz)2

2Sz
, (3.28a)

J̃+ =
c2(Sz)c1(Sz + 1) + c2(Sz + 1)c4(Sz)√

S(S − 1)− Sz(Sz + 1)
, (3.28b)

J̃− =
c2(Sz − 1)c1(Sz) + c2(Sz)c4(Sz − 1)√

S(S − 1)− Sz(Sz − 1)
, (3.28c)
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with J̃z = J̃ = J̃± wherever they are defined and the coefficients c1,2,4 are given by

c1(Sz) =
1

N(Sz)
2a−

εg − b−
, c2(Sz) =

1
N(Sz)

, c4(Sz) =
1

N(Sz)
2a+

εg − b+
, (3.29)

where,

N(Sz) =

√
2 +

(
2a−

εg − b−

)2

+
(

2a+

εg − b+

)2

(3.30)

and

a± =
√
S(S + 1)− Sz(Sz ± 1) , b± = −2(1± Sz) . (3.31)

For a spin-2 magnetic impurity coupled with the Heisenberg chain we obtain a
ferromagnetic effective coupling J̃ = −0.25J for ∆ = 1. Note that the higher the spin
of the impurity the smaller the effective coupling with the rest of the chain. In Fig.
3.26 the comparison of the thermal conductivity Tκ(ω) (left) and spin conductivity
σ(ω) (right) for a spin-2 magnetic impurity strongly coupled with the chain (J ′ = 2J)
and an impurity S = 1 coupled with a ferromagnetic coupling J ′ = −0.25J at a low
temperature T/J = 0.7 are shown; the lattice size is L = 19 and ∆ = 1. We have also
tested stronger couplings J ′/J = 3, 4 and we obtain the same results, implying that
J ′ = 2J is already a very strong perturbation. We observe that while the low frequency
part for the transport quantities shown in Fig. 3.26 is in good agreement for the two
impurities, the high frequency part is striking different. This can be understood easily
since a strong host-impurity coupling yields a conspicuous high frequency structure
ω ∼ J ′, at least for a finite system, which cannot be reproduced by the weak effective
coupling |J̃ | � |J ′| that we obtain.5 Thus, the picture of the effective spin fails to
describe the transport quantities in the whole frequency range, at least for a single
impurity in a finite system or a finite concentration of impurities in the thermodynamic
limit.

Finally we have seen for the SOC model, the single weak link and the local field that
the chain is healed for ∆ < 0 while it is cut for ∆ > 0 [1, 6, 19]. Thus, we investigate
whether or not the cutting-healing behavior occurs as well for a spin-S magnetic im-
purity embedded in the chain. In Figs. 3.27 for the thermal conductivity, and 3.28 for
the spin conductivity we present FTLM results, where the normalized corresponding
quantity is plotted for ∆ = ±0.5 and three temperatures T/J = 50, 2, 0.4. Both figures
signify that the cutting-healing occurs for an S = 1 impurity while we observe this
behavior for higher S > 1 as well (not shown). For the spin conductivity case—where
the spin current is not conserved in the pure AHM—the accumulated weight at ω = 0
for the lowest temperature T/J = 0.4 is reminiscent of the δ-function located at zero
frequency for the pure model.

5 The high frequency structure of the thermal conductivity in Fig. 3.26 comes from the ∼ JJ ′ terms
of the energy current (3.7) and not from the ̃ε that we discussed before.
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Figure 3.27: Frequency dependence of the normalized thermal conductivity κ(ω) for
three temperatures T/J = 50, 2, 0.4, a magnetic impurity S = 1 and L = 19, J ′/J = 2.0
and two values of the anisotropy ∆ = ±0.5.
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Figure 3.28: Frequency dependence of the normalized spin conductivity κ(ω) for three
temperatures T/J = 50, 2, 0.4, a magnetic impurity S = 1 and L = 19, J ′/J = 2.0 and
two values of the anisotropy ∆ = ±0.5
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3.7 Conclusions

In conclusion, by analyzing the unique behavior of the thermal conductivity (mostly)
and the spin conductivity as well of the spin-1/2 Heisenberg model several effects of
the local static and dynamical impurities have been established:

• A single local impurity, either static as the local field [8] and weak link, or dynam-
ical as a magnetic impurity coupled to the chain turn the dissipationless thermal
conductivity into an incoherent one. Numerical results for the dynamical con-
ductivities, best studied at high-T , reveal that a single impurity in a system of
L sites shows a universal scaling form κ(ωL)/L at least in the low-ω regime. For
weak perturbation, as weakly coupled spins outside the chain or S = 1 impu-
rity embedded in the chain for a certain range of host-impurity couplings J ′, the
scaling form is of the simple Lorentzian type. On the contrary large local pertur-
bation can lead to a nontrivial form with the maximum response at ω > 0. Any
magnetic impurity embedded in the chain with S > 1 is a strong perturbation for
the thermal conductivity.

• In contrast to the thermal conductivity, the spin conductivity, which has intrin-
sic spin current relaxation mechanisms, is less sensitive to the 1/L effect of the
impurity, especially its low frequency part.

• Furthermore, universal oscillations in the dynamical relaxation rate N ′′(ω)—
studied for the magnetic impurity out of the chain—become visible, from the
weak coupling regime already, with the period ω ∝ 1/L being a remnant of the
impurity multiple-scattering phenomena in a noninteracting system.

• For the magnetic impurity embedded in the chain the contribution of the impurity
to the transport properties dominates quite easily over the bulk contribution.
Since the bulk contribution occurs at frequencies ω ∼ 1/L while the impurity
contribution is at ω ∼ J ′/J the two contributions are well separated for strong
J ′. The combination of these two properties yields resonant modes, at least at
high temperatures and a finite system. Using the strong coupling limit J ′ �
J and analyzing the properties of the 3-spin system (3.23), it was shown that
the resonant modes diminish with decreasing temperature if they do not involve
transitions with the ground state of this local model.

• Our results confirm the existence of Kondo-type effects of impurities on lowering
the temperature. In the case of weak links and for the isotropic Heisenberg
model cutting and healing effects are observed at lower T for a single weak link
and a pair of identical weaker links, respectively, in accordance with theoretical
predictions [1, 3]. In the case of a spin coupled to the chain the cutting/healing
effects at low T depend on the sign of the anisotropy ∆. For ferromagnetic
anisotropy (∆ < 0), the chain screens the impurity and the system enters the
weak coupling regime as the temperature is decreased. The opposite behavior is
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obtained for antiferromagnetic anisotropy (∆ > 0), where the system flows to the
strong coupling limit at lower temperatures.

• The picture of the formation of an effective spin S̃ = S − 1 for a strong J ′ was
shown to fail to describe the whole frequency range of the transport properties, at
least for a finite system, Fig. 3.26—although it may be sufficient for their static
limit or for thermodynamic quantities.

• Obtained data can be used to model the behavior observed in experiments on
materials with spin chains doped with magnetic and nonmagnetic impurities [9].
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[8] O. S. Barǐsić, P. Prelovšek, A. Metavitsiadis, and X. Zotos, Incoherent transport
induced by a single static impurity in a Heisenberg chain, Physical Review B 80(12),
125118 (Sep 2009).

[9] C. Hess, Heat conduction in low-dimensional quantum magnets, The European
Physical Journal - Special Topics 151, 73–83.

[10] N. Hlubek, P. Ribeiro, R. Saint-Martin, A. Revcolevschi, G. Roth, G. Behr,
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[13] M. W. Long, P. Prelovšek, S. El Shawish, J. Karadamoglou, and X. Zotos, Finite-
temperature dynamical correlations using the microcanonical ensemble and the
Lanczos algorithm, Physical Review B 68(23), 235106 (Dec 2003).
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Appendix A

Linear response theory

The aim of this appendix is to function as a reference guide for many relations that
are used throughout this manuscript and moreover to present them in a more detailed
way.

A.1 Spin and thermal conductivities

To start with, we consider the definition of the susceptibility in the linear response
theory framework. Let us assume that a time dependent perturbation V (t) is switched
on at some initial time t0 = 0 and disturbs our system which initially was described
by the Hamiltonian H. Given that the perturbation is the product of an operator Ôq
times a function y(t), which carries the time dependence, i.e.,

V (t) = −Ôqy(t) , (A.1)

the frequency dependent complex susceptibility of an observable Ôp due to this pertur-
bation will be [1]

χÔpÔq(z) =
i

}

∫ +∞

0
dt eizt 〈[Ôp(t), Ôq(0)]〉 , z = ω + iη , (A.2)

which is a holomorphic function in the upper complex plane and decays as ∼ 1/z
at high frequencies, |z| � 1. Let us explain the notation used above. The square
brackets denote the commutator of the two enclosed operators and the angle brackets
the thermodynamic average, which for an operator Ô is given by

〈Ô〉 =
Tr Ô e−βH

Tr e−βH
, with β =

1
kBT

. (A.3)

}, kB are the Planck, Boltzmann constants respectively, T is the temperature and Tr
stands for the trace of the respective operator. The Heisenberg picture is used for the
time evolution of the operators, where the time evolution of an operator Ô is obtained
by the unitary transformation

Ô(t) = U †(t)Ô U(t) , with U(t) = exp(−iHt/}) . (A.4)
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Complex conductivities, spin and thermal,1 are defined using the corresponding
current-current susceptibility for the spin s and the energy ε current respectively (cf.
Refs. [3–5] ) via the relations

σ(z) =
i

zL
(χs0 − χss(z)) , κ(z) =

i

zTL
(χε0 − χεε(z)) . (A.5)

L is the lattice size and χs0, χ
ε
0 coincide with the static limit of the respective suscep-

tibility for dissipative cases (see below). Using the eigenvalues εn and the eigenstates
|n〉 of the Hamiltonian H,

H|n〉 = εn|n〉 , (A.6)

to express the thermodynamic average, Eq. (A.3), it is straightforward to show that
the spin conductivity will be given by (real parts of complex quantities are denoted
with a single prime and imaginary parts with a double prime)

σ′(ω) = 2πDsδ(ω) + σ′reg(ω) , Ds =
1
2

lim
ω→0

ωσ′′(ω) , (A.7a)

σ′reg(ω) =
π

L
P

(
1− e−β}ω

ω

)∑
n,m

pn|〈n|s|m〉|2δ(εm − εn − }ω) , (A.7b)

σ′′(ω) =
1
L

P

(
1
ω

)(
χs0 − P

∑
n,m

|〈n|s|m〉|2 pn − pm
εm − εn − }ω

)
. (A.7c)

δ(ω) is the Dirac δ-function and P denotes the principal value which have emerged from
the identity

lim
η→0

1
x± iη

= P

(
1
x

)
∓ iπδ(x) , (A.8)

while pn are the corresponding Boltzmann weights

pn = exp(−βεn)/Z , Z =
∑
n

exp(−βεn) . (A.9)

Similarly we will have for the thermal conductivity

κ′(ω) = 2πDhδ(ω) + κ′reg(ω) , Dh =
1
2

lim
ω→0

ωκ′′(ω) , (A.10a)

κ′reg(ω) =
π

TL
P

(
1− e−β}ω

ω

)∑
n,m

pn|〈n|ε|m〉|2δ(εm − εn − }ω) , (A.10b)

κ′′(ω) =
1
LT

P

(
1
ω

)(
χε0 − P

∑
n,m

|〈n|ε|m〉|2 pn − pm
εm − εn − }ω

)
. (A.10c)

1 The thermal conductivity is a more peculiar case since a temperature gradient, which is what
causes the energy current flow, is a thermodynamic quantity while linear response theory is based on
the fact that a mechanical force disturbs the system. However, the difficulty was overcome by Luttinger
who introduced the coupling with a pseudo gravitational field [2] enabling the use of linear response
theory for the thermal conductivity as well.
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Let us elaborate on the formulas above. The spin Ds(T ) and thermal Dh(T ) stiffness
express whether coherent transport exists in the system or not and particularly for
which transport modes, spin and/or thermal. In other words the system is an ideal
conductor with respect to the corresponding transport modes if the respective stiffness
is finite. Spin and energy stiffnesses could both be finite or vanish, or one of them
remains finite while the other one vanishes. On the other hand the dc conductivity, the
dissipative part of the real part of the conductivity, is obtained by the ω → 0 limit of
the regular component of real part of the respective conductivity

σdc(T ) = lim
ω→0

σreg(ω) , κdc(T ) = lim
ω→0

κreg(ω) . (A.11)

Furthermore, we can observe from Eqs. (A.7), (A.10) that

χs0 − χss(ω → 0) ≥ 0 , χε0 − χεε(ω → 0) ≥ 0 , (A.12)

since the imaginary part of the conductivity is an odd function and the real part an even
and positive function of the frequency ω. The equality holds for dissipative cases where
coherent transport vanishes. One can obtain the value of χs0, χε0 from the imaginary
part of the respective conductivity by taking the limit z →∞ where the susceptibility
decays as ∼ 1/z. Thus, neglecting second order terms we have

σ′′(ω) ' χs0
ωL

, Tκ′′(ω) ' χε0
ωL

, |ω| → ∞ . (A.13)

A.2 Non-interacting case

In the case of a non-interacting fermionic system Eqs. (A.7b), (A.7c) and (A.10b),
(A.10c) could be properly modified. Let as assume that the particle and the energy
currents are given from the generic single particle operators

 =
∑
p,q

pqc
†
pcq , ε =

∑
p,q

εpqc
†
pcq (A.14)

where pq, εpq are the corresponding matrix elements and c†p(cp) creates(annihilates) a
particle at the single particle eigenstate with energy εp,

H|p〉 = εp|p〉 . (A.15)

For instance, for the tight binding model—cf. sec. 1.6 Eqs. (1.20), (1.28), (1.29)—the
matrix elements would be

pq = − iat
}
∑
l

ψp(l)ψ∗q (l + 1)− ψp(l + 1)ψ∗q (l) , (A.16a)

εpq = +
iat2

}
∑
l

ψp(l − 1)ψ∗q (l + 1)− ψp(l + 1)ψ∗q (l − 1) , (A.16b)
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where a is the lattice constant, t the hopping amplitude and ψp(l) are the eigenfunctions.
Starting from the relation (A.5) for the spin conductivity, plugging into it Eq.

(A.14) for the spin current and using Wick’s theorem [6–8] we arrive at

σ′reg(ω) =
π

L
P

(
1
ω

)∑
p,q

|pq|2(fp − fq)δ(εq − εp − }ω) , (A.17a)

σ′′(ω) =
1
L

P

(
1
ω

)(
χ0 − P

∑
p,q

|pq|2
fp − fq

εq − εp − }ω

)
, (A.17b)

where fp is the Fermi-Dirac distribution

fp =
1

eβ(εp−µ) + 1
, (A.18)

with µ being the chemical potential. Similarly, for the thermal conductivity we arrive
at

κ′reg(ω) =
π

TL
P

(
1
ω

)∑
p,q

|εpq|2(fp − fq)δ(εq − εp − }ω) , (A.19a)

κ′′(ω) =
1
LT

P

(
1
ω

)(
χε0 − P

∑
p,q

|εpq|2
fp − fq

εq − εp − }ω

)
. (A.19b)

A.3 Analytic properties

Finally we would like to proceed with a few analytic properties for the conductivities,
which are very useful and provide valuable information. We define two new quantities
for each conductivity from the relations

σ±(ω) ≡ lim
η→0

σ(z)± σ(z∗)
2

, κ±(ω) ≡ lim
η→0

κ(z)± κ(z∗)
2

. (A.20)

It is not hard to observe from Eqs. (A.7), (A.10) that the complex spin and thermal
conductivities will be given with the aid of the new quantities σ±, κ± by the integrals

σ(z) =
i

π

∫ ∞
−∞

σ±(ω′)
z − ω′

dω′ , κ(z) =
i

π

∫ ∞
−∞

κ±(ω′)
z − ω′

dω′ . (A.21)

Virtually the quantities σ±, κ± are the real and the imaginary part of the conductivities
(modulo the imaginary unit for the imaginary part)

σ−(ω) = σ′(ω) , σ+(ω) = iσ′′(ω) (A.22a)
κ−(ω) = κ′(ω) , κ+(ω) = iκ′′(ω) . (A.22b)
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Combining Eqs. (A.21), (A.22) we arrive at the celebrated Kramers-Kronig relations
which hold for any analytic complex function f(z) = f ′(z) + if ′′(z) and relate its real
and imaginary parts (cf. Refs. [6, 7])

f(ω) = lim
η→0

1
iπ

∫ +∞

−∞
dω′

f ′(ω′)
ω′ − ω − iη

(A.23a)

or

f(ω) = lim
η→0

1
π

∫ +∞

−∞
dω′

f ′′(ω′)
ω′ − ω − iη

. (A.23b)

Kramers-Kronig relations are very important since the knowledge of only one part of a
complex function, the real or the imaginary, is enough to determine the whole complex
function.

The last property we would like to discuss, is the short time or high frequency
expansion. Starting from (A.21) and taking z � ω′ we can expand in powers of the
small quantity ω′/z, arriving at

σ(z) =
i

πz

∞∑
n=0

σ̃n
zn

, κ(z) =
i

πz

∞∑
n=0

κ̃n
zn

, (A.24)

where
σ̃n =

∫ ∞
−∞

ωnσ±(ω)dω , κ̃n =
∫ ∞
−∞

ωnκ±(ω)dω . (A.25)

The meaning of the last relations is that in the high frequency regime, the complex
conductivities are fully described by the frequency moments of either the real (even
moments) or the imaginary (odd moments) part of the respective conductivity. Ap-
parently the validity of this expansion over the frequency range depends on how many
terms of it are taken into account.
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Appendix B

Memory function approach

In this appendix we present in some detail the memory function perturbative approxi-
mation [4, 9, 10].

Assume a pure system, interacting or not, which is described by a Hamiltonian
H0 disturbed by a number of impurities. The total Hamiltonian of the system in
the presence of impurities will be the sum of the unperturbed Hamiltonian and the
perturbation one, say H1, namely,

H = H0 +H1 . (B.1)

We can define the memory functionM(z) for a current , which denotes the decay rate
of this current, using the susceptibility χ(z) Eq. (A.2) as (cf. Ref. [4])

M(z) ≡ z χ(z)
χ0 − χ(z)

. (B.2)

To express conductivities using memory functions we invert the formula above to obtain
the susceptibility and substitute it into the definition for the spin(or particle for the non
interacting case), energy conductivities (A.5). From this follows that the spin, energy
conductivities can be written using the memory functions M(z), N(z) as

σ(z) =
i(χs0/L)
z +M(z)

, κ(z) =
1
T

i(χε0/L)
z +N(z)

, (B.3)

where M(z), N(z) are defined from the spin, energy current susceptibility respectively.
Note that Eqs. (B.3) are exact since we have not used any approximations. The
knowledge of the real part of the conductivities Eqs. (A.7b), (A.10b) with the aid of
the Kramers-Kronig relations (A.23a) enables the extraction of the memory function
from the conductivity by inverting (B.3).

If the respective current is a constant of motion in the pure system and the system
is weakly coupled with the perturbation we expect a smooth imaginary part for the
memory function at low frequencies where ω is comparable with the magnitude of M
and approximately equal with its static limit M(ω) 'M(ω → 0),

1
τ s
∼M ′′(ω → 0) ,

1
τ ε
∼ N ′′(ω → 0) , (B.4)
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where 1/τ s,ε are the corresponding scattering rates. In addition, at low frequencies the
real part is not expected to have a substantial contribution to the conductivity, viz.,

ω +M ′(ω) ' ω , ω +N ′(ω) ' ω . (B.5)

Combining Eqs. (B.3), (B.4), (B.5) one arrives at a Lorentzian form for the conductiv-
ities and a Drude-like behavior, i.e.,

σ′(ω) =
σdc

1 + (ωτ s)2
, κ′(ω) =

κdc
1 + (ωτ ε)2

. (B.6)

Assume again the generic current operator  which is a conserved quantity in the
unperturbed system described by the Hamiltonian H0. It is evident from the defini-
tion of the susceptibility that it vanishes in the absence of impurities and so does the
corresponding memory function. Assuming a dilute concentration of impurities cI and
neglecting higher order in concentration terms in equation (B.2) we have

zχ(z) = χ0M(z) +O(c2) . (B.7)

Using twice the equation of motion for the susceptibility χÔpÔq(z),

izχÔpÔq(z) = − i
}
〈[Ôp, Ôq]〉 − χfpÔq(z) , (B.8)

where the force operator f , is the time derivative of the operator Ô,

f =
i

}
[H, Ô], (B.9)

we have the expression for the current-current susceptibility

χ(z) =
1
z2

(χff (z)− χff (0)) . (B.10)

In first order we can evaluate the force-force susceptibility for a single impurity,
which will be chosen to be located at the origin of the lattice, and then multiply it with
the number of impurities NI = cIL. Finally, using (B.7) and (B.10) we will have for
the memory function

M0(z) =
NI

zχ0
(χff (z)− χff (0)) +O(c2) , (B.11)

where force-force correlations are calculated in the unperturbed system, therefrom the
subscript 0 at the memory function.

It is expected that the perturbation theory breaks down in cases where the pertur-
bation is coupled strongly with the system even if the concentration is small. Another
case where the perturbation theory fails is when the current  is not a constant of
motion in the unperturbed system since the expansion (B.7) will not be valid.



Appendix C

Numerical techniques

Numerical diagonalization techniques like the (full) exact diagonalization (ED) [11] ,
the microcanonical Lanczos method (MCLM) [12] and the finite temperature Lanczos
method (FTLM) [13] are used in order to compute the transport quantities described
in Appx. A, B. In this appendix we discuss briefly the numerical techniques that are
used.

In order to evaluate transport quantities like conductivities or memory functions we
need to know the energy spectrum, the whole or part of it, and the matrix elements of
the corresponding operators. In order to proceed we construct the quantum mechanical
operators using the Sz operator’s eigenstates

Sz|m〉 = m|m〉 ,

which are represented with a (2S + 1)-base number. For instance for a spin S = 1/2
we have two states, 0 for spin down and 1 for spin up. More generally for a many spin
system these states will be a binary string, viz.,

|S +m1, S +m2, . . .〉 .

Using these many spin states we construct the operators that we are interested in
and diagonalize the Hamiltonian to obtain the energy spectrum and the corresponding
energy eigenstates. ED is the most trivial case, where the full diagonalization of the
Hamiltonian provides the whole spectrum and the complete set of eigenstates. On
the contrary, Lanczos methods (FTLM, MCLM) provide eigenvalues in a truncated
space thus we obtain only a part of the spectrum. While with FTLM one can obtain
dynamical quantities at finite temperatures in the canonical ensemble, MCLM functions
in the microcanonical ensemble targeting on an eigenstate λ which energy would be
equal with the mean value of the Hamiltonian at a given temperature. MCLM works
better at high temperatures while FTLM at intermediate-finite temperatures.

The major problem of a many body system to be handled numerically is the rapid
increase of the Hilbert space. In the minimal case of L spins-1/2 the dimension of
the Hilbert space increases with the lattice sites as DH = 2L. A consequence of this
is that small lattices already exhaust the computational limitations. Considering only
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states that belong in the Sztotal = 0 subsector, where we have the largest number of
states, enables us to diagonalize a little larger systems. Within this subsector we can
fully diagonalize systems up to L = 16 spin-1/2 for which the number of states is of
the order of N ∼ 104, while with Lanczos methods we can go up to L = 24 spin-1/2
corresponding to a number of states of the order N ∼ 106.

Finally, to obtain quantities that characterize the transport properties of the spin
system we calculate the regular part of the real part of the conductivities from (A.7b),
(A.10b) and perturbative memory function from an analogous formula that we obtain
starting from (B.11). To handle the δ-functions we bin the excitation frequencies in
windows of width δω; typically δω ' 0.01. Next, using the Kramers-Kronig relations
(A.23) we obtain both parts of the complex function that we are interested in. Kramers-
Kronig relations except of allowing to calculate the unknown part of a complex function
have an effect also in the known part, the one that is used in the integrand. This effect
is that it introduces a smoothing which could be rather useful and necessary as well for
jagged spectra, but also dangerous since narrow peaks could be washed out. Finally, we
use (B.3) to obtain either memory function for the full system or conductivities from
perturbation theory. The quantities χs0, χ

ε
0 can be evaluated either by (A.13) or from

the thermodynamic average of the squared current at high temperatures.
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Figure C.1: Schematic illustration of parasitic heat removal via a conventional 3D
conductor (left) and a novel quasi-one-dimensional conductor (right).

Furthermore, besides its technological interest these systems offer a fertile ground
for fundamental research, both theoretical and experimental. In order to explore the
new mode of heat transport and moreover to exploit the unconventional thermal trans-
port properties of these systems the NOVMAG project comprises experimental and
theoretical teams. The expertise of the research participants in addition with fruitful
collaborations which have arisen during the past few years have led to several publi-
cations [1–16] and [17–19]. Below we give the list of the partners participating in the
NOVMAG project and a brief description of their field of research.

1. Leibniz Institute for Solid State and Materials Research Dresden, Germany

• thermal conductivity studies and temperature profile measurements on bulk
samples and thin films

• url : http://www.ifw-dresden.de Leader : Dr. Christian Hess∗
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principal value, 108

quasi particle, 26

raising operator, 10
reflection coefficient, 52
relaxation rate, 26

scattering rates, 33, 114
self energy, 24
SIC model, 75
single weak link, 46
SOC model, 74
spectral function, 31
step function, 23
stiffness
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stress tensor, 53
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