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CHAPTER 1

INTRODUCTION

Current laser systems are capable of developing field strengths compa-
rable to (or greater than) the binding energy of the electron to an atom or
molecule. The nonlinear response of the atom on such lasers leads to (among
others) the generation of high-order harmonics (HOHG). The superposition
of these harmonics has been proposed as an avenue towards ultra-short pulse,
which ,when available, will be the fastest probe of light-matter interactions.
Although this approach has a significant advantage, i.e. table top setup,
there are problems one has to surmount. The temporal characteristics of
this superposition are not an easy task to extract. A blind superposition of
harmonics will result on loss of all short-time structure of the field. Thus it

is vital to have as much information as possible for the harmonics.

In this direction, we used the single active electron approach (SAE), which
is widely employed in the study of HOHG from atoms, to explore a method
that can be used to indirectly provide the temporal profile of this superpo-
sition. This simplification allows the handling of the full time dependent

Schrodinger equation, without any further approximations.

The next level of complexity are phenomena where there are more elec-
trons, i.e two, involved in the dynamics of the system. The two-electron atom
holds a special place in atomic physics, since it provides the testing ground
for the three-body problem. Among the “two-electron” atoms, Helium is
the model atom with long range coulomb forces and without the additional

complication of a core found in the alkaline earths.



1. Introduction

The theoretical framework for the structure of two-electron atoms is built
on some zeroth order single electron orbitals, which are then employed in the
construction of two-electron states, where the notion of electron correlation
(the effect of electron-electron interaction) is inevitably involved. In the dis-
cussion of two-electron atoms in strong laser fields, the issue of correlation
assumes an equally important role to that of the laser field. With an intense
enough source, we can reach states of angular momenta inaccessible to one-
photon absorption, which provides extended testing ground for theoretical
models of atomic structure. The intensity of the radiation matters only in
inducing a higher order transition, and should not be such as to seriously
distort the atom. The transition amplitude of the appropriate order, in low-
est (non-vanishing) order perturbation theory (LOPT), is what is required
for the theoretical description. The latter is the approach we will follow
for the two-photon double ionization of He, in the range of 45 eV, a phe-
nomenon which should be observable employing the short-wavelength free
electron lasers sources.

This thesis is organized as follows. In the second chapter we present the
necessary tools employed to describe a one- and two- electron atom. We show
how a discrete basis, formed in terms of B-splines, is used for representing
the bound states, the one-electron and the two-electron continuum states. A
short discussion about the laser-atom interaction is included together with
some remarks for the appropriate gauge selection for this interaction.

This is followed by a presentation of a novel computational technique, de-
veloped to provide the equivalent to absorbing boundaries, used in different
approaches, for the case of the time-dependent Schrédinger (TDSE) equa-
tion formulated on the eigenstates of the field-free atom. We also propose
a suitable generalization able to provide absorbing boundaries for all meth-
ods involving a discretized energy continuum, based on the spectrum of the
discretized states.

The fourth chapter is devoted to the study of the phase characterization
of harmonics. The results we obtain are based on the solution of the TDSE
for Hydrogen. We examine the interference of the harmonics with the fun-
damental that produced them and by varying their relative delay, we obtain
information about the phase profile of the harmonics. We show where this

information is adequate to represent the phase profile of the harmonic.



Finally, the fifth chapter includes our results for the electron angular
distribution in the two-photon double ionization of helium in the range of 45
eV. Using lowest order perturbation theory and an approach that allows us
to explore the role of correlation, we obtain conditions under which the two

electrons have the tendency to be emmited in the same direction.






CHAPTER 2

ATOMIC STRUCTURE

2.1 Atoms and B-splines

2.1.1 Introduction

A primary task of atomic theory is the solution of the Schrodinger equa-
tion or its relativistic generalization for atoms and ions. The use of basis sets
in the effort to solve the Schrodinger equation has a long history in physics.
The basic advantage is that it transforms the solution of a differential equa-
tion into an algebraic eigenvalue problem. Of course the later is based on
numerical computations of linear algebra, which is one of the best developed
areas in modern programming. On the other hand, there are finite-difference
methods, where a numerical wavefunction is determined at a limited number
of mesh points.

The finite-difference and the basis set methods can be characterized as
'local” and ’global’” methods respectively. In local methods the solution de-
pends only on the neighboring points. This means that an initial estimate
is necessary to start the algorithm. For global methods the solution at one
point is connected to the complete solution making thus an initial estimate
unnecessary.

In addition to B-splines, there is a wide variety of finite basis sets used
in computational atomic physics, including Gaussian and Slater functions.

Nevertheless, the latter present some important difficulties. For example,



2. Atomic structure

Slater type orbital (STO) basis sets require a nonlinear optimization, which
is a procces difficult to control. Also the latter basis sets have to be large
in order to be complete enough for the solution we seek. Ussualy, linear
dependencies effectively restrict the size of the basis

B-splines can form a basis that is complete enough with a relatively small
number of basis functions. Also they have a number of advantages making
them particularly useful. In their case, linear dependencies are negligible
and the matrices one has to diagonalise, as will be shown in more detail in
the following, are banded. The latter allows the usage of large basis sets.
Another advantage is the inherent flexibility they offer to choose the radial
grid points between which the B-splines are defined.

In this chapter, we will show the utility of finite basis sets constructed
from piecewise polynomials known as B-splines [1] in solving the Schrédinger
equation for one- and two- electron atom.

The first use of splines in atomic physics was made by Shore [2] about 30
years ago. They are used with increasing frequency in the last 15 years or
so, and they have proved to be a very valuable tool. We mention the review

article by Sapirstein and Johnson ([3]) and [4].

2.1.2 Definition of B-splines

The basis we will use in the following is a set of n B-splines of order k.
Following deBoor [1], we divide the interval [0, R], where we want to calculate
the atomic eigenstate, into segments, the endpoints of these segments being
the knot sequence {¢;},% =1,2,...,n + k. The B-splines of order k, B; ;(r)

are defined recursively by the relations

)1 S r <t
b 0 , otherwise

and
r—t livk — T

Bi,lc (7") = Bi,k—l(r) + 1Bi+1,k—1(r) (21)

Livk—1 — Livk — iyt
The function B;(r) is a polynomial of degree k£ — 1 inside the interval
t; < r < t;11 and vanishes outside this interval. The knots defining our grid

have k-fold multiplicity at the endpoints 0 and R;ie. t; =ty =... =t =0



2.1 Atoms and B-splines
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Figure 2.1: B-spline of various orders on a linear knot sequence. Starting
from k = 1 (left) and ending at & = 9 at right. The B-splines were shifted to
become more visible.

R

and t,,1 = t,19 = ... = t,or = R. When multiple knots are encountered,
limiting forms of the recursive definition of the B-splines must be used. For
k > 1, the B-splines generally vanish at the endpoints: however, at » = 0
the first B-spline is equal to 1 (with all others vanishing) and at r = R the
same is valid for the last B-spline. This will facilitate the implementation of
boundary conditions later on.

For simple equidistant knots, each B; is just a translation by one interval
of the previous one. If the knots are not equidistant, there is a smooth
change in shape. Also, because the B-splines are positive functions with a
minimal support, the expansion coefficients of an arbitrary function are close
to the function values at the knots. This implies that large oscillations of the
coefficients are avoided, so numerical errors originating from cancellations
are minimal, in contrast to the case of other bases such as STO’s.

The knot sequence can be arbitrary, but usually the type of problem plays
a decisive role in the form of the sequence. A suitable knot sequence makes
calculations feasible, faster and more accurate. For example if one intends
to describe a bound state, where most of the variations of the wave-function
take place at a domain in space close to origin, it is logical to use a knot

distribution more dense close to the origin and provide this way more basis

7



2. Atomic structure

functions where they are more necessary. On the other hand, the description
of a continuum state, which is not limited in space, requires a practically
uniform grid distribution able to represent the oscillatory nature of the wave-
function. In practice, B-splines of a typical range £ = 6 — 11 are used in
atomic physics.

The main advantage of B-splines, compared to global bases, is that the
error introduced in the description of a function is directly controlable by
the knot density, in analogy to finite-difference methods, and at the same
time they retain all advantages associated with basis set expansions. In the
case of atomic physics, since the eigenstates of the Schrodinger equation are
smooth oscilating functions, the finite basis used is appropriate as long as
the oscillations are longer than the knot density. More details on this issue

in the following section.

2.1.3 Single electron atom

We now wish to apply spline basis to the solution of the radial Schrédinger
equation. The radial Schrédinger wave-function P, (r) defined through ¢y, =
Pully, (0, $) satisfies the equation

r

R ES N
2 dr? 72 r

where we use atomic units and work with the potential of a point nucleus

:| Pnl(’f') = Gannl(T), (22)

of charge Z. Rather than work with the radial Schrodinger equation directly,

we instead work with the equivalent variational equation 05 = 0, where

s=5 Car S+ 2 D pey| - L [ “arp@? (@3)

2 2V dr r 2r2

with e playing the role of a Lagrange multiplier introduced to ensure that

the normalization constraint

/R drP(r)> =1 (2.4)

is satisfied. The variational principle 65 = 0, together with the constraints
dP,(0) = 0 and P (R) = 0, leads to the radial Schrodinger equation for

Py(r).



2.1 Atoms and B-splines

We now introduce the spline basis set by expanding P,(R) in terms of
B-splines of order k£ as

Py(r) = ZpiBi(T)- (2.5)

The subscript k has been ommited from B;(r) for notational simplicity.
The boundary conditions have been implemented by restricting the above
summation not to include By (r) and B, (r), which are the only basis functions
that do not vanish at » = 0 and r = R respectively.

The action S becomes a quadratic function of the expansion coefficients
p; when the expansions are substituted into the action integral. The varia-
tional principle then leads to a system of linear equations for the expansion

coefficients,
oS
opi

The resulting equations are written in the form of a n — 2 x n — 2 eigenvalue

0,i=2,...,n— 1. (2.6)

equation
Av = eBu, (2.7)

where v is the vector of expansion coefficients

v = (p25p3a CR 1pn—1) (28)

the matrices A and B are given by

® 1dB; dB, Z. 1(l+1)
A": - Lt B = B 9.
” /0 s g B+ =5 ) Bi () (29)

B;; = /OR B;(r)Bj(r)dr, (2.10)

Because the product B;(r)B;(r) is not zero only when ¢ and j differ by & or
less, the matrices A and B are sparse, diagonally dominant banded matrices.
Also, since B-splines are polynomials, a Gaussian integration of order 2k
allows the evaluation of the matrix elements of A and B to machine accuracy
in the case of a point Coulomb potential. For non-Coulomb potentials, an
interpolation must be used to calculate part of A, but the error introduced

is insignificant.
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Solving the generalized eigenvalue equation, one obtains n — 2 real eigen-
values €* and n—2 eigenvectors v*. The eigenvectors satisfy the orthogonality

relations
D v}Bjvt =6y, (2.11)
i\j

which leads to the orthogonality relations

/0 " PP = by, (2.12)

for the corresponding radial wave-functions.

These n — 2 eigenenergies, as a result of a variational method, correspond
to the upper bound of the first n — 2 exact eigenenergies of the system. The
difference between the calculated and the real eigenstates/eigenenergies can
be seen as a direct consequence of the finite size of the basis, both in space
and in the number of B-splines (in this case). This difference depends on the
extent the eigenfunctions are subject to the limitations following the finite
size of the basis.

The first few eigenvalues (with €, < 0) and eigenvectors in the box agree
precisely with the first few bound state eigenvalues and eigenvectors ob-
tained by numerically integrating the radial Schrodinger equations, or even
an analytical solution, but as the principal quantum number increases the
spectrum departs more and more from the real spectrum. Since the atom
is confined inside a sphere of radius R and as long as the eigenfunction is
limited in a smaller region, this eigenstate is not “aware” of the boundaries,
so it is in agreement with the actual eigenstate of the system. Rydberg
states reaching or surpassing the size of the sphere (their extent scales as
(rm) = £[3n® — (I + 1)] for hydrogen) are not correctly described, or even
absent.

The next eigenstates, with positive eigenenergy, represent the continuum
part of the spectrum. Formally, the solutions of the Schrodinger equation
for positive energy appear as a family of eigenfunctions depending on the
continuous parameter e. In our approach the diagonalization provides a
discrete set of eigenstates, due to the fact that we have restricted the problem
in a finite part of the space. Nevertheless these functions can be used as a
representation of the true continuum with a different normalization, as is

explained in more detail in the following.

10



2.1 Atoms and B-splines

For the continuum eigenstates, the finite basis is not adequate for the last
(highest in energy) discrete states. These eigenstates oscillate fast (equiv-
alently they have high kinetic energy) and the density of B-splines is not
high enough to describe them. The density of B-splines has to be carefully
selected in order to ensure a good description of the continuum eigenstates

up to the desirable energy.

Free boundary conditions

The fixed boundary condition (FBC) method we have described selects
by construction the eigenstates in the continuum that satisfy the condition
P(r = R) = 0. For different angular momenta [ of the electron the resulting
energy spectrum is different. Although for bound states this generates no
problems, since they are true discrete states, for the continuum states this
results to a lack of the inherent degeneracy of the spectrum. Of course
in the case the spectrum is dense enough (large R) this deficiency of the
FBC is either unimportant or can be circumvented by simple methods (i.e.
interpolation of the energy spectrum).

A straightforward generalization is possible for the treatment of a two-
electron atom in a strong laser field, as long as the final state of the atom
involves single-channel excitations ([5,6]).In the case though, that the final
state of the atom is such that many atomic excitation or ionization channels
are available, the FBC method is not suitable since the degeneracy in the
final state has a vital role and cannot be easily incorporated in a systematic
way [7]. In view of these demands, we will briefly discuss a method that
allows one to choose the (discretized) energy spectrum in the continuum [8].

Going one step back, we do not use the boundary condition P(r = R) =0,
so the continuous part of the spectrum will not be a result of a variational

approach, but rather the solution of the equation
Av=(h—eB)v=0 (2.13)

with B the overlap matrix again, € the energy of our choice for which we seek
the eigenstate and h the one electron hamiltonian matrix defined by:

hi; = (Bi[h(r,1)|B;), (2.14)

11



2. Atomic structure

1d* I(l+1)
2 dr? 2r?

+ Vi(r).

The hamiltonian is not hermitian due to the surface term. This is due to
the fact that neither the last B-spline nor its derivative nor the second-last
B-spline vanish at the end point, which causes the differential operator to be
non-symmetric. Using the Bloch operator [9], it is possible to write a new
hermitian hamiltonian ﬁﬁ = hjj — i n—10;nCo and the continuum eigenstates

come from the solution of:
(h — &B) - ¢; = ¢ (2.15)

and ¢y is a vector with one non-zero element, to which an arbitrary value
is assigned. As long as (h — ¢B) is not singular, the solution is simply
calculated as:

¢ = (h — ¢B) e (2.16)

What remains is the correct normalization of these eigenstates which is dis-
cussed for both the cases of free and fixed boundary conditions in the follow-

ing.

Normalization of continuum eigenstates

The solution of the Schrodinger equation for the atom inside a box instead
of the full space limits the eigenfuctions in an artificial way. This is also
reflects in their normalization. Although for bound states this is a minor
problem, since they are normalized to unit, for the eigenstates belonging to
the continuum one has to be more careful.

In general the eigenstates of the atom should be normalized as follows:

Omn , m,n bound states

d(ém — €,) , m,n continuum states

and bound states are those with ¢, < 0.
In the descritized basis we use, the continuum is represented by a set
of discrete L%-integrable wavefunctions [10]. Since the discrete states have

different normalization, we have to obtain an effective density of states p

12



2.2 Interaction with intense laser fields

so that the continuum eigenfunction v.(e,) is related to the discrete state

tn(€n) at the same energy through

Ve(€n) = V p(€n)Un(€n)- (2.17)

Assuming that the state density is sufficiently high, the simplest way
[11,12] to approximate p is through

An_ 2

Ae €nt1 — €n—1

1

plen) (2.18)
An alternative way to obtain the correct normalization is to match at
some large r the discrete wavefunction to the asymptotic form

K\
Vi (r) ~ A(@) sin[é(r) + ] (2.19)

where the functions ¢(r) and ((r) are such that for r — oo, {(r) - K and
¢ — [Kr+ (¢/K)In(2Kr) — (In/2) 4+ d.] with ¢ being the effective charge
experienced by the electron in the continuum and ¢, the assymptotic phase
shift against the “free Coulomb wave”. Thus for sufficiently large r the
functional form of the expression is known and A is determined through the

matching to ¥, (r). The effective density of states in this case is just 2/7 K A%

2.2 Interaction with intense laser fields

The lasers routinely employed in present day laboratories deliver fields
whose strength can exceed the Coulomb electric field of the atom. As a
consequence, during its interaction with the atomic system, the external laser
field can no longer be considered as a perturbation to the internal field. The
range of intensities between roughly 10?1 /cm? (upper limit of perturbation
theory) and 10'"W/em? (lower limit of the relativistic domain) is commonly
referred as the nonperturbative regime (the exact range of this regime depend
on the atom and the laser frequency).

In this domain various phenomena are observed: To mention a few, above
threshold ionization (ATI) [13], high order harmonic generation (HOHG)
[14], multiple ionization [15]. In the following, we will briefly present the

13



2. Atomic structure

method we follow for the solution of the time dependent Schrodinger equa-
tion (TDSE), a necessary tool to describe the atom-field interaction in this

nonperturbative regime.

2.2.1 Atom-Radiation interaction

We start by a brief semiclassical description of the atom-radiation inter-
action, where the atom is described quantum mechanically and the radiation
field classically. This approximation holds for the interaction of atoms with
lasers or other intense sources, where the photon density is high.

We assume an electron bound by a central potential and experiencing the
action of an external electromagnetic field. The field is expressed in terms
of vector and scalar potentials A(r,t) and ¢(r,t), respectively. There is an
infinite number of gauges that represent the same physical field. We impose
the condition V- A = 0 on the vector potential and therefore choose to work
in the coulomb gauge where the vector potential is transverse with respect to
the propagation direction. Even this condition only selects a class of gauges
and it is still possible to perform gauge transformations within this class.

The Hamiltonian of the atom in the external electromagnetic field is de-

rived using Lagrangian formalism and results to:
1
H = (0= A1) + V() + 49(r. 1) (220)

where ¢ and m are respectively the charge and mass of the electron and V' (r)
is the potential of the nucleus (or an effective one). Using the gauge condition
we imposed, leading to Ap = pA, the Hamiltonian (Eq.2.20) is

- 1, q ' 2
H=__p'+ V(r)+ mpA(r,t) + 2mA(r, t)* + qo(r, t) (2.21)

Setting now ¢(r,t) = 0 and ignoring A? term, since they both lead to a

global phase term, we have:
H = Hatom + ip ' A(I‘, t) (222)
m

where the second term describes the atom radiation interaction in the velocity
gauge. An equivalent description comes out if we use a different gauge.

Specifically, if one uses the Goppert-Mayer transformation [16]. In brief the

14



2.2 Interaction with intense laser fields

Hamiltonian can be expressed in another gauge by replacing the operators
and the potentials by their equivalent in the new gauge. This result in the
“length” gauge formulation of the Hamiltonian [17]:

H = Hypm + %r E(r, 1) (2.23)

Since the wavelength of the radiation we consider is much larger than
the dimensions of the atomic wavefunction, retardation effects are neglected
across the atom. In other words, the spatial modulation of the vector poten-
tial A or that of the electric field E, e**7, is replaced by unity. This means
that we replace A and E with their value at the center of mass of the atom.

The total wavefunction of the system satisfies the time-dependent Schrodinger

equation:

i we, ) = Hr,)U(r, 1) (2.24)

ot
H = Hyom + Hy (2.25)

) A(0,t)-p , velocity gauge
= E(0,t)-r ,length gauge
Projecting Eq. 2.24 on the basis of the atomic eigenstates, one obtains the
following system of differential equations for the coefficient c¢,; of the eigen-
state ¥,

.d
Z%Cnl = Z [Gnl5nn'5u' - <1/Jnl\HIWn'l'> (2-26)

nl
which with the appropriate initial condition (typically the atom in the ground
state of the atomic Hamiltonian, i.e. ¢, = 6,,1010) can be solved in either

gauge.

Dipole matrix elements

The evaluation of the term (1| Hy|t, ) is simple, since it is just A or E
times the dipole matrix element calculated in the appropriate gauge. This is
straightforward since the radial part of the eigenstates is numerically known,
and thus is accomplished by a simple integral. Of course the dipole operator
connects only states with I’ = [ &= 1, otherwise the dipole matrix element is

Zero.

15



2. Atomic structure

In addition it is easy to show that (¢ |p|Vn) = i(Wni —wWer ) (Vi |T| )
This enables one to compare the dipole matrix elements between the two
gauges. Since the eigenfuctions we obtain are approximations of the exact

ones, this is used as a test of the approximation quality.

2.2.2 Gauge Selection

Although both gauges are legitimate in the formulation of the interaction
of light with atoms, there are some practical limitations one has to take into
account in gauge selection [17]. In perturbation theory, the results should
be the same in all gauges provided that the wavefunctions are exact. If this
is not the case, different gauges are affected in different ways by inaccuracy
of the wave function, and the gauge that is influenced less for the specific
problem/method should be employed. The number of angular momenta is
determined solely by the final and initial state and the order of the process
through simple selection rules, and convergence demands are limited in the
convergence of the dipole matrix elements.

On the other hand, for time dependent non-perturbative calculations the
situation is more restrictive since additional parameters enter the calculation,
like the number of angular momenta and the spatial extent of the wavefunc-
tion needed to achieve convergence of the results. The velocity gauge appears
to be more suitable for time-dependent calculations [18,5,17]. The basis
size is substantially smaller compared to the case where the length gauge
is employed. A detailed discussion on the physical mechanisms behind this

difference is presented in [17].

2.3 Two-electron atom

In quantum theory the two-electron atom offers an ideal combination
of simplicity and complexity. It offers a testing ground for the three-body
problem where accurate and realistic calculations can be performed leading
to a deeper understanding of the fascinating aspects of this fundamental
problem.

In the following we describe the configuration interaction (CI) method

used to describe the system [19]. Also we present an approach enabling

16



2.3 Two-electron atom

one to deal with the double-continuum of this system in the framework of

R-matrix theory [9].

2.3.1 The CI method
The Hamiltonian of a two-electron atom can be written as the sum of the
single electron Hamiltonians and the electrostatic interaction term between

the two electrons:

1

H=H, H, _
(1'1) + (1‘2) + |I'1 — I'2|

(2.27)
H, is the one-electron Hamiltonian, H, = % +U(r). The central potential is

the effective potential experienced by the electron, which includes interaction

with all inner-shell electrons and the nucleus, or for an atom with only two

1
[r1—r2]

stands for the electron electron interaction. the eigenstates of this system

electrons it is the Coulombic potential due to the nucleus. The term

can be written as simultaneous eigenstates of the L2, S?, L, and S, operators,
In the following A will stand for the set of these operators.

The eigenstate equation of the two electron system
H®* = Eo? (2.28)

is solved in terms of the single-electron Hamiltonian eigenstates which are
obtained through the procedure described in Section 2.1.3. This means that
the one-electron eigenstates will be used as the basis on which the two-
electron eigenstates will be expressed.

The necessary antisymmetrization of the wavefunction of two electrons is

accomplished by using the Slater determinant:

! 1 (ZS T ¢ o (r
g (ry,Te) = — nim(T1) Py (T1)

\/é ¢nlm(r2) ¢n’l’m’(r2)

The two-electron orbitals are a sum of the antisymmetrised product of the

one-electron eigenstates over all possible projections m of the orbital angular

momentum and the spin:

Va1, 72) = 3 (=1 [(2L+1)(2S+1)]l/2< w2 )

!
— m; my My,

17



2. Atomic structure

ms my —Mg

1/2 1/2 8 _—
( ! ) wnlinl’ (r17 I‘2)

The eigenstate ®* of the two-electron system is then written as a super-
position of the two electron antisymmetrized wavefunction (where of course
the electron - electron interaction is not included):

oM = N CMonl, )Y, (v, T2) (2.29)

nl,nl’
nl,ntl’

The coefficients C*(nl,n'l') come from the diagonalization of the resulting
eigenvalue equation 2.28. This procedure is independent for every set A of
operators and it can be repeated for every set we wish.

Although this procedure can eventually lead to an exact two-electron state
®, the convergence with respect to the number of the configurations (nl, n'l')
used is slow. The later is the main disadvantage of the CI method. A part
of this drawback is lifted by a careful selection of the configurations used.
For example, there are some typical arguments, based on angular momentum
and parity conservation that the CI is nonzero between two configurations
that belong to the same total angular momentum, have the same total spin
and have the same parity. On top of this, there are some qualitative criteria.

Since the contribution of every configuration depends on the strength of the
1
[r1—r2]
to give higher contributions. As far as the angular part of the wavefunc-

matrix element, one expects configurations with high overlap in space

tions is concerned, configurations with small (or zero) one-electron angular
momentum difference (and projections) are more important. For the radial
part, since the term m is larger the more concentrated the orbitals are (i.e.
(r1) ~ (re)), one expects the configurations involving bound states to have
higher matrix element values than configurations involving bound-continuum
or continuum-continuum states.

Since we are dealing with a two-electron system, the classification of states
(bound or free) is not straightforward. In the one electron atom, the electron
was either bound, or belonged to the continuum part of the spectrum. For
the two-electron atom we can have: both electrons bound, one electron bound

and one in a free state (single continuum) and both the electrons free. Since
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2.3 Two-electron atom

single and double continuum states largely overlap (in the energy spectrum),

the discrimination demands additional information for the states.

2.3.2 Multichannel two-electron states
In low-energy scattering theory, the final-state wavefunction of an (N+1)-
electron atom, with angular quantum numbers A, is expanded as (close-

coupling expansion) [9]
Th = A, 2@(1'1, o TN, ) Fi(rvg) + ZCiXi(rla .., Tny1)  (2.30)

where r; includes both space and spin coordinates of the ith electron, while
the operator A, performs the necessary antisymmetrization, as well as the
relevant angular momentum coupling between the individual angular mo-
mentum of each electron, resulting to the set of quantum numbers denoted
by A. The functions ¢;, known as target states, are eigenstates of the resid-
ual system after one electron has escaped. The index %, in principle, runs
over both the bound and continuum eigenstates of the total spectrum of the
residual system. As long as these eigenstates are computed in terms of basis
functions in a finite radial space, the resulting continuus spectrum is discrete
and therefore the index ¢ reduces to a finite set of integers which represents
both the negative (bound) and positive (continuus) energy target eigenstates.
The y; functions are known as correlation function, which allow for a bet-
ter computation of the short-range electron-electron interactions. Note that
these functions are solutions of the total system, core plus outgoing electron.

Specifically, for the case of a two-electron atom we have the matrix equa-
tions resulting from the two-electron Hamiltonian [20], using basis states of
the type:

Ne,Ns

UMrirs) = ) Carnr @iy (r1,72) (2.31)

nll’ ,n'

A

where the basis channel wave functions @,

.y are LS-coupled antisymmetrized
products of the one-electron target radial function Py(r),n = 1,2,..., N,
constructed in a spherical box of radius R with vanishing asymptotic condi-

tions at the boundaries and the B-spline functions B, (r),n' = 1,2,..., N
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2. Atomic structure

of order k, defined in the region [0, R]:

P, B,
A nl Pn
@nln/l/(rl,TQ) - A12—

™ T2

Yo, (71,725 1, 1) (2.32)

where Ai is the two-electron antisymmetrization operator. Classification of
the states through the index n, denotes the discretization of the spectrum
of the eigenstates of the core (He™) ¢; and should be understood as charac-
terizing both, negative energy states (bound) when ¢, — € < 0 and positive
states (continuum) when €, — € > 0. The two-variable angular function
Y7, is just the projection of the total angular momentum state |LM},) onto

the independent electron states |lm,['m/), given by:

Yia, = Y (Ims U'm! | LM)Yim (1) Yo (72) (2.33)
—

with (Im; I'm'| LM_,) the proper Glebsch-Gordan coefficient. A similar expres-
sion relates the two variable total spin function Ysu, with the one-electron

spin functions oy, , oy,
Expanding the Hamiltonian on the basis (2.32), the variational method
transforms the coupled-channel Schrédinger equations of the system into a
linear algebraic equation problem ([8,10]), with coefficients depending on the

energy of the one-electron core states and interchannel coupling potentials
[21],

[ hi1 — (61 - E)Bl Vig V1Nc X1
Vor hoo — (62 - E)BZ . Vch X2
VN VN2 .. hyN, — (GNC - E)BNc XN

| X1 X2 e XNe Xb |

where h is the one electron Hamiltonian, V;; is the N, x N, matrix which
represents the ¢ — j interchannel couplings, x; are N, X N; matrices which
couple the short range (correlation) states y; with channel i and finally x; is
the Ny X N, bound-bound coupling matrix. The operator that couples the
various states to each other is the electrostatic Coulomb interaction 1/|ry —
r9|. The energies €;,7 = 1,2,..., N, are the energies of the target eigenstates
in increasing order (¢; < €3 < ... < €y,). The vector ¢ contains N,, out of

N, + 1, undetermined elements, each coming from an open channel (¢; < E),
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2.3 Two-electron atom

with E being the total energy of the atom. The solution vector ¢ has N, +1
vector components, ¢ = [y, C2, . . ., CN,, CN, | Where the ¢; = [ci1, Cio, -« -, Cin]
component contains the B-spline expansion coefficient of the channel function
.

For an energy of the whole system E, such that N, channels are open
(e, < E,n=1,2,...,N,), for each channel 7, N, linearly independent vectors
result. Physically, this reflects the N, different asymptotic boundary condi-
tions, corresponding to each channel. The discretized channel vectors we
obtain in this procedure are not normalized, thus satisfying arbitrary bound-
ary conditions. Recalling the correct boundary conditions, which continuum
channels resulting from a photoionization process should satisfy, allows us to
normalize the discrete states of positive energy in order to properly represent
the physical states of the system. Then the dipole matrix elements can be
correctly calculated. A detailed description of this procedure can be found
in [20].

When calculating the transition matrix elements, one has to take into ac-
count the approximation due to the finite radius R up to which the dipole ma-
trix elements are calculated. The contribution from the outer region (r > R)
is not important in the case of bound-bound or bound-free transitions, since
in these cases at least one wavefunction is limited in space. On the contrary,
for free-free transitions it is important, and provided that the asymptotic re-
gion has been reached, the matrix element involving two oscilating functions

are evaluated as follows:
R
(elldlel) = / drPaPoy + I(R) (2.34)
0

where I(R) is given in [22].

In the case of single electron ejection, the effective charge experienced
assymptotically by the ionized electron is z.¢s = 1, and this is used for nor-
malization, through the use of the assymptotic Coulomb functions P(r), Q(r).
For double-electron ejection this no longer holds. Since both electrons are
allowed to escape, they should see the same effective charge. We expect the
effective charge seen by the ionized electron to depend on the final ionization

stage of the core. A quantitative estimate of the effective charge [23,24] can
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2. Atomic structure

be obtained through the equation

inf

Zepp(nlyel) = 1 +/ dr [1 - <T2d] | Pu(r)? (2.35)

(T>el

where |nl) is the state of the “inner” electron and |e; /) of the outer, obtained
as a coulomb function with z.;; = 2. The quantity (r)q is the average
position corresponding to that state. Note tha for nl = 1s we have z.;f — 1
and for nl = es we have 2.y — 2, while for other states of nl, z.f; varies
from 1 to 2. In the present case, the effective charge used for normalizing the
states corresponding to double ejection is z.fy = 2 while for all other states
1S Zesp = 1.

22



CHAPTER 3

ABSORBING BOUNDARIES IN A
SPECTRAL METHOD

3.1 Introduction

The advantages of the solution of the TDSE on the basis of the eigenstates
of the free system include smaller computational effort, higher flexibility (one
can limit the time propagation in the first n levels or equivalently up to a
certain energy level) and the final state of the atom (populations of bound
states, photoelectron spectrum) is directly calculated without the need to
project the final wave-function of the atom on the eigenstates. On the other
hand there is an important drawback, directly related to the discritisation of
the continuum and the artificial limitations it poses to the system.

In the simplest case, the construction of the atomic basis, as explained
in detail in the previous section, is accomplished by ’confining’ the atom in
a sphere of radius R (case of fixed boundary conditions). Physically this is
equivalent to a potential that is infinite at the surface of the sphere. This
means that the wavepacket of the electron ejected from the atom by the
radiation, after some time (¢ ~ %) will arrive at the boundary of the sphere
and will be reflected by the infinite potential barrier. Once this reflected
wavepacket approaches the atom, artifacts of the calculation will come up
( to mention some: higher harmonics emmited, more ATI peaks, distorted
harmonics and photoelectron spectra). Fortunately, this problem can be

circumvented by removing the wavepacket that is escaping the atom (better:

23



3. Absorbing Boundaries in a Spectral Method

the nucleus). This part of the wavefunction is far enough to be equivalent,
in its evolution, to a free electron and thus does not interact with light
anymore. In any case the above can be tested by varying the radius in which
the wavefunction remains intact until the results converge.

This technique has been already employed with success in other compu-
tational approaches, either by employing an imaginary potential to imitate
absorption or by continuously multiplying the wavefunction with a function
that goes smoothly to zero at the boundary for distances higher than a cer-
tain radius. In this case, the Schrodinger equation is solved directly in the
space where the wavefunction is known at a sequence of grid points [25-30].

In the following we will propose an algorithm to apply this technique in
our approach, where the wavefunction is not directly known in space, but
only its coefficients on the eigenstates of the system. We will also discuss
an extension, appropriate to handle problems involving discritised continua
where the actual form of the wavefunction (or of other physical quantitities
discritized, like the electric field for example) need not to be known. Finnaly,

we will briefly show the capacity of the method to deal with multiple continua.

3.2 Application to an atomic system

3.2.1 Theory

As explained in more detail in the previous sections, the eigenfunctions of
the electron are expressed on a B-spline basis, the n-th radial eigenfunction
being:

Pu(r) =Y cinBi(r) (3.1)
i

so the radial part of the wavefunction of the electron is:
U(r) = Z a, P,(r) = Z Z U Cin Bi (1) (3.2)

Equivalently, if A, is a vector, whose n-th element is the amplitude of the
n-th eigenstate (a,) and C'mn is the matrix of the coefficients of the expansion
of every eigenstate in terms of B-splines, then the radial wavefunction is just
W = C - A. Of course W is a vector, the i-th element of which (w;) is the
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3.2 Application to an atomic system

weight of the i-th B-spline on the wavefunction. In other words ¥(r) is now:
U(r) = Z w; B;(r) (3.3)

Considering now that the i-th B-spline is localized around the i-th grid point
(the extent of the B-spline is analogous to its order), if one wishes to multiply
the wavefunction with a mask function, it is sufficient to multiply the W
vector with a diagonal matrix M, the elements of which are equal to 1 up
to the (km,kn) element and smoothly go to zero onward. The new radial

wavefunction would be:

'(r) = Z w! B;(r) (3.4)

where

W'=M-W (3.5)

Finding the new coefficient vector A’ is easy, since
W=C-A=C-A=M-C-A=A=C"'M-C-A (3.6)

This result means that for a given state vector A, its multiplication with
the matrix B = C~!- M - C, will result to a new state vector which stands
for a new wavefunction unaltered in the region 0 < r < R, and smoothly
attenuated to 0 in the region R, < r < R. Once the B matrix is calculated,
which it depends only on the basis and the form of the absorbing boundaries,
the application of absorbing boundaries on the TDSE is just a matter of
vector-matrix multiplication.

In “reality” the electron wavefunction is the sum of the wavefunctions for
each [. Since for every [ we have a different set of eigenstates, a different B
matrix has to be calculated for every [, and applied only to the eigenstate
coefficient of this specific (.

One should also note that the frequency of the application of the absorb-
ing boundaries on the coefficients depends on its width and on the fastest

wavepacket we want to absorb. A wavepacket with average velocity v would

R—Rp,
v

stay inside the absorbing boundary for a time interval 2 , in which time
it should attenuate, so the absorbing boundary should be applied many times.
A question deserving further investigation is if the absorbing boundaries can

be applied at any time or only at A(¢) = 0.
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3. Absorbing Boundaries in a Spectral Method

400
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200

100

Figure 3.1: A density plot of the absolute value of the absorbing boundary
matrix calculated for hydrogen atom in a box of 400 a.u. using 400 B-splines on
a uniform knot sequence, resulting to approximately 400 eigenstates (for [ = 0).
The smaller plots on the right are magnified parts of the same matrix.

Since the coefficients of all eigenstates included in the solution of the
TDSE are known in every step, it is an easy task to keep track of the popu-
lation changes after the application of the absorbing boundary matrix. This
provides additional information that energetically characterizes the part of
the wavefunction that is absorbed/removed. Following this idea we sum for
every eigenstate the population change occurring in every mask application.
If one wishes to calculate the PES, the population of every eigenstate that has
remained (i.e., not absorbed) can be added to the total population removed

from this eigenstate by absorption.

3.2.2 Results

In Figure 3.1 we present a typical form of the absorbing boundary matrix
calculated for Hydrogen atom inside a box of R = 400 a.u. using 400 B-
spline. Since we used fixed boundary conditions, this results to 400 discrete
eigenstates of the system. It is evident that the elements of the matrix

take important values close to its diagonal. Actually, the matrix elements
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3.2 Application to an atomic system
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Figure 3.2: The wavefunction of a continuum eigenstate of Hydrogen atom
(of about 1 eV energy) before applying the absorbing boundaries (blue), the wave-
function after applying the absorbing boundaries (red) and the form of the ab-
sorbing boundaries used (dark red).
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Figure 3.3: Coefficients of the wavefunction (on the basis of the eigenstates)
after applying absorbing boundaries on the eigenfunction (with a coefficient 1) of
Figure 3.2. Dots point the discrete eigenstates of the atom, dashed line is used
only to help visualization.
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3. Absorbing Boundaries in a Spectral Method
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Figure 3.4: Common parameters for all plots: A laser pulse of sin? shape,
photon energy 1.5 eV, total duration of 20 cycles and maximum intensity 2 x
1013 W /em?.

A. Harmonic emmition spectra calculated in a box of R = 400 a.u. without using
absorbing boundaries.

B. Harmonic emmition spectra calculated in a box of R = 400 a.u. using absorbing
boundaries.

C. Harmonic emmition spectra calculated in a box of R = 800 a.u. without using
absorbing boundaries. In this case the box is large enough so that the electron
wavepacket is not reflected,

D. Comparisson of the harmonic emmition of cases A and B

oscillate, which is better shown in Figure 3.3 where the coefficients are given
and not their absolute value. This is natural, since the result of the absorbing
boundary matrix on the state vector should be sensitive on the relative phase

(sign) of its coefficients, as explained in more detail in the following Section
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Figure 3.5: Common parameters for all plots: A laser pulse of sin?
shape, photon energy 1.5 eV, total duration of 10 cycles and maximum inten-
sity 4 x 1013W/em?.

A. Photolelecton spectra calculated in a box of R = 400 a.u. using absorbing
boundaries. The remaining PES together with the spectrum of the absorbed elec-
trons is given.

B. Corrected PES, calculated by adding the retained photoelectron spectra with
the absorbed.

C. Comparison of the corrected PES with the PES calculated in a same box (i.e.,
same eigenstate basis) but without use of absorbing boundaries.

D. Comparison of the corrected PES with the PES calculated in a larger box of
R =800 a.u..
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3. Absorbing Boundaries in a Spectral Method

(3.4)

The first eigenstates of the system are of course the bound ones. A
part of the matrix in the region of the bound states is shown at the right
bottom part of Figure 3.1. For the first bound states the matrix is practically
identical to a unitary matrix, leaving them unaffected, a consequence of their
limited extent in space. A smooth transition to the typical form of the matrix
in the continuum area occurs at the higher bound states, which reach the
absorbing boundary. For the parameters used, the system has 16 bound
states, compatible with what is shown in Figure 3.1.

A final remark concerning the general form of the matrix: Parralel to the
diagonal there appear “satellite” lines, whose magnitude increases for the
last eigenstates of the system. We attribute this to the deficiency of the last
eigenstates to faithfully represent continuum eigenstates of the system (the
density of B-splines is not high enough to describe them). The same is visible,
to a smaller extent though, but of a different origin, for the first continuum
states. Due to the small wavelength, the boundaries affect the eigenstates
(note the smaller oscillation amplitude of the low energy eigenstate as it
approaches the boundary, Figure 3.2). The other way around, an inspection
of the matrix can reveal the problematic areas.

As a first check, we show in Figure 3.2 the wavefunction of a contin-
uum eigenstate of Hydrogen atom together with the result of the absorbing
boundaries transform on this eigenstate. The result is of course a superpo-
sition of eigenstates, with weights as presented in Figure 3.3. The typical
width of the weights distribution is related to the width of the mask func-
tion. Steeper mask functions result to broader distribution, to provide the
required bandwidth.

In Figure 3.4 we show the harmonics emmition spectra calculated in a box
of R =400 a.u. with and without absorbing boundaries, together with the
results for a bigger box (R = 800 a.u.). The later represents the converged
results for the laser duration and intensity used. As shown in A, due to
the small size of the box, the reflected part of the wavefunction interacts
again with the nucleus, absorbing more photons resulting to an extended
harmonic signal. In B we used absorbing boundaries, eliminating thus the
reflected part of the wavefunction, so the spectrum has fewer harmonics, and

as shown in D, it is indistinguishable from the converged spectrum obtained
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3.2 Application to an atomic system

using a bigger box (C).

In Figure 3.5 we present the PES spectra calculated for hydrogen atom
exposed in a laser pulse of sin? shape, photon energy 1.5 eV, total duration
of 10 cycles and maximum intensity 4 x 101*W/cm?. In A, we used absorb-
ing boundaries in a box of R = 400 a.u. and the PES obtained shows a
decrease for photoelectron energies higher than 5 eV due to the absorption
of fast electrons at the boundaries. All structure in this spectrum is lost for
energies higher than 10 eV. Together we show the spectrum of the absorbed
photoelectrons, which is very small for low energy electrons (not enough ve-
locity to reach the boundary and be absorbed). For a region of energies it is
comparable to the population of the electrons not absorbed, and for higher
energies it dominates absolutely. Adding together the populations of the re-
mained and the absorbed photoelectrons we obtain the PES of part B. We
compare this corrected PES with PES obtained in calculations without the
use of absorbing boundaries. In C we used the same box size, and we see that
the spectrums are in perfect agreement up to about 10 eV. In this energy,
the ratio retained to absorbed population is about 1/10. For higher energies
they differ, and the PES calculated without absorbing boundaries loses the
typical structure of successive peaks differing by a photon energy. The later
is of course due to reflection of the faster electrons by the boundaries and

their artificial re-interaction with the nucleus.

To compare the extended part of the corrected PES, we calculated the
PES for a larger box, namely R = 800 a.u.. The results are shown in part D of
the figure. The PES spectra are in good agreement for photoelectron energies
up to 20 eV, above which they start to have an important difference. Since
we used fixed boundary conditions in the construction of the eigenstates,
the density of eigenstates in the continuum drops fast with energy (actually
energy goes approximately as n? with n the discrete eigenstate index). The
distance between two successive peaks in the PES is the photon energy. If in
this energy region there are not enough discrete eigenstates, the spectrum is
not described well. Absorbing boundaries work in this case as well, but the

reconstruction of the PES is not satisfactory.
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3. Absorbing Boundaries in a Spectral Method

3.2.3 Conclusions

We presented the construction of a linear transform on the state vector
of an atomic system, equivalent to the absorbing boundaries employed in
the direct solution of the Schrodinger equation in space. The algorithm to
construct this transform is simple, involving standard matrix manipulation.
The results enable one to perform time dependent calculations on a smaller
basis, using thus smaller computational resources both in time and space.
We demonstrated the use of this technique in the case of Hydrogen atom.
The harmonic spectrum of the atom calculated is free of artifacts due to
reflection. The ionization yields were practically identical. In the case of
the PES, one can use the additional information of the populations absorbed
during the time propagation to obtain a PES that compares well with the
converged PES.

3.3 A simpler problem: Infinite well

We will briefly present the case of a particle trapped in an infinite well
potential. The same procedure is directly applicable in the case of the electric
field in a infinite Q cavity. The interesting part in this case is that, since the
eigenstates of the system (¢;(x)) are simple analytic functions, the absorbing
boundary matrix could be analytically evaluated, if we use a simple analytic

form for the mask function.

The main argument, in this case, is as follows. The set of the eigenstates
of the system form a complete basis so every function can be expressed in this
bases using appropriate coefficients. This holds naturally for an eigenstate
after the application of the mask function. The elements of the mask matrix
are simply these coefficients, the 7th column of the matrix are the coefficients
for the ith eigenstate.

We can use a simple analytic form for the mask function, well localized
in space:

(z—1)2

M(z)=1—c % (3.7)

where L is the length of the well, and L,, is used to control the width of

the mask function. The eigenstate coefficients are calculated by a simple
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projection:

Con = /0 o () M ()6 (2)d (3.8)
2

Yn(x) = \/;sm(?),o <z<L

The integral is evaluated analytically,
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with er f the standard error function and er fi the imaginary error func-
tion defined as e’"flﬂ In Figure 3.6 we show the value of C,,, for different
values of L,, and fixed m. Increasing L, results in a more narrow distri-
bution of coefficients, since a wider variation is associated with a narrower
spectrum. This simple case was used to show the more general way to calcu-
late the absorbing boundary matrix, in the case the form of the eigenstates
is known, and to show that there is also the possibility of a complicated yet

analytic form of this matrix.

3.4 General Case

3.4.1 Introduction

In the previous sections, absorbing boundaries were imposed on a atomic
system by using information of the form of the eigenstates in space. Step-
ping back, we can see that the TDSE is solved on the eigenstates basis of the

system, so the only quantities, except for the external field that interfere in
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Figure 3.6: Absolute value of the coefficients of the wavefunction (on the
basis of the eigenstates) after applying absorbing boundaries on the 30th eigen-
function (with a coefficient 1) in logarithmic scale. The horizontal axes is the
number of eigenstate. The L,, parameter, which controls the width of the mask,
is shown in the legend.

the solution are the energy levels (which represent both the bound and the
continuum part of the spectrum) and the dipole matrix elements between
the eigenstates. It is therefore reasonable to assume that the linear transfor-
mation that is equivalent to absorbing boundaries can be calculated based
only on the above input.

Physically, the dipole matrix elements are irrelevant to the artificial re-
flection from the boundaries, since they affect only the amplitude transfer
between the eigenstates via the external field and not with the propagation
of the wavepacket in space. Concerning the energy levels, the critical param-
eter is naturally the energy level spacing, which is directly connected with
the radius of the sphere (fixed boundary conditions). On the other hand, the
energy range depends only on the number of B-splines (for a given radius)
and one could hardly expect the reflection of a wavepacket energy centered
around 2 eV to depend upon the discritisation in the neighborhood of 10 eV.

The preceding discussion, through some intuitive arguments, should pre-
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Amplitude (a.u)

0 20 40 60
L

Figure 3.7: The wavefunction for the C; coefficients (heavy line) and for the
C, coefficients (dashed line) for a infinite well of length L in arbitrary units. We
took into account only the first 150 eigenstates, enough to show the localization
of the wavefunction in space

pare the ground for the following simple example in which we demonstrate
that the only information necessary to calculate the absorbing boundary ma-
trix is the energy levels.

Consider an electron trapped inside an infinite well potential in one di-

mension. The eigenfunctions of the electron take the simple analytical form:

= \@ sin(“) (3.9)

satisfying immediately the Schrodinger equation and the appropriate bound-
ary conditions (¢,(0) = 1,(L) = 0). In this simple system, consider an ini-
tial form of the eigenfunction localized close to zero, the left wall of the well,
resembling photoelectrons just emmited from an atom. This wavefunction
expressed on the eigenstate basis would give a coefficient vector (as usually
the i-th element of the vector stands for the coefficient of the i-th eigenstate)
that would resemble C; = (1,1,1,...,1,1,...). Note that the value “1” is
only for illustration, more physical would be a \/—lﬁ value, or even a Gaussian

distribution. Nevertheless the main idea remains unaltered.
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Figure 3.8: Few states of the new bases used. A state at time ¢ = 0 (red
line) and two consecutive states in the middle of the time interval (green and blue
line).

Keeping in mind the symmetry of the eigenstates with respect to the
center of the well (£) (in the case of even n they are antisymmetric and in
the case of odd n they are symmetric) it is straight forward to calculate the
coefficients of a wavefunction being the image of the initial with respect to
the center of the well. It would just be C, = (1,-1,1,...,1,—1,...). This
represents practically (letting dispersion aside for the time being) the form
of the wavefunction when it is reflected by the right wall. In Fig. 3.7 we plot
the wavefunction for the C; coefficients and the reflected (C, coefficients).

Considering the simple form of the time evolution of the eigenstates

Un(z,t) = \/%Sin(?)e‘i‘””t (3.10)

it is easy to estimate the time of reflection by calculating the necessary time
for this sign change. At time ¢ = 0 the coefficients ¢; and ¢y are ¢; = ¢y = 1.
Their time evolution is thus ci(t) = e ™ co(t) = e ™2t At t = tyep: €1 =

l,cp = —1 s0 e”®hrer =1 and e~“hres = —1 leading to wit,ey = 27k; and

wotrey = 2mky + m. Since we are interested in the first reflection ki = ko,

which means that ¢,y = —"— or t,.; = 2—. In our case, Aw is not constant
w2 —Ww1 w
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Figure 3.9: Real part of the wavefunction of an electron inside an infinite
well constructed by a random distribution of eigenstate coefficients (blue line)
together with the real part of the wavefunction after applying absorbing boundaries
(red line).

(due to dispersion) so the reflection time for every w depends on the local

density of states.

The key idea is that we can project the coefficient vector at any time on
a state like the one that is reflected and subtract this part from the initial
coefficient vector. This would remove the part of the wavefunction that is
reflected. Of course, absorbing boundaries should be smooth and have a
controllable extent. To accomplish this, it is sufficient to construct a new
basis consisting of N states that correspond to a different evolution time and
gradually remove the last states from the wavefunction,in accordance with
the form of the absorbing boundary we want to use. Few representative states
of this type are shown in Figure 3.8. The limited size of the bases causes
these states not to be completely localized, having long tails. Nevertheless,
this did not cause any problems, since it should affect only the states close

to the energy boundaries of the discretised spectrum.
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3. Absorbing Boundaries in a Spectral Method
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Figure 3.10: The real part of the time evolution of the coefficients of an
initial state of the form C;. The color varies from black to white with the coefficient
value varying from —1 to +1. The time interval is long enough to observe the
reflection at the right wall (at ¢ = £, observe the reflection symmetry of the plot
with respect to the ¢ = &~ axis and the coefficients that are like C;) and the next
reflection at the left wall (at ¢t = i—z, observe again the reflection symmetry with

Z

respect to the t = ﬁ axis and the coefficient that are like the C; we started with).
For this plot the energy level spacing was constant.

3.4.2 Equidistant spectrum

The new basis is constructed as follows'. We start by forming a set of
vectors describing different evolution times of the system, starting from a
initial state close to the origin (¢ = 0), like C;, and ending with a state close

to the box boundary,(t = 7/w), like C;. Since we want to form a basis for N

LOf course the electron dispersion (w ~ k?) and the fixed boundary conditions (infinite
well) do not give an equidistant spectrum. Nevertheless, it is the simplest case, so for this
part we can either forget this concern (consider an ultra-relativistic electron) or consider a
system with the same eigenmodes but with (w ~ k), like the electric field inside an infinite
Q@ cavity of length L
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0 20 40 60 80

Figure 3.11: The absorbing boundary matrix for a system with N = 80,
based only on the discrete energy levels describing the continuum. The absolute
value of the elements is shown in logarithmic scale, with lighter color for higher
values.

independent modes, we split the time interval in /V parts. Using a standard
Gram-Schmidt procedure, we take this set of N vectors and generate an
orthonormal set of basis vectors.

In brief, the new basis comes from the orthonormalization of a N x N

matrix with elements

lr
where ¢, = < is the reflection time, iAw gives the frequency of the i-th level
and (j — 1) (thl) gives the time.

The matrix must have N independent eigenvectors so that, after the
orthonormalization, to give a complete basis for the state vector. This is the
case due to the fact that the columns of the matrix are almost orthogonal.

The inner product of two rows would be:

Zj TnjThj = Ej cos (mAw x (j — 1)(Nt:1)>cos (nAw x (j — 1)(1\;5—:1))

~ OW/AQ cos (mAw X t) cos <nAw X t) = O
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3. Absorbing Boundaries in a Spectral Method

The inner product is not exactly zero because it is a finite representation
of the integral. This provides confidence that there are indeed /N indepen-
dent eigenvectors and verified by the observation that the changes from the
orthonormalisation to the vectors (columns) were very small.

Then the absorbing boundary matrix is constructed as explained in more
detail in Section 3.2. Since the eigenvectors of this basis is time-ordered, the
mask now removes gradually the last. The T;; is shown as a part of Figure

™

3.10, which extends from ¢ = 0 ¢ = 35> and not { = £ as the T;; matrix.

In this Figure, it is also easy to observe the reflection at times ¢ = £ and
t = 21, the first at the boundary, the second at the origin. The constructed
absorbing boundary matrix is shown in Figure 3.11, and the results of this
matrix on a randomly selected wavefunction are presented in Figure 3.9,
where the part of the wavefunction approaching x = L is removed.

Special attention has to be paid to the possibility the discrete energy
levels not to have the same initial phase. In the previous we dealed with the
real part only, where different phase means different sign. The form of the
eigenfunctions was such that all of them had the same sign. In the case the
form of the eigenfunctions is not known, one has to ascertain that all of them
have the same sign, or to incorporate this information in the construction of
the absorbing boundary matrix. The method to determine this sign probably
depends on the problem at hand. For example in the case of the solution of
the TDSE, a good candidate would be the sign of the dipole matrix elements

connecting a set of states to a common state.

3.4.3 Free boundary conditions

The case of dispersion or of free boundary conditions requires a slightly
different approach. The reflection time is not the same for all the levels. On
the contrary, it depends for each level on the density of modes in the vicinity
of the corresponding level. This is circumvented by creating a 7;; matrix,
in which the propagation time (previously just (j — 1)(Nt—11)) is not common
for all modes. Instead we use for each level the same fraction of the local
reflection time.

The local reflection time is calculated by a simple physical analogy with an

equivalent problem. We want to imitate a given discrete spectrum with the
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Figure 3.12: Same as in Figure 3.10. In this case the energy levels are not
equidistant, following a relation w(n) = w(n—1)+Aw(1+2a(n—1)) and w(0) = 0.
The colored lines show the estimated reflection times for every mode, ¢, (%)

spectrum of a, more or less, easily understood system. Consider the electric
field in a one dimensional cavity with perfectly reflecting boundaries. If we
assume the position of the boundaries fixed, the resulting discrete spectrum
is equidistant. If on the other hand we assume that the boundary position
depends on frequency, using for example a multilayer mirror, this dependence
will shape the spectrum (Figure 3.13). Working the other way round, a
given spectrum determines the boundary positions,(i.e. reflection positions
for every frequency), so the cavity length for every mode is known. So is
the reflection time, which is just L;, ¢ = 1. We will use w(0) = 0 as the
reference for all frequencies. Then w(1) is the frequency of the photon of
the first mode of the cavity, and w(2) of the second mode and so on. Since
w = k we have % =w; so L; = ﬁ Thus the reflection time for each mode
is t,.(i) = L; = ﬁ with only parameters the frequency and the index of the
mode.
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Figure 3.13: For a spectrum as in Figure 3.12 we show the equivalent cavity
that imitates this spectrum. The left wall reflects all frequencies at the same point
while the right wall reflects every frequency at a different depth. So every mode
sees a cavity with different dimensions (L;) enabling as to shape the spectrum.

So in the case of free boundary conditions or of dispersion, we can use

T, = cos (w(i) X (j — 1)%) (3.12)

with a rescaled time coordinate different for every mode. This simple trans-
formation converts Figure 3.12 to Figure 3.10, and then it is sufficient to
follow the same procedure as in the case of a spectrum with constant energy

difference.

3.5 Handling multiple continua

3.5.1 A bit of theory

In the case of multiple discritized continua, the same method is applica-
ble with minor extensions. For example, assume a double continuum, the

eigenstates of which are a product of single continuum eigenstates. For sim-
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3.5 Handling multiple continua

plicity, consider we use n eigenstates of the first and m eigenstates of the
second single continuum. There are n X m combinations, so the coefficient
vector has n X m elements that form the finite basis of the double contin-
uum. By suitable permutations, the coefficient vector can be ordered like:
(€11, €12, €13, - - - 5 Cim, C21, C22, - - -). The first m states are composed of the first
state of continuum “1” and all the states of continuum “2” the next m are
composed from the second state of continuum “1” and all the states of con-
tinuum “2” and so on. We construct the absorbing boundary matrix for
the first block of m-states using their energy levels, then for the following
blocks of m-states it is the same since it depends only on the spacing of the
energy levels and not on their value. Then the complete absorbing bound-
ary matrix for continuum “2” is a block diagonal consisting of the previous
matrix. Then we employ another set of permutations to order the coefficient
vector like: (c11, €21, €315 - -+, Cnt, C21, Co2, - - .) and construct in the same way
the block diagonal absorbing boundary matrix for the continuum “1”. The
complete transformation can thus be included in a matrix being the product

of the above transformations, with a general form:
D:Pfl'Bl'Pl'P271'B2'P2 (313)

where P, 5 is a suitable permutation matrix used to reorder the coefficient
vector as described, B is the block diagonal absorbing boundary matrix

for continuum “1” or “27.

3.5.2 Example

Consider now the simple case of a double continuum, that is composed by
a small number of single continuum eigenstates. For example, the eigenstates
of a free electron in two dimensions are the product of the eigenstates of the
electron in the “x” and “y” direction. Limiting the system in a rectangle and
taking 30 eigenstates in both single continua would result in 30 x 30 = 900
double continuum eigenstates. For simplicity we choose the eigenstates to
have constant energy difference, thus the spectrum consists of equally spaced
energy levels.

Ordering the state vector in a way that the first permutation is useless, we

proceed with the construction of the single continuum absorbing boundary
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Figure 3.14: Double continuum absorbing boundary matrix. The shading
varies from black to white with increasing absolute value of the matrix elements.
The structure of the matrix shows how the eigenstates are mixed to imitate ab-
sorbing boundaries and at the same time the limitations due to the finite bases
(see text for details).

matrix Bj, and then of the double continuum matrix D which is shown in
Figure 3.14. Because of the simple ordering of the coefficient vector we chose,
there is a similarity of the structure of the D matrix with its single continuum
analog. In addition, it becomes clear how this transformation actually works,
by combining eigenstates within a block (i.e. with one continuum eigenstate
common) and at the same time combining neighboring blocks in an analog
way (satellites of the diagonal of the matrix).

Constructing now an initial state composed of a few random eigenstates
we can easily create the wavefunction in space and at the same time test
the D matrix. In Figure 3.15 we show the initial wavefunction and the
wavefunction after applying absorbing boundaries, where it is obvious that
it works also in this case. This was also verified in a more quantitative way.

One should note again that the D matrix is affected by the boundaries,
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3.5 Handling multiple continua

Figure 3.15: Top: the real part of an initial trial wavefunction in two
dimensions. Bottom: the real part of the same wavefunction after applying the
absorbing boundary transform.

i.e. close to an energy level that has no neighbors (upwards or downwards)
for which the transformation does not work well. In this case this applies for
double continuum states that include the lowest or the highest eigenstates
of any of the two single continua. How many fall in this category exactly
depends on the form of the absorbing boundaries. For example a sharp
absorbing boundary makes the situation more difficult, since it results to
a more “diffused” matrix, that means that many neighboring levels should
interfere in this process (equivalently higher bandwidth is needed to describe

something steeper).
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3. Absorbing Boundaries in a Spectral Method

3.6 Summary

We have shown that it is possible to apply absorbing boundaries on the
time propagation of the Schrodinger equation for a real atomic system on
the basis of its field-free eigenstates by using a simple linear transform. This
means that the artificial reflection of the wavepacket at the boundaries is
remedied, so the calculations can be performed on a smaller basis (in space
extent) and thus faster. Also, since information about which part of the
wavefunction (energy resolved) is removed or modified during the time prop-
agation is easily available, one can use this additional information to recon-
struct the final state of the atom (regarding populations, not amplitudes,
since phase information is lost), in the case that nothing was absorbed or
reflected.

An extension of this method is proposed to handle the general problem of
a discritized continuum, based only on the energy spectrum used to approx-
imate the continuum. The calculation of the linear transform can be accom-
plished numerically or even analytically. Also, we showed that it presents no
further difficulties to apply this method to double or multiple continua.

The main limitation is inevitably encountered at the edge(s) of the dis-
crete energy spectrum used to describe the continuum due to the lack of
neighboring levels, so one has to ascertain that these states do not play a
significant role in the phenomenon examined. In that case, an attenuation in

time of these states by a simple exponential decay could remove the problem.
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CHAPTER 4

CHARACTERIZATION OF HARMONICS

4.1 Introduction

Harmonic generation is the result of the nonlinear response of matter
to radiation. A laser induces a time-varying dipole moment in an atom or
molecule. In the weak field regime, the induced dipole moment oscillation,
following the laser field, is dominated by the laser frequency wy. On the
other hand, in a strong field, frequency components of the dipole moment
appear at multiples (harmonics) of the laser frequency, qw, acting as a source
of radiation. The even harmonics are forbidden by parity conservation in a
medium with inversion symmetry, so the harmonic spectrum consists of a

series of peaks centered at odd multiples of the laser frequency.

A multiphoton transition returning to the ground state from a virtual
state bellow the ionization threshold (IP) of the atom is the source of the
low order harmonics. The higher part of the spectrum results from pho-
ton absorption above the ionization threshold and again deexcitation of the

(virtual) continuum states to the ground, or other low-energy, states.

The spectrum of the harmonics presents a characteristic shape. The first
few harmonics show a rapid decrease of intensity with increasing harmonic
order, followed by a region where the intensity remains practically constant,
terminated by a cut-off where the intensity falls rapidly to zero. The highest
observable harmonic is directly related to the intensity of the fundamental

and the atom used. The single atom cut-off scales as I, + 3U,, where I, is
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the ionization potential and U, = I/(4w?) is the ponderomotive potential,
equal to the average quiver energy of a free electron in the field.

Among other applications of high-order harmonic generation (HHG), they
offer the possibility of producing attosecond (as) pulse trains, or even sin-
gle as pulses. The coherent superposition of harmonics offers the necessary
bandwidth for producing such a short pulse. For example a 400 as pulse has
a minimum bandwidth of about 10 eV easily accessible using few consecutive
harmonics produced simultaneously by a laser with w = 1.5 eV.

Key role in this application plays the correct superposition of the differ-
ent harmonics. A random phase for the various harmonics can result to a
superposition with much longer time extent, possibly ruining any short-time
structure. So it is necessary to characterize the harmonics in order to be su-
perimposed in a controllable way. Due to the low intensity of the harmonics,
that does not permit a second or higher order autocorrelation, and to the
dispersion introduced by beam splitters, recent efforts are directed towards
cross correlations between the harmonic and a correlated infared (IR) field.
These approaches rely upon the dynamics of the ionization caused by the
harmonics in the presence of the IR field or on phase-sensitive interference
effects. Although these methods provide information on the relative phase
between the harmonics, they do not account for chirp inside the bandwidth
of each harmonic. In case this chirp is small, it should not play an important
role on the superposition of harmonics. In the opposite case it should be
taken into account and eliminated if possible (using appropriate reflective
mirrors).

In the following we will briefly present a method proposed in [31], formu-
lated in terms of perturbation theory, which motivated our work, followed by
a study of this proposal based on the numerical solution of the TDSE. This
approach is based on phase control of excitation processes and is capable of
mapping out the relative phases of the modes of superimposed or individual

harmonics.

4.2 Perturbation Theory

The excitation of the atomic system occurs through different coherent

pathways, e.g. single-photon excitation through the nth harmonic of the laser
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Ground state

Figure 4.1: Some of the interfering channels leading to an excitation prob-
ability that depends on the relative phase between the corresponding fundamental
and harmonic modes. In (a) combinations of different modes interfere. In (b) extra
photons absorbed or emmited, and in (c) a resonance takes part in the process.

field and n-photon excitation through the fundamental. Variation of the rela-
tive phase between the fundamental and the harmonic, assuming both being
monochromatic waves, results in a variation of the excitation probability as
cos(¢n, —neg1), where ¢,,, @1 are the initial phases of the fundamental and the

harmonic.

This variation can be probed through ionization (in case the final state
is in the continuum) or through harmonic generation. The latter allows the
study of interference below the ionization threshold; so it is applicable for
low harmonics as well.

Phase control experiments control the final products of the interaction,
but at the same time they probe the relative phase between the fundamental
and the harmonic(s). If instead of one harmonic a coherent superposition of
harmonics or several individual harmonics are used, the method can be em-
ployed to determine the relative harmonic phases and subsequently measure
the temporal profiles of the superposition of the harmonic fields.

Since the measured quantity (photoelectrons or photons) depends on the

relative phases between each harmonic and the corresponding fundamental
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modes and since the phase of all fundamental modes are assumed to be zero
for a transform limited pulse, the measured quantity will finally depend on
the relative phase between harmonic modes, including thus phase variations
introduced through chirp. This relative phase relation is directly related to
the time profile of the field, permitting thus to accurately reconstruct it and
check for short-time structure, such as as beating.

Let the superposition of the electric field of the laser fundamental and
that of its harmonics of interest be:

2k"+1

o0
By = 2 / (B (@)e@ @) £ 3 By, (w)e@=s)dy  (4.1)
0 n=2k+1

where Z is the polarization unit vector, n denotes each harmonic, & and &'
are integer numbers, and n = 1 stands for the fundamental. FEjy; and Ey,
are the spectral amplitudes, ¢; and ¢, correspond to the phases of different
spectral components and we assume transform limited fundamental pulses,
i.e., initial phase ¢y(w) = 0 or equivalent (see discussion in 4.4). Thus the

bandwidth and the chirp of every harmonic are accounted for.
When this superposition interacts with an atomic system, excitation takes
place from a common initial state |0) to a continuum of final states |f). Using
lowest order perturbation theory (taking into account procedures of (a) kind),

the excitation probability, is proportional to the expression

2K’ +1 .
,uo fwn, i) X HEOl(wlj)ez¢1(w1j)dw1n
n= 2k+1 iy
. 2
+M(()1—)onn (wp)e® )] duwy
(4.2)
and thus to
2K’ +1 .
1
0 S [ (] i * T Bt o)
n=2k+1 e

X COS (qﬁn(wf) - Z¢(w1j)>dwf, (4.3)

=1

with C a constant. The products Ey;(w11)Fo1(wi2)Fo - - - (wi,) refer to
the n photons of the fundamental that couple the same initial and final state
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as the harmonic photon does, i.e., Z?Zl wij = wyp with fwy the energy for
the transition [0) — |f)
Considering a fundamental pulse Fourier-transform limited, the phase dif-

ference for one given final state wy is ¢n(wy) — D7) d1(wij = dn(wy) — wyT

with 7 the variable delay between the fundamental and the harmonics. ,u(()l_) s

(n)
O_f(wlla'"awln)
moments induced by each combination of modes of the fundamental and

and p are the corresponding n-photon and single-photon dipole
the harmonic radiation, respectively, for each pair of interfering channels
(10) + fuwry + Fuwrg ... + wry, — |f), [0) + Awy — [f)). Since interference
occurs in channels coupling the same initial and final state, the result is
the coherent summation of the transition amplitudes for the single photon
(through the harmonic) and the corresponding n-photon (through the ap-
propriate combination of n modes of the fundamental) excitation channels.
The resulting total excitation probability is then the incoherent sum of the
contributions of all interfering pairs. For a transform limited fundamental,
the oscillations of the probability probe the relative phase between the fun-
damental and the harmonic modes (and hence between the corresponding
modes of the harmonics) and thus the temporal characteristics of their su-
perposition.

Because of the different amplitude factors in the relations given by egs.(4.1)
and (4.3), the variations of the measured quantity will not reflect the total
field as far as amplitudes are concerned. Since the harmonic mode phases
are extracted, amplitudes may be separately measured through conventional

frequency domain spectroscopy.

4.3 Solving the TDSE

Given that the argument in [31] is based on perturbation theory, while
from a practical standpoint the question is most interesting in the context
of non-perturbative behavior, which is where high order harmonics are pro-
duced, we have undertaken the exploration of the scheme in that regime.
Since the usefulness of the scheme should not depend on the particular atom
employed in its implementation, we have chosen to study the process through
the nonperturbative solution of the time-dependent Schrodinger equation

(TDSE) for atomic hydrogen, for which rather accurate calculations can be
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performed, dispensing thus with the need to speculate on the possible effect
of parameters necessary in constructing effective one-electron potentials for
more complex atoms. If and when the need arises to interpret experimen-
tal results obtained in atoms other than hydrogen, the calculation can be
extended accordingly, through a variety of approaches.

The TDSE for the atom in an external laser field is written as
ihow)(t) = [Ho + V()] (1), (4.4)

with H the field-free atomic Hamiltonian and V' the time-dependent interac-
tion between the atom and the laser fields. In the velocity gauge and within
the dipole approximation, the interaction operator is

—ihe

V() = CAWY, (4.5)

with A(¢) being the vector potential connected with the electric field through
E(t) = —c'9;A(t). In our calculations we assume both laser fields linearly

polarized along the z-axis which means that:

A=e.[Asps(t) + Anpn(t)], (4.6)

where indices f, h refer to the fundamental and the harmonic, respectively.

.o [Tt
— — 4.
py = sin ( f) (4.7)

with Ty being the total duration of the pulse.

The form of p; is

This particular envelope form of the fundamental is used for computa-
tional convenience since, despite its finite time extent, it is known to provide
results similar to those obtained with a more realistic Gaussian envelope. For

pr, we use two different envelope forms, a sin?

an(t) = sin’ (m%’l*‘i)) , (4.8)

and a gaussian, constructed

as:

and

1 o0 1 )
gn(t) = mask(t)m/() (eszgz(wﬂzh) + esz;(w,wh))
x cos (w(t —t. +d) + ¢(w)) dw, (4.9)
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Figure 4.2: The electric field of the fundamental and the (third) harmonic
pulse. The fundamental has a sin? envelope, while the harmonic has a gaussian.
The delay between the two pulses is zero.

with ¢, = 7/(27}). For delay d=0, both pulses are centered. The gaussian is
used because of the simpler way to incorporate an w dependent phase of the
pulse. Typically, the integral is converted to a summation, limited around
the central frequency wy, including few hundreds of frequencies, which is
more than enough for our purposes. To create a gaussian that resembles the
sin” pulse as much as possible we have used a T, = 0.37}, and to avoid any
effects due to the long tails of the gaussian, we employed a mask(t) function

1 it —te+d| <t
mask(t) = { sin®(FetB8) 4 <[t —to+d] <ty
0 [t —to+d| >t

where ¢, is chosen such that the second pulse ends before the first and %; is
usually around 0.8, in order to avoid a sharp cut-off of the tail. Depending
on the ¢(w) function used (e.g. a very sharp one), t5 can be very limiting
causing a significant part of the pulse tail to be missed, which makes trial

and error checks obligatory. The above is not the case for the ¢(w) we have
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used (a gaussian) and under any circumstances it is sufficient to obtain the
phase of the created pulse by a simple Fourier transform, and in this way
include all effects caused by the mask.

Since the TD-Hamiltonian is invariant with respect to rotations about
the z-axis, the magnetic quantum number is conserved, so the expansion of

the TD wave function in the basis ¢,; becomes:
Y(r,t) = bna()pr(r)- (4.10)
n,l

Substitution into equation (4.4) provides a system of coupled first-order dif-

ferential equations for the unknown coefficients b, (t):

ihaﬁibn,l = Z(En,lénn’éll’ + <¢n,l‘v(t)|¢n’,l’>)bn’,l’: (411)

n’l

with initial condition the atom in the ground state.

Harmonic emmition
The one-atom emission spectrum is calculated as the square of the Fourier

transform of the dipole moment, obtained by

D(t) = ((r, Dldg|(r, 1)) = (3 buadndldy| S bwdws),  (412)
n,l 'l

Note that although the b, are calculated by propagating the TDSE in
velocity gauge, d, can be in any gauge (length,velocity or acceleration). Ev-
erything presented here is in the velocity gauge.

Due to the short duration of the pulse we use (10 to 20 cycles total, not full
width at half maximum (FWHM)) and its shape, the system lacks a steady
state. Thus, to obtain the harmonic spectra, we perform a Fourier transform
of the dipole moment of the atom over the full pulse duration. Also, there is
a very small dipole moment, still remaining when the pulse is over and which
is due to excitation of bound states and low energy continuum states which
have no time to get away from the atom. A direct Fourier transform of this

dipole moment would lead to a high noise level which can overshadow the
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4.4 Extracting the phase profile

weakest harmonics. To overcome this problem, we apply a sin? filter over the
full time range of the dipole moment. We checked that this form of filter is
free of side effects by observing the time profile of the harmonics generated
[32]. It is worth mentioning that, since we do not take propagation effects into
account, it is preferable to use the Fourier transform of the dipole moment
instead of its correlation function [33]. For better frequency resolution, we
expand the time range by assuming that the dipole moment is zero before
and after the pulse. All spectra presented here are the absolute square of the
Fourier transform and do not include any w dependent prefactor.

Typical checks for convergence of the calculation where carried out (upper
limit of the energy in the continuum and the number of angular momenta
used to describe the atom, the sampling rate of dipole moment and the time
step of the TDSE propagation). In addition, the above threshold ionization
(ATT) spectra with the same pulse are in good agreement with those provided
by Cormier and the harmonic spectrum compares well with the one given by
Cormier and also with [26, 34].

4.4 Extracting the phase profile

To measure the phase of a harmonic through its interference with the
fundamental, we have to ascertain first that the interference effects are as
clear as possible. We have to select the intensities of both fundamental
and harmonic so that their contribution to the generated radiation is of
comparable magnitude.

A simple approach to determine approximately this region of intensities
is to first ensure that we obtain a clear harmonic signal with the intensity
of the fundamental we use. Then, we follow the change of the signal, as
we gradually increase the intensity of the second pulse. In the beginning,
when the intensity of the second laser is very low, harmonic production is
dominated by the fundamental and the modulation of the harmonic signal is
unimportant. As we approach the range of intensities where both channels
are comparable, we will notice a modulation of the harmonic signal; which is
attenuated if we further increase the intensity of the second laser, in which
case the harmonic signal shows a steady increase, indicating that we have

reached the regime where the generation of the harmonic is dominated by
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Figure 4.3: The intensity of the emmited radiation for various combinations
of intensities of the fundamental and the third harmonic . The fundamental has a
maximum intensity of 1 x 10!2 W/cm? and the intensity of the third harmonic is
shown in the legend

scattering of the second pulse. This procedure is shown in Figure 4.3 where
we present the intensity of the harmonics emmited by the atom when it is
exposed to both pulses at the same time, as we vary the intensity of the
harmonic (shown in the legend).

For constant intensities of the fundamental and the harmonic, we solve
the TDSE for the atom for a broad enough range of time delay between
them. The delay of the two pulses affects the harmonic signal (and PES).
The harmonic signal at a specific frequency as a function of the delay is
very close to sinusoidal (as anticipated by [31]),s0 extracting the phase (and
frequency) is both easy and well defined. In Figure 4.4 we show a typical
modulation of the harmonic signal as a function of the delay for a specific
frequency. Through a fit of the form (a+ b t) 4+ ¢ sin(wt + ¢),with a minimal
set of parameters,we determine the phase ¢ for zero delay. Parameter b is
used to account for a possible drift of the oscillation. Typically, we find that

it is sufficient to limit ourselves to 2 periods of the harmonic, split in more
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Figure 4.4: Modulation of the 3rd harmonic signal (at 4.5 eV) as a function
of the delay between the fundamental and the harmonic pulse. Fundamental is a
sin? laser pulse of maximum intensity of 1 x 102 W/em?, w = 1.5 eV and total
duration of 10 cycles. The third harmonic laser pulse has a gaussian envelope,
maximum intensity of 1 x 103 W/cm? and total duration 10 cycles. Note that the
period of the modulation is the same as the period of the 3rd harmonic pulse.

than 20 intervals. This procedure is repeated in the desired frequency range
for many different frequencies and results to the phase profile of the harmonic

with a resolution depending on the number of frequencies used.

Of course the choice of zero delay has no importance; we can determine
the phase ¢ for whichever delay (common for all frequencies). Note that what
is meaningful is the variation of the phase, and not its magnitude, since the
latter depends on the arbitrarily chosen time.

In order to perform a phase shift, if we want to compare two phase profiles,
we have to take into account that the modulation frequency is not constant
(it is w) and to add a phase shift in every frequency analogous to w (since
a A¢ at a frequency w corresponds to a w At). Also, since the phase is
determined modulus 27, the addition of a factor 2nm, n integer, does not
affect the results.

Obtaining the phase profile of a harmonic is a two-step procedure. First,

we calculate the reference phase, which is the phase of the modulation in the
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4. Characterization of Harmonics

case the harmonic has a ¢(w) = 0. Then we subtract the reference phase
from the phase of the modulation of the pulse we want to characterize, for
every w. It is clear from the above that a reference phase of the form aw+2nm

is equivalent to 0 and need not be calculated or determined.

4.5 Results

4.5.1 Third Harmonic

As a first approach and test, we consider the simplest case, namely the
third harmonic. The reason for this, is that the lower the harmonic, the easier
it is to observe an interference between the harmonic and the fundamental.
A low harmonic can be produced with low fundamental intensity, so non-
perturbative effects play the smallest possible part. In other words, this setup
(low intensity - low harmonic) allows us to study the problem as clearly as
possible.

The fundamental is a sin? pulse of maximum intensity of 1 x 102 W/cm?
and frequency 1.5 eV, with a total duration of 10 or 20 cycles (28 or 56
fs, equivalent FWHM 14 and 28 fs respectively). The third harmonic has a
gaussian envelope and its duration is taken approximately a third of that of
the fundamental.

The harmonic signal produced by exposing the H atom to a 10 and 20
cycle fundamental (Figure 4.5) demonstrates a clear third harmonic peak in
both cases, together with a peak around 10.2 eV corresponding to excitation
of the 2p state by the laser.

The intensity of the laser is low, and harmonics higher than the third are
not observed. The phase of the produced harmonic is more “stable” for the
longer pulse, as expected, and very close to zero (less than a tenth of a rad).
Next we add the second source, and gradually increase its intensity which
leads to a first estimate of the appropriate range of intensities of the third
harmonic in the region of 10® — 10* W/cm? (shown in Figure 4.3 ).

The next task is to obtain harmonic spectra as a function of the delay
between the two pulses. In general, the overall modulation of the radiation
is smoother and weaker if we are in a region where one channel dominates.

In the opposite case, where both channels are comparable, the modulation is
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Figure 4.5: Radiation intensity produced by exposing the H atom to a
10 and 20 cycle laser pulse as shown in the legend. The fundamental has again a
maximum intensity of 1x 102 W/cm? and w = 1.5 eV. The spectrum is normalized
at the fundamental intensity.

stronger and has rapid variations in magnitude.

The reference phase is very close to the phase of the harmonic produced
by the fundamental only, compatible with the Fourier limited pulse we used
(p(w) = 0). Note again that the absolute value of the phase cannot be
determined by interference, only differences are meaningful (for the same
frequency).

Using now a gaussian pulse for the harmonic, and choosing its ¢(w) to
be a gaussian centered at the maximum of I(w) (4.5 €V) we obtain the
reconstructed phase of the pulse for various intensities of the harmonic as seen
in Fig. 4.6. We subtracted the reference phase from the phase measured using
the pulse with chirp. The phase measured for a pulse with chirp, without this
subtraction is, in this case, very close to the previous, because the reference
phase is linear with w. Increasing now the fundamental duration to 20 cycles
and following the same steps we obtain the phase profile for the pulse used
(Fig. 4.7). In both cases, the results we obtain do not change significantly
as we vary the intensity of the harmonic.

Note that the subtraction of phases has meaning only for the same fre-

quency. So, in this case we do not determine the frequency of the modulation
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Figure 4.6: With conditions as in Fig. 4.4, we show the difference of the
phase measured by the interference of the fundamental and the harmonic with a
gaussian ¢(w) (shown in the figure) and with ¢(w) = 0. The harmonic pulse has
intensity as shown in the legend, and the modulation frequency is set equal to the
frequency of the photon.
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Figure 4.7: Same as Fig. 4.6, but now the duration of the fundamental and
the harmonic pulse is increased to 20 cycles for both.
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Figure 4.8: Frequency of the modulation as a function of the photon energy
for various intensities of the third harmonic. The maximum intensity of the funda-
mental is 1 x 10'2 W/cm?, and its duration is 20 cycles. The duration of the third
harmonic is a third of the duration of the fundamental, i.e. 20 cycles. We also
show the modulation frequency expected by perturbation theory for comparison.

through the fit, since it leads to slightly different frequencies for different con-
ditions, but we assume a modulation frequency equal to the frequency of the
photon emmited. This is what perturbation theory predicts and its differ-
ence from the frequency we obtain from the intensity modulation is at most
a few percent. In any case, the main point is to have a common modulation
frequency. Figure 4.8 shows the modulation frequency for the case of a 20-
cycle fundamental together with the (linear with photon energy) modulation
frequency expected by perturbation theory.

It is worth mentioning that there is a systematic tendency for the ex-
tracted ¢(w) to be slightly flattened, resembling a moving average of the
original. This effect is found to be insensitive to variations of the intensity
of the fundamental (Figure 4.9 ) and the harmonic (Figures 4.7 and 4.6 ).
Increasing the duration of the fundamental but keeping the duration of the
harmonic constant showed a small decrease of this tendency, as shown in
Figure 4.10. On the other hand, these results imply that the reconstruction
of the harmonic phase profile for the third harmonic is not sensitive to the
duration and intensity of the fundamental and harmonic used. Nevertheless,

an experiment would face different problems, since the modulation of the
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Figure 4.9: The difference of the phase measured by the interference of the
fundamental and the harmonic with a gaussian ¢(w) (shown in the figure) and
with ¢(w) = 0. The maximum intensity of the harmonic pulse is constant and
the maximum intensity of the fundamental pulse harmonic is shown in the legend.
Duration of both pulses is kept constant (10 cycles for both).
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Figure 4.10: Same as in Figure 4.9, bu in this case we kept constant the
intensity of both pulses, and increased the duration of the fundamental (shown in
the legend).
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Figure 4.11: The harmonic signal generated by a sin? laser pulse of maxi-
mum intensity of 2 x 10'* W/cm? and w = 1.5 eV and total duration of 10 and 20
cycles. The spectrum is normalized at the fundamental frequency.

signal should be strong enough, in order not to be overshadowed by noise
(fluctuation of laser intensity,. ..). This requires a careful selection of the two
pulses in the spirit described in the begining of the previous section.

4.5.2 Eleventh Harmonic

Considering now a more complicated and interesting case, we study the
eleventh harmonic, which for the particular atom and laser frequency under
consideration has the additional complication that it is the first harmonic
produced in the continuum of the atom. Again we keep the duration of the
11th harmonic pulse close to a third of the duration of the fundamental. In
Fig. 4.11 we show the harmonic signal produced by exposing the H atom to
10 and 20 cycle fundamental of 2 x 10'* W/cm?. With this intensity we are
able to obtain clear harmonic signal up to the 17th harmonic. We can create
the time profile of the generated harmonics by inverse Fourier transform in

the bandwidth of each harmonic.
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Figure 4.12: The modulation of the harmonic signal when Hydrogen atom
is exposed to two laser pulses, a fundamental of maximum intensity of 2 x 10'3
W/cm?2, w = 1.5 eV and total duration of 10 cycles, and a 11th harmonic pulse
of 1 x 108 W/cm?, w = 16.5 and total duration of 30 cycles. We vary the delay
between the two pulses from 0 to 22 a.u.. Colors vary from red to blue with
increasing delay.

We found the maximum amplitude for the 11th harmonic to be shifted by
a cycle of the fundamental after the maximum of the fundamental for a 10-
cycle fundamental, while, in the case of 20 cycle fundamental the maximum
was retarded by only half a cycle.

Applying now together with the fundamental the 11th harmonic pulse,
and gradually increasing its intensity, we estimate the intensity of the har-
monic pulse, needed for the harmonic production through the fundamental
and the harmonic to be comparable, to be around 10® W /cm?.

The next step is to obtain harmonic spectra as a function of the delay
between the two pulses, resulting to modulations of the spectra as shown in
Fig. 4.12 and 4.13. In the latter figure, the distortion caused by the chirp is
visible.

In Figs. 4.14 and 4.15 we show the phase resulting by applying a pulse
with a ¢(w) = 0 (reference phase) and one with a gaussian ¢(w). By sub-
tracting the reference phase from the phase measured with a pulse with a
chirp, we obtain Fig. 4.16; so even for a fundamental pulse as short as 10

cycles we can retrieve the chirp of the harmonic with an error of less than
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Figure 4.13: As in Fig. 4.12, but now the duration of the fundamental and
the harmonic is 20 and 60 cycles respectively. The top figure shows the case of a
11th harmonic pulse having no chirp while for the bottom figure, a gaussian chirp
is used. Colors vary from purple to red with increasing intensity.

10%. To subtract the phases we assumed, as in the previous section, a lin-
ear modulation frequency. Also in this case the difference of this frequency
from the frequency determined by fit is very low (< 2%) and better for the
retarded pulses. Following the same procedure for a 20-cycle fundamental
pulse, we obtain the phase shown in Fig. 4.17, which resembles the results
for the 10-cycle case.

Contrary to the third harmonic case, the subtraction of the reference
phase, obtained with a ¢(w) = 0 pulse, is vital to obtain the complete phase
profile of the pulse. Nevertheless the reference phase is smooth and in ad-
dition has an almost linear dependence on frequency (equivalently is almost
steady within tenths of a rad) for frequencies from 16.5 to 17.2 eV (10 cycle
case), which implies that in this range the reference phase is not important.
The role of the energy distance from the ionization threshold, in this case
practically one fundamental photon, on the harmonic spectra was recently

investigated in [35]. The way it affects the reference phase is not clear yet.
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Figure 4.14: The phase measured via the interference of a laser pulse of 2 x
101 W/cm? and w = 1.5 eV of total duration 10 cycles together with a sin? pulse
of w = 16.5 eV duration 10 cycles and intensity as shown in the legend. We also
show the phase of the generated harmonic by the fundamental itself. The frequency
of the modulation is assumed linear. In all figures (s) means the interference region
is shifted by a fundamental cycle after the fundamental maximum.
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Figure 4.15: Same as Fig. 4.14, but now the 11th harmonic pulse has a
gaussian ¢(w) as shown in Fig. 4.16.
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Figure 4.16: The harmonic pulse phase measured by the interference of a
10-cycle laser pulse of 2 x 103 W/cm? and w = 1.5 eV together with a 30-cycle
pulse of w = 16.5 eV and intensity as shown in the legend, having a gaussian ¢(w)
dependence as shown. Vertical arrows indicate FWHM of the harmonic pulse.
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Figure 4.17: Same as in Fig. 4.16, but in this case the duration of the
fundamental and the harmonic is 20 and 60 cycles respectively.
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Figure 4.18: The photoelectron spectrum for a laser pulse of 2x 10 W /cm?
and w = 1.5 and total duration of 20 cycles, together with a eleventh harmonic
pulse of intensity 3 x 108 and total duration of 60 cycles. Colors vary from red to
blue as the delay between the two pulses increases. The part of the PES spectrum
shown corresponds to absorption of 10,11,12 and 13 fundamental photons

PES modulation

The harmonic we consider, is high enough to enable us to look at another
aspect of its interference with the fundamental, namely the photoelectron
production. An important difference in this approach is that we cannot use
information during the ionization process, only the final PES. The harmonic
pulse ends before the fundamental pulse, so we look at the results of the
interference a few cycles of the fundamental after it is over. The ponderomo-
tive shift is practically due to the fundamental and is I/(4w?) = 1.3 eV, so
the 11th harmonic produces the peak of the PES centered at 1.7 eV (higher
by 0.1 eV due to pulse shape and duration).

In Fig. 4.19 we show a typical PES for the atom subject to a 10-cycle fun-
damental and the 11th harmonic, together with the difference of the phase of
the modulation of the ATI for a harmonic pulse with chirp and the reference
phase. The results appear sensitive to the time domain we interfere the two
pulses. When the maximum intensities of the two pulses nearly coincide,

the pulse phase we obtain is as good as when we rely on the modulation of
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Figure 4.19: We show the PES for a laser pulse of 2 x 10'* W/cm? and
w = 1.5 eV of total duration 10 cycles together with a pulse of w = 16.5 eV duration
30 cycles and intensity as shown in the legend (upper part, logarithmic scale,
arbitrary units). The lower part is the reconstructed phase profile of the pulse,
together with the actual phase profile. We plot also the phase of the harmonic
pulse shifted by n photon energy. In this figure and the following, the vertical
lines show the photoelectron energy that corresponds to absorption of 11,12,13 ...
photons.

the harmonic signal. This is not the case when the maximum intensity of
the harmonic pulse is approximately a fundamental cycle after the maximum

intensity of the fundamental.

There is another interesting feature, visualized clearly in Fig. 4.20 where
we show the modulation frequency of the PES. The first straight line on
the left is the modulation frequency predicted by perturbation theory, and
the following lines are displaced by a photon energy. The regions where
the modulation frequency is close to the frequency expected by perturbation
theory, as can be seen by comparing Figs. 4.20 and 4.19, reproduce better

the phase profile of the pulse, so modulation frequency can be used as a
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Figure 4.20: With conditions as the above figure, we show frequency de-
termined by the PES modulation, together is the modulation frequency expected
by perturbation theory (heavy dashed straight line). The following straight lines
have the same slope and are displaced by a photon energy.
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Figure 4.21: Same as in figure 4.19 but now the fundamental and the
harmonic have a duration of 20 and 60 cycles respectively. In this case the sub-
structures following the photoelectron peak are visible.
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criterion for the quality of the phase. We also examined the case of a 20-
cycle fundamental which presents similar features.

Another aspect is the influence of the substructures following the photo-
electron peak on the phase profile we obtain. In the case of a 20-cycle pulse,
two sub-peaks are visible , with a separation of 0.26 eV, close to the 0.31 eV
predicted by the 1D model in [36]. For the 10-cycle case, such substructures
are not visible in the PES, but their expected separation of around 0.4 eV,
obtained by scaling the separation for the 20-cycle case, is compatible with
the energy where the phase begins to differ strongly (indicated by arrow in
Fig. 4.19). This appears also in the case of a 20-cycle fundamental, and poses
a limit to the extent of the phase profile we can extract, which depends on

the characteristics of the fundamental pulse.

4.5.3 Reference phase

From the previous discussion it is clear that the sole limitation is the
reference phase. It is not easy to be determined experimentally, since it
would require a chirp free harmonic, which is not available at the time.
On the other hand, this one-atom study can give some indications on the
extent this parameter influences the results, and could point regions (of laser
intensity, duration ...) where it can be neglected.

A first step in this direction is to calculate the reference phase for a series
of harmonics produced from the same fundamental. For every harmonic
we followed the same procedure as in the previous sections. The intensity
of the harmonic was chosen to maximize the interference effects employing
the same “algorithm” described in the beggining. Also we were careful in
the choice of the interference region in space, where we chose the maximum
of the produced harmonic to coincide (within few harmonic cycles) with the
maximum of the harmonic we used for the interference and the duration of the
harmonic pulse. This was done by inspecting the time profile of the produced
harmonics, obtained by an inverse Fourier transform of the harmonic signal,
as shown in Figure 4.22. For the latter, we use a simple window function
to take the part of the spectrum (4 a photon energy) close to the harmonic
we want. The extended tail following the maximum observed in seventh and

ninth harmonics is an effect of the bound states in this energy range.
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Figure 4.22: Time profile of the emmited harmonics from hydrogen atom
radiated by a laser pulse of 2 x 10’ W/cm? with w = 1.5 eV and 10 cycle duration.
The label of every plot indicates the harmonic order, the thin vertical line points
the maximum intensity of the laser (at ¢ = 5 cycles)
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For direct comparison, all phase profiles calculated where shifted to be
zero at odd multiples off the fundamental frequency, and a linear slope was
subtracted to make them as flat as possible, through a subjective algorithm.

We performed this calculations for fundamental intensities of 1 x 10%3,2 x
102,4 x 10 W/cm?, photon energy w = 1.5 eV and total duration 10 cycles.
In the case the fundamental intensity was 1 x 10'® W/cm?, a part of the
spectrum was influenced by the bound states of the system, because of the low
intensity (namely seventh and ninth harmonics). The rest of the harmonics
(third, fifth, eleventh and thirteenth) showed a behaviour resembling the
behaviour at higher intensities, with the last two having a relatively high
FWHM of about 0.7 eV.

The case of 2x10'® W/cm? fundamental is presented in Figure 4.23, where
we show the reference phase for harmonics observable in this intensity. The
seventh and the ninth harmonic again show signs of influence of the bound
states of the atom in this region (10 to 14 eV). The lowest harmonics (third
and fifth) have a reference phase that is practically constant, with a smooth
variation of less than 0.05 of a rad inside the FWHM of the harmonic. The
highest harmonics (eleventh, thirteenth and fifteenth) show a phase variation
that is smaller for higher orders, starting from about 0.2 rad in the case of
the eleventh and ending at about 0.1 rad for the fifteenth (always inside the

Another point of view is to look at the modulation frequency, and its
relation to the simple linear prediction of the perturbation theory. This has
the additional advantage of potentially serving as an independent diagnostic
tool for the importance of the reference phase, since it is a direct outcome
of an experimental measurement. In Figure 4.24 we show the difference of
the modulation frequency of each harmonic to the frequency expected by
perturbation theory (1,) as a fraction of (v,). The seventh and the ninth
harmonic, that are close to bound states, show the highest deviation from
the simple linear expectations of perturbation theory. As is the case for
the reference phase, the situation gets “better” with increasing harmonic
order, and for the fifteenth harmonic the modulation frequency is practically
identical to the perturbation theory results.

Performing the same study for a higher intensity, 4 x 10 W/cm?2, we

obtain the results summarized in Figures 4.25 and 4.26. The reference phase
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Figure 4.23: The reference phase for harmonic orders three to fifteen pro-
duced by a 10-cycle fundamental of 2 x 103 W/cm? and w = 1.5 eV. The order of
the harmonic is shown on the top of each plot. The shaded region marks the full
width half maximum of the harmonic intensity.
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Figure 4.24: For conditions as in figure 4.23 we show the difference of the
modulation frequency of the radiation intensity of each harmonic to the frequency
expected by perturbation theory (vp) over v,. The horizontal red lines indicate
+5% difference from v,
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appears slightly worst for the lowest harmonics (third anf fifth), but is im-
proved in the case of the seventh, where it fluctuates less than a tenth of
a rad, and the ninth. For the eleventh, the phase is constant for an extent
bigger than its FWHM. The following harmonics have a fluctuation of at
most few tenths of a radian. The modulation frequency indicates some prob-
lems for the third harmonic, but for the higher ones is in good agreement
with perturbation theory. The highest harmonics, appear to have a high
bandwidth, a FWHM increasing from 0.7 (15th) to 1.0 (21st) eV, and their
reference phase is not better than the case of lower fundamental intensity
(2 x 10" W/cm?).

4.6 Conclusions

We have been able ([37]) to retrieve the phase profile of a harmonic
through its interference with the fundamental on the harmonic radiation
produced, for short pulses (10 and 20 fundamental cycles). We observe a
systematic tendency for the phase profile to be flattened in all the cases we
examined, the cause of which remains an open question. Nevertheless the
discrepancies are small.

In the case of the third harmonic, the phase determined solely by the
modulation is very close to the actual phase of the harmonic, without the
need for a subtraction of a reference phase, since the later is practically zero.

On the contrary, for the 11th harmonic this is not the case, because the
reference phase is not linear with w, so it is important to be taken into
account. If we calculate this reference phase, by interference with a pulse
without a chirp, we are able to create the phase profile of the pulse, with
good accuracy. An important point for the 11th-harmonic case is that the
results of the interference, when the maximum of the harmonic pulse is close
to the maximum of the harmonic produced by the fundamental, are found
to be better.

We have also used the PES modulation, in the case of the 11th harmonic,
and reconstructed the phase using the same procedure. The results appear
to be more sensitive and limited by the structure following a PES peak.
Nevertheless, the extracted phase profile can be of the same quality with

those based on harmonic modulation. Also, an interesting feature is that
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Figure 4.25: The reference phase for harmonic orders three to twenty one
produced by a 10-cycle fundamental of 4 x 10'* W/cm? and w = 1.5 eV. The order
of the harmonic is shown on the top of each plot. The shaded region marks the
full width half maximum of the harmonic intensity.



4. Characterization of Harmonics

0.1 01 -
0 /-’ 0 /
-01 /] } -01
35 4 45 5 55 65 7. 75 8 85
0.1 0.1
0 0 e
-01 -01
95 10. 105 11. 115 125 13. 135 14. 145
f— 0.1 0.1
~— _ A\
0 0
N
<4 -0.1 -0.1
155 16. 165 17. 175 185 19. 195 20. 205
0.1 0.1
0 0
-01 -01
215 22. 225 23. 235 245 25. 255 26. 265
0.1 0.1
0 0
-01 -01
275 28, 285 29. 295 31 315 32. 325

Photon Energy (eV)
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+5% difference from w,.
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4.6 Conclusions

phase information is found also in the peaks that follow.

We performed a study of the importance of the reference phase. The
results show that the intensity of the fundamental influences the reference
phase especially for energies close to bound states. Higher intensities make

bound states less important in the dynamics of the atom.
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CHAPTER 5

ELECTRON ANGULAR DISTRIBUTIONS
IN TWO-PHOTON DOUBLE-IONIZATION
OF HELIUM

5.1 Introduction

Although single-photon double ionization can only be direct, requiring
correlation in either the initial or the final state (and in reality in both)
multiphoton double ionization is considerably more complex. Under most
circumstances, it is dominated by sequential single-ejection processes and it
is only under special conditions that direct multi-photon double ionization
can be identified and studied. After the unequivocal detection of the process
by Walker et al. [15], in the strong field long-wavelength multiphoton (high
order, non-linear) regime, it is only quite recently that the angular distribu-
tion of the emitted electrons was explored by Weber et al. [38,39] through a
novel technique (COLTRIMS). Much insight into the underlying mechanism
has been provided by Becker and Faisal [40,41] who have pointed out the

dominant influence on the correlation that is responsible for the behaviour.

Yet, processes in which direct double ejection can be dominant and/or
unequivocally separable from the sequential are rare, and to the best of our
knowledge at this point it is only in two-photon double ionization of He that
a clear signature of double ejection has been identified by Kornberg and Lam-

bropoulos [42] for photon energies around 45 eV. What makes this photon
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5. Electron angular distributions in two-photon double-ionization of helium

energy special is the energetically impossible single-photon ionization of the
ion, making thus the sequential process of third order, while the direct is one
order lower (Figures 5.1,5.2). In addition, the photoelectron energy spectrum
is such that all electrons of kinetic energy below 10 eV represent direct double
ejection, while the energy peaks corresponding to single-photon ionization of
the neutral and two-photon ionization of the ion (sequential) appear at 20.5
eV and 36 eV, respectively; well separated from the direct-double-ejection
signal, whose continuous energy spectrum extends from zero to 10 eV (Fig-
ures 5.3,5.4). Given that the ionization potential of any neutral two-electron
atom is smaller than that of the ion, it is always possible to find a photon
energy range in which the above conditions are satisfied. This provides a
rather unique context for the study of correlation on the two-photon double
ejection, because this process unlike its single-photon counterpart can also
take place without any correlation. It can, in fact, do so even in the limit
of non-interacting electrons. Taking advantage of recent progress in ab ini-
tio quantitative theory of multiphoton double ejection, we have explored the
photoelectron angular distribution of the direct two-photon process and it is
the purpose of this chapter to report the main features, emphasizing certain
somewhat surprising results, such as the tendency of the two electrons to
be emitted in the same direction with higher probability when correlation is
included than when it is not. The possibility of including correlation to the
desired degree is one of the advantages of the approach, which in many ways

is complementary to that of Taylor and collaborators [43, 44].

5.2 Atomic basis

Specifically ! , for the case of helium, we derive the matrix equations

resulting from the two-electron Hamiltonian using basis states of the type

Ne,Ns

Uh(rirs) = 3 cowm (B) @y (11,72) (5.1)

nll',n!

where the basis channel wave functions ®*

oy are LS-coupled antisymmetrized

products of the one-electron target radial function Py(r),n = 1,2,..., N,

!The method is presented in more detail in the last part of Chapter 1
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Energy (eV)
Het++ - 0.0
He+(2s) -13.6
Y,
Y
He+(1s) -54.4
He(1ls?) -79.0
Sequential Direct

Figure 5.1: (I) Sequential versus Direct double Ionization of He. For photon
energies higher than 54.4 eV sequential ionization happens by absorption of (14 1)
photons. Direct requires 2 photons.

Energy (eV)
Y>
Het+(29) -13.6
Y
Het(1s) -54.4
He(1s?) -79.0
Sequential Direct

Figure 5.2: (II) Sequential versus Direct double Ionization of He. For
photon energies lower than 54.4 eV and higher than 44.5 sequential ionization
happens by absorption of (1 + 2) photons. Direct still requires 2 photons.
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5. Electron angular distributions in two-photon double-ionization of helium
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Figure 5.3: The photoelectron energy spectrum of He for the photon energy
w = 1.65 a.u. (55.8 eV). The laser pulse has duration 7 = 50 fs and intensity 10'!
W /cm?. Broken curve, sequential contribution; dotted curve, direct contribution;
full curve, total contribution. Figure taken from [42].
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Figure 5.4: The photoelectron energy spectrum of He for the photon energy
w = 2.05 a.u. (44.9 eV). The laser pulse has duration 7 = 50 fs and intensity 10!
W/em?. Below 11 eV the contribution comes from the direct channel, whereas
above 11 eV it comes from the sequential channel. Figure taken from [42].
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5.2 Atomic basis

constructed in a spherical box of radius R with vanishing asymptotic condi-
tions at the boundaries and the B-spline functions B, (r),n' = 1,2,..., N
of order k, defined in the region [0, R}:

P, B,
A nl Pn
@nln'l’ (7’1, 7'2) = A12—

T2

YLML(TAl,’FAQ;l,lI) (52)

where Aq is the two-electron antisymmetrization operator. Classification of
the states through the index n, denotes the discretization of the spectrum
of the eigenstates of the core (He™) ¢; and should be understood as charac-
terizing both negative energy states (bound) when €, — € < 0 and positive
states (continuum) when €, — ¢ > 0. The two-variable angular function
Y71, is just the projection of the total angular momentum state |LM},) onto
the independent electron states |Im, "'m/) [20].

Expanding now the field-free Hamiltonian of helium Hj on the basis (2),
the variational method transforms the coupled-channel Schrédinger equations
of the system to a linear algebraic equation problem [8,10], with coeficients
depending on the energy of the one-electron core states and interchannel cou-
pling potentials (configuration interaction) [20]. For an energy of the whole
system E, such that NN, channels are open (¢, < E,n=1,2,..., Ny), for each
channel ¢, Ny linearly independent vectors result. Physically, this reflects the
Ny different asymptotic boundary conditions, corresponding to each chan-
nel. The discretized channel wave functions we obtain in this procedure
are not normalized, thus satisfying arbitrary boundary conditions. Recalling
the correct boundary conditions, which continuum channels resulting from
a photoionization process should satisfy, allows us to normalize the discrete
states of positive energy in order to properly represent the physical states of
the system.

The channels 1%, = |ELSMpMg;ell') contributing to the final state are
characterized by the quantum number of the core target state (¢;() (electron
“1”) and the quantum numbers (¢’;1') of the other electron (electron “2”),
subject to the relation € + ¢’ = E, and with land [’ restricted by angular and
parity addition rules so as to result in a state with L, S angular and spin
momentum. We separate single- from double-ejection final states as follows:
Final channel states with one-electron core states (He™) of € negative (e < 0)
contribute to single ejection (He™), while all of the rest (¢ > 0) contribute

to double ejection. With the above in mind, the procedure for calculating
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5. Electron angular distributions in two-photon double-ionization of helium

the above formula is the following: We first construct the bound states of
the system using fixed boundary conditions (FBC), namely, the two-electron
wave functions assumed confined in a spherical box of radius R = 40 a.u. with
nodes at the two edges 9(0,0) = (0, R) = ¥(R,R) = 0. For the ground-
state energy, we obtain F, = 78.467 eV to be compared with the exact
value £ = 79.002 eV calculated by Pekeris [45]. Next, the multichannel
continuum states are calculated with no assumed boundary conditions for
the symmetries up to L < 7. For this, we allow only channels with /,I’ < 4
and energies corresponding to the bound and continuum spectrum of He™.
Having obtained the above two-electron field-free LS-uncoupled states,
we are in the position to calculate the corresponding dipole matrix elements
between those states. These dipole matrix elements and the energies of the
two-electron states are the only dynamical quantities that enter the two-

photon cross-section (see the explicit form below).

5.3 Photoelecron angular distributions

The N-photon transition amplitude, in the context of lowest-order per-
turbation theory, from the initial state |g) to the final continuum |f) is given
by

M](c;\f) _ ¥ . ,/Nil <f|Dé|VN_Alzd-(1'/.)<V1|Dé|g>’ (5.3)

Aw(v) = [wg+ (N =Dw—w,n-1] - [wg +w—w,].

The two-electron continuum final state in an LS-coupling scheme is expressed
as [20]

K, m K mi) =Y Y N i ety ()Y (K)Crag | Asell’), (5.4)

A Im Um
where Cpyr, Csng (Glebsch-Gordan coefficients) project the total orbital and
spin angular momenta |LM),|/SMg) onto the independent electron states
|lmmg;I'm'm’). The channel functions |A;ell’) should be understood as
|EA;€ell'y = |[ELSMpMg;ell'). The sum overA should be understood as the
sum over the angular quantum numbers LM SMg. The long-range phase

shifts for a Coulomb potential with z = 2 are given by 6§, = arg[l'(l + 1 +
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5.4 Results and discussion

i/+v/2¢)]. Tt should be emphasized, however, that the final state employed in
the calculation is correlated and not a product of two Coulomb functions.
The above equations lead to a two-photon cross-section of the form

2

At
46, (E) _ o (ora)2? , (5.5)

= M (k, k'
deQkol ( ’ )

with

M@ (k= > e 010y, Vi (k) Vi, () D (Asell’).  (5.6)
Aslm,'m/!
For a two-photon transition, starting from the ground state of He, the only
final states allowed are those with L = 0,2 and assuming the light to be
linearly polarized, only states with My = 0, L = 0,2 need be considered:

5.4 Results and discussion

First, we would like to point out some important differences from the case
of single-photon double ejection.

Single-photon double ejection is impossible without any correlation be-
tween the two electrons. Electron-electron interaction (or correlation) must
be included either in the ground or in the final state, and strictly speak-
ing in both. This is in contrast to the two-photon (or multiphoton, more
generally) case where interaction between the two electrons is not necessary
for double election to be possible. One of the electrons can, in that case,
interact with the field independently of the other, with the two-photon am-
plitude factoring into a product of two amplitudes; provided of course the
sum of the energies of the two photons is suficient to eject two electrons.
But for interacting electrons and hence correlation, the two-photon process
presents a rich structure, since in addition to the initial and final state, we
have the virtual intermediate states whose correlation can be as important.
We should further note that, in the two-photon double ejection, we can have
equivalent electrons (ele'l’; s, p?, d?) in the final state while for single photon
we have (ele'l’;1 # 1'). This feature, especially when the two electrons share
the excess energy almost equally, makes their interaction more significant,
since the angular correlation in that case is stronger compared to that of

non-equivalent configurations.
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5. Electron angular distributions in two-photon double-ionization of helium

In the case of equal energy sharing between the two electrons, Maulbetcsh
and Briggs [46] have pointed out that from symmetry reasons of the final state
(1P°), the transition amplitude (M (k; —k)) of the single-photon absorp-
tion when the electrons have opposite directions vanishes (selection rule C in
the review by Briggs and Schmidt) [47]. In the two-photon process, however,
where the symmetry of the final state is S and D (within dipole approxima-
tion as in our case) the previous conclusion is no longer true. This can be seen
from the following argument: From inversion symmetry the two-photon tran-
sition amplitude is (eq. (6)) M@ = (k;,ky) = (1) (=1)Pr MP (~k,;, —k,),
with P;, Py the parities of the initial and final symmetry, respectively. There-
fore, since P, = Py and for k; = —k, , we see that, in principle, from sym-
metry reasons there is no vanishing probability for the two electrons to leave
the core in opposite directions. We should also note that it is not the multi-
photon nature of the process that makes this difference, but basic symmetry
requirements of the final wave function. Thus, in coincidence experiments
with more than one photon, it is possible to distinguish an even or odd

process (in number of photons) by exploiting this simple basic principle.

Our approach enables us to include in the final state as many partial
waves as desired, investigating thus the role of correlation. For example,
keeping only the p? component of the final state gives the shape (but not the
magnitude) corresponding to non-interacting electrons. In Figures 5.5 and
5.6, keeping fixed the emission angle of one electron (6 = 0°) parallel to the
polarization axis of the laser, we plot the angular distribution dependence of
the second one (#') on the relative energy sharing, using two different total
energies corresponding to photon energy of 44.3 and 44.9 eV. In those figures
we see that there is a clear tendency of the two electrons to eject in the same
direction, around the angle ;5 = #' — # = 0 when sharing almost equal en-
ergy. When the two electrons have a rather large difference in energy (a) it
is as if one of the electrons absorbed all of the two-photon energy and then,
making a “soft” collision with the electron in the core, caused it to escape
(shake-off mechanism). In this case configurations of the type “sd+pf+..."
are expected to dominate in the angular distribution leading thus to signifi-
cant probability for angles other than the preferred angles 615 = 0, 7. In both
figures a lobe is apparent at about #;5 = 135° characteristic of configurations

with angular momentum larger than one. For almost equal energy sharing
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5.4 Results and discussion

Figure 5.5: Angular distribution of the second electron assuming the first
was emmited at § = 0, as pointed by the arrow, coinciding with the polarization
of the laser. The plot is in spherical coordinates, i.e the probability to find the
electron as a function of #’ and ¢'. For these plots: photon energy is w = 44.9 eV
and energy shared as: (a) e = 9.52 eV, € = 1.63 eV, (b) e =7.89 €V, ¢ = 3.26 eV,
(c)e=734eV,e =381l¢eV, (d) e=5T1eV, e =544 V.

(d), it appears that p? (predominantly) configurations contribute more sig-

" configurations, thus

nificantly overwhelming the influence of "sd + pf ...
giving an angular distribution which has a maximum at value 6,5 = 0° and
small probability for the two electrons to eject in opposite directions. The
lobes at relative angle 615 = 135° now have smaller relative amplitude than
the lobe in 6,5 = 0° .

Assume for the moment that each of the electrons interacts with the
field (absorbing one photon) independently of each other and then evolves in

time. Then, the two electrons would tend to leave with equal probability in
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5. Electron angular distributions in two-photon double-ionization of helium

Figure 5.6: Same as in Figure 5.5 but with photon energy w = 44.3 eV and
energy sharing as: (a) e =8.02 eV, ¢ =2.17 eV, (b) e = 6.93 eV, € = 3.26 eV, (c)
e=16.39 eV, e =3.81eV, (d) e=5.30eV, ¢ =490 eV.

the same or in opposite directions depending on the time elapsed between the
consecutive absorptions and the field period. As explained above, this process
is not possible for 45 eV. We must then include the Coulomb interactions
between the electrons, which will of course modify the angular distribution
leading to a pattern very different from that imposed by the field alone. For a
qualitative feeling, we plot (in Figure 5.7) the angular distribution resulting

when retaining only /,I' = 1 (eq. (8)) contribution, next to the complete one:

PAI=11'=1)= % 2cosf cos0'[DP(0,1,1) — V10D?P(2,1,1)]
m

2

+[2D?P(0,1,1) + vV10D®(2,1,1)] cos(¢ — ¢') sin f sin ¢’
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5.4 Results and discussion

A

Figure 5.7: For photon energy w = 44.9 eV we have plotted the p? part
(left plot) of the angular distribution (retaining contributions /,I’ = 1) and the
complete result (right plot). The left plot does not depend on energy sharing (in
shape). For the right plot: € =5.30 eV, ¢ = 4.90 eV.

From eq. (8) we see that fixing (', ¢’) corresponds to a “p — lobe” whose
orientation in space depends on E, ¢, and does not distinguish parallel from
anti-parallel trajectories since it is invariant under (0, ¢) — (7 — 0,7 + 0),
which is not the case for the PAD including all possible channels. This shape
of PAD is independent of the energy sharing between the electrons and only
its relative magnitude changes.

Next we show the dependence of the total ejection probability (see Figure.
5.8) of the second electron assuming the first to be emitted at (6, ¢ = 0). Note
that this is not restrictive since the PAD depends only on |¢ — ¢'| which is

symmetric under both simultaneous rotation of both electrons around the
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Figure 5.8: Total cross-section for the ejection of two electrons as a function
of the angle 6 of one of them, for different energy sharing (¢ + ¢’ = E) and photon

energy w = 44.9¢V.

@

]

y

y

0—- S
?

-
/o

Figure 5.9: For total energy of the system 44.9 a.u. we plot the PAD as a
function of 6’ — @ in the coplanar case (A¢ = 0) and different energy sharing (first
row € = 3.26 eV and second row € = 5.44 eV) and ¢ =0 (a, d),7/4 (b, e),7/2 (c,

f).
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polarization axis and reflection from the plane defined by the polarization axis
and the direction of one electron. The shape of the total ejection probability
as a function of ¢’ is obtained by the integral

T 2w
PO ~ /0 /O P(#',0,0, ) sin® 0d6d¢ (5.7)

In the last Figure (Fig. 5.9), we show the PAD for photon energy 44.9 eV
as a function of (f" — @) in the coplanar case (A¢ = 0) for various energy
sharing between the electrons. The angles presented are ' =0 (a, d),0' = 7
(b, e), & = % (c, f), while the first and the second row correspond to energies

of one of the electrons ¢ = 3.26 ¢V and € = 5.44 eV, respectively.

5.5 Conclusions

In summary, we have produced detailed results for photoelectron angular
distributions of two-photon double ionization of helium at photon energies
for which the direct process is easily distinguishable from the sequential one
[48]. Exploring the influence of correlation on the form of the distribution,
we have shown that the effect is most pronounced when the ejected electrons
share the available energy nearly equally. The explanation has to do with
the fact that, in that case, the electrons communicate more than when one
is ejected with most of the energy, while the other is “left behind”. We have
also shown explicitly that, by turning correlation on, the electrons tend to be
emitted more in the same direction instead of equally in the opposite direc-
tion, as would be the case for non-interacting, or weakly correlated particles.
This tendency has been noted also by Taylor [49], in the data of Weber et al.
(38, 39], as well as in the theory of Becker and Faisal [40,41]. Whether the
physical interpretation of the effect at different ranges of photon frequency
and radiation intensity is exactly the same, in our opinion, remains an inter-
esting question. The effects found in this paper for helium should be readily
present in almost any atom, and particularly two valence-electron atoms, at
much longer wavelength. For helium, the necessary intensity for photon fre-
quencies around 40 to 45 eV is not available at synchrotrons. It is possible
that further improvement of high-order harmonic sources might approach
that intensity, namely, something like 10'2W/ecm?. On the other hand, the
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5. Electron angular distributions in two-photon double-ionization of helium

upcoming FEL-based short-wavelength sources, in their first phase, appear

to be well suited for the observation of two-photon double ionization of He.
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