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Abstract

At the core of contemporary high performance computer systems is the

communication infrastructure. For this reason, there has been a lot of work

on providing low-latency, high-bandwidth communication subsystems for

clusters. In this work, we introduce MultiEdge, a connection oriented com-

munication system designed for high-speed commodity hardware.

We use MultiEdge to examine the behavior of edge-based protocols. We

examine the implications of building a single logical link out of multiple

physical links and we see how overheads and performance scale with the

number and speed of links. Finally, we examine the costs associated with

data copying at the 15-30 GBits/s range. We implement and show the

effectiveness of zero-copy data transfers, analyzing the impact of additional

costs associated with this approach.

We find that: (a) Our base protocol reaches almost 99.2% of the nominal

aggregate throughput for up-to 2 psychical links of 1 GBit/s link rate. (b)

When up-to 8 physical links are used, our protocol achieves up-to 65% of

the nominal aggregate throughput. (c) The impacts of interrupts and data

copies are significant, and when they are removed, protocol reaches 80% and

100% of the nominal throughput respectively. (d) With bi-directional link

rates of 30 GBits/s, data copies limits the effective throughput to about 8.8

GBits/s on our systems. (e) The use of our zero-copy mechanism results in

80-90% improvement and reaches up-to 57% of the available bi-directional

throughput. Finally, we believe that efficiently distributing protocol pro-
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cessing over multiple host CPUs emerges as the main challenge in achieving

higher transfer rates on modern architectures.

Supervisor professor: Angelos Bilas
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Per�lhyh

Ston pur na twn sÔqronwn upologistik¸n susthm�twn uyhl 
 ep�dosh
 e�nai

h upodom  epikoinwn�a
. Gia autìn ton lìgo, èqoun ergaste� pollo� �njrwpoi

gia thn dhmiourg�a uposusthm�twn epikoinwn�a
 gia sustoiq�e
 upologist¸n,

me qarakthristik� thn qamhl  kajhstèrhsh kai thn uyhl  taqÔthta. Se au-

t n thn doulei�, eis�goume to MultiEdge, pou e�nai èna basismèno se sundè-

sei
, sÔsthma epikoinwn�a
 kai e�nai eidik� sqediasmèno gia uyhl 
 taqÔthta


kajhmerinì exoplismì.

QrhsimopoioÔme to MultiEdge gia na exet�soume th sumperifor� twn

prwtokìllwn pou efarmìzontai mìno sta �kra tou diktÔou. Exet�zoume ti


sunèpeie
 th
 dhmiourg�a
 mia
 logik 
 zeÔxh
 apì pollè
 fusikè
 zeÔxei


kai blèpoume pw
 h ep�dosh kai oi epibarÔnsei
 klimak¸nontai me twn arijmì

twn zeÔxewn. Tèlo
, exet�zoume ta kìsth pou sqet�zontai me thn antigraf 

dedomènwn sto eÔro
 twn 15-30 GBits/s. UlopoioÔme kai de�qnoume thn

apotelesmatikìthta ti
 metafor�
 dedomènwn, qwr�
 thn an�gkh antigraf 


tou
, analÔonta
 thn ep�ptwsh sta epiprìsjeta kìsth pou sqet�zontai me

aut n thn prosèggish.

Br kame ìti: (a) To prwtìkollì ma
 mpore� na qrhsimopoi sei per�pou

to 99.2% th
 sunolik 
 taqÔthta
 ìtan qrhsimopoioÔntai mèqri 2 fusikè


zeÔxei
. (b) 'Otan qrhsimopoioÔntai mèqri 8 fusikè
 zeÔxei
, to prwtìkollo

ft�nei mèqri to 65% th
 sunolik 
 taqÔthta
. (g) H ep�ptwsh twn diakop¸n

kai twn antigraf¸n dedomènwn e�nai shmantik , kai ìtan aut� afairejoÔn, to

prwtìkollo ft�nei to 80% kai 100% th
 sunolik 
 taqÔthta
 ant�stoiqa.
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(d) 'Otan h amf�dromh taqÔthta zeÔxh
 e�nai kont� sta 30 GBits/s, oi an-

tigrafè
 dedomènwn perior�zoun th taqÔthta tou prwtokìllou per�pou sthn

t�xh twn 8.8 GBits/s sta sust mat� ma
. (e) H qrhsimopo�hsh tou mhqani-

smoÔ pou den k�nei antigrafè
 dedomènwn, èqei san apotèlesma thn belt�wsh

th
 apìdosh
 tou sust mato
 kata 80-90%, kai ft�nei sto 57% th
 diajèsi-

mh
 amf�dromh
 taqÔthta
. Tèlo
, pisteÔoume oti h apodotik  katanom  tou

prwtokìllou se polloÔ
 epexergastè
 fa�netai san h kÔria prìklhsh sthn

ep�teuxh uyhlìterwn taqut twn sthn sÔgqronh arqitektonik  upologist¸n.

Epìpth
 kajhght 
: 'Aggelo
 B�la
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Chapter 1

Introduction

Communication infrastructure for scalable systems has recently gone through

a wave of commoditization. Most scalable systems today, such as parallel

systems for scientific and commercial applications rely on interconnects that

plug in the I/O bus and are designed independently of the system mother-

board and CPU [7, 21, 31]. This has had a significant effect on system

cost-effectiveness and has allowed for extensive use of scalable systems in

new application domains.

However, such communication subsystems require not only the use of

specialized network interface cards (NICs) but switches as well. The result

is that scalable systems need to employ multiple interconnects for different

purposes. Typically, such systems are already interconnected with high-end

Ethernet-based networks. In addition, they require one or two interconnects

for different application domains, e.g. a system area network for compute-

oriented applications and a storage area network for access to storage. This

physical partitioning of systems based on their connectivity, results in ex-

cessive system costs and management complexity.

These existing, physically partitioned architectures are not able to sat-

isfy requirements in new application domains. For instance, emerging net-

worked storage systems require high communication throughput among stor-
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2 CHAPTER 1. INTRODUCTION

age nodes as well as between storage and application nodes. Thus, although

it is possible to use a domain-specific interconnect such as Fiber Channel

or Infiniband among storage nodes, this may not be possible for application

nodes.

A computer cluster is a group of coupled computers that work together

closely so that in many respects they can be viewed as though they are a

single computer. The components of a cluster are commonly, but not always,

connected to each other through fast local area networks.

Clusters are usually deployed to improve performance and/or availabil-

ity over that provided by a single computer, while typically being much

more cost-effective than single computers of comparable speed or availabil-

ity. 81.3% of the 500 most powerful computers are clusters, including the

fourth and the fifth fastest systems in the world, as they appear in top

supercomputer sites list at November 2007 [38].

Over the decade, many networks have been designed specifically for com-

puter clusters. These networks, such as MyriNet, Infiniband or Quadrics,

are custom made, which increases significantly their cost. Their main advan-

tage is that their custom design usually increases network speed and reduces

CPU overhead. However, Ethernet-based networks continue to improve in

speed, This, combined with the low cost of Ethernet hardware, makes a large

number of scalable systems use Ethernet. For instance, 66.5% of the cluster

systems in the Top500 list use Gigabit Ethernet as their interconnect.

The main difference of the communication subsystems used traditionally

in scalable systems has been the degree of support required from the network

for the communication protocol. Based on this, we can divide interconnects

in two categories: core-based and edge-based.

Most cluster interconnects today are core-based, e.g. Myrinet [7], Infini-

band [21], and Quadrics [31]. These interconnects rely on the network core,

i.e., the switches for providing FIFO ordering, flow-control, and reliable com-
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munication. On the other hand, edge-based interconnects, such as Ethernet,

incorporate all “intelligence” at the networked edge, i.e., NICs and hosts,

and only simple forwarding functions are required from the network core.

Besides this important difference, both core- and edge-based interconnects

are already relying on the same type of physical links, i.e., 2.5-10 GBit/s

serializers-deserializers.

An emerging aspect of high-end communication subsystems that may

further blur differences is the use of spatial parallelism. Spatial parallelism

is a new dimension in the design of high-end interconnects that uses multiple

physical paths in a decoupled manner to carry the traffic of a single, end-

to-end communication channel. Multiple links are already used today in

high-end communication systems for byte-level parallelism: A single data

unit sliced in bytes, is transmitted over multiple physical links that are

tightly controlled by the sender and the receiver. However, as the number

of links increases, it becomes difficult to control the links tightly and to

achieve efficient byte-level parallelism.

Another approach to exploiting spatial parallelism is to transparently

send full frames on top of separate links. We believe that for technol-

ogy reasons similar to multi-core CPUs, the use of spatial parallelism in

this decoupled manner will be a main factor in improving communication

throughput. However, such systems may exhibit increased congestion, out-

of-order delivery, and impose increased processing demands at the edge of

the communication subsystem.

Given the lower cost and proliferation of edge-based networks, such as

1- and 10-Gigabit Ethernet, it becomes important to examine protocol lay-

ers that can support traditional end-to-end communication semantics and

spatial parallelism for serving different application domains.
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1.1 Thesis Contributions

In this thesis we present the design and implementation of an Edge-based

communication subsystem, MultiEdge, which uses Ethernet and provides

RDMA-type operations, FIFO ordering, reliable transmission. Then, we

focus on data copies and show how we can avoid them, and the result of this

change on system’s performance.

Our contributions are:

1. We show how MultiEdge is able to support spatial parallelism. We

also present a novel communication API that allows users to send

data out-of-order in a single communication channel.

2. We design and implement zero-copy transfers, using commodity hard-

ware, without hardware specific functions, and we present the associ-

ated challenges.

3. We use MultiEdge to examine in detail the impact of edge-based pro-

tocols on network traffic and system performance. We examine and

understand the overheads in building high-throughput logical links by

using a number of physical links and how overheads scale at the host-

to-link interface. We investigate the impact of copying, interrupts, and

packet scheduling over multiple links.

We find that our protocol can deliver about 99.2% and 66% of the nom-

inal throughput when we use a single 1 and 10 Gbit/s physical link respec-

tively. On the other hand, the use of multiple links is limited by inter-

rupt and copy overheads. Replacing interrupts with polling results in sim-

ilar maximum throughput (800 MBytes/s) in 8x1 and 1x10 configurations,

limited by memory copies. Artificially removing protocol copies results in

achieving 100% of nominal throughput with the one-way test in all link

configurations.
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Furthermore, when we use a 15 Gbit/s per direction network, copying

limits maximum one-way throughput to about 7.7 GBits/s at 100% CPU

utilization. Using our page remapping technique, we can achieve a maximum

one way throughput of about 14.7 GBits/s out of ideal 15 GBits/s, whereas

two way throughput increases to about 17 Gbits/s. However, overheads

are more balanced and interrupt processing, remapping, packet processing,

and NIC accesses all contribute significantly to CPU utilization. Finally, we

find that the cost of page remapping mechanism itself is not very costly on

today’s CPUs, given that we already cross the kernel-user boundary once.

Overall, our work shows that edge-based protocols have the potential for

significantly reducing the cost of scalable systems in the range of a few hun-

dred nodes. We believe that appropriately distributing protocol processing

on multiple cores of current future CPUs will result in end-to-end through-

put in the range of 15-30 GBits/s reducing the performance gap between

commodity and specialized interconnects.

Finally, the work in this thesis has appeared in [22, 29, 30].

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the design

and implementation of MultiEdge. We present and discuss our experimental

platform and results in Chapter 3. Chapter 4 refers to related work. Finally,

we summarize our work and draw conclusions in Chapter 5.
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Chapter 2

Design

2.1 MultiEdge

MultiEdge is organized as three layers: the hardware drivers, the kernel

level protocol layer, and a user-level library that interface applications to

the kernel parts, see Figure 2.1. The Ethernet hardware drivers access the

Ethernet hardware directly and provide a hardware independent interface

to the protocol layer. The drivers perform hardware initialization, Ethernet

frame reception and transmission, and low-level interrupt processing. The

protocol layer is hardware independent, implements the programming API

and adds higher level functionality such as end-to-end flow control, reliable

data transfer, and high-level interrupt processing.

2.1.1 Communication primitives

MultiEdge provides a set of point-to-point, connection-oriented communi-

cation primitives; Before any communication can occur between two nodes,

a connection has to be set up between the nodes. The programming API

of MultiEdge has two primitives for this purpose: connection_wait and

request_connection. The first one blocks until a connection is established

while the second one initiates a connection to another node. For a connec-

tion to be established one node will have to execute connection_wait and

7



8 CHAPTER 2. DESIGN

User level

Kernel level

    User application

        Library

   Protocol layer

      Ethernet

     Hardware

         Ethernet 

Hardware drivers

 Kernel

Figure 2.1: Overview of MultiEdge layers

the other will have to execute request_connection.

Once a connection is set up, communication is based on asynchronous

remote memory operations. Currently, there are two remote memory op-

erations: remote read and remote write. Each operation can access all the

virtual address space of a process executing on a remote node. Both oper-

ations are fully asynchronous and are initiated by a single communication

primitive that allows pointer arithmetic to remote addresses:

int RDMA_operation(connection,

remote_address,

local_address,

transfer_size,

operation,

flags);

connection refers to the connection on which the operation is initiated.

remote_address and local_address indicate the virtual addresses on the

remote and local nodes respectively. transfer_size specifies the size of
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the data in bytes. operation specifies whether the operation is read or

write. A remote memory write operation will cause a memory region of size

transfer_size bytes starting at address local_address to be copied to

the remote node at address remote_address. Similarly, a remote memory

read operation will cause a memory region of size transfer_size bytes

starting at address remote_address at the remote node to be copied to the

local node at address local_address. flags is a bit-field of various options

that modify the behavior of operations. Each operation can, when initiated,

return a handle. The programmer can query the progress of each issued

operation using the operation handle with the query_event primitive.

One important aspect of MultiEdge’s API is that although the API in-

cludes primitives for registering memory regions, receive buffers need not be

pre-registered. Data is instead copied directly into the virtual address space

of the receiver.

Finally, the API provides a mechanism that delivers a notification to

the remote node when selected remote memory write operations have fin-

ished. The programmer selects the remote memory write operations that

will cause the delivery of notifications by setting a bit in the flags bit-field

when invoking the RDMA_operation API call. Notifications are important

to support asynchronous communication that is essential, e.g. for storage

subsystems, and can be used to trigger handlers for incoming data.

2.1.2 Flow control

MultiEdge uses end-to-end flow control to ensure reliable communication.

All operations and transfers are guaranteed to complete in the presence

of dropped Ethernet frames due to transient problems, e.g. contention,

bit errors, or transient link failures. We use a sliding window flow control

algorithm with a fixed size window. The flow control algorithm operates on

an Ethernet frame basis. The size of the window is set at compile time and

the current default value is 512 frames.
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The default behavior of MultiEdge is to deliver frames in-order. The

receive and transmit paths each have a data buffer that is capable of holding

as many Ethernet frames as there can be in the flow control window. These

buffers are used for retransmissions and to reorder frames so that in-order

delivery is achieved.

The receive path uses positive acknowledgments to notify the sender of

received frames and negative acknowledgments to report back lost or dam-

aged frames that need to be retransmitted. MultiEdge uses piggy-backing

to reduce the number of explicit acknowledgments. All data frames carry

positive acknowledgment information. Thus, when there is two way traffic

in the system there is no need for explicit positive acknowledgment frames.

To further reduce the number of explicit acknowledgments, MultiEdge

uses delayed acknowledgments: it will defer transmission of explicit posi-

tive or negative acknowledgments until after a number of frames have been

received or dropped or a time-out occurs. We tune the related values exper-

imentally to 48 frames for delaying positive acknowledgments, 256 frames

from delaying negative acknowledgments, and a timeout period of 5ms.

Finally, to ensure data is delivered even in corner cases, such as link

failures and lost acknowledgments, the sender will retransmit the last trans-

mitted Ethernet frame if it has not received a positive acknowledgment for

that frame within a coarse-grain timeout period.

2.2 Data Flow

For a more-in depth understanding of MultiEdge, we describe the transfer

path for a remote memory write operation. We describe in detail both send-

and receive-path packet processing.

In general, a single remote memory operation can generate several Eth-

ernet frames if the operation data does not fit in a single Ethernet frame.

Maximum Transfer Unit (MTU) is defined in network layer of MultiEdge,
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Figure 2.2: Send-path packet processing.

and network interfaces use it. Each Ethernet frame carries at the end a 32-

bit cyclic redundancy check (CRC). The CRC covers all parts of the frame

including the Ethernet header and is used at reception to verify that no bit

errors have occurred in the transfer. The entire Ethernet frame is discarded

if any bit errors are found.

We note that MultiEdge allocates all send- and receive-path buffers dur-

ing initialization and re-uses buffers as soon as packets are delivered to the

network (send path) or the application (receive path).

2.2.1 Transmit Path

Figure 2.2 shows the data path for each outgoing packet: (1) A number

of new buffers are allocated in the kernel for an application send request

(message). Each buffer is used to store one outgoing packet. Each buffer

may consist of multiple pages, depending on the maximum allowable packet

(frame) size. The header of each packet is filled in the corresponding buffer.

(2) Then, the payload of each packet is copied from the user-space buffer.

(3) A number of hardware descriptors is allocated, initialized, and copied

to the network device memory. Each descriptor is used by the network

interface to locate one packet buffer in the host memory and transfer it to

the network interface (NIC) using DMA. (4) When the DMA from the host

memory is complete, the NIC produces an interrupt to the host, to free
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Figure 2.3: Receive-path packet processing.

the corresponding descriptors for future use. Send-path packet buffers are

re-used only after the remote node acknowledges the corresponding packets.

2.2.2 Receive Path

Figure 2.3 shows the data transfer path for each incoming packet: (1) When

an incoming packet is received, it is initially stored in the NIC memory.

The next available descriptor on the NIC tells to the hardware where the

packet should be stored in the host memory. The NIC uses DMA to transfer

the packet (both header and payload) to this location. When the DMA is

complete, if the NIC interrupts are enabled, the NIC interrupts the host to

signal the new packet arrival. The communication layer interrupt handler

is invoked by the host kernel to handle the new packet arrival. (2) Depend-

ing on ordering constraints, if the incoming packet can be processed, the

protocol copies the payload from the kernel buffer to application buffer in

user-space. (3) After the packet is delivered to the application, the kernel

buffer is returned to the receive buffer pool and re-used for subsequent in-

coming packets. This requires re-initializing an existing, unused descriptor

and writing the descriptor to the NIC. (4) When the protocol has no more

work pending, it polls all devices for incoming packets. If there is no work

to be done, the receive path enables NIC interrupts and goes to sleep.
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2.3 Avoiding Copies

Except from the data transfer from host memory to the network interface,

existing network protocols copy the payload data from the user-space buffers

to the kernel-space buffers. Thus, for each data transfer over the network,

data should cross over the memory bus at least three times on existing

communication protocols. In a high-speed network, these memory transfers

may become the bottleneck of system’s performance.

To avoid memory copies, page remapping [8, 9, 11, 13] has been pro-

posed earlier to eliminate the copy operation. Instead of copying the data

between user and kernel buffers, the idea is to use virtual to physical address

translation, page pinning, and page remapping to allow the application and

the kernel to directly access the payload during packet sending or delivery.

However, the proposed mechanisms require hardware support to avoid

copying the data which cannot be applied to a generic networking proto-

col. Moreover, some of these mechanisms can cause a copy-on-write as a

penalty of removing the data copy overhead. Thus they don’t avoid the

copy overhead in the generic case, but it just postpone it when the first

write occur.

We now examine how these techniques can be used to avoid memory

copies when transmitting or receiving data (operation (2) in Figures 2.2

and 2.3). Each of the send and receive paths requires different techniques

and thus, we discuss them separately.

2.3.1 Send path

The first challenge in the send path is accessing and transferring data directly

from the user buffer. Typically, when a user performs a remote memory

operation, data is copied from user to kernel space and into a pinned buffer

that has been registered with the network interface. To eliminate this copy,

we need to dynamically provide the NIC with the physical address of the
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user buffer and to pin the buffer for the duration of the DMA. Furthermore,

each buffer may consist of multiple virtual or physical pages and physical

pages may not be contiguous in memory.

To pin a page into memory we walk the process’ page table, locate the

page structure, and increment the reference count of the page. The same

process can be used to perform virtual to physical translation. Both of these

operations can either be performed during buffer registration or during the

communication operation itself. The first has lower overhead, especially if

we assume that communication in programs exhibits locality and registra-

tion operations are less frequent than remote read/write operations. How-

ever, the latter approach does not require keeping large portions of memory

pinned.

In this work we use the first approach and pin the pages once during

registration. To avoid accessing the OS page tables at each read/write op-

eration for obtaining the physical address of the buffer pages, we maintain

a protocol page table that contains the virtual to physical translations of all

registered (and pinned) buffer pages.

A second design decision is related to synchronous communication opera-

tions. Synchronous remote write operations return to the initiator as soon as

the data have been read from the user buffer and the application can modify

the buffer without affecting the previous write operation. Thus, synchronous

operations can return either after the DMA on the send path is complete

or before the DMA completes, if there is a mechanism to detect subsequent

application accesses to the communication buffer. Copy-on-write has been

used in the past to detect such accesses [13]. In our design we simply choose

to return from the the initiating call after the DMA has completed. How-

ever, asynchronous write operations return as soon as the DMA has been

posted, without waiting for the transfer to complete.

The second challenge in the send path is related to add the packet header
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to the payload provided by the user application. Placing the buffer and the

payload in a single buffer would require copying the user data. Instead

we make use of the gather-DMA operation that is available on many NICs

today. With gather-DMA, a single packet uses multiple descriptors, one for

each buffer that contains part of the packet data.

2.3.2 Receive path

The protocol receive path is more involved. Data copying is required because

the buffers used for delivering data from the network are typically allocated

in the kernel, independent of the application buffers use for communication

purposes.

Existing programmable network interfaces [7, 32] allow applications to

directly post receive buffers from user level to the network interface. How-

ever, this ability requires extensive NIC support. It requires the ability

to parse packet headers, detect and interpret protocol specific fields about

memory locations where the payload should be delivered, and possibly per-

form virtual to physical address translation.

In our work we assume that the NIC does not have the ability to examine

and interpret protocol specific headers and fields. Thus, when packets arrive

at the NIC they are placed in buffers that have been already registered with

the NIC by the protocol receive path. As it is not possible to predict or

regulate the order of packet arrival, especially when multiple senders are

involved, receive buffers where packets are delivered have no relationship

to the corresponding application communication buffers, where packet data

should be delivered.

To address this problem, we can use page remapping at the kernel level,

and replace the user-level communication buffers with the kernel buffers

where packet data has need delivered by the network interface (using DMA).

This will result in delivering data to the application without copying them

over the kernel-user boundary. However, page remapping for this purpose,
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requires addressing four main problems:

• Implementing the page remapping itself.

• Replenishing receive buffers that have been handed over the applica-

tion.

• Dealing with packet headers that proceed application data.

• Splitting large messages to multiple packets and inducing minimal data

copying at the receive path.

Page remapping

Let’s assume that both the kernel and user buffers are aligned to a page

boundary and have the same (page) size. Mapping the physical page of the

kernel buffer to the application buffer requires a walk through the receiv-

ing process’ page table, identifying the entries that describe the application

buffer, and replacing the physical page with the physical page of the ker-

nel buffer. However, implementing this requires modifying the OS memory

manager, which is an intrusive approach and imposes portability restrictions.

Instead, to achieve this effect without having to modify the operating

system memory manager code we use the following technique. When a

memory region is allocated by an application, the corresponding entries in

the page tables are created. However, the physical pages for this entries are

allocated when the virtual pages are actually accessed. For this reason the

Linux OS defines a no page() function pointer per mapped memory region

and calls this function to allocate the empty page table entries. In our

implementation we replace the generic no page() function with a protocol-

specific handler that instead of allocating a new page, it returns the physical

page number we want to re-map the user buffer to. Then we invalidate the

user virtual pages that correspond to the application buffer (by clearing the

corresponding page table entry of the old page) and we generate a fake write
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fault on the application page. This fault results in the memory manager

invoking our no page() handler, which in turn returns the kernel buffer

page number that contains the packet data.

Then we flush the TLB entry for the user page. Finally, we examine if

the user page was pinned into memory by the send path, in which case we

also pin the new page and update our protocol page table used by the send

path. Although the actual implementation of page remapping is somewhat

more involved, we omit here some of the details. Later in this section we

discuss buffer alignment issues.

Replenishing kernel buffers

After a kernel buffer has been remapped to the application, we need to

replace it with a new buffer. This “replenishing” of kernel receive buffers

can happen in two ways: (a) either by allocating a new kernel buffer or (b)

by using the physical page that was freed from the user buffer. To avoid the

cost of buffer allocation, we use (b) and we place the physical page of the

user buffer as a receive buffer for a NIC descriptor.

The last issue with replenishing kernel buffers is packets that require

multiple pages. For performance purposes the packet MTU in Ethernet-

based networks can exceed a single page. For instance an MTU of 9000

bytes may require a receive buffer of size up to three pages for delivering a

single packet. Thus, kernel buffers in the receive path need to be allocated in

a manner that allows for individual, non-contiguous pages to be remapped

and replenished. Thus, each buffer consists of a descriptor with pointers

to multiple pages (depending on the MTU). This in turn requires the NIC

to be able to handle descriptors with multiple pointers to physical pages.

This feature however, is already available to many NICs as it is used also

by certain TCP/IP implementations and offloading mechanisms.
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Hth Nth(H+1)th1st

Payload Payload

(H+1)th 1stNth Hth

Figure 2.4: Header and data placement. H and N are the header and data

bytes respectively.

Dealing with packet headers

Assuming that receive buffers are page aligned, we need the kernel receive

buffer that will be remapped to also contain the packet data. However,

incoming packets proceed data with the packet header. One approach to

dealing with this is to deliver the packet header and the packet data in

different. However, this requires performing variable size transfers from a

single received packets to two kernel buffers, which is not possible with

commodity network interfaces. Instead, commodity NICs, assume a pre-

defined buffer size (e.g. page) and transfer the packet (both header and

data) to as many such buffers are required by the packet size.

To address this issue we place message data in packets during packet

sending as shown in Figure 2.4. First, we assume that the NIC uses buffers

with size equal to the OS page size, e.g. 4 KBytes. This is what happens

today in most NICs. If we assume a header of size H bytes and a payload

of size N bytes, after we place the H header bytes in the packet, we skip

the first H bytes of the payload and place in the packet the rest N-H bytes.

Then, we place the H first bytes of the payload to the end of the packet.
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When the packet is received, the first H bytes of the payload are copied from

the end of the packet to the beginning of the receiver buffer overwriting the

H header bytes and resulting in a page-aligned payload. Thus, the last H

bytes of the packet that were placed on a separate buffer (as described next)

are not needed any more and their buffer can be return to the buffer pool.

Splitting large messages to multiple packets

First, we assume that the source and destination buffers have the same

alignment. Although this may not be necessary in APIs where the sender is

aware of the destination virtual address, it is not an important restriction

and it merely may increase the size of registered memory on the sender or

the receiver.

Second, if the source address of the data (and thus the destination ad-

dress as well) is not page aligned, then we create a first packet consisting of

the data until the next page boundary. This packet will be delivered to the

application using copying. This is required by the fact that the receiving

NIC starts delivering packet at the beginning of the receive kernel buffer.

When the source starting address is aligned to a page boundary or for subse-

quent packets of a large message we create MTU-size packets with the data

to be sent as follows.

Large messages need to be broken down to multiple packets of size such

that we don’t exceed the MTU size and each packet contains data that will

be delivered to a page boundary. Thus for an MTU size of 9000 bytes and

a page size of 4 KBytes, each packet will consist of a header of H bytes and

8192 bytes of data (two pages). Each packet will be delivered in three pages

due to the initial header. As described previously, the last H bytes of the

packet that are located in the third page, will be copied over the first H

bytes of the header in the first page, resulting in 8192 bytes of data in two

pages that can be mapped directly to the receiver application. Finally, the

last packet of a large message may be less than a page and thus will require
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copying, as it is not possible use the re-shuffling technique described above.

This approach does not use the maximum MTU that may be available in

the interconnect, however, given current trends in network overheads results

in significant improvements in throughput as described next.

2.4 Interrupt handling

A major concern at high network speeds is how to reduce software overheads

so that the data rates can be used efficiently. In particular, interrupts induce

a significant overhead in modern operating systems. The design of Multi-

Edge tries to minimize interrupts both in the send as well as the receive

path, as follows.

In commodity network interfaces, such as Ethernet, there are three event

classes that may require interrupts: transmission of a frame for freeing the

associated send buffer; reception of a frame for delivering to host and user

memory; and, less frequently, management events, e.g. when a network

cable has been removed or inserted. All events are commonly signaled using

one single interrupt line.

MultiEdge handles interrupts in the following way: When an interrupt

arrives, the interrupt handler disables subsequent interrupts and notifies the

protocol layer. When the receive or send protocol path is invoked by an in-

terrupt handler, it processes all pending events, e.g. send frame completions

or newly received frames, by polling each network interface. The protocol

layer enables interrupts when there are no more interrupt related events and

no protocol kernel thread is active. The protocol can take advantage of mul-

tiple CPUs by using multiple contexts for processing send or receive path

events. Receive path processing for a single user process can only happen

in a single (protocol) kernel thread.
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2.4.1 Polling

We design a version of MultiEdge that uses polling instead of interrupts

to quantify the impact of interrupt handling. To implement the polling

mechanism, when a device is registered with MultiEdge, we disable it’s in-

terrupts. As mentioned above, MultiEdge’ receive path sleeps when there

is no work to do. When interrupts have replaced by polling, receive path

never sleeps. When it has no frames to process, it polls continuously the

devices for pending and not-serviced work.

To check a device if it has pending work, we need a number of Pro-

grammed Input/Output (PIO) reads and writes. To avoid flooding the

busses from these PIOs, we limit the time between two consecutive polls

on the same device. In our current implementation we poll at 1ms intervals.

2.5 Multiple links

MultiEdge can make use of multiple network interfaces within a single com-

munication channel. MultiEdge support up-to 64 Ethernet links, which is

limited by the atomic bit operations we use. To able to take advantage of

multiple links, we need to schedule efficiently the data frames to the avail-

able links. Moreover, the use of multiple paths to reach a destination, occur

out-of order delivery of the transmitted frames, that the communication

infrastructure should handle properly.

2.5.1 Out of Order frames

To better take advantage of multiple links, it is possible to relax operation

ordering constraints. Remote memory operations that need not be ordered

with respect to other operations, may be processed at the receive path as

soon as they arrive without need for buffering. However, we believe that, to

be meaningful, out-of-order delivery can not be done indiscriminately. To

support both in-order and out-of-order delivery we extend the communica-

tion API to support the following operation flags:
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• Backward fence: This remote memory operation will be performed on

the destination node only after all previous operations issued by this

source node to the same destination have been performed.

• Forward fence: Any subsequent operation issued by this source node

to the same destination will be performed only after this operation has

been performed.

These flags are orthogonal and so a single operation can specify both

flags. The default behavior is to allow all operations to be re-ordered.To

specify ordering constraints, the programmer can use the flags bit-field of

the RDMA_operation API call. Individual frames originating from the same,

or even different, operations can be re-ordered with respect to each other if

only the semantics of the operation flags are upheld.

2.5.2 Packet Schedulers

Whenever a frame needs to be transmitted, MultiEdge uses one of the avail-

able network interfaces. For this interface selection we implement three

different packet schedulers:

1. Static round robin (SRR): schedules one packet per link in a round-

robin fashion, without any further knowledge.

2. Weighted static round robin (WSRR), where each link has a static

weight (W) which indicates its peak, relative with the other links,

speed. The WSRR schedules W frames per link before switching to

the next link in a round-robin fashion.

3. Weighted dynamic (WD), where each link has a static weight (W),

similar to WSRR. The WD scheduler dynamically estimates the num-

ber of bytes (B) already scheduled for transmission in each link and

schedules the next packet over the link with the lowest B/W ratio.
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2.6 Implementation

In the current implementation of MultiEdge, the protocol layer is imple-

mented as a Linux kernel character device driver and requires no changes

to the Linux kernel itself. The Ethernet hardware device drivers are man-

aged by the protocol layer. Both the protocol layer and the Ethernet device

drivers can be compiled as dynamically loaded kernel modules. Multiple

Ethernet hardware device drivers can be simultaneously loaded and they

can dynamically configured at run-time. This makes it possible to use mul-

tiple and different types of Ethernet controllers. The current version has

support for Broadcom Tigon 3, Intel 1000 and Myricom 10 Gigabit Ether-

net hardware.

2.6.1 Synchronization

MultiEdge uses multiple concurrent contexts for achieving high through-

put. The send path runs in the context of the calling process, the inter-

rupt context for detecting asynchronous events when not polling, and the

receive path that executes in a private protocol thread. Synchronization

among these contexts can be incur a significant overhead at high data rates.

MultiEdge uses a combination of locks and atomic operations to minimize

overheads, as follows:

• Operating system spin lock: In one occasion, when we post a send

DMA descriptor.

• Atomic compare-and-swap: In four occasions, two when a send buffer

is allocated and freed and two when sequence numbers are read and

updated in the send and receive paths.

• Atomic increment: In one occasion, at frame reception, to record frame

arrival for later processing.
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• Atomic fetch-and-add: In two occasions, when we update variables

but need to read their previous value: When reclaiming send DMA de-

scriptors after they are used and when the round-robin load-balancing

policy decides which link to use next.

Finally, we should note that further reducing synchronization requires

either reducing concurrency in the protocol or additional network interface

support, such as virtualizing the DMA post queue.
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Experimental Results

3.1 Methodology

We evaluate our system using three micro-benchmarks:

• one-way: One of the two nodes performs remote memory writes back

to back without waiting for any response from the receiving node. The

receiving node signals the end of the benchmark after it has received

all the data. This benchmark exercises the send path at the sending

and the receive path on the receiving node.

• two-way: Both nodes simultaneously perform back to back remote

memory writes. The throughput in this case accounts for all data sent

and received in each node, as both the send and receive paths are

exercised at the same time.

• ping-pong: This is a request-reply benchmark using remote memory

writes. Request and replies carry the same amount of data. Each node

waits for receiving the full data before replying.

To understand MultiEdge’ performance we use the following metrics:

• Throughput: the amount of useful payload data that has been deliv-

ered to the remote node.

25
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• Latency: one way, end-to-end, application time for delivering a mes-

sage.

• CPU utilization breakdown: the CPU time used for network process-

ing. To represent the two CPUs available in our nodes, we use a

maximum CPU utilization of 200%. Our CPU utilization results are

approximate as we cannot account for the time between a NIC issues

an interrupt, until the interrupt handler is executed on the host CPU.

For the CPU utilization breakdowns, we use the following labels:

• Poll/IRQ: Interrupt handling or polling for servicing the NICs.

• TxCopy/Translate: Overhead spent on preparing the payload in the

send path. This component includes either the pinning and translation

overheads or the data copy for the send path.

• RxCopy: The overhead of packet processing on the receive path, in-

cluding copying, where appropriate. This component does not include

the actual overhead for remapping, which is measured separately.

• Remapping: Overhead for page remapping on the receive path.

• Packet: Other protocol overhead for packet preparation processing.

This includes header preparation and processing, ordering of packets,

and flow control.

• Device: I/O overhead for communicating with the NIC both at the

send and receive paths.

Our experimental setups are consisted of two systems connected with

multiple network interfaces (NICs). Both nodes have two Opteron 244 CPUs

running at 1.8 GHz and a Tyan S2892 motherboard. The operating system

is the 64-bit version of Debian with Linux kernel version 2.6.18.8 compiled
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with GCC version 4.1.2. The network interfaces on both nodes are connected

pairwise with cross-cables without a switch.

In our results we conduct experiments with various MTU sizes. We

believe that large MTU sizes are more representative of future trends and

thus we present results for an MTU size of 9000 Bytes (Ethernet jumbo

frames).

In the rest of this chapter, we present our experimental results. We

present two evaluation setups that each of them focus on a different concept.

Sections 3.2 presents our experimental platform and our results for which are

focused on multiple links, without zero-copy transfers. Sections 3.3 present

our experimental platform and our results for which present results using

our protocol with zero-copy transfers.

3.2 Base Results

3.2.1 Base Experimental Platform

On the Base experimental platform both nodes have 2 GBytes of main mem-

ory. Each node is equipped with the following network interfaces:

• One Myricom 10G-PCIE-8A-C card;

• One Intel PRO/1000 PT Quad Port PCI-E card;

• One Intel PRO/1000 GT Quad Port PCI-X card.

In our experiments we show the behavior of our protocol using 1 Gbit/s

and 10 Gbit/s network interfaces. Moreover, we vary the number of 1 GBit/s

links from one to eight and we contrast our multiple-link results with the

single Myrinet 10 GBit/s link. Finally, we show the behavior of name using

different packet schedulers when we use heterogeneous network interfaces.

We organize our experiments around the following system configurations:

• Base: Our base protocol.
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Figure 3.1: Latency and Throughput in the base system.

• Polling: Our base protocol with interrupts disabled and replaced by a

polling mechanism.

• noCopy: Our base protocol with copies to and from user-space ar-

tificially disabled. In this configuration the exact amount of data is

transferred over the network.

On throughput and latency figures we present one curve for each link

configuration and we use nxk to denote n links of k Gbits/s each. On

CPU utilization figures we show one bar per configuration, with the leftmost

bar referring to 1x1 setup and the two rightmost bars to 8x1 and 1x10

respectively.

3.2.2 Base protocol results

Figures 3.1(a,b) show latency and throughput for the base configuration.

Latency in ping-pong reflects one-way memory to memory time for each

operation. We see that minimum latency in all configurations is about 23
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Figure 3.2: CPU utilization in the base system. We show one bar per

configuration, with the leftmost bar referring to 1x1 and the two rightmost

bars to 8x1 and 1x10 respectively.

µs. For ping-pong, we see that latency does not depend on the number of

links, as long as the MTU is 9 KBytes and physically only one link is used

every time. Latency in one-way and two-way reflect the host overhead to

initiate an operation and does not represent the end to end latency. In both

cases we see that minimum overhead is about 2 µs and is not affected by

bi-directional traffic.

In terms of throughput, MultiEdge can fully utilize link throughput

in the 1x1 and 2x1 configurations delivering a maximum throughput of

about 99.2% of the maximum nominal throughput. In 1x10, the maximum

throughput is about 825 MBytes/s of the peak 1250 MBytes/s, or about

66%.

We see that in one-way and ping-pong benchmarks, data throughput is

approximately proportional to the number of links. The throughput con-

tinues to increase for up-to six links but remains almost at the same level

(about 550 MBytes/s) for eight links. In the two-way benchmark, we see

that throughput scales well up-to four links. With higher number of links,

throughput fluctuates around 800-900 MBytes/s and exhibits a large vari-

ance.

Second, throughput is limited be the available CPU resources. Figure 3.2
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shows our CPU utilization breakdowns. We present one CPU utilization

breakdown bar per link configuration for each message size. The leftmost

bar refers to the 1x1 configuration and the two rightmost to the 8x1 and

1x10 configurations respectively. In one-way we show breakdowns for both

the sender and receiver. In two-way and ping-pong we only present break-

downs for one of the two communicating nodes; in these benchmarks both

nodes behave in a similar manner because the send and receive paths of the

protocol are exercised.

One-way throughput is limited by the send path overhead. Our protocol

is able to use a single CPU for send path execution, only partially offload-

ing transfer completions to the second CPU. Two-way is limited by load

imbalances in the protocol, which is not able to fully utilize both CPUs.

For all benchmarks we see that data copies are the dominant portion

of the CPU utilization. Moreover, copy overhead increases proportional

with message size. For example, with 128-Kbyte messages and 8x1 links,

copy overhead accounts for 75% and 65% on the send and receive paths

respectively in one-way, and about 70% on both send and receive paths in

two-way and ping-pong.

Third, interrupt cost increases with the number of links but not the

speed of each link. Note that for 4-KByte messages and 1x8 links, the

interrupt overhead is higher than in other configurations as the hardware

and protocol interrupt coalescing mechanisms are not effective, resulting in

a large number of interrupts being delivered. Overall, the cost for interrupts,

packet processing, and device management decrease when we increase the

message size and remain at the same level for messages larger than 8-KBytes.

Finally, comparing 1x10 and 8x1 links, we see that 1x10 exhibits higher

throughput in cases where the CPU utilization is lower, namely one-way and

ping-pong. However, in two-way different message sizes result in different

behavior.
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Figure 3.3: Throughput and CPU utilization when interrupts are replaced

by polling.

3.2.3 Impact of interrupts

Figure 3.3 shows the data throughput and CPU utilization when interrupts

are replaced by a polling mechanism.

Compared to Base, we notice that throughput increases up-to 38% and

25% in one-way and two-way respectively, but remains at the same level in

ping-pong. This is due to two reasons: a) we avoid high interrupt pressure

when there is large numbers (hundreds) of outstanding data transfers and

b) the receive path is able to run on a different CPU from the send path.

Between 1x10 and 8x1 links, we see that they have almost the same perfor-

mance in one-way and two-way benchmarks. We believe that this is due to

memory throughput limitations.

Moreover, similar to Base, one-way throughput is limited by send path

processing. In two-way, 8x1 uses up both CPUs, whereas 1x10 is limited by
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Figure 3.4: Throughput and CPU utilization when copies are artificially

disabled.

send path processing, which is not offloaded to the free cycles of the second

CPU.

3.2.4 Impact of copies

Figure 3.4 shows the data throughput and CPU utilization when copies are

artificially disabled. We see that the one-way and ping-pong benchmarks ex-

hibit throughput approximately proportional to the number of links, reach-

ing the maximum possible throughput for each configuration. In comparison

to Base with 1x8 links, throughput increases by 66,5% and 87,5% for one-

way and two-way benchmarks respectively.

In all cases, a large portion of CPU time is spent servicing interrupts,

and it increases proportionally with the number of links. This is also the

reason that 1x8 configuration doesn’t scale in two-way test.
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Figure 3.5: Throughput and CPU utilization when using different sched-

ulers. In CPU utilization we show one bar for each scheduler: SRR (left),

WSRR (middle), WD (right).

3.2.5 Impact of scheduling

To examine the behavior of different schedulers, we present results for one

configuration with five links, 1x10 and 4x1. Moreover, to avoid the limi-

tations discussed above we disable both copies and interrupts. Figure 3.5

shows the data throughput and CPU utilization for the send path using

different link schedulers.

We note that SRR treats all links in a similar manner and does not take

advantage of the full link throughput available. WSRR and WD exhibit

almost the same behavior in ping-pong, as the synchronous nature of the

benchmark allows for only a small number of outstanding packets.

In one-way and two-way benchmarks, we see that for large message

sizes, WD outperforms WSRR by 11% and 12.5% respectively. Finally,
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Figure 3.6: Memory to memory copy throughput for a single node.

Figure 3.5(b) shows that for large messages WD spends more CPU time for

packet management, which is affected by the time to prepare and schedule

each data frame. The difference is approximately 10% and 20% in one-way

and two-way respectively, similar to the throughput benefit of WD over

WSRR.

3.3 Zero-Copy Results

3.3.1 Zero-Copy Experimental Platform

For this experimental platform, both nodes are equipped with two Myricom

10G-PCIE-8A-C card. Each card is capable of about 10 GBits/s throughput

in each direction for a full-duplex throughput of about 40 GBits/s. Due to

a PCI-Express limitations in our motherboards, one of the two cards runs

at half speed. Thus, we are limited to a maximum throughput of about 15

GBits/s per direction, for a full-duplex maximum throughput of about 30

GBits/s.

3.3.2 Basic operation overheads

The Opteron 244 CPUs in our system have a TLB size of 1024 entries and L1

and L2 cache sizes of 128 KBytes and 1 MByte respectively. Each processor

is equipped with 2 DIMMs of 1 GByte DDR-400 for a total of 4 GBytes
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local data (MB/s) remote data (MB/s)

1 CPU 1 CPU 2 CPUs

read 2500 1845 3086

write 1875 1461 2546

Table 3.1: Memory throughput for reads/writes when threads access data

located on local and remote (to their CPU) memory modules.

main memory. Also, Linux is configured with NUMA (Not-Uniform Memory

Access) features enabled.

Figure 3.6 shows the memory throughput in the nodes we use. For data

copies up to 64 and 512 KBytes, copy throughput is higher due to L1 and

L2 hits. Sustained memory copy throughput for a single CPU is about 1

GByte/s. and for two CPUs is about 2 GBytes/s which is the maximum

memory throughput.

Table 3.1 shows throughput for memory reads and writes separately. We

see that for one CPU, accesses to memory attached to the CPU have a sus-

tained rate of about 2.5 and 1.9 GBytes/s for reads and writes respectively,

but it drops significantly when accessing remote memory modules.

The two NICs over PCI-Express are capable of full-duplex throughput

of about 3.75 GBytes/s (30 Gbit/s). NICs are able to deliver data to host

memory with this rate, as long as using all memory modules, we achieve

5 GBytes/s and 3.75 GBytes/s throughput for reads and writes respectively.

Copying data on transmit and receive paths, would increase by 2 the number

of accesses on the memory, which require more memory throughput than the

available on our systems.

Table 3.2 shows the overhead of certain basic operations we use in our

design. An empty ioctl costs about 0.2 µs. Allocating a kernel buffer (MTU

size) costs about 1 µs. This high cost is due to the kernel memory allocator
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Figure 3.7: Pinning and Mapping overheads for a number of pages

operation time (µ s)

ioctl 1.15 - 0.25

alloc buffer 0.85 - 1.05

pin page 3.2 - 3.8

remap page 0.9 - 1.1

Table 3.2: Base cost for page remapping, pinning, and buffer allocation in

the kernel.

that tries to minimize memory fragmentation. Pinning a single page costs

about 3.6 µs and remapping a page costs about 1 µs. Pinning a page is fairly

expensive as it requires locating the corresponding virtual memory area,

walking the page table to locate the requested physical pages, and finally

increasing their reference count. In Figure 3.7 we see that both pinning and

remapping costs increase almost linearly with the number of pages. Pinning

the first page is more expensive that the rest, because the common case

is that consecutive virtual pages are places in are also consecutive in the

page table. For page remapping the average overhead is lower than pinning,

because virtual memory area is stored when receive buffer is registered.

Thus, we walk directly the page table to find the page table entry and
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Figure 3.8: Throughput and CPU utilization for different protocol con-

figurations. For CPU utilization we show one bar per configuration: CP,

NoTx, PinMap, NoCP (left to right).

update it.

3.3.3 Benefits of page remapping

Figure 3.8(a-b) shows data throughput and CPU utilization breakdown re-

spectively for the different setups we use. The base protocol, which uses one

copy on the send and one copy on the receive path is limited by CPU in

both one-way and two-way. Moreover, copy overhead is a dominant cost in

all cases, except for the smaller message sizes, reaching up to 10% of CPU

utilization. Two-way utilization for base setup is close to 100% for message

sizes up-to 4 KBytes and increases to 130-140% for larger.

Next, we see that artificially removing the data copy in transmit path

(NoTx bar in Figure 3.8) increases throughput in all benchmarks. Especially

for one-way and ping-pong the increase is approximately 27%. In one-way,
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while the transmit path is not a bottleneck (unlike the base setup), the

receive path saturates one CPU.

Replacing copies with our remapping mechanism results in a large per-

formance improvement, compared to the base (copy-based) configuration:

Throughput increases by 87%, 98%, and 70% for one-way, two-way, and

ping-pong respectively. In one-way we see that receiver path utilization is

almost 100% and throughput reaches up to 14.7 GBits/s , that is the 98%

of the maximum throughput when copies are artificially removed (NoCP).

Thus, any further improvement in throughput can mainly come from bet-

ter distributing receive path protocol processing to multiple cores in future

CPUs. In two-way the throughput reaches up to 57% of maximum through-

put of NoCP.

Overall, throughput is limited by three reasons: (a) the maximum mem-

ory throughput in our systems, (b) the high CPU requirements of the receive

path that saturates a single CPU, and (c) the inability of the receive path

to effectively utilize the second CPU. In our results, the main bottleneck

for PinMap is not (a), as memory throughput is higher than the achievable

maximum throughput.

For (b) we see that (e.g. in one-way, receiver node) interrupt handling

and page remapping are the two main costs reaching up to 74.1% of CPU

utilization in the receiver of one-way. Also, NIC access and packet process-

ing are up to 36.3% of CPU utilization. Given that our protocol processing

has been optimized and that the current bottleneck is receive path CPU uti-

lization, we believe that any further improvements will come from improv-

ing (c), more efficient distribution of protocol processing on multiple cores.

However, this is not straight-forward due to the fact that costs related to

interrupt handling, NIC access, and packet distribution are not trivial to

balance at fine-grain without NIC support or extensive synchronization.

Figure 3.9 shows the system’s latency for one-way and ping-pong. Ping-
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Figure 3.9: Message latency for different protocol configurations.

Pong exhibits a latency of 23 µs for 4-Byte messages and reaches 24-26 µs for

2-KByte messages. One-way shows the overhead of posting a write request.

We see that for messages up-to 2 KBytes PinMap performs better due to

the lack of copy on the send path. Smallest packet size in Gigabit-Ethernet

is 60 Bytes. Packets with this size, are limited from the hardware to fit into

a single hardware descriptor. Our header size is 48 bytes, thus if payload

size is less or equal with 12, we copy it. We see that PinMap performance is

always equal or better from CP, thus it isn’t needed to set a larger threshold

between copying and translating. This is because our pages are already

pinned and we spent time only to take the pages from protocol’s page table.

3.3.4 Impact of TLB flushing mechanism

After remapping the receive buffers, we need to invalidate existing stale TLB

entries in the CPU. Another option would be to directly update the TLB

entries with the new mapping, however, this is not possible on many modern

CPUs. TLB entries may be invalidated either selectively or by flushing the

full TLB. Figure 3.10 shows these two cases for one-way. We also include a

curve where we artificially do not flush any TLB entries, to show the best
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Figure 3.10: Throughput for different TLB invalidation mechanisms.

possible case.

We see that the overhead when flushing the entire TLB depends on the

message size. Full and selective TLB invalidations are 1-13% and 17% worse

than the ideal throughput with no invalidations, respectively. Moreover, as

expected the throughput when the TLB is not flushed is close to the NoCP

throughput of Figure 3.8. Also, it is important to note that when flushing

the full TLB, although it appears to incur a lower CPU overhead, it may

have an impact on overall application performance as the TLB may need to

be refilled with flushed entries, especially for compute intensive applications.

3.3.5 Impact of data alignment

Until now we have presented results using appropriate data alignment on

the send and receive buffers, such that page remapping is possible on the

receive path for messages equal or larger than 4 KBytes. Also, message size

is a power of two resulting in full page remappings for large messages. In all

cases, data placement in the actual packets requires shuffling the first part

of the packet, as explained in Section 2.3 (Figure 2.4). Also, we assume in

all cases that the send and receive buffers are aligned at page boundaries.
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Figure 3.11: Throughput with varying data alignment.

In case the send and receive buffers are not page-aligned, then there is

a need to copy part of the data and to use a larger number of packets, as

discussed in Section 2.3. Figure 3.11 presents throughput for one-way and

two-way when different buffer alignment is used. In these experiments we

keep use a fixed address for the source buffer and change the alignment of

the destination buffer. The worst case occurs when the buffer starts from

the second byte of the page and the best when the buffer is page aligned,

with all other cases varying in between. The curve labeled “middle” refers

to the case where the destination buffer starts at the middle of a page.

For messages larger than a page we see that the middle and worst cases

exhibit similar behavior. In both cases the first packet is used to align data

appropriately and the last one to transmit the remaining, non-aligned data.

These two packets have a total payload of 4 KBytes for messages larger than

4 KBytes, since their size is a multiple of 4 KBytes. Thus, in both cases

the same number of packets and bytes need to be transmitted and copied.

Finally, when buffers are not properly aligned, throughput increases with

messages size as an increasing number of packets uses remapping on the
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receive path, asymptotically reaching the maximum throughput of the fully

aligned case.



Chapter 4

Related Work

With the advent of clusters and their extensive use as a computational

platform there has been a lot of research on scalable communication sub-

systems in clusters. There has been extensive previous work in improv-

ing base communication performance by enabling user-level communica-

tion, eliminating copies of data, and reducing host overheads and context

switches [3, 14, 17, 28, 33, 37]. Also, there has been work on network in-

terface architectures and support for high-performance cluster communica-

tion [5, 6, 7, 19, 20, 21, 32]. Finally, previous work has evaluated low-latency,

high-speed interconnects in various contexts [1, 23]. Our work differs from

these efforts and builds on previous work in two important ways: (a) We

advocate kernel-level, edge-based communication subsystems that provide

high level semantics and transparency, important for commercial applica-

tions and (b) we introduce spatial parallelism and examine the impact on

edge-based protocols.

Previous efforts that are related to our work in terms of the underlying

platform. The authors in [39] provide a communication protocol, UNet, on

top of Fast Ethernet and ATM interconnects. Their goal is to provide high-

bandwidth, low-latency communication on top of commodity interconnects.

They focus on data transfers and describe how they can be performed di-

43
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rectly from user space when the NIC provides a programmable CPU and

what support is required at the kernel-level for less aggressive NICs. The

authors in [35] present a user-level, zero-copy protocol design and imple-

mentation on top of 1 GBit/s Ethernet. In our work we examine 1- and

10-GBits/s links, multiple links, and we present detailed network statistics

on the impact of edge-based protocols on network traffic.

M-VIA is an implementation of the Virtual Interface Architecture

(VIA) [16] over Gigabit Ethernet networks. It only supports single network

interfaces. Moreover, previous work with M-VIA has only examined perfor-

mance issues on 1 GBit/s Ethernet networks. The authors in [2] examine

the base send/receive performance of VIA on native and Ethernet imple-

mentations. They find that 1 GBit/s Ethernet implementations of VIA

have the potential of delivering higher throughput than TCP/IP-based pro-

tocols. However, native VIA implementations provide about 30-60% better

throughput. The authors in [27] compare various MPI implementations in

a cluster interconnected with Gigabit Ethernet. The MPI implementations

rely either on TCP/IP or a VIA-type substrate for basic communication ca-

pabilities. They find that using TCP/IP imposes significant overheads and

that VIA-type base communication on top of Gigabit Ethernet has signifi-

cant potential for improving MPI performance.

Our multi-link approach bears similarity with inverse multiplexing [15,

18]. Inverse multiplexing is a technique to implement a single high-capacity

logical channel by using several lower-capacity channels, where the distribu-

tion and aggregation of the traffic flow to and from the individual channels

is transparent to the higher layers. Although the concept is similar, the

tradeoffs and required mechanisms in our setup, i.e., scalable systems, are

very different from previous applications of inverse multiplexing [10] that

target mostly communication over wide area networks.

The addition of inverse multiplexing to the current network protocols
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seems promising to increase networks performance. The implementation of

inverse multiplexing in software should distribute individual packets among

multiple multiple psychical channels.

Although, existing network protocols usually require a single route for

the same flow, that limits the efficiency of inverse multiplexing. Moreover,

inverse multiplexing will introduce out-of-order delivery even for packets of

the same flow which which degrade the performance of the existing protocols.

We aim to design a protocol that is designed to support inverse multiplexing

and maximize the performance without any hardware support.

Previous work has examined issues in building multi-rail network config-

urations. The authors in [12] use simulation to examine rail allocation meth-

ods in multi-stage, cluster-based networks. They find that certain allocation

methods can result in significant improvements in latency and bandwidth.

In contrast, we aim to examine in a real system the overheads and benefits of

using multiple rails on edge-based communication subsystems. The authors

in [24] examine how multiple rails can be used in Infiniband interconnects

under MPI. Our work on one hand uses Ethernet as the interconnect and

on the other hand is more transparent in that all higher system layers are

able to take advantage of multiple rails.

There have been efforts to improve routing and link utilization aspects

of Ethernet. The authors in [34] show how the spanning tree architecture

of Ethernet can be improved for Metropolitan Area and Cluster networks.

This work is orthogonal to our effort. Currently, most scalable systems use

topologies that are structured and well controlled. In fact, a large number

of systems tend to be built with a small number of high-radix switches.

This, combined with dense SMP nodes leads to systems that can support

hundreds of processors with a small number of switches. The authors in [36]

design and build a multi-dimensional hyper crossbar network using multiple

Gigabit Ethernet interfaces. They find that their system delivers more than
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90% of the peak throughput for different micro-benchmarks. To the best of

our knowledge, the system they designed supports spatial parallelism but,

and in contrast to our work, does not support remote memory operations.

The issue of load balancing protocol processing on multiple CPUs has

been examined in [40]. The authors show the hardware extensions and syn-

chronization required for distributed Ethernet processing on multiple CPUs

in a high-speed network interface. In our work, we examine the limitations

of using multiple host CPUs. We believe that our approach is in-line with

current technology trends of using multi-core CPUs as host processors.

The authors in [25, 26] have examined techniques for reducing inter-

rupt cost and its impact on communication throughput. Thus, we believe

that the main challenge for future communication protocols is packet pro-

cessing; Techniques for distributing and balancing protocol processing on

multiple cores without increasing synchronization overheads dramatically

on the critical path or requiring extensive architectural support are not well

understood today. Thus, we believe that protocol processing over multiple,

general-purpose cores emerges as a main problem for commodity, high-speed

cluster interconnects.

Other research [22] has used MultiEdge to examine the performance

and scalability of software shared memory system (GeNIMA [4]). The au-

thors ported GeNIMA to MultiEdge used real applications derived from the

SPLASH-2 benchmark suite [41] on a 32-nodes cluster, interconnected with

dual 1-GBit/s links, with promising results.
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Conclusions

In this work, we examine the viability of edge-based communication proto-

cols for building scalable servers. We examine both the level of performance

they may offer, how they may take advantage of spatial parallelism in the

interconnect, and the the impact they may have on network traffic and

behavior. Our intention is to explore the extreme configuration point of

cluster interconnects where all protocol processing is placed at the edge of

the network and does not require any support from the network core.

We design and implement MultiEdge, a communication subsystem that

support remote read and write memory operations over ordinary 1- and

10-Gigabit Ethernet interfaces, using raw Ethernet frames. Although our

approach is currently intrusive and requires low-level, hardware driver mod-

ifications, we believe that future network to host interfaces can provide the

necessary support to allow for higher portability.

We also examine the implications of host-level copies for high-speed com-

munication protocols over Ethernet-based interconnects. We first analyze

the impact on throughput and CPU utilization on the send and receive

paths. We then examine how copies can be eliminated using page remap-

ping. Finally, we explore the dependency of page remapping on communi-

cation buffer alignment.
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Our micro-benchmark results show that MultiEdge is able to deliver

about 66% of the nominal link throughput with 10-GBit/s links and about

99.2% with 1-GBit/s links. The minimum latency is about 23µs.

Moreover, we find that multiple link configurations are limited by a larger

number of interrupts and poor load balancing of the send and receive paths

over multiple CPUs. The impact of memory copies is significant, and re-

moving them results in up-to 66% improvement in maximum throughput.

Furthermore, removing interrupts results in up-to 38% improvement in max-

imum throughput.

We find that eliminating copies with address translation and page remap-

ping results in 80-90% improvement and allows reaching a maximum of 98%

and 53% of available throughput in one-way and two-way respectively. Af-

ter copies are eliminated, the bottleneck is mainly receive path processing.

Moreover, interrupt processing, remapping, packet processing, and NIC ac-

cesses contribute similarly to CPU utilization.

Overall, we believe that using page remapping for dealing with copies

is an effective technique for communication protocols at high-speeds. We

believe that the main challenge for future communication protocols is packet

processing; Techniques for distributing and balancing protocol processing on

multiple cores without increasing synchronization overheads dramatically on

the critical path or requiring extensive architectural support are not well

understood today. Thus, we believe that protocol processing over multiple,

general-purpose cores emerges as a main problem for commodity, high-speed

cluster interconnects.
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