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Abstract
In sparsely monitored basins, accurate mapping of the spatial variability of groundwater level re-
quires the interpolation of scattered data. The methodology that is presented here is Ordinary
Kriging, a method that is called the best exact interpolator, because in the absence of a nugget
term, Kriging is an exact interpolator at the measurement points. In addition, Kriging allows the
estimation of interpolation uncertainties which is also presented. Then, this work tackles the prob-
lem of deficient sampling of an area, due to budget constraints. To that end, the Adaptive Genetic
Algorithm is being introduced, that is an Evolutionary Algorithm used for minimizing errors, and
is coupled with the geo-statistical methodology to optimize the monitoring network. To do that,
three different errors are defined and optimized for a constant number of measurement removals
(called herein scenarios). The errors that are presented, are based either on the difference of the
initial mapping with each of the reduced networks that the genetic algorithm will evaluate and
evolve (RMSD, RMSE), or based on the Akaike criterion, which finds the best set of data that
minimizes the error of the variogram. The described method is applied successfully to two test
cases, in Mires and in Drama basin. In the first case, the initial dataset is consisted of 70 boreholes,
and the method concluded that in some cases even 40 measurements could be neglected and still
have an accurate mapping of the underground water level, but the safer choice would be to stop at
30 removals, because in that case, the uncertainty is much lower. Lastly, in Drama, there were 250
measurements, and the interest was to investigate the robustness of the kriging based optimization
tool, and its applicability to different test cases. There, because of the bigger dataset, the RMSD
was outperformed by the RMSE which only evaluates on the missing wells, instead of make the
predictions in the entire grid. So a 150 removal or even 200 in some cases, where the RMSE error
was more practical and Akaike was focusing more on the variogram fit. RMSD was in almost every
instance slightly more accurate than RMSE except the last case when surprisingly RMSE outper-
formed RMSD error. So the conclusion that this work has reach is that using a genetic algorithm,
and defining properly the fitness function and the succesive errors leads to a significant reduction
in data measurements needed for an accurate kriging mapping. The scenario number of removals
are proposed here for the two test cases, but in the end, it is a management decision of how high
the uncertainty growth is allowed , or the degree of similarity of the reduced network mapping with
the original dataset mapping
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1 Introduction

1.1 Motivation-Physical problem and test areas description

Groundwater level monitoring networks provide essential information for water resources manage-
ment, especially in areas with significant groundwater exploitation for agricultural and domestic
use. Given the high maintenance costs of these networks, development of tools, which can be used
by regulators for efficient network design is essential. In this work, a monitoring network opti-
mization tool is presented. The purpose of the optimization tool is to determine which wells could
be excluded from the monitoring network because they add little or no beneficial information to
groundwater level mapping of the area.

The network optimization tool couples geo-statistical modeling based on the Spartan family
variogram [47-51] , with a genetic algorithm method [15,19,40,41] and is applied in the first test
case to Mires, located in Messara Valley in Crete Greece, an area of high socio-economic and agri-
cultural interest, which suffers from groundwater over exploitation leading to a dramatic decrease
of groundwater levels. Crete has a dry sub-humid climate and marginal groundwater resources,
which are extensively used for agricultural activities and human consumption. The Messara Val-
ley is located in the south of the Heraklion prefecture; it covers an area of 398 km2 and is the
largest and most productive valley of the island. Over exploitation during the past 30 years has led
to a dramatic decrease in groundwater level, exceeding 35 m. Possible future climatic changes in
the Mediterranean region, population increase, and extensive agricultural activity generate concern
over the sustainability of water resources in the area and the risk of desertification. The accurate
estimation of the spatial variability of the aquifer’s groundwater level with the least measurements
is important for integrated groundwater resources management plans. This study focuses mainly
on Mires basin of the Messara Valley for two reasons. The first is the availability of hydro-geological
data and the second that the basin consists entirely of alluvial sediments. Mires basin is a down-
faulted trough with an area of 50.3 km2 , roughly 14 km long and, on average, 3 km wide (Fig. 1).
The trough is filled with Quaternary alluvial sediments, which form an inter-bedded sequence of
gravels, gravely sands, sands, silts, silty sands and clays [14]. The data used in this study consist
of 70 hydraulic head measurements, which represent averages for the wet hydrological period Octo-
ber–April of the hydrological year 2002–2003. The data have been provided by the Administration
of Land Reclamation of the Prefecture of Crete. The measurements are unevenly distributed and
mostly concentrated along the Geropotamos, a temporary river that crosses the basin (Fig. 1). The
range of hydraulic heads varies from an extremely low value of 9.4 meters above sea level (m.a.s.l.)
to 62 m a.s.l. for the wet period of the year. Figure 1 shows the topographic map with the locations
of groundwater head measurement in Mires basin along with the corresponding surface elevation
and the temporary river path as presented in [47].
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Figure 1: Main Test Case:Mires basin in Crete. Red triangles are underground measurement sites (wells)

A second test case that is considered later on this work, [44] and it is located at an alluvial aquifer
at the Prefecture of Drama (Greece). The aquifer covers an area of 210 km2 and the available data
consist of 250 hydraulic head measurements that are unevenly distributed over this area. The
minimum underground water level is 0.9 m.a.s.l. and the maximum is 22, so there is a range of 21.1
m, a mean value of 5.2108 m and a variance equal to 14.1420. In contrast with the Mires case where
the minimum is 9.4 m, the maximum is 62 m so the range is 52.6 m, a lot bigger than Drama. As it
is shown at the results, the range of the measurements has a great impact on how many wells can
be excluded from the network. Lastly, in Mires the mean value of the measurements is 30.0546 and
the variance equals to 153.8476. Later on this work, on the Box Cox chapter, the kurtosis and the
skewness is given for the data, to check the need of the normalization transformation. The purpose
of the second test case is to validate the results and assure that our robust method can be applied
successfully in many test cases.

1.2 Previous work

Many works can be found in literature, that investigate the robustness of the kriging based op-
timization tool, and its applicability to different cases. A lot of work has been made in kriging
variations for better results, for example in [47-51] there is an application of groundwater krig-
ing in Mires basin, that compares Ordinary Kriging, [12,18,28], Universal Kriging [1,2,29,36,39],
co-Kriging [18,25], Residual Kriging and Kriging with External Drift [9,16,17,52].

In [48] stochastic and deterministic methods are compared, with application in Mires. The
examples that are given on deterministic methods are, inverse distance weight [5,17,34,37,43] and
minimum curvature in comparison with stochastic methods, i.e. ordinary kriging (OK) [32,35,45,55],
universal kriging (UK) [1,2,29,36,39] and kriging with Delaunay triangulation (DK) [20].

In [22,23,24] for the first time, Spartan family variogram method (SP) is being implemented on
groundwater mapping estimation.
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In [50] normalization techniques like Transgaussian Kriging, Gaussian Anamorphosis, and Box
Cox [4] (Proposing a modified BC for negative data) are proposed and compared for transforming
hydrological data into approximately Gaussian distributions [5,21,27,38,46]

In [15] it is presented a novel application of genetic algorithms in water level measurements in
the area of Eastern Snake River Plain, developing a Kriging Based Genetic Algorithm. Although
it is not with adaptive step, like our innovative work, but it is implemented for one error that is a
linear weighted combination of 4 errors, including the Kriging variance, a deviation over time and a
mean measurement error in addition to RMSE that is proposed in this work. The weights are chosen
empirically there, so it may or may not be assumed that the optimization is truly multiobjective. In
contrast with this work, where there has been presented 3 separate errors (RMSE,RMSD,AKAIKE)
and explain their physical meaning and why they are to be optimized. Lastly in [15] is define the
RMSD as a measure to validate their results, in contrast with this work, that RMSD is used as an
error to be optimized. That is because it would have been unrealistic to optimize there in respect
to RMSD because of larger datasets as in Drama’s case where it will be shown that computational
time increases exponentially, and is an unviable option. But on the other hand, RMSE error is
more flexible and can be successfully applied in both Drama and Mires without significant loss in
accuracy of the proposed reduced mapping, in comparison with the initial-data mapping.

1.3 Brief Outline

In this section, the importance of a realistic mapping is considered , and why one may expect a
reduced network due to budget constraints, and then, a description of the test cases was given, and
the explanation of why it is important to always have an indication of the level of the underground
water there. Then, a summary of the previous work that this research was based on is given, and
at the beginning of Chapter 2, a historic review of the methodology is presented. A more elaborate
analysis of the two basic tools that were coupled (Geo-statistical formulation using an Ordinary
Kriging with Delaunay Triangulation, and the Adaptive Integer Genetic Algorithm) is given in the
main Chapters 2-3. In the fourth chapter there is a presentation on how the two algorithms were
developed, and how they were modified with an innovative manner. Finally, in the last chapters, the
results of our test cases in Mires and Drama, for the two different variogram methods,and for the
three different errors (that are proposed at the innovation paragraph) are presented, and followed
by conclusions and some future work proposals that can be made on the subject.

2 Geostatistical tools

2.1 Kriging Background-Historic review

Kriging is a geostatistical interpolation method which is known as the optimal or best linear unbi-
ased prediction (BLUP). The French mathematician George Matheron (1963) named this method
kriging, after the South African mining engineer D. G. Krige (1951), as it is still known in spatial
statistics today. There, kriging served to improve the precision of predicting the concentration of
gold in ore bodies [3,18]. His idea was to estimate better the gold ore grades in mining blocks, by
considering the ore grades in other blocks which are close by. At the same time, Matheron had the
same concern to provide the best possible estimates of mineral grades from autocorrelated sample
data. He derived solutions to the problem of estimation from the fundamental theory of random
processes, which in the context he called the theory of regionalized variables. From mining, geo-
statistics has spread into several fields of application, first into petroleum engineering, and then into
subjects as diverse as hydrogeology, meteorology, soil science, agriculture, fisheries, pollution, and
environmental protection. There have been numerous developments in technique, but Matheron’s
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thesis remains the theoretical basis of most present-day practice. [3]
In practice, in most cases the mean µ and the covariance function C(h) of the underlying random

function Z(x) are unknown. Thus, unfortunately, simple kriging prediction is not applicable, since
it requires information about µ and C(h) as seen in [8]. Furthermore, the most significant difference
between simple and ordinary kriging, is that in the latter, the knowledge of the mean and the
covariance is not assumed. For this reason, ordinary kriging represents the most common kriging
method in practice and its aim is to predict the value of the random variable Z(x) at an unsampled
point x0 of a geographical region as well, as seen in [53].

Since the methodology was established, there has been an excessive use in groundwater level,
with the first occurance being in [12], and other examples seen in [13-20].

2.2 Ordinary Kriging

The basic geo-statistical tool is an Ordinary Kriging method (OK) with Delaunay Triangulation
[20,32,35,45,47,48,49,50,51,55] which, unlike previous investigations, uses the recently-established
Spartan variogram [22,23,24,51] for groundwater level mapping. More elaborately, OK is the rep-
resentation of the level of every point s0 in our grid, by a weighted sum of our data.

Figure 2: Mires basin OK groundwater level mapping (with Spartan variogram)

That is
ẑ(s0) =

∑
{i:si∈S0}

λiz(si) (1)

Where S0 is the set of sampling points in the search neighborhood of s0.Later on this work, the
question on how to select neighborhoods will arise. In our basic case study, initial data set was
70 exact coordinate locations of wells in Mires Basin, and the corresponding groundwater levels
measured. The basic assumption of OK method is that z(s) is a random function with a constant
but unknown mean (E[z(s)]=m). The ordinary kriging procedure is complete upon finding the
corresponding weights. In order to achieve this, the interpolator is forced to

• Be Unbiased

• Minimize the kriging variance (to be defined)

• Fit the chosen theoretical variogram to Matheron Method-of-moments experimental variogram

The first bullet point translates into

E[ẑ(s0)− z(s0)] = 0 (2)
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which, using equation 1 gives

E[
∑

{i:si∈S0}

λiz(si)− z(s0)] = 0⇒ (3)

∑
{i:si∈S0}

λiE[z(si)]− E[z(s0)] = 0⇒ (4)

(
∑

{i:si∈S0}

λi − 1)(m) = 0⇒ (5)

∑
{i:si∈S0}

λi = 1 (6)

For the second bullet point, the errors or residuals are defined as e(si) := (z(si)−m) where m
is the mean value of the water level elevations. The next step is to minimize the following

σ2
E(s0) = E[(ẑ(s0)− z(s0))2] = (7)

E[(
∑

{i:si∈S0}

λiz(si)− z(s0) + (m−m))2] =

E[(
∑

{i:si∈S0}

λi(z(si)−m)− (z(s0)−m)2] =

E[(
∑

{i:si∈S0}

λie(si))
2]− E[

∑
{i:si∈S0}

2λie(si)e(s0)] + E[e(s0)2]

Then, using the definition of Covariance of two random variables, i.e.

C(X, Y ) = E[XY ]− E[X]E[Y ] = E[(X − E[X])(Y − E[Y ])] (8)

and utilizing this into 7 it follows

σ2
E(s0) =

∑
{i:si∈S0}

∑
{j:sj∈S0}

λiλjC(e(si), e(sj))− 2
∑

{i:si∈S0}

λiC(e(si), e(s0)) + C(e(s0), e(s0)) (9)

Because the second terms of the Covariance, that is E[e(si)] ∗ E[e(s0)] = E[e(si)]E[e(sj)] =
E[e(s0)]E[e(s0)] = m2 cancel out because the second term has a (-2) coefficient. This is the crucial
use of the basic assumption of Ordinary Kriging, that each point has an unknown but constant
mean. Furthermore, 9 is needed to be minimized with respect to λi with the extra condition that 6
holds.In order to achieve that, one should differentiate 9 having (n+1) equations 6 with n variables.
To avoid this problem, the Lagrange multiplier is inserted as the last variable in the system so that
it will ensure the unbiased condition in the following way.

σ2
E(s0) =

∑
{i:si∈S0}

∑
{j:sj∈S0}

λiλjC(e(si), e(sj))− 2
∑

{i:si∈S0}

λiC(e(si), e(s0))

+ C(e(s0), e(s0)) + 2µ(
∑

{i:si∈S0}

λi − 1) (10)

An observation is that upon differentiating 10 in respect of µ, the unbiased condition is recovered,
and upon differentiating in respect of λ1 for example, and equal to zero to minimize, the result is∑

{i:si∈S0}

λiC(e(s1), e(si)) + µ = C(e(s1), e(s0)) (11)
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and so for every j the system of equations that one arrives is∑
{i:si∈S0}

λiC(e(sj), e(si)) + µ = C(e(sj), e(s0)) (12)

This system in matrix notation is rewritten as

C ∗ L = C0

where C =


C(e(s1), e(s1)) . . . C(e(s1), e(sn)) 1

...
. . .

...
...

C(e(sn), e(s1)) . . . C(e(sn), e(sn)) 1
1 . . . 1 0

 , L =


λ1
...
λn
µ

 ,

C0 =


C(e(s1), e(s0))

...
C(e(sn), e(s0))

1


Lemma 1 The covariance matrix C ∈ R(n ∗ n) of X = (X1, ..., Xn) is positive semidefinite, i.e.
∀ v = (v1, ...vn) ∈ Rn :

vTCv =
n∑
i=1

n∑
j=1

viCi,jvj ≥ 0 (13)

Proof of Lemma 1 Let a random variable Z :=
∑n

i=1 viXi Then,

vTCv =
n∑
i=1

n∑
j=1

viCi,jvj =
n∑
i=1

n∑
j=1

vivjCov(Xi, Xj) (14)

= Cov(
n∑
i=1

viXi,
n∑
j=1

vjXj) = Cov(Z,Z) = E[(Z − E[Z])2] ≥ 0

In this thesis it is always assumed the variance of a linear combination of random variables to
be strictly positive. This assumption makes sense as in the case that the variance equals to zero,
then

0 = V ar(Z) = E[(Z − E[Z])2]

and hence, because (Z−E[Z])2 ≥ 0, it follows that Z = E[Z] almost surely for any random variable
Z.

�

Using the Lemma 1, because the Covariance matrix is symmetrical, bilinear and positive semi-
definite, it may be assume that it is positive definite and so the inverse matrix exists. So, the kriging
weights can be found, and they are unique, and then, to find the kriging variance we multiply 12
at j step by λj and summing over j leads to∑

{i:si∈S0}

λi
∑

{j:sj∈S0}

λjC(e(si), e(sj)) =
∑

{i:si∈S0}

λiC(e(si), e(s0))−
∑

{i:si∈S0}

λiµ⇒ (15)

∑
{i:si∈S0}

∑
{j:sj∈S0}

λiλjC(e(si), e(sj)) =
∑

{i:si∈S0}

λiC(e(si), e(s0))− µ (16)
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Substituting this into 10 leads to

σ2
E(s0) = C(e(s0), e(s0)) +

∑
{i:si∈S0}

λiC(e(si), e(s0))− µ− 2
∑

{i:si∈S0}

λiC(e(si), e(s0))⇒ (17)

σ2
E(s0) = σ2 − (

∑
{i:si∈S0}

λiC(e(si), e(s0)) + µ) (18)

Figure 3: Kriging variance at each point of the grid with Spartan variogram in Mires

2.3 Model Variogram

The theoretical variogram is defined as half of the expectation of the squared difference of the
values, so it is defined as

γ(si, sj) =
1

2
E[(z(si)− z(sj))

2] (19)

=
1

2
E[z(si)

2] +
1

2
E[z(sj)

2]− E[z(si) ∗ z(sj)] + µ2 − µ2 = E[z(si)
2]− µ2 − (E[z(si) ∗ z(sj)]− µ2)

γ(si, sj) = σ2 − C(e(si), e(sj)) (20)

Thus, with the help of variogram, kriging variance can be rewritten as

σ2
E(s0) = (

∑
{i:si∈S0}

λiγ(si, s0) + µ) (21)

According to 20, to define uniquely a theoretical variogram, it sufficed to define the covariance
function between our points. So the spartan covariance function as seen in [24,48,51] is defined as

Cz(h) =

{ η0e−hβ2

2π
√
|η21−4|

for |η1 < 2|, σ2
z = η0

2π
√
|η21−4|

η0e−h

8π
for η1 = 2, σ2

z = η0
8π

η0(e−hω1−e−hω2 )

4π(ω2−ω1)h
√
|η21−4|

for η1 > 2, σ2
z = η0

4π
√
|η21−4|

(22)

where η0 is the scale factor and determines in connection with η1 the total variance of the fluctua-

tions; η1 is dimensionless and denotes the rigidity coefficient, β1,2 =

√
|2∓η1|

2
ω1,2 =

√
|η1∓∆|

2
where

∆ = |η2
1 − 4|1/2 , ξ is a characteristic length, h = |r|/ξ is the normalized lag vector, where |r| is the

Euclidean norm and σ2
z is the variance.
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Thanks to bibliography, there are many model variograms to fit the experimental, with the sim-
plest being the Linear, and the two best being Spartan followed closely by the Powerlaw [22,23,24,47].

Figure 4: List of theoretical semivariogram functions as seen in [47]

2.4 Algorithm of the Experimental variogram

The experimental variogram is defined utilizing the above formula of the theoretical variogram, and
calculating the Expected value (E[X] of a random variable X is defined as an integral of X in respect
to a probability measure, that is a bounded measure with values in [0,1], or defining a probability
transition from P to PX , which are defined from event space Ω to R respectively, and then we can
define the expectation as E[X] :=

∫
Ω
X(ω)P (dω) =

∫
R xPX(dx) ) in respect to the discrete measure

with uniform probabilities 1
N(r)

at the lag points (where N(r) is the number of pairs at lag r). So,
the experimental variogram is defined as the average square difference of the data values between
points separated by the lag vector r. So

γ̂(r) =
1

2N(r)

N(r)∑
i=1

[(z(si)− z(si + r))2] (23)

Here, a brief explanation of the algorithmic steps of constructing the experimental γ̂ variogram
is given.

• Make an array of all the possible distances, divided by the maximum distance to be normalized
to [0,1]

• Select a number of lagpoints (12 was enough in our case)

• Make a n*n matrix where n is our datapoints, with all the possible distances between mea-
surement points

• Make a n*n matrix with the corresponding differences of measurements

• Make a uniform partition of (0,max(dist(si − sj))) into # lagpoints (12) points

• replace each element with the mean of itself and the next one. In this way, the discretization
is shifted, so that it does not include zero distances.

In this way,the data point itself is not considered in the variogram calculation. The discretization
shown bellow is for example : (0.0304,0.0913,0.1522,0.2130,0.2739,0.3348,0.3957,0.4565 0.5174,0.5783,0.6391).
To this shifting is owed the fact that there are 11 points calculated when # lagpoints=12 is chosen.

Due to locality effects, in this calculation it is redundant to evaluate the variogram at all dis-
tances, because a very far point is not correlated with each point of interest.
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• With the previous observation, a percentage of the distances to calculate the variogram (exper-
imental 48 % ) is selected. So the new discretization is for example (0.0146,0.0438,0.0730,0.1023,
0.1315,0.1607,0.1899, 0.2191,0.2484,0.2776,0.3068)

• Find the number of points in each lag

Figure 5: Example of search radius of 3 lags: (0.014,0.043) and (0.043,0.10) for one point. Here there are
3 values in the first lag and another 3 in the second. Also the relation to the Delaunay Triangulation and
the first and second neighbors is shown

• Lastly, calculate the experimental variogram using formula 23

Then γ̂(r) is fitted to a model function γ(r) with the help of the optimization Toolbox of Matlab,
and function ”fminsearch” which uses the Nelder-Mead Simplex Method (later on the chapter of
Box Cox transform that also uses this Simplex method in its calculation, there will be more a more
formal elaboration on the subject).

2.5 Analysis of the errors

In this section, the goal is to define the 3 errors that will be used to choose the best theoretical
variogram method. The analysis for choosing a theoretical variogram is being done in Mires basin,
because it is the main test case, and the dataset is smaller so the computations are faster. Then, the
corresponding errors for the Spartan, Powerlaw and Linear, with their Variogram fitting figures are
presented for the second test case in Drama, for completeness. Firstly, the Least Square Sum (LSS)
is the sum of the squared difference between theoretical and experimental variogram at lagpoints,
that is

LSS =
n∑
i=1

[γ(hi)− γ∗(hi)]2 (24)

where n is the total number of the lags, γ(hi) is the value of the theoretical variogram at lagpoint
i , and γ∗(hi) is the value of the experimental variogram likewise. This is the most common er-
ror to minimize so that the theoretical variogram fits the experimental according to bibliography
[10,12,16,17,47,51]

Root Mean Squared Error (RMSE) is frequently used to measure the difference between mea-
sured and predicted values of the model [47,51]. Here it is defined, after the leave-one-out process
where ẑ(i) := ”estimated values at measured locations after leaving that value out” , and we subtract
it by the z(i) which is the measured value, i.e.

RMSE =

√∑N
i=1(ẑ(i)− z(i))2

N
(25)
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Finally the Bias error is the same measure as the RMSE but without the 2-norm , so it can
have negative values. These show that our estimates are over predicted (positive bias) or under
predicted (negative bias). Unbiased estimations corresponds to zero bias.

BIAS =

∑N
i=1 z(i)− ẑ(i)

N
(26)

Thanks to bibliography, there are many model variograms to fit the experimental, with the
simplest being the Linear, and the two best being Spartan, followed closely by the Powerlaw.
[16,24,47,51]

Table 1: Comparison of variogram methods

Methods : Spartan Powerlaw Linear Exponential Matern Sine
LSS 3.76 ∗ 10−5 2.57 ∗ 10−5 4.46 ∗ 10−5 6.19 ∗ 10−5 2.86 ∗ 10−5 1.26 ∗ 10−4

time 5.0572 5.6795 4.2155 4.3665 13.6993 5.7924
bias 0.2782 0.2915 0.3248 0.2359 0.2055 0.3426
rmse 5.6450 5.6307 5.5808 5.5239 5.7711 5.5584

Akaike -132.4408 -136.6121 -130.5492 -126.9597 -124.8402 -119.1120

The positivity of the bias error indicates that our predictor is overestimating in every method,
and of course, the lower the better applies in all 4 categories.

The criterion that is used to choose between those 6 methods was mainly because of the LSS
and Akaike errors. The bias of Matern was tempting but the computational time for just one run
made it non viable solution (a genetic algorithm needed approximately 10.000 evaluations in each
run). Also the RMSE could be a good indicator, but it was close for all variograms as seen in the
table above.

In the next table, the parameters of each variogram that needed to fit the experimental in each
case can be seen for the first test case example, where η1 is the rigidity coefficient at Spartan, H is
the Hurst exponent at Powerlaw, which is a number ∈ (0, 1), and the Matern variogram needs a ν
parameter which is a smoothness parameter as seen in [87–89].

Table 2: The Optimized parameters for our Model Variograms in Mires basin

Methods: Spartan Power Linear Exponential matern sine
σ2
z or c 0.2507 0.1903 0.0890 0.0718 0.1519 0.0553
ξ 0.4905 N/A N/A 0.6625 1.0205 0.1483

nugget N/A 0.0042 N/A 0.0006 0.0044 N/A
Other parameters η1 = −1.9799 H=1.7052 N/A N/A smoothness ν = 1.5714 N/A
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(a) spartan variogram (b) powerlaw variogram

(c) linear variogram (d) exponential variogram

(e) matern variogram (f) sine variogram
Figure 6: Theoretical variogram methods examined in Mires basin

Lastly in this subsection, as it is mentioned in the prologue, the errors of Spartan, Powerlaw
and Linear in Drama are presented.
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Table 3: Comparison of 2 best variogram methods and Linear in Drama

Methods : Spartan Powerlaw Linear
LSS 0.0015 0.0015 0.0016
time 24.7105 40.5407 19.0111
bias 0.3474 0.3319 0.3531
rmse 2.8394 2.8856 2.8406

Akaike -120.4037 -121.6538 -123.2640

Table 4: The Optimized parameters for our Model Variograms in Drama

Methods: Spartan Power Linear
σ2
z or c 1.8053 0.8175 0.7238
ξ 0.9294 N/A N/A

nugget 0.0856 0.0854 0.0787
Other parameters η1 = −1.8929 H= 1.1078 N/A

(a) spartan variogram (b) powerlaw variogram

(c) linear variogram
Figure 7: Theoretical variogram methods examined in Drama basin
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As observed from the figures and the tables above, spartan and powerlaw variograms are very
similar, with a slightly better rmse in spartan, and a better bias in powerlaw. Linear is more
simplistic in its calculations, so it is faster, and is presented only for comparison purposes. Herein,
in both areas, the results are presented with Spartan and Powerlaw variogram methods.

2.6 Delaunay Triangulation

Figure 8: Delaunay Triangulation at Mires basin. First neighbours shown

Kriging weights at locations with low correlation would be very small, so, to avoid computing extra
values that have little to no difference to our result, our neighbourhoods are chosen by making a
Delaunay Triangulation as seen in the figure above, and include for each point in our grid the first
and the second neighbouring triangles. Also a very useful application of this methodology, is that,
from the full grid (rectangle 100x100 points), only the ones inside the hull that is created by the
measurements have a predicted value (interpolation and not extrapolation). That is the most that
is expected, due to physical problem constraints, a point outside the hull can not be predicted with
precision as only one or two points will be its neighbours.

2.7 Box Cox Tranformation

The Box-Cox (BC) method (Box and Cox 1964) is widely used to transform hydrological data into
approximately normal distributions as seen in [4,49]. That means that it optimizes the k exponent
as it can be seen in the definition to make the kurtosis of the data near to 3 and the skewness near
to 0. The transform is defined only for positive data [4] values and is defined by means of:

y = gBC(z; k) = {
zk−1
k

k 6= 0
log(z) k = 0

Where skewness is as known defined to be

S =

∑N
i=1(Zi −m)3

N ∗ σ3
(27)

and kurtosis

K =

∑N
i=1(Zi −m)4

N ∗ σ4
(28)

Where m is the mean value of the observations Zi and σ is the standard deviation. The skewness for
a normal distribution is zero, and any symmetric data should have a skewness near zero. Negative
values for the skewness indicate data that are skewed left and positive values for the skewness

19



indicate data that are skewed right. Accordingly, the kurtosis for the normal distribution is 3 and if
kurtosis is more than 3 indicates a ”heavy-tailed” distribution and if it is lower than 3 it indicates
a ”light tailed” distribution.

Given the vector of data observations z = (z1, ..., zN),the procedure of the transform is to find
the optimal value of the power exponent k that leads to the best agreement of y = (gk(z1), ..., gk(zN))
with the normal distribution.

Having found the correct exponent k 6= 0 to transform the data, after the OK procedure is over,
the correct scale of the levels can be recovered by solving the definition of the transform for z and
apply it to the predictions, that is

z = (k ∗ y + 1)1/k (29)

where y is now the predictions under the transformation, while z is the predictions on the initial
scaling.

In Mires basin, initially the data had
K=2.5848
S=0.8140
and after the transform, an exponent is found to k=-0.2239,
and it transforms the data and gives a new K=2.7037 and S=0.0120, obviously closer to 3 and 0
respectively.

(a) Histogram fit before BC (b) Histogram fit after BC
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(a) normal distribution plot before BC

(b) normal distribution plot after BC

The same procedure is followed also in Drama, where the transformation is more crucial because
the initial data had kurtosis
K= 6.0452
and skewness
S= 1.5839
and with the help of the Box cox transform, the resulting values are
K=2.2230
and S= 0.0201
which are much closer to 3 and 0 respectively. Below, the normal distribution plot and the histogram
fitting to the normal distribution are shown for the Drama test case before and after the Box Cox
Transform (BC).
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(a) normal distribution plot before BC in Drama

(b) Histogram fit plot before BC in Drama
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(a) normal distribution plot after BC in Drama

(b) Histogram fit plot after BC in Drama

This operation is determined with the function boxcox which is a built in function of Matlab and
it uses ”fminsearch” minimization which can be used for unconstrained multivariate problems, and
is a derivative-free minimization technique. More elaborately, ”fminsearch” uses the Nelder-Mead
simplex algorithm.This is a direct search method that does not use numerical or analytic gradients.
This algorithm uses a simplex of n + 1 points for n-dimensional vectors x. It computes the values
of the function at these vertices and then, the algorithm modifies the simplex repeatedly with 3
basic procedures on the worst vertex, comparing with the worst value of the simplex. If it is better
it creates a new simplex an so on. The above procedure is presented in the simple case of a two
dimensional simplex (triangle) in the following figure.
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Figure 13: Simplex algorithm formulation

3 Genetic Algorithms

As seen in the textbooks [40,54] the genetic algorithm method, that belongs to the family of evolu-
tionary algorithms, is a near optimal technique, meaning that, given time, the algorithm will find
a near minimal value of a fitness function. This is important in cases in which we do not need the
accuracy of ”the best scenario”, in highly non linear functions, and non differentiable, that other
minimization techniques can not be applied. The obvious drawback is that one can never be sure
that the optimum value has been reached, and if not a suitable termination criterion has been set,
then the algorithm can even return a local minimum which is misleading. As quiting from the
textbooks there are 5 basic processes that a genetic algorithm goes through, that is

• Creation

• Evaluation

• Elitism

• Crossover

• Mutation

3.1 Creation

In the first process, after a population size is selected, a random population of that size is being
created. There are some options, that can contain the initial population in some space of our
choosing, that may be the set on which the fitness function can be defined.

3.2 Evaluation

In the second process,each and every member of our population is evaluated, using the fitness func-
tion. Then, the population is rearranged based on each fitness value from the better(lowest) to the
worst(higher). This initial population is called parents.The next population that will be created by
the parents will be called children or kids, and so a generation passes. Then the children are named
parents and they create kids of their own and so on.
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3.3 Elitism

There is a small number of parents in the amount of

max(1, (0.05 ∗ PopulationSize))

at the top of the population that is named the Elitistic kid or kids , and it will stay unchanged.
Elitism protect the best candidate(s) of each population, to stay in the next population.

3.4 Crossover

Crossover is the process where our population is mixed to produce better fitness, so usually a big
fraction of our population is used for crossover.The ways to make a crossover between parents
are plenty, to name a few, One point crossover, Two point crossover, Uniform crossover etc. To
understand these better in our case, 1-point crossover is seen in the following example, where one
genome (here the first) is being chosen randomly and it is traded from one parent to another.

parent1 : 1 3 5 7
parent2 : 0 2 4 6

child1(1point) 0 3 5 7
child2(1point) 1 2 4 6

(30)

The more interesting type of crossover in this context is the Uniform type of crossovers where there
is a crossover rate (0.5 at uniform) at which each genome is traded. An example that applies to
our case is being presented shortly, where if a 5-removals-scenario is assumed, and the initial data-
wells are numbered from 1 to 70, then with .5 crossover rate the result is:

parent1 : 10 35 54 69
parent2 : 11 52 41 6

child1(uniform) 10 35 41 6
child2(uniform) 11 52 54 69

(31)

3.5 Mutation

Similarly to crossover, mutation can be implemented with several methods, like one-point, uniform,
gaussian etc. The example of one point and uniform mutation is given, resulting in

parent : 1 3 5 7
child1(onepoint) 1 2 5 7

(32)

Here one genome is changed randomly from the values of the search space. Addressing the problem
at hand, if a 5-removals-scenario is assumed again, then a mutation would change randomly 2 of 4
genomes at a random value in the search space.

parent : 10 66 16 17
child1(uniform) 10 66 5 7

(33)

Crossover-Mutation fraction A number between (0,1) is defined to be the Crossover fraction,
that is the percentage of the rest of the population after elitistic kids have been removed that will
undergo crossover, and the rest of it will undergo mutation. So

CrossoverFraction = 1− EliteKids

PopulationSize
−MutationFraction
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Because the crossover is the most important way to reproduce (called exploitation), there is a
higher fraction for it (usually 0.8) so , minus the elitistic children , there is a less fraction to
mutate. Mutation is the exploration on the search space, meaning that it is the random part of
the evolution that is much needed because of the fact that the optimal value that is sought, may
not be accessible through mixing our initial population.

3.6 Termination Criteria

There are plenty termination criteria that have been proposed in the bibliography, to name a few,
there is Time criterion where user has to set a time limit, there is Generations criterion, where a total
generation limit is set, there is Tolerance in Best fitness value or Mean fitness value where the user
sets beforehand a small tolerance number, and when the difference between mean fitness value or
best fitness value is below that tolerance the algorithm stops. In this research, as mentioned before,
a stall generations criterion have been selected for termination, which is one of the most reliable,
in which you allow the generic algorithm to evolve to as many generations as it needs, and stop
only if it has unchanged best fitness value for # Stall Generations. To decide what population size
and stall generation to choose,a sensitivity analysis will be presented separately for the 3 different
statistical measures that were optimized, and that will be defined in the next section.

4 Model development-innovation

4.1 Innovation to Standard Genetic Algorithms

One of the modifications to classic genetic algorithm that has been done in this work is, that through
the generations, the crossover-mutation fraction does not remain constant. It is programmed to
adaptively change according to the optimization needs. For that purpose the Stall parameter is
introduced, that is defined to be the number of generations that has passed without a change at the
best fitness value. That means that the algorithm may have found the optimum value, but most
of the times means that it can not produce better children by exploitation, and so it needs to do
more exploration. So, the criterion is that for every 10 stall generations passed, we add 0.10 to the
mutation fraction and lower 0.10 the crossover fraction. [41] By the same criterion, the crossover
and mutation rate is also changed, and this results to a change in exploration and exploitation as
well. Next. because of the integer search that is being implemented (instead of usual search over
the Reals) , and because of the lack of Matlab (2016a) pre-programmed functions that can adapt
as described over the integers, the genetic algorithm optimization tool of Matlab was customized
according to the needs, by creating the functions of Creation of initial population, Crossover and
Mutation. One of the biggest drawbacks using a genetic algorithm is the time that it needs to
conclude, and the fact that if one wants great degree of accuracy, a great deal of computational
time needs to be sacrificed. For that manner, to make the operation faster, a vectorized form was
set, meaning that in every generation, the fitness function is evaluated only one time, and gets
as input the entire population as a vector. Lastly, the modification that has been made in the
geo-statistical tool to optimize the speed of the genetic algorithm, was that there were made two
separate programs for the spartan and power law variograms, because evaluating in the full grid,
and make an if statement 100x100 times slowed the system down. Also the localization technique
using the Delaunay that has been described above, also contributed to a faster procedure.

26



4.2 The errors for the optimization

Three methods of optimization were used, the two of them working only by making an estimate
on the missing wells, so they are very fast to implement, but lacks accuracy as often happens with
speed and accuracy. The first (Root Mean Squared Error-RMSE) is a wide known measure for
cross validation purposes as seen in [28,48,51,53,55]. The cross validation process is, as seen in a
previous chapter, a procedure where one by one, all of the data are subtracted, and an estimation
is given using the rest of the data. By this inspiration, the optimized RMSE here is calculated by
subtracting # scenario wells, and estimate at the missing wells using the rest of the network.

So,

ERMSE =

√√√√ 1

N

N∑
i=1

[ẑ(si)− z(si)]2 (34)

Where N is the number of wells that have been left out, ẑ(si) is the estimated level using the rest
of the (n-N) data, and z(si) is the measured level at the corresponding measurement site that has
been neglected.

The second method that will be described is called Akaike Criterion as seen in [44], and it is also
calculated at the cross validation stage, so it is also very fast implemented by the genetic algorithm
as it will be presented later on. Akaike error is defined as

EAIC = nlog[

∑n
i=1[γ̂(hi)− γ(hi)]

2

n
] + 2µ (35)

where n is the lag number, γ̂(hi) is the value of the experimental variogram at lag i, γ(hi) is the
value of the theoretical variogram at lag i and µ is the number of degrees of freedom that each the-
oretical variogram has. This criterion is mainly used to compare each method of variograms with
each other (obviously the lower the better) and it also takes into account how many parameters
each variogram has. Minimizing with this measure not only gives an excellent fit to our variogram
(because despite the fminsearch, it also chooses the data to make the perfect fit) but also it gives
an indicator of which is the best method that works better with the reduced network. Last but not
least, the resemblance to the LSS presented above is notable, but in for the optimization purposes,
the Akaike criterion was preferred.

The third method is inspired by [15] where it is used as a method to check their results. It gives
the most accurate mapping in comparison to the original mapping, and is defined to be the Root
mean squared difference between the 2 matrices (symbolized RMSD -root mean squared deviation).
So

ERMSD =

√√√√ 1

M

M∑
i=1

[zinit(si)− ẑ(si)]2 (36)

Where M is the number of points inside our triangulation in our 100x100 grid, zinit is the predicted
values at the M points using the original network and ẑ is the predicted values at the same M points
using the reduced network.

4.3 Matlab algorithm formulation

All the scenario experiments were run using an Intel i5 6600 processor at 3.3 Ghertz with 8 Gb
RAM with the use of MATLAB 2016a version.
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For the coupling of the two tools mentioned above (geostatistics and genetic algorithms) there
were two basic programs on matlab which took as input a vectorized set of populations’ length,
which consist of the scenarios’ length of possible combinations of wells to exclude. For example, if
population size was set to 100, and a 30 scenario exclusion was assumed, in each generation the
programs automated input from the genetic algorithm would be a 100 times [1x30]. In the vectors
1x30, the constraint that each number did not appear twice is forced, and each well number is in
the margin of [1,70] in natural numbers. (For the first test case). So, the creation function of the
standard genetic algorithm has been customized, so that it does all the mentioned above actions,
creating the initial population. Next, the second customization that has been made, was creating
custom mutation and crossover functions, because an integer optimization was required, so values
had to be interchanged from 2 parents with a crossover-mutation rate (adaptivelly changed), and
each time have a constraint so that each child is a feasible solution, meaning that it did not have
a same well twice (ensure a 30-and-no-less well scenario) and each candidate have well numbers
from 1 to 70. Mutation is also customized by the same manner, with random selection in mutation
rate % of the parent’s length. The percentage of the population to be crossovered or mutated (as
mentioned crossover-mutation fraction) is also changed adaptivelly, and is programmed into the
genetic algorithm function of Matlab, which was changed accordingly.

Finally, for the fitness function formulation, there were 2 functions of each variogram method
(Spartan and Powerlaw). For the faster errors RMSE and Akaike, the only program that had to be
included in the fitness function was the data loading, the boxcox transform and triangulation, and
then the variogram estimation (where the LSS is estimated and the Akaike).Lastly, the estimation of
the excluded wells using the remaining reduced network of wells is being made. For the minimization
of the RMSD error, which is more time consuming, a more sophisticated algorithm had to be
done, in which the whole computation of kriging in all the points in our 100x100 grid had to be
evaluated, inside the triangulation domain. Also the estimation of the uncertainty that comes
with the ordinary kriging computation is being made, and an observation is that, as expected,
having removed more and more measurements makes the mapping more and more uncertain, but
in low exclusion scenarios, providing that the area initially was oversampled, there is not significant
increase in uncertainty. That is also a measure to find out in which level we can stop excluding
more and more wells (In Mires it was about 40 out of 70 and in Drama was 150 or in some cases
even 200 out of 250).

4.4 The necessity of a genetic algorithm tool

To excess the need of a genetic algorithm to find a local minimum, bellow are shown the 3 errors
for only one removal, how they behave and how irregular the pattern is. (moErr is the RMSD and
moPR is the RMSV)
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Figure 14: 3-error comparison for 1-removal scenario with their minima

Of course for the 30 removal scenario in Mires that is proposed in this study, there are(
70
30

)
=

70!

30! ∗ 40!
≈ 5.5348 ∗ 1019 (37)

and if a hard search by the means of RMSD that needs approximately 2 seconds to run each time
was being sought, we would need approximately

11.0696 ∗ 1019sec ≈ 5930 ∗ 108years

to complete.

4.5 Sensitivity analysis of adaptive G.A.

In this subsection, a sensitivity analysis is being made in Mires basin, with the standard 30 removal
scenario, at RMSE error,to check the sensitivity of the adaptive change in crossover-mutation frac-
tion and crossover and mutation ratio. In the basic G.A., a 0.85 crossover fraction is being used,
standardized so the remaining 0.15 was mutation minus the elitistic children which are the standard
0.05* Population size. In the adaptive case it is proposed to start with a 0.85 crossover fraction
and in every 5 Stall generation increase, the percentage is dropped by 10 percent. There is also a
semi adaptive case, in which crossover fraction begins with 0.85 and it drops to 0.5 when stall is
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over 10. The results are presented below at a micro genetic algorithm (meaning a little population
and stall just for benchmarking purposes) with 50 population and 20 stall

Table 5: Adaptivity effect

Generations Fvals RMSE
Adaptive 118 5950 8.042

Semi adaptive 103 5200 9.004
Standard 94 4750 10.27

As it can be validated from our results, even with such a small population of 50 candidates in each
generation, there is a clear advantage as the crossover fraction reduces when the stall generations
increases, and that is because it usually can not reach better solutions with crossover when the stall
is high, and it needs more randomness that is achieved by mutating more.

5 Test case 1: Mires Basin

The basic case study was in Mires, an area of high socio-economic interest as mentioned before.
As the results indicates, from the initial 70 well network, it can be easily deduced that 30 can
be removed and keep the quality of the mapping, and in some cases, even 40 measurements can
be neglected. Of course it can be observed, if the goal is to try to leave the mapping unchanged
(RMSD, RMSE), the Kriging Variance will rise, because the uncertainty will rise. Lastly, when
an optimization with respect to Akaike error is being implemented, it is observed that there is
an almost perfect interpolation between the theoretic and experimental variogram and a relative
smoothening in the change of values at the predicted mapping.
Before the figures,a table with the errors which are minimized is demonstrated, and the deviation
from the initial mapping, when RMSD is not optimized genetically (This is useful to know if the
proposed mapping is similar to the initial mapping.)

Table 6: SPARTAN OPTIMIZATION

Scenarios : 30 40 50
RMSD optimization 0.5671 0.8250 1.3542
RMSE optimization 6.8550 14.2811 17.9336

Corresponding RMSDs 0.9528 0.9621 1.1672
Akaike optimization -158.3399 -165.3199 -192.8193

Corresponding RMSDs 2.2906 4.9930 8.6190

Table 7: POWERLAW OPTIMIZATION

Scenarios : 30 40 50
RMSD optimization 0.8693 1.0608 1.4854
RMSE optimization 6.6399 10.8327 18.7995

Corresponding RMSDs 0.9169 1.3339 2.2506
Akaike optimization -163.3718 -160.4464 -186.1825

Corresponding RMSDs 5.1526 4.3471 10.4693
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It is easily observed that Spartan is better at almost every instance, and that, as expected, as there
are more subtractions from the original dataset, the RMSD,RMSE errors are keep growing and the
Akaike finds new minimal, and that is due to the fact that it is dependent only on variogram fitting,
and it is easier to fit a curve to less data. But as one may observe, the corresponding RMSD of
Akaike is non viable, and that fact shows in the next figures where these results are presented.

5.1 Spartan Optimization

The results for the Spartan (SP) optimization in Mires are presented in this section, where a 30,40
and at some cases 50 data points from our 70-data initial mapping were able to get subtracted
without significant degradation of the mapping.

(a) Spartan RMSD 30

(b) spartan RMSD 40

(c) spartan RMSD 50
Figure 15: RMSD minimization scenarios mapping

31



(a) Spartan RMSE 30

(b) spartan RMSE 40

(c) spartan RMSE 50
Figure 16: RMSE minimization scenarios mapping

At both RMSD and RMSE errors minimization there is a close resemblance with figure 2 that is
the initial mapping in Mires with SP variogram. This was expected since that is what these errors
represent (difference from the original mapping). Surprise is the fact that in some cases, RMSE
(which is faster) is more accurate than RMSD (The fact that RMSE is faster, allowed us to tune
up the Population size and stall limit critirion, so that it had time to explore and exploit more.
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(a) spartan RMSE uncertainty 30

(b) spartan RMSE uncertainty 40

(c) spartan RMSE uncertainty 50
Figure 17: RMSE minimization corresponding uncertainties

In the above three figures it is shown how the uncertainty (kriging variance) degraded over the
entire grid, and that the more wells are excluded from the network, the more the uncertainty grows.

Lastly, the effect of the Akaike minimization to the corresponding variogram is demonstrated,
and then, the corresponding mappings.
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(a) Spartan akaike variogram 30

(b) spartan akaike variogram 40

(c) spartan akaike variogram 50
Figure 18: akaike minimization scenarios variogram
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(a) Spartan akaike 30

(b) spartan akaike 40

(c) spartan akaike 50
Figure 19: Akaike minimization scenarios mapping

Here, the drawback of the Akaike minimization is that, it targets on the best candidate that
has the best variogram fit, and as a result, the experimental variogram is more smooth, so that the
smooth curve of the theoretical can interpolate better. So, in the corresponding mappings, there is
an obvious simplicity and smoothness, because it is based on a less steep variogram.

5.2 Genetic Algorithm Stability-Sensitivity analysis (SP)

Other parameters that can be specified by experiment are the Stall generation termination criterion,
and the population of each generation at an experiment. For that matter a sensitivity analysis for
the spartan case is presented, in the following table. A viable scenario was selected for this, and
that is the 30 removal scenario.
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Table 8: Sensitivity analysis (30 removals) RMSD error spartan variogram

RMSD Gen Time/Gen Approx. Total Time
Pop=50,Stall=20 0.8690 97 100 sec 9700 sec
Pop=50,Stall=40 0.8145 98 100 sec 9800 sec
Pop=100,Stall=20 0.7618 60 226 sec 13560 sec
Pop=100,Stall=40 0.5785 98 226 sec 22148 sec
Pop=200,Stall=20 0.5671 72 410 sec 29520 sec
Pop=200,Stall=40 0.5543 86 410 sec 35220 sec
Pop=400,Stall=20 0.5445 67 830 sec 55610 sec

In theory, bigger stall generations would increase the chances of achieving a better result. But
it is observed that after a certain threshold of pop=200, stall=20, a slightly better improvement
is made, but with a tremendous increase of total time. Secondly , a similar table is shown for the
RMSE which is very faster as mentioned because it does not need computing in the whole grid,
just on the missing points. Furthermore, the number of evaluation of the fitness function (Fval) is
being shown, which is an indicator of the convergence of the algorithm.

Table 9: Sensitivity analysis (30 removals) RMSE error spartan variogram

RMSE Fval Total Time
Pop=50,Stall=20 11.0236 2100 76.1 sec
Pop=50,Stall=40 7.34644 10400 410.9 sec
Pop=50,Stall=60 10.9571 8350 310.1 sec
Pop=100,Stall=20 8.9570 6200 241.37 sec
Pop=100,Stall=40 8.5808 11000 427.05 sec
Pop=100,Stall=60 6.6969 21000 741.1 sec
Pop=200,Stall=20 6.8550 14200 509.2 sec
Pop=200,Stall=40 9.0513 14000 496 sec
Pop=200,Stall=60 7.1665 47600 1723.2 sec
Pop=400,Stall=20 7.8840 22000 811.8 sec
Pop=400,Stall=40 7.7831 35200 1351 sec
Pop=400,Stall=60 6.7133 90400 3171 sec

It is observed that in the experiments that needed very little time, the error is bigger than
expected, and that is because the algorithm,because of either a little population or a small stall, did
not get the chance to evolve to a smaller error, until the requirements of the termination criterion
was met. Lastly, a similar sensitivity analysis for the Akaike criterion is being demonstrated .
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Table 10: Sensitivity analysis (30 removals) Akaike error spartan variogram

Akaike Fval Total Time
Pop=100,Stall=20 -160.3098 3800 136.4 sec
Pop=100,Stall=40 -161.4695 7800 227.4 sec
Pop=100,Stall=60 -173.9747 16700 595.7 sec
Pop=200,Stall=20 -156.2765 10800 365.1 sec
Pop=200,Stall=40 -159.0287 14000 536.1 sec
Pop=200,Stall=60 -169.9933 23400 834.1 sec
Pop=400,Stall=20 -167.4112 18800 1457.6 sec
Pop=400,Stall=40 -168.7725 41600 1604.3 sec
Pop=400,Stall=60 -157.2270 30400 1046.6 sec

Here it seems to be an even faster optimization, because there is no need for neither cross validation
(RMSE) or calculation of kriging in the entire domain (RMSD). The downside is that the mappings
are not as good as with the other 2 errors (in comparison with the original that is), but with akaike,
an almost perfect fit in some cases of the theoretical variogram to the experimental is being done,
and so, the genetic algorithm chooses to keep the data that does not have many deviations with
one another. As a result, a much more smoother transition at the reduced mapping is observed,
which is, in some cases, not very realistic.

5.3 Powerlaw Optimization

In addition, similar results with the Powerlaw variogram are presented. Firstly, there are the initial
mapping and corresponding kriging variance (uncertainty)

(a) Powerlaw initial mapping

(b) Powerlaw initial uncertainty
Figure 20: Powerlaw 70 data initial mapping and uncertainty
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(a) Power RMSD 30

(b) Power RMSD 40

(c) Power RMSD 50
Figure 21: RMSD minimization scenarios mapping
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(a) Power RMSE 30

(b) Power RMSE 40

(c) Power RMSE 50
Figure 22: RMSE minimization scenarios mapping

In RMSD and RMSE minimizations, there is a very good resemblance of the initial mapping,
as indicated by Table 7, but with a little more error than Spartan optimization.
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(a) Power Akaike variogram 30

(b) Power Akaike variogram 40

(c) Power Akaike variogram 50
Figure 23: Akaike minimization scenarios variogram
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In the above figures, as expected from the Akaike minimization, the chosen candidate to remove
is that, the experimental variogram is easily fitted by the theoretical Powerlaw variogram.

In the next figures, the corresponding mappings from the 3 above variograms are presented. A
choice that tends to remove measurements from the center that is more monitored is observed, as
well as a tendency to smoothen the irregularities.

(a) Power akaike 30

(b) Power akaike 40

(c) Power akaike 50
Figure 24: Akaike minimization scenarios mapping

6 Test case 2: Drama

The similar test case of Drama is being presented at this section, with the difference that the initial
borehole measurements of underwater level are 250 and that these measurements have a lower range
than Mires. As presented earlier, an analogous table with the errors which are minimized is being
made, and the deviation from the initial mapping, when RMSD is not optimized genetically.
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Table 11: SPARTAN OPTIMIZATION

Scenarios : 150 200 220
RMSD optimization 0.4160 0.6980 0.8145
RMSE optimization 11.6747 25.4796 32.0131

Corresponding RMSDs 0.3815 0.8173 0.8697
Akaike optimization -157.27 -137.89 -161.5690

Corresponding RMSDs 1.5957 1.9099 3.1063

Table 12: POWERLAW OPTIMIZATION

Scenarios : 150 200 220
RMSD optimization 0.4176 0.9046 1.0442
RMSE optimization 13.3035 22.8317 29.2525

Corresponding RMSDs 1.6055 1.6196 1.7216
Akaike optimization -183.02 -165.85 -164.53

Corresponding RMSDs 1.7916 2.4325 2.8975

The first figures are the initial mapping with Spartan variogram and the following figures are
the results from RMSD, RMSE and Akaike optimization, subtracting 150,200 and 220 data points
from our 250 initial data.

6.1 Spartan variogram

(a) spartan initial 250 measurements
Figure 25: Initial 250 data mapping
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(a) Spartan RMSD 150

(b) spartan RMSD 200

(c) spartan RMSD 220
Figure 26: RMSD minimization scenarios mapping
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(a) Spartan RMSE 150

(b) spartan RMSE 200

(c) spartan RMSE 220
Figure 27: RMSE minimization scenarios mapping
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In the above figures, the scenarios of 150,200 and 220 removals are shown out of the 250 initial
measurements, with the RMSE and RMSD minimizations, which, like the first test case, resembles
the original mapping. In the 220 case, more and more differences can be observed, (as indicated by
table 11) and as a result, the proposed scenario is to keep at least 50 out of the 250 measurements
(which is still impresive keeping only 20 % of the initial mapping measurements and still have an
adequate mapping.)
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(a) spartan initial uncertainty

(b) spartan RMSD uncertainty 150

(c) spartan RMSD uncertainty 20046



In the above figure it is observed what we may have expected, that the more data points are
removed, the more the uncertainty grows, and the mapping shows where one would need more
sampling for the inverse purpose of this project.

Lastly, the effect of the Akaike minimization is observed, to the corresponding variograms along
with the original 250 data spartan variogram, and then, the corresponding mappings.

(a) Spartan initial variogram

(b) Spartan variogram akaike optimization 150 removals
Figure 29: akaike minimization initial and scenarios variogram
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(a) Spartan variogram akaike optimization 200 removals

(b) Spartan variogram akaike optimization 220 removals

In the above figures, not only is observed the perfect fit on the 150 and 200 removals, but
also, the flexibility of the Spartan variogram is shown clearly, because, depending on the rigidity
coefficient, depending on the needs that the data indicate, it can be convex or concave, or have a
sinusoidal form to fit more complex data. As a result, Spartan can be utilized more easily in many
test cases and different applications.
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(a) Spartan akaike 150

(b) spartan akaike 200

(c) spartan akaike 220
Figure 31: akaike minimization scenarios mapping
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6.2 Powerlaw Optimization

The powerlaw initial uncertainty, variogram and mapping alongside with the results from our 3
measures follows.

(a) power initial uncertainty

(b) power initial variogram
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(a) power initial 250 data mapping

(b) power RMSD 150
Figure 33: Initial mapping and RMSD optimized scenarios mapping
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(a) power RMSD 200

(b) power RMSD 220
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(a) power RMSE 150

(b) power RMSE 200

(c) power RMSE 220
Figure 35: RMSE minimization scenarios mapping
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In the RMSD and RMSE variograms a worse situation is being observed in comparison with the
Spartan case, as indicated by the comparison of tables 11 and 12, that shows RMSD optimization
that finds better minimum with the spartan optimization, and also in the RMSE and Akaike
optimization, the corresponding RMSDs (Mean Deviation of the initial map from the reduced one),
the Spartan outperforms the Powerlaw in almost every instance.

In the figures below, the astounding fitting of the Powerlaw Akaike minimization is observed on
the variogram, but that does not translates to a very good mapping in comparison with the initial,
as expected, especially in the 220 scenario where the mapping is misleading, so it may be proposed
to avoid so much under sampling.
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(a) power akaike variogram 150

(b) power akaike variogram 200

(c) power akaike variogram 220
Figure 36: akaike minimization scenarios variogram
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(a) power akaike 150

(b) spartan akaike 200

(c) power akaike 220
Figure 37: akaike minimization scenarios mapping
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7 Future Work-Discussion

In conclusion, in this work, two test cases of monitored groundwater networks are presented, in
which our basins were heavily monitored, and it was possible to subtract more than 50% of Mires
basin measurements and 70-80% of Dramas measurements (In Drama the water level had very little
range in comparison to Mires and the measurements were closer to one another.) Possible future
work that can be made in this coupled methodologies tool, is to make the evaluation work in parallel,
either in the GPU, or in Matlab’s parallel workers, so that even RMSD can be fast and efficient in
practice. Another improvement could be to use multi objective genetic algorithms so that one could
minimize with respect to everyone of the errors and choose from a Pareto front the minimizer that
suits the needs. A simpler multi objective optimization can be done by defining the fitness function
as in [15], by a weighted linear combination of the errors defined, in which the weights are chosen
experimentally according to the needs of the minimization. There, kriging variance could be added
as one of the errors, minimizing without the box cox transform, because when the normalization is
being made, an exponent is sought, and then our data can be more evenly distributed, and using
that exponent, we can back transform the predicted level at the unsampled locations. But one can
not back transform the kriging variance as it has no units. So there is no reason for this work to
minimize in respect to kriging variance, because of the single objective and the transformation of
the data that is presented here.
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