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EuxapioTieg

H peramruxiakn autn pyacia ammoTeAE], Kard KATTolo TPOTTO, TO AQTToTéAEoUQ
yiag oA6kAnpng topeiac mou éekivnoe TTOAAG xpovia TpIlv TO UETATITUXIAKO
mpoypauua auté KaB’ eautd. 2’ autn Tnv TTopeEia dev NUOUV TTAVTOTE [OVOCS OU:
uttipéav d1apopol AvBpwIToI TTOU, UE TOV £va 1) TOV GAAO TPOTTO, e WOnoav mPOS
d1apopes kareubuvoelg, ue arnpiéav orav xpeialououv arnpiyuara, nrav dimAa
Hou otav Tou¢ gixa avaykn, pou £o€iéav véoug TOTTOUG, TOTTIQ KAl OTTTIKEG YWVIES
N, AAAeC Qopéc, ammAwg uou ékavav rapéa.

Kar’ apxnv, euxapiotw Tov &ETMOTTTH Mou BaogiAn Xpiotogidn mmou ue
KaBodriynoe oOuOIaoTIKA, UE EUWUXWOE Kal NATav TTAVTOTE EKEI OTTOTE TOV
xpeiadououy, kaB’ o0An 1t diGpkeEla Tou ueTamTuxiakou. Agv 6a Arav kaBoAou
uttepPoAn av édeya Ot autn n gpyacia dev Ba cixe yivel xwpic tn Lonbeia Tou.
Emiong, euxaploTw TOUS YOVEIC ou TTou e OTHpIEéaV OE OAES TIC ATTOQPATEIS IOV,
OXI UOVO OIKOVOUIKA, aAAG KUPIWGS UE TNV aydrTn Kal TO OIQPKES EVOIAPEOLOV TOUG.

Euxapiorw tov MavoAn Kouutrapdkn kai tn MarouAa Mayipidou yia 1n
ouvepyaaia Toug Kara 1o oxediaoud N RUL kai roug Anunitpn MNAeéouodkn Kai
pnydpn Avrwviou yia TIC XPHROIUES TTAPATHPNCEIC TOUS. ETTiong, euxapioTw Tov
pnyoépn KapBouvapdkn yia TISC OUCIQOTIKES KAl YPNyopES QTTAVTIHOEIC TOU OTIC
arropieg uou oxeTika pe tnv RQL kai tov kaAoypauuévo tou KwOIKa, 1n 2ogia
AAeédkn tou ue punoe o umoAika puotika tng RDF  Suite, 10 Acutépn
210npoupyo yia 1ic oulntnoeis uag kair to Xapn kika mou pou utrédeiée Ta KAeIOId
YIQ QPKETEC TTOPTES YVWONS OTNV TTANPOQYOPIKT).

Akoua, Ba suxapioTnow (UE OEIPA gupavionsg) 1o Gavaon yia 1a uayika
raéidia uag, o Xapn yia tnv KaAdkapdn urropovr tou, 10 Niko yia TiS UTTOOEIEEIS
TWV EMITTAéOV dIa0TAoEwWY Kai TIC BouTIEC OTn UEYAAn oBovn, tn csdlista kai Tov
Albert Hofmann, 1o Anuitpen yia ta tolydpa kai ta oula tmou nmaue padi, Tnv
adepen uou yia moAAouc Adyoug, Tov ko yia ta vuxTepiva vrepiBé. TEAOG, yia
Adyouc mou dev €xouv yivel akoua oageic Ba HBeAa va euxapioTnow
(aApaBnrika) tous AAéko, liavvn, Aéormoiva, EuvBuuia, MavoAn kai MiAto kai
UEPIKOUS aKOua avBpwirous mmou aAAov dev Ba diaBaoouv moté autd 6w TO
EuxapIoTnpIO.



NEPIAHYH

H diaxeipion aAAaywv o€ TTeplypa@ég Tépwy TTou Bacifovral oe RDFS oxnuara
EXEl YiVEL QTTOPQITNTA OTIGC OUYXPOVEG E£PAPUOYEG TOU 2npacioAoyikou loTou.
ATTOOKOTTWVTAG OTNV IKAVOTIOINON QUTWV TWV OTTAITACEWY, TIPOTEIVETAI Hia
OnAwWTIKA yYAwooa diaxeipiong aAAaywy yia ypagoug RDF, n otroia BacileTal oTta
TTaPAdEIYHATA TWV YAWOOWV ETTEPWTNOEWV Kal Owewv RQL kal RVL. H yAwooa
ovopaletal RUL kai o€ autiv diaag@alidetal 0Tl oI aAAayEG 0TouG KOPPBOUGS Kal TIG
oKPEG Oev TTapafladel Tn onpacioloyia Tou poviéAou RDF i} Twv dedouévwv
RDFS oxnudtwyv. EmmAéov, n RUL utrooTnpilel kaAd kaBopiopéveg aAAayEg aTo
EMTTEd0 TWV TOPWV Kal Twv I0I0TATWY TOoug KOBWG Kal TR duvardoTnTa
TTOANATTAWY aAAQYWV PE VTETEPUIVIOTIKA onpaacioAoyia. ETTITTAEoV, EKPETAAAEUETAI
TTARPWGS TNV eKPPAOTIKr duvaun TnG RQL tTpokeiyévou va kabopioel Ta opia Twv
METOBANTWY OTOUG KOuPoug Kal TIC okpéG Tou RDF ypdgou. H yAwooa
uAotroinBnke oto TTAaiolo Tng RDF Suite wg emméktaon tng RQL. H uAoTtroinor Tng
Bagiletal oe pia yAwooa allaywv ot PBdoeic dedopévwyv Kal Trapdyel SQL
TTPOTACEIC AAAAYWV YId TIG AVATTAPACTACEIG TTOU XpnoigoTtrolouvTal otnv RDF
Suite.

ABSTRACT

Semantic Web applications are striving nowadays for managing changes of
persistent resource descriptions created according to RDFS schemata. To cope
with this demands, a declarative update language for RDF graphs is proposed,
which is based on the paradigms of query and view languages RQL and RVL.
This language, called RUL, ensures that the execution of the update primitives
on nodes and arcs neither violates the semantics of the RDF model nor the
semantics of the given RDFS schema. In addition, RUL supports fine-grained
updates at the class and property instance level, set-oriented updates with a
deterministic semantics and takes benefit of the full expressive power of RQL for
restricting the range of variables to nodes and arcs of RDF graphs. The language
has been implemented in the context of RDF Suite, as an extension of RQL. The
implementation relies on a database update language and generates SQL
update statements for the various database representations used in RDF Suite.
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Introduction

Semantic Web applications are striving nowadays for mangaghanges of per-
sistent resource descriptions created according to RDF&satia [9, 28]. The
majority of ontology-based authoring and annotation tda]srequires first to
manually edit the resource descriptions and thereafteadahg them into an RDF
Store from scratch. This approach offers rather limitectfiomality especially in
the case of deletions and modifications. To overcome thesations, some RDF
Stores [3] have implemented suitable update APIs [7, 8,84 Fowever, forcing
developers to code in advance all possible updates of resal@scriptions (us-

ing these APIs) is not a viable solution for dynamic Semaweb applications
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employing non trivial RDFS schemata. In this context, desigra declarative

update language offering complete and sound primitive<isadlenging issue.

The most interesting proposal so far is MEL that has beenloged in the
framework of QEL and it is based on Datalog [22]. MEL primgtiicommands
consist of a statement specification and an optional quergtcaint, declared as
a QEL query. The granularity of the operations follows a gudph centered ap-
proach but consistency of updates with respect to the eradIRPFS schemata is
not respected. Furthermore, no formal semantics or ddthédavior description
have been given for MEL. The rdfDB Query Language [12] susp8QL-like
updates (insert and delete) by following a statement-cedtapproach and does
not integrate smoothly with the query language. In factupbeate operations can
affect only specific statements without variables and theg execution seman-

tics is trivial.

In this thesis, we propose a declarative update languadg@Dérgraphs which
is based on the paradigms of query and view languages RQL [tMREL [21].
Our language, called RUL ( [19]), provides primitive and-sgented updates.
Update operations affect the class instances and/or gyopestances in a well
defined way. RUL integrates smoothly with RQL and benefits fthmtyping
data model and the powerful pattern matching the later des/iRUL comes with
operation semantics defined in a declarative (chapter 3edsawin a procedural
(chapter 4) manner. Itis a design choice of RUL to provide sxfpressions and

deterministic iteration semantics.

RUL ensures that the execution of the update primitives ateaand arcs
neither violates the semantics of the RDF model (e.g., insgmoperty as an
instance of a class) nor the semantics of a specific RDFS scfema modify
the subject of a property with a resource not classified uitdetomain class).

This main design choice has been made in order to take intuatthe fact that
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updates are fairly destructive operations and change #te st an RDF graph.
Thus, type safety for updates is even more important tham $gfety for queries.
The more errors we can catch at compile time the less costtymme checks (and
possibly expensive rollbacks) we need. The rest of RULsytlestoices concern
(a) the granularity of the supported update primitives;tfie) deterministic or not
behavior of the executed sequences of update statemedtf;)ahe smooth inte-
gration with an underlying RDF/S query language. To the bkestioknowledge,
RUL is the first declarative language supporting fine-grdinpdates at the class
and property instance level, has a deterministic semaiaticet-oriented updates
and takes benefit of the full expressive power of RQL for restg the range
of variables to nodes and arcs of RDF data graphs. Howevedeasign can be
also immediately transferred to other RDF query languages, BDQL [4], or
SPARQL [17]) offering less expressive pattern matching bdpas [13]. None
of the RDF update languages proposed so far [12,22] supperefdorementioned

functionality.

In chapter 2 we present the eight RUL operations and destitdie syntax.
We also describe informally their effects on the RDF graph.e RDF graph
considered here consists of nodes, representing classgassrinstances, and
arcs representing properties, property instances orifitag®on links between in-
stances and classes/properties. The effects of RUL opesatire described as
sequences of insertions and deletions of nodes and arcssogréiph. The pre-
conditions are described and the main effects of each operate distinguished
from the side effects. We explain the functionality of RULeogtions with vari-
ables (set-oriented updates) as well as statements cogtamultiple operations.
We also illustrate with examples the integration of RUL WRIQL (or another

RDF query language for that matter).

In chapter 3 we formally define the semantics of RUL operatemd we focus



on the safe and deterministic set-oriented updates whereagen that the order
of operations in a statement matters (statements with tme $2UL operations
in a different order have different semantics). Later, opdate semantics are
compared with the semantics of knowledge base updatesevithier proposed
that RUL can be used as a low level update language for impigngea high level
knowledge base update language. RUL is also compared vhigh BIDFS update
languages and proved to be more expressive. Last but not veapresent the
world of database update languages, define the concept #ssie power and
present how they are compared in the literature. We focusromt them, namely
on WL and SdetTL, as they are the most expressively powerfuhi® needs of
RUL. We also explain the functionality of the provided datsé update operations
as they are proposed in the literature and focus on the digistin semantics of
the two languages. We argue that WL is more suitable for imphding RUL,
as its semantics easily capture the semantics of the RUlopalations (insertion
and deletion of arcs and nodes on the RDF graph) as well as ftorpeance

reasons.

In chapter 4, the architecture of RUL implementation is akpd. RUL has
been developed as an extension of RQL implementation ammimM®linost of its
design principles, except that the returned result of a Ridtement is feedback
to the user rather than the goal of the statement. RUL statisneensist of an
update operation part (the head) and a query part. We prigsevdirious database
representations used in RDF Suite to store RDFS descrip@masyse WL pro-
grams to describe the implementation of each RUL operatioording to each
database representation. We also explain how we ensuraftharsd determinis-
tic semantics of the language in implementation. Finalg, translation to SQL
is described and we present some optimization techniquex$ tasimprove the

performance of the language.
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An important design decision in the implementation levehis use of a tem-
porary relation for storing the results of the evaluationhaf query part of a RUL
statement. We show how this principle is used to ensureysafed determin-
ism. We also take benefit of it for optimizing the costly ogienas with schema

variables.

1.1 Motivating example: a graphical RDF/S man-

agment tool

In this chapter we consider a graphical user interface (Gatlediting RDF/S
description graphs (see figure 1.1).Like various RDF/S airtdools, it can be
used to navigate through an RDF/S schema graph using the naodsselect
classes, properties, resources and property instancesusen can apply various
update operations over the selected items by selecting fitteema menu. Every-
one using a personal computer is familiar with the semaofitisese operations:
a "new” and a "delete” for inserting and removing items frdme graph, a "copy
and paste” operation for cloning items, a "cut and paste’rajpan for moving
items from one place to another and, finaly, a "rename” operdor changing
the URIs of various resources. The semantics of these opesadis well as the
restrictions to what the user can do over each kind of itensianéar (and in some
cases equivalent) to the semantics and preconditions of ifidlate operations,
so it is interesting to examine how these GUI operations sgare specific items
can be expressed with RUL expressions. The selection of omee items from
the graph in the GUI world is expressed with some query. le cdgraphicaly
represented RDF/S graphs, we are interested in the updateiops applied over
a graphical selection of items using RUL statements.

The "new” GUI operation corresponds to the insertion of a &8s or prop-

erty instance in the RDF graph. This can be handled with an RISEhether



1.1. MOTIVATING EXAMPLE: A GRAPHICAL RDF/S MANAGMENT TOOL7

A graphical RDF/S management tool —\OX
File |[Edit/About Help
[ Insert new
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Cut
'S_ Paste
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Figure 1.1:A fictional graphical user interface for managing RDF/s descriptions.
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it is an insertion of a class or a property instance. The uslects the class or

property he/she wants to be instantiated, and clicks onrbe/” selection from
the menu. For example, the user seleétger and clicks on "new” to insert a

new Paper resource. The corresponding RUL expression is the follgwin
INSERT Paper(&newPaperValue)

The side effects of the INSERT operation for this case do aose any harm
to the behavior of the GUI tool. If th&new PaperV alue resource exists as an
instance of a super-class Bfiper, it is now also an instance dtaper.

The 'Wdelete’W GUI operation corresponds to the erasure ahstance or
a classification link. We suppose that if a resource is aranmts of a class (e.g.
AcceptedPaper), it is also an instance of all super-classes of it (eftgper is
a super-class oficcepted Paper), although this information is often omitted in
the graphical representation. For example, resourBé/ L Paper is also an in-
stance of clas®aper, although the link between them does not appear in figure
1.1. The semantics of the "delete” GUI operation can desdris the erasure of
the resource and the instantiation links emanating fronm just the erasure of
one instantiation link. In RUL we provide both functionadd. For example, the

erasure of the instantiation link between a resoudreeand a clasg’ is captured

by
DELETE C(&r)

while the instantiation link between a properyand a property instance be-

tween resourcé& source and resourcétarget is erased by
DELETE P(&subject, &object)

In RUL we also express more sophisticated erasures, e.graisere of a set

of instantiation links emanating from a specific resource.
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The "copy and paste” GUI operation is also handled with a RNSERT.
If the user selects some resouied&U L Paper that is an instance of the class
Accepted Paper and pastes it tdejected Paper, the following RUL expression

captures the semantics of this operation:

INSERT RejectedPaper(&RULPaper)

If the user pastes the resource to a super-clads@fpted Paper (e.g. Paper),
the expression is the same. RUL INSERT will not modify thecdigsion in that
case, but this is exactly the behavior we want, becduBé L Paper is already
an instance oPaper.

If the "copy and paste” GUI operation is applied over someprty instance,
the RUL INSERT for property instances captures again theaséios of the oper-
ation. Itis possible, though, that the user might try to @aisé copied instance to
a property of which the domain and/or the range do not conltersource and/or
the target of the property instance as instances, or thegpfaaedifferent literal
type. The desired behavior of the GUI tool would be to notvalibe user to paste
the property instance there. Because of the preconditiof®af INSERT for
property instances, RUL INSERT will return "false” to theaslying GUI appli-
cation so that it will be aware of the fact that this operatgnot valid.

The "cut and paste” GUI operation is more complicated. A "ant paste”
when class instances have been selected can be viewed dsraptdb change
the instantiation information of these instances. A reseus "cut” means some
instantiation links between the resource and the seletdedes are erased. When
the resource is "pasted”, some other instantiation links atded between the
resource and the selected classes. RUL REPLACE for clasgificat class in-
stances can be used in that case. If the instance is mussititad, a single RUL

REPLACE is not enough to capture the semantics of such a "cupaste” oper-
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ation. E.g., If the user wants to "cut” the resoutc®U L Paper and paste it as an

instance ofRejected Paper, the RUL expression is the following:
REPLACE $Ci1<-RejectedPaper(&RULPaper) Q($C1)

whereQ is an RQL expression that returns all the classes thath#&é L Paper
as an instance. Similarly, a class variable can be used welémat the resource
is going to be "pasted” under more than one classes.

In case of applying "cut and paste” on property instancesRUL REPLACE
classification for property instances captures the sewcwnfithe operation and
provides the necessary preconditions when the operataulidgimot be allowed.
The affected property instance has to be a valid instancheoptoperty under
which is classified, otherwise the tool should not allow tperation. RUL RE-
PLACE semantics is aware of this restriction.

Finally, a rename” GUI operation would be desired in som&eyms. The aim
of this operation is to change the name of a URI or the value iéial attribute.
If the new name of a resource exists in the description baseGUI tool should
have to merge the equally named resources. This is captyrdeklsemantics of
RUL REPLACE for class instances.

If the user clicks on some literal value and desires to renames indentify
the value by refering to the property instance triplet it &tpf. Then the user
enters a new value, that replaces the old one. In RUL thispsucad by the

semantics of REPLACE for property instances.

REPLACE P(&someResource, "strl" <- "str2")



The syntax of RUL

RUL can be used to express updates to RDF graphs i.e., insgrtleletions and

replacements of nodes and arcs.

An RDF graph contains various types of nodes and arcs. Classes@e-
sented as nodes and properties as arcs between the class Adueclass the
node of which a property arc emanated from is "the domain efttoperty” and

the one that ends to is "the range of the property”.

Classes and properties are related through IsA (subsumpélations. These
relations are represented by arcs. The class from the noddioh an ISA arc

emanates is a sub-class of the class to the node of whichAradsnds.

11
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Property arcs are also connected with ISA arcs in the samewalass nodes.
Of course, an arc connecting other arcs is not compatible tvé semantics of a
graph representation. In order to deal with this problem¢areview properties as
triplets consisting of a domain arc, a property node and gaanc. The domain
arc emanates from the domain class node and ends to the fyropde, while the
range arc emanates from the property node and ends to theckasg node. With
that model in mind, we can connect property nodes with IsA.aWée prefer to use
a shortcut for that triplet, though, and represent a prgpestan arc. A property
arc emanates always from exactly one node and ends to ezaciilger one. This

node is either a class node or a node representing a classraf lialues.

A class instance, sometime referred as "a resource”, isafgesented with a
node. A resource is an instance of one or more classes. Waaag tesource is
a direct instance of the classes that do not have any subeslagth this resource
as an instance. The resource is an indirect instance of éissed that are super-

classes of some classes with this resource as an instance.

If a resource is a direct instance of class, the resource isodennected to
the class node through an arc called "classification arc’ctassification link”.
A classification link emanated from a class instance nodeemt$ to a class
node. A class instance node is valid only if there is at least@assification arc
emanating from it. If a resource is an indirect instance ofag; this relation is
implied through the ISA arcs connecting the class with adabs for which the

resource is a direct instance of.

Property instances are represented as arcs between dt@sgmnodes, literal
nodes, or both. A literal node is a node is not connected t@#mr node through
classification links and represents a literal value. Thestlastance or literal value
from the node of which a property instance arc emanates lisdcdhe source of

the property instance” and the class instance or literalevéd the node of which
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a property instance ends is called "the target of the prgpestance”.

Property instances are connected to the properties theystances of, by
classification links. Like in class instances, a properstance can be direct in-
stance of some property and indirect instance of some otopepies. Only the
direct instantiation relation is represented by clasdifcalinks. A classification
link from property instances is an arc emanating from theerty instance arc
and ending to the property arc that this instance is a dirstance of. In order
to be compatible with the semantics of graphs, we can viewopguty instance
arc as a shortcut of the triplet "source arc”-"property amste node”-"target arc”,
where the source arc emanated from the source node of therpr@gmd ends to
the property instance node and the target arc emanatestipraperty instance
node and ends to the target node of the property instancéatrcase, the clas-
sification link of property instance emanates from the prgpestance node and
ends to the property node of which it is an instance of. As endhase of prop-
erty arcs, we prefer to use a shortcut: the whole triplet pgegented a property
instance arc, and the classification links emanate fromdteard to the property

arc (which is also a shortcut).

In the figures of this chapter, a class node is drawn as a cwblée a resource
node is a string starting with an ampersand (&). ISA arcs alid arrows with a
white head, while property arcs, as well as property ingaancs are solid arrows
with a black head. The instantiation arcs are dashed arratiswhite head.
The property arcs and the property instance arcs are dissimgd by the context:
a property arc emanats and ends to class nodes, while a fyropstance arc

emanats and ends to class instance nodes.

In this section, we present the syntax of RUL in an incrememiéormal
way by giving examples and intuitive explanations basechenrRDF schema of

2.1 dealing with the organization of scientific confereneesl IMG REF HERE
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where the effects and side-effects of each operation afgzasthin detail.
We assume that the vocabularies used in the RDF graphs hanedbieed
using RDF Schema. RUL does not deal with schema updates. Wdalsot deal

with blank nodes, containers, collections or reification.

ns: www.ex.org/fcont- ¥
xsd: http:/www.w3.0rg/2001/XMLSchema
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RN sL:Jk;CIass(;féf colocated
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Figure 2.1:The RDF schema of a sientific conference example will be used to illustrate
and clarify the syntax of RUL
The syntax of any RUL expression is as follows:

UPDATE SchemaStatement(ClassinstancesStatement)
[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The update statement can be an INSERT, DELETE or REPLACE statem

for class or property instances. TBehemaStatement is a statement related
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to schema variables or constants, while tHessInstancesStatement contains
class instance variables or constants. These statemdhlster be examined in
detail, and they are based on the statements described|irMbge precisely, the
INSERT and DELETE clauses described here are no different the INSERT
and DELETE statements in [19]. In this thesis we use the REPLAGESe in-
stead of the MODIFY clause, but we also describe its behavitbr more details,
separating the case of modification to the resource or pippstance from mod-
ification to the resource or property classification link.

For example, the first update statement we will examine iSNISERT state-

ment for class instances, which is:
INSERT QualClassName(ResourceExp)

The expressiomResource Exp denotes a node and can be a constant URI or
a variable. In the former cas&esource Exp determines a unique graph node,
while in the latter, the clause FROM determines the bindofghis variable (i.e.,
a set of nodes) as in RQL. The express@nalClassName denotes the class
to which the new nodes will become instances or to which the classification
links from existing nodes will be created. In short, an INSEperation ensures
that a resource is an instance of the specified class, as foogrin contraints
are not violated.

As usual, the WHERE clause gives the filtering conditions fer vhriable
bindings introduced in the FROM clause. The clause USING NESYRACE gives
a list of namespaces that disambiguate the use of names athibeclauses. The
clauses FROM, WHERE and USING NAMESPACE are optional. In theoks
this paper, we show the USING NAMESPACE clause when we areptieg the
syntax of RUL but avoid any namespace information in the gxtasifor reasons
of brevity (i.e., all the names employed in the examples aigue and they are

defined in the schema namespace ns of 2.1).
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As in the RDF Query Language (RQL), RUL distinguish betweerdiand
indirect instances of a clags or property P (equivalently, between direct and
indirect instantiation links). A resource nodas a direct instance of class if
it is an instance of” and it is not an instance of any subclass’of A resource
noder is an indirect instance of clagsif r is a direct instance of a subclass(of
The definition is similar for properties. An RDF graph has nduredancies with
respect to instantiation if there is no instance of a classpoperty that is both a
direct and an indirect instance. All the update operaticfsidd below result in
RDF graphs with no redundancies with respect to instantiatio

It is a design choice of RUL to have a different syntax for updaf instanti-
ation links (unary predicates) and a different syntax fadatps of property arcs
(binary predicates) to remind the user of the different garos of these opera-

tions.

2.1 Updating class instances

2.1.1 INSERT for class instances

The syntax of the INSERT statement for class instances isliasvs:

INSERT QualClassName(ResourceExp)
[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The INSERT operation introduces new nodes in an RDF graph lasdifies
them, or inserts new classification links for existing nodes

The effects and side-effects of an INSERT operation withaheve syntax
are presented graphically in figure 2.2. A new néti@ource Exp can be created

as a direct instance @ualClassName, as it is shown in figure 2.2, statement
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(). If node Resource Exp exists in the graph and it is classified under a super-
class ofQualClassName (fig. 2.2 statement (4)), the effect of INSERT is that a
new classification link is inserted betwe&asource Exp andQualClassName.
In this case, the operation has the side-effect that the plassification link is
deleted (since it is implied by the new classification link).

On the other hand, iResource Exp exists in the graph and it is classified un-
der a subclass @ualClassName (fig. 2.2, statement (2), whergis a subclass
of B), the INSERT operation has no effects. Obviously, if theenedists as a
direct instance of)ualClassName, the operation has no effects too. Finally, if
the nodeResource Exp exists in the graph and it is classified under a class which
is not related through a subclass relatioritaa/Class Name (fig. 2.2 statement
(3)), the result is a multi-classified nod&x(1 is classified both undeB and D
classes) without any side-effect.

Example 1. Make the resource with URI http://www.ex.org/paptf an in-

stance of the class AcceptedPaper:

INSERT AcceptedPaper(&http://www.ex.org/paperl.pdf)

As we explained above, this update operation will be effeabinly if the re-
source nodepaperl.pdf is not already an instance of clagdscepted Paper or
one of its subclasses (if it had any). In other words, the @ec of an INSERT
operation leaves us with an RDF graph with no redundancids regipect to in-

stantiation.

Example 2. Classify as reviewers all members of the OC of ISWCO05:

INSERT Reviewer(X)
FROM {Y}isOrganizedBy.hasMember{X;OCMember}
WHERE Y = &http://www.iswc05.0rg
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Figure 2.2:Examples of some INSERT operations for class instances:
(1) INSERTA(&74)
(2) INSERTB(&r3)
(3) INSERTB(&74)
(4) INSERTC (&r2)
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The above example demonstrates the use of variables in (BERN clause
and the use of RQL path expressions for navigating RDF graphiseifrrfROM
clause.

More precisely, variablé&” will be range restricted to instances of cla&S M ember
involved in theOrganizingCommittee of the ISWCO5 Event. This update oper-

ation will multiply classifyOC M ember instances under the claggvicwer.

2.1.2 DELETE for class instances

The syntax of the DELETE operation for class instances iokmAs:

DELETE QualClassName(ResourceExp)
[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The DELETE operation deletes classification links and fdgsiodes from
an RDF graph (fig. 2.3). The expressi@asource Exp, which denotes the node
from which the classification link to be deleted originates) be a URI or a vari-
able. The effect of the DELETE operation is to remove thedfioe indirect clas-
sification link of Resource Exp to classQualClassName and replace it by the
link of ResourceExp to all the immediate super-classes@fialClassName if
any (e.g., in fig. 2.3, statement (X)r1 is now classified under classdsand B).

If ResourceFxp is multi-classified (e.g&r4 in 2.3.4), the classification links to
classes not related QualClassName remain untouched (in fig. 2.3, statement
(4), the classification link tel remains untouched). An interesting case of a dele-
tion of a multi-classified resource is demonstrated in fig, &atement (5), where
&r5is an instance of throughM. The classification link td// is removed, be-
causeM is a subclass aQualClassName (in this casel.), but the classification

link to K is not removed a% is not related ta. through subsumption. Finally,
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Figure 2.3:Examples of some DELETE operations for class instances:
(1) DELETEB(&r1)

(2) DELETEC (&r2)

(3) DELETEB(&3)

(4) DELETEM (&74)

(5) DELETEL(&5)
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if QualClassName is the top of the class hierarchif : Resource, the effect is
the deletion ofResource Exp node along with all its classification links (resource
removal).

It should be stressed that, all classification links thateaigded by a DELETE
operation must take the semantics of INSERT into accounthaiothe resulting
RDF graph remains without redundancies. The side effect&EHTE in any of
the above cases are caused by the changes in the classifiseianode. To be
more specific, all property arcs emanating from the note @ehtoy Resource Exp
that have as domain (or range) a class, to whieRource Ezp is no longer an
instance (e.g. fig. 2.3 statement (1) and statement (2))alacedeleted by a
DELETE property instance operation (which is described\Wweh detail). These
side-effects are necessary to keep the graph consistece, /& source Exp does
no longer belong to the declared classification. To illustthese, consider the
property instancé’1 emanating fron¥:r1 in fig. 2.3, which is deleted (1) when
the respective classification link is removed. The delebiofar2 in (2) has a more
interesting side effect: the property instané2 is generalized to an instance of
P1 (P1 is a super-property aP2), while the property instancE1 remained un-
touched. In general, when a class instance is deleted, tipe gy instance related
to it, remain untouched if they are still valid’{ in (2)). If this is not possible,
they are generalized to their ancestor properties, if &iQ (2)), or completely
removed 1 in (1)). Finally, if a property instance cannot be genesdizdespite
the fact there is a super-propert#4 in (3) cannot be generalized becauseds
now an instance ofl, therefore not in the domain @f2 or P1), the whole delete
operation is aborted.

Example 3. Delete all papers submitted by the PC chair(sp@#¢C05:

DELETE Paper(X)
FROM {Y}writes{X}, {Z;Conference}hasPC.hasChair{Y}
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WHERE Z=&http://www.iswc05.0rg

The above DELETE operation will be effective only if the ndaladings of
variableX are classified under the class : Paper or one of its subclasses (e.g.,
AcceptedPaper). It is worth noticing that these nodes will still be presanthe
output RDF graph of the previous update operation, but onipgtances of the

top class-df : Resource (sincens : Paper has no other superclasses).

2.1.3 REPLACE for class instances

The syntax of the REPLACE operation is:

REPLACE QualClassName(OldResourceExp <- NewResourceExp)
[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The expression®ldResource Exp and New Resource Exp can be constants
or variables as in other statements. The arrowhas the meaning of an assign-
ment operation. The effect of the REPLACE operation (fig. Z4picompletely
remove the node(s) denoted OYd Resource Exp and then insert the node(s) de-
noted byN ew Resource Exp as an instance of whétld Resource Exp used to be.
What's more, the new node preserves all the property inssanretated to the old
one. The insertion oVew Resource Exp has the same semantics as the INSERT
operation presented earlier (see fig. 2.4 statement (2)enhe inserted resource
&r4 is specialized to be instance Bj).

Example 4. The information that paperl.pdf is an acceptg@:pis incorrect.

The correct information is that paperl101.pdf has been aiszkp

REPLACE AcceptedPaper(&http://www.ex.org/paperl.pdf <-
&http:/lwww.ex.org/paperl01.pdf)
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Figure 2.4:Examples of some REPLACE operations for class instances:

(1) REPLACEA(&rl <- &rl new)
(2) REPLACEB(&72 <- &74)
(3) REPLACEA(&13 <- &r3 new)
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If paperl.pdf had title "The language SQL”, we could equivslg write:

REPLACE AcceptedPaper(X <-
&http://www.ex.org/paperl01.pdf)

FROM {X}itle{Y}

WHERE Y="The language SQL"

It should be stressed that the REPLACE operation is not a sequeé DELETE
and INSERT. The main difference between a REPLACE operatidmaequence
of DELETE and INSERT operations is the different side efect

The first side effect of REPLACE is that all properties emamgatiom (or
ending at) the resource denoted®¥i Resource Exp are completely erased. The
other side effect is that the previously removed propentiidoecome properties
emanating from (or ending at) the resource denotedVlbw Resource Exp. In
figure 2.4 statement (2), property dfd¢ emanating fron&r2 and ending at literal
value "strl”, is removed, while another property &t which ends at literal value
"strl”, is inserted, emanating frodar4. In figure 2.4 statement (3), the property
arc P1 is removed and then inserted with a new source instance.

In other words, REPLACE could be described as a resource erédlowed
by a resource addition. The semantics of these operations ihe same as the
semantics of the RUL INSERT and DELETE statements preseptedously.
More precisely, during the erasure, the resource is comlgleemoved from the
database, as long as it is originally an instance of Qual@kas®. During the ad-
dition operation, the new resource is inserted accordinigg@orresponding RUL
INSERT operation, with all the effects and side effects of MSERT operation.
Moreover, during the operation operation the propertyansgs attached to the
removed resource are modified as follows: If a property ms#dhas the removed
resource as source (or, similarly, target), the RUL REPLAC&afon will cause

the property to have the added resource as source (or targiefdd. For example,
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new values can be inserted with REPLACE, or existing ones caspéeialized

(instaciated under a sub-class of the class they wherenafjginstaciated).

For example, in figure 2.4, statement (1), the operation eatdscribed as a
removal of&r1 and an insertion of a new resour&aew r1. Notice that&r1
also an instance af', but the REPLACE operation asks only the instancd ob
be modified. Therefore, after the execution of the operatiori will still be an

instance of”.

Another example is presented in figure 2.4, statement (23revthe resource
&r2is removed and then the resouiees is added instead. The property instance
P1 is also removed but replaced with a new instance emanating thhe inserted
resource. The new resource is not new to the database. igisally an instance
of A, and after the operation it has been specialized to an iostahB (and an

indirect instance ofl).

In order to illustrate the difference of a REPLACE with a sequesof DELETE
and INSERT, notice the following RUL statements:

(a) Replace the instance of B r2 withr4 ..... (b) Delete r2 fi®@nd insert r4 to B
REPLACE B(&r2 < — &rd) DELETE B(&r2)
INSERT B(&r4)

After the execution of the sequence (b, will be an instance of the super-
classes of3, as this is the effect of DELETE, while in (a), r2 will be eitrmom-
pletely removed or the classification link between r2 andv@the super-classes
of B) will be canceled. What's more, in (b) the property ins@fd (&r2,” str1”)
would be removed, as the domain Bt is B, while in (a) the property instance

will be modified toP1(&r4,” strl”).
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2.1.4 REPLACE classification for class instances

REPLACE can also be used for modifying the classification ofaasinstance.

In this case, the following syntax is used:

REPLACE OldQualClassName<-NewQualClassName(ResourceExp)
[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]
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Figure 2.5:Examples of some REPLACE-classification operations for class instances
(1) REPLACEA <- D(&r1)

(2) REPLACEB <- K (&12)

(3) REPLACEB <- K (&73)

(4) REPLACEB <- K (X) WHEREB{X}

This operation modifies a classification link that emanatesifthe class in-
stance node of the class instance denote®yvurce Exp and ends to the class

node of the class denoted l6y/dQualClassName or a node of a subclass of
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it. The effect of the operation is to redirect the classif@matink so that it no
longer ends to the node of claé8dQualClassName, but it ends to the class
node representing the cladswQualClassName.

In other words, the effect of this operation is thHatsource Exp is not any-
more an instance @bldQualClassName, but an instance aVewQualClassName
(e.g.&r1 is not anymore an instance df but an instance ab, in fig. 2.5 state-
ment (1)). If there are property instances emanating froemding atResource Exp
because of their domain or range beg/QualClassName or a subclass of it
(e.g. the property instand@l emanating front:r2), then their domain or range
should also béVewQualClassName or a subclass of it (e.g. after the operation
in fig. 2.5 statement (2)2 is still an instance of)). Otherwise, the operation
has no effect and it is aborted (e.g. the operation in 2.5&b@ted, because of
the property instancg?).

In fig. 2.5, statement (4), the operation is aborted. As itbelanalyzed later,
this operation is equal to a sequence of the operations t&hséat (2) and (3).
We have already seen that (3) is aborted, therefore (4) ideabas well, for the

same reason.

2.2 Updating property instances

2.2.1 INSERT for property instances

The INSERT, DELETE and REPLACE statements can also be useditdeithe
properties of resources i.e., arcs in an RDF graph. The syftéxe INSERT

statement in this case is as follows:

INSERT QualPropertyName(SubjectExp, ObjectExp)
[FROM VariableBinding]
[WHERE Filtering]
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[USING NAMESPACE NamespaceDefs]
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Figure 2.6:Examples of some INSERT operations for property instances:
(1) INSERTP2(&3, &r4)

(2) INSERTP2(&r1, &r4)

(3) INSERTP2(&r2, &74)

(4) INSERTP1(&r1, &r4)

The above INSERT operation adds to resource rfdgect Exp a new prop-
erty arc thatis an instance of propey.al Property Name and has valu®bject Exp.
Subject Exp andObject Exp can be constants or variables with bindings deter-
mined in the FROM clause. In both cases RQL typing rules fptds must be
respectedSubject Exp must evaluate to a URI, instance of the domain of prop-
erty Qual Property N ame, andObject Exp must evaluate to a URI or literal value
instance of the range of prope®u.al Property N ame.

We now detail the semantics of this operation by referrinfigiore 2.6. As in
the case of resources, if a property arc fréabject Exp to Object Exp exists and
it is an instance of a super-property @f.al PropertyName (fig. 2.6 statement

(3)), then the operation’s effect is the deletion of theanstion link of the arc
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and the introduction of a new link Qual Property Name (e.g., the arc fronzr2

to &r4 becomes an instance of propef®). However, whenSubject Exp and
Object Exp are not instances of the domain and rang&)afil Property N ame
this operation has no effect (e.g., the &Zbetweent:r1 and&r4 is not inserted
in fig 2.6 statement (2) and the operation has no effect) elptioperty arc exists as
an instance of a sub-property@f.al Property N ame, then the operation has also
no effect (fig. 2.6 statement (4)). Last but not least, if&eme not any instances of
Qual Propety N ame emanating fromSubject Exp and targeting t@bject Exp,

a new property arc is inserted, provided titathject Exp and Object Exp are
instances of the domain and range of the property (fig. 2t@rseent (1)). Itis
obvious that there are no side-effects in this operation.

Example 5: Make "IR” a keyword of paper http://www.ex.org/pehedf.
INSERT keyword(&http://www.ex.org/paperl.pdf, "IR")
Example 6: Make Oracle a sponsor of every database conferenc

INSERT sponsors(&http://www.oracle.com, X)
FROM {X;Conference}topic{Y}
WHERE Y like " ~database ="

Example 7: Make editors of the proceedings of ISWCO05 the ()aif the PC
and the chair(s) of the OC.

INSERT editedBy(X,Y)

FROM {Q}hasProceedings{X}, {Q}@P.hasChair{Y},

WHERE Q = &http://www.iswc05.org AND
(@P=isOrganizedBy OR @P=hasPC)

This example demonstrates the use of schema querying inRBdvFclause
of RUL. Variables prefixed by @ are RQL property variables igifly restricted

to range over the set of all data properties.
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2.2.2 DELETE for property instances

The syntax of the DELETE operation is as follows:

DELETE QualPropertyName(SubjectExp, ObjectExp)
[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

Figure 2.7:Examples of some DELETE operations for property instances:
(1) DELETEP1 (&1, &73)
(2) DELETEP2(&72, &r4)
(3) DELETEP1 (&5, &16)

As in the case of resources, the DELETE operation (fig. 2Mpkes essen-
tially the instantiation link betwee®ual Property Name and the property arc
from Subject Exp to ObjectExp (e.g., the arc fron¥r2 to &r4 in figure 2.7
statement (2) is not anymore an instance”@) and inserts a link from the arc

to the super-property dual PropertyName (e.g., the arc frond&r2 to &r4 in
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fig. 2.7 statement (2) becomes an instancé’df, as we discussed in the prop-
erty INSERT operation. If the arc is not an instanceafal Property N ame (or

IS not an existing arc), the operation has no effect. It isredting to focus on
the differences in the examples presented in fig. 2.7 state(@gand statement
(3). In both cases, the deleted property is an instandeofin the first case (fig.
2.7 statement (2)), thQual PropertyName is P2, so the instance is deleted as
an instance o2 and therefore generalized to an instancé’af In the second
case (fig. 2.7 statement (3 ual PropertyName is P1, so the respecting in-
stance is deleted as an instance”df The instance is deleted because there is no
super-property of?1.This update operation has also no side-effects.

Example 8: Delete keyword "IR” from paper http://www.ex.omgger2.pdf:
DELETE keyword(&http://www.ex.org/paper2.pdf, "IR")
Example 9. Remove assigned papers on web services from re@eié:

DELETE reviews(&http://www.uni-ex.edu/"smith, X)
FROM {X}paperKeyword{Y}
WHERE Y like " xweb services "

Example 10. Delete all sponsors of ISWCO05:

DELETE sponsors(X, &http://www.iswc05.0rg)
FROM Organization{X}

2.2.3 REPLACE for property instances
The syntax of the REPLACE operation is:
REPLACE QualPropertyName([OldSubjectExp <-] NewSubjectExp,

[OldObjectExp <-] NewObjectExp)
[FROM VariableBinding]
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[WHERE Filtering]
[USING NAMESPACE NamespaceDefs]
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Figure 2.8:Examples of some REPLACE operations for property instances:

(1) REPLACEP2(&r2 <- &3, " strl”)

(2) REPLACEP2(&r2 <- &71, 7 strl”)

(3) REPLACEP2(&r4, " str2” <-"new str2”)

(4) DELETEP2(X, " str3” <-"new str3”) FROMDX

As we can see in figure 2.8, the effect of the operation is tetdehe arc
between the resources denoted by théSubject Exp andOldObject Exp and
insert a new arc fromVewSubjectExp to NewObjectExp. The REPLACE
statement can also be used to replace only the subject objret @f a prop-
erty instance with a new one (e.g. in fig. 2.8 statement (¥)atic betweeid:r2
and "strl” is removed and a new arc betwdeti and "strl” is inserted, so that the
subject of this property is replaced). AfldSubject Exp (resp. OldObject Exp)
or NewSubject Exp (resp. NewObject Exp) is not an instance of a class in the
domain (resp. range) @pual Property N ame, the operation is aborted, as a pre-

condition is violated (e.g., in fig. 2.8 statement (2), themion has no effect as
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&rl is not an instance of the domain 6R). If the arc fromNewSubject Exp
to NewLObject Exp already exists and it is a (direct or indirect) instance of
Qual PropertyName, it is not inserted, so that redundancies are avoided, as we
discussed in the property INSERT operation. If there is ataimce of a sub-
property ofQual PropertyName (like P3 is a sub-property of2 in figure 2.8
statement (3)), then the subject and/or subject of thists is replaced by the
new one, but the classification of the property does not ohdegqy. the subject
of P3 is now "new str3”). In general, the classification of a prapenstance
affected by this operation should never change.

Example 11: Change the keyword "IR” to "Information RetrieVah the

papers where this keyword appears:

REPLACE keyword(X, "IR" <- "Information Retrieval")
FROM Paper{X}

Example 12: Make the publication date of every acceptedijage the same

as the publication date of the proceedings where it is publish

REPLACE publishedOn(Y, Z <- X)
FROM {Y;AcceptedPaper}isPublishedin.publicationDate{X},
{Y}publishedOn{Z}

The above examples demonstrate the modification of a pgdpetiject. The
following example illustrates a case where the subject abagrty is updated.
Example 13. Pass all the reviews to be done by Prof. Smith (3. student

Jones:

REPLACE reviews(&http://www.ex.org/"smith <-
&http://www.ex.org/"jones, Y)
FROM Paper{Y}
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Example 14. The information "Oracle sponsors WWW 2005” ingnaph is

incorrect. The correct information is "Google sponsors IS\2005".

REPLACE sponsors(&http://www.oracle.com <-
&http://lwww.google.com,
&http://lwww.wwwO05.0rg <-

&http://www.iswc05.0rg)

This example demonstrates the change of both subject aadtabja property.

2.2.4 REPLACE for property instances classification

As in class instances, REPLACE can be used for modifying thesifieation of
one or more property instances, e.g. to make an instanceropany become an

instance of another property. In that case, the syntax ¢dceps as follows:

REPLACE OldQualPropertyName <-
NewQualPropertyName (SubjectExp, ObjectExp)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

From the RDF graph point of view, the operation affects thesifecation links
than emanated from the property instance arc represefhingroperty instance
OldQual Property N ame(Subject Exp, Object Exp), and ends to the property
arc representiong th@!dQual Property N ameproperty. The effect of the op-
eration is to redirect the classification link so it no longerds to the arc of
OldQual Property Name property, but instead it ends to the property arc rep-
resentingVewQual Property N ame property.

In other words, this operation is used to change the claasdit of the in-
stances§ubject Exp, Object Exp) of OldQual PropertyName So that they be-

come instances oVewQual PropertyName, as presented in figure 2.9. This
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operation has no effect if some preconditions are not sadisfone precondition
is that the domain and the range@fdQual Property N ame must be of the same
type as the domain and range, respectivelyNetvQual PropertyName. For

example, if the range of the first is string and the other iegat, then the op-
eration has no effect. Another example is presented in figl@etatement (4),
where the first property has a literal range, while the sedmsla class. An-
other precondition is that if the domain/range is a classsthigect and object of
the respecting property instances must be class instafties domain/range of
NewQual PropertyName (e.g. in fig. 2.9 statement (1J;r2 is not an instance

of the range ofP2, so the operation is aborted).

P3

_TY gliteral

/ Y]

w
e
N

5(6) P4

Figure 2.9: Examples of some REPLACE-classification operations for property in-
stances:

(1) REPLACEP1 <- P2(&r1, &r2)

(2) REPLACEP?2 <- P1(&r1, &r3)

(3) REPLACEP1 <- P2(&rl, &r3)

(4) REPLACEP3 <- P1(&r2, " strl”)
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A REPLACE operation for property classifications can have ffeceof an
INSERT or a DELETE operation DldQual Property N ame and
NewQual PropertyName are related through subsumption. For example, in fig-
ure 2.9 statement (555 is a subclass aP4, so the operation has the same effect
as a DELETE operation. In figure 2.9 statement {6),is a super-class af5, so
the operation has the same effect as an INSERT operatios.observation does
not hold in case of REPLACE for class instance classificatienabse a modifi-
cation of a class instance might affect the property ingamttached on it, while

the opposite is not true.

In figures 2.9 statement (2) and (3) we present some examiplgglates that

cannot be made using an INSERT or a DELETE operation.

2.3 More Expressive Updates

The syntax of RUL presented above allows us to express twaskif updates:
primitive ones where a node or arc of an RDF graph is insertetel@ted (with
appropriate side-effects), and set-oriented ones wheraanic update of the
same kind (e.g., an insertion) is performed repeatedlylfaesource tuples cal-
culated by evaluating the FROM and WHERE clauses of an INSEELHIE or
REPLACE statement. Of course, by writing multiple RUL statategwe can also
express sequences of such updates. In this section, waldkabove syntax to
be able to express sequences of primitive updates insidgke SRUL statement,
and show with examples why such an extension is a usefulreeaftlRUL.

The first extension that we propose is to allow multiple atofarmulas, in an
INSERT, DELETE or REPLACE clause. In this way, we can expregsiseces
of primitive updates of the same kind.

Example 15. Make resource &http://www.ex.org/paper3.pttiaed by Smith

an instance of class Paper.
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INSERT Paper(&http://www.ex.org/paper3.pdf),
writes(&http://www.uni-ex.edu/"smith,

&http:/lwww.ex.org/paper3.pdf)

Note that even in sequences of primitive insertions as inatieve example,
the order of execution of each individual update does méttercannot insert a
property writes for resource paper3.pdf before we makeinstance of the range
of writes). This is in direct contrast with updates in redatkl languages where
order does not matter in sequences of updates of the sameTkind, the order of
execution for update statements with multiple predicatdsoim left to right and
the comma operator signifies sequence.

Example 16. Reject all papers with ranking less than 4, andhd&PC mem-

ber responsible for the paper as the person who made the finoahrmendation.

INSERT RejectedPaper(X), rejectedBy(X,Y)

FROM {X;Paper}ranking{Z},
{X}submittedTo.hasSPC.hasMember{Y;SPCMember},
{Y}lisResponsibleFor{X}

WHERE Z < 4

This example shows clearly why the proposed enhancemem &WL syntax
is useful. In this case, additions to the graph comes "inspaihus, the example
is impossible to express without variables and sequencing.

Apart from sequences of updates of the same kind, RUL careals@ss se-
quences of updates of different kinds. This is done by aligwnultiple INSERT,
DELETE or REPLACE clauses before the FROM clause of an updaterséent.
In this case, the order of execution is from top to bottom.

Example 17: Form the Program Committee of ISWCO06 by takingehefsll
PC members of ISWCO05 except those that reviewed less than's pap&WCO05,
and adding to this set the members of the OC of ISWCO05.
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INSERT hasPCMember(&http://www.iswc06.org#pc, X)

DELETE hasPCMember(&http://www.iswc06.org#pc, Y)

INSERT hasPCMember(&http://www.iswc06.org#pc, Z)

FROM {W}hasPCMember{X}, {WthasPCMember{Y},
{W}thasOCMember{Z}

WHERE W = &http://www.iswc05.org#pc AND
count(SELECT Q FROM ({Y}reviews{Q},
{Q}submittedTo{W}) <5

Sequences of update operations of the same kind, sepemat@cdmmna
operator, can be placed in the same statement with otheatopes of the same
or different kind. In this case, the order of execution il tom top to bottom
and from left to right. The RUL statement of example 18.a isequivalent to
the one of example 17, because the order of INSERT and DELpEEtons has
changed. Example 18.a is equivalent to example 18.b, though

Example 18.a: This statement is not equivalent to example 17

INSERT hasPCmember(&http://www.iswc06.org#pc, X),
hasPCmember(&http://www.iswc06.org#pc, z)

DELETE hasPCmember(&http://www.iswc06.org#pc, Y)

FROM {W}hasPCmember{X}, {WthasPCmember{Y},
{W}hasOCmember{Z}

WHERE W = &http://www.iswc05.org#pc and
count(select Q from {Y}reviews{Q},
{Q}submittedTo{W}) <5

Example 18.b: Statements in 18.a and 18.b are equivalent

INSERT hasPCmember(&http://www.iswc06.org#pc, X),
hasPCmember(&http://www.iswc06.org#pc, Z)
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DELETE hasPCmember(&http://www.iswc06.org#pc, Y)

FROM {W}hasPCmember{X}, {W}hasPCmember{Y},
{W}hasOCmember{Z}

WHERE W = &http://www.iswc05.org#pc and
COUNt(SELECT Q FROM ({Y}reviews{Q},
{Q}submittedTo{W}) <5

This last extension to the syntax of RUL also allow us to egprgpdates with
effects that depend on the order of execution of the prieipdates captured by
the sequence of the INSERT, DELETE or REPLACE clauses (e.§xample 17,
all the Program Committee members of ISWCO05 have to be madedPnogom-
mittee members for ISWCO06 before those of them that reviewssttkean 5 papers
for ISWCO5 are deleted). The order of execution for multipldate clauses in an
RUL update statements is from top to bottom. Thus, updatesemwith multiple
operations can be trivially translated into sequences datgstatements with a

single operation.



The semantics of RUL

The purpose of RUL is to provide update functionality on RD&éscription
graphs commiting to a number of RDF/s schemata. In this seet® explore
the world of update languages, stressing out the featuremsvinterested in, so
that the design choices of RUL can be justified. More pregisge focus on
two families of update languages and present their feates then, select the
semantics that is more suitable to RUL from the aspect ofessgive power and
ensure that the semantics of RUL is deterministic. The fésaeantics of the
language, based on the semantics of RQL, is presented aftenwaith some

illustrative examples.

40
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3.1 Formal semantics of RUL

In this section we give a formal semantics to RUL. We start éfynihg the con-
cepts of RDF that we need using the formal model introduceti4h [The impor-
tant contribution of [14], when compared with other formadaels of RDF e.g.,
the RDF semantics by Hayes [23], is the introduction of a ngletsystem for
RDF and RDFS that has been proved valuable in the specificatRQNDb.

Because RUL updates are destructive operations that chhagedte of an
RDF graph, type safety for RUL updates is even more importaart type safety
for RQL queries. The more errors we can catch at compile tihvee]dss costly
runtime checks (and possibly expensive rollbacks) we ve#lar The slight differ-
ences of [14, 15] from the RDF semantics in [23]) do not affeetissues covered

in this work.

We start by defining the modeling constructs of an RDF resodeseription
and schema graph. We slightly modify the definitions of [Iglfbver only the
concepts of RDF used in this thesis (we do not deal with blamlespcontainers,

collections or reification).

Let LT be the set of XML Schema data types that can be used in RDH. Let
be the set of types in the RDF/S type system defined in [14].Vi@tes(T) be
the set that includes all typed literals with types fréhand all URIs.

Definition 1: An RDFS graphis a 6-tupleS = (V' S, ES, C, P, <, 0, A) where
VSisasetofnodedyS C V x Vis asetof edges, is a set of class nameB,is
a set of property names; is a partial ordero®’ UP,0 : VSUES — CUPIisa
function mapping nodes to classes and edges to propertigs, aV’ SUES — T
is a typing function that returns the type of each node or edge

Definition 2: An RDF graphover the RDFS graplV's, ES,C, P,<,0, A)
is a quadruplez = (V, E, v, \) whereV is a set of nodesi C V x V is a
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set of edgesy : V' — Values(T) is a value function that assigns a value from
Values(T) to each node iV and\ : V U E — 2°YF U LT is a typing function
which satisfies the following: (i) For each nodan V, )\ returns a set of class
or data type names € C' U LT such that/(a) belongs to the interpretation of
eachc. (ii) For each edgéa, b) € E, A returns a property namec P such that
(v(a),v(b)) belongs to the interpretation pf

e Foreachnodein V, A returns a set of class or data type namesC' U LT

such that/(a) belongs to the interpretation of each

e For each edgéa,b) € FE, X returns a property name € P such that
(v(a), (b)) belongs to the interpretation pf

Note that\ contains all classes (resp. properties) that a node (respegy
arc) is an instance of directly or indirectly.

Thus, in a logical sense @RDF graphas defined above corresponds to the
completion of the corresponding logical theory.

Let Query be the set of queries that can be expressed in RQLZande the
set of tuples of arbitrary arity formed by elementdafiues(T). We assume that
the function : Query x Graph — Tuple gives the semantics of RQL query
evaluation as defined in [14]. #fis an RQL query and- is an input RDF graph
then the answer to quenyis the set of tupleg(q, G).

Let Graph be the set of all possible RDF graphs dngliate be the set of all
possible updates that can be expressed in RUL. The semahRtd. statements
is captured by the semantic functioh : Update x Graph — Graph. When
an update is applied to a graplé € Graph and appropriate preconditions are
satisfied,u affects a set of nodes and arcs(ofand produces a new graph given
by A(u, G).



3.1. FORMAL SEMANTICS OF RUL 43

An RUL update is callegrimitive if it is of the form INSERT ¢(¢), DELETE
c(i), INSERT p(i,i), DELETEp(i, j) wherec is a class,p is a property and
i,j are URIs. Ifr and 7’ are two updates then thesompositionis a complex
update denoted by; 7. The semantics of composition is given by the equa-
tion A(r; 7', G) = A(7, A(r,G)). Composition is an associative operation thus
A(1y; 70, G) = A, A(- .., A(T1, G))).

The following notation is used repeatedly in the rest of #estions, which

formalize the semantics of the various RUL operations:

e S=(VS,ES C,P,<,0,A)isan RDFS schema graph.

G = (V, E,v,\) be an RDF graph over the schema graph

cis aclassij, i1, i, are URI references andis a property.

x is a variablep is a variable binding expression ayfids a filtering condi-

tion.

3.1.1 The semantics of NSERT
Let G = (V, E,v, \) be an RDF graph over the RDFS gra@hs, ES, C, P, <
,O,A).
Definition 3: The effect of updattNSERT ¢(7) in G is captured byA(INSERT ¢(i), G) =

(V' E V', N)whereV’, v/ X are defined as follows:

e If there is no node: € V' with v(a) = i thenV’ = V U {a,} whereq, is
a brand new node symbol. Additionally, extends- such that/(ay) = i
and)\’ extends\ such that\'(ag) = {c}.

e Ifthere is anodes € V with v(a) = i thenV’ =V andv/' is the same as.

In this case

— if c € M(a) then) = \.
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— If ¢ € A(a) but there exist classes,...,c, € A(a) such thate <

¢, ..., ¢ < ¢, then) is the same as with the exception that/(a) =
(AM@) \ {er, -, e }) U e}
— Otherwise,\’ is the same a with the exception thak'(a) = A(a) U

{c}.

The preconditions for the execution of the primitive updM8ERT p(iy, i5)
in G is thati, is a URI or literal and instance @formain(p), andis, is a URI or
literal and instance afange(p).

Definition 4: The effect of this update is captured HyINSERT p(iy, i5), G) =

(V' E' V', XN) whereV' E' v/ and\" are defined as follows:
e If iy is aliteral of typet and thereis na € V such that/(a) = i, thenV’ =
V' U {ap} whereq, is a brand new node symbol such théta,) = i, and
XN(ag) = t (functionv/ is identical tov for all other values in its domain).
e Otherwise)V’ =V andv' = v.
Now leta;, ay € V' be nodes such thata;) = i, andv(az) = is.
o If p e A((a1,az2)) thenE’ = Eand)\ = .

o If p & A((a1, az2)) but there are properties, . .., pr € A\((a1,az)) such that

p<p1,...,p<p.thenE’ = Eand) is the same a& with the exception

that\' (a1, a2)) = (M(a1,a2)) \ {p1, ..., px}) U {p}.

e Otherwise,E’ = E'U {(a1,a2)} andX is the same as with the exception
that\'((aq,az)) = A((a1,a2)) U {p}.

The semantics dNSERT statements with multiple predicates in INSERT

clause can now be defined using composition as follows:
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A(INSERT Cl(il)a s acn(in>7p1(j17j1/)7 s 7pm<jm7jm/)7 D) =
A(INSERT ¢, (i); - - - ; INSERT ¢, (i ); INSERTp1 (ji1, j1'); - - - : INSERTpy (s i) D).

3.1.2 The semantics oDELETE

Let G = (V, E,v, \) be an RDF graph over the RDFS gra@hs, ES, C, P, <
,0,A). The precondition for the execution of the primitive updBteLETEc(7)
in G is that: is an instance of class

Definition 5: The effect of this update is captured BYDELETEc(i),G) =
(V' E" v, \) whereV’, E’' X are defined as follows. Letc V' be the node with

via) = 1.
e If c =rdf:Resource  thenV’ =V \ {a} otherwisel’’ = V.

e If ¢ € A\(a) then letC; be the sefc; : ¢; < ¢ A ¢y € Aa)}. Then) is the
same as\ with the exception that’(a) = A(a) \ C;.

e If ¢ & A\(a) butthere is a clasg such that’ < candd € A(a) then)' is the
same as\ with the exception that'(a) = (A(a)\C1)UCy whereC; = {c¢; €

Ma): d 2 =ZctandCy = {c2 € ANa) : ¢ < caA=(Fez)(c <3 <)}

In addition, £’ = E \ ({(a,b) : A(a,b)) = p A (e € Cy)domain(p) =
1} UA{(bya) : A((bya)) =pA (Fe; € Cy)range(p) = ¢1}). O

The preconditions for the execution of the primitive updaELETEp (i1, is)
in G is thati; is a URI reference and instance é¥main(p), andi, is a URI
reference or literal and instancesainge(p).

Definition 6: The effect of this update is the generalization of propsrtie
A(DELETEp(i1,i2),G) = (V,E',v,\) where £’ is defined as follows. Let

a;, as € V be nodes such that(a;) = i3 andv(ay) = is. ThenE' =

E \ {(al,ag)}. O



46 CHAPTER 3. THE SEMANTICS OF RUL

The semantics oDELETE statements with multiple predicates can then be

easily defined as in the caselbISERT using compaosition.

3.1.3 The semantics of REPLACE

Let G = (V, E,v,\) be an RDF graph over the RDFS gra@hs, ES, C, P, <
,0,A). The precondition for the execution of the primitive updEePLACE:(i, j)
in GG is that: is an instance of class

Definition 7: The effect of this update operation dealing with class msta
tiation is captured byA(REPLACEc(i,j),G) = (V, E',v, ') whereE’, \" are
defined as follows.

Leta € V be the node withv(a) = i and b the node with(b) = .

e If c € A(a)andC isthesefc; : (¢ 2 e¢Vey = ¢)Aey € AM(a)}, Cyis the set
{ca i ca & C1Nco € Ma)} andC.. the set{c. : ¢, € CiAc. A cahey € Co}y
let C,,c be the sefc,.c : c,c € C. A ce € AN(b)}. ThenN (a) = A(a) \ C.
and\'(b) = A\(b) U Ce.

In additionE" = E U ({(b,r) : AM(a,r) = p A (3¢, € Cy)domain(p) = ¢,} U
{(d,b) : XN(d,a) =pA (e, € Cy)range(p) = c,}\{(a,r) : XMa,r) =pA(3e, €
Cy)domain(p) = ¢, \ {(d,a) : \(d,a) = p A (3¢, € Cp)range(p) = ¢, }). O

In order to understand the meaning of the above formal degums, we can
seeREPLACE as atwo step operation. The first step is the removatroim the
set of nodes that are instances of any ancestor or descddafte second step
is an addition operation that can be described a&6FE RT ¢(j) operation fol-
lowed by a sequence 6fVSERT p(k, ) operations for such, k, [ thatp is each
property with instances adjusted to the nodend eithek isi oris:. The formal
semantics of NSERTp(k,l) are given later in this chapter. Note that the opera-
tion of the first step is not ® £ L ET E operation and, therefore, tiel! PLACE
operation is not a sequence BIELETE c(i); INSERT c(j). The difference
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between the first step of theE PLACE c(i,j) and theDELETFE (i, j) opera-
tion is that the described values are completely removed &lbthe nodes having
a sumsumption relationship with even ifc # rdf : Resource.

The REPLACE p(i,d', j,7') operation, dealing with property replacements,
can also be described as a two-step operation in the samerfash

Definition 8: The effect of the operation is captured AYyREPLACEy(i, ', j, j'), G) =
(V' E' v, ) whereV’ E’ X are defined as follows. Let a’,b,b' € V be the
nodes withv(a) =i, v(a') =i, v(b) = j,v(b') = j'.

e If p € A\((a,b)) then letP; be the se{p; : (p1 X pVp = p) Aps €
A((a,b))}, P, be the sef{py : po & Pr Aps € A((a, b))} and P, the set
{py :Pp € PLADy, A D2 Apa € Po}. Now, let P,p be the set{p,p :
pap € Py Apap & A(d,0))}. Then, X((a,b)) = A((a,)) \ P, and
N((d,b)) = X(,0)) U P,p.

Definition 9: The REPLACE ¢, (i) operation, named "replace classifica-
tion for class instances”, is captured ByREPLACE:, ¢/ (i), G) = (V' E', v, X)

whereV’, E’, X' are defined as follows.

e If ¢ < ¢, the semantics is exactly equalt&/ SERT ¢ (7).

o If ¢ = ¢, Chynaie IS the set{c,, : ¢, = ¢ ANec,, X clandeyp : ¢y =
cuP N Cm € Crinagie N\ ¢m € Chuinale » then the operation is exactly equal to

DELETE c,p(i).

e Otherwise, letz € V be the node with/(a) = i. If ¢ € A\(a) then letC
be the sefc; : (c; 2 ¢V e = ¢)Aep € Ma)}, Cy be the sefcy @ ¢o &
CiNey € Ma)}andC.. the set{c. : c. € Cy Ac. A eaNeg € Co}. Then)
is the same a& with the exception thak’(a) = A(a) \ C.. The rest of the
effects are captured by the formal semantic 8IS ERT ¢/ (j)
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Definition 10:In the case oREPLACH, p(1, j), namely the "replace classifi-
cation for property instances”, the semantics is captuyedtREPLACEp, p' (i, 7), G) =
(V' E' v, \N) whereV', E’ ' X are defined as follows. Let,b € V be the
nodes withv(a) = i, v(b) = j.

e If p € X\((a,b)) then letP; be the sef{p; : (p1 X pVp = p)Ap €
A(a, b))}, P, bethe sef{P, : P» ¢ Py Aps € A(a,b))} and P, the set
{pp :pp € PLADy, A p2 Ap2 € Po}. Then) is the same as with the
exception that'((a, b)) = A((a, b))\ P,. The rest of the effects are captured
by the formal semantics diNSERTp' (i, )

|

3.1.4 Set-Oriented Updates

The syntax of RUL allows us to express set-oriented updatesgywariables in
theINSERT, DELETE or REPLACEclause.

The semantics of update statements with a silggkERT, DELETE or REPLACE
clause with variables can easily be defined using the operaficomposition and

function& that formalizes the evaluation of RQL queries. For example,
A(INSERT ¢(z:) FROM(z) WHERE (), D) = A(INSERT ¢(iy); - - - ; INSERT ¢(i,), D)

whereiy, .. ., i, are URIs such that(SELECTz FROM(z) WHERE (z), D) = {(i1), - . ., (ix) }.
The semantics can be given similarly if we have a predip&tey) in the INSERT
clause. The same holds for statements with a siDfIEETEclause with variables.
The case oREPLACHS slightly more involved, as it can be considered a two-step
operation. In the case ®REPLACE c(x,y) with variables, the two steps are splited.
The first step, that is the erasure of the instation link, is evaluated forlabsaf x. The

second step is ahVSERT c¢(y) operation for every values binded to y, independently of
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the evaluation of x. This is nessecary in order to ensure that the semaulétsrisinistic,
as it was the case with’ Lsp ;.

The situation becomes more complex when we consider multiple predicates in an
INSERT, DELETEor REPLACEclause, or multipldNSERT, DELETEor REPLACE
clauses in a single update statement. Obviously, clause order matters in éhissoas
have already demonstrated, e.g. when we consider multiple updates ointeeksal
without variables. The following examples illustrate the issues involved whétipheu
updates of different kinds are allowed.

Let us assume an RDFS schema with three classeslB and an RDF graph with a
single node with URI1 that is an instance of clags(so clasBB has no instances). Let

us now consider the following statements:

(1) DELETE B(X) INSERT B(X) (2) INSERT B(X) DELETE B(X)
FROM A{X} FROM A{X}

The effect of Statement (2) is to leave cl&# the same state (i.e., with no instances)
while Statement (1) forced to become an instance Bfas well. There is also a deeper
issue regarding the order of execution for the different tuples of sabfiehe variables
that satisfy th&eFROMandWHER[Elauses.

Let us revisit the above example and introduce a new €aswl a second graph node

with URI i2 that is an instance of clag Let us now consider the following statement:

INSERT C(X)
DELETE C(Y)
FROM A{X}, B{Y}
WHERE X != Y

The set of tuples satisfying tteEROMandWHERElause ardil,i2),(i2,i1)
One can now imagine the following possible orders of execution fdNBERT-DELETE
block:

INSERT C(i1); INSERT C(i2); DELETE C(i2); DELETE C(il)
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INSERT C(il); DELETE C(i2); INSERT C(i2); DELETE C(il)
INSERT C(i2); DELETE C(il); INSERT C(il); DELETE C(i2)

These different orders result different state®f the graph. In the first case claG€nds
up with no instances, in the second case it has instéh¢eand in the third case it has
instancel .

Similar issues arise witREPLACEeven in the presence ofsingleREPLACEclause

with variables. Let us revisit the previous Example and consider the foltpstatement:

REPLACE B(X <- Y)
FROM A{X}, C{Y}
WHERE X != Y

We have already stated that the REPLACE statement is not equivalent tpense of
aDFELETE and anI NSERT, but it can be viewed as a two-step operation consisting
of an erasure and an addition procedure. It is easy to see that, althdsigim erasure
instead of aD ELETE, the problem of the danger for non-determinism remains.

The solution is to split eacREPLACEstatement to an erasure operation followed
by an addition operation and execute all removals corresponding to tiableabindings
first, followed by the corresponding insertions. The side-effects iofifve REPLACE
statements as defined in section 2 are also taken into account. The remaell as
the addition operation differ in the case 8 PLACE for instances and the case of
REPLACE for instance classification, but as far as it concerns derminism, the prsble
that have to be solved are the same. A detailed explanation on how the reandvdle
addition procedure is implemented in each of these casB#d? L AC FE can be found in
section 4. The core idea is that the implementatio®&fP L ACE as an erasure and an
addition can be handled in the same way as a RUL statement wtK BE'T E and an
INSERT.

It is possible to givenon-deterministicemantics to RUL that allow all of the above
executions. In this casd must be allowed to be gelationi.e., a subset of/pdate x

Graph x Graph. Non-deterministic update languages have been considered in the past
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for other data models e.g., by Abiteboul and Vianu for the relational mod6].[%t is a
design choice of RUL to avoid non-determinism.

We solve the dilemma of examples such as the above by adopting a semantics similar
to the one proposed in [20] where a procedural language wibh a&ach iterator for
deductive database updates is proposedlLet. . , U, beINSERT or DELETE The se-
mantics of updates with multipl®NSERT or DELETEclauses with variables is captured

by the following:

A(U; c1(z1) - - Uy, cn(xn) FROM(21, . .., x,) WHERHE (21, ...,2,), D) =
AU er(ig)s 5 Ur ea(if); -3 Un enlin)i - Un ea(iy), D)

whereil,... il ... % ... ¥ are URIs such that

E(SELECTxy, ..., z, FROM(z1,...,z,) WHERHE (21, ...,2,),D) =

{Gh, .y, R, E) .

In other words, th&ROMandWHERElauses are evaluated first to compute a set of valid
bindings. Then, each one of tiéSERT or DELETEstatements is executed in turn &t
elements of the set of bindings. The semantics can be given similarly if multiplearlass
property predicates are allowed in tdSERT or DELETEclauses. Since update clauses
with multiple predicates are trivially translated into sequences of update stdtewitn

a single predicate then our semantics cover this case as well.

3.2 The semantics of knowledge base updates

The update operations for knowledge bases have different semahgcewer the world
described by the base is static or dynamic. A static world does not chaddkeanpdate
operations are used when we are obtaining new information about it ccdogieence in
some beliefs. A dynamic world can evolve and the update operations cohbratging
the knowledge base up to date whenever a change occurs.

The fundamental update operations in static world are called "revision"comdrac-

tion”, while in a dynamic world they are called "update” and "erasure” (J18Revision”
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and "update” are operations that modify the knowledge base by addiegtense, while
"contraction” and "erasure” are used to remove a sentence. Wheg t&@roperations
that deal with a static world, the world itself does not change, but ouepéon of the
world does. Thus, "revision” and "contraction” are used when sonve inéormation
about the real world has been disclosed, forcing us to change ocegivlization of the
world in order to represent it in a more accurate manner. But this is notilgecbange
possible, because the real world might change as well. In this case, divekige base
should be adapted to the new reality. The semantics of this kind of changadagiu
ferent, and are captured by "update” and "erasure”. "Update” is sirtolérevision” (it
refers to addition of information) while erasure is similar to contraction (itrsefe re-
moval of information). However, they both apply when the world dynamicdignges,

which makes them substantially different from their static counterparts.

We notice that there is no exact mapping between the above update opeaatibine
RUL operations we propose ( [10]). The reason for this lack of mappétgeen these
two sets of operations lies on a fundamental difference underlying théitam: the
two approaches reflect a different viewpoint on how a change shmmuidterpreted and

handled, which renders them incomparable.

Knowledge base update operations are fact-centered (as opposediifacation-
centered): a new fact represents a certain need for the evolutiotoddgy The ontology
engineer (or some automatic sensor or similar device) should identify the ftyipe wew
fact, i.e., whether it changed the real world or not and whether it added/Ikdge or
added uncertainty by casting doubt on some existing knowledge (renfduadwledge).
These two facts constitute the change. This change is then fed into the sybiem
should identify the actual modifications to perform upon the ontology to addhe new
fact and perform these modifications automatically. In RUL we are not sttegen the
fact itself that initiated the change. Rather, we are interested on the actd#icaiions
that should be physically performed upon the ontology in response to thigace A
belief change system would identify the new fact and decide on the modifisatiat

should be performed upon the ontology, but the modification itself would Herpsed
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by a low-level tool like RUL.

This analysis shows that the two approaches are not directly compassbtbey
are based on a different paradigm. As a result, the comparison of thiésres RUL
(modification-centered approach) with the results of a tool based on selieé dhange
technique (fact-centered approach) would not make much senseadnitis interesting
to explore the usefulness of RUL in the design of a belief change managsystem.

We will use the world of figure 3.1 as an example. In this wosldhn is an adult and
has a child,Marry, who is happy. If we add the sentenc®/arry is unhappy”, then

the sentenceM arry is Happy” has to be reconsidered.

hasChild

Figure 3.1:An example of a knowledge base description represented as graph.

An "update” or "revision” operation that adds the sentendédrry is unhappy”
would probably remove the sentenc®l&rry is Happy”. This effect is captured by the
semantics of RUL REPLACE classification:

REPLACE Happy <- Unhappy (&Marry)

Now, let us use the operation for adding the senterdery is a kid”. The addition

of that sentence might not affect the other sentences of the model,seettaiclasses
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Happy and K'id are not disjoint. Therefore, the semantics of this operation are captured
by RUL INSERT:

INSERT Kid(&Marry)

If the case of adding the sentenc®/ trry is Unhappy”, it is possible that the property
instancehasChild is removed. This effect is captured by a RUL DELETE for property
instances.

As another example, a "contraction” operation for the sentenéerry is Happy”

could be captured by the semantics of REPLACE classification:
REPLACE Happy <- Unhappy (&Marry)

whilefor ” Johnisaperson” by the semantics of a DELETE:
DELETE Person(&John)

In the later case, the property.sChild will be also removed, as a side effect of the RUL
operation, which could probably be consistent with the semantics of thel&dgevbase
update operation.

In general, the semantics of knowledge base updates cannot be ddseiih se-
qguences of RUL operations, but a high level knowledge base updafedge can rely on
the low level update operations provided by RUL, in the same sense as psations
rely on database update operations.

The description of multiple knowledge base update operations, e.g. opesréio
sets of sentences ( [11]) with RUL, is a challenging issue. Knowledge lyadate op-
erations do not directly correspond to RUL ones. The designer of tbelkdge base
update language should be able to group couples of update operatébasrdgances by
the sequence of RUL statement they are implementing with (e.g. group togestssrth
tences of an "erasure” that can be described with a RUL DELETE)n,Tihe high level
knowledge update language can take advantage of the set-orientedisswi@RUL. The
details of such an approach are out of the scope of this thesis, and candidered future

work.
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3.3 The semantics of other RDFs update languages

The update languages proposed so far are MEL ( [22]), rdfDBygaeguage ( [12]) and,
of course, RUL ( [19]).

The most interesting proposal is MEL that has been developed in the fiainedv
QEL and it is based on Datalog. MEL primitive commands consist of a stateipecifis
cation and an optional query constraint, declared as a QEL query. rahalgrity of the
operations follows a sub-graph centered approach but consisteapgates with respect
to the employed RDFS schemata is not respected. Furthermore, no fomraaitges or
detailed behavior description have been given for MEL. More precGi8#&BL supports
three update operations, namely insert, delete and update, which modifyriRl2Es of
the form "subject-property-object”.

One difference between MEL and RUL is that in our approach the clatnires
can be handled independently to the property instances, while in MEL aateupthte-
ment must be specified as a triplet update. For example, if a res&uréélLpaper
must be inserted as an instance of the cl&aper, in MEL this could be achieved by
inserting the triplet Paper : &RulPaper - P - O", where P and O are variables de-
noting properties and the resources this properties end to, respedivetiiere must be
some query constraints for variabl&sand O, so that the resourcké RU L Paper is in-
serted as a subject of some property instances. According to the landeagription,
the resourcé: RU L Paper cannot be inserted without being related with some property

instance, which functionality is supported in RUL.

Because of the ability of RUL to handle resources independently, the semafthe
MEL insert, delete and update operations is different to the semantics ofiIREERT,
DELETE and REPLACE operations respectively. We can compare thesiesmaf MEL
with the semantics of RUL update operations for property instances.

The MEL insert and RUL INSERT-for-property-instances operatiimare the same
semantics only if the subject and the object of the inserted property instaisten the

description base. In RUL INSERT operation, the insertion of a propestairte is not
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allowed in that case, while in MEL this is a way to insert new class instances.

The MEL delete and RUL DELETE-for-property-instances operatidffisrdecause
of the RUL DELETE side effects. More precisely, the deleted instance ih MErased
so thatitis not an instance of the specified property or any ancestold thave seen that
in RUL DELETE we usually erase only the classification link that ends to thpgoty
and we insert a new classification link from the instance to the closesttancéghe
property.

The MEL update and RUL REPLACE-for-property-instances operatitifier in the
same way that MEL insert and RUL INSERT-for-property instance®diff is possible
to insert new resources in the description base by using the MEL updeattatiom, while
in RUL REPLACE this is prohibited. We don’'Wt know if the side effects of RBE-
PLACE operation are also side effects of MEL update, as the exact §emaithe MEL
operations are not described.

In general, RUL is expressively more powerful than MEL. Apart fribre differences
and limitation described above, MEL does not support something similar to the RU
REPLACE classification operation. MEL and RUL share the same notionfefysia
set-oriented update statements, but we do not know if MEL semantics is datgitnams
this issue has not been studied. Therefore, we cannot compare thréesged semantics
of the languages.

The rdfDB Query Language supports SQL-like updates (insert alete)dy follow-
ing a statement-centered approach and does not integrate smoothly withetiygdaqu
guage. In fact, the update operations can affect only specific statewiémisit variables

and thus their execution semantics is trivial.

3.4 Semantics of database update languages

Update languages on structured data are presented in this section.presserxe power
and determinism are the features of update languages we are interegtadipdate lan-
guage provides update operations so that an update operation ovabasgainstance will

result to a modified database instance. Intuitively, an update languabe camdeled as a
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mapping from a database instance to another. More formally, given arsicipemai and
an output schem§, an update language is a subsetoftanceO f (R) XinstanceO f(.S).
Note that an update language that modifies only the data of a descriptiofiikastiL)
can be a subset éfistanceO f(R) XinstanceO f(R).

Abitebul and Vianu ( [6]) give a formal definition of the update operatioith re-
spect to the deterministic features of it. They state that a non-deterministitedfpata R
to S is a subset ofnstanceO f(R) X instanceO f(S) which is recursively enumerable,
and C-generic for some finite C. A finitely non-deterministic update fi®rto S is a
non-deterministic update such that for each instandeover R, the set(J|(I,J) € t)
is finite. A deterministic update (fron® to S) is a mapping frominstanceO f(R) to
instanceO f(S) which is partially recursive, and C-generic for some finite C. Our defini-
tion is a simplified explanation of this formal one.

Let R andS be database schemas, and let C be a finite set of constants.

Definition 3: ([25]) A mappingqg frominst(R) toinst(S) is C-generic if and only if
for each database instant®ver R and each permutatignof the set of constants that is
the identity on Cp((q)I)) = q(p(I)). When C is empty, we simply say that the query is
generic.O

Genericity states that the query is insenitive to renaming of the constants mt#irmde
(using the permutatiop). It uses only the relationships among constants provided by the
database and is independent of any other information about the con3taatset C spec-
ifies the exceptional constants named explicitely in the query. These dammehamed
without changing the effect of the query.

The core characteristic of an update language is its expressive pdweeconcept of
expressive power has been defined and analyzed in the literaturg (R520], [18])
and depends on the functionality of the update language as well as on ihthealze is
deterministic.

In the following we deal with database update languages. A databast lgnuguage
provides modifications on the data of a database with a specific schema. W dieal

with languages that modify the schema or perform updates independeet datdbase



58 CHAPTER 3. THE SEMANTICS OF RUL

schema.

3.4.1 The family of database update languages

An update operationpr(t1,t2,...) on a relationk, modifies the relatiom? according
to the values stored in the tuplek ¢2, .... A primitive update operation is an operation
where the tuplesl, ¢2, ... are constant values. The tupldst2, etc. are of typeR.

A very primitive update language is LST ( [18]) supporting the followingtayn

stmt := stmt; stmt
| insertg(t)

| deleter(t)

whereinsertr(t) means "insert the tuple t in relation R” adleter(t) stands for
"remove any tuple t from the relation R”. The absence of an iteration agiss the
distinguishing feature of this language.

A language with an iteration construct is SdetTL ([6], [18]). Itis obvithet iteration
means support for non-primitive updates.

stmt := stmt; stmt
| insertg(t)
| deleter(t)
| erasep

| while z : Q(x) do stmt

The difference betweetelete anderase is that the former removes the tuglérom
the relationR, while the later erases the whole relatih The erase functionality in
SdetTL is nessecary because it cannot be expressed otherwise gaplain in the next
paragraphs.

The semantics of the while construct is not trivial. HéXer) is a query in some query

language and a variable binding (or a set of variable bindings). For evesatisfying
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Q, the statementtmt is executed as a primitive operation. When the:t statement
has been executed for all values bound:tdhe resulting database state is the union of
the effect of each atomistmt execution. The procedure is repeated again on the new
database state, until there are no values sétisfyingQ.

In detail, lett1,¢2, ... be the result of the query. Let stmt be a sequence of prim-
itive update statements so thaintr(t1) results to a database stdté, stmtr(t2) to a
database statB2, etc. Note that in this context, eachmt is executed over the initial
database stat®, and not over any intermediate states. The result of a while construct is
the parallel execution of the following statementgnt(t1), stmtg(t2), ... . The initial
database is now modified to a new database ftaggven by the union of each separate
state:

R «— RIUR2U ...

Q is evaluated again, ovét'. If the result of the execution @ is not an empty set,
the procedure is repeated, resulting to a new databasefgtastc.

Another interesting update language is WL ( [20]), with the following syntax:

stmt := stmt; stmt
| insertr(a)
| deleter(a)
| replacer(a, c)
| if Q then stmt
| foreach x : Q(z) do stmt

Again, ) is a query in some query language and set of variable bindings, but the
semantics off oreach is different from the one of thehile construct in SdetTL. I§tmt
is an atomic operation, then for each value bound,tthe stmt is executed. Eacktmt
execution affects the database state modified by the previous one.

If stmt is a sequence of atomic updatgsnt1; stmt2; ..., then for each value bound
tox, stmtl is executed, affecting the state of the database. After1 has been executed

for all values assigned to, stmt2 is executed over the modified database for the same
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values. Therstmt3 follows, and so on. Under this light, thig¢ construct is just a special

case offoreach ([18]).

3.4.2 Comparison of the semantics of the iteration constructs

Thee two iteration constructs presented previously have different siesiarteration
constructs are important, because they can extent an update langudgeatertefit of the
expressiveness of a query language. Therefore, an updatetpmgelies on the iteration
constructs in order to provide non-primitive, set-oriented updates.

A more formal and descriptive definition for the update operations: Ikebe an
instance of the database schefaR a relation in that schema andl, ¢2, ... some valid
tuples of R. An update operatioop(Is, R,t1,t2,...) is asubset of Is} x instances(S),
whereinstances(S) is the set of database instances aover

To begin with, in thawhile construct, the querg) is the condition of the iteration, so
it might be evaluated more than one times (one per iteration step). This carstnuise
viewed as a two-level iteration: an iteration based on the query conditioaraiteration
over the values satisfying the query. In the first-level iteration, each tineegilery is
evaluated over the current database state. Iiftheach construct, the query is evaluated
only once and the iteration occurs only on the retrieved values. The meznivgforeach
construct is that the query is used as a filter for the values i@ther than a condition that
must hold. What's more, the query is evaluated only over the initial, input datestate,
rather than the intermediate, modified states produced by the atomic updates.

A general example might help to illustrate the above:

(1) while x : Q(z) stmtpg
(2) foreach z : Q(x) stmtpr

Let Iy be the initial database statg,1,ts,2, ...t;,n the result of the evaluation @

overly, andR a relation described in the database schema.
() Inthewhile case, the resulting database instance is the following:

Iy = stmt(Ip, R, t1,1) U stmt(lo, R,t1,2) U ... The next step is to evaluat@ over
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I’, resulting the following set of tuples;, 1,¢;,2, .... The new database state:

Iy = stmt(I1, R, t11) Ustmt(l1, R,t1,2) U ...

The procedure is repeated until there is a database ktater which () returns an
empty set.

(2) In the foreach case, the resulting database instance is the following:

I = stmt( stmt( stmt(lo, R, t1,1), R, t1,2)...), R, t1,mn)

The meaning of the above formula is that #tent statement for;,2 operates over
the database instance produced as a result oftthe statement for, 1.

In the example above it is clear that, in théile case, each atomic statement pro-
duced by the iteration is executed only on the initial database state, while fiothech
case, each atomic update operates over the result of the previoud theesthtement in
the body of the iteration expression is not a single primitive operation, beda@esce of
primitives and/or non-primitive ones operations, then the order of thaeseg does not
matter in case of thehile construct, but it is meaningful in the casefafreach.

For example:

(1) while x : Q(x) stmtlg; stmt2p
(2) foreach z : Q(x) stmtlpg; stmt2p

stmtl and stmt2 affect the same relatioR (although this is not important in this
context). Let’s take a snapshot from the execution of the above iteratietnents, while
they modify the database stateising the tuplel as input:
(1) I' = stmt1(I, R,t1) U stmt2(1, R, t1)
(2) I' = stmt2(stmt1(1, R,t1), R, t1)

Somewhere in the procesgyntl modifies R based ortl (e.g. delete¢l from R)
andstmt2 operates orR based ornt1 as well. In (1),stmt1 andstmt2 are executed in
parallel and over the initial state &f. In (2), stmt1 changesR so thatstmt2 operates on
a modifiedR.

Now lets consider the following iteration expressions, where the ordemefl and
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stmt2 is reversed:
(3) while x : Q(z) stmt2p; stmtlp
(4) foreach z : Q(x) stmit2p; stmtly

The expression (3) is equivalent to (1), while the expression (4) iequivalent to
(2), as the order of execution does matter in casgootach. To illustrate this, let's take
the same snapshot from the execution of (3) and (4):

() I' = stmtl1(I, R,t1) U stmt2(I, R, t1)
(4) I' = stmtl(stmt2(I, R,t1), R, t1)

In (2), stmt1 operates ovef, while stmt2 operates over the result efmtl1. In (4),

stmt2 operates ovef andstmt1 on the result oktmi2.

3.4.3 Expressive power

Definition of expressive power for update languages ( [18]): A databasatepahguage
L1 is more expressive than a database update language L2 if L1 cassxpsuperset of
the mappings expressible in L2. More formally, $&be a database schemastances(S)
be the set of database instances &/anduy,, urs2 € instances(S) x instances(S) be
the sets of all mappings expressible in database udpate langues L1 aespztively,
then L1 is more expressive that L2 if and onlydfs C wup;. We say that L1 is as
expressive as L2 ifio C uypy andurs C upg.

There are cases of languages that cannot be compared in terms egsax@mpower.
More formaly, if there is a subset;, C ur; and a subset/, C ur; so thatu}, ¢
ure andu;, Z ur, then the update languages L1 and L2 are expressivily incomparable
to each other, which means that each language can express a set ofgadppt other
cannot.

We have already seen than in order to provide non-primitive updateqdateulan-
guage relies on a query one. The selection of the query languagefeetrtla¢ expressive

power of the update language. More precisely, the expressive pmivear update lan-
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guage depends on two factors:
- the semantics of the supported update operations

- the power of the underlying query language.

An update language can be notifiedlag, whereU is a set of update semantics and
@ a query language. For exampl&,Lgsp s is W L with a Select-Project-Join conjuctive
query language. The various classes of update languages of thmeahal the expressive
relation between them is illustrated in figure (3.2). The expressive pofaen apdate
language, e.giW L, may change according to the underlying querying language, for ex-
ample,W L based ofFizpoint (W L) is more powerful thatV’ L based on conjuctive

SPJ (WLSPJ).

{ W.c= Sdet TLc }

?

{V\Lf p= Sdet TLf o= Sdet TLsd= Sdet TLf p }

?

{ W.sd= WLd }
{ WLf o= WLspj } {Sdet TLspj = Sdet TLd }

Figure 3.2:Classification of database update languages [18]

RUL is based on RQL, which is atiPJ query language with transitive closures on
subsumption relationships on classes an properties. We are interestéd 4p ; and

SdetT Lgpj, because these are the more expressive families of update langudgesetha
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an SP.J underlying query language, as shown in fingure (3.2). Unfortunat€ls p
and SdetT Lspy are incomparable in terms of their expressive power. RUL is based on

W Lgps, because its semantics is more suitable as it is analysed later.

In particular, both languages support a primitivéert anddelete operation, but the
semantics of these operations differ, if put in an iteration construct. Artéttiasert
operation inSdetT L is the union of the atomit.serts and this is equivalent to an iterated
insert operation inWW L. For example, a sequence ofsertr(tl),insertr(t2) will
result to a modified relatioi® that will contain botht1 andt2 tuples. This result will

be the same iV L andSdetT L languages.

The different behavior is exhibited in the case of the delete operationpdaific,
the iterated delete operation fidetT' L is the union of the effect of each atomic delete.
Under this light, a set of delete operations over the same relation will resultdatput
database instance that is the same as the initial one, therefore the opeithti@vevno
effect ([18]). More precisely, if the effect of an atomic delete operadidete (1) is the
removal of a tuple1 from R and the effect oflelete(¢2) is the removal of a tupl& from
R, the effect of the operation is the union of the resullsi— {R — {t1}} U{R — {t2}},
according to the semantics afhile. The union of an output instance of relation Bf
where a tupletl has been removed, and another output instance or rel&tiarmere
another tuple2 has been removed is the initial instancefoivhere no tuples have been

removed. Therefor& remains unchanged.

On the contraryW L can be used to describe a destructive iterated delete opera-
tion. A WL deleter(t1) will remove tupletl from R and thedeleter(t2) operation
following, will also removet2 from the modified relation. At the end of the iteration,
all deleted tuples will be missing and the database instance will have been utodifie
R — {R — {{t1} U {t2}}. In general, an iteratethsert operation is equivalent in
both languages, while the iteratdelete operation is meaningful only il L. SdetTL
introduces therase construct to deal with this problem. Thease construct is used to
empty a relation. Arerase followed by aninsert can be used to simulate an iterated

delete operation equivalent to the one that is expressidlg in In every step of the iter-



3.4. SEMANTICS OF DATABASE UPDATE LANGUAGES 65

ation, the temporary output relation is the result obatse that empties the relation and
the insertion of some tuple that should not be removed. Therefore,

WL: foreach x : Q(z) deleter(x)

is equivalent to

SdetTL:eraser while x : Q'(Q(z)) insertr(z)

whereQ@’(x) = R A =Q(z) : a query that returns the tuples Bfwhich do not satisfyy.

Therefore, SdetTL does not lack the desired feature of an iterateig dgleration, as
long as@’ can be expressed in the underlying query language for &yewyhich is not
the case with6 PJ. In general,SdetT' L. andW L are comparable only if the underlying
language support§’, in which caseSdetT L is more powerful thatV L ( [18]). Itis a
fact that we cannot expregs in SP.J, andSdetT Lsp; cannot provide an iteratetticte
construct for removing specific tuples from a relation.

RUL is based oV L because the removal of values is a desired effect. More pre-
cisely, the ability to remove tuples from certain relations in the database dinogdo the
values retrieved by a query, is needed to implement the effect of RUL DELdhd RE-
PLACE operations, as well as the side effects of the RUL INSERT operatialetailed
explanation of how the iterated database delete operation is used to implenieop&t
ations is given in chapter 4 The main advantag8@itT' L, through, is that its semantics
is always deterministic. We will deal with the non-deterministic aspecid éf expres-
sions later and we will present the deterministic semantid$ éf, as it has been studied

in the literature ( [20], [18]).

3.4.4 Determinism

An update language is deterministic if it supports only deterministic update tapera
An update operationp(Igs, R,t1,12,...) C {Ig} x instances(S) is deterministic if for
each initial database statg over each database schefahere is exactly one resulting
database instandg so thatop(Ig, R,t1,t2,...) C {Is} x {I§}.

It is trivial that primitive database update operations are always detetinjris they

deal with the addition or removal of a single tuple in a single relation. JheT L
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erase operation is, also, obviously deterministic, because the result of anarasztion
is always the same (an empty relation). Therefore, only the iteration cotsstnight

entail the danger of non-determinism.

It has been shown that the iteration construci@¢t7'L is always deterministic ( [6]).
In specific,while produces a set of two-level iteration steps, as described in the previous
section. At the first level the query is deterministically evaluated over the iddiabase.
At the second level, each inner operation is executed over the initial datair@ducing
a temporary database state. After all steps are completed for one qadugten, the
new overall database state is the union of the separate states produsachkiywo-level
operation. The process is repeated with another query evaluation eveethdatabase
state, until the query/condition is not satisfied.

The result of each second-level iteration is the union of the result of ibduped
atomic operations over the initial relations. The result of this union is alwaysdime,
regardless the order of execution of the produced intermediate oparadisfior the first-
level iteration, it can be viewed as a state transition. Each transition is deteraoailtys
depended on the previous one, as long as the underlying query laniguelgo determin-
istic. The union operation after the second-level iteration is the key fetitateensured

the determinism of the state transitions.

We need to show howd/ L. could also be implemented with deterministic semantics.
The core idea is to define properly the semantics offiheach construct. We have seen
that in W L, each produced update operation is affected by the result of thetiopera
executed before. Because of this characteristic, the order of execdtioe statements is

important, if the semantics &% L must be deterministic.

For example the following statements will have a different effect if execoted the

same initial database state

Database statt= R{0, 1,2, 3}

A database with one relation R that contains four tuples.
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Query@ : ans(x) «— R(z) N (x > 2)

A query that returns the values of R that are greater than 2

The result of the query iQ(z) = {{3}}

The two statements:
(1) foreach z : Q(z) insertr(x); deleter(x)
(2) foreach z : Q(z) deleter(z);insertr(z)

Statement (1) produces the following update operations:

insertr({3}); deleter({3});

so that at the end of the execution of (1), the database state will be

I' = R{0,1,2}

Statement (2) produces the following update operations:

deleter({3});insertr({3});

so that after the execution of (2) the database state is I” = |, becausel#tedituple
{3} isinserted afterwards.

A foreach produces a sequence of atomic statements, one for each value setdetriev
by the query. Although a deterministic query language always returnsithe gesult set
for the same query over the same database state, the order of the reseltsaindéin vary.
In other words, the same quefy might returns always the same set of results each time
it is evaluated over the same database instance, but the order of theirethdtset may
change from time to time. If this order is used to produce a sequence dewgideements,
then determinism is in lost.

There are two possible semantics for the foreach construct that contanesthan

one inner statements, like the one following:
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foreach x : Q(x) stmtl; stmt2; stmit3

Option I all the inner statements are executed in order for each value retrievgd by
According to the first option we executémt1, stmt2 andstmt3 (in that order) for the
first value retrieved by, then repeat for the next value, etc.

Option 2 each inner statement is executed for all value® tefore any execution of
the statement following. According to this option we exectit@t1 for all values ofQ),
thenstmt2 for the same values, and finallymi3.

If the retrieved results of) are{x1, 22, 23}, then the following are the sequences of

update operations produced in each case:

Option 1:
stmtl(x1); stmt2(x1); stmt3(x1);
stmtl(x2); stmt2(x2); stmt3(x2);
stmtl(x3); stmt2(x3); stmt3(x3);

Option 2:
stmtl(xl); stmtl(x2); stmtl(xz3);
stmt2(x1); stmt2(x2); stmt2(x3);
stmt3(x1); stmt3(x2); stmt3(x3);

We will show that the semantics described in option 2 is deterministic, while the
semantics in option 1 is not.

First, let's prove that the semantics described in option 2 is deterministic:

It is enough to show that if a statemestint is deterministic, then a sequence of
statementstmt(z1); stmt(z2); ... is equivalent to any reordering of this sequence. The
stmt statement can either be asert, adelete or a foreach.

If it is an insert, then it is trivial that any order of the samesert operations will

have the same effect (values, x2, etc. will be inserted). The same holds for any ordering
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of the same sequence éflete operations (valuesl, 2, etc. will be erased).

We need to show that the order of a sequenciotach statements is also determin-
istic, when these statements are produced from angihetach statement. This is the
case of nestedloreach. It has been shown, though, that any nested foreach statement can
be flatten ([20]) by pushing the query of each nested foreach stateiqmémthe query of
the first level statement:
foreach x : Q1(x) do
stmtl(x); foreachy : Q2(x,y) do stmt2(y)

_

foreach x,y : Q1(x) N Q2(x,y) do stmtl(x); stmt2(y)

Therefore, the semantics of option 2 is deterministic, because eachf@t@dement
produces sequences of statements of the same type (namsefy or delete) grouped
together.

In order to prove that option 1 semantics is not deterministic ( [20]), we saran
example, as the following:

Database state: R1{1,2,3}, R2{2,3,4}
The Queng : ans(z,y) < R1(x) N R2(y)
This is the foreach statement:

foreach x,y : Q(z,y) do insertry (z); deleteri (y)

Case 1) returns the results in that ord€(2, 2), (3, 3), (2, 3), (3, 2) } producing the
causing the following operation sequence:
insertp(2); deleter (2) state of R1:R1{1, 3}
(3); deleter:(3) state of R1:R1{(1})
insertry(2); deleter; (3) state of RL:R1{(1,2})
insertri(3); deleter; (2) state of R1:R1{(1,3})

insertpri(3

resulting this database stafte R1{1, 3}, R2{2,3,4}.
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Case 2:Q) returns the results in that ord€r(2, 2), (3, 3), (3,2), (2,3)}
); deleter (2) state of RL:R1{(1, 3})

3); (3) (1})
insertp(3); deleter (2) state of R1:R1{(1, 3})
insertr(2); deleter (3) state of RL:R1{(1,2})

insertpy (2

insertp(3); deleter (3) state of R1:R1{

resulting this database stalte R1{1, 2}, R2{2, 3,4}.

In these two cases, the resulting database is different. It is not necéssantinue
with examples presenting cases of non-determinism, but it is interesting thas iexth
ample there are even more possible resulting database states, for tiffieters of the
query result set. More cases of non determinism have been investigatesdliterature
([6], [20], [18]).

W L with deterministic semantics in thforeach construct is possible, if we chose
option 2. The semantics a@hsert and delete is obviously deterministic.WW L in its
original form contains aeplacer(x, y) construct, which can be also viewed as a complex
operation consisting of @lete and aninsert:
replacer(z,y) := deleter(x); insertr(y)

In case of af oreach containing a replace construct, we have to deal with replace as
if it actually was a separatélete followed by a separatérsert statement, otherwise the
replace statement won't be deterministic. #place operation may either be determinis-
tic or primitive, but not both.

The later observation is important for specifying the exact semantics okjliece
statement. In fact, an iteratedplace is translated as an iteratédsert followed by an
iterated delete. For example, if goreach statementeplaces the valueg1,2,3) of a
relation with the value§2, 3, 4) respectively, then the order of execution is the following:
valuesl, 2 and3 are removed from the relation and then val@e3 and4 are inserted.

Compared to the previous declarative update languages for relatiagabbdas, RUL

has been designed for updating RDF/s description. For example, thetg=noéil’ Lsp s
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is not sufficient to describe a language that affédei3F data, because it lacks the ability

to directly deal with concepts derived from the RDF/S model, like ISA relatiqssof
class/property inheritance. In section 4, we will €. sp; to describe the implementa-
tion of RUL over various database representations, where we dealimillarsproblems
while implementing the deterministic semantics of RUL. As there are many analogies in
the semantics of RUL and the semantics of the previously presented dat@ioase lan-
guages, we will chose a deterministic update language to implement RUL aieusa
database representations of RDF/S descriptions. As we will see, thendestic seman-

tics of RUL rely on the deterministic semantics of the chosen database updzuadgen

but there are also some issues concerning determinism that are not dieétidgl to the

later semantics.

3.4.5 Selecting a database update language

RUL is implemented over a database udpate language. We have alreadhaetdre
desired feature of determinism is supported in Béthsp; andSdetT Lgp ;. The oper-
ations of RUL can be implemented with any of the above database updatedesgaa

they both provide enough epxressive power and they are both detdrminis

We prefer to implement RUL withl” Ls p ; for performance reasons. More precisely,
the iteration operation afdetT L requires multiple evaluations of the same query over
different states of the underlying database instance, whil& inthe query is evaluated
only once. What's more, according to the semanticl/df, the update operations inside
a foreach clause directly affect the database, whiledatT L the effects are computed
and stored in a temporary place until the iteration is completed. After the comptdtion
the iteration inSdetT L, the temporarily stored effects have to be merged and applied
to the database instance. The performance disadvantagélois that the results that
are retrieved by the query have to be stored in a temporary place. Thisdssagy in
order to achieve the deterministic semanticdi6f.. Compared taSdetT L this is not
a disadvantage, though, as in the later there are also some informationbabHhze

temporarily stored. The size of the temporarily stored informatiosider7T L depends on
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the size of the retrieved query results, but in SdetTL this information has $tobed as
many times as the the evaluations of the query.

Another reason for chosing/ L is that its iteration semantics are similar to the set-
oriented semantics aRUL. In RUL, the RQL query is evaluated. Then each RUL
operation is applied over the retrieved results. This is exactly what hapgénthe WL
udpate operations that are nested insige@each clause. In chapter 4, we will see how

this similarity will prove handy in implementing the set-oriented semantids(of..



The implementation of RUL

RUL has been implemented as part of the RDF suite ( [1]). RUL implementationvi®llo
the paradigm or the RQL implementation and the design decisions taken arechas mu
as possible, compatible with the design principles of RQL. Therefore, thétecture of
RUL, presented in figure 4.1, is very similar to the one of RQL, as we shoveilatar. An
RUL interpreter translates the queries into SQL statements, which are thariezkeThe
parts of a RUL statement that can be expressed with an RQL query taadiatranslated
and executed by the RQL interpreter. RDF schema and data in RDF suite@e is

the underlying DBMS. At the moment there are three alternative dataleseatations

( [29]) that are all supported by the RUL interpreter. The RUL to SQLdi&ton is

affected by the selected database representation.

73
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4.1 RUL vs RQL implementation

RUL is implemented as an extension of RQL. The key components of the lagesgantax
parser, a graph constructor, an RDF/s validation and, finally, an S@dnstat generator
module. RUL extents its of these components to support the RUL functionality.

In RUL design, the update and the query parts of a RUL statement canriidite
and separated, as it has been presented in chapter 2. The INSERETBENd RE-
PLACE parts are the heads of a RUL statement and they are the onlya@éserwds that
do not appear in RQL. The rest of a RUL statement, namely the FROM, theR#-#ad
the NAMESPACE clauses are identical to the ones appearing in RQL. Itrivéd to
modify the RQL parser to verify the syntax of RUL statements and produgetactical
tree.

RQL then produces a graph based on the syntax tree, by finding the relafitme
various parts of the input statement, that are represented as tree nddesmaect them
by adding extra arcs where there are relations we want to represefar @sit concerns
RUL, the graph constructor module has been extended to manage the TNSEEETE
and REPLACE statements, and let RQL deal with the constants and variagsesnpin
an RUL clause, as if they where part of a SELECT clause. More pigcihe INSERT,
DELETE or UPDATE clause of the statement is represented by a grajgh noder which
the constants and variables related to it are hanged. In RUL, we aresiettiia the
identification of these variables in the rest of the statement and also to cretakaith
variable that appears in the head of an RUL statement, also appears inQié ¢iduse.
These functionalities are acquired by reusing the corresponding faatties already
implemented in the RQL graph constructor.

In the example illustrated in figure 4.2,

DELETE Paper(X)
FROM {Y}writes{X}, {ConferencethasPC.hasChair{Y}

the head of the query IBELETE Paper(X), where Paper is a constant denoting

an RDF class anX a resource variable. The constructed graph relates the vaiable
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Applications
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Figure 4.1: The RUL statements are sent to the client. Parser and graph constructor

modules of RQL are extented to handle the RUL syntax. They parse ibastiuct a

syntax graph, that contains nodes for udpate operations. The RQL valicktdule is

also extended to validate the RUL parts of the statement. The validation is rpedor

against the underlying database. The RQL parts of the RUL statemeevalgated first

by the RQL evaluator (against the database). The update operationthare translated

into SQL statements and sent to the database as well. The result is sent QLUHRUR

client and returned to the user application in an RDF/XML form.
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of the head with theX appearing in théd'ROM clause. RQL graph constructor module
is more sophisticated than that, but the rest of the details of the RQL gragtrwctor
module do not affect RUL implementation and they are ommited because thatsapar
of the update and querying part of RUL statements allows the querying tariuidd by

the existing RQL implementation.

DELETE

/’\} AN

Conference

L Jlee JC <
i

Figure 4.2:The syntax graph constructed by RQL/RUL graph constructor for the-state
ment of the example. Some arcs connect the various apearencessaintie variable in

the statement.

The next step of the interpretation of the RUL statement is the validation of thpao
nents of the constructed graph. Here, each constant or variablsbamgler the update
node is checked against the database description, by performing Sfoiegjand check-
ing the results. Recall that each constant or variable appearing in a Riment head
must be of a class, property, resource or literal type. In the examm@emes above, the
DELETE — class — instance statement must be followed by a class name or variable
and a class instance name or variable. For example, during the validatioespydhe
database is asked if there existsfazper” class.

Because of the RQL architecture, it was easy to extent this module to suipbr
statements validation. As a matter of fact, all validation queries used in RULevater
ready implemented for the needs of RQL, so it was enough to call the ponéisng
high-level validation methods when needed. For example, RUL is awar&Raper” is

a class name, therefore it calls the method of RQL validator that checks ifahis s
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stored as a class name.

The next step, the translation to SQL, is the most interesting. The varialpearang
inthe FROM clause are evaluated against the database. RUL is implemented in the same
fashionasth& FELECT — FROM —W H ERE queries of RQL are. One reason for this
design decision is the obvious similarity of th&' SERT, DELETE or REPLACE
and theSELECT clause. Both clauses appear in the head of the statement, and, mostly,
each variable appearing in any of these clauses must also appearfikthé/ clause,

according to the semantics of both languages.

The other reason for this similarity is the way RQL performsSiel. ECT—F RO M —
W HFERE statements. Each variable appearing in $ifeL ECT clause is recursively
evaluated and stored in a temporary database relation. This seems to bedosiow
factor for RQL, but there are good reasons for this engineering ehéiicst of all, RQL
supports nested queries, so the storage of an evaluated query in adgmptation is a
good solution that reduces implementation complexity. What's more, storingshliésran
intermediate relations gives the capability of joins and other operations betheeesults
of various (nested) queries. Another reason for this choice is thatdR@ties containing
scehma and data retrieval cannot be executed "on the fly”, so that mul@iley8eries
have to be executed against the database for a single variable. Ingbatreatemporary
relation is used as a place to collect the results of its query, instead of gabpm in the
main memory.

Apart from the advantages in the implementation of RQL, RUL also stored $i re
of a query statement in a temporary relation. This is due to the fact that thendtatgic
semantics of RUL require the query to be executed only once and onlytlowenitial
database state, which means that the query results should not be dffetitedupdates in
process. As we will further detail later in this chapter, this design choisdban proven
to be crucial for implementing the deterministic semantics of the language.

The evaluation module responsible for the evaluation of the variables rappéa
the FROM clause by taking into account all the filtering conditions appearing in the

WHERE clause. This evaluation is performed by the existing RQL code. For each
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variable appearing in the head of an update clause, the values retrieties évaluation
are stored in a temporary relation (according to a specific database gchEmea, the
execution of the update operations takes place. For each update ¢tausespecting
code for an update statement is executed for the values of the temporaéignrela

We could use an example to illustrate this.

DELETE Paper(X) REPLACE Author(Y<-&someAuthor)
FROM {Y}writes{X}, {Z;ConferencethasPC.hasChair{Y}
WHERE Z=&http://www.iswc05.org

The variable evaluation is presented in table 4.1.

Table 4.1:variables X, Y and Z are evaluated, producing the following results:
X Y Z

&pl | &al | &http : [/ /www.iswc05.0rg
&pl | &a2 | &http : [/ Jwww.iswc05.0rg
&p2 | &al | &http : [ Jwww.iswc05.0rg
&p2 | &a3 | &http : [ /www.iswc05.0rg
&p3 | &ad | &http : [ /www.iswc05.0rg

The corresponding temporary relation for DELETE can be found in taBle 4

Table 4.2:Temporary relation for DELETE

operation — id | class — name | class — instance
1 Paper &pl
1 Paper &p2
1 Paper &p3

and for REPLACE, in table 4.3
The resulting SQL queries that perform the operations depend on theadateep-

resentation used to store RDFS graphs, but for the shake of the exampbvsuppose
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operation — id

Table 4.3:Tem

class — name

79

class — instance — 2

2

(NN ]

Paper
Paper
Paper
Paper

&someAuthor
&someAuthor

&someAuthor

porary relation for REPLACE
class — instance — 1
&pl
&p2
&p3

&pd

&someAuthor
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that the instances of each class are stored in a relation nam€thiss-Name, as shown

in table 4.4 and that the delete operation has to delete the instances from there.

Table 4.4:A possible class instance DB relation for class Paper
URI

&pl
&p2
&p3
&p4
&ph

The SQL query that performs the operation might look like this:

DELETE FROM tcPaper
WHERE tcPaper.URI = tempDELETE.Class-Instance

In fact, all operations are stored in one relation, with the columns presentable
4.5

Table 4.5:The temporary relation tempUpdate

operationid | idl | id2 | resourcela | resource2a | resourcelb | resource2b

Each of these columns is used to match the needs of each update operatiomgst
operation make use of only a few of these columns. The first colupenationid, is used
to separate each update operation from each other. In the above exBfBjil& T £ was
referred with operation id 1, anBE PLACE with 2. If there are more than one update
statements of the same kind (e.g. th&@ L ET E's), they are assigned a different operation

id. For example, the following statement

DELETE Paper(&pl), Paper(X) INSERT Paper(X)
FROM Paper{X}
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can be viewed as three update operations:

DELETE Paper(&pl)

DELETE Paper(X) FROM Paper{X}

INSERT Paper(X) FROM Paper{X}

and its one is assigned a different operation id. This means that if two uppleta-
tions share the same variable, the values retrieved for this variable agd stice in the
temporary relations used by RUL.

The other columns of the update relation have a slightly different meanimgdicg
to the kind of operation/ NSERT class instance operation used to store the class
name andresourcela to store the corresponding class instandéV.SERT property
instance operation uségl to store the property namegsourcela for the source of the
property instance, aneksource2a for the target.

Once the variables get evaluated and stored in the temporary relation,ttbefasf
the evaluation module is the creation of the SQL statements that implement the update.
This is the most important part of RUL implementation and will be detailed in the seque
In general, the update statements benefit from the existence of the teyndadion by
bulk updating the corresponding relation of the underlying databasesemations. After
the variable evaluation, the produced SQL statements are depended dnly fattors:

(a) the kind of the RUL update statement and (b) the RDF/s databaseaeiatésn used.

In the actual RUL implementation, as well as in RQL, it is common to store the
result of intermediate schema traversal queries in temporary relationsvdtyidikely
that during the execution of the query part of a complex RUL operatiomtarmediate
relation for storing schema queries might has been created by RQL, sceiissd for
storing the extra ancestors.

The result of an RUL statement is a Boolean. If the operation was exesutedss-

fully and the preconditions described in chapter 2 hold, the resultrige”, otherwise
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it is ” false”. The result is returned in and RDF/XML form, like the result of an RQL

statement. The difference between the result of a RUL statement and astR@ment is
that in RUL the result is just feedback to the user. In RQL it is the purpbdedanguage
to answer the query, while the purpose of a RUL statement is to modify to thibadata
according to the used request. What's more, an RQL/RUL statement issabxaguted
in a transaction, which is handled in a different way in RUL and RQL. Maeeigely, in
RQL the transaction is always aborted after the execution of the statememhdeter
and the results have been returned to the used. In RUL the transactiartisdabnly if
at least one of the update operations has returned false. The abdrtlmtoansaction
means that all the operations are also aborted and no effects or sicks efige affected
the database. If all the update operations return true, the transactiannsiteal and the

database is modified.

4.2 The database representations of RDF/s

RDF schema and data in RDF Suite are stored in a (Object) Relational DBMS.
database representation for RDF/s affects the performance of bathirguend updating
process. It has been stated that the final SQL statement producedibtetipeeter is de-
pended on (a) the kind of update operation and (b) the underlying d&tadyaresentation.
Three representations are used in RDF Suite ( [29]). The first is csdlegima-specific
representation, the second is nansetiema-specific no-Isfand the last is théybrid

representation.

4.2.1 Representation of the RDF schema

A part of the database representation is dedicated to store and priésesahiema infor-
mation. In RUL we focus on the IsA relations between classes and betwegerfies, as
well as the domain/range types for the property members. Figure 4.3 twéserelations
of the representations that RUL is aware of.

The "subclass” and "subproperty” relations are used to store theeslassl the prop-

erties, respectively, as well as the IsA relationships between them. ¢tockess or prop-

Th
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subclass (class subsumption relations) subproperty (property subsumption relations)
id parent-id index id parent-id index
t1000000000 (classes) t12 (type ids for literals)
id metatype class-name DB type-id metatype type name RQL type-id

t2000000000 (properties)

property—nam% domain-id range—id‘ domain—ty%e range—ty%)e

id ‘ metatype

only when class and/or property graph is not a tree, but a DAG

class_anc (non-tree class relations)

id parent-id index direct_arc

property_anc (non-tree property relations)
id parent-id index direct_arc

Figure 4.3:The subsumption relations between class and properties are stored-in sub
class and subproperty relations respectively. The class and propertgrnid names are
stored in t1000000000 and t2000000000 relations respectively. Thigorekd 2 is used

for storing the various type ids used by RSSDB and RQL to represent byped. The
classanc and propertyanc relations are used only if the class and/or property graph is
not a tree, but a dag, and they are similar to subclass and subpropelgtions, respec-

tively.
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erty, there is a two-integer label. This label is used to describe the graple afasses
and properties ( [27]). The first integer, stored in column "id”, is a uaiglproduced
by post-ordering the class graph. The second number, called "indéRk&ismaller id
of the descendants of the class, or equal to the id of the class if it is a |bafe Two
numberings, one for classes and one for properties. The "parefieidcontains the id

of the parent class.

The relations t1000000000 and t2000000000 are used to store the detaelslasses
and properties respectively. The class relation consists of a "id” colanimetatype”
column and the name of the class. The t2000000000 relation contains foerfields,
two for the domain and, symmetrically, two for the range of the property, nathely
"domain-type”, "domain-id”, "range-type” and "range-class”. Tha@omain-type” (re-
spectively "range-type”) field is used to specify if the domain (range) efittoperty is a
class or a literal object. If it is a class, then the "domain-id” contains the ideotlaiss
that is the domain (similarly range) of the property, otherwise it is the literal (gme

integer, character string, floating point number, date) of the property.

We have already described how the "id” and "index” fields comprise ausigbel
for each class or property. This label is also used to describe therspben relations
between the various classes and properties, in the case of a treerstiutrrarchy. If
the class/property hierarchy is a Directed Acyclic Graph, the label ibesconly a cover
tree if the graph, which is the initial graph without some selected e®i®s The edges
removed are described in a separate relation, named "atassfor classes and "prop-
erty_anc” for properties. The "id” and "index” fields of these relations are itth and
index of a class that is a descendant of another class through a eadge. The "parent
id” is the id of this non-tree ancestor. The last field is true if the subsumptiatice
between the class with id and the class with parent id is direct or false if it is imipjied

some other non-tree edge.

All three representations used in RDF Suite describe the RDF schema inntiee sa
way. The relations presented here are only a part of the databaseeseltually used,

but they are enough for implementing RUL, as they efficiently describe thss ead
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property ISA relations and contain all the information needed to check theraints of

any update operation.

4.2.2 Schema specific representation

In the schema specific representation, there is a separate relation iiog siherinstances
of each class or property. Each of these relations contains one colutis ti$ed to store
class instances, and two columns (source and target) if it is for propetgnites. For
example (fig. 4.4), the instances of clabs:epted Paper are stored in a different relation
than the ones oRejectedpaper. The instances of the clagiiper are stored in another

distinct relation.

M M

caper  tc305

305, 303 resource

©
g Accepted Rejected o
N Paper Paper b
b 303, 30 304, 304 R
resource resource
N N

Figure 4.4: The class instances of AcceptedPaper are siore®D4, of Rejected-
Paper in tc303 and of Paper in tc305. The relations are ctewhegth inheritance
links, so that the tuples in t¢303 or tc304 are also tuples30%. The couple of
numbers under the name of each class is the label of the os=ly the id and

the index.

The instance relations of classes or properties related through subsurarialso

related using the inheritance feature between relations supported byRIDRBIAS. In
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our example, the class "Paper” is a super-class of both "Accepted Rapk”"Rejected
Paper”, therefore the relations for the two sub-classes inherit the estalations of the
"Paper” class. If a class instance is physically added as a tuple in theepied Paper”

instance relations, it is automatically a tuple of the "Paper” instance relatiomslhs

The relations for storing the instances of a class are namedd’t€’, where "<id>"
is the id of the class of which the instances are stored. Similarly, the propéations are

named "tp<id>", with "id” being the id of the corresponding property.

4.2.3 Schema specific no-IsA representation

The only difference of the schema specific no-ISA representation igiteahheritance
between relations is not used, and therefore this representation casethevith rela-
tional DBMSs. Applications using this representation can aquire the IsAicetabe-
tween classes or properties by querying on the schema relations pcesetite schema
section. In order to avoid duplication of information, each resource igdtonly in the
instance relation of the class of which it is a direct instance. For exampleJI§Bper”
is a direct instance of "Accepted Paper” and also a indirect instanceagfer”, but it is

only stored in the former.

4.2.4 Hybrid representation

The hybrid representation uses one relation for all class instancesiandlation for the

property instances of the same type (fig 4.5).

These relations contain the "id” of each class or property of which anriostés
stored. The class instance relation contains also a column for storing tkdrdgance

URI (resource).

Properties are grouped by domain and range type. According to thisthgprop-
erty relations contain two columns for storing the source and the targetbfpgaperty
instance. For example, properties with a class as domain and a floating poibenas

range are stored in one relation with a "varchar” and a "float” attribute.
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tc2000000000 tp7k7
. source target -
resource id resource resgurce id
U J
tp7k9 tp9kll
source target id source target id
resource string string integer

Figure 4.5:The tc2000000000 is used to store the class instances. The resouilmetattr
is the URI of the class instance, while the id is the id of the most specific (ditas$) that
this URI is instance of. The instances of the properties with a class as damdirange
are stored in tp7k7. If the domain and/or range is a literal, they are storealdifferent
relation, depending on the type of the literal. For example, the instances pirdtiperties
with class domain and string range are stored in tp7k9. The instances qpfioperties
with string domain and integer range are stored in tp9k11. There probexist other
relations for property instances as well, depending on the schema defiaftibe stored

namespace.
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4.3 Translating from RUL to WL

RUL is used to update an RDF description, but it is implemented over a datamase
the RUL statements have to be translated in a database update language. W will
WL to describe the database update operations used by RUL, from thegboirew

of a graph representation. In chapter 3 we described the formal semahtJL in a
declarative way. We used these formal semantics to describe what grestioaditions,
the effects and the side effects of its RUL operation. In this section we vatirdee the
RUL operations with WL in a more precedural way. The WL translations aesl Wo
describe how these preconditions, effects and side effects are implenogetespecific,
real world database representations. Obviously, the formal semantitapter 3 are

consistent with the semantics derived by the WL translations given here.

At the schema level, there is the class graph and the property graph.datthkevel,
there are nodes, representing resources, and property instaacasetlarcs between the
nodes. There are also arcs connecting the nodes and the propsrtyitwrthe schema.
The RUL operations have already been described with this model in mindajpteat2. In
this chapter we will show the arc modification procedures that are usetJhyds they
are expressed in WL operating over any of the database represesiati®DF Suite.
Later on we will give more detailed translations of the RUL atomic operations in WL
The relations that are involved in RUL translations, including the temporéagior, of

the retrieved results, have already been analyzed in section 4.2.

a. Schema-specific representation and Schema specific no-lIsAaeiarasn
- Removing an instantiation link between a cléssvith id cid and a resourc&r:
deleteyecigs (&)
- Adding an instantiation link between a classwith id cid and a resourcé&r:
insertt6<cid>(&7’)
- Removing a property instance &fwith id pid between a resourcer1 and a resource
&r2:
deletesp<pia>(&rl, &r2)
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- Adding a property instance dP with id pid between a resourcgérl and a resource
&r2:

insertiyp<pias(&rl, &r2)

b. Hybrid representation - Removing an instantiation link between a €laggh id

cid and a resourc&r:

deletesc2000000000 (&, cid)
- Adding an instantiation link between a classwith id cid and a resourcé&r:
inserti2000000000 (&1, cid)
- Removing a property instance #fwith id pid between a resourcerl and a resource
&r2:
deleteyrir(&rl, &r2, pid)
- Adding a property instance dP with id pid between a resourcgérl and a resource
&r2:insertyyr (&rl, &r2, pid)

If the property P has a literal as domain and/or range, then instead of the relation
tp7k7, we use the relation that is used to store this kind of properties. For exaimiple,
properties with a class as domain and an integer as a range, wgridé, because 11 is

the code meaning "integer” in this database representation.

The above operations add or remove instantiation links between classetaaad
instances or properties and property instances. However the RUL sesnahthese
operations include various side-effects. The RUL semantics is implementeirigy WL

foreach and combining it with the corresponding RQL query translations.

For example, the INSERT class instance RUL operation is implemented by deleting
any classification links between the ancestors of the specified class asypkitiged in-
stance, and then inserting a new one between the instance and the clasefféldis
where also described in 3.1.1, where the classification links are deletetis lformal
description we suppose that if a resource is direct or indirect instdrecelass, there is

classification link between the class and the resource, while in the actubbdateep-
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resentations we store only the direct classification links. In the formatigéen of the
operation, the side effect of the operation, which is the insertion of theifitadion links
between the resource and ancestors of dass not needed. In the schema-specific

representation the operation is implemented like this:

INSERT C(&r) in WL (schema-specific):
foreach superCid : ans(superCid) «— subClassO f(id, superCid), id = cid
{ deletetc<super0id> (&T) }

insertic<cias(&r)

wherecid is the id of clasC, &r is the inserted instance andbClassOf is a
guery returning the ids of class pairs sharing the ancestor-desceaetititinship. The

subClassO f query for class instances:

subClassO f(id, superId) «t1000000000(id, K1, K2, K3),
subclass(superld, P, superIndez),

superld > id, superIndexr < id

In case the class graph is a DAG instead of a tree, the non-tree destandastor
relationships are given by the follwing query:

nonTree(id, superld) < class_anc(id, superld,index, direct_flag)

In the following translations, we omit the detailed explanation of the queriasinse

the foreach clauses.

INSERT C(&r) in WL (schema-specific no-IsA):
foreach superCid : ans(superCid) «— subClassO f(id, superCid), id = cid
{ delet@tc<super0id> (&T) }

inserttc<cid> (&T)

foreach subld : ans(subld) «— subClassO f(subld,id), id = cid
{ deleteieccias(&r) }
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The last foreach is used to eliminate duplications, in the ca&e-dfeing an instance

of some sub-class @f'.

INSERT C(&r) in WL (Hybrid):

foreach superCid : ans(superCid) < subClassO f(id, superCid), id = cid
{ deletei2000000000 (&, superCid) }

inserti2000000000 (&, cid)

foreach subld : ans(subld) «— subClassO f(subld,id), id = cid

{ deletetca000000000 (&7, cid) }

The INSERT property is similar, with the exception that the class instancésrditd
erals &r1, and&r2) forming the inserted property instance are checked for domain/range
type consistency with the properf. If the domain/range check shows invalid values, the
operation is aborted. Details about when and why a RUL operation mightdyeed will

be presented in section 4.4.

INSERT P(&r1, &r2) in WL (schema-specific no-IsA):
foreach superPid : ans(superPid) <« subPropertyO f(id, super Pid), id = pid
{ deletetp<superpid> (&Tla &T2) }

insertyp<pias(&rl, &r2)

INSERT P(&r1, &r2) in WL (schema-specific no-IsA):

foreach superPid : ans(super Pid) < subPropertyO f(id, super Pid), id = pid
{ deleteiy<superpia>(&rl, &r2) }

inserty<pidas(&rl, &r2)

foreach subld : ans(subld) < subPropertyO f(subld,id), id = pid
{ deleteiyepia>(&rl, &r2) }

INSERT P(&r1, &r2) in WL (Hybrid):
foreach superPid : ans(super Pid) < subPropertyO f(id, super Pid), id = pid
{ deletetpgooooogooo(&rl, &7’2, superPid) }
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insertip2000000000(&r1, &2, pid)
foreach subld : ans(subld) < subPropertyO f(subld,id), id = pid
{ deleterpao00000000(&71, &12, pid) }

The DELETE class instance operation side effects are the insertion ofetbted
value as instances of the immediate super-class€'s bereRUL — INSERT (cid, &r)
is a method executing a RUL INSERT operation, as explained previoushoriifehere
the check for the existence &r as an instance af', which can lead to the abortion of

the operation.

DELETE C(&r) in WL (schema-specific):

deletese<cias (&)

foreach superCid : ans(superCid) «— subClassO f(id, superCid), id = cid
{ RUL — INSERT (superCid, &r) }

DELETE C(&r) in WL (schema-specific no IsA):

deleteic<cida>(&r)

foreach subCid : ans(subC'id) < subClassO f(subC'id,id), id = cid
{ deleterc<supcia>(&r) }

foreach superCid : ans(superCid) «— subClassO f(id, superCid), id = cid
{ RUL — INSERT (superCid, &r) }

The first foreach ensures th&at is removed from all subclasses 6f In this rep-
resentation this has to be done by traversing through the schema, while ichéraas
specific with ISA representation the deletion from the sub-class relationsused by the

inheritance feature supported by the underlying ORDBMS.

DELETE C(&r) in WL (Hybrid):

deletetc2000000000 (&, cid)

foreach subCid : ans(subC'id) < subClassO f(subC'id,id), id = cid
{ deletei2000000000 (&, subC'id) }
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foreach superCid : ans(superCid) < subClassO f(id, superCid), id = cid
{ RUL — INSERT (superCid, &r) }

If the class graph is not a tree but a DAG, we also execute an RUL INSIpRation
for the classes that are ancestors of the sub-classéstbat have&r as an instance.
These ancestors are not nessecarily related through subsumptiati.Witiis is achieved
by executing in advance a statement that stores the required classes in m@tgmglation

T:

foreach subCid : ans(subC'id) < subClassO f(subC'id, id), id = cid
{

foreach anc : ans(anc) — subClassO f(id, anc),
te < subCid > (&r), id = subC'id
{ insertp(anc) }
}
foreach anc : ans(anc) « subClassO f(anc,id), T'(anc), id = cid

{ deletep(anc) }

The lastforeach eliminates from the temporary relation the ancestors of sub-classes
of C that are also sub-classes ©f so that they won't be affected by the rest of the
operation.

The above procedure retrieves in advance the classes that shoplékes an in-
stance, after the DELETE operation is completed, in the case of a DAG dtxasdhy.

The last foreach of the main DELETE translation is, now, modified in the follgvonm:

foreach superCid : ans(superCid) «— T (superC'id)
{ RUL — INSERT (superCid, &r) }

If exist property instances emanating from or ending to the deleted classdes
they are also affected. If the property’s domain or range still containgeleted class

as an instance, the property is not modified. Otherwise, there must belmsoperty
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that has a domain/range witar as an instance. If this is the case, a RUL-DELETE is
executed over the sub-property through which the modified propertycessible. The
result of this DELETE property instance operation is either the re-instaotite original
instance as an instance of a super-property with compatible domain/rautiye removal

of the property instance.

The DELETE property instance operation is implemented in a very similar way.
Again, we omit the, now familiar, domain/range checks as well as the che¢hdaex-
istence of the instance. We also omit the handling of the case when the tgrgpsh
is not a tree. It is exactly the same as in the case of DELETE class instaiibethev

obvious difference that the schema queries traverse through thetyrgpsph.

DELETE P(&r1, &r2) in WL (schema-specific no IsA):

deleteip<pia>(&rl, &r2)

foreach superPid : ans(super Pid) < subPropertyO f(id, super Pid), id = pid
{ RUL — INSERT (superPid, &rl,&r2) }

DELETE P(&r1, &r2) in WL (schema-specific no IsA):

deleteip<pia>(&rl, &r2)

foreach subPid : ans(subPid) < subPropertyO f(subPid,id), id = pid
{ deleteipesuppia>(&rl, &r2) }

foreach superPid : ans(super Pid) «— subPropertyO f(id, super Pid), id = pid
{ RUL — INSERT (superPid, &rl,&r2) }

DELETE P(&r1, &r2) in WL (schema-specific no ISA):

deletep2000000000 (&71, &r2, pid)

foreach subPid : ans(subPid) «— subPropertyO f(subPid, id), id = pid
{ deletespa000000000 (&71, &72, pid) }

foreach superPid : ans(super Pid) < subPropertyO f(id, super Pid), id = pid
{ RUL — INSERT (superPid, &rl,&r2) }

The REPLACE class instance operation is more complicated, as it can be \éswed

a sequence of two operations (we call them erasure and addition). Theffeat of the
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first is to erase the instander while the main effect of the second is to insert the new
instance&:r’. Another complication with REPLACE is that it has to replace not only the
direct instances of’, but also the instancesr of the sub-classes @f, if any. The new
values should be inserted exactly where the old, removed ones whenmgnméaat the
new values should be instances of the sub-clags tifat the old values where instances
of. This affects the instances superclasseS ¢br even some other classes in the case of
a non-tree class graph), as the instances of these super-classes must be removed (side
effect).

Property instances emanating from or ending:tg are modified so that they now

emanate from or end &tr’.

REPLACE C(&r« &r’) (Schema-specific):
foreach subCid : ans(subC'id) < subClassO f(subC'id, id), id = cid
{
foreach id : ans(superCid) «— tc < id > (id, &r), id = subC'id
{ insertp(id) }
}
deleteseccias(&r)
RUL — INSERT (cid, &r")
foreach subld : ans(subld) <« T'(subld)
{RUL — INSERT (subld, &r") }
foreach P : ans(P) < emanatingFrom(&r, P)
{
foreach target : ans(target) «— tp < P > (source, target), source = &r
{ replacep<p ((&r, target), (&', target)) }
}
foreach P : ans(P) «— endingTo(&r, P)
{
foreach source : ans(target) < tp < P > (source, target), target = &r

{ replaceip< p((source, &r), (source,&r')) }
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REPLACE C(&r+ &r") (Schema-specific no IsA):
foreach subCid : ans(subC'id) < subClassO f(subC'id,id), id = cid
{
foreach id : ans(superCid) « tc < id > (id, &r), id = subC'id
{
inserty(id)

deletesecias (&)

}

deletese<cias (&)
RUL — INSERT (cid, &r')
foreach subld : ans(subld) «— T(subld)
{RUL — INSERT (subld,&r") }
foreach P : ans(P) < emanatingFrom(&r, P)
{
foreach target : ans(target) < tp < P > (source, target), source = &r
{ replaceip<p= ((&r, target), (&', target)) }
}
foreach P : ans(P) < endingTo(&r, P)
{
foreach source : ans(target) < tp < P > (source,target), target = &r

{ replacesp< p> ((source, &r), (source, &r')) }

REPLACE C(&r <« &r") (Hybrid):
foreach subCid : ans(subC'id) < subClassO f(subC'id, id), id = cid

{
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foreach id : ans(superCid) «— tc < id > (id, &r), id = subCid
{
inserty(id)

deletetc2000000000 (&7, id)

}

deletesc2000000000 (&7, cid)
RUL — INSERT (cid, &)
foreach subld : ans(subld) «— T (subld)
{RUL — INSERT (subld, &) }
foreach P : ans(P) <« emanatingFrom(&r, P)
{
foreach target : ans(target) < tp < P > (source,target), source = &r
{ replaceprooooonooo (&, target, P), (&', target, P)) }
}
foreach P : ans(P) <« endingTo(&r, P)
{
foreach source : ans(target) < tp < P > (source, target), target = &r

{ replacep2000000000 ((source, &r, P), (source, &r', P)) }

An idea would be to implement RUL-REPLACE by using the WL replace operation
and then applying the side effect by deleting the values of the instances ahdestors
from the corresponding database relations. Strangely enough, thisaapgds in every
way equivalent to the one presented above. A careful observatiaoldweveal that the
combination of foreach, insert and delete statements used above, is atttaakplana-
tion of WL deterministic replace given in chapter 3.

The REPLACE property instance operation is, as well, symmetrical to theasne f
class instances. All values are checked for consistency with the donthiraage of the

property P, but this part is omitted here.
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REPLACE P(&s— &s’, &t «— &t’) (Schema-specific):
foreach subPid : ans(subPid) «— subPropertyO f(subPid,id), id = pid
{
foreach id : ans(super Pid) « tp < id > (id, &s, &t), id = subC'id
{ insertp(id) }
}
deleteyp<pia>(&s, &t)
RUL — INSERT (pid, &s', &t")
foreach subld : ans(subld) < T'(subld)
{RUL — INSERT (subld,&s', &t') }

REPLACE P(&s+ &s’, &t j- &t") (Schema-specific no IsA):
foreach subPid : ans(subPid) «— subPropertyO f(subPid,id), id = pid

{
foreach id : ans(superPid) «— tp < d > (id, &s, &t), id = subPid
{
insertr(id)
deleteipcigs (&s, &t)
}
}

deleteip<cig>(&s, &t)
RUL — INSERT (cid, &', &)
foreach subld : ans(subld) « T (subld)
{ RUL — INSERT (subld,&s', &t') }

REPLACE P(&s— &s', &t — &t') (Hybrid):
foreach subPid : ans(subPid) «— subPropertyO f(subPid,id), id = pid
{
foreach id : ans(super Pid) «— tp < d > (id, &s, &t), id = subPid

{
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insertr(id)
deletetca000000000 (&5, &t, id)
}

}

deletete2000000000 (&, &t, cid)
RUL — INSERT (cid, &s', &t')
foreach subld : ans(subld) < T'(subld)
{ RUL — INSERT (subld, &s',&t") }

Finally, the REPLACE classification operation deletes the classification anebp
the classC' and resourcdzr and replaces it with a new one betwe€hand&r. Under
the light of the database representations used in RDF Suite, this means thatuthe
representing the class instance should be moved from the relation storingstiweces
of C to the relation storing the instances@f. The sub-classes @ will also lose this
instance. The super-classes@iwill lose this instance if it is accessible to them only
throughC: If there is a super-class @f that has&r as an instance through any other
class irrelevant t@’, then&r will continue to be instance of this super-class. Again, if

&r is not an instance af, the operation is aborted, but that part is omitted here.

REPLACE C« C’(&r) (schema specific):
delet@tc<cid> (&T)
RUL — INSERT (cid', &)

In the case of a non-tree class graph, the operation for the schenificsggresen-

tation is like the one for schema-specific with no ISA.

REPLACE C«+ C’(&r) (schema specific no ISA):
deletese<cig>(&r)
foreach subC'id : ans(subCid) «— subClassO f(subC'id, id), id = cid

{ deleterc<supcia> (&) }
RUL — INSERT (cid', &r)
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REPLACE C— C'(&r) (Hybrid):

deletetc2000000000 (&, cid)

foreach subCid : ans(subCid) «— subClassO f(subC'id,id), id = cid
{ deletetc2000000000 (&1, subC'id) }

RUL — INSERT (cid', &)

The existence of property instances emanating from or endidg-tosually causes
the operation to be aborted. An exception is when these property instzancedso be
instances o&:r after the execution of the operation. This happens wtiénirrelevant to
the domain/range, af” is a subclass of the domain/range of the property. The details of
the property check are omitted here, because these property instemoeser modified
by this kind of REPLACE operation.

The REPLACE classification for properties is very similar:

REPLACE P— P’(&s, &t) (schema specific)lelete;ppid> (&s, &t)
RUL — INSERT (pid', &s, &t)

In the case of a non-tree class graph, the operation for schema spemiésentation

is like the one for schema-specific with no IsA.

REPLACE P+ P’(&s, &t) (schema specific no IsA):

deletesp<pia>(&s, &t)

foreach subPid : ans(subPid) < subPropertyO f(subPid, id), id = pid
{ deleteyy<suppia>(&s, &t) }

RUL — INSERT (pid', &s, &t)

REPLACE P— P'(&r) (Hybrid):

deletep2000000000 (&7, &, cid)

foreach subPid : ans(subPid) «— subPropertyO f(subPid,id), id = pid
{ deletepr000000000 (&1, sSubPid) }

RUL — INSERT (pid', &r, &)
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4.4 Safety

The concept of safety is related to the presence of variables in the Rtéinstats and the
ability to insert a new value, meaning a value that does not exist in the initietipgésn
base. We have already note that any variable appearing in the headpdatie statement
must also appear in the FROM clause. Therefore, a statement with vabiables FROM
clause is invalid. The only way to insert new values in the description baseoisgifn
constant values in the update statement head.

The following statement is invalid, because variallleloes not apear in the FROM

clause:
MODIFY keyword(X, "IR" <- "Information Retrieval")

RUL interpreter produces a syntax error in the case of an unsafe statelimsome
cases, though, it is possible to handle unsafe variables like wildcardhe Iprevious
example, we know thak’ must be evaluated with instances of the domain of the property
keyword (which is the classPaper). Therefore, we could treat the statement like the

following:

MODIFY keyword(X, "IR" <- "Information Retrieval")
FROM Paper{X}

In the current implementation of RUL, this feature is not supported ang gaeiable
must apear in the FROM clause.
For example, the following statement inserts a new vald&l/ Lpaper in the class

Paper:
INSERT Paper(&RULpaper)

A constant variable in the head is not necessarily a new value for theptestbase.
For example, if the& RU Lpaper is already an instance of the claBaper, the above

statement is still valid. Another case is when we use the constants to explicitifysae
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already existing value, e.g. when multi-classifying a class instaaé&d {Lpaper might
already be an instance of a class with no subsumption relation with theftlass).

A constant appearing in a RUL statement is a class nhame, a property natass a ¢
instance or a literal value. If it is a class or property name, the constanbthe a new
value, as RUL does not support schema updates. For example, thePelassshould
exist in the loaded RDF schema, otherwise the statement execution will r&ilse.
The only new values that can be inserted are class instances. Obvaushy, property
instance is represented as a couple of class instances and/or literal value

RUL implementation treats the insertion of new and existing values in the same way.
It is always checked if the value is already an instance of the specifissl aigroperty.

If it is not, it is inserted in the corresponding database relation. In caséestaisalready
existing value of another class, then the side effects of the operationeeamgwduplicates

from the database. For example:
INSERT AcceptedPaper(&RULpaper)

If & RU Lpaper is already an instance éfaper, which is a super-class dfccepted Paper,

RUL performs the following WL operations in the schema-specific reptasens:

deletetc<Paper7id> (&RULpaper)

Z.nsem&tc<AcceptedPa;oer—id> (&RULpaper)

or the following WL operations in the hybrid representation:

deletete2000000000 (& RU Lpaper, Paper — id)
inserty2000000000 (& RU Lpaper, Accepted Paper — id)

If &RU Lpaper is not an instance of any super-classAufcepted Paper (or of any
class, for that mater), the delete operations do not modify the databaskepare exe-
cuted nevertheless. This is not a performance drawback, becaWyé thelete operations
do not cost more than the necessary queries used to determine if thargyarecestors

of AcceptedPaper with & RU Lpaper as an instance.
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In the case of RUL DELETE operations, the constant values shouldenoéw, but
the user is allowed to use new values here as well. A user may ask to DELE®&-a
existing class or property instance, if, for instance, it is unknown if thisme exists in
the database.

Again, RUL treats new and existing instances in the same manner. It chehlssig
an instance of the specified class, and if it is not, the operation does fhatlger. If this
instance exists under a class or property not related to the class ortgrspecified in
the RUL update statement, it does not affect the operation.

The RUL DELETE operation effect is to remove the tuple representing thefggd
instance from the corresponding database relation. The side efflestifm, inserts the
instance under the immediate ancestors of the specified class or propésyefore,
there is the danger of inserting an instance that did not originally existed imitia
description.

For example, if& RU L Paper does not exist in the description base at all, then the

following operation:
DELETE AcceptedPaper(&RULPaper)
produces the following WL operations in the schema-specific representatio

deletetc<AcceptedPaper—id> (&RULPape'r)

insertie< paper>(&RU LPaper)

the first WL operation has no effect, but the second inserts a new valiastance

of Paper.
RUL is safeguarded from this undesired effect by aborting the DEL&Jétation if

the deleted value is not an instance of the specified class (in our exandplel/if. Paper

is not an instance aflccepted Paper), so that the side effect operation is never executed.
It should be stressed out that the danger of inserting an undesiredastuside effect

of the DELETE operation entails even when there are only variables in tegiclstance

fields of the operation. For example:
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DELETE AcceptedPaper(X) FROM RejectedPaper(X)

Obviously, there will be some instances Béjected Paper that are not instances
of AcceptedPaper (actually, we expect this condition to hold for all of them), and the
operation will be aborted. Note that if there are some instances common tolasgl<;
they will not be removed. A RUL statement is either executed in the whole,t@tradl.

In the case of RUL REPLACE, some constant values may be new and someimay

Recall that the structure of the REPLACE operation for class instances fisltbwing:
REPLACE ClassName(oldinstance <- newlnstance)

REPLACE is translated as a removaldflInstance, followed by the insertion of the

newInstance. For example:
REPLACE Paper(&RULPaper <- &RULFinalEdition)

If &RU LPaper is an instance oflccepted Paper (a sub-class oPaper), then this

is the WL translation for the schema-specific representation:

deletetc<AcceptedPaper—id> (&RULPCLPGT)

insertic< AcceptedPaper—id> (& RU LFinal Edition)

But if it is not an instance oPaper at all, the operation is aborted.

The abortion of a REPLACE operation happens for exactly the samengasan the
abortion of a DELETE operation, which is to safeguard the descriptioa frasn new
values that should not be inserted. ThevInstance value, on the other hand, can be a
completely new value. On the above example, it is not necessary for RalBEEiition to
exist. In fact, this is the most expected case for the REPLACE operatiorefilecement
of an existing instance with a new one. Obviously, a REPLACE operatiobeaforted
even if there are no constants, if the variable evaluation results to the reofavan-
existing values.

The REPLACE for property instances:
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REPLACE PropertyName(oldSource<-newSource, oldTarget< -newTarget)

TheoldSource andoldT arget values cannot be new, and thédSource, newSource)
couple should be an instance®Bfoperty N ame, otherwise the operation is aborted. The
newSource andnewT arget values can be new, as long as they are of the correspond-
ing literal type or instances of the domain/range of the property (which isRLREE
property precondition).

Therefore, the INSERT and REPLACE operations can be used to msgnalues to
the description base.

The REPLACE classification operation does not accept any new vaoddike the
other kinds of REPLACE operations, itis aborted if the modified class qgstg instance

is not an instance of the specified class. Recall that:
REPLACE oldClass<-newClass(&classinstance)

If classInstance is not an instance afldClass or, even worse, does not exist at all,
the operation is aborted for the same safety reasons as the DELETE anttieh&inds
of REPLACE operations.

4.5 Determinism

It is a design choice for RUL to have deterministic semantics. By the notiontef-de
minism we mean that the application of the same RUL statement over the same initial
database instance will always results in the same output database instance.

We have already seen how atomic update statements are expressed indMtyan
WL is deterministic. We have to show that RUL is still deterministic in the case of vari-
ables included in the statement as well as when the statement contains araryagaitr
quence of RUL operations, some of them with variables.

RUL implementation can be described with WL, therefore any sequence itsi-
ments produced by RUL is a deterministic program, because WL is determinisisc. |
enough to show that a RUL statement produces always the same WL prdgrpplied

over the same database instance.
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Recall that the query part of RUL is evaluated before any update tipresare fired.
The retrieved results are put in a temporary relation to be used during dageupart of
the statement evaluation. The order of these results, for the same updedgap is not
always the same for the same query. This is not a drawback of RQL nditksrit mean
that RQL is not deterministic. The results of an RQL query over the sameiplist
base will always be the same, but not necessarily their order.

Another observation we have to recall from the previous chapters iS\thantails
the danger of non-determinism if an insert and a delete over the same rala&iexecuted
as part of the same foreach clause. This problem was resolved bifyspethe semantics
of foreach so that its operation is executed for all retrieved resultsthentext operation
is executed for the same results afterwards. The same ideais used in RUmanjdd¢ion:
If there are multiple insert, delete and/or modify WL operations in the translati®onoe
RUL statement, they are never mixed up (especialy if it is possible to operatehm/
same relation).

All the WL translations provided in the corresponding chapter are consisteéhat
principle. The only part of these translations that needs clarification istloevfng kind

of WL statement:

foreach X : Q(X)
{RUL—-INSERT(C,X) }

We have seen that RUL-INSERT might contain a number of WL insert aletedep-
erations. For that reason, the insert and delete operations contajped @fthe traslation
of RUL-INSERT are grouped and executed together, so that the Adbveanslation is

equivalent to the following RUL statement:

INSERT C(X) FROM Q(X)

which is translated as follows:

INSERT C(X) FROM Q(X) in WL (schema-specific):
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foreach superCid,r : ans(superCid) <« subClassO f(id, superCid), id = cid,
tempUpdate(oid,id, K1,r, K2, K3, K4),
oid = opld
{ deleteic<supercia>(r) }
foreach r : ans(r) «— tempUpdate(oid,id, K1,r, K2, K3, K4),
oid = opld, id = cid

{insertie<cias(r) }

whereopld is the operation id andid the class id.
All atomic update translations are modified in a similar manner for the case oféestan
variables in the RUL statements. The modification is that each WL insert, deletglace

operation is wrapped with a foreach clause of the following form:

foreachrl, ... :ans(rl,...) < tempUpdate(oid,id, K1,71, ...), oid = opld, id = cid

We now have to deal with statements containing schema variables, like the fglowin

INSERT $C(X) FROM Q($C, X)

The tempUpdate temporary relation is again used here, so that schemadawdrda
ables can be deal by RUL in a uniform way. The tempUpdate relation cortians
columns for storing schema variables. It is trivial to modify the translationacsthema

variables are taken into account:

INSERT C(X) FROM Q(X) in WL (schema-specific):
foreach superCid,r, cid : ans(superCid) « subClassO f(cid, superC'id), oid = opld,
tempUpdate(oid, cid, K1,r, K2, K3, K4),

{ delet@tc<super0id> (7“) }

foreach r,cid : ans(r, cid) «— tempUpdate(oid, cid, K1,r, K2, K3, K4), oid = opld

{insertic<cia>(r) }
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All update operation translations can be modified in the same fashion, bywvgap

each WL insert, or delete operation with a foreach clause of the followimg: fo

foreach idl,...,r1,... : ans(idl,...,r1,...) «—
tempUpdate(oid,idl, ...,r1,...), oid = opld, id = cid

To conclude, the only danger for the deterministic semantics of RUL is thatrthe p
duced database update translation might not always be the same for thRBldhratate-
ment over the same initial description. This problem is resolved by executidatabase
insert operations over the same relation together and separated by thesdadalete op-
erations. To achieve this, we make use of the tempUpdate temporary relatierg the

values of the evaluated variables are stored.

4.6 Translating to SQL

It is not difficult to retrieve SQL statements from the WL translations providesction
4.3. The insert and delete statements of WL are equivalent to the insatebatd clauses
of SQL. The SQL MODIFY clause, though, has different semantics thameplace of
WL. This is another reason for our WL translations avoiding the WL repdéatement.

SQL INSERT clause can be combined with a SELECT-FROM-WHERE SQL-state

ment, e.g.

INSERT tc<cid> SELECT TU.resourcel
FROM tempUpdate TU WHERE TU.oid = <opld>

while the SQL DELETE clause can be followed by FROM-WHERE clauses, e.g

DELETE FROM tc<cid> WHERE resource=tempUpdate.resourcel AND
tempUpdate.oid = <opld> AND tempUpdate.idl IN (...)

We can express all of our WL translations as long as SQL can exprdsgugies.
In reality, we prefer to follow a hybrid approach, by implementing some of thatits
functionality with PL/SQL methods loaded into the database. PL/SQL is the praded
extension of SQL99.
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Both schema specific representations store the various instances inatim rger
class or property. Therefore, updates and queries have to bempedmver database
relations the names of which are produced at run-time. E.g., when the clpssperty
is part of the iteration, the name of the relation affected by an update musbteced

dynamically by the program. In the following example

foreach r,cid : ans(r, cid) < tempUpdate(oid, cid, K1,r, K2, K3, K4),
oid = opld

{inserticccia>(r) }

thetc < cid > relation changes according to the values boundido PL/SQL can
use the query in th¢oreach clause as an iteration condition and the corresponding SQL
update statement as the body of the iteration. This functionality can also leveatin
the main memory of the RUL application, but the PL/SQL functions are fasterat$vh
more, RUL can take advantage of future improvements in the implementation adQBL/S
by various DBMS.

If the database relations that are affected or queried are known inegwae avoid
the PL/SQL functions, as the foreach clauses can be expressed ifaetee style. A

foreach condition containing an update statement, like this:
foreach x : Q(x) { inserty(z) }

is expressed with the condition pushed in the SQL statement:
INSERT INTO T SFW(X)

where SFW(X) is a SELECT-FROM-WHERE query equivalenfXtoX)

Similarly, a foreach containing a WL delete:
foreach x : Q(x) { deleter(x) }

is translated as
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DELETE FROM T WHERE tuples-of-T IN SFW(X)

Finally, a foreach clause containing more than one update statements ischayndle
storing the results of the foreach condition in advance, and executingtresponding
SQL update statements over the stored results. The semantics of foreadaslypcom-
patible when following this approach, in all cases. What's more, we ptieifetechnique

for performance reasons, because we avoid to repeat costly joiatmper~or example:

foreach x,y : Q(z,y) d{ insertpi(x), deletera(y) }

is translated as:

INSERT INTO temporaryTable SFW(X, YY)

INSERT INTO T1 SELECT x FROM temporaryTable

DELETE FROM T2 WHERE tuples-of-T2 IN (
SELECT y FROM temporaryTable

)

If the SELECT-FROM-WHERE query is the translation of an RQL schemaygtle
RQL methods that execute this query are called and the result is stored dataimse
relation used by RQL for that purpose. RUL makes use of this relatione ISELECT-
FROM-WHERE is not a schema-only query, the results are stored in tregglexisting
tempUpdate relation, so that we avoid the creation of an unspecified nufrtbergorary
relations.

Each RUL statement is handled in one SQL transaction. In RQL, each R@nstat
is also handled as one SQL transaction which is aborted after the completiencpfery.
In RUL we need the updates to actually affect the database, so if the statewadid and
the preconditions of the operations hold, we commit the transaction. If ticemaéions
do not hold, though, it is aborted. When the RUL statement is successedyted and

the transaction is going to be committed, all temporary relations are dropped.
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4.7 Optimizations

The RUL operations are implemented as a combination of main memory operations,
queries against the database and database update operations. MifheingpRUL, we

adopt the techniques used in RQL. In addition, we optimize the translation\farto

SQL whenever possible, we limit the number of temporary relations createdrased

and reduce the number of SQL update statements produced during tramslatio

4.7.1 Minimizing the use of main memory operations

The main memory operations are used (a) to produce the various SQL sttddifoen
querying or modifying) and (b) to implement the WL foreach clauses that@trexpress-

ible in SQL. For example, in order to erase a resource from being instdreelass,

in schema-specific with no-IsA we have to traverse through the subslatdeat class.

This is implementing by iterating in the set of subclasses in main memory. In each step
of the iteration, an SQL DELETE statement is produced. No optimization tecbsiaye

used in this part of RUL operations. In general, we avoid main memory tperahile
translating from WL to SQL, whenever the WL programs are expressibkguences of

SQL statements.

The queries against the database take place (a) while evaluating thepquieoy the
RUL statement, (b) whenever we want to check for the existence of a@lgs®perty
instance and (c) whenever we evaluate various schema queries. difygogut of the RUL
statement is evaluated by RQL. In the other cases, if the query is part af foMdach
clause with update statements, we express it inside the SQL update staterapavevh
possible. If it is not possible, the query is evaluated by the RQL codetheniteration
is performed by RUL in main memory. If the query is not part of a WL foregleluse,
therefore not directly related to database update operations, it is alsatedaby RQL
code. The query conditions pushed in RUL update statements are the dngt&@€ments
produced directly by RUL, but they are expressed exactly as they vim@RQL, taking

benefit of all optimization techniques used there.
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When we say that a resource is an instance of class, we mean that it eoafdif-
stance of some sub-class of this class, so it could be stored in the instéatamrof this
sub-class instead. In schema specific with no ISA, the check of the ecestéan instan-
tiation link between a class/property and an instance, requires a tratremsaih the sub-
classes/sub-properties of this class/property, and a query on &latipm used to store
the instances of the sub-classes/sub-properties. For example, toitl8eBK/ L Paper
is an instance ofPaper, we have to seek for it in the relation wheRaper instances
are stored, as well as in the relations containing the instancels@ipted Paper and
Rejected Paper.

In schema specific with ISA, we can avoid this traversal by seeking onlyeirinth
stances relations of the top class (in the exampleyer). The instance relations of the
sub-classes/sub-properties are also included in this query througitanice.

In the hybrid representation, we observe that there is a unique relatistofing the
class instances, and a unique relation for the property instances ofieéygae of domain
and range. Following the example of RQL, we use the id and index codestraversal
through the class or property graph is replaced by a simple condition avemthes of
the ids of the sub-classes. A class or propeftyC with sub — id as id is a sub-class of
another class or property with cid andcindex as id and index, ikub — id < cid and
id > cindex. We use this condition when joining the relation of class/property instances
with the tempUpdate relation to check if a future instance of some class orrfyrape
already an instance of it. Other similar checks, like domain and range cimepksperty
updates, are also handled this way, because they imply containment queries

When translating to SQL, the hybrid representation allows the use of an 8qli-c
tion instead of an iteration over the retrieved class or properties. For déxatimg follow-

ing WL program:

INSERT C(&r) in WL (Hybrid):

IIside effects

foreach superCid, &r : ans(superCid, &r) «— subClassO f(cid, superCid),
tempUpdate(oid, cid, K1, &r, K2, K3, K4), oid = opld
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{ deletes2000000000 (&1, superCid) }
/leffects

foreach &r, cid : ans(&r, cid) —

tempUpdate(oid, cid, K1, &r, K2, K3, K4), oid = opld

{ insertica000000000 (&1, cid) }

/[duplicate elimination

foreach subld, &r : ans(subld, &r) «— subClassO f(subld, cid),

tempUpdate(oid, cid, K1, &r, K2, K3, K4), oid = opld

{ deleteca000000000 (&7, cid) }

is translated in SQL as:

lIside effect

DELETE FROM tc2000000000 WHERE (resource, id) IN
SELECT inst.resource, sc.superCid FROM subclass sc, tc200
WHERE (sc.id > cid AND sc.index >= cid) // subClassOf

/leffects
INSERT INTO tc2000000000
SELECT res.resourcela, res.id FROM tempUpdate res

/[duplicates elimination

DELETE FROM tc2000000000 WHERE (resource, id) IN
SELECT inst.resource, inst.id FROM subclass sc, tc2000000
WHERE sc.id = res.id AND inst.resource = res.resource

AND sc.id >= inst.id sc.index >= inst.id
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The last WL foreach, that does the duplicates elimination, is used to coomter af

the modifications applied by the "effects” foreach statement. We can pustotiiktion
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to the effects statement, by using the SQL NOT IN construct. The effectsnstates

now expressed as:

Ileffects

INSERT INTO tc2000000000

SELECT res.resourcela, res.id FROM tempUpdate res

WHERE (res.resourcela, res.id) NOT IN

(//instanceOf

SELECT inst.resource, inst.id FROM subclass sc, t¢c2000000 000 inst
WHERE sc.id = res.id AND inst.resource = res.resource

AND sc.id >= inst.id sc.index >= inst.id

)

We have seen in the WL translations chapter that this kind of expressidrtothder
the effects applied in a previous step of a program are very common. UnrRplemen-
tation all these cases are expressed by using "NOT IN”. Obviously, tbsisrapplied in
the schema specific with ISA representation as well, because it is possilxerese the
instanceOf query with one SQL condition.

Finally, this idea is also applied in the schema specific with no IsA, although grg qu
that checks the existence of an instance of a class requires seekingyirdymamically
acquired relations. In this case, there is a statement that removes in adw@amcthe
tempUpdate relation the values that are going to be countered, so theyh&dn¥erted
and removed from the instance relations later.

The optimized SQL translation is still expressively equivalent to the initial W, on

but it performs better.

4.7.2 Optimizing according to the variables in RUL statement
head

We have seen that RUL support eight kinds of update operations: 8RN for class in-
stances, the INSERT for property instances, the DELETE for classitestathe DELETE
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for property instances, the REPLACE for class instances, the REPL&Q&operty in-
stances, the REPLACE for class classification and the REPLACE foepsoplassifica-
tion. We group the operations of the same kind whenever they contain sciaeizbles
or if they contain instance and literal variables.

If an operation statement contains only constants, it is executed without gnadén
of the temporary relation tempUpdate. Constant operations are not dffegtgueries
and therefore there are no results to be stored. The WL translationssef dperations
have been presented in the WL translation chapter.

If an operation statement contains constant schema names and at leastanee
variable, the query results are stored in the tempUpdate relation, but thmadields of
the relation contain the same value in all tuples. Recall the elimination of some tuples
from this relation in case their schema fields contain classes or propelésirdhrough
subsumption. If RUL is aware that the operation statement contains no seheataes,
it skips the elimination procedure.

Finally, if the operation statement contains schema variables, all technicpsenjed
here are applied. In this case, RUL does not distinguish between opessi@ments
with constant or variable instances. The retrieved results are stored ianiptJpdate
relation, even if the instance names are constant (and trerefore the sathéujples).
The temporary relation tempUpdate was proven useful in the case of apd#iteschema
variables. The retrieved results stored there can be processed soimatvalues are
eliminated before the update process is fired.

We observe that an RUL INSERT operation aims to specialize class orrprope
stances by making them instances of more specific classes. RUL DELET Eoajj@iser-
alize the instances by making them instances of more general classepentip In the
case of an update with schema variables, the retrieved classes ottigopety be related
with subsumption relations. If this is the case, it might be possible that a msisLgoing
to be inserted as an instance of two different classes related througpmnsption.

For example (fig 4.6):

INSERT $C(X) FROM Author{X}, $C.hasCommittee{Y} WHERE Y=.



116

Conference

CHAPTER 4. THE IMPLEMENTATION OF RUL

hasCommittee

A

hasSPC

Senior
Program
Committee

Figure 4.6: The double cycles denote the classes evaluated’ as the folowing
RUL statement: INSERT $C(X) FROM Author{X}, $C.hasCommittee{Y }
WHEREY = ...

The tempUpdate relation will look like table 4.6.

Table 4.6:tempUpdate temporary relation

We can see that some resources will be instancé&afference as well asEvent.

According to the semantics of RUL INSERT, this is equivalent to the insertfahe

resources only underon ference, because it is a sub-class Bbent, as shown in figure

4.6. Itis a good idea to remove from the common tuples the ones containifgting —

id.

oid idl | id2 resourcela resource2a resourcell) resource2b
3 Event-id | null | MorningMeeting null null null
3 Event-id | null | VisitingTheSights null null null
3 Event-id | null ReviewersPart null null null
3 Event-id | null Presentation null null null
3 | Conference-id null | MorningMeeting null null null
3 | Conference-id null ReviewersPart null null null
3 | Conference-id null Presentation null null null
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In general, if we are going to execute an INSERT operation with schenabies,
we eliminate some of the tuples with equal class instance values, so that eatblass
instance values is going to be inserted only to the most specific of the relatsd<la he

WL program that performs the elimination:

foreach id, resource : ans(id) «—

tempUpdate(oid,id, K1, resource, K2, K3, K4), oid = opld

foreach oid, superCid, K1,r, K2, K3, K4 : ans(superCid) <
tempUpdate(oid, superCid, K1,r, K2, K3, K4), oid = opld,
r = resource, subClassO f(id, superC'id)
{ deletetemptpdate (0id, superCid, K1,r, K2, K3, K4) } }

For properties, the program is the following

foreach id, source target : ans(id) «—

tempUpdate(oid,id, K1, source,target, K3, K4), oid = opld

foreach oid, superCid, K1,s,t, K3, K4 : ans(superPid) «
tempUpdate(oid, super Pid, K1,r,t, K3, K4), oid = opld,
s = source, t = target, subPropertyO f(id, super Pid)
{ deleteiemptpdate (0id, super Pid, K1,s,t, K3, K4) } }

In the example, the tempUpdate relation will have the form of table 4.7 after the
completion of the elimination process.

In DELETE, we remove some tuples so that for each set of class insidhneetasses
or properties that will remain in the relation are the most general of the ralksses or
properties.

A symetrical example is this
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Table 4.7:tempUpdate temporary relation after the elimination process for INSERT

oid idl | id2 resourcel% resource2a resourcell) resource2h
3 Event-id | null | VisitingTheSights null null null
3 | Conference-id null | MorningMeeting null null null
3 | Conference-id null ReviewersPart null null null
3 | Conference-id null Presentation null null null
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DELETE $C(X) FROM Author{X}, $C.hasCommittee{Y} WHERE Y=.

where the tempUpdate relation is the same as in the previous example (4.7&). Her

the elimination process will have the effects presented in table 4.8.

Table 4.8:tempUpdate temporary relation after the elimination process for DELETE

oid idl | id2 resourcel% resource2a resourcell) resource2h
3 | Event-id | null | MorningMeeting null null null
3 | Event-id | null | VisitingTheSights null null null
3 | Event-id | null ReviewersPart null null null
3 | Event-id | null Presentation null null null

The elimination WL program for DELETE class instances:

foreach id, resource : ans(id) <

tempUpdate(oid,id, K1, resource, K2, K3, K4), oid = opld

foreach oid, subCid, K1,r, K2, K3, K4 : ans(subC'id) «—
tempU pdate(oid, subCid, K1,r, K2, K3, K4), oid = opld,
r = resource, subClassO f(subC'id, id)
{ deleteiemptpdate (0id, subCid, K1,r, K2, K3, K4) } }

For properties, the program is the following

foreach id, source target : ans(id) «—

tempUpdate(oid,id, K1, source,target, K3, K4), oid = opld

foreach oid, subCid, K1, s,t, K3, K4 : ans(subPid) «—
tempUpdate(oid, subPid, K1,r,t, K3, K4), oid = opld,
s = source, t = target, subPropertyO f(subPid, id)
{ deletetemptpdate (0id, subPid, K1,s,t, K3, K4) } }
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The REPLACE operation does make use of this elimination trick as well. Recall tha
the first phase of REPLACE is the removal of the instance. The remoweal imistance of
some class is equally effective with the removal of the same instance fropeadass
of it. Also recall that in the second internal phase of the execution of & REE, the
RUL INSERT operation is used, so the elimination is also applied there. Whatés, the
REPLACE statements with constant schema names in the head might produlegitrasis
equivalent to an INSERT with a schema variable. Therefore the eliminatanegure is

useful even for some RUL statements with no schema variables.



Conclusions and future work

An expressive declarative language for updating RDF graphs leas imesented while
ensuring that insertion/deletion/replacement of nodes and arcs doe®iade the se-
mantics neither of the RDF model nor of the specific RDFS schema. Morsehkeave
have carefully designed the effects and side-effects of each RUhatigeto always result
in a consistent state of the updated graph. We compared the semantics opRtditions
with other RDFS update languages, as well as with the knowledge base opesaations
as well as database update languages. The architecture of RUL walusteated, by
presenting the design principles, the integration with RQL and the translatiovis smd
SQL.

In future work, we plan to benchmark the performance of the implementeddpiJL

121
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erations for various schemata, descriptions and database repressntéfeshould also
consider the definition of an update language for managing RDFS schefagespbased
on RUL. Further improvements can me made to the existing RUL implemenation, like the

implementation of a rollback and transaction control mechanism to both RUL @hd R
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