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ΠΕΡΙΛΗΨΗ 
 
 
Η διαχείριση αλλαγών σε περιγραφές πόρων που βασίζονται σε RDFS σχήµατα 
έχει γίνει απαραίτητη στις σύγχρονες εφαρµογές του Σηµασιολογικού Ιστού. 
Αποσκοπώντας στην ικανοποίηση αυτών των απαιτήσεων, προτείνεται µία 
δηλωτική γλώσσα διαχείρισης αλλαγών για γράφους RDF, η οποία βασίζεται στα 
παραδείγµατα των γλωσσών επερωτήσεων και όψεων RQL και RVL. Η γλώσσα 
ονοµάζεται RUL και σε αυτήν διασφαλίζεται ότι οι αλλαγές στους κόµβους και τις 
ακµές δεν παραβιάζει τη σηµασιολογία του µοντέλου RDF ή των δεδοµένων 
RDFS σχηµάτων. Επιπλέον, η RUL υποστηρίζει καλά καθορισµένες αλλαγές στο 
επίπεδο των πόρων και των ιδιοτήτων τους καθώς και τη δυνατότητα 
πολλαπλών αλλαγών µε ντετερµινιστική σηµασιολογία. Επιπλέον, εκµεταλλεύεται 
πλήρως την εκφραστική δύναµη της RQL προκειµένου να καθορίσει τα όρια των 
µεταβλητών στους κόµβους και τις ακµές του RDF γράφου. Η γλώσσα 
υλοποιήθηκε στο πλαίσιο της RDF Suite ως επέκταση της RQL. Η υλοποίησή της 
βασίζεται σε µία γλώσσα αλλαγών σε βάσεις δεδοµένων και παράγει SQL 
προτάσεις αλλαγών για τις αναπαραστάσεις που χρησιµοποιούνται στην RDF 
Suite.  
 
 

 
ABSTRACT 

 
 
Semantic Web applications are striving nowadays for managing changes of 
persistent resource descriptions created according to RDFS schemata. To cope 
with this demands, a declarative update language for RDF graphs is proposed, 
which is based on the paradigms of query and view languages RQL and RVL. 
This language, called RUL, ensures that the execution of the update primitives 
on nodes and arcs neither violates the semantics of the RDF model nor the 
semantics of the given RDFS schema. In addition, RUL supports fine-grained 
updates at the class and property instance level, set-oriented updates with a 
deterministic semantics and takes benefit of the full expressive power of RQL for 
restricting the range of variables to nodes and arcs of RDF graphs. The language 
has been implemented in the context of RDF Suite, as an extension of RQL. The 
implementation relies on a database update language and generates SQL 
update statements for the various database representations used in RDF Suite. 
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1
Introduction

Semantic Web applications are striving nowadays for managing changes of per-

sistent resource descriptions created according to RDFS schemata [9, 28]. The

majority of ontology-based authoring and annotation tools[2] requires first to

manually edit the resource descriptions and thereafter reloading them into an RDF

Store from scratch. This approach offers rather limited functionality especially in

the case of deletions and modifications. To overcome these limitations, some RDF

Stores [3] have implemented suitable update APIs [7,8,24,26]. However, forcing

developers to code in advance all possible updates of resource descriptions (us-

ing these APIs) is not a viable solution for dynamic SemanticWeb applications

2



3

employing non trivial RDFS schemata. In this context, designing a declarative

update language offering complete and sound primitives is achallenging issue.

The most interesting proposal so far is MEL that has been developed in the

framework of QEL and it is based on Datalog [22]. MEL primitive commands

consist of a statement specification and an optional query constraint, declared as

a QEL query. The granularity of the operations follows a sub-graph centered ap-

proach but consistency of updates with respect to the employed RDFS schemata is

not respected. Furthermore, no formal semantics or detailed behavior description

have been given for MEL. The rdfDB Query Language [12] supports SQL-like

updates (insert and delete) by following a statement-centered approach and does

not integrate smoothly with the query language. In fact, theupdate operations can

affect only specific statements without variables and thus their execution seman-

tics is trivial.

In this thesis, we propose a declarative update language forRDF graphs which

is based on the paradigms of query and view languages RQL [14] and RVL [21].

Our language, called RUL ( [19]), provides primitive and set-oriented updates.

Update operations affect the class instances and/or property instances in a well

defined way. RUL integrates smoothly with RQL and benefits fromthe typing

data model and the powerful pattern matching the later provides. RUL comes with

operation semantics defined in a declarative (chapter 3) as well as in a procedural

(chapter 4) manner. It is a design choice of RUL to provide safe expressions and

deterministic iteration semantics.

RUL ensures that the execution of the update primitives on nodes and arcs

neither violates the semantics of the RDF model (e.g., inserta property as an

instance of a class) nor the semantics of a specific RDFS schema(e.g., modify

the subject of a property with a resource not classified underits domain class).

This main design choice has been made in order to take into account the fact that
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updates are fairly destructive operations and change the state of an RDF graph.

Thus, type safety for updates is even more important than type safety for queries.

The more errors we can catch at compile time the less costly runtime checks (and

possibly expensive rollbacks) we need. The rest of RULs design choices concern

(a) the granularity of the supported update primitives; (b)the deterministic or not

behavior of the executed sequences of update statements; and (c) the smooth inte-

gration with an underlying RDF/S query language. To the best of our knowledge,

RUL is the first declarative language supporting fine-grained updates at the class

and property instance level, has a deterministic semanticsfor set-oriented updates

and takes benefit of the full expressive power of RQL for restricting the range

of variables to nodes and arcs of RDF data graphs. However, ourdesign can be

also immediately transferred to other RDF query languages (e.g., RDQL [4], or

SPARQL [17]) offering less expressive pattern matching capabilities [13]. None

of the RDF update languages proposed so far [12,22] supports the aforementioned

functionality.

In chapter 2 we present the eight RUL operations and describetheir syntax.

We also describe informally their effects on the RDF graph. The RDF graph

considered here consists of nodes, representing classes orclass instances, and

arcs representing properties, property instances or classification links between in-

stances and classes/properties. The effects of RUL operations are described as

sequences of insertions and deletions of nodes and arcs on this graph. The pre-

conditions are described and the main effects of each operation are distinguished

from the side effects. We explain the functionality of RUL operations with vari-

ables (set-oriented updates) as well as statements containing multiple operations.

We also illustrate with examples the integration of RUL withRQL (or another

RDF query language for that matter).

In chapter 3 we formally define the semantics of RUL operations and we focus
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on the safe and deterministic set-oriented updates where wereason that the order

of operations in a statement matters (statements with the same RUL operations

in a different order have different semantics). Later, our update semantics are

compared with the semantics of knowledge base updates, where it is proposed

that RUL can be used as a low level update language for implementing a high level

knowledge base update language. RUL is also compared with other RDFS update

languages and proved to be more expressive. Last but not least, we present the

world of database update languages, define the concept of expressive power and

present how they are compared in the literature. We focus on two of them, namely

on WL and SdetTL, as they are the most expressively powerful for the needs of

RUL. We also explain the functionality of the provided database update operations

as they are proposed in the literature and focus on the deterministic semantics of

the two languages. We argue that WL is more suitable for implementing RUL,

as its semantics easily capture the semantics of the RUL sub-operations (insertion

and deletion of arcs and nodes on the RDF graph) as well as for performance

reasons.

In chapter 4, the architecture of RUL implementation is explained. RUL has

been developed as an extension of RQL implementation and follows most of its

design principles, except that the returned result of a RUL statement is feedback

to the user rather than the goal of the statement. RUL statements consist of an

update operation part (the head) and a query part. We presentthe various database

representations used in RDF Suite to store RDFS descriptions,and use WL pro-

grams to describe the implementation of each RUL operation according to each

database representation. We also explain how we ensure the safe and determinis-

tic semantics of the language in implementation. Finally, the translation to SQL

is described and we present some optimization techniques used to improve the

performance of the language.
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An important design decision in the implementation level isthe use of a tem-

porary relation for storing the results of the evaluation ofthe query part of a RUL

statement. We show how this principle is used to ensure safety and determin-

ism. We also take benefit of it for optimizing the costly operations with schema

variables.

1.1 Motivating example: a graphical RDF/S man-

agment tool

In this chapter we consider a graphical user interface (GUI)for editing RDF/S

description graphs (see figure 1.1).Like various RDF/S authoring tools, it can be

used to navigate through an RDF/S schema graph using the mouseand select

classes, properties, resources and property instances. The user can apply various

update operations over the selected items by selecting themfrom a menu. Every-

one using a personal computer is familiar with the semanticsof these operations:

a ”new” and a ”delete” for inserting and removing items from the graph, a ”copy

and paste” operation for cloning items, a ”cut and paste” operation for moving

items from one place to another and, finaly, a ”rename” operation for changing

the URIs of various resources. The semantics of these operations as well as the

restrictions to what the user can do over each kind of item aresimilar (and in some

cases equivalent) to the semantics and preconditions of RULupdate operations,

so it is interesting to examine how these GUI operations oversome specific items

can be expressed with RUL expressions. The selection of one or more items from

the graph in the GUI world is expressed with some query. In case of graphicaly

represented RDF/S graphs, we are interested in the update operations applied over

a graphical selection of items using RUL statements.

The ”new” GUI operation corresponds to the insertion of a newclass or prop-

erty instance in the RDF graph. This can be handled with an INSERT, whether
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_ XA graphical RDF/S management tool
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Figure 1.1:A fictional graphical user interface for managing RDF/s descriptions.
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it is an insertion of a class or a property instance. The user selects the class or

property he/she wants to be instantiated, and clicks on the ”new” selection from

the menu. For example, the user selectsPaper and clicks on ”new” to insert a

newPaper resource. The corresponding RUL expression is the following:

INSERT Paper(&newPaperValue)

The side effects of the INSERT operation for this case do not cause any harm

to the behavior of the GUI tool. If the&newPaperV alue resource exists as an

instance of a super-class ofPaper, it is now also an instance ofPaper.

The ’Wdelete’W GUI operation corresponds to the erasure of aninstance or

a classification link. We suppose that if a resource is an instance of a class (e.g.

AcceptedPaper), it is also an instance of all super-classes of it (e.g.Paper is

a super-class ofAcceptedPaper), although this information is often omitted in

the graphical representation. For example, resource&RULPaper is also an in-

stance of classPaper, although the link between them does not appear in figure

1.1. The semantics of the ”delete” GUI operation can described as the erasure of

the resource and the instantiation links emanating from it or just the erasure of

one instantiation link. In RUL we provide both functionalities. For example, the

erasure of the instantiation link between a resource&r and a classC is captured

by

DELETE C(&r)

while the instantiation link between a propertyP and a property instance be-

tween resource&source and resource&target is erased by

DELETE P(&subject, &object)

In RUL we also express more sophisticated erasures, e.g. theerasure of a set

of instantiation links emanating from a specific resource.
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The ”copy and paste” GUI operation is also handled with a RUL INSERT.

If the user selects some resource&RULPaper that is an instance of the class

AcceptedPaper and pastes it toRejectedPaper, the following RUL expression

captures the semantics of this operation:

INSERT RejectedPaper(&RULPaper)

If the user pastes the resource to a super-class ofAcceptedPaper (e.g.Paper),

the expression is the same. RUL INSERT will not modify the description in that

case, but this is exactly the behavior we want, because&RULPaper is already

an instance ofPaper.

If the ”copy and paste” GUI operation is applied over some property instance,

the RUL INSERT for property instances captures again the semantics of the oper-

ation. It is possible, though, that the user might try to paste the copied instance to

a property of which the domain and/or the range do not containthe source and/or

the target of the property instance as instances, or they areof a different literal

type. The desired behavior of the GUI tool would be to not allow the user to paste

the property instance there. Because of the preconditions ofRUL INSERT for

property instances, RUL INSERT will return ”false” to the overlying GUI appli-

cation so that it will be aware of the fact that this operationis not valid.

The ”cut and paste” GUI operation is more complicated. A ”cutand paste”

when class instances have been selected can be viewed as an attempt to change

the instantiation information of these instances. A resource is ”cut” means some

instantiation links between the resource and the selected classes are erased. When

the resource is ”pasted”, some other instantiation links are added between the

resource and the selected classes. RUL REPLACE for classification of class in-

stances can be used in that case. If the instance is multi-classified, a single RUL

REPLACE is not enough to capture the semantics of such a ”cut andpaste” oper-
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ation. E.g., If the user wants to ”cut” the resource&RULPaper and paste it as an

instance ofRejectedPaper, the RUL expression is the following:

REPLACE $C1<-RejectedPaper(&RULPaper) Q($C1)

whereQ is an RQL expression that returns all the classes that have&RULPaper

as an instance. Similarly, a class variable can be used to denote that the resource

is going to be ”pasted” under more than one classes.

In case of applying ”cut and paste” on property instances, the RUL REPLACE

classification for property instances captures the semantics of the operation and

provides the necessary preconditions when the operation should not be allowed.

The affected property instance has to be a valid instance of the property under

which is classified, otherwise the tool should not allow the operation. RUL RE-

PLACE semantics is aware of this restriction.

Finally, a ”rename” GUI operation would be desired in some systems. The aim

of this operation is to change the name of a URI or the value of a literal attribute.

If the new name of a resource exists in the description base, the GUI tool should

have to merge the equally named resources. This is captured by the semantics of

RUL REPLACE for class instances.

If the user clicks on some literal value and desires to renameit, we indentify

the value by refering to the property instance triplet it is part of. Then the user

enters a new value, that replaces the old one. In RUL this is captured by the

semantics of REPLACE for property instances.

REPLACE P(&someResource, "str1" <- "str2")



2
The syntax of RUL

RUL can be used to express updates to RDF graphs i.e., insertions, deletions and

replacements of nodes and arcs.

An RDF graph contains various types of nodes and arcs. Classes are repre-

sented as nodes and properties as arcs between the class nodes. The class the

node of which a property arc emanated from is ”the domain of the property” and

the one that ends to is ”the range of the property”.

Classes and properties are related through IsA (subsumption) relations. These

relations are represented by arcs. The class from the node ofwhich an IsA arc

emanates is a sub-class of the class to the node of which the IsA arc ends.

11
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Property arcs are also connected with IsA arcs in the same wayas class nodes.

Of course, an arc connecting other arcs is not compatible with the semantics of a

graph representation. In order to deal with this problem, wecan view properties as

triplets consisting of a domain arc, a property node and a range arc. The domain

arc emanates from the domain class node and ends to the property node, while the

range arc emanates from the property node and ends to the range class node. With

that model in mind, we can connect property nodes with IsA arcs. We prefer to use

a shortcut for that triplet, though, and represent a property as an arc. A property

arc emanates always from exactly one node and ends to exactlyanother one. This

node is either a class node or a node representing a class of literal values.

A class instance, sometime referred as ”a resource”, is alsorepresented with a

node. A resource is an instance of one or more classes. We say that a resource is

a direct instance of the classes that do not have any sub-classes with this resource

as an instance. The resource is an indirect instance of the classes that are super-

classes of some classes with this resource as an instance.

If a resource is a direct instance of class, the resource nodeis connected to

the class node through an arc called ”classification arc” or ”classification link”.

A classification link emanated from a class instance node andends to a class

node. A class instance node is valid only if there is at least one classification arc

emanating from it. If a resource is an indirect instance of a class, this relation is

implied through the IsA arcs connecting the class with a sub-class for which the

resource is a direct instance of.

Property instances are represented as arcs between class instance nodes, literal

nodes, or both. A literal node is a node is not connected to anyother node through

classification links and represents a literal value. The class instance or literal value

from the node of which a property instance arc emanates is called ”the source of

the property instance” and the class instance or literal value to the node of which



13

a property instance ends is called ”the target of the property instance”.

Property instances are connected to the properties they areinstances of, by

classification links. Like in class instances, a property instance can be direct in-

stance of some property and indirect instance of some other properties. Only the

direct instantiation relation is represented by classification links. A classification

link from property instances is an arc emanating from the property instance arc

and ending to the property arc that this instance is a direct instance of. In order

to be compatible with the semantics of graphs, we can view a property instance

arc as a shortcut of the triplet ”source arc”-”property instance node”-”target arc”,

where the source arc emanated from the source node of the property and ends to

the property instance node and the target arc emanates from the property instance

node and ends to the target node of the property instance. In that case, the clas-

sification link of property instance emanates from the property instance node and

ends to the property node of which it is an instance of. As in the case of prop-

erty arcs, we prefer to use a shortcut: the whole triplet is represented a property

instance arc, and the classification links emanate from it and end to the property

arc (which is also a shortcut).

In the figures of this chapter, a class node is drawn as a circle, while a resource

node is a string starting with an ampersand (&). IsA arcs are solid arrows with a

white head, while property arcs, as well as property instance arcs are solid arrows

with a black head. The instantiation arcs are dashed arrows with white head.

The property arcs and the property instance arcs are distinguished by the context:

a property arc emanats and ends to class nodes, while a property instance arc

emanats and ends to class instance nodes.

In this section, we present the syntax of RUL in an incremental, informal

way by giving examples and intuitive explanations based on the RDF schema of

2.1 dealing with the organization of scientific conferences, and IMG REF HERE
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where the effects and side-effects of each operation are analyzed in detail.

We assume that the vocabularies used in the RDF graphs have been defined

using RDF Schema. RUL does not deal with schema updates. We also do not deal

with blank nodes, containers, collections or reification.
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Figure 2.1:The RDF schema of a sientific conference example will be used to illustrate

and clarify the syntax of RUL

The syntax of any RUL expression is as follows:

UPDATE SchemaStatement(ClassInstancesStatement)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The update statement can be an INSERT, DELETE or REPLACE statement

for class or property instances. TheSchemaStatement is a statement related



15

to schema variables or constants, while theClassInstancesStatement contains

class instance variables or constants. These statements will later be examined in

detail, and they are based on the statements described in [19]. More precisely, the

INSERT and DELETE clauses described here are no different from the INSERT

and DELETE statements in [19]. In this thesis we use the REPLACEclause in-

stead of the MODIFY clause, but we also describe its behaviorwith more details,

separating the case of modification to the resource or property instance from mod-

ification to the resource or property classification link.

For example, the first update statement we will examine is theINSERT state-

ment for class instances, which is:

INSERT QualClassName(ResourceExp)

The expressionResourceExp denotes a node and can be a constant URI or

a variable. In the former case,ResourceExp determines a unique graph node,

while in the latter, the clause FROM determines the bindingsof this variable (i.e.,

a set of nodes) as in RQL. The expressionQualClassName denotes the class

to which the new nodes will become instances or to which the new classification

links from existing nodes will be created. In short, an INSERT operation ensures

that a resource is an instance of the specified class, as long as certain contraints

are not violated.

As usual, the WHERE clause gives the filtering conditions for the variable

bindings introduced in the FROM clause. The clause USING NAMESPACE gives

a list of namespaces that disambiguate the use of names in theother clauses. The

clauses FROM, WHERE and USING NAMESPACE are optional. In the rest of

this paper, we show the USING NAMESPACE clause when we are presenting the

syntax of RUL but avoid any namespace information in the examples for reasons

of brevity (i.e., all the names employed in the examples are unique and they are

defined in the schema namespace ns of 2.1).
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As in the RDF Query Language (RQL), RUL distinguish between direct and

indirect instances of a classC or propertyP (equivalently, between direct and

indirect instantiation links). A resource noder is a direct instance of classC if

it is an instance ofC and it is not an instance of any subclass ofC. A resource

noder is an indirect instance of classC if r is a direct instance of a subclass ofC.

The definition is similar for properties. An RDF graph has no redundancies with

respect to instantiation if there is no instance of a class ora property that is both a

direct and an indirect instance. All the update operations defined below result in

RDF graphs with no redundancies with respect to instantiation.

It is a design choice of RUL to have a different syntax for updates of instanti-

ation links (unary predicates) and a different syntax for updates of property arcs

(binary predicates) to remind the user of the different semantics of these opera-

tions.

2.1 Updating class instances

2.1.1 INSERT for class instances

The syntax of the INSERT statement for class instances is as follows:

INSERT QualClassName(ResourceExp)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The INSERT operation introduces new nodes in an RDF graph and classifies

them, or inserts new classification links for existing nodes.

The effects and side-effects of an INSERT operation with theabove syntax

are presented graphically in figure 2.2. A new nodeResourceExp can be created

as a direct instance ofQualClassName, as it is shown in figure 2.2, statement
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(1). If nodeResourceExp exists in the graph and it is classified under a super-

class ofQualClassName (fig. 2.2 statement (4)), the effect of INSERT is that a

new classification link is inserted betweenResourceExp andQualClassName.

In this case, the operation has the side-effect that the prior classification link is

deleted (since it is implied by the new classification link).

On the other hand, ifResourceExp exists in the graph and it is classified un-

der a subclass ofQualClassName (fig. 2.2, statement (2), whereC is a subclass

of B), the INSERT operation has no effects. Obviously, if the node exists as a

direct instance ofQualClassName, the operation has no effects too. Finally, if

the nodeResourceExp exists in the graph and it is classified under a class which

is not related through a subclass relation toQualClassName (fig. 2.2 statement

(3)), the result is a multi-classified node (&r1 is classified both underB andD

classes) without any side-effect.

Example 1: Make the resource with URI http://www.ex.org/paper1.pdf an in-

stance of the class AcceptedPaper:

INSERT AcceptedPaper(&http://www.ex.org/paper1.pdf)

As we explained above, this update operation will be effective only if the re-

source nodepaper1.pdf is not already an instance of classAcceptedPaper or

one of its subclasses (if it had any). In other words, the execution of an INSERT

operation leaves us with an RDF graph with no redundancies with respect to in-

stantiation.

Example 2. Classify as reviewers all members of the OC of ISWC05:

INSERT Reviewer(X)

FROM {Y}isOrganizedBy.hasMember{X;OCMember}

WHERE Y = &http://www.iswc05.org
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A

BD

C

&r1 &r4

(1)

(3)

&r3&r2

X(4)

(4)

Figure 2.2:Examples of some INSERT operations for class instances:

(1) INSERTA(&r4)

(2) INSERTB(&r3)

(3) INSERTB(&r4)

(4) INSERTC(&r2)
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The above example demonstrates the use of variables in the INSERT clause

and the use of RQL path expressions for navigating RDF graphs inthe FROM

clause.

More precisely, variableX will be range restricted to instances of classOCMember

involved in theOrganizingCommittee of the ISWC05 Event. This update oper-

ation will multiply classifyOCMember instances under the classReviewer.

2.1.2 DELETE for class instances

The syntax of the DELETE operation for class instances is as follows:

DELETE QualClassName(ResourceExp)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The DELETE operation deletes classification links and possibly nodes from

an RDF graph (fig. 2.3). The expressionResourceExp, which denotes the node

from which the classification link to be deleted originates,can be a URI or a vari-

able. The effect of the DELETE operation is to remove the direct or indirect clas-

sification link ofResourceExp to classQualClassName and replace it by the

link of ResourceExp to all the immediate super-classes ofQualClassName if

any (e.g., in fig. 2.3, statement (1),&r1 is now classified under classesA andB).

If ResourceExp is multi-classified (e.g.,&r4 in 2.3.4), the classification links to

classes not related toQualClassName remain untouched (in fig. 2.3, statement

(4), the classification link toA remains untouched). An interesting case of a dele-

tion of a multi-classified resource is demonstrated in fig. 2.3, statement (5), where

&r5 is an instance ofK throughM . The classification link toM is removed, be-

causeM is a subclass ofQualClassName (in this caseL), but the classification

link to K is not removed asK is not related toL through subsumption. Finally,
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(1)
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(4)
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(4)
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(3)
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Figure 2.3:Examples of some DELETE operations for class instances:

(1) DELETEB(&r1)

(2) DELETEC(&r2)

(3) DELETEB(&r3)

(4) DELETEM(&r4)

(5) DELETEL(&r5)
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if QualClassName is the top of the class hierarchyrdf : Resource, the effect is

the deletion ofResourceExp node along with all its classification links (resource

removal).

It should be stressed that, all classification links that areadded by a DELETE

operation must take the semantics of INSERT into account, sothat the resulting

RDF graph remains without redundancies. The side effects of DELETE in any of

the above cases are caused by the changes in the classification of a node. To be

more specific, all property arcs emanating from the note denoted byResourceExp

that have as domain (or range) a class, to whichResourceExp is no longer an

instance (e.g. fig. 2.3 statement (1) and statement (2)), arealso deleted by a

DELETE property instance operation (which is described below in detail). These

side-effects are necessary to keep the graph consistent, sinceResourceExp does

no longer belong to the declared classification. To illustrate these, consider the

property instanceP1 emanating from&r1 in fig. 2.3, which is deleted (1) when

the respective classification link is removed. The deletionof &r2 in (2) has a more

interesting side effect: the property instanceP2 is generalized to an instance of

P1 (P1 is a super-property ofP2), while the property instanceP1 remained un-

touched. In general, when a class instance is deleted, the property instance related

to it, remain untouched if they are still valid (P1 in (2)). If this is not possible,

they are generalized to their ancestor properties, if any (P2 in (2)), or completely

removed (P1 in (1)). Finally, if a property instance cannot be generalized, despite

the fact there is a super-property (P2 in (3) cannot be generalized becauser3 is

now an instance ofA, therefore not in the domain ofP2 or P1), the whole delete

operation is aborted.

Example 3. Delete all papers submitted by the PC chair(s) of ISWC05:

DELETE Paper(X)

FROM {Y}writes{X}, {Z;Conference}hasPC.hasChair{Y}



22 CHAPTER 2. THE SYNTAX OF RUL

WHERE Z=&http://www.iswc05.org

The above DELETE operation will be effective only if the nodebindings of

variableX are classified under the classns : Paper or one of its subclasses (e.g.,

AcceptedPaper). It is worth noticing that these nodes will still be presentin the

output RDF graph of the previous update operation, but only asinstances of the

top classrdf : Resource (sincens : Paper has no other superclasses).

2.1.3 REPLACE for class instances

The syntax of the REPLACE operation is:

REPLACE QualClassName(OldResourceExp <- NewResourceExp)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

The expressionsOldResourceExp andNewResourceExp can be constants

or variables as in other statements. The arrow<- has the meaning of an assign-

ment operation. The effect of the REPLACE operation (fig. 2.4) is to completely

remove the node(s) denoted byOldResourceExp and then insert the node(s) de-

noted byNewResourceExp as an instance of whatOldResourceExp used to be.

What’s more, the new node preserves all the property instances related to the old

one. The insertion ofNewResourceExp has the same semantics as the INSERT

operation presented earlier (see fig. 2.4 statement (2), where the inserted resource

&r4 is specialized to be instance ofB).

Example 4. The information that paper1.pdf is an accepted paper is incorrect.

The correct information is that paper101.pdf has been accepted.

REPLACE AcceptedPaper(&http://www.ex.org/paper1.pdf <-

&http://www.ex.org/paper101.pdf)
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&r1X
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"str1"

&r3
&r3_new
X &r1
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X
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(2)
(2)

(2)

&r1_new
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Figure 2.4:Examples of some REPLACE operations for class instances:

(1) REPLACEA(&r1 <- &r1 new)

(2) REPLACEB(&r2 <- &r4)

(3) REPLACEA(&r3 <- &r3 new)
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If paper1.pdf had title ”The language SQL”, we could equivalently write:

REPLACE AcceptedPaper(X <-

&http://www.ex.org/paper101.pdf)

FROM {X}title{Y}

WHERE Y="The language SQL"

It should be stressed that the REPLACE operation is not a sequence of DELETE

and INSERT. The main difference between a REPLACE operation and a sequence

of DELETE and INSERT operations is the different side effects.

The first side effect of REPLACE is that all properties emanating from (or

ending at) the resource denoted byOldResourceExp are completely erased. The

other side effect is that the previously removed propertieswill become properties

emanating from (or ending at) the resource denoted byNewResourceExp. In

figure 2.4 statement (2), property arcP1 emanating from&r2 and ending at literal

value ”str1”, is removed, while another property arcP1 which ends at literal value

”str1”, is inserted, emanating from&r4. In figure 2.4 statement (3), the property

arcP1 is removed and then inserted with a new source instance.

In other words, REPLACE could be described as a resource erasure followed

by a resource addition. The semantics of these operations isnot the same as the

semantics of the RUL INSERT and DELETE statements presentedpreviously.

More precisely, during the erasure, the resource is completely removed from the

database, as long as it is originally an instance of QualClassName. During the ad-

dition operation, the new resource is inserted according tothe corresponding RUL

INSERT operation, with all the effects and side effects of anINSERT operation.

Moreover, during the operation operation the property instances attached to the

removed resource are modified as follows: If a property instance has the removed

resource as source (or, similarly, target), the RUL REPLACE operation will cause

the property to have the added resource as source (or target)instead. For example,
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new values can be inserted with REPLACE, or existing ones can bespecialized

(instaciated under a sub-class of the class they where originaly instaciated).

For example, in figure 2.4, statement (1), the operation can be described as a

removal of&r1 and an insertion of a new resource&new r1. Notice that&r1

also an instance ofC, but the REPLACE operation asks only the instance ofA to

be modified. Therefore, after the execution of the operation, &r1 will still be an

instance ofC.

Another example is presented in figure 2.4, statement (2), where the resource

&r2 is removed and then the resource&r4 is added instead. The property instance

P1 is also removed but replaced with a new instance emanating from the inserted

resource. The new resource is not new to the database. It is originally an instance

of A, and after the operation it has been specialized to an instance ofB (and an

indirect instance ofA).

In order to illustrate the difference of a REPLACE with a sequence of DELETE

and INSERT, notice the following RUL statements:

(a) Replace the instance of B r2 with r4 ..... (b) Delete r2 fromB and insert r4 to B

REPLACE B(&r2 < − &r4) DELETE B(&r2)

INSERT B(&r4)

After the execution of the sequence (b),r2 will be an instance of the super-

classes ofB, as this is the effect of DELETE, while in (a), r2 will be either com-

pletely removed or the classification link between r2 and (aswell the super-classes

of B) will be canceled. What’s more, in (b) the property instanceP1(&r2, ”str1”)

would be removed, as the domain ofP1 is B, while in (a) the property instance

will be modified toP1(&r4, ”str1”).
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2.1.4 REPLACE classification for class instances

REPLACE can also be used for modifying the classification of a class instance.

In this case, the following syntax is used:

REPLACE OldQualClassName<-NewQualClassName(ResourceExp)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

A D

B

&r1

XK

&r2

C

P1
Literal

Literal
P2

P1
"str1"

&r3
P2

"str2"

(1)

(1)

(2)(2)
(2)

X

Figure 2.5:Examples of some REPLACE-classification operations for class instances:

(1) REPLACEA <- D(&r1)

(2) REPLACEB <- K(&r2)

(3) REPLACEB <- K(&r3)

(4) REPLACEB <- K(X) WHEREB{X}

This operation modifies a classification link that emanates from the class in-

stance node of the class instance denoted byResourceExp and ends to the class

node of the class denoted byOldQualClassName or a node of a subclass of
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it. The effect of the operation is to redirect the classification link so that it no

longer ends to the node of classOldQualClassName, but it ends to the class

node representing the classNewQualClassName.

In other words, the effect of this operation is thatResourceExp is not any-

more an instance ofOldQualClassName, but an instance ofNewQualClassName

(e.g.&r1 is not anymore an instance ofA, but an instance ofD, in fig. 2.5 state-

ment (1)). If there are property instances emanating from orending atResourceExp

because of their domain or range beingOldQualClassName or a subclass of it

(e.g. the property instanceP1 emanating from&r2), then their domain or range

should also beNewQualClassName or a subclass of it (e.g. after the operation

in fig. 2.5 statement (2),&r2 is still an instance ofD). Otherwise, the operation

has no effect and it is aborted (e.g. the operation in 2.5.3 isaborted, because of

the property instanceP2).

In fig. 2.5, statement (4), the operation is aborted. As it will be analyzed later,

this operation is equal to a sequence of the operations of statement (2) and (3).

We have already seen that (3) is aborted, therefore (4) is aborted as well, for the

same reason.

2.2 Updating property instances

2.2.1 INSERT for property instances

The INSERT, DELETE and REPLACE statements can also be used to update the

properties of resources i.e., arcs in an RDF graph. The syntaxof the INSERT

statement in this case is as follows:

INSERT QualPropertyName(SubjectExp, ObjectExp)

[FROM VariableBinding]

[WHERE Filtering]
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[USING NAMESPACE NamespaceDefs]

A

C

B

P1

P2

&r1
&r4

P1

&r2

X(3)

&r3
(1)P2

(3)

Figure 2.6:Examples of some INSERT operations for property instances:

(1) INSERTP2(&r3, &r4)

(2) INSERTP2(&r1, &r4)

(3) INSERTP2(&r2, &r4)

(4) INSERTP1(&r1, &r4)

The above INSERT operation adds to resource nodeSubjectExp a new prop-

erty arc that is an instance of propertyQualPropertyName and has valueObjectExp.

SubjectExp andObjectExp can be constants or variables with bindings deter-

mined in the FROM clause. In both cases RQL typing rules for triples must be

respected:SubjectExp must evaluate to a URI, instance of the domain of prop-

ertyQualPropertyName, andObjectExp must evaluate to a URI or literal value

instance of the range of propertyQualPropertyName.

We now detail the semantics of this operation by referring tofigure 2.6. As in

the case of resources, if a property arc fromSubjectExp to ObjectExp exists and

it is an instance of a super-property ofQualPropertyName (fig. 2.6 statement

(3)), then the operation’s effect is the deletion of the instantiation link of the arc
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and the introduction of a new link toQualPropertyName (e.g., the arc from&r2

to &r4 becomes an instance of propertyP2). However, whenSubjectExp and

ObjectExp are not instances of the domain and range ofQualPropertyName

this operation has no effect (e.g., the arcP2 between&r1 and&r4 is not inserted

in fig 2.6 statement (2) and the operation has no effect). If the property arc exists as

an instance of a sub-property ofQualPropertyName, then the operation has also

no effect (fig. 2.6 statement (4)). Last but not least, if there are not any instances of

QualPropetyName emanating fromSubjectExp and targeting toObjectExp,

a new property arc is inserted, provided thatSubjectExp andObjectExp are

instances of the domain and range of the property (fig. 2.6 statement (1)). It is

obvious that there are no side-effects in this operation.

Example 5: Make ”IR” a keyword of paper http://www.ex.org/paper1.pdf.

INSERT keyword(&http://www.ex.org/paper1.pdf, "IR")

Example 6: Make Oracle a sponsor of every database conference.

INSERT sponsors(&http://www.oracle.com, X)

FROM {X;Conference}topic{Y}

WHERE Y like " * database * "

Example 7: Make editors of the proceedings of ISWC05 the chair(s) of the PC

and the chair(s) of the OC.

INSERT editedBy(X,Y)

FROM {Q}hasProceedings{X}, {Q}@P.hasChair{Y},

WHERE Q = &http://www.iswc05.org AND

(@P=isOrganizedBy OR @P=hasPC)

This example demonstrates the use of schema querying in the FROM clause

of RUL. Variables prefixed by @ are RQL property variables implicitly restricted

to range over the set of all data properties.
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2.2.2 DELETE for property instances

The syntax of the DELETE operation is as follows:

DELETE QualPropertyName(SubjectExp, ObjectExp)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

A C

B D

P1

P2

&r1
&r3

P1

&r2 &r4

X
X

(1)

(2) (2)

&r5 &r6P2X(3)

Figure 2.7:Examples of some DELETE operations for property instances:

(1) DELETEP1(&r1, &r3)

(2) DELETEP2(&r2, &r4)

(3) DELETEP1(&r5, &r6)

As in the case of resources, the DELETE operation (fig. 2.7) removes essen-

tially the instantiation link betweenQualPropertyName and the property arc

from SubjectExp to ObjectExp (e.g., the arc from&r2 to &r4 in figure 2.7

statement (2) is not anymore an instance ofP2) and inserts a link from the arc

to the super-property ofQualPropertyName (e.g., the arc from&r2 to &r4 in
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fig. 2.7 statement (2) becomes an instance ofP1), as we discussed in the prop-

erty INSERT operation. If the arc is not an instance ofQualPropertyName (or

is not an existing arc), the operation has no effect. It is interesting to focus on

the differences in the examples presented in fig. 2.7 statement (2) and statement

(3). In both cases, the deleted property is an instance ofP2. In the first case (fig.

2.7 statement (2)), theQualPropertyName is P2, so the instance is deleted as

an instance ofP2 and therefore generalized to an instance ofP1. In the second

case (fig. 2.7 statement (3)),QualPropertyName is P1, so the respecting in-

stance is deleted as an instance ofP1. The instance is deleted because there is no

super-property ofP1.This update operation has also no side-effects.

Example 8: Delete keyword ”IR” from paper http://www.ex.org/paper2.pdf:

DELETE keyword(&http://www.ex.org/paper2.pdf, "IR")

Example 9. Remove assigned papers on web services from reviewer Smith:

DELETE reviews(&http://www.uni-ex.edu/˜smith, X)

FROM {X}paperKeyword{Y}

WHERE Y like " * web services * "

Example 10. Delete all sponsors of ISWC05:

DELETE sponsors(X, &http://www.iswc05.org)

FROM Organization{X}

2.2.3 REPLACE for property instances

The syntax of the REPLACE operation is:

REPLACE QualPropertyName([OldSubjectExp <-] NewSubjectExp,

[OldObjectExp <-] NewObjectExp)

[FROM VariableBinding]
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[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

A

B

C

D
P1

P2

P3

Literal

Literal

Literal
&r1

"str1"

&r2

&r3
P2

P2
X

(1)

(1)

&r4
P3 "str2"

"new str2"

X (3)

(3)

&r5

&r6

P1

P2

"str3"

"str3"

"new str3"
X (4)

(4)

Figure 2.8:Examples of some REPLACE operations for property instances:

(1) REPLACEP2(&r2 <- &r3, ”str1”)

(2) REPLACEP2(&r2 <- &r1, ”str1”)

(3) REPLACEP2(&r4, ”str2” <- ”new str2”)

(4) DELETEP2(X, ”str3” <- ”new str3”) FROMDX

As we can see in figure 2.8, the effect of the operation is to delete the arc

between the resources denoted by theOldSubjectExp andOldObjectExp and

insert a new arc fromNewSubjectExp to NewObjectExp. The REPLACE

statement can also be used to replace only the subject or the object of a prop-

erty instance with a new one (e.g. in fig. 2.8 statement (1), the arc between&r2

and ”str1” is removed and a new arc between&r1 and ”str1” is inserted, so that the

subject of this property is replaced). IfOldSubjectExp (resp. OldObjectExp)

or NewSubjectExp (resp.NewObjectExp) is not an instance of a class in the

domain (resp. range) ofQualPropertyName, the operation is aborted, as a pre-

condition is violated (e.g., in fig. 2.8 statement (2), the operation has no effect as
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&r1 is not an instance of the domain ofP2). If the arc fromNewSubjectExp

to NewLObjectExp already exists and it is a (direct or indirect) instance of

QualPropertyName, it is not inserted, so that redundancies are avoided, as we

discussed in the property INSERT operation. If there is an instance of a sub-

property ofQualPropertyName (like P3 is a sub-property ofP2 in figure 2.8

statement (3)), then the subject and/or subject of this instance is replaced by the

new one, but the classification of the property does not change (e.g. the subject

of P3 is now ”new str3”). In general, the classification of a property instance

affected by this operation should never change.

Example 11: Change the keyword ”IR” to ”Information Retrieval” in the

papers where this keyword appears:

REPLACE keyword(X, "IR" <- "Information Retrieval")

FROM Paper{X}

Example 12: Make the publication date of every accepted paper to be the same

as the publication date of the proceedings where it is published:

REPLACE publishedOn(Y, Z <- X)

FROM {Y;AcceptedPaper}isPublishedIn.publicationDate{X},

{Y}publishedOn{Z}

The above examples demonstrate the modification of a property’s object. The

following example illustrates a case where the subject of a property is updated.

Example 13. Pass all the reviews to be done by Prof. Smith to hisPh.D. student

Jones:

REPLACE reviews(&http://www.ex.org/˜smith <-

&http://www.ex.org/˜jones, Y)

FROM Paper{Y}
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Example 14. The information ”Oracle sponsors WWW 2005” in our graph is

incorrect. The correct information is ”Google sponsors ISWC 2005”.

REPLACE sponsors(&http://www.oracle.com <-

&http://www.google.com,

&http://www.www05.org <-

&http://www.iswc05.org)

This example demonstrates the change of both subject and object of a property.

2.2.4 REPLACE for property instances classification

As in class instances, REPLACE can be used for modifying the classification of

one or more property instances, e.g. to make an instance of a property become an

instance of another property. In that case, the syntax of replace is as follows:

REPLACE OldQualPropertyName <-

NewQualPropertyName (SubjectExp, ObjectExp)

[FROM VariableBinding]

[WHERE Filtering]

[USING NAMESPACE NamespaceDefs]

From the RDF graph point of view, the operation affects the classification links

than emanated from the property instance arc representing the property instance

OldQualPropertyName(SubjectExp,ObjectExp), and ends to the property

arc representiong theOldQualPropertyNameproperty. The effect of the op-

eration is to redirect the classification link so it no longerends to the arc of

OldQualPropertyName property, but instead it ends to the property arc rep-

resentingNewQualPropertyName property.

In other words, this operation is used to change the classification of the in-

stances (SubjectExp, ObjectExp) of OldQualPropertyName so that they be-

come instances ofNewQualPropertyName, as presented in figure 2.9. This
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operation has no effect if some preconditions are not satisfied. One precondition

is that the domain and the range ofOldQualPropertyName must be of the same

type as the domain and range, respectively, ofNewQualPropertyName. For

example, if the range of the first is string and the other is integer, then the op-

eration has no effect. Another example is presented in figure2.9 statement (4),

where the first property has a literal range, while the secondhas a class. An-

other precondition is that if the domain/range is a class thesubject and object of

the respecting property instances must be class instances of the domain/range of

NewQualPropertyName (e.g. in fig. 2.9 statement (1),&r2 is not an instance

of the range ofP2, so the operation is aborted).

A

C

B
P1

P2

&r1

&r3

&r2

P1

P1

P2X (3)

P3 Literal

P3
"str1"

P2X P1
(2)

P5 D

P4

&r4

P4 P5

P5 P4

X

X

(5)

(6)

Figure 2.9: Examples of some REPLACE-classification operations for property in-

stances:

(1) REPLACEP1 <- P2(&r1, &r2)

(2) REPLACEP2 <- P1(&r1, &r3)

(3) REPLACEP1 <- P2(&r1, &r3)

(4) REPLACEP3 <- P1(&r2, ”str1”)
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A REPLACE operation for property classifications can have the effect of an

INSERT or a DELETE operation ifOldQualPropertyName and

NewQualPropertyName are related through subsumption. For example, in fig-

ure 2.9 statement (5),P5 is a subclass ofP4, so the operation has the same effect

as a DELETE operation. In figure 2.9 statement (6),P4 is a super-class ofP5, so

the operation has the same effect as an INSERT operation. This observation does

not hold in case of REPLACE for class instance classification, because a modifi-

cation of a class instance might affect the property instances attached on it, while

the opposite is not true.

In figures 2.9 statement (2) and (3) we present some examples of updates that

cannot be made using an INSERT or a DELETE operation.

2.3 More Expressive Updates

The syntax of RUL presented above allows us to express two kinds of updates:

primitive ones where a node or arc of an RDF graph is inserted ordeleted (with

appropriate side-effects), and set-oriented ones where anatomic update of the

same kind (e.g., an insertion) is performed repeatedly for all resource tuples cal-

culated by evaluating the FROM and WHERE clauses of an INSERT, DELETE or

REPLACE statement. Of course, by writing multiple RUL statements, we can also

express sequences of such updates. In this section, we extend the above syntax to

be able to express sequences of primitive updates inside a single RUL statement,

and show with examples why such an extension is a useful feature of RUL.

The first extension that we propose is to allow multiple atomic formulas, in an

INSERT, DELETE or REPLACE clause. In this way, we can express sequences

of primitive updates of the same kind.

Example 15. Make resource &http://www.ex.org/paper3.pdf authored by Smith

an instance of class Paper.
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INSERT Paper(&http://www.ex.org/paper3.pdf),

writes(&http://www.uni-ex.edu/˜smith,

&http://www.ex.org/paper3.pdf)

Note that even in sequences of primitive insertions as in theabove example,

the order of execution of each individual update does matter(we cannot insert a

property writes for resource paper3.pdf before we make it aninstance of the range

of writes). This is in direct contrast with updates in relational languages where

order does not matter in sequences of updates of the same kind. Thus, the order of

execution for update statements with multiple predicates is from left to right and

the comma operator signifies sequence.

Example 16. Reject all papers with ranking less than 4, and addthe SPC mem-

ber responsible for the paper as the person who made the final recommendation.

INSERT RejectedPaper(X), rejectedBy(X,Y)

FROM {X;Paper}ranking{Z},

{X}submittedTo.hasSPC.hasMember{Y;SPCMember},

{Y}isResponsibleFor{X}

WHERE Z < 4

This example shows clearly why the proposed enhancement of the RUL syntax

is useful. In this case, additions to the graph comes ”in pairs”; thus, the example

is impossible to express without variables and sequencing.

Apart from sequences of updates of the same kind, RUL can alsoexpress se-

quences of updates of different kinds. This is done by allowing multiple INSERT,

DELETE or REPLACE clauses before the FROM clause of an update statement.

In this case, the order of execution is from top to bottom.

Example 17: Form the Program Committee of ISWC06 by taking the set of all

PC members of ISWC05 except those that reviewed less than 5 papers for ISWC05,

and adding to this set the members of the OC of ISWC05.
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INSERT hasPCMember(&http://www.iswc06.org#pc, X)

DELETE hasPCMember(&http://www.iswc06.org#pc, Y)

INSERT hasPCMember(&http://www.iswc06.org#pc, Z)

FROM {W}hasPCMember{X}, {W}hasPCMember{Y},

{W}hasOCMember{Z}

WHERE W = &http://www.iswc05.org#pc AND

count(SELECT Q FROM {Y}reviews{Q},

{Q}submittedTo{W}) <5

Sequences of update operations of the same kind, seperated by a commna

operator, can be placed in the same statement with other operations of the same

or different kind. In this case, the order of execution is still from top to bottom

and from left to right. The RUL statement of example 18.a is not equivalent to

the one of example 17, because the order of INSERT and DELETE operations has

changed. Example 18.a is equivalent to example 18.b, though.

Example 18.a: This statement is not equivalent to example 17

INSERT hasPCmember(&http://www.iswc06.org#pc, x),

hasPCmember(&http://www.iswc06.org#pc, z)

DELETE hasPCmember(&http://www.iswc06.org#pc, y)

FROM {W}hasPCmember{X}, {W}hasPCmember{Y},

{W}hasOCmember{Z}

WHERE W = &http://www.iswc05.org#pc and

count(select Q from {Y}reviews{Q},

{Q}submittedTo{W}) <5

Example 18.b: Statements in 18.a and 18.b are equivalent

INSERT hasPCmember(&http://www.iswc06.org#pc, X),

hasPCmember(&http://www.iswc06.org#pc, Z)
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DELETE hasPCmember(&http://www.iswc06.org#pc, Y)

FROM {W}hasPCmember{X}, {W}hasPCmember{Y},

{W}hasOCmember{Z}

WHERE W = &http://www.iswc05.org#pc and

count(SELECT Q FROM {Y}reviews{Q},

{Q}submittedTo{W}) <5

This last extension to the syntax of RUL also allow us to express updates with

effects that depend on the order of execution of the primitive updates captured by

the sequence of the INSERT, DELETE or REPLACE clauses (e.g., inExample 17,

all the Program Committee members of ISWC05 have to be made Program Com-

mittee members for ISWC06 before those of them that reviewed less than 5 papers

for ISWC05 are deleted). The order of execution for multiple update clauses in an

RUL update statements is from top to bottom. Thus, update clauses with multiple

operations can be trivially translated into sequences of update statements with a

single operation.



3
The semantics of RUL

The purpose of RUL is to provide update functionality on RDF/sdescription

graphs commiting to a number of RDF/s schemata. In this section we explore

the world of update languages, stressing out the features weare interested in, so

that the design choices of RUL can be justified. More precisely, we focus on

two families of update languages and present their features. We, then, select the

semantics that is more suitable to RUL from the aspect of expressive power and

ensure that the semantics of RUL is deterministic. The formal semantics of the

language, based on the semantics of RQL, is presented afterwards, with some

illustrative examples.

40
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3.1 Formal semantics of RUL

In this section we give a formal semantics to RUL. We start by defining the con-

cepts of RDF that we need using the formal model introduced in [14]. The impor-

tant contribution of [14], when compared with other formal models of RDF e.g.,

the RDF semantics by Hayes [23], is the introduction of a rich type system for

RDF and RDFS that has been proved valuable in the specification of RQL.

Because RUL updates are destructive operations that change the state of an

RDF graph, type safety for RUL updates is even more important than type safety

for RQL queries. The more errors we can catch at compile time, the less costly

runtime checks (and possibly expensive rollbacks) we will need. The slight differ-

ences of [14,15] from the RDF semantics in [23]) do not affect the issues covered

in this work.

We start by defining the modeling constructs of an RDF resourcedescription

and schema graph. We slightly modify the definitions of [14] to cover only the

concepts of RDF used in this thesis (we do not deal with blank nodes, containers,

collections or reification).

Let LT be the set of XML Schema data types that can be used in RDF. LetT

be the set of types in the RDF/S type system defined in [14]. LetV alues(T ) be

the set that includes all typed literals with types fromT and all URIs.

Definition 1:An RDFS graphis a 6-tupleS = (V S,ES,C, P,≺, Θ, Λ) where

V S is a set of nodes,ES ⊆ V ×V is a set of edges,C is a set of class names,P is

a set of property names,≺ is a partial order onC∪P , Θ : V S∪ES → C∪P is a

function mapping nodes to classes and edges to properties, andΛ : V S∪ES → T

is a typing function that returns the type of each node or edge. 2

Definition 2: An RDF graphover the RDFS graph(V S,ES,C, P,≺, Θ, Λ)

is a quadrupleG = (V,E, ν, λ) whereV is a set of nodes,E ⊆ V × V is a
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set of edges,ν : V → V alues(T ) is a value function that assigns a value from

V alues(T ) to each node inV andλ : V ∪ E → 2C∪P ∪ LT is a typing function

which satisfies the following: (i) For each nodea in V , λ returns a set of class

or data type namesc ∈ C ∪ LT such thatν(a) belongs to the interpretation of

eachc. (ii) For each edge(a, b) ∈ E, λ returns a property namep ∈ P such that

(ν(a), ν(b)) belongs to the interpretation ofp.

• For each nodea in V , λ returns a set of class or data type namesc ∈ C∪LT

such thatν(a) belongs to the interpretation of eachc.

• For each edge(a, b) ∈ E, λ returns a property namep ∈ P such that

(ν(a), ν(b)) belongs to the interpretation ofp.

2

Note thatλ contains all classes (resp. properties) that a node (resp. property

arc) is an instance of directly or indirectly.

Thus, in a logical sense anRDF graphas defined above corresponds to the

completion of the corresponding logical theory.

Let Query be the set of queries that can be expressed in RQL andTuple the

set of tuples of arbitrary arity formed by elements ofV alues(T ). We assume that

the functionE : Query × Graph → Tuple gives the semantics of RQL query

evaluation as defined in [14]. Ifq is an RQL query andG is an input RDF graph

then the answer to queryq is the set of tuplesE(q,G).

Let Graph be the set of all possible RDF graphs andUpdate be the set of all

possible updates that can be expressed in RUL. The semanticsof RUL statements

is captured by the semantic functionA : Update × Graph → Graph. When

an updateu is applied to a graphG ∈ Graph and appropriate preconditions are

satisfied,u affects a set of nodes and arcs ofG and produces a new graph given

byA(u,G).
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An RUL update is calledprimitive if it is of the form INSERT c(i), DELETE

c(i), INSERT p(i, i), DELETEp(i, j) where c is a class,p is a property and

i, j are URIs. Ifτ and τ ′ are two updates then theircompositionis a complex

update denoted byτ ; τ ′. The semantics of composition is given by the equa-

tionA(τ ; τ ′, G) = A(τ ′,A(τ,G)). Composition is an associative operation thus

A(τ1; · · · ; τn, G) = A(τn,A(. . . ,A(τ1, G))).

The following notation is used repeatedly in the rest of thissections, which

formalize the semantics of the various RUL operations:

• S = (V S,ES,C, P,≺, Θ, Λ) is an RDFS schema graph.

• G = (V,E, ν, λ) be an RDF graph over the schema graphS.

• c is a class,i, i1, i2 are URI references andp is a property.

• x is a variable,b is a variable binding expression andf is a filtering condi-

tion.

3.1.1 The semantics ofINSERT

Let G = (V,E, ν, λ) be an RDF graph over the RDFS graph(V S,ES,C, P,≺

, Θ, Λ).

Definition 3:The effect of updateINSERTc(i) in G is captured byA(INSERTc(i), G) =

(V ′, E, ν ′, λ′) whereV ′, ν ′, λ′ are defined as follows:

• If there is no nodea ∈ V with ν(a) = i thenV ′ = V ∪ {a0} wherea0 is

a brand new node symbol. Additionally,ν ′ extendsν such thatν ′(a0) = i

andλ′ extendsλ such thatλ′(a0) = {c}.

• If there is a nodea ∈ V with ν(a) = i thenV ′ = V andν ′ is the same asν.

In this case

– if c ∈ λ(a) thenλ′ = λ.
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– If c 6∈ λ(a) but there exist classesc1, . . . , ck ∈ λ(a) such thatc ≺

c1, . . . , c ≺ ck thenλ′ is the same asλ with the exception thatλ′(a) =

(λ(a) \ {c1, . . . , ck}) ∪ {c}.

– Otherwise,λ′ is the same asλ with the exception thatλ′(a) = λ(a) ∪

{c}.

2

The preconditions for the execution of the primitive updateINSERT p(i1, i2)

in G is thati1 is a URI or literal and instance ofdomain(p), andi2 is a URI or

literal and instance ofrange(p).

Definition 4:The effect of this update is captured byA(INSERTp(i1, i2), G) =

(V ′, E ′, ν ′, λ′) whereV ′, E ′, ν ′ andλ′ are defined as follows:

• If i2 is a literal of typet and there is noa ∈ V such thatν(a) = i2 thenV ′ =

V ∪ {a0} wherea0 is a brand new node symbol such thatν ′(a0) = i2 and

λ′(a0) = t (functionν ′ is identical toν for all other values in its domain).

• Otherwise,V ′ = V andν ′ = ν.

Now leta1, a2 ∈ V ′ be nodes such thatν(a1) = i1 andν(a2) = i2.

• If p ∈ λ((a1, a2)) thenE ′ = E andλ′ = λ.

• If p 6∈ λ((a1, a2)) but there are propertiesp1, . . . , pk ∈ λ((a1, a2)) such that

p ≺ p1, . . . , p ≺ pk thenE ′ = E andλ′ is the same asλ with the exception

thatλ′((a1, a2)) = (λ((a1, a2)) \ {p1, . . . , pk}) ∪ {p}.

• Otherwise,E ′ = E ∪ {(a1, a2)} andλ′ is the same asλ with the exception

thatλ′((a1, a2)) = λ((a1, a2)) ∪ {p}.

2

The semantics ofINSERT statements with multiple predicates in theINSERT

clause can now be defined using composition as follows:
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A(INSERT c1(i1), . . . , cn(in), p1(j1, j1
′), . . . , pm(jm, jm

′), D) =

A(INSERTc1(i1); · · · ; INSERTc1(ik); INSERTp1(j1, j1
′); · · · ; INSERTpm(jm, jm

′), D).

3.1.2 The semantics ofDELETE

Let G = (V,E, ν, λ) be an RDF graph over the RDFS graph(V S,ES,C, P,≺

, Θ, Λ). The precondition for the execution of the primitive updateDELETEc(i)

in G is thati is an instance of classc.

Definition 5: The effect of this update is captured byA(DELETEc(i), G) =

(V ′, E ′, ν, λ′) whereV ′, E ′, λ′ are defined as follows. Leta ∈ V be the node with

ν(a) = i.

• If c = rdf:Resource thenV ′ = V \ {a} otherwiseV ′ = V .

• If c ∈ λ(a) then letC1 be the set{c1 : c1 � c ∧ c1 ∈ λ(a)}. Thenλ′ is the

same asλ with the exception thatλ′(a) = λ(a) \ C1.

• If c 6∈ λ(a) but there is a classc′ such thatc′ ≺ c andc′ ∈ λ(a) thenλ′ is the

same asλ with the exception thatλ′(a) = (λ(a)\C1)∪C2 whereC1 = {c1 ∈

λ(a) : c′ � c1 � c} andC2 = {c2 ∈ λ(a) : c ≺ c2∧¬(∃c3)(c ≺ c3 ≺ c2)}.

In addition, E ′ = E \ ({(a, b) : λ((a, b)) = p ∧ (∃c1 ∈ C1)domain(p) =

c1} ∪ {(b, a) : λ((b, a)) = p ∧ (∃c1 ∈ C1)range(p) = c1}). 2

The preconditions for the execution of the primitive updateDELETEp(i1, i2)

in G is that i1 is a URI reference and instance ofdomain(p), and i2 is a URI

reference or literal and instance ofrange(p).

Definition 6: The effect of this update is the generalization of properties

A(DELETEp(i1, i2), G) = (V,E ′, ν, λ) whereE ′ is defined as follows. Let

a1, a2 ∈ V be nodes such thatν(a1) = i1 and ν(a2) = i2. Then E ′ =

E \ {(a1, a2)}. 2
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The semantics ofDELETEstatements with multiple predicates can then be

easily defined as in the case ofINSERT using composition.

3.1.3 The semantics of REPLACE

Let G = (V,E, ν, λ) be an RDF graph over the RDFS graph(V S,ES,C, P,≺

, Θ, Λ). The precondition for the execution of the primitive updateREPLACEc(i, j)

in G is thati is an instance of classc.

Definition 7: The effect of this update operation dealing with class instan-

tiation is captured byA(REPLACEc(i, j), G) = (V,E ′, ν, λ′) whereE ′, λ′ are

defined as follows.

Let a ∈ V be the node withν(a) = i and b the node withν(b) = j.

• If c ∈ λ(a) andC1 is the set{c1 : (c1 � c∨c1 ≻ c)∧c1 ∈ λ(a)}, C2 is the set

{c2 : c2 6∈ C1∧c2 ∈ λ(a)} andCc the set{cc : cc ∈ C1∧cc 6� c2∧c2 ∈ C2},

let Cnc be the set{cnc : cnc ∈ Cc ∧ cnc 6∈ λ(b)}. Thenλ′(a) = λ(a) \ Cc

andλ′(b) = λ(b) ∪ Cnc.

In additionE ′ = E ∪ ({(b, r) : λ(a, r) = p ∧ (∃cn ∈ Cn)domain(p) = cn} ∪

{(d, b) : λ(d, a) = p∧(∃cn ∈ Cn)range(p) = cn}\{(a, r) : λ(a, r) = p∧(∃cn ∈

Cn)domain(p) = cn \ {(d, a) : λ(d, a) = p ∧ (∃cn ∈ Cn)range(p) = cn}). 2

In order to understand the meaning of the above formal descriptions, we can

seeREPLACE as a two step operation. The first step is the removal ofi from the

set of nodes that are instances of any ancestor or descedant of c.The second step

is an addition operation that can be described as anINSERT c(j) operation fol-

lowed by a sequence ofINSERT p(k, l) operations for suchp, k, l thatp is each

property with instances adjusted to the nodei, and eitherk is i or l is i. The formal

semantics ofINSERTp(k, l) are given later in this chapter. Note that the opera-

tion of the first step is not aDELETE operation and, therefore, theREPLACE

operation is not a sequence ofDELETE c(i); INSERT c(j). The difference
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between the first step of theREPLACE c(i, j) and theDELETE c(i, j) opera-

tion is that the described values are completely removed from all the nodes having

a sumsumption relationship withc, even ifc 6= rdf : Resource.

TheREPLACE p(i, i′, j, j′) operation, dealing with property replacements,

can also be described as a two-step operation in the same fashion.

Definition 8:The effect of the operation is captured byA(REPLACEp(i, i′, j, j′), G) =

(V ′, E ′, ν, λ′) whereV ′, E ′, λ′ are defined as follows. Leta, a′, b, b′ ∈ V be the

nodes withν(a) = i, ν(a′) = i′, ν(b) = j, ν(b′) = j′.

• If p ∈ λ((a, b)) then letP1 be the set{p1 : (p1 � p ∨ p1 ≻ p) ∧ p1 ∈

λ((a, b))}, P2 be the set{p2 : p2 6∈ P1 ∧ p2 ∈ λ((a, b))} andPp the set

{pp : pp ∈ P1 ∧ pp 6� p2 ∧ p2 ∈ P2}. Now, let Pnp be the set{pnp :

pnp ∈ Pp ∧ pnp 6∈ λ((a′, b′))}. Then, λ′((a, b)) = λ((a, b)) \ Pp and

λ′((a′, b′)) = λ((a′, b′)) ∪ Pnp.

2

Definition 9: The REPLACE c, c′(i) operation, named ”replace classifica-

tion for class instances”, is captured byA(REPLACEc, c′(i), G) = (V ′, E ′, ν, λ′)

whereV ′, E ′, λ′ are defined as follows.

• If c′ � c, the semantics is exactly equal toINSERT c′(i).

• If c′ ≻ c, Cmindle is the set{cm : cm � c′ ∧ cm � c} andcup : cm �

cup ∧ cm ∈ Cmindle ∧ cm ∈ Cmindle , then the operation is exactly equal to

DELETE cup(i).

• Otherwise, leta ∈ V be the node withν(a) = i. If c ∈ λ(a) then letC1

be the set{c1 : (c1 � c ∨ c1 ≻ c) ∧ c1 ∈ λ(a)}, C2 be the set{c2 : c2 6∈

C1 ∧ c2 ∈ λ(a)} andCc the set{cc : cc ∈ C1 ∧ cc 6� c2 ∧ c2 ∈ C2}. Thenλ′

is the same asλ with the exception thatλ′(a) = λ(a) \ Cc. The rest of the

effects are captured by the formal semantics ofINSERT c′(j)
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2

Definition 10:In the case ofREPLACEp, p′(i, j), namely the ”replace classifi-

cation for property instances”, the semantics is captured byA(REPLACEp, p′(i, j), G) =

(V ′, E ′, ν, λ′) whereV ′, E ′, ν ′, λ′ are defined as follows. Leta, b ∈ V be the

nodes withν(a) = i, ν(b) = j.

• If p ∈ λ((a, b)) then letP1 be the set{p1 : (p1 � p ∨ p1 ≻ p) ∧ p1 ∈

λ((a, b))}, P2 be the set{P2 : P2 6∈ P1 ∧ p2 ∈ λ((a, b))} andPp the set

{pp : pp ∈ P1 ∧ pp 6� p2 ∧ p2 ∈ P2}. Thenλ′ is the same asλ with the

exception thatλ′((a, b)) = λ((a, b))\Pp. The rest of the effects are captured

by the formal semantics ofINSERTp′(i, j)

2

3.1.4 Set-Oriented Updates

The syntax of RUL allows us to express set-oriented updates using variables in

theINSERT, DELETE or REPLACEclause.

The semantics of update statements with a singleINSERT, DELETE orREPLACE

clause with variables can easily be defined using the operation of composition and

functionE that formalizes the evaluation of RQL queries. For example,

A(INSERTc(x) FROMb(x) WHEREf(x), D) = A(INSERTc(i1); · · · ; INSERTc(ik), D)

wherei1, . . . , ik are URIs such thatE(SELECTx FROMb(x) WHEREf(x), D) = {(i1), . . . , (ik)}.

The semantics can be given similarly if we have a predicatep(x, y) in the INSERT

clause. The same holds for statements with a singleDELETEclause with variables.

The case ofREPLACEis slightly more involved, as it can be considered a two-step

operation. In the case ofREPLACE c(x, y) with variables, the two steps are splited.

The first step, that is the erasure of the instation link, is evaluated for all values of x. The

second step is anINSERT c(y) operation for every values binded to y, independently of
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the evaluation of x. This is nessecary in order to ensure that the semantics isdeterministic,

as it was the case withWLSPJ .

The situation becomes more complex when we consider multiple predicates in an

INSERT, DELETEor REPLACEclause, or multipleINSERT, DELETEor REPLACE

clauses in a single update statement. Obviously, clause order matters in this case as we

have already demonstrated, e.g. when we consider multiple updates of the same kind

without variables. The following examples illustrate the issues involved when multiple

updates of different kinds are allowed.

Let us assume an RDFS schema with three classesA andB and an RDF graph with a

single node with URIi1 that is an instance of classA (so classB has no instances). Let

us now consider the following statements:

(1) DELETE B(X) INSERT B(X) (2) INSERT B(X) DELETE B(X)

FROM A{X} FROM A{X}

The effect of Statement (2) is to leave classB in the same state (i.e., with no instances)

while Statement (1) forcesi1 to become an instance ofB as well. There is also a deeper

issue regarding the order of execution for the different tuples of values of the variables

that satisfy theFROMandWHEREclauses.

Let us revisit the above example and introduce a new classCand a second graph node

with URI i2 that is an instance of classB. Let us now consider the following statement:

INSERT C(X)

DELETE C(Y)

FROM A{X}, B{Y}

WHERE X != Y

The set of tuples satisfying theFROMandWHEREclause are(i1,i2),(i2,i1) .

One can now imagine the following possible orders of execution for theINSERT-DELETE

block:

INSERT C(i1); INSERT C(i2); DELETE C(i2); DELETE C(i1)
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INSERT C(i1); DELETE C(i2); INSERT C(i2); DELETE C(i1)

INSERT C(i2); DELETE C(i1); INSERT C(i1); DELETE C(i2)

These different orders result indifferent statesof the graph. In the first case classC ends

up with no instances, in the second case it has instancei2 , and in the third case it has

instancei1 .

Similar issues arise withREPLACEeven in the presence of asingleREPLACEclause

with variables. Let us revisit the previous Example and consider the following statement:

REPLACE B(X <- Y)

FROM A{X}, C{Y}

WHERE X != Y

We have already stated that the REPLACE statement is not equivalent to a sequence of

a DELETE and anINSERT , but it can be viewed as a two-step operation consisting

of an erasure and an addition procedure. It is easy to see that, althoughit is an erasure

instead of aDELETE, the problem of the danger for non-determinism remains.

The solution is to split eachREPLACEstatement to an erasure operation followed

by an addition operation and execute all removals corresponding to the variable bindings

first, followed by the corresponding insertions. The side-effects of primitive REPLACE

statements as defined in section 2 are also taken into account. The removal aswell as

the addition operation differ in the case ofREPLACE for instances and the case of

REPLACE for instance classification, but as far as it concerns derminism, the problems

that have to be solved are the same. A detailed explanation on how the removaland the

addition procedure is implemented in each of these cases ofREPLACE can be found in

section 4. The core idea is that the implementation ofREPLACE as an erasure and an

addition can be handled in the same way as a RUL statement with aDELETE and an

INSERT .

It is possible to givenon-deterministicsemantics to RUL that allow all of the above

executions. In this caseA must be allowed to be arelation i.e., a subset ofUpdate ×

Graph × Graph. Non-deterministic update languages have been considered in the past
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for other data models e.g., by Abiteboul and Vianu for the relational model [5, 6]. It is a

design choice of RUL to avoid non-determinism.

We solve the dilemma of examples such as the above by adopting a semantics similar

to the one proposed in [20] where a procedural language with afor each iterator for

deductive database updates is proposed. LetU1, . . . , Un beINSERT or DELETE. The se-

mantics of updates with multipleINSERT or DELETEclauses with variables is captured

by the following:

A(U1 c1(x1) · · ·Un cn(xn) FROMb(x1, . . . , xn) WHEREf(x1, . . . , xn), D) =

A(U1 c1(i
1
1
); · · · ; U1 c1(i

k
1
); · · · ; Un cn(i1n); · · · ; Un cn(ikn), D)

wherei1
1
, . . . , i1n, . . . , ik

1
, . . . , ikn are URIs such that

E(SELECTx1, . . . , xn FROMb(x1, . . . , xn) WHEREf(x1, . . . , xn), D) =

{(i1
1
, . . . , i1n), . . . , (ik

1
, . . . , ikn)}.

In other words, theFROMandWHEREclauses are evaluated first to compute a set of valid

bindings. Then, each one of theINSERT or DELETEstatements is executed in turn forall

elements of the set of bindings. The semantics can be given similarly if multiple classor

property predicates are allowed in theINSERT or DELETEclauses. Since update clauses

with multiple predicates are trivially translated into sequences of update statements with

a single predicate then our semantics cover this case as well.

3.2 The semantics of knowledge base updates

The update operations for knowledge bases have different semantics whenever the world

described by the base is static or dynamic. A static world does not change and the update

operations are used when we are obtaining new information about it or loseconfidence in

some beliefs. A dynamic world can evolve and the update operations consistof bringing

the knowledge base up to date whenever a change occurs.

The fundamental update operations in static world are called ”revision” and”contrac-

tion”, while in a dynamic world they are called ”update” and ”erasure” ( [16]). ”Revision”
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and ”update” are operations that modify the knowledge base by adding a sentence, while

”contraction” and ”erasure” are used to remove a sentence. When using the operations

that deal with a static world, the world itself does not change, but our perception of the

world does. Thus, ”revision” and ”contraction” are used when some new information

about the real world has been disclosed, forcing us to change our conceptualization of the

world in order to represent it in a more accurate manner. But this is not the only change

possible, because the real world might change as well. In this case, the knowledge base

should be adapted to the new reality. The semantics of this kind of change is quite dif-

ferent, and are captured by ”update” and ”erasure”. ”Update” is similar to ”revision” (it

refers to addition of information) while erasure is similar to contraction (it refers to re-

moval of information). However, they both apply when the world dynamically changes,

which makes them substantially different from their static counterparts.

We notice that there is no exact mapping between the above update operations and the

RUL operations we propose ( [10]). The reason for this lack of mappingbetween these

two sets of operations lies on a fundamental difference underlying their definition: the

two approaches reflect a different viewpoint on how a change shouldbe interpreted and

handled, which renders them incomparable.

Knowledge base update operations are fact-centered (as opposed to modification-

centered): a new fact represents a certain need for the evolution of ontology. The ontology

engineer (or some automatic sensor or similar device) should identify the type of the new

fact, i.e., whether it changed the real world or not and whether it added knowledge or

added uncertainty by casting doubt on some existing knowledge (removal of knowledge).

These two facts constitute the change. This change is then fed into the systemwhich

should identify the actual modifications to perform upon the ontology to address the new

fact and perform these modifications automatically. In RUL we are not interested in the

fact itself that initiated the change. Rather, we are interested on the actual modifications

that should be physically performed upon the ontology in response to this new fact. A

belief change system would identify the new fact and decide on the modifications that

should be performed upon the ontology, but the modification itself would be performed
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by a low-level tool like RUL.

This analysis shows that the two approaches are not directly comparable,as they

are based on a different paradigm. As a result, the comparison of the results of RUL

(modification-centered approach) with the results of a tool based on some belief change

technique (fact-centered approach) would not make much sense. Instead, it is interesting

to explore the usefulness of RUL in the design of a belief change management system.

We will use the world of figure 3.1 as an example. In this world,John is an adult and

has a child,Marry, who is happy. If we add the sentence ”Marry is unhappy”, then

the sentence ”Marry is Happy” has to be reconsidered.

Person

hasChild

hasChild

Adult Kid Happy Unhappy

John Marry

Figure 3.1:An example of a knowledge base description represented as graph.

An ”update” or ”revision” operation that adds the sentence ”Marry is unhappy”

would probably remove the sentence ”Marry is Happy”. This effect is captured by the

semantics of RUL REPLACE classification:

REPLACE Happy <- Unhappy (&Marry)

Now, let us use the operation for adding the sentence ”Marry is a kid”. The addition

of that sentence might not affect the other sentences of the model, because the classes
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Happy andKid are not disjoint. Therefore, the semantics of this operation are captured

by RUL INSERT:

INSERT Kid(&Marry)

If the case of adding the sentence ”Marry is Unhappy”, it is possible that the property

instancehasChild is removed. This effect is captured by a RUL DELETE for property

instances.

As another example, a ”contraction” operation for the sentence ”Marry is Happy”

could be captured by the semantics of REPLACE classification:

REPLACE Happy <- Unhappy (&Marry)

whilefor ”Johnisaperson” by the semantics of a DELETE:

DELETE Person(&John)

In the later case, the propertyhasChild will be also removed, as a side effect of the RUL

operation, which could probably be consistent with the semantics of the knowledge base

update operation.

In general, the semantics of knowledge base updates cannot be described with se-

quences of RUL operations, but a high level knowledge base update language can rely on

the low level update operations provided by RUL, in the same sense as RUL operations

rely on database update operations.

The description of multiple knowledge base update operations, e.g. operations for

sets of sentences ( [11]) with RUL, is a challenging issue. Knowledge base update op-

erations do not directly correspond to RUL ones. The designer of the knowledge base

update language should be able to group couples of update operations and sentences by

the sequence of RUL statement they are implementing with (e.g. group together the sen-

tences of an ”erasure” that can be described with a RUL DELETE). Then, the high level

knowledge update language can take advantage of the set-oriented semantics of RUL. The

details of such an approach are out of the scope of this thesis, and can be considered future

work.
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3.3 The semantics of other RDFs update languages

The update languages proposed so far are MEL ( [22]), rdfDB query language ( [12]) and,

of course, RUL ( [19]).

The most interesting proposal is MEL that has been developed in the framework of

QEL and it is based on Datalog. MEL primitive commands consist of a statement specifi-

cation and an optional query constraint, declared as a QEL query. The granularity of the

operations follows a sub-graph centered approach but consistency of updates with respect

to the employed RDFS schemata is not respected. Furthermore, no formal semantics or

detailed behavior description have been given for MEL. More precisely, MEL supports

three update operations, namely insert, delete and update, which modify RDFtriplets of

the form ”subject-property-object”.

One difference between MEL and RUL is that in our approach the class instances

can be handled independently to the property instances, while in MEL an update state-

ment must be specified as a triplet update. For example, if a resource&RULpaper

must be inserted as an instance of the classPaper, in MEL this could be achieved by

inserting the triplet ”Paper : &RulPaper - P - O”, whereP andO are variables de-

noting properties and the resources this properties end to, respectively, but there must be

some query constraints for variablesP andO, so that the resource&RULPaper is in-

serted as a subject of some property instances. According to the language description,

the resource&RULPaper cannot be inserted without being related with some property

instance, which functionality is supported in RUL.

Because of the ability of RUL to handle resources independently, the semantics of the

MEL insert, delete and update operations is different to the semantics of RULINSERT,

DELETE and REPLACE operations respectively. We can compare the semantics of MEL

with the semantics of RUL update operations for property instances.

The MEL insert and RUL INSERT-for-property-instances operationsshare the same

semantics only if the subject and the object of the inserted property instanceexist in the

description base. In RUL INSERT operation, the insertion of a property instance is not



56 CHAPTER 3. THE SEMANTICS OF RUL

allowed in that case, while in MEL this is a way to insert new class instances.

The MEL delete and RUL DELETE-for-property-instances operations differ because

of the RUL DELETE side effects. More precisely, the deleted instance in MEL is erased

so that it is not an instance of the specified property or any ancestor of it.We have seen that

in RUL DELETE we usually erase only the classification link that ends to the property

and we insert a new classification link from the instance to the closest ancestor of the

property.

The MEL update and RUL REPLACE-for-property-instances operations differ in the

same way that MEL insert and RUL INSERT-for-property instances differ. It is possible

to insert new resources in the description base by using the MEL update operation, while

in RUL REPLACE this is prohibited. We don’Wt know if the side effects of RULRE-

PLACE operation are also side effects of MEL update, as the exact semantics of the MEL

operations are not described.

In general, RUL is expressively more powerful than MEL. Apart fromthe differences

and limitation described above, MEL does not support something similar to the RUL

REPLACE classification operation. MEL and RUL share the same notion of safety in

set-oriented update statements, but we do not know if MEL semantics is deterministic, as

this issue has not been studied. Therefore, we cannot compare the set-oriented semantics

of the languages.

The rdfDB Query Language supports SQL-like updates (insert and delete) by follow-

ing a statement-centered approach and does not integrate smoothly with the query lan-

guage. In fact, the update operations can affect only specific statementswithout variables

and thus their execution semantics is trivial.

3.4 Semantics of database update languages

Update languages on structured data are presented in this section. The expressive power

and determinism are the features of update languages we are interested in.An update lan-

guage provides update operations so that an update operation over a database instance will

result to a modified database instance. Intuitively, an update language canbe modeled as a
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mapping from a database instance to another. More formally, given an input schemaR and

an output schemaS, an update language is a subset ofinstanceOf(R)XinstanceOf(S).

Note that an update language that modifies only the data of a description base(like RUL)

can be a subset ofinstanceOf(R)XinstanceOf(R).

Abitebul and Vianu ( [6]) give a formal definition of the update operation,with re-

spect to the deterministic features of it. They state that a non-deterministic update fromR

to S is a subset ofinstanceOf(R)XinstanceOf(S) which is recursively enumerable,

and C-generic for some finite C. A finitely non-deterministic update fromR to S is a

non-deterministic updater such that for each instanceI over R, the set(J |(I, J) ∈ t)

is finite. A deterministic update (fromR to S) is a mapping frominstanceOf(R) to

instanceOf(S) which is partially recursive, and C-generic for some finite C. Our defini-

tion is a simplified explanation of this formal one.

Let R andS be database schemas, and let C be a finite set of constants.

Definition 3: ( [25]) A mappingq from inst(R) to inst(S) is C-generic if and only if

for each database instanceI overR and each permutationρ of the set of constants that is

the identity on C,ρ((q)I)) = q(ρ(I)). When C is empty, we simply say that the query is

generic.2

Genericity states that the query is insenitive to renaming of the constants in the database

(using the permutationρ). It uses only the relationships among constants provided by the

database and is independent of any other information about the constants. The set C spec-

ifies the exceptional constants named explicitely in the query. These cannotbe renamed

without changing the effect of the query.

The core characteristic of an update language is its expressive power.The concept of

expressive power has been defined and analyzed in the literature ( [25], [6], [20], [18])

and depends on the functionality of the update language as well as on if the language is

deterministic.

In the following we deal with database update languages. A database update language

provides modifications on the data of a database with a specific schema. We donot deal

with languages that modify the schema or perform updates independent to the database
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schema.

3.4.1 The family of database update languages

An update operationopR(t1, t2, ...) on a relationR, modifies the relationR according

to the values stored in the tuplest1, t2, .... A primitive update operation is an operation

where the tuplest1, t2, ... are constant values. The tuplest1, t2, etc. are of typeR.

A very primitive update language is LST ( [18]) supporting the following syntax:

stmt := stmt; stmt

| insertR(t)

| deleteR(t)

whereinsertR(t) means ”insert the tuple t in relation R” anddeleteR(t) stands for

”remove any tuple t from the relation R”. The absence of an iteration construct is the

distinguishing feature of this language.

A language with an iteration construct is SdetTL ( [6], [18]). It is obviousthat iteration

means support for non-primitive updates.

stmt := stmt; stmt

| insertR(t)

| deleteR(t)

| eraseR

| while x : Q(x) do stmt

The difference betweendelete anderase is that the former removes the tuplet from

the relationR, while the later erases the whole relationR. The erase functionality in

SdetTL is nessecary because it cannot be expressed otherwise, as we explain in the next

paragraphs.

The semantics of the while construct is not trivial. HereQ(x) is a query in some query

language andx a variable binding (or a set of variable bindings). For everyx satisfying
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Q, the statementstmt is executed as a primitive operation. When thestmt statement

has been executed for all values bound tox, the resulting database state is the union of

the effect of each atomicstmt execution. The procedure is repeated again on the new

database state, until there are no values ofx satisfyingQ.

In detail, lett1, t2, ... be the result of the queryQ. Let stmt be a sequence of prim-

itive update statements so thatstmtR(t1) results to a database stateR1, stmtR(t2) to a

database stateR2, etc. Note that in this context, eachstmt is executed over the initial

database stateR, and not over any intermediate states. The result of a while construct is

the parallel execution of the following statements:stmtR(t1), stmtR(t2), ... . The initial

database is now modified to a new database stateR′ given by the union of each separate

state:

R′ ← R1 ∪R2 ∪ ...

Q is evaluated again, overR′. If the result of the execution ofQ is not an empty set,

the procedure is repeated, resulting to a new database stateR′′, etc.

Another interesting update language is WL ( [20]), with the following syntax:

stmt := stmt; stmt

| insertR(a)

| deleteR(a)

| replaceR(a, c)

| if Q then stmt

| foreach x : Q(x) do stmt

Again,Q is a query in some query language andx a set of variable bindings, but the

semantics offoreach is different from the one of thewhile construct in SdetTL. Ifstmt

is an atomic operation, then for each value bound tox, thestmt is executed. Eachstmt

execution affects the database state modified by the previous one.

If stmt is a sequence of atomic updatesstmt1; stmt2; ..., then for each value bound

to x, stmt1 is executed, affecting the state of the database. Afterstmt1 has been executed

for all values assigned tox, stmt2 is executed over the modified database for the same
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values. Thenstmt3 follows, and so on. Under this light, theif construct is just a special

case offoreach ( [18]).

3.4.2 Comparison of the semantics of the iteration constructs

Thee two iteration constructs presented previously have different semantics. Iteration

constructs are important, because they can extent an update language to take benefit of the

expressiveness of a query language. Therefore, an update language relies on the iteration

constructs in order to provide non-primitive, set-oriented updates.

A more formal and descriptive definition for the update operations: LetIS be an

instance of the database schemaS, R a relation in that schema andt1, t2, ... some valid

tuples ofR. An update operationop(IS , R, t1, t2, ...) is a subset of{IS}×instances(S),

whereinstances(S) is the set of database instances overS.

To begin with, in thewhile construct, the queryQ is the condition of the iteration, so

it might be evaluated more than one times (one per iteration step). This construct can be

viewed as a two-level iteration: an iteration based on the query condition andan iteration

over the values satisfying the query. In the first-level iteration, each time, the query is

evaluated over the current database state. In theforeach construct, the query is evaluated

only once and the iteration occurs only on the retrieved values. The meaningof the foreach

construct is that the query is used as a filter for the values ofx, rather than a condition that

must hold. What’s more, the query is evaluated only over the initial, input database state,

rather than the intermediate, modified states produced by the atomic updates.

A general example might help to illustrate the above:

(1) while x : Q(x) stmtR

(2) foreach x : Q(x) stmtR

Let I0 be the initial database state,tI01, tI02, ...tI0n the result of the evaluation ofQ

overI0, andR a relation described in the database schema.

(1) In thewhile case, the resulting database instance is the following:

I1 = stmt(I0, R, tI01) ∪ stmt(I0, R, tI02) ∪ ... The next step is to evaluateQ over
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I ′, resulting the following set of tuples:tI11, tI12, .... The new database state:

I2 = stmt(I1, R, tI11) ∪ stmt(I1, R, tI12) ∪ ...

The procedure is repeated until there is a database stateIm for which Q returns an

empty set.

(2) In theforeach case, the resulting database instance is the following:

I1 = stmt( stmt( stmt(I0, R, tI01), R, tI02)...), R, tI0n)

The meaning of the above formula is that thestmt statement fortI02 operates over

the database instance produced as a result of thestmt statement fortI01.

In the example above it is clear that, in thewhile case, each atomic statement pro-

duced by the iteration is executed only on the initial database state, while in theforeach

case, each atomic update operates over the result of the previous one. If the statement in

the body of the iteration expression is not a single primitive operation, but a sequence of

primitives and/or non-primitive ones operations, then the order of that sequence does not

matter in case of thewhile construct, but it is meaningful in the case offoreach.

For example:

(1) while x : Q(x) stmt1R; stmt2R

(2) foreach x : Q(x) stmt1R; stmt2R

stmt1 andstmt2 affect the same relationR (although this is not important in this

context). Let’s take a snapshot from the execution of the above iterated statements, while

they modify the database stateI using the tuplet1 as input:

(1) I ′ = stmt1(I, R, t1) ∪ stmt2(I, R, t1)

(2) I ′ = stmt2(stmt1(I, R, t1), R, t1)

Somewhere in the process,stmt1 modifiesR based ont1 (e.g. deletest1 from R)

andstmt2 operates onR based ont1 as well. In (1),stmt1 andstmt2 are executed in

parallel and over the initial state ofR. In (2),stmt1 changesR so thatstmt2 operates on

a modifiedR.

Now lets consider the following iteration expressions, where the order ofstmt1 and
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stmt2 is reversed:

(3) while x : Q(x) stmt2R; stmt1R

(4) foreach x : Q(x) stmt2R; stmt1R

The expression (3) is equivalent to (1), while the expression (4) is notequivalent to

(2), as the order of execution does matter in case offoreach. To illustrate this, let’s take

the same snapshot from the execution of (3) and (4):

(3) I ′ = stmt1(I, R, t1) ∪ stmt2(I, R, t1)

(4) I ′ = stmt1(stmt2(I, R, t1), R, t1)

In (2), stmt1 operates overI, while stmt2 operates over the result ofstmt1. In (4),

stmt2 operates overI andstmt1 on the result ofstmt2.

3.4.3 Expressive power

Definitionof expressive power for update languages ( [18]): A database update language

L1 is more expressive than a database update language L2 if L1 can express a superset of

the mappings expressible in L2. More formally, letS be a database schema,instances(S)

be the set of database instances overS anduL1, uL2 ∈ instances(S)× instances(S) be

the sets of all mappings expressible in database udpate langues L1 and L2 respectively,

then L1 is more expressive that L2 if and only ifuL2 ⊂ uL1. We say that L1 is as

expressive as L2 ifuL2 ⊆ uL1 anduL2 ⊆ uL1.

There are cases of languages that cannot be compared in terms of expressive power.

More formaly, if there is a subsetu′

L1
⊆ uL1 and a subsetu′

L2
⊆ uL1 so thatu′

L1
6⊆

uL2 andu′

L2
6⊆ uL1, then the update languages L1 and L2 are expressivily incomparable

to each other, which means that each language can express a set of mappings that other

cannot.

We have already seen than in order to provide non-primitive updates, an update lan-

guage relies on a query one. The selection of the query language can affect the expressive

power of the update language. More precisely, the expressive powerof an update lan-
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guage depends on two factors:

- the semantics of the supported update operations

- the power of the underlying query language.

An update language can be notified asUQ, whereU is a set of update semantics and

Q a query language. For example,WLSPJ is WL with a Select-Project-Join conjuctive

query language. The various classes of update languages of that form and the expressive

relation between them is illustrated in figure (3.2). The expressive power of an update

language, e.g.WL, may change according to the underlying querying language, for ex-

ample,WL based ofFixpoint (WLFO) is more powerful thatWL based on conjuctive

SPJ (WLSPJ ).

WLc= SdetTLc

WLfp= SdetTLfo= SdetTLsd= SdetTLfp

WLsd= WLd

WLfo= WLspj SdetTLspj= SdetTLd

Figure 3.2:Classification of database update languages [18]

RUL is based on RQL, which is anSPJ query language with transitive closures on

subsumption relationships on classes an properties. We are interested inWLSPJ and

SdetTLSPJ , because these are the more expressive families of update languages that use
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anSPJ underlying query language, as shown in fingure (3.2). Unfortunately,WLSPJ

andSdetTLSPJ are incomparable in terms of their expressive power. RUL is based on

WLSPJ , because its semantics is more suitable as it is analysed later.

In particular, both languages support a primitiveinsert anddelete operation, but the

semantics of these operations differ, if put in an iteration construct. An iterated insert

operation inSdetTL is the union of the atomicinserts and this is equivalent to an iterated

insert operation inWL. For example, a sequence ofinsertR(t1), insertR(t2) will

result to a modified relationR that will contain botht1 and t2 tuples. This result will

be the same inWL andSdetTL languages.

The different behavior is exhibited in the case of the delete operation. In specific,

the iterated delete operation inSdetTL is the union of the effect of each atomic delete.

Under this light, a set of delete operations over the same relation will result to an output

database instance that is the same as the initial one, therefore the operation will have no

effect ( [18]). More precisely, if the effect of an atomic delete operation deleteR(t1) is the

removal of a tuplet1 fromR and the effect ofdeleteR(t2) is the removal of a tuplet2 from

R, the effect of the operation is the union of the results:R← {R− {t1}} ∪ {R− {t2}},

according to the semantics ofwhile. The union of an output instance of relation ofR

where a tuplet1 has been removed, and another output instance or relationR where

another tuplet2 has been removed is the initial instance ofR where no tuples have been

removed. ThereforeR remains unchanged.

On the contrary,WL can be used to describe a destructive iterated delete opera-

tion. A WL deleteR(t1) will remove tuplet1 from R and thedeleteR(t2) operation

following, will also removet2 from the modified relation. At the end of the iteration,

all deleted tuples will be missing and the database instance will have been modified:

R ← {R − {{t1} ∪ {t2}}. In general, an iteratedinsert operation is equivalent in

both languages, while the iterateddelete operation is meaningful only inWL. SdetTL

introduces theerase construct to deal with this problem. Theerase construct is used to

empty a relation. Anerase followed by aninsert can be used to simulate an iterated

delete operation equivalent to the one that is expressible inWL. In every step of the iter-
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ation, the temporary output relation is the result of anerase that empties the relation and

the insertion of some tuple that should not be removed. Therefore,

WL: foreach x : Q(x) deleteR(x)

is equivalent to

SdetTL:eraseR while x : Q′(Q(x)) insertR(x)

whereQ′(x) = R ∧ ¬Q(x) : a query that returns the tuples ofR which do not satisfyQ.

Therefore, SdetTL does not lack the desired feature of an iterated delete operation, as

long asQ′ can be expressed in the underlying query language for everyQ, which is not

the case withSPJ . In general,SdetTL andWL are comparable only if the underlying

language supportsQ′, in which caseSdetTL is more powerful thatWL ( [18]). It is a

fact that we cannot expressQ′ in SPJ , andSdetTLSPJ cannot provide an iterateddelete

construct for removing specific tuples from a relation.

RUL is based onWL because the removal of values is a desired effect. More pre-

cisely, the ability to remove tuples from certain relations in the database, according to the

values retrieved by a query, is needed to implement the effect of RUL DELETE and RE-

PLACE operations, as well as the side effects of the RUL INSERT operation. A detailed

explanation of how the iterated database delete operation is used to implement RUL oper-

ations is given in chapter 4 The main advantage ofSdetTL, through, is that its semantics

is always deterministic. We will deal with the non-deterministic aspects ofWL expres-

sions later and we will present the deterministic semantics ofWL, as it has been studied

in the literature ( [20], [18]).

3.4.4 Determinism

An update language is deterministic if it supports only deterministic update operations.

An update operationop(IS , R, t1, t2, ...) ⊂ {IS} × instances(S) is deterministic if for

each initial database stateIS over each database schemaS, there is exactly one resulting

database instanceI ′S so thatop(IS , R, t1, t2, ...) ⊆ {IS} × {I
′

S}.

It is trivial that primitive database update operations are always deterministic, as they

deal with the addition or removal of a single tuple in a single relation. TheSdetTL
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erase operation is, also, obviously deterministic, because the result of an eraseoperation

is always the same (an empty relation). Therefore, only the iteration constructs might

entail the danger of non-determinism.

It has been shown that the iteration construct ofSdetTL is always deterministic ( [6]).

In specific,while produces a set of two-level iteration steps, as described in the previous

section. At the first level the query is deterministically evaluated over the initialdatabase.

At the second level, each inner operation is executed over the initial database, producing

a temporary database state. After all steps are completed for one query evaluation, the

new overall database state is the union of the separate states produced byeach two-level

operation. The process is repeated with another query evaluation over the new database

state, until the query/condition is not satisfied.

The result of each second-level iteration is the union of the result of the produced

atomic operations over the initial relations. The result of this union is always the same,

regardless the order of execution of the produced intermediate operations. As for the first-

level iteration, it can be viewed as a state transition. Each transition is deterministically

depended on the previous one, as long as the underlying query language is also determin-

istic. The union operation after the second-level iteration is the key featurethat ensured

the determinism of the state transitions.

We need to show howWL could also be implemented with deterministic semantics.

The core idea is to define properly the semantics of theforeach construct. We have seen

that in WL, each produced update operation is affected by the result of the operation

executed before. Because of this characteristic, the order of execution of the statements is

important, if the semantics ofWL must be deterministic.

For example the following statements will have a different effect if executedover the

same initial database stateI:

Database stateI = R{0, 1, 2, 3}

A database with one relation R that contains four tuples.
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QueryQ : ans(x)← R(x) ∩ (x > 2)

A query that returns the values of R that are greater than 2

The result of the query isQ(x) = {{3}}

The two statements:

(1) foreach x : Q(x) insertR(x); deleteR(x)

(2) foreach x : Q(x) deleteR(x); insertR(x)

Statement (1) produces the following update operations:

insertR({3}); deleteR({3});

so that at the end of the execution of (1), the database state will be

I ′ = R{0, 1, 2}

Statement (2) produces the following update operations:

deleteR({3}); insertR({3});

so that after the execution of (2) the database state is I” = I, because the deleted tuple

{3} is inserted afterwards.

A foreach produces a sequence of atomic statements, one for each value set retrieved

by the query. Although a deterministic query language always returns the same result set

for the same query over the same database state, the order of the results in the set can vary.

In other words, the same queryQ might returns always the same set of results each time

it is evaluated over the same database instance, but the order of the resultsin the set may

change from time to time. If this order is used to produce a sequence of update statements,

then determinism is in lost.

There are two possible semantics for the foreach construct that containsmore than

one inner statements, like the one following:
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foreach x : Q(x) stmt1; stmt2; stmt3

Option 1: all the inner statements are executed in order for each value retrieved byQ.

According to the first option we executestmt1, stmt2 andstmt3 (in that order) for the

first value retrieved byQ, then repeat for the next value, etc.

Option 2: each inner statement is executed for all values ofQ before any execution of

the statement following. According to this option we executestmt1 for all values ofQ,

thenstmt2 for the same values, and finallystmt3.

If the retrieved results ofQ are{x1, x2, x3}, then the following are the sequences of

update operations produced in each case:

Option 1:

stmt1(x1); stmt2(x1); stmt3(x1);

stmt1(x2); stmt2(x2); stmt3(x2);

stmt1(x3); stmt2(x3); stmt3(x3);

Option 2:

stmt1(x1); stmt1(x2); stmt1(x3);

stmt2(x1); stmt2(x2); stmt2(x3);

stmt3(x1); stmt3(x2); stmt3(x3);

We will show that the semantics described in option 2 is deterministic, while the

semantics in option 1 is not.

First, let’s prove that the semantics described in option 2 is deterministic:

It is enough to show that if a statementstmt is deterministic, then a sequence of

statementsstmt(x1); stmt(x2); ... is equivalent to any reordering of this sequence. The

stmt statement can either be aninsert, adelete or aforeach.

If it is an insert, then it is trivial that any order of the sameinsert operations will

have the same effect (valuesx1, x2, etc. will be inserted). The same holds for any ordering
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of the same sequence ofdelete operations (valuesx1, x2, etc. will be erased).

We need to show that the order of a sequence offoreach statements is also determin-

istic, when these statements are produced from anotherforeach statement. This is the

case of nestedforeach. It has been shown, though, that any nested foreach statement can

be flatten ( [20]) by pushing the query of each nested foreach statementup to the query of

the first level statement:

foreach x : Q1(x) do

stmt1(x); foreach y : Q2(x, y) do stmt2(y)

→

foreach x, y : Q1(x) ∩Q2(x, y) do stmt1(x); stmt2(y)

Therefore, the semantics of option 2 is deterministic, because each foreach statement

produces sequences of statements of the same type (namelyinsert or delete) grouped

together.

In order to prove that option 1 semantics is not deterministic ( [20]), we can use an

example, as the following:

Database stateI : R1{1, 2, 3}, R2{2, 3, 4}

The QueryQ : ans(x, y)← R1(x) ∩R2(y)

This is the foreach statement:

foreach x, y : Q(x, y) do insertR1(x); deleteR1(y)

Case 1:Q returns the results in that order:{(2, 2), (3, 3), (2, 3), (3, 2)} producing the

causing the following operation sequence:

insertR1(2); deleteR1(2) state of R1:R1{1, 3}

insertR1(3); deleteR1(3) state of R1:R1{(1})

insertR1(2); deleteR1(3) state of R1:R1{(1, 2})

insertR1(3); deleteR1(2) state of R1:R1{(1, 3})

resulting this database stateI ′: R1{1, 3}, R2{2, 3, 4}.



70 CHAPTER 3. THE SEMANTICS OF RUL

Case 2:Q returns the results in that order:{(2, 2), (3, 3), (3, 2), (2, 3)}

insertR1(2); deleteR1(2) state of R1:R1{(1, 3})

insertR1(3); deleteR1(3) state of R1:R1{(1})

insertR1(3); deleteR1(2) state of R1:R1{(1, 3})

insertR1(2); deleteR1(3) state of R1:R1{(1, 2})

resulting this database stateI ′: R1{1, 2}, R2{2, 3, 4}.

In these two cases, the resulting database is different. It is not necessary to continue

with examples presenting cases of non-determinism, but it is interesting that in this ex-

ample there are even more possible resulting database states, for different orders of the

query result set. More cases of non determinism have been investigated inthe literature

( [6], [20], [18]).

WL with deterministic semantics in theforeach construct is possible, if we chose

option 2. The semantics ofinsert and delete is obviously deterministic.WL in its

original form contains areplaceR(x, y) construct, which can be also viewed as a complex

operation consisting of adelete and aninsert:

replaceR(x, y) := deleteR(x); insertR(y)

In case of aforeach containing a replace construct, we have to deal with replace as

if it actually was a separatedelete followed by a separateinsert statement, otherwise the

replace statement won’t be deterministic. Areplace operation may either be determinis-

tic or primitive, but not both.

The later observation is important for specifying the exact semantics of thereplace

statement. In fact, an iteratedreplace is translated as an iteratedinsert followed by an

iterated delete. For example, if aforeach statementreplaces the values(1, 2, 3) of a

relation with the values(2, 3, 4) respectively, then the order of execution is the following:

values1, 2 and3 are removed from the relation and then values2, 3 and4 are inserted.

Compared to the previous declarative update languages for relational databases, RUL

has been designed for updating RDF/s description. For example, the semantics ofWLSPJ
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is not sufficient to describe a language that affectsRDF data, because it lacks the ability

to directly deal with concepts derived from the RDF/S model, like IsA relationships of

class/property inheritance. In section 4, we will useWLSPJ to describe the implementa-

tion of RUL over various database representations, where we deal with similar problems

while implementing the deterministic semantics of RUL. As there are many analogies in

the semantics of RUL and the semantics of the previously presented databaseupdate lan-

guages, we will chose a deterministic update language to implement RUL over various

database representations of RDF/S descriptions. As we will see, the deterministic seman-

tics of RUL rely on the deterministic semantics of the chosen database update language,

but there are also some issues concerning determinism that are not directlyrelated to the

later semantics.

3.4.5 Selecting a database update language

RUL is implemented over a database udpate language. We have already seenthat the

desired feature of determinism is supported in bothWLSPJ andSdetTLSPJ . The oper-

ations of RUL can be implemented with any of the above database update languages, as

they both provide enough epxressive power and they are both deterministic.

We prefer to implement RUL withWLSPJ for performance reasons. More precisely,

the iteration operation ofSdetTL requires multiple evaluations of the same query over

different states of the underlying database instance, while inWL the query is evaluated

only once. What’s more, according to the semantics ofWL, the update operations inside

a foreach clause directly affect the database, while inSdetTL the effects are computed

and stored in a temporary place until the iteration is completed. After the completionof

the iteration inSdetTL, the temporarily stored effects have to be merged and applied

to the database instance. The performance disadvantage ofWL is that the results that

are retrieved by the query have to be stored in a temporary place. This is necessary in

order to achieve the deterministic semantics ofWL. Compared toSdetTL this is not

a disadvantage, though, as in the later there are also some information that have to be

temporarily stored. The size of the temporarily stored information inSdetTL depends on
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the size of the retrieved query results, but in SdetTL this information has to bestored as

many times as the the evaluations of the query.

Another reason for chosingWL is that its iteration semantics are similar to the set-

oriented semantics ofRUL. In RUL, the RQL query is evaluated. Then each RUL

operation is applied over the retrieved results. This is exactly what happens with the WL

udpate operations that are nested inside aforeach clause. In chapter 4, we will see how

this similarity will prove handy in implementing the set-oriented semantics ofRUL.



4
The implementation of RUL

RUL has been implemented as part of the RDF suite ( [1]). RUL implementation follows

the paradigm or the RQL implementation and the design decisions taken are, as much

as possible, compatible with the design principles of RQL. Therefore, the architecture of

RUL, presented in figure 4.1, is very similar to the one of RQL, as we show in the later. An

RUL interpreter translates the queries into SQL statements, which are then executed. The

parts of a RUL statement that can be expressed with an RQL query, are actually translated

and executed by the RQL interpreter. RDF schema and data in RDF suite are stored in

the underlying DBMS. At the moment there are three alternative database representations

( [29]) that are all supported by the RUL interpreter. The RUL to SQL translation is

affected by the selected database representation.

73
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4.1 RUL vs RQL implementation

RUL is implemented as an extension of RQL. The key components of the later area syntax

parser, a graph constructor, an RDF/s validation and, finally, an SQL statement generator

module. RUL extents its of these components to support the RUL functionality.

In RUL design, the update and the query parts of a RUL statement can be identified

and separated, as it has been presented in chapter 2. The INSERT, DELETE and RE-

PLACE parts are the heads of a RUL statement and they are the only reserved words that

do not appear in RQL. The rest of a RUL statement, namely the FROM, the WHERE and

the NAMESPACE clauses are identical to the ones appearing in RQL. It wastrivial to

modify the RQL parser to verify the syntax of RUL statements and produce a syntactical

tree.

RQL then produces a graph based on the syntax tree, by finding the relations of the

various parts of the input statement, that are represented as tree nodes and connect them

by adding extra arcs where there are relations we want to represent. Asfar as it concerns

RUL, the graph constructor module has been extended to manage the INSERT, DELETE

and REPLACE statements, and let RQL deal with the constants and variables present in

an RUL clause, as if they where part of a SELECT clause. More precisely, the INSERT,

DELETE or UPDATE clause of the statement is represented by a graph node, under which

the constants and variables related to it are hanged. In RUL, we are interested in the

identification of these variables in the rest of the statement and also to check that each

variable that appears in the head of an RUL statement, also appears in the FROM clause.

These functionalities are acquired by reusing the corresponding functionalities already

implemented in the RQL graph constructor.

In the example illustrated in figure 4.2,

DELETE Paper(X)

FROM {Y}writes{X}, {Conference}hasPC.hasChair{Y}

the head of the query isDELETE Paper(X), where Paper is a constant denoting

an RDF class andX a resource variable. The constructed graph relates the variableX
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Figure 4.1: The RUL statements are sent to the client. Parser and graph constructor

modules of RQL are extented to handle the RUL syntax. They parse it and construct a

syntax graph, that contains nodes for udpate operations. The RQL validator module is

also extended to validate the RUL parts of the statement. The validation is performed

against the underlying database. The RQL parts of the RUL statement areevaluated first

by the RQL evaluator (against the database). The update operations are, then, translated

into SQL statements and sent to the database as well. The result is sent to the RQL/RUL

client and returned to the user application in an RDF/XML form.
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of the head with theX appearing in theFROM clause. RQL graph constructor module

is more sophisticated than that, but the rest of the details of the RQL graph constructor

module do not affect RUL implementation and they are ommited because the separation

of the update and querying part of RUL statements allows the querying to be handled by

the existing RQL implementation.

;

Z Conference

hasPC

hasChair

,

.

FROM

,

Y

writes XY

DELETE
class instance

Paper X

Figure 4.2:The syntax graph constructed by RQL/RUL graph constructor for the state-

ment of the example. Some arcs connect the various apearences of the same variable in

the statement.

The next step of the interpretation of the RUL statement is the validation of the compo-

nents of the constructed graph. Here, each constant or variable hanging under the update

node is checked against the database description, by performing SQL queries and check-

ing the results. Recall that each constant or variable appearing in a RUL statement head

must be of a class, property, resource or literal type. In the example presented above, the

DELETE − class− instance statement must be followed by a class name or variable

and a class instance name or variable. For example, during the validation process, the

database is asked if there exists a ”Paper” class.

Because of the RQL architecture, it was easy to extent this module to support RUL

statements validation. As a matter of fact, all validation queries used in RUL where al-

ready implemented for the needs of RQL, so it was enough to call the corresponding

high-level validation methods when needed. For example, RUL is aware that”Paper” is

a class name, therefore it calls the method of RQL validator that checks if this name is
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stored as a class name.

The next step, the translation to SQL, is the most interesting. The variables appearing

in theFROM clause are evaluated against the database. RUL is implemented in the same

fashion as theSELECT−FROM−WHERE queries of RQL are. One reason for this

design decision is the obvious similarity of theINSERT , DELETE or REPLACE

and theSELECT clause. Both clauses appear in the head of the statement, and, mostly,

each variable appearing in any of these clauses must also appear in theFROM clause,

according to the semantics of both languages.

The other reason for this similarity is the way RQL performs theSELECT−FROM−

WHERE statements. Each variable appearing in theSELECT clause is recursively

evaluated and stored in a temporary database relation. This seems to be a slow-down

factor for RQL, but there are good reasons for this engineering choice. First of all, RQL

supports nested queries, so the storage of an evaluated query in a temporary relation is a

good solution that reduces implementation complexity. What’s more, storing the results in

intermediate relations gives the capability of joins and other operations between the results

of various (nested) queries. Another reason for this choice is that RQLqueries containing

scehma and data retrieval cannot be executed ”on the fly”, so that multiple SQL queries

have to be executed against the database for a single variable. In that case, the temporary

relation is used as a place to collect the results of its query, instead of keeping them in the

main memory.

Apart from the advantages in the implementation of RQL, RUL also stored the result

of a query statement in a temporary relation. This is due to the fact that the deterministic

semantics of RUL require the query to be executed only once and only overthe initial

database state, which means that the query results should not be affectedby the updates in

process. As we will further detail later in this chapter, this design choice has been proven

to be crucial for implementing the deterministic semantics of the language.

The evaluation module responsible for the evaluation of the variables appearing in

the FROM clause by taking into account all the filtering conditions appearing in the

WHERE clause. This evaluation is performed by the existing RQL code. For each
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variable appearing in the head of an update clause, the values retrieved by the evaluation

are stored in a temporary relation (according to a specific database schema). Then, the

execution of the update operations takes place. For each update clause,the respecting

code for an update statement is executed for the values of the temporary relation.

We could use an example to illustrate this.

DELETE Paper(X) REPLACE Author(Y<-&someAuthor)

FROM {Y}writes{X}, {Z;Conference}hasPC.hasChair{Y}

WHERE Z=&http://www.iswc05.org

The variable evaluation is presented in table 4.1.

Table 4.1:Variables X, Y and Z are evaluated, producing the following results:

X Y Z

&p1 &a1 &http : //www.iswc05.org

&p1 &a2 &http : //www.iswc05.org

&p2 &a1 &http : //www.iswc05.org

&p2 &a3 &http : //www.iswc05.org

&p3 &a4 &http : //www.iswc05.org

The corresponding temporary relation for DELETE can be found in table 4.2

Table 4.2:Temporary relation for DELETE

operation− id class− name class− instance

1 Paper &p1

1 Paper &p2

1 Paper &p3

and for REPLACE, in table 4.3

The resulting SQL queries that perform the operations depend on the database rep-

resentation used to store RDFS graphs, but for the shake of the example we can suppose
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Table 4.3:Temporary relation for REPLACE

operation− id class− name class− instance− 1 class− instance− 2

2 Paper &p1 &someAuthor

2 Paper &p2 &someAuthor

2 Paper &p3 &someAuthor

2 Paper &p4 &someAuthor
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that the instances of each class are stored in a relation named tc<Class-Name>, as shown

in table 4.4 and that the delete operation has to delete the instances from there.

Table 4.4:A possible class instance DB relation for class Paper

URI

&p1

&p2

&p3

&p4

&p5

The SQL query that performs the operation might look like this:

DELETE FROM tcPaper

WHERE tcPaper.URI = tempDELETE.Class-Instance

In fact, all operations are stored in one relation, with the columns presentedin table

4.5

Table 4.5:The temporary relation tempUpdate

operationid id1 id2 resource1a resource2a resource1b resource2b

Each of these columns is used to match the needs of each update operation, and most

operation make use of only a few of these columns. The first column,operationid, is used

to separate each update operation from each other. In the above example, DELETE was

referred with operation id 1, andREPLACE with 2. If there are more than one update

statements of the same kind (e.g. twoDELETEs), they are assigned a different operation

id. For example, the following statement

DELETE Paper(&p1), Paper(X) INSERT Paper(X)

FROM Paper{X}
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can be viewed as three update operations:

DELETE Paper(&p1)

DELETE Paper(X) FROM Paper{X}

INSERT Paper(X) FROM Paper{X}

and its one is assigned a different operation id. This means that if two updateopera-

tions share the same variable, the values retrieved for this variable are stored twice in the

temporary relations used by RUL.

The other columns of the update relation have a slightly different meaning according

to the kind of operation.INSERT class instance operation usesid1 to store the class

name andresource1a to store the corresponding class instance.INSERT property

instance operation usesid1 to store the property name,resource1a for the source of the

property instance, andresource2a for the target.

Once the variables get evaluated and stored in the temporary relation, the last step of

the evaluation module is the creation of the SQL statements that implement the update.

This is the most important part of RUL implementation and will be detailed in the sequel.

In general, the update statements benefit from the existence of the temporary relation by

bulk updating the corresponding relation of the underlying database representations. After

the variable evaluation, the produced SQL statements are depended only ontwo factors:

(a) the kind of the RUL update statement and (b) the RDF/s database representation used.

In the actual RUL implementation, as well as in RQL, it is common to store the

result of intermediate schema traversal queries in temporary relations. It isvery likely

that during the execution of the query part of a complex RUL operation, anintermediate

relation for storing schema queries might has been created by RQL, so it is reused for

storing the extra ancestors.

The result of an RUL statement is a Boolean. If the operation was executedsuccess-

fully and the preconditions described in chapter 2 hold, the result is ”true”, otherwise
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it is ”false”. The result is returned in and RDF/XML form, like the result of an RQL

statement. The difference between the result of a RUL statement and an RQLstatement is

that in RUL the result is just feedback to the user. In RQL it is the purpose of the language

to answer the query, while the purpose of a RUL statement is to modify to the database

according to the used request. What’s more, an RQL/RUL statement is always executed

in a transaction, which is handled in a different way in RUL and RQL. More precisely, in

RQL the transaction is always aborted after the execution of the statement is completer

and the results have been returned to the used. In RUL the transaction is aborted only if

at least one of the update operations has returned false. The abortion of the transaction

means that all the operations are also aborted and no effects or side effects have affected

the database. If all the update operations return true, the transaction is commited and the

database is modified.

4.2 The database representations of RDF/s

RDF schema and data in RDF Suite are stored in a (Object) Relational DBMS. The

database representation for RDF/s affects the performance of both querying and updating

process. It has been stated that the final SQL statement produced by theinterpreter is de-

pended on (a) the kind of update operation and (b) the underlying database representation.

Three representations are used in RDF Suite ( [29]). The first is calledschema-specific

representation, the second is namedschema-specific no-IsAand the last is thehybrid

representation.

4.2.1 Representation of the RDF schema

A part of the database representation is dedicated to store and preservethe schema infor-

mation. In RUL we focus on the IsA relations between classes and between properties, as

well as the domain/range types for the property members. Figure 4.3 presents the relations

of the representations that RUL is aware of.

The ”subclass” and ”subproperty” relations are used to store the classes and the prop-

erties, respectively, as well as the IsA relationships between them. For each class or prop-
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parent−id index parent−id index

subclass (class subsumption relations) subproperty (property subsumption relations)

t1000000000 (classes)

metatype class−name

t2000000000 (properties)

metatype domain−idproperty−name range−id domain−type range−type

t12 (type ids for literals)

metatype type nameDB type−id RQL type−id

only when class and/or property graph is not a tree, but a DAG

index

class_anc (non−tree class relations)

property_anc (non−tree property relations)

index

direct_arc

direct_arc

parent−id

parent−id

id

id

id

id

id

id

Figure 4.3:The subsumption relations between class and properties are stored in sub-

class and subproperty relations respectively. The class and property ids and names are

stored in t1000000000 and t2000000000 relations respectively. The relation t12 is used

for storing the various type ids used by RSSDB and RQL to represent literaltypes. The

classanc and propertyanc relations are used only if the class and/or property graph is

not a tree, but a dag, and they are similar to subclass and subproperty relations, respec-

tively.
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erty, there is a two-integer label. This label is used to describe the graph ofthe classes

and properties ( [27]). The first integer, stored in column ”id”, is a unique id produced

by post-ordering the class graph. The second number, called ”index” isthe smaller id

of the descendants of the class, or equal to the id of the class if it is a leaf. There two

numberings, one for classes and one for properties. The ”parent-id”field contains the id

of the parent class.

The relations t1000000000 and t2000000000 are used to store the details of the classes

and properties respectively. The class relation consists of a ”id” column,a ”metatype”

column and the name of the class. The t2000000000 relation contains four more fields,

two for the domain and, symmetrically, two for the range of the property, namelythe

”domain-type”, ”domain-id”, ”range-type” and ”range-class”. The ”domain-type” (re-

spectively ”range-type”) field is used to specify if the domain (range) of the property is a

class or a literal object. If it is a class, then the ”domain-id” contains the id of the class

that is the domain (similarly range) of the property, otherwise it is the literal type(e.g.

integer, character string, floating point number, date) of the property.

We have already described how the ”id” and ”index” fields comprise a unique label

for each class or property. This label is also used to describe the subsumption relations

between the various classes and properties, in the case of a tree-structured hierarchy. If

the class/property hierarchy is a Directed Acyclic Graph, the label describes only a cover

tree if the graph, which is the initial graph without some selected edges (??). The edges

removed are described in a separate relation, named ”classanc” for classes and ”prop-

erty anc” for properties. The ”id” and ”index” fields of these relations are the id and

index of a class that is a descendant of another class through a non-tree edge. The ”parent

id” is the id of this non-tree ancestor. The last field is true if the subsumption relation

between the class with id and the class with parent id is direct or false if it is impliedby

some other non-tree edge.

All three representations used in RDF Suite describe the RDF schema in the same

way. The relations presented here are only a part of the database scheme actually used,

but they are enough for implementing RUL, as they efficiently describe the class and
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property IsA relations and contain all the information needed to check the constraints of

any update operation.

4.2.2 Schema specific representation

In the schema specific representation, there is a separate relation for storing the instances

of each class or property. Each of these relations contains one column, ifit is used to store

class instances, and two columns (source and target) if it is for property instances. For

example (fig. 4.4), the instances of classAcceptedPaper are stored in a different relation

than the ones ofRejectedpaper. The instances of the classPaper are stored in another

distinct relation.

Paper

Accepted
Paper Paper

Rejected

303, 303 304, 304

305, 303

tc305

resource

resource

tc303 tc304

resource

sc
h

em
a

d
at

a

Figure 4.4: The class instances of AcceptedPaper are storedin tc304, of Rejected-

Paper in tc303 and of Paper in tc305. The relations are connected with inheritance

links, so that the tuples in tc303 or tc304 are also tuples of tc305. The couple of

numbers under the name of each class is the label of the class,namely the id and

the index.

The instance relations of classes or properties related through subsumption are also

related using the inheritance feature between relations supported by any ORDBMS. In
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our example, the class ”Paper” is a super-class of both ”Accepted Paper” and ”Rejected

Paper”, therefore the relations for the two sub-classes inherit the instance relations of the

”Paper” class. If a class instance is physically added as a tuple in the ”Accepted Paper”

instance relations, it is automatically a tuple of the ”Paper” instance relations aswell.

The relations for storing the instances of a class are named ”tc<id>”, where ”<id>”

is the id of the class of which the instances are stored. Similarly, the property relations are

named ”tp<id>”, with ”id” being the id of the corresponding property.

4.2.3 Schema specific no-IsA representation

The only difference of the schema specific no-IsA representation is thatthe inheritance

between relations is not used, and therefore this representation can be used with rela-

tional DBMSs. Applications using this representation can aquire the IsA relations be-

tween classes or properties by querying on the schema relations presented in the schema

section. In order to avoid duplication of information, each resource is stored only in the

instance relation of the class of which it is a direct instance. For example, ”&RULpaper”

is a direct instance of ”Accepted Paper” and also a indirect instance of ”Paper”, but it is

only stored in the former.

4.2.4 Hybrid representation

The hybrid representation uses one relation for all class instances and one relation for the

property instances of the same type (fig 4.5).

These relations contain the ”id” of each class or property of which an instance is

stored. The class instance relation contains also a column for storing the class instance

URI (resource).

Properties are grouped by domain and range type. According to this type,the prop-

erty relations contain two columns for storing the source and the target of each property

instance. For example, properties with a class as domain and a floating point number as

range are stored in one relation with a ”varchar” and a ”float” attribute.
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resource

tc2000000000
source

resource resource
target

source
resource

target
string

tp9k11

tp7k7

tp7k9

source
string

target
integer

id

id id

id

Figure 4.5:The tc2000000000 is used to store the class instances. The resource attribute

is the URI of the class instance, while the id is the id of the most specific (direct)class that

this URI is instance of. The instances of the properties with a class as domainand range

are stored in tp7k7. If the domain and/or range is a literal, they are stored ina different

relation, depending on the type of the literal. For example, the instances of the properties

with class domain and string range are stored in tp7k9. The instances of theproperties

with string domain and integer range are stored in tp9k11. There probablyexist other

relations for property instances as well, depending on the schema definitionof the stored

namespace.
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4.3 Translating from RUL to WL

RUL is used to update an RDF description, but it is implemented over a database, so

the RUL statements have to be translated in a database update language. We willuse

WL to describe the database update operations used by RUL, from the point of view

of a graph representation. In chapter 3 we described the formal semantics of RUL in a

declarative way. We used these formal semantics to describe what are thepreconditions,

the effects and the side effects of its RUL operation. In this section we will describe the

RUL operations with WL in a more precedural way. The WL translations are used to

describe how these preconditions, effects and side effects are implementedover specific,

real world database representations. Obviously, the formal semantic of chapter 3 are

consistent with the semantics derived by the WL translations given here.

At the schema level, there is the class graph and the property graph. In thedata level,

there are nodes, representing resources, and property instances that are arcs between the

nodes. There are also arcs connecting the nodes and the property arcs with the schema.

The RUL operations have already been described with this model in mind, in chapter 2. In

this chapter we will show the arc modification procedures that are used by RUL, as they

are expressed in WL operating over any of the database representations of RDF Suite.

Later on we will give more detailed translations of the RUL atomic operations in WL.

The relations that are involved in RUL translations, including the temporary relation, of

the retrieved results, have already been analyzed in section 4.2.

a. Schema-specific representation and Schema specific no-IsA representation

- Removing an instantiation link between a classC with id cid and a resource&r:

deletetc<cid>(&r)

- Adding an instantiation link between a classC with id cid and a resource&r:

inserttc<cid>(&r)

- Removing a property instance ofP with id pid between a resource&r1 and a resource

&r2:

deletetp<pid>(&r1, &r2)
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- Adding a property instance ofP with id pid between a resource&r1 and a resource

&r2:

inserttp<pid>(&r1, &r2)

b. Hybrid representation - Removing an instantiation link between a classC with id

cid and a resource&r:

deletetc2000000000(&r, cid)

- Adding an instantiation link between a classC with id cid and a resource&r:

inserttc2000000000(&r, cid)

- Removing a property instance ofP with id pid between a resource&r1 and a resource

&r2:

deletetp7k7(&r1, &r2, pid)

- Adding a property instance ofP with id pid between a resource&r1 and a resource

&r2: inserttp7k7(&r1, &r2, pid)

If the propertyP has a literal as domain and/or range, then instead of the relation

tp7k7, we use the relation that is used to store this kind of properties. For example,for

properties with a class as domain and an integer as a range, we usetp7k11, because 11 is

the code meaning ”integer” in this database representation.

The above operations add or remove instantiation links between classes andclass

instances or properties and property instances. However the RUL semantics of these

operations include various side-effects. The RUL semantics is implemented byusing WL

foreach and combining it with the corresponding RQL query translations.

For example, the INSERT class instance RUL operation is implemented by deleting

any classification links between the ancestors of the specified class and thespecified in-

stance, and then inserting a new one between the instance and the class. This effects

where also described in 3.1.1, where the classification links are deleted. Inthis formal

description we suppose that if a resource is direct or indirect instance of a class, there is

classification link between the class and the resource, while in the actual database rep-
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resentations we store only the direct classification links. In the formal desctiption of the

operation, the side effect of the operation, which is the insertion of the classification links

between the resource and ancestors of classC, is not needed. In the schema-specific

representation the operation is implemented like this:

INSERT C(&r) in WL (schema-specific):

foreach superCid : ans(superCid)← subClassOf(id, superCid), id = cid

{ deletetc<superCid>(&r) }

inserttc<cid>(&r)

wherecid is the id of classC, &r is the inserted instance andsubClassOf is a

query returning the ids of class pairs sharing the ancestor-descendantrelationship. The

subClassOf query for class instances:

subClassOf(id, superId)←t1000000000(id, K1, K2, K3),

subclass(superId, P, superIndex),

superId > id, superIndex ≤ id

In case the class graph is a DAG instead of a tree, the non-tree descendant-ancestor

relationships are given by the follwing query:

nonTree(id, superId)← class anc(id, superId, index, direct flag)

In the following translations, we omit the detailed explanation of the queries used in

the foreach clauses.

INSERT C(&r) in WL (schema-specific no-IsA):

foreach superCid : ans(superCid)← subClassOf(id, superCid), id = cid

{ deletetc<superCid>(&r) }

inserttc<cid>(&r)

foreach subId : ans(subId)← subClassOf(subId, id), id = cid

{ deletetc<cid>(&r) }
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The last foreach is used to eliminate duplications, in the case of&r being an instance

of some sub-class ofC.

INSERT C(&r) in WL (Hybrid):

foreach superCid : ans(superCid)← subClassOf(id, superCid), id = cid

{ deletetc2000000000(&r, superCid) }

inserttc2000000000(&r, cid)

foreach subId : ans(subId)← subClassOf(subId, id), id = cid

{ deletetc2000000000(&r, cid) }

The INSERT property is similar, with the exception that the class instances and/or lit-

erals (&r1, and&r2) forming the inserted property instance are checked for domain/range

type consistency with the propertyP . If the domain/range check shows invalid values, the

operation is aborted. Details about when and why a RUL operation might be aborted will

be presented in section 4.4.

INSERT P(&r1, &r2) in WL (schema-specific no-IsA):

foreach superP id : ans(superP id)← subPropertyOf(id, superP id), id = pid

{ deletetp<superP id>(&r1, &r2) }

inserttp<pid>(&r1, &r2)

INSERT P(&r1, &r2) in WL (schema-specific no-IsA):

foreach superP id : ans(superP id)← subPropertyOf(id, superP id), id = pid

{ deletetp<superP id>(&r1, &r2) }

inserttp<pid>(&r1, &r2)

foreach subId : ans(subId)← subPropertyOf(subId, id), id = pid

{ deletetp<pid>(&r1, &r2) }

INSERT P(&r1, &r2) in WL (Hybrid):

foreach superP id : ans(superP id)← subPropertyOf(id, superP id), id = pid

{ deletetp2000000000(&r1, &r2, superP id) }
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inserttp2000000000(&r1, &r2, pid)

foreach subId : ans(subId)← subPropertyOf(subId, id), id = pid

{ deletetp2000000000(&r1, &r2, pid) }

The DELETE class instance operation side effects are the insertion of the deleted

value as instances of the immediate super-classes ofC. HereRUL−INSERT (cid,&r)

is a method executing a RUL INSERT operation, as explained previously. Weomit here

the check for the existence of&r as an instance ofC, which can lead to the abortion of

the operation.

DELETE C(&r) in WL (schema-specific):

deletetc<cid>(&r)

foreach superCid : ans(superCid)← subClassOf(id, superCid), id = cid

{ RUL− INSERT (superCid,&r) }

DELETE C(&r) in WL (schema-specific no IsA):

deletetc<cid>(&r)

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{ deletetc<subCid>(&r) }

foreach superCid : ans(superCid)← subClassOf(id, superCid), id = cid

{ RUL− INSERT (superCid,&r) }

The first foreach ensures that&r is removed from all subclasses ofC. In this rep-

resentation this has to be done by traversing through the schema, while in the schema-

specific with IsA representation the deletion from the sub-class relations is ensured by the

inheritance feature supported by the underlying ORDBMS.

DELETE C(&r) in WL (Hybrid):

deletetc2000000000(&r, cid)

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{ deletetc2000000000(&r, subCid) }
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foreach superCid : ans(superCid)← subClassOf(id, superCid), id = cid

{ RUL− INSERT (superCid,&r) }

If the class graph is not a tree but a DAG, we also execute an RUL INSERToperation

for the classes that are ancestors of the sub-classes ofC that have&r as an instance.

These ancestors are not nessecarily related through subsumption withC. This is achieved

by executing in advance a statement that stores the required classes in a temporary relation

T :

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{

foreach anc : ans(anc)← subClassOf(id, anc),

tc < subCid > (&r), id = subCid

{ insertT (anc) }

}

foreach anc : ans(anc)← subClassOf(anc, id), T (anc), id = cid

{ deleteT (anc) }

The lastforeach eliminates from the temporary relation the ancestors of sub-classes

of C that are also sub-classes ofC, so that they won’t be affected by the rest of the

operation.

The above procedure retrieves in advance the classes that should keep &r as an in-

stance, after the DELETE operation is completed, in the case of a DAG class hierarchy.

The last foreach of the main DELETE translation is, now, modified in the following form:

foreach superCid : ans(superCid)← T (superCid)

{ RUL− INSERT (superCid,&r) }

If exist property instances emanating from or ending to the deleted class instance,

they are also affected. If the property’s domain or range still contains thedeleted class

as an instance, the property is not modified. Otherwise, there must be a super-property
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that has a domain/range with&r as an instance. If this is the case, a RUL-DELETE is

executed over the sub-property through which the modified property is accessible. The

result of this DELETE property instance operation is either the re-instantionof the original

instance as an instance of a super-property with compatible domain/range, or the removal

of the property instance.

The DELETE property instance operation is implemented in a very similar way.

Again, we omit the, now familiar, domain/range checks as well as the check for the ex-

istence of the instance. We also omit the handling of the case when the property graph

is not a tree. It is exactly the same as in the case of DELETE class instances with the

obvious difference that the schema queries traverse through the property graph.

DELETE P(&r1, &r2) in WL (schema-specific no IsA):

deletetp<pid>(&r1, &r2)

foreach superP id : ans(superP id)← subPropertyOf(id, superP id), id = pid

{ RUL− INSERT (superP id, &r1, &r2) }

DELETE P(&r1, &r2) in WL (schema-specific no IsA):

deletetp<pid>(&r1, &r2)

foreach subP id : ans(subP id)← subPropertyOf(subP id, id), id = pid

{ deletetp<subP id>(&r1, &r2) }

foreach superP id : ans(superP id)← subPropertyOf(id, superP id), id = pid

{ RUL− INSERT (superP id, &r1, &r2) }

DELETE P(&r1, &r2) in WL (schema-specific no IsA):

deletetp2000000000(&r1, &r2, pid)

foreach subP id : ans(subP id)← subPropertyOf(subP id, id), id = pid

{ deletetp2000000000(&r1, &r2, pid) }

foreach superP id : ans(superP id)← subPropertyOf(id, superP id), id = pid

{ RUL− INSERT (superP id, &r1, &r2) }

The REPLACE class instance operation is more complicated, as it can be viewedas

a sequence of two operations (we call them erasure and addition). The main effect of the
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first is to erase the instance&r while the main effect of the second is to insert the new

instance&r′. Another complication with REPLACE is that it has to replace not only the

direct instances ofC, but also the instances&r of the sub-classes ofC, if any. The new

values should be inserted exactly where the old, removed ones where, meaning that the

new values should be instances of the sub-class ofC that the old values where instances

of. This affects the instances superclasses ofC (or even some other classes in the case of

a non-tree class graph), as the&r instances of these super-classes must be removed (side

effect).

Property instances emanating from or ending to&r, are modified so that they now

emanate from or end at&r′.

REPLACE C(&r← &r’) (Schema-specific):

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{

foreach id : ans(superCid)← tc < id > (id, &r), id = subCid

{ insertT (id) }

}

deletetc<cid>(&r)

RUL− INSERT (cid,&r′)

foreach subId : ans(subId)← T (subId)

{ RUL− INSERT (subId, &r′) }

foreach P : ans(P )← emanatingFrom(&r, P )

{

foreach target : ans(target)← tp < P > (source, target), source = &r

{ replacetp<P>((&r, target), (&r′, target)) }

}

foreach P : ans(P )← endingTo(&r, P )

{

foreach source : ans(target)← tp < P > (source, target), target = &r

{ replacetp<P>((source,&r), (source,&r′)) }
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}

REPLACE C(&r← &r’) (Schema-specific no IsA):

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{

foreach id : ans(superCid)← tc < id > (id, &r), id = subCid

{

insertT (id)

deletetc<id>(&r)

}

}

deletetc<cid>(&r)

RUL− INSERT (cid,&r′)

foreach subId : ans(subId)← T (subId)

{ RUL− INSERT (subId, &r′) }

foreach P : ans(P )← emanatingFrom(&r, P )

{

foreach target : ans(target)← tp < P > (source, target), source = &r

{ replacetp<P>((&r, target), (&r′, target)) }

}

foreach P : ans(P )← endingTo(&r, P )

{

foreach source : ans(target)← tp < P > (source, target), target = &r

{ replacetp<P>((source,&r), (source,&r′)) }

}

REPLACE C(&r← &r’) (Hybrid):

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{
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foreach id : ans(superCid)← tc < id > (id, &r), id = subCid

{

insertT (id)

deletetc2000000000(&r, id)

}

}

deletetc2000000000(&r, cid)

RUL− INSERT (cid,&r′)

foreach subId : ans(subId)← T (subId)

{ RUL− INSERT (subId, &r′) }

foreach P : ans(P )← emanatingFrom(&r, P )

{

foreach target : ans(target)← tp < P > (source, target), source = &r

{ replacetp2000000000((&r, target, P ), (&r′, target, P )) }

}

foreach P : ans(P )← endingTo(&r, P )

{

foreach source : ans(target)← tp < P > (source, target), target = &r

{ replacetp2000000000((source,&r, P ), (source,&r′, P )) }}

An idea would be to implement RUL-REPLACE by using the WL replace operation

and then applying the side effect by deleting the values of the instances of the ancestors

from the corresponding database relations. Strangely enough, this approach is in every

way equivalent to the one presented above. A careful observation would reveal that the

combination of foreach, insert and delete statements used above, is actuallythe explana-

tion of WL deterministic replace given in chapter 3.

The REPLACE property instance operation is, as well, symmetrical to the one for

class instances. All values are checked for consistency with the domain and range of the

propertyP , but this part is omitted here.
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REPLACE P(&s← &s’, &t ← &t’) (Schema-specific):

foreach subP id : ans(subP id)← subPropertyOf(subP id, id), id = pid

{

foreach id : ans(superP id)← tp < id > (id, &s,&t), id = subCid

{ insertT (id) }

}

deletetp<pid>(&s,&t)

RUL− INSERT (pid, &s′, &t′)

foreach subId : ans(subId)← T (subId)

{ RUL− INSERT (subId, &s′, &t′) }

REPLACE P(&s← &s’, &t ¡- &t’) (Schema-specific no IsA):

foreach subP id : ans(subP id)← subPropertyOf(subP id, id), id = pid

{

foreach id : ans(superP id)← tp < d > (id, &s,&t), id = subP id

{

insertT (id)

deletetp<id>(&s,&t)

}

}

deletetp<cid>(&s,&t)

RUL− INSERT (cid,&s′, &t′)

foreach subId : ans(subId)← T (subId)

{ RUL− INSERT (subId, &s′, &t′) }

REPLACE P(&s← &s’, &t ← &t’) (Hybrid):

foreach subP id : ans(subP id)← subPropertyOf(subP id, id), id = pid

{

foreach id : ans(superP id)← tp < d > (id, &s,&t), id = subP id

{



4.3. TRANSLATING FROM RUL TO WL 99

insertT (id)

deletetc2000000000(&s,&t, id)

}

}

deletetc2000000000(&s,&t, cid)

RUL− INSERT (cid,&s′, &t′)

foreach subId : ans(subId)← T (subId)

{ RUL− INSERT (subId, &s′, &t′) }

Finally, the REPLACE classification operation deletes the classification arc between

the classC and resource&r and replaces it with a new one betweenC ′ and&r. Under

the light of the database representations used in RDF Suite, this means that thevalue

representing the class instance should be moved from the relation storing theinstances

of C to the relation storing the instances ofC ′. The sub-classes ofC will also lose this

instance. The super-classes ofC will lose this instance if it is accessible to them only

throughC: If there is a super-class ofC that has&r as an instance through any other

class irrelevant toC, then&r will continue to be instance of this super-class. Again, if

&r is not an instance ofC, the operation is aborted, but that part is omitted here.

REPLACE C← C’(&r) (schema specific):

deletetc<cid>(&r)

RUL− INSERT (cid′, &r)

In the case of a non-tree class graph, the operation for the schema specific represen-

tation is like the one for schema-specific with no IsA.

REPLACE C← C’(&r) (schema specific no IsA):

deletetc<cid>(&r)

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{ deletetc<subCid>(&r) }

RUL− INSERT (cid′, &r)
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REPLACE C← C’(&r) (Hybrid):

deletetc2000000000(&r, cid)

foreach subCid : ans(subCid)← subClassOf(subCid, id), id = cid

{ deletetc2000000000(&r, subCid) }

RUL− INSERT (cid′, &r)

The existence of property instances emanating from or ending to&r usually causes

the operation to be aborted. An exception is when these property instancescan also be

instances of&r after the execution of the operation. This happens whenC is irrelevant to

the domain/range, orC ′ is a subclass of the domain/range of the property. The details of

the property check are omitted here, because these property instances are never modified

by this kind of REPLACE operation.

The REPLACE classification for properties is very similar:

REPLACE P← P’(&s, &t) (schema specific):deletetp<pid>(&s,&t)

RUL− INSERT (pid′, &s,&t)

In the case of a non-tree class graph, the operation for schema specificrepresentation

is like the one for schema-specific with no IsA.

REPLACE P← P’(&s, &t) (schema specific no IsA):

deletetp<pid>(&s,&t)

foreach subP id : ans(subP id)← subPropertyOf(subP id, id), id = pid

{ deletetp<subP id>(&s,&t) }

RUL− INSERT (pid′, &s,&t)

REPLACE P← P’(&r) (Hybrid):

deletetp2000000000(&r, &s, cid)

foreach subP id : ans(subP id)← subPropertyOf(subP id, id), id = pid

{ deletetp2000000000(&r, subP id) }

RUL− INSERT (pid′, &r, &s)
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4.4 Safety

The concept of safety is related to the presence of variables in the RUL statements and the

ability to insert a new value, meaning a value that does not exist in the initial description

base. We have already note that any variable appearing in the head of anupdate statement

must also appear in the FROM clause. Therefore, a statement with variablesbut no FROM

clause is invalid. The only way to insert new values in the description base is through

constant values in the update statement head.

The following statement is invalid, because variableX does not apear in the FROM

clause:

MODIFY keyword(X, "IR" <- "Information Retrieval")

RUL interpreter produces a syntax error in the case of an unsafe statement. In some

cases, though, it is possible to handle unsafe variables like wildcards. Inthe previous

example, we know thatX must be evaluated with instances of the domain of the property

keyword (which is the classPaper). Therefore, we could treat the statement like the

following:

MODIFY keyword(X, "IR" <- "Information Retrieval")

FROM Paper{X}

In the current implementation of RUL, this feature is not supported and every variable

must apear in the FROM clause.

For example, the following statement inserts a new value&RULpaper in the class

Paper:

INSERT Paper(&RULpaper)

A constant variable in the head is not necessarily a new value for the description base.

For example, if the&RULpaper is already an instance of the classPaper, the above

statement is still valid. Another case is when we use the constants to explicitly specify an
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already existing value, e.g. when multi-classifying a class instance (&RULpaper might

already be an instance of a class with no subsumption relation with the classPaper).

A constant appearing in a RUL statement is a class name, a property name, a class

instance or a literal value. If it is a class or property name, the constant cannot be a new

value, as RUL does not support schema updates. For example, the classPaper should

exist in the loaded RDF schema, otherwise the statement execution will returnfalse.

The only new values that can be inserted are class instances. Obviously,a new property

instance is represented as a couple of class instances and/or literal values.

RUL implementation treats the insertion of new and existing values in the same way.

It is always checked if the value is already an instance of the specified class or property.

If it is not, it is inserted in the corresponding database relation. In case thisis an already

existing value of another class, then the side effects of the operation remove any duplicates

from the database. For example:

INSERT AcceptedPaper(&RULpaper)

If &RULpaper is already an instance ofPaper, which is a super-class ofAcceptedPaper,

RUL performs the following WL operations in the schema-specific representations:

deletetc<Paper−id>(&RULpaper)

inserttc<AcceptedPaper−id>(&RULpaper)

or the following WL operations in the hybrid representation:

deletetc2000000000(&RULpaper, Paper − id)

inserttc2000000000(&RULpaper, AcceptedPaper − id)

If &RULpaper is not an instance of any super-class ofAcceptedPaper (or of any

class, for that mater), the delete operations do not modify the database, but they are exe-

cuted nevertheless. This is not a performance drawback, because theWL delete operations

do not cost more than the necessary queries used to determine if there areany ancestors

of AcceptedPaper with &RULpaper as an instance.
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In the case of RUL DELETE operations, the constant values should not be new, but

the user is allowed to use new values here as well. A user may ask to DELETE anon-

existing class or property instance, if, for instance, it is unknown if this instance exists in

the database.

Again, RUL treats new and existing instances in the same manner. It checks ifthis is

an instance of the specified class, and if it is not, the operation does not gofurther. If this

instance exists under a class or property not related to the class or property specified in

the RUL update statement, it does not affect the operation.

The RUL DELETE operation effect is to remove the tuple representing the specified

instance from the corresponding database relation. The side effect following, inserts the

instance under the immediate ancestors of the specified class or property. Therefore,

there is the danger of inserting an instance that did not originally existed in theinitial

description.

For example, if&RULPaper does not exist in the description base at all, then the

following operation:

DELETE AcceptedPaper(&RULPaper)

produces the following WL operations in the schema-specific representation:

deletetc<AcceptedPaper−id>(&RULPaper)

inserttc<Paper>(&RULPaper)

the first WL operation has no effect, but the second inserts a new value as an instance

of Paper.

RUL is safeguarded from this undesired effect by aborting the DELETEoperation if

the deleted value is not an instance of the specified class (in our example, if&RULPaper

is not an instance ofAcceptedPaper), so that the side effect operation is never executed.

It should be stressed out that the danger of inserting an undesired value as a side effect

of the DELETE operation entails even when there are only variables in the class instance

fields of the operation. For example:
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DELETE AcceptedPaper(X) FROM RejectedPaper(X)

Obviously, there will be some instances ofRejectedPaper that are not instances

of AcceptedPaper (actually, we expect this condition to hold for all of them), and the

operation will be aborted. Note that if there are some instances common to both classes,

they will not be removed. A RUL statement is either executed in the whole, or not at all.

In the case of RUL REPLACE, some constant values may be new and some maynot.

Recall that the structure of the REPLACE operation for class instances is the following:

REPLACE ClassName(oldInstance <- newInstance)

REPLACE is translated as a removal ofoldInstance, followed by the insertion of the

newInstance. For example:

REPLACE Paper(&RULPaper <- &RULFinalEdition)

If &RULPaper is an instance ofAcceptedPaper (a sub-class ofPaper), then this

is the WL translation for the schema-specific representation:

deletetc<AcceptedPaper−id>(&RULPaper)

inserttc<AcceptedPaper−id>(&RULFinalEdition)

But if it is not an instance ofPaper at all, the operation is aborted.

The abortion of a REPLACE operation happens for exactly the same reasons as in the

abortion of a DELETE operation, which is to safeguard the description base from new

values that should not be inserted. ThenewInstance value, on the other hand, can be a

completely new value. On the above example, it is not necessary for RULFinalEdition to

exist. In fact, this is the most expected case for the REPLACE operation: thereplacement

of an existing instance with a new one. Obviously, a REPLACE operation canbe aborted

even if there are no constants, if the variable evaluation results to the removal of non-

existing values.

The REPLACE for property instances:
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REPLACE PropertyName(oldSource<-newSource, oldTarget< -newTarget)

TheoldSource andoldTarget values cannot be new, and the(oldSource, newSource)

couple should be an instance ofPropertyName, otherwise the operation is aborted. The

newSource andnewTarget values can be new, as long as they are of the correspond-

ing literal type or instances of the domain/range of the property (which is a REPLACE

property precondition).

Therefore, the INSERT and REPLACE operations can be used to insertnew values to

the description base.

The REPLACE classification operation does not accept any new values,and like the

other kinds of REPLACE operations, it is aborted if the modified class or property instance

is not an instance of the specified class. Recall that:

REPLACE oldClass<-newClass(&classInstance)

If classInstance is not an instance ofoldClass or, even worse, does not exist at all,

the operation is aborted for the same safety reasons as the DELETE and theother kinds

of REPLACE operations.

4.5 Determinism

It is a design choice for RUL to have deterministic semantics. By the notion of deter-

minism we mean that the application of the same RUL statement over the same initial

database instance will always results in the same output database instance.

We have already seen how atomic update statements are expressed in WL, and why

WL is deterministic. We have to show that RUL is still deterministic in the case of vari-

ables included in the statement as well as when the statement contains any arbitrary se-

quence of RUL operations, some of them with variables.

RUL implementation can be described with WL, therefore any sequence of WLstate-

ments produced by RUL is a deterministic program, because WL is deterministic. It is

enough to show that a RUL statement produces always the same WL program if applied

over the same database instance.
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Recall that the query part of RUL is evaluated before any update operations are fired.

The retrieved results are put in a temporary relation to be used during the update part of

the statement evaluation. The order of these results, for the same update operation, is not

always the same for the same query. This is not a drawback of RQL neitherdoes it mean

that RQL is not deterministic. The results of an RQL query over the same description

base will always be the same, but not necessarily their order.

Another observation we have to recall from the previous chapters is thatWL entails

the danger of non-determinism if an insert and a delete over the same relationare executed

as part of the same foreach clause. This problem was resolved by specifying the semantics

of foreach so that its operation is executed for all retrieved results, andthe next operation

is executed for the same results afterwards. The same idea is used in RUL implementation:

If there are multiple insert, delete and/or modify WL operations in the translation of some

RUL statement, they are never mixed up (especialy if it is possible to operate over the

same relation).

All the WL translations provided in the corresponding chapter are consistent to that

principle. The only part of these translations that needs clarification is the following kind

of WL statement:

foreach X : Q(X)

{ RUL− INSERT (C, X) }

We have seen that RUL-INSERT might contain a number of WL insert and delete op-

erations. For that reason, the insert and delete operations contained aspart of the traslation

of RUL-INSERT are grouped and executed together, so that the aboveWL translation is

equivalent to the following RUL statement:

INSERT C(X) FROM Q(X)

which is translated as follows:

INSERT C(X) FROM Q(X) in WL (schema-specific):
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foreach superCid, r : ans(superCid)← subClassOf(id, superCid), id = cid,

tempUpdate(oid, id, K1, r, K2, K3, K4),

oid = opId

{ deletetc<superCid>(r) }

foreach r : ans(r)← tempUpdate(oid, id, K1, r, K2, K3, K4),

oid = opId, id = cid

{ inserttc<cid>(r) }

whereopId is the operation id andcid the class id.

All atomic update translations are modified in a similar manner for the case of instance

variables in the RUL statements. The modification is that each WL insert, delete orreplace

operation is wrapped with a foreach clause of the following form:

foreach r1, ... : ans(r1, ...)← tempUpdate(oid, id, K1, r1, ...), oid = opId, id = cid

We now have to deal with statements containing schema variables, like the following:

INSERT $C(X) FROM Q($C, X)

The tempUpdate temporary relation is again used here, so that schema and data vari-

ables can be deal by RUL in a uniform way. The tempUpdate relation containstwo

columns for storing schema variables. It is trivial to modify the translation so that schema

variables are taken into account:

INSERT C(X) FROM Q(X) in WL (schema-specific):

foreach superCid, r, cid : ans(superCid)← subClassOf(cid, superCid), oid = opId,

tempUpdate(oid, cid, K1, r, K2, K3, K4),

{ deletetc<superCid>(r) }

foreach r, cid : ans(r, cid)← tempUpdate(oid, cid, K1, r, K2, K3, K4), oid = opId

{ inserttc<cid>(r) }
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All update operation translations can be modified in the same fashion, by wrapping

each WL insert, or delete operation with a foreach clause of the following form:

foreach id1, ..., r1, ... : ans(id1, ..., r1, ...)←

tempUpdate(oid, id1, ..., r1, ...), oid = opId, id = cid

To conclude, the only danger for the deterministic semantics of RUL is that the pro-

duced database update translation might not always be the same for the sameRUL state-

ment over the same initial description. This problem is resolved by executing all database

insert operations over the same relation together and separated by the database delete op-

erations. To achieve this, we make use of the tempUpdate temporary relation, where the

values of the evaluated variables are stored.

4.6 Translating to SQL

It is not difficult to retrieve SQL statements from the WL translations providedin section

4.3. The insert and delete statements of WL are equivalent to the insert anddelete clauses

of SQL. The SQL MODIFY clause, though, has different semantics than the replace of

WL. This is another reason for our WL translations avoiding the WL replacestatement.

SQL INSERT clause can be combined with a SELECT-FROM-WHERE SQL state-

ment, e.g.

INSERT tc<cid> SELECT TU.resource1

FROM tempUpdate TU WHERE TU.oid = <opId>

while the SQL DELETE clause can be followed by FROM-WHERE clauses, e.g.:

DELETE FROM tc<cid> WHERE resource=tempUpdate.resource1 AND

tempUpdate.oid = <opId> AND tempUpdate.id1 IN (...)

We can express all of our WL translations as long as SQL can express SPJ queries.

In reality, we prefer to follow a hybrid approach, by implementing some of the iteration

functionality with PL/SQL methods loaded into the database. PL/SQL is the procedural

extension of SQL99.
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Both schema specific representations store the various instances in one relation per

class or property. Therefore, updates and queries have to be performed over database

relations the names of which are produced at run-time. E.g., when the class or property

is part of the iteration, the name of the relation affected by an update must be produced

dynamically by the program. In the following example

foreach r, cid : ans(r, cid)← tempUpdate(oid, cid, K1, r, K2, K3, K4),

oid = opId

{ inserttc<cid>(r) }

the tc < cid > relation changes according to the values bound tocid. PL/SQL can

use the query in theforeach clause as an iteration condition and the corresponding SQL

update statement as the body of the iteration. This functionality can also be achieved in

the main memory of the RUL application, but the PL/SQL functions are faster. What’s

more, RUL can take advantage of future improvements in the implementation of PL/SQL

by various DBMS.

If the database relations that are affected or queried are known in advance, we avoid

the PL/SQL functions, as the foreach clauses can be expressed in a declarative style. A

foreach condition containing an update statement, like this:

foreach x : Q(x) { insertT (x) }

is expressed with the condition pushed in the SQL statement:

INSERT INTO T SFW(X)

where SFW(X) is a SELECT-FROM-WHERE query equivalent toQ(X)

Similarly, a foreach containing a WL delete:

foreach x : Q(x) { deleteT (x) }

is translated as
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DELETE FROM T WHERE tuples-of-T IN SFW(X)

Finally, a foreach clause containing more than one update statements is handled by

storing the results of the foreach condition in advance, and executing the corresponding

SQL update statements over the stored results. The semantics of foreach is perfectly com-

patible when following this approach, in all cases. What’s more, we preferthis technique

for performance reasons, because we avoid to repeat costly join operation. For example:

foreach x, y : Q(x, y) d{ insertT1(x), deleteT2(y) }

is translated as:

INSERT INTO temporaryTable SFW(x, y)

INSERT INTO T1 SELECT x FROM temporaryTable

DELETE FROM T2 WHERE tuples-of-T2 IN (

SELECT y FROM temporaryTable

)

If the SELECT-FROM-WHERE query is the translation of an RQL schema query, the

RQL methods that execute this query are called and the result is stored in onedatabase

relation used by RQL for that purpose. RUL makes use of this relation. If the SELECT-

FROM-WHERE is not a schema-only query, the results are stored in the already existing

tempUpdate relation, so that we avoid the creation of an unspecified number of temporary

relations.

Each RUL statement is handled in one SQL transaction. In RQL, each RQL statement

is also handled as one SQL transaction which is aborted after the completion ofthe query.

In RUL we need the updates to actually affect the database, so if the statement is valid and

the preconditions of the operations hold, we commit the transaction. If the preconditions

do not hold, though, it is aborted. When the RUL statement is successfuly executed and

the transaction is going to be committed, all temporary relations are dropped.
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4.7 Optimizations

The RUL operations are implemented as a combination of main memory operations,

queries against the database and database update operations. When optimizing RUL, we

adopt the techniques used in RQL. In addition, we optimize the translation fromWL to

SQL whenever possible, we limit the number of temporary relations created and erased

and reduce the number of SQL update statements produced during translation.

4.7.1 Minimizing the use of main memory operations

The main memory operations are used (a) to produce the various SQL statements (for

querying or modifying) and (b) to implement the WL foreach clauses that arenot express-

ible in SQL. For example, in order to erase a resource from being instanceof a class,

in schema-specific with no-IsA we have to traverse through the subclasses of that class.

This is implementing by iterating in the set of subclasses in main memory. In each step

of the iteration, an SQL DELETE statement is produced. No optimization techniques are

used in this part of RUL operations. In general, we avoid main memory operation while

translating from WL to SQL, whenever the WL programs are expressible in sequences of

SQL statements.

The queries against the database take place (a) while evaluating the querypart of the

RUL statement, (b) whenever we want to check for the existence of a classor property

instance and (c) whenever we evaluate various schema queries. The query part of the RUL

statement is evaluated by RQL. In the other cases, if the query is part of a WL foreach

clause with update statements, we express it inside the SQL update statement whenever

possible. If it is not possible, the query is evaluated by the RQL code, andthe iteration

is performed by RUL in main memory. If the query is not part of a WL foreachclause,

therefore not directly related to database update operations, it is also evaluated by RQL

code. The query conditions pushed in RUL update statements are the only SQL statements

produced directly by RUL, but they are expressed exactly as they wouldin RQL, taking

benefit of all optimization techniques used there.
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When we say that a resource is an instance of class, we mean that it could be an in-

stance of some sub-class of this class, so it could be stored in the instance relation of this

sub-class instead. In schema specific with no IsA, the check of the existence of an instan-

tiation link between a class/property and an instance, requires a traversalthrough the sub-

classes/sub-properties of this class/property, and a query on every relation used to store

the instances of the sub-classes/sub-properties. For example, to checkif &RULPaper

is an instance ofPaper, we have to seek for it in the relation wherePaper instances

are stored, as well as in the relations containing the instances ofAcceptedPaper and

RejectedPaper.

In schema specific with IsA, we can avoid this traversal by seeking only in the in-

stances relations of the top class (in the example,Paper). The instance relations of the

sub-classes/sub-properties are also included in this query through inheritance.

In the hybrid representation, we observe that there is a unique relation for storing the

class instances, and a unique relation for the property instances of the same type of domain

and range. Following the example of RQL, we use the id and index codes. The traversal

through the class or property graph is replaced by a simple condition over the values of

the ids of the sub-classes. A class or propertysubC with sub − id as id is a sub-class of

another class or propertyC with cid andcindex as id and index, ifsub − id < cid and

id ≥ cindex. We use this condition when joining the relation of class/property instances

with the tempUpdate relation to check if a future instance of some class or property is

already an instance of it. Other similar checks, like domain and range checksin property

updates, are also handled this way, because they imply containment queries.

When translating to SQL, the hybrid representation allows the use of an SQL condi-

tion instead of an iteration over the retrieved class or properties. For example, the follow-

ing WL program:

INSERT C(&r) in WL (Hybrid):

//side effects

foreach superCid,&r : ans(superCid,&r)← subClassOf(cid, superCid),

tempUpdate(oid, cid, K1, &r, K2, K3, K4), oid = opId
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{ deletetc2000000000(&r, superCid) }

//effects

foreach &r, cid : ans(&r, cid)←

tempUpdate(oid, cid, K1, &r, K2, K3, K4), oid = opId

{ inserttc2000000000(&r, cid) }

//duplicate elimination

foreach subId,&r : ans(subId, &r)← subClassOf(subId, cid),

tempUpdate(oid, cid, K1, &r, K2, K3, K4), oid = opId

{ deletetc2000000000(&r, cid) }

is translated in SQL as:

//side effect

DELETE FROM tc2000000000 WHERE (resource, id) IN

SELECT inst.resource, sc.superCid FROM subclass sc, tc200 0000000 inst

WHERE (sc.id > cid AND sc.index >= cid) // subClassOf

//effects

INSERT INTO tc2000000000

SELECT res.resource1a, res.id FROM tempUpdate res

//duplicates elimination

DELETE FROM tc2000000000 WHERE (resource, id) IN

SELECT inst.resource, inst.id FROM subclass sc, tc2000000 000 inst

WHERE sc.id = res.id AND inst.resource = res.resource

AND sc.id >= inst.id sc.index >= inst.id

The last WL foreach, that does the duplicates elimination, is used to counter some of

the modifications applied by the ”effects” foreach statement. We can push thiscondition
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to the effects statement, by using the SQL NOT IN construct. The effects statement is

now expressed as:

//effects

INSERT INTO tc2000000000

SELECT res.resource1a, res.id FROM tempUpdate res

WHERE (res.resource1a, res.id) NOT IN

(//instanceOf

SELECT inst.resource, inst.id FROM subclass sc, tc2000000 000 inst

WHERE sc.id = res.id AND inst.resource = res.resource

AND sc.id >= inst.id sc.index >= inst.id

)

We have seen in the WL translations chapter that this kind of expressions that counter

the effects applied in a previous step of a program are very common. In RUL implemen-

tation all these cases are expressed by using ”NOT IN”. Obviously, this trick is applied in

the schema specific with IsA representation as well, because it is possible to express the

instanceOf query with one SQL condition.

Finally, this idea is also applied in the schema specific with no IsA, although the query

that checks the existence of an instance of a class requires seeking in many dynamically

acquired relations. In this case, there is a statement that removes in advance from the

tempUpdate relation the values that are going to be countered, so they won’tbe inserted

and removed from the instance relations later.

The optimized SQL translation is still expressively equivalent to the initial WL one,

but it performs better.

4.7.2 Optimizing according to the variables in RUL statement

head

We have seen that RUL support eight kinds of update operations: the INSERT for class in-

stances, the INSERT for property instances, the DELETE for class instances, the DELETE
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for property instances, the REPLACE for class instances, the REPLACEfor property in-

stances, the REPLACE for class classification and the REPLACE for property classifica-

tion. We group the operations of the same kind whenever they contain schemavariables

or if they contain instance and literal variables.

If an operation statement contains only constants, it is executed without making use

of the temporary relation tempUpdate. Constant operations are not affected by queries

and therefore there are no results to be stored. The WL translations of these operations

have been presented in the WL translation chapter.

If an operation statement contains constant schema names and at least oneinstance

variable, the query results are stored in the tempUpdate relation, but the schema fields of

the relation contain the same value in all tuples. Recall the elimination of some tuples

from this relation in case their schema fields contain classes or properties related through

subsumption. If RUL is aware that the operation statement contains no schemavariables,

it skips the elimination procedure.

Finally, if the operation statement contains schema variables, all techniques presented

here are applied. In this case, RUL does not distinguish between operation statements

with constant or variable instances. The retrieved results are stored in thetempUpdate

relation, even if the instance names are constant (and trerefore the same inall tuples).

The temporary relation tempUpdate was proven useful in the case of updates with schema

variables. The retrieved results stored there can be processed so thatsome values are

eliminated before the update process is fired.

We observe that an RUL INSERT operation aims to specialize class or property in-

stances by making them instances of more specific classes. RUL DELETE aimsto gener-

alize the instances by making them instances of more general classes or properties. In the

case of an update with schema variables, the retrieved classes or properties may be related

with subsumption relations. If this is the case, it might be possible that a resource is going

to be inserted as an instance of two different classes related through subsumption.

For example (fig 4.6):

INSERT $C(X) FROM Author{X}, $C.hasCommittee{Y} WHERE Y=. ..
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Event

ConferenceWorkshop

Committee

Committee

Senior

Program

hasCommittee

hasSPC

Figure 4.6: The double cycles denote the classes evaluated asC in the folowing

RUL statement: INSERT $C(X) FROM Author{X}, $C.hasCommittee{Y }

WHERE Y = ...

The tempUpdate relation will look like table 4.6.

Table 4.6:tempUpdate temporary relation

oid id1 id2 resource1a resource2a resource1b resource2b

3 Event-id null MorningMeeting null null null

3 Event-id null VisitingTheSights null null null

3 Event-id null ReviewersParty null null null

3 Event-id null Presentations null null null

3 Conference-id null MorningMeeting null null null

3 Conference-id null ReviewersParty null null null

3 Conference-id null Presentations null null null

We can see that some resources will be instances ofConference as well asEvent.

According to the semantics of RUL INSERT, this is equivalent to the insertion of the

resources only underConference, because it is a sub-class ofEvent, as shown in figure

4.6. It is a good idea to remove from the common tuples the ones containing theEvent−

id.
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In general, if we are going to execute an INSERT operation with schema variables,

we eliminate some of the tuples with equal class instance values, so that each set of class

instance values is going to be inserted only to the most specific of the related classes. The

WL program that performs the elimination:

foreach id, resource : ans(id)←

tempUpdate(oid, id, K1, resource, K2, K3, K4), oid = opId

{

foreach oid, superCid, K1, r, K2, K3, K4 : ans(superCid)←

tempUpdate(oid, superCid, K1, r, K2, K3, K4), oid = opId,

r = resource, subClassOf(id, superCid)

{ deletetempUpdate(oid, superCid, K1, r, K2, K3, K4) } }

For properties, the program is the following

foreach id, source,target : ans(id)←

tempUpdate(oid, id, K1, source, target, K3, K4), oid = opId

{

foreach oid, superCid, K1, s, t, K3, K4 : ans(superP id)←

tempUpdate(oid, superP id, K1, r, t, K3, K4), oid = opId,

s = source, t = target, subPropertyOf(id, superP id)

{ deletetempUpdate(oid, superP id, K1, s, t, K3, K4) } }

In the example, the tempUpdate relation will have the form of table 4.7 after the

completion of the elimination process.

In DELETE, we remove some tuples so that for each set of class instances, the classes

or properties that will remain in the relation are the most general of the relatedclasses or

properties.

A symetrical example is this
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Table 4.7:tempUpdate temporary relation after the elimination process for INSERT

oid id1 id2 resource1a resource2a resource1b resource2b

3 Event-id null VisitingTheSights null null null

3 Conference-id null MorningMeeting null null null

3 Conference-id null ReviewersParty null null null

3 Conference-id null Presentations null null null
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DELETE $C(X) FROM Author{X}, $C.hasCommittee{Y} WHERE Y=. ..

where the tempUpdate relation is the same as in the previous example (4.7.2). Here,

the elimination process will have the effects presented in table 4.8.

Table 4.8:tempUpdate temporary relation after the elimination process for DELETE

oid id1 id2 resource1a resource2a resource1b resource2b

3 Event-id null MorningMeeting null null null

3 Event-id null VisitingTheSights null null null

3 Event-id null ReviewersParty null null null

3 Event-id null Presentations null null null

The elimination WL program for DELETE class instances:

foreach id, resource : ans(id)←

tempUpdate(oid, id, K1, resource, K2, K3, K4), oid = opId

{

foreach oid, subCid, K1, r, K2, K3, K4 : ans(subCid)←

tempUpdate(oid, subCid, K1, r, K2, K3, K4), oid = opId,

r = resource, subClassOf(subCid, id)

{ deletetempUpdate(oid, subCid, K1, r, K2, K3, K4) } }

For properties, the program is the following

foreach id, source,target : ans(id)←

tempUpdate(oid, id, K1, source, target, K3, K4), oid = opId

{

foreach oid, subCid, K1, s, t, K3, K4 : ans(subP id)←

tempUpdate(oid, subP id, K1, r, t, K3, K4), oid = opId,

s = source, t = target, subPropertyOf(subP id, id)

{ deletetempUpdate(oid, subP id, K1, s, t, K3, K4) } }
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The REPLACE operation does make use of this elimination trick as well. Recall that

the first phase of REPLACE is the removal of the instance. The removal ofan instance of

some class is equally effective with the removal of the same instance from a super-class

of it. Also recall that in the second internal phase of the execution of a REPLACE, the

RUL INSERT operation is used, so the elimination is also applied there. What’s more, the

REPLACE statements with constant schema names in the head might produce translations

equivalent to an INSERT with a schema variable. Therefore the elimination procedure is

useful even for some RUL statements with no schema variables.



5
Conclusions and future work

An expressive declarative language for updating RDF graphs has been presented while

ensuring that insertion/deletion/replacement of nodes and arcs does notviolate the se-

mantics neither of the RDF model nor of the specific RDFS schema. More precisely, we

have carefully designed the effects and side-effects of each RUL operation to always result

in a consistent state of the updated graph. We compared the semantics of RULoperations

with other RDFS update languages, as well as with the knowledge base update operations

as well as database update languages. The architecture of RUL was thenillustrated, by

presenting the design principles, the integration with RQL and the translations toWL and

SQL.

In future work, we plan to benchmark the performance of the implemented RULop-

121
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erations for various schemata, descriptions and database representations. We should also

consider the definition of an update language for managing RDFS schema updates, based

on RUL. Further improvements can me made to the existing RUL implemenation, like the

implementation of a rollback and transaction control mechanism to both RUL and RQL.
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