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PerÈlhyh

Η εργασία αυτή αποτελεί μια σύντομη αναφορά μερικών θεμελιωδών φυσικών σταθερών. Η

ομάδα των σταθερών που περιγράφονται περιλαμβάνει τη σταθερά της λεπτής υφής (α), την

ταχυτητα του φωτός (c), τη βαρυτική σταθερά (G), καθώς επίσις και τις μάζες δύο σωμα-

τίων φορέων θεμελιωδών αλληλεπιδράσεων, συγκεκριμένα του φωτονίου και του βαρυτονίου.

Ιδιαίτερη έμφαση δίνεται στις πιο πρόσφατες και ακριβής τιμές τους, όπως αυτές προκύπτουν

μέσα από μια αλληλουχία θεωρητικών εκτιμήσεων και πειραμάτων.



Abstract

A brief review for the values of some fundamental physical constants is presented. The sets
of constants discussed here, include the fine structure constant (α), the speed of light (c),
the gravitational constant (G), as well as the masses of 2 bosons-carriers of fundamental
interactions, namely the photon and the graviton. The determination of their latest and
most accurate numerical values is studied through a chain of theoretical estimations and
experimental considerations.
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1
Introduction

To a great extent the description of physical reality is based on the form of a few ba-
sic equations and their implications. The electromagnetic phenomena are understood in
the framework of Maxwell equations. Einstein’s theory of relativity and Newton’s theory
of gravity suffice to explain the behaviour of celestial motions and astrophysical events.
While quantum mechanics and quantum field theory provide the foundations for the com-
prehension of the atomic structure and the elementary forces in Nature.

Writing the basic equations encountered in these theories, some significant quantities
have to be assumed for granted. These emerging parameters are the Fundamental Physical
Constants. Serving as conversion factors between physical units or interpreted as coupling
constants of the principal interactions, they hold a prominent position in the foundations
of Physics. Their numerical values, covering a wide range of magnitudes, are in direct
correlation with definitions and determinations of the SI units.

The role of the Fundamental Physical Constants in modern physics is of great impor-
tance as well. Their universality indicates that they unify separate domains of physics. In
fact, all of them appear in self-consistent formulae that interrelate one another. This ob-
servation has challenged theoretical physicists to investigate further ideas concerning the
ultimate unification of fundamental forces. Additionally, the precise estimation of their
values provide arguments concerning the validity of limitation principles.

The fact that the numerical values of the Fundamental Physical constants are refer-
ence points for many sciences, makes their accurate determination extremely important.
This process usually relies on the prosperous combination of theoretical calculations with
experimental measurement and innovative technological applications. What is more, it is
considered an interdisciplinary task, which involves the investigation of seemingly unre-
lated phenomena from various fields of Physics.

The sets of constants discussed here, include the fine structure constant (α), the speed
of light (c), the gravitational constant (G), as well as the masses of 2 bosons-carriers of
fundamental interactions, namely the photon and the graviton. The determination of
their latest and most accurate numerical values is studied through a chain of theoretical
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1. Introduction

estimations and experimental constraints.
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2
The Photon Mass

Light has played an exceptional role in the progress of physics through the ages. Today it is
known that the photon is the quantum of light and that its properties are in strong correla-
tion with the well known Maxwell equations. According to them the photon is thought to
be massless and moving in a steady speed c. However, physics is an experimental science,
which means that in order for the value of the photon mass to be experimentally defined
we first have to doubt this statement and to probe a massive electrodynamic theory.

2.1 Massive Electrodynamics
The Lagrangian used to describe a massive vector spin-1 field was first proposed by Proca
in 1936 in his attempt to describe the four-states of electron and positrons with a Lorentz
four-vector. Proca theory is a generalization of Maxwell electrodynamics and it can be
derived if we add a mass term in the classical QED Lagrangian:

LProca = − 1
4µ0

FαβF
αβ − jαAα +

µ2
γ

2µ0
AαA

α (2.1)

where Aα = (A, iφc ) is the massive photon vector field, Fαβ = ∂αAβ − ∂βAα the antisym-
metric field strength tensor, and jα = (J, icρ) the four-vector current density with the
symbols ρ, J and µ0 corresponding to the charge and current densities and the perme-
ability of free space respectively. From the variation of Lagrangian with respect to Aµ
follows:

∂αF
αβ + µ2

γA
β = µ0j

β ⇒ �Aβ − ∂α∂βAα + µ2
γA

β = µ0j
β (2.2)

∂β�A
β − ∂β∂α∂βAα + µ2

γ∂βA
β = µ0∂βj

β ⇒ ∂βA
β = µ0∂βj

β (2.3)

Combining 2.2 and 2.3, we obtain the equation of motion for the Proca field Aα

(�− µ2
γ)Aα = µ0j

α (2.4)

3



2. The Photon Mass

Thus, in the region of no charge or current density (jα = 0) the equation is simply
the Klein-Gordon equation of the photon with mass m related to the µγ through the
equation: µγ = mc

~ . The photon mass is usually encountered in the definition of the
Compton wavelength of photon λ = µ−1

γ and it is indicative of the exponential fall of the
“Yukawa-like” potential formed by charge q at the origin of the coordinate system:

V (r) = q

4πε0
e−µγr

r
(2.5)

Taking into account the Proca Lagrangian, one has to modify the Maxwell equations
respectively so that they include the mass term:

∇ ·B = 0 (2.6)

∇×E = −1
c

∂B
∂t

(2.7)

∇×B + µ2
γA = 1

c

∂E
∂t

+ 4π
c

J (2.8)

∇ ·E + µ2
γφ = 4πρ (2.9)

The correlation relations of the electric and magnetic field E and B with the vector and
scalar potentials:

E = −1
c

∂A
∂t
−∇ · φ , B = ∇×A (2.10)

have remained unaffected by the introduction of mass along with the continuity equation
regarding ρ and J: ∂ρ

∂t + ∇ · J = 0. In addition the formula giving the force due to the
presence of E and B on a point charge q, moving with velocity u, has not been altered:

F = q

(
E + u×B

c

)
(2.11)

Apart from the use of different Electrodynamic equations, the presence of a massive photon
has arisen several implications, which effectively contribute to the experimental determi-
nation of the value of the photon mass.

• dispersion relation. The speed of light is no longer a dispersionless constant. Actually
it is easy to see that through the relativistic equation of energy: E2 = p2c2 +m2c4,
the dispersion relation reads as1:

k2c2 = ω2 − µ2
γc

2 (2.12)

A direct consequence of the above dispersion relation is that the photon can be
regarded as a wave packet with group velocity given by the formula:

υg = dω

dk
= c

(
1−

µ2
γc

2

ω2

)− 1
2

' c
(

1 +
µ2
γc

2

2ω2

)
(2.13)

1Here the symbol c refers to the ultimate speed of light, or otherwise the speed of light with the largest
frequency"velocity of infinitely high-frequency photons".
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2.1 Massive Electrodynamics

The fact that the group velocity is a function of the frequency ω has triggered many
laboratory experiments designed to determine the photon mass. Comparing the
group velocities of two wave packets with different frequencies ω1 and ω2 :

∆υ
c

= υ2 − υ1
c

=
µ2
γ

8π2 (λ2
2 − λ2

1) +O[(µγλ1)4] (2.14)

we conclude that the velocity difference is proportional to the square wavelength
difference of the wave packets with proportionality constant the square of the pho-
ton mass. However, due to uncertainties regarding the intrinsic measurements, the
results derived from the terrestrial experiments have reached a limit m < 8 · 10−40g.
(4). Thus, the hopes lie in the region of extraterrestrial experiments which study
the time interval needed for the travel of two waves with different wavelengths λ1

and λ2 moving through the same distance L:

∆t ≡ L

υg1
− L

υg2
≈ L

8π2c
(λ2

2 − λ2
1)µ2

γ (2.15)

For astronomical distances of order of L ∼ 103ly the value of the photon mass seems
to bem < 10−44g. Other experimental attempts may not even exceed the distance of
the radius of the Earth (Kroll effect) while they study the behaviour of low-frequency
waves and thus deducing limits m < 4 · 10−39g.

• longitudinal photon. A basic property of a massless photon is that it has only two
possible polarization states (λ), both of which are transverse to the momentum four-
vector k. However, this is not valid in the case of the non-zero photon mass. Namely
the expansion of photon field is written:

Aµ(k, λ;x) = Nke
i(ωkt−k·x)εµ(k, λ) , ωk =

√
k2 +m2 (2.16)

where the four-vectors εµ(k, λ) constitute a four dimensional orthonormal system
εµ(k, λ)ε(k, λ′) = gλ,λ′ and at the same time satisfy the completeness relation

3∑
λ=0

gλλ′εµ(k, λ)εν(k, λ′) = gµν (2.17)

For the massive field, it is possible to construct a well defined four-vector ε(k, 3) =(
k
m ,

k
|k| ·

k0
m

)
which is directed along the direction of the four-momentum k. Fur-

thermore, the introduction of the mass term affects the form of the Poynting vector:

S = 1
µ0

(E×B + µ2
γφA) (2.18)

Since now the electromagnetic vector is decomposed as: A = AT + AL, where
∇ · AT = 0 and AL = ∇AL, the presence of the µγ in 2.18 causes additional

5



2. The Photon Mass

longitudinal radiation. Experimentally this effect does not seem to be that useful
since the mass of the photon is thought to be too small to be detected using this
property.

• violation of the gauge invariance. It is rather obvious that the Lagrangian 2.1 is not
invariant under a gauge transformation:

V → V ′ = V − ∂Λ
∂t

, A→ A′ = A +∇Λ (2.19)

where Λ is an arbitrary but well behaved scalar function. In fact, the gauge invari-
ance is replaced by the apparent Lorentz invariance of the Proca Lagrangian which
means that the Lorentz condition 2.3 is automatically verified. The violation of
gauge invariance is actually the main argument stated against the theory of massive
electrodynamics. Nevertheless, it can be revised since by introducing a new scalar
field Φ carrying electric charge q the gauge invariance is automatically restored and
the photon mass can be expressed in terms of q and Φ. Thus, the enhancement of
the theory by an extra field can guarantee the existence of a massive photon theory
satisfying gauge invariance.

2.2 Experimental approaches

The above implications of the existence of a massive photon played a significant role in the
experimental determination for the upper limit of the photon mass. Several studies have
been conducted regarding the longitudinal electromagnetic radiation, the deviation from
Coulomb’s law and the dispersion relation of the photon momentum. Nevertheless, the
more effective experiments are those based on extra-terrestrial mechanisms and especially
on the magnetohydrodynamic phenomena taking place in the interstellar medium.

The generally accepted and most precise value of the photon mass has been obtained

from the work of D. D. Ryutov : mγ < 1.5 · 10−53g ' 8.41 · 10−21 eV

c2 The theoretical

background of Ryutov’s consideration is the Proca electrodynamics and the modifications
which follow in the magnetohydrodynamic (MHD) equations. Thus according to (5) the
following equations, derived from 2.6-2.9, are used to describe astrophysical processes with
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2.2 Experimental approaches

characteristic phase velocities small compared to that of light (c). 1

ρ
du
dt

= −∇p+ 1
c

j×B (2.20)

∇×∇×B + B
λ2 = 4π

c
∇× j (2.21)

∇×E = −1
c

∂B
∂t

(2.22)

j = σ

(
E + u×B

c

)
(2.23)

Another factor that plays a vital role in the form of equations (2.20)–(2.23) is the scale
L of the processes as compared with the Compton wavelength λ (6). For L > λ the Proca
equations should definitely be used and in our case the second term in the left hand side
of 2.21 should be neglected.

The outcome of Ryutov’s theoretical analysis can be applied in the Solar wind problem
and the trajectories of charged particles near the orbit of Pluto. In fact, at distances larger
than 2 AU the magnetic field lines, responsible for the Solar wind, are affected by the Solar
rotation and the line-tying effect. Therefore they form a spiral like shape. For a coordinate
system with the Sun being at its origin, we can conclude that the dominant component
at the scale of Pluto’s orbit is the azimuthal one (Bφ). This observation demands, the
current density at this region derived from :

∇×∇×Bφφ̂+ Bφφ̂

λ2 = 4π
c
∇× j (2.24)

to be approximately:

j = cBφr

4πλ2 θ̂ + cBφr

4πλ2 r̂ (2.25)

Consequently there should be a force in this region :

f = j×B⇒ |f| = Bφr

4πλ2 (2.26)

which affects the trajectory of the plasma. Specifically, if this force (per unit volume) is
greater than the centrifugal one

(
fc = ρv2

r

)
, the interplanetary plasma should not move

in the radial direction. However such an observation has not been verified which leads to
the condition :

f <
ρv2

r
⇒

B2
φr

4πλ2 <
ρv2

r
(2.27)

Inserting the values of r, B,v obtained from astrophysical observation at the scale of the
Pluto’s orbit one can come up with a wavelength λ > 2 · 1013cm which corresponds to the
aforementioned mass limit.

1The following formulas are given in the CGS system which is more convenient for astrophysical
measurements.
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2. The Photon Mass

Figure 2.1: Magnetohydrodynamic phenomena at the outer edges of the helio-
sphere. - The rotation of the sun makes the magnetic field B to have an almost torodial
direction denoted by � and ⊗, with respect to the equatorial plane. Since the charged parti-
cles in this region follow trajectories displayed by the line arrows (current j), the force f = j×B
exerted on them should have the direction pointed by the boxed arrows. (6)

Except from the Ruytov’s approach some other attempts have given stricter constraints
on the photon mass. The best of them was first proposed by Chibisov (9) and later
supported by Adelberger, Dvali and Gruzinov (7) and it gives a photon mass limit of
m < 3 · 10−27eV/c2. When Proca electrodynamics is considered, their model deduces that
the average magnetic pressure exerted on the interstellar medium of our galaxy takes the
form:

pmagnetic = B2

24π −
m2A2

24π (2.28)

If one assumes that the interstellar medium is a stable system, this magnetic pressure
should be equal to the sum of the plasma pressure and the plasma kinetic energy. In the
framework of conventional electrodynamics, where the second term of the above equation
is not present, the magnitude of the standard magnetic pressure is comparable to the other
two that form the sum. Therefore, the magnitude of the m2A2

24π term should not exceed the
standard magnetic pressure, which demands that m2A2 . B2. When this constraint is
combined with the approximate form of the vector potential in galactic scales R; A ∼ B ·R,
it leads to the aforementioned upper bound. The opponents of the above idea doubt its
reliability because it makes use of a kind of virial theorem which is not applicable at the
scale of the galactic cluster, since there is no indication that the system is necessarily
isolated.

In conclusion, the research for the limits of the photon mass is in continual develop-
ment. Better understanding of extra galactic astrophysics along with the collection of
more precise astronomical data could radically contribute to the further constrain of the
photon mass value. It is reasonable though to assume that if the existence of a non zero

8



2.2 Experimental approaches

photon mass is valid, then the ultimate value of the corresponding Compton wavelength
should not exceed the length of c · T where T is the age of the universe.

9



2. The Photon Mass
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3
The graviton mass

The gravitational theory proposed by Einstein in 1916 is considered one of the most well
established theories in physics. Based on a geometric point of view, general relativity
(GR) satisfies the Equivalence principle, it contains field equations with linear relations
in the 2nd derivatives and in the limit of the weak fields, the Newton’s gravitational law
is recovered.

From the perspective of quantum field theory, there have been several attempts to
quantize gravity. In this section, the field equations of a massive graviton will be presented.
After a brief discussion about the problems encountered through the introduction of a
graviton mass, its existence will be studied from a phenomenological point of view. Finally
experimental considerations, evaluating the value of the graviton mass, will be presented.

3.1 Pauli-Fierz theory and v-DVZ
discontinuity
A vital problem of the quantization of gravity is that GR is a perturbatively non renormal-
izable theory, since the gravitational coupling constant is negative dimensional. However,
if one tries to introduce the Feynman rules for this theory, one should begin with the intro-
duction of the symmetric graviton field hµν(x), which can be considered a small fluctuation
of flat spacetime.

gµν = ηµν + hµν (3.1)

where ηµν is the Minkowski metric.
Inserting the above expansion of the metric in the expression for the Christoffel symbols

and the Ricci tensor, one obtains:

Γλµν = 1
2g

λρ
{
∂gρν
∂xµ

+ ∂gρµ
∂xν

− ∂gµν
∂xρ

}
→ Γλµν = 1

2η
λρ
{
∂hρν
∂xµ

+ ∂hρµ
∂xν

− ∂hµν
∂xρ

+ O(h2)
}
(3.2)

11



3. The graviton mass

Rµν ≡Rλµλν ≡
∂Γλµλ
∂xν

−
∂Γλµν
∂xλ

+ ΓηµλΓλνη − ΓηµνΓλλν →

Rµν = 1
2

{
�hρν + ∂2

∂xν∂xµ
hλλ −

∂2

∂xλ∂xµ
hλν −

∂2

∂xλ∂xν
hλµ + O(h2)

}
(3.3)

The Einstein field equations up to second order terms in h are:

Gµν ≡ Rµν −
1
2gµνR = −8πGTµν ⇒

�(hµν − gµνh) + ∂ν∂µh− ∂λ∂µhλν − ∂λ∂νhλµ − ηµν∂α∂βhαβ = 16πGTµν (3.4)

where Gµν is the Einstein tensor.
The first modification of massless gravity was attempted by Pauli and Fierz in 1939.

Assuming an approximately flat spacetime, they added a mass term to the Einstein field
equation:

Gµν −m2(hµν − ηµνh) = −8πGTµν (3.5)

The form of the above equation is in accordance with the “potential energy” density being
bounded from below. In fact, any other linear combination of hµν − ηµνh leads to the
appearance of an unnatural particle moving faster that light (“tachyon").

Alternatively, the modified Einstein field equations can be derived from the Pauli-
Fierz action:

S =
∫
d4x(−1

2∂λhµν∂
λhµν + ∂µhνλ∂

νhµλ−∂µhµν∂νh+ 1
2∂λh∂

λh

− 1
2m

2(hµνhµν − h2)) (3.6)

Both the action and the modified Einstein field equations correspond to the dynamics of
a spin-2 massive boson coupling to matter.

The Pauli-Fierz model as presented here seems to be contradictory to the basic idea
of general relativity, since it requires the choice of a particular spacetime metric, namely
the Minkowski metric, through which the mass effects are defined. Additionally, a careful
reader may have noticed that the above theory does not respect the general coordinate
covariance, i.e the action does not preserve its form under a general coordinate transforma-
tion x → x′. However the coordinate invariance can be restored through the Stuckelberg
trick just as the Lorentz invariance is restored in the massive photon theory.

Apart form the Pauli Fierz theory, several ideas have been proposed, claiming the
existence of a massive graviton. Most of them, though, have to overcome an obstacle
known as vDVZ-discontinuity. Van Dan, Veltman and separately Zakharov compared
the results of massive gravity to the ones from GR in the limit that mg tends to zero
(mg → 0) and discovered that the observable quantities do not coincide. More specifically,
in their article (16) Van Dam and Veltman estimated that in the small mass limit the
bending angle of light by a massive body approaches 3

4 of the Einstein’s result. The

12



3.2 Experimental estimations of mg

physical interpretation of this phenomenon lies in the fact that a massive spin-2 field
carries 5 polarizations, while a massless one only 2. Thus in the massless limit, the 5
spin states of massive graviton become 2 helicity states of a massless graviton, 2 helicity
states of a massless vector and a single massless scalar. This remnant of the mg → 0
limit behaves like a longitudinal graviton and it is the one responsible for the observed
discontinuity.

The stronger opposition to the vDVZ-discontinuity was proposed some years later by
Vainstein, who observed that the above study refers to linear theories. Through general-
ization to a complete non-linear theory, strong non-linearities appear in the massless limit
and they can compensate for the action of the spin-0 field.

3.2 Experimental estimations of mg

Even though the existence of a graviton with non-zero mass is accompanied by several
theoretical problems, a lot of research has been conducted for the examination of this
issue phenomenologically. In correspondence with the photon mass theory, we could ex-
pect that the implications of a massive graviton will be quite similar. In particular from
linearised massive gravity theories, it follows that a massive graviton verifies the Klein-
Gordon equation. Indeed, if we consider only first order terms of h from the expression of
Gµν as expressed in 3.4, we get :

(∇2 − 1
c2∂

2
t −m2)(hµν − ηµνh) = 0 (3.7)

Thus, we identify the wave equation and conclude that gravitational waves should
no longer be dispersionless. This observation if applied to the physics of binary pulsars
can give significant data for the determination of mg. Binary pulsars are astronomical
objects that have been used as nature’s laboratories. Taking advantage of the strong
gravitational potential in their vicinities, scientists use them to test the theory of gravity.
They consist of a pulsar (rotating neutron star with period of 10−2 to 10−1) and a non
pulsating companion star that may be a white dwarf or a neutron star. Starting from
a linearised theory of gravity, Finn and Sutton (17) calculate the rate of the energy loss
in a binary pulsar as a function of the mass. The upper bound for mg derived from the
discrepancy between the observed and the predicted orbital decay rates of PSR B1913+16
and PSR B1534+12 was estimated mg 6 7, 6× 10−20 eV

c2 .
Other considerations for the graviton mass bounds have been triggered by the claim

that for mg 6= 0, the gravitational force will come from a Yukawa-type potential: ∼
exp(−mgr)/r. In (12) the analysis of the behaviour of gravity at large distances and
its deviation from the V (r) ∼ 1

r2 formula for galaxy clusters (r ∼ 580 kpc) gave mg ∼
10−29 eV

c2 .

13



3. The graviton mass

Currently the best approved bound of mg comes from weak gravitational lensing
data from stellar clusters (14). These effects have been proved to be valuable for the
progress of astrophysics and cosmology. Numerous data have provided a great field for
testing GR as well as indications for dark matter.

The geometry of a gravitational lens is presented in Figure 3.1 . When light propagates
in a vicinity near a massive object, the latter’s gravitational potential causes both the
deflection of the light beam and the modification of the observed object’s size and shape.
This deformation of the final image is described by the deflection angle:

~β = ~θ − Dds

Ds
â(Ddθ)⇒ ~a ≡ Dds

Ds
â(Dds) = 4GM

c2
Dds

DsDd

~θ

|~θ|2
(3.8)

Figure 3.1: The basic geometry of gravitational lenses - When a beam of light passes
through the lens plane the beam of light is deflected. Therefore while β should be the angle of
sight of a distant object with respect to the perpendicular to the source plane, the observed
angle is θ and it is related to the previous one through the deflection angle α. The symbols
Dd, Dds, Ds correspond to the angular diameter distances between the objects present in the
schematic (15).

Nevertheless, if the lens is considered to be a collection of point masses such as an
entire galaxy or clusters, then one should introduce the surface density of the lens Σ(Ddθ)
as compared to the critical one, Σcr = c2

4πG
Ds

DdDds
. Then, the function of the deflection

angle ~a generalizes to :

~a(~θ) = 1
π

∫
<2
d2θ′κ(θ′)

~θ − ~θ′

|~θ − ~θ′|2
(3.9)

which can be written as

~a = ~∇Ψ , Ψ(~θ) = 1
π

∫
<2
d2θ′κ(θ′) log(~θ − ~θ′) (3.10)
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3.2 Experimental estimations of mg

Actually this deflection potential Ψ is the 2-d analogue of the Newtonian gravitational
potential and it satisfies the Poisson equation ∇2Ψ = 2κ(~θ).

The above analysis refers to massive objects being in a specified comoving distance w.
If we wish to consider a group of points lying in various w , we should use the formula:

a(~θ, w) = 2w
c2

∫ 1

0
dy(1− y)∇⊥Φ(wy~θ,wy) , y ≡ w′

w
(3.11)

where we assumed that the universe is flat, i.e. k=0, the scale factor fK(w) = w. the
potential Φ is the 3-dimensional generalization of the deflection potential Ψ.

The basic features used to describe the effects of gravitational lensing are:

• convergence (indicative of the magnification of the source)

• shear (the amount of stretching of the background objects in the tangential direction
with respect to the foreground mass).

The convergence κ is related to the deflection angle

κ(~θ) = 1
2∇θ~a(~θ) = 1

2
∂~a(~θ)
∂θi

(3.12)

and consequently it is related to the potential Φ derived from the Poisson equation.

∇2Φ = 3H2
0

2a Ω2
0δ (3.13)

where δ stands for the density of the source. 1

The most common method of constraining the cosmological parameters is based on
Fourier space and the important tool is the power spectrum Pκ(l):

< κ̂(l)κ̂(l′) >= (2π)2δ(~l − ~l′)Pκ(l) (3.14)

Being simply the Fourier transform of the correlation function of convergence, the
power spectrum Pκ(l) depends on the 3-dim matter power spectrum Pδ( lw , w):

Pκ(l) = 9H4
0 Ω2

m

4c2

∫ ws

0
dw

(
1− w

ws

)2
Pδ

(
l

w
, w

)
(3.15)

This equation is derived in the framework of conventional gravity provided that the source
is a point mass at w = ws. If instead we assume that the gravitational field is Yakuwa-type
i.e. ∼ e−mgr

r , then the potential Φ should be modified to :

(∇2 −m2)Φ = 3H0Ω2
m

2a δ (3.16)

1This formula is simply an expression from Newtonian gravity ∇2
rΦ′ = 4πGρ where we considered a

matter dominated space and the density ρ = (1 + δ)ρ appears to have small perturbations δ.
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3. The graviton mass

This would imply a modification for the power spectrum Pmκ (l) given by:

Pmκ (l) = 9H4
0 Ω2

4c2

∫ ws

0
dw

Pδ( lw , w)
a2(w)

[
l2

w2

l2

w2 +m2

]2

(3.17)

By comparing and contrasting the results for Pκ and Pmκ to the observational data from a
cluster of stars at redshift of z = 1.2 , Choudhury, Joshi, Mahajan and McKellar estimated
that mg ≤ 100Mpc−1. More specifically, the group examined the behaviour of the power
spectrum of Pκ, which is defined as:

γ2(θ) = 2
πθ2

∫ ∞
0

dlPκ(l)J2
1 (lθ) (3.18)

Jn stands for the Bessel function of order n. Fixing the including cosmological parameters
the aforementioned scientists obtained the plot of γ2 as a function of θ (Figure 3.2)

Figure 3.2: Diagrammatic representation of the parameter γ as a function of the
angle θ - The data have been obtained in the framework of both the usual Newtonian gravity
(∗) and the modified one which includes a photon with m−1 = 100Mpc (+).

They made the observation that the model of the massive gravity with m−1 = 100Mpc
can give points lying in the region defined by the experimental error bars. Thus the bound

m−1 = 100Mpc corresponding to m ≤ 7 · 10−32 eV

c2 is the best one for the graviton mass

compatible to observational data.
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4
The Fine Structure Constant

The fine structure constant is a dimensionless quantity defined as:

α = µ0ce
2

2h = e2

4πε0~c
= e2

~c
= e2

4π (4.1)

where the e is the elementary charge of the electron, ~ = h
2π is the Planck constant, c

is the speed of light in vacuum, ε0 the electric and µ0 the magnetic permittivity of free
space. The last two definitions are most commonly encountered in the literature. They
are expressed in the electrostatic cgs units (4πε0 = 1) and the natural units (c = h = 1)
respectively.

Lying principally in the field of atomic physics, the fine structure constant α was
named from the analysis of the relativistic splitting of the degenerate levels of Bohr atom.
Sommerfield was the first to introduce α in 1916 through the fine structure formula:

W (n, k)
m0c2 =

{
1 + α2Z2

[(n− k) +
√
k2 − α2Z2]2

}1/2

− 1 (4.2)

in his attempt to express the electron’s binding energy W = E − E0 in terms of the
principal n and azimuthal k quantum numbers in hydrogen-like atoms.

The fact that it is a dimensionless constant, appearing in almost every electromag-
netic phenomenon, interested well-acknowledged scientists in the early 1900s who tried
to determine its value and understand it. Through these attempts α obtained various
interpretations:

• It can be viewed as the squared ratio of the electron’s elementary charge over the
Planck charge: α =

(
e
qp

)2

• It correlates the classical electron radius re to the Bohr radius a0 and the Compton
wavelength of the electron λe: re = αλe

2π = α2a0

• It is classified among the coupling constants of the fundamental interactions. In
particular, it is used to determine the strength of the electromagnetic interaction in
the low energy limit.
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4. The Fine Structure Constant

This last property made α extremely interesting from the theoretical point of view
and caused experimental physicists to evaluate it in the framework of QED. However,
high precision experiments which lie in different areas of physics have been proposed too.
Some of them use phenomena like the quantized Hall effect or the Josephson effect and
they are known as non QED determination methods.

4.1 Quantum electrodynamics, α and ae

The history of α is strongly correlated with the transition from quantum mechanics to
the quantum theory of fields. Actually the exact measurement of the anomalous magnetic
moment of electron ae was a triumph of physics that also allowed a precise measurement for
α. The calculation of ae from the Feynman diagrams and the correction when additional
virtual photons are added is the process that gave the dependence of ae from α with
impressive precision.

The scattering of an incoming electron of momentum p from a fixed electromagnetic
potential Aµ is given through the interaction term ψγµAµψ in the Lagrangian density:

L = −1
4F

µνFµν − ψ[γµ(∂µ + ieAµ) +m]ψ (4.3)

In the language of Feynman diagrams, the interaction of an electron of momentum p
with a heavy target of momentum k is presented in the picture.

Figure 4.1: Feynman diagrams corresponding to the scattering of an electron of
momentum p from a heavy target. - The loop corrections up to 2nd order have been
considered.

The use of the gray circle indicates the fact that in the general case every possible
combination of additional virtual photons can be considered. In terms of the calculations
the sum of all the possible vertices is denoted as −ieΓµ(p, p′) instead of −ieγµ used for
the simple diagram (i). Therefore the amplitude for the scattering from a heavy target of
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4.1 Quantum electrodynamics, α and ae

initial momentum k is:1

iM = ie2(u(p′)Γµ(p, p′)u(p)) 1
q2 (u(k′)γµu(k)) (4.4)

The requirement that the fermion should be on shell constrain Γµ to be a function of p′µ,
pµ, γµ. Its precise form can be further determined if we take into consideration the Lorentz
invariance, the discrete symmetries of QED as well as the Ward identity. Applying the
above ideas and using the Gordon identity:

u(p′)γµu(p) = u(p′)
[
p′µ + pµ

2m + iσµνqν

2m

]
u(p) (4.5)

we conclude that:
Γµ(p, p′) = γµF1(q2) + iσµνqν

2m F2(q2) (4.6)

where F1(q2) and F2(q2) are the form factors and q = p′ − p the momentum transfer or
the momentum of the virtual photon.

We could constrain the problem even more and study the motion of a non-relativistic
electron in the region of a non-zero electrostatic potential Aclµ (x) = (Φ(~x), 0) → Aclµ (q) =
(2πδ(q0)Φ(~q), 0). Then, by comparison of iM to the amplitude derived from the first order
Born approximation f(p′, p) we identify that to leading order F1(0) = 1.

In the same way if we consider the limiting case of an electron moving under the
influence of a static vector potential Aclµ (x) = (0, ~Aclµ (~x)), we can estimate the electron’s
magnetic moment. More specifically, iM can be written:

iM = −i2meξ′†
(−1

2mσk[F1(0) + F2(0)]
)
ξB̃k(q) (4.7)

where the k component of the magnetic field induced due to Acl is B̃k(q) = −iεijkqiÃjcl.
Comparing again the above result to the corresponding amplitude obtained from the Born
approximation of an electron moving around a potential well: V (x) = − < ~µ >< ~B(~x) >,
we get

~µ = e

m
[F1(0) + F2(0)]ξ′†~σ2 ξ (4.8)

Thus we conclude that the electron’s magnetic moment is given by the equation:

~µ = e

2mg~s (4.9)

where g is the Lande factor : g = 2(F1(0) + F2(0)) = 2(1 + F2(0))
A more detailed calculation of the F2(0) to leading order of perturbation theory is

presented below in order to derive its dependence on α. We write Γµ as Γµ = γµ + δΓµ.
The correction in δΓµ to first order in α is obtained from the diagram of the Figure 4.2.

1The u(p) are the well known 4-vectors obeying the Dirac equation: (γµpµ − m)u(p) = 0 and
they correspond to the positive energy solutions. According to the spin, they can be written as
us(p) =

(√p×σξs√
p×σξs

)
, s = 1, 2. The ξ’s are normalized vectors like ξ1 =

(1
0

)
, ξ2 =

(0
1

)
, so that the follow-

ing normalization relation holds for the u’s: ur(p)us(p) = 2mδrs
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4. The Fine Structure Constant

Figure 4.2: The Feynman diagram corresponding to the amplitude uδΓµu - The
scattering of a fermion with initial momentum p is presented in the 1-loop diagram

ieδΓµ =
∫

dDk

(2π)D (−ieγρ) i(/p′ − /k +m)
(p′ − k)2 −m2

i ε
(−ieγµ)

i(/p− /k +m)
(p− k)2 −m2 + iε

(−ieγσ) −iηρσ(k2 + iε)

= e3
∫

dDk

(2π)D
γν(/p′ − /k +m)γµ(/p− /k +m)γν

[(p′ − k)2 −m2 + iε][(p− k)2 −m2 + k][k2 + iε] (4.10)

Applying the Schwinger trick and shifting the variables: k′ = k − xp′ − yp:

δΓµ = −2ie2
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(1− x− y − z)∫

dDk

(2π)D
γν [(1− x)/p′ − y/p− /k +m]γµ[−x/p+ (1− y)/p− /k +m]γν

[k2 + xyq2 − (1− z)2m2 + iε]3 (4.11)

Manipulating the γ matrices of the numerator and applying the Dirac equations for the
spinors u′/p = mu′, /pu = mu , the product uδΓµu splits into two terms:

uδΓµu = −2ie2
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(1− x− y − z)

∫
dDk

(2π)D u

γµ[k2 (D−2)2

D + q2(−2(1− x)(1− y) + εxy) +m2[4− 8(x+ y) + 2(x+ y)2 − ε(x+ y)2]]
[k2 + xyq2 − (1− z)2m2 + iε]3

u
+ u


(p′µ+pµ)

2m m2[4(x+ y)(1− x− y) + 2ε(x+ y)2]
[k2 + xyq2 − (1− z)2m2 + iε]3

u (4.12)

Using the Gordon identity 4.5 we have:

u

[
p′µ + pµ

2m

]
u = u

[
γµ − iσµνqν

2m

]
u (4.13)

and therefore:
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4.1 Quantum electrodynamics, α and ae

uδΓµu = −2ie2
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(1− x− y − z)

∫
dDk

(2π)D u

γµ[k2 (D−2)2

D + q2(−2(1− x)(1− y) + εxy) +m2[4− 4(x+ y)− 2(x+ y)2 + ε(x+ y)2]]
[k2 + xyq2 − (1− z)2m2 + iε]3

u
+ u

{
−iσµνqν

2m
m2[4(x+ y)(1− x− y) + 2ε(x+ y)2]

[k2 + xyq2 − (1− z)2m2 + iε]3

}
u (4.14)

Comparing the above formula to 4.6 we identify the factor multiplying the iσµνqν
2m as

the F2 form factor, namely 1;

F 1−loop
2 (q2) = −2ie2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(1− x− y − z)∫

dDk

(2π)D u
{
m2[−4(x+ y)(1− x− y)− 2ε(x+ y)2]

[k2 + xyq2 − (1− z)2m2 + iε]3

}
u

= −2ie2
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(1− x− y − z)

Γ(3− D
2 )

Γ(3)
(−im2)
(4π)D/2

[−4z(1− z)− 2ε(1− z)2][(1− z)2m2 − xyq2 − iε]
D
2 −3 (4.16)

If we consider the case of interest where q2 = 0 and apply the additional constraint of
4 dimensions (i.e. D → 4⇒ D = 4− ε and finally taking the limit where both ε, ε→ 0 ),
we obtain:

F 1−loop
2 (q2 = 0) = α

2π (4.17)

The above result was first presented by Schwinger in 1948. The fact that the theo-
retical estimation was in a good agreement with the experimental determination of the
anomalous magnetic moment of electron ae was a strong evidence in favour of quantum
electrodynamics and a memorable achievement for physics in general. The following years
this estimation was not only theoretically verified but also extended to higher orders of
α, obtained by considering the contribution of diagrams of more than 1-loop. Quite con-
trary to the 1-loop case, for higher loop diagrams both ultraviolet and infrared divergences
emerge. They are eliminated through renormalization techniques, so that the values cor-
responding to physical processes reveal no infinities.

The most general formula giving the anomalous magnetic moment of the electron ae
contains contributions from other interactions besides the electromagnetic one.

ae = ae(QED) + ae(hadronic) + ae(electronic) (4.18)
1In this calculation the method of dimensional regularization was used as well as the relation:∫

dDk

(2π)D
(k2)α

(k2 − a2 + iε)β = i(−1)α−β

(4π)D/2

Γ(D2 + α)
Γ(D2 )Γ(β)

(a2 − iε)
D
2 +α−β (4.15)
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4. The Fine Structure Constant

The QED’s contribution is of course the major one and it can be written as a function
of terms depending on the masses of electron me, muon mµ and tauon mτ . Since ae is
dimensionless and it is required to contain no divergences, only the fractions of lepton
masses should be inserted.

ae(QED) = A1 +A2(me

mµ
) +A2(me

mτ
) +A3(me

mµ
,
me

mτ
) + · · · (4.19)

What is more, each Ai term is perturbatively expanded in terms of α

Ai = A
(2)
i

(
α

π

)
+A

(4)
i

(
α

π

)2
+A

(6)
i

(
α

π

)3
+ · · · i = 1, 2, 3, · · · (4.20)

At present A(2)
1 , A

(4)
1 &A(6)

1 are known analytically while the functions of higher α are
evaluated through the use of specially designed computer programs. In extremely pre-
cise experimental measurements of ae, which will be described in the next section, the
contribution from hadronic and electroweak interactions cannot be neglected (37),(31):

ae(hadronic) = 1.689(20)× 10−12 , ae(electroweak) = 0.030× 10−12 (4.21)

4.2 High precision experiments for α
As stated above, the pursue of determining α numerically is a task of great interest which
required the cooperation of scientists from various branches of physics. Atomic physics
experimentalists where the first to deal with this issue, mainly by trying to measure
more and more accurately the difference in energy for different atomic levels, such as the
transition 2P3/2 − 2P1/2 of the Hydrogen atom. Even the most accurate atomic methods,
though do not seem to exceed the precision of 1ppm= 10−6. This is due to the high
complexity that characterizes the study of 2e− electron atomic energy levels as well as the
lack of information as far as the structure of the proton is concerned.

Nowadays, the uncertainty of the most accurate acclaimed methods is better than
10−7. These experiments cover a wide range from high precision particle experiments to
applications of solid state physics. According to the way of determining the fine structure
constant, the corresponding experimental methods are classified as direct and indirect.
This classification will be used for the following brief presentation of the most accurate
experiments.

4.2.1 Indirect methods
This category includes measurements of parameters such as e

h or m
h and R∞. The great

majority of these experiments make use of the formula giving the Rydberg constant in
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4.2 High precision experiments for α

terms of α, me the electron mass, the speed of light c and Planck constant h:

R∞ = mec
4

2h α2 (4.22)

One of the methods is based on the measurement of the fraction h
mn

, mn being the
neutron mass. This fraction can be encountered in the de Broglie formula relating the
wavelength λ to the velocity u of a particle: λ = h

mnu
. Measuring the parameters λ and u

of a neutron beam, an experimental group in Grenoble managed to determine the quotient
h
mn

= 3.956 033 320 (302) · 10−7m2s−1 . The measurement was probed through the Bragg
scattering of a neutron beam from a silicon crystal. Therefore, replacing the above value
in the following formula :

α2 = 2R∞
c

mn

me

h

mn
(4.23)

they concluded to the value: 1
α = 137. 036 010 82(524) uncertainty (0.039ppm). The

uncertainty of α−1 follows from the accuracy to which the values of R∞ and the atomic
masses of neutron Mn and electron Me are known.

R∞ ∼ 10 973 731. 568 34 (24) m2s−1

Mn = 1. 008 664 923 43 (221)u

Me = 0. 000 548 579 9111 (12)u

An advantage of this estimation lies in the fact that it requires no QED calculation. Quite
to the contrary, its validity depends on the correctness of formula 4.23, which is actually
a modification of eq. 4.22.

Similar ideas giving even more accurate measurements have been proposed lately. In
particular, an innovative experiment was carried out in 2007 by Bouchendira et al.(34).
Instead of determining the quotient h

mn
, they estimated the fraction h

mRb
, through the

measurement of the recoil velocity ur = ~k
mRb

, that is acquired by a Rb atom when it
absorbs a photon of momentum ~k. More specifically, through these techniques many
recoils are transferred to the atoms Rb87 at rest and excite them from the F = 2 hyperfine
sub-level to the F = 1 one. While at this state, the atoms are bombarded through recoils
from Bloch oscillations which cause the increase of their velocity by 2ur accompanied by
no simultaneous excitation. Finally, this velocity is measured through the interaction of
the Rb atoms with the 2 pulses, causing their transition to F=2 hyperfine level. Having
determined the ratio h

mRb
, the group combined it with the values of the other parameters

in the relation:
α2 = 2R∞

c

mRb

me

h

mRb
(4.24)

and they concluded to α−1
(

h

mRb

)
= 137. 035 99 037 (91) (uncertainty 6.6 · 10−10)
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4. The Fine Structure Constant

The phenomena of solid state physics and in particular the quantum Hall and the
Josephson effects have triggered some other independent measurements of α. The AC
Josephson effect describes the current created in the edges of a Josephson junction due to
tunnelling of Cooper pairs in 2 superconductors separated by an insulating material. When
a fixed voltage is applied across the junction, an AC current is induced. The frequency of
IC is related to the voltage VDC through:

ω = 1
h

2eVDC (4.25)

Thus the measurement of ω and VDC allows the determination of e
h and consequently of

α since:
α−2 = c

4R∞γp
µp
µB

2e
h

(4.26)

where µp is the magnetic moment of the proton in water, µB the Bohr magnetic moment
and γp the gyromagnetic ratio of the proton in the water.

4.2.2 Direct methods
An example of a direct experimental method is the measurements of the Hall effect.
The Hall effect measurement belongs to the direct experimental methods. During this
type of experiment, the behaviour of a thin layer of (almost 2-dimensional) electron gas is
studied while it is subjected to a perpendicular strong magnetic field B in low temperature
conditions. The voltage across the sample VH is related to the current IH flowing along
the sample through the Hall resistance:

R
(n)
H ≡ VH

IH
= h

e2n
n = 1, 2, · · · (4.27)

which appears to be quantized. The measurement of RH directly implies the determination
of the fine structure constant, since for a certain integer value of n it explicitly includes α

1
α

= 2nR(n)
H

µ0c
(4.28)

The most competitive value of α was obtained through data from the estimation of the
anomalous magnetic moment of the electron ae, also known as g − 2 experiments. Actually
the measurement of ae carried out by the University of Washington group in 1987 was
for many years considered as the cornerstone of the high energy precision experiments
determining α (α−1 = 137.035 998 83 (50) uncertainty 3.7 · 10−9 ) (22). This accuracy
was superseded by the latest determination of α−1 accomplished by the Harvard group of
Hanneke et al.(35)

Both measurements aim to confine the electron’s motion in order to achieve better
control over it and longer observation time. This is done with the use of the Penning
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4.2 High precision experiments for α

trap; a device that imposes electric and magnetic field to a charged particle. The com-
posite motion of an electron in a Penning trap can be thought of as the combination of 2
distinguished motions:

• a harmonic oscillation with frequency ωz induced on the axial direction due to the
weak static electric quadrupole potential V (z, r) ∼ z2 − ρ2

2 , where z, ρ are used for
denoting the cylindrical coordinates.

• an epitrochoid; a radial motion caused by the magnetic and electric fields and char-
acterized by 2 frequencies; namely the magnetron frequency ω− and the modified
cyclotron frequency ω+. The well known cyclotron frequency, ωc ≡ q

mB = ω+ + ω−

is related to ωz, ω+ and ω− through ω2
c = ω2

+ + ω2
− + ω2

z .

The above description refers to an ideal Penning trap. However in the real situation there
are various misalignments from the axial symmetry which are responsible for the slight
modification of the frequencies of the cyclotron νc , of the axial motion νz, and of the
magnetron motion νm to νc, νz, and νm respectively. Now the invariance theorem of the
frequencies is stated as: ν2

c = ν2
c + ν2

z + ν2
m. The energy of the moving electron can be

written in terms of the quantum numbers n = 0, 1, · · · which form the cyclotron energy
levels and ms = ±1

2 corresponding to the spin energy levels, as:

E(n,ms) = g

2hνcms +
(
n+ 1

2

)
hνc −

1
2hδ

(
n+ 1

2 +ms

)2
(4.29)

The relativistic effects cannot be considered negligible if such high accuracy is required
in the result. In the above formula they have been taken into account through the in-
troduction of the energy shift δ .The calculation of g/2 relies on the measurement of 2
frequencies:

g

2 = νs
νc

= 1 + νs − νc
νc

= 1 + νa
νc

(4.30)

where νs ≡ g eB
2πm is the spin frequency, νc ≡ ωc

2π = eB
2πm and νa = νs − νc the anomaly

frequency. When the relativistic effects and the phenomena of misalignment as well as the
interaction with the cavity of the trap

(
∆gcav

2

)
are included, the above formula takes the

form:
g

2 = νc + νa
νc

' 1 + νa − ν2
z/2fc

fc + 3δ/2 + ν2
c/2f c

+ ∆gcav
2 (4.31)

Therefore the measurement of the Lande factor of the electron is reduced to the determi-
nation of the frequencies:

f c ≡ νc −
3
2δ νa = g

2νc − νc (4.32)

which is accomplished through techniques of quantum-jump spectroscopy. When the
highly accurate measurement g

2 = 1.001 159 652 180 73 28 (3) (0.28ppt) (35) is com-
bined with the theoretical formula :
g

2 = 1+C2

(
α

π

)
+C4

(
α

π

)2
+C6

(
α

π

)3
+C8

(
α

π

)4
+C10

(
α

π

)5
+aµτ+ahadr+aweak (4.33)
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the following result is obtained:

α−1(ae) = 137.035 999 084 (51) (0.37ppb) (4.34)

The formula 4.33 is simply a rearrangement of 4.19. For the deduction of the above
impressively small uncertainty, the contributions of both the uncertainties of the theoret-
ical 4.21 and experimental calculation were considered. Currently the precision of this
measurement is expected to be further improved through the development of numerical
calculation of Feynman diagrams. This indicates that the value α−1(ae) is in strong corre-
lation with the validity of the Standard Model and QED calculations in particular. What
is more, a stringent value for the fine structure constant will shed some light on issues like
that of the hadronic or electroweak nature of ae and it will answer questions regarding the
structure of the electron.
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5
The speed of light

Of all the physical constants, the speed of light seems to be the one which has caused
the greatest impact to the progress of physics. The measurement of its value has abetted
many noticeable physicists. Nowadays its values is fixed and exact c = 299 792 458m/s.
It allows no experimental errors and it is used for the definition of the metre.

5.1 Brief Historical Review
The question of whether light propagates instantaneously or not has raised the attention
of the scientific community even before the 17th century. Due to its high velocity, light
was believed to travel with infinite speed in free space. The first to question this claim
was Galileo who tried to measure the time required for a light beam to travel the distance
between two nearby hills. Even though this experiment did not reveal any outstanding
results, the endeavours of measuring the speed of light were not abandoned.

The idea that the speed of light is finite was actually verified by Roemer through
the astronomical observations of the eclipses of Io, one of Jupiter’s satellites. This first
evidence was followed by numerous other attempts of estimating the value of c. The most
well known of them are briefly presented in the Table 5.1.

From the theoretical point of view, the speed of light has proved to play a fundamental
role too. Many conflicts have been reported before the dual nature of light was realized,
namely that it acts as a particle and a wave. The Maxwell theory of electromagnetism
indicated some years later that visible light is only a short band of the broad radiation
spectrum. It also related the wavelength λ with the frequency f of radiation. This theory
along with the evidence supporting the lack of luminiferous aether were the motivations
of Einstein’s special theory of relativity. Form his perspective, the speed of light does
not depend on the motion of the source or the observer. It is the upper bound of the
velocity at the universe. Therefore any observed contractions of length or time intervals
should not be attributed to the existence of aether. They should rather be understood
as the outcomes of the Lorentz transformations, required to go from the one spacetime
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5. The speed of light

Table 5.1: Experiments giving the value of c

Date Scientist Method of experiment Value of c in km
s

1676 O.Roemer & Huygens moons of Jupiter 220 000
1729 J. Bradley Stellar Aberration 30 000
1849 A. Fizeau Toothed Whell 31 000
1862 L. Foucault Rotating Mirror 298 000 ± 500
1879 A. Michelson Rotating Mirror 299 910 ± 50
1926 A. Michelson Rotating Mirror 299 796 ± 4
1947 Essen & Gorden-Smith Cavity Resonator 299 792 ± 3
1958 K.D. Froome Radio Interferometer 299 792. 5 ± 0.1
1973 Evenson et al Lasers 299 792. 457 ± 0, 001
1983 Adopted Value 299 792. 458 EXACT

frame of reference to the other. The ultimate picture of the speed of light was given after
the introduction of General Relativity according to which travelling at the speed of light
means following world-lines tangent to the null vectors.

The above theoretical ideas modified the experimental techniques that have been ap-
plied for the precise measurement of c. All in all, these techniques have been obtained
from nearly any branch of physics and they estimate the value of c:

(i) either by measuring the distance travelled by light in a given amount of time

(ii) or by making use of the appearance of c in basic electromagnetic formulae:

c2 = 1
µ0ε0

, c = λf (5.1)

and trying to determine with the greatest precision the values of the correlated
parameters.

Actually the method (i) triggered the most accurate experiments for the estimation of
c carried out just before 1983 when its value was defined as exact. Evenson et. al. (45)
through high precision experiments determined the wavelength and the frequency of the
radiation from a stabilized methane He-Ne laser at 3.39µm. The choice of this particular
source was of decisive importance, since a monochromatic and stable electromagnetic wave
with short wavelength would minimize the experimental errors. Various other experimental
approaches from the field of atomic physics ( Blaney et al using the CO2 laser, stabilized on
9.32µm R(12) transition of CO2 and Baird et al (41) using the frequency of CH4−stabilized
laser) took place in the mean time. Averaging their results, the following value of c was
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obtained: c = 299 792 458. 05± 0.75m/s The fact that these independent measurements
all concluded to the same value led the scientific community to adopt it as a constant.
Thus, from 1983 according to the Conference Generale de Poid et Measures, the metre is
defined to be the path travelled by light in vacuum during a time interval of 1/299 792 458
m/s. Therefore the arising question now is with what precision we know the value of the
meter and the answer comes from astrophysical data. Actually the principal unit of length
used now is the Astrophysical unit (1AU) which is known to be the distance between the
Earth and the Sun. Its value is fixed through gravitational models and observations of
our Solar System. More specifically the AU is defined through the relation:

GMSun[m3s−2] = k2AU [m]3/86400[s]2 (5.2)

Thus by determining the values of GMSun and the Gaussian gravitational constant k =
0.017 202 098 95 one can get the currently most accurate value of 1AU = 149 597 870 700 0(3)m
(42)

5.2 Variation of c
Even though the speed of light is considered to be constant as a matter of metrology,
there are several theories claiming its variation. Most of these models are derived from
cosmological theories and suggest c to be a function of the frequency of radiation ν. This
dispersion relation can be justified if one considers it as a consequence of the non zero
photon mass 2.12.

The accuracy of the Varying Speed of Light (VSL) theories has been tested through
analysis of astrophysical data coming from observations of flare stars or lately from Gamma
Ray Bursts (GRBs). The astronomical objects used initially for this purpose were the
flare stars; main sequence stars of class M demonstrating occasional rapid fluctuations in
brightness. The limit taken from their study is ∆c

c < 10−6 which is much greater than the
one obtained from laboratory experiments ∆c

c < 10−8.
A stricter limit on the above fraction was obtained from the analysis of data coming

from Gamma Ray Bursts(GRBs). They are explosive events emitting flashes of gamma
rays and they are considered to take place in distant galaxies. Their great intensity
suggests that most probably the are generated through supernova explosions which do
not reveal their associated energy isotropically. Known as the brightest electromagnetic
events in the universe, they have duration that may range from (10−2 − 103)s and their
rise times are of about 10−4s. Usually the main γ-ray flash is followed by an “afterglow”
which includes photons of longer wavelengths lying from the radio to the X-ray spectrum.
From the experimental point of view, an indication of the variation of c can be obtained if
we consider the difference in time ∆t required for 2 photons of different frequency ν1 and
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5. The speed of light

ν2 to travel the distance D between the source and the observer:

∆c
c
<
c∆t
D

(5.3)

This technique was applied to a group of GRBs whose data were analysed by Schaefer
(43). In particular, Schaefer took under consideration a sample of GRBs which contain
various types of wavelengths and determined their distance from the observer through
arguments about their luminosity (Fenimore’s relation) including the values of cosmolog-
ical parameters such as the Hubble constant H0 = 65km/s/Mpc and Ω = 1. Therefore
by comparing the arrival times for signals of different frequencies ν, he verified a general
dispersion relation for the speed of light:

V = c

(
1 + A

ν2

)
(5.4)

through which he could draw some conclusions as far as the photon mass is concerned.
The analysis of (43) obtains an upper limit for the possible Lorentz violation, since it is

claimed that the ratio ∆c
c can take values lying from 2.5 ·10−12 to 6.3 ·10−21. Furthermore,

it is discussed that the whole argument depends on some main assumptions. Namely,
to obtain this limit one assumes that every photon regardless of its wavelength, should
start from the exact same point of the supernova responsible for the particular GRB.
Additionally, the plausible interaction with the electrons in the meantime is ignored so
that any observable delay between those photons should be attributed to the dispersion
of c.

All in all, the speed of light is classified among the constants known with an impressive
accuracy. Its value is considered fixed by definition and any deviation from it needs to
be justified both theoretically and experimentally. Other current studies in the field of
varying speed of light theories suggest there is a limit in energy scales for which the Lorentz
invariance holds. As one approaches the Planck scales quantum effects seem to play a
greater role and can cause the change of c between different observers. This postulate is
also probed through the observation of GRBs. (44)
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6
The Gravitational Constant

Alternatively known as the “Newton’s constant”, this fundamental constant holds a promi-
nent position in the most well known law of physics, the universal law of gravitation. The
formula correlating the gravitational force F between 2 particles of masses m1 and m2 to
their intermediate distance r:

F = G
m1 ·m2
r2 (6.1)

was stated by Newton in 1687. Since then numerous experiments have been performed in
order to determine the value of the proportionality constant G. Contrary to the rest of
the fundamental constants though, the value of G is today known with the low accuracy
of just 12ppm.

In the following, we will discuss the theoretical significance of G and we will briefly
present the latest laboratory experiments that contributed to the CODATA 2010 (47)
value: G = 6.673 84 (80) · 10−11 m3kg−1s−2.

6.1 General relativity in the weak field limit
The role of G in the classical physics manifests itself when viewed in the framework of
Newtonian theory/ It is encountered in the Einstein’s theory of relativity too, where it
can be conceived in 2 ways:

(i) as a proportionality constant in the field equations, which correlates the energy
momentum Tµν to the Einstein curvature tensor

Gµν = −8πGTµν (6.2)

(ii) in the weak field limit, where the familiar Newton’s gravitational law emerges in the
form of the Poisson equation:

∇2Φ = −4πGρ (6.3)

In the above formula, Φ is the gravitational potential formed due to the presence of
matter with mass density ρ.
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6. The Gravitational Constant

Actually, starting from Einstein’s equations we can derive the geodesic equations:

d2xλ

ds2 + Γλµν
dxµ

ds

dxν

ds
= 0 (6.4)

They give the trajectories of a particle moving in a spacetime which is described by the
metric gµν and can be parametrized through the proper distance s: ds2 = gµνdx

µdxν . In
this framework the Christoffel symbols are given by:

Γµνλ = 1
2g

µρ
[
∂gνρ
∂xλ

+ ∂gρµ
∂xν

− ∂gνλ
∂xρ

]
(6.5)

Considering the particle to move slowly with respect to light
(
dx
dt << c

)
under the

influence of a static and weak gravitational field, the equation of motion takes the form:

d2xµ

ds2 + Γµ00

(
dx0

ds

)2

= 0 (6.6)

The requirement of a static field
(
∂gµν
∂x0 = 0

)
imposes the condition:

Γµ00 = −1
2g

µν ∂g00
∂xν

(6.7)

Additionally, the metric for a weak field can be expressed as the sum of the Minkowskian
one ηµν and a small perturbation hµν , |hµν | << 1 , i.e. gµν = ηµν + hµν . Consequently,
to first order in the perturbation: Γα00 = −1

2η
αβ ∂h00

∂xβ
and we obtain :

d2x

ds2 = 1
2

(
dt

ds

)2
∇h00 (6.8)

which is simply: d2x
ds2 = −∇Φ with Φ defined through h00 = 2Φ(x)

c2 . If one takes into
consideration the equivalence of gravitational and inertial mass, mG = mI , the above
equation is Newton’s law for a massive particle moving in a gravitational field Φ coming
from the relation 6.3.

Since the gravitational attraction is the major mechanism present in astronomical
scales, it would be expected that astronomical objects provide the best estimations about
G values. However, this is not the case. The reason is that the measurements related
to the planetary orbits include the product of GM, also known as standard gravitational
parameter, where M is the source’s mass. An example is the statement of Kepler’s law.
The techniques of celestial mechanics are not sufficient to determine separately the masses
of planets or stars in an independent way or at least are in a preliminary stage.

The fact the the gravitational interaction is by far the weakest introduces another
problem which has to overcome. A rough estimation of how greater the electromagnetic
force is compared to gravity can be obtained if we consider 2 protons interacting in both
ways:

Fem = e2

4πr , Fgr = Gm2

r
(6.9)
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In analogy to the fine structure constant α one can deduce a coupling constant for gravity:

αg = Gm2

~c
(6.10)

For the case of the proton interactions αg(m)
α ∼ 10−40 This indicates that in order to

carry out as accurate experiments as possible, the conditions of the experimental settings
should assure the elimination of any other interaction apart from gravity between the
participating objects.

The significance of G is not constrained to the area of classical physics and celestial
mechanics. When combined with the other fundamental constants: speed of light (c)
,reduced Planck constant (~), it can be used to construct the Planck units:

lP ≡
(~G
c3

)1/2
tP ≡

(~G
c5

)1/2
MP ≡

~c
G

(6.11)

They are considered to determine the boundaries after which quantum fluctuations of a
non stationary background cannot be neglected.

6.2 Experiments
Despite the various formulae in which the gravitational constant is encountered, the de-
termination of its value seems to be a quite difficult task. The reasons responsible for this
fact, are that gravity is an extremely weak interaction compared to the other fundamental
forces and that it cannot be shielded from the rest of the phenomena.

The first successful experimental attempt for the measurement of G is attributed to
Cavendish. Over 300 years ago, he considered the interaction of 2 pairs of masses forming
a torsion balance. A schematic of the experimental apparatus can be seen in the picture.
It consists of a rod (A) in whose edges two spheres of the same mass are attached, and a
dumbbell (B) of 2 less massive spheres. The dumbbell is suspended from a thin wire and it
is allowed to twist. The rod (A) which has the same swivel axis, is moved to approach the
lightest balls. The rod is twisted until the equilibrium is accomplished. The change of the
angle θ between the initial and final position of the rod is measured through the deflection
of light from a mirror attached on the wire. This primitive attempt of Cavendish gave
the value: G = (6.67± 0.07) · 10−11m3kg−1s−2 when the value of the earth’s density was
taken into account.

Nowadays, most of the apparatuses used for the determination of G are a modification
of the Cavendish torsion balance. The results of 11 such experiments were used by the
Committee on Data for Science and Technology (CODATA) (47), in order to obtain a
weighted mean for the value of G: G = 6.673 84 (80) · 10−11 m3kg−1s−2. The latest four
of them are mentioned in the Table 6.1 . It is of note that the presented values are not in
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6. The Gravitational Constant

Figure 6.1: An illustration of the Cavendish torsion balance

agreement even when the experimental errors are taken into account. This leads to a big
uncertainty for the CODATA average which is attributed to the various systematic errors.

Table 6.1: The latest experiments determining the value of G (47)

Experimental group Method of experiment Value of G in Uncertainty
& Institution 1011G

m2kg−1s−2

Hu et al (2005) HUST-05 Fiber torsion balance, 6.672 28(87) 1.3 · 10−4

Huazhong University of dynamic mode
Science and Technology
Schlamminger et al (2006) UZur-06 Stationary body, 6.674 25(12) 1.9 · 10−5

University of Zurich weight change
Tu et all (2010) HUST-09 Fiber torsion balance, 6.673 49(18) 2.7 · 10−5

Huazhong University of dynamic mode
Science and Technology
Parks & Faller (2010) JILA-10 Suspended body, 6.672 34(14) 2.1 · 10−5

University of Colorado displacement

Two of the above measurements rely on the time-of-swing method. This technique
resembles the Cavendish experiment. The apparatus, that was used, consists of a system
of rectangular glass which is suspended from a fiber and interacts gravitationally with
a pair of spheres. The frequency ω2

0 corresponding to the oscillation of this pendulum
without the presence of the spheres is related to the inertial mass of the rectangular glass
(I) and the torsion constant (K). When the pair of spheres is put near and away from the
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rectangular mass the frequency of oscillation gets slightly distorted:

ω2
n = Kn +GCgn

I
, ω2

f = Kf +GCgf
I

(6.12)

where Cgn and Cgf are constants referring to the mass distributions of the pendulum
and the spheres. This comes naturally, if one considers that the torque exerted on the
pendulum’s mass is a sum of two components; the torque produced by the twisted fiber
and the one from gravitational interaction.

τtot = −Kθ + τg(θ) (6.13)

Eliminating Kn = Kgf = K from the above relations, one can express the gravitational
constant as:

G =
I(ω2

n − ω2
f )

Cgn − Cgf
= I∆(ω2)

∆Cg
(6.14)

Therefore, measuring the change of the angular oscillation frequencies for the 2 possi-
ble configurations of the pendulum and the 2 spheres, the group obtained data for the
estimation of the value of G.

The above description though is quite simplified. Various parameters have to be taken
into consideration for the experiment to be as accurate as possible. First of all, in the
formulas 6.14 there is no dependence on the spring constant of the torsion fiber K . This
indicates the assumption that the parameter K is not affected by the frequency of the
oscillatory motion. However, if such great accuracies are pursued, theories of elasticity
doubt this assumption (Kuroda effect (48)). Therefore, taking into account the theorems
of elasticity as well as the contributions from the other parts of the pendulum in the
motion, we obtain:

G = I∆(ω2)
∆Cg

[
1− ∆K

I∆(ωn) + Im
I

K2(ω2)
K2
m

]
(6.15)

The symbols Im and Km are related to the magnetic damper which is connected
to the torsion fiber and it is used to constrain the simple motions of the pendulum. In
particular they correspond to the latter’s moment of inertia and the torsion constant of the
prehanger fiber from which it is suspended respectively. Some elements that improved the
accuracy of HUST-09 compared to the one of HUST-05 experimental estimation of G are
the conduction of two independent experiments, the better knowledge of the homogeneous
densities and the remote control of the motion of the spherical masses between the two
configurations

The other latest experiment – JILA-10 (51) – was performed in 2004 and the data
were analysed and published in 2010. The procedure relies on a simple pendulum method.
Here, two pendulums are suspended and left to interact gravitationally with 4 cylinders,
which are moved periodically in inner and outer positions with respect to the virtual line
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Figure 6.2: The apparatus for the HUST experiment - from (49)
right: Schematic of the cutaway view of the apparatus
left: Top view of the two configurations of the pair of spheres and the rectangular glass

connecting them. This interaction is counterbalanced by the regular pendulum force. The
separation between the two pendulums is measured through a Fabry-Perot interferometer.
The outcome of this experiment is a value of G smaller compared to the rest of the
measurements. At the same time its small uncertainty does not justify such a discrepancy.

In conclusion, the accurate estimation of G continues to be a challenge for modern ex-
perimental physics. Up to now the accepted value is the one obtained from the CODATA-
10 and it appears to have a big uncertainty, compared to the other physical constants.
Better knowledge of the inelastic phenomena and their contribution to the determination
of G will help to obtain more accurate knowledge on this constant. Subsequently such an
accuracy may be enough to verify theories which assume that the Gravitational constant
may be related to other coupling constants of the known interactions in the framework of
string theory.
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Figure 6.3: The values of the gravitational constant as obtained from the latest
11 experimental estimations. - It is of note that the CODATA-10 value is slightly moved
to the left which is principally due the JILA-10 contribution.
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7
Conclusion

There is no doubt that the study of fundamental physical constant passes through various
branches of physics. Such an interdisciplinary approach has been attempted in the above
presentation. The values of the constants have been obtained either through high precision
experimental considerations of through processes determining an upper bound. A table
recapitulating the main results is presented below.

Table 7.1: The currently approved values of the Fundamental Physical constants studied.

Physical constant Symbol Value or Upper bound

Photon mass mγ < 1.5 · 10−53g ' 8.41 · 10−21 eV
c2

Graviton mass mg < 7 · 10−32 eV
c2

Fine Structure Constant α 137.035 999 084 (51) (0.37 ppb)
Speed of light c 299 792 458 m

s exact
Gravitational constant G 6.673 84 (80) · 10−11 m3

kgs2

Provided that the endeavour for the most accurate determination of the physical con-
stants will be continued in the future, many beneficial consequences can occur. Apart
from the higher precision in the calculations where these constants are included, the sci-
entific society will have the chance to check the limits of validity for known fundamental
theories (such as QED or general relativity). The simultaneous development of applied
studies such as frequency metrology and space navigation are among the side effects of
this research.

Another intriguing topic concerns the theoretical motivations for the time variability
of the constants of nature. If such ideas are verified for constants related to the strength of
fundamental interactions (like α and G), this would imply that the correspondence between
experimental results and theories depends on the particular time that measurements were
performed.
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