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Abstract

During the last decade we have witnessed a tremendous increase in the amount of semantic
data available on the Web in almost every field of human activity. More and more corporate,
governmental, or even user-generated datasets break the walls of “private” management within
their production site, are published, and become available for potential data consumers, i.e.,
applications/services, individual users and communities. In this context, The Web of Data
extends current Web to a global data space connecting data from diverse domains. This gives
added value for decision support and business intelligence applications, and enables new types
of services that operate on top of an unbound, global data space and not on a fixed set of data
sources as in Web 2.0 mashups. A central issue in this respect is the manipulation and usage
of data based on their meaning by using effective and efficient support for storing, querying,
and manipulating semantic RDF data, the lingua franca of Linked Open Data and hence the
default data model for the Web of Data.

In this thesis we are focusing on the problem of scalable processing and optimization of
semantic queries expressed in SPARQL using modern relational engines. Existing native or
SQL-based engines for processing SPARQL queries heavily rely on statistics regarding the
stored RDF graphs as well as adequate cost based planning algorithms to optimize complex
join queries. Extensive data statistics are quite expensive to compute and maintain for large
scale evolving semantic data over the Web. The main challenge in this respect is to devise
heuristics-based query optimization techniques generating near to optimal execution plans
without any knowledge of the underlying datasets. For this reason we propose the first
heuristics-based SPARQL planner (HSP) that is capable of exploring the syntactic variations
of triple patterns in a query in order to choose a near to optimal execution plan without the
use of a cost model. Furthermore, we have implemented HSP plans on top of the MonetDB
column-based DBMS. We have paid particular attention to the efficient implementation of
HSP logical plans to the underlying MonetDB query execution engine by translating them
into MonetDB’s physical algebra (MAL). We have finally, experimentally evaluated the quality
and execution time of the plans produced by HSP with a state-of-the-art Cost-based Dynamic
Programming (CDP) algorithm employed by RDF-3X using synthetically generated and real
RDF datasets.

In all queries of our workload, HSP produce plans with the same number of merge and
hash joins as CDP. Their differences lie on the employed ordered variables as well as the
execution order of joins which essentially affect the size of intermediate results. With the
exception of queries which are not substantially different in their syntax, HSP plans executed
on MonetDB outperform those of CDP executed in RDF-3X up to three orders of magnitude.
More precisely, HSP tries to produce plans that maximize the number of merge joins over the
ordered variables which are shared among the triple patterns of a query and relies on various
heurists to decide which ordered variables will be used in selections and joins as well as which
underlying access paths will be exploited for evaluating the triple patterns (essentially sorted
triple relations in MonetDB).
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Περίληψη

Κατά την τελευταία δεκαετία παρατηρούμε μία τεράστια αύξηση του πλήθους σημασιολογικών

δεδομένων τα οποία είναι διαθέσιμα στο διαδίκτυο και για ένα μεγάλο αριθμό δραστηριοτήτων.

Δεδομένα από επιχειρήσεις, κυβερνήσεις ή ακόμα και από απλούς χρήστες παύουν να αποτελούν

;ιδιωτική; πληροφορία μέσα στον χώρο παραγωγής τους, δημοσιεύονται και βρίσκονται διαθέσιμα

προς χρήση από ενδεχόμενους καταναλωτές, όπως εφαρμογές/υπηρεσίες, ανεξάρτητους χρήστες

ή και κοινότητες χρηστών. Σε αυτό το πλαίσιο, το Ιστός των Δεδομένων (Web of Data) επε-
κτείνει τον τρέχον Παγκόσμιο Ιστό σε ένα παγκόσμιο χώρο δεδομένων που συνδέει πληροφορίες

από διάφορους τομείς. Το γεγονός αυτό αυξάνει την αξία της υποστήριξης αποφάσεων και ε-

φαρμογών επιχειρηματικής νοημοσύνης (business intelligence) και επιτρέπει τη δημιουργία νέου
τύπου υπηρεσιών στη βάση ενός παγκόσμιου χώρου δεδομένων χωρίς όρια, και όχι απλά σε ένα

αυστηρά καθορισμένο σύνολο πηγών δεδομένων, όπως στην περίπτωση των Web 2.0 mashups.
Δεδομένου ότι η RDF είναι το lingua franca για τα Linked Open Data και ως εκ τούτου για το
βασικό μοντέλο δεδομένων στον Παγκόσμιο Ιστό, ένα κεντρικό ζήτημα εδώ είναι η διαχείριση και

η χρήση των RDF δεδομένων, και πιο συγκεκριμένα η αποτελεσματική και αποδοτική υποστήριξη
για την αποθήκευση και αναζήτηση τους μέσω επερωτήσεων.

Σε αυτή την εργασία επικεντρωνόμαστε στο πρόβλημα της κλιμακώσιμης επεξεργασίας και

βελτιστοποίησης SPARQL επερωτήσεων χρησιμοποιώντας σύγχρονες σχεσιακές μηχανές. Οι
υπάρχουσες γηγενείς (native) μηχανές και οι μηχανές βασισμένες σε SQL για την επεξεργασία
επερωτήσεων SPARQL, στηρίζονται σε μεγάλο βαθμό στη χρήση στατιστικών που αφορούν τους
αποθηκευμένους RDF γράφους, καθώς επίσης και σε αλγόριθμους σχεδίασης οι οποίοι χρησι-
μοποιούν μοντέλα κόστους προκειμένου να βελτιστοποιήσουν σύνθετες επερωτήσεις σύζευξης.

Τέτοιου τύπου στατιστικά είναι αρκετά ακριβά τόσο στον υπολογισμό όσο και στην διατήρηση

τους για μεγάλης κλίμακας εξελισσόμενα σημασιολογικά δεδομένα του Παγκόσμιου Ιστού. Η

βασική πρόκληση που τίθεται είναι η επινόηση τεχνικών βελτιστοποίησης για τη κατασκευή πλά-

νων εκτέλεσης επερωτήσεων βασισμένων σε ευρετικούς κανόνες, οι οποίοι δημιουργούν πλάνα

όσο δυνατόν βέλτιστα πλάνα εκτέλεσης χωρίς την χρήση οποιασδήποτε γνώσης για τα αποθη-

κευμένα RDF δεδομένα. Για αυτό το λόγο προτείνουμε τον πρώτο κατασκευαστή πλάνων για
SPARQL επερωτήσεις βασισμένο σε ευρετικούς κανόνες (heuristic-based SPARQL planning -
HSP), ικανό να αναγνωρίζει τις συντακτικές παραλλαγές των προτύπων πρόσβασης τριάδας σε
μία επερώτηση προκειμένου να επιλέξει το βέλτιστο δυνατό πλάνο εκτέλεσης χωρίς τη χρήση μο-

ντέλου κόστους. Στην εργασία αυτή, τα HSP πλάνα έχουν υλοποιηθεί πάνω από τη MonetDB,
ένα Σύστημα Διαχείρισης Βάσεων Δεδομένων που βασίζεται στην τεχνολογία κολόνων (column-
based DBMS). Μεγάλη προσοχή δώθηκε στην αποδοτική υλοποίηση των λογικών πλάνων HSP
στην μηχανή εκτέλεσης επερωτήσεων της MonetDB, με την μετάφραση των HSP πλάνων στην
φυσική άλγεβρα της MonetDB (MAL). Τέλος, αποτιμήσαμε πειραματικά την ποιότητα και τον
χρόνο εκτέλεσης των HSP πλάνων και συγκρίναμε τα μεγέθη αυτά με τα πλάνα που παρήγαγε
ο αλγόριθμος Cost-based Dynamic Programming (CDP). Το γηγενές σύστημα επεξεργασίας
SPARQL επερωτήσεων RDF-3X χρησιμοποιήθηκε για την εκτέλεση των CDP πλάνων. Για την
πειραματική αυτή αποτίμηση χρησιμοποιήσαμε τόσο συνθετικά όσο και πραγματικά RDF δεδομέ-
να.

Σε όλες τις επερωτήσεις που χρησιμοποιήσαμε, οι αλγόριθμοι HSP και CDP παρήγαγαν πλά-
να με τον ίδιο αριθμό πράξεων σύζευξης με συγχώνευση (merge join) και κατακερματισμό (hash
join). Η διαφορά των παραγόμενων πλάνων έγκειται στις μεταβλητές οι οποίες χρησιμοποιούνται
στις πράξεις σύζευξης με συγχώνευση, καθώς και στην σειρά εκτέλεσης των πράξεων σύζευξης η

οποία επηρεάζει το μέγεθος των ενδιάμεσων αποτελεσμάτων. Στην πλειοψηφία των επερωτήσεων,



ο χρόνος εκτέλεσης των HSP πλάνων στη MonetDB έχουν καλύτερος μέχρι και 3 τάξεις μεγέ-
θους από τον χρόνο εκτέλεσης των CDP πλάνων τα οποία εκτελούνται στην μηχανή RDF-3X.
Πιο συγκεκριμένα, ο αλγόριθμος HSP προσπαθεί να παράγει πλάνα τα οποία μεγιστοποιούν τον
αριθμό πράξεων σύζευξης με συγχώνευση πάνω από ταξινομημένες μεταβλητές που είναι κοινές

στα πρότυπα πρόσβασης τριάδων μιας επερώτησης. Βασίζεται σε ένα σύνολο ευρετικών κανόνων

για να αποφασίσει ποιες ταξινομημένες μεταβλητές θα χρησιμοποιηθούν στις πράξεις επιλογής και

σύζευξης. Οι ευρετικές αυτές μέθοδοι χρησιμοποιούνται επίσης για να αποφασίσουν τις σχέσεις

(ταξινομημένες σχέσεις τριάδων στην MonetDB) πάνω στις οποίες θα αποτιμηθούν τα πρότυπα
πρόσβασης τριάδων της επερώτησης.
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Chapter 1

Introduction

Beyond any doubt, during the last decade we are experiencing a paradigm shift on the World
Wide Web (WWW). We have witnessed a tremendous increase in the amount of semantic
data that is available on the Web in almost every field of human activity. Various knowledge
bases with billions of RDF triples from Wikipedia, U.S. Census, CIA World Factbook, open
government sites in the US and the UK, news and entertainment sources, have been created
and published online. In addition, numerous vocabularies and conceptual schemas in e-
science are published nowadays as Semantic Web (SW) ontologies (in RDFS or OWL), most
notably in life sciences, environmental or earth sciences and astronomy, in order to facilitate
community annotation and interlinkage of both scientific and scholarly data of interest. Data
published on the Web in such a way that their meaning is explicitly defined while they can
be freely interlinked with others, form essentially a global space of shared data which can
be exploited by a variety of applications and tools. Linked Data and Web 2.0 technologies
have essentially transformed the Web from a publishing-only environment into a vibrant
place for information dissemination where data is exchanged, integrated, and materialized
in distributed repositories: Web users are no longer plain data consumers but have become
active data producers and data dissemination agents.

In this global data space, the real added-value we can get from the available semantic data
relies on our capability to access and interpret them. Most of the applications require data
reshaping and integration in order to adapt them to other contexts of use than the ones they
were envisioned for. Semantic Data Management (SDM) refers to a range of techniques for
the manipulation and usage of data based on their meaning. In particular, we are interested
in management techniques for storing, querying, and manipulating semantic data expressed in
RDF, the lingua franca of linked open data and hence the default data model for Web of Data.
A practical reason for investigating this problem resides in the fact that much of the freely
available data represents potential new business opportunities for the industry, while their
processing and management is still in its infancy especially when larger scale and complex
semantic datasets are involved. In this thesis we are focusing on a core SDM problem, namely
scalable processing and optimization of semantic queries using modern relational engines.

One of the main challenges in this area is related to the fine-grained character of the
RDF data model featuring triples (of the form subject-predicated-object) rather than entire
records or entities, and thus queries over semantic data stored in relational databases entail
a significantly larger number of joins over entity attributes which are not always known at
query compile-time (e.g. SPARQL triple patterns featuring predicate variables). Existing
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native or SQL-based engines for processing SPARQL queries heavily rely on statistics regard-
ing the stored RDF graphs as well as adequate cost based planning algorithms to optimize
complex join queries. Extensive data statistics are quite expensive to compute and maintain
for large scale evolving semantic data over the Web. The main challenge in this respect is to
devise heuristics-based query optimization techniques generating near to optimal execution
plans without any knowledge of the underlying datasets. These heuristics-based optimization
techniques can be of course applied in a centralized setting but also in distributed/parallel
setting such as the cloud. In this context, the main contributions of this thesis are:

• We propose the first heuristics-based SPARQL planner (HSP) that is capable of ex-
ploring the syntactic variations of triple patterns in a query in order to choose a near
to optimal execution plan without any cost model. In particular, HSP tries to pro-
duce plans that maximize the number of merge joins over the ordered variables that
are shared among triple patterns and relies on various heurists to decide which ordered
variables will be used in selections and joins as well as which underlying access paths
will be exploited . In this respect, we propose an original reduction of query planning to
a maximum independent set computation over a SPARQL graph representation where
nodes are query variables and edges the triple patterns connecting them. Then the
qualifying independent sets are translated to blocks of merge joins connected when is
needed by hash joins.

• We have implemented HSP plans on top of the MonetDB column-based DBMS. We
have paid particular attention to the efficient implementation of HSP logical plans to
the underlying MonetDB query execution engine (using the MAL physical algebra). The
main challenge in this respect stems from the decomposed nature of rows in columns
which incur subtle tuple reconstruction operators after the execution of several MAL
operators for every HSP logical operator. In addition, to respect the maximal number
of merge joins determined by HSP, we have employed bushy rather than left-deep query
plans (as produced by the standard SQL optimizer of MonetDB).

• We have experimentally evaluated HSP using synthetically generated RDF datasets
according to SP2B1 [42] benchmark, as well as real RDF datasets that are widely used
such as YAGO2. In particular, we compare the quality and execution time of the plans
produced by HSP with the Cost-based Dynamic Programming (CDP) algorithm of
RDF-3X [35]. In all workload queries, HSP produces plans with the same number of
merge and hash joins as CDP. Their differences lie on the employed ordered variables
as well as the execution order of joins which essentially affect the size of intermediate
results. With the exception of queries which are not substantially different in their
syntax HSP plans executed on MonetDB outperform those of CDP executed in RDF-
3X up to three orders of magnitude.

Compared to existing SPARQL-engines, we believe that HSP exhibits some original
features: (a) Unlike most SQL-based SPARQL engines (SW-store [7], Oracle RDF [16],
3store [24], Sesame [15], Virtuoso RDF [19]), HSP is capable to rewrite SPARQL queries
in order to exploit as much as possible the ordered triple relations as well as to impose se-
lections and join ordering using RDF-specific heuristics (the sparseness of real RDF graphs

1dbis.informatik.uni-freiburg.de/index.php?project=SP2B
2Yet Another Great Ontology: www.mpi-inf.mpg.de/yago-naga/yago
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affects selectivity of operations w.r.t. the involved triple positions); (b) Rather than relying
on extensive statics as in the case of most cost-based native SPARQL engines (Hexastore [53],
RDF-3X [35], Yars2 [25]), these HSP statistics are proved to yield near-to-optimal bushy plans
which when executed over MonedDB come with significant performance gains.

The rest of this Thesis is organized as follows. In Chapter 2 we briefly discuss the RDF
data model, the SPARQL language for querying RDF data and present the basic principles
of the column-store based DBMS and in particular of MonetDB. Chapter 3 discusses the
Heuristic-based SPARQL Planning (HSP) algorithm. In Chapter 4 we discuss the results
of the performance evaluation of HSP plans More specifically, we discuss extensively the
properties of the datasets, the query workload we used in our evaluation, and the results
of the comparison of the produced HSP and CDP plans on the basis of their quality and
execution time in MonetDB (for the former) and RDF-3X for the latter. In Chapter 5 we
present state of the art works on the subject of Semantic Data Managment.
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Chapter 2

Preliminaries

In this chapter we introduce the Resource Description Framework (RDF) [20] and present
the SPARQL query language [41] for querying RDF data. Finally, we discuss column-store
DBMS and more specifically we present the MonetDB system1.

2.1 RDF

The Resource Description Framework (RDF) [20] is a framework for representing information
about Web resources. It is comprised of W3C recommendations that enable the encoding,
exchange and reuse of structured data, providing means for publishing both human-readable
and machine-processable vocabularies. Nowadays current W3C recommendations for RDF are
used in a variety of application areas. The Linked Data initiative, which aims at connecting
data sources on the Web, has already become very popular and has exposed many data sets
using RDF [20] and RDFS [13]. DBpedia 2, BBC music information [30] and government
datasets are only few examples of the constantly increasing Linked Data cloud.

RDF is based on a simple data model that is easy for applications to process and manip-
ulate Web data. We state here the basic assumptions underlying RDF.

• In RDF essentially anything we wish to describe is a resource. A resource may be
anything from a person to an institution, the relation a person has with an institution,
a Web page, part of a Web page, an entire collection of pages or a Web site. In
the context of RDF, a resource is uniquely identified by a URI (Universal Resource
Identifier) [20].

• The building block of the RDF data model is a triple. An RDF graph is a set of triples. A
triple is of the form (subject, predicate, object) where the predicate (also called property)
denotes the relationship between subject and object. In our work and without loss of
generality we restrict that the subject and predicate of a triple are URIs and the object
can be a URI or a literal. An RDF graph can be viewed as a node and edge labeled
directed graph with subjects and objects of triples being the nodes of the graph and
predicates the edges.

We consider two infinite and disjoint sets U and L denoting URIs and literals respectively.

1MonetDB: http://www.monetdb.org/Home
2http://dbpedia.org
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subject(s) predicate(p) object(o)
t1: sp2b:Journal1/1940 rdf:type sp2b:Journal
t2: sp2b:Inproceeding17 rdf:type sp2b:Inproceedings
t3: sp2b:Proceeding1/1954 dcterms:issued ‘‘1954’’

t4: sp2b:Journal1/1952 dc:title ‘‘Journal 1 (1952)’’

t5: sp2b:Journal1/1941 rdf:type sp2b:Journal
t6: sp2b:Article9 rdf:type sp2b:Article
t7: sp2b:Inproceeding40 dc:terms ‘‘1950’’

t8: sp2b:Inproceeding40 rdf:type sp2b:Inproceedings
t9: sp2b:Journal1/1941 dc:title ‘‘Journal 1 (1941)’’

t10: sp2b:Journal1/1942 rdf:type sp2b:Journal
t11: sp2b:Journal1/1940 dc:title ‘‘Journal 1 (1940)’’

t12: sp2b:Inproceeding40 foaf:homepage http://www.dielectrics.tld/siecle/samplings.html

t13: sp2b:Journal1/1940 dcterms:issued ‘‘1940’’

Table 2.1: A set of RDF triples from the SP2Bench SPARQL performance benchmark dataset

Definition 1. An RDF triple (subject, predicate, object) is any element of the set T = U
× U × (U ∪ L), where U is the set of URIs and L the set of literals (U and L are disjoint).
A set of RDF triples is called an RDF graph.

It should be stressed that in this thesis, we are interested only in ground triples and thus
ignore non-universally identified resources, called unnamed or blank nodes [40]. From this
point on, and w.l.g. we will be using the term triples to refer to ground triples. In this
context, an RDF graph is formed by a set of RDF (ground) triples.

Example 1. Table 2.1 shows a set of triples from the SP2Bench [42] SPARQL performance
benchmark dataset.

2.2 SPARQL

During the past years, many query languages have been proposed for the RDF data model.
Some of them include RQL [29], RDQL [43], SeRQL [14], and TRIPLE [45]. SPARQL [41]
is the official W3C recommendation language for querying RDF graphs and has the ability
to extract information about both data and schema. SPARQL is based on the concept of
matching graph patterns. The simplest graph patterns are triple patterns, which are like an
RDF triple but with the possibility of a variable in any of the subject, predicate or object
positions. A query that contains a conjunction of triple patterns is called basic graph pattern.
A basic graph pattern matches a subgraph of the RDF graph when variables of the graph
pattern can be substituted with the RDF terms in the graph.

In addition to the sets U and L (of URIs, and literals respectively) we assume the existence
of an infinite set V of variables (disjoint from the above sets).

Definition 2. An RDF triple pattern (subject, predicate, object) is any element of the set
T P = ( U ∪ V ) × ( U ∪ V ) × ( U ∪ L ∪ V ).

A SPARQL query consists of three parts. The pattern matching part, which includes sev-
eral interesting features of pattern matching of graphs, like optional parts, union of patterns,
nesting, filtering (or restricting) values of possible matchings, and the possibility of choosing
the data source to be matched by a pattern. The solution modifiers, which once the output of
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the pattern has been computed (in the form of a table of values of variables), allow to modify
these values by applying classical operators like projection, distinct, order, limit, and offset.
Finally, the output of a SPARQL query can be of different types: yes/no queries, selections
of values of the variables which match the patterns, construction of new triples from these
values, and descriptions of resources.

The syntax of SPARQL follows an SQL-like select-from-where paradigm. The select clause
specifies the variables that should appear in the query results. Each variable in SPARQL is
prefixed with character “?”. The graph patterns of the query are set in the where clause.
Finally, a filter expression specifies explicitly a condition on query variables.

The following SPARQL query asks for the year a journal with title ‘‘Journal 1

(1940)’’ has been issued and that was revised in ‘‘1942’’.

Listing 2.1: Query 1

select ?yr , ? j o u r n a l
where { ? j o u r n a l rd f : type bench : Journal . ( tp0 )

? j o u r n a l dc : t i t l e ‘ ‘ Journal 1 (1940) ’’ . ( tp1 )
? j o u r n a l dcterms : i s s u e d ? yr . ( tp2 )
? j o u r n a l dcterms : r e v i s e d ? rev . ( tp3 )
f i l t e r (? rev = ‘ ‘1942’’ ) }

A SPARQL graph pattern expression is defined recursively as follows:

1. A tuple from (U ∪ V) × (U ∪ V) × (U ∪ V ∪ L) is a triple pattern (graph pattern).

2. If P1 and P2 are graph patterns, then expressions (P1 ‘.’ P2 ), (P1 OPTIONAL P2 ),
and (P1 UNION P2 ) are graph patterns.

3. If P is a graph pattern and R is a SPARQL built-in condition, then the expression (P
FILTER R) is a graph pattern.

Built-in conditions are constructed using elements of the set V∪L∪U, logical connectives
(¬, ∧, ∨), inequality symbols (<, ≤, ≥, >), the equality symbol (=), unary predicates like
bound, isBlank, and isIRI, plus other features (see [41] for a complete list).

In this work, we restrict to the fragment of filters where the built-in condition is a Boolean
combination (only through conjunction) of terms constructed by using equality (=).

The answer of a SPARQL query with a select clause is a set of mappings where a map-
ping (i.e. the SPARQL analog of the relational valuation) is a set of pairs of the form
(variable, value).
Example 2. Consider the query presented in Listing 2.1 and the set of RDF triples shown
in Table 2.1. The result of the evaluation of this query on this set of RDF triples is the
following set of mappings:

{(?yr, 1940), (?journal, sp2bench:Journal1/1940)}

2.3 Column Store Databases: The Case of MonetDB

2.3.1 Row Store databases

Traditional database systems store and process data one tuple at a time, i.e., one row of a
table at a time, thereby known by the general term row-stores. The storage layout in a row-
store is typically based on pages and its processing model is typically based on the volcano
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ideas, i.e., the query plan is given to process one tuple at a time. Each tuple is processed
by every operator in the plan, before the next tuple is examined. For example, assume the
following simple query.

select (R.b) from R where R.a ≥ 5

A query processing plan for a row-store would go one by one through all tuples of table
R. For each tuple it would first call the select operator to evaluate the predicate of the where
clause. In the case that the given tuple satisfies the predicate, it would then return the
requested attribute.

During query processing, in order to access the next attribute of a tuple (row) we need to
know how many bytes must be read from the row and from which point exactly. We must also
need to call the next operator in the plan and be aware of the data type which can of course
be different than that of the previous attribute. Then, the same process must be repeated for
the next row(s) of the table.

2.3.2 Column Stores

Over the years, application needs have changed: applications (such in the case of OLAP), do
not always need to process full tuples of a table. Instead, they focus on analyzing a subset of a
table’s attributes, in order for instance to run various aggregations for data analysis. For this
kind of applications a column-store architecture seems more natural which lead to the design
of a number of novel systems, such as MonetDB [33], MonetDB/X100 [12] and C-Store [48].

Column-oriented DBMSs store data one column at a time as opposed to one tuple at a time
in the case of row stores. This type of processing allows a system to benefit a lot in terms of
I/O for queries that require only a subset of a table’s attributes. For example, assume a table
representing students in a university’s database. This table will typically consist of numerous
attributes, i.e., student’s first and last name, address, student ID, department, enrollment
date, average grade etc. Now imagine a series of queries with a goal of analyzing the data,
e.g., find all students that are enrolled at the university for at least 5 years, all students with
an average grade of more than 85/100 etc. This kind of queries need to see only a subset of
the table’s attributes. However, in a row-store the default action would be to load the whole
table from disk to memory (assuming no indexes exist). A column-store, on the other hand,
needs to load only the attributes (i.e., columns in their physical representation) relevant to
the query.

Another strong point of column-stores is the increased opportunities for compression [2,
56]. Physically storing together columns, brings similar data closer, i.e., data of the same type
with high chances of having the same or similar values. This way, significant compression
levels can be achieved. For instance, dictionary compression in a row-store would typically
happen at the page level. On the other hand, the obvious drawback of a column-store setting,
is the on-the-fly tuple reconstruction needed to bring the necessary columns back in a tuple
format. Tuple reconstruction eventually accounts to a join between two columns based on
tuple IDs/positions and becomes a significant cost component in column-stores especially for
multi-attribute queries [26, 3, 23, 31]. For example, for each relation Ri in a query plan Q, a
column-store needs to perform at least Ni − 1 tuple reconstruction operations for Ri within
Q, given that Ni attributes of Ri participate in Q. This is obviously a tradeoff depending on
various parameters, such as the number of attributes from the table that are relevant to the
given query, etc.
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2.3.3 The MonetDB System

In this section, we will briefly describe the MonetDB system to introduce the necessary
background for the rest of our presentation. MonetDB [33] is an open-source column-store
database developed in the database group of CWI. MonetDB differs from the mainstream
systems in its reliance on a decomposed storage scheme, a simple (closed) binary relational
algebra, and hooks to easily extend the relational engine.

In MonetDB, every n-ary relational table is represented by a group of binary relations,
called BATs [11]. A BAT holds an unlimited number of binary associations, called BUNs
(Binary UNits). The two attributes of a BUN are called head (left) and tail (right) in the
remainder of this document. A BAT represents a mapping from an oid-key to a single attribute
attr. Its tuples are stored physically adjacent to speed up its traversal, i.e., there are no holes
in the data structure. The keys represent the identity of the original n-ary tuples, linking
their attribute values across the BATs that store an n-ary table. For base tables, they form a
dense ascending sequence enabling highly efficient positional lookups. Thus, for base BATs,
the key column is a virtual non-materialized column. For each relational tuple t of a relation
R, all attributes of t are stored in the same position in their respective column representations.
The position is determined by the insertion order of the tuples. This tuple-order alignment
across all base columns allows the column-oriented system to perform tuple reconstructions
efficiently in the presence of tuple order-preserving operators. Basically, the task boils down
to a simple merge-like sequential scan over two BATs, resulting in low data access costs
through all levels of modern hierarchical memory systems. SQL statements are translated by
the compiler into a query execution plan composed of a sequence of simple binary relational
algebra operations. MonetDB is a late tuple reconstruction column-store: when a query is
issued, the relevant columns are loaded from disk to memory but are glued together in a
tuple N -ary format only prior to producing the final result. This way, intermediate results
are also in a column format. In MonetDB, each relational operator materializes the result as
a temporary BAT or a view over an existing BAT. Intermediates can efficiently be reused [27].

For example, assume the following query:

select R.c from R where 5 ≤ R.a ≤ 10 and 9 ≤ R.b ≤ 20

This query is translated into the following (partial) plan:

Ra1 := algebra.select(Ra, 5, 10);
Rb1 := algebra.select(Rb, 9, 20);
Ra2 := algebra.KEYintersect(Ra1, Rb1);
Rc1 := algebra.project(Rc, Ra2);

Operator algebra.select(A, v1, v2) searches all key-attr pairs in base BAT A for attribute
values between v1 and v2. For each qualifying attribute value, the respective key value (posi-
tion) is included in the result. Since selections happen on base BATs, intermediate results are
also ordered in the insertion sequence. In MonetDB, intermediate results of selections are sim-
ply the keys of the qualifying tuples, thus the positions of where these tuples are stored among
the column representations of the relation. In this way, given a key/position we can fetch/pro-
ject (positional lookup) different attributes of the same relation from their base BATs very
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fast. Since both intermediate results and base BATs have the attributes ordered in the in-
sertions sequence, MonetDB can very efficiently project attributes by having cache-conscious
reads. Operator algebra.project(A, r) returns all key-attr pairs residing in base BAT A at
the positions specified by r. This is a tuple reconstruction operation. Iterating over r, it uses
cache-friendly in-order positional lookups into A. Operators algebra.KEYintersect(r1, r2)
and algebra.KEYunion(r1, r2) are tuple reconstruction operators that perform the conjunc-
tion/disjunction of the selection results by returning the intersection/union of keys from r1

and r2 . Due to order-preserving selection, both r1 and r2 are ordered on key. Thus, both
intersection and union can be evaluated using cache-, memory-, and I/O- friendly sequential
data access. The results are ordered on key, too, ensuring effcient tuple reconstructions.

One of the most interesting features of MonetDB is that the actual algorithm used for
each operator is decided at the very last minute as part of the operator call, i.e., a select
operator, will on-the-fly decide whether it will do a simple scan select or a binary search if it
finnds out that the data is sorted. Similarly a join will decide on the fly the proper algorithm
depending on the input properties. To a large degree this is one more positive side-effect of
the column-based query processing, i.e., processing one column at a time in a bulk mode.
This way, MonetDB can delay for example the decision of which join algorithm to use up
until the moment that the join operator will be called. By then, MonetDB has fully created
the join inputs and thus can take better decisions.
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select R.a, S.b from R,S where R.1 = S.1

Figure 2.1: Join Processing in a column-store

The join operator in a column-store takes as input two BATs b1 = (key1, attr1) and
b2 = (key2, attr2). The operator finds the joinable attr1− attr2 pairs and produces as
output a new BAT that contains the qualifying key1− key2 pairs. These keys are then used
in the remainder of the query plan to fetch the qualifying values of the necessary attributes
from the base tables and in the correct order. An example of join processing can be seen in
Figure 2.1 . To find the actual joinable tuples across the two columns, the operator decides on
the fly the most appropriate algorithm, e.g., hashjoin, nested loops join, etc. In addition, the
choice of which is considered the inner or outer input is a dynamic one taken at the operator
level by exploiting the complete knowledge about the inputs, i.e., their sizes. In the execution
plans that are produced by our algorithms (Section 3.3.3) we employ the operators leftjoin,
uselect and semijoin. leftjoin is a special kind of join that operates on memory positions
and whose right and left operands (i.e., columns) cannot be switched. uselect returns the
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head values of all BUNs of a BAT with a certain value. Finally, the semijoin operator
returns the intersection taken over only the head columns of the two input BATs with their
tails being the tails of corresponding BUNs of the left operand.
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Chapter 3

SPARQL MonetDB Interpreter

3.1 Storage Scheme

In our work we assume the RDF graph is stored in a ternary relation that contains triples of
the form (subject, property, object). As triples contain URIs and literals, we adopt a standard
approach as in [5, 38] where each URI and literal is mapped to a unique identifier, and this
mapping is stored in a relational table, referred to as a dictionary. Table 3.1 shows a set
of triples from the SP2Bench [42] performance benchmark and Table 3.2 the dictionary for
this set. Note that the extract cost of a join must be paid when the results for a query are
returned because we need to obtain from the unique identifiers the URIs and literals.

To guarantee that we can anwer every possible triple pattern efficiently since variables
may appear in every position of the triple pattern, we store in the database all possible
permutations (as in the majority of the state of the art works on SPARQL query processing –
see Chapter 5) of subject (s), object (o) and property (p) views of the triple table after having
replaced the URIs and literals with their unique identifiers, hence obtaining the following
ordered relations: spo, sop, ops, osp, pos, pso. Each one uses a different order for arranging
its components: for instance for spo, the triples are sorted lexicographically first by subject
(s), then by object (o) and then by property (p). We store ordered relations as regular tables

subject(s) predicate(p) object(o)
t1: sp2b:Journal1/1940 rdf:type sp2b:Journal
t2: sp2b:Inproceeding17 rdf:type sp2b:Inproceedings
t3: sp2b:Proceeding1/1954 dcterms:issued ‘‘1954’’

t4: sp2b:Journal1/1952 dc:title ‘‘Journal 1 (1952)’’

t5: sp2b:Journal1/1941 rdf:type sp2b:Journal
t6: sp2b:Article9 rdf:type sp2b:Article
t7: sp2b:Inproceeding40 dc:terms ‘‘1950’’

t8: sp2b:Inproceeding40 rdf:type sp2b:Inproceedings
t9: sp2b:Journal1/1941 dc:title ‘‘Journal 1 (1941)’’

t10: sp2b:Journal1/1942 rdf:type sp2b:Journal
t11: sp2b:Journal1/1940 dc:title ‘‘Journal 1 (1940)’’

t12: sp2b:Inproceeding40 foaf:homepage http://www.dielectrics.tld/siecle/samplings.html

t13: sp2b:Journal1/1940 dcterms:issued ‘‘1940’’

Table 3.1: A set of RDF triples from the SP2Bench SPARQL performance benchmark dataset
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Dictionary

Oid V alue Oid V alue Oid V alue

001 sp2b:Journal1/1940 002 sp2b:Inproceeding17 003 sp2b:Proceeding1/1954
004 sp2b:Journal1/1952 005 sp2b:Journal1/1941 006 sp2b:Article9
007 sp2b:Inproceeding40 008 sp2b:Journal1/1942 009 sp2b:Journal
010 sp2b:Inproceedings 011 ‘‘1954’’ 012 ‘‘Journal 1 (1952)’’

013 sp2b:Article 014 ‘‘1950’’ 015 ‘‘Journal 1 (1941)’’

016 ‘‘Journal 1 (1940)’’ 017 www.dielectrics.tld/siecle/samplings.html 018 ‘‘1940’’

019 rdf:type 020 dcterms:issued 021 dc:title
022 dc:terms 023 foaf:homepage

Table 3.2: Dictionary

Triples

s p o s p o

t1 001 019 009 t8 007 019 010

t2 002 019 010 t9 005 021 015

t3 003 020 011 t10 008 019 009

t4 004 021 012 t11 001 021 016

t5 005 019 009 t12 007 023 017

t6 006 019 006 t13 001 020 018

t7 007 022 014

Triples

p s o p s o

t1 019 001 009 t2 019 002 010

t5 019 005 009 t6 019 006 006

t8 019 007 010 t10 019 008 009

t13 020 001 018 t3 020 003 011

t11 021 001 016 t4 021 004 012

t9 021 005 015 t7 022 007 014

t12 023 007 017

Table 3.3: Triple set and permutation pos thereof

in MonetDB, in contrast to the approach advocated in RDF-3X [38] uses clustered B+-tree
indexes to store this kind information. In addition, the mapping of URIs/literals to unique
identifiers is stored in two separate structures: one for URIs and one for literals. The second
mapping is stored in a regular MonetDB table whereas URIs are compressed: for each token
of a URI (where the delimeter used is one of “.”, “/”, “:”) we assign and store a small number
(up to 8 bits).

Table 3.3 shows the triple set after having substituted the literals and URIs with unique
identifiers and the ordered relation pos of the considered set of triples.

3.2 SPARQL Join Queries

In this work we consider SPARQL join queries that are of the form:

select ?v1 , ?v2 , . . .
where {pattern1 . pattern2 . . . .}

where patterni is a triple pattern (Section 2.2), ?vj denotes a variable and “.” denotes the join
opetation between triple patterns. For a triple pattern tp, we denote by pos(x, tp) the position
of x (URI, literal or variable), in triple pattern tp (one of s, o, p for subject, object and predicate
resp.). We also define function cond(tp) that returns the set of conditions represented as a
pair of the form (pos(?v , tp), c) where c is a constant or a variable. In a SPARQL join query, a
variable that appears in multiple triple patterns implies a join between those triple patterns.
To evaluate a SPARQL query, the query engine must find the variable bindings that satisfy
the triple patterns, and return the bindings for the variables in the query’s select clause.
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Definition 3. A SPARQL join query is defined by a set of triple patternsQ= { tp0, . . ., tpk }.

We denote by vars(Q) the set of variables and ul(Q) the set of URIs, constants and
literals in Q respectively. We overload function vars() to denote the set of variables for a
triple pattern tp, and function ul() to denote the set of constants of a triple pattern tp. The
set of variables that appear in the select clause of a SPARQL join query are called projection
variables. We will write pvars(Q) to refer to the set of projection variables of query Q. We
also define weight function β : V → N that represents the number of triple patterns a variable
?v appears in (minus 1) in a query Q. More specifically:

β(?v) = |{tp | tp ∈ Q, v ∈ vars(tp)}| − 1

We call join (shared) variables the variables with positive weight, whereas variables with zero-
weight are called unused variables. Finally, we define the number of distinct positions of a
variable ?v in a query Q, to be

dp(?u) =|
⋃

{tp∈Q|?v∈vars(tp)}

{pos(tp, ?v)} |

Example 3.
Listing 3.1 shows query Q that consists of triple patterns tp0, tp1, tp2, tp3, tp4 and tp5.

?x , ?u2 are projection variables (pvars(Q) = { ?x , ?u2 }). ?u1 , ?u2 are unused variables
(i.e., appear only in triple patterns tp1, tp5 resp.) with zero weight (β(?u1), β(?u2) = 0). ?x
and ?y are join variables with ?x appearing in triple patterns tp0, tp2, tp3 and ?y in triple
patterns tp2, tp3, tp4 and tp5. For ease of readability we denote constants (URIs and literals)
as <>. The weight of variables ?x , ?y is β(?x ) = 2 and β(?y) = 3 resp. (the first appears in
3 whereas the second in 4 triple patterns). Variable ?x appears only at the subject position
of the triple patterns tp0, tp1, tp2 and hence dp(?x ) = 0 whereas variable ?y appears in both
the subject and object positions for triple patterns tp2, tp3 so dp(?y) = 1.

Listing 3.1: Q

select ?x , ?u2
where { ?x <> <> . ( tp0 )

?x <> ?u1 . ( tp1 )
?x <> ?y . ( tp2 )
?y <> <> . ( tp3 )
?y <> <> . ( tp4 )
?y <> ?u2 } ( tp5 )

3.3 Query Optimization

In this section we present our approach for producing the query plans for the SPARQL queries
we consider in this thesis. As discussed in Chapter 1, we propose a framework for the efficient
evaluation of SPARQL queries over a column store database. Due to the fine-grained nature
of RDF data where information is stored in the form of triples, instead of records, queries
over RDF data involve a large number of joins which form the largest part of the query
workload. RDF data does not come with schema or integrity constraints, so that a query
optimizer can take advantage of those to produce an efficient query plan. In addition to that,
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join variables are not as predictable as in the case of relational data where joins are explicitly
specified in the where clause of an SQL query. The above set different requirements for RDF
query processing. In this thesis, we advocate a heuristic-based approach for the construction
of query plans over column-store databases. These heuristics can be distinguished into (i)
relational-specific (ii) RDF-specific and (iii) column-store specific ones.

H0: maximize the number of merge joins in the query plan. This heuristic is a
relational specific one but can be also applied in our context since we use a relational schema
(i.e., triple table) as the logical schema to store the RDF graph.

H1: Promote the triple patterns that have the most number of literals and URIs.
This heuristic is similar to the bound as easier heuristic of relational and datalog query
processing, according to which, the more bound components a triple pattern has, the more
selective it is [50, 51]. This heuristic helps us in considering triple patterns for joins that have
higher selectivity that when used as join operands reduce the size of the join’s result. This
heuristic is also related to the selection operator since it helps us to push the selections as
early as possible in a query plan.

H2: Promote the triple patterns that have most number of literals. For this
heuristic we consider the selectivity of constants, and more precisely we assume that literals
are more selective than URIs. This heuristic, similar to the previous one, helps us in choosing
selective triple patterns in the case of joins and push the selections as early as possible in a
query plan.

H3: The different positions in which the same variable appears in a set of triple patterns
captures the number of different joins this variable participates in. A variable that appears
always in the same position in all triple patters, for example as subject, entails many self joins
with low selectivity. On the other hand, if it appears both as object and property, chances
are the join result will be smaller. The following precedence relation captures this preference:

p ./ o ≺ s ./ p ≺ s ./ o ≺ o ./ o ≺ s ./ s ≺ p ./ p

where s, p, o refer to the subject, property, and object position of the variable in the triple
pattern. This ordering stems from our observations while studying RDF data graphs as shown
in Table 4.1 (Section 4.1.5). RDF data graphs tend to be sparse with a small diameter, while
there are hub nodes, usually subjects. As a result, query graph patterns that form linear
paths are more selective.

H4: Promote the set of triple patterns that have the the least number of projection
variables. This heuristic allows us to consider as late as possible the triple patterns that
contain projection variables so to promote late tuple reconstruction. In the case in which the
compared sets of triple patterns have the same set of projection variables, we prefer the set
with the maximum number of unused variables that are not projection variables.
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H5:
Given the position and the number of variables in a triple pattern we derive the following
order, starting from the most selective, i.e., the one that is likely to produce less intermediate
results, to the least selective.

s p o ≺ s ?p o ≺ ?s p o ≺ s p ?o ≺
?s ?p o ≺ s ?p ?o ≺ ?s p ?o ≺ ?s ?p ?o

The above ordering is based on the observation that given a subject and an object there only
very few, if not only one, properties that can satisfy the triple pattern. Similarly, it is very
rare that a combination of a subject and property has more than one object value. In the
same line of thinking we derive the rest of the orders. An exception to this rule is when the
property has the value rdf:type, since that is a very common property and thus these triples
should not be considered as selective.

3.3.1 Finding Merge Joins in the Query Plan and Assigning Ordered Re-
lations to Triple Patterns

Our main objective is to produce query plans with the maximum number of merge joins
(heuristic H0). In order to achieve this, we need to select (a) the appropriate join variable as
well as the the appropriate ordered relation (access path) among the six available ones (spo,
sop, ops, osp, pos, pso) so that the evaluation of a triple pattern returns RDF triples in an
order that will enable the use of merge joins.

To implement heuristic H0, we reduce the problem of finding the maximum number of
merge joins to the problem of finding the maximum weight independent sets in a graph. In
graph theory, an independent set is a set of vertices in a graph, no two of which share an
edge [22]. If each vertex of a graph G is assigned a positive integer (the weight of the vertex)
the maximum weight independent set problem consists in finding independent sets of maximum
total weight which is an NP-hard problem in general [21] and remains NP-hard even under
restrictions in the forms of graphs. However, an RDF join graph is small enough (a couple to
maybe few tens of vertices) that an independent set can be easily found in a few milliseconds
in modern hardware.

The idea of reducing our problem to the problem of finding independent sets with maxi-
mum weight is the following: maximizing the number of merge joins can be translated into
finding groups of maximum size of triple patterns that can be joined on the same variable.
To do this, we represent the query as a variable graph where (i) nodes in the graph are the
query variables, (ii) two nodes are connected if they belong to the same triple pattern and
(iii) a node carries a weight which is the number of triple patterns it appears in minus 1.
Consequently, the nodes in this graph that are returned as members of an independent set,
are the variables for which we will define the merge joins. The time complexity of variable
graph construction is O(|n|), where n is the number of triple patterns.

In the following we will present the algorithms we use to decide i) the merge joins (Al-
gorithm FindAccessPaths()), and ii) the ordered relations that will be used to evaluate the
query’s triple patterns (Algorithm AssignOrderedRelations()). First, we will discuss the notion
of variable graph that we will use extensively in our algorithms.
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Definition 4. Let Q be a set of RDF triple patterns. The variable graph G(Q) is a
weighted node labeled graph G(Q) = (V,E, β) where (i) V is the set of nodes, (ii) E is
the set of edges, E ⊆ V × V , and (iii) β is the weight function for each node in V . More
specifically, for each variable ?v in vars(Q), we add a node ?v in V if β(?v) 6= 0, with weight
β(?v). An edge (?v , ?u) is defined between nodes ?v , ?u iff there exist some triple pattern
tpk in Q where, {vi, vj} ∈ vars(tpk).

Example 4. Figure 3.1(a) shows the variable graph obtained for query Q1 (Listing 3.2).
We choose to variable’s name to denote the corresponding node in the graph, and the node’s
weight is denoted in parentheses next to it. Note that for query Q1, variables ?u1 , ?u2 do not
appear in the query’s graph since they are unused variables (have zero weight). The variable
graph for query Q2 (Listing 3.3) is shown in Figure 3.1(b). Query Q2 contains a cycle: see
that a path is formed (whose start and end node are the same variable – ?x ). Nevertheless,
the cycle is not captured in the variable graph. Query Q3 (Listing 3.4) consists of a single
triple pattern where the same variable is used in two different positions. This is a special case
of a cycle with an empty variable graph. Note that the graph does not contain any nodes
per definition since variable ?x belongs to a single triple pattern (in two different positions).
Note that there are no self-loop edges in a variable graph. Finally, query Q4 (Listing 3.1(c))
contains two triple patterns that are joined by two variables and whose query graph is shown
in 3.1(c). From the queries discussed here we can see that the variable graph represents only
information about joins.

?x ?y
(2) (2)

(a) Q1

?x ?y
(1)

?z

(1)
(1)

(b) Q2

?x ?y
(1) (1)

(c) Q4

Figure 3.1: Variable Graph for Queries Q1, Q2, and Q4

Listing 3.2: Q1

select ?x ?y
where { <> <> ?x . ( tp0 )

?x <> ?u1 . ( tp1 )
?x <> ?y . ( tp2 )
?y <> ?u2 . ( tp3 )
?y <> <> } ( tp4 )

Listing 3.3: Q2

select ?x ?y
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where { ?x <> ?y . ( tp0 )
?y <> ? z . ( tp1 )
? z <> ?x } ( tp2 )

Listing 3.4: Q3

select ?x
where { ?x <> ?x .} ( tp0 )

Listing 3.5: Q4

select ?x
where { ?x <> ?y . ( tp0 )

?x ?y <> } ( tp1 )

Algorithms FindAccessPaths() and AssignOrderedRelations() use function AccPath

AccPath : T P → P × V

where T P= ( U ∪ V ) × ( U ∪ V ) × ( U ∪ L ∪ V ) denotes the set of triple patterns, P= {
spo, sop, ops, osp, pos, pso} the set of ordered relations and V the set of variables. Function
AccPath stores for a triple pattern tp the ordered relation it will be evaluated on, and tp’s
variable whose values will be returned sorted. Function AccPath is represented as a Map with
as key a triple pattern from the set T P and value an element in the set P × V . We write
AccPath.get(tp).rep to denote the ordered relation that triple pattern tp will be evaluated on,
and AccPath.get(tp).sort to denote the variable of tp whose values will be returned sorted by
the evaluation.

Algorithm FindAccessPaths() takes as input a SPARQL join query Q and returns map
AccPath whose keys are the triple patterns in Q. It first applies Algorithm CMWIS() [39]
(lines 7− 8) (implementing heuristic H0) that computes the maximum weight independent
sets for query Q, that is the variables that will be used to perform the merge joins. It is the
case that for some queries, there are multiple independent sets with the maximum weight.
In this case, instead of choosing randomly one of the independent sets, heuristics H1-H4 are
applied in this order to eliminate candidates.

In the case in which more than one independent sets are returned, FindAccessPaths()
applies first heuristic H1 using function argmaxIS ∈ SV | ul(IS) | to eliminate a subset
of the obtained independent sets (lines 9− 11). Function argmax stands for the argument
of the maximum, that is the set of points of the given argument for which the value of the
given expression attains its maximum value. In our case, function ul(IS) denotes the set of
constants of the triple patterns associated with the variables in independent set IS.

If at this step, more than one independent sets remain, Algorithm FindAccessPaths()
applies heuristic H2 (lines 12− 14) using function argmaxIS ∈ SV | literals(IS) | where
literals(IS) denotes the sets of literals of the triple patterns associated with the variables
in independent set IS. If, after the application of H2, more than one independent sets
are left, Algorithm FindAccessPaths() applies heuristic H3 (lines 15− 17) through function
argmaxIS ∈ SV varsdp(IS) where varsdp(IS) is a function defined as follows: varsdp(IS) =|
{∀?v ∈ IS, dp(?v)} |. In other words, it returns the number of distinct positions for each
variable in an independent set. If multiple independent sets remain, then we employ the
precedence relation between join patterns as discussed in heuristic H3. After the application
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Algorithm 1: FindAccessPaths

Input: Query Q
Output: AccPath : T P × P × V
bestCand← 0 be a set of sets of variables;1

SV be a set of sets of variables;2

V be a set of variables ;3

T ← Q be a set of triple patterns ;4

while T 6= ∅ do5

SV ← 0, V ← 0;6

Let G(T) be the variable graph constructed from the set of triple patterns in T ;7

SV ← CMWIS(G(T)) ;8

if (| SV |> 1) then9

/* apply heuristic H1*/;10

SV ← argmaxIS∈SV | ul(IS) | ;11

if | SV |> 1 then12

/* apply heuristic H2*/;13

SV ← argmaxIS∈SV | literals(IS) | ;14

if | SV |> 1 then15

/* apply heuristic H3*/;16

SV ← argmaxIS ∈ SV varsdp(IS);17

if | SV |> 1 then18

/* apply heuristic H4*/;19

SV ← argminIS ∈ SV | pvars(IS) | ;20

/* select randomly one of the sets */;21

V ← select one of the sets in SV ;22

/* update the set of variables*/;23

bestCand← bestCand ∪ {V } ;24

/* Update the set of triple patterns to contain only the triple patterns that do not25

contain some variable in the selected set of variables */;
T = T \ {tp | T, vars(tp) ∩ V 6= ∅} ;26

/* compute structure AccPath*/;27

forall v ∈ bestCand do28

/* select the triple patterns that the variable appears in that have not been assigned29

an ordered relation */;
T = {tp | v ∈ vars(tp), tp /∈ AccPath.keys()} ;30

forall tp ∈ T do31

AssignOrderedRelations(tp, v) ;32

/* assign to the remaining triple patterns an ordered relation according to the33

selectivity heuristic */ ;
forall tp ∈ Q, tp /∈ AccPath.keys() do34

ρ(n) = AssignOrderedRelations(tp, nil) ;35
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of heuristic H3 and if still multiple independent sets remain, we apply heuristic H4 (lines
18− 20) using function argminIS ∈ SV | pvars(IS) | where function pvars(IS) returns the
set of the projection variables in the triple patterns the variables in IS belong to. Function
argmin stands for the argument of the minimum, that is the set of points of the given
argument for which the value of the given expression attains its minimum value. In the case
in which multiple independent sets still remain we choose randomly one of the resulting sets
(lines 21− 26) and we remove from the set of input triple patterns the ones that the selected
variables participate in. The process is repeated until there are no triple patterns left for
consideration.

To select the ordered relation that will be used to evaluate a triple pattern tp, we iterate
over all variables in the selected independent set, and for each of the variables, we compute
the triple patterns the variable belongs in (lines 28− 30).

Then Algorithm AssignOrderedRelations() is called for each triple pattern in this set and
the corresponding variable, to compute the ordered relation that will return the triples that
match the triple pattern ordered on the input variable (lines 31− 32). After all the variables
in the independent sets found have been considered, Algorithm AssignOrderedRelations() is
called for each triple pattern to which no ordered relation has been assigned (lines 34− 35).

It takes as input a triple pattern tp of query Q, a variable u of tp and the Map AccPath
that contains the assignment of triple patterns to access paths.

The algorithm updates Map AccPath by taking under consideration heuristic H5 and the
position of variable u in the input triple pattern. In the case that no variable is provided, we
choose the ordered relation that evaluate constants first (lines 3− 13) otherwise, we promote
the ordered relation that returns the triples ordered on the value of variable u (lines 14− 25).
Example 5.

select ?x , ?y
where { ?x <> <> . ( tp0 )

?x <> ?u1 . ( tp1 )
?x <> ?y . ( tp2 )
?y <> <> . ( tp3 )
?y <> <> } ( tp4 )

Listing 3.6: Query Qa

Consider query Qa shown in Listing 3.6 whose variable graph is shown in Figure 3.2.

?x ?y
(2) (2)

Figure 3.2: Variable Graph for Queries Qa, Qb and Qc

When applying the maximum weight independent sets algorithm CMWIS( ) on Qa’s vari-
able graph, we obtain the following independent sets

IS1 = {?x} and IS2 = {?y}

When applying heuristic H1, we select independent set IS2 since ul(IS1) = 4, whereas
ul(IS2) = 5: variable ?x belongs in triple patterns tp0, tp1 and tp2 with in total 4 constants,
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Algorithm 2: AssignOrderedRelations

Input: Triple Pattern tp of Query Q, Variable v of tp, Map AccPath
Let pos(x, tp) denote the position of variable or constant x in the triple pattern tp;1

Let (value1, value2, value3) denote an orderered relation from P;2

if (v = nil) then3

/* not interested in any variable */ ;4

/* choose the ordered relations that evaluate the constants (URIs and literals) first5

*/;
if (| ul(tp) |= 2) then6

Let v be the variable of triple pattern tp;7

AccPath.put(tp, ((value1, value2, pos(tp, v)), v));8

end9

if (| ul(tp) |= 1) then10

Let v1, v2 be the variables of triple pattern tp11

AccPath.put(tp, ((value1, pos(tp, v1), pos(tp, v2)), v1));
end12

else13

/* if tp is of the form (?x , ?y , ?z ) choose the ordered relation that returns the14

triples ordered for v */;
if (| vars(tp) |= 3) then15

AccPath.put(tp, ((pos(v, tp), value2, value3), v));16

end17

if (| vars(n) |= 2) then18

/*if tp is of the form (?x , ?y , c) or (c, ?x , ?y) or (?x , c, ?y) with c a URI or19

literal, choose the ordered relation where c is evaluated first */ ;
AccPath.put(tp, ((pos(c, tp), pos(v, tp), value3), v));20

end21

if (| vars(n) |= 1) then22

/*if tp is of the form (?x, c1, c2) or (c1, ?x, c2) or (c1, c2, ?x), with c1, c2 URIs23

or literals, choose the ordered relations where c1, c2 are evaluated first according
to the heuristics */ ;
AccPath.put(tp, ((value1, value2, pos(v, tp)), v));24

end25

end26
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and variable ?y belongs in triple patterns tp2, tp3 and tp4 with total 5 constants. As a result,
we obtain set IS2.

Query Qb is similar to query Qa with the exception of triple pattern tp3 where the constant
value for the object component is replaced with an unused variable (?u2 ). Qb’s variable graph
is the same as Qa’s (depicted in Figure 3.2). Hence, we obtain again the same maximum
weight independent sets IS1 and IS2 as before.

The application of heuristic H1 returns both sets IS1 and IS2 since ul(IS1) = ul(IS2) =
4. Sets IS1 and IS2 are also returned after the application of heuristic H2 since literals(IS1)
= literals(IS2) = 1. When applying heuristic H3 we obtain set IS2 since the number of
distinct positions for variable ?y is higher than the number of distinct positions for variable
?x . More specifically, the sole appearance of a join pattern for ?x is s = s (tp0, tp1, tp2), that
is dp(?x ) = 0, whereas the join patterns for variable ?y are o = s (tp2, tp3 and s = s (tp3,
tp4) that is dp(?y) = 1. Hence independent set IS2 is selected.

select ?x , ?y
where { ?x ur l 1 l i t 1 . ( tp0 )

?x ur l 2 ?u1 . ( tp1 )
?x ur l 3 ?y . ( tp2 )
?y ur l 4 ?u2 . ( tp3 )
?y ur l 5 l i t 2 } ( tp4 )

Listing 3.7: Query Qb

Finally, query Qc shown in Listing 3.8 is a variation of query Qb where for triple pattern
tp0, variable ?x is found at the object instead of the subject position. The structure of the
queries is the same, and consequently they have the same variable graph (shown in Figure 3.2).
Consequently, we obtain again the same maximum weight independent sets IS1 and IS2 as
before.

The application of heuristics H1, H2 and H3 does not eliminate any of the obtained
independent sets (same sets of constants (4), literals (0), distinct variable positions (1)). The
application of heuristic H4 returns independent set IS2 since pvars(IS2) = 1 (the projected
variable is ?u2 that belongs in triple pattern tp3 to which variable ?y belongs).

select ?u2
where { ur l 1 u r l 2 ?x . ( tp0 )

?x ur l 3 ?u1 . ( tp1 )
?x ur l 4 ?y . ( tp2 )
?y ur l 5 ?u2 . ( tp3 )
?y ur l 6 u r l 7 } ( tp4 )

Listing 3.8: Query Qc

To see how the assignment of ordered relations to triple patterns is done, consider query
Qc, and the independent set obtained IS2 = {?y}. The triple patterns to which variable ?y
belongs to are T = {tp2, tp3, tp4}. Algorithm AssignOrderedRelations() populates AccPath
structure as follows:

AccPath(tp2, (pos, ?y)) AccPath(tp3, (pso, ?y)) AccPath(tp4, (pos, ?y))

Consider the case of triple pattern tp2: Algorith AssignOrderedRelations() will select or-
dered relation pos since (a) tp2’s predicate is constant, and (b) the values for variable ?y
(which is in the object (o) position ordered must be returned ordered. For triple pattern tp3,
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AssignOrderedRelations() selects ordered relation pso because (a) tp3’s predicate is constant
and (b) we must return the values for variable ?y (which is in the subject (s) position or-
dered. Finally, for triple pattern tp4, ordered relation pos is selected due to the application
of heuristic H5.

The set of triple patterns to which variable ?x belongs to and to which no ordered relation
has been assigned is T ′ = {tp0, tp1} for which AssignOrderedRelations() updates structure
AccPathas follows:

AccPath(tp0, (pso, ?x )) AccPath(tp1, (pso, ?x ))

3.3.2 Constructing Logical Plans

In this section we discuss Algorithm LPlanConstruction() that takes as input a query Q and
the AccPath structure obtained from Algorithm FindAccessPaths(), and returns the root node
of the plan. It employs multimap V N : V→ N that stores for each variable in the query the
node of the plan is associated with (through a selection, scan or join operation). First, the
algorithm creates the scan and selection nodes in the plan (lines 3− 11). It iterates over all
triple patterns that are keys in the AccPath structure, and creates a scan node (line 5) that
carries the following information i) the ordered relation to be used for the evaluation of triple
pattern tp, ii) the variable whose values will be returned sorted from tp’s evaluation, iii) a
set of pairs of the form (pos(u, tp), u) for each variable u in tp (nvar) If there are conditions
associated with the triple pattern, then a selection node is created that carries i) the set of
tp’s conditions (cond) ii) a pointer to the child scan node and iii) all information stored in the
scan node (lines 7− 8). Algorithm LPlanConstruction updates structure V N by iterating over
all variables in triple pattern tp and adding for each variable the plan node (either selection
or scan node) that has been created for this triple pattern (lines 10− 11).

In the following step, LPlanConstruction computes the hash and merge join nodes in the
plan (lines 13− 38). It iterates over all variables that have an entry in multimap V N and
constructs the join nodes. First, it finds all the plan nodes constructed so far whose sort is
variable v and adds those nodes in set S (lines 16− 19). If there are more than one such
plan nodes, a join node is created, whose condition is variable v , and children the nodes in
set S. Multimap V N is then updated accordingly. In the following, the algorithm examines
whether some of the children nodes of the join node have a common variable, different from
the variable that is examined. In this case, the common variable is added to the join node’s
condition (lines 23− 32). After all the merge joins have been created, the Algorithm creates
the hash joins, with the difference that all the nodes that contain each variable are selected,
rather than just those which are ordered on the examined variable. In the case where the set
of all the values of V N contains more than one value, we create cartesian products between
the different nodes (lines 35− 37). Finally, a projection node is created using the projection
variables of the query (pvars(Q)). The time complexity of LPlanConstruction algorithm is
O(|v2|), where v is the number of shared variables of the query.
Example 6. Consider query Qc discussed earlier and the AccPath structure obtained for
this query:

AccPath(tp0, (pso, ?x )) AccPath(tp1, (pso, ?x ))
AccPath(tp2, (pos, ?y)) AccPath(tp3, (pso, ?y)) AccPath(tp4, (pos, ?y))

Figure 3.3 shows the obtained logical plan for queryQc. At the first step, scan nodes scan0,
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Algorithm 3: LPlanConstruction

Input: Query Q, AccPath : T P → P × V
Output: root
Let V N be a multimap V N : V→ N with N a Node in the Logical Plan;1

/* Calculate scan and selection nodes */;2

foreach tp ∈ AccPath.keys() do3

nvar ← {∀ v ∈ vars(tp), (pos(v, tp), v)} ;4

P ← new Nodescan(AccPath.get(tp).rep, AccPath.get(tp).sort, nvar);5

cond← cond(tp);6

if (| c |> 0) then P ← new Nodeselection(cond, P.sort, nvar, P ) root← P ;7

foreach (v ∈ vars(tp)) do V N.put(v , P )8

/* Calculate join nodes */;9

hashjoinsF lag = false;10

while true do11

foreach v ∈ V N.keySet() do12

S ← ∅;13

foreach P ∈ V N.get(v) do14

if (hashjoinsF lag ∨ P.sort == v) then S ← S ∪ P ;15

if (| S |> 1) then c← v ;16

if (!hashjoinsF lag) then17

joinNode← new NodemergeJoin(c, S);18

else19

joinNode← new NodehashJoin(c, S);20

root← joinNode;21

V N.put(v , joinNode);22

foreach P ∈ S do V N.remove(v , P );23

foreach v2 ∈ V N.keySet() do24

if (v2 6= v) then25

foreach P ∈ V N.get(v2 ) do26

foreach P2 ∈ P ∩ S do27

V N.remove(v2 , P2);28

V N.put(v2 , joinNode);29

if (∃ P1, P2 . . . , Pk nodes with k > 1, Pi = Pj) then30

V N.remove(v2 , Pi), i = 1, . . . , k − 1;31

joinNode.cond.append(v2 );32

if (hashjoinsF lag == true) then break;33

hashjoinsF lag = true;34

/* Calculate cartesian product node */;35

CP = {P | P ∈ V N.values()};36

if | CP |> 1 then root← new Nodecartesian product(CP );37

/* Calculate projection node */;38

root← new Nodeprojection(pvars(Q), root);39
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[tp0]

scan(pso,
        ?x,
        {(o,?x)})

[tp1]

scan(pso,
        ?x,
        {(s,?x),
          (o,?u1)})

scan(pos,
        ?y,
        {(o,?y),
          (s,?x)})

[tp2]

scan(pso,
        ?y,
        {(s,?y),
         (o,?u2)})

[tp3]

scan(pos,
        ?y,
        {(s,?y)})

[tp4]

selection((s=url1, 
               p=url2)
              pso,
              ?x,
              {(o,?x)})

selection((p=url3)
              pso,
              ?x,
              {(s,?x),
               (o,?u1)})

selection((p=url4)
              pos,
              ?y,
              {(o,?y),
               (s,?x)})

selection((p=url5)
              pos,
              ?y,
              {(s,?y),
               (o,?u2)})

selection((p=url6
                o=url7)
              pos,
              ?y,
              {(s,?y)})

mergeJoin(?x) mergeJoin(?y)

joinNode(?x)

s0 s1 s2 s3 s4

scan0 scan1 scan2 scan3 scan4

mj0 mj1

hj0

projectionNode(?u2)

Figure 3.3: Logical Plan for Query Qc

scan1, scan2, scan3 and scan4 for triple patterns tp0, tp1, tp2, tp3 and tp4 respectively. Note
that each scan node stores information related to the ordered relation the triple pattern will
be evaluated on, the variable whose values will be returned sorted and the set of (pos, var)
pairs for each variable in the triple pattern. Consider for instance triple pattern tp3: node
scan3 is created for it that carries the following information: i) pso the ordered relation on
which tp3 will be evaluated on (AccPath.get(tp3).rep), ii) variable ?y whose values will be
returned sorted by the evaluation (AccPath.get(tp3).sort) and the set {(s, ?y), (o, ?u2 )} that
designates the position in the triple pattern of each of its variables. Since all triple patterns of
Qc contain constants, selection nodes s0, s1, s2, s3 and s4 are created. Note that each such
node contains the same kind of information as the scan nodes, in addition to the conditions
specified in the triple pattern. For example, in the case of tp3, we have added condition
(p = url5) since tp3 contains a single constant url5 at the predicate position. In the third
step, the join nodes are created as follows: we first select the selection nodes whose sort
variable is ?x which in our case are s0 and s1. The merge join node mj0 is created with
condition variable ?x whose children nodes are nodes s0 and s1. In a similar manner, merge
join node mj1 is created with condition variable ?y and whose children nodes are selection
nodes s2, s3, s4. Then, the hash join node hj0 is created whose condition is variable ?x .
Finally, the projection node π is created whose condition is variable ?u2 .

3.3.3 Constructing Physical Plan

In this section we will present through an example the construction of the physical plan
to be executed by MonetDB. It takes as input the logical plan created by Algorithm
LPlanConstruction and converts the relational operators into operators of the MAL algebra.
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Algorithm 4: algoMALsel

Input: A scan or selection node n
Output: Physical plan
for i← 0 to ‖n.cond‖ − 1 do1

if i = 0 then2

smal← new Nodebind(n, n.cond[i], pos);3

smal← new Nodeuselect(smal, n.cond[i].value);4

tmpMAL← smal;5

else6

smal← new Nodebind(n, n.cond[i].pos);7

smal← new Nodesemijoin(smal, tmpN);8

smal← new Nodeuselect(smal, n.cond[i].value);9

tmpMAL← smal;10

foreach v ∈ n.nvar do11

smal← new Nodebind(n, v.pos);12

smal← new Nodeleftjoin(smal, tmpN);13

n.Map.put(v.value, smal);14

Algorithm 5: algoMALjoin

Input: A join node n
Output: MAL node
jmal← newNodejoin(n.left.Map.get(n.cond.var), n.right.Map.get(n.cond.var));1

foreach v ∈ keys(n.left.Map) do2

tmpMAL← new Nodeleftjoin(n.left.Map.get(v), n);3

jmal.Map.put(v, tmpMAL);4

foreach v ∈ keys(n.right.Map)v do5

tmpMAL← new Nodeleftjoin(n.right.Map.get(v), n);6

jmal.Map.put(v, tmpMAL);7

25



[tp0]

scan(pso,
        ?x,
        {(o,?x)})

[tp1]

scan(pso,
        ?x,
        {(s,?x),
          (o,?u1)})

selection((s=url1, 
               p=url2)
              pso,
              ?x,
              {(o,?x)})

selection((p=url3)
              pso,
              ?x,
              {(s,?x),
               (o,?u1)})

mergeJoin(?x)

s0 s1

scan0 scan1

mj0

Figure 3.4: Merge Join on variable ?x

bottom-up. Algorithms ScanSelectionToMAL() and JoinToMAL() construct the MAL com-
mands which implement the physical selection and join operators. Due to the difficulty of the
MAL language, we choose to present graphically the physical plan.

Consider the fragment of the logical plan for query Qc shown in Figure 3.4. This subplan
corresponds to the merge join executed for variable ?x . Using as input the selection node
s0, bind node n1 is created, for the subject column of the ordered relation spo. Above this
node, the uselect n2 is created which filters the returned values with value url1. The result
of this filtering is used in a semijoin (node n4) with the bind node n3 which binds to property
column. The semijoin gives as output one BAT that has as head the intersection of heads of
the two entries and as tail the corresponding BUNs of the left operand. Then, the uselect
node n5 filters the tail values of the semijoin output by applying the second condition (with
value url2). Finally, the leftjoin node n7 is constructed that joins the results of this filtering
with the bind node n6 that binds the object column from the ordered relation SPO using the
values of variable ?x , as we can see in Figure 3.5. In a similar manner, the values for variable
?x are obtained from the s1 selection node. In addition, projection variable ?u1 is taken from
the s1 node as shown in Figure 3.6. Finally, the resulting columns of the two selections on ?x
are joined and in order to obtain the values of ?x an additional leftjoin node is constructed
(see Figure 3.7). The same operations are performed for variable ?u1 .

o))’W
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bind 
spo 

subject 

uselect (url1) bind 
spo 

property 

semijoin

uselect (url2) bind 
spo 

object 

leftjoin 

[tp0]

scan(pso,
        ?x,
        {(o,?x)})

[tp1]

scan(pso,
        ?x,
        {(s,?x),
          (o,?u1)})

selection((s=url1, 
               p=url2)
              pso,
              ?x,
              {(o,?x)})

selection((p=url3)
              pso,
              ?x,
              {(s,?x),
               (o,?u1)})

mergeJoin(?x)

s0 s1

scan0 scan1

mj0

 (?x)

(n1)

(n2) (n3)

(n4)

(n5) (n6)

(n7)

Figure 3.5: Physical Plan for the selection s0

bind 
pso 

property 

uselect (url3) bind 
pso 

subject 

leftjoin

bind 
pso 

object 

leftjoin

[tp0]

scan(pso,
        ?x,
        {(o,?x)})

[tp1]

scan(pso,
        ?x,
        {(s,?x),
          (o,?u1)})

selection((s=url1, 
               p=url2)
              pso,
              ?x,
              {(o,?x)})

selection((p=url3)
              pso,
              ?x,
              {(s,?x),
               (o,?u1)})

mergeJoin(?x)

s0 s1

scan0 scan1

mj0

 (?u1) (?x)

Figure 3.6: Physical Plan for the selection s1
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bind 
spo 

subject 

uselect (url1) bind 
spo 

property 

semijoin

uselect (url2) bind 
spo 

object 

leftjoin 
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pso 
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uselect (url3) bind 
pso 
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leftjoin

bind 
pso 
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leftjoin

join (?x) 

leftjoin leftjoin 

[tp0]

scan(pso,
        ?x,
        {(o,?x)})

[tp1]

scan(pso,
        ?x,
        {(s,?x),
          (o,?u1)})

selection((s=url1, 
               p=url2)
              pso,
              ?x,
              {(o,?x)})

selection((p=url3)
              pso,
              ?x,
              {(s,?x),
               (o,?u1)})

mergeJoin(?x)

s0 s1

scan0 scan1

mj0

 (?x)

 (?x)

 (?u1)

 (?u1) (?x)

Figure 3.7: Physical Plan for the merge join on variable ?x .
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Chapter 4

Experiments

In this chapter we experimentally compare our Heuristic-based SPARQL Planning (HSP)
algorithm with the Cost-based Dynamic Programming (CDP) algorithm of RDF-3X [35] and
with the relational optimizer of MonetDB-SQL, using synthetically generated according to
SP2B1 [42] and Berlin2 [10] benchmarks, as well as real RDF datasets that are widely used
such as YAGO3 and Barton4 [6]). In order to better grasp the quality of the plans actually
chosen for execution by the two planners, in the first part of this Chapter we analyze the main
statistical properties of the four RDF datasets. The finding regarding the characteristics of the
encoded RDF graphs confirm our underlying assumptions regarding the selectivity of subject-
property-object components in a single SPARQL triple pattern as well as the selectivity of
join between them. Then, we also detail the characteristics of the query workload we employ
for the comparison of the quality and the execution time of the plans when using the above
datasets.

All experiments were conducted in a Dell OptiPlex 755 desktop with CPU Intel Core 2
Quad Q6600 2.4GHz with 8MByte L2 cache, 8 GBytes of memory, and HDD 250 GByte,
running Ubuntu 11.04 2.6.38-8-generic x86 64 Operating System. We used the MonetDB5
v11.2.0 (64-bit) database system to execute the HSP plans. This version of MonetDB was
extended with the Redland Raptor v1.9.05 parser to parse the RDF triples and was compiled
with gcc v4.5.2 C/C++ compiler. We also used the Redland RASQAL v0.9.206 system for
parsing the SPARQL queries. CDP runs on the RDF-3X system version 0.3.5.

4.1 Description of Datasets

4.1.1 SP 2Bench

The first RDF dataset used in our measurements was produced using the SP 2Benchmark
(SP2B) generator [42]. SP2B is motivated by the DBLP Digital Library containing biblio-
graphic information in the area of Computer Science and in particular databases and pro-
gramming languages. The generated RDF datasets mirror key characteristics and graph

1http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B
2http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark
3Yet Another Great Ontology: http://www.mpi-inf.mpg.de/yago-naga/yago
4http://simile.mit.edu/rdf-test-data/barton
5http://librdf.org/raptor/
6http://librdf.org/rasqal/
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distributions encountered in the original DBLP catalog. The dataset has been generated us-
ing the command “sp2b gen -t 50000000” and contains 50.000.869 distinct triples stored in
file of 5.5G in the Turtle syntax. Because the Turtle parser of the Redland Raptor library
employed by the MoneDB loader can only handle files up to 2GB, we have converted in the
RDF-XML format the generated SP2B datasets. As we can see in Table 4.1 this dataset
is composed of 27.452.995 distinct strings out of which 8.698.103 are URIs and 18.754.892
literals. The distinct subjects, properties and objects are 8.698.023, 77 and 23.439.187 respec-
tively. Subject-to-Subject joins (row “s= s”) yield six orders of magnitude less results than
Property-to-Property (row “p = p”) and five orders of magnitude less than Object-to-Object
joins (row “o=o”). From the rest of the join patterns, Subject-to-Object (row “s=o”) yields
62M results out of which 4M of them appears to be common distinct values (row “#distinct
s=o”) between subjects and objects. As expected property values are disjoint from subject
and object values (rows “p=o” and “s=p”).

We have additionally tried to load 100M of SP2B triples but the RDF-3X loader failed
silently with the message “data plus intermediate query results was larger than the virtual
address space of our platform”.

Dataset SP2B YAGO BSBM Barton

Type of data Synthetic data Real Data Synthetic Data Real Data

#Triples 50.000.869 16.348.563 25.000.244 78.497.317

#Strings 27.452.995 10.565.990 4.995.218 19.345.306

#URIs 8.698.103 10.565.990 2.260.404 13.505.849

#Literals 18.754.892 0 2.734.814 5.839.457

#Distinct subjects 8.698.023 4.339.591 2.258.129 12.326.602

#Distinct properties 77 91 40 285

#Distinct objects 23.439.187 8.396.118 4.287.021 16.939.942

Join Patterns

# s = s 436.969.953 165.937.025 342.027.096 23.819.257.567.057

# s = p 0 9.396.314 0 0

# s = o 62.652.184 48.560.142 133.518.384 7.988.424.009.325

# p = p 303.442.470.589.817 65.992.300.043.771 36.574.104.603.766 761.331.104.427.921

# p = o 0 0 0 0

# o = o 31.433.696.872.183 30.079.265.139 3.974.837.898.676 64.565.928.543.619

#distinct s = p 0 82 0 0

#distinct s = o 4.684.292 2.169.728 1.549.972 9.921.523

#distinct p = o 0 0 0 0

# o = o (o is literal) 563.726.087.151 0 1.432.020.045.552 15.282.104.707.856

# o = o (o is uri) 30.869.970.785.032 30.079.265.139 2.542.817.853.124 49.283.823.835.763

Table 4.1: Characteristics of datasets

4.1.2 Berlin SPARQL Benchmark

The second synthetic dataset of our measurements was generated by the Berlin SPARQL
Benchmark (BSBM) [10]. BSBM relies on an RDFS schema for e-commerce applications in
which a set of products is offered by different vendors while consumers post reviews about
products. As shown in Table 4.1, this dataset is composed of 25.000.244 distinct triples
with 4.995.218 distinct string values out of which 2.260.404 are URIs and 2.734.814 literals.
The underlying RDF-graph of this dataset is the densest among the others of our study. In
particular, the distinct subjects are 2.258.129, a bit less than half of the distinct objects which
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are 4.287.021. Like in other datasets, very few distinct properties are used. Subject-to-Subject
joins yield five orders of magnitude less results than Property-to-Property and four orders of
magnitude less than Object-to-Object joins. Subjects and objects share 1.5M distinct values
while the join between them yields 133M results.

4.1.3 YAGO

YAGO (Yet Another Great Ontology) [1] was the third dataset containing facts extracted
from Wikipedia and integrated with the WordNet thesaurus. In order to load this dataset
into MonetDB some of the original YAGO triples were modified. First, given that Redland
Raptor is stricter than the RDF parser employed by the RDF-3X loader, we had to manually
clean up some of the invalid characters contained in the URIs of this dataset. Then, we
eliminated the resulting duplicate triples. Last, since the RDF parser of the RDF-3X triple
loader does not distinguish between URI <A> and literal “A′′, we converted all literals of the
original YAGO dataset to URIs using as prefix the base URI of the corresponding RDF-XML
file. This modification was necessary to guarantee that the same query yields the same results
when evaluated in MonetDB and RDF-3X. After all these changes the size of the RDF-XML
file was 1.5GB containing 16.348.563 distinct triples with 10.565.990 distinct strings (see
Table 4.1). The underlying RDF-graph of this dataset is the sparsest among the others of
our study. As we have already mentioned, all strings are URIs in the modified dataset.
The distinct properties are 91, the distinct subjects are 4.339.591 while distinct objects are
almost twice as much, 8.396.118. Subject-to-Subject joins yield five orders of magnitude less
results than Property-to-Property and four orders of magnitude less than Object-to-Object
joins. Subjects and objects share 2M distinct values while the join between them yields 49M
results. Properties share common values only with subjects whose join yield 9,4M of results.

4.1.4 Barton

We finally included in our measurements the Barton Library RDF dataset [6] which is gen-
erated by converting to RDF the Machine Readable Catalog (MARC) catalog of the MIT
Barton Libraries. The dataset is composed of 78.497.317 triples with 19.345.306 distinct
strings out of which 13.505.849 are URIs and 5.839.457 literals (see Table 4.1). As a matter
of fact, it is the dataset with more URIs than literals (with the exception of YAGO where
we manually converted all literals to URIs). The distinct subjects, properties and objects are
12.326.602, 285 and 16.939.942, respectively. As a matter of fact, this dataset had the largest
ratio of distinct values per subject than per object. Subject-to-Subject and Object-to-Object
joins yield results of the same order of magnitude and only one order of magnitude less than
the results of Property-to-Property. Properties do not share common values with subjects
and objects. Subject-to-Object joins yields almost 8T of results with almost 10M matching
distinct values.

4.1.5 Summary on Datasets

We can observe that in any of the four datasets triples share common values for properties
and objects. Properties and subjects appear to share common values only in YAGO. The join
between the subjects and objects of triples always return (significant) fewer results that the
joins made on the same triple component. More precisely, joins on properties yield results
that are 1 to 2 orders of magnitude larger than joins only on subjects or objects. The former
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usually produce one order of magnitude smaller results than the latter. Yago data was the
sparsest RDF-graph while BSBM data was the densest one. Literals were the majority of
strings in both SP2Bench and BSBM. These findings confirm our heuristic related to the
ordering of join patterns based on their selectivity

p = o ≺ s = p ≺ s = o ≺ s = s ≺ o = o ≺ p = p. (Heuristic H3)

where x ≺ y denotes that the join pattern x is prefered to join pattern y when the
selectivity thereof is concerned.
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Figure 4.1: Distinct subjects, properties and objects in the four datasets

As can be seen in Figure 4.1, in all datasets, the number of distinct property values is
very low. In three out of four datasets this number does not exceed 100. Only in the Barton
dataset we have encountered 285 distinct properties. In all datasets, the number of distinct
subject values is smaller than the number of distinct object values. We can therefore confirm
our heuristic related to the selectivity of triples using conditions on subjects, properties and
objects:

selectivity(property) < selectivity(subject) < selectivity(object) (Heuristic H5)

Figure 4.2 shows the cumulative frequency distribution of the Yago, Berlin, Barton and
SP2B datasets. As we can observe from the cummulative frequency distribution of strings in
the Yago dataset depicted in Figure 4.2(a), 50% of the property values return less than 5%
of the triples in total. This percentage go up roughly to 90% for the other three datasets (see
Figure 4.2(b), 4.2(c), 4.2(d)).

Table 4.2 illustrates the three most frequent property values appearing in the four datasets
of our experiment. We can observe that rdf:type value is either the most or the second most
frequently occurring property value. This confirms our heuristic that considers rdf:type as
the least selective property among those appearing in SPARQL triple patterns.
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Figure 4.2: Cumulative Frequency Distribution of subjects, properties and objects in SP2B,
Berlin, Barton

Rank SP2B YAGO

1st dc:creator 11.0M 22.3% rdfs:label 6.3M 38.8%

2nd rdf:type 8.6M 17.4% rdf:type 4.5M 27.6%

3rd foaf:name 4.5M 9.1% yago:describes 2.1M 13.0%

Rank BSBM Barton

1st rdf:type 2.5M 10.2% rdf:type 22.9M 29.2%

2nd dc:publisher 2.2M 9.0% modsrdf:value 11.2M 14.3%

3rd dc:date 2.2M 9.0% modsrdf:name 5.1M 6.5%

Table 4.2: The most 3 frequently property values of each dataset

4.2 Description of Query Workload

To benchmark the plans produced HSP and CDP, we have chosen to evaluate six conjunctive
queries (and variations thereof) from SP2Bench [42] and four queries from YAGO [1] bench-
marks. As can be seen in Table 4.3 these queries involve a different number of triple patterns,
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variables and constants featuring selections as well as different kinds of joins among them
(i.e., star- and chain-shaped) on different columnar positions (i.e. s, p, o). Variables which
are not shared among triple patterns (i.e., join variables), or appear in SPARQL projections
and filters are unused. We consider join queries that have different structural characteristics
(i.e., kind of joins) and queries whose triple patterns have different syntactic characteristics
(i.e, number of constants and shared variables and their positions). We observed that the
majority of the queries for both datasets considered s ./ s joins (suggesting star-shaped joins
on the subject component of the triple pattern), followed by s ./ o joins. The smaller the
ratio of shared variables over triple patterns, the heaviest are the star-shaped joins defined on
the corresponding position of the triple pattern. This is the case of queries SP2a and SP2b,
followed by query Y1.

Query SP1 SP2a SP2b SP3(abc) 2 SP4a SP4b SP5 SP6 Y1 Y2 Y3 Y4

# Triple Patterns 3 10 8 2 6 5 1 1 8 6 6 5

# Variables 2 10 8 2 5 5 2 1 6 4 7 7

# Projection Variables 2 1 1 1 2 2 2 1 2 1 1 3

# Shared vars 1 1 1 1 5 4 0 0 4 3 3 4

# TPs with 0 const 0 0 0 0 0 0 0 0 0 0 2 3

# TPs with 1 const 1 9 7 1 4 3 1 0 6 3 2 0

# TPs with 2 const 2 1 1 1 2 2 0 1 2 3 2 2

# TPs with 3 const 0 0 0 0 0 0 0 0 0 0 0 0

# Joins 2 9 7 1 5 4 0 0 7 5 5 4

Maximum star join7 2 9 7 1 1 1 0 0 4 3 2 1

Join Patterns

# s = s 2 9 7 1 2 2 0 0 4 3 3 1

# p = p 0 0 0 0 0 0 0 0 0 0 0 0

# o = o 0 0 0 0 1 0 0 0 0 0 0 0

# s = p 0 0 0 0 0 0 0 0 0 0 0 0

# s = o 0 0 0 0 2 2 0 0 3 2 2 3

# p = o 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.3: Query characteristics for SP2B and YAGO datasets

4.2.1 SP 2Bench Queries

Listing 4.1: Query SP1

select ?yr , ? j o u r n a l
where { ? j o u r n a l rd f : type bench : Journal . ( tp0 )

? j o u r n a l dc : t i t l e ‘ ‘ Journal 1 (1940) ’’ . ( tp1 )
? j o u r n a l dcterms : i s s u e d ? yr } ( tp2 )

SP1 query contains three triple patterns (tps) which share one variable on the subject po-
sition. It essentially involves three selections8 on the constants of these tps and two joins.
Evaluated over the SP2B dataset of 50M triples, the selection on tp0 evaluates to 16.701
triples, on tp1 to 1 triple and on tp2 to 3.139.378 triples. Finally, the result of the join over
the results of selections on tp0 and tp1 returns a single triple triple.

7Signifies the number of triple patterns that participate in the star join with the largest number of triples.
8We consider that one selection operation is defined per triple pattern independently of the number of URIs

and literals (i.e., constants) it contains.
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Listing 4.2: Query SP2a

select ? inproc
where { ? inproc rd f : type bench : Inproceed ings . ( tp0 )

? inproc dc : c r e a t o r ? author . ( tp1 )
? inproc bench : b o o k t i t l e ? b o o k t i t l e . ( tp2 )
? inproc dc : t i t l e ? t i t l e . ( tp3 )
? inproc dcterms : partOf ? proc . ( tp4 )
? inproc r d f s : s eeAl so ? ee . ( tp5 )
? inproc swrc : pages ? page . ( tp6 )
? inproc f o a f : homepage ? u r l . ( tp7 )
? inproc dcterms : i s s u e d ? yr . ( tp8 )
? inproc bench : ab s t r a c t ? ab s t r a c t . } ( tp9 )

SP2a query contains ten triple patterns which share a common variable in the subject position
and it is the largest query of our workload (w.r.t. number of involved triple patterns). It
involves ten selections on the corresponding triple patterns and nine joins forming a star-
shaped query. The main characteristic of this query is related to the size of intermediate
join results: with the exception of the selection operation on tp9 (resulting to 40.564 triples)
and tp1 (returning 11.166.057 triples) the selections on the other patterns yield intermediate
results of the same order of magnitude (between 3M to 4M triples). So the join ordering in
the query plan will be decisive for the execution time of this query.

Listing 4.3: Query SP2b

select ? inproc
where { ? inproc rd f : type bench : Inproceed ings . ( tp0 )

? inproc bench : b o o k t i t l e ? b o o k t i t l e . ( tp1 )
? inproc dc : t i t l e ? t i t l e . ( tp2 )
? inproc dcterms : partOf ? proc . ( tp3 )
? inproc r d f s : s eeAl so ? ee . ( tp4 )
? inproc swrc : pages ? page . ( tp5 )
? inproc f o a f : homepage ? u r l . ( tp6 )
? inproc dcterms : i s s u e d ? yr . } ( tp7 )

SP2b is essentially the same as the previous query (i.e., SP2a) from which the second (tp1)
and last (tp9) triple patterns have been removed. Recall that tp1 has the lowest (returning
11,166,057 triples) while tp9 the highest selectivity (returning only 40,564 triples) among the
query triple patterns and significantly reduces the final join results. Query SP2b instead
contains eight triple patterns (tps) which yield intermediate results of the same order of
magnitude (between 3M to 4M triples). Consequently, we expect that the ordering of joins
in the produced query plans will not play an important role in query execution times.

Listing 4.4: Query SP3a 1

select ? a r t i c l e
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e ? property ? value ( tp1 )
f i l t e r (? property=swrc : pages )}

Listing 4.5: Query SP3a 2

select ? a r t i c l e
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e swrc : pages ? value } ( tp1 )
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Listing 4.6: Query SP3b 1

select ? a r t i c l e
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e ? property ? value ( tp1 )
f i l t e r (? property=swrc : month)}

Listing 4.7: Query SP3b 2

select ? a r t i c l e
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e swrc : month ? value } ( tp1 )

Listing 4.8: Query SP3c 1

select ? a r t i c l e
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e ? property ? value ( tp1 )
f i l t e r (? property=swrc : i sbn )}

Listing 4.9: Query SP3c 2

select ? a r t i c l e
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e swrc : i sbn ? value } ( tp1 )

Queries SP3a 1, SP3b 1, SP3c 1 contain two triple patterns sharing one variable on their
subjects (i.e. one join), and one filter expression that affects the selectivity of triple pat-
tern tp1. Queries SP3a 2, SP3b 2, SP3c 2 are equivalent to the previous ones, with the
exception that the constraint specified in the filter expression has been “pushed” in triple
pattern tp1. This group of queries is useful to evaluate selections defined inside and outside
SPARQL triple patterns (through filter expressions). Note that the selection on tp0 results to
1,001,081 triples while if we ignore the filters we need to scan for tp1 the entire triple relation
(comprised of 50M triples).

Listing 4.10: Query SP4a 1

select ? person ?name
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e dc : c r e a t o r ? person . ( tp1 )
? inproc rd f : type bench : Inproceed ings . ( tp2 )
? inproc dc : c r e a t o r ? person2 . ( tp3 )
? person f o a f : name ?name . ( tp4 )
? person2 f o a f : name ?name2 ( tp5 )

f i l t e r (?name=?name2)}

Listing 4.11: Query SP4a 2

select ? person ?name
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e dc : c r e a t o r ? person . ( tp1 )
? inproc rd f : type bench : Inproceed ings . ( tp2 )
? inproc dc : c r e a t o r ? person2 . ( tp3 )
? person f o a f : name ?name . ( tp4 )
? person2 f o a f : name ?name } ( tp5 )

36



Query SP4a 1 contains six triple patterns sharing six variables (i.e. five joins), and one
SPARQL FILTER expression specifying an additional join. The query will allow us to bench-
mark the benefit of an early filter evaluation (i.e. along with the processing of the triple
patterns) by allowing us to avoid a costly cartesian product computation (which is the case
in the plan executed by RDF-3X). The equivalent syntactic form without the join condition
specified by the SPARQL filter is given by query SP4a 2.
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Listing 4.12: Query SP4b

select ? person ?name
where { ? a r t i c l e rd f : type bench : A r t i c l e . ( tp0 )

? a r t i c l e dc : c r e a t o r ? person . ( tp1 )
? inproc rd f : type bench : Inproceed ings . ( tp2 )
? inproc dc : c r e a t o r ? person . ( tp3 )
? person f o a f : name ?name } ( tp4 )

SP4b is an equivalent query to SP4a considering that the value of property foaf:name is a
key for persons. It consists of five triples patterns sharing three out of four variables. Hence, it
involves five selections on the constants of corresponding triple patterns and five joins which
form a complex star and chain-shaped query. Note that the query involves both Subject-
to-Subject, Subject-to-Object and Object-to-Object join patterns. It returns a final result of
4,033,222 triples.

Listing 4.13: Query SP5

select ? s ?p
where { ? s ?p person : Paul\ Erdoes } ( tp0 )

Listing 4.14: Query SP6

select ? ee
where { ? p u b l i c a t i o n r d f s : s eeAlso ? ee } ( tp0 )

Queries SP5, SP6 allow us to benchmark simple selections over property and object values
of a unique triple pattern. SP5 has high selectivity returning only 565 triples while SP6 low
selectivity returning 2,679,321 triples.

4.2.2 YAGO Queries

Listing 4.15: Query Y1

select ?GivenName ?FamilyName
where { ?p yago : hasGivenName ?GivenName . ( tp0 )

?p yago : hasFamilyName ?FamilyName . ( tp1 )
?p rd f : type yago : wordne t s c i en t i s t 110560637 . ( tp2 )
?p y : bornIn ? c i t y . ( tp3 )
? c i t y yago : l o ca t ed In yago : Switzer land . ( tp4 )
?p yago : hasAcademicAdvisor ?a . ( tp5 )
?a y : bornIn ? c i t y 2 . ( tp6 )
? c i t y 2 yago : l o ca t ed In yago : Germany .} ( tp7 )

Query Y1 consists of eight triple patterns featuring four shared and two unused (?GivenName,
?FamilyName) variables. It involves both Subject-to-Subject and Subject-to-object join pat-
terns. The main characteristic of this query is that the selections on the constants of the tps
yield intermediate results which vary by four orders of magnitude (range of 44 to 569K of
triples). The joins of this query form a star and chain-shaped constellation. The star-shaped
join consists of five joins on variable ?p.
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Listing 4.16: Query Y2

select ?a
where { ?a rd f : type y : wordnet actor 109765278 . ( tp0 )

?a y : l i v e s I n ? c i t y . ( tp1 )
?a y : actedIn ?m1 . ( tp2 )
?m1 rd f : type y : wordnet movie 106613686 . ( tp3 )
?a y : d i r e c t e d ?m2 . ( tp4 )
?m2 rd f : type y : wordnet movie 106613686 . } ( tp5 )

Y2 consists of six triple patterns featuring three shared and one unused (?city) variable.
The query involves both Subject-to-Subject and Subject-to-Object join patterns. Similar to
query Y1, Y2 forms star and chain-shaped joins. The star-shaped join consists of three joins
on variable ?a. Unlike the previous query, the triple patterns now yield intermediate results
whose size is of the same order of magnitude (between 14K to 30K) and returns 14,705 triples.

Listing 4.17: Query Y3

select ?p
where { ?p ? s s ? c1 . ( tp0 )

?p ?dd ? c2 . ( tp1 )
? c1 rd f : type y : wordnet v i l l age 108672738 . ( tp2 )
? c1 y : l o ca t ed In ?X . ( tp3 )
? c2 rd f : type y : wordnet s i t e 108651247 . ( tp4 )
? c2 y : l o ca t ed In ?Y . } ( tp5 )

Query Y3 consists of six triple patterns two of which (tp0, tp1) do not include any literal
or URI and thus require scanning the entire triple relation ( 16,348,563 triples). The size
of intermediate results of the other three triple patterns is of the same order of magnitude
(ranging from 17K to 70K). The query forms two star-shaped joins on variables ?c1 and ?c2,
consisting of three and two triple patterns resp., and one chain query on variable ?p. The
query result consists of 432 triples.

Listing 4.18: Query Y4

select ?p1 , ? pred i ca te , ? p2
where { ?p1 ?u1 ? c1 ( tp0 )

? c1 r d f s : l a b e l y : Par i s ( tp1 )
?p1 ? p r e d i c a t e ?p2 ( tp2 )
?p2 ?u2 ? c2 ( tp3 )
? c2 r d f s : l a b e l y : Hong Kong ( tp4 )

Query Y4 consists of five triple patterns three of which do not include any literal or URI.
The query involves two selections on variables (triple patterns tp1 and tp4) and three scans
over the entire triple relation (triple patterns tp0, tp2 and tp3) as well as one chain-shaped
join that involves all the query’s triple patterns. It is the lengthiest chain-shaped query used
in our experiments.

39



Query SP1 SP2a SP2b SP3(abc) 2 SP4a SP4b SP5 SP6 Y1 Y2 Y3 Y4

HSP

Merge Joins 2 9 7 1 3 2 0 0 5 3 4 2

Hash Joins 0 0 0 0 2 2 0 0 2 2 1 2

Type of Plan LD LD LD LD B B LD LD B LD B B

CDP

Mergejoin 2 9 7 1 3 2 0 0 5 3 4 2

Hashjoin 0 0 0 0 2 2 0 0 2 2 1 2

Type of Plan LD LD LD LD B B LD LD B B B B

Similar Plans
√

× ×
√ √

×
√ √

× ×
√

×
LD : Left Deep Tree, B : Bushy Tree

Table 4.4: Plan characteristics for SP2B and YAGO datasets

MonetDB-HSP RDF-3X MonetDB-SQL

SP1 19.52 0.25 11.92

SP2a 3,267.01 355.50 3,561.07

SP2b 1,035.12 1,000.75 1,103.64

SP3a 80.92 85.14 82.91

SP3b 8.74 11.95 9.61

SP3c 12.55 13.97 14.81

SP4a 3,602.09 3,634.60 —

SP4b 1,766.29 2,781.75 1,909.13

SP5 0.06 0.10 0.09

SP6 0.43 22.85 0.48

Y1 6.04 15.75 7.69

Y2 8.65 9.95 9.07

Y3 25.69 81.20 538.65

Y4 2.32 90.45 1,113.24

Table 4.5: Query Execution Time (in ms) for SP2Bench and YAGO Queries (Warm Runs)
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4.3 Query Planning and Execution

In this section we present the plans chosen by the HSP and CDP planners for the two sets of
queries described previously and report the time required to execute them in MonetDB and
RDF-3X. The reported query execution times (see Tables 4.5 do not include the planning time,
the time to transform the constants of every triple pattern to ids as well as the conversion
of these ids back to strings in the final query result. To speed up the resolution of the
ids to URIs/literals and decompression thereof, RDF-3X sorts and groups the query results
to decompress only one element per group of duplicates. This time is not included in our
measurements. We should point out that the planning time in both HSP and CDP is
minimal compared to the execution time of each query. The percentage of planning time is
about 4% of the total execution time of a query. To obtain the execution time we run each
query 21 times. We ignored the time of the first execution (cold) and calculated the mean of
the other 20 (warm) executions.

In the query plans we use the symbols onmj
var and onhj

var to denote merge and hash joins
respectively between relations that store the values for variable var. We write σcond(R) to
denote a selection operation with condition cond on relation R. In the case of HSP R is one
of the six access paths spo, sop, ops, osp, pso, pos and in the case of CDP can be either one of
the aforementioned access paths or one of the aggregated indexes defined on either the subject
(S), object (O) and predicate (P ) position of a triple pattern or a binary combination thereof
(SO, OS, SP , PS, PO, OP ). When a triple pattern contains one or more unsued (unshared)
and unprojected variables, CDP chooses to evaluate it on one of the aggregated indexes. The
aggregated indexes store only the two out of the three columns of a triple. More precisely,
they store two entries and an aggregated count, the number of occurrences of this pair in
the full set of triples (value1,value2,count). RDF-3X builds each of the three possible pairs
out of a triple and in each collation order (SP,PS,SO,OS,PO,OP). The aggregated indexes
are much smaller than the full-triple indexes. They are organized in B+-trees just like the
full triple compressed indexes. In addition to these indexes RDF-3X build all three one-value
indexes contaning just (value1,count) entries which are very small. On aggregated indexes,
the join operators multiply the multiplicities to get the number of duplicates of each output
tuple. The size of the aggregated indexes is shown on Table 4.6. Finally, we write πvars to
denote a projection on the set of variables vars of the input relation. For ease of readability
we include below each operation the number of triples obtained by the evaluation thereof and
when applicable the triple pattern concerned by the operation.

SP 2B Y AGO

Aggr. Index Size % of full-triple index size Aggr. Index Size % of full-triple index size

SP,PS 42,841,260 85.7% 9,441,513 57.7%

SO,OS 49,803,020 99.6% 16,300,486 99.7%

PO,OP 23,662,667 47.3% 9,246,884 56.6%

Table 4.6: The size of aggregated indexes in entries for SP2B and YAGO datasets

Then we describe the SQL translation of SPARQL queries that will serve in the following
as the baseline experiment for the plans produced by the standard MonetDB/SQL optimizer.
Since unlike HSP and CDP, the MonetDB/SQL optimizer produces only left deep plans, we
could not translate the SPARQL queries into SQL ones using exactly the same access paths
as those employed by HSP. We simply choose to evaluate each triple pattern of the SPARQL
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query on the ordered relation that promotes the use of binary search for selections and re-
turns the variable with the most number of appearances in the query sorted, to maximize (if
possible) the number of merge joins. In the case in which a triple pattern contains constants,
we chose the ordered relation according to HEURISTIC 5. Thus, the MonetDB/SQL opti-
mizer will undertake the task of join ordering using runtime optimization techniques (e.g.,
sampling)

4.3.1 SP 2Bench Queries

SP1 (Listing 4.1): As can be seen in Table 4.4 both planners produce and execute exactly
the same plan where all joins are evaluated as merge joins. Figure 4.4 shows the query
plan for query SP1. Since the selection on triple pattern tp1 results to only one triple, the
MonetDB run-time optimizer transforms the leftmost join (that returns a single triple) into
an additional selection over the results of triple pattern tp0. In a similar manner, the last
join of the plan is transformed into a selection. However, despite these additional physical
optimizations, the query execution time of the plan in RDF-3X is two orders of magnitude
faster than in MonetDB. This is due to the cost of left join operators employed by MonetDB
to get the subject values of a triple from the obtained object and property values. Given
that the query result consists of a single triple, we cannot justify the required execution time
(most probably a MonetDB bug). HSP and MonetDB-SQL produce the same logical plans
but different physical plans. MonetDB-SQL uses the leftjoinpath operator. This is the reason
for which MonetDB takes half time than HSP’s plan to execute the MonetDB-SQL plan.

π?yr,?journal

onmj
?journal

(1)

onmj
?journal

(1)

σo=bench:Journal
p=rdf :type

(OPS)

(16.701)[tp0]

σo=“Journal1(1940)′′

p=dc:title

(OPS)

(1)[tp1]

σp=dcterms:issued(PSO)
(3.139.378)[tp2]

Figure 4.4: SP1 Plan by HSP and CDP

SP2a: (Listing 4.2): The plans generated by both HSP and CDP planners involve a left
deep tree of joins all evaluated as merge joins. The large difference in their execution times
(Table 4.5) is due to the different join orderings produced by each planner. HSP chooses to
start joining the results of the selection operator on pattern tp0 since this it has two constants
compared to the others with only one (on a property field) (see Figure 4.5) Since HSP does
not take into account the selectivity of the remaining patterns it randomly picks one (in the
order they appear in the query). As we can see in Figure 4.5, the first join between the results
of the selections on tp0 and tp1 retains 8.521.551 triples, whereas CDP correctly chooses to
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join first the results of selections on tp4 and tp9 yielding only 24.441 triples (Figure 4.6)
since it relies on a cost-based ordering of joins that uses the size of the intermediate results.
This difference in the size of the results can explain the one order of magnitude difference
in query execution time between the two systems. The same also happens for the other 8
joins.Also, CDP chooses to evaluate triple patterns tp1-tp9 on the aggregated index PS, the
size of which is 85% that of the full-triple index, as shown in table 4.6. The execution time
of the same plan in MonetDB is 200ms (instead of 3,267.01 ms required with the random
ordering). MonetDB-SQL produces the same plan as HSP.
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π?inproc

onmj
?inproc

(42.150)

onmj
?inproc

(4.220.375)

onmj
?inproc

(4.220.375)

onmj
?inproc

(4.220.375)

onmj
?inproc

(4.448.316)

onmj
?inproc

(6.822.426)

onmj
?inproc

(8.521.551)

onmj
?inproc

(8.521.551)

onmj
?inproc

(8.521.551)

σo=bench:Inproc
p=rdf :type

(OPS)

(3.062.329)[tp0]

σp=dc:creator(PSO)
(11.166.057)[tp1]

σp=bench:booktitle(PSO)
(3.118.448)[tp2]

σp=dc:title(PSO)
(4.140.662)[tp3]

σp=dcterms:partOf (PSO)
(2.451.653)[tp4]

σp=rdfs:seeAlso(PSO)
(2.679.321)[tp5]

σp=swrc:pages(PSO)
(3.837.877)[tp6]

σp=foaf :homepage(PSO)
(4.119.721)[tp7]

σp=dcterms:issued(PSO)
(3.139.378)[tp8]

σp=bench:abstract(PSO)
(40.564)[tp9]

Figure 4.5: SP2a Plan by HSP
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π?inproc

onmj
?inproc

(42,150)
[42, 150]

onmj
?inproc

(42,150)
[15, 196]

onmj
?inproc

(42,150)
[15, 196]

onmj
?inproc

(15,196)
[15, 196]

onmj
?inproc

(15,986)
[15, 986]

onmj
?inproc

(15,986)
[15, 986]

onmj
?inproc

(15,986)
[15, 986]

onmj
?inproc

(15,986)
[15, 986]

onmj
?inproc

(24.441)
[24, 441]

σp=dcterms:partOf (PS)
(2,451,653)[tp4]

[2, 451, 653]

σp=bench:abstract(PS)
(40,564)[tp9]

[40, 564]

σp=rdfs:seeAlso(PS)
(2,679,321)[tp5]

[2, 679, 321]

σp=bench:booktitle(PS)
(3,118,448)[tp2]

[3, 118, 448]

σp=dc:title(PS)
(4,140,662)[tp3]

[4, 140, 662]

σp=foaf :homepage(PS)
(4,119,721)[tp7]

[4, 119, 721]

σp=swrc:pages(PS)
(3,837,877)[tp6]

[3, 837, 877]

σp=dc:creator(PS)
(11,166,057)[tp1]

[4, 047, 878]

σp=dcterms:issued(PS)
(3,139,378)[tp8]

[3, 139, 378]

σo=bench:Inproc
p=rdf :type

(POS)

(3,062,329)[tp0]

Figure 4.6: SP2a Plan by CDP
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SP2b (Listing 4.3): As in the previous query, the two planners produce left deep plans where
all joins are executed as merge joins. CDP chooses to evaluate triple patterns tp1-tp7 on the
aggregated index PS, the size of which is 85% that of a full-triple index. As we can see in
Figure 4.8 CDP chooses a join ordering which quickly reduces the size of intermediate results,
but since there does not exist a triple pattern of high selectivity (recall that triple pattern
tp9 with the highest selectivity has been removed from query SP2a), the query execution
time is significantly increased. With the exception of tp0 which has two constants, the rest of
the triple patterns feature only one constant on the property position and essentially form a
star-shaped join on variable ?inproc in the subject position. Also all of them also include the
projection variable ?inproc. Consequently, CDP starts joining the results of the selection
on tp0 but since it cannot estimate the most selective among the remaining triple patterns
(recall that it does not decide on the join ordering using selectity estimates) it randomly picks
up one pattern for the join. The same also happens for the other six joins. Since the size of
intermediate results is of the same order of magnitude, the execution time of this query in
both systems is almost the same (see Table 4.5). MonetDB-SQL produces the same plan as
HSP.
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π?inproc

onmj
?inproc

(1,517,017)

onmj
?inproc

(1,517,017)

onmj
?inproc

(1,517,029)

onmj
?inproc

(1,599,038)

onmj
?inproc

(2,451,661)

onmj
?inproc

(3,062,335)

onmj
?inproc

(3,062,333)

σo=bench:Inproc
p=rdf :type

(OPS)

(3.062.329)[tp0]

σp=bench:booktitle(PSO)
(3.118.448)[tp1]

σp=dc:title(PSO)
(4,140,662)[tp2]

σp=dcterms:partOf (PSO)
(2,451,653)[tp3]

σp=rdfs:seeAlso(PSO)
(2,679,321)[tp4]

σp=swrc:pages(PSO)
(3,837,877)[tp5]

σp=foaf :homepage(PSO)
(4,119,721)[tp6]

σp=dcterms:issued(PSO)
(3,139,378)[tp7]

Figure 4.7: SP2b Plan by HSP

SP3a,SP3b,SP3c: Unlike CDP, HSP systematically rewrites filtering queries (queries
SP3a 1, SP3b 1 and SP3c 1, Listings 4.4, 4.6, 4.8) into an equivalent form involving only
triple patterns (queries SP3a 2, SP3b 2 and SP3c 2, Listings 4.5, 4.7, 4.9). This logical
optimization significantly impacts the performance of RDF-3X which applies selections after
the evaluation of joins (sometimes resulting to cartesian products). In this case, the execution
time of queries in RDF-3X is one order of magnitude slower than in MonetDB. In order to
provide a common comparison basis for both systems we manually transform these queries
into their equivalent form (queries SP3a 2, SP3b 2 and SP3c 2) produce the plans using
CDP and evaluate them in RDF-3X. Thus, both systems will execute the same plan compris-
ing two selections and one join which is evaluated as a merge join. Note that CDP evaluates
the selection on triple pattern tp1 using the aggregated index PS and not index pso. Since
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π?inproc

onmj
?inproc

(1,517,017)
[1, 517, 017]

onmj
?inproc

(1,517,017)
[1, 517, 017]

onmj
?inproc

(1,517,017)
[1, 517, 017]

onmj
?inproc

(1,599,028)
[1, 599, 028]

onmj
?inproc

(1,599,028)
[1, 599, 028]

onmj
?inproc

(1,599,028)
[1, 599, 028]

onmj
?inproc

(1,599,028)
[1, 599, 028]

σp=dcterms:partOf (PS)
(2,451,653)[tp3]

[2, 451, 653]

σp=rdfs:seeAlso(PS)
(2,679,321)[tp4]

[2, 679, 321]

σp=bench:booktitle(PS)
(3,118,448)[tp1]

[3, 118, 448]

σp=foaf :homepage(PS)
(4,119,721)[tp6]

[4, 199, 721]

σp=dc:title(PS)
(4,140,662)[tp2]

[4, 140, 662]

σp=swrc:pages(PS)
(3,837,877)[tp5]

[3, 837, 877]

σp=dcterms:issued(PS)
(3,139,378)[tp7]

[3, 139, 378]

σo=bench:Inproc
p=rdf :type

(POS)

(3,062,329)[tp0]

Figure 4.8: SP2b Plan by CDP

the first operation in all queries is the selection on tp0, their execution time is affected by the
actual size of the second selection on tp1 (returning 3.837.877 triples in SP3a 2, 6.401 triples
in SP3b 2, and 44.165 triples in SP3c 2). HSP plans evaluated in MonetDB outperform
those of CDP evaluated in RDF-3X by a factor ranging from 6% to 37%. MonetDB-SQL
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produces the same plan as HSP.

π?article

onmj
?article

(926,929)

σo=bench:Article
p=rdf :type

(OPS)

(1,001,081)[tp0]

σp=swrc:pages(PSO)
(3,873,877)[tp1]

Figure 4.9: SP3a 2 Plan by HSP

π?article

onmj
?article

(926,929)
[926, 929]

σo=bench:Article
p=rdf :type

(OPS)

(1,001,081)[tp0]

σp=swrc:pages(PS)
(3,873,877)[tp1]

[3, 873, 877]

Figure 4.10: SP3a 2 Plan by CDP

π?article

onmj
?article

(6,386)

σo=bench:Article
p=rdf :type

(OPS)

(1,001,081)[tp0]

σp=swrc:month(PSO)
(6,401)[tp1]

Figure 4.11: SP3b 2 Plan by HSP
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π?article

onmj
?article

(6,386)
[6, 386]

σo=bench:Article
p=rdf :type

(OPS)

(1,001,081)[tp0]

σp=swrc:month(PS)
(6,401)[tp1]

[6, 401]

Figure 4.12: SP3b 2 Plan by CDP

π?article

onmj
?article

(0)

σo=bench:Article
p=rdf :type

(OPS)

(1,001,081)[tp0]

σp=swrc:isbn(PSO)
(44,165)[tp1]

Figure 4.13: SP3c 2 Plan by HSP

SP4a: As for queries SP3a, SP3b, SP3c, HSP rewrites query SP4a 1 (Listing 4.10) into
its equivalent form by removing the filter expression (query SP4a 2, Listing 4.11). On the
other hand, CDP does not perform this logical optimization, and for this query it generates
a plan with a cross product. Execution plans that include cartesian products cannot be
evaluated in RDF-3X and so query execution fails. To benchmark RDF-3X for this query, we
have manually created its equivalent form by eliminating the FILTER expression. For query
SP4a 2, both planners choose to execute joins on variables ?name, ?article and ?inproc as
merge joins. In the following, two alternative plans can be considered. The first is to execute
a hash join on variable ?person and then on variable ?person2. The second alternative is to
perform the hash join first on variable ?person2 and then on variable ?person). Since HSP
does not decide on join ordering using information related to the size of the intermediate
results, it chooses randomly one of the two plans. HSP and CDP finally produce the
same plan with almost the same execution times for MonetDB and RDF-3X. MonetDB-SQL
produces a plan that involves a cartesian product, a plan which the MonetDB server is unable
to execute because of the huge intermediate results.
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π?article

onmj
?article

(0)
[0]

σo=bench:Article
p=rdf :type

(OPS)

(1,001,081)[tp0]

σp=swrc:isbn(PS)
(44,165)[tp1]

[44, 165]

Figure 4.14: SP3c 2 Plan by CDP

π?person,?name

onhj
?person2

(4.033.222)

onhj
?person

(2.614.770)

onmj
?name

(4.521.217)

σp=name(POS)
(4.521.217)[tp4]

σp=name(POS)
(4.521.217)[tp5]

onmj
?article

(2.614.770)

σo=Article
p=type

(OPS)

(1.001.081)[tp0]

σp=creator(PSO)
(11.166.057)[tp3]

onmj
?inproc

(8.521.551)

σo=Inproc
p=type

(OPS)

(3.062.329)[tp2]

σp=creator(PSO)
(11.166.057)[tp3]

Figure 4.15: SP4a 2 Plan by HSP and CDP

SP4b (Listing 4.12): The two planners produce different execution plans for this query. The
two plans have the same number of merge joins but they are defined on different variables.
HSP chooses to perform merge joins on variables ?article and ?inproc, while CDP on
variables ?person and ?inproc. HSP privileges variable ?article because the triple pat-
terns tp0 and tp1 featuring this variable have three constants instead of two as in the case of
tp1 and tp4 featuring the ?person variable. Like for the previous query, all the triple patterns
have low selectivity returning more than 1M of triples each, so this query involves a very
large size of intermediate results. In this query, MonetDB outperforms RDF-3X by a factor
of 57%.
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π?person,?name

onhj
?person

(4.033.222)

onhj
?person

(2.614.770)

onmj
?article

(2.614.770)

σo=Article
p=type

(OPS)

(1.001.081)[tp0]

σp=creator(PSO)
(11.166.057)[tp1]

σp=name(POS)
(4.521.217)[tp4]

onmj
?inproc

(8.521.551)

σo=Inproc
p=type

(OPS)

(3.062.329)[tp2]

σp=creator(PSO)
(11.166.057)[tp3]

Figure 4.16: SP4b Plan by HSP

π?person,?name

onhj
?person

(4.033.222)

onhj
?article

(2.614.770)

onmj
?person

(11.166.057)

σp=creator(POS)
(11.166.057)[tp3]

σp=name(PSO)
(4.521.217)[tp4]

σo=Article
p=type

(POS)

(1.001.081)[tp0]

onmj
?inproc

(8.521.551)

σo=Inproc
p=type

(OPS)

(3.062.329)[tp2]

σp=creator(PSO)
(11.166.057)[tp1]

Figure 4.17: SP4b Plan by CDP
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SP5 (Listing 4.13): Both HSP and CDP produce the same plan with only one selection. The
query has high selectivity returning only 565 triples (out of 50M). Although, both systems
require a short execution time for this query, MonetDB outperform RDF-3X by a factor of
67% (Table 4.5).

π?s?p

σp=rdfs:seeAlso(OSP )
(656)[tp0]

Figure 4.18: SP5 Plan (HSP & CDP)

SP6 (Listing 4.14): As for the previous query, HSP and CDP produce the same plan with
only one selection. MonetDB takes one order of magnitude less time than RDF-3X to execute
this plan. Note that RDF-3X uses to execute the selection on the aggregated index PS,
which has 47% of the size of full-triple index PSO. This behavior can be attributed to the
decompression RDF-3X performs on the compressed tuples to their three component id’s (for
subject, property, object).

π?ee

σp=rdfs:seeAlso(POS)
(2,679,321)[tp0]

Figure 4.19: SP6 Plan by HSP

π?ee

σp=rdfs:seeAlso(PO)
(2,679,321)[tp0]

[2, 679, 321]

Figure 4.20: SP6 Plan by CDP
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4.3.2 YAGO Queries

Y1 (Listing 4.15): The two planners produce different plans for this query which have the
same number of merge joins. As shown in Figure 4.21 HSP chooses to execute four merge
joins all on variable ?p and one on ?city2. As a first step, HSP sorts the five triple pat-
terns featuring variable ?p based on their number of constants.Apart from tp2 featuring two
constants, the remaining ones have only one constant (in property position) so its selectivity
could not be estimated based on heuristics H1 and H2. In addition, no further selection
on the triple patterns can be performed by HSP based on heuristic H3, since tps involve a
star-shaped join on a variable in the subject position. According to heuristic H4, tp0 and
tp1 are pushed up, on higher level than tp3 and tp6 because each of them has one projection
variable. On the other hand, CDP chooses to execute three merge joins on variable ?p and
one on each of the variables ?city and ?city2. MonetDB evaluates the HSP plan in only
6.04ms which is approximately 2.5 times faster than the evaluation time of the CDP plan in
RDF-3X (15.75ms) (see Table 4.5). The MonetDB-SQL plan involves four merge-joins which
is the maximum number of merge=joins which a left deep tree can have in this query, as it is
the number of joins in which the most common variable of the query exists.

π?GivenName,?FamilyName

onhj
?a

(3)

onhj
?city

(12)

onmj
?p

(836)

onmj
?p

(836)

onmj
?p

(859)

onmj
?p

(3,090)

σo=wordnet sc
p=type

(OPS)

(4.739)[tp2]

σp=bornIn(PSO)
(36,187)[tp3]

σp=hasAcademicAd(PSO)
(1,337)[tp5]

σp=hasGivenN (PSO)
(568,852)[tp0]

σp=hasFamilyN (PSO)
(568,410)[tp1]

σo=Switzerland
p=locatedIn

(OPS)

(424)[tp4]

onmj
?city2

(163)

σp=bornIn(PSO)
(36.187)[tp6]

σo=Germany
p=locatedIn

(OPS)

(66)[tp7]

Figure 4.21: Y1 Plan by HSP
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π?GivenName,?FamilyName

onhj
?a

(3)

onhj
?p

(12)

onmj
?p

(1.100)

onmj
?p

(1.100)

onmj
?p

(1.132)

σp=hasAcademicAd(PSO)
(1.337)[tp5]

σo=wordnet sc
p=type

(POS)

(4.739)[tp2]

σp=hasGivenN (PSO)
(569.410)[tp0]

σp=hasFamilyN (PSO)
(1.100)[tp1]

onmj
?city

(91)

σp=bornIn(POS)
(36.187)[tp6]

σo=Switzerland
p=locatedIn

(POS)

(424)[tp4]

onmj
?city2

(163)

σp=bornIn(POS)
(36.187)[tp6]

σo=Germany
p=locatedIn

(POS)

(66)[tp7]

Figure 4.22: Y1 Plan by CDP
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Y2 (Listing 4.16): The two planners produce different plans. HSP produces a left deep plan
while CDP produces bushy plan. HSP chooses to execute three merge joins on variable ?a,
as shown in Figure 4.23. CDP chooses to execute one merge join on each of the variables
?a, ?m1 and ?m2 reducing the size of intermediate results early in the plan as can be seen
in Figure 4.24. All triple patterns are highly selective returning results ranging from 15K
to 30K of triples. HSP plans evaluated in MonetDB outperform those of CDP in RDF-3X
by a factor of 15% (see Table 4.5). The MonetDB-SQL plan involves the same number of
merge-joins and in the same variables as HSP but with different join ordering.

π?a

onhj
?m2

(14.705)

onhj
?m1

(14.792)

onmj
?a

(14.869)

onmj
?a

(5.966)

onmj
?a

(7.020)

σo=wordnet actor
p=rdf :type

(OPS)

(22.858)[tp0]

σp=livesIn(PSO)
(14.710)[tp1]

σp=actedIn(PSO)
(28.835)[tp2]

σp=directed(PSO)
(23.722)[tp4]

σo=wordnet movie
p=rdf :type

(OPS)

(30.624)[tp3]

σo=wordnet movie
p=rdf :type

(OPS)

(30.624)[tp5]

Figure 4.23: Y2 Plan by HSP
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π?a

onhj
?a

(14.705)

onhj
?a

(4.775)

onmj
?a

(7.020)

σo=wordnet actor
p=rdf :type

(OPS)

(22.858)[tp0]

σp=livesIn(PSO)
(14.710)[tp1]

onmj
?m2

(19.804)

σp=directed(POS)
(23.722)[tp4]

σo=wordnet movie
p=rdf :type

(OPS)

(30.624)[tp5]

onmj
?m1

(23.574)

σp=actedIn(POS)
(28.835)[tp2]

σo=wordnet movie
p=rdf :type

(OPS)

(30.624)[tp3]

Figure 4.24: Y2 Plan by CDP

Y3 (Listing 4.17): Both planners generate the same bushy plan, and both planners choose to
evaluate merge joins on variables ?c1 and ?c2 because this is the only way to maximize the
number of mergejoins. There are three triple patterns featuring variable ?c1. Using heuristic
H1, HSP chooses to start joining the results of selections on tp2 and tp3 because the triple
pattern tp0 does not have any constant, so it returns the entire triple relation. The same
heuristic is employed to decide on the first join on variable ?c2 since triple pattern tp1, like
tp0, do not have any constant. CDP chooses to execute the selections on the corresponding
triple patterns tp3 and tp5 on aggregated index PS which has 57% of the size of the full-triple
index. It also chooses to execute the two scan operators on tp0 and tp1 on aggregated index
OS so it has to decompress 16,300,486 triples instead of 16,348,563 triples that it should if it
had chosen one of full-triple indexes. MonetDB evaluates the HSP plan just in 25.69ms which
is almost three times faster than the execution time 81.20ms of CDP plan by RDF-3X (see
Table 4.5). The left deep tree plan of MonetDB-SQL has only two merge-joins in contrast to
four merge-joins which the HSP and CDP plans involve. The HSP plan executed in MonetDB
outperforms by one order of magnitude the MonetDB-SQL plan.
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π?p

onhj
?p

(432)

onmj
?c1

(56,535)

onmj
?c1

(26.851)

σp=locatedIn(PSO)
(60,214)[tp3]

σo=wordnet village
p=rdf :type

(OPS)

(69,916)[tp2]

scan(OSP )
(16,348,563)[tp0]

onmj
?c2

(20,120)

onmj
?c2

(7,141)

σp=locatedIn(PSO)
(60,214)[tp5]

σo=wordnet site
p=rdf :type

(OPS)

(17,633)[tp4]

scan(OSP )
(16,348,563)[tp1]

Figure 4.25: Y3 Plan by HSP

Y4 (Listing 4.18): HSP and CDP produce query plans with merge joins on the same
variables namely, ?c1 and ?c2. The only difference lies on the order of the two hash joins
involved in the plans. HSP considers three combination of variables which could be executed
as merge joins: ?c1,p2, ?c1,?c2 and ?p1,?c2. Based on heuristic H1, HSP chooses set
?c1,?c2 in order to avoid a join in which both inputs consider the entire triple relation.
The HSP plan executed in MonetDB outperforms by one order of magnitude the CDP plan
executed in RDF-3X (see Table 4.5). MonetDB-SQL’s plan has only one merge-join and the
join ordering which the sql optimizer chooses, produces huge intermediate results. The HSP
executed in MonetDB outperforms by three orders of magnitude the MonetDB-SQL plan.
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π?p

onhj
?p

(432)
[432]

onmj
?c1

(56,535)
[56, 535]

onmj
?c1

(26,851)
[26, 851]

σp=locatedIn(PS)
(60,214)[tp3]

[60, 214]

σo=wordnet village
p=rdf :type

(OPS)

(69,916)[tp2]

scan(OS)
(16,348,563)[tp0]

[16, 300, 504]

onmj
?c2

(20,120)
[20, 120]

onmj
?c2

(7,141)
[7, 141]

σp=locatedIn(PS)
(60,214)[tp5]

[60, 196]

σo=wordnet site
p=rdf :type

(OPS)

(17,633)[tp4]

scan(OS)
(16,348,563)[tp1]

[16, 300, 504]

Figure 4.26: Y3 Plan by CDP
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π?p1,?predicate,?p2

onhj
?p2

(3)

onhj
?p1

(14,319)

onmj
?c1

(847)

σo=y:Paris
p=rdfs:label

(OPS)

(42)[tp1]

scan(OSP )
(16,348,563)[tp0]

scan(SOP )
(16,348,563)[tp2]

onmj
?c2

(359)

σo=y:Hong Kong
p=rdfs:label

(OPS)

(11)[tp4]

scan(PSO)
(16,348,563)[tp3]

Figure 4.27: Y4 Plan by HSP
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[3]

onmj
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[847]
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p=rdfs:label
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(16,348,563)[tp0]
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onmj
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[359]
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scan(OS)
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[16, 300, 504]

scan(OSP )
(16.348.563)[tp2]

Figure 4.28: Y4 Plan by CDP

62



4.4 Cost of the plans

The last experiment we conducted aims to measure the quality of the plans HPS actually
produces compared to CDP. The most effective plan quality measure in this respect is the plan
execution cost. In this experiment we rely on the cost model employed by CDP to rank the
query plans produced by the two planners. In particular, we focus on the join cost estimation
(concerning the size of intermediate results) since the selection cost is asymptotically the
same in both systems (logarithmic for binary search in MonetDB and for B+tree traversal in
RDF-3X).

The cost of a merge join is estimated as follows:

cost mergejoin(lc, lr) =
lc+ rc

100, 000

where lc and rc are the cardinalities of two join input relations.
Hashjoin’s cost is estimated as follows:

cost hashjoin(lc, rc) = 300, 000 +
lc

100
+
rc

10

where lc and rc are the cardinalities of two join input relations. In both cases we take as a
left join input the smallest input relation.

SP1 SP2a SP2b SP3a SP3b SP3c SP4a SP4b

HSP 32 873 830 487 100 105 354+953,381 264+953,381

CDP 32 31 54 487 100 105 354+953,381 299+858,461

Y1 Y2 Y3 Y4

HSP 12+300,054 1+303,579 329+302,577 327+763,749

CDP 7+300,023 1.5+301,614 328+302,577 326+763,603
Green color: The cost of mergejoins
Red color: The cost of hashjoins

Table 4.7: The Cost
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4.5 Concluding Remarks

In all queries of our workload, HSP produces plans without statistics with the same number
of merge and hash joins as CDP plans. Their differences lie on the join variables and join
ordering. These factors essentially affect the size of the intermediate results. HSP heuristics
(H1 - H4) prove to be quite effective in choosing a near to optimal join ordering and set of
join variables when queries exhibit quite different syntactical forms.

(a) For queries with the same produced plan, MonetDB outperforms RDF-3X (up to three
orders of magnitude) with the exception of query SP1.

(b) For queries with different plans, we observe that when their triple patterns do not differ
substantially in their syntax, then HSP heuristics fail to decide the triple pattern to select
based on its selectivity, and thus RDF-3X outperforms MonetDB up to one order of mag-
nitude. When selectivity of triple patterns yields intermediate results of the same order of
magnitude, the join ordering has little influence on the query execution time. On the other
hand, for sufficiently dissimilar triple patterns, MonetDB outperforms RDF-3X up to 2 orders
of magnitude. More specifically, HSP fails to produce near optimal plans when the queries
involve heavy star joins where the ration of shared veriables over the number of triple patterns
is small, and triple patterns are not sufficiently distinguishable w.r.t. their syntax (i.e., same
number of constants and where the shared variables appear at the same position).

(c) Despite the fact MonetDB systematically materialize the intermediate results, the ex-
ecution of all query operators in MonetDB appears to be more efficient than in RDF-3X
(exhibiting also limitation of the size of the data sets that can be processewd in main mem-
ory. Finally, query execution in RDF-3X is additionally penalized by the decompression of
object identifiers performed systematically in scan and selection operations. This extra cost
can become important when the selectivity of triple patterns is small.
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Chapter 5

Related Work

5.1 Storing, Indexing and Querying RDF data

Despite their advantages in managing large data collections, relational database management
systems (RDBMS) cannot yet fully support querying large volumes of RDF data using the
SPARQL query language [41]. Whereas relational technologies deal well with complex and
large schemas, storing RDF data typically boils down to using a single triple table that stores
triples of the form (subject, predicate/property, object) where each of the table’s attributes
refers to one component of the RDF triple. Queries are translated into self joins over the
large triple table, and relational database management systems are not adequately tuned to
perform efficiently this kind of queries.

In this chapter we will discuss the different approaches for storing, indexing and retrieving
semantic web data.

5.1.1 Logical Storage Schema for RDF Data

The three widely used as logical storage schemes for shredding RDF/S resource descriptions
into relational tables are:

• schema agnostic in which RDF triples are stored in a large triple table. The triple
table’s attributes are subject, predicate and object and refer to the three components
of an RDF triple. attribute This approach has been followed in the majority of works
that deal with the storage and processing RDF data [49, 35, 37, 36, 44, 16, 8, 53] (see
Figure 5.1(a)).

• schema aware [5, 18] in which for each property Propertyiin a set of RDF triples, a
binary table is created that stores the subject and object components of the triple with
predicate propertyi. This approach has been used in [5, 18] and is known as vertical
partitioning (see Fig. 5.1(b)).

• hybrid that combines elements of the previous approaches. In the hybrid approach, one
relational table per RDF class Classi is created, that stores the instances of the class.
In a similar manner, dependending on the type of the property value (resource, string,
integer), a table that stores the instances of the corresponding value types is created
(see Figure 5.1(c)).
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Triple Table

subject predicate object
(resource URI) (property value)(property name)

(a) Schema Agnostic Approach

Property1
subject object

(resource URI) (property value)

Propertyn
subject object

(resource URI) (property value)

... 

Class1
subject

(resource URI)

... 

Classm
subject

(resource URI)

(b) Schema Aware Approach

Class Instances

subject
(resource URI)

Triples of properties with range Resource

subject predicate object
(resource URI) (property value)(property name)

Triples of properties with range integer

subject predicate object
(resource URI) (property value)(property name)

... 

(c) Hybrid Approach

Figure 5.1: Logical Storage Schemas for RDF data

In the case of the schema agnostic approach, one triple table is created for any RDFS
schema. On the other hand, in the case of schema aware approach, the properties and classes
defined at the RDFS schema are considered to define the property and class tables of the
logical schema where the data will be stored. Finally, the hybrid approach uses the RDF
meta-schema (classes, attributes, value types) to define the logical data storage schema.

The advantages of the schema agnostic approach is the ease of RDF data representation
and the decoupling of the logical schema from the existence of an RDFS schema. This
decoupling makes schema evolution a trivial process, since the addition/deletion of a class or
schema property corresponds to the addition/deletion of a set of triples. In a similar manner,
in the case of the hybrid approach, this corresponds to deletion of triples from the property
tables and the deletion of tuples from the table that stores the class instances. On the other
hand, in the case of the schema aware approach, a change in the schema corresponds to
the addition/deletion of a class or property table. The disadvantage of the schema agnostic
approach is the loss of information related to the type of property values (i.e., the object of a
triple), since all values of the object component of a triple are stored as a string. The hybrid
and schema aware approaches record this kind of information which can be used for query
processing.

As far as SPARQL query evaluation is concerned, the main disadvantage of the schema
agnostic approach is that the algebraic plan obtained for a query involves a large number of self
joins over a large triple table, whereas in the other two cases, the plan involves joins between
the appropriate class and property tables. The schema agnostic approach is advantageous in
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Date Store Name Customer Price

(a) Row Store Technology

Date Store Name Customer Price

(b) Column Store Technology

Figure 5.2: Logical Storage Schemas for RDF data

the cases in which a property is unbound (i.e., use of a variable and not a URI). On the other
hand, in the case of schema aware and hybrid approaches, the initial user query should be
translated into as many queries as the number of predicates in the dataset [49].

5.1.2 Physical Storage Schema for RDF Data

The majority of works that study the storage of RDF data use relational databases as the stor-
age platform. Relational databases are based on row store (PostgreSQL1, MySQL2, Oracle3)
or column store (MonetDB 4 and C-store5) technologies [4].

For databases that rely on column store technology, each attribute of a relational table is
stored in a column (see Figure 5.2(b)). Consequently, the physical representation based on
column storage is a fully compliant solution in the case in which the logical storage schema
follows the vertical partitioning approach [5, 18] (schema aware). According to [44], systems
based on the row-store technology that follow the schema agnostic approach outperform those
that follow the vertical partitioning approach (i.e., schema aware).

Authors in [55, 54] follow a different approach based on the use of property tables. Property
tables are distinguished into clustered property table and property-class table used to improve
query performance in the case of very large RDF datasets where the schema agnostic approach
is used.

Clustered property tables contain clusters of properties that tend to be defined together
(see Fig. 5.3(a)). The Property-Class table approach exploits the type property of subjects to
cluster similar sets of subjects together at the same table and unlike the clustered property
table approach, a property may exist in multiple property-class tables (see Figure 5.3(b).

The common denominator in all the state of the art works [35, 37, 36, 5, 18, 53] which
support the processing of queries over RDF data is the use of a mapping dictionary in which
the literals and URIs are replaced by unique identifiers (integers). The processing of queries
is more efficient (given that most optimizers handle efficiently integers and not large strings –
the case of URIs). In addition, the use of unique identifiers allows for better data compression
as advocated in [35].

5.1.3 Indexes

The join access patterns supported by state of the art on SPARQL query evaluation engines
are: point, graph and hierarchical queries. SPARQL point queries consist of a single triple

1www.postgresql.org
2www.mysql.org
3www.oracle.com
4http://monetdb.cwi.nl/
5(http://db.csail.mit.edu/projects/cstore/
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Triple Table

subject predicate object

ID1 type Order
ID1 Store XYZ
ID1 Name DEF

ID1 Date 1/1/2011

ID2 type Customer

ID2 Name ABC

ID2 Date 20/06/1970

ID3 type Order

ID3 Price 100EUR
ID1 Condition Good

subject type Store Name Date

ID1 Order XYZ DEF 1/1/2011

ID2 Customer ABC

ID2 Store XYZ

XYZ 20/06/1970

ID3 Order NULL

Store GHI

GHI NULL

ID3

Property Table

Remaining Triples

subject predicate object

ID3 Price 100EUR
ID1 Condition Good

(a) Clustered Property Tables

subject type Store Name Date

ID1 Order XYZ DEF 1/1/2011

ID2 Customer ABCXYZ

20/06/1970ID3 Order GHI NULL

Class: Order Remaining Triples

subject predicate object

ID3 Price 100EUR
ID1 Condition Good

subject type Store Name Date

20/06/1970

Class: Customer

(b) Property-Class Table

Figure 5.3: Property Tables

point query: 
single triple pattern chain query star queries hierarchical queries

Figure 5.4: SPARQL Access Patterns

pattern whereas graph queries involve multiple joins between triple patterns and are distin-
guished to path (chain) and star queries. Hierarchical queries can be considered as a special
class of path queries that consider the traversal of the RDFS subclassOf and subpropertyOf
relationships (Figure 5.4).

The indexes proposed by the majority of state of the art work mostly support point and
graph queries whereas there are few works that discuss indexes to suppport the efficient pro-
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cessing of hierarchical queries. Authors in [17] propose indexes implemented as B+-trees on
RDFS class and property hierarchies where classes and properties are assigned labels using
a prefix-interval based scheme. The proposed approach achieves a logarithmic complexity
for the evaluation of recursive queries that involve the traversal of subClassOf and subProp-
ertyOf hierarchies as those are defined in an RDFS schema. Authors in [8] create indexes
for subgraphs defined on the subPropertyOf and subClassOf RDFS relations for the efficient
processing of queries that involve the recursive traversal of the aforementioned relations.

To process SPARQL point queries, state of the art work proposes a set of indexes that
support the efficient retrieval of RDF triples. Authors in [35, 37, 36, 53] that use the schema
agnostic approach for the logical storage schema (i.e., triples are stored in a large triple table)
define indexes on all possible permutations of the triple table. That is, for the triple table
spo that stores triples of the form (subject, predicate, object) the permutations ops (object,
predicate, subject), osp, pos, pso are also specified. The benefit of having indexes on all possible
permutations of the triple table is that any triple pattern can be answered with a single index
scan. In the aforementioned works, the triples in an index are sorted lexicographically by
(subject, object, property) for index spo, (object, subject, property) for index osp etc to
facilitate the use of sort-merge join operator for evaluating joins.

In [36, 37, 35] the triples in all indexes are sorted lexicographically by the appropriate
collation order and are directly stored in the leaf pages of the clustered B+-tree. [5, 18]
and [53] follow the vertical partitioning approach for the logical storage schema. In [5, 18]
the property tables are stored in the column store database C-Store [48]. In this work, the
authors construct an index on the subject and object columns of property tables using clustered
B+-trees and non-clustered B+-trees respectively. On the other hand, in Hexastore [53] a
sextuple indexing scheme is used where the RDF triples are not assumed to be stored in a
property-headed index (as dictated by the logical storage schema), but also in subject- and
object-headed indexes. Authors in [52] discuss that the implementation of the aforementioned
indexes using clustered B+-trees is more efficient than the implementation that uses B+-trees.
[8] follows a more conservative indexing approach where the main objective is to minimize
the number of indexes built. In this work, the authors propose the use of only a subset
of the indexes discussed previously that support the aforementioned access patterns. The
YARS2 [25] system uses an inverted text index built on the triple table that associates the
RDF terms (literals, URIs and blank nodes) that appear as the object of a triple to the triple’s
subject. In this work, to support point queries, the authors store all possible permutations of
the triple table on disk and build sparse indexes on the first two components of a triple.

To support graph queries the majority of the aforementioned works propose the use of
indexes to compute the selectivity of a set of different access patterns. The information about
the selectivity is used to calculate the cost of a join in a graph query. Towards this objective,
authors in [35, 36] propose the use of aggregated indexes that store for every combination of
values for the subject, predicate and object of a triple the number of triples that match this
combination of values. To improve the performance of joins, the authors propose indexes that
store the number of triples that can be joined with triples that contain a specific combination
of RDF terms. This information is useful in approximating the cardinality of the result of
a join. Authors in [35, 37] compute the frequent paths in the RDF dataset to estimate the
cost of a join in the case of path and chain queries and use the size of the intermediate
results to calculate the cost of a join. In [36] the previous work is extended to compute
more accurately the size of a join. The idea is to translate a join between two triple patterns
to an equivalent join where the variables are considered independent where essentially the
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join happens between the triple table and one triple pattern. Consequently, they manage to
compute accurately the size of the result of a join using the previously mentioned aggregated
indexes. Finally, the YARS2 system [25] supports join sparse indexes that are implemented in
a similar manner as the indexes over the triple table permutations. In [5, 18] the authors store
the result of joins in the form of a standard relational table. Authors in [16] compute and
store subject-property matrices where for each subject of a triple they store property paths
that start from a specific subject.

5.1.4 Query Processing

The majority of the state of the art works on SPARQL query processing, consider only the
selection, projection and join operators without addressing the union and optional operators
who are mainly responsible for the complexity of SPARQL query evaluation. In the case of
the join operation, the key problem that must be addressed lies on the very nature of the RDF
data model: due to the fragmentation of information in the form of (subject, property, object)
triples, a large number of self joins over a large triple table is required (in the case of the
schema agnostic approach), or multiple joins in the case of vertical partitioning. The indexes
that were previously presented, aim at supporting (a) the efficient retrieval of triples during
query evaluation and (b) the computation of the cost of joins. The majority of works that
follow the schema agnostic approach store the triple table sorted on its components therefore
supporting the use of sort merge joins for the join evaluation. In [5, 18] the C-Store column
store database [48] is used as the query evaluation platform and thus in order to solve the
problems encountered in SPARQL query processing that were previously discussed, one must
rely on possible optimizations of C-store. A similar approach is followed in [16] where the
Oracle6 database engine is used. To decide on the execution plans and more specifically on join
ordering, authors in [35] follow a dynamic programming based approach [32]. The optimizer
decides which of the available indexes to use by taking under consideration the constants
in the triple patterns and choosing from all the possible indexes those that will return the
triples in an order that will be useful for a subsequent join operation. To prune an execution
plan, the optimizer computes the cost of the plan using the indexes that were previously
discussed. In some cases, costly plans (according to the cost model used) are more interesting
than cheaper plans because they return the results with an interesting order for a subsequent
operation. The authors also follow a pipeline approach for query evaluation allowing the
parallel execution of joins. Authors in [36] extend the approach of [35] by proposing an
optimization known as sideways information passing for reducing the intermediate results for
joins [28, 46]. The idea of this approach is that the operators pass information that is related
to the join variables that can be used to reduce the size of the result obtained from a selection
or from a join operation. The information carried by the operators is associated with the
”gaps” in the values obtained from a scan for a triple pattern. In this case, using the sideways
information passing approach an optimizer can stop the scan of a table for a triple pattern
given the fact that there do not exist values for the join variable that has been considered.
This specific approach is comparable to the semi-join programs [9, 47] and magic sets [34].

6www.oracle.com
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Chapter 6

Conclusions and Future Work

In this work we propose the first heuristics-based SPARQL planner (HSP) that uses a set of
heuristics based on syntactic and structural characteristics of SPARQL queries. In particular,
HSP tries to produce plans that maximise the number of merge joins and reduce intermediate
results by choosing triples patterns most likely to have high selectivity. The selection of
join ordering is also based on the structural characteristics of the queries. We propose a
set of heuristics for deciding which triple patterns of a SPARQL query are more selective,
thus it is in the benefit of the planner to evaluate them first in order to reduce the memory
footprint during query execution. These heuristics are generic and can be used separately or
complementary to each other.

In our work we propose the reduction of the query planning problem to the problem of
maximum weight independent set. Towards this end, we model a SPARQL query as a variable
graph where nodes are query variables and edges denote the co-occurence of variables in a triple
pattern. The qualifying independent sets are translated to blocks of merge joins connected
when needed by other types of more costly joins supported by the underlying engine.

HSP was implemented on top of the MonetDB [33] columnar database engine. Our main
focus was on the efficient implementation of HSP logical plans to the physical algebra of
MonetDB. The main challenge stems from the decomposed model of rows in a columnar
database. A main difference between HSP plans and the plans produced by the cost-based
standard SQL optimiser of MonetDB is that we produce bushy rather than left-deep query
plans in order to be able to incorporate the maximum number of merge joins.

We analyzed the main statistical properties of two synthetic and two real RDF datasets.
The synthetic datasets were generated according to the SP2Bench and Berlin SPARQL bench-
marks. We considered the YAGO and Barton Library widely used real RDF datasets. Our
findings confirmed our underlying assumptions regarding the selectivity of subject-property-
object components in a triple pattern as well as the selectivity of the join patterns.

We have experimentally evaluated the quality and execution time of the plans produced by
HSP with the state-of-the-art cost-based Dynamic Programming algorithm (CDP) employed
by RDF-3X using the aforementioned datasets. In all queries of our workload, HSP produces
plans with the same number of merge and hash joins as CDP. Their differences lie on the
employed ordered variables as well as the execution order of joins which essentially affect the
size of intermediate results.

Our future work includes the study of possible additional heuristics. We wish to investi-
gate the effects of applying our heuristics in a distributed environment such as MapReduce
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and Hadoop. We also intend to extend our work to cope with different relational storage
schemas (i.e. schema aware, hybrid), instead of only the traditional approach of a triple
table (schema agnostic). Moreover, we are working to integrate our solution with MonetDB
runtime optimization techniques. These techniques could be used when the heuristics fail
to choose the join order evaluation. Finally, we wish to extend our optimizer to include all
features of the SPARQL language.
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