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Chapter 1

Introduction

The interaction between itinerant carrier spins and localized magnetic moments
leads to long-range ferromagnetic order in a wide variety of systems [1]. Examples
include the manganese oxides (manganites) R;_,A,MnO3 ( R=La, Pr, Nd, Sm, - - -
and A= Ca, Ba, Sr, Pb, --+) [2] and the III(Mn)V ferromagnetic semiconductors
[3] such as (Ga,Mn)As and (In,Mn)As. These materials display a broad range of
interesting phenomena and are of great current interest due to their novel potential
applications. For example, the manganites display colossal magnetoresistance|[2],
where resistance can be enormously varied by small changes of the applied mag-
netic field. This phenomenon presents an interesting opportunity to create field
effect devices, such as magnetic recording devices, based on colossal magnetoresis-
tive materials such as the manganites. Although the manganites have been studied
theoretically for years, the behavior of these material is far from well understood.
Much experimental attention has recently been paid to manganese oxides due to
the observation of CMR effects. Of main interest for this dissertation are the
experimental investigations, related to the low-lying magnetic excitations (spin—
waves). Such experiments reveal novel and anomalous properties whose origin
is still unsettled despite the debate over the last decade. This system is in the
strong coupling (strongly correlated) regime. The interactions are stronger than
the bandwidth and the characteristic kinetic energy. Therefore correlations are
expected to play an important role in describing the properties of such materials.

Furthermore, the prospect of potential applications of ferromagnetic semicon-
ductors such as the III(Mn)V semiconductors has been recently raised. Until now,
electron spin has been completely ignored in semiconductor technology which has
been based solely on the charge carried by electrons. The key advance in this field is
the observation of room-temperature ferromagnetism in related materials[4], which
leads to the possibility of using both charge and spin in semiconductor—based de-
vices. An emerging field in semiconductor technology, is semiconductor spintron-
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ics, where is is the electron spin, instead of charge, that carries the information.
The potential advantages of spin—based devices as compared with conventional
semiconductor devices are indubious; increased information processing speed, de-
creased power consumption and increased integration densities|[5](miniaturization
of devices). The mean field model for carrier-induced ferromagnetism in III(Mn)V
magnetic semiconductors seems to be capable of describing the thermodynamic
and ground state properties. Even though in III(Mn)V semiconductors the band-
width of the s—p valence band far exceeds the interaction energy in order to study
the dynamics we need to go beyond the mean field approach and assess the role
of correlations, which is a main focus of this thesis.

In materials such as that mentioned above, the magnetic and transport prop-
erties are intimately related and can be controlled by varying the itinerant carrier
concentration or the dimensionality. The understanding of the magnetic excitation
spectrum of such materials, beyond mean field approach, is the main emphasis of
that thesis.

1.1 Spin—Waves: Magnons

In this section we discuss the collective magnetic excitations for a system of lo-
calized magnetic moments. The physical origin of these excitations, usually men-
tioned as magnons or spin—waves, can be understood by considering a simplified
system of N local magnetic moments S; with amplitude S placed on a 1D chain as
in Fig. (1.1). We assume that the interactions between these magnetic moments
are described by a ferromagnetic Heisenberg hamiltonian:

H==Y 1;Si8; (1.1)
J

where J;; is the positive exchange interaction and :,j are indexes that run all
lattice sites. A simplified Hamiltonian can be obtained from (1.1) by assuming
only nearest—neighbor interactions:

(g =
‘]"’f‘{o oy

Within this approximation the Heisenberg hamiltonian reads:

H==J (SiSi1+8i1-8)) (1.2)



1.1 Spin—Waves: Magnons

Figure 1.1: Schematic representation of the orientations in a row of spins in (a)
the ferromagnetic ground state and (b) a spin wave state.

which, after using the properties for the spin operators:

1

57 = S(SF+57) (13)
1

y _ + -

can be expressed in the form

J zZ z zZ zZ
H = _EZ (S7Si, + 57457

k3

J ~ e
=5 2 (SFSha+ 8280 (1.5)

The ground state | 0 > of a system such as the above is the ferromagnetic state,
where all spins are aligned along the z-axis as illustrated in Fig. (1.1a). Using the
Hamiltonian (1.5) one can calculate the ground state energy F¢ and the total spin

Stot:
Eg = —JNS? (1.6)
Stot - NS (17)
A low-energy magnon can be defined in the above system as the excited state with
total spin reduced by 1 as compared to the ground state. One can create such a

state from the ground state (Fig. 1.1a) by first reducing the z-component of one
local spin S; by one:

, 1
|t >= —=S; | 0 >, (1.8)

V28
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We note that, if we act with hamiltonian (1.5) on the state | ¢« >, we obtain a
linear combination of such states:

H|i>=FEg|i>+JSY (li>—]j>) (1.9)
J

Therefore, the state | ¢ > is not an eigenstate of Hamiltonian (1.5). In order to
construct an eigenstate of Heisenberg Hamiltonian we consider the following linear
combination of states | >:

1 .
k >= — etk R
DD

i > (1.10)

It can be easily shown that the state satisfies both properties of magnon eigenstate.
Firstly, the total spin of the state | k > is NS-1, thus reduced by 1 as compared
to the ground state | 0 >. Acting with the Heisenberg Hamiltonian on state | k >
we reobtain

H | k >= (EG + Ek) | k > (111)

where:
ek =57 (1-¢*™) (1.12)

is the magnon energy. The physical meaning of state | k > can be understood by
using the Fig. (1.1b). The reduction of S7 on site ¢ creates a non-zero component
S perpendicular to the z-axis. Therefore, spin S; now rotates around the z-
axis. The superposition (1.10) of states propagates this deformation through the
chain of spins like a plane wave called spin-wave or magnon. Such excitations
in more complicated magnetic systems such as the manganites or the magnetic
semiconductors III(Mn)V are the main focus of this thesis.

1.2 Ferromagnetism

Ferromagnetism is a macroscopic phenomenon which occurs in particular mate-
rials. A ferromagnetic material exhibits long-range magnetic order even in the
absence of an external magnetic field. In these materials there are microscopic
regions where the spins of individuals atoms are aligned parallel and form the
well-known magnetic domains. Each one of these magnetic regions has a random
orientation of its total magnetic moment. By applying an external magnetic field
B however we can align the magnetic moments of the domains to be parallel with



1.3 Long-range ferromagnetism: The key role of Double-Exchange
Mechanism.

the orientation of B. Such alignment of the spins is due to interactions between
the local magnetic moments and the magnetic field, which for a ferromagnet in a
magnetic field B can be described to lowest order by the Hamiltonian:

H = —Z-]Z]SZS]—I-Q/LBZSZB (113)

1% %

where S; is the total spin in region ¢ and .J;; is the exchange interaction between
the spins in the regions ¢ and j. J;; determines the ground state of the system
described by the above hamiltonian. If the interaction between neighboring sites
is positive (J; ;41 > 0) then the ferromagnetic ground state (all spins T) is favored.
The above model hamiltonian is commonly used to describe the properties of mag-
netic materials. Usually, the exchange interaction is assumed to be non-zero only
between neighboring sites. Experiments in manganese oxides, a material of inter-
est in this thesis, showed that 4" nearest-neighbor interaction are important for a
phenomenological description of spin-waves, while 2"¢ and 3"¢ order interactions
are unimportant[6, 7, 8]. The physical origin of such long-range interaction, which
are under debate in the literature, is the focus of chapters (3).

1.3 Long-range ferromagnetism: The key role of
Double-Exchange Mechanism.

The interactions in ferromagnetic materials affect the orientation of the magnetic
moments in a way that minimizes the total energy of the system. There 1s a
variety of systems where such interactions between magnetic moments can create
long-range magnetic order.

As we mentioned above, a common feature of all the systems of interest here is
the strong magnetic exchange interaction between the itinerant carrier spins and
the local spin—S magnetic moments. The long-range ferromagnetic order observed
in magnetic systems such as the manganites and III(Mn)V magnetic semiconduc-
tors is mediated by this mechanism. A particular physical mechanism of interest
here is the double-exchange mechanism which is important for manganese oxides
materials such as Lai_,Sr,MnOs; (0 < z < 1). Here = denotes hole-doping
which is connected with electron-doping by n = 1 — z. The atomic structure of
an isolated Mn atom contains five—fold degenerate 3d-orbitals. In the crystal’s
environment this degeneracy is partially split due to the crystall field of the sur-
rounding atoms of oxygen. Thus we have a three-fold degenerate 3—d state, referred
to as {y,, and a two—fold degenerate e, orbital, as illustrated in Fig. (1.2b). The
lower energy 5, orbitals contain three tightly bound electrons, which form a core

9



1 Introduction

Figure 1.2: a) Schematic representation of the double—exchange mechanism b)The
two bands in the manganese oxides.

spin of magnitude S=3/2, due to the large Hund’s rule coupling, while e, contains
one itinerant electron. The mobility of the itinerant e, electron is improved if all
the localized spins are aligned in parallel as illustrated in Fig. (1.2b). It is not
energetically favourable for an e, electron to hop to a neighboring ion in which the
194 spin 1s antiparallel to the spin of the e, electron. Moreover the kinetic energy
degrees of freedom further reduce the total energy. Therefore double—exchange
mechanism, sketched in the Fig. (1.2a), aligns ferromagnetically the system. In
Fig. 1.2a the motion of an itinerant electron from a Mn>' ion to the empty e,
orbital of Mn**t is shown. This hopping consists of two simultaneous motions:
firstly one electron moves from the oxygen atom to Mn** and the e, electron from

the Mn** to O*~. The double-exchange mechanism is named after these two
motions, and is described by the Hamiltonian
Hpg=K+1Y 83, (1.14)

where S; denotes a localized spin, with amplitude S and s; an itinerant carrier.
The first term in Eq. (1.14) expresses the kinetic energy of the itinerant carriers of
the system. Note that only a local magnetic interaction is included in Hamiltonian
(1.14). With only this term long-range ferromagnetic order is impossible, since
there is no long-range coupling. The motions of the mobile carriers, described by
the kinetic energy K provides such a coupling. The carriers, while hopping from
one lattice site to neighboring ones, align the spins. We can understand this by
viewing the crystal as a chain of wells with particles hopping from well to well.

10



1.4 The materials of interest: experimental and theoretical work.

Due to Pauli’s principle, the lowest energy of this system is obtained when the
mean occupancy is lower than 1. This means that only one carrier can appear at
any given site each time. Moreover, these carrier spins are aligned with each other
and the total carrier spin is fully polarized. Now the local magnetic—exchange
interaction spreads the polarization along the lattice and therefore ferromagnetic
order appears. The strength of the interaction is regulated by the parameter .J.
Note that the general form of Hamiltonian (1.14) can describe a variety of systems
which consists of itinerant carriers and localized spins with amplitude S coupled
by magnetic—exchange interaction. For the systems of interest here (1.14) can be
specialized as follows. For ./ < 0 and S = 3/2 the above term describes double—
exchange interaction in the manganites. In that case the kinetic energy K of the
mobile carriers (electrons) is described by the tight binding model

K=-1Y c,c, (1.15)
<ij>o
with bandwidth ¢ < .J (strong coupling limit). In the case of DMS, the Mn—doping

provides a hole Fermi sea and S = 5/2 local moments. In this way, the term K
describes the kinetic energy of the valence band holes given by

K=Y exap,ax, (1.16)
ko
where the s—p valence band energy ey is usually approximated by a quadratic
formula
h?k?
€k = 1.17
k= o (1.17)

where my, 1s the effective mass of holes which in that caseis mj; = 0.5m,.. The above
approximation is the so-called effective mass approach. More over the second term
in Eq. (1.14) describes the magnetic-exchange coupling between itinerant hole and
localized spin with .J > 0. In contrast with the manganites, which are in the strong
coupling regime (¢ < .J), the strength .J of the magnetic semiconductors is low as
compared to the bandwidth (weak coupling). Therefore, in order to describe both
materials we need a theory that interpolates between strong and weak coupling
limit.

1.4 The materials of interest: experimental and

theoretical work.

The experimental study of manganese oxides, known also as manganites, has at-
tracted a lot of interest recently. The early experiments carried out on highly

11
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doped samples revealed a rather trivial behavior of the magnetic excitation spec-
trum (spin-waves). Within this concentration regime the low-lying magnetic ex-
citations are well described phenomenologically by the Heisenberg model which
predicts a cosine-like dispersion of such excited states[9]. The striking experimen-
tal result that caused a large debate over the last 10 years was the observation of
a strong deviation from Heisenberg dynamics, for intermediate electron dopings.
That result, plotted in Fig. (1.3) reveals a new magnetic dynamics in manganites
whose origin is not understood. The experimental measured magnon dispersion
starts to deviate strongly from the fitted Heisenberg ferromagnet near to zone
boundary (0,0, &) while the effect is weaker near (£,£,0) and (¢,&,¢). The under-
standing of the origin of this phenomenon is crucial to construct a reliable model for
manganese oxides. Although a great theoretical effort has been directed to this is-
sue, a satisfying explanation does not exist yet. Some of the mechanisms that have
been proposed involve the orbital degrees of freedom, the spin-lattice interaction,
the local Hubbard interaction, bandstructure effects, etc. [7, 10, 11, 12, 13]. We
discuss these approximations with more details in the Chapter (2). Our contribu-
tion to this challenge is the study of the role of ubiquitous three—body correlations
on the excitation spectrum of the manganites. Since the manganese oxides are
strongly correlated systems, such a study is of great importance.

The main interaction which regulates ferromagnetism in such systems is the
magnetic—exchange interaction between itinerant carriers and localized spins. This
is ferromagnetic in the manganites. Ferromagnetic systems such as the diluted III-
Mn-V magnetic semiconductors can be adequately described by a minimal model
which contains only the above interaction in addition to the kinetic energy of
the itinerant carriers. On the other hand, other mechanisms such as the on-—
site Coulomb interaction between the itinerant carriers and the super—exchange
interaction between local magnetic moments are believed to participate in the
dynamics of colossal magnetoresistance materials (CMR) such as the manganese
oxides. The effects of such couplings on the magnetic excitations of the manganites
is not completely understood yet, something that is one of our aims in this thesis.

Diluted magnetic semiconductors (DMS) with carrier-induced ferromagnetic
order are the base of the so—call spintronic devices. In parallel with the charge—
based electronics where the electron charge carries information, in spintronic tech-
nology it is the carrier’s spin which plays that role. Due to the observation of
room-temperature critical temperature of DMS, the potential applications of that
technology 1s extensive. Today, room-temperature devices based on spintronics
appear possible. The most promising candidate for such practical applications is
the Mn—doped GaAs which Curie temperature T is steadily increasing over the
last years reaching the maximum 7 = 173K reported to date[14]. The theoretical
study of magnetic semiconductors is mainly focused on the understanding of the

12
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Figure 1.3: Magnon dispersion along the main directions in the Brilluin zone.
Symbols: experimental results taken from Phys. Rev. Lett. 77, 711 (1996). Solid
line: fit with Heisenberg ferromagnet.

high critical temperature mechanism and the key role of doping. In this disser-
tation the effect of correlations is proposed to lead to an enhanced T of these
materials and determine the magnetization dynamics important for applications.
The magnetization dynamics in a ferromagnetic system such as the DMS is usually
described by the phenomenological Landan-Lifshitz—Gilbert (LLG) theory[15]. In
this approach the magnetization direction m is treated as a classical variable which
obeys the well-known LLG equation

om Om
W = —7m X Heff + am X E (118)
Here, v is the gyromagnetic ratio and H.ss is the effective magnetic field. The
latter, in general, contains the external, demagnetization and crystal-anisotropy
field. The dimensionless parameter « is the so—called Gilbert damping coefficient.
In the limit & = 0, Eq. (1.18) predicts that magnetization precesses around the
effective field with a frequency w = yH,.ss. On the other hand, when we switch on

13
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damping (a > 0) the motion of the magnetization is a spiral. After a time scale
of 1/(aw) m eventuates in a time-independent value parallel with the effective
field. It is clear that the coeflicient o gives a phenomenological description of the
relaxation process in a ferromagnetic system. By assuming that the magnetization
precesses around H.s at a very small angle, which means w — 0, we can obtain
that the linear response function of such a system is of the form

¢

. M)
Wy — W — taw

ti_(w—0)= (1.19)
where wg = yH.ss. Using the classical result (1.19) one can obtain a microscopic
expression for o. This is achieved by comparing the classical result of Eq. (1.19)
with the quantum magnetic susceptibility. The theoretical study of the physical
study of constant « in III(Mn)V magnetic semiconductors has attracted consider-
able attention over the last years. Nevertheless, it is usually calculated within a
mean field approach, where many-body effects are neglected, and its microscopic
origin is not well understood. Our results of the microscopic calculation of Gilbert
damping in a DMS is presented in chapter (6), where we determine the corrections
on Gilbert damping coming from the ubiquitous many-body correlations.

The general outline of this thesis is briefly as follows. In the first part, contain-
ing Chapters (2-5), we focus on the study of elementary spin-wave excitations on
manganese oxides. We start our study with Chapter (2) where the simple double—
exchange hamiltonian is employed and a variational treatment of spin—waves is
presented. The results of that chapter were published in Physical Review B 73,
174424, (2006). Since the double-exchange mechanism is the most important
coupling in strongly correlated systems, such as the manganites, a good under-
standing of that magnetic interaction is of major importance. Before we continue
to a more realistic model it is important to understand the physics of the many—
body correlations within the minimal hamiltonian. We discuss the relevance of
our numerical results with the experimental observed anomalous spin—wave soft-
ening. The physical meaning of the many-body correlations is also given in that
Chapter. The comparison with the experiments shows a discrepancy of the simpli-
fied double—exchange hamiltonian, something that motivates the inclusion of the
local Coulomb interaction in our model Hamiltonian. The variational results of
that study are presented in the Chapter (3) where a more realistic model Hamilto-
nian, beyond double—exchange model, is introduced. These results are published
in Physical Review B, 75, 140401(R) (2007) as a Rapid Communications. In this
chapter we study the role of the on-site Coulomb and super—exchange coupling
on spin—wave excitation spectrum. The local Coulomb repulsion between itinerant
electrons is the largest energy scale in the manganites. Therefore, such a coupling
can not be neglected in a reliable description of the magnetic excitation spectrum
in the manganites. A more detailed paper with our full results is in preparation.

14
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In the next two chapters (4-5) we introduce the green’s function formalism.
The application of that method allows us to determine the finite lifetime of the
magnetic excitations on the manganites, which is of great importance for for un-
derstanding spin-wave and magnetization dynamics (in preparation for publishing
in Physical Review B). The Green’s function method demands a approximate way
of terminating the infinite chain of equations of motion. We devise a decoupling
scheme that reproduces the results of the previous chapters and allows us to study
magnon damping. We discuss this in detail in chapter (4). The latter motivates
us to apply the same method to the other material of interest here; the diluted
magnetic semiconductors DMS. This is the focus of the next chapter (6). In this
chapter we concentrate on the long—wavelength spin—waves which regulate the
dynamics of such materials. We examine here how the many-body correlations
(beyond mean field) can affect the critical temperature and spinwave stiffness of
DMS. The other issue addressed in this chapter is the role of correlations on the dy-
namics of the magnetization relaxation process regulated by the phenomenological
Gilbert damping as described above. The results of this chapter (in preparation for
publishing in Physical Review B) give insights into the role of many-body effects
in DMS, an issue that is currently under debate.

15
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Chapter 2

Three—body correlation effects on
the spin dynamics of
double—exchange ferromagnets.

2.1 Introduction

Given the wide variety of ferromagnetic systems, it is important to understand
the properties of the minimal Hamiltonian that describes their common properties
and spin dynamics. Examples of such systems range from ferromagnetic semicon-
ductors such as EuO, EuS, chrome spinels, or pyrochlore [1] to dilute III(Mn)V
and II-VI magnetic semiconductors[19, 20]. To accomplish this goal, as well as
calculate the effects of correlations beyond the mean field approximation, it is of-
ten necessary to neglect particularities of the individual systems, such as chemical
structure and crystal environment. The most basic model that applies to all such
materials is considered to be the Kondo lattice or double exchange Hamiltonian

H = I(—I'Hewch —I'Hsuper ‘I’HU7 (21)

where

K=—t Z c:-racjg, (2.2)

<ij>o

is the kinetic energy of the itinerant carriers. Here, the symbol <> means that
the sum runs only over nearest neighbors, so that mobile electrons can hop from
a particular lattice site ¢ to all neighboring ones. Alternatively, the above kinetic

17
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energy can be written in momentum space as follows:
K = Z@kclgckg. (23)
ko

In the manganites, with chemical structure (Ry_,A,MnOs), n = 1 — 2z itinerant
electrons per Mn atom occupy the band of Mn d-states with e, symmetry. Fol-
lowing other authors, we simplify the calculation of the three-body correlations
of interest here by considering a single tight—binding band of cubic symmetry and
neglect the bandstructure and the degeneracy of the e, states (which may be lifted
by external perturbations). The operator c;rm creates an electron with momentum

k, spin ¢ and kinetic energy:

d
ex = —2t Z cos k;a, (2.4)
i=1

where d = 1,2, 3 is the system dimensionality and « is the lattice constant. From
now on we take ¢ = 1 and measure the momenta in units of /a.

A common feature of all the systems of interest here is the strong magnetic
exchange interaction between the itinerant carrier spins o; and the local spin—-S
magnetic moments S;, which are located at the N%lattice sites R;. This interaction
is expressed by

Heper, = —J Y _Si- 0, (2.5)
where the itinerant carrier spin operator has second quantization expression

1
oi =5 Z oy (2.6)

oo’

In the manganites, the localized S; S=3/2 spins are due to the three electrons in
the tightly bound t,, orbitals. Introducing the collective localized spin operator

1 .
Sq=—=) S;e ', (2.7)
N J

and the corresponding spin lowering operator

Sq = Sq — 155 (2.8)
we express the magnetic exchange interaction in momentum space as follows:
J
Herch = T = oS¢ CT_ Cko
2V N g; a4 ke

J
_m Z (SJ CL—qTCkl + h.c.) ’ (29)
kq

18



2.1 Introduction

where 0 = +1. In the manganites, J > 0 describes the ferromagnetic Hund’s
rule coupling between the local and itinerant spins on each lattice site. Hype, 1s
the weak antiferromagnetic direct super—exchange interaction between the spins
localized in neighboring sites, while Hy describes the local Coulomb (Hubbard)
repulsion among the itinerant electrons in the same lattice site. The precise val-
ues of the parameters entering in the above Hamiltonian are hard to calculate for
strongly coupled many-body systems such as the manganites. Although the pa-
rameter estimates vary in the literature, typical values are { ~ 0.2-0.5 ¢V and J ~
2eV, which corresponds to 4 < .J/t < 10 [22]. On the other hand, the antiferro-
magnetic super—exchange interaction is weak, ~ 0.01¢. The electron concentration,
n = (N./N)® = 1 — z where N, is the number of electrons, varies from 0 to 1.
Ferromagnetism in the metallic state of the manganites i1s observed within a con-
centration range 0.5 < n < 0.8 in both 3D and quasi-2D (layered) systems. In
this chapter we neglect the effects of H,,,., and Hy in order to focus on the role
of double-exchange interaction. This is the minimal model considered by many
authors as the first step towards describing the properties of the manganites. The
role of these interactions will be examined in the next chapter of this dissertation.

Given the questions raised in the literature about the adequacy of the simple
double exchange model for explaining the magnetic and transport properties of the
manganites [22], it is important to treat the Hamiltonian H in a controlled way in
the parameter regime relevant to the manganites. Such a treatment would allow us
to assess the accuracy of the commonly used approximations and understand the
successes and limitations of the very basic model in explaining the experiments.

Given the large values of J/t in most of the systems of interest, a widely used
approximation is the J — oo limit (double exchange ferromagnet) [23]. In this
strong coupling limit, the itinerant carrier is allowed to hop on a site only if its
spin is parallel to the local spin on that site. The kinetic energy is then reduced
when all itinerant and local spins are parallel, which favors a ferromagnetic ground
state (double exchange mechanism). We denote this fully polarized half-metallic
state by |F)

1F)y =TT <ilo) @) 15.5,---), (2.10)

US]CF

and note that it is an exact eigenstate of our model Hamiltonian H. This state
describes local spins with S, = S on all lattice sites and a Fermi sea of spin—T
itinerant electrons occupying all momentum states with ey < Ep, where Ep is the
Fermi energy of the system.

Another approximation commonly used in the literature is to treat the local
spins as classical (S — oo limit) [22]. The ferromagnetism can then be described
by an effective nearest neighbor Heisenberg model with ferromagnetic interaction.
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The quantum effects are then often taken into account perturbatively in 1/S. This
1/S expansion can be implemented systematically by using the Holstein—Primakoff
bosonization method [11, 24, 1]. To O(1/S5), this method gives noninteracting Ran-
dom Phase Approximation (RPA) magnons, whose dispersion is determined by the
exchange interaction [51, 25]. In the strong coupling limit .J/t — oo, this RPA
dispersion coincides with that of the nearest neighbor Heisenberg ferromagnet,
discussed in the introduction. The O(1/S5?%) correction to the spin wave disper-
sion however deviates from this Heisenberg form. This deviation comes from the
scattering of the RPA magnon with the spin—{ electron Fermi sea. The O(1/5? ap-
proximation corresponds to treating this to lowest order in the electron—-magnon
interaction strength (Born approximation). [11, 24] In order to assess the suc-
cess of the minimal Hamiltonian in describing the manganites beyond O(1/5%),
it is important to study the role of correlations. So far, the role of nonpertur-
bative carrier-magnon correlations (beyond O(1/5?)) has been studied by exact
diagonalization of small and 1D systems [26, 27] or by using variational wavefunc-
tions [29, 31| inspired by the Hubbard model and the Gutzwiller wavefunction
[32, 62, 33, 34]. The variational calculations of Refs.[29, 31] treat the local corre-
lations expected to dominate in the strong coupling limit [62]. The ferromagnetic
(Nagaoka) state |F') was shown to become unstable with increasing electron con-
centration due to the softening of either single particle spin excitations [33] or long
wavelength spin wave excitations (negative stiffness)[29, 31]. The spin wave disper-
sion deviated from the Heisenberg form for very small electron concentrations[31].
In the concentration range 0.5 < n < 0.8 relevant to the manganites, Wurth et.al.
[31] found small deviations from the Heisenberg form. A similar conclusion was
reached based on the 1/S expansion[24]. For n ~ 0.7, the O(1/5?%) magnon dis-
persion showed a relative hardening at the zone boundary in the strong coupling
limit [24].

Due to the interplay between the spin and charge degrees of freedom, a good
understanding of the spin dynamics is important for understanding the physics of
colossal magnetoresistance and transport in the manganites. In order to under-
stand the spin dynamics, the excitations of the spin degrees of freedom must be
studied experimentally. Several such experimental studies of the spin wave excita-
tion spectrum have been reported in the literature. Heisenberg-like magnons were
observed in the ferromagnetic regime for high electron concentrations (typically
n > 0.7) [9]. This observation is consistent with the spin wave spectrum obtained
in the classical spin limit or by using the strong coupling RPA. However, most im-
portantly for our purposes here, for lower electron concentrations 0.5 < n < 0.7,
unexpectedly strong deviations from the short range Heisenberg magnon dispersion
were observed in several different manganites [35, 36, 37, 38, 7, 39, 40]. Most strik-
ing is the pronounced softening of the spin wave dispersion and short magnon life-
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time close to the zone boundary, which indicate a new spin dynamics in the metallic
ferromagnetic phase for intermediate electron concentrations 0.5 < n < 0.7. The
physical origin of this dynamics remains under debate despite many years of the-
oretical work. It has been conjectured that the coupling to additional degrees of
freedom not included in the double exchange Hamiltonian H is responsible for this
new spin dynamics. Some of the mechanisms that have been proposed involve the
orbital degrees of freedom, the spin-lattice interaction, the local Hubbard interac-
tion, bandstructure effects, ete. [7, 10, 11, 12, 13].

In this chapter we study variationally the low energy spin excitations of the
half-metallic fully polarized state |F'). Our focus is on the role of correlations
described by the minimal Hamiltonian and assess whether they might by respon-
sible for the experimentally observed anomaly. Our theory treats exactly up to
three-body correlations between a magnon and a Fermi sea pair by using the
most general variational wavefunction that includes up to one Fermi sea pair ex-
citations. As already noted in the context of the Hubbard model, [62, 34] the
Gutzwiller wavefunction, which treats local correlations, [31, 29] is a special case
of our wavefunction. Here we treat both local and long-range correlations on
equal footing in momentum space in order to interpolate between the weak and
strong coupling limits with the same formalism. We show that it is important for
describing realistic systems to depart from the strong coupling limit. We treat
nonperturbatively in a variational way the multiple electron—-magnon and hole—
magnon scattering processes that lead to vertex corrections of the carrier-magnon
interaction. The above two scattering channels are coupled by three-body cor-
relations. We show that this coupling is important for the intermediate electron
concentrations and exchange interactions relevant to the manganites, while for
small (large) n the electron—magnon (hole-magnon) scattering channel dominates.
In the case of the 1D Hubbard model, a similar three-body treatment gave excel-
lent agreement with the exact results [41]. Analogous calculations were performed
to describe the electron—Fermi sea pair local Hubbard interactions [41, 62, 34] and
the valence (or core) hole-Fermi sea pair interactions that lead to the Fermi Edge
( X—ray Edge) Singularity [42, 43].

Our variational wavefunction offers several advantages. While local correla-
tions [31, 29] dominate in the strong coupling limit, long range correlations become
important as .J/t decreases [62]. The phenomenogical fits to the experimental re-
sults indicate the importance of long range correlations. By working in momentum
space, we treat both long and short range correlations while addressing both the
weak and strong coupling limits with the same formalism. We therefore expect
that our results interpolate well for the intermediate values of .J/t relevant to the
manganites. [62] Our wavefunction satisfies momentum conservation automati-
cally, which reduces the number of independent variational parameters. Further-
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more, our results become exact in the two limits of N. = 1 and N, = N¢. We
therefore expect that they interpolate well for intermediate electron concentrations
0 < n < 1. Our variational equations contain previously used approximations such
as the RPA (O(1/5)), ladder diagram approximation, and O(1/5?) results as spe-
cial cases. Finally, our results converge with increasing system size N and thus
apply to the thermodynamic limit. The only restriction is that we neglect contri-
butions from two or more Fermi sea pair excitations. Such multipair contributions
are however suppressed for large S, while their contribution in the case of the 1D
Hubbard model was shown to be small [41, 43].

Here we address a number of issues regarding the effects of up to three-body
carrier—magnon correlations on the spin dynamics predicted by the simplest double
exchange Hamiltonian. First, by comparing to the 1/S expansion, RPA, and ladder
approximation results, we show that vertex corrections and long range three-body
magnon—Fermi sea pair correlations, which couple the electron—-magnon and hole
magnon scattering channels, play an important role on the spin dynamics in the
parameter regime relevant to the manganites. We find large deviations from the
strong coupling double exchange spin wave dispersion, including a strong magnon
softening at the zone boundary in the intermediate electron concentration and
exchange interaction regime. On the other hand, for small electron concentrations
(relevant e.g. in III(Mn)V semiconductors [19, 20]), the electron-magnon multiple
scattering processes dominate. However, even in this regime the deviations from
the RPA and O(1/S?) magnon dispersions can be strong.

Second, by using an unbiased variational wavefunction, we determine the
change in the ferromagnetic phase boundary due to the three-body correlations
and carrier—magnon vertex corrections (not included to O(1/5%)). The variational
nature of our calculation allows us to rigorously conclude that the ferromagnetic
state | F') is unstable when its energy exceeds that of the variational spin wave en-
ergy. In addition to the long wavelength softening and eventual instability, which
occurs in all dimensions, we find another instability for momenta close to the zone
boundary while the stiffness remains positive. This instability only occurs in 2D
and 3D for intermediate electron concentrations (0.4 < n < 0.7 for the 2D three—
body calculation). This effect is exacerbated by the three-body correlations. One
should contrast the above instability to the spin wave softening (but not instabil-
ity) at the zone boundary that occurs for small n < 0.3 [24, 11, 31].

Third, we study the deviations from the Heisenberg spin wave dispersion in-
duced by the three-body correlations and vertex corrections. This comparison is
important given the experimental observation of pronounced deviations for n < 0.7
[35, 36, 37, 38, 7, 39, 40]. Deviations from Heisenberg behavior already occur to
O(1/5?), or even to O(1/S) for finite .J/¢, but in most cases correspond to magnon
hardening[24]. By comparing our results to the Heisenberg dispersion with the
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same stiffness, we show that, for values of .J/{ relevant to the manganites and such
that the ferromagnetic state is stable up to n ~ 0.8 or higher, the three-body
correlations in the 2D system give magnon hardening at the zone boundary for
n < 0.4 followed by strong magnon softening for 0.4 < n < 0.7 and then small
magnon hardening for n > 0.7. This behavior 1s similar to the experiment.

The outline of this Chapter is as follows. In Section 2.2 we discuss the four
approximations we use to calculate the effects of the carrier-magnon correlations
on the spin wave dispersion. In Subsection 2.2.1 we obtain variationally the well-
known RPA magnon dispersion. In Subsection 2.2.2 we discuss the variational
wavefunction that treats the three-body correlations. The variational equations
that determine the spin wave dispersion are presented in Subsection 2.2.3. In
Subsection 2.2.4 we establish the connection between the above variational results
and the 1/S expansion results[24, 11]. We show, in particular, that the O(1/5?)
magnon dispersion can be obtained from our variational equations by treating the
carrier—magnon scattering to lowest order in the corresponding interaction strength
(Born approximation). In Subsection 2.2.5 we discuss the two—body ladder approx-
imation, obtained from our variational results by neglecting the coupling between
the electron—magnon and hole-magnon scattering channels. In Subsection 2.2.6
we discuss the approximation of carrier-localized spin scattering and show that
this variational treatment improves on the RPA while making the numerical cal-
culation of three-body effects feasible in much larger systems. In Section 2.3 we
present our numerical results for the spin wave dispersion, ferromagnetic phase
diagram, and deviations from Heisenberg dispersion in the 1D, 2D, and 3D sys-
tems and compare between the different approximations. Finally we end with the
conclusions in Section 2.4.

2.2 Calculations

In this section we discuss the four approximations that we use to treat the effects
of the carrier-magnon correlations. From now on we measure the energies wq
of the spin wave states with respect to that of the fully polarized (half-metallic)
ferromagnetic state |F'), whose stability and low energy spin excitations we wish
to study. We note that |F) is an exact eigenstate of the Hamiltonian H with
maximum spin value and total spin z—component N(S + n/2). To study the
stability of this state in a controlled way, it is important to use approximations that
allow us to draw definite conclusions. This is possible with the variational principle,
which allows us to conclude that a negative excitation energy wq means instability
of |F), driven by the spin wave of momentum Q. Owur variational states have
the form |Q) = LM(J5|F>, where the operator 1\4(5 conserves the total momentum,
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lowers the z—component of the total spin by 1, and includes up to one Fermi sea
pair excitations. A spin wave has total spin z—component of N(S + n/2) — 1,
which corresponds to one reversed spin as compared to |F). This spin reversal
can be achieved either by lowering the localized spin z-component by 1 or by
coherently promoting an electron from the spin—-T band to the spin—| band. The
spin reversal can be accompanied by the scattering (shakeup) of Fermi sea pairs.
From now on we use the indexes v, y, - - - to denote single electron states inside the
Fermi surface and «, 3, -+ to denote states outside the Fermi surface. For a more
detailed presentation of our variational theory see appendix 8.1.

2.2.1 The RPA result

We start the discussion of the approximations by showing firstly that the well
known RPA magnon dispersion [51, 25] can be obtained variationally for any value
of J/t by neglecting in ZW(T;2 all Fermi sea pair excitations. The most general such
operator has the form:

B 1
Mippa = SglF) + N > X, e, (2.11)

The explicit form of the variational equations within RPA is obtained easily after
some algebra. The variational equations for the N, amplitudes X4 and for the
magnon energy are given by

Q 2 2N &7 ’
JS
XQRPA (2.13)

N JS—I—@HQ—@—wSPA'

This full RPA result can also be obtained as the zeroth order contribution to
an expansion in powers of 1/n, where n is the number of electron flavors and
corresponding degenerate electron bands. [47] In the strong coupling limit JS —
oo, XFPA 1 and LM(BRPA reduces to the total spin operator. To lowest order in
t/JS we obtain from Eqs. (2.12) and (2.13) that the RPA dispersion then reduces
to the Heisenberg dispersion

RPA 1 1
=~ Y (ewiq—& t/JS). 2.14
“Q 2N S +n/2 & (Fvrq =) 00/ 15) (2.14)

The O(1/S) magnon dispersion [24, 51] is obtained from the above strong coupling
RPA result by replacing the total spin prefactor S + n/2 by S.
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v a

Q Q+v-a
Figure 2.1: The scattering between an electron and a magnon as described by
wavefunction (2.15). solid line: itinerant electron, wave line: magnon.

2.2.2 Three-body Correlations

We now include in le the most general contribution of the one Fermi sea pair
states:

ME—S —I——ZX CQ+vlcl’T+Z CorCut X

[ 2 OQiu—a "’ S /o Z@achw atv] 1 (2.15)

where the amplitudes XQ, ¥Q and (I)S;w are all determined variationally; we do
not use the RPA results for X<9. As compared to previous calculations, we do not
assume any particular form or momentum dependence for the above variational
amplitudes. This allows us to treat in an unbiased way the long range correlations
for any value of .J/t. The first two terms on the rhs of Eq.(2.15) create a magnon
of momentum Q. The last two terms describe the scattering of a momentum Q
magnon to momentum Q + v — a with the simultaneous scattering of a Fermi
sea electron from momentum p < kr to momentum « > kr and the creation of
electron-hole pair. This scattering is shown schematically in the Fig. (2.1). Our
wavefunction Eq. (2.15) becomes exact in the two limits of N, = 1 and N, = N¢.
To see this, we note that, for N, = 1, the Fermi sea consists of a single electron.
As a result, multipair excitations do not contribute, while ®@ = 0. In the half-
filling limit N, = N, all lattice sites are occupied by one spin—T electron and the
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Figure 2.2: Spin-wave dispersion at the ./ — oo limit in a 1D system with N =20,
S =1/2 and for number of electrons Ne =1, 3, 5, 7. The points in the figure show
exact results.

Fermi sea occupies all momentum states up to the zone boundary. As a result,
the RPA wavefunction Eq. (2.11) becomes exact. Eq. (2.15) also gives the exact
wavefunction in the atomic limit ¢ = 0, ¢, = 0, where the variational amplitudes
do not depend on the electron momenta. To see this, we note that, due to the Pauli
principle, (I)Sw must be antisymmetric with respect to the exchange of the Fermi
sea electron momenta v and p. In the atomic limit, ®Q therefore vanishes since
it is independent of the momenta. For the same reason, all multipair amplitudes
vanish as well and Eq.(2.15) gives the exact result. The above exact results give us
confidence that our wavefunction and variational calculations provide an adequate
way for interesting parameter regions where exact results are not possible. Further
confidence in our results is provided by the fact that we reproduce exact numerical
calculations of such systems made by exact diagonalization of small 1D system
[26, 27]. Fig (2.2) shows this comparison. We see that our results are in very good
agreement with the exact calculations.

2.2.3 The variational equations

In this section we present the variational equations that determine the wavefunc-
tion amplitudes XQ, ¥Q, and &2 for the simple double—exchange hamiltonian.
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LMQ}LM(MF% where
M‘B is given by Eq.(2.15), with respect to the above variational amplitudes. The

These are obtained by minimizing the variational energy (F

normalization condition <F|MQM(B|F> = 1 is enforced via a Lagrange multiplier,
which coincides with the variational magnon energy wgq. Similar to the three-
body Fadeev equations, the resulting variational equations are equivalent to solv-
ing the Schrodinger equation within the subspace spanned by the states Sé|F> and

cJ(rQ+vicVT|F>7 which describe all possible configurations with one reversed spin and
no Fermi sea excitations, and the magnon—Fermi sea pair states CLTCUTS(5+U_Q|F>

and CLTCUTCE+#+U_alCMT|F> to which a magnon or spin flip excitation can scatter
with the simultaneous excitation of a Fermi sea pair. We note that the above mo-
mentum space basis ensures the conservation of momentum and total spin. The
explicit form of the variational equations is obtained after straightforward algebra
by projecting the Schrédinger equation [H, M(BHF) = wq|F) in the above basis
after calculating the commutator [H, M(E] by using Eq.(2.15) for M:S and noting
that H|F) = 0 ( we take the energy of |F') as zero). The variational equation that
gives the energy wq reads

- - _ E Q _ E Q
wqQ = 5 N - XV + ON . \I/ay. (216)

The last term in the above equation describes the contribution due to the carrier—
magnon scattering. The first two terms on the rhs give the RPA magnon energy
if XQ is substituted by its RPA value, obtained for ¥Q = 0. The carrier-magnon
scattering however renormalizes XQ as compared to the RPA result:

1+ 08¢

The first term on the rhs of the above equation gives the RPA contribution to

(JS+epq—6c, —wq)X¥=JS (2.17)

XQ, while the second term, as well as the correlation contribution to the magnon
energy wq, describe the effects of the magnon-carrier scattering. Note that the
RPA result Eqs. (2.12) and (2.13) is obtained from Eqs. (2.16) and (2.17) after
setting ¥ = & = 0. The scattering amplitude U® is determined by the variational
equation

J J J
—I_ﬁ zﬂ;qjg’u - ﬁ zy;\:[]gy' - ﬁ zy;q)gu’y' (218)

The first term on the rhs of the above equation gives the Born scattering approx-

Jn J
(wQ_T-I'ey_Ea)\IISy:W(]‘_Xl?)

imation contribution to the carrier-magnon scattering amplitude, which is the
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only one that contributes to O(1/5%) in magnon energy Eq. (2.16). The next two
terms describe the effects of the multiple electron—magnon (second term) and hole
magnon (third term) scattering. Finally, the last term comes from the electronic
contribution to the scattered magnon, i.e. from the coherent excitation of a spin—
T electron to the spin—| band. The amplitude ®? of the latter contribution to
Eq.(2.15) is given by the variational equation

(JS + cQiptv—a — Ep+ca — &, —wq) 8, = JS (TG, - \IISM) : (2.19)

avy

We note that, in the strong coupling limit J — oo, (ESW — e \IIS# and the
last two terms in Eq. (2.15) describe the scattering of a Fermi sea pair with
the strong coupling RPA magnon created by the total spin lowering operator
Sé + \/I—NZU cg+ylcyT. Our general wavefunction Eq. (2.15) does not assume
an RPA magnon and includes corrections to the strong coupling limit results that
we show are important for the values of .J/t relevant to the manganites. One can
see by conjecturing the corresponding matrix elements that multipair contribu-
tions wavefunction Eq. (2.15) contribute to O(1/S?) or higher. Therefore, our
calculation reproduces the O(1/5?) results however treats vertex correlations vari-
ationally to all orders in 1/S. This variational nature allows us to draw define
conclusions we discuss below.

A closed equation for the carrier-magnon scattering amplitude U@ can be
obtained by substituting in Eq. (2.18) the expressions for ®Q and X9 obtained
from Eqs. (2.19) and (2.17). Defining the excitation energy

AR =g +e, —eq
J EQ+v'4v—a — EV +éa— &y — wQ

—— 2.20
2N = JS—|-€Q+1,/+U_a — €y + Eq — &y —wQ’ ( )
we thus obtain the following equation:
J e —& —w
AQpQe — 2 QB R 1y N gQ
o av 2NJS—|—EU+Q_€1/—UJQ za; a'v
J € v —a T Eulteq—e, —
o \Ij Q+ + +ea v WQ . (2‘21)

2N = o' J g + EQtvtvi—a — Evt + Ea — &L —WQ

The above equation describes up to three-body correlations between the magnon
and a Fermi sea pair. The first term on the rhs describes the bare carrier—-magnon
scattering amplitude. This is renormalized by the multiple scattering of a Fermi sea
electron (second term on the rhs) and a Fermi sea hole (last term on the rhs). These
two contributions describe vertex corrections of the carrier-magnon interaction. In
Fig. (2.3) we give a schematic representation of the physical processes including in
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[
+

Figure 2.3: The creation of a electron—hole pair due to scattering with the magnon
as described by variational amplitude ¥. All the 3-body processes are also pre-
sented.

Eq. (2.21). In this Figure, the Fermi sea is illustrated as a blue circle, an electron—
hole pair excitation by a solid line vector, and the electron magnon interaction
by dashed line. The creation of an electron-hole pair can take place with three
different processes. First, the Fermi pair v — « can be created by a direct scattering
of an electron v from momentum v inside the Fermi sea to momentum « out
of the Fermi sea. The latter process described by the first term in Fig. (2.3).
However, this creation of an electron or a hole can be accompanied by scattering
via the electron magnon interaction. Such rescattering processes are described
by the participation of the rest holes 3 # « and electrons u # v provides two
new processes expressed by the second and third term respectively of Fig. (2.3).
To obtain the spin-wave spectrum numerically, Eqs.(2.16) and (2.21) were solved
iteratively until convergence for the spin wave energy was reached.

Now we identify the three-body correlation contribution to the carrier—magnon
scattering amplitude ¥Q, Eq. (2.21), and distinguish it from the two-body multi-
ple scattering contributions. We note from Eq. (2.21), that U9 has the form

Q _ J Es4Q — €y — WQ _I_Ff,—I‘ZU
Y 2NA2 JS+emq - —wa A
where we introduced the electron vertex function

J €u+Q — €1 — WQ Q
I't = — v . 2.23
Y 2NJS—|—€U+Q—€U—U)QZ o ( )

: (2.22)

OZ/
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and the hole vertex function

J € gt Eq — €, —Ey —Ww
=Ny, e Tre v v #Q 2.24
v ZNEU; JS—I-af(;H_H_l,/_O[—afl,/—l-afa—afl,—(.UQ7 ( )

Substituting Eq. (2.22) into Eq. (2.23) we obtain after some algebra that

i J Cv4Q — &y T WQ 1

rr = |(1-
v 2]V!]AS’+EI_/+Q_€I/_LUQ2&/:AQ/
J2 EvyQ — &L —WQ 22#
AN2 \JS +¢e,4qQ — &, —wq AS

L o’ a'v

-1

J EvtQ — &L —WQ Z Fz/y
2N JS +e,4q — & —wq 4 A%

(2.25)

OZ/

The first factor on the rhs of the above equation comes from the electron—-magnon
two—body ladder diagrams summed to infinite order. The last term in the second
factor describes the coupling of the electron—-magnon and hole-magnon scattering
channels. This coupling comes from the three-body correlations. An analogous
equation for I'* can be obtained by substituting Eq.(2.22) into Eq. (2.24). In the
case of the simpler variational wavefunction ® = 0, ¥ # 0 discussed below, which
describes the carrier-localized spin scattering contribution, the calculation of T
simplifies by noting from Eq.(2.18) and the definition Eq.(2.22) that T = T .
The corresponding variational equation can be obtained by setting ®Q = 0 in Eq.
(2.18):

-1

h _
I, =

(2.26)

J2 Eyr — &y — W 1 J Pe,
DI S a toy 2 a
4N = JS + EviQ — € — WQ Aow, 2N -~ A

The first factor on the rhs comes from the hole-magnon ladder diagrams, while
the coupling to I'° comes from the three-body correlations. The magnon energy
is obtained from Eq. (2.16) after substituting Eq. (2.17):

J Ev+Q — €4 — WQ
= — Ie. 2.27
“Q QNZJS—I-EU+Q—EU—LUQ+Z v ( )

v v

The first term in Eq.(2.27) gives the RPA contribution to the magnon energy.
The second term is the carrier—magnon self energy contribution, determined ex-
clusively by the electron vertex function I'°. The latter satisfies Eq.(2.25), which
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describes the multiple electron—magnon scattering contribution (ladder diagrams,
two—body correlations) as well as the coupling to the hole vertex function, Eq.
(2.24), due to the three-body correlations. Below we discuss three contributions
to the full T*: O(1/5?) (Born scattering approximation), ladder diagram (two-
body carrier—magnon correlations), and the contribution due to carrier scattering
with the localized spins.

2.2.4 1/S Expansion

In this section we make the connection with the Holstein—Primakoff bosonization
treatment of the quantum effects[11, 24]. In particular, we show that the O(1/5?)
magnon dispersion [11, 24] can be obtained by solving Eq.(2.25) perturbatively, to
lowest order in the carrier-magnon interaction and 1/S.

First, we recall that classical spin behavior is obtained in the limit S — oo
with the band splitting /S kept finite. By expanding Eqs (2.21), (2.23) and (2.24)
in powers of the small parameter 1/S (JS= finite) we see that ¥Q@ = O(1/5),
e = 0(1/5?%), and T"* = O(1/5?%). In particular, we obtain from Eq.(2.25) to
lowest order in 1/S

pe =L SvtQ T Cy 22 ! (2.28)
v 4N? JS—|—€U+Q—€V N 50[_51/7 ‘

and from Eq.(2.27)

J €utQ — €y — WQ
“Q = QNZ:JS—I-&H_Q—@U—CUQ

_ J2 Z (€V+Q B 61/)2 (2 29)
4N? (JS +e,4q — ey)2 (€a — ey). .

The last term in the above equation comes from the lowest order magnon—electron
scattering contribution. The O(1/5) spin wave dispersion [51] is obtained from the
first term by neglecting wq = O(1/S5) in the denominator. The spin wave energy
to O(1/5?) is obtained by expanding the first term to this order. This corresponds
to keeping only the 1°* contribution of the figure (2.3) while the rescattering terms
are neglected. We recover the strong coupling O(1/5?%) results of Refs [11, 24],
obtained by using the bosonization technique, by further expanding Eq.(2.29) in
the himit J.S — oo.

It is important to note that he O(1/5%) magnon dispersion is not variational.
As a result, we cannot definitely conclude instability of the ferromagnetic state
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if we find a negative magnon energy to O(1/5%). On the other hand, the three—
body calculation outlined in the previous section treats the magnon-Fermi sea
pair interaction variationally rather than perturbatively (as in the 1/S expansion),
while recovering the O(1/5?) results as a special case. The n—pair contributions to
Eq.(2.15) have amplitudes of order O(1/S™). Therefore, the shake—up of multipair
excitations is suppressed for large S. Our three-body calculation thus puts the
O(1/5%) results on a more quantitative (variational) basis by treating fully rather
than perturbatively all contributions of the one Fermi sea pair states.

2.2.5 Two—body Ladder Approximation

To go beyond the Born approximation (O(1/S5?)) result, we first consider the
two-body correlation contributions to the Fermi sea pair amplitude U@ while
still neglecting the three-body correlations. This is equivalent to treating the
ladder diagrams that describe the multiple electron-magnon and hole-magnon
scattering, while neglecting the coupling between these two scattering channels.
Noting that the magnon dispersion is determined by I'* only Eq. (2.27). The ladder
approximation dispersion is thus obtained from Eq. (2.25) by setting T'" = 0 and
Eq.(2.27):

€4Q — & — WQ
+evrq — & —wq

2
fv4QTEv—wWQ Q
L > (rezazmra )'s0 148,
4N? 1_ J _cvtQ=ev—vq Eall/Agy’
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J
“Q:ﬁgjs

(2.30)

where AQ is given by Eq.(2.20). A diagrammatic representation of the Ladder
approximation is given by removing the last term in Fig. (2.3), i.e. the Fermi sea
hole rescattering process. We note that, similar to the 1/S expansion, the above
ladder approximation result is not variational. A similar approximation was used
in the context of the Fermi Edge Singularity [42, 43]. There it was shown that at
least three-body correlations are necessary in order to describe the unbinding of
the discrete exciton bound state[42, 43]. In the case of the Hubbard model, the
ladder approximation was shown to overestimate the electron self energy [41].

The difference between the spin wave dispersions Eq.(2.30) and the full three—
body calculation comes from the three-body correlations. By comparing the cor-
responding curves in the next section we can therefore judge the role of these
correlations on the spin dynamics.
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2.2.6 Carrier—localized spin scattering (® =0,V # 0)

To describe the three-body correlations, the coupled equations for I'® and I'* must
be solved. Although this is possible in 1D and 2D for fairly large systems, in
3D the numerical solution of the full variational equations is challenging, due to
the dependence of T'" on six momentum components. On the other hand, T
depends on one momentum only. The dependence of I'* on the momentum v can
be eliminated by considering a simpler variational wavefunction, obtained from
Eq.(2.15) by setting ® = 0. This corresponds to treating fully the scattering of
the electron with the localized spins while neglecting the electronic contribution
to the scattered magnon. This approximation becomes exact in the two limits
N. =1 and N. = N? and also recovers the O(1/5?) and RPA results. Its main
advantage 1s that it improves the RPA by allowing us to treat variationally three-
body carrier-localized spin correlations in a large system. The corresponding spin
wave dispersion is obtained by solving the coupled Eqs.(2.25) and (2.26) and then
substituting I'* in Eq.(2.27).

2.3 Numerical results

In this section we present the results of our numerical calculations. We perform an
extensive spin of the full parameter space and establish the importance of correla-
tions. To draw conclusions on the role of the correlations, we compare the different
approximations discussed in the previous section for a d-dimensional lattice with
N9 sites. We performed our calculations for d=1, 2, and 3. The dimensionality
of the system affects the quantum fluctuations and correlation effects. Quan-
tum fluctuations are expected to be most pronounced in the 1D system, where
we show that the 1/S expansion can lead to spurious features. The calculation
of the 1D magnon dispersion could also be relevant to quasi-1D materials with
chain structures. Our 2D magnon dispersion is relevant to the quasi-2D layered
manganites, [44, 45] where a pronounced spin wave softening and deviations from
the Heisenberg dispersion similar to the 3D system [35, 36, 37, 38, 7] were ob-
served experimentally[39, 40]. The similarity of the spin dynamics in the 3D and
2D systems indicates that the relevant physical mechanisms are generic and do
not depend crucially on the particularities of the individual systems. In 2D, the
full three-body variational calculation can be performed in fairly large systems
(N ~ 20 — 30), while in 3D it could only be performed for N ~ 10. Therefore, the
2D system also offers computational advantages. On the other hand, the rest of
the approximations discussed here can be performed in very large systems (up to
N ~ 200), until full convergence with increasing N is reached.
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Figure 2.4: Spin-wave dispersion in the 1D system: comparison of the full three—
body variational calculation (solid curve) to the different approximations discussed
in the text. .J/t = 10.

We start with the dependence of the spin wave excitation spectrum on the
electron concentration n. Figs. (2.4) and (2.5) show the magnon dispersion in the
1D and 2D systems respectively for a fixed exchange interaction, .J/t = 10, and
four different values of n. The 2D dispersion (Fig. (2.5)) was calculated along the
Brillouin zone direction (0,0) — (7,0) (I' — X), where the discrepancies between
the different approximations are maximized.

For very small electron concentrations (n = 0.12 in Figs. (2.4) and (2.5), the
carrier—magnon scattering tends to soften the spin wave dispersion close to the zone
boundary, consistent with previous results[31, 24]. This can be seen by comparing
in Figs. (2.4a) and (2.5a) the RPA dispersion with the different calculations of
the carrier-magnon scattering effects. It is important to note that, despite the
softening, the spin wave dispersion does not become negative (unstable) close to
the zone boundary for very low concentrations. This softening may be interpreted
as a remnant in the thermodynamic limit of the failure of the RPA for N. = 1,
where Eq. (2.15) gives the exact solution.
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Indeed, for N, = 1, the magnon energy is of O(1/N?), while the RPA gives
O(1/N) energies. Furthermore, for low concentrations, the ® # 0,¥ # 0 and
® = 0,V¥ # 0 variational calculations give results similar to the ladder approxi-
mation (the corresponding curves almost overlap in Figs. (2.4a) and (2.5a). This
indicates that the three-body correlations are weak for very low concentrations.
This result can be understood by noting that the last term in Eq. (2.21) (and
Eq. (2.20)), which describes the hole-magnon multiple scattering contribution, is
suppressed for small n. Indeed, with decreasing n and Fermi energy Er, the phase
space available for the hole to scatter decreases relative to the phase space available
for electron scattering. As a result, the electron—magnon scattering channel (elec-
tron ladder diagrams) dominates. On the other hand, the difference between the
above dispersions and the RPA is strong, while the differences from the O(1/5%)
(Born scattering) result are noticeable even for very small n (Figs. 2.4a and 2.5a).
The latter differences come from the multiple electron—magnon and hole-magnon
scattering processes. In 1D, the O(1/5?%) result fails qualitatively for very low
(n = 0.12 in Fig. (2.4) and very high (n > 0.8) electron concentrations. For such
concentrations, the O(1/5?) dispersion becomes negative (unstable) at the zone
bondary. This zone boundary instability persists even in the strong coupling limit
J — oo but is absent in all our variational results.

With increasing electron concentration, the spin wave energies and stiffness
initially increase (compare the n = 0.12 and n = 0.3 dispersions in Figs. (2.4) and
(2.5). Fig. (2.6) shows D(n), obtained by fitting the quadratic behavior D(n)Q? to
the long wavelength numerical dispersions, for finite exchange interaction .J/t = 10.
As can be seen in Fig. (2.6), the RPA predicts an initial increase of the spin wave
stiffness with n followed by a decrease. However, the carrier-magnon scattering
reduces the spin wave stiffness and changes the above concentration dependence
significantly, especially in 2D and 3D (see Fig. (2.6). The difference from the
RPA behavior is particularly striking for the O(1/5%) contribution to D(n). The
latter is significantly suppressed as compared to the rest of the approximations
of carrier-magnon scattering. This particularly strong softening indicates that
the O(1/5?) result significantly underestimates 7. and the stability of the fully
polarized ferromagnetic state. We note that, due to the variational nature of the
full three-body calculation, the exact stiffness will be smaller (softer) than the
corresponding results of Fig. (2.6) (solid curve).

As the electron concentration increases, we see from Figs. (2.4) and (2.5)
that the different approximations start to deviate substantially from each other.
This is clear for the 2D system (Fig. 2.5), while in 1D the differences develop
for higher electron concentrations. Compared to the full three-body variational
calculation (® # 0, ¥ # 0), the ladder and O(1/5%) (non-variational) approxima-
tions give softer spin wave energies, while the variational ® = 0, ¥ # 0 and RPA
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Figure 2.5: Spin-wave dispersion in the 2D system along the direction I' — X for
the same parameters as in Fig. 2.4: comparison of the full three-body variational
calculation (solid curve) to the different approximations discussed in the text.

(® = ¥ = 0) wavefunctions give higher spin wave energies. The large differences
between the above dispersions point out the important role of carrier-magnon cor-
relations for such electron concentrations. The difference between the full three—
body calculation (or the ® = 0, ¥ # 0 calculation) and the ladder approximation
in Figs. (2.5¢) and (2.5d) shows that the three-body correlations are significant,
while the differences from the O(1/5?%) result show the importance of the multi-
ple carrier—magnon scattering processes (vertex corrections). Omne can conclude
from the above comparisons that the Fermi sea hole-magnon scattering cannot
be neglected for such concentrations. Furthermore, as can be seen in Fig. (2.5),
the different approximations bound the full three-body result. This is particularly
useful for the 3D system, where the full three-body variational calculation could
only be performed for relatively small N? lattices with N ~ 10 (due to the large
number of variational parameters U9 ). On the other hand, Fig. 5 shows the
spin wave dispersions for a rather large (50°) 3D lattice, obtained by using the
RPA, O(1/5%), and ® = 0,7 # 0 approximations. By comparing the spin wave
dispersions in Figs. (2.7) and (2.5), obtained for the same parameters, we see that
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Figure 2.6: Spin wave stiffness for ./ = 10¢ as function of electron concentration
and system dimensionality.

the trends as function of n are qualitatively similar in the 2D and 3D systems.

The differences between the approximations studied here (which are due to
the correlations) are very pronounced in the electron concentration range 0.5 <
n < 0.8 for intermediate exchange interaction values, i.e. in the parameter regime
relevant to the manganites. This can be seen more clearly in Fig. (2.8), which
shows the 2D spin wave dispersions obtained with the different approximations
along the main directions in the Brillouin zone for the typical parameters n =
0.7, = 8t. Fig. (2.8) compares the dispersions along the directions (0,0) —
(r,0) (T' = X), (#,0) — (7,7) (X — M), and along the diagonal (0,0) — (7,7)
(I' — M). The discrepancies between the different approximations are very large
along I' — X but much smaller along the other directions. For example, the RPA
fails completely along the direction I' — X, where the full three-body calculation
shows a striking spin wave softening that is most pronounced close to the X point.
Such a strong effect, much stronger than the softening at small n, only occurs
for intermediate electron concentrations 0.4 < n < 0.7 and is underestimated
by the ® = 0,7 # 0 variational calculation. On the other hand, the O(1/5?)
dispersion for the parameters of Fig. 5 shows instability at long wavelengths
(negative stiffness) rather than softening at the zone boundary.
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Figure 2.7: Spin wave dispersions in 3D for .//¢ = 10 and electron concentrations
similar to Figs. (2.4) and (2.5).

To see the origin of the above spin wave softening, we show in Fig. (2.9) the
spin wave dispersion for a slightly smaller .J/¢ than in Fig (2.8). The spin wave
energy now becomes negative in the vicinity of the X point, while the magnon
stiffness remains positive. This variational result allows us to conclude instability
of the fully polarized ferromagnetic state due to the X point magnons. The strong
zone boundary softening is a precursor to this instability. Fig. (2.9) also compares
the full three-body and RPA calculations for two different values of N with fixed
n. For n = 0.7, our results have converged reasonably well even for N ~ 10 and
thus reflect the behavior in the thermodynamic limit.

The above zone boundary instability occurs in 2D and 3D for intermediate
electron concentrations (0.4 < n < 0.7 for the 2D three-body calculation), where
a strong magnon softening and short magnon lifetimes were observed in the man-
ganites [35, 36, 37, 38, 7, 39, 40]. Although the other approximations can also
give an instability, this occurs within a more limited range of n and .J than for the
full three-body calculation (discussed further below). The magnitude and concen-
tration dependence of the softening also depends on the local Hubbard repulsion
(Hy) and direct super—exchange (Hjyp.,) interactions and the bandstructure (to

38



2.3 Numerical results

0-3 T I T I T

— 3-body

L -+« RPA .,’/ \"‘ ]

Figure 2.8: Spin wave dispersion along the different directions in Brillouin zone
for n = 0.7, .J = 8¢: Comparison of the different approximations.

be considered elsewhere). We note that spin wave softening at the zone boundary
of electronic origin was obtained before within the one—orbital Hamiltonian for
finite values of .J/t by including these additional effects [11, 13]. The main differ-
ence here is that our calculation is variational (and thus allows us to draw definite
conclusions by guaranteeing that the exact magnon energies are even softer than
the calculated values) and our effect was obtained by using the simplest possible
Hamiltonian (Hy = Hgyper = 0).

It 1s important to note here that the strong magnon softening and instability
only occur for finite values of .J/t and disappear in the strong coupling limit J —
oo. This can be seen in Fig. (2.10), which compares the 2D magnon dispersions
for n = 0.7 and different values of .J/t > 1 with the result obtained by expanding
Eqs.(2.21) and (2.27) in the limit J/ — oo. As can be seen in Fig. (2.10), the
zone boundary magnon softening disappears with increasing .JJ/t. The magnon
dispersions converge slowly to the strong coupling result, which is reached only for
J/t ~ 1000. Since the typical exchange interaction values in the manganites are of
the order of .J/t < 10, we conclude that the manganites are far from the J — oo
limit. Noting in Fig.8 that the zone boundary magnon softening has disappeared
completely for .J/t > 20, we see that the finite .J/t effects play an important role
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Figure 2.9: Spin wave dispersion for a N x N 2D lattice along different directions
(n =0.7,.J = 7.5t). Convergence with system size N is very good for this n.

in the manganite spin dynamics.

We now turn to the 3D system, where the full three-body variational calcula-
tion faces computational difficulties due to the large number of variational param-
eters UQ . As can be seen in Fig. (2.9), in the 2D system the magnon dispersion
results for n = 0.7 have already converged reasonably well for N ~ 10. We there-
fore expect that, in 3D, a calculation for a N x N x N lattice with N ~ 10 should
give reasonable results. Fig.(2.11) show the 3D magnon dispersions obtained this
way for N = 8, n ~ 0.7, and .J/t = 14 using the different approximations. Fig.
9 shows similar 3D magnon behavior as in the 2D system (Fig. 2.7): magnon
softening close to the X point and significant deviations between the different ap-
proximations along I' — X even for this relatively large .J/¢ = 14. Similar to the 2D
and 1D systems, the O(1/5%) dispersion and the carrier-localized spin scattering
(® =0,V # 0) variational results bound the full three-body magnon dispersion.

Next we turn to the stability of the fully polarized half metallic ferromagnetic
state. Our results show two different instabilities due to the exchange interaction
(Hy = Hguper = 0). The first is the X—point zone boundary instability discussed
above, which occurs in 2D and 3D for intermediate electron concentrations. For
low or high electron concentrations (for all concentrations in 1D), we find a second
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Figure 2.10: Spin wave dispersion in 2D, obtained from the full three-body cal-
culations, for n = 0.7 and increasing values of J/i{. Convergence to the strong
coupling limit is slow.

instability with respect to long wavelength spin waves (negative magnon stiffness)
similar to previous calculations. In this case, the minimum magnon energy occurs
at a finite momentum value instead of Q = 0. This momentum increases with
n and becomes © at n = 1 (antiferromagnetic order at half filling). This result
implies instability to a spiral state, while the system can further lower its energy
by phase separating [22, 47]. Due to the variational nature of our calculation, it is
guaranteed that, if the magnon energy becomes negative for .J = J.(n), the ground
state of the Hamiltonian H for all .J < .J.(n) is not the half metallic state |F'). The
phase diagrams of Fig. (2.12) describe the stability of this state against spin wave
excitations. The most striking feature in Fig. (2.12) is the large shift (increase)
of the ferromagnetic phase boundary, J.(n), as compared to the RPA, due to
the carrier—-magnon scattering. Furthermore, the different approximations of the
carrier—magnon scattering lead to significant differences in .J.(n). By comparing
the shape of J.(n) between the 1D and 2D /3D systems, we see that, in the latter
case, J.(n) develops a plateau-like shape within an intermediate concentration
regime (see Fig. (2.12d). This feature is absent in the 1D system, where there is
no zone boundary instability. This plateau occurs for 0.4 < n < 0.7 in 2D (full
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Figure 2.11: Spin wave dispersion for a N x N x N 3D lattice along different
directions (n = 0.7,.J = 144, and N = 8). T = (0,0,0),X = (7,0,0),M =
(r,7,0),R= (7,7, 7).

three-body calculation) and for 0.25 < n < 0.6 in 3D (& = 0, ¥ # 0 three-body
calculation). It is much less pronounced for the O(1/5?) and RPA calculations

For small n, J.(n) is small, implying enhanced stability of the ferromagnetic
state in the concentration regime relevant, e.g., to III-Mn-V semiconductors[19,
20]. This stability is a remnant of the fact that, in the exactly solvable limit
N, = 1, the ferromagnetic state |F') is the ground state for all values of .J/t. .J.(n)
increases more slowly with n in 1D than in 2D and 3D. This implies enhanced
stability of the fully polarized ferromagnetic state, partly due to the lack of zone
boundary instability in 1D. Fig. 10(d) shows the 2D phase diagrams for the
electron concentrations relevant to the manganites. The full three-body variational
calculation gives .J.(n) ~ 7 — 8¢ in this regime, close to the high end of the values
quoted in the literature[22]. Therefore, the simple double exchange Hamiltonian
predicts that the manganites lie in a regime that is close to the instability of the
ferromagnetic state. In this regime, the correlations, vertex corrections, and finite
J effects play an important role in the spin dynamics.

Fig. (2.12) also compares the phase diagrams obtained by using the different
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Figure 2.12: Phase diagram due to the spin wave instability and comparison be-
tween the different approximations discussed in the text. (a) 1D system, (b) 2D
system, (c) 3D system, and (d) 2D system in the electron concentration range
relevant to the manganites.

approximations implemented here. The O(1/5?%) calculation underestimates the
stability of the fully polarized ferromagnetic state, while the RPA and carrier—
localized spin scattering (& = 0, ¥ # 0) variational results overestimate the sta-
bility. For low concentrations n < 0.3, all the different treatments of the carrier—
magnon scattering predict a similar ferromagnetic phase boundary. It is clear from
Fig. (2.12d) that, in the electron concentration regime 0.5 < n < 0.8 relevant to
the manganites, the RPA significantly overestimates the stability of the ferromag-
netic state. For example, for n ~ 0.5, the RPA underestimates .J.(n) by 100%
as compared to the full three-body variational calculation. Finally, close to half
filling n = 1, the two variational results give magnon energies similar to the RPA,
which becomes exact for n = 1. On the other hand, the O(1/S?) approximation
fails in this high concentration regime.

Finally we discuss the relevance of our calculation based on this minimal Hamil-
tonian of the spin wave dispersion observed experimentally in the quasi-2D and 3D
manganites. The experimental results are typically analyzed by fitting the short
range Heisenberg dispersion to the long wavelength experimental dispersion and

43



2 Three—body correlation effects on the spin dynamics of
double—exchange ferromagnets.

then comparing the two close to the zone boundary [9, 35, 36, 37, 38, 7, 45, 39, 40].
This comparison showed that the Heisenberg model fails to describe the experimen-
tal results in the over—doped manganites (typically for 0.5 < n < 0.7), but fits well
in the under-doped samples (n > 0.7). This failure is due to the strong magnon
softening close to the zone boundary (X—point) [35, 36, 37, 38, 7, 39, 40|, whose
physical origin is currently under debate [35, 36, 37, 38, 7, 39, 40, 10, 12, 13]. Here
we compare our numerical results with the Heisenberg dispersion wgm obtained

bl

by fitting to the long wavelength numerical results, by introducing the parameter
A = wil“s Jux — 1, where Wi and wx are the Heisenberg and numerical magnon
energies calculated at the X-point. |A| thus measures the magnitude of the de-
viations from Heisenberg behavior at the zone boundary. For example, |A| ~ 1
means 100% deviation, A > 0 means magnon softening at the zone boundary, as
compared to the Heisenberg dispersion with the same stiffness, while A < 0 implies
zone boundary hardening. Fig. (2.13) compares A(n) obtained from our different
approximations. With the exception of small values of .J/t, the RPA gives small
deviations from Heisenberg behavior, mostly a hardening at the zone boundary (
A < 0, see Fig. (2.12), and predicts a weak concentration dependence of A(n).
This similarity between the RPA and Heisenberg dispersions is expected for J > ¢
since the two coincide in the strong coupling limit .J — oo (see Eq.(2.14)).

The magnon—electron scattering leads to larger deviations from Heisenberg fer-
romagnet spin dynamics and enhances A(n) (see Figs. (2.13a) and (2.13b) for 2D
and 3D respectively). In order to compare with the experiment, the value of .J/t
must be chosen so that |F) is stable up to n ~ 0.8, where a metallic ferromagnetic
state is observed experimentally. For .J/{ ~ 10, this is the case for the full three-
body calculation, while larger values of J/t are required to achieve stability for
n ~ 0.8 with respect to the O(1/S5?) magnons. Figs. (2.13a) and (2.13b) compare
the behavior of A(n) for the different approximations in the 2D and 3D systems
respectively. The O(1/5?) calculation gives magnon hardening rather than soft-
ening in the concentration range of interest, similar to the strong coupling results
of Ref. [24]. This is in contrast to A(n) obtained by using the full three-body
calculation, shown in Fig. (2.13a) for the 2D system. In this case, the magnon
hardening for n < 0.5 (A < 0) changes to magnon softening for 0.5 < n < 0.7
(A > 0) and then back to a small magnon hardening for n > 0.7. This behavior
with n i1s consistent with the experimental trends. Although magnon softening
at the X point can be obtained using other approximations, the full three-body
calculation gives such an enhanced effect within the range of intermediate elec-
tron concentrations of interest and for values of .J/¢ such that the fully polarized
ferromagnetic state is stable for 0.5 < n < 0.8 (where it is observed experimen-
tally). The above behavior of A(n) is not reproduced in the strong coupling limit
J — 00, where magnon hardening is obtained. It arises from the interplay of the
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Figure 2.13: Deviation A(n), defined in the text, from Heisenberg ferromagnet
spin dynamics in the 2D and 3D systems for fixed .J/t = 10 and different electron
concentrations.

X—point instability and the plateau-like shape of .J.(n), Fig. (2.12), induced by
the correlations. On the other hand, for J = 10¢, the carrier-localized spin scat-
tering approximation (& = 0,¥ # 0 variational wavefunction) gives A(n) that,
more or less, follows the RPA behavior (see Figs. (2.13a) and (2.13b). As J/t
decreases, magnon softening, A > 0, can also be obtained with this approximation
over a range of electron concentrations in both 2D and 3D (see Figs. (2.13¢) (2D)
and (2.13d (3D)). However, for such .J/t, the ferromagnetic state is unstable for
n > 0.6, i.e. in a regime where ferromagnetism is observed experimentally. We
expect that the precise behavior of A(n) in the realistic materials will also depend
on Hy, Hgyper, and the bandstructure effects (to be studied elsewhere). Here we
point out that at least three-body correlations must be included for a meaningful
comparison to the experiment.
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2.4 Conclusions

In this chapter we presented a nonperturbative variational calculation of the effects
of magnon—Fermi sea pair correlations on the spin wave dispersion for the simplest
possible double exchange Hamiltonian. Our theory treats exactly all three-body
long range correlations between an electron, a Fermi sea hole, and a magnon exci-
tation. We achieved this by using the most general variational wavefunction that
includes up to one Fermi sea pair excitations. Since the contribution of multipair
Fermi sea excitations is suppressed by powers of 1/.5, one could alternatively think
of our calculation as putting the O(1/5?) result, which treats the one Fermi sea
pair contribution perturbatively within the Born approximation, on a variational
nonperturbative basis. Our theory (i) becomes exact in the two limits of one and
N? electrons and should therefore interpolate well between the low concentration
and half filling limits,(ii) converges well with system size and thus applies to the
thermodynamic limit, (iii) becomes exact in the atomic limit (¢=0), conserves mo-
mentum exactly, and treats both short and long range correlations on equal basis;
it should therefore interpolate well between the strong and weak coupling limits,
which is important given the relatively small values of .J/{ in the manganites. and
(iv) contains the well known O(1/5?) and RPA results as limiting cases. In this
chapter we studied, among others, (i) the shape of the spin wave dispersion and
ferromagnetic phase boundary for different system dimensionalities (1D, 2D, and
3D), (ii) the deviations from the strong coupling double exchange limit, and (iii)
the role of up to three-body correlations and nonperturbative vertex corrections
on the spin dynamics. By comparing the full three-body variational calculation
to a number of approximations (RPA, 1/S expansion, ladder diagram treatment
of two-body correlations, and carrier-localized spin rather than carrier-magnon
scattering), we showed that the correlations play an important role on the spin
excitation spectrum, the stability of the ferromagnetism, and the shape of the fer-
romagnetic phase boundary in the parameter range relevant to the manganites.
Importantly, the correlations lead to spin dynamics that differs strongly from that
of the short range Heisenberg ferromagnet for intermediate electron concentrations.

Our main results can be summarized as follows. First, the different approxima-
tions lead to substantial differences in the spin wave dispersion and ferromagnetic
phase boundary for electron concentrations above n ~ 0.3 and intermediate val-
ues of J/t, which includes the parameter range relevant to the manganites. These
large differences come from the correlations, which cannot be neglected, and imply
that variational calculations should be used if possible in order to draw definite
conclusions. Second, we find that, depending on n, there are two possible insta-
bilities of the ferromagnetic state toward spin wave excitations: instability driven
by a negative spin stiffness and instability at large momenta, close to the X—point
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zone boundary, with positive stiffness. The latter instability only occurs in the
2D and 3D systems, for electron concentrations n < 0.7 and finite values of .J.
The three-body carrier—-magnon correlations enhance this effect. As a precursor
to the above zone boundary instability, we find a strong magnon softening at the
X-—point, which should be accompanied by short magnon lifetimes. Third, by
comparing to the Heisenberg dispersion obtained by fitting to the long wavelength
numerical results, we find strong deviations from the spin dynamics of the short
range Heisenberg model. By choosing the exchange interaction so that the fully
polarized ferromagnetic state is stable up to n > 0.8 as in the experiment, we show
that the full three-body 2D calculation gives strong magnon softening at the X
point for 0.5 < n < 0.7, which changes into a small hardening for n > 0.7. This
is similar to the behavior observed in the manganites. Our work provides new
insight into the spin dynamics in the manganites and can be extended to treat
related ferromagnetic systems (such as e.g. the III-Mn-V magnetic semiconduc-
tors) that are far from the double exchange strong coupling limit. Our calculations
imply that the metallic ferromagnetic state in the manganites should be viewed
as a strongly correlated state. Finally, the carrier-magnon correlations studied
here can also play an important role in the ultrafast relaxation dynamics of itin-
erant ferromagnetic systems, which is beginning to be explored by using ultrafast
magneto-optical pump—probe spectroscopy[48, 49, 50].
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Chapter 3

Non—Heisenberg spin dynamics of
double—exchange ferromagnets
with Hubbard Repulsion.

3.1 Introduction

In the previous chapter we examined the spin—wave dispersion using the simple
double—exchange hamiltonian Hyy = 0 = H 4p as our model hamiltonian. However,
it 1s believed that this simple model is not adequate to describe the manganese
oxides. The on-site Coulomb interaction must be included in a realistic model
since it is the larger energy parameter in systems such as manganites. Having
examined the simplest double—exchange model and clarified the role of correlations,
in this chapter we study the concentration dependence of the spinwave dispersion
predicted by the model Hamiltonian

H = I(‘I’Hexch+HU+HAF7 (31)

with a single e, orbital per lattice site[11, 2, 58]. The question is whether the
largest energy scale on the system, the local Hubbard repulsion U, changes qual-
itatively the physical processes and correlation effects predicted by the minimal
Hamiltonian. Our main focus again is on the zone boundary spinwave softening
and how U affects this. In a recent paper[11] it was suggested that perhaps U
plays an important role and introduces effects absent in the minimal Hamiltonian.
However, this paper presents a mean—field treatment with only partial results that
could not explain the experiment. As already suggested by Golosov, the role of
correlations induced by U absent in the minimal model, must be studied before
conclusion can be drawn. Here we use a three-body variational wavefunction simi-
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lar to the previous chapter to treat exactly the long-range magnon—Fermi sea pair
three-body correlations induced by the interplay between Hy, H...n, and Hap
(nonperturbatively in 1/5). This approach interpolates between the strong/weak
coupling and n=0/n=1 limits with the same formalism and can therefore be used
to address the regime of intermediate interactions and n relevant to the mangan-
ites. At the same time, it recovers the 1/S expansion and exact numerical results
[60, 41] as special cases. The recovery of such exact results gives us confidence on
the validity of our method. As discuss below, we find that the magnon—pair cor-
relations result in a pronounced spinwave softening at the zone boundary, which
increases with hole doping = and depends strongly on the interaction parameters.
However, we find that the physical origin of that softening differs. In particular,
we 1dentify correlations due to U absent in the minimal model which we show are
mainly responsible for the softening Our variational calculation allows us to draw
definite conclusions regarding the magnitude of this softening. We also show that
the above correlations affect strongly the stability of the ferromagnetic order.

The rest of this chapter is organized as follows. First, in section 3.2 we discuss
the method we use to calculate the spinwave dispersion. In subsection 3.2.1 we
obtain the spin—wave dispersion when all the three-body correlations are included.
The calculation of the RPA magnon energy is also presented in this subsection. The
numerical calculation is more challenging with U because additional momentum
dependencies are introduced. The set of our variational equations is transformed
to a form convenient for the numerical calculation, by reducing the number of
momentum components. This is very important for treating large systems and
assessing the convergence to the thermodynamic limit. Moreover this allow us to
provide a physical explanation of the origin of our numerical results. In subsection
3.2.2 the expansion in powers of the spin—polarized band splitting energy Js =
SJ + nU 1s discussed. The spin—wave energy is expanded up to first order with
respect to Js. In this way we reproduce previous results. As we mentioned above
the Hubbard repulsion parameter U is the largest energy scale in systems such
as the manganites. For this reason this interaction is considered to be very large
and thus the U — oo limit is relevant. In subsection 3.2.3 we present the results
we obtain in this limit and compare with our finite U results. Second, in section
3.3 we present our numerical results that are mainly focused on the role of the
Hubbard repulsion and the super—exchange interaction. The significance of the
spin—exchange interaction was already discussed in the previous chapter. In order
to study the role of the interaction parameters U/t and J4r/t we fix the spin—
exchange parameter .J/t. We perform our numerical calculations in fairly large 2D
systems which are relevant to quasi-layered manganese oxides materials.
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3.2 Method

In this section we present the variational equations that determine the wavefunc-
tion amplitudes X9, ¥Q and ®2 for the full hamiltonian Eq. (3.1). These
are obtained by applying the same variational method described in the previous
chapter. Because of the Hubbard repulsion and super-exchange interaction term
included in the model hamiltonian Eq. (3.1) the system of variational equations is
complicated as compared with the one obtained using the simple double—exchange
hamiltonian (Hy = 0 = H4p) in the previous chapter.

3.2.1 The three—body correlations equations

The variational equation that gives the magnon energy wq reads

_Jn J

J
2N xXQ409 - —\ g 3.2
wa =5 2N2U: s+ 24475 (7 70)+2N > Yo (3.2)

with
d
Yk = 2 Z cos(k;), (3.3)
=2

where d = 1, 2, 3 is the system dimensionality. The last term in the above equation
describes the contribution due to the carrier—-magnon scattering. The first three
terms on the ths give the RPA magnon energy provided that X2 is approximated
by its RPA value, obtained for ¥Q@ = 0. The third term of Eq. (3.2) gives the
super—exchange contribution to the magnon energy. This term has the form of the
cosine-like nearest—neighbor Heisenberg ferromagnet discussed in the introduction.
We notice that there is not explicit contribution of Hy in the equation of magnon
energy as this term of the Hamiltonian includes only itinerant carrier operators.
Because of this, the Hubbard repulsion term contributes only to the equation
of amplitudes X@ and ®2. The super—exchange interaction also contributes to
equation of ¥Q, in addition to Eq. (3.2). The equation of XQ has a form very
similar to Eq. (2.17) obtained for the simple double—exchange model. The carrier—
magnon scattering renormalizes X as compared to the RPA result:

1+ 0
TX94Y @za,y] 34)

JS+nlU+e,0—c,—wo)X¥= JS
( +Q Q v

LU
N
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The first term in the above equation is similar to the minimal double—exchange
model. However, the second term is new and is introduced by correlations due to
Hubbard repulsion. While the first contribution to the second term is the RPA,
the second term o ® is due to correlations. As we show below this term plays a
dominant role on the spin—wave softening.

The RPA is obtained from Eqs. (3.2) and (3.4) after setting ¥Q = $Q = 0:

Jn J
W =5 - 5% D XA 420485 (7@ — ) (3.5)

U
(JS+nU +e,4q — &, —wo 4) XQFFA = 1S + 5 D xR, (3.6)
One can simplify the above equations by defining the amplitude

1
FQ= NZX?, (3.7)

which does not depend on momentum v. In this way one can rewrite Eq. (3.5)
and (3.6) as:

Jn J
wq =5 = FY+2J4rS (v = %) (3.8)
(JS4+nU +¢e,4q — e, —wq) X4 = JS+UFQ, (3.9)

The amplitude F'Q can be calculated by substituting Eq. (3.9) into definition Eq.
(3.7):

U 1
FI1 - —
( NXU:JS—I-HU+€U+Q—€U—WQ)

1

u+Q—5u—wQ'

=S5] 3.10
ZU:JS—I—nU—I—a ( )

Finally, substituting F'? from this equation in Eq. (3.8) we obtain the RPA result
in the form of an integral equation:

apadn S Xuwg

= — — 2J4rS — 3.11
wq 2 2N1—%ZU 1 + AF (7Q 70)7 ( )

E.q

where we introduce the spin flip excitation energy:

EUQ =.JS + nlU + Ev4Q — &y —wWQ- (312)
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By setting /' = 0 in Eq. (3.11) we recover the RPA result for the minimal double—
exchange model discussed in the previous chapter. U introduces the enhancement
factor described by the denominator in Eq. (3.11). In addition, by setting J = 0
in Eq. (3.10) we recover the RPA result for the pure Hubbard model[64]:

1
1= QZ . (3.13)
N 'I”LU—I—@U_}_Q—@U—WQ

The scattering amplitude ¥® is determined by the variational equation

Jn J
wq — 5 t e —ca = 2JarS(rQii-a — 70)] 2 = N (1-X2)

J J J
DI EIEE BEAIEES S CINCTS

We note that this equation does not differ significantly from Eq. (2.18) for double—
exchange model. The only new contribution comes from the super—exchange inter-
action, which simply adds a cosine-line term in the lhs excitation energy. This fact
implies that H,,,., does not play an important role in carrier-magnon scattering.
The first term on the rhs of the above equation gives the Born scattering approxi-
mation contribution to the carrier-magnon scattering amplitude, which is the only
one that contributes to O(1/5?). The next two terms describe the effects of the
multiple electron—magnon (second term) and hole magnon (third term) scatter-
ing. Finally, the last term comes from the electronic contribution to the scattered
magnon, i.e. from the coherent excitation of a spin—T electron to the spin—| band.

The amplitude ®@ is given by the variational equation

(JS +nU + eqiptv-a — €u + Ea — 6 —wq) B2, = JS (TG — T2
~U (X3 -X2) (3.15)

U U
—I_N (Z @a;w’ + Z: q)au’u) - N Z: q)a'wf'
v “ o

Comparing this equation for the amplitude ® with the corresponding one for the
double-exchange model Eq. (2.19) we note that the above equation includes two
additional terms (second and third line in the rhs ) of Eq. (3.15) coming from Hy.
The existence of those additional rescattering terms in the variational equation
of amplitude ®% do not allow us to obtain a closed equation for ®% in contrast
to the minimal double-exchange model considered in the previous chapter. This
makes the solution of the set of variational equations impossible numerically since
we have to deal with the matrix ®@ that depends on three momenta. Fortunately,
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we can reduce the number of indexes of the variational amplitudes by defining:

1

AQ = ~ > es,, (3.16)
1

Cl =5 > a2, (3.17)

The importance of these formulas is that we can express ® and X in terms of A

and C':

EqX8 =S + % (3.18)

?

1+) 0¢

YoXxI+> AL

(JS +nU + eQuptv—a — €4+ €0 — 6y —wq) 83, = JS (VT —TF,
~U(X3-X2) (3.19)
LU (A9~ A9) 1 19

We can then solve Eq. (3.19) for matrices A and C', which depend on two momenta,
rather than for ®, which depends on three momenta. This transformation allows
us to solve the system of equations for fairly large systems (/N ~ 20 — 30). Using
the notations (3.16,3.17) and Eq. (3.19) we obtain the set of equations which is
satisfied by the new amplitudes:

U 1 JS 08 - 08
AQ 1 = 77 v op
j21ed ( —I_ N zy: [(Q;AWOZ) N zy: I(Q;#ya
U 1
_U N (ye_ ya 3.20
K8 - Xy (3:20
U A2 +C3
N 2 Kagn
U 1 JS TG - 08
OQ 12 _ av o
we ( N za: I(Q;,LLUOZ) N Z I(QWVC‘
U 1
_Yixa_ ya 3.21
X8 =X Y 321
U A?a - A;?a
W [(Q,;woz
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where we introduced the excitation energy
Ko = JS +nU + cQiptv—a — Eu + €a — &4 — wq. (3.22)

Summarizing, by using a number of transformations, we reduce the the variational
solution of the three-body correlations to the system of variational equations 3.2,
3.14,3.18, 3.20 and 3.21. We solve this system iteratively until full convergence is
reached to the magnon energy.

A very useful form of the variational equations can be obtained by substituting
the amplitude X2 from Eq. (3.18) to the variational equation for the magnon
energy Eq. (3.2). In this way we obtain:

Jn  SIP 2 E
wo = 2LrSte-n+t 5 -5y o

- N v EDQ
S.J? 1 e
— o N g (3.23)

IN1-0Y, 7o < Eq 2N

JU 1 1
LT L ZE 2 Al

N v EDQ 1 FLQ o

The first term of the r.h.s. of Eq. (3.23) gives the RPA magnon energy Eq. (3.5)
while the second and third terms give the correlation contribution. More precisely
the third term is the contribution of the (baQW variational amplitude which describes
a contribution due to scattering of a spin flip excitation with a Fermi sea electron
excitation induced by U. The second term is similar to the minimal Hamiltonian.
Therefore, the form of equation 3.23 provides us with an explicit description of
the contribution of each one of the variational amplitudes to magnon energy. In
this way we are able to assess the role of each one term and also to determine the
main origin of our results.

3.2.2 The 1/Js expansion

Before presenting our numerical results, we obtain the spinwave energy at 1°
order at 1/.Js expansion approximation, where Js = SJ + nlU is the mean-field
spin polarized band splitting. This is a reasonable approximation since both .J
and U are quite large parameters in comparison to the Fermi energy, Fr. An
expansion in the above parameter is performed in the literature[11] by Golosov
simultaneously with a first order expansion in powers of 1/5. The purpose of
this subsection is to show that our equations recover these results by applying the
same kind of expansions. First of all, we suppose that S — oc while we keep the
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parameters SJ = J and S?J4r = Jur finite. Within this notation the equation of
variational amplitude ¥, becomes:

Jn Q _ J Q
T et
J Q
+2NS ~ Ton qu av' qu vy (3.24)

It becomes clear that ¥,, is of order O(1/S) and thus contributes as O(1/5?).
Therefore ¥, does not contribute to the O(1/S) magnon energy which subse-
quently becomes:

- jn j2 Zl/ Ell,Q

YT 29 TaNS1-Oy, L

JU
+2N251 NZUEQ ZE#Q ZAM”

“w

where we have to remove magnon energy from F,q, in order to obtain wq to

O(1/S). Thus we obtain: KE,q = Js + €,+qQ — ¢,. Note also that we have set
Jar = 0 in both equations 3.24 and 3.25. The amplitude AQ must be calculated
in zeroth order in 1/5.

U 1 U 1
AQ 1— — = XQ XQ 3.25
( N AQ;;AMN) N2 Zy:( ) Qv/ibl/oz ( )
U A —CQ
N KQiue

where Kq.uvo = Js + €Qtptv—a — €4 + € — €, Now what remains to do is an
expansion in powers of the splitting energy .Js in the above equations, supposing
that the fraction Er/.Js is a small factor. After some algebra we finally obtained
one closed equation. The spinwave energy in the leading—order of both O(Frg/.Js)
and O(1/9) is:
E J?+ 2B (1 4+ £q)
wg) ~ 59 (1+eq) - E;S 7 (3.26)
T+ 5 (142q)

where £ = ) ¢, is the total electron energy in the spin band and eq is the
electron band energy given by Eq. (2.4) in the previous chapter. The above
relation for magnon energy recovers previous results obtained perturbatively in
a different way[11]. A comparison between the large—.Js magnon dispersion and
stiffness and our 3-body calculation is made in subsection 3.3 and the validity of
that approximation is assessed.
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3.2.3 The U — oo approximation

Owing to the fact that the parameter U/t is the largest energy parameter in the
manganese oxides, a reasonable treatment of this interaction is the U — oo limit.
In this extreme limit, two itinerant electrons cannot occupy the same lattice site,
since double occupancy increases dramatically the total energy of the system. In
this case all the itinerant electron spins are forced to be parallel with the localized
spin in order to minimize the total energy of the system. Therefore by assuming
U — oo one expects an enhancement of ferromagnetism more pronounced, as com-
pared to the finite U result. Instability of the fully polarized state can occurred
only by the interplay of the finite Hubbard interaction with the Hund’s rule inter-
action J. In section 3.3 we examine numerically the validity of this extreme limit
by comparing with our finite U results.

In order to obtain the system of variational equations in this limit one has to
expand the variational amplitudes in powers of 1/U:

X1 1
X=XV 2L 0(—=)-- 3.27
2= X0+ +0(5) (3.27)

Q 0 Q;;w ]-
or, =@, + i + O(ﬁ) . (3.28)

Substituting Eqs (3.27) and (3.28) in Eqs. (3.4) and (3.15) and keeping only the
O(U) terms we found that:

U
nUX% = W(Z X0 =Y a),,) (3.29)
v’ ap
U
nU®) , = —W(XS - X
U
w@ 8, + > .,) (3.30)
! ﬂ/
U 0
_ﬁ Z: q)a';un

We can easily see from Eqs. (3.29-3.31) that the variational amplitudes X2 and
@Bw in the U — oo limit are independent of the momenta o,y and v. Taking
into account the antisymmetry of ® with respect to the exchange of the Fermi sea

electron momenta v and g

QS,LLU = _QSU;L7 (331)
we find that:
3’ = —9° = 9% = 0. (3.32)
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This results indicates that only the scattering of the electron-hole pair with a
localized spin contributes in the infinite Hubbard repulsion limit. We can un-
derstand this result by noting that the variational amplitude ®,,, expresses a
processes where the electron—hole pair is scattered by an electron spinf-| exci-
tation. The creation of such excitation, however, is impossible since the electron
band’s splitting energy Js 4+ nl is in this limit infinite. In order to determine the
Q-dependence of the amplitude X° we use Eq. (3.10), which now can be rewritten
as follows

1
FQ:?VEZXQ::nXQ (3.33)

By expanding F'Q we find that:

N@ + Ea,u \:[13# =
ZM(@&Q —&u+ ST —wq)
N@ + Zau \IIS;L ‘
> ulEurq —eut+ 5J —waq)

Finally, the variational equation of the magnon energy in the U — oo limit be-

FQ — pnsSJ

X% = SJ (3.34)

comes:
Jn  nJ?S N.
wQ = — —
2 2 Z#(€M+Q_€M+S‘]_(‘UQ)
J N.SJ
+— |1 - : Ut (3.35)
2n > u(entq —eu+ 5T — wq) ;

The first line of the r.h.s. of Eq. 3.35 determines the RPA spinwave dispersion
while the second line expresses the contribution of the correlation described by the
amplitude ¥Q | which is given by the equation:

av)

79 ( b s Jn) J . SJn
av | YQ v Ca T T4 = S -
2 2N %ZM (curq —eu + 57 —wq)
_SJ2 Eﬁ#qjgu
2N Zu (curq —eu + 57 —wq)

J
+o8 (%: 3 - %: xI@) .

We conclude that in the /' — oo limit the variational equations simplify consider-
ably and reduce to a system of two equations, Eq. (3.35) and (3.36).

(3.36)

58



3.3 Numerical results

015 T I T I T T I T I T
| &)U =55t | | b)U =40t i
0.1 //’—\\ - — /,—"\\ —
<, | o %, i | o/ N ]

3 PR \ Y \\
0.05F e A - - == _—

7 \ v <
| / \ | 7 L
// \ // \

0 N PN IR

012 T ‘ T ‘ T T I T I T
c) U =25t i d) U =10t ]
0.08+ // \\ — - 0(1/‘]5) PRk —

e L/ \ -- RPA ’ \
50 - 7 N - [— 3-Body| -’ % .
. v 7 \

0.04 Pk v, = / A

e \ / \
L7 ¥ o L S v

// \ // - \
0 1 | 1 x 1 Z . L AN
r X M r r X M r
Q Q

Figure 3.1: Spinwave dispersion along different directions in the Brillouin zone for
n=0.6, J =7t, J4r =0.012¢ and for different values of U/t.

3.3 Numerical results

In this section we present our numerical results obtained by the system of vari-
ational equations (Eq. 3.2,3.18, 3.14, 3.20 and 3.21). We perform the numerical
calculations in fairly large 2D systems with N ~ 20 — 30, i.e. N? lattice sites,
where we obtain satisfying convergence to thermodynamic limit N — oo.

We start our presentation with the numerical results concerning the effect
of Hubbard repulsion on the spin—wave dispersion. Fig.3.1 shows the calculated
spinwave dispersion along different directions in the Brillouin zone for values of
Hubbard interaction U/t varied from a minimum of U = 10¢ to a maximum of
U = 55t. These are typical for the manganese oxides. The double—exchange
and super—exchange interaction parameter are fixed to the typical values J =
7t, J4r = 0.012¢. In addition, in this figure the dispersion is shown within the
RPA, using the full three-body calculation, as well as in 15 order in the 1/.Js
expansion approximation (results of Ref[11]). We notice that with decreasing U/t,
the magnon energies take on lower values. The latter applies to all approximations
shown in the figure. We conclude that the on-site Coulomb repulsion Hy enhances
the spinwave energies and therefore the stability of the ferromagnetic state |F').
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Figure 3.2: Spinwave dispersion along direction I' — X in the Brillouin zone for
n=0.6, J =Tt, J4r =0.012¢ and U=(10-45)t in increments of 5t, increasing upward.
Dotted line: U = 100¢, Dashed line: U — oc. We notice the very slow convergence
to the U — oo result.

The value of the Hubbard repulsion U relevant to the manganites varies in
the literature. In general, the interaction U is the largest energy of the manganese
oxides systems as compared to magnetic—exchange ./, hopping energy ¢ and super—
exchange interaction 4. Because of this the Hubbard repulsion is usually treated
within the Large—U approximation. We examine here the validity of this treatment
by comparing the magnon dispersions along the I' — X direction for different U,
within the full three-body correlation treatment. These results are shown in the
Fig. 3.2 for values of U that differ by a fixed amount AU = 5¢. The dispersions
in this figure are calculated for U/t which takes values in the region:

10 < % < 0. (3.37)
We observe that initially the spin—wave energies increase strongly with /. For
example, the /' = 15¢ dispersion differs from the result for /' = 10¢ by a factor
of five. However, the difference rapidly diminishes as U/t increases. The relative
changes in the dispersion decrease with increasing U/ and finally converge to the
U — oo result for U/ > 45¢. With increasing [//t we also note a change in the zone
boundary softening of spin—wave dispersion. For very large U this softening is
completely eliminated and the dispersion acquires a cosine-line shape. The latter
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Figure 3.3: Deviations from the RPA at the X—point as a function of Hubbard
repulsion U/t. The deviation is slowly converging to the the /' — oo result.

result indicates that, although the Hubbard interaction U/t is usually larger than
the double-exchange interaction .J/t, the large-U treatment must be applied with
caution. In particular for intermediate U/t, say U ~ 20t, we conclude that the U —
oo limit is not expected to give a trustworthy description of magnon dispersion.
In conclusion, typical values of U quoted in the literature give a dispersion that
differs by factor of 3 or larger from the U — oo result.

Fig.3.1 also compares our results to the RPA (¥ = @ = 0) and to the results of
Ref.[11], obtained by expanding the RPA to O(1/.Js), where Js = S.J+nlU. While
our RPA variational results agree well with Ref.[11], the pair-magnon correlations
lead to a strong softening (deviations ~100% from the RPA). While this is maxi-
mum along I'-X ((0,0)—(7,0)) it remains strong along the other directions. The
latter is in contrast to the U=.J4r=0 results[58]. While the relative differences
from the RPA decrease with increasing U, they remain quite large as U — oc.
The latter result points the importance of the three-body correlations even in the
large—U limit. This can be seen in Fig. 3.3, which shows the percentage deviation
from the RPA at the X—point as function of U:

R = (1 —w/wif4) (3.38)

Note that the maximum possible value of this parameter is 100% if the three-body
dispersion is so softened near the zone boundary that it is about to turn negative.
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Figure 3.4: Spinwave dispersion along different directions in the Brillouin zone for
n=0.6, J =7t, U =25¢ and for different values of Jar /1.

For Hubbard repulsion equal to this critical value Ug, R takes its maximum value,
since for this value the three-body dispersion is exactly equal to zero. We observe
that we can distinguish two regions regarding the behaviour of the deviation of the
RPA (i.e. the effect of the correlations). For small values of U/t, the percentage
deviation from the RPA is decreasing rapidly from its maximum value (100%)
with increasing values of parameter U/t. Within the region 10t < U < 30¢,
100% = R 2 45%. On the hand, for larger values of Hubbard interaction the
deviation is decreasing slowly. Indeed, Fig. (3.3) is characterized by two different
slopes. In particular, for a value as large as U = 100¢, R ~ 40% almost equal to
that for /' = 50¢. Note that the /' — oo deviation is about 20%, therefore we have
slow convergence to that limit. These results are consistent with the previous
discussion about the convergence to the U — oo limit. It is expected that for
small values of Hubbard repulsion, a small change in U/{ affects the dispersion
significantly. The effect of increasing U/t on spinwave dispersion becomes less
important at the large-U limit. However, full convergence to the U — oo results
1s not achieved even for values as large as U = 100{. To conclude, correlations are
very strong even in the strong coupling limit (R ~ 40% for the largest U quoted
in the literature).
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Next we continue with the role of super—exchange interaction on spin—wave
dispersion. In Fig. (3.4) we plot the magnon dispersion for fixed J = Tt,U = 25¢
and varied values of Jap/t from Jap = 0.008¢ to 0.014¢, typical for the systems
of interest. We notice an opposite change of dispersion as compared with the
Hubbard repulsion. An increase in .J4p/t suppresses magnon energies along every
direction of the Brillouin zone. Let us note that this suppression does not change
the deviation between the RPA and three-body dispersions, which results from
correlations. For example at the X—point Q = (7,0) there is a constant decrease
about ~ 0.025 in units of { between these approximations. Taking into account
the suppression of magnon energies we see that the increase of .J4r magnifies the
relative differences. For instance, at the X-point the relative deviation of the
three-body dispersion is ~ 30% for Jir = 0.008{, while it takes a maximum
value about 100% for J,r = 0.014¢, where the correlated dispersion almost turns
negative at the zone boundary. The latter applies also to the difference between
the RPA and 1/.Js dispersion, where however the relative deviation remains very
small as these approximations give results very close to each other. We also notice
that the increase in J /1 suppresses equivalently the three-body spinwave along
every direction of brillouin zone. We conclude that the super—exchange interaction
is of minor importance as compared to the Hubbard interaction since it does not
change the spinwave dynamics in a qualitative way. It simply magnifies the effects
of Hubbard repulsion.

We now consider the spinwave energies close to the X—point. In the experi-
ments described in Refs.[6, 7, 8] it was shown that the deviations of the nearest—
neighbor Heisenberg model dispersion that fits the long—wavelength (small Q)
experimental results increase with decreasing n at the zone boundary. The exper-
imental dispersion can be fitted phenomenologically to a Heisenberg model that
includes fourth-nearest—neighbor (.J4) and next-nearest—neighbor (.J;) exchange
couplings. Along the direction I' — X the Heisenberg ferromagnetic dispersion
including the fourth-nearest neighbors is:

wgm' = 2J1(1 — cosQ,) + JysinQ,”. (3.39)

The ratio J4/.J;, obtained by fitting the experiments, characterizes the magnitude
of the zone boundary softening. .J;/.J; was found to increase linearly with x=1-n
for 0.5<n<0.7 [8, 7]. Our numerical results can be fitted very well to the above
J1—J4 Heisenberg model dispersion, similar with the experiments. Fig. 3.5 shows
Jy(n)/Ji(n) for four different J. We do not show the 1/.Js expansion results in
this figure as these are very similar to the RPA ones The crucial role of the pair—
magnon correlations is clear by comparing to the RPA. The RPA gives a small
J1/J1, which can be understood by noting that, in the strong coupling limit, it
coincides with the nearest—neighbor Heisenberg dispersion [58]. However, the pair—
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Figure 3.5: Jy(n)/J1(n) for Jap = 0.012¢, U = 251 from the best fit to the 1st44th
nearest neighbor Heisenberg model.

magnon correlations greatly enhance .J;/.J1, typically by a factor 3-4 or higher in
Fig. 3.5. The resulting X—point softening increases as we decrease .J/t (to as high
as Jq/JJ1= 0.4 or 40% for the parameters of Fig. 3.5). J4/.J; increases with z=1-n
until it reaches its maximum value. The range of concentrations within which this
increase occurs depends on the interaction parameters. For large J/t (i.e. closer to
the strong coupling limit), .J4/.J; increases more slowly with 2, while it increases
more sharply for smaller .J as the ferromagnetic state becomes less stable (compare
Figs. 3.5(a) and 3.5(d)). On the other hand, .Jy/.J; is small (or negative, which
implies hardening) for n >0.7. For smaller n, Jy/.J; decreases with decreasing n
and eventually increases again as the antiferromagnetic correlations dominate.

Next we turn to the spinwave dispersion for small momenta (). Its behaviour
is characterized by the spinwave stiffness D(n), obtained by fitting the small-Q)
numerical dispersion to the quadratic form DQ?. Golosov[11] showed that, to
O(1/.J5S), the on—site Hubbard repulsion U shifts the maximum value of D(n) to
larger concentrations n > 0.5. Fig. 3.6(a) compares the O(1/.Js) results of Ref.[11]
to Eq.(2.15) and the RPA. The pair-magnon correlations decrease the magnitude
of the spinwave stiffness D(n), by as much as ~100% as compared to Ref.[11]
and by as much as ~50% as compared to the RPA. We note in Fig.3.6(a) that
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Figure 3.6: Spinwave stiffness [ as function of electron concentration n for
J4r=0.012¢t. (a) Comparison to the RPA and O(1/.Js) results for .J =7t and
U=25t. (b) The effects of U. (¢) Comparison of .J;(n) to the RPA and O(1/.J5)
approximations for .J=7t, U=25¢. (d) same as (c) for J=10t.

D(n) exhibits a rather broad plateau as a function of n, where it remains fairly
constant within a wide range of concentrations relevant to the manganites. The
pair-magnon correlations also decrease the dependence of D(n) on n within this
concentration range and shift its maximum to higher n as compared to the RPA
and Ref.[11]. The above platean is followed by a regime of decreasing D(n) as the
spinwave instability shifts from the zone boundary to small momenta (D < 0).
The effects of U on D(n) are demonstrated by Fig.3.6(b). The stiffness increases
with U and starts to converge to its U — oo values for /' > 40¢. U shifts the
maximum of D(n) to higher values of n and broadens the concentration range
where D(n) remains constant.

Although overall Figs.3.5 and 3.6 after including the correlation effects are
consistent with the experiment [7, 8], .J; increases with decreasing n, unlike in
Ref.[8] ( Figs.3.6(c) and 3.6(d)). However, the pair-magnon correlations signif-
icantly reduce .J; as compared to the RPA prediction, i.e. change its behaviour
in the direction of the experiment [8] (Figs.3.5 and 3.6). Given that our calcula-
tion was performed in 2D without including bandstructure effects, we speculate
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Figure 3.7: The scattering of the spinT—spin| excitation (solid line) with a Fermi
sea pair (double line). The interaction takes place via U (wave curve)

that the suppression of .J;(n) by the correlations could be stronger in the realistic
system.

We now turn to the origin of the zone boundary softening which is demon-
strated above. We show here that it is mainly dominated by strong correlations
due to Hubbard repulsion, described by the parameter /. In order to focus on
the role of U we set the super—exchange interaction J4p = 0. As we discussed,
the spin-wave dispersion wq i1s determined by the amplitude X? Eq. 3.4, which
describes the coherent spinT spin| excitation and ¥,,, describing magnon—pair
scattering. These processes are expressed by the second and the last term corre-
spondingly of the r.h.s. of Eq. 3.2. Although ¥ also contributes to the minimal
model discussed in the previous chapter, the dominant new effect here comes from
the renormalization of Xﬁz by the scattering, due to U, of a spinT— spin| exci-
tation with a Fermi sea pair. The corresponding interaction process is described
by the amplitude ® in the variational equation of amplitude X Eq. 3.4 and is
shown schematically in Fig 3.7. In this figure the spinT and spin| bands are rep-
resented by the two semi—circles and are separated by the energy S.J + nlU. The
spinT— spin| excitation is presented as a solid line while a double line indicates
an electron-hole pair excitation. The Fermi sea pair (ayu) is created by interacting
with the spin—| electron via U (wave curve). Such scattering gives a contribution
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Figure 3.8: (a) Contribution of magnon—pair correlations for different momenta,
(b) origin of the X—point softening.

to XB which is proportional to U Y ®,,, and is expressed by the last term in
the r.h.s of Eq. 3.4. In order to assess the contribution of this correlation effect,
we define the one-component amplitudes

ol = Z i ffj;’ (3.40)
Q 7
SN (341

What motivates us to make such definitions is that the three-momentum varia-
tional amplitude ®,,, is rather difficult to be plotted, since in a 2D system, for
example, it has six components for each lattice momentum Q and thus even a
3D plot is not enough to provide an appropriate representation of amplitude .
Therefore we can not easily understand the properties of ® and its dependence on
the electron momenta. The amplitudes which we defined above are one-variable
functions and at the same time contain the most important information provided
by ®. Moreover, they give us a rather satisfying idea of the momentum—dependence
of the amplitude ® of interest here. By plotting these amplitudes versus electron
momentum gy or py, for fixed values of (), we simply plot a particular projection
of ® and therefore its properties can be inferred. In Fig. 3.8(a) we plot this correla-
tion contribution, both for Q close to the X point and for small Q, as a function of
momentum px for ®l and of py for L. As can be seen in Fig. 3.8(a), the largest
correlation contribution comes from g || Q close to the Fermi surface (which for the
concentrations of interest is close to the zone boundary Q = x) and for Q close to
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Figure 3.9: Illustration of the Fermi surface for the cosine-like tight binding band
for different electron concentrations. Stars :Low concentration n ~ 0.1, fermi sea
i1s in a very good approximation a circle. Diamonds: Intermediate regime the
first deviations of the circle are noticed. Open circles: High concentration: The
Brillouin zone’s boundaries k& = 7 are reached for a wide range of momenta.

the zone boundary. The contribution of &' is three times smaller than that of @l
near the zone boundary. More importantly, it gives a positive contribution while
®ll contributes a negative contribution to the spin-wave energy. Therefore near
the zone boundary ®* hardens wq and @/l softens it. The contribution of @/l to
the long wavelength Q ~ 0 spin wave excitations is also presented in Fig. 3.8. We
observe that this behaviour is quite different from that for Q ~ 7. ®ll is a smooth
function of momenta since the large zone boundary decrease does not appear for
Q = 0. The latter 1s in agreement with the experimental fact that the softening
is confined to the zone boundary. In order to further corroborate our conclusions
we can compare spin-wave dispersion from the full calculation with the results
obtained by neglecting ®* and/or ®!l. The latter is shown in Fig. 3.8. First of
all, we observe that by removing ®ll we obtain a dispersion harder than the RPA
results while if &1 is additionally removed an RPA-like dispersion is obtained. On
the other hand, by removing ® and leaving only the ®/l, we obtain a strongly
softened result. This comparison in Fig. 3.8(b) clearly shows that the strong soft-
ening of the spin—wave dispersion as compared to the RPA comes from @/, i.e.

68



3.3 Numerical results

1 I 1 I 1 I 1
&.35 0.45 0.55 0.65 0.75

Figure 3.10: J.(n) for J4p = 0.012¢,U = 25t. J < J.: the ferromagnetic state is
unstable. .J > .J.: phase separation will shift the ferromagnetic phase boundary
further up.

from the renormalization of X? by the scattering of a spin T— spin | excitation
with a Fermi sea pair for momenta g along I'-X. This effect becomes stronger for
momenta near the zone boundary, p ~ 7. Note that due to the cosine-like band
of the tight binding model the Fermi—sea electrons are allowed to reach the zone
boundary ¢ = 7 for a high concentration. This is shown in Fig. 3.9 where the
shape of the Fermi surface for three different dopings is plotted. For an itinerant
electron concentration n ~ 0.6 (open circles) we note that there is a wide range of
momenta where the zone boundary is reached. This explains the strong softening
for that density as plotted in Fig. 3.8. For an intermediate concentration n = 0.4
(filled diamonds) we note that the pockets of zone boundary momentum start to
disappear. Finally for very low electron concentration n = 0.1 (stars) we can make
two observations. Firstly, the zone boundary is very far from the Fermi surface
and thus the effect of the softening, as discussed above, is reduced. We note also
that the shape of the Fermi surface differs significantly from that for higher dop-
ings, since it can be easily approximated be a circle with radius equal to the Fermi
momentum kp. Additionally, the Fermi sea is symmetric with respect to momen-
tum and depends solely on the norm of the electron momentum |ji|. Therefore, for
such dopings it is reasonable to approximate the band energy ez with a parabolic
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Figure 3.11: JEF as a function of n for J = 7¢,U = 25t. For Jap > JgF the
ferromagnetic state is unstable.

function
12,2

ey = # (3.42)
where m™ is the effective band mass. The latter approximation does not apply here
since we are interested in the higher concentration regime, where the parabolic
approximation is inadequate. We conclude that the inclusion of the Hubbard re-
pulsion changes the physical origin of the zone boundary softening as compared
to the minimal model. In particular, we showed above that the scattering intro-
duced by U and shown in Fig. (3.7) is mainly responsible for the softening. Such
boundary effects, occur for momenta close to the zone boundary and the Fermi
surface. Given that the shape of the Fermi surface changes significantly with n, we
conclude that the zone boundary softening has a strong concentration dependence
and only occurs for intermediate n. This is consist with the experimental results.

With decreasing .J/t, the magnon energy for intermediate n eventually turns
negative at the X—point while the magnon stiffness is still positive. This variational
result allows us to conclude instability of the ferromagnetic state. It also implies
a zone boundary softening larger than that of the small-Q) dispersion. On the
other hand, for small n, the spinwave energy first turns negative at the (7,n)
point (antiferromagnetic correlations). Finally, for larger n, wq turns negative for
small momenta, D < 0. By identifying the minimum values of .J, J.(n), where
wq > 0 for all momenta, we can definitely conclude, due to the variational nature
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Figure 3.12: Ug as a function of n for J = 7t, J4r = 0.012¢. For U < Ug the
ferromagnetic state is unstable.

of our calculation, that the ground state is not ferromagnetic for J < J.. On the
other hand, for J > .J., the stability of |F') is not guaranteed, due to e.g. phase
separation [11, 2]. J.(n) is shown in Fig.3.10. By comparing to the RPA result, it
is clear that the pair—-magnon correlations lead to a very pronounced upward shift
in J.(n). While for large concentrations the effects of the correlations diminish,
and the RPA becomes exact at n=1, for n <0.7 the deviations from the RPA
exceed 100%. As n decreases, the RPA fails completely. We can conclude that
the RPA grossly overestimates the stability of the ferromagnetism. Even though
for some concentrations additional effects such as phase separation will shift the
ferromagnetic phase boundary .J.(n) further up as compared to Fig. 3.10, it is clear
from our variational calculation that the effects of the pair-magnon correlations are
significant in the manganites. Finally, we note that the onsite Coulomb repulsion
U decreases the values of .J.(n) and thus enhances the stability of the ferromagnetic
state. It is important to note that U/ changes qualitatively the shape of the critical
line (compare Fig. 3.10 with Fig. 2.12) as compared to the minimum model. We
therefore conclude that its effect cannot be neglected.

Having examined the role of the magnetic—exchange interaction on the stabil-
ity of ferromagnetic state, we continue now with the effect of the super—exchange
interaction. The Heisenberg-like H,,,., generally narrows the bounds where fer-
romagnetism is possible since is is an antiferromagnetic contribution which gives
an overall suppression of the magnon energy. This means that with increasing
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Jar, and fixed U/t and .J/t the spin—wave energy lowers for a particular electron
density n. There is a critical J¢, for which magnon energy eventually turns neg-
ative. For Jur > J$ and fixed U/t, J/t,n ferromagnetic order is impossible. In
order to determine the critical super—exchange parameter, we fix U/t and .J/t and
seek the critical point for every electron concentration n. To make the connection
with the J—n phase diagram, we fix .J to a value which allows the ground state to
be ferromagnetic for a wide region of electron concentrations 0.4 < n < 0.7. By
examining Fig. 3.11 we can conclude that an appropriate value for that parameter
is J/t = 7. We show the results for the phase diagram with respect to J{ as a
function of n in Fig. (3.11). Again the 1/.Js results are not shown as they are
very close to RPA. First, we notice that in this situation three-body effects do
not seem to affect so importantly the critical value of U//{ as in the J vs n phase
diagram. The dependence of J§ on n remains rather similar if correlations are
included. Within the region of concentrations of interest (n > 0.6), the RPA J{y
is similar to the three-body result. For intermediate concentrations (n ~ 0.5),
correlations effects start to diminish the critical .J{; with a suppression of about
20% as compared to the RPA value. This suppression in the correlated critical .J4p
remains almost constant for lower fillings (n < 0.4) and because of this the relative
difference increases to exceed 60% at the very low doping regime (n~ 0.2-0.3).

To complete the presentation of the phase diagrams, we now fix .J/t, J4r/t and
identify the critical Hubbard interaction Ug as a function of electron filling n. In
Fig. (3.12) we present the Ux(n) results, where ferromagnetic order is impossible
for U < Uc. Firstly, we notice that in order to stabilize the ferromagnetic ground
state up to electron concentration n ~ 0.7, consistent with the fillings in 2D quasi—
layered samples, the parameter U/t must be as large as U ~ 25(. As expected, the
three-body correlations increase the critical U as compared to RPA results, since it
introduces a ferromagnetic interaction. In Fig. (3.12) we note that within a wide
range of concentrations 0.55 < n < 0.7 that the three-body correlations shifts
Hy by a constant quantity about AU = 8{. The relative deviation between these
two approximations increases with lowering n. For the experimentally interesting
concentration n = 0.6, we have a deviation which exceeds 100%, while for n = 0.7
it is also significant, about 25%, as compared to the RPA results. For higher
electron fillings such as n > 0.75 the critical Uy starts to increase rapidly and thus
the relative deviation is lower. Although the doping dependence of the critical
Hubbard interaction seems not to change strongly by three-body correlations, we
find that quantitatively the deviation is large within the experimental interesting
regime of n. Moreover the relative deviation between correlated and RPA results
is very large in this regime.

To sum up with the phase diagram results, our variational calculation allows
us to find stricter bounds where ferromagnetism is possible in manganese oxides.
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The critical lines presented here are further shifted up by phase separation effects.
We found that the most significant effect of the three-body correlations is on the
Jo(n). By fixing U/t and J4p/t we showed that the correlations change the n
dependence of the critical Hund’s rule coupling, in addition to an extremely large
quantitative shift as compared with RPA results. We showed that correlations
affect the critical values of the other parameters (Us and J4p ) only quantitatively
since the dependence on electron doping n remains similar with that obtained
within RPA. However, within the experimentally interesting regime of dopings,
the shift for example of U, 1s very large while the deviation of J4p i1s small. We
conclude that the three-body correlation effects on the stability of ferromagnetic
ground state are very sensitive to small changes of double—exchange interaction.

3.4 Conclusions

To conclude, in this chapter we presented a variational calculation of the spin-
wave excitation spectrum of double—exchange ferromagnets that allows us to study
the role of the interplay between the Coulomb, Hund’s exchange, and Heisenberg
super—exchange interactions in the intermediate coupling regime relevant to the
manganites. The motivation of this work is that the Coulomb interaction is the
largest energy factor in manganites and therefore it cannot be neglected. Having
studied a simplified model in the previous chapter, here we constructed a more
realistic description of this kind of systems by including the Coulomb interaction
and super—exchange coupling in our model hamiltonian. Our numerical results re-
cover RPA and 1/(SJ 4 nlU) expansion as limiting case. Despite of the complexity
of our variational system of equations, we could perform the numerical calculation
for fairly large 2D systems, where convergence to the thermodynamic limit was
satisfyingly achieved.

The main numerical results of this study can be summarized as follows. Firstly,
we conclude that nonperturbative long range electron—hole pair-magnon correla-
tions play a very important role in the spin dynamics of the manganites. Most
important is the strong zone boundary softening of the spinwave dispersion and
additionally the decrease in the stability of the ferromagnetic state. As a result, the
3-body dispersion deviates strongly from the Heisenberg dispersion as the electron
concentration decreases. The correlation effects depend sensitively on the on-—site
Coulomb repulsion, which enhances the ferromagnetism, and on its interplay with
the magnetic exchange and super—exchange interactions. The role of the latter
super—exchange interaction is of minor importance since it can be expressed as an
overall suppression of the magnon dispersion. In addition, we found that three—
body correlation effects remains important even in the extreme limit of U/ — oc.

73



3 Non—Heisenberg spin dynamics of double—exchange ferromagnets
with Hubbard Repulsion.

The validity of the latter limit as well the 1/.Js expansion were examined by com-
paring to the three-body approximation. We discussed also the possible relevance
of our numerical results to experiments in manganites. Our analysis indicates that
three-body correlations improve the consistency of the results with experiments
in 2D quasi-layered manganese oxides. A comparison with the numerical results
of the simple double-exchange hamiltonian of the previous chapter, showing the
existence of a zone boundary softening along I' — M and X — M direction of
the Brillouin zone, reveals the importance of on—site Coulomb and super—exchange
interactions. The latter result indicates a new possible instability of the ferromag-
netic ground state: through the zone boundary softening along I' — M, (7, 7)
point, which occurs for low electron dopings. For higher n the (#,0) instability
preempts the above spin—-wave softening. Finally, our work can be extended to
treat other itinerant ferromagnetic systems, such as the III(Mn)V semiconduc-
tors. Moreover, the origin of the spin—wave softening near the zone boundary is
discussed. We conclude that the main reason which creates that interesting be-
haviour is the existence of fermi electrons near the zone boundary. The latter
becomes possible due to cosine-like band of the tight binding model which causes
large deviations of Fermi surface from the circular shape of the simple parabolic
band. In this way for electron concentrations within the experimental interesting
region, 0.5 < n < 0.7, there are broad pockets of near zone boundary electrons,
and therefore the role of three-body correlations on spin-wave excitations is pro-
nounced. We identify a new scattering process between a fermi sea charge excita-
tion and a spin flip electron excitation (described by ®) which is induced by U and
leads to a very pronounced zone boundary softening for concentrations such as the
Fermi surface approaches the Brillouin zone boundary. The correlations discussed
here should also play an important role in the ultrafast dynamics measured by
magneto—optical pump-probe spectroscopy [63].
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Chapter 4

Spin—wave damping in
Double—Exchange Ferromagnetic
Manganites.

4.1 Introduction

In this chapter we show that the variational results for the spin-wave dispersion
obtained in the previous chapters can be reproduced by using the double—time
Green’s function method[54]. Although the connections between the Green’s func-
tion and variational theory are not apriori clear, here we show that the infinite
hierarchy of the Green’s function equations of motion can be closed by factorizing
the higher order Green’s functions in a way that preserves the variational nature of
our results. This is important for drawing define conclusions regarding the spin—
wave softening and stability of the ferromagnetic phase. At the same time, the
Green’s function method allows us to calculate dynamical properties such as the
lifetime of spin—wave excitations. This is important for studying the magnetization
dynamics and relaxation in ferromagnetic systems, which is important for future
device applications. The Green’s method method has been used before in litera-
ture to calculate the magnon’s dispersion within RPA[55] and, in conjunction with
Monte Carlo (MC) technique to derive results for the manganites phase diagram
in small clusters[57]. Here however, our focus is on correlations and therefore the
Hartree-Fock Green’s function factorization, reproducing the RPA, is not enough.
Going beyond the RPA with Green’s function is a difficult issue. Here we assess
the validity of a truncation method by showing that is reproduces the three-body
variational results of the previous chapters. An experiment of particular interest
here is the measurement of the spin—-wave damping along the main directions in
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Figure 4.1: Experimental measurement of the spin—-wave damping along the main
directions in the Brillouin zone taken from Phys. Rev. B 75, 144408, (2007)

the Brillouin zone[52]. Although this experiment is concentrated on the high elec-
tron doping regime, there are two interesting features obtained by this experiment.
Fig. (4.1) shows these results taken from Ref[52]. First, spin—wave damping along
the direction I' — X in the Brillouin zone is lower as compared to the observed
value along the other directions. Additionally, the doping dependence of damping
is the following. For the the higher doping (filled circles) spin—wave damping is
lower in comparison with the lower doping sample (open circle). Here we examine
whether our numerical calculation reproduces these experimental behaviour.

This outline of this chapter is as follows. In section 4.2 the Green’s function
technique is introduced. More precisely, in subsection 4.2.1 we apply this method
to the ferromagnetic double—exchange model. By using a Hartree-Fock factoriza-
tion procedure we reproduce the RPA result[55] which was obtained variationally
in the chapter 2. The next step is the introduction of correlations which is dis-
cussed in 4.2.2. Again we prove that a factorization of the higher—order Green’s
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functions leads to equations similar to the variational results of chapter 2 for the
correlated spinwave dispersion. In particular, we calculate the spinwave damping
coming from the correlations. The magnon damping is a very interesting experi-
mentally observable property|[9, 35, 36, 37, 38, 8, 52] which so far in the literature
was treated perturbatively using in 1/S expansion[11, 24]. This calculation can
be recovered by our three-body results. However, here we calculate damping due
to 3-body correlations non-perturbatively in 1/S. In subsections 4.2.3 and 4.2.4
we reproduce that results in both finite and infinite /. Our numerical results is
presented and discussed in section 4.3. The last section 4.4 of this chapter contains
the conclusions.

4.2 Calculations

We derive the chain of equations of motion which describe spin-wave excitations
up to three-body correlations. First, we show that the Green’s function method
together with an appropriate approximation of the higher order Green’s functions
leads to the well-known RPA results[25, 55].

Using this result we introduce correlations beyond RPA using a similar factor-
ization technique. In this way we show that the variational results of Chapter 2 is
reproduced. Since we reproduce our previous variational treatment of correlations,
as well as the O(1/S) expansion, we conclude that the termination of the infini-
tive chain of equations of motion, unavoidable in strongly correlated systems, by
approximating the higher—order Green’s functions is a reasonable approximation.

4.2.1 The RPA results

In this subsection we consider the ferromagnetic model which is described by the
usual double-exchange hamiltonian:

J
_ i = ol
Mo Do gp s

kqo
- (50 chent + 5 i)
2V/N 43

We introduce the double-time local spin Green’s function:

YO — 1) = 0(t — 1) < STo(1)[Sg(t) >
=0(t — ') < |STq(1), Sq(t)| >, (4.1)
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4 Spin—wave damping in Double—Exchange Ferromagnetic Manganites.

where Siq(t) i1s Heisenberg operators. By taking the derivative of the above
equation with respect to ¢ one can easily show that YQ(t — ¢') is given by an
equation of motion:

i2yveu ) = is—r) < [siQ(t),sé(t')} >+

ot
< [Siq(t),H} S5(t) > . (4.2)
After some algebra we obtain
'QYQ(t —t) = 2898t — 1)
ien = t

J
+ oy Y o< Sl Qh_qrcre(1)Sq(t) > (4.3)

kqo

J _
- N Z < Sé—QcI:_chkl(t)'SQ(t/) > .
kq

We see that the equation of motion for Y Q(¢ — #) contains two new Green’s
functions on the ths of Eq. (4.3). The simplest strategy to deal with these second-
order Green’s function is to factorize them in a way which allow us to determine
them in term of the lowest order one(Tyablikov decoupling). This strategy leads
to the results:

< S Qe _qo ke (1)|Sq(t) > < 81_o >< eh_ o (t)[Sq(t) > (4.4)

b < g >< Stq(0ISa(t) >

Sq(t) >~ < 8i_q >< ch e (t)|Sq(t' >  (4.5)
+ < gk >< SI_q(1)]Sg(t) >

<< AS’;_Q CL_qTCkl (t)

Note here that the mean values appearing in the above equations must be cal-
culated in the true ground state of the system. The ferromagnetic Hartree-Fock
state, an exact eigenstate of the double—exchange Hamiltonian, is a rather reason-
able approximation for the ground state, thus we obtain that:

<S8l g>=0 (4.6)
< 8i_q>=VNSéqq (4.7)
< CL_qgckg >= 5q705gln(€k) (48)
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4.2 Calculations

where n(ek) is the Fermi-Dirac distribution for the spin itinerant electrons. In

this way the second-order Green’s functions become:

< S Qel_qo ko (1)|Sq(t') > 8q.08, n(ek) YOt — 1)

< Si_qeh_qieni(1)1Sg(t) > VNSsq o X2(t — 1)
+8q,005 ()Yt — 1)

where we introduce the Green’s function Xl?(t —t)
X2t — 1) =< e _qreu (1) Sg(t) >

The equation of motion Eq. (4.3) becomes:

ot
JS
- =) xR -t
VN 4

iQYQ(t —t) = 28i6(t — ') + %Yq(t — ')

(4.9)

(4.10)

(4.11)

(4.12)

We conclude that although the truncation we used here leads to a quite simple
form of equation of motion the existence of a new Green’s function cannot be
prevailed. One has to write the equation of motion for the new Green’s function:

. a ! . ! -
zaXl?(t —tY=w(t-1t)< [CL_QTckl,SQ] >

+ <L [CL-QTCklyH”S(S >

Again, after some algebra we obtain the general equation:

i Xt =1) = (ex—e-q) X (1 — 1)

J _
_ﬁ Z < S:; (CI{—QTCIH'QT — cI{—Q—qlckl> (t)|SQ(t’) >
q

J . _
—|——N Z < Sq (CI{—QTCIH"U + cI(—Q—chkl> (t)|SQ(t') >

(4.13)

(4.14)

Following the Hartree-Fock truncation procedure as described above we approxi-
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mate the new Green’s functions in the rhs of Eq. 4.14 as follows:

< 53 (el aqeksal + ch_qqrex) (OISg(t) >
< 83 >< (hoqrokral + dhoqog) (OISG(H) > (4.15)

+ < (doqrerral + cfoqugrant) >< S5(1)ISg(1) >

< S} (choqrexrat — choqoqiext) (01Sg(t) >~
< 81 >< (e} _qrxsal — chq_qexl) (DISa(F) > (4.16)
+ < (chogrerrar = dhoqeqiont) >< SHOIS() >
Taking into account the properties 4.6-4.8 in addition to the property:
< c:;’acq/’a/ >= 0q.q'00.00 < c;dcqp >, (4.17)
we obtain:
< S (CL_QTchl + cL_Q_chkl) (1)|Sq(t)) > VNSsq0 X 2(t — ') (4.18)
< S (CL_QTCMT - cL_Q_qlckl) (1)1Sg(t') >~ bq-qn(er) V(L = 1), (4.19)

Substituting Eqs. 4.18 and 4.19 into Eq. 4.14 we obtain the final form of the
equation of motion for the Green’s function Xl?(t —t)

J n(ex)
2 VN

Since all Green’s functions depend on ¢ — ¢’ is useful to set ' = 0 in the equations
of motion. Therefore, we seek for the evolution of the Green’s functions in time ¢
starting from ¢ = 0.

zﬁxl?(t — 1) = (ex —ex_q + ST)X2(L — 1) —

o Yt —t)  (4.20)

In conclusion, by applying a Hartree-Fock truncation procedure to the infinite
chain of equations of motion we manage to obtain a simple system of two equations
Eq 4.12 and 4.20. By solving this system of equation we can determine the time—
evolution of our system. One needs the initial values of the Green’s functions 4.1
and 4.11 which can be easily determined as follows:

Ye(0) =< |8!4(0), 55(0)] >=< |5'q, 55| >=25 (4.21)
X2(0) =< {CL_QTCkl(O),Sa(O)} >=< {CL_QTCH,SEJ >=0. (4.22)
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It is more convenient to use the Laplace transformation since what we are actually
interested in is the dispersion relation of the spinwave excitations described by the
above Green’s functions:

YQw) = /Oo YQt)e = dt (4.23)

0

Xw) = /0 X3(t)e td1 (4.24)

where 4 > 0 ensures convergence at the { — oo limit. Using the above definitions
we can obtain the Laplace transformation of derivatives:

/om DAL = —A(0) ~ (i~ 7)A) (4.25)

Substituting the definitions 4.23, 4.24 and 4.25 into the equations of motion 4.12
and 4.20 with ¢ = 0 and the initial conditions 4.21 and 4.22 we finally obtain:

(w - % + z'»y> YQuw) = 45+ j—% d XJw)  (4.26)

(w + k- — €k — SJ+ ’i’)//) XI?(LU) = —%\/kﬁc’z)yq(w) (4.27)

Substituting X]? from 4.27 into 4.26 we obtain that the Green’s function Y'Q has
the form:

YQ =45 (4.28)

Jn . JQS n(ak_Q)
w———+12v— -
2 2N - wHek-q —ek — 5SS+

The above form indicates that the Green’s function Y'Q has a pole when:

J . J*S -
w="" iy Y n(e-) : (4.29)
2 2N - w+ek-q—ex— 5SS+ 1y
Now in order to determine the magnon’s energies wq we have only to take the
limits v — 0 and 4" — 0 in the above equation for the pole. In this way we find

that the spinwave disperses as:

Jn JQS n(ek_Q)
= — 4.30
“Q 2 + 2N zk:wQ—I-Ek_Q_@k—SJ ( )
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This form for the spinwave dispersion is exactly the same to the one obtained in
the chapter 2 where the variational theory is applied, and by Green’s function
method in Ref. [55]. Note that using the above form for the spinwave energies we
find that wq < ‘]2—” There is also the possibility for spinwave damping I'q since
the Green’s function’s pole 4.29 has the general form w = wq — :I'q where:

xJ%S
Fe=—y

25(WQ + €k—Q — €k — SJ) (4.31)
k

However, owing to the large Zeeman gap energy A = S.J in the delta function
and the fact that the spinwave energies are less than Jn/2 we conclude that spin-
wave dispersion is undamped within the RPA. However, damping of a magnon at
momentum Q comes from the scattering with the fermi sea electrons to a lower
momentum Q.

In conclusion, we showed here that the double-time Green’s function’s method
reproduce the spin—wave dispersion within the RPA. Additionally it is shown that
the lifetime of the magnons within this approximation is infinite. Despite the
fact that a finite life time of magnons for Q # 0 is expected since they are not
exact eigenvalues of the DE hamiltonian. A non-zero damping can be obtained
by considering the spinwave—fermi sea electrons scattering. The latter is the main
aim of the next subsection where the Green’s function’s technique are used to go

beyond the RPA.

4.2.2 Three—body correlations

In this subsection we apply the Green’s function’s method, as introduced previ-
ously, in order to study the magnon—fermi sea electron scattering. The role of
the scattering on the spinwave dispersion is discussed and the agreement with the
variational results obtained in the chapter 2 and 3 is proven. The usefulness of the
Green’s function’s technique is clearly demonstrated when one seeks to determine
the spinwave’s life time. Let us note that the Q = 0 magnon state 1s an exact
eigenstate of the ferromagnetic double—exchange hamiltonian. Therefore it is ex-
pected that this state shows no damping. This however can not apply to the rest
of the magnon states with Q # 0 since they are not exact eigenstate states of the
DE Hamiltonian and thus the life time of these excited states is finite.

The starting point of our calculations in this subsection is the general form of
the equation of motion of the local spin Green’s function Eq. 4.3. We define the
local spin—fermi sea electron Green’s function Ggq(t) as follows:

Ry (1) =< S_q (chogrex — daon(ex)) (]SG(0) > (4.32)
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This describes the deviations from the RPA result. Using this definition we obtain

.0 .
-]n s]L
R URE SR (4.33)

J
+ IN ; Gq(t)
,q

where the last term on the r.h.s. expresses the contribution of the correlations in
the local spin Green’s function. With the introduction of the new Green’s function
the equations of motion 4.26 and 4.27 become:

(w — % + w) YQw) = 45i-— j—%zijl?(w)
N % kz G2 (w) (4.34)

(WHekq—cx—ST+i7) X3 = -2y Qo)

(4.35)

2\/—ch+q q’+Q )

By setting ¢ = 0 in Eqs. 4.34 and 4.35 the RPA set of equations 4.12, 4.20
is reproduced. The equation of motion for Ggq(t) can be obtained similarly to

that of Y?(¢) and X3(¢) although we have the deal with some rather complex
commutators:

@QGQ L(1) = i6(0) < [ST (ck L1 CkT — (ek)éq,o) ,55} >

0
| + < KST QCk_q1 kT — (ek)éq,o) ,H} 1Sq(0) > . (4.36)
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After some algebra we obtain:

a -
at(YQ,q( ) = (5k - 5k—q) < S:;—Qc;r(—chkT(tNSQ(O) >

J togs f -
- & Eq: < ST oSz (ck_chHq,T _ ck_q_q,TckT> (1)155(0) >
J bl g _
v Z < Sl _QSgel_qrcrrqi(1)|Sg(0) >
+ 3 fz < S1_QSdel_q_qreri()5g(0) > (4.37)
i f 9=
+ Z S Q—I—q’ck’ —q’ 151 Ck! o ck_qTCkT (Ek) ( )| ( )

- —Z<< i-ara bt (chogroer = (e )<>|s (0) >

The above equation of motion seems to be rather complex since it contains a
large number of new Green’s functions. However, we can treat these Green’s
functions approximately by factorizing them in a similar way with that discussed
above. Note that we have to truncate three—term factors in the general form
< ABC|Sg(0) >. One must be very careful when applying such a procedure since
the result can be different depending on the way of truncation. We adopt here a
two—step approximation. Firstly, we treat the factor BC' in the Green’s function
as a simple operator. In this way we factorize the Green’s function as previously
shown: < ABC[Sq(0) >~< A >< BC|Sq > + < BC >< A[Sq >. The form
of the new Green’s functions indicate whether we have to apply a factorization
one more time. If < BC’|SE2 > is a known Green’s function, for example Y'Q, we
do not need to proceed to any further approximation, otherwise the new term is
approximated in the same way: < BC|Sq >~< B >< CSg > + < C ><K
C|Sq >. In this way we can distinguish all the higher—order Green’s functions into
two categories. The first where all the Green’s functions which can be reduced to
a lower—order one and the second with the non-reducible ones. We apply now this
procedure to each of the higher-order Green’s function. First of all, the 1% term
on the rhs can be written in terms of of Ggq(t) and YQ(#). Using the definitions
4.1 and 4.32 we easily find that:

< SI_qeh_qrexi(1)|Sg >= n(ex)6qY t) + G2 (1) (4.38)

We observe that this term contributes only to the electron spin flip energy. The
274 term of Eq. 4.36 is a higher—order Green’s function and must be approximated.
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First, using the identity 8.16 we rewrite this term as:
toge (o t - o
< 54— (Ck—qTCHq’T - ck—q—q'TCkT> ()[5q >=

1 . .
< <_\/—NS:;’+<1—Q + Sq’S:;—Q> (CI‘—qTCkJrq/T - cL_q—q’TCkT) (D)[Sq >
1 _
= ——F=X S:;’+q—Qc;r<—chk+qlT(t)|SQ >

VN

1
t t ~
= < Sy qeQChoqoq 11 (D)5 >

VN

+ < Sch’Sl—Q (c;r(—chk"‘q'T - c;r(—q—q’TckT> (t)|SC_2 >

Now we note that the 1°* two new terms have exactly the same form as the Green’s
function GQ ( ). The only difference is in the momentum-dependence k, q. Using
definition 4. 32 we find:

< S«z’+q—QcL—chk+q'T( )|5q >= 0k+q atar (D) + n(ektq)8qrqYA(t)  (4.39)
< St ama (D15 > = G2y () + nleg)bqaV (1) (440)

Regarding the last term, it is a higher-order Green’s function and thus must be
approximated. Using the strategy described above in addition with the property
4.7 we find that this term vanishes if we take into account the sum over q’ in the
equation of motion:

< S, S (cL_qTCW - cL_q_q,TckT) (1)155(0) >
~ < S(Zl/ > ST_ (CL—qTCk-HI'T — cI{—q—q’TCkT> (t)|56(0) >><441)

= VNSbg0 < Sl_q (choqrent — dhgrn) (D1Sa(0) >
= 0

Summarizing the above calculations we obtain that the 2"? Green’s function in the
equation of motion of Gqu(t) is finally approximated as follows:

< ST SZ (Ck qTCk+q/T cL—q—q’TCkT) (t)|56 >=
1

_ﬁ (n(extar) = n(eqr) bqaY A1) (4.42)
e (Rrvara ) = G ®).

which shows that this term introduces rescattering terms in the equation of motion
of Ggq (1) since it connects momenta k, q with k 4+ q', q + q' respectively.
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Now we turn to the third Green’s function appearing in the equation of motion
of Gqu(t) Eq. 4.37. If we consider the local spin operators ST and S~ as one
operator then we can easily approximate this function as:

< Vg QS Ck chk+q/l( )15g(0) >=
< Si_QSy >< ch_gicxrq1(1)|S5(0) > (4.43)
t -
T < qpCktq) > Se-Q Sq(1)]9g(0) >

Now using the properties 4.7, 4.8 and 8.14 along with the definition 4.11 we finally
find:

< ST QS Ck qTCk+Q'l( )|56(0) >= 255q/7q_qX1?+q+Q(t). (4.44)

We continue with the 4"* Green’s function appearing in the equation of motion.
We observe that this function does not contribute to the dynamics of Ggq(t) if
one approximates it using factorization. This can be easily seen by taking into
account the property 4.7 as well as the fact that < ST >= 0. In this way we can
obtain

< S QS el ek (D)19g(0) > ~ < SI_oSh ><el e (1)]Sg(0) >
+ <cL w1kl >< ST_o ST (1)]5g(0) >
= 0. (4.45)
This might indicate that we must keep this Green’s function in Eq. 4.37 motion
without any approximation and write its own equation of motion. However, we
are interested in the process of scattering between one magnon and one electron.

Therefore the Green’s function 4.45 can be ignored since it expresses a two electron
scattering process.

As far as the fifth term is concerned, it is easy to see that the only non-zero
contribution of this term can be written as follows:

< Sl quathoqoti (chgen = n(ex)ian) (1)]Sg(0) >~
< CL_ 151Ck/ ! > X (4.46)

< Sl_quq (Gheqrerr = n(ex)as) (D1SG0) 3= bg=o G, (1),

where we used the property 4.7 and the definition 4.32. Eq. 4.46 contributes only
to the electron spin—flip energy, similar to the 15 term of the equation of motion
as discussed above.

We complete the discussion about the equation of motion of Ggq and the way
in which can be approximated with the last term appeared in Eq. 4.37. First of
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all, we can make an approximation of this Green’s function using the property 4.6.

We find that

< j1—(172-I—01’c;r<’— 1K (c;r(—qTCkT n(ex)dq, ) (1)]5q ( ) >
< Sacqura >< gt (chograr = n(e1)da0) (1)]Sg(0) >=

VNSbqq_q < CL_Q+qTCk'l (CL_qTCkT n(ck)éq > (1)[5g(0) >

It can be easily shown that a further approximation in the above function leads
to a zero contribution to the equation of motion 4.37. Indeed, taking into account
the property 4.17 we find that the factorized form of function 4.47 becomes:

< u_quarw1 (g = n(e1)ba0 ) (1]55(0) >=
< chrqrarewt >< (cgren = n(e)ao) (1)155(0) > (4.47)
+ < (arenr = n(e)bas) >< cly_guqrawi(1)1Sg(0) =0,

The latter indicates that the discussion regarding the fourth term on the r.h.s of Eq.
4.37 can also be applied here. One can keep green’s function 4.47 in the equation
of motion 4.37 and accordingly, a new equation of motion for this function must
be written. A direct comparison between Ggq and the Green’s function appearing
in the above equation can be made. The latter shows a similarity which becomes
clear if one writes again those two Green’s functions.

GR,(1) = < Slq(chqrexr — Saon(en)) (1)1Sg(0) > (4.48)

< i quarcrt (c;_chkT - 5q70n(£k)> (1)1Sg(0) > . (4.49)
As we have said, the Green’s function Ggq expresses a scattering process between
an fermi sea electron and alocal spin. Comparing the form of the new function with
that of 4.32 we note that the local spin operator Q’ is replaced by ck, QiqiCi'l
of itinerant electron. Consequently it introduces the process of scattering of a
fermi sea electron via a spin-flip excitation thus it is a 3-body process. In other
words it corresponds to the variational amplitude ®@  of the Chapter 2 while

Ggq corresponds to the amplitude \I/a#. Since we are interested in examining the
role of correlations on the spinwave excitations up to 3-body process we have to
determine the time-dependence of this new Green’s function, which is defined as
follows

avy

Hi o) =< chiqqrent (Garerr = n(en)ao) (DIS(0) > (4.50)
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Before this, let us complete the discussion of the local spin—fermi sea electron
scattering Green’s function Gqu(t). Substituting the approximations 4.38, 4.42,
4.44,4.45, 4.46 and 4.47 of all the green’s functions on the r.h.s of Eq. 4.37 taking
also into account the properties 4.6, 4.7, 4.8 and 4.17 we find that the equation of
motion of Ggq () is transformed into the rather simple form:

.0 J
io Gall) = @(n(é‘k—q) = n(ex)) V()
75 q
- \/—NXkJrQ_q(t)
+ (ek —cx—q + %) G2, (1) (4.51)

J
+ IN Z <G§+q’,q+q’(t) B Ggq+q’(t)>
q

SJ
— = H(h).
VN4

The 1% three terms in the r.h.s. of the above equation gives a contribution of order
O(1/S) to the Green’s function Ggq while higher contributions is introduced by
the last two terms. By setting H = 0 in Eq. 4.51 one obtains only the local spin—
electron scattering, which corresponds to the ® = 0 approximation in Chapter (2),
whereas the full 3-body calculation demands the calculation of the higher—order
Green’s function ngkq(t).

We conclude that, the introduction of a higher—order Green’s function which
expresses the scattering process of a fermi sea electron and the creation of an
electron-hole pair leads to an additional equation of motion which can be treated
approximately by expanding all but of one the new terms appearing in the r.h.s.
in products of lower-order functions. That terminates the infinite chain of cou-
pled equations which is unavoidable for a strongly correlated system such as the
manganites of interest here. However, our approximate method leads to an-
other Green’s function (higher—order than Ggq) which expresses the creation of
an electron-hole pair with the simultaneous flip of an electron’s spin. In the rest
of this subsection we treat this Green’s function in the same approximate way as
we adopted for Ggq. We show that with the application of that method we finally
obtain a finite set of equations since our approximations leaves no new Green’s
functions in the equation of motion for Hc}kq(t).

Let us continue now with the equation of motion of the spin—flip fermi electron
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Green’s function. It has the general form:

0 . _
@tHr?kq( ) = 16(0) < {CIH_q_QTCpl (c;r(_chkT — n(sk)(5q70> .S } >

+ < [ehra-arpl (choqrxr = n(e)dan ), H (1)]Sg(0) 344.52)
which after calculating the commutators in the r.h.s becomes
0
i H3G (1) = (cp = eprara) < chiq_qrool (dhograrr — nle)dao) (D]55(0) >
J s ( t
+ 2N Z < Sy (cp+q—QTCP+q'l + cp+q—Q—q’TcPl) X
q/
(cheqrent = n(ex)ban) (155(0) >
J
T SN Z < Sl’ (CI»+q—QTCP+q‘T - cL+q—Q—q’lcPl> X
2VN 4
(charexr = n(ex)bao) (15G(0) >
+ (k= fkeq) < Chiq_qiCplh_qrcxi(t)|Sq(0) > (4.53)

J i i i -
- —Z<<c ¢ SZ/<C Ckiqi) — C 11C )(t)|S (0) >
p+a—-Q1Pl”q \ “k—q1Ck+d'T k—q+q'1Ck1 Q
2N &
J t ~ _
— —Z<<c 01197 a1k ()] Sg(0) >
p+a-QTePl~q' “k—q7kl Q
2N &

J t bt ~
+ W zq': < CP+q—QTCPlSq’Ck—q—q’TCkT(t)|SQ(0) >

This is a rather complex equation which contains a large number of higher—order
Green’s functions. However, we will show here that by applying the approximate
method as described above a quite simple equation can be obtained. First of all,
we note that using the definition 4.50 of Green’s function ng)q(t) we rewrite the
15" term as:

< gl (chqranr = n(en)bao) (DISq(0) >= H2 (1) (4.54)

and the 4" one as:

< CTp+q—QTCPlc;r<—qTCkT(t) Sq(0) >= n(ek)dq,0 + ng)q(t)7 (4.55)

where the first term does not contribute to the equation of motion since it is
multiplied by zero at q = 0 due to the term ex — ex_q. The second term of the
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4 Spin—wave damping in Double—Exchange Ferromagnetic Manganites.

equation of motion is of the gemeral form: < SZA(1)|S;(0) >, which can be
approximated as < SZA(t)[S4(0) >~< 57 >< A( NS (0) > In this way the
second term can be written as:

< Sy (p-l—q QTCP+q'i‘|’cp+q Q- q’TCPl> (Cl_qTCkT n(ex)dq, )()|5 (0) >
~ VNS6qq2HY (1), (4.56)

where the property 4.7 is used. The next term in the equation of motion 4.53 gives
only one non-zero contribution. This contribution can be written in the form of
Green’s function G as follows:

< S <p+q Qifpta’l ~ L+q—Q—q’lcPl) (CL—qTCkT n(ex)éq )( )[5g(0) >
i i
=< Cpiq-QrCp+a’l T Cprq-Q-q'1fPl 7 X
< S}y (el qrext = n(e1)8a0) (1)155(0) >, (4.57)

which finally, after using the property 4.17 of itinerant electron operators and the
definition 4.32, becomes:

T T
< S (chra-qreprat = hrq-qq19p1) (chogrox — n(ex)6a0 ) (1)15g(0) >
~ 5q;7q_Qqu(t). (4.58)
Let us continue now with the fifth term of the equation of motion. It can be
seen that this term has a form similar to the second one and therefore can be

approximated in the same way. In this way we can see that the contribution of
this term vanishes within this approximation. This can be easily seen as follows:

< hraeai1Sy (charex = n(ex)q0) (1)]55(0) >~
z T T —
< Sq’ > cp—}—q—QTcPl (Ck—qTCk+q/T - Ck—q—q’TCkT> (t)|SQ(0) >=
f t t . _

VNSbg0 < b yo_aronl (ck_chkT - ck_chkT) (1)]S5(0) >=0.  (4.59)
There are two higher—order Green’s functions left in the equation of motion Eq.
4.53, which must be approximated in some way. Starting from the sixth term, we
can see that by applying a factorization procedure as we have done to the previous

Green’s functions we do not obtain any contribution from this term. This becomes
clear if we write this term in its factorized form:

t - -
< Cp1q-qrpl Sg gkl ()] 5 0
t -

< Cpyq-qifpl > g qrexl(!

- t t
+ < Sq/ > cp-}—q—QTcPlck—chkl(t > (460)

i - _
T < Ck_qiCkl > cp+q—QTcPlSq’(t)
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Now due to the properties 4.6 and 4.17 of the expectation values of itinerant
electron operators we obtain that these three contributions vanish. Note that the
above Green’s function contains spin{ creation and spin| annihilation operators.
This explains the fact that this function is vanishing. Whatever truncation we
apply, vanishing expectation values (for instance < c}rcl >, < c}rc$ > et.c.) all
always obtained. To complete the approximation of the equation of motion of
Hypq, we have to examine its last term. Let us notice that this term contains
a pair of spinT creation—annihilation operators. This indicates the existence of a
non-zero contribution of this term after the truncation. One must be very careful
when applying such a procedure to that term. As a first step the electron operators
must be rearranged in order to have the appearance of the pair c}rﬂ Note that
the operator cx; anticommutes with the operators ¢p) and cx_q_q/1. Therefore we
obtain:

< ST,CL+q Q1P qqr1 k1 (1)]Sg(0) >=
< St ,cp+q QTckTCPlCL a—q' 1(D)]5g(0) > . (4.61)

Having written the seventh term of the equation of motion in this form we can
finally approximate this term as follows:

T

< S ’cp+q QTcchPlck q- q’T(t)|S
i i
< cp-}—q—QTCkT ><< Sq’cplck—q—q’T(tHS
|5,

bq' k-q-pn(ep) K Sk a— pcPlCL a- q’T(t) Q(O) >=
bq' k—q—pn(Ep) (GkQ,k—q—p-l—Q(t) + n<5k)5k,q+p—QYQ(t)) ; (4.62)

where in the last step we made use of the definition 4.32 for GQq Summarizing the
above calculations we obtain the final form of the equation of motion of Green’s
function H]((qu( ) which does not contain any higher-order Green’s function and
thus there is not need for extra equation of motions. Substituting the r.h.s Green’s
functions with their approximate forms Eqs. (4.54-4.56), (4.58-4.60) and (4.62)

into the equation of motion 4.53 we obtain:
i—Ho (t) = (5 — Eptq-Q T €k — Ek—q + 5J) kpq(t)

n(x)qi—p+q¥ (1) (4.63)

Nﬁ

g (@GR~ BB prana(®).

Now we can write our equations of motion into w-representation by using the
Laplace transformation. For convenience, we set the k — q = p into (. By sub-
stituting Xy from Eq. (4.35) into Eqs. (4.34) and (4.37) for Y and G respectively

91



4 Spin—wave damping in Double—Exchange Ferromagnetic Manganites.

we obtain a system of two equations. In addition, by setting ¢ = GY into these
equations we obtain the pole of green’s function Y:

Jn  SJ? n(ep)
wq = —
Q 2 2N S wq+ep —cprq — SJ
J? SJ
+ G2 (1 + ) : (4.64)
4N2%; kp wq+€p—up+Q—SJ
where the Green’s function Gka obeys the equation of motion:
Jn . Q SJ
(wQ +ep — ek — - + w) Ghey = n(ep) (1 + r———— SJ) — n(ek)
J SJ
Y G2 (1
' 2N2k': kp( +wQ+€P_€P+Q_S‘]>
J Q Q
- oy dGR —S8IY HY (4.65)
p’' p’'

Up to this point we do not make any discussion about the momentum indexes
k,q, p which appeared in the Green’s functions GSq and ng,q. One can suppose
that these indexes run all over the Brillouin zone. However, these bounds must
be stricter if the physical origin of these Green’s functions be taken into account.
Green’s function Gyq 1s defined to express the scattering of an electron-hole pair
with a localized spin while scattering with spinT—| excitation is described by HR

kpq-
Keeping in our mind that and noting the definition of ¢
GR.(1) =< 5! 4 (CL_qTCkT - 5q70n(€k)> (1)15g(0) >, (4.66)

we conclude that momentum k — q is a fermi electron momentum and thus must
run into Brillowin zone. Additionally, momentum k accounts for the hole and
consequently must run out of Brillouin zone. That means that Green’s function
Ggq is simplified as

G = (1= n(ex) n(exg) Gy = Gous (4.67)

where the notation of momenta is similar with that of the chapter 2. We use
p, v, - -+ for momenta inside and «, 3, - - - for momenta outside the Fermi sea. Using
that assumption the above equations of motion become:

Jn SJ? 1

“Q = 2 2N ” wq+é, —epq—SJ
J? SJ
G2 (1 4.68
+ 4N2%; au( +wq+€y—€y+q—SJ>’ ( )
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and

SJ
wqté, —éviq — SJ

J SJ
(1 a3
+ 2N< —I_wQ—I—el,—el,Jrq—SJ)zﬁ: hu

J Q
- o G —51> HD (4.69)
jz p’

J
(wQ—I—ey—ea—;—l-z’fy)GSy = 1+

where

(wq +eut e — cQuptv—a — o — S +17) Hpray =
J
_ﬁ (n(gp’)GaQy - 5;A7p’—Q+a—vGa;A> : (4-70)

The small imaginary part 7" in the denominator of H does not contribute to the
spinwave damping for the same reason with that in the equation of X. Because of
the large energy factor S.J these denominators can not be vanished and therefore
we can set v/ = 0 in the equation of motion 4.35 and 4.70. If we substitute H
from Eq. 4.70 into that of G Eq. 4.69 we obtain the final form of this equation of
motion

SJ
wq+te, —erq — 57

J SJ
(1 G
+ 2N< —I_wQ—I—sl,—el,Jrq—SJ)zﬁ: Ay

J S.J
- GQ
2NZ# (H —SJ) o (471)

A2GY = 1+

wQ €y + €y — EQtutv-a

where

J .
ASU:wQ—I—al,—aa — 7n—l—w

S.J? 1
2N £~ wq +eu+ ey~ EQiptr—a — SJ

(4.72)

Note that the set of equation Eq. 4.71 and 4.68 is identical with the equations of
the chapter 2 obtained variationally.

In conclusion, we have used the double-time Green’s function method to de-
scribe the role of scattering of a magnon with an electron-hole pair. The infinite
chain of equations of motion can be terminated by approximating the second or
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4 Spin—wave damping in Double—Exchange Ferromagnetic Manganites.

the third order Green’s functions by factorizing them in a way that they reduce to
lower—order functions. The set of equations of motion obtained is similar with that
determined by the variational calculation of the same processes of chapter 2. The
usefulness of the Green’s function method is that an additional result is obtained.
This result is the damping I'q of the spinwave excitations described by the imag-
inary part of the magnon energy. Our system of equations is rather complicated
and therefore close relations for magnon energy and damping can not be found.
However we can solve Eqs. 4.68 and 4.71 using an iterative method similar with
that we use in chapters 2 and 3 to solve the system of variational equations. The
difference here is that we have complex variables such as wq = Re(wq) — iI'q and
GEP. That means that after calculating the complex variable wq we can calculate
the spinwave energy by taking the real part of it and the damping by the relation
FQ = —iIm(wq).

4.2.3 1/S expansion

In this subsection we apply the expansion of the magnon energy in the form of the
pole of Green’s function Y@ Eq. 4.68 in powers of 1/5. In this way we are able to
determine the first non—zero contribution to the spinwave damping coming from
the localized spin—fermi pair scattering.

In the 1/S expansion we suppose that S — oo while the band splitting S.J is
kept finite. For this reason it is convenient to set S.J = .J in our equations which
in this way become:

jn_l_ j2 Z ]_
w = — =
Q 25 T INS S~ wqte, —coaq—J
J? J
G2 (1 _ 4.73

+ 4N25’2§ au( +WQ‘|‘51/_51/+Q_J)7 ( )

and
ARGR = 1+ ! _

wq+é,—cvrq —J

J J

— (1 = Ga
+ 2NS< +wQ—|-£l,—£l,+Q—J>zﬁ: pr

J J
B — 1+ -GS (474
2N2M:< wqQ T &ut &y — EQtutr-a _J> v )

First of all, let us suppose that the double-exchange interaction becomes .J — oo.
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By expanding the magnon energy in the .J — oo limit we find

1

“aT T oNS Z (wo +ev —evtq)
1
4N2G? Z va (wq +¢e —€vtq) s (4.75)
and
. 1 Q
wq+e, —ea—ty+ NG (wq +ev+eu — €Qivin—a —Ea)|Ge, =

1
—(wo+e —aa) ~ 5yg Y GF (waqte—enq) (4.76)
5
1
+—== Y G2 (wq+e +eu —cQivtu—a —Ea)-

(1)

Now one can determine the leading order wg’ of the magnon energy by a 1/5
expansion:

1

1

wy = = (e — 2a); (4.77)
and the zeroth contribution of GSU:

) = _—;U—_;Ui?iv (4.78)

Note here that the Green’s function GG does not contribute to the 1 order magnon
energy. Since the imaginary part of wq comes from that Green’s function we con-
clude that the spinwave dispersion is undamped at 1** order in 1/.5 expansion. The
first non—zero contribution to the damping appears when expanding the magnon
energy up to the 2"% order in 1/5 where (7 contributes at zeroth order

(2) _ _L (1) 1 (0) B
“Q = 2NS zy:wQ + AN2S2 ;Gau(gv 51/+Q)7 (4.79)

which after using relations 4.77 and 4.78 yields:

O < PR I T o G ) (4.80)
Q T yNgs2 VAR T YNIG L o iy '

v av
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4 Spin—wave damping in Double—Exchange Ferromagnetic Manganites.

The imaginary part of the magnon energy, coming from the second term of the
above relation, can be easily determined using the relation

L _ 1), (4.81)
rEty =z

In this way we find that the 2"¢ order contribution of spinwave damping is:

T
Fg) T AN2S? Z(5v —€,4q) 0(es — €a) (4.82)

av

However, this contribution is also zero, owing to the form of the delta function.
Notice that there is no overlap between band energy ¢, and ¢, since we have
that ¢, £ Fr and ¢, > Fr. Therefore in order to determine the first non-zero
contribution of the spinwave damping one must expand wq up to 3" order in 1/5.
Fortunately, the 3"¢ order term of spinwave energy is rather easily determined by
using equation (4.75) to be:

G _ 1 (2) 1 0),,(1)
“@ = “iys2.ve g 2 il
1
+ WZGS)(gu—%?wQ)v (4.83)

av

which after substituting wg), wg) and G from eqs 4.77, 4.80 and 4.78 respectively
we finally find:

2

3 _ n n (ev — €u4q)?
“Q T TI6Ng3 > (ev—emq) + 16N253 > :

—Eq — 1
v av EU 60( ’7

1 Ey — €U+Q
tap L @) (4.84)

p ~ &) —Eq — 1Y

1
TiN?S? Z (e — cvra);

where the imaginary contribution clearly comes from the forth term since the
denominators of the second and third term give again an imaginary part of the
form 6(e, — €,) which as we said vanishes. In order to determine I‘S) we have
to extract the first order contribution of G, from Eq. 4.76. We can do that by

substituting wq with wg) from Eq. (4.77) in both sides of Eq. (4.76) and by

substituting G, with G&OJ from Eq. (4.78) in the right side. In this way second-
order terms are obtained on the right side which must be removed. Finally by
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gathering the same order terms together we find that:
1 1 n .
0§ — whhma + (14 35) (6 = 2a) —9]G2, =

1
—(ey —cu4q) — INS Z (e, — cvsq)

1 , 1
v~ Cv E 4.85
+2NS (er —eura) zﬁ:&,—Eg—ry (4.85)

1 Cu — EutQ
2N S p €y — Eaq — 1Y

(ev +€u — eQtvtp-a = €a)

where we use Eq. 4.77 to substitute the term:
1 1
o Do (G0 fQrituma) =9l (4.86)
n

Note that the imaginary part of the rescattering terms in the r.h.s of the above
equation is zero since it is of the form ~ é(¢, —¢,). Therefore the damping of the
magnon energy 4.84 comes solely from the denominator of the Eq. 4.85 which at

O(1/5?) is:

1 (¢ — €u4Q)”
r® _ v cvtQ 7 4.87
Q T aNzg? ; W) — w8y a F e —Ea— iy e

which after taking the limit v — 0 yields:
3 m 1 1
I‘g) = IN2o? Z (¢, — ev1q)’ 6(1.052) — wg)ﬂ_a + &, — €a). (4.88)

av

This recovers the result of Ref[11, 24].

In conclusion by applying a 1/S expansion in the strong coupling limit ./ — oo
we are able to recover the first contribution to the spinwave damping which is of
order O(1/5%). We show also that the rescattering processes of Green’s function &
contribute only at higher order of 1/5 expansion. In the next subsection we focus
on the finite .J case. It is expected that in this limit the rescattering processes
contribution to the spinwave damping is not vanishing at O(1/5%). Therefore a
question about the importance of this terms reasonably arises.

4.2.4 1/S expansion at finite double—exchange interaction
J.

Starting from Eqs. 4.73 and 4.76 we can easily determine the first non-zero contri-
bution to the magnon damping for the finite double-exchange interaction .J case.
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4 Spin—wave damping in Double—Exchange Ferromagnetic Manganites.

First of all, we show here that this contribution is of third order with respect to
1/S. For this purpose we have to determine magnon energy up to O(1/5?) which
clearly 1s:

w(z) _ Jn n J? 1
E T ? 1
1 = 4.89
i 4N252§< +€ —€U+Q—J> €y — Eq — 1Y (4.89)
where
(m _
_. 4.90

is the leading order in 1/S magnon energy. The zeroth order of (G is also inserted
in Eq. 4.89. Note again that up to second order of 1/S expansion magnon disper-
sion appeared to be undamped as in the .J — oo limit. Therefore the first non-zero
contribution to the magnon damping comes from the imaginary part of the first
order contribution of the Green’s function G to the magnon energy which is of

the form:
r® J
I =]. 4.91
Q N252Zm ( 5u_5u+Q_J> ( )

This contribution of G2, can be easily determined by the relation:

av

J 1
Tm(G()) = <1 + j) Im(Aw)’ (4.92)
where the complex denominator is:

Aow :w(Ql) +eée,—éa

J? 1
2N S —~ &yt~ EQtutv-—a ~ Ea

- (4.93)

There are some additional terms which contribute at this order, but they are real
and therefore do not contribute to the imaginary part of G2 . Normally, one has to
take the limit v —> 0 in order to determine the magnon dampmg which in this way
is of the form: F 3 o > ( () 4 €y — Eq — 2 fw) Note that, the existence
of function f,, prevents the exp11c1t calculatlon of the delta function and thus the
~ — 0 limit result can not be easily obtained. However the calculation of magnon
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damping can be well performed by using a small value for parameter v that the
calculated dispersion is not affected by that small imaginary part of denominator.
The parameter v must be comparable with the spacing Ae between energy levels.
For values of + larger than Ae the obtained damping does not represent the actual
damping of magnon, while for an extremely small v, which approaches zero we
obtain vanishing damping. Therefore the first non—zero contribution to magnon
damping with respect to 1/5 is determined by the relation:

e J d (14 J 2Im = (4.94)
Q T 4N292 €, —cvpq — J Ao ) .

av

Note also, the above relation recover the result 4.88 by taking the limit J — oco.

4.3 Numerical results

In this section we present our numerical results for the spinwave damping. We
make a comparison of the approximations presented above and also discuss the role
of double-exchange interaction and itinerant electron concentration on magnon
damping. The connection between strong spinwave softening and short lifetime
near the zone boundary is also made[56].

First of all, we discuss the effect of the phenomenological relaxation parameter
~ of electron—hole pair. One must be very careful in choosing the value of that
free parameter since it depends strongly on the number of the lattice sites. If
the spacing between two adjacent energy levels is Ae then 4 must be comparable
with that energy. For v < Ae we cannot determine spin—-wave damping since
the magnon pole obtained is real. On the other hand, a very large value of ~, in
comparison with Ag¢, creates a large imaginary part which does not corresponds
to the actual spin—-wave damping. Since we perform our numerical calculation in
finite size systems the energy spacing is finite. This means that we have to assume
a non—zero value for the parameter v in order to determine spin—-wave damping. In
this chapter we perform our numerical calculations is 2D systems with number of
sites about N = 20 x 20. For such systems energy spacing varies as Ae ~ 0.5 —0.1.
In Fig. 4.2 we plot the real part of the pole, which describes spin—wave excitations,
as a function of the parameter v. We note that the spin—wave dispersion does not
depend strongly on the particular value of 4. The deviations are pronounced along
the I' — X direction where the magnon energies are smaller. For this reason we
choose to fix the phenomenological parameter at an intermediate value v = 0.2 for
the rest of this chapter.

We continue the presentation of our numerical results with Fig. (4.3) which
shows the 2D spinwave dispersion (a) and damping (b) obtained with the different
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0.3 T T T
0.03 T T — Y =0.5

Figure 4.2: The real part of magnon’s pole as a function of phenomenological
parameter . Inset: spin—-wave dispersion along I' — X direction in Brillouin
zone.

approximations along the main directions in the Brillouin zone. The parameters
(n = 0.7,.J = 8t) we use here are typical in the manganites, and are the same with
these of chapter 2. In this way we can make a comparison with the variational
results of that chapter. Let us notice that the Q = 0 state is an exact eigenstate
of the double—exchange Hamiltionian. Therefore the damping of this state is equal
to zero. On the other hand, every magnon state with Q # 0 must have a finite
lifetime, I'q # 0, since they are not exact eigenstates. First, we note in Fig. 4.3
that within the three-body approximation and along the direction I' — X the
spinwave damping is about 25% of the real part of the pole, i.e. the magnon
energies. The latter is due to the strong softening effect of spinwave dispersion
along that direction which indicates that magnons are short-lived excited states.
On the other hand along the other main directions this ratio is as small as 5%.
Furthermore, for Hypq = 0 damping is very small as compared with the three—
body result, since the damping within that approximation is about 20% of the full
three-body one. The latter indicates the importance of the spin T-| excitations
described by Green’s function Hypq. The main contribution to magnon relaxation
seems to be its scattering with a spinT—spin| excitation. The scattering with solely
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Figure 4.3: Real (a) and imaginary (b) part of magnon’s pole along the different
different directions in Brillouin zone for n = 0.7,/ = 8¢,y = 0.2: Comparison of
the different approximations.

localized spins, Hypq = 0 approximation, gives a rather weak relaxation rate and
magnon can be well considered as undamped states with infinite lifetime within
this approximation. This is consistent with the fact that the Hypq = 0 dispersion
shows no strong softening as we discussed previously, and fails to describe the
spin-wave dispersion. The first deviations from the Hypq = 0 result appear when
the first contribution in 1/S expansion is considered. We showed is Sec. 4.2
that this contribution is of order O(1/5%). We note first, that the spin-wave
damping to O(1/5%) is approximately close to the Hypq = 0 result. This means
that the perturbative treatment of the spin T-| excitations fails to describe spin—
wave damping mechanism. Meanwhile, our full three-body calculation gives a
strong magnon damping and therefore finite lifetime. Apart from that discrepancy,
1/S expansion fails also to reproduce another behaviour which the full three—
body calculation exhibits. This is the appearance of sharp peaks in the damping
which for the parameters used here takes place near the point (7,7 /2), while a
minimum at Q = (7, 7) also appears. That result implies that magnon relaxes
very fast within this momentum region. This is an important feature since it
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Figure 4.4: The role of double—exchange interaction: Three-body spin—wave dis-
persion (a) and damping (b) for n = 0.7 and different values of double—exchange
parameter .J/t.

predicts a strong dependence of lifetime on the direction we observe the magnon.
The corresponding O(1/5%) and Hypq = 0 value does not differ significantly from
the values of damping along the direction I' — X. The smooth behaviour of
damping indicates the inadequacy of these approximations to describe the spin—
wave lifetime. The latter enhances the importance of 3—-body correlations. A direct
comparison between the real part (Fig. 4.3(a)) and imaginary part (Fig. 4.3(b))
of the magnon pole indicates a connection of this behaviour with the softening
effects of the magnon’s dispersion. First of all, the behaviour of magnon’s damping
at M point can be explained by the fact that the spin-wave dispersion is well
described by the RPA result and the softening is extremely weak. Therefore, within
momentum regions where 3-body correlations are not important, the spin—wave
damping is also small. The behaviour along the direction I' — X in the Brillouin
zone, where the spin—wave softening is pronounced, is rather complicated. Fig.
4.3 shows that the appearance of strong softening is connected with large values
of spin—wave damping. However this is not a direct connection since damping
remains large within the momentum region (x,0) — (7, 7/2) while the dispersion’s
softening is rather weak.

Let us examine now the role of double—exchange interaction on spinwave damp-
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Figure 4.5: The role itinerant electron concentration: Three-body spin-wave dis-
persion (a) and damping (b) for .J = 8¢ and different electron dopings

ing. Fig. 4.3(a)-(b) shows spinwave dispersion and damping within three-body
approximation for electron concentration n = 0.7 and different values of double—
exchange parameter J/t = 10 — 7. Firstly, we note that the position of the
momentum points where an extremum appears is unaffected by the strength of
double—exchange parameter. We will show that the position of Q¢ points depends
solely on itinerant electron concentration, and therefore has to do with the Fermi
surface. Fig. 4.4 also shows that the damping is increasing while .J/{ is dimin-
ishing. More precisely, the smaller the parameter .J/¢ the more pronounced is the
peak of the damping. For example, we note that spin—wave dispersion for .J = T¢
(solid-dotted line) shows such a strong softening that it almost turns negative at
I’ point, indicating that the fully polarized ferromagnetic state is unstable. For
that value of .J/t we note that the maximum of damping becomes extremely large,
actually 1t i1s larger than the magnon energy, indicating that the magnon is not a
well defined state for this parameter. This is a reasonable result since the life time
of an excited state with wq ~ 0 it expected to be very short. For lower values of
the .J/t spin-wave damping is as small as 10% of magnon energy.

We discuss now the dependence of extremum points of damping as a function
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4 Spin—wave damping in Double—Exchange Ferromagnetic Manganites.

of itinerant electron concentration. It is shown in Fig. 4.4 that this behaviour
of damping does not depend on the strength of magnetic—exchange interaction.
Fig. 4.5 shows dispersion and damping for fixed J = 8¢ and different electron
dopings. We note first in Fig. 4.5(a) that softening effects along I' — X direction
are minimized while electron concentration is diminishing. For a high electron
concentration n = 0.72, the spin—wave damping exhibits two maximum points; at
Q = (7,7/2) and Q ~ (x,7/2), in the middle of X — M and M — T direction
respectively. For a lower electron doping, n = 0.56, we note that the first minimum
starts to approach the X—point while the second one is slightly shifted nearer to
the middle of M — T direction. This effect becomes clear within the low electron
concentration regime, n ~ 0.3 — 0.4, where the maximum appears at Q < (x,0).
In addition, Fig. 4.5 shows that within the intermediate electron concentration
regime, 0.4 < n < 0.6, the spin-wave damping becomes extremely large along the
I' — X direction in the Brillouwin zone, while along the other main directions it
takes comparatively low values. On the contrary, for low n < 0.3 and very high
n 2 0.7, the spin-wave damping exhibits a contrasting behaviour since it is rather
low along I' — X. We conclude that spin—wave magnons have a very low lifetime
along I' — X direction within the intermediate concentrations regime. Let us note
that the latter result is in disagreement with experiments[52], which show lower
damping along I' — X as compared with the other directions. Moreover spin—wave
damping appears to be lower for a higher doping. That indicates a discrepancy in
our simplified model hamiltonian, which can be alleviated by including Hubbard
repulsion in our hamiltonian as we show in the next chapter. Spin-wave dispersion
exhibits strong softening along that direction and for these concentrations. These
two effects, therefore, are connected by the fact that a very softened magnon state,
with very low excitation energy, can be easily damped and thus its lifetime is short.
On the other hand along directions in the Brillouin zone where softening effects
are weak lifetime is reasonably long, for example the M—point in Fig. 4.5.

4.4 Conclusion

To conclude, in this chapter we present an application of the double-time Tyab-
likov Green’s function method to a double—exchange ferromagnetic system which
describes manganese oxides. In order to terminate the infinite chain of equations
of motion a decoupling scheme is used. This approximate method consists of the
factorization of the higher-order Green’s function. In this way the variational re-
sults of chapter 2 is reproduced, where spin—wave dispersion is described up to
3-body correlations, and therefore the factorization technique is justified. More-
over the method presented here allows us to determine spin-wave damping due
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to scattering of a magnon with a Fermi electron-hole pair. Our equations re-
cover also the previous obtained results where a perturbative treatment of local
spin is used and spin-wave damping is obtained in O(1/5%) order. We show that
this approximation underestimates damping by a significant factor and thus gives a
rough description of spin—wave excitations in the double-exchange model. Since we
consider here the minimal double—exchange hamiltonian, which we have shown is
rather inadequate to describe manganites, we focus on the role of double-exchange
interaction on spin—wave damping. We show that for values of double—exchange
parameter near to critical value Jo spin—wave damping becomes extremely large as
compared with magnon energy. For intermediate electron concentrations damping
also becomes large along the direction I' — X in the Brillouin zone. The latter is
in agreement with the appearance of spin—wave softening as discussed in the previ-
ous chapter. Therefore we show here that these two results must be considered as
a two-side effect of correlations on spin-wave excited states. Finally, a comparison
of the 3-body damping with that obtained by assuming scattering only with local-
ized spins (Hypq = 0 or equivalently ®,,,=0 of the variational calculation), shows
the importance of the scattering with the spinT—| excitation. The latter process
seems to be the main origin of the effects of correlations on the real (softening)
and the imaginary part (short lifetime) of the magnon’s pole.
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Chapter 5

The effects of the on-site Hubbard
repulsion on Spin—Wave damping
of Ferromagnetic Manganites.

5.1 Introduction

This chapter discusses the role of the local Hubbard and super—exchange inter-
action on the spin—wave damping. In contrast with the previous chapter where
the minimal model of double—exchange Hamiltonian is studied, here we focus on
the on—site Hubbard repulsion between itinerant electrons on the same lattice site.
Additionally, we include an antiferromagnetic Heisenberg-like interaction between
neighboring localized spins constructing that way a rather reliable model for the
Ferromagnetic Manganites of interest here. This model is discussed in chapter (3)
where a variational treatment of spin—waves excitation energies is presented. There
was shown that the Hubbard repulsion affects significantly the spin—waves. We
show in Chapter (3) that the on—site Hubbard interaction between itinerant elec-
trons enhances ferromagnetism which becomes stable in the concentration regime
relevant to the experiments. Therefore it must be included in a hamiltonian which
is used to model manganites. In this chapter we discuss the effect of these addi-
tional interactions, Hyy and H 4, on the spin—wave damping. The Green’s function
method, as discussed in the previous chapter, is used in order to determine the
magnon’s pole. The infinite chain of equations of motion is terminated by per-
forming a factorization procedure similar to that of the previous chapter. The
fact that this method reproduces the variational results of chapter (2) also applies
here, and establishes the validity of our factorization approximation.

In the next section we derive briefly the equations of motion which describe
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spin—waves up to three-body correlations. We show that by assuming mean val-
ues in the fully-polarized state the variational equations of (3) is reproduced. Sec.
(5.3) contains our numerical results. Here we fix the Hund’ rule coupling to exper-
imentally relevant values and study the role of Hubbard U/t and super—exchange
J 4/t interaction on spin-wave damping. The doping dependence of the damping
is also examined and in this way a connection with the dispersion’s softening effects
is made. In the previous chapter the crucial role of the three-body correlations
is emphasized, due to strong contribution of electron-hole pair scattering effects
on the spin—wave damping. In order to solidify that conclusion, a comparison be-
tween the carrier-localized spin and the full three-body result is also presented.
We close this chapter with the conclusions.

5.2 Calculations

In this section we derive the equations of motion for the Green’s functions that
describe the spin-wave excitations. These Green’s functions were defined in the
previous chapter where, the chain of equation of motion for the minimal double-
exchange model was presented. What we do here i1s to add to these equations the
new terms coming from the additional interactions of our model. We suppose here
the full hamiltonian which describes manganese oxides

H - Hez?ch —I_ Hl] —I_ H,super- (51)

Here, H..; is the magnetic exchange coupling studied variationally in chapter (2)
and using Green’s functions in (4). We add now in our model hamiltonian two
new terms: the on-site Hubbard repulsion described by the term:

U
— 2 ’ T i
HU = N cchk'chlcq-H—k'l? (52)
kk’q

and the Heisenberg-like antiferromagnetic super—exchange interaction:
z Qz JAF to— — ot
Hyuper = Jar Ek: NSy + - Ek: (SIS, + Spsty), (5.3)

where 4 = —ei /2. We start the derivation of the new equations with the equation
of motion for the local spin Green’s function Y Q(#) =< SiQ(t) | Sq(0) >. Tt is
clear that only the term H4p contributes to this equation since the commutator
[Hy, S7] vanishes. This non—zero contribution can be determined by using the
relation 8.25. In this way the equation of Y'Q(#) yields:

0 .
=Y Qt) =i8(t) < S5 > + < [STq(t), Hewer] | Sq(0) >

ot
+ 2J4rS(va — 7)Y (1), (5.4)
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where the first line comes from the double—exchange hamiltonian of the previous
chapter while the second line is the new term added by the super—exchange in-
teraction. Similarly, the Green’s function Gqu(t) =K S;r_Q(cL_chkT —n(ek)dq0) |
Sq(0) > is described:

i Gha(t) = i6(t) < [S]_g(ef_grenr — n(ek)dq0), Sg) >
Sq(0)>  (5.5)

+ < [ST_g(ek_qront — n(ex)éq.0), Heverl
4+ <K S:;_Q[CL_qTCkTyHU] | S(S(O) >
+ < [S!_qs Har)(ch_gicxr — n(ex)éq.0) | Sq(0) > .

which after using commutators 8.26 and 8.27 becomes:

iaGgq(t) = 8(1) < [ Q(ck q1CkT — (5k)5q,0)75(3] >
+ [qT (ck q k1 — n(cx)dq,0), Hezen] | 56(0) >
+ Z < S!_gel_grewnels cqrrwy | Sg(0) >
_ NZ < Si_qelexiels jeqri—xiar | Sq(0) > (5.6)
qul
Jar
dS

< (5050 g + SlquS2i) (chogront — nex)dq0) | Sa(0) >
Jar
+ = '
N Z Tk

< (5hSi-quw + SLSiquw ) (chqrax — n(ex)q0) | Sg(0) > .

The additional terms must be approximated using the method discussed in the
previous chapter. First, we note that after factorizing the third and forth term in
the r.h.s., which come from Hubbard repulsion, these term vanishes since they are
proportional to the expectation value < cIcl > which is zero if evaluated in the
fully-polarized state. On the other hand, the last two terms which express the
super—exchange contribution can be approximated by using the property4.7. In

this way the equation of motion yields:

gtCqu() = 16(1) < [5q_q(ck_qrki — n(cx)dq0), 5g] >

+ < [SI_qleh_grext — n(ex)éq0), Hever] | Sq(0) > (5.7)
+ 2J4rS (Ya-q@ — 70) G,
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We conclude that the equation of motion of Green’s function Gqu(t) for the full
hamiltonian (5.1) differs from that obtained for the simple double-exchange model
by only a term which shifts the source energy by a cosine-like term. We con-
tinue now with the equation of motion of Green’s function XI?(t) =K CI(—QTCkl |
Sq(0) >. Due to the form of this Green’s function only the Hubbard interac-
tion term Hy gives an additional contribution apart from the double-exchange

Hamiltonian Hpg of the previous chapter:

.0 . _
zaXl?(t) = 16(0) < [CL_QTck,SQ] >

+ < a2 qiekl Heoor] | Sg(0) > (5.8)
+ < [ qiext, Hul | Sg(0) >,

where we have to evaluate the non—zero commutator [CkQ_QTCk 1, Huy]. Using the
relation (8.28) we obtain that the equations of motion for Green’s function XI?(t)

can be written in the form:

0

.jaxl?(t) = i6(0) < [CL_QTChSé] >
4+ K [CkQ_QTCkl,Hezch] | S(S(O) >
U —
N Z < CLTCkTC:r;’lCQ‘-Fk’—k—Ql | S(0) > (5:9)
k/q/
v f 1 S (0
T N 2o S e 1k-qr Gk —a'l [ 5ql0) >
k/q/

Note again that due to the term < cIcl > the third term of the above equation does
not contribute if approximated by a factorization. The only non-zero contribution
comes from the last term which after using anticommutator properties between
electron’s operators yields the result:

S(S(O) >=< CL—QTCk-I-k'—Q’lCLTCQ’T | 56(0) >
+oqx-Q < crrckir—g'1 | Sq(0) >, (5.10)

T T
< ck'TCq’TCk—QTCk+k’—q’l

which using the definition of the Green’s function HY (1) and Xl?(t) of the pre-

kpq
vious chapter can be simplified as follows:
f ! | Sg(0 = HZ t
K C1Cq’1Ck_Q Ck+k'—q’ | LQ( ) > = k+k’—q’,q’,q’—k’( )
n(eq)8qa Xid (t) (5.11)

barx-@ X4 q(1)-

+ +
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Therefore, we conclude that the Hubbard repulsion contributes to the dynamics of
the Green’s function XQ( t) with a term which is proportional to XQ(t) and addi-
tionally creates a coupling between that Green’s function and Hk+k, q,7q,7q,_k,(t).
We derive now the final form of the equation of Xl?( t). By substituting the result
for the truncated Green’s function < CLTCQITCL—QTCk‘FkI—qu | 56(0) > from Eq.
(5.12) into Eq. (5.9) we finally obtain:

0 . _ _
z—X%)::w@<kLmqﬂd>+<kﬁmq“&mﬂSdm>

ot
<2p@m)+§:ﬂhwwywm) (5.12)

qul

_|_

+ nUX2(1).

Let us now derive the additional terms into the equation of motion for HQ,kq(t) =<K
CL+q—QTCk’l (CL_chk/T n(ek)dq ) | Sq ( ) > which come solely from Hubbard

interaction Hy since H, ,kq( ) does not contain any localized spin operator. This
equation has the form:

0

i HSa(l) = i8(1) < [ebq_qrawt (chgrer — n(ex)bao) - 53] >

< [c;r(’—l—q—QTck'l (CI{—qTCkT - n(ek)5q70) 7He;rch] | Sé(O) >

_|_

+ < [ramarawet (dhogrewr = n(en)dao) - Hol | Sg(0) >

which, by expanding the commutators in the r.h.s Green’s functions using the
relation (8.17), takes the form:

d

atHISkq( ) = K [CL+q-QTCk’l (CL_qTCkT - n(ak)5q70) s Herer] | Sg(0) >

Sq(0) > (5.13)

f f
+ < Ciq-qrwi[Cqcxt Hul

+ < [racqraen Hul (degren = n(ex)bao) | S3(0) >
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Using the results (8.27) and (8.29) we can calculate the last two terms of the above
equation. In this way we obtain:

.0

i H3g(l) = < [raqqraet (chogron = n(e1)éq0) , Hvar] | S(0) >

U f t t -
+ — Z <K ckl+q_QTck’lck_qTck//TCq'lCQ"f‘k—k//l | SQ(O) >
kl/q/

U _
_ ﬁ Z < CI(’+q—QTck'lcir(”TckTc:’lcql+k”—k+¢1l | SQ(O) > (514)
kl/q/

U
- iy
k/lq/
< CL'Tck’lc:r;'lcq’+k”—k’—q—Ql (c;r(—chkT — n(Ek)éqp) | 56(0) >
U
Yo
kl/q/
< i Car1Chpqoqi ki —a'L (c;r(—chkT - n(€k)5q,0> | Sq(0) >

Now the only step left to obtain the finite chain of equations of motion is the
approximation of the r.h.s. Green’s functions applying the usual factorization
method to the last four terms of the above equation. Let us start from the first of
those terms which after using anticommutators properties for the electron opera-
tors yields:

< Clpa_arcueich g ety Carrane | 5(0) =
< ck'lc:rl'lc;r('+q—QTc;r<—qTck”chl+k—k”l | 56(0) > .
In this form the Green’s function can be easily factorized as follows:
€ 1| Oy qm Qi Chmq T Gk | Sg(0) >
< el > g Choqririartioion | Sq(0) >= (5.15)

5kl7q/ (Hl?,k’,k’—k—l—q (t) + n(Ek/)é‘k/’k_qX]?(t)) 5

where in the last step the definition of Green’s functions is used. Similarly, the
second term becomes:

t t t -
K Cpryq-Q1 K/ 1 Ckr1 Ck1Cqr | Ca’+k" —k+al | Sq(0) >=
to t -
K ! | Cqr | Ot q—Q ke kT Cartk —ketal, | Sg(0) >
t t t -
< Cx! | Cqr | > Ck'+q—Q1 k" 1Ck1 Cq’+k"'—k+ql | SQ(O) >= (516)

b (H s eramearier (D) = n(e0)8x X34 (1)) (5.17)
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Finally, the last two terms become:
< elnew el cqri—w-q-qy (CL_qTCkT - n(€k)5q,o> | Sq(0) >~
< ck;lcl,l > CL’TCCI/-I-k”—kl—q—Ql (CL_qTCkT (Ek) ) | S ( ) >= (518)

Ok g, “—q+Q,k,q(t)’

and
< €1l 4 qoqi Ol K~ (CL—qTCkT n(ex)éq ) | Sq(0) >~
< pplart > g qpOiki—q'l (CL_qTCkT n(ex)dq ) | Sq(0) > (5.19)
6P/7k”n(€P')HlS,k,q(t)‘
Substituting relations 5.15.5.16, 5.18 and 5.19 into Eq. 5.14 we obtain the final

form of the equation of motion which governs the dynamics of H]Skq(t)-

0 _
atngkq( ) = K [CL+q—QTCk’l (CL_qTCkT - n(gk)5q,0> s Herer] | Sq(0) >

b0+ 5 ((eea) X200 — n(e0) X2 q(1))

U
+ 5 (Z H roiig(®) =Y Hiorpwx +q7k7k_k,,) (5.20)
kl

kll

U
- v Y Hyr_grqral(l).

k/l

Now we transform Eqs. 5.4, 5.12, 5.7 and 5.20 into frequency domain using
the Laplace transformation as defined in relations 4.23 and 4.24. Also, using
the results of the previous chapter we substitute the contribution of H.,., in the
above equations. Similar with the previous chapter, we set stricter bounds for
momentum indexes. That means that our Green’s functions must be written as:
Xid(w) = n(e) Xl (@) = XQ(W), Giq = (1 = n(ex))n(en—q)Giy (@) = G (w)
and HSkq( ) = n(ex)n(ex)(1 — n(sq))HSkq( ) = Hﬁa(w). Additionally, it is
more convenient to write equations of motion for Green s functions of the form:
X = 2o XY, G = 55GY and H = -2
every sum is of order O(1), therefore approprlate for numerical evaluation. More
importantly the equation of ¥ becomes:

way we achieve two goals:

Jn J?S
- Q
(w 5 2JarS(vQ — 70) — N 2 X (w)

4N2 Z G2 (w) + w) QL) = 454, (5.21)
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which in the limit v — 0 give us an explicit form of the pole of this Green’s
function

Jn J?S
wQ = — + — ZX? 4N2 Z p —|— 2JAF S((P)/Q — 70) (522)

which describes the spin—wave excitations. The Green’s functions X, G and H
obey the equations:

(WHe,q—e,+ST+nlU)X¥w) = —1——20 (5.23)
% (Z X (w) + Zﬂﬁa(w)> :

J
(w +e,—€q— 771 + iy — 2J4rS(Yamv—q — 70)) G (w)=1-5TX?(w)

A (z 3 w) -3 Gmw)) (5.24)
B B

J*S
Q
+2N - H,Lwoz(w)7

(we+e,+er —eQiptva —€a— ST —nU)H,po = JS (GaQy(w) — Ggp(w))
U
O (X8() ~ X3)) (525)

(T D) - F T

A comparison between Eqs. (5.21-5.25) with the variational equations of chapter
3 proves that these two different methods, arrive at the same equations which
describe spin—-wave excitation energies up to three-body correlations. The validity
of approximation we discuss here, i.e. the factorization of higher order Green’s
functions, is in this way proved.

5.3 Numerical results

Now we present our numerical results concerning spin—-wave damping and its de-
pendence on the large Hubbard repulsion and the weaker super—exchange interac-
tion. The role of double—exchange interaction is discussed in the previous chapter
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Figure 5.1: The role of the super—exchange interaction on spin—wave dispersion
(a) and damping (b) for J = 7¢,U = 25t,n = 0.6,y = 0.2

within the simple double—exchange hamiltonian. For that reason we fix now pa-
rameter .J/t to values which are relevant to these quoted in the literature[22].
Moreover the phenomenological damping v is fixed to the same value v = 0.2 of
the previous chapter. For that value of 4 the real part of spin—wave pole, which de-
scribe the magnon excited energies, are equivalent with our variational results[59]
as presented in Chapter (3). Our numerical calculations is performed in a 2D fairly
large system with N ~ 20 x 20 lattice sites.

We start the presentation of our numerical results with the effect of the super—
exchange interaction. Fig. (5.1) shows spin-wave dispersion (a) and damping
(b) along the main directions in the Brilouin zone for different values of J4r/t
within the region 0 < J4p < 0.012¢. We fix the other free parameters as n =
0.6,/ = Tt,U = 25t. The real part of the magnon’s pole is strongly suppressed
while J4p/t is increasing, something which is in agreement with the discussion in
Chapter (3). On the other hand, super—exchange interaction only slightly affect
the spin—-wave damping. While the magnon dispersion varies from ~ 0.05¢ to
~ 0.3t in M-point the deviation of damping is rather insignificant. Taking also
into account the small value of spin-wave damping as compared with magnon
energy we conclude that for realistic values of energy parameters .J/t and U/t
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Hguper plays a minor role on the spin—wave dynamics. Although the suppression
of the spin—wave dispersion due to super—exchange interaction is rather large and
thus not negligible, we can suppose that the properties of spin-wave damping
and thus spin—wave excitations is exclusively governed by the double—exchange
mechanism and the on-site Hubbard repulsion. We can understand the latter
results by examining the system of equations of motion Eqgs. (5.22-5.25). We
note that there is no contribution of the super-exchange interaction, Hyy.,, to the
equation of H,,, Eq. (5.25) which describes the scattering effects with a Fermi
sea electron—hole pair. The main contribution is in Eq. (5.22) of the magnon pole
which 1s the origin of the large suppression of the real part of the pole. The only
imaginary contributions comes from Eq. (5.24) of Green’s function (5, which is
not enough to significantly affect spin—wave damping due to low strength of the
super—exchange interaction. Therefore we conclude that H,p contributes solely
on spin-wave dispersion.

As we discussed the spin—wave excited states relax by scattering with an
electron—hole pair. In our calculations this process consists of two independent
channels with different relaxation rates. The first one is obtained if the elec-
tronic contribution to scattered magnon is neglected, which corresponds to set the

Hﬁ)q = 0. We now assess the contribution of the Fermi electrons, described by
Green’s function Hﬁ)q, to the spin—wave damping. The affects of that process on

spin-wave dispersion is strong as is shown in Chapter (3) since it can qualitatively
explain the softening near the zone boundary. In Fig. (5.2) we plot spin-wave
dispersion (a) and damping (b) along every main direction in the Brilouin zone.
The values of the parameters is chosen so that the zone boundary softening is
strong. Focusing on direction I' — X we note in Fig. (5.2)(b) that the three—
body damping is only 30% of the result obtained by considering only localized
spin scattering. Although three-body spin—wave dispersion exhibits a strong zone
boundary softening the corresponding lifetime seems to be long. However damping
must be directly compared with spin—wave energy in order to draw define conclu-
sions about lifetime. In this way three-body damping is about 5% of magnon’s
energy, while the Hypq = 0 percentage is as small as 0.5%. That means that the
magnon lifetime within three-body approximation is about 10 times shorter as
compared with the result obtained by neglecting electronic contribution to scat-
tering process. Moreover considering damping along the other directions we note
that the Hypq = O fails also to reproduce the behavior of the spin-wave damping
observed in recent experiments[52]. Magnon damping along the diagonal direction
1s sufficiently larger as compared with the result along x—axis. We observe that this
behavior is qualitatively reproduced only when three-body correlations are taken
into account. Additionally in the previous chapter we show the failure even of the
three-body correlated damping to reproduce that experimental result within the
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Figure 5.2: Spin-wave dispersion (a) and damping (b) for n = 0.7,J = 2t,U =
10¢, J4p = 0.0,y = 0.2: A comparison between the different approximations.

simplified double—exchange model. The fact that the right behavior is recovered
by including the on-site Hubbard repulsion in our model hamiltonian, indicates
the important role of Hy in the dynamics of the manganites.

Experimental studies on the damping of highly doped manganites[52] show a
strong dependence on itinerant electron concentration. More precisely, the higher
the electron doping the lower is the spin—wave damping. In order to examine the
nature of that numerical result we plot spin—wave dispersion and damping for two
different electron concentrations, n ~ 0.55 and n = 0.6 and for the typical values
J =T, U = 25t, J4r = 0.012¢. Fig. (5.3) shows these results where spin-wave
dispersion is plotted within RPA and three-body approximation. For the higher
density we note in Fig. (5.3)(c) that along I' — X direction damping is about only
5% of spin—-wave dispersion while along the other directions it is 2—3%. This means
that spin—wave excitations are rather long-lived for that electron concentration. At
the same time, Fig. (5.3)(d) shows that for a lower electron doping along I' — X
we have a damping about 15% of the magnon energy while becomes slightly larger
along X — M and M — T'. The latter indicates the appearance of short lifetime
of magnons, which can be associated with the larger softening of the spin—-wave
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Figure 5.3: The role of itinerant electron concentration for J = 7t, U = 25¢, J4p =
0.012¢,~ = 0.2.

dispersion as shown in Fig. (5.3)(a)—(b). A direct comparison between spin—wave
damping in (a) and (b) shows that the higher doping system exhibits lower spin—
wave damping. Furthermore, damping is lower along the I' — X direction as
compared with the other directions. That result stands for every main direction in
the Brilouin zone and is in agreement with the experimental results. In addition,
we note that for n = 0.55 the large damping at the M = (7, 7) point is directly
connected with a strong softening of spin-wave dispersion, similar with the result
of the previous chapter.

We discuss now further the role of Hubbard repulsion on the spin-wave damp-
ing. Fig. (5.4) shows again spin-wave dispersion (a) and damping (b) within three—
body approximation for the experimentally interesting electron doping n = 0.7 and
for values of U//t which lie in the region 10¢ < U < 55¢, while we fix the rest of
the parameters as J = 2{, J4r = 0. In this figure a strikingly large softening of
spin-wave dispersion along I' — X direction for low U/t is noticed. The effect
of U/t on magnon energy along the other directions is rather weak. On the con-
trary damping along I' — X direction seems to be slightly affected by increasing
U/t, while the diminishing Hubbard repulsion affects significantly damping along
X — M and M — T directions. For instance at the point Q = M = (x,7) damp-
ing for /' = 10¢ is about 50% lower than that for /' = 55¢. Spin—wave energy along
I' — X increases with an extremely larger rate as compared to the increasing of
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Figure 5.4: The role of Hubbard repulsion on the spin—wave damping: n = 0.7, .J =
2t, JAF = 0.0,’}/ =0.2.

damping. The latter indicates a significant increase of spin—wave’s lifetime with
increasing {//t along that direction. This result can be understood in this way.
The strength of the scattering between the electron-hole pair with the spinT—|
excitation is proportional to /. That means that for a very large value of U/t the
latter process is very difficult to take place. This is consistent with the result that
ng,q = 0 in the limit U — oco. The latter is discussed in chapter (3) within the
variational method and applies also here since these two methods give equivalent
results. These result that increasing U/t diminishes the role of Hypq along with
the fact that the Hypq = 0 approximation gives long-lived magnons, explains the
effect of Hubbard repulsion on spin—wave’s lifetime. The larger is the parameter
U/t, the smaller is the role of Hypq and the longer the magnon’s lifetime.

5.4 Conclusions

In conclusion, we apply the double—time Green’s function method to a model which
is believed to provide a rather realistic description of the ferromagnetic mangan-
ites. This method along with an appropriate decoupling procedure reproduces our
previous results obtained by a variational treatment of the three-body correla-
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tions on spin—-wave excitations. In this way we are able to determine magnon’s
lifetime something that is impossible without Green’s functions. We examine here
the role of the different interactions, included in our hamiltonian, on the spin—
wave damping and also discuss the concentration —dependence of our numerical
results. The minor important of the super—-exchange interaction on the damping
is showed, while this term gives a rather strong contribution (suppression) of the
real part of the magnon’s pole. On the other hand, the crucial role of the lo-
cal Hubbard repulsion is proved. First, a comparison between the damping for
different doping samples shows a qualitative agreement with the corresponding
experimental behavior, within the three-body approximation. Moreover, we show
that by including the Hubbard interaction in our model Hamiltonian, the exper-
imentally observed behavior of the damping along the different directions in the
Brilouin zone is also recovered. The importance of the three-body correlations on
the spin-wave dynamics is enhanced by our results. More precisely we show that
the scattering process between the spin—| excitation with a Fermi sea pair affects
significantly magnon’s lifetime by shortening it considerably.

120



Chapter 6

Long—wavelength spin—wave
dynamics of III(Mn)V

semiconductors.

6.1 Introduction

In the previous chapters we presented a study of the three-body correlation effects
on spin—-wave excitations in manganites. We introduced two different ways which
was shown produce equivalent results. We wish now to apply the same methods
to another kind of carrier-induced ferromagnetic systems; the III(Mn)V diluted
magnetic semiconductors. Unfortunately, the variational treatment of spin—waves
as discussed in Chapter (2) leads to a failure, since here the Goldstone theorem
(wq=0 = 0) is not satisfied. The existence of a non—zero energy at Q = 0 can be
explained by the fact that the choice of Hartree-Fock state |F' > as a reference
state within variational theory is not a proper selection. In order to derive spin—
wave excitations in magnetic semiconductors we seek another method that satisfies
the Goldstone theorem. For that reason we employ the Green’s functions method
as described in chapters (4) and (5). We showed there this method reproduces
the variational results in the manganites. It also reproduces the 1/S expansion
result contained in our full three-body calculation. Additionally it satisfies Gold-
stone theorem without any assumption on the ground state. The latter is due
to the fact that the Green’s function method describes excitations energies and
treats better the ground state effects as compared to the variational treatment.
Therefore, by applying the Green’s function method to ferromagnetic III(Mn)V
semiconductors of interest here we recover Goldstone theorem is automatically sat-
isfied. In this way we derive the equations of motion which describe the spin-wave
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6 Long—wavelength spin—wave dynamics of III(Mn)V semiconductors.

spectrum within RPA and also the effects of correlations. Moreover, since this
method reproduces the 1/S expansion results in the manganites we can very well
perform that expansion in the DMS. Note that, due to large value of impurity
spin’s amplitude S = 5/2 the expansion up to O(1/5?) may be enough to describe
the effects of correlations.

This chapter is organized as follows. In the next Section the application of
the Green’s function method to the spin-waves excited spectrum is presented. We
reproduce the variational RPA results and additionally the green’s function, which
describes correlations, is introduced. We also obtain the correlation results for the
spin—wave dispersion. Since we are interested in the long-wavelength magnons,
we determine the spin-—wave stiffness within RPA and also the correlated results.
A phenomenologically description of spin—wave damping is given by the so—called
Gilbert damping coeflicient o which is discussed is subsection (6.2.4). Our numer-
ical results are presented and discussed in Sec. (6.3). Finally, we close with our
conclusions in Sec. (6.4).

6.2 Calculations

Now we derive green’s functions equations of motion which describe spin—-waves in
the model Hamiltonian (2.1). We adopt here the magnetic—exchange Hamiltonian

H =K+ Hyop, (6.1)

where K expresses the kinetic energy of the s—p valence band holes
K = Z ekalaaka. (62)
ko

which interact with the localized impurity spins via the magnetic—exchange inter-
action

J y
Heper, = m Z 05q Ay_q, ko

kqo

J
4+ — (S_ aT_ axl + St al a ), 6.3
zﬁNEkq a Ok_qrOkl +5g Ay Gkiqr (6.3)

where N is the number of lattice sites, each occupied by a localized impurity spin

S,and o = 1 for spin T and ¢ = —1 for spin |. Due to the s—p nature of the valence

band hole kinetic energy is given by the so—called effective mass approximation
h*k?

- th'

Ex (6.4)
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6.2 Calculations

As a result, the magnetic interaction is smaller than the bandwidth unlike the
manganites.

We employ here a simple two-band description to model the valence bands.
Within that simplification we focus on the role of correlations on DMS properties.
Our calculations can be generalized by taking into account band structure details
and spin—orbit coupling [75, 89] that are believed to play an important role on
Mn-doped III-V semiconductors. The calculations are rather similar with that
appeared in Chapters (4) and (5) where the same method is applied to a Ferro-
magnetic model of manganese oxides. For that reason here we present very briefly
the intermediate algebra since its repetition provides the reader with none new
information.

6.2.1 RPA results
We start with the definition of the local spin green’s function

Y1) = 0(1) < [S§(1), SZq(0)] >=< S§(1) | SZq(0) > . (6.5)

After some algebra we obtain that the Fourier transformation of Yq(¢) within RPA
obeys the equation of motion

<w -5 m) Y(w) =451 + 5 zijk (w), (6.6)

where p is hole fraction. The equation of motion of the Green’s function
X (1) =< a_qpaxi(t) | SZq(0) > (6.7)
can be easily shown to be
(W+ekq—ex+ 5T +im) X2 = —n(e) Y (6.8)

Eq. (6.6) by substituting Xl? from Eq. (6.8) yields

Jp . S.J? 1 .
-4y YQ =465, 6.9
w 2 —I_WO—I_2Nzw—|—€y_Q—W—I—SJ—I—i71 ' (69)

v

We finally obtain the well-known non-interacting RPA magnon dispersion[20]
which is given by the pole of green’s function Y'Q in the limit ~q, v, — 0
S.J? 1
w — — .
Q 2 2N zy:wgPAJrgy_Q—eﬁSJ

RPA _ Jp (6.10)
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6 Long—wavelength spin—wave dynamics of III(Mn)V semiconductors.

Note now that the III(Mn)V ferromagnetic semiconductors of interest here lies
within the low doping regime p ~ 0.1, and therefore ,as discussed in Chapter
(3), Fermi surface can be considered as spherical and the band energy ¢ is well
approximated by a parabolic form ¢y = % Within that approximation the sum
in Eq. (6.10) can be transformed to an integral using the relation

.
NZ @ dOM /d k, (6.11)

where d = 1,2,3 is the dimensionality of our system and )y, is the density of
Mn impurity spins. Therefore in a 2D system magnon’s dispersion within RPA
becomes:

Ap A - 1
RPA 2
= — - d°k 6.12
“Q 2S5 25(27‘(’)20]\4” /k|<kp wgPA + k- — €k t+ A’ ( )

where A = S.J is the Zeeman splitting energy. Fermi momentum kr for a 2D
system with hole’s density ), satisfies the equation:

ki = (27)*Ch. (6.13)

The RPA result can be expanded to O(1/5) by removing the magnon energy from
the r.h.s. of Eq. (6.12). Therefore, the leading order spin-wave energy in O(1/5)
expansion is given by the formula

A A o 1
W= / 4>k : (6.14)
E<kp

25 QS(QW)ZCMTL €k-Q — €k T A
The integral in Eq. (6.14) can be easily performed leading to the result

(1) 35 By
g = 75 (1 e (6.15)

This result was obtained in Ref[83] with an application of the path-integral for-
mulation along with a Holstein—Primakoff representation of bosonic degrees of
freedom, while Eq. (6.12) is more general.

6.2.2 The correlated dispersion

To go beyond RPA carrier—magnon scattering processes must be taken into ac-
count. Similar with Chapter 4 we define the Green’s function Gka(t) which de-
scribes localized spin—Fermi pair scattering

Crp(1) =< S}y q (a1 = n(ex)ip) (1) | Sg(0) > (6.16)
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6.2 Calculations

Performing the approximate method of factorization as described in the previous
chapters we obtain, after some algebra, the equation of motion for the Fourier
transformation of GSP

Ap

A
o e 7 Q = — -
(W +¢Ep — ¢k 29 + le) ka - n(ep) n(ek) <1 W+ Ek—qQ — €k + A)

A A
e ]__ GQI
+ 2NS< w—l—@k_Q—aSk—I-A)zp; kp

A
~ Ix% d el (6.17)
k/

+ O(H),

Here we have substituted the contribution of X]? and therefore a self-consistent
equation for Gka is obtained. Note also that we do not include O(H) contributions
of higher—order green’s function’s. As we showed in the case of the manganites
the H = 0 approximation is in a very good agreement with the full three-body
result within the low doping regime. Therefore, since in the case of the III(Mn)V
semiconductors we are interested in such densities the above approximation is rea-
sonable. Moreover, the equation of motion for green’s function Y'Q, if correlations
are included, becomes

A A? 1
w——p—l— Z .
25  2NS - wHe,q—+A+m

SN : g
- 7 _ 7
452 kp kp w —|—€k_Q — €k + A + i’yl o

where again the contribution of green’s function X]? is substituted by using its

YQ=49i,  (6.18)

equation of motion. Moreover by supposing that the true ground state can be
approximated by the Hartree-Fock state we conclude that momentum indexes k
and p is transformed to o > kp and v < kp correspondingly. Subsequently, we
obtain magnon’s pole from that equation by taking the limit v — 0

Ap A? 1
v o= 25_2N52U:w+ey_q—w+A
A? A
— N G2 (1- . 6.19
+ 4522 c“’( w—l—ea_q—ea—l—A> (6.19)

av

Using relation (6.11) the sum over occupied states is transformed to an integral.
By defining a Debye cut-off momentum p. the sum over unoccupied states is also
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6 Long—wavelength spin—wave dynamics of III(Mn)V semiconductors.

evaluated as an integral. In this way Eq. (6.19) yields
Ap A / . 1
Ww = ———— d*v
25 25(2W)2CM7L |7|<kp w + Ev—Q —&u + A
A? / / A
+ PFad*vGe, (1 - ) :
452272 Crrnl® Jip<iaicoe Jipi<kr W+ Eamq —Ea+ A

while green’s function (7€, obeys the equation of motion

(6.20)

Ap . A
<w +e,—€q— 2—5 + m) G = 1- 539 (6.21)

A A
(1= HQ
+ 25( w—l-ga_Q—ea—l—A> @

where we define the hole

1
R = 7/ G2 d*a (6:22)
(27)2Crn Jrp<j1<po
and electron
1
HS = 7/ Ggud21/7 6.23
(27)2Cnn Ji31<kp o

contribution to the rescattering process Using the Eqs. (6.21-6.23) the equations
of motion for that the Green’s functions are obtained as follows

A
1— —1J9

Q
Ry 26V

v

=19 (6.24)

Q
S ——
2‘9(271')20]\4” kp<|Gl<pe w—l—eg_Q—eﬁ—l—A Ag/

and

H2 =19 (6.25)

o3

A A
1+—(1- 19
+25< w—l—ea_Q—ea—l-A> “

A 1 RQ
95 @n)Cor, / q
25 (27)*Crn Jipi<hr Ay

where we introduce the integrals

1 1 1 1
12 = / Ep, 19 = / d*p, 6.26
= e a8 S ey, J,aa 02
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with AQQU —w+teE,— €&y — ?—g + 2793. These green’s function are one-component
functions something that allows us to perform numerical calculations in a more
convenient way as compared to the multiple-index function G2,. Using the defi-
nitions of green’s function HQ magnon’s energy Eq. (6.20) becomes

Ap A 1
e &7 6.27
“ T 29 T 25(27)2Cnn /mskp e teq-atA (6.27)

A? A
+ /—/ PEHQ (1 - ’ ) ,
452(27)*Crvin Jrp<iai<re W+ Eaq —Ea + A

Similar with Fermi momentum kr Debye momentum is determined by the relation

e = (27)°Cat, (6.28)

which ensures that the correct total number of states is included in Eq. (6.20).
Note that since the III(Mn)V semiconductors are in the weak—coupling limit , only
momenta close to Q = 0 contributes. The latter allows us to focus on the long—
wavelength spin—wave excitations, describing by the spin—wave stiffness. Moreover,
the spin—wave stiffness is directly connected with the critical temperature Ty of
magnetic semiconductors|[76]. T is proportional to spin-wave stiffness D obtained
by the formula wq = DQ? in the limit Q — 0. Therefore the calculation of spin—
wave stiffness provides us with the determination of a very interesting physical
quantity such us the critical temperature[77, 78, 79, 80, 81, 82| of the systems of
interest. In the next subsection spin—wave stiffness is calculated within RPA and
additionally the effect of correlations on long—wavelength magnons is discussed.

6.2.3 Long—wavelength Spin—wave: Stiffness

In this subsection spin—wave stiffness constant D is determined as a function of hole
doping. Since critical temperature is proportional to that constant an estimation
of T can be made. We start with the RPA result. The long—wavelength magnon
within RPA can be easily determined by Eq. (6.12). At the limit Q — 0 magnon
dispersion behaves as a parabolic function of Q. Therefore by setting wgPA =
DFPAQ? in Eq. (6.12) and expanding the r.h.s we easily obtain spin-wave stiffness

within RPA

RPA % Lp
25
where g9 = --—. We continue now with the correlated spin-wave stiffness. In

th

order to determine the O(Q?) contribution of the second term in Eq. (6.20) we
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6 Long—wavelength spin—wave dynamics of III(Mn)V semiconductors.

have to expand HS up to 1°' in Q using Eq. (6.25). After some algebra we find
that the expansion of RQ consists only of even powers since the O(Q?"*!) orders
vanish. Therefore the first order of HQ is regulated by the zeroth order of R

RO — 1 {1 - glﬁo)} o (6.30)

and is given by

A 1
J{C I S / P27 2
o T 25(27)2Chn v<€y — e, — o) ( _ ZA_SLEO)) 8

25

(1 n 50%]@@) . (6.31)

The zeroth order of integrals (6.26) can be easily evaluated since they are trans-
formed to simple integrals of norms

10 — / vl _ I PR (o)
27 Chy, 0 &y —Eq— Tp 47 Crnéo Eo + 2_523
L[ ad 1 —e, + 8L+ E
70 — / ada S I st he g

We finally obtain the correlated result for the spin—wave stiffness

p A pc p EF
DIl —- —— — Vida| = —co(1 — —
25 8752Cr, /kF oVada) = ggeoll =%
Aeg b coar? A
—— V,|1-2 1+—719) |4 6.34
Ter 5200, /kp @ A\ T ogla a, (6.34)
where we introduced the function
A kp LEO)
V, =10 4+ 7/ dv 7 . (6.35)
47 SCrin Jo (c‘ . ﬁ) (1 _ A](0)>
cvo ta 25 . 25V

Note that by removing the second term on the r.h.s. in Eq. (6.35) we determine
the spin-wave stiffness at O(1/5?) order. Also RPA result (6.29) is reproduced if
V,=0.

6.2.4 Spin—wave damping: Gilbert damping coefficient.

The dynamics of the magnetization dynamics in ITI(Mn)V magnetic semiconduc-
tors is well described by the so-called Landau-Lifshitz—Gilbert (LLG) equation.
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The dimensionless coefficient Gilbert damping « describes phenomenologically the
relaxation rate of collective magnetization [88, 89, 90, 91]. Within (LLG) classi-
cal theory of collective magnetization dynamics Gilbert coefficient measures the
damping of magnetization and energy dissipation in the system. In our theory
the mechanism of that phenomenon is originated by the spin-exchange interaction
between localized Mn spin and the itinerant holes and therefore a Gilbert coeffi-
cient can be determined. LLG theory can be used to derive a phenomenological
susceptibility whose inverse imaginary part is proportional to aw. Here we identify
coefficient « by comparing the quantum transverse susceptibility with that semi-
classical result [88, 91]. We start with the determination of quantum susceptibility
which can be connected with our local spin green’s function Y'Q as follows

Y2 (w) = i0(t) < [S§(1), STq(0)] >= iV }(w). (6.36)

In order to establish the connection with the semiclassical linear response we sup-
pose that Yf_ is of the form

1 1
—— = ——|w — wo(w, Q) + 1a(w, Q)w]. 6.37
TR = agl el Q) e, Q) (6.37)
where « is the Gilbert damping we wish to determine. Now by solving Eq. (6.37)
with respect to o we find that Gilbert damping is defined by the relation

. 1
alw—0,Q) = —45}}12%) d.,Im (YQ (w)) , (6.38)

+_

where since we emphasized on the uniform limit we set Q = 0 into above relation.

We derive now the Gilbert damping within RPA. Using definition (6.36) and
RPA result (6.9) we obtain that the inverse susceptibility of the system is given
by

S Ap, A / v (6.39)
Y ()  45\" 725 250w, ) wteq - tATIL)

where T' is the intrinsic damping of the system coming from the spin—flip excited
states. After a straightforward application of definition (6.38) we obtain that
Gilbert damping of”4 within RPA to the uniform limit is determined by
RPA p

oY = —
25

5y
(5 T (2)2}2] (640

Note that the second term in Eq. (6.40) is a O(£)3 contribution to Gilbert damp-
ing. The value of the ratio % quoted in the literature[89] is 0.1 and therefore the
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6 Long—wavelength spin—wave dynamics of III(Mn)V semiconductors.

third ordered term is a small contribution which can be neglected. In this way the
mean—field result[89] is reproduced. Moreover Gilbert damping within RPA is of
the first order in 1/S expansion, while correlations contribute to higher order.

Let us continue with the effects of correlations on Gilbert damping. The inverse
susceptibility now becomes

1 1

vRw) 45

Ap A? / d*v

w_ﬁ—l_ 25(27)2Cyrn ) wHes—q —e, + A +T

A? A
e | A (1 )
45%(27)2Cry, / o WHeaeq — €a + A+1T

. (6.41)

Here the first line gives the RPA result, while correlations are introduced by the
second line. In order to treat correlations at O(1/5) we set

o 1 / d*y
* (27)Cvn Jywt e - F A+ iy

(6.42)

where v is an additional phenomenological intrinsic damping of Fermi sea pair
excitations. It is reasonable to assume that 4 cannot be as large as I" which is
about 10% of the Zeeman energy A. A typical value of spin]—| pair’s energy
is A while the electron-hole upper bound energy is about % ~ 0.05A for the
hole doping of interest here. Therefore a consistent choice for electron—hole pair
damping is v = 0.005A. From now on we use dimensionless intrinsic damping
parameters I' = % ~ 0.1 and ¥ = % ~ 0.005. Within that assumptions, we use
definition (6.38) to derive a beyond mean—filed result for the Gilbert damping. In
this way we assess the role of the carrier-localized spin scattering process, treated

at 1/S order. After some algebra we obtain the result

A T?-1 AT?
_ _RPA
a =« ‘|‘4:S,2 (f‘2_|_1)2]2(w_>0)_f‘27_|_16‘“]2(w_>0)
r AT
2 I 0) — == a1 0)], 6.43
Pl = 0 - g dhlo 20| (649

where the integral 15, I3 and their derivatives with respect to frequency w are as

130



6.3 Numerical results

follows

I(w—0) = L//dzadzy 1 (6.44)

’ (27)1C3, A (e —€a)? + 7% '

5 E, — Eq
Iy(w — 0) = W//dzadzy — ea)z . (649)
&y —

Dl = 0) = ~ - 402 e //dzadz — ga) o (640)
Oul3(w — 0) = //cﬂ el il (6.47)

— — . .

i <2w>4%w e — e

6.3 Numerical results

We start the presentation of our numerical results with the long—wavelength magnon
dispersion in a 2D system. Spin-wave stiffness is defined by the real part of
magnon’s pole. The intrinsic damping rates v and I' affects trivially the stiffness
since the dependence on carrier doping is independent of their values. For sim-
plicity we have set v = 0 and I' = 0 in the derivation of the stiffness. Fig. (6.1)
shows our numerical result within the approximations discussed in Sec. (6.2.3).
Spin-wave stiffness is plotted within RPA Eq. (6.29), by using Eq. (6.34) as well
as to second order in the O(1/S) expansion, for a variety of parameters .J and
Cvin quoted in the literature. Note also that the stiffness constant is measured in
%. First of all, we note that the correlated result does
not deviate strongly from O(1/5?) expansion result. The latter is expected, since

units of the constant ¢q =

within the low doping regime the 1/S expansion is in good agreement with the
full three-body result as showed in the case of the manganites. We note that this
deviation becomes maximum for a low Mn-concentration (Car,) = 1nm~2 and for
large spin—exchange interaction (J = 150meV’). However, even that difference is
small enough to conclude that 1/S5 expansion describes well the long-wavelength
spin—wave dynamics. Moreover, a comparison between RPA and correlated results
shows a strong deviation, indicating the importance of the correlations. Spin—wave
stiffness with respect to the hole doping p exhibits the following behavior. The
latter is governed by the interplay between two factors; the local antiferromag-
netic coupling between Mn—spins with the valence-band carriers and the kinetic
energy of itinerant spins. On the other hand, for intermediate hole dopings an in-
crease 1n stiffness is observed. For a particular .J there is a hole doping py; where
the stiffness becomes maximum and thus ferromagnetic order is well established.
For dopings higher than py; the antiferromagnetic interaction between impurity
spins and itinerant carriers starts to suppress the stiffness which finally becomes
negative. The latter indicates that ferromagnetism is impossible for very high dop-
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6 Long—wavelength spin—wave dynamics of III(Mn)V semiconductors.

ings. This behavior of stiffness can be understood is this way. Due to the kinetic
energy degree of freedom the itinerant—carrier spin is fully polarized. This medi-
ates long-range ferromagnetic order via the interaction H.,., with the localized
spins for intermediate hole-dopings. The latter is consistent with the increase in
the spin—wave stiffness within these dopings. On the hand, for higher dopings,
itinerant—carrier spin polarization is destroyed by double-occupancy effects and
therefore ferromagnetic order is suppressed. We discuss now the effect of corre-
lations on stiffness. Note that the deviation between RPA and correlated results
is being pronounced when hole doping is increasing. More precisely correlations
shift pp; towards higher dopings as compared with the RPA results. Therefore
correlations widen the doping regime where ferromagnetism is possible. For ex-
ample, the increase of stiffness for an experimentally relevant doping p = 0.1 and
for .J = 150meV, Cpr,, = 3nm ™2, see Fig. (6.1a), exceeds the RPA result by 100%.
This deviation weakens for lower impurity densities and becomes about 40% for
Cyn = Inm™ at pyr. On the contrary by comparing Figure (a) with (b) and
(c) with (d) we understand that correlations play a more important role for lower
strength of exchange interaction .J. The effect of lowering .J is not so strong as that
of the increasing impurity density. However the lower value of the local magnetic
exchange interaction strength is in better agreement with recent experimental es-
timations for .J. However the effects of correlations remain strong even for that
low density of Mn impurities. We can view that result considering the critical
temperature of magnetic semiconductors. As we mentioned T is regulated by
long—wavelength excitations and is proportional to the stiffness. Therefore a 100%
increase in spin—wave stiffness can be translated to a large enhancement in the
critical temperature. We conclude that correlations enhances T of diluted mag-
netic semiconductors by a significant factor which in some cases can reaches 100%.
Moreover our model predicts that enhanced T can be obtained by increasing car-
rier doping to our sample. Although a calculation of critical temperature is rather
challenging a rough estimation of T can be obtained by using our 7' = 0 result of
stiffness D. By assuming that the total spin of the ground state equals the number
of magnons at a particular temperature[76] one obtains the simple formula

25 +1
kpTe = STJer‘g, (6.48)

where po is the Debye cut—off wave vector given by (6.28). Using that for-
mula, we obtain upper bounds for 7. For experimental relevant parameters
J = 100meV,Car, = 1 — 3nm~? we obtain that within the RPA Ty can not be
higher than 100K whereas the correlated bound is 200K. We remind you again
that result (6.48) sets only an upper bound to critical temperature and cannot be
used to determine the exact T of a DMS system such as the III(Mn)V. However,
its evaluation to our case gives a quantitatively assessment of the correlation ef-
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Figure 6.1: Spin—-Wave stiffness as a function of hole doping and for different .J
and Car,. Solid line: The correlated result of Eq. (6.34), Dotted line: The RPA
and Dashed line: The O(1/5?) result.

fects on the long-range ferromagnetic order. Moreover, this result was obtained
within a simple two-band model. In ref. [75], it was shown that relevant results
can be obtained by employing a six-band model. We show here that even within
the simple two-band approach a significant enhancement of critical temperature
can be predicted, while by extending our calculations to a six-band model a more
robust description of the effects of correlations on T can be derived.

Having discussed the role of correlations on the real part of the magnon’s
pole (spin—wave spectrum) we continue now with the effects on the relaxation of
that excited states. As we discussed in Sec. (6.2.4) the long—range magnetization
dynamics is well described by the phenomenological Gilbert coefficient «. Here
we present our numerical results concerning coefficient o within RPA, and also
we discuss the effects of correlations treated perturtatively in 1/5? order. The
latter expansion, which allows us to derive results for the correlated « in a closed
form, is consistent with our previous discussion where showed that the spin—wave
stiffness is well approximated by an up to second order expansion in 1/S. The
Gilbert damping coefficient i1s usually plotted as a function of intrinsic damping T'.
We fix now the Mn—impurity density as Cy;, = Inm ™2 and exchange interaction
as J = 150meV . For these values we see in Fig. (6.1a) that ferromagnetic order is
possible for a wide range of hole-dopings while the effects of .J are fairly strong.
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Figure 6.2: Gilbert damping for different hole dopings and for .J = 150meV, Cyr,, =
Inm~2. Solid line: 1/S? result, Dotted line: RPA

In order to examine the role of hole-doping on «, we fix now the parameters
J, Crrpn to these values and plot the Gilbert damping coefficient as a function of
I' in Fig. (6.2). First of all, we observe that, in general, correlations enhance
the the Gilbert damping as compared with RPA results. We note that within the
very low doping regime (p ~ 0.05) the deviation between the mean—field result
(RPA) and the correlated one is large. For example, at the value of I' that o
becomes maximum, correlations increase the damping by a factor about 35% of
the RPA value. For higher values of the intrinsic damping the deviations diminish.
Examining Fig. (6.2) we note that the effects of correlations on the damping is
lowering as the hole-doping increases. For a rather high hole-doping, p = 0.3,
deviation is about 10% of the RPA result, therefore still significant. However the
absolute difference between RPA and correlated result a#P4 — @ORR

of p is relatively increasing. This difference for p = 0.05 is about 0.003 whereas

as a function

for p = 0.3 becomes 0.005 and therefore is enhanced. Since Gilbert damping is
decreasing for lower dopings, the deviation as percentage of RPA values becomes
larger and consequently the role of correlations is pronounced.

We continue now with the role of Mn—density. Fig. (6.3) shows the Gilbert
damping as a function of hole-doping and for different impurity dopings. First of
all, we note that the RPA result Eq. (6.40) is independent of Mn-doping. The

Gilbert damping within RPA is a function only of ratio p = OOJ\Z . More precisely,
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oA displays an increasing behavior with p. On the other hand, the correlated
result is explicitly affected by Chs,, due to integrals (6.44). It is clear that at the
extreme limits p = 0 and p = 1 these integrals vanish since either integration over
v or over a is zero. Therefore, the correlated damping equals the RPA result when
hole density is almost zero or is equal to the Mn density. Let us see what happen
for intermediate values of p. We note that correlations enhance a as expected. The
enhancement becomes large for a low impurity density (Car, = 0.5nm™%). The
deviation of the RPA result is rather constant for a wide range of dopings and is
about Aa ~ 0.015. This deviation becomes more significant within the low doping
regime where damping is low. For example, for p = 0.1 the correlated damping
i1s two times larger than the RPA result whereas the corresponding result for a
high doping, p = 0.8, is about 20% of the RPA value. Apart from that significant
quantitative contribution of correlations on Gilbert damping we note also that
correlations destroy the linear behavior of a@ with respect to p. More significant is
the fact that the non—linear trend occurs within the experimental relevant regime
of low hole-dopings. The latter result proves the importance of carrier-localized
spin scattering to the relaxation dynamics of elementary spin—wave excited states.
The mean—field (RPA) result fails completely to describe the spin-wave damping.
The role of Mn density becomes clear for a higher value (Car, = 1nm"2). In this
case damping is well described by the RPA result since the contribution of the
correlations is rather negligible. Moreover the non-linear behavior weakens. We
conclude that correlations effect qualitatively spin—wave damping within the low
impurity doping regime.

6.4 Conclusion

In conclusion, we presented here an application of the green’s function method to
the magnetic excitation spectrum of the III(Mn)V diluted magnetic semiconduc-
tors. We employed a simplified two-band description to model valence-band holes
while we neglect spin—orbit coupling and band—structure effects. Our purpose here
is the study of the many-body correlations, beyond the mean field RPA approach,
expressed by the scattering of a magnon by an electron—hole pair. By trying to
describe correlation effects on spin—waves using a variational method similar to
that in the case of manganites we arrived to the conclusion that a better treat-
ment must be used since Goldstone theorem of excited states was not satisfied.
The ground state of the III(Mn)V ferromagnetic semiconductors of interest here is
typically approximated by the Hartree—Fock variational state, obtained by treat-
ing the localized Mn spins as classical. Nevertheless, that assumption within the
variational approach leads to the violation of the Goldstone theorem as mentioned
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Figure 6.3: Gilbert damping as a function of hole doping for different Mn—densities
and for J = 150meV,T = 1,5 = 0.005.

above. This is due to the fact that variational theory is rather sensitive to the
initial choice of the reference state employing to excite magnons. Fortunately,
the calculations we presented here derive a Goldstone-mode branch that describes
well the spin—wave excitation spectrum. This is the great advantage of green’s
function method in comparison with the variational treatment; the Green’s func-
tions describe, by definition, the excitation spectrum and therefore any ground
state contributions are removed. Moreover the analysis of the Chapters (4) and
(5) proves that green’s function method reproduce the variational results in the
manganites. Therefore any result that is recovered by our variational treatment
can be also re—derived by green’s function method. In this way we are able to treat
many-body correlation perturbatively in 1/S expansion. We show here that the
carrier—localized spin scattering approximation is in very good agreement with the
1/S5? results. This justifies our assumption to neglect the three-body carrier—fermi
pair scattering process. The effects of correlations on long—wavelength spin—wave
excitations 1s shown to be of significant importance. We show that the enhance-
ment on spin—wave stiffness due to correlations can reach a strong value such as
100% of RPA result. The connection between spin—wave stiffness and critical tem-
perature allows us to conclude that RPA underestimates strongly 7. The latter
results are obtained for parameters relevant to these estimated experimentally,
indicating the importance of the local correlations to the spin—-wave dynamics.
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Furthermore, although, the effects of carrier-localized spin scattering process on
the damping of magnetic semiconductors is relatively weaker as compared to the
effects on the stiffness, we show here that their role is of major importance. We
found a 30 — 10% increase on Gilbert damping for a variety of parameters relevant
to experiments. Most significant is the effect on Gilbert damping appeared within
the very low impurity doping regime where the linear p—dependence is altered for
experimentally relevant hole-dopings. This proves that the carrier-localized spin
scattering process studied here plays also a significant role on the long—wavelength
spin-wave dynamics of DMS.

6.5 Closing remarks

The work presented in this chapter is highly prospective. As far as the first part
of this dissertation is concerned we believe that our results are rather conclusive
since there are little remaining works to do for the case of manganites apart from
including bandstructure effects and orbital degrees of freedom. Nevertheless, there
seems to be a wide range of open questions regarding the diluted magnetic semi-
conductors studied here. First of all, that our results are obtained in a simplified
two—band model without taking into account band—structure effects and spin—orbit
coupling indicates two facts. Although a six-band approach seems to be rather
realistic we obtain here qualitatively similar with that model results. Moreover our
model can be extended in a way that incorporates band-structure and spin—orbit
effects. That can be achieved by employing the so—called Kohn-Luttinger Hamil-
tonian to model valence band holes of DMS. This is a potential work that will
improve the reliability of our model. Furthermore the three-body contributions
to the spin—wave damping is also an open issue to be study elsewhere. Finally our
study is relevant to the ultrafast relaxation dynamics studied by ultrafast spec-
troscopy. That opens another potential pathway for future extension of our work
with plenty of experimental results relevant to theoretical study.
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Chapter 7

Numerical methods

7.1 Introduction

In this chapter we present the numerical methods we use in this dissertation. The
numerical problems we have to deal with can be divided in two general categories.
The first and main one is the solving of a system of variational equation. This
kind of problem can be solved by applying an iterative method Finally, the second
category of numerical problems also important with the first one is the root finding
of a single equation. Of course, this problem can be solved by using the iterative
method but in some cases this is not the appropriate way of deal with that problem.

7.2 TIterative method

Our method is based on the iterative method of solving linear equations or linear
sets of equations. Firstly, let us suppose a problem which consists of a single
equation of the general form:

v = f(2) (1.1)

We do not suppose any particular form of the function f(z) in the rhs of the
equation. Let us notice that the RPA equation for the magnon energy has exactly
the form (7.1). In addition, this form applies for the finding of the Fermi energy
of a system with N, itinerant carriers, which is also an unknown parameter of our
problem and can be determined only numerically. A iterative solution of Eq. (7.1)
demands to rewrite the equation in the form:

vit1 = f(2:) (7.2)
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Now, using an initial guess for xy one can take an improved value for z. By suc-
cessively replacing z; by its improved value x4, in rhs of Eq. (7.2) and examining

the difference D:
D :| Ty — Ti41 | (73)

we can achieve full convergence of = to the solution of equation (7.1) until the
desired tolerance D. In order to improve the speed of convergence we can generalize
Eq. (7.2) so that each step x;1; is replaced by a mixture of its value and some of
the previous step’s results:

Tipr — 2 = (1 — wy —w2)xi_q + wizi + Wiy - (7.4)

This formula is known as Anderson mizring and the value of parameters w; varies
from 0 to 1. Although, we can include a large number of previous z;’s in the above
mixing, the larger number of parameters w; used here is usually 2. Therefore we
mix two old x;y1 with the improved one. Notice that for wy = 1 and w; = 0 we
return to the unmixed formula. Also when convergence is achieved formula 7.4 is
satisfied.

The above strategy can be extended to a system of equations, which is a
more interesting problem. Firstly, let us note that we do not gain any speed of
convergence by applying the Anderson mixing in the equation of magnon energy,
because of the large number of equations. Thus we use the equation of energy in
its simple unmixed form:

WQ:fO(XakIIa"') (7.5)

where f° is a known function which depends only on the variational amplitudes
X, ¥ included in the system of equations. For example, within ® = 0 approxima-
tion the f°is a function only of X and ¥. Now, the Anderson mixing is applied at
each equation of the variational amplitudes. The equation of X, for a particular
value of momentum Q and v is written:

Xipr = (1 —wy —wy) Xioy + w0 X +wy fH(wq, X+ +) (7.6)

We apply a similar transformation on all equations of the system, using a different

set of mixing parameters w¥, ¢ = 1,2 for each equation.

The optimal choice of w! parameters can be predicted analytically in some
simple problems. In our complex problem the only choice we have is to test some
set of values performing the iterative method in a system with a small number
of sites, where convergence is fast. Afterward, we use the optimal set of these

parameters in order to solve our full system of equation. We have tested a variety
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of values for parameters w; and found that the optimal set of the relaxation pa-
rameters 1s w; ~ 0.7 — 0.8. Using these values we can achieve convergence within
about 10-20 iterations per lattice momentum Q.

The next step is the choice of an initial guess for the variational amplitudes and
for energy. It is appropriate to use the RPA results as our initial values of energy
and amplitude XQ. Within this assumption the rest of the amplitudes are set
equal to zero. It 1s better to use the above guess than random initial values of the
unknown parameters as in this way we lead the iterative procedure to the solution
of the system. Another choice of initial guess will cause slow convergence or even
divergence of the solution. The iterative solution of the system of variational
equation for any momentum Q within the Brillouin zone consists of the steps:

1. Calculation of a new value energy wygpw by using Eq. (7.5) and the initial
guess of the amplitudes.

2. Using the energy wypw we calculate improved values the the amplitudes
using their equations in the mixed form.

3. Using again Eq. (7.5) and the improved amplitudes from the last step, we
calculate a second value for energy Wi g -

4. We apply the criterion of convergence | (Wi pw —wnew) |< TOL, where TOL
is the tolerance we ask the program to calculate the magnon energy. If this
criterion is satisfied the program stops, otherwise the steps 1-4 are repeated
until the convergence of magnon energy within the desired tolerance.

We repeat the above procedure for any momentum Q and along any direction
within the Brillouin zone.

7.3 Calculation of Fermi energy

Regardless to say that a single equation problem such the above can be easily
solved by another way. Eq. 7.1 can be written:

r— f(z)=0 (7.7)
In this way one can solve the problem by finding the roots of the above equation
using, for instance, the brent’s method. We use this strategy in order to calculate
the Fermi energy of a system with n concentration of itinerant carriers. In a
particular temperature 7' the concentration n of itinerant carriers is defined as:

1 1
n = N Zk: 6(€k—6F)/kBT 1 (78)
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where 5 is the Fermi energy of the system. For a known Fermi energy and tem-
perature one can calculate the concentration n using the above formula. However
this is not the usual problem since these parameters are usually external constants
and we give the values by hand. In general, what we do not known in such numer-
ical problems is the Fermi energy which depends on the band structure and the
temperature. In order to calculate the Fermi energy we rewrite the Eq. (7.8) in
the form:

1 1 i
n—= ﬁ zk: e(ak—r)/kBT -1 = 07 (‘9)

Now becomes clear that this relations is of the form 7.7 and therefore can be solved
by using the brent’s method of root’s finding.

7.4 Numerical integration

One of the main numerical problems throughout this dissertation is the numerical
calculation of multiple integrals. The usual treatment of the calculation of such
integrals 1s by using the Monte Carlo method. These methods are more sufficient
for high dimension integrals as compared to a quadratic method such as the Simp-
son’s Rule. However, the integrals we deal with here is usually 3D or 2D integrals.
The evaluation of such integrals by Monte Carlo method is not adequate. For this
reason, the quadratic formula of Simpson’s rule is used in order to numerically
evaluate the high dimension integrals. Simpson’s rule for a simple 1D integral is:

N-1

[ H@yts = § ) + 45w+ 5+ S+ ) (1.10)

=1

2. In order to apply that formula to a
) as follows:

2|7

where h 1s the step length, given by h =
2D integral it is convenient to rewrite (7.1

e}

b hN—l 3
/a fa)dz = < ; ; Zif(x; + mh), (7.11)

where the matrices Z; and m; are:

1 0
Z = ,m= | 1/2
1 1

142



7.4 Numerical integration

Now in order to derive a formula for the 2D integral we apply Simpson’s formula
(7.11) for every variable x, y of integration. In this way we obtain the formula

36

t,j=11,I'=1

b d hXhY N-1 3
[ [ feadedy =255 5T ST 2o+ mir, g+ moky), (112

which evaluates a 2D integral using the Simpson’s rule.
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Chapter 8

Appendices

8.1 Variational theory

In this section we introduce the variational theory we adopt in the chapters 2 and
3 in order to determine the spinwave dispersion. Our starting point is the state
which describes a magnon with lattice momentum Q. This state |Q) is of the
general form

Q) = M§|F), (8.1)

where the operator le excites the magnon from the reference state |F'). The state
|} is chosen to be the fully polarized ferromagnetic state where all itinerant and
localized spins are parallel. So that its energy is Eg = ), ex + Szﬂ Note that
this state is an exact eigenstate of the double—exchange hamiltonian. The later
can be easily obtained by acting with the Hamiltonian H to |F'), then we find
H|F) = Eg|F) = FE. As we saw the operator le can be generally written in the
form

My =Y eM! = f({e}), (8.2)

k3

where {¢;} is the set of variational variables. This set, in general complex number,
contains, for example, the amplitudes XS, UQ and @aQw. The energy Eq of the

system is determined by the mean value of the hamiltonian, therefore:

b (QH1Q) 53

(QIQ)
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where we divide with (Q|Q) since the magnon state is not normalized. Substituting
8.2 in 8.3 we find the magnon energy:

_ Zij C?Cj<F|MiHM]T|F>
Zi |Ci|2

as a function of the set of variational variables. Subsequently, in the framework of
the variational theory, minimization of energy demands:

0Bq _  _ 0Eq
8ci N N 80;‘ ’

Fq (8.4)

(8.5)

It can be easily proven that by satisfying one of the above equalities the other is
automatically satisfied. If we select the second one and take into account that only
(Q| depends on ¢, then the derivation of that relation gives:

9(Q| (QlH]Q) )(Q] ) 1
H — —— = 0. 8.6
(Fe - Coa 70'?) o &
The derivative of the magnon state (Q| is
NQ _ o 9 it _ f
g <F|8chQ = (F|M]. (8.7)
Therefore substituting 8.7 into 8.6 we obtain:
@a)  (qiqp =D &)
after using 8.3 we find:
(FIM:H|Q) — Eq(FIM;H|Q) = 0, (8.9)

which by substituting the magnon state |Q) from Eq. 8.1 yields:

(F

M; {H, MH IFY = (Eq — Ep)(F

MM§|F), (8.10)

where we use the commutator [H, LM(E] = H[W(B — LM(EH. Since we are interested
here in the excitation spectrum of magnon it is more convenient to define magnon
energy as wq = Fq — Fg. Notice also that we set h = 1, thus energy is the same
with frequency in this system of units. In this way the variational equation 8.10
becomes:

(F|M; {H, MH |F) = wq(F|M;ML|F), (8.11)
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where for Q = 0 we have wq = 0 as must be for Goldstone modes. The later
simply means that at zero momentum Q the excitation energy is also zero. Now
we can determine the equation which governs a particular variational amplitude by
substituting the corresponding component M; in the above equation. In this way
a coupled system of variational equations is obtained. The procedure we use here

is the following. Firstly, one has to determine the commutator {H , Mg} appeared

in the Lh.s. of Eq. 8.11. The results of that calculation is presented in the next
appendices. Then by acting with M; and taking expectation values in |F)) state
we obtain the variational equation for amplitude c;.

8.2 General properties of operators

In this Appendix we present a list of some useful relations regarding the localized
spin and electron operators appearing in this thesis.

The localized spin operators in momentum space satisfies the useful relations:

SZ|HF) = VNS§,0|HF) (8.12)
S+, 5] = 5
[ q q/] - ﬁ q+q’ (8]‘3)

(S5g) = S%, (8.14)

Now we present some useful properties regarding commutation and anticom-
mutation relations of general operators.

[[H,A],B]+ [[B,H], Al + [[A,B],H] =0, (8.15)

holds for any operators A and B,

[B,CD] = {B,CYD — C{B, D} (8.16)
[AB,C] = A[B,C] + [A,C]B (8.17)
[AB,C) = A{B,C} — {A,C}B (8.18)
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8.3 Calculation of commutators

In this section we present the results for the commutators appeared in our calcu-
lations. We choose not to incorporate this calculations in the main body of the
dissertation due to complexity of those commutators.

We start with the calculation of the commutator appeared in the variational
calculations of chapter 2 and 3. This commutator can be written as follows:

[H,M&) = [K, M§] + [Hepen, MG + [Hu, M) + [Har, M§), (8.19)

where each one of the above commutators is:
- 1 _
[K,M§)] = \/_ Z (evrq — &) X2 Lgic

+Z‘I’ V) Shs_achicn (8.20)

T t
\/_ Z auy €Q+#+U a — &yt Ea— )CQ-HH-U—OZLCVTCQTCMT?

apy

[HexchaMz)] = (7_—2 Q‘|‘ Z\II )
+ TNZ(—NFX?—Z\I/M) ¢ qien (8.21)
+ % (qu qu +NTE +1- X2 Z@M)x
Bu

- T
SQuu—pCarCul

i i
+ Z NIQ —I'(I)ﬁ?w) CQ+utv—al v1CarCuls
oz;w
U
T t t
[HU7MQ] = 7V3/2ZXPCkTC‘H‘k—V—QTquCVT (822)
vkq
u Q t o ot
- 2 N3/2 Z q);wozckTCOHk—l/-l-a—u—QTqucuTcaTcu% (8.23)
aurkq

[Har, Mb] = 2745 (v = 7)5q + 27475 Y (Yats—a — 7o) chycur. (8.24)

ap
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8.3 Calculation of commutators

We continue now with the presentation of the commutators appearing in the
application of the Green’s function method.

Jar . :
[SiQ, Hsuper] = - ﬁ Z"}/k (SkSiQ—k —|— SiQ+kS—k>
P

Jar . .

+ g (5157 + 515204 (8.25)
Jar .

[St-a Hauer] = = Z (5 Si-a—k T 512 )

‘]AF St sisz 8.26

‘|‘\/— kOg—a—k + x5 —g_k ) - (8.26)

U
[CL_qTCkTa HU] = N Z (cz—chk'Tcg’lcql-HC—k'l — CL’Tcchg’lcql-i-k'—k-i-ql) . (827)

qu/

U
i _ il il il il
[ck—QTckl7 HU] = N Z (_ck’Tcchq’lcq/‘}'k/—k—Ql + ck’ch/Tck—QTck+k/—q'l> . (828)
qul

t t
[Ck/+q QTCk'lv HU N Z ck”ch Tck'+q QTCk/ +k"—g'|
k// !

_cz”Tck'lcg’lcCI'+k”—k'—q—Ql)' (8.29)
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