UNIVERSITY OF CRETE
FACULTY OF SCIENCES AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE

Cross-Layer Monitoring and
Adaptation of Multi-Cloud
Service-Based Applications

by

Chrysostomos Zeginis

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Heraklion, October 2014

Copyright © by Chrysostomos Zeginis, 2014

All Rights Reserved

iv

UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

Cross-Layer Monitoring and Adaptation of
Multi-Cloud Service-Based Applications

Dissertation submitted by
Chrysostomos Zeginis

in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Science

Author:

Chrysostomos Zeginis, University of Crete

Examination

Committee: Dimitris Plexousakis, Professor, University of Crete

Christos Nikolaou, Professor, University of Crete

Kostas Magoutis, Assistant Professor, University of Ioannina

Evangelos Markatos, Professor, University of Crete

Antonio Brogi, Professor, University of Pisa

Schahram Dustdar, Professor, Vienna University of Technology

Nikos Parlavantzas, Assistant Professor, Institut National des Sciences Appliquées

Department

approval: Panagiotis Tsakalides, Professor and Department Chair

Heraklion, October 2014

vi

Abstract

Service-Oriented Architecture (SOA) emerged in the late 90s, introducing Web
services as a new means for delivering software over a network. Nowadays, it
provides many opportunities for businesses to automate their processes, by pro-
viding services to either end-user applications or to other services distributed in
a network, via published and discoverable interfaces. The success of many Web
service related projects has shown that existing technologies enables implement-
ing a true SOA. However, the evolution of Web services indicates that they are
moving beyond the simple exchange of information to the concept of combining
existing and new applications in order to provide more complex Service-based
Applications (SBAs). Consequently, businesses will be able to create customizable
composite SBAs, also integrating back-end and older technology systems found

in local or remote applications.

With the advent of the new century, a number of additional pieces of the com-
puting “puzzle” fell into place to complement SOA and reflect the new trends
introduced by the Internet of things (IoT), which refers to the interconnection of
uniquely identifiable embedded computing devices with the existing Internet in-
frastructure. Cloud computing has emerged as a new paradigm for delivering “as-
a-service” offerings to the end users: (i) Software-as-a-Service (Saa$) is the software
delivery model adopted in Cloud computing, where Web services are made avail-
able to users on demand via the Internet from a Cloud provider, (ii) Platform-as-
a-Service (PaaS) provides the platform to the application owners to deploy their

applications on, and (iii) Infrastructure-as-a-Service (IaaS) is a resource provision-

vii

ing model allowing Cloud providers to outsource equipment, i.e. Virtual Machines

(VMs), required by Saa$S and Paas.

The dynamic nature of Web services and the vulnerable execution environ-
ment in which they perform requires that their functional and non-functional
(Quality of Service (QoS)) characteristics should be monitored. The monitoring
process is essential in order to gain a clear view of how they perform within
their operational environment, take management decisions and perform adap-
tation actions to modify and adjust their behavior, according to the new posed
requirements. This dissertation addresses monitoring and adaptation of SBAs de-
ployed on multiple Clouds, introducing an Event based Cross-layer Monitoring
and Adaptation Framework, named ECMAF. As SOA and Cloud architecture com-
prises a number of functional layers, including various application components,
spanning from abstract business processes to concrete infrastructure resources,
monitoring and adaptation should take into account the layers” dependencies in
order to efficiently correlate the monitoring events and promptly determine the
most suitable adaptation actions that should be triggered. The proposed approach
takes into consideration all the Cloud and SOA layers comprising a multi-Cloud

SBA.

To investigate the applicability of ECMAF and demonstrate its benefits, we
have implemented and deployed a traffic management application on a multi-
Cloud setup. This application has been suitably designed to optimally perform on
multiple Clouds offering different storage and computational power. The Clouds
used for the SBA’s deployment exhibit a number of dependencies among the in-
volved components across all the SOA and Cloud layers, captured in a compo-
nent meta-model, which has been especially designed to model a snapshot of
the current SBA deployment status and the dependencies of the active compo-
nents. These dependencies are exploited by the ECMAF framework in order to
extract valid event patterns causing specific Service-level Objectives (SLO) vio-
lations, which are further processed to form more complex ones, mapping to

suitable adaptation strategies. Moreover, these dependencies are also enriched

viii

at run-time to reflect new behaviors of the SBA, dictated by a context or an in-
dividual component’s status modification. Additional meta-models for validating
the monitoring events, as well as the adaptation strategies supported by the EC-
MAF’s incorporated adaptation engine, are introduced.

Experimental evaluation is performed using synthetically generated datasets
including various event patterns, investigating the ECMAF’s performance and
scalability, in terms of execution time and throughput, as well as optimality and
accuracy with regards to the produced adaptation strategy. The results show ex-
cellent agreement with theoretical the main work assumptions. In particular, the
performance of the pattern discovery process mainly relies on the metric’s defi-
nition, which can be adjusted to reflect the optimal time interval dictated by the
pattern discovery process, so as to produce the most effective proactive adapta-
tion results. As far as the performance results are concerned, they show that the
ECMAF’s execution time depends mostly on the considered monitored metrics, as
well as on the deployment’s scope (single or multi-Cloud) and SBA’s size (i.e. the
number of individual services). The accuracy and the performance of the adap-
tation process (mainly the scaling actions) are mainly based on the image size,
the location and the number of the provisioned VMs, but mostly depends on the
expertise of the adaptation strategy designer. Finally, the overall ECMAF’s eval-
uation results reveal efficient handling of the detected monitoring events, thus
enabling the successful addressing of the individual SLO violations (i.e. reactive
adaptation), as well as of the discovered critical event patterns causing aggregate

metric’s violations (i.e. proactive adaptation).

Keywords: Web Services, Cloud Computing, Service-oriented Architecture, Mon-

itoring, Adaptation, Multi-Cloud, Cross-layer, Modeling

Supervisor: Dimitris Plexousakis
Professor
Computer Science Department

University of Crete

ix

[TepiAnym

Ta tedevtaia xpdvia, n YINpeotooTpe@ng ApXITEKTOVIK £xel avadetyOel oTov
ouvnOéotepa xpnotponotovpevo tpdmo didbeong Aoytopikov, e thv aglomoinon
NAEKTPOVIKWV UINPESLWV Tov gival didbeoipeg uéow €101kOV amobetnpiwv oto
d1adiktvo. Mpooépel TOANEG EVKALPIEG AVTOUATOTIONN GG SLEPYATLWV OTIG EMLXEL-
PHOELG, TAPEXOVTAG 6TOVG TEAIKOUG XPHOTEG €iTe amA€g unpeoieg, ite aAAeg o
oUVOeTEC, P€ow KaTaAANAwV dtema@wv. H emtuyia TwV Tpoypapuudtwy Tov £Xouv
WG aVTIKEIUEVO TIC NAEKTPOVIKEG LTNpesieg €xel amodeiel 6T o1 vdpyoLOES Te-
Xvoloylieg elvat emapkelg, yia va avantdgel kKamolog pia KatdAAnAn epapuoyn
Paciopévn otnv vrnpectootpe@r] apxitektoviky. H e€€Ain duwg twv nAektpo-
VIKQOV UTINpeotwV ta TeAevtaia xpdvia deixvel, 6ti n tdon elvar dxt tdéoo otnv
amAr] avtaAlayn TAnpo@opiag uetah tng vmnpesiag Kat Tov xpHotn, aAld otn
oUVOeo TWV LTAPXOVTWYV LTINPESLWV Yid TN dMULovpyia cOVOETWV EQAPUOYWV.
ETOUEVWG, O1 EMKELPAOELS UTOPOVV VA avaTtOEOUV cUVOETEG TPOSAPUOGIUES UTLH-
PECLOOTPEPELG EPAPUOYES, EKUETAAAEVOUEVEG TTapAAANAX TaAa1OTEPEG TEXVOAO-
YIEG IOV XPNOIUOTIOLOVVTAV GE TOTIKEG KAl ATTOUAKPUGHEVEG EQAPUOYEG.

Me tov gpXOUd TOL 210V ALWVA APKETEG VEEC TEXVOAOYiEG EloTIXONoaV Y va
GUUTANPWOOLY KAl VX EMEKTEIVOLV T1G SUVATOTNTEG TG UTNPESLOGTPEPOVG apXL-
TEKTOVIKNG, £T01 Wote va cupPadiler ye tn véa Tdon Tov “AtadikTioL TWV Tpayud-
twVv” (Internet of Things), To onoio avagépetal otnv dracvvdeon twv povadikwv
UTIOAOYLOTKWV UNXAVWV PE TNV LTApXOLoa vItodour] Tov dtadiktvov. To vtoAoyt-
oTikd vépog (Cloud computing) efvat o tétola ovyxpovn texvoloyia mov yvw-

pioe daitepn avdntuén tnv tedevtaia dekastia Kot KUPLO yVWPIoUd TOL elvat N

xi

TapoxN LTNPESLWV ot did@opa enineda otovg TeAKOUS Xproteg: (i) Software-as-a-
Service (SaaS) elvai n TAPOXH EPAPUOYWV GTOVG XPHOTEG HEGW TOL dradikToov and
TOUG T POXOLG LTTOAOYIOTIKOU VEQOUG, (ii) Platform-as-a-Service (PaaS) ava@épetat
OTNV TAPOXH] HLXG EVILAUESNG TAATPOPUAG OTOVG OXESIAOTEG EQAPUOYWY YiA VX
TPOoPEPOLV Tig uTNpeoieg Toug kat (iii) Infrastructure-as-a-Service (Iaas) eivat éva
UOVTENO Yot TIG E1KOVIKEG UnxavEG (virtual machines) mov npos@épouv ot tdpoyot

UTTOAOY1OTIKOV VEQOUG KAl amaltovvtal and ta dAAa dvo emineda.

Qotd00, N SUVAULKT YU TWV NAEKTPOVIKWV DTINPEGLOV KAl TO EVAAWTO TIEPL-
BaAdov ektédeonig Toug, emPalovy TV TapakoAovONcn TG00 TwV AEITOVPYIKWOV
400 Kal TWV TOLOTIKWV XAPAKTNPLOTIKWY TOUG. AuTH 1 dadikaocia emitpénel emi-
ONG TNV TPOGAPUOYH TWV NAEKTPOVIKWV UTNPESLWV HE PAon TIG VEEG ATAITAOELS
TOV AVAKUTTOLV KATd T Sidpkela ekTéAeotig Tovg. Auth n didaktopikn SratpiPri
glodyet éva mAaioto epapuoyng (ECMAF) yia Thv mapakoAoOBnon Kat tpocapuoyr
TWV €QApPUOYWV 1oL Pacifovtal o€ NAEKTPOVIKEG LTINPEGIEG KAl O1 OTOTEG ava-
ntoooovTal o TOAAATAd LTTOAOYLGTIKE VEPN. EvtouTolg, ot 300 mpoavagepOei-
0€G AAANAEVOETEG APXITEKTOVIKEG £Vl TOAVETITESEG Kl EUTAEKOLY VA GUVOAO
amd GUVIOTWOEG UEYAAOL EDPOUG, ATIO XPTPNUEVES ETTLXELPNOLAKEG O1EPYATIES WG
KO CUYKEKPIUEVEG LTTOAOYLOTIKEG LTOdOUEG. Emouévwg, ot dadikacieg Tng mapa-
KoAo0UOnoNG Kat TNG Tposapuoyng pénet va Aapfdvouv vmdPrv dAa avtd ta emi-
TEdA, Y10 VO UTOPOVV VA XELPLOTOVV ATTOTEAECUATIKE TOV UEYAAO GYKO TWV YEYO-
VOTWV TapakoAovBnong kat va eEdyouv KAtdAANAEG oTpatnyikég Tpooapuoyng. H
TPOTELVOUEV TIPOGEYYLoH cLVOVALEL Ta YeyoviTa mapakoAovBnong kat e€epeuvd
potifa yeyovdtwy, Ta onola 0dnyolv o€ Tapafdoel TwWV 0plwV GUYKEKPLUEVWV
UETPIKWV, IOV opilovtat ota £yypaga Service-level Agreement (SLAs).

Mpokewpévou va eeyxOel n epappootpdTnta Kat va avadetybovv ta mAsove-
KTAUATA TOL TTPOTELVOUEVOL TAALGIOU EQAPUOYNG, 0T TAAioLX aAUTAG THG dtaTpi-
Prig vAomoOnke pUix epappoyn draxeipiong thg KUKAo@opiag oToug dpduoug uiag
TOANG. TTN GULVEXELX AUTH 1 EQApPUOYN avantuxOnke oe éva meptPdAlov moAAa-
TAWDV UTOAOYIOTIKWOV VEQWV, TA OTOLX IKAVOTOL0UV S1AQOPETIKES ATALTAGEL TWV

EMUEPOVG NAEKTPOVIKWY LTNPECLOV TOL anaptifovv thv e@apuoy. Ta cvota-

xii

TIKA OTOLXELD AUTWV TWV VTOAOYIOTIKWOV VEQWDV £xouv TOAAEG e€aptrioelg petalDd
TOUG, o€ OAa Ta eMIMES A TNG UTNPESLOGTPEPOVG APXLITEKTOVIKNG KAL TNG APXLITEKTO-
VIKAG UTIOAOYLGTIKOU VEQPOUG. TO TPOTELVOUEVO GUOTHUX OVAKXAUTITEL KOl EKUE-
taAAevetat autég Tig e€apthoelg, yix va e€dyet and ta yeyovota mapakoAovOnong
€ykupa potifa mov em@Eépouv TapaBLdcel CUYKEKPLUEVWVY UETPIKWV. Ta TeAEL-
taia vepiotavtor tepaitépw ene€epyasia yia tnv e€aywyn mo ToAUTAOKWY HoTi-
Pwv, ta omola avtiototyifovtal 6€ KATAAANAEG OTpATNYIKEG TPOGAPUOYNG. T TNV
povtehomnoinon twv e€aptnoewv EXOVHE avantuéel éva 101K UETA-UOVTENO, TO
omofo amotunvel SAa T eUTAeKOUEVX cLOTATIKE oToxela Kot T1G ueTa&y TOug
oxéoeig. O aAAnAe€aptrioeig autég epumAovtiovrat eniong KATA TO XpOVO EKTENE-
ONG Y10 VO aVTIKATOTTPI{ouV TN VEX GUUTEPLPOPE TOL GUOTHHATOG, META aTd oA~
Aayég mov mbavov va mpoAbav and uetaPoréq oto mepipdAlov exktédeonc. Av-
TIOTOLYO UETA-UOVTEAN TTPOTEIVOVTAL YA TNV EMKOPWOT] THG LOPPNG TWV YEYOVO-
TWV TapakoAovONoNg KaBWG KAl TWV aVTIGTOLXWV OTPATINYIKWY TPOSAPUOYNG.
o Ty mepapatiky aloAGynon Tov TPoTEVOUEVOL TTAALGIOV EQAPUOYAG XPN-
OLUOTIOLOVUE TEXVNTE cUVOAX dedouévwy Kat eEAEyXoupe TNV KAHAKWOIUOTHTA
TOU, TNV an6d00t] TOL WG TTPOG TO XPOVO EKTEAEGTG KAL TN JIEKTIEPALWTIKT TOV 1KA-
vOTNTA, KAOWG Kat TNV KAataAANAGTNTA TNG T payOUEVNG GTPATIYIKAG TPOSAPUO-
yA¢. Ta anoteAéopata tng aloAdynong deixvouv 6t n anddoon Tov LTOCLOTAUA-
T0G avakdALYNG potiPwv yeyovétwyv mapakolovdnong e€aptdratl kupiwg amnd tov
opopd TNG LETPIKNG, dNAadr] To xpovikd didotnua mov uecoAafel petald dvo dia-
dox1KWV HeETPHoEWVY. AUTO umopel KAaTAAANAQ va TPOocapHOGTEL £T01 WOTE VA ETL-
TOXOUME T PEATIOTO ATOTEAESUATA TTPOANTITIKTG TIPOCAPHOYNG TNG EQAPUOYNG.
000V a@opd TV andédoct TOL CUGTHUATOG TA ATOTEAETUATA PAVEPWVOLY LK
apéon cLOXETION e To TTARB0G Kat To £id0¢ TwV LTS e€éTaon UETPIKWY, TO TTARHOG
TWV EMUEPOVG NAEKTPOVIKWV UTINPEGLWV TOV ATapTiOuV TNV EQapUoyn Kabwg
Kot 1o £100G TG avdantuéng tng papuoyrg (oe éva i toAAanAd véen). H opfdtrta
kat n anddoon tng dradikaciag mpooapuoyrg (Kuplwg Twv eVePYELOV KAIUAKWOTG)
ennpedletar and to péyebog, trnv tomobesia kat To TANO0G TWV TAPEXOUEVWV EIKO-

VIKQOV unXavav, aAAd Paciletatl Kuplwg 0TV TEXVOYVWOLA KAL THV EUTELPIX TOU

xiii

oXeda0TH OTPATNYIKWY TPosapuoynG. TEAOG, T GUVOAIKA ATTOTEAEGUATA TOV TTPO-
TEWVOUEVOL TAALGIOL EQAPUOYHG PAVEPWDVOULV TOV ATTOJOTIKS XELPLOUS TWV YEYO-
VOTWwV TapakoAovdnong, divovtag £Tot T duVATOTNTA OTOV TAPOXO TNG EPAPUO-
YNNG V& aVTIUETWTI{EL EMTUXWE TOOO TIG HEUOVWHEVEG TTAPAPLACELG HETPIKWV (V-
T18paoTiKy Tposapuoyn), 460 Kat Twv HoTiPwv yeyovitwy TapakoAovbnong mov

€XOUV aVIXVELTEL Kol TPOKAAOVY TapafPidoelg cOVOETWVY HETPIKWOV (TpoANTTIKT]

TPOCAPUOYT)).

Aé€g1g-kAe1did: HAektpovikég Yinpeoieg, YToAoyioTikf NEQoug, YTnpeo1ooTpEPT|G

Apxttektovikh, lapakoAovOnon, Mpocappoyr], MovteAomoinon

Enéntng Kabnyntrg: Anuntpng MAe€ovodkng
Kabnyntrig
Tufua ETietiung YroAoyiotwv

Mavemiotnuto Kprntng

Xiv

To the love of my life
Agapi

Acknowledgements

Pursuing a PhD is indeed a truly long and hard life-changing journey. Fortu-
nately enough, this journey turned out to be a pleasant one thanks to the support
of alot of people, who helped me, to a lesser or greater degree, to accomplish this

tough endeavor.

First and foremost, I would like to express my special thanks and appreciation
to my supervisor, Professor Dimitris Plexousakis for encouraging my research
and for helping me to surpass all research obstacles that came into my way. In
addition, his expert guidance and valuable suggestions have greatly contributed

to this thesis and laid the foundations of my journey in academia.

I would also like to thank Professor Kostas Magoutis, member of my advisory
committee, for his great support and valuable comments and advice during key
stages of my PhD thesis, as well as for our effective collaboration in research
projects. Furthermore, I wish to thank Professor Christos Nikolaou, serving as
an advisory committee member, for giving me the chance to work for various re-
search projects. Moreover, I owe gratitude to the members of my Examination
Committee, namely, Schahram Dustdar, Antonio Brogi, Evangelos Markatos and
Nikos Parlavantzas, who provided very valuable feedback during my PhD thesis’

defense.

In addition, I would like to acknowledge the support of the Institute of Com-
puter Science (ICS-FORTH) and the University of Crete for financially supporting
my research during all these five years. Especially, the Information Systems Lab-

oratory (ISL) of ICS-FORTH provided me with all the necessary facilities and an

xvii

excellent working environment. Particularly, I would like to thank Maria Mout-
saki and Dimitis Agelakis for their willingness and continuous support to find so-
lutions to all the administrative and technical problems I encountered during my
years at FORTH.

Undoubtedly, I owe a great gratitude to all my friends and colleagues that sup-
ported me during my PhD studies. In particular, I would like to especially thank
George Baryannis, who was a great “fellow traveller” in this difficult and long jour-
ney. Many thanks go to Konstantina Konsolaki, Panagiotis Garefalakis, Damianos
Metalidis, Antonis Papaioannou, Antonis Papadogiannakis, Panagiotis Papadakos,
Dimitra Zografistou, Roula Avgoustaki and Manos Papadakis for both supporting
me in various research topics and also contributing to a fun and relaxing work-
ing environment. In addition, [want to thank my friends Tasos Charalambidis and
Nikos Valtsis for the great moments we shared, during their stay in Heraklion.

Moreover, I would like to wholeheartedly thank Kyriakos Kritikos, who stood
to me as a second supervisor during all the years of my PhD studies. I really ap-
preciate his major support and contribution to this PhD dissertation. I will never
forget the fruitful discussions we had in his office, providing, with great patience,
valuable feedback and future research directions. Kyriakos thank you.

Finally, I wish to thank my fiancée and love of my life Agapi Perysinaki, for
the invaluable love and support that she has unconditionally given to me during
the last five years. I really owe her a great gratitude for being with me all these
years and has made them the best years of my life. Without a doubt this PhD is
worthy devoted to her. In addition, I would like to specially thank her parents,
Antigoni and Dimitris, and her sister, Voula, for their support and love.

The greatest gratitude, however, is rightfully owed to my parents, Eleni and
Kostas, and my brother, Dimitris, for their endless support and invaluable love
and support during all these years. Your prayer for me was what sustained me

thus far. I really thank you from the bottom of my heart.

xviii

All things are difficult before they are easy.

- Thomas Fuller

Contents

Introductionvii
.1 SOAand Cloud Computing.
11 SBALAYErS . . oottt e e e e e

.12 Cloud Deployments

|1.2 Motivatiod
1.3 Monitoring and Adaptation Lifecycld
|1.4 Requirernent4
.5 Thesis Contributionand Impact
.6 Dissertation Outlingo......

P Running Example
.1 Traffic Management Running Exampld
|2.1.1 Monitoring Task]

|2.1.2 Assessment Task]

P.1.3 Device Configuration TasK

|2.1.4 Application Requirements|

|2.2 Application Componentsi
R.3 Traffic Management Scenarid
R.4 Monitoring and Adaptation Scenario§
D5 Conclusions. vvv it

B Literature Review & Fundamental§
B1 Cloudand SBAModeling.

XXi

12
13
15
18
21
22
23
23
25
26
27
32
35
36
37

38

|3.1.1 Comparisod 42

B.2 Monitoring and Adaptation 42
B.2.1 Cross-layer Approachey 45
b.z.z Cloud Monitoring and Adaptatiod 51
|3.2.3 Comparisod 53
b.3 Pattern Discover){ 57
B.3.1 Mathematical and Statistical Approaches 57
|3.3.2 Temporal Approachesl 60
b.3.3 Logic-based Approachesl 62
I3.3.4 Comparisoﬂ 63
B.4 Technical Fundamentald. 64
BS5 Conclusions.\ttt 74
ECMAF Framework oo vvoe oo oo e e e e e 75
U1 SOIUtON'S SCOPE . v v v oo e e e e 76
.2 ECMAF Architecturd 79
.21 Single-Cloud Deployment. 79
k.22 Multi-Cloud Deployment| 86
U3 ECMAF'SBenefits.o, 89
M4 Conclusions. . .. vvv v vt 90
Meta-Models for Cloud SBA Monitoring and Adaptatiod 93
6.1 EventMeta-Model 94
.11 Meta-Model Description| 94
b.1.2 Traffic Management Event Model 9%
b.1.3 Adaptation-Related Monitoring Eventy 97
6.2 ComponentMeta-Model 99
.21 Meta-Model Description 101
b.2.2 Traffic Management Component Model 102
6.3 Adaptation Actions Meta-Mode| 102
5.3.1 Meta-Model Description] 105
b.3.2 Traffic Management Adaptation Actions Model 106

xxii

B4 Conclusions.o vttt 106
|6 Monitoring and Pattern Discover){ 109
k.l Cross-layer Monitoriné 110
6.1.1 MetricDefinition 111

k.l.z Event Representatiod 113

k.1.3 Event Processinﬂ 117

|s.2 Pattern Discover)i 119
|s.2.1 Pattern Discovery Algorithn{ 119

6.2.2 Enhanced Pattern Discovery Algorithmj 126

k.2.3 Pattern Discovery on the Running Example{ 127

k.3 Processing of Event Patternsl 131
6.4 Conclusiony.o 134

Adaptation 135

7.1 Cross-layer Proactive and Reactive Adaptation 136
7.2 Rule-based Adaptation. 138
|7.3 Mapping Event Patterns to Adaptation Actionsl 145
7.3.1 Adaptation Actions Configuration 149

7.3.2 RuleGeneralization 150

|7.4 Running Example{ 152
7.5 Conclusions.vvv v v 155
B Implementationiii 157
|8.1 Traffic Management Application’s Implementatiod 158
B.2 Meta-models’ Realization and Exploitation 163
B.3 ECMAF's Implementation 166
|8.3.1 Monitoring Engine{ 166

B8.3.2 AdaptationEngind 178

BA Conclusions. vvvu i 183

O Evaluation] e 185

0.1

Monitoring Evaluation 186

.11 TSDBEvaluation.uuou... 186

|9.1.2 Pattern Discovery Algorithm Evaluatiod 190

©.1.3 PatternDetection 194

0.2 AdaptationEvaluation 196
.21 Adaptation Enactment Evaluation| 196

|9.3 Overall Evaluatior] 203
0.4 Conclusions. v it 208

10 Conclusions and Future Researcho 209
0.1 Synopsis of Contributiong 209
|10.2 Directions for Future Workl 213

.................................. 218
................................... 231

A Event Meta-Model Description 233

B Component Meta-Model Description| 237

XXiv

List of Figures

.1 TheSOAarchitecturd0.0...... 2
|1.2 The Web services’ standard technology stack [Papazoglou 2008] . 3
.3 Thelifecycleof aCloud SBAot .. 4
.4 ThelayersofaCloud SBA 6
|1.5 The Cloud deployment typesl 7
.6 Web service adaptation and evolution 13
.1 The Traffic management application workflow| 22

Multi-Cloud deployment of the Traffic Management Application| 27

The traffic management application componentsI 33

Detected violations in the traffic management systen] 34

Overview of OCCI infrastructure types [Metsch and Edmonds 2011] 39

The CAMPPaaSmodel 40

The Cloud4SOA PaaSmodel 41

A sample WSLA document of the Traffic Management applicatiod 68

B.5 Exploited OWL-Qstructurd 69
|3.6 The production rule system of Drools Rule Engine{ 70
.1 Cloud application development approaches 77

Architecture of ECMAF for SaaS compositions or single-Cloud de-l

ploymenty 80

Layers’ interaction during normal traffic conditiong 83

Critical traffic situationt 84

XXV

U5 ECMAF's multi-Cloud architecturd 87
k.6 Distributed workload performed by a computer nod.. 90
6.1 Theeventmeta-model. 95

Event model instance of the traffic management running examplel 97

Taxonomy of SBA adaptation-related monitoring event 98

The component meta-model 100

Mapping the traffic management application component model

ko the corresponding eventmode] 103

The adaptation actions meta-mode] 104

Mapping the traffic management application event model to th

torresponding adaptation actions mode] 107

Mapping the traffic management application adaptation actionsl

lnodel to the corresponding component mode‘ 108
k.l The ECMAF’s monitoring enginel 111
k.z Powersets treel 123
k.3 Event stream split - pattern discovery algorithni 127

sample component model of the traffic management application 131

|7.1 The ECMAF’s adaptation engine| 136
7.2 Case 1: Intersected area of the adaptation strategy sets 141
|7.3 Case 2: Union of the strategy setsI 142
|7.4 Case 3: Two overlapped strategy areas, no disjoint sed 143
|7.5 Case 4: Overlapped and disjoint strategy setsI 143
.6 Case 5: Many intersected adaptation actionset 145
V.7 Critical traffic conditions - Traffic management scenarid 152

The Traffic Management BPMN model designed in ADONIS too‘ . 160

|8.2 BOC ADONIS Process Management Framework{ 161
B.3 EMF code generation toJavaclassed 164
B4 TheCDOarchitecturdouo.... 165

ECMAF implementation overviev\i 167

Time synchronization through the NTP protoco] 170

NTP time synchronization for the traffic management applicatior‘

B.8 The KairosDB webinterfacd 178
B.9 The three-node architecture of OpenStack 182
B.10 The default flavors of OpenStack 182

TSDB - Evaluation, Response time in read queries under differentl

................................ 188

Single TSDB query and end-to-end latencie§ 189

Total throughput of a single TSDB query and its publicatiod ... 189

Assessment time while increasing the number of monitoring events 190

0.5 Pattern discovery algorithm’s precision| 193
|9.6 Pattern discovery algorithm’s recal‘ 193
0.7 Pattern discovery algorithm’s F-measurd 193
0.8 Pattern discovery execution time based on the dataset sizd . .. 194
0.9 Pattern discovery execution time based on the interval sizd . . . 195
0.10 Performance of the EPD based on the patternsizd 195
©.11 VM provision time / No of instances, image size (“Tiny” VM) . . 198

VM provision throughput / No of instances, image size (“Tiny” VMj 199

VM provision time / No of instances, image size (“Small” VMj .. 199

VM provision throughput / No of instances, image size (“Small’1

VM provision time / No of instances, image size (“Medium” VMX 200

VM provision throughput / No of instances, image size (“Medium’I

.................................. 201

0.17

VM provision time / No of instances, VM flavor (CIRROS-032 imageﬂ 201

0.18

VM provision throughput / No of instances, VM flavor (CIRROS-I

D321MAage) o e e e e e e e e e e e e e e e e 202

0.19

VM provision time / No of instances, VM flavor (FEDORA-20 imagej 202

b.20

VM provision throughput / No of instances, VM flavor (FEDORA-I

............................... 203

b.21

VM provision time / No of instances, VM flavor (RHEL-7 imagej . 203

b.22

VM provision throughput / No of instances, VM flavor (RHEL-7

Mage)] e e e e e e e e e e e e e e e e 204
|9.23 The reactive adaptation path of ECMAFI 204
|9.24 The proactive adaptation path of ECMAFI 204
b.25 Time distribution in a reactive adaptation scenarid 205
|9.26 Percentage time distribution in a reactive adaptation scenarid . 206
|9.27 Time distribution in a proactive adaptation scenario| 207

b.28

Percentage time distribution in a proactive adaptation scenarid . 207

List of Tables

Requirements of the traffic management SBA 26

Comparison of Cross-layer Monitoring and Adaptation approachesI 55

B.2 A sample contingency table for pattern X and critical eventY . . 63
b.3 The exploited languages and techniques and their usagei 65
B.4 Comparison of SLA specification languages / approaches 66
B.5 Comparison Of TSDBY o oo v e e 72
6.1 Associationrulesrankind 126
6.2 Contingency tables for the discovered patterng 130

KairosDB response time under different setups / end-to-end latency| 187

End-to-end (TSDB+Siena) response time, throughput under differ-l

A.1 Event meta-model: classes and properties analysig 233
IA.l Event meta-model: classes and properties analysisi 236
b.l Component meta-model: classes and properties analysi4 237

XXix

Listings

Sample scalability rule in DRI 70

EPL stataments and pattern definition in Esper| 71

Simple metric (DeviceConfig service execution time) OWL-Q defi-

................................. 112

Complex metric (Average execution time of Monitor service) OWL-I

.............................. 112

An XML file representing a warning event of DeviceConfig Service

bxecution time (event ez) metriq 115

AJSON file representing a critical event of FlexiantVM’s CPU-load

kevent €9) rnetricl 115
k.S Sample SLO for the traffic management applicatiod 117
6.6 Asample TSDBdatapoini 119

Sample SQL query validating the dependency of two traffic man-l

lagement app’s componentsl 130

Sample adaptation rule in DRL for an emergency high pollutiod

kase of the traffic management examplel 139

Sample adaptation rules of the traffic management example with

kheir appropriateness scoresi 140

Sample adaptation rules mapping event patterns to adaptatiod

Istrategy/ ies and their appropriatenessl 145

Mapping an event pattern to different adaptation actions and theh{

Iappropriatenessl 149

Sample XML adaptation action file of the traffic management ex

Adaptation rules of the traffic management application| 153

A complex adaptation rule of the traffic management applicatior| 154

The declaration of the getTemperature operation of the Monitor—l

NESEIVICE . . v v v v o e e e e e e e e e e e e e e e e e 162

The declaration of the Monitoring Service implementation clas§ 162

The URL of the Monitoring Service WSDL filei 162

Environmental measurements detected by the Monitoring Servicq 163

Sample SQL query validating the components’ dependencies{ .. 166

Sample association rule in DRL for the event pattern with ID=2001 172

EPL statement for pattern with ID=2001 173

EPL statements for complex event patternsI 173

sample JSON query on the KairosDB including two aggregator§ . 175

Pushing the monitoring events in the KairosDB via Telnetl ... 176

Pushing the monitoring events in the KairosDB via the REST AP 177

A Simple DRL adaptation rule of the traffic management applicatior| 179

An adaptation rule mapping an event pattern to a scaling actiori

Chapter 1

Introduction

Contents

1.1 SOA andCloud Computing 1

h.l.l SBA Layersi 5

l1.1.2 Cloud Deploymentsl 6
.......................... 8
1.3 Monitoring and Adaptation Lifecycld 12
1.4 Requirements.o veeeeueuenen. 13
1.5 Thesis ContributionandImpactl. 15
1.6 DissertationOutlind 18

1.1 SOA and Cloud Computing

The advent of the 215¢ century has brought Web services as a new means of
delivering software via a network, such as the internet. This type of software has
emerged through the rapid growth of Service-Oriented Computing (SOC) [Huhns and
Singh 2005], a promising computing paradigm that utilizes services as constructs
to support the development of rapid, low-cost composition of distributed appli-
cations [Papazoglou 2008]. SOC is essentially a fusion of existing well-established

technologies, such as distributed systems, software engineering, Web-based com-

2 Chapter 1. Introduction

puting and XML technologies, rather than a new technology created from scratch.
This technology enables developers to make publicly available their own applica-
tions, or discover, invoke and compose existing network-available Web services

to offer a new Service-based Application (SBA) to the potential users.

|

|
Find

Register

{Service Consumer} ind and Invore >

Service Provider

Figure 1.1: The SOA architecture

There three main building blocks comprising the Service-Oriented Architec-
ture (SOA) (Figure @) and they are determined on the basis of three primary roles
that can be undertaken by these architectural modules. These are: (i) the service
provider, (ii) the service registry; (iii) and the service consumer. Service providers
are software agents that provide the service. They are responsible for publish-
ing a description of the service(s) they provide on a service registry. Service con-
sumers are software agents that request the execution of a service. Agents can
be simultaneously both service clients and providers. Service consumers must
be able to find the description of the services they require and must be able to
bind to them. To achieve this functionality, SOA builds on today’s Web services
standard technology stack (Figure @). The interaction between service providers
and consumers is basically loosely coupled, as the service-oriented model does
not mandate any predetermined agreements, though most service providers sign
Service-level Agreements (SLAs) with their customers to guarantee the Quality of Ser-
vice (QoS). Finally, a service registry is a repository that contains Web service re-

lated meta information (e.g. Web service descriptions).

1.1. SOA and Cloud Computing 3

Business
processes

Quality of
service

Discovery

Description

Message

Transport

Figure 1.2: The Web services’ standard technology stack [i’apazoglou 2008|]

One major advantage of Web services is that they may either be implemented
and distributed on a single machine or a local area network, or even across several
wide area networks including a variety of machines, such as computers, mobile
devices, etc. In such distributed environments, Cloud computing] has
emerged in the early 2000s as a new paradigm for delivering “as-a-service” offer-
ings to the end users: (i) Software-as-a-Service (SaaS) is the software delivery model
adopted in Cloud computing, where Web services are made available to users on
demand via the Internet from a Cloud provider, (ii) Platform-as-a-Service (PaaS)
provides the platform to the application owners to deploy their applications on,
and (iii) Infrastructure-as-a-Service (IaaS) is a resource provisioning model allow-
ing Cloud providers to outsource computing resources, i.e. Virtual Machines (VMs),
needed by Saa$S and PaaS. The main notion in Cloud computing is to deliver every-
thing as a service (XaaS), thus one can also come across the following concepts:

Security-as-a-service (SECaaS), Communications-as-a-service (CaaS), Network-as-

4 Chapter 1. Introduction

a-service (NaaS), Monitoring-as-a-service (MaaS) and Data-as-a-Service (DaaS).

These two computing paradigms are closely interrelated, as Web services are
the main Saa$ type deployed on Cloud infrastructures, while the virtualized Cloud
resources provide an efficient application delivery platform for the SBA devel-
opers. As the author in [Fernandez 2012] point out, Cloud computing is a new
embodiment of SOC, where users access a variety of services to implement their
functional needs. Instead of providing users with application-oriented services,
now users can access services on any architectural level, using the Cloud as the
conduit with the primary Cloud SBA. In practice, Cloud computing provides the
computing of services and SOC provides the services of computing [Wei and Blake
2010].

This reciprocal relationship between SOC and Cloud computing paves the way
to many research directions within the lifecycle of Cloud SBAs, such as infras-
tructure description, requirements specification, service description, discovery,
matchmaking, composition, Cloud SBA deployment, execution, monitoring, adap-
tation and evolution (see Figure B). This dissertation focuses on research issues

related to monitoring, adaptation and partially evolution of SBAs in Cloud envi-

ronments.
.
Service
Matchmaking
;'—J
l
/% 4 ~\ 4
Service Service Service Service
Description Discovery Verification Composition
L —— \ J . T
TR s N s
Service Service Service Cloud-Based
Adaptation Monitoring | Execution | | Service Deployment
— r 1
Deployment
Matchmaking

,
.,
.

(Service Infrastructure
Requirements ipti
Service Evolution / redesign |) Descrption

Specification

~
~
~
~

Figure 1.3: The lifecycle of a Cloud SBA

1.1. SOA and Cloud Computing 5

1.1.1 SBA Layers

A SBA [Kazhamiakin et al. 2009a] is composed by a number of possibly inde-
pendent services, available in a network, which perform the desired functional-
ities of the architecture. Such services could be provided by third parties, not
necessarily by the owner of the SBA. Note that a SBA shows a profound difference
with respect to acomponent-based application: while the owner of the component-
based application also owns and controls its components, the owner of a SBA does
not own, in general, the component services, nor it can control their execution.

A SBA can be represented by its three functional layers (Figure @), as they
have been adopted by many EU projects, such as s-Cubell and s0A4AlLE: (i) the
business process management (BPM) layer, (ii) the service composition and coor-
dination (SCC) layer; and (iii) service infrastructure (SI). BPM is the highest level
functional layer where the entire business process is defined along with the appli-
cation activities, constraints and requirements without going into design details.
Henceforth, we consider the entire business process as a workflow and the busi-
ness activities as its constituents. Moreover, at the BPM layer, Service Networks
(SNs) [Danylevych et al. 2011] are defined in order to enable companies build net-
works to serve their joint customers in a dynamic manner, focusing on optimizing
their financial benefits at the individual and network level and the company’s
business collaborations. SCC is the layer between BPM and SI layers, where the
basic workflow constructed at BPM is refined by the composition of suitable ser-
vices, that is capable of realizing the corresponding business activities. This layer
organizes and manages the control and data flows among services in the composi-
tion. Finally, the SI layer provides the underlying run-time environment for the
composed SBA. This environment manages a large set of computing resources,
such as storing and processing capacity. In addition, the collection of all avail-
able services is kept in a service registry provided by this layer. Consequently,

the identified services for the composition are discovered and realized at SI level.

http://www.s-cube-network.eu/
*http://www.soa4all.eu/

6 Chapter 1. Introduction

Service
Infrastructure

~

Business Process
Management
Layer (BPM)

laas layer

Service
Composition &
Coordination
Layer (SCC)

Paas layer

Saas layer

%
N /) £y

MONITORING & ADAPTATION

Figure 1.4: The layers of a Cloud SBA

1.1.2 Cloud Deployments

This section analyzes the different Cloud deployments available to the Cloud
providers, pinpointing their main benefits and drawbacks. Cloud computing tech-
nology provides large pools of resources that can be connected through private
or public networks, as well as dynamically scalable infrastructure for cloud based
applications, data and file storage. Businesses during the decision-making pro-
cess of their ideal Cloud deployment may choose to deploy applications on Public,
Private or Hybrid Clouds. Figure @ depicts these deployments and their interrela-

tions.

First, as stated in [Mell and Grance 2011], a public Cloud is provisioned over a net-
work that is open for public use. It may be owned, managed, and operated by a business,
academic, or government organization, or some combination of them, but in any case it re-
sides on the premises of the cloud provider. This model provides no visibility or fully
control over the underlying infrastructure to the customers, who share the same
infrastructure pool with limited configuration, security protections and availabil-
ity variances. The main advantage of a Public Cloud is its cost-effectiveness, as
infrastructure costs are spread across all users, allowing each individual client to

operate on a low-cost, pay-as-you-go model. Another advantage is its on-demand

1.1. SOA and Cloud Computing 7

Private/
Internal

Public/
External

The Cloud

On Premises / Internal Off Premises / Third Party

Cloud Computing Types

Figure 1.5: The Cloud deployment types

and higher scalability than an in-house enterprise cloud. In anutshell, these clouds
offer the greatest level of efficiency in shared resources; however, they are more
vulnerable and less secure than private clouds. They are the ideal solution
] when: (i) the SBA is used by a great amount of customers, (ii) there is a need
for testing and developing application code managed by many developers within

collaborative projects; and (iii) there are high-scalability demands.

Second, a Private Cloud is provisioned for exclusive use by a single organization com-

prising multiple consumers and may be owned, managed and operated by the organization,

a third party, or some combination of them and it may exist on or off premises [
Grance 2011]. Private clouds allow businesses to host applications in the Cloud,

while addressing concerns regarding data security and control, which is often
lacking in a public cloud environment. Undertaking a private cloud project re-
quires a significant effort to virtualize the business environment and it will re-
quire the organization to re-evaluate decisions about existing resources. Com-
pared to the public Cloud, they are undoubtedly more expensive, but also more se-
cure and fully-controlled and manageable. 1t is the ideal solution when: (i) Cloud

efficiency and control is a high-priority, (ii) there is a need for consistency among

8 Chapter 1. Introduction

services, (iii) the provided services are private and used only within the enter-

prise premises; and (iv) there is redundant server capacity.

Third, a Hybrid Cloud is a composition of two or more distinct Cloud infrastructures
(private or public) that remain unique entities, but are bound together by standardized or
proprietary technology that enables data and application portability [Mell and Grance
2011]. Its main advantage is that it enables increasing the flexibility of comput-
ing by leveraging third party cloud providers. Moreoever, optimizing a private
Cloud with public cloud resources can prevent unexpected failures and resource
overloading. This cloud deployment requires both on-premise resources and off-
site server based Cloud infrastructure. Its main drawback is that you have to keep
track of multiple Cloud security platforms and ensure successful communication
between private and Cloud platforms. It is the best solution when (i) the provided
SaaS$ applications are tailored for different vertical markets, (ii) the provided ap-
plication requires both high security and scalability; and (iii) one can provide pub-

lic Cloud to her/his customers while using a private cloud for internal IT.

1.2 Motivation

In the context of the Cloud SBA’s lifecycle depicted in Figure , monitoring
refers to the process of collecting and reporting relevant information about the
execution and evolution of a SBA. This information is exploited by the adapta-
tion process, that modifies SBAs in order to satisfy new requirements and to fit
new situations dictated by the environment on the basis of adaptation strategies
designed by the system integrator. Evolution is a long-term history of continuous
modification of a SBA (i.e. redesign) after its deployment in order to correct faults,
to improve performance or other attributes, or to adapt it to a modified environ-
ment [Benbernou et al. 2008].

Once services and business processes become operational, their progress needs
to be managed and monitored to gain a clear view of how services perform within

their operational environment, take management decisions and perform control

1.2. Motivation 9

actions to modify and adjust their behavior. The dynamic and ever-changing na-
ture of the business and physical environment requires Web services to be highly
reactive and adaptive to the changes and variations they are subject to. They
should be equipped with mechanisms to ensure that they are able to adapt to
changing requirements. Web service monitoring and adaptation are two well-
connected processes that result in the correction and customization of faulty ser-

vices, so as to coincide with the new requirements.

Furthermore, as Cloud computing technologies have been maturing, enter-
prises are increasingly adopting Cloud platforms to offer their SBAs. In such dis-
tributed virtualized environments, the SBA developers, in an effort to optimize
their applications deployment cost and performance, may also deploy applica-
tion parts redundantly on different VMs that may be offered by different Cloud
providers. In [Baryannis et al. 2013b] we have pinpointed the main benefits of
SBA multi-Cloud deployments: (i) different resource requirements are better sat-
isfied by different Cloud providers offering special features (e.g., SSD drives, dy-
namically configurable VMs), (ii) the deployment cost is optimized by exploiting
the Cloud providers variant cost policies; and (iii) cross-talk components are de-
ployed on the same geographical zone or even VM to minimize communication

overhead.

In such heterogeneous environments, where multiple Cloud providers are in-
volved, an important concern for any Cloud-based application provider is to main-
tain its desired level of service along its entire life cycle, as well as to have a clear
view of the system’s state, the system component interrelationships and the per-
formance of the underlying infrastructure [Papadogiannakis et al. 2012]. In addi-
tion, during application execution, various events are produced by several layers
(Cloud and SOA specific), leading or indicating Service level Objective (SLO) vio-
lations. Just as in any distributed application hosting environment, Clouds must
support extensive monitoring mechanisms to aid in controlling application per-
formance and functionality and to adapt to variations, mainly at the IaaS layer.

An effective monitoring mechanism must cover the entire range of Cloud SBA

10 Chapter 1. Introduction

layers (Figure @). Leading Cloud providers (e.g. Amazon AWS, Microsoft Azure,
HP Cloud, Rackspace, etc.) are just starting to roll out solutions in both areas,
while most of the industry is still lagging behind. Looking forward, applications
designed for multi-Cloud environments will be facing challenges stemming from
the lack of uniform (cross-platform) support for monitoring and adaptation so-
lutions. Assuming that these challenges are eventually met, a number of other
problems still need attention: (i) cross-layer (1aaS, PaaS and SaaS) monitoring and
alignment of the monitoring events; (ii) cross-layer coordination of adaptation

actions; and (iii) proactive as well as reactive adaptation policies.

Definition 1 : Monitoring event is a completion event, i.e. the corresponding metric’s

assessment result.

Concerning cross-layer monitoring and adaptation [Treiber 2009], current so-
lutions serving SBA monitoring are mostly constrained to one layer or to very
specific aspects, such as process metrics as part of business activity monitoring
(i.e., KPIs), or QoS metrics as part of SLA monitoring (i.e., SLA metrics) and do
not integrate and correlate information from all layers. Respectively, SBA adap-
tation approaches mostly rely on layer-specific adaptation actions, ignoring the
implications that may be posed by their application on other layers. As such, as
composite services implement business processes from the BPM layer and at the
same time are based on QoS properties at the SCC layer and IT infrastructure prop-
erties at the SI layer, it is imperative that monitoring and adaptation of SBAs take
into account all the functional layers.

Considering the close relationship between Cloud and SBAs layers, it becomes
important to perform and correlate monitoring across all layers. While it is hard
to overestimate the value of effective monitoring (strong control over infrastruc-
ture, support for elasticity policies and QoS, etc.), most current monitoring ap-
proaches are fragmented [Zeginis 2009] (confined within a Cloud provider or spe-
cific service layers) and are not applicable or aligned across layers. Specifically,

they do not relate events reported by different layers, triggering disassociated

1.2. Motivation 11

(and often conflicting) adaptation actions for each such event. Multi-Cloud de-
ployments of SBAs further complicate this picture due to the lack of cross-platform

support for uniform monitoring solutions.

Although current approaches cover a wide spectrum of monitoring and adap-
tation, none of them can efficiently cover all service and Cloud layers. They are
usually considered in isolation from each other and focus on a local solution for
a specific monitoring or adaptation requirement without taking into account the
effects to the other SBA layers. While they seem to be quite effective on a specific
layer when considered in isolation, they can cause problems and incompatibili-
ties to the other layers when adaptation actions take place. Different artifacts (i.e.
components) at one layer may refer to the same artifacts of another layer, while
such relations are ignored by the isolated monitoring and adaptation solutions. As
a consequence, wrong problems are detected, incorrect decisions are made and

the modifications at one level may damage the functionality of another layer.

Furthermore, the plethora of monitoring event types produced in complex
multi-Cloud systems requires rich and extensible meta-models that can describe
every single event detected by the monitoring mechanisms, containing not only
non-functional (QoS) but also functional aspects of the service. These events are
usually causally interrelated forming event patternsC that lead to specific SLO
violations. In principle, these interrelationships stem from the SBA component
dependencies [Magoutis et al. 2008], thus giving rise to the need for a component
meta-model able to capture these dependencies for a multi-cloud SBA, as well as
define the adaptation capabilities of the involved components. Finally, the adap-
tation systems emerging in such multi-Cloud environments should be equipped
with special adaptation models, describing the adaptation strategies, as well as
the lower level actions that can be performed by the existing adaptation enact-

ment mechanisms.

As a result, the main research questions that arise from the above analysis

and are answered in this dissertation are the following:

12 Chapter 1. Introduction

+ How can we efficiently perform cross-layer monitoring and adaptation of

multi-cloud SBAs?

+ How can we gradually and flexibly discover monitoring event patterns that

are interrelated with specific SLO violations?

+ How can we define the most appropriate and cost-effective adaptation strat-

egy for a monitoring event pattern?

* How can we formally describe and model the monitoring events, the com-

ponent dependencies and the adaptation actions for a multi-cloud SBA?

* How can we discover a particular root problem through the exploitation of

component/service dependencies?

1.3 Monitoring and Adaptation Lifecycle

This section analyzes the processes constituting the SBA lifecycle presented
in Figure B The main focus of this thesis is on Web service monitoring and adap-
tation (MA), thus more details are provided for these two processes.

The need for two cycles [Benbernou et al. 2008] arises from the dynamic na-
ture of Web services and the vulnerable execution environment in which they
perform. These cycles co-exist and do not conflict with each other. Particularly,
in the requirements specification and design phase, the MA requirements are identi-
fied, while during SBA construction, the corresponding MA mechanisms are being
realized, together with the construction of the SBA. During the operation, monitor-
ing and management phase, run-time monitoring is being executed, based on the
monitored properties defined in the contracted SLA document. Thereafter, two
different paths are available: evolution and adaptation. The former path dictates
restart of the right-side of the cycle comprising the requirements engineering
and design phases, while the latter one involves the identification of the adapta-

tion needs. Each adaptation need maps to a specific adaptation strategy (adaptation

1.4. Requirements 13

strategy identification phase), which in turn leads to the enactment of lower level

adaptation actions (adaptation actions enactment phase).

Requirements
Adaptation needs specification

identification and design

Adaptation Or?era.tmn,

strate monitoring and .
i ifi g\(Management Construction
identification

Adaptation actions Deployment and
enactment provisioning

¢ L %

adaptation evolution

Figure 1.6: Web service adaptation and evolution

1.4 Requirements

This section unfolds a set of requirements that must be satisfied, so that cross-
layer monitoring and adaptation are successful, accurate and complete in multi-
cloud environments. The identified requirements, will be used in the following
chapters in order to compare the related work against these requirements and to
design and implement our contributions according to them.

Based on the application requirements and key quality properties, it is nec-
essary to define the requirements and objectives that should be satisfied when
certain discrepancy is detected with respect to the expected SBA state function-
ality or environment. More precisely, the monitoring requirements specify what

should be observed and when the discrepancy becomes critical for the SBA. The

14 Chapter 1. Introduction

adaptation requirements describe the desired situation, state, or functionality,
in which the SBA should be brought. Typically, the monitoring and adaptation
requirements correspond to various SBA quality characteristics that range from
dependability, to functional, behavioral correctness and usability. In many cases
monitoring requirements derive directly from the adaptation requirements: mon-
itoring is often performed in the aim of identifying the need for adaptation and
triggering it.

After reviewing the related work (see Chapter H) we identified and came up
with a number of requirements that must be satisfied in order for monitoring and
adaptation to be successful, accurate and complete. These requirements, that will
be referred throughout this thesis are used to pinpoint the strengths and benefits
of our approach. They also form the base of the related work comparison. The rest

of this section provides a brief overview of these requirements:

The primary requirement that must be satisfied is the cross-layer monitoring
and adaptation capability, dictating that the approach should take into account
both the SOA and Cloud layers comprising a Cloud SBA, as they are identified in
Section @ Other requirements, acquiring different meaning towards monitor-
ing and adaptation, include dynamicity, intrusiveness, timeliness, the kind of proper-
ties they address and their scope. The dynamicity of a monitoring framework con-
cerns the ability of the framework to change monitoring properties during the
execution of the process, whereas the dynamicity of an adaptation framework
allows additions and deletions of adaptation rules. Moreover, approaches which
perform monitoring by weaving code that implements the required checks in-
side the code of the system that is being monitored, are concerned as intrusive
approaches. Thus, the monitoring mechanism should incur low overhead on the
nodes it operates on and should also require low bandwidth to transmit the gath-
ered information. Regarding adaptation approaches, a framework is intrusive,
when the applied adaptation actions change the process. On the one hand, the
timeliness of the monitoring system presents the ability of the framework to sig-

nal violations of the monitoring properties as soon as they occur and not after the

1.5. Thesis Contribution and Impact 15

termination of the instance. On the other hand, timeliness of an adaptation frame-
work refers to the proactive or the reactive execution of the adaptation actions.
Furthermore, the kind and the scope of the monitored information is provided.
The former one refers to the functional and non functional properties of a SBA,
while the latter one refers to the instance or class application of the approach.
Additional requirements are posed when monitoring and adaptation are ap-
plied on Cloud systems [Villari et al. 2012]: multi-tenancy refers to the ability of
the monitoring and adaptation system to support multiple tenants, as Clouds are
inherently designed to be used by multiple users. These systems must ensure that
monitoring information from particular tenants cannot be accessed by other ten-
ants. Thus, every tenant must have the illusion that she/he is the exclusive user
of the system. Dynamicity and extensibility in Cloud environments dictates that MA
systems be able to adapt a changing set of users and resources. Independently of
the already installed monitoring probes and adaptation mechanisms, the MA sys-
tem should allow for the federation of new ones without interfering with the ex-
isting components. In addition, as there is a demand for a variety of different VMs
coming from different Cloud providers, scalability should be a top requirement for
MA systems, specifically in terms of the number of physical and virtual resources
and the number of tenants. Scalability in Cloud computing is not the same with
elasticity, which spans across three main layers: (i) the resource elasticity, (ii) the
quality elasticity; and (iii) the costs and benefit elasticity [Dustdar 2014]. Simplic-
ity also requires that MA systems be simple and user-friendly, so that as potential

Cloud users can easily install, maintain and provide them to their customers.

1.5 Thesis Contribution and Impact

The key points and contributions of this dissertation that tackle the above

research questions are the following:

« Itintroduces a cross-layer monitoring and adaptation framework for multi-

Cloud SBAs, along with implementation details and evaluation results.

16 Chapter 1. Introduction

« It presents a novel pattern discovery algorithm, that is utilized by the pro-
posed framework to identify event patterns related to violations of specific

SLOs.

« It presents a technique for efficiently mapping the discovered event pat-
terns to suitable adaptation strategies, focusing on their appropriateness

and cost-effectiveness.

« It presents the following monitoring and adaptation related meta-models:

- An event meta-model that describes the monitoring events produced
during the execution of SBAs in multi-Cloud environments and it is ex-
ploited to verify the monitoring events and collect the relevant data

for the pattern discovery and the adaptation processes.

- A component meta-model that defines the dependencies of the com-
ponents comprising a multi-Cloud SBA. Instances of this meta-model
describe current SBA component dependencies and capture a system
snapshot at a particular time point. They are also exploited by the

event pattern discovery algorithm to identify valid event patterns.

- An adaptation actions meta-model defining the adaptation actions
that can be applied at each layer for a particular Cloud-based SBA.
This meta-model can be exploited by any adaptation manager during
the mapping from simple monitoring events to suitable adaptation

actions.

* Finally, an extensive experimental evaluation of the framework is performed,
in order to investigate performance scalability in terms of execution time
and memory consumption, as well as accuracy and optimality with regard
to the captured monitoring events, the discovered event patterns and the
extracted adaptation actions. Evaluation relies on datasets produced dur-
ing the execution of a traffic management application, used throughout

the dissertation as a running example. Results show that good performance

1.5. Thesis Contribution and Impact 17

and accuracy is guaranteed, even for stressing intervals producing a great

amount of monitoring events.

The proposed monitoring and adaptation framework can have a substantial
impact to SOA stakeholders, especially to those who resort in multi-Cloud deploy-
ments of their SBAs. This framework enables them to have a clear view of how
their applications perform in such distributed virtualized environments, where
they do not have direct access to the underlying resources (i.e. hosting machines).
Moreover, the incorporated pattern discovery mechanism assists them in per-
forming a root cause analysis of the monitoring events stream and identifying

the main source of malfunctions in this multi-tier environment.

The time synchronization techniques and the time-series database (TSDB) uti-
lized by the monitoring engine enable application developers to track the moni-
toring execution history, maintaining the actual order of the monitoring events,
and thus reliably discover their causal relationships. Concerning SBA adaptation
managers, they can take advantage of the proposed framework, as it provides
semi-automatic adaptation capabilities that can be exploited to define the de-
sired mapping from simple SLO violations to suitable adaptation actions provided
by the available adaptation mechanisms. Additionally, the incorporated event
pattern discoverer enables injecting proactiveness in a SBA adaptation engine
via mapping event patterns to respective adaptation strategies (involving other
lower level adaptation actions) through an automatic mapping mechanism, thus
lowering the adaptation cost and at the same time making SBAs more attractive
to potential customers.

Furthermore, the proposed meta-models describing the monitoring events,
the system components and the adaptation actions can be of great assistance
to SBA stakeholders, especially SBA designers and managers. In particular, tak-
ing advantage of these models, a SBA designer can semi-automatically define the
whole spectrum of multi-Cloud SBA components, their dependencies, as well as

their adaptation capabilities, thus reducing the design effort. The model com-

18 Chapter 1. Introduction

ponent instances can be exploited by any SBA manager, along with the adapta-
tion action meta-model to validate the extracted monitoring event patterns, as
well as to efficiently map SLO violations to suitable adaptation actions. Finally,
the event meta-model enables the SBA monitor manager to keep the monitoring
events, produced by the various monitoring mechanisms installed in the consid-

ered multi-Cloud environment, aligned and well-formed.

The novelty of our approach, in comparison to the related work presented
in Chapter H, lies in the following contributions. First, we propose an adaptation-
aware component meta-model that exploits existing layer-specific standard mod-
els to describe the components of a Multi-Cloud application along with their in-
terrelationships. The component classes of the proposed UML model are carefully
designed to assist the mapping of event patterns to specific adaptation actions, by
meticulously describing the exact dependencies of each component. Second, we
propose a novel logic-based algorithm for discovering event patterns leading to
critical events within a monitoring events stream of a multi-cloud application.
This algorithm can be used by any Multi-Cloud application developer to discover
detrimental patterns causing specific violations and thus enables proactiveness
in adapting applications. Third, it introduces, a novel monitoring and adapta-
tion framework for Cloud SBAs. that can efficiently handle the huge amount of
monitoring events detected at run-time. The processing of the monitoring event
stream results in the triggering of suitable adaptation rules addressing the criti-
cal events (reactive adaptation) and the critical event patterns (proactive adapta-

tion).

1.6 Dissertation Outline

The rest of this document is structured as follows. Chapter H analyzes a run-
ning example that will be used throughout this dissertation, while Chapter H pro-
vides the required background information on Web service monitoring, adapta-

tion focusing on their cross-layer and multi-cloud aspects, event pattern discov-

1.6. Dissertation Outline 19

ery and Cloud modeling, followed by an overview of the corresponding solutions
that have been proposed in literature. A comparative analysis highlighs the main
novelties of our work and how it advances state of the art. This chapter concludes
with an analysis of the required technical background.

Chapter H provides an overview of the dissertation’s main contribution, de-
scribing the proposed monitoring and adaptation framework, named ECMAF (i.e.
Event-based Cross-layer Monitoring and Adaptation Framework) [Zeginis et al.
2011], that has also been extended to support multi-cloud SBAs [Baryannis et al.
2013a, Zeginis et al. 2012b]. Chapter H presents the proposed meta-models for de-
scribing the monitoring events, the components comprising a Cloud SBA and the
adaptation actions. Chapter H introduces the proposed event pattern discovery
algorithm [Zeginis et al. 2014a;b] for identifying event patterns related to spe-
cific SLO violations, while Chapter H examines how the proposed framework sup-
ports both reactive and proactive adaptation. Chapter E provides implementa-
tion details for the traffic management application (i.e. the running example), the
proposed ECMAF framework, as well as for the realization of the proposed meta-
models. A thorough evaluation of ECMAF is conducted and the individual compo-
nents it comprises are presented in Chapter H Finally, Chapter @ summarizes the
main contributions of this thesis and points out future research directions.

The research activity related to this dissertation has so far produced 3 con-
ference and 2 workshop papers, 1 book chapter, 1 PhD symposium paper, along
with 2 technical reports and 3 presentations at the PhD and poster sessions of the
SummerSoC summer school seriesE, which are briefly described below, while a

journal paper is under submission.

« An initial version of the background analysis and the state of the art along
with the main related research challenges presented in Chapter H appear

in [Zeginis and Plexousakis 2010b] and [Zeginis and Plexousakis 2010a].

* Aninitial version of the ECMAF framework (Chapter H), explaining its main

*http://www.summersoc.eu

20

Chapter 1. Introduction

capabilities and functionality and the event meta-model is presented in [Zegi-

nis et al. 2012a].

The proactive adaptation capabilities offered by the proposed framework

presented in Chapter H appear in [Zeginis et al. 2012b).

The Cloud extension of ECMAF and its collocation in a multi-Cloud envi-
ronment have been published in [Zeginis et al. 2013a] and [Baryannis et al.

20134].

The proposed event pattern discovery algorithm in Chapter H, the proposed
component meta-model (Chapter H) and part of the implementation and
evaluation results presented in Chapters E and E appear in [Zeginis et al.

2014a] and in [Zeginis et al. 2014bj].

The whole multi-Cloud version of ECMAF with implementation details and
extensive evaluation results, as well as the adaptation action meta-model

is under submission in IEEE Transactions in Service Computing journal.

Chapter 2

Running Example

Contents
2.1 Traffic Management Running Example 22
|2.1.1 Monitoring TasH 23
}2.1.2 Assessment TasH 23
|2.1.3 Device Configuration TasH 25
|2.1.4 Application Requirement4 26
R.2 ApplicationComponents. 27
R.3 Traffic ManagementScenarid 32
2.4 Monitoring and Adaptation Scenariof 35
R.5 Conclusions i, 36

This chapter details a traffic management (TM) SBA, referred to throughout
the rest of this dissertation to exemplify and concretize the functionality and us-
ability of the proposed framework and its involved components. It is a real appli-
cation, realized with the most prominent SOA and business processing tools and
techniques (see Chapter E). The rest of this chapter analyzes the TM’s business

process activities and how they are realized by specific composite Web services,

as the multi-Cloud deployment of the application.

22 Chapter 2. Running Example

2.1 Traffic Management Running Example

This traffic management application simulates a TM system for the city of
Heraklion and and handle both normal and critical situations. The stakeholders

in this case study involve:

* The Traffic Manager, who controls the whole application, adjusting the

environmental and traffic metrics’ thresholds.
+ The Rescue Forces, i.e. the Traffic Police and the Fire Brigade.

« The Medical Forces that are responsible for carrying out manual activities

to realize the adaptation actions dictated by the Assessment task.

Figure @ depicts the workflow of the application that consists of three Web
services: the Monitoring Service (Task T), the Assessment Service (Task T 4) and

the Device Configuration Service (Task Tp).

Traffic Management App workflow

Monitoring Service

Get Temperature | wm Environmental Normal Case
operations K
Get Humidity Calendar operations
Check for N Get Noise Check for Strike Day
> o
Area accident 576> etno. e
% 2 Environmental Data Check for Public
es Holiday
1/10 Get S0,
Get PM,,
Env. Data 5
Location Get Ozone - Measure Traffic
severity T 7/ 7
/ / Assessment Service
Traffic Data

= EsperTech

KairosDB

Assess Incident

(define cruciality

of actions to be
performed)

Compute Air Quality
Index (AQI)

Compute Temperature —
Humidity Index (THI)

Compute Average
Daily Traffic (ADT)

%@Drools

low/mor

ate/emergency traffic actions

no/low/moderateXhigh/emergency traffic device actions
Device Configuration Service

= N
Handle Traffic &ﬂ,Droo\s Traffic Device ©Drools
Incident Configuration
Ambulance Traffic Police Fire Brigade Traffic Lights Alert Signs Ring

Performed Actions

Figure 2.1: The Traffic management application workflow

2.1. Traffic Management Running Example 23

2.1.1 Monitoring Task

This task is responsible for collecting traffic and environmental data from
a specific city area. This application is specifically implemented for the city of
Heraklion, which is divided into three main areas; (i) ‘areal’ is the city center, (ii)
‘area?’ is the remaining area of Heraklion, except the city center; and (iii) ‘area3’
comprises the Heraklion suburbs. We assume that pollution is decreasing while
moving away form the city center; thus the sensors provide appropriate values
for the considered area.

Initially, the interested party passes as input to this service the area for which
she/he wants to get monitoring data. Then, the service checks with a probability
of 10% if a car accident has happened in this area. On the one hand, in such as
critical situation, the concrete location as well as the severity of the accident are
passed to the assessment service for further processing. On the other hand, when
there is no car accident, the traffic management application regulates the traffic
at the specific area taking into consideration the traffic flow density (i.e. the num-
ber of cars passing from a specific point in a 24-hour base), the pollution-related
environmental variables (i.e. temperature, humidity, noise, ozone level, nitrogen
dioxide level (N Os), Sulfur dioxide level (SO3)), as well as public events, such as
public holidays and strike days. All these data is collected by special sensors and
is passed to the corresponding functions of the assessment service. Especially,
regarding the environmental data, an environmental object containing this in-

formation is constructed, as a prerequisite for computing pollution indices.

2.1.2 Assessment Task

The assessment task is the most computational demanding one, as it collects
this big amount of data from the monitoring task and is responsible for assessing
its unique set of data and deciding on the actions that should be taken to regulate
the traffic appropriately. This task comprises two main functions: (i) the incident

assessment function that takes into consideration the severity of the action and

24 Chapter 2. Running Example

decides on the criticality (i.e. low, moderate or emergency) of the traffic actions,
basically manual activities that should be performed by the public authorities;
and (ii) the normal case assessment functions, which take as input the traffic, en-
vironmental and calendar events and decide on the actions, if any, that should be
performed to decongest the traffic at the specific area and decrease the pollution
levels. In the latter case, the assessment task decides on the criticality (i.e. no, low,
moderate, high or emergency) traffic device actions that should be performed by
the Traffic Manager in order to regulate the traffic. In high and emergency levels
the Traffic Manager decides on additional traffic actions for the public authori-
ties.

In particular, the assessment service comprises three functions for assessing
the normal case scenario, based on the environmental, traffic and calendar input

events:

» The Compute Air Quality Index (AQI) function computes the regional AQI (Equa-
tion @), which is an indicator of the aggregate pollution level of four pollu-
tants, namely, SOz, NO2, PM;y and Os. C; means the daily average con-
centration while R; represents the daily average concentration limit of the

corresponding pollutantsﬂ.
4
C;
AQI = — 2.1
Q Zl 7 (2.1)

+ The Compute Temperature-Humidity Index (THI) function, computes the combi-
nation of temperature and humidity as a measure of the degree of discom-
fort experienced by an individual in warm weather; it is originally called
the discomfort index (Equation). The formula used to compute THI is
based on the following formula [Yousif 2013], where T is the temperature

and RH is relative humidity measured by the corresponding sensors.

THI = (1.8 % T + 32) — ((0.55 — 0.0055 * RH) (1.8 x T — 26)) (2.2)

http://www-app.gdepb.gov.cn/raqi3/capi_ENG_detailhtml

2.1. Traffic Management Running Example 25

+ The Compute Average Daily Traffic function computes a traffic-related index
that indicates the level of traffic congestion in this area. In particular, this
index takes into consideration the number of cars passing a specific point
of the area’s main roads and computes an average car counter for a specific
time interval, aiding the selection of traffic regulation actions. In practice,
average daily traffic (ADT), is the average number of vehicles two-way pass-
ing a specific point in a 24-hour period, normally measured throughout a

yearﬂ .

2.1.3 Device Configuration Task

The Device Configuration Task performs the adaptation actions dictated by
the assessment task. This task also employs a Rule Engine to decide on the specific
actions to be performed, based on the criticality level dictated by the assessment

task. In particular, this task consists of two main set of actions:

« The first set of actions handles the critical situation of a traffic accident
occurrence. These manual actions are mainly performed by the traffic po-
lice to regulate the traffic at the incident’s location and the fire brigade or
medical forces for more serious accidents. The alert signs of the affected
area are updated when such actions are performed in order to inform the

drivers.

+ The second set of actions handles normal case situations, i.e., when envi-
ronmental, traffic levels and/or the occurrence of public/strike days may
require traffic devices configuration to decongest the area’s traffic. How-
ever, they may also be performed as part of a car accident’s handling, if it
is required by the Traffic Manager. Particularly, these actions involve the
configuration of the traffic lights (e.g. blinking orange to alert the drivers),

enabling/disabling the area’s ring to prevent a number of cars (based on

*http://www.rms.nsw.gov.au/publicationsstatisticsforms/trafficvolumes/index.html

26 Chapter 2. Running Example

their odd/even sign number) from entering the affected area, and the up-
date of the alert signs, when something strange happens (i.e., either acci-

dent or environmental/traffic/calendar-related events).

2.1.4 Application Requirements

Tasks Tz, T4 and Tp [Baryannis et al. 2013b] have their own resource re-
quirements. Task T 4 has high computation, availability and throughput require-
ments, whereas tasks Ty; and Tp do not. Ty; and T4 require storage capacity
while Tp does not. T4 has moderate storage throughput capabilities, given the
fact that, while a high amount of information is exchanged, this happens rather
infrequently. Finally, T»; and Tp should be deployed geographically close to the
sensor infrastructure (the urban areas) while T 4 can be deployed anywhere. Based
on these requirements, a multi-Cloud deployment (Figure @) can be created that
places Ty; and Tp on a private/municipal Cloud (different instances in different
cities) close to the sensor infrastructure. The chosen VMs can be of low compu-
tational power; T, however should be coupled with a storage service. T4 can be
placed in any Cloud that can provide high-computation VMs with storage capac-

ity at the best reliability/price ratio. The above requirements are summarized in
Table @

Table 2.1: Requirements of the traffic management SBA

Involved Tasks Requirement
Ta High computational power
Ta High availability
Ta High throughput
Ta Moderate storage throughput
Ty and Ty High storage capacity
Tyrand Tp Geographically close

2.2. Application Components 27

Monitor
I - Environmental Assess situation Device config

. variables l

A

Check for special

events

Task T,

High latency
Low bandwidth
Low throughput

Central Cloud

Figure 2.2: Multi-Cloud deployment of the Traffic Management Application

2.2 Application Components

In this subsection we describe a traffic management scenario, that will be re-
ferred to throughout the dissertation, in order to exemplify the proposed frame-
work’s functionality. The application components involved in this scenario in
each layer are the following:

BPM layer: The traffic management Business Process comprises three main
activities (Monitoring, Assessment, Device Configuration). These three activities
are connected sequentially through the corresponding data and control flows. In
order to trigger the execution of the Business Process, the T task requires as
input a Heraklion city’s area. The output of this task maps to the input of the Ty
activity and the output of the T4 task maps to the input of the T task. Finally,

the T task outputs the actions that have been performed after a single execu-

28 Chapter 2. Running Example

tion of the business process. Sample BPM metrics could be the following: A Key
Performance Indicator (KPI) indicates that the duration of the Monitoring and As-
sessment activities should not exceed 35 seconds. In addition, a business goal dic-
tating that the cost of the whole execution of the normal case sub-process should
not exceed 50 units for the normal situation and 500 units for the critical case.
The first business goal splits into individual goals, requiring the cost of getting a
measurement from each one of the sensors does not to exceed 5 units.

SCC layer: As mentioned in the previous layer, the SCC layer comprises the
Web services realizing the activities of the traffic management business process.
Specifically, there is an one-to-one mapping between activities and the corre-
sponding Web services. Thus, the composite service of the traffic management
application incorporates the Monitoring Web service, the Assessment Web ser-
vice and the Device Configuration Web service.

The Monitoring service requires as input a Heraklion city’s area and provides
as output to the Assessment service details about a traffic incident in the criti-
cal situation, while in a normal situation it provides environmental and traffic
measurements, as well as calendar events. These functionalities are offered by

specific service operations:

+ The Check for accident operation takes as input a city area and provides the
location and severity of a car accident as identified by the corresponding

car accident monitoring system.

+ The GetTemperature operation takes as input a string value of the area’s name
and provides the real value of the current temperature, as identified by the

corresponding temperature sensor.

« The GetHumidity operation takes as input a city area and provides the float
value of the current absolute humidity, as identified by the corresponding

humidity sensor.

* The GetNoise operation takes as input a city area and provides the float value

2.2.

Application Components 29

of noise measurement, as identified by the corresponding sensor sensor.

The GetNO2 operation takes as input a city area and provides the float value
of the current nitrogen dioxide measurement, as identified by the corre-

sponding N Os sensor.

The GetS02 operation takes as input a city area and provides the float value of
the current sulfur dioxide measurement, as identified by the corresponding

SOs sensor.

The GetPM10 operation takes as input a city area and provides the float value
of the current measurement of particulates of 10 micrometers or less, as

identified by the corresponding P M sensor.

The GetOzone operation takes as input a city area and provides the float value
of the current ozone measurement, as identified by the corresponding ozone

Sensor.

The Measure Traffic operation takes as input a city area and provides the inte-
ger value of the traffic flow measurement, as identified by the correspond-

ing traffic sensor.

The Check for Strike days operation takes as input a city area and informs the

Assessment service for strikes in the specific area.

The Check for Public Holidays operation informs the Assessment service for

public holidays.

The Assessment service requires as input the monitoring data from the Mon-

itoring service and provides as output the level of actions to be performed by the

Device Configuration service. It comprises the following operations:

The Assess Incident operation takes as input the severity and location of the

caraccident and decides on the actions to be performed by the rescue forces.

30 Chapter 2. Running Example

* The Compute AQI operation takes as input the temperature, N O3, SO, P My

and ozone values and calculates the Air Quality Index (float value).

+ The Compute THI operation takes as input the temperature and humidity float

values and calculates the Temperature-Humidity Index.

* The Compute ADT operation takes as input the raw traffic flow measurements

during a day and calculates the Average Daily Traffic.

* The Assess Normal Situation operation takes as input the values of the previous

three operations and decides on the traffic devices’ configuration level.

The Device Configuration Service comprises two main operations:

* The handle traffic incident operation involves manual activities that are per-
formed by the rescue forces during a critical situation. It takes as input the

level of actions and prints the specific actions that were performed.

« The Device Configuration operation performs the traffic device Configuration
actions. It also takes as input the level of actions and prints the specific

actions that were performed.

Furthermore, these three services map to the corresponding SLA documents
that are expressed in the WSLA language [Keller and Ludwig 2003]. The Monitor-

ing Service’s SLA incorporates the following SLOs:

« Throughput SLO: The service throughput for the critical situation should not
be lower than 10 ops/sec, while for the normal situation it should not be

lower than 4 ops/sec.

* Execution time SLO: The service execution time should not exceed 6 seconds

in the critical case, and 15 seconds in the normal case.

* Availability SLO: The availability of the monitoring service should be greater

than 99,99% in critical cases and 99% in normal cases.

2.2. Application Components 31

The Assessment Service’s SLA incorporates the following SLOs:

» Throughput SLO: The service throughput for the critical situation should not
be lower than 3 ops/min, while for the normal situation it should not be

lower than 6 ops/min.

« Execution time SLO: The assessment of critical cases should be completed

within 20 seconds and within 10 seconds in normal cases.

* Availability SLO: The availability of the Assessment service should be greater

than 99,99% in critical cases and 99% in normal cases.

Finally, the SLA of the Device Configuration Service incorporates the follow-

ing SLOs:

« Throughput SLO: The service throughput for the critical situation should not
be lower than 2 ops/hour, while for the normal situation it should not be

lower than 6 ops/min.

« Execution time SLO: The handling of critical cases should be completed within
30 minutes, as it requires manual activities and within 10 seconds in normal

cases.

* Availability SLO: The availability of the Device Configuration service should

be greater than 99,999% in critical cases and 99,9% in normal cases.

Software layer: This layer defines the software products required by the in-
dividual application services. For the traffic management application, the Assess-
ment service uses the Drools Rule engine to decide on the level of actions to be per-
formed, as well as KairosDB Time-series database to store the monitoring data and
to get aggregated values on user-defined intervals. The Drools rule engine is also
utilized by the Device Configuration Service to decide on the concrete actions to
be performed based on the assessment.

PaaS$ and Iaas layers: The deployment of the traffic management application

is based on a mixed infrastructure system. More specifically, the Monitoring and

32 Chapter 2. Running Example

Device Configuration services are deployed on a “medium” Flexiant public VM
(2GB RAM, 2-core CPU and 20GB disk), while the Assessment service is deployed
on “high” Flexiant VM (4GB RAM, 4-core CPU and 40GB disk), through a Paa$ ser-
vice provided by CloudBees!! Paas provider.Each machine provides the required
software for the deployed Web services, as well as an Apache Tomcat Application
server for hosting the applications. In addition, Flexiant guarantees to the appli-
cation provider in a Cloud SLA, that the availability of the VM, employed for the
deployment of the Monitoring service, will not fall below 99,9%.

Finally, Figure @ summarizes the components description of the traffic man-
agement application, depicting a snapshot of the involved components in each

layer and their interrelationships.

2.3 Traffic Management Scenario

In this section we motivate our approach with a specific scenario of the traf-
fic management example deployed on multiple Clouds. This SBA, as already ana-
lyzed, is characterized by strong interdependencies between the layers and raises
various events during its lifecycle [Zeginis et al. 2012b]. The main goal of this
scenario is to regulate traffic aiming to optimize particular environmental condi-
tions (e.g., CO, levels, temperature and air pollution) drawn from real-time sensor
measurements and to properly address car accidents or other incidents impeding
normal car flow. Each of these cases is handled by a different sub-process [Zegi-
nis et al. 2012b]. In a normal traffic scenario the three aforementioned tasks take
place, while a separate task (7¢) is defined checking for public events and high
traffic hours. Each task is a separate software service (SaaS) hosted on underlying
PaasS, offering various add-ons (e.g. application server, database, special software,
etc.) and IaaS resources, including Compute, Storage and Network components

and providing the necessary monitoring sensors.

*http://www.flexiant.com/
*http://www.cloudbees.com/

33

ario

2.3. Traffic Management Scen.

syusuodwod uonjesrjdde JusweZeuew dyJea] Sy L ¢’

z 231y

AdiceliEAY
015

Jzhe| gee|

seed
saagpnojd

lshe| geey

aascaiey

lzhe|siem))og

ERIVESS

UDREIRd0 UOREINSYUDTRNAS]

uoiiEsRdo JUSPIIUPIYEL | 3| pue

UOIIER00 [EULONSSRSSY

uonesado |H@Indwo)

uogeiada [y=Indiag

uonelado |gyeindwod
uoiEsRdo WapIU EEaETy

uonesedo simeadus

uoeiado fosen

uones=do JuoznIR:

uoE1ad0 eI B INSEIN

uoi3eado JUBp DI

ERIIVELS
Joyuo

uoiesado AEpIDHNIQNAP3YD
uoieiado BIa5PaYD

uonERDD AIPLINHIES

uonetado pgEn

uoieiado fgNIED

1335

ndySnoay |
[

Aupceyieay
[

5 20| LOIIN32XT]

[

Jafe| 208

=40

|B0D ssauisng

1500
Suawaunseaw
105U3S
5]205 sESuEng

35E] [BULON
0D ssaukng

553104 S53U1SNE U

ucieInp

—0

B3IE AU

iahe| |Ndg

3wafeue |y nyell

uonedddy Juswadeuep Jieal

34 Chapter 2. Running Example

I
1 1
! 1
I I
1 1
! 1
' |
1
i SaaS !
1
1 1
' layer
' 1
i I
! 1
i I
1 1
! 1
1
' |
1
1
|
Municipal Cloud Central Cloud PaaS |
Application Server Application Server a a :
Special software Data.base 1
Special software Iayer |
et N U ey —e g N e e ————————— !
1 ’ g :
1 (&
VM VM 1
! ol i laaS |
1 we, P — !
Monitoring sensors Monitoring sensors 1
1 <
1 ce, K Compute Compute Iayer |
1 Storage Ce4% Storage !
1 Network MNetwork :
L I =

Figure 2.4: Detected violations in the traffic management system

The Cloud infrastructure supporting this SBA includes the following event
sources with the particular metric/parameter information in parentheses: (i) the
infrastructure, comprising virtualized resources (CPU, memory, disk) and a set
of environmental sensors (e.g. temperature, humidity, etc.); (ii) the PaaS service
which is used to host the service, or an application server/container which runs
onthe same VM (e.g. Paa$ availability/uptime, response time); and (iii) the hosted
application/Web service (e.g. service response and execution time, availability,
etc.). The SBA is driven by a business process describing the application tasks,
the roles associated with it and the control and data flow (Figure @). Thus, BPM
events (e.g., key performance indicators (KPI), business goal) and SCC events (e.g.,
service response and execution time, throughput, etc.) may be captured at the
Saas$ layer. The main non-functional goal of the application is to capture the fol-
lowing metrics and interrelate their measurements in order to discover valid

event patterns leading to SLO violations:

e; — Free memory of the VM hosting the Monitor and Device Configuration services

ea — CPU-load of the VM hosting the Monitor and Device Configuration services

2.4. Monitoring and Adaptation Scenarios 35

e3 — Execution time of the Device Configuration Service
e4 — Network uptime for the Assessment Service

es — Throughput of Device Configuration service

eg — Average Execution time of the Monitoring service

e7 — Duration of the Assessment and Device Configuration tasks

2.4 Monitoring and Adaptation Scenarios

This section details two monitoring and adaptation scenarios of the traffic
management application, which involve a couple of monitoring events detected
by the monitoring mechanisms, incorporated in the proposed framework. These
scenarios focus on the reactive and proactive adaptation capabilities of the pro-
posed framework and involve pattern discovery and rule derivation issues, in or-
der to exemplify the usage of the proposed algorithms and techniques, analyzed
in Chapters H and H

Reactive adaptation scenario: The response time of the Assessment Service,
hosted on an OpenStackH VM, is violated. Consequently, the Adaptation Manager
triggers a “scaling-out” action to deploy two more “tiny” VM instances with RHEL
0S, in order to address the demanding load. This action also requires a “redo activ-
ity” action at the BPM layer as the BPEL engine has continued after the triggering
of the Assessment activity.

Proactive adaptation scenario: During the application execution, the Moni-
toring Engine installed on the Flexiant VM hosting the Monitoring service detects
that the CPU usage has exceeded the warning threshold of 80%, as identified by
the application requirements, while the next execution reports a critical alert of
the VM free memory. These two successive warning events have already been re-

lated together as a pattern leading to a violation of the execution time SLO of the

*http://www.openstack.org

36 Chapter 2. Running Example

Monitoring service. Consequently, the adaptation engine proactively adapts the
system and triggers an elasticity rule dictating a “scaling-up” adaptation action of
the VM hosting this service, with the appropriate configuration (i.e. provisioning
one more instance of a “medium” Openstack VM with Fedora 0S). This action also
entails a migration of the Monitoring service to the new provisioned, more pow-
erful VM, offering higher computational power and thus prevents a very possible

SLA violation and the underlying imposed penalty.

2.5 Conclusions

To sum up, this chapter provides details about the traffic management run-
ning example, used throughout this dissertation to illustrate the applicability
of the various components of the proposed monitoring and adaptation frame-
work. The two adaptation scenarios analyzed in the last section of this chapter are
reused for the overall evaluation of the framework. The next chapter provides a

detailed literature review.

Chapter 3

Literature Review &

Fundamentals

Contents
B.1 Cloudand SBAModeling. 38
b.l.l Comparisod 42
B.2 Monitoring and Adaptation 42
b.2.1 Cross-layer Approache4 45
B.22 Cloud Monitoring and Adaptatior|] 51
b.2.3 Comparisod 53
B.3 PatternDiscoveryo eueeueueueoen.. 57
b.3.1 Mathematical and Statistical Approache4 57
b.3.2 Temporal Approachesi 60
B.3.3 Logic-based Approachey 62
b.3.4 Comparisod 63
B.4 Technical Fundamentals 64
B.5 Conclusiong uuuuin... 74

Based on the requirements set in Section @, this chapter provides a literature
review of the current state-of-the-art research approaches in Web service mon-

itoring and adaptation. The main purpose of this chapter is to prove that there

37

38 Chapter 3. Literature Review & Fundamentals

is a significant research gap in these research areas, paving the way to the next
chapters analyzing the thesis’ contributions towards closing this gap. In addition,
it provides the technical fundamentals for the proposed framework.

This chapter is organized into four main sections. Each section groups the
state of the art for each one of the following topics and compares them according
to the identified requirements. Specifically, Section @ analyzes the work per-
formed in modeling Cloud application components, while Section @ discusses
research approaches for monitoring and adapting SBAs and especially the ones
considering cross-layer and multi-cloud aspects. The research approaches are
compared against the requirements set in Section @ Approaches offering pat-
tern discovery techniques, utilized by our monitoring framework, are analyzed
in Section @ Finally, Section @ aims to equip the interested reader with the
appropriate knowledge in order to be able to (i) follow up with the remaining
chapters of this dissertation; (ii) fix the terminology used throughout this disser-
tation in order to make it self-contained; and (iii) briefly analyze the syntax and

semantics of the main exploited languages and techniques.

3.1 Cloud and SBA Modeling

As far as the modeling of the business processes of a SBA is concerned, the de
facto standard utilized by the whole SOA community is the BPMN 2.00 notation,
which is a standard for business process modeling that provides a graphical nota-
tion for specifying business processes in a Business Process Diagram. This graphi-
cal notation facilitates the understanding of the performance collaborations and
business transactions between organizations. The primary goal of BPMN is to
provide a standard notation readily understandable by all business stakeholders.
BPMN 2.0 serves as a common language, bridging the communication gap that
frequently occurs between business process design and implementation.

As far as the modeling of Cloud components is concerned, there are some well-

http://www.bpmn.org/

3.1. Cloud and SBA Modeling 39

established approaches focusing on the most generic components of a Cloud ap-
plication, mainly at the infrastructure layer. This section provides a literature re-
view on the most important and widely-used models. In addition, subsection
compares them and pinpoint their deficiencies.

The first attempt to establish a standard for [aaS modeling has been performed
by Open Cloud Computing Interface (OCCI)B. OCCI, which was originally initiated
to create a remote management API for [aaS model based services, has since evolved
into a flexible API with a strong focus on integration, portability, interoperabil-
ity and innovation, while still offering a high degree of extensibility. The main
classes in this model are Resource and Link. The former one describes the main
resources of a VM Instance, i.e. Network, Compute and Storage, while the latter

one allows the linkage between the previously defined resource types.

cd: Infrastructure)

Resource Link
(from occi::core) target (from occi :: core)

+summary :String [0..1]

+ source

links.

Network T Storage Networkinterface

+occi.network.vlan :Integer [0..1] + occi.storage.size :int +occi.networkinterface.interface :String
+occi.network.label :Token[0..1] +occi.storage.state :Enum + occi.networkinterface.mac :String
+occi.network.state :Enum +occi.compute.architecture :Enum[0..1] +occi.networkinterface.state :Enum
+occi.compute.cores :Integer [0..1]
+occi.compute.hostname :String [0..1]
+occi.compute.speed :Float[0..1]
+occi.compute.memory :Float[0..1] +occi.storagelink.deviceid :String
+occi.compute.state :Enum + occi.storagelink.mountpoint :String [0..1]
+occi.storagelink.state :Enum

Compute

StorageLink

Figure 3.1: Overview of OCCI infrastructure types [Metsch and Edmonds 2011]

OASIS in [Durand et al. 2014] attempts to standardize the PaaS components
modeling through the Cloud Application Management for Platforms (CAMP) spec-
ification, which describes the artifacts and APIs that need to be offered by a Plat-
form as a Service (PaaS) Cloud to manage the building, running, administration,
monitoring and patching of applications in the Cloud. The main purpose of this
model (figure @) is to define the artifacts and Application Programming Inter-

faces (APIs) needed by a Paa$S to manage the building, running, administration,

*http://occi-wg.org/

40 Chapter 3. Literature Review & Fundamentals

monitoring and patching of applications in the Cloud, as well as to enable in-
teroperability among self-service interfaces to Paa$S Clouds. This model also en-
ables Cloud vendors to develop new Paa$ offerings that will interact with inde-

pendently developed tools and components.

platform plan assembly
+ supported_formats_uri :URI [0..1] + camp_version :Stiing + components :LinkAmay
+ extensions_uri :URI HionginiEStringliosgl + plan_uri :URI[0..1]
+ type_deﬁnitions‘_uri :QRI + aﬂlf_aC(S 13“1_"9A"3Y [0..1] + operations_uri :URI [0..1]
+ platform_endpoints_uri :URI + services :StringArray [0..1] + sensors_uri :URI[0..1]
+ specification_version :String
+ implementation_version :String [0..1]
+ assemblies_uri :URI
+ services_urn :URI
+ plans_uri :URI[0..1]
+ parameterDefinitions_ur :URI service
x + parameter_definitions_uri :URI [0..1]
assemblies
+ assembly_links :LinkAmay [0..1] camp_resource
+ parameter_definitions_uri :URI\b -
+ uri :URI
+ name :String
services | >+ description :String [0..1] component
+ tags :StringAmay [0..1] ‘ ,
+ service_links :LinkArray + type :String assemblies :LinkArray
/V + representation_skew :String [o..1]<7\ :e”r";acce‘ fﬂs: {gH

status :String
external_management_resource :URI[0..1
related_components :LinkAmay [0..1]
operations_uri :URI [0..1]

sensors_uri :URI[0..1]

plans

+ plan_links :LinkArray [0..1]
+ parameter_defintions_uri :URI

+ o+ o+ o+ o+ o+ o+ o+

Figure 3.2: The CAMP Paa$S model

Furthermore, OASIS recently standardized Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA)E, in an attempt to enhancing the porta-
bility and management of Cloud applications and services across their lifecycle.
It is basically a topology of cloud-based Web services, their components, relation-
ships and the processes that manage them. The TOSCA standard includes speci-
fications to describe processes that create or modify web services. Although, it
is the latest related attempt, it has attracted the interest of many researchers
along with Cloud Modeling Language (CloudML)E (they are actually starting to

converge) when it comes to modeling Cloud deployments.

One of the results of Cloud4SOA EU Projectﬂ was the modeling of the PaaS com-

*https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
*http://cloudml.org
*http://www.cloud4soa.eu/

3.1. Cloud and SBA Modeling 41

ponentsE. Through this model, PaaS providers can semantically annotate their
Paas$ offerings. Specifically, it captures the available platform functionality as
well as technical- and business-driven characteristics of Paa$ offerings. Another

attempt to model Cloud computing entities has been proposed within mOSAIC

EU Projectﬂ. The proposed ontology [|Moscato et al. 201]1] aims at developing an

open-source platform that enables applications to negotiate Cloud services as re-
quested by users. This platform can be used to improve interoperability among
existing Cloud Solutions, platforms and services.

Finally, the modeling at the Software-as-a-Service (SaaS) layer has been widely
influenced by the SOA, providing plenty SBAs. Within the S-Cube EU proj ectE, spe-
cific models, both for the SCC and the BPM layers have been proposed. These mod-
els define the main concepts of a Business Process (i.e. activities, roles, KPIs) and

the corresponding composite services (simple services, constraints, SLAs), as well

Shttp://islab.uom.gr/cloud4soa/c4smodel.html/ (last access 26/9/2014)
"http://www.mosaic-cloud.eu/
8http://www.s-cube-network.eu/

'_User Iayer) nvolvesDevelo, erl
|4>[PaaS User][Developer 2 :

Component language Component Parameter
Support
Language

Offer
Software

|

|

|

-

1

g |

Hardware][Programming][Software][QoS]
|

|

|

Figure 3.3: The Cloud4SOA PaaS model

42 Chapter 3. Literature Review & Fundamentals

as their interrelationships (e.g. a service realizes an activity).

Concerning modeling of the interface incompatibilities between services of
an orchestration, the authors in [Taher et al. 2013] propose and define a meta-
model which has as main objective the modeling of the provider and client service
interfaces, the incompatibility patterns and the adapters for solving both signa-
ture and protocol incompatibility problems that may exist between Web service
protocols. Finallt, the authors in [Inzinger et al. 2013] propose an approach for
model-based adaptation of cloud computing applications, supporting the SBA cus-
tomers by providing a simple SBA model on which they can specify the desired

application behavior.

3.1.1 Comparison

The aforementioned approaches do not offer a unique unified modeling solu-
tion, describing all the components of a multi-cloud SBA. Most of these models
are layer specific, providing only high-level details for the other layers and none
of them combines information for components from the SOA and Cloud context.
Moreover, the attributes they provide lack information about the adaptation pro-
cess that can facilitate a rule expert to define suitable adaptation strategies to be
applied on each of the modeled components. Thus, there is a need for a holistic
model describing all the components of a multi-cloud SBA, considering both the
SOA (i.e., BPM, SCC and SI) and Cloud layers (i.e., SaaS, PaaS and IaaS). Addition-
ally, ameta-model of the adaptation actions that can be applied on each one of the
system components, will profoundly assist the mapping process from monitoring

events to suitable adaptation actions.

3.2 Monitoring and Adaptation

The need for monitoring different functional and non-functional requirements,

as well as for taking adaptation actions is widely recognized by industry and academia,

3.2. Monitoring and Adaptation 43

as a means of improving SBAs. In recent years, a couple of approaches towards
monitoring and adaptation of SBAs have been proposed. The aim of this section
is to analyze these approaches, especially the ones featuring cross-layer (subsec-
tion) and Cloud (subsection) aspects, and present their main drawbacks.
Subsection compares and evaluates these approaches based on the identified
requirements of Section @ and draws conclusions.

[Baresi et al. 2007] presents an approach for self-healing of BPEL processes.
This approach is based on Dynamo [Baresi and Guinea 2005] monitoring frame-
work along with an AOP extension of ActiveBPEL and a monitoring and recov-
ery subsystem using Drools Event-Condition-Action (ECA) rules. A composition
designer provides assertions for invoking, receiving or picking activities in the
business process. These assertions can be specified using two domain specific
languages (WSCoL and WSReL). The problem of selecting alternative services and
dealing with possible interface mismatches when forwarding a request to an alter-
native endpoint recovery is not explicitly addressed. Additionally, the recovery
rules cannot be changed dynamically, as they need to be compiled offline.

The VieDAME environment [Moser et al. 2008] extends the ActiveBPEL engine
to enable BPEL process monitoring and partner service substitution based on vari-
ous strategies. The services are selected according to defined selectors. VieDAME
requires service registration to a repository, marking services to be monitored
and eventually substituted as replaceable. It uses an engine adapter to extend
the engine’s functionality, but does not explicitly address fault handling.

[Barbon et al. 2006] presents an event-based monitoring approach, developed
within the Astro project, which also extends the ActiveBPEL engine and defines
RTML, an executable monitoring language to specify SBA properties. Events are
combined by exploiting past-time temporal logics and statistical functions. Mon-
itors run in parallel with the BPEL process as independent software modules veri-
fying the guarantee terms by intercepting the input or output messages received
or sent by the process. This work does not allow for dynamic (re-)configuration

of the monitoring system in terms of rules and meta-level parameters.

44 Chapter 3. Literature Review & Fundamentals

In [Mahbub and Spanoudakis 2007, Spanoudakis and Mahbub 2006] the au-
thors present an approach towards extending WS-Agreement [Andrieux et al. 2007].
This approach supports monitoring of functional and non-functional properties.
EC-Assertion is introduced to specify service guarantees in terms of different
types of events, which are defined in a separate XML schema and it is based on
Event Calculus (EC) [Shanahan 1999]. By proceeding in parallel with the business
process execution, it leads not only to less impact on performance, but also to a
smaller degree of responsiveness in discovering erroneous situations.

[Farrell et al. 2004] presents an SLA-based monitoring approach exploiting
EC as the underlying formalism. This approach addresses the utility computing
domain, where the cornerstone aspect is to provide resources with certain qual-
ity characteristics. Contracts are defined based on contract patterns, which are
then axiomatized using EC. Then, the effects of critical events on the contract
state/evolution are defined. The respective framework is based on a particular
architecture and comprises an analyzer managing the contract analysis and re-
porting and a visualizer representing the SLA monitoring results.

Aplatform for developing, deploying and executing SBAs is proposed in [Curbera
et al. 2005], incorporating tools and facilities for checking, monitoring and enforc-
ing service requirements expressed in WS-Policy notations. The Colombo plat-
form comes with a module that manages policy assertions. Apart from evaluating
the assertions attached to particular service-related entities at both design and
run-time phases, the framework provides the means for policy enforcement, e.g.,
it may approve a delivery of a message, a rejection of it, or defer further process-
ing.

The authors in [Inzinger et al. 2014] introduce an architecture and a DSL,
named MONINA (Monitoring, Integration, Adaptation), that allow to integrate
functionality provided by different components and to define monitoring and
adaptation functionality. It is similar to our approach, as monitoring is carried out
by complex-event processing queries, while adaptation is performed by condition

action rules performed. However, it differentiates regarding its scope, which aims

3.2. Monitoring and Adaptation 45

at the specification of platforms integrated into a Virtual Service Platform (VSP),
that provides a unified view on the functionality of the integrated service plat-
forms that are connected by control interfaces. In addition, it lacks cross-layer
and multi-cloud features, as well as experimental analysis of the implemented

approach.

3.2.1 Cross-layer Approaches

[Kazhamiakin et al. 2009a] is the first approach that reveals the need for cross-
layer monitoring and adaptation of SBAs. It can be considered as the stepping
stone of all the following approaches. In particular, this work defines a set of re-
quirements for a novel and integrated approach that provides a coherent and
holistic solution for monitoring and adapting the whole SBA. 1t illustrates the
problem using a series of case studies and provides a set of requirements that
a novel cross-layer approach should address. Based on the taxonomy of those
requirements, the authors define the mechanisms and techniques that are nec-
essary for addressing the requirements and that constitute an integrated cross-
layer framework. Finally, it describes a uniform conceptual model underlying
such a framework and presents a set of potential and existing principles and
methodologies that enable cross-layer monitoring and adaptation. In this work
Kazhamiakin et al. made a first attempt to introduce the fundamental principles
for cross-layer monitoring and adaptation of Service-Based Applications. Although
this work does not provide a concrete solution to the problem, it offers helpful
directions for aspiring researchers in this area. Therefore, this work cannot be
compared to other research work proposing specific frameworks, but it can be
considered as a benchmark, as it provides the characteristics of an ideal cross-

layer monitoring and adaptation system.

In [Popescu et al. 2012; 2010] the authors propose a methodology for the dy-
namic and flexible adaptation of multi-layer applications using adaptation tem-

plates and taxonomies of adaptation mismatches. Templates are exposed as ex-

46 Chapter 3. Literature Review & Fundamentals

ecutable BPEL processes that may encapsulate adaptation techniques. The tem-
plate developers are in charge of associating the templates they develop with
adaptation mismatches based on the types of mismatches they can cope with.
For each application layer, one may define one or more taxonomies of adaptation
mismatches, which may either be generic or contain domain information for par-
ticular application domains. The authors use tree-based taxonomies and is-a rela-
tionships between children and parent mismatches, as well as for the scaled de-
gree of matching between adaptation mismatches. The cross-layer dimension of
this approach is achieved by linking adaptation templates, corresponding to lay-
ers where adaptation is needed, either directly or indirectly. In the former case, a
BPEL adaptation template invokes the WSDL interface of another BPEL adaptation
template. In the latter case, a BPEL adaptation template raises an event that will
trigger the selection, deployment and execution of another adaptation template.
This can be achieved by using standard BPEL activities that are invoked to gener-
ate events and receive or pick branches to receive events. Within each layer the
authors assume the availability of several adaptation templates, some of which

are linked and which are associated with different taxonomy mismatches.

This work deals with cross-layer adaptation in a flexible and dynamic manner.
It assumes that monitoring takes place before this procedure without going into
details about monitoring events are collected from different layers. The proposed
layers correspond to BPM and SCC layers. Its main drawback is that it does not
take into consideration infrastructure failures, which usually occur during the

execution of SBAs.

In [Guinea et al. 2011] the authors present an integrated approach for monitor-
ing and adapting multi-layered SBAs. This approach is based on a variant of MAPE
control loops [Horn 2001] that are typical found in autonomic systems. All the
steps in the control loop acknowledge the multi-faceted nature of the system, en-
suring that they always reason holistically and adapt the system in a cross-layered
and coordinated way. The proposed methodology comprises four main steps: (i)

Monitoring and Correlation, where sensors capture run-time data about the soft-

3.2. Monitoring and Adaptation 47

ware and infrastructural elements, (ii) Analysis of Adaptation Needs, in which
the framework identifies anomalous situations and pinpoints where it needs to
adapt, (iii) Identification of Multi-layer Adaptation Strategies, in which the frame-
work uses the adaptation capabilities that exist within the system to define a
multi-layer adaptation strategy as a set of software and/or infrastructure adapta-
tion actions; and (iv) Adaptation Enactment, where different adaptation engines
at the software and infrastructure layer enact their corresponding parts of the
multi-layer strategy. This approach comprises a set of mechanisms to provide
multi-layer monitoring and adaptation. Its main drawback is that it does not fea-
ture proactive adaptation capabilities. In addition, it does not provide in detail
how cross-layer monitoring is performed in which the various events are syn-

chronized.

Another cross-layer adaptation approach is presented in [Gjerven et al. 2008],
where the authors propose an approach towards cross-layer self-adaptation, which
exploits mechanisms across two layers: (i) the Service Interface layer; and (ii) the
Application layer, related to the BPM and SCC layers respectively. In the Service
Interface layer, loosely coupled services communicate via open protocols, hiding
their implementation and technology platform, whereas at the Application layer,
service application logic is developed and deployed on different technology plat-
forms. A technologically independent middleware, named QUA is introduced to
support coordinated cross-layer adaptation. This middleware consists of a plan-
ning framework, which is responsible for selecting service implementations and
configurations, a platform framework, which encapsulates mechanisms for man-
aging and adapting services and a supporting Meta-Object Protocol Service. This
work is a coarse-grained approach, that adopts only the aforementioned layers.
The proposed technology-agnostic adaptation middleware can be used to inte-
grate and exploit adaptation techniques and mechanisms from both application
and service layers. The authors do not elaborate on cross-layer monitoring tech-
niques. Finally, this framework does not have any proactive adaptation capabili-

ties.

48 Chapter 3. Literature Review & Fundamentals

[Zengin et al. 2011] proposes a holistic SBA management framework, called
CLAM, which can deal with cross- and multi- layer adaptation problems. This is
achieved in two ways. On the one hand CLAM identifies the application capabili-
ties affected by the adaptation actions and on the other hand it identifies an adap-
tation strategy that solves the adaptation problem by properly coordinating a set
of specific adaptation capabilities. This work addresses the cross-layer adaptation
problem. The tree-based approach for defining adaptation paths seems very in-
teresting although it can be time-consuming. In addition, during the ranking pro-
cess of the adaptation branches, cost is not taken into consideration. A drawback
of this approach is that it does not elaborate on cross-layer monitoring. Finally,
this approach has neither proactive adaptation, nor functional aspects handling
capabilities.

In [Jiang et al. 2011], the authors present the design and implementation of
an experimental facility for cross-layer adaptation. It is based on adaptation logic
that builds run-time adaptation models based on information from the applica-
tion, communication and hardware layers and uses the model for coordinated
adaptation of these layers. The work builds on the MUSIC [Rouvoy et al. 2009]
adaptation framework, based on an externalized approach to self-adaptation where
the adaptation logic is delegated to generic middleware. This approach addresses
cross-layer adaptation from a different viewpoint than the previous ones. It fo-
cuses on the testing and evaluation of distributed systems with regard to their
adaptive behavior. Unfortunately, the current implementation supports only events
from the communication layer, but there are plans for other types of simulation.
To sum up, it is a very interesting approach that we could exploit for evaluating
the proposed/envisioned adaptation framework.

[Schmieders et al. 2011] presents a solution to avoid SLA violations in the com-
plex settings of SBAs. The novelty of the approach is the exploitation of all SBA
layers for the prevention of SLA violations. The authors propose a framework
that integrates layer specific monitoring and adaptation techniques and enables

multi-layered control loops in service-based systems. The identification of adap-

3.2. Monitoring and Adaptation 49

tation needs is based on SLA prediction, which uses assumptions on the charac-
teristics of the running execution context. Multiple adaptation mechanisms are
available to react on the adaptation need, acting on different layers of the SBA.
The adaptation strategy chooses the right adaptation mechanism, coordinated
by a multi-agent community. The proposed approach efficiently addresses cross-
layer adaptation by preventing SLA violations. An interesting perspective of this
work is that it implements SALMon monitoring mechanism, as an SBA by itself, in
order to be easily integrable with other technologies in the framework. Its main
limitations are that it does not comprise infrastructure monitoring unlike SI adap-

tation and that the proposed adaptation process is not proactive.

[Fugini and Siadat 2009] proposes a SLA contract that merges parameters from
user, business service and IT infrastructure as an alternative approach for the
cross-layer monitoring and adaptation of SBAs. The user parameters are mea-
sured through the Key Goal Indicators (KGIs) that define how well service-based
processes achieve the customers’ goals. Once the contract is created, it is evalu-
ated in the monitoring phase and checked for possible violations from the prede-
fined values. According to the source of a violation event, an appropriate action
is taken to adapt the violated condition to the new values, through an adaptation
mechanism. In the last phase of the proposed framework, the contract is updated
to fulfil the new conditions and requirements. The proposed approach efficiently
combines parameters from user, business services and IT infrastructure to con-
struct SLA contracts. These contracts can be exploited by existing approaches to
determine the monitoring events and the corresponding adaptation actions at
each layer. An innovative aspect is the idea of using user profiles in the contract,
to express interests on data and parameters as numerical scores or explicit order-
ing relations, thus making it more personalized. Finally, a limitation of this work
is that only non-functional characteristics of SBAs can be defined in such types

of contracts.

[Leitner et al. 20104] introduces the PREvent framework, that utilizes machine

learning techniques to predict SLA violations. An event-based monitoring sys-

50 Chapter 3. Literature Review & Fundamentals

tem [Michlmayr et al. 2010] feeds the adaptation engine, which automatically pre-
vents these violations by predicting them, using regression from monitored run-
time data and applying adaptation actions in service composition at run-time. In
particular, it focuses on endangered composition instances and does not apply
on the SBA class. Its adaptation capabilities are limited in comparison to other
aspect-oriented programming (AOP) approaches [Karastoyanova and Leymann
2009, Kongdenfha et al. 2009, Leitner et al. 2010b], that also employ structural
adaptation on service compositions. Its evaluation reveals satisfactory results in
predicting and preventing most of the violations.

In [Hielscher et al. 2008] the authors propose PROSA framework, that enables
proactive adaptation by exploiting online testing techniques to detect changes
and deviations before they actually lead to undesired consequences. Oppositely
to offline testing, which is performed during the design phase, online testing is
done during the operation phase of a SBA and thus does not affect its execution.
The main benefit of this approach is that it enables both reactive and proactive
adaptation, as well as it can select the optimal adaptation decision through “pre-
testing” of the alternatives, while a pinpointed drawback is the lack of its applica-
bility demonstration in real-world systems, as well as the impact of the execution
of test cases on the performance of the SBA.

The work presented in [Kazhamiakin et al. 2009b] introduces an adaptation ap-
proach for SBAs, based on a process quality factor analysis [Wetzstein et al. 2009].
The result of this analysis is a decision tree, called a dependency tree as it shows
the dependencies of KPIs on process quality factors from different functional lev-
els of an SBA. These dependency trees are also used to model adaptation actions
and associate them with quality metrics, as well as to extract adaptation require-
ments from the dependency tree and come up with an adaptation strategy.

On the same wavelength, [Dranidis et al. 2010] proposes an approach for “just-
in-time” (i.e., shortly before a conversational service is invoked for the first time)
proactive adaptation, utilizing test cases grounded in the formal theory of Stream

X-machines (SXMs) [Dranidis et al. 2007]. Most of the costly test preparation ac-

3.2. Monitoring and Adaptation 51

tivities are executed during deployment time, in order not to interfere with the
context of the concrete SBA. The applicability of the approach is illustrated on
a e-shop example, revealing that online tests should be limited not only to eco-
nomic and technical issues, but also to the impact they have on the actual SBA

performance.

Moreover, the authors in [Song et al. 2013] propose a model-based approach
towards cross-layer system monitoring and adaptation. In particular, they pro-
pose meta-modeling languages for system experts to specify the layers, the re-
lations between them, as well as the constraints on each layers. However, this
approach is an initial attempt, that has not been sufficiently evaluated on real
life SBAs. Moreover, this approach is generic, applicable on distributed multi-tier

systems, not providing concrete features for SOA and Cloud architectures.

Finally, in [Dib et al. 2012] the authors make two contributions regarding dy-
namic adaptability of modern operating systems . First, they propose a service-
oriented approach for building distributed OSs, which enables adapting the 0S
algorithms in a dynamic, on-demand fashion. Second, they propose a common
framework to adapt both the OS and application layer in a coordinated way, thus
avoiding any possible conflict or redundancy. Consequently, this approach is a
cross-layer one in the sense that it supports both the 0S and application layer.

Nevertheless, it does not focus on the layers of the SOA and/or Cloud stack.

3.2.2 Cloud Monitoring and Adaptation

While several Cloud monitoring approaches have been proposed in the past,
only a few take comprehensively into account cross-layer issues. In what follows
we will first describe the most prominent of such approaches and then compare

them in the next subsection according to the requirements established in

Section @

One of the main barriers to the adoption of SBAs is the concern raised over

the trustworthiness and reliability of third-party services utilized in a SBA. The

52 Chapter 3. Literature Review & Fundamentals

problem of reliability becomes more complex when third-party Cloud comput-
ing services are used as the underlying infrastructure for provisioning the SBA.
[Bratanis et al. 2011] focuses on the definition of SLAs in the BPM, SCC and SI
layers, for cross-layer adaptation and monitoring of SBAs. They offer insights
into how an SBA should be analyzed, in order to identify and separate the dis-
tinct business, software and infrastructure services. This technique is applied on
a case study that concerns Paa$ offerings for enabling the customization of Saa$S
applications by third parties. The presented case study clearly states the service
characteristics and the SLOs at each SBA layer. Its main drawbacks are that it does
not investigate methods for representing layer-specific SLAs and that there is no

cross-layer implementation to apply these SLAs on.

[Alcaraz Calero et al. 2012] presents an analysis of a wide set of distributed
monitoring solutions analyzing the features, requirements and topology of a cross-
layer monitoring system for Cloud computing. Similarly, [Hasselmeyer et al. 2012]
provides an overview of monitoring in Cloud environments, highlighting the sim-
ilarities with grid monitoring solutions. The authors pinpoint the requirements
for each one of the involved roles and present a solution for interoperable and

vendor-independent Cloud monitoring.

Moreover, a number of EU-funded research projects are currently examining
Cloud monitoring solutions. IRMOSH offers a Cloud infrastructure, comprising a
service management system, that acts as a link between Saa$S and IaaS to manage
the negotiation, reservation, execution and monitoring of the Application Ser-
vice Components and, at the same time, to check at run-time performance related
requirements while conforming to the Service Level Agreements (SLAs). RESER-
vorRM introduces Lattice, a non-intrusive monitoring framework for Cloud appli-
cations. Lattice features probes for collecting and transmitting data to the service

management part, which takes decisions based on them. VISION Cloudd proposes

*http://www.irmosproject.eu/
http://www.reservoir-fp7.eu
"http://www.visioncloud.eu/

3.2. Monitoring and Adaptation 53

amonitoring framework able to aggregate events, apply rules on them and gener-
ate new events, representing complex states of the system. Cloudasoal? proposes
a cross-PaaS management and monitoring system [Zeginis et al. 2013b] for ap-
plications hosted on multiple Clouds, in order to ensure that their performance
consistently meets expectations and that Cloud resources are being effectively

utilized, despite the technology used to implement such applications.

3.2.3 Comparison

In the previous section we analyzed the current approaches on SBA monitor-
ing and adaptation, including cross-layer and Cloud approaches. In this section
we compare these approaches based on the set of requirements defined in Sec-
tion @ and Table Ell summarizes this comparison. The v' mark indicates satisfac-
tion of the requirement, the X mark defines that the approach does not satisfy the
requirement, while the ~ mark shows uncertainty. Regarding the timeliness cri-
terion, Im means immediate delivery of the monitoring event and Pm postmortem
notification for the monitoring events after a single execution of the SBA, F and
NF represents the functional and non-functional monitoring capability of the con-

sidered approach, while I and C the instance and class scope respectively.

From this comparison of current cross-layer approaches we conclude that
none of them satisfies all the requirements posed for a complete and holistic
cross-layer monitoring and adaptation approach for multi-cloud SBAs. It is worth
mentioning, that after this comprehensive literature review, we have concluded
that most approaches focus on either monitoring or adaptation, not providing re-
search contribution for both these close related procedures. In particular, as far
as dynamicity is concerned, most of these works perform dynamic adaptation un-
like dynamic monitoring. In addition, a few of current approaches are intrusive re-
garding both monitoring and adaptation, while almost all adaptation approaches

are reactive rather than proactive. As far as the type of monitored properties is

2http://www.cloud4soa.eu/

54 Chapter 3. Literature Review & Fundamentals

concerned, the majority of the reviewed approaches addresses only functional
attributes, while the scope of most of them is instance-based.

Moreover, current approaches addressing cross-layer monitoring and/or adap-
tation do not take into account all layers (Cloud and SOA), while the multi-cloud
ones do not provide the required flexibility and proactive adaptation capabilities.
The main strength of our approach is that it deals with both service and Cloud-
based applications, while considering challenges raised in a Multi-Cloud environ-
ment, satisfying almost all the considered requirements. Our approach can deal
with both functional and non-functional properties; its scope is instance-based,;
it provides both reactive and proactive capabilities, while it immediately notifies

about the detection of the monitoring events.

Table 3.1: Comparison of Cross-layer Monitoring and Adaptation approaches

Approaches Cross-layer/ | Dynamicity Intrusiveness Timeliness Type of properties Cloud properties
Multi-Cloud | Mon. | Adapt. | Mon. | Adapt. | Mon. | Adapt. | Kind Scope | Multi-tenant | Dyn./Ext. | Scalability | Simplicity

[Kazhamiakin et al. 20094] vV /X ~ ~ ~ ~ ~ ~ ~ ~ X X X X
[Popescu et al. 2017; po1d] /X X | v | x| v |Im| R F I X X X X
[Guinea et al. 2011] /X X v X v | Im | R |NFF| IC X X X X
[Gjorven et al. 2008] /X ~ v ~ X ~ R F I X X X X
[zengin et al. 2011] /X X v X v | Im | R NF I X X X X
[Jiang et al. 2011 /X X v X ~ | Im | R NF I-C X X X X
[Fugini and Siadat 2009 vV /X ~ ~ ~ ~ Im R F I X X X X
[Bratanis et al. 2011] /X ~ ~ ~ ~ ~ ~ | NF-F | IC X v ~ ~
[Schmieders et al. 2011] v /X ~ ~ X X Im R NF I-C X X X X
[Leitner et al. 20104] X/X | v | v | x| x |Im| P | NF I X X X X
[Hielscher et al. 200€] X/X | ~| v | ~| X | ~|PR|[NFF| I X X X X
[Kazhamiakin et al. 20095] v /X ~ X ~ X Im P NF I X X X X
[Dranidis et al. 201d] X/X | ~| ~ | x| x |m| R | NF | IC X X X X

uonvydvpy puv buriojuow ‘z°g

Gq

[Alcaraz Calero et al. 2012] /X ~ X ~ Im ~ NF ~ v v v v
[Hasselmeyer et al. 2017] X/ X v ~ ~ | Im R NF I v v v ~
IRMOS project X/ v X ~ X X Im | ~ NF I v ~ ~ v
RESERVOIR project X/ v ~ ~ X X Im R NF I-C v ~ v v
VISION project X/ X ~ ~ X X Im ~ NF I-C v ~ v ~
Cloud4S0A project X/ v ~ v X X Im ~ NF I-C v X v v
[Baresi et al. 2007] X/x | v | x | v | v |Pm| R |NFF| 1 X X X X
[Moser et al. 200€] X/x X v X X | Im | R NF I X X X X
[Barbon et al. 200¢] X/ | v | x | x| x |m| x | NF| IC X X X X
[Mahbub and Spanoudakis 2007] | X / X X X ~ X | Pm | X |NFF I X X X X
[Farrell et al. 2004] X/x ~ X X X | Im | X NF I X X X X
[Curbera et al. 2005] X/ X ~ X X X | Pm | X |NFF I X X X X
Proposed framework ECMAF N4 v v v X Im | R-P | NF-F I v v v v

96

S[ejuawepUN] 3 MITADY danjeadyr] ‘¢ aajdey)

3.3. Pattern Discovery 57

3.3 Pattern Discovery

This section reviews the related work in pattern discovery, from simple math-
ematical solutions to more complex logic-based approaches. We distinguish the
studied approaches in three main categories: (i) Mathematical and Statistical ap-
proaches (Subsection) that predominantly make use of the minimum thresh-
old of an event sequence occurrence, (ii) Temporal approaches (Subsection)
that introduce temporal constraints to discover patterns in different granular-
ities; and (iii) Logic-based approaches (Subsection) that use the power of
logic to discover frequent patterns. The following subsections analyze a series of
works based on the aforementioned categorization. Finally, Subsection high-
lights the main benefits of each approach and compares them, based on a set of

criteria.

3.3.1 Mathematical and Statistical Approaches

This type of approaches introduces methods of discovering frequent event
patterns, exploiting a user-defined minimum frequency or support (minsup) as
mainly used in data mining area. Frequent patterns or itemsets are those with
greater or at least equal than this minsup occurrences.

The springboard of all these approaches is the Apriori algorithm, firstly intro-
duced in [Agrawal and Srikant 1994]. This algorithm produces a set of all signifi-
cant association rules (i.e. rules relating a set of variables) between items in a large
database of transactions. The main concept of Apriori algorithm is to discover
sets of items that have a minsup. In this context a subset of a frequent itemset is
also considered a frequent itemset. The algorithm iteratively finds frequent item-
sets with incremental cardinality, from 1 to k (k-itemset) and uses them to gener-
ate association rules. A typical example to exemplify the algorithm’s application
is the market basket, where the consumer’s products are associated with each
other. For example, an association rule could be the following: { flour, sugar} =

{eggs}, provided that the number of consumers buying all these three products

58 Chapter 3. Literature Review & Fundamentals

surpasses the minsup.

In [Rémer 2006], the author introduces a method for discovering frequent
event patterns, as well as their spatial and temporal properties in sensor net-
works, exploiting data mining techniques. Provided that events are put into a
spatial and temporal context, the proposed system [R6mer 2008] correlates cer-
tain type of events on a sensor node with context events in a confined neighbor-
hood in the recent past. Thus, a correlation of events (i.e. distributed event pat-
terns) is discovered whenever these patterns’ frequency surpasses a minsup. The
proposed multi-pass algorithm splits the event stream in memory-fitted blocks,
finds the frequent patterns in each block using the special minsup M S for each
block, and then incrementally builds the set of patterns for the whole stream. Fur-
thermore, another minsup-based algorithm is presented in [Zaki and Hsiao 2002]
to discover closed itemsets, i.e. an itemset which none of its immediate supersets
has the same support as the itemset itself.

In [Manku and Motwani 2002], the authors propose another widely used al-
gorithm, named Lossy Counting. This is a one-pass algorithm, which computes ap-
proximate frequency counts of elements in a data stream and it involves grouping
the row items into blocks or chunks and counting within each chunk. A counter is
preserved for each itemset. It periodically discards elements with very low count
from the table. In this way, the most frequently accessed itemsets will almost
never have low counts, whereas itemsets that do not hit very often may not be
tracked anymore as their count would drop to zero in a few blocks. The main ben-
efit of this algorithm is that it requires provably small main memory footprints.
Lossy Counting algorithm outmatches the Apriori one, in terms of memory usage,
but it requires much more time to find frequent itemsets in a data stream.

Another single-pass algorithm for mining frequent itemsets, named DSM _F1,
is proposed in [Li et al. 2004]. This algorithm is based on a windows model and
comprises four main steps: (i) reading a set of transactions, (ii) construction of
the summary data function, (iii) infrequent information pruning, (iv) top-down

traversal of the summary data structure to discover frequent itemsets. The algo-

3.3. Pattern Discovery 59

rithm’s evaluation demonstrates that the DSM _F'I algorithm significantly out-
performs the Lossy Counting in terms of execution time and memory usage.

In [Hellerstein et al. 2002], the authors propose a framework for discover-
ing actionable patterns in large datasets of historical events. The main contri-
bution of this work is that it also takes into consideration the attributes of the
events, in order to group and itemize events. Specifically, this work deals with
four main types of event patterns, i.e. event bursts, periodic patterns, mutually
dependent patterns and multi-attribute patterns. For the first ones, periods with
higher event rates are isolated and handled separately, while for the periodic pat-
terns they introduce the concept of partially temporal association related to p-
patterns, which are discovered by firstly finding the period lengths for each peri-
odic event and then discover its temporal associations. The mutually dependent
patterns (defined as m-patterns) define itemsets, for which, if a subset appears,
the remaining items of the m-pattern occur with high probability. This approach
is similar to our approach for proactive adaptation. Finally, maf-patterns are pre-
sented to capture multi-attribute frequent itemsets, which are very efficient for
systems’ management. This method groups events based on a set of attributes
and then mines on these subset of events to discover frequent itemsets.

The authors in [Laxman et al. 2007] introduce a pattern discovery framework
utilizing event duration information explicitly defined into the episode structure
(i.e., generalized episodes (GE)). This temporal information improves the descrip-
tive power of episodes and reveals duration-dependent correlations in the data
stream. Thus, the discovery process of GEs can then help a root-cause analysis
for persistent causative chains of events, the frequency of which is above a given
threshold. In particular, the associated formalism for defining GEs, as well as the
corresponding discovery algorithms are presented. The framework’s evaluation
reveals significant accurate discovery and ranking results even for overlapping
episode.

In [Chaturvedi et al. 2013] a pattern mining tool is presented that can help in

improving the efficiency and effectiveness of rule-based data standardization sys-

60 Chapter 3. Literature Review & Fundamentals

tems, usually employed by business to improve their data quality. The extracted
patterns can be further exploited by the domain expert for rule definition. A
greedy algorithm is introduced to mine significant semantically relevant sub-patterns,
as well as a clustering model to group the discovered sub-patterns which encode
the same domain knowledge, through the specification of a special distance mea-
sure. The tool also exhibits ranking capabilities, exploiting the normalized fre-
quencies of the mined sub-patterns. Its evaluation reveals its accuracy in discov-

ering all the related sub-patterns coded by rule experts.

[Hamilton-Wright and Stashuk 2008] presents an approach for statistically
based pattern discovery (SBPD), that extracts patterns based on a test of statistical
validity. Its main objective is to find relations between specific values of features
in a biological training dataset. For this reason, the proposed algorithm observes
polythetic events, i.e., events defined by the occurrence of combination of feature
values (e.g., a record of a patient comprises her/his age, gender, disease state, dis-
ease duration, etc.). A single feature measurement is considered as a primary event,
while the co-occurrence of a specific set of primary events forms a high order event,
the frequent detection of which is considered as a pattern that provides useful
knowledge for inference and reasoning. The discovered patterns can be further

ranked exploiting their statistical confidence and the use of specific classifiers.

3.3.2 Temporal Approaches

This type of approaches introduces methods of discovering frequent event
patterns, exploiting the temporal relations among the events of the input stream.
These approaches can be very useful for deriving implicit information for the tem-
poral ordering of the raw data and for predicting the future behavior of the mon-
itored application. They can also consider minsup thresholds, but they are exam-
ined separately, as they address the pattern discovery problem from a different

perspective.

In [Bettini et al. 1998] the authors introduce a formal framework for express-

3.3. Pattern Discovery 61

ing data mining tasks involving time granularities, as well as algorithms for per-
forming these tasks. In particular, time constraints are injected into the system
to bound the distance between a pair of events in terms of time granularity. For
instance, event e, must happen within two minutes after the occurrence of event
e1 inorder to consider e1, es an event pattern. The notion of timed finite automaton
with granularities (TAG) is introduced that is a standard automaton, the clocks of
which run on different granularities, in order to discover patterns with different
frequencies. Moreover, a number of heuristics is used to limit the candidate pat-
terns and optimize the framework’s performance. Evaluation results on a stock
trading dataset show its significant performance on mining frequent pattern with
various granularities, especially with the exploitation of heuristics, reducing the

the candidate event types.

The authors in [Patnaik et al. 2012] present a temporal data mining approach
for data that cannot fit in memory or for data being processed at a faster rate
than the generation one. The proposed sliding window model slides forward in
hops of batches, while only a single batch is available for processing. The min-
ing algorithm processes events upon their arrival and discovers the top frequent
episodes over a window consisting of several batches in the immediate past. A
discovered pattern is characterized both by its frequency and by the tendency to
persist over time. Experimental evaluation on real and synthetic datasets shows
the advantage of the proposed approach over the baselines, in terms of accuracy,

performance and memory-consumption.

Another temporal mining approach is proposed in [Sakurai et al. 2008], which
focuses on discovering event patterns in textual datasets with time information.
Particularly, seven types of time constrains are introduced (e.g., time constraint
between two specific events or between an event and the previous or the next
one), that can be applied on various types of combinations of events, even if the
events are not neighboring. These constraints help analysts filter the discovered
patterns and finally get only the interesting ones providing new knowledge. Eval-

uation results reveal the validity and completeness of time constrains, though the

62 Chapter 3. Literature Review & Fundamentals

authors mention that they may not be optimal for all datasets.

3.3.3 Logic-based Approaches

Logic-based approaches exploit inferencing to discover patterns defining re-
spective association rules. In [Sim et al. 2010] a pattern discovery approach is pro-
posed mapping logical equivalences based on propositional logic. In particular, a
rule mining framework is introduced, generating coherent application domain in-
dependent rules for a given dataset that do not require setting an arbitrary min-
sup. The proposed coherent rules mining framework makes use of contingency
tables (Table @) displaying frequency distributions of candidate patterns X and
their negations — X as antecedents and the caused event Y, as well as its negation
—Y as consequences. These frequencies (i.e., a, b, c and d) are further exploited
to infer coherent rules among the considered patterns and the caused event, by
investigating corresponding pseudoimplication of equivalence (pe), i.e., (i) X = Y,
(i) X = =Y, (iii) -X = Yj;and (iv) =X = -Y. The first and the last pseu-
doimplications both invigorate the considered coherent rule correlating pattern
X with caused event Y, as the absence of both of them also empowers their inter-
relationship. The evaluation results reveal that while the proposed framework is
more expensive compared to the Apriori algorithm because it considers both the
positive and negative association rules. Its accuracy results are significantly more
accurate and the minsup and confidence level of Apriori should be very carefully
defined to provide all the enclosed patterns, even with a much more exhaustive

memory consumption.

Another logic-based approach is proposed in [Artikis et al. 2010; 2012] pro-
poses an event calculus (EC) dialect for efficient run-time recognition that is scal-
able to large data streams and exploits main EC predicates to discover specific
activities. In particular, the authors propose an efficient dialect on the Event Cal-
culus (EC), named RTEC for run-time reasoning, in order to identify composite

events and recognize activities. The proposed dialect employs a number of novel

3.3. Pattern Discovery 63

Table 3.2: A sample contingency table for pattern X and critical event Y

Frequency | Y | =Y

X al| b
-X c| d

implementation techniques enabling efficient CE recognition, scalable to large
streams of simple time-stamped simple derived events. The evaluation results
reveal a significant performance in supporting real-time reasoning in most of to-
day’s applications. Moreover, in [Artikis et al. 2013] the authors address the issue
of uncertainty in transportation systems, using the RTEC reasoning tool to iden-
tify regions of uncertainty within a stream of multiple sources and generate com-
mon composite events. The approach is evaluated on real data stream comprising
traffic events from the city of Dublin, showing efficient self-adaptation capabili-
ties in discarding the corresponding sensors that cause uncertainty during the CE

recognition process.

3.3.4 Comparison

Most of the algorithms mining frequent itemsets in large datasets make use
of a minimup support (minsup) threshold, i.e. a pattern frequency should exceed a
low minimum support in order to formulate an association rule. Therefore, these
approaches (i.e., mathematical, statistical and temporal approaches as defined
below) suffer from many issues [Artikis et al. 2012, Sim et al. 2010]: (i) While ev-
ery pattern discovery dataset holds an ideal minsup it is not an easy task to find
it [Webb and Zhang 2005]. (ii) Fluctuations in the minsup threshold may result in
different patterns, even for the same dataset. Consequently, the accuracy in find-
ing association rules is subject to the accuracy in determining the minsup. (iii)

Some rare events of the dataset may be actionable, i.e. although a series of spe-

64 Chapter 3. Literature Review & Fundamentals

cific events does not occur frequently, their occurrence is related to a violation
of a specific metric. Thus, if the user defines a high minsup this pattern will not
be discovered, while a low minsup may result in many meaningless patterns. (iv)
Even if an ideal threshold is determined, the discovered association rules cannot

be further ranked without the use of a confidence value.

Logic-based approaches which do not suffer from the above limitations, posed
by the identification of the optimum minisup, have some additional advantages:
(i) they enable efficient ranking of the discovered patterns, (ii) they can discover
potential patterns that should be considered for future executions; and finally
(iii) machine learning techniques can also directly be employed to discover pat-
terns. Consequently, taking into account the above limitations of the classic pat-
tern discovery approaches defining a minsup threshold, we argue for the use of a
logic-based approach for discovering event patterns in the execution history of

a SBA.

3.4 Technical Fundamentals

This section provides the fundamental technical information, so that the in-
terested reader harmonically follows the description and the implementation de-
tails of the proposed framework. Very briefly Table @ presents the exploited
specific languages (DSLs) and techniques, analyzed in detail in the next subsec-

tions, and their usage in the current work.

WSLA

This section provides a brief overview over specific parts of the WSLA speci-
fication language [Keller and Ludwig 2003], used to specify SLAs in a flexible and
individualized way, after providing a brief overview of the most widely used SLA

languages.

There is a number of available specification languages used to define SLA doc-

3.4. Technical Fundamentals

65

Table 3.3: The exploited languages and techniques and their usage

DSL / technique

Usage

Web Service Level

Agreement (WSLA)

Describes the SLA documents with the incor-

porated SLOs

OWL-Q Describes the monitored properties / met-
rics of the SBA
Drools Rule Lan-| Usedto realize the association rules between

guage (DRL)

the causing event patterns and the caused

SLO violation, as well as the adaptation rules

Esper Event Process-

ing Language (EPL)

Used to express the detected event patterns

KairosDB Time-
series Database
(TSDB)

Stores the timely-synchronized monitoring

events and extracts aggregate values

Logic-based Pattern
Discovery (LBPD)

Used to discover detrimental event patterns

causing SLO violations

uments. Here we make a comparison of the available approaches, used for speci-
fying and managing SLAs, in order to argue for the use of WSLA. The assessment

criteria used are the following:

« Requirement specification: Both Web service clients and providers need
to specify non-functional requirements and offers. The specification should
ensure that the compatibility and comparability of the specifications are

done by clients and service providers.

« Class of service: QoS parameters differ in quality, quantity and the cor-
responding monetary charge. Grouping similar parameters into a class or

category that characterize a service will ease the utilization of the service.

* QoS aspects: A Web services related framework should support more than

66 Chapter 3. Literature Review & Fundamentals

Regs specification | Class of service | QoS aspect | Flexibility
WSLA[Keller and Ludwig 2003] ++ v + ++
WS-Agreement [Andrieux et al. 2007] ++ v + ++
WSOL [[Tosic et al. 2002] ++ ++ + +
SLangB + X + +
UX [Zhou et al. 2003] v X Ve v
UDDIe [ShaikhAli et al. 2003] v X ve v

Table 3.4: Comparison of SLA specification languages / approaches

the classical QoS parameters such as jitter and bandwidth. Aspects such as
security, reliability, transaction as well as custom defined aspects should

also be considered.

« Flexibility: An approach should be easy to use, extensible and standards

conforming.

Table @ compares the SLA specification languages according to these crite-
ria. The v' mark indicates a satisfaction of the requirement, X marks poor or no
available aspect. The ‘+’ mark determines the extent to which the specific capa-
bility is supported. One ‘+’ means good concept, while two ‘+’s define excellent
concept.

Considering the contents of the above comparison, we can conclude that WSLA
and WS-Agreement are the best solutions as they meet almost all criteria. Slang
is a moderate solution as it has a good concept of most criteria and UX and UD-
DIe are the least used approaches. We decided to use WSLA, among the first two
approaches, because it supports the definition of Service Level Objectives that
are appropriate in our work and it has also been exploited by our previous work
presented in section [Zeginis 2009]. In contrast to WSOL that supports only the

creation of service offerings and definition of QoS constraints, the WSLA explic-

Bhttp://uclslang.sourceforge.net/

3.4. Technical Fundamentals 67

itly defined all the metrics with the agreed values. Finally, WSLA is an XML-based

language that is very easy in use and is supported by many open-source tools.

Figure @ defines a sample SLO for the traffic management running example,

in the WSLA language. Typically, a SLO has the following elements:

¢ The Obliged is the name of a party that is in charge of delivering what is

promised in this guarantee.

« One or many ValidityPeriods define the period in which the guarantee is ap-

plicable.

* A logicExpression defines the actual content of the guarantee, i.e., what is as-
serted by the service provider to the service customer. A logic expression
follows first-order logic. Expressions contain the usual operators and, or,
not, etc., which connect predicates or, again, expressions. Predicates can
have SLA parameters and scalar values as parameters. By extending an ab-
stract predicate type, new domain-specific predicates can be introduced
as needed. Similarly, expressions could be extended to contain variables
and quantifiers. This provides the parties with the expressiveness to define

complex states of the service.

* A SLO may have an EvaluationEvent, which defines when the expression of
the service level objective should be evaluated. The most common evalua-
tion event is NewValue, each time a new value, for a SLA parameter used in

a predicate, is available.

« Alternatively, the expression may be evaluated according to a Schedule, which
is a sequence of regularly occurring events. It can be defined within a guar-

antee or a commonly used schedule.

68 Chapter 3. Literature Review & Fundamentals

<ServicelLevelObjective name="slol">
<Obliged>ACMEProvider</0bliged>
<Validity>
<Start>2014-04-30T14:00:00.000-05:00</Start>
<End>2014-05-31T14:00:00.000-05:00</End>
</Validity>
<Expression>
<Implies>
<Expression>
<Predicate xsi:type=“Greater”>
<SLAParameter>MonitorTaskThroughput</SLAParameter>
<Value>10000</Value>
</Predicate>
</Expression>
<Expression>
<Predicate xsi:type="Less">
<SLAParameter>AssessTaskAverageResponseTime</SLAParameter>
<Value>20</Value>
</Predicate>
</Expression>
</Implies>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServicelLevelObjective>

Figure 3.4: A sample WSLA document of the Traffic Management application

OWL-Q

As far as the definition of the monitored properties/metrics of the Web ser-
vices is concerned, we exploit OWL-Q [Kritikos and Plexousakis 2006], which is
a semantic, rich and extensible QoS description model for Web services, that is
based on Web Ontology Language (OWL) [OWL 2012]. It is designed modularly, in-
corporating several independent facets, each one focusing on a particular aspect
of QoS-based Web service description. There are facets regarding the connection
of OWL-Q with OWL-S, the description of QoS offers and requests, the QoS met-
ric model and the definition of constraints. The exploited structure of OWL-Q is
presented in Figure @

A set of OWL-Q facets are exploited: The QoSSpec class (belongs to the Basic
Facet) represents the actual QoS description of a Web service. It describes the
security and transaction protocols used, the cost of using the service and the as-
sociated currency for the cost, the validity period of the offer or demand and an
arbitrary OpenMath expression. This expression represents what is or must be

guaranteed and contains variables, which are associated to QoS Metrics.

3.4. Technical Fundamentals 69

QosSpec

guarantees

ComplexConstraint
l containsConstraint

SimpleConstraint

hasFirstArgument hasSecondArgument
hasOperator

Metric ComparisonOperator Datatype
evaluates ofObject
MeasurementDirective
z::::\mm MetricFunctionCall ServiceElement
% ExecutionTi - i
 THROUGHPUT \wﬂ/\ hasArgument ¢jementName contaisElement
elementUri
MetricFunction Metric Datatype Datatype Operation
(string) (string)

Figure 3.5: Exploited OWL-Q structure

The QoS Metric Facet describes all the appropriate classes and properties used
for a proper formal definition of a QoS metric. This metric facet is actually an up-
per ontology representing any abstract QoS metric. A specific QoS metric can be
created by refining the QoSMetric class. The QoSMetric is one of the most impor-
tant classes of OWL-Q representing a QoS metric. The values of a QoS metric are
provided by a service provider, a requester or a third-party. These values mea-
sure a QoSProperty on a specific ServiceElement. The value type of a QoSMetric is
an instance of the QoSValueType class while the unit of the value is an instance
of the Unit class. It can be a simple QoS metric measured by a MeasurementDirec-
tive or a complex one. ComplexMetrics derive from other metrics with the help of a
OMFunction. The Facet Function describes all the appropriate concepts and prop-
erties for the proper definition of metric functions. The OMFunction class is the
basic concept that represents a QoS Metric Function. The Measurement Directive
Facet describes the concept of a measurement directive, which is used for the
measurement of simple metrics. A MeasurementDirective is composed of a URI that

describes where and how to get a value of a resource property.

70 Chapter 3. Literature Review & Fundamentals

Drools Rule Language

Drools Expert [Drools 2014] is a declarative, rule-based, coding environment
that uses Drools Rule Language (DRL) to express rules in both natural language as
well as in XML-format. This language is exploited to formally express the adap-
tation/scalability rules of our approach, as well as the association rules, interre-
lating monitoring events. The structure of a drl file in natural language is simple
and may contain multiple rules. Its syntax is straightforward and easy to learn.
The listing below defines a scalability rule of the traffic management running ex-

ample in DRL:

Listing 3.1: Sample scalability rule in DRL

rule "scale_out-response_time_availability"
when
Average_respone_time(MonitorService) > 3sec || Availability(DeviceConfigService) < 99,9%
then

scale_out(2 VMs) //if available by the cloud provider

When new measurements (i.e. facts) are inserted in the Drools working mem-
ory, the inference engine checks which rules should be fired based on their match-
ing with the condition part of the rule. Figure @ shows the production rule sys-

tem of the Drools Rule Engine.

Inference Engine
(Rete0QO / Leaps)

uction Pattern Working
emory > Matcher < Memory
(rules) (facts)
Agenda

Figure 3.6: The production rule system of Drools Rule Engine

3.4. Technical Fundamentals 71

Esper Event Processing Language (EPL)

Espertech EsperB is a stream-oriented Complex Event Processing (CEP) en-
gine that provides the Event Processing Language (EPL), much alike SQL, allowing
expressing rich event conditions and correlations. The EPL enables expressing
complex matching conditions that include temporal windows, joining of differ-
ent event streams, as well as filtering, aggregation, sorting and pattern detection.
In the proposed framework it is used both for the assessment of the aggregate
metrics as well as for the event pattern detection, enabling proactive adaptation.
Listing @ defines two sample assessment EPL queries from the traffic manage-
ment running example, as well as a sample pattern definition in Esper. This pat-
tern comprises two events, discerned by their eventID, leading to a specific SLO

violation.

Listing 3.2: EPL stataments and pattern definition in Esper

select avg(response_time) as MSavgexectime from MonitorTaskExecTime where MSavgexectime > 2sec

select availability as ASavailability from AssessServiceAvailability where availability < 99,9%

String patternText = "every a=EVENT_MEASUREMENT (eventID=33453) -> b=EVENT_MEASUREMENT (eventID
=32451)"

Time-series Database (TSDB)

Storing time-based events in relational databases is problematic, as table car-
dinality and disk space can prohibitively increase with new event arrivals, and
indices may become so large that they cannot fit in caches, making data retrieval
significantly slow [Deri et al. 2012]. Standard solutions include stream process-
ing engines [Bo 2011] and time-series databases (TSDBs) [Keogh et al. 1993]. The
former aim to meet stringent latency requirements when performing continu-
ous queries on the streaming data and to minimize processing cost for large data
sets. TSDBs differ in that they focus more on persistent storage of events and in

performing roll-ups (e.g., aggregated metrics such as average, max, min) for user-

Yhttp://www.espertech.com/products/index.php

72 Chapter 3. Literature Review & Fundamentals

open data points | roll-ups real-time Cloud Scalability Storage
source | visualization monitoring | support efficiency

KairosDBL v ve v v v 4 +++
openTSDBE v v v v ~ 4 +
TempoDBﬁ X \/ \/ \/ \/ +++ ++
tsdbld v X X v X e ++
Cubeld v ve v X ~ ++ +
kdb+E X v v v ~ +++ ++

Table 3.5: Comparison of TSDBs

specified intervals. Other capabilities of TSDBs include the proper handling of
timezones, the temporal order of data queries, time-ranged data access and effi-
cient storage. Our architecture aligns with the latter and thus uses TSDBs.

A variety of commercial and open source TSDBs can be used to handle times-
tamped events. Table @ compares prominent TSDBs on the following features:
(i) open-source availability, (ii) data points visualization, (iii) roll-ups / aggrega-
tion capabilities, (iv) real-time monitoring (v) Cloud support (vi) scalability; and
(vii) storage efficiency. The v’ mark indicates a satisfaction of the requirement, X
mark indicates lack of the requirement while ~ shows uncertainty. The ‘+’ mark
determines the extent to which the specific capability is supported. One ‘+’ means
low support, while three ‘+’s defines full support.

Among the open-source TSDBs, KairosDB stands out for providing all features
needed by our monitoring and adaptation framework for the monitoring events
storage. Cube and tsdb are two free and open source solutions but the former one

does not provide run-time monitoring and sufficiently efficient storage, while the

Bhttps://code.google.com/p/kairosdb/
Shttp://opentsdb.net/
https://tempo-db.com/
Bhttps://code.google.com/p/tsdb/
Yhttps://square.github.io/cube/
http://kx.com/

3.4. Technical Fundamentals 73

main limitation of the latter one is the lack of aggregation and visualization tools.
kdb+# is a very powerful time-series database focusing on financial institutions
to analyze and monitor both real-time and historical data, but it is a commercial
product. We selected KairosDB for the proposed MA framework, as it provides
distributed storage features for the time-stamped monitoring events and it is the
most scalable solution, simultaneously offering highly efficient storage via the
Cassandrald database. Although it is not directly offered as a PaaS add-on for any
Cloud platforms, it can easily be deployed on a Cloud VM to collect and handle
monitoring events, as well as their roll-ups (i.e., average, min, max over events
within specific time periods).

KairosDB outmatches OpenTSDB, that is one of the most widely used TSDBs,
as far as the underlying datastore is concerned, i.e., Cassandra and HBaseE, re-
spectively. In KairosDB, string data (i.e., metric names and tags) are written to
row keys and the appropriate indices. As Cassandra has much wider rows, there
are far fewer keys written to the database. To this end, using the default row size
in OpenTSDB’s HBase we are able to store 1 hour of monitoring data, while in Cas-
sandra we are able to store 3 weeks data in a single row. In addition, OpenTSDB’s
main concern is to enable the production of metric graphs. Data is manipulated to
make good-appearing and meaningful graphs. For example, interpolation is used
to fill in holes left by missing data points and it will grab data points outside the

time range to produce again a more meaningful graph.

Logic-based Pattern Discovery

In Section we have analyzed the logic based approaches for pattern dis-
covery. Among them we have exploited and extended a logic-based approach (we
argue for this selection in Section @) presented in [Sim et al. 2010], in order to

enable proactive adaptation in the proposed monitoring and adaptation frame-

“http://kx.com/kdb-plus.php
2http://cassandra.apache.org/
“http://hbase.apache.org/

http://cassandra.apache.org/

74 Chapter 3. Literature Review & Fundamentals

work. This work introduces a framework to discover domain knowledge report
as coherent rules, that associates events with each other.

Assuming that we have an event pattern X and a SLO violation Y, the associa-
tion rules that express the causal relationship between X and Y are: (i) (X = Y')
and (ii) (=X = —Y). The first proves the coherent rule under consideration,
while the second also determines it, as the concurrent absence of a pattern and
the considered violation event (e.g., aggregate metric event) also interrelates the
association rule’s root and cause. In order to decide on the coherent rules, this
technique exploits contingency tables (see Table @) displaying frequency distri-
butions of candidate patterns and their negations as antecedents, while the spec-
ified metric event, as well as its negation as consequences. These tables entries
are utilized to determine the association rules, i.e. the sum of frequencies prov-
ing the considered coherent rule (i.e. a and d) should be greater than the sum of

frequencies weakening it (i.e. b and c).

3.5 Conclusions

To sum up, this chapter reviews the related work on Web service monitoring
and adaptation, pattern discovery and Cloud modeling, as well as it provides the
technical fundamentals, that will ease the reader for the rest of this thesis. In par-
ticular, in the first part of the chapter each one of the reviewed topics is analyzed
and compared against the requirements set in Section @, while the second part

provides the technical information referred to in the remaining chapters.

Chapter 4

ECMAF Framework

Contents
B.1 Solution’sScopd 76
.2 ECMAF Architecturd 79
|4.2.1 Single-Cloud Deploymend 79
k2.2 Multi-Cloud Deployment] 86
.3 ECMAFsBenefit 89
B4 Conclusionso ninen.. 90

After reviewing related work in cross-layer and multi-Cloud Web service mon-
itoring and adaptation and identifying a set of requirements that must be sat-
isfied, so that these two processes to be successful, accurate and complete, this
chapter introduces and analyzes the proposed Event-based Cross-layer Monitoring
and Adaptation Framework (ECMAF) for SBAs. The proposed framework will be
used throughout the rest of the dissertation to concretize and place the appli-
cation of the individual contributions on it. This chapter is organized as follows.
Section @ is dedicated to the scope of the proposed framework, while Section @
to the presentation of ECMAF framework and, in particular, to the functionality
of each individual component and their interrelationships. Section @ highlights
the benefits of the proposed framework and finally, Section @ concludes this

chapter and paves the way for the next chapter analyzing the meta-models uti-

75

76 Chapter 4. ECMAF Framework

lized by the framework.

4.1 Solution’s Scope

Before introducing the proposed cross-layer and multi-Cloud monitoring and
adaptation framework, this section describes the scope and the prerequisites of
our solution. As it is a multi-featured framework combining many technologies
and techniques, the user must be aware of them in order to use it properly. An
example from the traffic management application is used to exemplify the frame-

work’s scope and application domain.

As already discussed in Chapter E] application developers all the more adopt
Cloud infrastructures as the dominant services delivery platform. However, com-
plex SBAs, comprising many simple Web services with different requirements
may be deployed on multiple Clouds, thus leveraging the various offerings of the
available Cloud providers. In [Baryannis et al. 2013a] we focus on the need to break
the current lock-in, experienced by application developers on the Cloud provider
they design for and deploy on, and to allow them to simultaneously use several
Cloud providers.

Application development for Cloud platforms today follows two main (often
complementary) approaches: (i) Composition and use of Saa$S instances exported
by providers such as Salesforce (CRM and ERM applications), Google (Google Apps),
etc.; and (ii) development of the application over middleware offered via PaaS
providers (such as Amazon Elastic Beans) or at a lower level of abstraction, over
Infrastructure-as-a-Service (IaaS) providers (such as Amazon EC2 or Microsoft
Azure). In the former approach (Figure), each Saa$ instance can be imple-
mented and deployed over a different Cloud provider, naturally supporting het-
erogeneity (although at a fairly coarse level of granularity). In the latter approach
(Figure), a Saa$ instance is typically developed using model-driven software
engineering methodologies targeting individual Cloud providers. A problem with

current methodologies is that -although they address portability via the use of

4.1. Solution’s Scope 77

Service
Service |
Service 2 ice 4 ‘ icati
- Ser\vnce Application model (PIM) Application mo:ﬁ(P\M)
~o \
Service 1 ~ Y ‘ /
! Y ResourceSet (tied to ResourceSet1 ResourceSet2
i T~ . (i| d 2 single Cloud provider)
/ Service 3 ou ‘ | ‘
‘ ~
Cloud 1 N Portable deployment (iClouds) Portable deployment (jClouds)
Cloud 3 ! 1 |
I ! !
Cloud 1 Cloud 1 Cloud 2
(a) SaaS composition (b) Single-Cloud deploy-(c) Multi-Cloud deploy-
ment ment

Figure 4.1: Cloud application development approaches

generic platform APIs such as jcloudsﬁl - they tie all Cloud resources (referred to
as ResourceSets) to a single Cloud provider and thus preclude deployment of the

application on multiple Cloud providers.

There are several reasons justifying deployment of complex applications on
multiple Clouds. For instance, an application may have dependencies on software
components or services offered by different Cloud providers. In addition, differ-
ent components of an application may have various resource requirements that
are best satisfied by different Cloud providers. For instance, provider A may offer
specialized VMs of a certain kind -e.g., featuring graphics accelerators, solid-state
storage devices, etc.- while provider B may specialize in another -e.g., higher
core-count or dynamically reconfigurable VMs-. Cloud providers may also differ-
entiate on their offered cost for different types of resources (e.g., CPU is cheaper
on provider A while provider B delivers cheaper 1/0 throughput). Two compo-
nents of the same application may need to be deployed to different geographi-
cal zones for proximity reasons, to stay local to these geographies -data, sensors,
etc.- or to minimize chances of catastrophic failure. In the latter case, an applica-
tion provider will typically deploy redundant parts of the application to different
Cloud providers. Generally, decomposition of a complex application on multiple

Clouds may be either functional (different parts of the application logic, placed on

'https://jclouds.apache.org/

78 Chapter 4. ECMAF Framework

different providers) or data-driven (redundant functionality with state/data split
to different providers) or a combination of them.

The proposed framework applies on both SaaS compositions and single Cloud
deployments (subsection) but its main focus is on such multi-cloud setups
(subsection), where various VMs are involved, either from the same or from
different Cloud providers. Thus, the application developer may choose to deploy
the components of her/his SBA on various VMs, according to the individual re-
quirements. In this way, the deployment cost is optimized, as the user does not
reserve redundant computational power, that would be used for a single-Cloud
deployment satisfying the requirements for all SBA components.

We consider for example a multi-cloud setup of the traffic management run-
ning example, analyzed in Section @ This SBA is characterized by strong interde-
pendencies between the layers and raises various events during its lifecycle [Zegi-
nis et al. 2012b)]. The main goal of the SBA is to regulate traffic aiming to optimize
for particular environmental conditions (e.g., CO, levels, temperature and air pol-
lution) drawn from real-time sensor measurements and to properly address car
accidents or other incidents impeding normal car flow. Each of these cases is han-
dled by a different sub-process. Some of the system roles are the traffic manage-
ment authority, the drivers, the pedestrians and the rescue forces (traffic police,
fire brigade).

Other events, other than the ones introduced in Section B, could come from
internal or third party services and their composition (e.g., calendar service, SMS
service, incident assessment service) and can be either functional or non-functional
(QoS events). Furthermore, events regarding the whole business process, as well
as violations of KPIs may arise. Thus, based on the aforementioned example, it
is clear that the framework’s scope is on composite SBAs deployed on multiple
Clouds. These multi-Cloud setups may be based on public, private or hybrid Clouds,
providing the minimum requirements for the individual SBA components.

As far as the monitoring and adaptation processes are concerned, it is cru-

cial that (i) the deployment VMs provide the required monitoring mechanisms

4.2. ECMAF Architecture 79

to produce events (IaaS layer), necessary to drive the adaptation and evolution
path of the Multi-Cloud lifecycle, (ii) the VMs are properly time-synchronized,;
and (iii) the application developer provides simple adaptation/scalability rules

for the most common monitoring events emitted by her/his application.

4.2 ECMATF Architecture

After having analyzed the scope of the proposed solution, this section intro-
duces the Event-based Cross-layer Monitoring and Adaptation Framework (EC-
MAF) for SBAs. First, a simplified version of the framework focusing on SaaS com-
positions is presented in subsection [Zeginis et al. 2012b] and in subsection
we focus on a more extensive version applicable for Multi-Cloud deployments [Zegi-
nis et al. 2013a; 2014a]. Both versions’ functionality are exemplified by the traffic

management running example.

4.2.1 Single-Cloud Deployment

Figure 4.2 presents the cross-layer architecture of the proposed ECMAF frame-
work for SaaS compositions deployed either on private infrastructure or on a sin-
gle Cloud (private or public). This framework comprises a Monitoring Engine able
to collect the monitoring events during the service execution, an Adaptation En-
gine able to perform adaptation actions and an Execution Engine. The first two
engines communicate with each other via events through a publish/subscribe

mechanism.

Monitoring Engine. The Monitoring Engine comprises a Monitor Manager
and a number of individual Monitoring Components. Each of the latter compo-
nents is assigned to detect events at a specific SBA layer and to immediately de-
liver them to the Monitor Manager. The Monitor Manager, in turn, continuously
delivers information about the service execution produced by the Execution En-

gine while collecting events from the Monitoring Components. The Monitor Man-

80 Chapter 4. ECMAF Framework

Cross-layer Monitoring and Adaptation Framework

Monitoring Engine ~~ Adaptation Engine

Pattern <_~
Discoverer

o
« 7 |Translator Patterns
. scC BPM
SI Monitor Monitor Monitor Event Pattern
Detector
Gl
| ao" Detected pattern
Ny
@

* // Rule Engine
| - Adaptati on Strategy

Infrastructure -
\ Manager

Monitor Manager

Adaptatu)n Manager

’
;
’
v

= Ii '

Execution Engine

Figure 4.2: Architecture of ECMAF for SaaS compositions or single-Cloud deploy-

ments

ager communicates with the Translator component (see description below) via a
publish/subscribe mechanism. A required monitoring event is delivered to the
Translator as soon as it is detected. It is imperative to send the events in the or-
der that they are received so as to have an as reliable as possible pattern discovery

mechanism. As there are many detected monitoring events, specific techniques

are required to ensure this, such as event timing [|Mok and Liu 1997|] and clock

synchronization [|Kopetz and Ochsenreiter 1987|].

Adaptation Engine. The Adaptation Engine comprises a number of compo-

nents supported by suitable repositories:

+ The Translator receives the events sent by the Monitor Manager and trans-
lates them into a suitable for the Event Pattern Detector and Pattern Discov-
erer components format, conforming to the XML or JSON schemasﬂ, stored

in the model repository. In addition, it incorporates a subscription mecha-

*available at www.ics.forth.gr/ zegchris/schemas

4.2. ECMAF Architecture 81

nism, enabling the adaptation engine to subscribe to the required events
and collect them through a predefined socket component, managing the
communication between the publisher and the subscriber. For instance, an
adaptation engine tied to a municipal Cloud in our traffic management ex-
ample is not interested in events from applications running on other munic-
ipal Clouds, thus it subscribes to events related to its own Cloud. Otherwise,
gathering other “foreign” events, could lead to useless rules and inaccurate

event patterns, discovered by the adaptation engine.

« It is very common that failures at the SI layer lead to other failures and
violations both at the same and higher layers, forming a chain of moni-
toring events. The Pattern Discoverer is capable of processing the mon-
itored events stream, after the translation process and discovering event
patterns causing specific SLO violations. These patterns are stored into the
Patterns Repository with extra information regarding the discovery time, the
execution instances considered to extract the specific pattern and the sub-
patterns that can similarly lead to the same violation. They can also be fur-
ther exploited by the Event Pattern Detector and again by the Pattern Dis-
coverer to enhance its performance by eliminating the already discovered

patterns.

« Itis desirable to detect those event patterns causing service failures by ex-
ploiting specific mechanisms (e.g. pattern matching ones [Karp and Rabin
1987]). These patterns are detected by the Event Pattern Detector, which,
in turn, detects at run-time the patterns extracted by the Pattern Discov-
erer and passes them immediately to the Working Memory of the Rule En-
gine. In case a pattern is not detected at one execution but a sub-pattern
is detected in every SBA execution, then the Rule Engine is informed about
it, so as to take preventive actions, before the actual violation occurs. Go-
ing back to the traffic management running example, if the discovered pat-

tern {e1,e2,e4 — FE3} (see Section @ - Ej5 refers to the violation of the

82

Chapter 4. ECMAF Framework

corresponding aggregated metric) is never detected, but its sub-pattern
{e1,e2 — E3} appears frequently, then whenever the sequence of events
{e1,e2} appears in the monitoring events stream, suitable adaptation ac-

tions should be triggered.

The Rule Engine is responsible for mapping the detected patterns to suit-
able adaptation strategies. Our approach relies on using a mapping tech-
nique, exploiting simple manual mapping from single monitoring events
to specific adaptation strategies. Thus, the dynamically detected patterns
trigger an adaptation rule dictating the enactment of a series of corrective
actions, preventing the actual SLO violation from happening. As such, it

exhibits proactive SBA adaptation capabilities.

The Adaptation Manager executes the adaptation strategy exported by
the Rule Engine with the aid of two components: (i) the Infrastructure
Manager is able to treat malfunctions regarding the SI layer, which is the
main source of many service failures; and (ii) the Model Repository sup-
plies the appropriate information, such as service descriptions and require-
ments, SBA components and their dependencies, triggerable adaptation ac-
tions per component, metric and SLA models, so as to fulfill the supported
adaptation strategies. This is a live repository where models are modified
based on modifications of the system at different layers or modifications ac-
cording to the user requirements. The Execution Engine supports the adap-

tation process, especially for strategies regarding the BPM and SCC layers.

Running Example

This case study is inspired by the traffic management running example ana-

lyzed in Chapter H and describes a traffic management system designed to man-

age normal traffic situations as well as emergency cases. Such emergency case

handling includes several different actions, such as directing the rescue forces to

the accident location and managing traffic deviations. Figure @ and Figure @

4.2. ECMAF Architecture 83

r-—-— —=—"H™"—™—"™—"=—=-="-="-="-=-—="-—="—="—"—™="=""=""""""="""1
| . |
No Moni
o environmental
gl variables I
3 Check Yes A Yes Traffic
. Check for Assess andlin management
EI @" accﬁ%;nt Acc'f?e” Critical heavy traffic situation ee&ed% de%ice‘ @I
) I ituation —m configuration I
traffic hours . Kpl

L and days violation I

=) 1

o - ¥

. Air pollution, :

) Accident oise Calendar | | Traffic Assessment) SLA | o Device '

o Information Measurement | | Service Service Service violatioj Segrvice

Q rvice Service

\ 1/0

Fallui

] Database Pollution Datab Sensor se Software Network

E Server Noise Sensors atabase | | server rver M'ewr:Igry Devices Wireless

7)) Failure

Figure 4.3: Layers’ interaction during normal traffic conditions

respectively illustrate these two cases. Each figure depicts the three functional
layers. In both cases, workflow tasks are executed either manually or by mapping
them to Web services. Each service is then mapped to the appropriate infrastruc-

ture.

Figure @ illustrates normal traffic conditions, where the system tries to op-
timize some parameters, such as total noise, overall throughput and air pollution.
In particular, the system shall consider different needs, such as the ones of pedes-
trians and motorists and other factors like heavy traffic, public events, school and
working hours, holidays or public regulations which may alter traffic demand and
needs during conditions that do not involve emergencies. The system interrupts
the normal traffic situation process, when an accident happens and jumps to the

critical traffic situation process.

Figure @ depicts a critical traffic situation, in which a serious car accident
occurs at the monitored area. In particular, the involved citizens inform the traf-
fic manager that must control the overall traffic situation (control traffic devices,
inform citizens) and assess the incident so as to inform the appropriate rescue
forces about the accident and direct them to the incident location. Moreover, the
traffic manager monitors the environmental variables, such as air pollution and

noise. Various adaptation actions could be taken by the traffic manager, as well

84 Chapter 4. ECMAF Framework

Rescue

Forces Take, Inform traffic|
Actions acggégt's aﬁ%ﬁg'ﬁg" manager
< t—>1 > i
location control S|tuat||on
5 situation / Complete
> emergen
Citizens Check for I ———— cy
3 D) inform traffic f{ high hours ir?csisdeesrit 1 —»| p EVSI’@%’?E\% ok
E manager and days Defvicest_ \ to normal
& —— reconfiguration
Manager Inform citizens
Actions
5 g
Call-SMS Calendar ‘Assessment evice Informati evice
E . i r 1 Manually | configuration - nrormation Configuration
S @ @ Service L_ __ 1| GPs/skisService || _Service Sevice
b
EJ_ Software Software
] Mobile Network Devices | | Database Network
= Ph Database Server - Wireless/GPS Server Devices
@ one Mobile Phone Wireless

Figure 4.4: Critical traffic situation

as by the rescue forces, such as:

» Traffic devices reconfiguration (e.g., traffic lights) by the traffic manager,
in order to reduce stop-and-go traffic. This should also help to keep air pol-

lution low, even if it is not critical during emergency situations.

Accident reporting to citizens via their devices (e.g, GPS, mobile phones) by

the traffic manager to avoid traffic congestion at the accident location.
» Traffic closing/limiting to or from the involved location by the rescue forces.

« Traffic deviation by the rescue forces through alternative places not in-

tended for heavy traffic.

After a complete emergency handling, there is a gradual return back to the
normal situation. The rescue forces inform the traffic manager, who updates the
system and informs the citizens through their devices.

As already discussed in Section , there are various dependencies among
the SBA layers. The occurrence of a failure at one layer may result in a failure at
other layers. This work aims at locating the failure event and taking adaptation

actions in order to prevent its spread to the other layers, as soon as possible.

4.2. ECMAF Architecture 85

Figure @ presents an illustrative example. We suppose that a KPI dictates
that the maximum duration of the process should be less than 10 seconds. Fur-
thermore, we suppose that an SLA for the assessment service AS dictating that
its maximum execution time must be less than 6 seconds. As shown in the figure,
a violation of the respective SLA constraint may cause a violation to the KPI, by
considering that the previous process activities do not run longer than 3 seconds.
It must also be indicated that AS’s execution time is inversely related to the main
memory size and the CPU percentage allocated for its execution. Moreover, there
is a low limit for the main memory allocated, after which the SLA violation will
be unavoidable as the service behavior will be unpredictable and even if it does
not fail it will certainly take a longer time to execute. In fact, 2 seconds after the
AS’s execution, the main memory allocated to it has indeed fallen under the low

level of 50 MB.

A monitoring component, running on the server side, where AS is deployed
on, detects that the available main memory is not sufficient (SI layer) for AS. At
the same time, another monitoring component detects that there is an1/0 failure
at the SCC layer as AS has produced a wrong output. Both events are first sent
to the Translator, which transforms them to the appropriate format and sends
them to the Pattern Detector and to the Pattern Discoverer components. Based
on the two events received, a specific rule is fired which derives that the best
adaptation strategy is to execute another instance of the AS service at a more
powerful server and with a better memory and CPU allocation. The suitability of
the strategy lies on the fact that by executing a “better” service instance and with
better allocation for the hardware resources, the probability that the SLA is not
violated becomes very high (as we do not know if another failure may occur in
the near future regarding the new instance) and in this way, the KPI violation
may also be avoided. Such a rule has been derived by the Event Pattern Detector
based on the previous history log. The derived strategy is sent to the Adaptation
Manager which executes it with the assistance of the Infrastructure Manager and

the Execution Engine.

86 Chapter 4. ECMAF Framework

It is clear from the aforementioned analysis that ECMAF can efficiently han-
dle such a cross-layer scenario. The adaptation actions performed are the appro-
priate ones, based on the event history and the current context. Moreover, the

dependencies among the layers are clearly discerned.

4.2.2 Multi-Cloud Deployment

The ECMAF framework presented until now is applicable on simple service
compositions or single cloud deployments and does not take into consideration
Cloud deployments, where multiple Clouds are involved (either private, public or
hybrid), even from different cloud providers. Figure @ presents an updated ver-
sion of ECMAF. The main differences between the two versions are: (i) the more
comprehensive functionality of the Monitor Manager, (ii) the addition of the time
synchronization component, (iii) the incorporation of a time-series database (TSDB)
to store the monitoring events; and (iv) the integration of the Rule Manager and
the Event Pattern Detector components into a more comprehensive component,

named Metrics Aggregator.

As far as the Monitoring Engine is concerned, every VM employs its own mon-
itoring tools, providing monitoring events for the specified metrics at each one
of the Cloud and SOA layers. The Monitor Manager that lies on a different VM or
on one of the existing VMs, hosting the various components of the SBA, retrieves
the monitoring results from the individual monitoring mechanisms, assesses and
stores them in a time-series database (TSDB), reporting detected violations via
the publish/subscribe mechanism to Adaptation Engine instances. We must men-
tion that each Cloud participates with its own Monitoring Engine and there may

be multiple instances of the Adaptation Engine.

One of the main goals of our approach is to identify particular event patterns
occurring during SBA execution that lead to critical violations so as to enable the
selection of the appropriate cross-layer adaptation actions. Since the order of

publishing events is significant, monitoring events must be time-synchronized

4.2. ECMAF Architecture

87

Monitoring Engine

Monitoring tools

\ time

synchronization

Monitoring tools

Monitor Manager

Assessed raw events

roll-ups
assessed raw events

discovered
pattern

Pattern Discoverer

queries

synchronized
raw events

Metric Aggregator

detected
patterns

assessed raw events
aggregated metrics classification
detected patterns

Adaptation Engine
Adaptation

Enactment

actions

adaptation

Rule Engine 4

simple adaptation/ -
scalability rules

SBA provider

Multi-Cloud

\\r\geployment

Model Repository
Event model
Component model
Adaptation model
SLA model

Figure 4.5: ECMAF’s multi-Cloud architecture

by the Monitor Manager before being sent to the Adaptation Engine. Time syn-
chronization is particularly important in multi-Cloud settings as standard time
synchronization solutions are rarely deployed across Cloud providers. Thus, this
updated version of the ECMAF employs an event time synchronization mecha-
nism, responsible of keeping timely synchronized the various machines, either
local or virtual, so as to deliver the monitoring events to Monitor Manager with

the actual order in which they are detected.

Concerning the storage of the monitoring events, as already analyzed in Chap-
ter H, we argue for the use of a Time-series Database (TSDB), that offers many
useful capabilities for time-ordered data persistence, as well as for providing roll-
ups (i.e. aggregate metrics) for specific time intervals. Other capabilities of TSDBs
include the proper handling of timezones, the temporal order of data queries,
time-ranged data access and efficient storage. Our architecture aligns with the
latter one and thus uses (per-Cloud, federated) TSDBs. In this setting, the pub-

lish/subscribe mechanism handles the transfer of the raw monitored events and

88 Chapter 4. ECMAF Framework

corresponding TSDB roll-ups to the Adaptation Engine. Different instances of the
Adaptation Engine may be deployed to distribute the adaptation load across ap-
plications or Clouds, with each instance interested only in relevant events and
roll-ups.

Finally, the “new” Metrics Aggregator component combines and enhances
the functionality of the Translator and Event Pattern Detector components. Thus,
itis responsible for collecting the synchronized monitoring events, assessing them,
as well as of detecting event patterns causing specific SLO violations at run-time
and informing the adaptation engine about the detected patterns and the viola-
tion of single metrics. It is the central component of the Monitoring engine that
provides core functionality for the collection and manipulation of the monitored

events.

Running example

In order to exemplify the framework’s multi-Cloud functionality, we consider
the following scenario, based on the traffic management example. As already dis-
cussed in Section @, the optimal deployment of the traffic management appli-
cations is on two different Clouds satisfying the individual service requirements;
Monitoring and Device Configuration services are deployed on a municipal Cloud
with moderate storage capacity and low computational power and the Assess-
ment service on a central Cloud offering high storage and computation levels.
Each one of the two Clouds, which are timely synchronized, exhibits a client for
the complex event processing (CEP) engine, collecting and assessing the produced
events immediately after their occurrence. Assessment is performed by the Met-
rics Aggregator component, which parses the SLA document, defined in the WSLA
language (see Section @) and stored in the Model Repository and then stores the
assessed raw events to the TSDB (see Section @), which acts as a repository of the
raw measurements/events preserving their ordering. Thus, the monitoring com-
ponents of the involved Clouds directly interact with the Monitor Manager, which

resides on a separate private infrastructure through a CEP server-client mecha-

4.3. ECMAF’s Benefits 89

nism. The pattern discoverer component periodically queries the TSDB and iden-
tifies patterns of raw events leading to SLO violations (mapping to specific ag-
gregate metrics). The average metric values, necessary for the pattern discovery
process, are also provided by the TSDB, which is capable of providing roll-ups (i.e.
aggregate metrics) for specific time intervals. The discovered patterns are stored
into a pattern repository, so as the Metric Aggregator can easily retrieve them
and detect their occurrence at run-time. Upon pattern detection the Metrics Ag-
gregator urges the Rule Engine of the Adaptation Engine to fire the correspond-
ing adaptation/scalability rule (i.e. proactive adaptation), dictating the applica-
tion of an adaptation strategy, realized by the Adaptation Enactment component.
Raw events are also passed to the Rule Engine by the Metric Aggregator so as to

perform reactive adaptation when a SLO violation is detected.

4.3 ECMAF’s Benefits

The main benefits of the ECMAF framework presented in the previous sec-

tions are the following:

« Distributed workload. As there are layer-specific monitoring components
that pass monitoring events to the Monitor Manager, monitoring is dis-
tributed among the available monitoring mechanisms. In addition, there
can be many computer nodes with a separate Monitoring and Infrastruc-
ture Manager component that can a handle a portion of the whole moni-

toring and adaptation workload, as depicted in Figure @

« Extensibility. As services evolve, new monitoring and adaptation techniques
are required in order to cope with continuous context changes and other
unpredictable malfunctions. This framework can integrate such techniques

with the existing ones, while preserving its functionality and integrity.

« Cross-layer capability. The framework is able to support all SBA and Cloud

functional layers. It incorporates mechanisms to detect events across all

90 Chapter 4. ECMAF Framework

Business Process 3
: | G
5 . |_.. ena

N

Running
Service
-
=
Monitoring Infrastructure = =
" Component manages
Monitor Manager Component Adaptation Manager

Computer Node

Figure 4.6: Distributed workload performed by a computer node

layers and derive additional events using pattern matching techniques.

+ Multi-Cloud monitoring and adaptation. Distributed architecture as well
as the careful design of the necessary models (see Chapter E) confers multi-

cloud capabilities to the framework.

+ Pro-active adaptation. The use of pattern matching techniques, as well as
the mapping between patterns and adaptation strategies allows for proac-

tively adapting the SBA.

4.4 Conclusions

To sum up, the four main parts of this chapter were dedicated to the analysis
of the proposed cross-layer monitoring and adaptation framework (ECMAF). In
particular, the first part introduced the scope of ECMAF by explicating the three
main deployment types and highlighting the benefits of single and multi-cloud
deployments. In addition, a sample deployment of the traffic management appli-

cations is utilized to exemplify the solution’s scope. The second and third parts

4.4. Conclusions 91

present a SaaS composition / single-cloud and a multi-cloud perspective of EC-
MAF respectively, providing details about its components’ functionality, while
elucidating its applicability through the traffic management running example.

Finally, the last part pinpoints the main benefits of the proposed framework.

92

Chapter 5

Meta-Models for Cloud SBA

Monitoring and Adaptation

Contents
5.1 EventMeta-Model 94
.11 Meta-Model Description 94
.12 Traffic Management Event Mode] 96
b.1.3 Adaptation-Related Monitoring Events 97
5.2 ComponentMeta-Model 99
.21 Meta-Model Description 101
E.Z.Z Traffic Management Component Mode‘ 102
5.3 Adaptation Actions Meta-Model 102
b6.3.1 Meta-Model Descriptio] 105
b.3.2 Traffic Management Adaptation Actions Mode] 106
b.4 Conclusions i i i ittt e e 106

After presenting the ECMAF framework for cross-layer monitoring and adap-
tation of multi-Cloud SBAs, this chapter introduces the required meta-models for
supporting this framework, stored into the Model Repository. The goal of this
chapter is to raise the need and propose new models for the monitoring events,

their inter-dependencies, the involved components for a multi-Cloud SBA and

93

94 Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

the adaptation actions applicable on each of the identified components. All mod-
els are presented in Unified Modeling Language (UML). The main benefits of UML
that led us to this decision are the following: (i) it keeps as a proper standard in
system development process, (ii) it is a formal modeling notation with strongly
defined meaning for each element; and (iii) it improves insight and visualization
of complex systems (such as a multi-cloud SBA).

The chapter is organized as follows: Section El! presents the event meta-model
and a description of its main classes, as well as a taxonomy of the adaptation-
related monitoring events. Section p.2 provides the proposed component meta-
model and a description of their classes, while Section @ introduces the adapta-
tion actions meta-model. All these meta-models are accompanied by an instance
model (i.e., a UML object diagram) of the traffic management SBA and the map-

pings to the other instance models.

5.1 Event Meta-Model

In this section we present an event meta-model describing the most common
monitoring event types and patterns that occur during the execution of a Cloud
SBA. This meta-model (Figure Ell) is generic enough and extensible to incorporate
any other event type defined by domain-specific service providers. Correspond-
ing XML and JSON schemas were designed to guarantee the validity of concrete

event models defined in XML orJSONE].

5.1.1 Meta-Model Description

The main meta-model’s class is Event, which has an ID attribute, used to uniquely
identify a concrete event. Its CompositeEvent and SimpleEvent subclasses repre-
sent simple and composite events, respectively. Composite events consist of two

other (simple or composite) events, the first and the second one, which map to a

'www.ics.forth.gr/ zegchris/schemas

5.1. Event Meta-Model 95

— [—eem]
ProcessModelModification -
BusinessGoalModification v
~orientation : string [faas][Paas | [Saas |
-goalName : string | | ‘ secondEvent
1
— T C i
BindingEvent v et T Tirstevent —|-ordering : string
. -logicalOp : string
oo [
1
causing_event mapsToEvent
[] ey -
i EventPattern - Adaptation_Rule
W -name : string caused_event__|-PatterniD : ID 1 * [-RuleiD: 1D
> [Functional | p>)-timestamp : date - int [“maps string
—# Ctype : string P -criticality - string ! -frequency : int
™ :
B _ firesActions
hasComponeny KPI-violation
'] :
C NonFunctional Action
D:ID string -actionID : ID
- string URI SLA-violation -name : string
L] et - sring opentor sring Fr—
-type : string -constraintURI : URI

ContextModification

-

NumericNF_Event StringNF_Event
E alue : float list

-warningSLO : string -possibleStringValues : list
-criticalSLO : string

CPU-Event

[_DataStore SearchingTool | [Logging | [Alerting AnalyticsTool | [CachingTool |

1 1
I /1 /1 /1 I \

Figure 5.1: The event meta-model

particular order (e.g., the first event precedes the second or they have occurred in
parallel). As an example of a composite event, consider a hardware event compris-
ing a CPU overload and a low available memory event. Simple events are charac-
terized by their name, timestamp and the ID of the source component and belong
to a specific Cloud layer (SaaS, Paas, IaaS). A Saa$S event can be further located at
the BPM or SCC layers. Events are also characterized by their importance/criti-

cality as warning, critical or successful events.

Asimple event can either be Functional or Non-Functional. Functional events
refer to operational characteristics that define the overall SBA behavior. Non-
functional events refer to quality attributes that are either measurable or get dis-
tinct qualitative values, such as availability and response time. Two additional
different classifications exist for non-functional events: (i) they can be classified
as KPI-violations, SLA-violations or contextModification events; and (ii) as nu-
meric or string events. Subclasses that have been defined for functional events
include: Process Model Modification, Business Goal Modification, Software

Event, I/0 event, Hardware event and Platform event. Finally, the EventPat-

96 Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

tern class represents the event patterns discovered during the execution of Cloud
SBAs and leading to critical violation events. Each event pattern has a (composite
or simple) causing event and a simple caused event. It is also characterized by a pat-
tern ID, the number of causing events participating in it, as well as its frequency

of occurrence.

Finally, this meta-model describes all the involved parts of an Event-Condition-
Action (ECA) triplet, totally represented by an Adaptation_Rule, which is char-
acterized by its unique ID. An Event corresponds to an EventPattern, a Condition
to the SLO, while each Rule fires a specific Adaptation Rule, uniquely identified
by its ID. An extensive analysis of the meta-model’s classes, their properties and

their interrelationships can be found in Appendix H

5.1.2 Traffic Management Event Model

In Section @ we have described a scenario of the traffic management SBA,
showing the great amount of metric violations that may be produced in all the
functional layers of an SBA. Figure @ in Section @ presents a distribution of
the traffic management application’s components and the source of the detected
events e;—ey7. In this setup, an example of an event pattern comprises a composite
causing event {wey,cea,ceq,wes} and a caused average execution time violation
of Tasks T’y and T, i.e., event E7. This event pattern can be described through
the proposed event meta-model, identifying the order, the layer and the source

component of all the involved events within this 4-size pattern.

Figure @ depicts the corresponding instance model of the identified pattern
(patterniD=2001) and the fired adaptation rule triggering a suitable adaptation
strategy, i.e., a scaling action at the Flexiant VM, as well as redo/restart activities
of the hosted tasks/services. The structure of this complex adaptation strategy
and the ordering of the lower level adaptation actions are described in the pro-

posed adaptation action model in Section @

5.1. Event Meta-Model 97
.) : . - : . — =
hasLayer hasLayer hasLayer
hasComponent hasComponent hasComponent
‘NumericNF_eventinstance2 : NumericNF_Event NumericNF_eventinstanceS : NumericNF_Event

WM-CPU-load=95%
XCPU.Joadc:

load
- 108231, 185 CPu_madepeny owl

it
timestamp = S eoros7296

109.231.183 xx:FreeMe

cality = warning
timestamp = 1401096576

ry
moryProperty.owla

onstraint.owk

firstevent

SecondEvent

firstEvent

eventiD = 007
name = TM-TD-exec

D-executionTimeki
TA-

Gmestamp = Seotosrsza

causedEvent

[© i G

eventD = 1003
rdering = ordering

patemi0 = 2001

hasEventPattern

name = TA-TD-durationViolationRule

secondEvent firstevent

‘NUmErichE, ~NumericNE_Event ‘NumerichF_eventinstanced : NumericNE_Event

eventiD = 004

name = NetworkUptime=97%

109.231.183. traint.owl

propertyName - Networs rhdptose
109.231

eventD = 003
name = ExecTimeDeviceConfigService=25sec

propert lysze E e(TmeDe viceConfigService RulelD = 4001

x:NetworkUptimeProperty.owlq

itical tical
timestamp = 1401097605 timestamp = 1401097605 firesAdaptationStrategy

name = FlexiantScaling&ServicesRestart

hasComponent hasLayer hasComponent hasLayer
5 o T PTTTTTTTRRIT Companent L TSec strategylD = 5001

componentiD = 3003 componentlD = 3004
- = De

Configservice

state = active state = active

Figure 5.2: Event model instance of the traffic management running example

5.1.3 Adaptation-Related Monitoring Events

Many of the proposed monitoring approaches can detect different event types.
These events deliver information about the SBA evolution and its context change.
They are used to indicate whether the SBA execution evolves normally and whether
there are some deviations or even violations of the desired or expected function-
ality. Most events are recurring, usually with the same order, during service exe-
cutions. Thus, it is desirable to introduce a taxonomy of SBA monitoring events to
enable the mapping between these events and the suitable adaptation strategies

as well as the event derivation applied in the proposed framework.

The taxonomies of common monitoring events proposed are either generic

or domain-specific (e.g. real-time SBAs). [|Popescu etal. 201d] introduces an event

taxonomy for three possible application layers: (i) the organization layer, (ii) the
behavior layer; and (iii) the service layer, to semi-automate the discovery and

selection of adaptation templates required to fulfill complex adaptation require-

ments. [k(ongdenfha etal. 2004] categorizes monitoring events into Interface-level

mismatches, i.e., services with similar functionality, but through different WSDL

interfaces and Protocol-level mismatches, i.e., mismatches concerning the order

98 Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

or number of supplied and required messages.

The proposed high-level event taxonomy [Zeginis et al. 2011] is based on two
different criteria: (i) the affected SBA layer; and (ii) the service aspect concerned
(functional, non-functional). The affected layer concerns the three functional lay-
ers analyzed in Section @, while the service aspect concerns the service func-
tional and non-functional characteristics [Papazoglou 2008]. The former ones de-
tail the operational aspects that define the overall service behavior, such as the
way and time it is invoked, while the latter concern quality attributes (e.g., re-
sponse time and throughput). Its main advantage upon the other taxonomies is
that it perfectly perfectly with the adopted SBA layers as well as the consideration

of both functional and non-functional service aspects.

Business Process Management Layer

Functional Non Functional
= Unforeseen execution = Cost change
= Business goal modification = KPI violation
= Context modification

= Process model modification

Service Composition & Coordination Layer

Functional Non Functional
1/0 failure = (Internal) SLA
Binding mismatch violation
Functionality mismatch
Invocation timeout mismatch
Protocol-Level mismatch
Interface-Level mismatch

Service Infrastructure Layer
Functional Non Functional

Limited resources = Software failure
Software failure = Network failure
Network failure = Device failure
Server failure
Sensor failure
Disk failure
Other device failure

Figure 5.3: Taxonomy of SBA adaptation-related monitoring events

Figure @ illustrates the proposed taxonomy of adaptation-related events
for the three functional SBA layers. Indicatively, the BPM layer comprises mis-
matches regarding to the business process, such as KPI violations or monitoring
events stemming from modifications at this layer (e.g., business goal or process

model modifications). At the SCC layer, monitoring events focus on mismatches

5.2. Component Meta-Model 99

about service execution and QoS violations, such as I/0 failures and SLA viola-
tions. Finally, at the SI layer, events mainly concern device failures affecting the

overall SBA, such as limited resources or network failures.

5.2 Component Meta-Model

Along with our event meta-model presented in [Zeginis et al. 20134a], we pro-
pose a component meta-model to describe different source components for each
event type. Our component meta-model (Figure @) is useful for defining SBA
system components and their direct interrelationships. To the best of our knowl-
edge, there is no such extensible meta-model describing both the multi-Cloud
SBA components and their adaptation possibilities.

The main benefits of this component meta-model are that it is extensive enough
to capture the most common components of a multi-Cloud SBA, related to func-
tional and non-functional violations, as well as it is extensible enough, in order to
meet the needs of any SBA provider, which may incorporate other layer-specific
components utilized by their applications. In addition, it can be exploited by any
adaptation manager to design adaptation rules, based on the SBA components’
properties, which have been carefully defined to stimulate the mapping from

monitoring events to specific adaptation actions.

The main purpose of designing this meta-model is to capture the dependen-
cies between components in a Multi-Cloud system, that can be further exploited
to perform a root cause analysis for system faults. These dependencies of an in-
stance component model are exploited by the Pattern Discovery Algorithm pre-
sented in Section @ to detect valid patterns leading to critical SLO violations.
In particular, component dependencies lead to selecting correct patterns in an
event stream, where one event in the pattern leads to the next one. Furthermore,
each one of the simple monitoring events described in an Event meta-model in-
stance, maps to an instance of the Component class (i.e., the sourceComponent

attribute of the Event Class) of the corresponding component model instance.

Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

100

T [}
i 1 ! Sensor Tablet CellPhone !
“ " “ batteryLevel - float “memorylntensiveApps - string| |-supportedNetwork : string “
	[DataStore	[AppServer	[SearchTool		~frequency : float - pps : string - string
	_ 7	-maxFrequenecy float y : float			
		~type : string -memorylntensiveApps : string			
1 1 [Alerting	' -removableBattery : boolean -storagelntensiveApps : string 1				
I	[CachingTool erting	-rechargeableBattery : boolean			
1 1 1 1					
KPI GPs					
“ —~metric : string “ “ MobileDevice —currentSatellite : string “					
1.	-operator - string		AssistantDevice -05: string _availablesatellites : string		
1 _threshold : float 1 Platform	-0s_version : float K}———-mapsProvider : string 1				
I I [-provider : string - = -0s_latestversion : float —mapsVersion : float I					
I I	-URL : anyURI - -mapsLatestVersion : float I				
! L I	-description : string bisesAssistantDevice !				
! ~[BusinessGoal I	verticalScaling : boolean Qevice Network !				
! ll }/	-horizontaiscaling : boolean Py 1aaS_component e Tdth - float !				
1 — 1 runsOnlaay _i-type : string 1					
“ haskPI . “ providesComponnt rtans indludesStorage ..,WW”_MMW.WSSTES@ “					
runsOnlaa :					
1 hasBG ¥ = kv, M “	-availablelSPs : string 1				
Component -05 : string !					
1 -0s_version : float Storage 1					
1	- 2				
! L ! componentID : ID . -05._latestVersion - float L7 capacity : float !					
1 I	-componentName : string -provider : string T	~type string [switch] 1			
i escribessP T A_ T [Compute 1					
5! -state : string atacenter : string -Speed : float -ports : int					
1 1. i ~cluster : string !					
“ essProcess fequiresin 1 -location : string “					
1					
j.n_ o [- -					
I providesOut L] software h I					
H rersion < floar ! CPU Memory Touter H					
H L T float U [Feores -t amount - float “Routerlinterface : string H					
- _	~configuration : string 1	[frequency - float y :float		-supp stiing	
1 mapsTotperation . E 1			-architecture - string ~frequency : float ~firmwareVersion : string 1		
1 _ i m_v 1	[-upgs : boolean - int ~firmwareLatestVersion : string				
1 \ 1					
1 B .	_Conditions	1			
H Tt W” % SCC_component object - string L					
performsTask &‘zum ring ! requiresin —operator : string					
“type : PostConditions					
! -stringValue : String ~value : float					
“ Role lue - float = hasVMSLA 1					
-name : string describesFprofile !					
-availability - boolean = provides Qut !					
I mapsTo h_= 1					
1 0 Service Profile FunctionalPRofile					
! Output 4 “URI - anyURI					
! DataFlow “type : string	~prpvidesOut’*	-WSDLbinding : string 1			
-stringValue : string string mv]					
1 T B					
! numValue : float i	i ¥ . 1				
bindsToO 1 T ServiceLevel 1					
indsToOut. S ———]					
\ bin on —— < -requirements : string					
1 : string -penalty : float					
\ mapsToOut -provider : string	level - int i				
-date : date					
I ComponentPositionin, CompositeService —cost : float					
ControlFlowPattern P B JescribesNFprofile -validity_period : date !					
b nt 1					
! L m	-type:string > -value : float 1				
! 11*	-condition : string]				
! 1					
“ 1.* o o SLO “					
_positioning » "					
I QTS metric : string					
\ -position : int CompositeConstraint Mple LOnS mapsTosLO _threshold - float 1					
=	-value : float	%) -metric : string 17	operator : strin		
! -logicalOperator : string -threshold : float 9 1
_ 1
H operator : string 1. !
“ mapsToSLO “
! 1

Figure 5.4: The component meta-model

5.2. Component Meta-Model 101

5.2.1 Meta-Model Description

The main meta-model class is Component, characterized by a unique ID, its
name and the state that it exposes. Components are further classified, based on
the referenced layer, as SaaS_component, PaaS_component, or IaaS_component.
Components at the Saa$ layer can be further distinguished into BPM_components
or SCC_Components and Software_components, depending on the SBA layer.
Each subclass of the Component class has its own subclasses and interrelation-
ships with other (sub)classes, providing a further specialization level which re-
flects the type of functionality exposed by that component. As far as the com-
ponent interrelationships are concerned, we distinguish between generic asso-
ciations of the superclasses (e.g. a SaaS component runs on an IaaS component)
and concrete associations of the subclasses (e.g. a Service requires an Input). In
this way, we can capture the component dependencies of the system, facilitating
an SBA provider to design the instance component model of her/his multi-Cloud

SBA.

As already analyzed in Section @, there is already a couple of widely-used
(standard and non-standard) models describing components of the Cloud layers
(TaaS, PaaS and SaaS). Whenever designing a new (meta-)model it is desirable to
reuse existing models, especially the standardized ones. Thus, in the proposed
model we reuse the following parts of existing ones: (i) the modeling of a VM
and its contents (i.e., Compute, Storage, Network) is inspired by the Iaa$S stan-
dard model proposed by OCCI (Figure @), (ii) The PaaS modeling part borrows
terms and classes from the CAMP and Cloud4SOA models (Figures @ and @ re-
spectively); and (iii) the SCC and BPM components modeling is inspired by various
models introduced in the S-Cube EU project. An extensive analysis of the model

classes, their properties and their interrelationships can be found in Appendix @

102 Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

5.2.2 Traffic Management Component Model

In the same wavelength with subsection , here we extend the ongoing
running example by defining the corresponding component model (bottom part
of Figure @) for the identified event pattern {wey,ces,ceq,wes}. Figure @ except
from identifying the traffic management multi-Cloud application components
and their dependencies, it also captures their distribution across the functional
layers and the mapping from the source Components of the Event Model to the ac-
tual components of the Component Model. In particular, the following mappings
are identified: (i) the event we; maps to the CPU component of the FlexiantVM
class instance, (ii) the event cea maps to the Memory component of the FlexiantVM
class instance, (iii) the event ces maps to the corresponding NetworkUptime SLO,
(iv) the event wes maps to SLO defining the threshold for the execution time
of the DeviceConfig service; and (v) the event E7 maps to the KPI defining the
threshold for the total duration of the Assess and DeviceConfig tasks. In the next
chapter we will show how the underlying dependencies of these five components
are utilized to validate event patterns extracted by the proposed pattern discov-

ery technique.

5.3 Adaptation Actions Meta-Model

Until now we have identified an event meta-model for describing the moni-
toring events and their interrelationships through the specification of event pat-
terns, and the adaptation rules (ECA triplets), as well as a component meta-model
for the definition of the dependencies among the qualitative and quantitative at-
tributes of an SBA and the monitored source components producing events at
run-time. Thus, Events and Conditions of an ECA triplet are efficiently described
via the event meta-model and the corresponding SLA documents. However, to the
best of our knowledge, the Adaptation part is not sufficiently modeled for multi-

Cloud SBA environments. There are already a couple of approaches [Blair et al.

5.3. Adaptation Actions Meta-Model 103

Event Model

ErrEr i C— || [
! 1
1 [componeno =005
- 1
1 1

Y Companentinsiancez - Component | | [[avernsancez {aas
Componentin = 3002 ! componentiD
componentame = Flexantyi-CPU | |
]

State = active State = active State = active
[hasLayer hasLayer —_—— === hasLayer
hasComponent hasComponent \ hasComponent
‘NumerichE. 2 NumericNE_Event ‘NUmericNE. NumericNE Fuent 1 NumerichE. ~ NumericE Fvent
eventD = 002 & eventlD = 001 I | evenup = 007
ame ~ FlexiantyM-CPU-load-95% name — FlexiantVM-FreeMemory200ME || ame = ThTo-executontineri-2ssec
ConstraintURI - 109,231 183xxf-CPU_loadConstraint.owla ConstraintUR! = 109,231,183 xxc FreeMemoryConstraint.owla 109 ok "
propertyName = FlexiantVM-CPU_load pertyName = FlexiantVM-FreeMemor 1 —TD—exzculmnT\meKPl
= 109.231.183.xxx £PU_loadPropeny.owla propertyURI = 109.231.183 xxx FreeMemoryProperty.owla = 109.231.183.xxx.TA-TD-durationkPI-propertyt.owla
<90% criticalsLO 1 <10sec
30 1 warningSLO | 105ec
iical citcalty - ical
Gmestamp < 1401097296 | Gmestamp | lot097324
T firstevent |
firsivent SecondEvent 1 causedEvent
1]
— — — —
re - | [] t | . [ExentBatternlastance FueniPattern |
eventiD - 1003 eventiD - 1002 1 patterniD - 2001
eventiD = 1001 1 ordering = ordering ordering = sequential eventNumber = 3
ordering = sequential 1
secondEvent firstEvent R ——
! 1 hasEventPattern
y
Ny NE. NumericNF_Event ‘NumericNF_eventinstanced : NumericNF_Event 1
eventD = 004 T eventiD = 003 [
name = NetworkUptime=97% name = ExecTimeDeviceConfigServce=25scc N “AdapiationRuleinstance : AdaptationRule.
9.231.183.xxk NetwiorkUptimeConstraint.owlg ConstraintURI = 109 i <
letworkUptim k propertyNar Exe(T\meDevv(eConﬁgSeM(e 1 RulelD = 4001
09.231.183.xxx:NetworkUptimeProperty.owlq propertyURI = 109.231.183. I name = TA-TD-durationViolationRule
8% I CriticalSLO - <22sec i
WarningsLO = <20sec .
1 citcality - critical
imesams ~ 1401097605 . timestamp = 1401097605 | firesAdaptationStrategy
hasComponent 1 hasLayer hasComponent hagtayer
_____ e | - - 1
[ComnomeatnstancetCompanent Tivernsianceiiias | | [Compencninsianced Component StrateaylD = 5001
i ¥ 1 1 | name = FlexiantScalingaServicesRestart
+| componentin = 3003 I componentp = 3004
i - & 1 . " 1 '
State = active state = active
S e e T I
T - X :
I 1
| Component Model
UL~ -~ Y- SRR ety gt iyt
i T] T A i |
! BPM Layer
1 haskPl T_gperator : < 1 1
| 1| threshold : 20sec \
L -
|

mapsToOperatiop

1 ToOperat

1
1

1

1 !

1 maWTcOperalmn mapsToOperation
1

1
iceConfigop | --ECC Layer

)
LR 109,231,163,0008080/ T
-WSDLbinding

R 109,231,163,0008080/ M
DLbinding

-metic: Exectionime |
0sex

-WSDLbinding : RPC -thresholc

attribute xpc I | |-operator: < 1
hasSLA runsOnlaas hassta K X X T
T M hasSLA
b -Throughput-SLO
K TSR | ST EEITY “metric throughput
“metric : ExecutionTime “consumer - Heraklion-municipality [~consumer - Heraklion-municipality -Consumer Heraklon-muricipalty threshol : 10 ops/sec
~threshold - 6 provider: -provider -orovier : alorovier -provider : TD-p operator : >
-operator : < date : 30/04/20 date : 30/04, Onlaas. |-date 30/04/2014
-validity_period zo/oo/zou 31/07/2014 -validity_peri zo/m/znn 30/06/2014 | | runsOnlaa -validity_period : 30/04/2014-31/08/2014
]

AmazohVH-SIA Jaas L
~consumer TA-prover aas Layer
provider : Amazon
|-date : 15/04/2014 hasVMSLA
vttty perion :15/24/2014-3011012014

I
[1 1 e y resioy |
FioxanviSomas] | [FlexmmVM U | FlexiantyM-Mermo: | [Fmetric : uptime 1
capacity : S00GB I [Feores amount : 4GB threshold : 99,90% | |
~type : HOD e quen(y -maxMemory : 8GB I |-operator: >
-~speed : 5400rpm 1 —upqreadable h\se | ~frequency : 1333MHz | 1 -upgreadable : true -frequency : 1666MHz -speed : 7200rpm

Figure 5.5: Mapping the traffic management application component model to the

corresponding event model

|2009|, |[nzinger et al. 2013|, |Marquezan et al. 2014|] and domain specific languages

(DSLs), such as CloudMLﬂ, addressing adaptation-modeling issues, but they mainly
provide abstract models for enacting adaptation at deployment time and do not

take into consideration cross-layer aspects.

To this end, in this section we propose a meta-model for the adaptation ac-

*http://cloudml.org/

Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

104

add_pattern
-strategyID : ID —-pattern_act
-name : string

—fired_on : timestamp

-ended_on : timestamp

-temporal_scope : string

—layer_scope : string

-current_system_state : component_model_URI
-new_system_state : component_model_URI

-attribute

1aaS_migration
-new_Cloud_provider : string
-resource_class : string

Reorder_activities

> |_activity : boolean

P -initial_actionID : ID "
-new_location : string -~ ~first_activity : string
firstAction -second_activity : string
string
[Scale up |
_ BPM_action
M laaS Vertical scaling BP_URI: URI
-CPU : int
-memory : int
[Scale down |1~ _gisk - int SaaS action Workflow_pattern_modification Add_activity
-new_resource_class : string - -application : string -workflow_scope : string -new_activity : string
|=m:.“m : string -new_pattern : string —previous_activityID : ID
-performer : string _ tri
Scale_out 1225 Horizontal W laaS action —cost : int o . pattern : string
aas Horizontal scaling _—>_cloud_provider : string -affected_components : string *o ware wn.::_.
~location : string {>-fired_on : = Ema._ﬂ_msm 5 S |] Update | [_SCC action
Scale_in -ended_on : ti I ATA i -service : name o o
—-strength : strini -binding_style : string
_ | , ; LASIRAGN AN

RestartSoftware

-configuration : string

Change_PaaS_provider
-PaaS_provider : string

Service_substitution

-add_ons : string PaaS_action | ReplaceAddon Replace_software -new_service : name
-Addon : string —|-newSoftwareName : string -endpoint : string
Add_resources -newAddon : string -version : float _
-CPU_load : float -configuration : string Re_execution
-memory : float PaaS_migration Add_SC pattern -operation : string
ReplaceComponent e L _ _disk : float “new_PaaS_prvodier : string Install Add on serviceOps : string -binding : string
-newComponentiD : ID | | rivate_infr_action _componentlD : ID -Add_on : string —pattern : string
-configuration : string ~configuration : string -configuration : string -previous_ServiceOp : string Undo_service
-operation : string
PaaS_horizontal scalin -compensation_serviceOp : string
Install component Replication “no_of VMs - int SC_pattern_modification -comp_binding : string
-configuration : string | | -machinelD : ID _new Cloud provider : string -SC_scope : string
-configuration : string - - —-new_pattern : string I
-old_pattern : string

StartUp_machine
-machinelD : ID

PaaS scale out | [PaaS scale in -modified_requirements : st
ng_services : string
Change_SC_requirements

-requirements : string SLA renego
—parties : string
-CPU Reorder_services -NegotiationTime : date
-memory : int _fi i - stri -SLOs : strin:
add_sensor Replace_batter -disk : int w_iﬂ\mME_anuOmﬁ.::m. -remaining, m@m_‘snmm string
-sensor_type : string -new_frequency : string -new_resource_class : string ~second_serviceOp : string -

-SC_scope : string H

-frequency : int -PaaS_auto_scaling : boolean

-new_machine_ID
-componentID : ID
-configuration : string

Add_service
-previous_service : string
-binding : string

Delete_service

RestartDevice | [ChargeDevice PaaS scale u PaaS_scale_down -SC_scope : string
-operation : string | |

Figure 5.6: The adaptation actions meta-model

5.3. Adaptation Actions Meta-Model 105

tions (Figure @) that can be enacted on each one of the functional layers of an
SBA. This meta-model’s importance deserves, as it facilitates to a great extent
the SBA Adaptation Manager of the proposed framework to perform the map-
ping from critical raw events to suitable adaptation actions, based on the instance
of the adaptation action meta-model. In addition, it can be used to provide an
overview of the framework’s adaptation capabilities and of the adaptation his-
tory, including the enacted time of each adaptation strategy, its lower-level ac-

tions and the affected components.

5.3.1 Meta-Model Description

The main model class is Adaptation_strategy characterized by its name, du-
ration, temporal and layer scope and the state it exposes. Each adaptation strat-
egy comprises of a number of lower level Adaptation_actions, identified by its ac-
tionID and further classified as Simple adaptation actions and Composite adap-
tation actions, whether they consist of more than one simple action. Compos-
ite actions involves interrelated actions that should be performed together with
the specified order (e.g., a Redo_activity BPM action implies a Re-execution
SCC action). Simple adaptation actions are further classified, based on the ref-
erenced layer, as SaaS_action, PaaS_action, or IaaS_action. Components at the
Saas$ layer can be further distinguished into BPM_actions or SCC_actions and
Software_actions, depending on the SBA layer. Similarly to the component meta-
model, each subclass of the layer-specific super-classes has its own sub-classes,
providing a further specialization level and the required configuration for each
low-level action. In this way, we can capture all the available adaptation actions
supported by our system, facilitating the Adaptation Manager during the adapta-
tion/scalability rule derivation process. The semantics of the rest of the classes
are straightforward, thus no detailed description is provided as a separate ap-

pendix.

106 Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

5.3.2 Traffic Management Adaptation Actions Model

Continuing our ongoing example of the traffic management application, in
this subsection we define an traffic management instance model of the previ-
ously proposed adaptation actions meta-model (bottom part of Figure @). This
figure additionally presents the mapping from the event meta-model instance,
defining the adaptation rule for the identified event pattern {wey,ces,ceq,wes}, to
the specific adaptation strategy and its lower level adaptation actions. In particu-
lar, the FlexiantScaling & ServiceRestart adaptation strategy identified in the event
model is further specialized in this figure into specific actions enacted in various
functional layers. These actions also provide proper configuration for their suc-
cessful invocation. In fact, this adaptation strategy is composed of three lower
level events: (i) a simple Scale_Up action of the flexiantVM, upgrading it with
quad-core CPU and 8GB RAM memory, i.e., from a “medium” to a “high” VM, (ii)
a composite adaptation action comprising of two sequential simple adaptation
actions; a Redo_activity of the Monitor Task and a Re-execution of the corre-
sponding T service; and (iii) another composite adaptation action comprising
of two sequential simple adaptation actions; a Redo_activity of the DeviceCon-
fig Task and a Re-execution of the corresponding T service. In practice, this
adaptation strategy is enacted before the actual E7 event appears, thus enabling
proactive adaptation. Similarly to the previous mappings, Figure @ represents

the mapping from the lower level actions to the affected components.

5.4 Conclusions

To sum up, in this chapter we have introduced three monitoring- and adaptation-
aware meta-models, able to capture the monitoring and adaptation related as-
pects; (i) the monitoring events meta-model enables modeling the monitoring
events, the formed event patterns, the adaptation ECA rules and the dependen-

cies among the metrics through the specification of event patterns, (ii) the com-

5.4. Conclusions

107

Event Model

componentiD = 3002 componentiD = 3001 componentiD = 3005

ComponentName = FlexiantyM-CPU - -

State = active state = active state = active

haslayer hasLayer hasLayer
hasComponent hasComponent hasComponent
‘NumericNF_eventinstance? : NumericNF_Event NumericNF_ ~NumericNF_Event NumericNE_ NumericNE_Event

eventiD = 002 eventiD = 001 eventd = 007
name = FlexiantyM-CPU-load=95% name = FlexiantYM-FreeMemory=200MB ame = TH-TO-executonTimeKPt=25sec
comsaintRl = 100231, 183, CPU JoadConstaint.owia constraintURI = 109.231.183.xxx FreeMemoryConstraint.owlq constraintURI = 10 tionkP- I

propertyName = FlexiantVM-CPU_l

PropertyURI = 100,231,183 xxc.CPU.loadProperty.owla
criticalSLO = <90%
warningSLO = <80%

criticality = critical
timestamp = 1401097296

propertyName = FlexiantVM-FreeMer

criticalSLO = > 100MB

timestamp = 1401096576

propertyURI = 109.231.183.xxx:FreeMemoryProperty.owla

propertyNare = i To-execssenTimekd!
09,

eriticality = critical
timestamp = 1401097324

ek
23118300 TA-TD-durationkPI-propertyt.owla

firstEvent
firstEvent I secondEvent | causedEvent

- =) [<] E | I = |

e~ 1007 P P

eventiD = 1001 ordering = ordering ordering = sequential eventNumber = 3

secondEvent firstEvent
hasEventPattern
eventlD = 004 eventlD = 003

name = Nuwolkupnmz ame = ExecT\maDew(eCenthuvnce 25sec ‘AdaptationRulelnstance : AdaptationRule.

property KUptime
PropertyURT = 109351 185 xnocNewworkUptmeProperty.owia
criticalSLO = <98%

warmingSL0 = <99
criticality
et ~ 1401097605

PropertyName = ExéermebenceConfigservce

aitialsLo = <22sec
warning

criticality
Tmentamg ~ 1461097605

propertyURI = 109.231.183 xxxExecTimeDeviceConfigServiceProperty.owlq

hasComponent hasLayer

‘Componentinstance3 - Component

componentiD = 3003

TLayerinstanced t1aas.

hasComponent

Componentinstanced : Companent.
componentiD = 3004
= De

hasLayer

state = active

secondAction

figService

state = active

[1z e Adapiaon Acioa |

actionlD = 6003
ordering = sequential

RulelD = 4001
name

rationViolationRule

firesAdaptationStrategy

StategyiD - 5001
name = FlexiantScalinggServicesRestart |

______________|_._________I

BPM Layer

firstAction - 7 " TR 7Y
secondAction [e dapiation A ‘

ordering = sequential

firstAction

-8
cloud_provider = Flexiant
Tocation = UK
affected_components = 7001

cost
fired_on = 1401288187

ded on - 1401289154
strength = dra:
performer = Flexiantdaptianager

| T e
s - co0s wctionld - 6006
DeviceConfighctty name = RedoMontorActvy |
| DeviceConfigsubProcess Sibprocess < MoniorsubMoctss
b 83w Devicec &
aciviy - DevieConfigACtiiy aciviy - Mortorictiiy
I fisiacion | gty - DevieConfioncint affected_components = 7002 !
I - Composite_adapiation_action | cost = cost =
) firedon - 1401382379 firedon = 140129379
actionID = 6005 secondAction | ended. ended_on = 1401289876 |
orderng = parae o Srengin - ght
1 performer = 87 Adapiationhahager
firstAction ‘ T
}
| R

actionld = 6004 :

Srderng = parate sctioniD — 008 oo =007 |
name = |
applcaion = TafcManagement applcation = TaffcManggement

1 e Beveetontagemnen e e _
operaton = DeviceConfigop | | operaion = &
_————————— affected_components = 7005 ted_components = 7003
ost = 6 iy
secondAction fired_on = 1401290180 1401291231
G01294784 Laoiz98762
" o
C-Adsptatonmtanager Sec-adapratonmtanager
~Composiis adam\lna\lnl P o P o
p— | |,
[SmalEAdamEs R Sale i | laas Layer
action> - 6001
Rame = FlexiamtVMcleUp
U

Figure 5.7: Mapping the traffic management application event model to the cor-

responding adaptation actions model

ponent meta-model captures the layer-specific components of a multi-cloud ap-

plication; and (iii) the adaptation actions meta-model identifies the adaptation

strategies per Cloud and SOA layer. All these models are extensible and reusable

by any interested Cloud SBA developer. We have also defined instances of these

meta-models and the corresponding mappings, based on the traffic management

example, in order to illustrate their applicability, usability and flexibility.

108

Chapter 5. Meta-Models for Cloud SBA Monitoring and Adaptation

haskPl
-operat

7007
-metic TA-TO-execTime

or
eshold 20sec

Component Model

BPM Layer

[DeviceConfigTask]

componentiD : 7004

"SCC Layer

TA-Service
URI - 79,125,0,5xx/TA
-WSDLbinding : RPC
-componentlD : 7017

-componentiD : 7903
-URI - 109,231,183,xxx:8080/T
-WSDLbinding : RPC

TA_TD-DataFlow

~componentlD : 7015

e ime-SL0
~componentlD : 7019
-metric

-threshold : 30sec

= -operator
hassLA S/
XecutionTim ™ TASIA
~component : 7020 ~combreni> 7021, componentin 7022 ~componentn - 7023] hroughput
-metri i -consumer : Heraklion-municipality consumer ; Heraklon-municplty threshold : 10 ops /sec
-threshold : 6sec -provijer : TM-provider -provider : TA-provider Onlaas ovider : TD-provid -operator : >
-operator : < Gate 130/0472014 4 -date : 30/04/2014 runsOnlaa: Gace 30/04/2014
o -valdyy_period : 30/04/2014-31/07/2014 -validity_period : 30/04/2014-30/06/2014 -validiy_period - 30/4/2014-31/08/ 4014
mmmmmme e A T E T EEE RS S S S S S S~ S S S S S S S S S S S S S S emmmm e == s SE ST ETESERE AT e mmmmmmmmmm -
FlexiantVM —— Agazonyy-SLA, — Amggzor —— o ——
“componentp : 70 ~componentd : 7032 “comporeniy - 7033 laaS Layer
<consumer TA-prvider -05 : Wi
-provder Amazon hasVMSLA 05 _verdon -8
e 15/0: 05 atesrvefpon : 8.1
alipenod 15/04/2014-30/10/2014 -provide] : AMazon

—_—
FlexiantVM- Slouga

-ceaciy soncu

e Sloﬂrvm

o
e i

frequency : 2,4GHz
-upgreadable : f

-capacity : 278

e : HDD
-speed : 7200rpm

firstAction |

cs
o
»lreqsint 1666MHz.

- -,

—TI———————II:

1
| j......_ Adaptation Actions Model

e LBPMLaLe"
r —— il
| coe | 1o - coos T
edobevicekonfigActviy RedomontsrActuty
| [subproces - Dewcqconfigsubprocess Sibprocess erysuhw,x,
BOR 109,261 ¢ Sh0R < 105
iy - DeceConoaciy

|

Hontoracety”
I affected. mmpunu‘s 7002
|
|

affeced

[e AT | N Cost o 90
1 e om = 140138 fred o = 1401289370
actonid - 6005 secondhctiod | o - aot3gh530 ended on = 14012fosrs |
secondAction | ordering = parallel streng strength = light &
_________ esormer = 5-Adspatonanaser perormer = 5 Adgpatntdher
[| firstAction — = = = = = = === =t===
—— v
o il CETTTCLLLL I LT -----;--- ammaa
C Layer
N R R p— 5& ayer,
secondAction [T Re-execum i
o ~ 00 - |
e = pare | [ftono - so0s oo - coo7
Pame = DevceC
application g 1 I
I | seRice = DeviceConfgservice I .W.(..Mmms.m S
yEr operation = figop | poperation o Caiopeai 1
I affected_components = 7005 I ffected. mmpenmu - 7003
P— cost 6 cost = 40
e o ingaServceestar secondAction | | e i oo 1
name = Flexancscalings endd on = 1401204784 i on = 1401208762
0 Sengin - ight Srengin - ight
i st o et E— Pertomer = SCC-AdaptatonManager o < Sec-asspavonvanaer |
Iayer Scope - 1aas SCC GPM he-adapsation action | e = = == == == = = -
inhial actoniD = 600 P—— mmmeTaTe i R
currensystem, state = fauty Srdurng = saauentiat
Rew-Syatem. stie = stable o laas Layer
SimpleActioninstance] : Scale_up.

actionlD = 6001
ame = FlexiantyMscaleUp
c

PU -4

cloud, plwnder = Flexiant
location =

affected :cmponen(s = 7001

cost =

red on - 1001288187

ended_on = 1401289154

strength = drastic

performer = FlexiantAdaptManager

Figure 5.8: Mapping the traffic management application adaptation actions model

to the corresponding component model

Chapter 6

Monitoring and Pattern

Discovery

Contents
6.1 Cross-layer Monitoring 110
b.1.1 Metric Definitiond 111
|5.1.2 Event Representatiod 113
|6.1.3 Event Processiné 117
6.2 PatternDiSCOVEIY . . « v v v v v v v v v e e e e et e e e 119
k.z.l Pattern Discovery Algorithrri 119
b.2.2 Enhanced Pattern Discovery Algorithn| 126
b.23 Pattern Discovery on the Running Examplq 127
6.3 Processing of EventPatterns 131
6.4 Conclusions i ittt 134

The literature review in Chapter H revealed that there is a research gap in
cross-layer monitoring of multi-cloud SBAs. The main goal of this chapter is to
present our contribution towards filling this gap. In addition, it focuses on the
processing of the monitoring events to discover event patterns within an event
stream of the SBA execution history, taking into consideration the component de-

pendencies captured in the corresponding component model. In particular, Sec-

109

110 Chapter 6. Monitoring and Pattern Discovery

tion Ell analyzes our proposed cross-layer monitoring approach and the under-
lying techniques utilized by the ECMAF’s Monitor Manager. Section @ proposes
a logic-based pattern discovery algorithm and discussing its application on the

traffic management example.

6.1 Cross-layer Monitoring

As discussed in Chapter H, it is crucial to monitor all the functional layers of
a SBA and effectively manage the monitoring events, so as to take the optimum
decision for the most suitable adaptation action. These events should be synchro-
nized and delivered in a correct order to the Adaptation Engine. The rationale
behind the event synchronization and ordering is that a delivery delay may jeop-

ardize the correct functioning of the Adaptation Engine.

In ECMAF we advocate for the use of independent monitoring components
that can detect layer-specific events. Thus, in our framework we employ a set of
monitoring mechanisms distributed in the deployed VMs, analyzed in Section .
Then, the Monitor Manager should directly pass the events to the Adaptation En-
gine in the correct order. The incorporated time synchronization technique is in
charge of keeping the logical clocks of the involved VMs synchronized. Moreover,
when it comes to delivering events to the Adaptation Engine, we have to take into
account the adaptation manager requirements. So, it is desirable to pass only the
subscribed events, as some of the monitoring events may be useless for the adap-
tation manager. For instance, an Adaptation Manager that does not incorporate
an infrastructure manager is not interested in any infrastructure events.

This section has a two-fold role: (i) it formally defines the semantics of the
monitoring concepts of a multi-Cloud SBA; and (ii) it elaborates on how cross-
layer monitoring is performed in the ECMAF framework, providing more details
on the functionality of the Monitor Manager component. Figure Ell isolates the
ECMAF’s Monitoring Engine, in order to facilitate the reader in the next subsec-

tions, which frequently refer to the incorporated components.

6.1. Cross-layer Monitoring 111

ﬁme
N\~ synchronization

Monitoring Engine

Cloud 2

Monitoring tools

Monitoring tools

1
1
1
1
1
1
1
1
1
1
! .
1 SBA provider / manager
1
: _____________ .~ Multi-Cloud
v~ N T | ‘:\deployment
1 -1 T——C ARSY
1 | Monitor Manager synchronized | TTm==fo Lo
: raw events | BN
| 1
Assessed raw events . | /
1
! TSDB Metrics Aggregator h
| 1
| I discovered 1
1 roll-ups pattern: 1
| queries raw events detected 1
! patterns :
1
1 1 Model Repository
! Pattern ! Event model
! Discoverer ! Component model
: I Adaptation model
| 1 SLA model
|

Figure 6.1: The ECMAF’s monitoring engine

6.1.1 Metric Definition

In Section @ we have presented OWL-Q [Kritikos and Plexousakis 2006], as
the ECMAF’s exploited QoS description model for Web services, that is able to de-
fine non-functional metrics, measuring various aspects of QoS-based Web service
description. OWL-Q allows for describing metrics by identifying the QoS property
and the service, on which they apply, the measurement directive for simple met-
rics, the computation formula for complex metrics, the metric type (simple, com-
plex, dynamic, monotonic, etc.). In this section, we provide examples of OWL-Q
metric definitions, either simple or composite, for the traffic management run-
ning example. Especially, Listings El! and 6.2 provide OWL-Q definitions for a
simple execution time metric and an average execution time complex metric re-
spectively. The former one describes DeviceConfig execution time, i.e. metric eg (see
Section @). It is a dynamic, monotonic metric, acquiring positive values in the
range of (0-10000). The latter one describes Average execution time of Monitoring
service metric. It is a complex metric applying an Average OWL-Q function on the

simple raw metric Monitor_AvgExec. In addition, it is also a dynamic, monotonic,

112 Chapter 6. Monitoring and Pattern Discovery

QoS metric acquiring positive values in the range of (0-20000).

Listing 6.1: Simple metric (DeviceConfig service execution time) OWL-Q definition

<owlg-metric:SimpleMetric rdf:ID="DeviceConfigExec_Time">

<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#IntervalMetric"/>

<owlgq-metric:hasScale rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Scale.owl#
TimeIntervalScale"/>

<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#ServiceMetric"/>

<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#QoSMetric"/>

<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#DynamicMetric"/>

<owlq:hasValueType rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_ValueType.owl#
Integer_0_10000"/>

<owlg-metric:ofObject rdf:resource="#DeviceConfig"/>

<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#PositiveMonotonicMetric"/
>

<owlg-metric:evaluates rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#
ExecutionTime_1"/>

</owlg-metric:SimpleMetric>

Listing 6.2: Complex metric (Average execution time of Monitor service) OWL-Q

definition

<owlg-metric:ComplexMetric rdf:ID="Monitor_AvgExec">
<owlg-metric:evaluates>
<owlg-function:MetricFunctionCall rdf:ID="Monitor_AvgExecTime">
<owlg-function:callsFunction rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.
owl#Average"/>
<owlq:hasArgument>
<owlg-metric:QoSMetric rdf:ID="Monitor_ExecTime">
<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#DynamicMetric"/
>
<owlg-metric:hasScale rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Scale.owl#
TimeIntervalScale"/>
<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#ServiceMetric"/
>
<owlg-metric:ofObject rdf:resource="#MonitorService"/>
<owlg:hasValueType rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_ValueType.owl#
Integer_0_20000"/>
<owlg-metric:evaluates rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#
ExecutionTime_1"/>
<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#IntervalMetric"
/>
<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#
PositiveMonotonicMetric"/>
<rdf:type rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Metric.owl#SimpleMetric"/>
</owlq-metric:QoSMetric>
</owlq:hasArgument>
</owlg-function:MetricFunctionCall>
</owlg-metric:evaluates>
<owlq-metric:derivedFrom rdf:resource="#MonitorServiceExec_Time"/>
<owlg-metric:ofObject rdf:resource="#MonitorService"/>
<owlq:hasValueType rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_ValueType.owl#Integer_0_100"
/>
<owlq-metric:hasScale rdf:resource="http://127.0.0.1:50000/0WL-Q/0WL-Q_Scale.owl#

TimeIntervalScale"/>

6.1. Cross-layer Monitoring 113

<rdf:type rdf:resource="http://127. :50000/0WL-Q/0WL-Q_Metric.owl#QoSMetric"/>

<rdf:type rdf:resource="http://127. :50000/0WL-Q/0WL-Q_Metric.owl#IntervalMetric"/>
<rdf:type rdf:resource="http://127. :50000/0WL-Q/0WL-Q_Metric.owl#NegativeMonotonicMetric"/>

<rdf:type rdf:resource="http://127. :50000/0WL-Q/0WL-Q_Metric.owl#DynamicMetric"/>

©o o o o o
©o o o o o
[= S SN

<rdf:type rdf:resource="http://127. :50000/0WL-Q/0WL-Q_Metric.owl#ServiceMetric"/>

</owlq-metric:ComplexMetric>

6.1.2 Event Representation

In the previous section we have formally defined the definition of metrics in
OWL-Q language. In this section we provide the annotations for the metric’s event
representation. As already analyzed in Section Ell, each captured event has anum-
ber of properties characterizing it. Thus, a monitoring event is a multi-attribute
item, uniquely identified by its EventID. More formally, given a n-attribute event
stream D with attributes A = {A;, As,..., Ay}, each event e € D is a n-tuple
with the following required attributes, that should be provided by the monitor-
ing engine, except the criticality attribute which is determined during the SLO

assessment process.

+ EventID: This attribute uniquely characterizes the event / measurement.
In practice, it is an incremental counter of the Metrics Aggregator compo-
nent assigning IDs to the collected events, as soon as they reach the Monitor

Manager.

* Metric: This attribute identifies the corresponding metric of the consid-
ered event. For instance, a measurement maps to the Temperature metric of
the Environmental Monitor task of the traffic management running exam-

ple.

 Value: This attribute identifies the value, either numeric or textual that
would be assessed by the Metrics Aggregator, in order to detect SLO vio-
lations, in accordance to the SLA thresholds defined in the corresponding

WSLA document.

114

Chapter 6. Monitoring and Pattern Discovery

Timestamp: This attribute identifies the exact time when this event / mea-
surement is detected by a monitoring engine. In practice it is defined in
Unix time (i.e., the number of seconds that have elapsed since 00:00:00 Coor-
dinated Universal Time (UTC), 1 January 1970,) and as already pinpointed
all monitoring engines are timely synchronized (see Section for more

details).

Layer: As our approach is cross-layer, with a main purpose to identify pat-
terns of monitoring events that may dispersed across various functional
SOA and Cloud layers. Thus, we employ this attribute to directly refer to

the layer, where the event / measurement is detected.

Application: The Metrics Aggregator component may collect events from
various applications, thus this attribute is necessary to discern them using

this attribute.

Task: This attribute identifies the application’s task (i.e., SCC and BPM events)
related to the monitoring event / measurement (e.g., the assessment task

of the traffic management application).

ComponentID: This attribute identifies the exact component that produced
the monitoring event, as it is defined the SBA’s component model (e.g., com-

ponent with ID=7027 is the FlexiantVM memory in our running example).

HostID: This attribute determines the VM or private machine that pro-

duced the monitoring event, independently of the related functional layer.

Criticality This attribute is defined after the assessment process performed
by the Metrics Aggregator component and acquires one of the following

values: success, warning or critical, as they are defined in the next subsection.

In order to ensure that the required information is passed from the individual

monitoring components, we have designed the corresponding XML schema (i.e.

g s W

O 0 N

10

6.1. Cross-layer Monitoring 115

XSD)E]. Monitoring events are sent to the Metrics Aggregator component, either
in a XML or a JSON format and are validated according to these schemas. If they
are not valid, i.e. either all the required fields are not filled or an attribute type
is not correct, they are not taken into account for the pattern discovery process
and they are not stored in the TSDB. These monitoring engines should be checked
in order to verify the cause of the invalid event files. The following Listings @
and @ define sample monitoring events of the traffic management example, in

XML and JSON format respectively.

Listing 6.3: An XML file representing a warning event of DeviceConfig Service ex-

ecution time (event e3) metric

<?xml version="1.0"7>

<NumericNF-event>
<eventID> 003 </eventID>
<name> DeviceConfig ExecTime SLA warning Violation </name>
<application> TrafficManagementApp </application>
<task> DeviceConfigTask </task>
<hostID> 7001 </hostID>
<propertyName> DeviceConfigExecTime </propertyName>
<hasLayer> SCC </hasLayer>
<detectedNumericValue> 21 </detectedNumericValue>
<hasComponent> 7019 </hasComponent>
<timestamp> 1401097605 </timestamp>
<criticality> warning </criticality>
<constraintURI> 109.231.183.xxx:ExecTimeDeviceConfigExecTimeConstraint.owlq </constraintURI>
<warningSLO> DeviceConfigExecTime<20sec </warningSLO>
<criticalSLO> DeviceConfigExecTime<22sec </criticalSLO>

</NumericNF-event>

Listing 6.4: A JSON file representing a critical event of FlexiantVM’s CPU-load

(event es) metric

{
"NumericNF-Event": {
"eventID": "002",

"name": "FlexiantVM CPU-load critical violation,
"application": "TrafficManagementApp",
"hostID": "7001",
"propertyName": "FlexiantVm-CPU-load",
"detectedNumericValue": "92%",
"hasLayer": "IaaS",
"hasComponent": "3002",

'www.ics.forth.gr/ zegchris/schemas

11
12
13
14
15
16
17

116

Chapter 6. Monitoring and Pattern Discovery

"timestamp": "1401097296",
"criticality": "critical",

"constraintURI":"109.231.183.xxx:CPU-loadConstraing.owlq",

"warningSLO": "<80%",
"criticalSLO": "<90%"
}
Monitoring Event Types

Before giving details on how cross-layer monitoring is performed, we define

the three criticality types of the monitoring events:

+ Successful events. These events carry information about successful invo-

cations (correct input/output) and normal state of the system components.
For example, a successful ping message from a server that hosts a service of
our SBA indicates that this server is running normally. This type of events
are ignored, as they do no provide information about improper execution

of the monitored SBA.

Warning events. These events indicate that a component (device, service,
software, etc) of our system does not perform normally and a monitoring
property has exceeded the warning threshold, as it is defined in the SLA
document. For example, the Monitoring Engine reports a warning event
when the execution time of the Assessment service is 9ms, while the warn-
ing threshold is 8ms and the critical threshold is 10ms in the normal traffic
cases. These messages warn the SBA manager that something wrong is hap-
pening at a specific component and help us to proactively adapt the faulted

component before this malfunction deteriorates.

Critical events. Events of this type indicate a failure during the SBA execu-
tion. These events are detected by our cross-layer monitoring mechanism
when a monitoring property is violated, i.e. when it exceeds the critical

threshold defined in the SLA document. For example, a critical event can

6.1. Cross-layer Monitoring 117

be the low average availability of the Monitoring Web service below 99%
after a couple of invocations. Moreover, critical events, as well as warning
events, can capture functional properties, as for example the correct input

type of a specific service or the low available memory of a VM.

6.1.3 Event Processing

As already analyzed in Section @ the main functionality of the Metrics Aggre-
gator component is to collect the monitoring events / measurements and process
them before storing them in a Time-series Database (TSDB). The following two

subsections elaborate on the assessment and storage of the monitoring events.

Monitoring Events’ Assessment

As soon as a monitoring event reaches the Metrics Aggregator component, it
is assessed according to the constraints defined as SLO objectives in the agreed
SLA document. Upon the SLO assessment against the corresponding WSLA doc-
ument, the criticality of the assessed event / measurement is filled in the cor-
responding XML or JSON file and then stored in the TSDB. In addition, if the as-
sessment process indicates a critical violation then it directly triggers the most
appropriate adaptation strategy, as it has already been determined by the appli-
cation expert. Otherwise, if the monitoring event maps to a composite metric, the
Metrics Aggregator queries the TSDB to get the average value of the raw metrics
monitored in the interval defined in the metric’s definition, i.e., the complex met-
ric’s OWL-Q file. Listing @ represents a part of the traffic management applica-
tions” WSLA document defining the criticality of the DeviceConfigExecTime event
collocated in Listing @ It defines a critical SLO for the corresponding metric.
In particular, the measurements of the DeviceCofigExecTime metric should be
less than 22sec when the FlexiantCPU-load is less than 90%. This SLO is valid for
a 7-month period and the measurements are assessed whenever a new value is

available (i.e. expression <EvaluationEvent>NewValue</EvaluationEvent>).

118 Chapter 6. Monitoring and Pattern Discovery

Listing 6.5: Sample SLO for the traffic management application

<ServicelevelObjective name="DeviceConfigExecTimeCritical">
<0bliged>AppProvider</0Obliged>
<Validity>
<Start>2014-06-01:00:00.00</Start>
<End>2014-12-31:00:00.00</End>
</Validity>
<Expression>
<Implies>
<Expression>
<Predicate xsi:type="Less">
<SLAParameter>DeviceConfigExecTime</SLAParameter>
<Value>22</Value>
</Predicate>
</Expression>
<Expression>
<Predicate xsi:type="Less">
<SLAParameter>FlexiantVM-CPU-load</SLAParameter>
<Value>0.9</Value> <! >
</Predicate>
</Expression>
</Implies>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>

</ServicelLevelObjective>

Monitoring Events’ Storage

As already discussed in Section @, TSDBs are the ideal solution when it comes
to storing timestamped data. Apart from the efficient storage (accomplished by
Apache Cassandra databaseB), the selected KairosDB TSDB (see more technical and
architectural details in Section) additionally provides roll-up capabilities,
i.e. aggregation functions (e.g. average, min, max, etc.) across user-defined time
ranges and even lets you combine aggregators. In addition, except from the de-
fault field for event storage, i.e. timestamp, metric and value, it allows data points’
labeling with additional tags, consisting of a name and value. Thus, the rest event
attributes (eventID, name, application, task, componentID, layer, criticality) are
defined by separate tags, in order to facilitate the filtering process utilized by the
pattern discovery algorithm analyzed later in this chapter. Listing @ represents

a data point structure, as it is stored in the underlying Cassandra DB.

*http://cassandra.apache.org/

o~

O 0 N N

11
12

6.2. Pattern Discovery 119

Listing 6.6: A sample TSDB data point

[{
"name": "FlexiantVM-CPU-load",
"timestamp": 1401097296,
"value": 0.92,
"tags":{"hostID":"7001",
"eventID": "002",
"application": "TrafficManagementApp",
"Layer": "IaaS",
"ComponentID": "3002",
"criticality": "critical"
}
}

6.2 Pattern Discovery

In Chapter E] we have argued about the need and significance of interrelat-
ing the monitoring events and performing a root cause analysis to determine
the main cause of failures in multi-Cloud deployments. This section analyzes one
of the main contributions of this thesis; a novel pattern discovery technique en-
abling event correlation exploiting the source components’ dependencies. The
benefits of this method are twofold, also allowing the identification of new compo-
nent dependencies, except the ones initially determined by the application man-
ager and deriving metric dependency trees (MDTs) correlating the application’s
monitored properties. The following subsections elaborate on this technique and

exemplify its application on the running example.

6.2.1 Pattern Discovery Algorithm

This section presents an offline deterministic algorithm (Algorithm E]) for dis-
covering frequent event patterns (i.e. association rules) leading to critical events
of a specific metric. This algorithm is based on propositional logic [Sim et al. 2010]

and takes into consideration both the dependencies of the components consti-

120 Chapter 6. Monitoring and Pattern Discovery

tuting the multi-Cloud application system and the aggregate metrics extracted
by the TSDB. In particular, the algorithm requires as input: (i) the monitoring
events stream, (ii) the application and (iii) the metric we are interested in identi-
fying critical event patterns, (iv) the metrics classification (i.e. success, warning,
critical), that is part of the aggregated event for the specified intervals; and (v)
an instance of the monitored SBA component model. The algorithm exploits con-
tingency tables (see Table @), i.e. tables displaying the frequency distributions
of the candidate patterns and their negations as antecedents and the specified
metric event, as well as its negation as consequences. The entries of these tables

(see Figure @) are utilized to determine the association rules.

Algorithm’s Description

The aim of the proposed event pattern discovery algorithm is to discover fre-
quent patterns leading to violations of specific aggregate metrics. We assume that
only warning or critical events lead to other critical events. Therefore, a filtering
of the event stream (line 3) is performed before the actual discovery process starts.
The filtering does do not consider events coming by different Cloud providers
from the ones used by the monitored application or by other Cloud providers in
single Cloud deployments. Then, the event stream is split into user-defined time
intervals (line 4), which are actually the intervals of the aggregate metric being
assessed. Thus, one should carefully define the aggregate metric’s measurement
interval, in order to be able to catch event patterns, as accurately as possible.

As far as the critical intervals are concerned (i.e. the corresponding average
value indicates a violation), we calculate the temporal ordered powersets of the
raw events subset, from the first interval event to the event before the last criti-
cal raw measurement (see Figure @), as candidate patterns and then update the
powersets’ tree (Figure @). Concerning non-critical intervals, we also calculate
the powerset of the whole interval, as candidate patterns not leading to violations
of the specified metric. Each powerset is filtered based on the current component

model dependencies (see an example in Section). If a powerset’s set does not

6.2. Pattern Discovery 121

Algorithm 1 Event pattern discovery algorithm

1: Input: event stream, application, metric, interval, metrics classification, com-
ponent model

2: Output: pattern graph, pattern ranking, coherent rules, ambiguous rules

3: Filter raw events (ignore success /other applications’/other Cloud provider
events)

4: Divide event stream in event time intervals

5: Calculate average metric value for each interval

6: while not end of event stream do

7: A = events before the last critical raw event in this interval
8: I4=P(A) — temporal ordered power sets of set A
o: filter power sets according to component model

10: update power sets tree

11: end while

12: fori < 1,treelevels do

13: for j < 1,treebranches do

14: B;; = current branch

15: while not end of event stream do

16: A = events before the last critical raw event in this interval
17: C = critical raw event for the specified metric

18: compute S(B; ;,C) in A

19: compute S(B; j, =C) in A

20: compute S(—B; j,C) in A

21: compute S(—B; j, ~C) in A

22 update contingency table

23: end while

24; if S(B; j, C) > S(B; j, ~C) and S(B; ;, C) > S(=B; ;, C) and S(=B; ,

—'C) > S(Bl"j, —\C) and S(—\BiJ, —|C) > S(ﬁBi’j, C) then
25: create association rule (B; ; — C)

26: compute A

122 Chapter 6. Monitoring and Pattern Discovery

27: store (B; ; — C) in association rules Knowledge Base

28: else if (S(B;;,C) + S(—=B;;,~C) = (S(—B;;,C) + S(B;;,~C))
then

29: Store (B; ; — C) as ambiguous rule

30: else

31: compute \

32: end if

33 end for

34: end for

35: traverse tree
36: rank patterns on levels based on their A scores

37: filter discarded sets based on their)\ scores

contain events, the source components of which are interrelated with each other,
according to the instance of the component model, then this set is not further pro-
cessed as a candidate pattern (lines 6-11). However, the algorithm considers the
single events that might map to the critical violation. It is worth mentioning that
the powersets’ tree stores unique sets and there are no duplicates.

Up to this point, all the candidate patterns are stored in a tree-based structure
(Figure @). Then, a level-based and a branch-based tree traversal are performed
in order to calculate the frequencies to be stored in each contingency table en-
try. Note that every discovered pattern reserves its own contingency table. The
following frequencies are calculated (lines 15-23), where B; ; is the concerned sub-
branch (i indicates the tree level, while j the branch counter) and C represents the
critical aggregate event (i.e. violation) of the specified metric (see Figure @). The
negation of a pattern means that either of the included events does not appear.
More formally, for the discovered pattern {ej, e2, e4 }, the following equivalence

holds:

—{e1,ea,e4} = —e1 V —ea V —ey (6.1)

6.2. Pattern Discovery 123

° e Level 1
Contingency table
Frequencies C -C
B(3,1)={81:ez;e4} Q><7<: e ° Level 2
-B(3,1)={e,e,e,} |1 @
o e Level 3
e/

Association rule
{e, e;,e>C

o LeVEIg

Branch 1 | Branch 2 | Branch 3, 'Branch b'

Figure 6.2: Powersets tree

+ S(Bi,j,C) is the frequency of B; ; set in critical intervals.
* S(=Bj;,~C) is the frequency of —B; ; set in non-critical intervals.
« S(—B,j, () is the frequency of =B, j set in critical intervals.

« S(Bi,;,C) is the frequency of B; ; set in non-critical intervals.

In critical intervals the considered aggregate metric is violated, while in non-
critical ones, it is not violated. The frequencies utilized to determine an associa-
tion rule are: (i) S(B; ;, C'); and (ii) S(—B;,;, ~C). The first one obviously proves
an association rule, that is under consideration, while the second one is consid-
ered to determine an association rule, as the concurrent absence of a pattern and
the event indicating a violation of a composite event (i.e. the average value of the
specified metric in an interval) also interrelates the root with the cause of a SLO
violation. Consequently, in order to determine an association rule, the following

relationship must be met (lines 24-25):

(S(Bm‘, C)+ S(ﬁBi,j, -C) > (S(‘\Bm‘, C)+ S(Bm’, —|C)) (6.2)

124 Chapter 6. Monitoring and Pattern Discovery

This equation means that in order to determine an association rule, the sum
of the frequencies proving it should be greater than the sum of the frequencies
weakening it. In the extreme case of equality (lines 28-29), an ambiguous rule is de-
fined and this case should be reconsidered in another execution of the algorithm
on a different sample dataset. In any other case, no association rule is discovered,
but even in this case, a confidence level indicating the weakness of the discarded
set is taken into account, so as to reconsider rules with low confidence level.

The confidence level A (line 26) of the determined association rules, indicat-
ing the power of the rule, is calculated by the following formula. Higher X scores
mean stronger association rules:

y = (8(Bij, C) + 5(=Bij, 2C)) = (5(=Bi;, C) + 5(Bij, ~C))
5(Bi;,C) + S(=Bi;,~C) 4+ S(=Bi;, C) + S(Bij, =C)

(6.3)

The confidence level X (line 31) of the discarded sets, indicating the irrele-
vance of the involved events, is calculated as follows. Higher A’ scores mean more
irrelevant power sets:

((S(Bij;,C) + S(=Bi;,~C)) — ((S(=Bi;,C) + S(Bi;,~C))

N =
S(B;;,C)+ S(—B;;,~C)+ S(—B;;,C)+ S(B;;,~C)

(6.4)

In this context a pattern is defined as follows:
Definition 2 Pattern is an association rule with confidence level A > 0.

However, the A and \” scores are highly dependent on the size of the dataset
used for the pattern discovery, as well as on the iterations used so far to compute
these scores. Consequently, we normalize these two scores using these two pa-
rameters (i.e. dataset size and number of algorithm iterations) for the second and
so on iterations of the algorithm. Therefore, for the first iteration we use Equa-
tions @ and @ to calculate the A and X’ scores, while for every next iteration k,
Equation @ is used to update these scores for the already discovered pattern p;. k
represents the number of algorithm’s iterations that have discovered the pattern
p;, g is the dataset size used for the k™ iteration of the algorithm and 7 is the

average size of the sample dataset used so far to calculate the two scores of the

6.2. Pattern Discovery 125

pattern p;. Equation @ utilizes Equations @ and @ to calculate the updated A

scores.

)‘(pi,k) =Wk \+ WE * Aj (6.5)

%*(1—”'“_%) N >=n

W= i i (6.6)
k—;l F Ttk ng <n
1 n—mng . — 7
Tk —— TN >="n

wk} = k n _ (6.7)
T (1- M) i <n

Finally, the discovered association rules are ranked on a 5-level scale based
on their)\ scores (lines 35-36) as indicated in Table @ Rules with high confi-
dence level (i.e. strong and very strong rules) are given higher priority during
the pattern detection process, immediately triggering the corresponding adapta-
tion rules (enabling proactive adaptation), while looser rules (i.e. moderate, loose
and very loose rules) are fired only after a couple of occurrences of the whole pat-
tern and not upon the detection of a sub-pattern (as it happens with the strong
rules). Going back to our running example, if the pattern {e1, es, e4} with A=0.2
is detected (see Section), no rule is fired directly, unless the corresponding
critical event (i.e. a violation of the Monitoring service execution time) occurs. On
the contrary, if a very strong pattern {ey, eg} with A\=0.6 is detected, then the rule
is immediately fired to prevent an execution time violation of the DeviceConfig

service.

Discarded rules are also ranked (line 37) based on their)\ scores. Rules with
high) scores (A" € (0,4-1]) are stored as not relevant rules, so as to be omitted
during every next execution of the algorithm, thus limiting the pattern search
domain. Rules with low)\ scores (\' € (0-0,2]) are simply ignored and will be

reconsidered in other executions.

126 Chapter 6. Monitoring and Pattern Discovery

Table 6.1: Association rules ranking

A range | Ranking | Rule strength
(0-0,2) 1 very loose
[0,2-0,4) 2 loose
[0,4-0,6) 3 moderate
[0,6-0,8) 4 strong
[0,8-1] 5 very strong

Algorithm’s Complexity

As far as the algorithm’s complexity is concerned, it depends on the size of
the event stream n, the number of levels of the tree g and the number of tree
branches b. The last two values, i.e. b and g are inversely proportional, as while
increasing the patterns’ length (i.e. g value), less unique patterns are discovered
(i.e. b value). Consequently, as the algorithm requires ¢g*b (i.e. the powersets’ car-
dinality) iterations on the event stream, the algorithm’s complexity is O (n*bx*g).
This complexity means that an extensive traversal of the powersets’ tree is per-
formed to find the association rules, their confidence level A scores and finally

rank them based on these scores.

6.2.2 Enhanced Pattern Discovery Algorithm

In the previous section we have proposed a novel single-pass and determinis-
tic pattern discovery algorithm for identifying event patterns causing specific
SLO violations. This algorithm presented in [Zeginis et al. 2014a] has been ex-
tended and enhanced in order to optimize its time and space complexity. The
main difference of this enhanced algorithm is that it is a multi-pass and non-
deterministic algorithm taking into account the results and rankings of the con-

sidered sets in order to identify only the new association rules.

6.2. Pattern Discovery 127

Before introducing this enhanced algorithm, we introduce the types of sets’
notations. In particular, as it is required to exploit the already discovered, dis-
carded and ambiguous association rules, we define the following symbols for these

rule sets:

« D: the set of already discovered association rules

+ A: the set of ambiguous association rules (A\=0) discovered in previous al-

gorithm’s iterations

+ B: the set of discarded association rules with low X\’ scores identified in

previous algorithm’s iterations

This updated algorithm (Algorithm H), taking into consideration the results
from previous executions, reduces to a great extent the candidate patterns, as we
omit the already discovered and the discarded patterns. Thus, the total number

of sets N, considered as candidate patterns, is:

N = |P(A)| = [DUB| + |4 (6.8)

6.2.3 Pattern Discovery on the Running Example

E3 (critical) E3 (critical) E3 (non-critical) E3 (non-critical) E3 (criticaT

Ty 9Tt T AC
leledebe3e2ed eJr ebe2e3elebedelfe2edebele3ed ei

Tr——--_ ¢
\
[e6e4e1e6e43/\e6e5‘

7-size interval
Last critical Last critical Last critical
event event event

Figure 6.3: Event stream split - pattern discovery algorithm

Figure @ clarifies the process of splitting the event stream and the way the in-
tervals are further processed to identify patterns. Suppose that we are interested
in finding patterns leading to violations of the average DeviceConfig service exe-

cution time (i.e. violation of the F3 event). This event stream consists of 35 events

128 Chapter 6. Monitoring and Pattern Discovery

Algorithm 2 Enhanced Event pattern discovery algorithm

1: Input: event stream, application, metric, interval, metrics classification, com-
ponent model, set D, set A, set D

2: Output: pattern graph, pattern ranking, coherent rules, ambiguous rules

3: Filter raw events (ignore success /other applications’/other Cloud provider
events)

4: Divide event stream in event time intervals

5: Calculate average metric value for each interval

6: while not end of event stream do

7: A = events before the last critical raw event in this interval
8: I 4 =P(A) — temporal ordered power sets of set A
o: filter power sets according to component model

10: update power sets tree

11: end while

12: fori < 1,treelevels do

13: for j < 1,treebranches do

14: B;; = current branch

15: if B; ; ¢ (D U B) then

16: while not end of event stream do

17: A = events before the last critical raw event in this interval
18: C = critical raw event for the specified metric

19: compute S(B; j,C) in A

20: compute S(B; j, 7C) in A

21: compute S(—B; j,C) in A

22: compute S(—B; j, ~C) in A

23: update contingency table

24: end while

25: if S(B; ;,C) > S(B; j, ~C) and S(B; ;,C) > S(—=B; ;,C) and S(—=B; ;,

ﬁC’) > S(BZ‘J', ﬁC) and S(ﬁBiJ, ﬁC) > S(ﬁBiJ', C) then

6.2. Pattern Discovery 129

26: create association rule (B; ; — C)

27: compute A

28: store (B; ; — C) in association rules Knowledge Base

29: else if (S(B;;,C) + S(—B;;,~C) = (58(-B;;C) +
S(Bi,;,~C)) then

30: Store (B; ; — C) as ambiguous rule

31: else

32: compute \

33: end if

34: end if

35: end for

36: end for

37: traverse tree
38: rank patterns on levels based on their \ scores

39: filter discarded sets based on their)\’ scores

(after event filtering) (Figure @) of the 7 different event types presented in Sec-
tion . Each interval’s power sets are processed to determine association rules

(i.e. the connected events in the figure).

Thus, the event stream, containing raw events/measurements, is split into
five intervals according to the metric F3 definition. Three intervals are critical (¢
mark on the upper right corner of the interval) and two are non-critical (nc mark
on the upper right corner of the interval). For the critical intervals we consider
the subset before the last critical event for the DeviceConfig service execution
time, while for the non-critical ones we consider the whole interval. The algo-
rithm discovers two patterns and extracts the corresponding association rules,
ie. (i) {e1, e2,e4 — E3} and (ii) {e4, e — E3}, where E3 represents a violation
of the average DeviceConfig service execution time. The contingency tables with
the corresponding A scores are shown in Table @ This example involves only

a couple of monitoring events and two discovered event patterns. However, dur-

130 Chapter 6. Monitoring and Pattern Discovery

Table 6.2: Contingency tables for the discovered patterns

Frequency Y=E3 | Y=-E3 Frequency Y=E3 | Y=-FE3
X ={e1,ea,e4} 2 1 X ={e4,e6} 2 0
-X =-{ej,ea,e4} 1 1 X = {es,e6} 1 2
A=0,2 A=0,6

ing the execution of real-life SBAs deployed on multiple Clouds, various events

are detected and thus there are plenty of discovered event patterns.

Figure @ depicts the component model of the Traffic Management Applica-
tion capturing the system components’ main dependencies, utilized by the pro-
posed pattern discovery algorithm to validate the discovered event patterns. Con-
cerning the two discovered patterns, the source components of the involved met-
rics (i.e. Flexiant VM’s memory and CPU and Amazon VM’s network Uptime for
pattern (i) and Amazon VM’s Network Uptime and Monitor SaaS’s Execution time
for pattern (ii) are interrelated via the common dataflows of the considered ser-
vices. In order to check the validity of the components’ dependencies, we exploit
the underlying MySQL database storing information about the application compo-
nents’ state and interrelationships. For instance, in order to check if the produced
events e and e are interrelated, we execute the following SQL query (Listing @).
This query returns the total number of active components included in the VM
hosting the Monitoring and Device Configuration services (componentID=7001)
and having ID 7026 or 7027 (i.e., the components producing e; and e events), in
order to identify if both components reside in the same VM and thus affect each
other when a violation occurs. Many other SQL queries are incorporated in the
system, validating every single dependency among system components. These
SQL queries are designed by the Adaptation Manager provided that the SBA de-

signer provides the corresponding component model.

6.3. Processing of Event Patterns 131

. . T-exectt BPM Layer
oveshotd - 20sec

AssessTask

mapsToOperation

mapsToOperation mapsToOperation

~URI - 109,231,183 xxx 8080/ TM
[-WsDLbinding : RPC

~URI - 79,125,050/ TA
-WSDLbinding : RPC

-WSDLbinding : RPC

-aturibute : RPC
hasSLA runsOnlaas hassia X X X
hasSLA
TH-Execution Time-SL0 TH-STA TASIA EESTY “metric : throughput
metric ExecutionTime consumer - Heraklion-municipality “consumer - Reraklion-municipaiity ~consumer : Heraklion-municipality threshold : 10 ops/sec
“threshold : 6sec provider : TM-provider “orovider : TA-provider -provider : TD-provider -operator : >
-date : 30/04/2014 -date : 30/04/2014 OnlaaS -date : 30/04/2014
-validity_period : 30/04/2014-31/07/2014 -validity_period : 30/04/2014-30/06/2014 funsOnlaa: -validity_period : 30/04/2014-31/08/2014
AmazonVR-SIA AmazonVid
er - TA-provider 55 Windows laa$S Layer
-provider : Amazon 05 version
-date : 15/04/2014 hasVMSLA latestVersion : 8,1
validity_period 10/2014 ider
: “cluster - high
location : UK Y location :Ireland
C -
[Flexianvii-Storage | n Cmetric - uptime AmazonVi-Storage
“capacity : 500G8 “cores : 2 -threshold - 99,99% cores - 4 “amount - 8G8 “capacity : 2T8
“type : HOD -frequency : 2,4GHz _operator : > frequency : 3,2GHz [[-maxMemory - 16G8 -type : HOD
-speed : 5400rpm upgreadable - false | |-frequency - 1333MHz pareadable - true frequency : 1666MHz -speed : 7200rpm

Figure 6.4: Sample component model of the traffic management application

Listing 6.7: Sample SQL query validating the dependency of two traffic manage-

ment app’s components

SELECT COUNT (*)
FROM (SELECT VM_COMPUTE_LIST
FROM VM WHERE ComponentID=7001) as computelist
WHERE componentID IN (7026,7027) AND (state = active);

6.3 Processing of Event Patterns

This section elaborates on the processing of the discovered patterns both on
logical and temporal basis. The discovered patterns can directly be processed by
mapping them to specific adaptation strategies mechanism, incorporated in the
Adaptation Engine. However, in order to restrict the patterns considered by the
adaptation engine, we apply a post-processing of the discovered patterns, aggre-
gating and enhancing them using logical and temporal operators.

The Event meta-model presented in section EI includes all the appropriate
properties to express the logical and temporal relationships among the events
comprising an event pattern. The former one is defined by the logicalOp attribute,

while the latter one is defined by the interval attribute, dictating the maximum

132 Chapter 6. Monitoring and Pattern Discovery

time interval between the occurrence of two consecutive events in the discovered
event pattern. This means that if the second event of an event pattern does not
appear within this time interval, then we disregard the considered pattern and
either wait for other patterns with the same initial events, if there are any, or oth-
erwise trigger corresponding adaptation rules for any critical events included in
these considered initial events. For instance, we assume that the pattern discov-
ery process has identified the following association rules: (i) {ce1, wes, we, —
E3}; and (i) {ceq, wes, ces — E3} with maximum waiting time for the occur-
rence of the we4 and ce; events, 5 and 7 seconds respectively. If no event appears
after 5 seconds of the ey occurrence, then we wait another 2 seconds to check if
the second pattern is detected; otherwise, we trigger the adaptation rule corre-
sponding to the critical ce; event (i.e., reactive adaptation).

ECMAF also provides a strict proactive mode that allows us to trigger an adap-
tation rule corresponding to the association rule with the higher X score, after
having received some initial events but there are two or more discovered pat-
terns with different remaining events. Thus, we can be proactive both for the
considered SLO violation, but also for any other warning or critical events in the
triggered association rule. For instance, if we have the above two discovered asso-
ciation rules and assume that rule (ii) has higher \ score than this of rule (i), then
in this strict mode, the system will trigger the adaptation rule corresponding to
this rule, thus addressing the expected violation of E3 metric, but may also pre-
vent critical event ces. This mode provides this twofold proactive functionality,
however it involves the risk of triggering unnecessary or even unsuitable adapta-
tion strategies, thus increasing the cost of the adaptation process.

As far as the logical interrelationships between the event patterns are con-
cerned, we support the logical operators AND, OR and NOT for their post-processing.

For instance, we consider the following discovered patterns:

(1) {ce1,wes, ceq, weg — E3}

(2) {ce1,weq, wes, weg — E3}

6.3. Processing of Event Patterns 133

(3) {e4,e1,e5 — E3}
(4) {eq,e2,e5 — E3}
(5) {e,eq,e5 = E3}
(6) {e4,e5,e5 — E3}
(7) {es,eq,e5 — E3}
(8) {ce1,wes, ceq, wes, wer — E3}

(9) {ce1,weq, wes, ceq,wer — E3}

The post-processing of the above discovered patterns results in three com-
posite association rules to be addressed by the Adaptation Engine, responsible for
mapping them to suitable adaptation strategies. In particular, association rules (1)
and (2) result in the composite association rule (a), i.e. either of the events cey or
wes may appear between event wes and weg. Rules (3)-(7) are aggregated in the
composite association rule (b) dictating that any event other than e; may appear
in the second position of the pattern (we assume that events e;-e; appear in the
event stream and event es is disregarded when searching for patterns leading to
violations of the F3 aggregate metric). In addition, rules (8) and (9) result in the
composite association rule (c), combining the AND operator for events cey and

wes that may occur in either order and OR operator for we; and we; events.

(@) {ce1,wes, (ceq V wes), weg — E3}
(b) {es,e7,e5 — E3}

(c) {ce1,wes, (ces N wes), (wer V wey) — E3}

So far, we have identified and processed domain specific event patterns, com-
prising events that are uniquely identified by their ID. For instance, a critical
event of the metric e; indicates a violation of the available free memory of the

VM hosting the Monitoring and Device Configuration services. Thus, this type of

134 Chapter 6. Monitoring and Pattern Discovery

event patterns are domain specific and are valid only for the specific deployment
of the considered SBA. However, in our approach, apart from the logical and tem-
poral pattern aggregation described above, further processing of the patterns is
performed, in order to identify domain independent patterns, thus leveraging the
various contexts in which the SBA is performed. This can be achieved by aggre-
gating the already discovered patterns, based on the type of metric (part of the
event definition) and on the unique identifier of the raw events. For instance, two
events indicating a violation of the CPU utilization of two different VMs can be
aggregated to refer to the same abstract metric violation. In this way, we avoid

long event patterns containing enough “noise”.

6.4 Conclusions

In a nutshell, this chapter analyzes the monitoring engine of the proposed
ECMAF framework and the proposed event pattern discovery algorithm for iden-
tifying event patterns (association rules) leading to specific SLO violations. Par-
ticularly, the first part provides details about how cross-layer monitoring is per-
formed, the formal definitions of metrics and monitoring events, as well as formal
notations for the SLOs and the TSDB entries. The second part introduces a novel
pattern discovery technique correlating monitoring events from various layers
of a multi-Cloud SBA and thus enabling proactive adaptation and discovery of
new component dependencies. The latter part also exploits instances of the com-
ponent model through suitable SQL queries on the involved components. Finally,
this chapter stands as a precursor for the next chapter dealing with the ECMAF’s

Adaptation Engine.

Chapter 7

Adaptation

Contents

[7.1 Cross-layer Proactive and Reactive Adaptation 136
7.2 Rule-based Adaptation 138
7.3 Mapping Event Patterns to Adaptation Actions 145

7.3.1 Adaptation Actions Configuration 149

7.32 RuleGeneralization 150
7.4 RunningExampld. 152
7.5 Conclusions0uuuuiuiiie.. 155

In the previous chapter we analyzed the functionality of the ECMAF’s moni-
toring engine, as well as we introduced a novel pattern discovery technique for
critical event patterns leading to specific SLO violations. The main goal of this
chapter is to complete the description of the proposed framework, by presenting
the functionality of the incorporated Adaptation Engine and thus completing the
main part of this dissertation. Specifically, Section @ provides an overview of
the engine’s components and the proactive and reactive adaptation capabilities
of the ECMAF. Section @ deals with the Adaptation Rule Manager performing
the rule-based adaptation. In Section B we introduce the proposed technique for
mapping the discovered event patterns to the most suitable adaptation strategies.

In addition, this section addresses the configuration of the enacting adaptation

135

136 Chapter 7. Adaptation

actions and the generalization of the adaptation rules. Finally, Section @ pro-
vides an adaptation scenario of the traffic management application to exemplify

the functionality of the adaptation engine and Section @ concludes this chapter.

7.1 Cross-layer Proactive and Reactive Adaptation

After having analyzed the functionality of the Monitoring Engine, in this sec-
tion we continue the ECMAF’s description with the Adaptation Engine, which
provides both reactive and proactive adaptation capabilities. Figure @ isolates
the architecture of the adaptation engine to facilitate the reader for the rest of
this chapter. Very briefly, this architecture comprises an Adaptation Rule Man-
ager, which is responsible for mapping the discovered monitoring event patterns
(passed from the Metrics Aggregator component) to suitable adaptation strate-
gies, as well as for triggering the most suitable adaptation rules, through the in-
corporated rule engine. The adaptation strategy dictated by the selected rule is
enacted by the corresponding adaptation enactment mechanism. The following two
subsections elaborate on the proactive and reactive adaptation capabilities of EC-
MAF. Specific examples are given in Section @, where our approach is validated

on a traffic management case study.

SBA provider / manager

Engine
e N 1 /
assessed raw events \‘\]
n

aggregated metrics classification s, 1. .
detected patterns § simple adaptation/
| scalability rules
H

Model Repository
Event model
Component model

™, 1
\ H
= - N Adaptation model

1 \, i

1 . N adaptation Y v 1

: Adaptatlon Adaptation actions Adaptation Rule . StAmode!
' . Enactment Manager L

1 Englne Mechanisms :

L

Figure 7.1: The ECMAF’s adaptation engine

7.1. Cross-layer Proactive and Reactive Adaptation 137

Proactive adaptation

It is very common that failures at one layer may lead to other failures and vio-
lations both to the same or to other layers, forming a chain of monitoring events.
So, it is desirable to detect those event patterns causing service failures as early as
possible. Our approach relies on using such a technique, presented in the previous
chapter, to detect patterns of monitoring events, in order to prevent future crit-
ical SLO violations. As such, it enables the proactive service adaptation by mapping
the detected patterns to suitable adaptation strategies, as analyzed in Section .

Specifically, the event patterns discovered by the Pattern Discoverer compo-
nent are sent directly to the Metrics Aggregator component to detect them at run-
time, while the Pattern Discoverer is also informed about the detected patterns,
in order to omit them in the forthcoming executions of the pattern discovery
algorithm. Upon pattern detection, the Metrics Aggregator urges the Adaptation
Rule Manager to fire the respective adaptation rule (i.e. proactive adaptation) dic-
tating an adaptation strategy’s application, realized by the Adaptation Enactment

mechanisms, before the actual SLO violation occurs.

Reactive adaptation

However, the ECMAF framework also reacts immediately on detected critical
events, thus performing also reactive adaptation on the running SBA. Upon the
detection of a SLO violation (i.e. a violation of a metric’s critical threshold, de-
fined in the WSLA document), the Adaptation Rule Manager immediately fires
the corresponding adaptation rule, dictating the application of a specific adapta-
tion action. Very briefly, as the rule derivation process is analyzed in Section @,
some predefined simple rules, mapping critical events to specific adaptation ac-
tions, are manually produced by the SBA Adaptation Manager (usually the SBA
provider herself/himself) and are passed to the Adaptation Rule Manager. Then,
these simple rules are used for mapping the discovered event patterns to suitable

adaptation strategies.

138 Chapter 7. Adaptation

As analyzed in the next chapter, the predefined simple adaptation rules are
expressed in the DRL language (introduced in Section @). For instance, going
back to the traffic management running example, the Listing @ defines an adap-
tation rule fired on an emergency pollution situation at the monitored area. This
rule dictates a series of adaptation actions performed by the Device Configuration

Service.

Adaptation enactment

Finally, as far as adaptation enactment is concerned, the Adaptation enact-
ment mechanisms are responsible for realizing the adaptation strategy defined by
the rule fired by the Adaptation Rule Engine. This rule also provides the appropri-
ate input, defining which component is responsible for which adaptation action,
the order of these actions, as well as their proper configuration. Such mechanisms
have already been introduced in Section . The Infrastructure Manager com-
ponent is able to treat some malfunctions regarding the Iaa$ layer, which is the
main source of many SBA failures. For example, it can address adaptation actions,
such as vertical and horizontal scaling, memory reallocation and others. More-
over, the Execution Engine, which will be designed as an extension of the existing
BPEL engine with adaptation capabilities, is called to apply adaptation strategies

regarding the Saas layer (i.e., BPM and SCC layers).

7.2 Rule-based Adaptation

The adaptation rule derivation process is the most important part of the adap-
tation engine’s functionality, as it defines the adaptation strategies to be enacted.
Prior to this, the Adaptation Rule Manager requires the monitoring event pat-
terns for the executed SBA, in order to determine suitable adaptation strategies,
which may comprise one or more simple adaptation actions, as they are defined
in the adaptation actions meta-model (see Section). Initially, the SBA Adapta-

tion Manager maps single monitoring events to specific adaptation actions. Each

7.2. Rule-based Adaptation 139

Listing 7.1: Sample adaptation rule in DRL for an emergency high pollution case

of the traffic management example

rule "Emergency,actions- Environment/Calendar/Traffic"
when
$action: Action(cruciality == "emergencypaction")
then

System.out.println("Actions Performed: \n");

AlertSign alertSign = new AlertSign();
String alertSignAction = alertSign.setSignalText("Very_ High
pollution! - Please prefer_ using, the public transport",

$action.getArea(),"");

TrafficLight trafficlight = new TrafficLight();
String trafficLightAction = trafficlight.setOperation("
blinking orange", $action.getArea(),"");

alertSignAction +=alertSign.setSignalText ("Traffic,lights are,

blinking orange!", $action.getArea(),"");
Ring ring = new RingQ);
String ringAction = ring.setRingMode(true, $action.getArea());

alertSignAction +=alertSign.setSignalText("Ring,is enabled",

$action.getArea(),"");

TrafficPolice trafficPolice = new TrafficPolice();
String trafficPoliceAction = trafficPolice.deviateTraffic("",
$action.getArea());
alertSign.setSignalText (trafficPoliceAction,$action.getArea(),"");

alertSignAction +=trafficPoliceAction;

Ambulance ambulance = new Ambulance();
String ambulanceAction = ambulance.gotoIncidentLocation("",

$action.getArea());

String lowLevelActions = trafficLightAction + alertSignAction +
ringAction + ambulanceAction;
$action.setLowlLevelActions (lowLevelActions);

end

140 Chapter 7. Adaptation

event can be mapped to more than one adaptation actions, but the SBA adap-
tation manager prioritizes them according to their appropriateness. The Adapta-
tion Rule Manager extracts only one rule for each monitoring event (the one with
the most suitable strategy), but we keep knowledge of the other adaptation strate-
gies and their priority. Listing @ contains sample adaptation rule of the traffic
management application. For brevity reasons these rules are informally defined.
However, as already discussed in Section @, the adaptation rules of the running
example are formally defined in the DRL language. In these rules, R stands for
Rule and As represents their Appropriateness score. The rule with priority 1 is

the most appropriate.

Listing 7.2: Sample adaptation rules of the traffic management example with their

appropriateness scores

Flexiant application server failure -> server restore (R 7.1, As 1)
Flexiant application server failure -> server update (R 7.2, As 2)
Monitoring service execution time violation ->
service substitution (R 7.3, As 1)
Monitoring service execution time violation ->
server restart (R 7.4, As 2)
Asssessment service availability violation ->
memory reallocation (R 7.5, As 1)
Assessment service availability violation ->
service substitution (R 7.6, As 2)
Device Configuration service input mismatch ->
service re-execution (R 7.7, As 1)

Temperature sensor battery level below 5%(warning event) ->

battery replacement (R 7.8, As 1)

Progressively, the Rule Manager creates rules that map patterns of monitor-
ing events to the most suitable adaptation strategy/ies, aiming at addressing as
many monitoring events as possible. We assume that each unique adaptation
action has a unique ID, in order to facilitate the strategy matching. In order to
achieve the best matching of adaptation strategies, we use the following tech-
nique, represented in Figures @—@, based on the Cartesian product set theory.

S(e) symbolizes the set of adaptation strategies assigned to the monitoring event

7.2. Rule-based Adaptation 141

e. We assume in all the cases above that the adaptation sets are examined sequen-

tially, i.e. in the same order the corresponding events appear in the event pattern.

+ Case 1: The optimum solution derives from the intersection of the adapta-
tion strategies, i.e. ((S(e1) N (S(e2)) N S(es) # 0. 1f the intersection is not
an empty set, then the event pattern is associated to all the strategies of the
intersection, but only one of them is selected to be the most suitable one,
according to strategies priority (Figure @). In particular, the rationale is to
multiply the priorities and take the intersection with the highest combined
priority. When there are rules that concern two events independently, as
well as one rule that combines them in a pattern, we would combine these
two events with the third event, giving higher priority to the rule with the
pattern which is greater than the multiplication of the priorities of the rules
with the individual events. Small products mean high priority. This case
does not make use of Cartesian products, as the results are retrieved from

a single set (i.e. the intersected area).

B

Figure 7.2: Case 1: Intersected area of the adaptation strategy sets

+ Case 2: The worst solution is the situation, where there is no intersection
among the strategy sets, i.e. ((S(e1) N (S(e2)) N S(e3) = 0. In this case we
choose the sets’ union, i.e. the adaptation strategy with the highest prior-

ity for each one of the monitoring events (Figure @). Moreover, the other

142 Chapter 7. Adaptation

strategy combinations are stored and assigned a priority, i.e. the multiplica-
tion of the individual strategies. In this case, the result S containing candi-

date adaptation actions is the Cartesian product of the considered disjoint

sets:

S = (S(e1) x (S(e2)) x S(es) (7.1)

Figure 7.3: Case 2: Union of the strategy sets

+ Case 3: Another intermediate case involves overlapping sets, whereas there
is no disjoint set. For instance, if S(e;) is overlapped with S(e2) and S(e2)
is overlapped with S(e3), then the resulted adaptation strategy will com-
prise two adaptation actions from the overlapped areas (Figure B). In this

case the result is the Cartesian product of the intersected areas:

S = (S(e1) N (S(e2)) x (S(ez) N (S(es)) (7.2)

7.2. Rule-based Adaptation 143

Figure 7.4: Case 3: Two overlapped strategy areas, no disjoint set

« Case 4: Another intermediate case involves both overlapping and disjoint
sets. For instance, if S(e;) is overlapped with S(es) and S(es) does not
overlap with any other set, then the resulted adaptation strategy will com-
prise two adaptation actions from the overlapped areas (Figure E). The
result in this case is the Cartesian product of the overlapped area and the

disjoint set:

S =(S(e1)N(S(e2)) x S(es) (7.3)

Figure 7.5: Case 4: Overlapped and disjoint strategy sets

« Case 5: Finally, another case involves many overlapping adaptation sets
overlapping. For instance, we assume the following case: sets S(e1), S(e2)

and S(e3) are intersected, sets S(e3), S(eq) and S(e5) are intersected too,

144 Chapter 7. Adaptation

while set S(eg) overlaps S(ez) and S(ey) (Figure @). The resulted adapta-
tion strategy will comprise three adaptation actions from the overlapped
areas: (i) one adaptation action (a1) (the one with the highest appropriate-
ness score) from the intersection of S(ey), S(e2) and S(es) sets, (ii) one
adaptation action (a2) , from the intersection of S(es), S(e4) and S(e5) sets;
and (iii) an adaptation action (a3) from the intersection S(e2) N S(eg), as
this set contains an action with higher appropriateness score than the one
in S(eq) N S(eg). Therefore, the following rules apply when it comes to

determine the most appropriate adaptation strategies:

1. Ifthere are more than one intersected areas, we choose the one which
involves the more individual adaptation strategy sets. Then, from this
intersection we distinguish the adaptation strategy with the highest

appropriateness score.

2. 1f there are two or more intersected areas involving the same num-
ber of individual sets, then we select the adaptation action with the

highest appropriateness score from all the considered intersections.

3. The adaptation actions are executed sequentially in the order of their

occurrence in the discovered event pattern.

Thus, the result in this case (Figure @) is the Cartesian product of the three

intersected areas:

S = ((S(e1)N(S(e2))N(S(e3)) < ((S(e3)N(S(ea))N(S(es)) x (S(e2)N(S(eq))
(7.4)

7.3. Mapping Event Patterns to Adaptation Actions 145

Figure 7.6: Case 5: Many intersected adaptation action sets

Going back to the traffic management example, the Adaptation Rule Manager
would extract the following complex adaptation rules (Listing B). These rules
map the discovered event patterns to suitable adaptation strategies, based on the

four cases described above and define the appropriateness score of each strategy.

Listing 7.3: Sample adaptation rules mapping event patterns to adaptation strat-

egy/ies and their appropriateness

server failure + execution time violation + availability violation ->
server substitution (Case 1: derived from Rules 7.2, 7.4, 7.6) (R 7.9,
As 8)

sensor battery drain + service input mismatch -> battery replacement +
service re-execution (Case 2: derived from Rules 7.7, 7.8) (R 7.10, As

1)

7.3 Mapping Event Patterns to Adaptation Actions

Until now, we have introduced a method for deriving suitable adaptation strate-

gies for the discovered event patterns and calculating their appropriateness scores,

146 Chapter 7. Adaptation

based on the simple adaptation rule defined by the SBA Adaptation Manager. How-
ever, in order to calculate the final priority score PS for each adaptation rule, we
also take into consideration the cost and the performance (i.e. the execution time)

of the triggering adaptation actions.

As far as the cost is concerned, we discern two cases: (i) The adaptation ac-
tion is performed on a public Cloud. Then, the cost exclusively depends on the
cost model of the Cloud provider. For instance, the cost of a “scaling-up” action
from a “medium” to a “high” VM varies among Cloud providers. (ii) The adap-
tation action is performed on a private Cloud. In this case, the cost depends on
the execution time of the adaptation action and its resource utilization (i.e. the

required amount of CPU, memory and storage).

In the literature many cost-optimization techniques have been proposed, aim-
ing at minimizing the cost of enacting adaptation actions. In [Freitas et al. 2011]
the authors propose Qu4DS framework, which aims at increasing the provider
profit by dynamically managing services and resources, taking into account SLA
prices, fines, and infrastructure costs. In our approach we are inspired by the
work presented in [Leitner et al. 2013], which formalizes the problem of finding
the optimal set of adaptations, taking into account the minimization of the total
costs of SLA violations and the adaptations to prevent them. Three generic types
of adaptation actions are considered: (i) Data manipulation actions, where some
SBA data are changed, but not the service composition itself, (ii) Service rebind-
ing actions, which are in fact service substitutions;and (iii) Structural adaptations,
which alter not only the data flow of a service composition, but also the service
composition itself. Each instance of these adaptation action types has a constant
cost. For instance, the cost of substituting the Monitoring Service is actually the
cost of using the new service minus the cost of using the old Monitoring Service.
However, we additionally have to consider the penalty of the SLO violation (in the
case of reactive adaptation), which has actually triggered the adaptation rule dic-
tating the specific action. This cost is explicitly defined in the Service Level UML

class of the Cloud component meta-model instance. In particular, the violation

7.3. Mapping Event Patterns to Adaptation Actions 147

of each monitored property at each service level is mapped to a specific penalty.
The higher the service level, the higher the imposed penalty.

We assume that a single adaptation action or a subset of the available adap-
tation actions (i.e. an adaptation strategy) denoted as A = {aq,as,...a,}, is
mapped to a SLO violation or to a discovered event pattern. Then, the total cost
TC of the enacted adaptation strategy is the sum of costs of the incorporated en-
acted actions C(A*) (A* € P(A), where P(A) is the powerset of A) and P(m) is the
penalty dictated by the service level of the SLA document for the violation of the
specific metric (Equation @).

TCO(A*) = P(m) + C(A*), A" € P (A),P (4) - R (7.5)

Thus, in order to optimize the cost of the enacted adaptation actions, the ser-
vice provider should minimize the total cost TC(A*). We assume in our approach
that every adaptation rule refers to a single SLO violation, that is mapped to a con-
stant penalty, defined by the SBA provider. Thus, the cost optimization process
lies on the minimization of the total cost of the enacted adaptation actions dic-

tated by the triggered adaptation rule (Equation B).

C(A") = Y Clax) = min (7.6)

apEA*

As far as the performance is concerned, it refers to the execution time and/or
throughput of the adaptation action. We assume that performance is retrieved
using specific benchmarks on the deployment VMs, for both private and public
Clouds. These benchmarks are executed offline, before the disposal of the SBA
to the final users. Thus, the SBA manager takes into account the performance,
the cost and the appropriateness of all the supported adaptation actions for the
specific application and decides on the most suitable ones upon the detection of
SLO violations.

Finally, the appropriateness of the adaptation actions lies on the past experi-

ence of the SBA manager and mainly depends on the SBA deployment, i.e. if it is

148 Chapter 7. Adaptation

single- or multi-Cloud, which are the Cloud providers, the supported adaptation
actions, the expected number of clients, the type of the involved Web services
(internal or third-party) and generally the SBA context (type of SBA stakeholders,
interrelationships with external services and devices, etc.). The appropriateness
is measured in a [1-10] scale where 1 defines the most appropriate action, while
10 the action that most loosely addresses the detected SLO violation.

In order to have a reliable method for prioritizing the rules inserted by ex-
perts in the system, each one of the three criteria is assigned a suitable weight.
We assume that the most critical criterion is the appropriateness of the adapta-
tion action, then its cost and finally its performance. However, the SBA Adapta-
tion Manager may personalize the weights of these criteria in a different way.
Furthermore, as adaptation actions may fail (e.g. the system does not return to a
consistent state or during the adaptation enactment another unexpected failure
occurs), another factor is considered to lower the priority score when such fail-
ure actions appear. This penalty is given a higher weight in order to ensure that
the failing adaptation action is not considered as the most suitable action and its
priority score falls behind the score of the next adaptation rule. Equation @ cal-
culates the priority score PS of the simple expert rules, taking into consideration
the above assumptions, where a represents the appropriateness of the action, ¢
its cost, p its performance, fa the failing actions so far and A the total enactments
of the adaptation actions, triggered by the involved rule.

fa

PS:0,3*a+0,2*c+0,1*p—0,4*Z (7.7)

The adopted weights of the three adaptation actions’ priority criteria dictates
that the priority PS is measured in [0,06 - 0,6] scale, as all criteria are normalized
in a [0,1-1] scale. We do not normalize in a [0-1] scale, because the rule with the
lowest priority will always take zero appropriateness value. The normalization is
performed on actions that are fired by rules with the same head. For instance, if
we have three rules mapping the same event pattern to different adaptation ac-

tions (Listing @), then appropriateness for adaptation action a; (Equation @)is

7.3. Mapping Event Patterns to Adaptation Actions 149

normalized using the following linear function, where NA is the normalized ap-
propriateness, a the appropriateness value, max(a) is the maximum defined ap-

propriateness and min(a) is the minimum defined appropriateness.

Listing 7.4: Mapping an event pattern to different adaptation actions and their

appropriateness

a+b+c -> Action a1l (R 7.11, As = 10)
a+b+c -> Action a2 (R 7.12, As = 8)

a+b+c -> Action a3 (R 7.13, As = 3)

(a —min(a))* (1 —0,1)

NA(ar) =0,1+ maz(a) —min(a)

(7.8)

Using this formula, the appropriateness of the second adaptation action as

(Equation @) is calculated as follows:

(8—3)%(1—0,1)

NA(a) = 0,1
(a2) = 0,1+ 10-3

~ 0,67 (7.9

The same formula is used to normalize the cost and performance values. The
priority score of the adaptation strategies, comprising two or more actions, is
calculated by multiplying the priority scores of the individual adaptation actions.
Consequently, this final score P(A*) of the selected enacted adaptation strategy
again falls in the range [0,1-1] (P(A4*) € [0.1 — 1]).

After the calculation of the normalized scores NA of the available adaptation
actions using the formula @, we can perform an overall ranking. This ranking is
dynamic, as some adaptation actions may be ranked lower if they frequently fail.
Thus, the adaptation manager will choose the highest ranked adaptation action

each time.

7.3.1 Adaptation Actions Configuration

The adaptation mechanisms, enacting the actions dictated by the triggered
adaptation rules, require that the corresponding actions are sufficiently and promptly

configured with all the appropriate parameters, so as to have the best possible

150 Chapter 7. Adaptation

result (reactive or proactive). The adaptation actions meta-model, presented in
Section @, provides the required properties for the adaptation actions’ configu-
ration. The XML or JSON files describing the enacting adaptation actions include
these configuration properties, which are extracted by the file parser. For in-
stance, going back to our running example, the XML file in Listing @ describes
the adaptation action’s configuration of the triggered adaptation rule handling

the detection of pattern p; = {ce; — wes — wey4} (see Listing).

Listing 7.5: Sample XML adaptation action file of the traffic management example

<?xml version="1.0"7>
<Adaptation_strategy>
<Simple_adaptation_action actionID=4321>
<name>IaaS_Vertical_scaling</name>
<performer>0OpenStack adaptation engine</performer>
<cost>10</cost>
<fired_on>1407747500</fired_on>
<affected_components>MonitoringService,DeviceConfigService</
affected_components>
<manual_activity>false</manual_activity>
<cloud_provider>0OpenStack</cloud_provider>
<location>Greece</location>
<CPU>4-cores</CPU>
<memory>6GB</memory>
<disk>750GB</disk>
<new_resource_class>medium</new_resource_class>
</Simple_adaptation_action>

</Adaptation_strategy>

7.3.2 Rule Generalization

The technique used for generalizing and aggregating the discovered event
patterns (see Section @) can also be exploited for generalizing the adaptation
rules. This generalization is performed by the adaptation engine and it is useful
for the Adaptation Manager to keep rules well-ordered and helps her/him easily
delegate events and/or event patterns to the corresponding adaptation mecha-

nisms. However, in this case, the head of the rules are aggregated based only on

7.3. Mapping Event Patterns to Adaptation Actions 151

logical disjunctions, as they involve only single entities (events or patterns). For
instance, we assume that we have the following rules mapping simple events and

discovered event patterns to adaptation actions.

(1) {cer,weq, ceq,weg — a1}

(2) {ce1,weq, wes, weg — a1}

(3) {es,e1,e5 = az}

(4) {es, 2,65 — az}

(5) {eq,eq,e5 = an}

(6) {es,e5,e5 = az}

(7) {e4,e6,e5 — az}

(8) {ce1,wes, ceq, wes, wer — az}

(9) {cer1,weq, wes, ceq,we; — az}
(10) {e4 — a4}
(11) {e2 — a4}

The above adaptation rules will result in four composite rules. In particular,
rules (1) and (2) result in rule (a), i.e. either of the events ce4 or wes may appear be-
tween event wes and weg to trigger action ay. Rules (3)-(7) are aggregated in rule
(b) dictating that any event, except form e; may appear in the second position of
the pattern to trigger action as, while rules (8) and (9) result in the composite
association rule (c), combining the AND operator for events ce4 and we; that may
occur in either order and OR operator for we; and we; events, to trigger action
as. Finally, composite rule (d) aggregates simple rules (10) and (11) involving only

simple events.

(@) {ce1,wes, (ces V wes),weg — a1}

152 Chapter 7. Adaptation

Rescue

Forces Take, Inform traffic|
Actions acggégt's aﬁ%ﬁg'ﬁg" manager
< t—>1 > i
location control S|tuat||on
5 situation / Complete
> emergen
Citizens Check for I ———— cy
3 D) inform traffic f{ high hours ir?csisdeesrit 1 —»| p EVSI’@%’?E\% ok
E manager and days Defvicest_ \ to normal
& —— reconfiguration
Manager Inform citizens
Actions
5 g
Call-SMS Calendar ‘Assessment evice Informati evice
E . i r 1 Manually | configuration - nrormation Configuration
S @ @ Service L_ __ 1| GPs/skisService || _Service Sevice
b
EJ_ Software Software
] Mobile Network Devices | | Database Network
= Ph Database Server - Wireless/GPS Server Devices
@ one Mobile Phone Wireless

Figure 7.7: Critical traffic conditions - Traffic management scenario

(b) {es,—er,e5 — as}
(c) {cer,wea, (ces N wes), (wer V wer) — asz}

(d) {64 V ey —>CL4}

7.4 Running Example

In this section, we elaborate on a traffic management scenario to exemplify
the reactive and proactive adaptation capabilities of the proposed framework. Fig-
ure @ describes the critical traffic conditions process of our case study. The busi-
ness process workflow with the involved activities is presented at the BPM layer.
At the SCC layer, the Web services realizing these activities are offered. The oval
shapes represent the third party services, the rectangles the internal services,
while the dashed ones the manual activities. Finally, at the SI layer, the underly-
ing infrastructure for each service of the SBA is supported.

In the following example we show how our approach can be used to proac-
tively adapt this traffic management system. Initially, we suppose that the do-
main expert specifies in a separate document his goals for the quality of the traffic
management system using a set of KPIs, directly related to the monitored proper-

ties. In addition, she/he defines adaptation actions, as part of simple adaptation

7.4. Running Example 153

rules, that can be performed in order to improve the business process, such as pos-
sible activity parallelism and cost optimization techniques. As far as the involved
Web services are concerned, the corresponding SLAs for both third party and
internal services are stored in the model repository. Usually SLAs define failing
events, while some warning events are defined for information purposes. Thus, it
is possible that the whole set of warning events is not covered by a single SLA and
the additional warning events must be covered manually. In our case the Adapta-
tion Manager is interested in and has subscribed for all the events regarding the
traffic management system. Furthermore, the following manual simple adapta-
tion rules (Listing @) have been imported in the Rule Engine’s production mem-

ory. Both rules concern warning events.

Listing 7.6: Adaptation rules of the traffic management application

(execution time of assessment service > 10s) ->
memory reallocation (R 7.14, As 1)
(execution time of assessment service > 15s) ->
service substitution (R 7.15, As 1)
(execution time of assessment service > 10s) ->
service re-execution (R 7.16, As 2)

(available memory < 100MB) -> memory reallocation (R 7.17, As 1)

At run time, we continually collect monitoring events using the monitoring
tools. Successful events, which are the majority of all the events, indicate that
the system is running normally and the adaptation manager does not have to
take any actions. After a certain period of time, we notice that the Assessment
Service is not running optimally and the monitoring tool detects warning events
indicating that its raw execution time has exceeded the warning threshold of 10,
but not the critical threshold of 15. Almost at the same time, the IaaS monitoring
tool detects that the server hosting the Assessment service, which decides on the
traffic actions to be taken after an accident, does not run properly because of low
available memory. In particular the available memory is below 100MB, which is
the warning limit. Both events are passed directly to the Monitor Manager and

delivers them to the Adaptation Engine through the incorporated publish/sub-

154 Chapter 7. Adaptation

scribe system. However, this event sequence has appeared many times during
past SBA instance invocations and the Pattern Discoverer has derived a corre-
sponding event pattern (response time warning, low available memory). Then,
the Adaptation Rule Manager, following the method analyzed in Section @, maps
this pattern to the most suitable adaptation strategy, according to the predefined

manual adaptation rules (Listing @).

Listing 7.7: A complex adaptation rule of the traffic management application

(execution time of assessment service > 10s) + (available memory < 100MB)
-> memory reallocation + service re-execution (derived from Rules

7.16, 7.17) (R 7.18, As 1)

Rule 7.18 derives from rules 7.16 and 7.17 and has priority 1, that is the multi-
plication of the corresponding priorities. The memory reallocation adaptation strat-
egy stems from the intersection of the adaptation strategies of the two warning
events. As soon as the Metrics Aggregator detects this pattern, the rule 7.18 is
fired, dictating that the best adaptation strategy is to reallocate memory in the
server hosting the assessment service, as well as to re-execute the assessment
service. The suitability of this strategy lies on the fact, that by re-executing this
service with better memory allocation, the probability that its response is not vi-
olated becomes very high (as we do not know if another failure may occur in the
near future regarding the new instance) and in this way, also a KPI violation may
be avoided. The derived strategy involves laa$S layer actions. Consequently, the
Adaptation Manager provides the appropriate configuration to the responsible
adaptation enactment mechanisms. After the memory reallocation, the Assess-
ment service’s execution time is kept in normal ranges, below 250ms, and there
is now enough available memory. Thus, it is obvious that this technique provides
cross-layer adaptation capabilities to the ECMAF framework, as it may extract
adaptation strategies involving various actions, spread across the SOA and Cloud
layers of a SBA.

In the previous example, it is illustrated that the proposed framework effi-

ciently handles such a cross-layer scenario. Proactive adaptation is achieved by

7.5. Conclusions 155

exploiting the pattern of two warning monitoring events to prevent a future fail-
ing event (SLA violation). Moreover, the dependencies between the layers are
clearly discerned and the performed adaptation action addresses the detected
malfunctions. However, the ECMAF framework immediately reacts (i.e. reactive
adaptation) upon the detection of critical events. For instance, if the execution
time of the Assessment Service exceeds the critical threshold of 15s, then the
Adaptation Rule Manager will immediately fire Rule 7.15, dictating a “service sub-

stitution” adaptation action.

7.5 Conclusions

To sum up, this chapter analyzes the functionality of the ECMAF’s adaptation
engine. In particular, it is split into four main parts. The first one elaborates on
the proactive and reactive adaptation capabilities of the engine, while the second
one provides details about the functionality of the incorporated rule engine. The
third part introduces the mapping method from event patterns to suitable adap-
tation actions, based on the appropriateness, the cost and the performance of the
available suitable actions, as well as an adaptation rule generalization method. Fi-
nally, the fourth part provides a complete adaptation scenario of the traffic man-
agement example to exemplify the cross-layer reactive and proactive capabilities
of ECMAF. This chapter concludes the analysis of ECMAF before going into imple-

mentation details in the next chapter.

156

Chapter 8

Implementation

Contents
8.1 Traffic Management Application’s Implementationy 158
B.2 Meta-models’ Realization and Exploitationd 163
8.3 ECMAF’s Implementation 166
|8.3.1 Monitoring Enginel 166
B.3.2 AdaptationEngind 178
B4 Conclusions0.0....... 183

After having analyzed the contributions of this dissertation, this chapter pro-
vides implementation details about the ECMAF framework and the traffic man-
agement application. Especially, we elaborate on the tools we have exploited and
the coordination of the underlying techniques and languages introduced in sec-
tion @ to accomplish the functionality of the individual framework’s compo-
nents. The rest of the chapter is structured as follows: Section @ provides de-
tails on the implementation of the multi-Cloud traffic management SBA, used as
a running example throughout the dissertation. Section @ studies the proposed
meta-models realization and exploitation by the ECMAF’s monitoring and adap-
tation engines, the implementation of which is analyzed in Section @ along with
illustrative examples of the traffic management application. Finally, Section @

concludes this chapter.

157

158 Chapter 8. Implementation

8.1 Traffic Management Application’s Implementation

In Chapter B we have thoroughly analyzed the workflow of the Traffic Man-
agement application and the functionality of its individual components. This sec-
tion provides details about the Business Process and the individual Web services

realizing the Traffic Management Business process activities.

For usability purposes, the incorporated monitoring mechanism [Konsolaki
2012] allows for the design of Business Process Model and Notation (BPMN 2.0)ﬂ
models rather than abstract Business Process Execution Language (BPEL) [OASIS-
BPEL 2007] processes. On the one hand, BPMN [White 2004] was developed by the
Business Process Management Initiative (BPMI)E in 2005, in an effort to provide
a notation that is readily understandable by all business users, ranging from the
business analysts who create the initial drafts of the processes, to the technical
developers responsible for implementing the technology that will perform those
processes, and, finally, to the business people who will manage and monitor those

processes.

On the other hand, BPEL was developed in 2002 by a consortium consisting of
BEA Systems (acquired by OracleE in 2008), IBME and MicrosoftH. The BPEL spec-
ification defines the syntax and semantics of the BPEL language, which contains
a variety of process flow constructs. It allows for conditional branching, parallel
process flows, nested sub-processes, process joins and other related features. It
distinguishes between two different kinds of business process: (i) executable pro-
cesses and (ii) abstract processes. Whereas executable processes must contain all
the details that are necessary to be executed by a BPEL engine (e.g. ActiveVOSH,

Apache ODEH, etc.), abstract processes are not executable and can have unspeci-

http://www.bpmn.org
*http://www.bpmi.org/
*http://www.oracle.com
*http”//www.ibm.com
*http://www.microsoft.com
®http://www.activevos.com/
"http://ode.apache.org/

8.1. Traffic Management Application’s Implementation 159

fied or hidden parts.

Asthe ASTROE monitoring tool (see details in the next section) that is utilized
for monitoring the BPM and SCC layers, requires a BPEL executable file, it is desir-
able to map the BPMN diagram to an executable BPEL process. This mapping is a
difficult endeavor trying to bridge the gap between business process design and
implementation. This intrinsically complex mapping lies to the fact that thereis a
structural disparity between BPMN and BPEL. BPEL is a block structured language,
while BPMN is a constrained, but relative free form graph. There are no funda-
mental difficulties in mapping a BPEL process to an isomorphic BPMN diagram,
but the opposite mapping (BPMN to isomorphic BPEL) is not always possible. How-
ever, there is a number of business process tools performing and validating such

conversions.

As far as the design of the traffic management business process (Figure @)
is concerned, we are exploiting ADONIS Business Process Management Toolkith
(Community edition), developed by BOC group@. ADONIS is based on the BPMS
(Business Process Management System) framework (Figure @) for process man-
agement and the establishment of a continuous process improvement cycle. This
framework consists of four key elements: (i) products/services, (ii) processes, (iii)
organizational structures; and (iv) information technology (IT). The goal of busi-
ness process management is the optimization of business processes and corporate
structures, as well as resources and technologies. This is achieved through a holis-
tic approach to collect, evaluate, optimize and control the business processes. All

these functions are provided by ADONIS tool.

The designed BPMN model is transformed to the corresponding abstract BPEL
process using the ADONIS modeling tool. Then, this BPEL process is modified ac-
cording to the BPEL 1.0 format required by the Astro monitoring tool and the

general monitoring framework presented in [Konsolaki 2012] and is adopted by

8http://astroproject.org/
*http://www.adonis-community.com/
http://www.boc-group.com/

Chapter 8. Implementation

160

=N

[| TrafficM tBP
n process ramcivianagemean

S

S

" Powered by ADONIS:Community Edition H 05.06.2014, ,_muﬁm,L

Heraklion city
area

7

Environmental
Subprocess
[+]

Calendar /

subprocess

incident subproce

Monitor
—_— E— —_— Subprocess —_—
No
[+]
Start of Accident Start parallel /’ Converge normal
Traffic happened? normal activities parallel activities
Management
BP Traffic Subprocess
Yas
Assess traffic Assess normal
Assess accident

Figure 8.1: The Traffic Management BPMN model designed in ADONIS tool

8.1. Traffic Management Application’s Implementation 161

ic Decision
9@ gy
o _!,7 Q | 4
> <

O
aQ f\) Processes L“A'; Products <
=" —~ [=]
i) |) >

(7] | g
b A - o
8 — 1 B
| I| J‘ S) =
5 \ [~ N\ @
IT Organisation ‘;”

Figure 8.2: BOC ADONIS Process Management Framework

our approach.
After having available the abstract BPEL file, we map the abstract activities

to specific Web services, as well as we provide the corresponding Web Services
Description Language@ (WSDL) file. WSDL is a XML-based interface description
language that is used for describing the functionality offered by a Web service,
and the choreography file, which contains the composition’s partners, as well as
the definition of the monitored properties.

As far as the three Web services comprising the Traffic Management SBA (i.e.
the Monitoring service, the Assessment Service and the Device Configuration Ser-
vice) are concerned, they have been implemented in Eclipse@ integrated devel-

opment environment (IDE). To achieve this we follow the procedure below:

1. We create a Web Service Endpoint Interface for each one of the three Web
services using the RPC binding style (eS0APBinding(style = Style.RPC))
required by the Astro monitoring tool. RPC style indicates that the SOAP
message body contains an XML representation of a method call and uses

the names of the method and its parameters to generate XML structures

"http://www.w3.org/TR/wsdl
2http://www.eclipse.org/

162

Chapter 8. Implementation

that represent a method’s call stack, while the Document style indicates that
the SOAP body contains a XML document, which can be validated against a
pre-defined XML schema document. In this interface we define the Web ser-
vice’s operations as webmethods, identifying their input and return types.

Listing Ell declares the getTemperature operation of the Monitoring Service.

Listing 8.1: The declaration of the getTemperature operation of the Moni-

toring Service

@WebMethod

String getTemperatureMeasurement (String location) throws IOException;

. We create a Web Service Endpoint Implementation, implementing the cor-

responding interfaces. For instance, the definition of the Monitoring Ser-

vice is expressed in the following Listing :

Listing 8.2: The declaration of the Monitoring Service implementation class

@WebService (endpointInterface = "monitor.ws.Monitor")

public class MonitorImpl implements Monitor { ... }

The implemented Web service is exported as a Web application ARchive
(WAR) file from Eclipse IDE, containing all the appropriate libraries utilized
by the Web service. This WAR file is located in the webapps folder of an
Apache Tomcattd application service instance and it is deployed upon the
application server’s start-up. Then, the WSDL file of the deployed web ser-
vice should be accessible via a URL. For example, the Monitoring Service’s
WSDL deployed on Flexiant VM Tomcat application server is available at
the following URL (Listing @):

Listing 8.3: The URL of the Monitoring Service WSDL file

http:

We implement a Web service client pointing to the WSDL URI to access the

deployed Web service. For instance, to access the Monitoring Service, we

Bhttp://tomcat.apache.org/

8.2. Meta-models’ Realization and Exploitation 163

call it with the appropriate input (e.g. “areal” of the Heraklion city) and it

provides a list of environmental, traffic and calendar measurements (List-
ing @):

Listing 8.4: Environmental measurements detected by the Monitoring Ser-

vice

- 30143#Traffic management app#Monitor Task#Temperature
#1386611567937#23.0##SI#Environmental_Sensor

- 90893#Traffic management app#Monitor Task#N02_level
#1386611567940#50.0##SI#Environmental_Sensor

- b50185#Traffic management app#Monitor Task#S02_level
#1386611567940#20.0##SI#Environmental_Sensor

5. We define the choreography file of the business process utilizing the ab-
stract BPEL file and the WSDL files using the Enterprise Architect™d soft-

ware.

8.2 Meta-models’ Realization and Exploitation

This section deals with the design and exploitation of the meta-models pre-
sented in chapter H We have already argued in that chapter for the adoption of
the UML modeling language to express these models. However, as UML models
are not directly exploitable, we discuss how they can be transformed to be ma-
chine readable and be incorporated in the ECMAF framework.

We have used Visual Paradigm@ tool for designing the three basic UML meta-
models. This software allows for designing both UML class diagrams (e.g. Fig-
ure @ at p. @), as well as object diagrams, representing a static design of a
system from a prototypical perspective (i.e., instances of the core meta-models
(e.g. Figure @ at p. @). To the best of our knowledge, there is no automatic tool

converting XML schemas to corresponding JSON schemas; thus, we have manu-

Yhttp://www.sparxsystems.com/products/ea/
Bhttp://www.visual-paradigm.com/

164 Chapter 8. Implementation

ally defined the latter ones using a useful JSON schema tooltd, The usefulness of
the dynamic instances of the proposed meta-models lies on the following facts:
(i) The XML schema of the proposed event meta-model is utilized by the Metrics
Aggregator component of the Monitor Manager to validate the detected monitor-
ing events / measurements (i.e. to check if all the required information is pro-
vided), (ii) the component meta-model instance is exploited to validate the ex-
tracted event patterns, i.e. whether the source components are correlated with
each other. This component model is dynamically adjusted whenever a system’s
component is affected by an adaptation actions or the pattern discovery process
detect new component dependencies; and (iii) the adaptation actions meta-model
instance is useful for the Adaptation Manager who is responsible for identifying

the simple adaptation rules mapping simple monitoring events to suitable adap-

€

 —

©emf =’

ECLIPSE MODELING FRAMEWORK

Ecore Model Java Code
Code generation >

EAttribute Attribute

tation actions.

Figure 8.3: EMF code generation to Java classes

Especially, regarding the component meta-model, we are exploiting the model-
driven technologies offered by Eclipse Modeling Framework (EMF)E. The EMF
project is a modeling framework and code generation facility for building tools
and other applications based on a structured data model. From the model speci-
fication described in XML Meta-data Interchange (XMI), EMF provides tools and

run-time support to produce a set of Java classes for the considered model (Fig-

Shttp://www.jsonschema.net/
7https://www.eclipse.org/modeling/emf/

8.2. Meta-models’ Realization and Exploitation 165

ure @), along with a set of adapter classes that enable viewing and command-
based editing of the model and a basic editor. The core meta-model is exported
from the Visual Paradigm as a XML schema file, which, in turn, is imported in EMF
to extract the base domain code. Then, we exploit Connected Data Objects (CDO)@,
which offer as a development-time model repository and a run-time persistence
framework. CDO offers transactions with save points, explicit locking, change no-
tification, queries, temporality, branching, merging, offline and fail-over modes.
The storage back-end is pluggable and migrations between direct]DBC@, Hiber-
nate@, Objectivity/DBEl], MongoDB@ are provided. Figure @ depicts the basic
architecture of CDO.

Client 1 Client 3 Client 2

t_f 1

COOy Progoseol

Server

e.g. JOBC +

Figure 8.4: The CDO architecture

In our case, a MySQL database lies under a CDO server to store the compo-
nent model instances. For the creation and configuration of this database we
have used the phpMyAdminE interface integrated with the MAMPH web server.

This database is further exploited by the proposed pattern discovery algorithm

Bhttp://wiki.eclipse.org/CDO
Yhttp://www.oracle.com/technetwork/java/javase/jdbc/index.html
“http://hibernate.org/
Thttp://www.objectivity.com/products/objectivitydb/

“http:/ /www.mongodb.org/

Bhttp://www.phpmyadmin.net/

“http://www.mamp.info/en/

166 Chapter 8. Implementation

to validate component dependencies through specific SQL queries. The query in
Listing @ returns the total number of active components from the FlexiantVM’s
(componentID=7001) compute components list, having ID 7026 or 7027 (i.e., the ID
of the components producing events e; and es), in order to identify if both com-
ponents reside in the same VM and thus affect each other when violations occur.
However, the instance model of the CDO server needs to be modified when adap-
tation actions altering the state of one or more components occur or when new

component dependencies are discovered from the pattern discovery algorithm.

Listing 8.5: Sample SQL query validating the components’ dependencies

SELECT COUNT (%)
FROM (SELECT VM_COMPUTE_LIST
FROM VM WHERE ComponentID=7001) as computelList
WHERE componentID IN (7026,7027) AND (state = active);

8.3 ECMAF’s Implementation

This section elaborates on the implementation of the ECMAF framework. In
particular, Sections and provides implementation details for the Moni-

toring and Adaptation engines’ components respectively.

8.3.1 Monitoring Engine

This section analyzes the implementation tools incorporated in the ECMAF
framework to realize the Monitoring Engine. Figure @ provides an overview of
these tools analyzed in the next two subsections; the first one focuses on the in-
dividual monitoring components detecting the monitoring events, while the sec-

ond one addresses the realization of the Monitor Manager.

Monitoring Components

In this section we focus on the implementation of the individual monitoring

components distributed across the functional layers of a multi-Cloud SBA, in or-

8.3. ECMAF’s Implementation 167

time
synchronization
[NTP protoeal)

-
Monitoring Engine

Cloud 2 {OpenStack

Cloud 1 (Flexiant)

Monitoring tools
(Astro, Cloudwatch,
MXBean)

Monitoring tools
(Astro, Cloudwatch,
MXBean)

SBA provider

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

| - T T
1 | Monitor Manager synchranized S
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1

raw events AR L
XML, JSON, Bk

simple adaptation
rules <

discovered
roll-ups Patterns - assocation
rules (Drools]

!

1

|

I

I

Assessed raw events Metrics Aggregator (_ 1
(XML, JSON] {lava, Esper CEP), SLA (WSLA) :
I

I

I

!

Critical raw events (XMLJSON,

Critical event patterns (Drools)| '."’
1
! /
Pub/sub : i

(Siena) Vi

i

e !
7

L L L L PPl T

Adaptation adaptation Vi !

actions

detected
patterns

Queries

Pattern Discoverer
(Java)

Component model
Adaptation model
SLA model
(EMF, CDO)

Enactment Rule Engine |&
(Scalability (Java, Drools) !
mechanisms) |

Figure 8.5: ECMAF implementation overview

der to capture violations in both the SOA and Cloud layers stack. As already ana-
lyzed in Section , we exploit OWL-Q language for defining QoS metrics. These
metric definitions mainly determine the frequency and the formulas for calcu-
lating the complex metrics based on the raw metrics provided by the following

monitoring components.

As far as the SaaS layer monitoring is concerned, we use the Astro monitoring

tool [|Barbon et al. 2004]. Astro supports monitoring of service compositions im-

plemented in Business Process Execution language for Web Services (BPEL4WS)@
for both instance and class properties. Once the monitored properties are defined
in OWL-Q, we transform them to a Real Time Markup Language (RTML) expres-
sion used by Astro. The supported metrics (QoS attributes) include the execution

time (min, max), throughput (min, max, average) and availability of a Web service

or SBA [Konsolaki 2012].

“http://xml.coverpages.org/bpel4aws.html

168 Chapter 8. Implementation

Astro requires as input a choreography file, containing the composition part-
ners (i.e. the abstract BPEL processes and the corresponding WSDL documents)
and the definition of the monitoring properties. The framework detects viola-
tions at the SCC and the BPM layers by comparing the monitoring property val-
ues against the metrics’ thresholds defined in the corresponding WSLA document
and stores them as a new entry to the TSDB. This entry contains the following at-
tributes: (i) the event ID, (ii) the metric, (iii) the detected value, (iv) the event’s
timestamp, (v) the considered application, (vi) the considered application’s task,
(vii) the host ID, (viii) the layer, (ix) the component’s ID (i.e. the component pro-

ducing the event); and (x) the component’s name.

The PaaS monitoring component exploits an existing cross-Paa$S application
management solution [Zeginis et al. 2013b] introduced in the Cloud4SOA EU project.
This solution offers a Cloud technology-agnostic PaaS monitoring functionality
(in addition to a SLA management layer) unifying diverse resource-level metrics
provided by the individual Cloud providers. Supported metrics include applica-
tion load, application and DB response time, application container response time

and Cloud response time.

The IaaS monitoring component distinguishes between direct monitoring of
the infrastructure and monitoring services offered by Cloud providers. For di-
rect monitoring we implement the OperatingSystemMXBean interface?d to get the
following resource metrics: (i) VirtualMemorySize, (ii) PhysicalMemorySize, (iii)
SwapSpaceSize, (iv) ProcessCpuLoad, (v) ProcessCpuTime, (vi) SystemCpuLoad,
(vii) TotalPhysicalMemorySize; and (viii) TotalSwapSpaceSize. In addition, we ex-
ploit an auto-configuring wireless sensor network [Garefalakis and Magoutis 2012]
based on the IEEE 802.15.4 (Zigbee)@ protocol to collect real environmental met-
rics (e.g. temperature). Sensor data are collected and modeled as monitored enti-

ties giving us the ability to detect events from the SBA context.

*http://docs.oracle.com/javase/7/docs
http://www.zigbee.org/

8.3. ECMAF’s Implementation 169

As an instance of Cloud monitoring services we use Amazon Cloudwatch@, a
Web service that provides comprehensive monitoring for Cloud resources and the
applications that customers run on Amazon Web Services (AWS). To gain system-
wide visibility of running EC2 VMs, we enable a variety of metrics through the
Cloudwatch API, including CPU utilization, disk read/write rate and the volume
of incoming/outgoing network traffic. Each Cloudwatch API request returns a dat-
apoint that is stored in the TSDB and handled as a monitored entity. Our requests
are issued every few seconds to ensure that the collected data are valid and we

can still react to them at a reasonable latency.

Time Synchronization

One of the main goals of our approach is to identify particular event pat-
terns occurring during SBA execution that lead to critical violations, so as to en-
able the selection of the appropriate cross-layer adaptation actions. Since the
order of publishing events is significant, the monitoring events must be time-
synchronized before being sent to the Adaptation Engine. Time synchronization
is particularly important in multi-Cloud settings as standard time synchroniza-
tion solutions are rarely deployed across Cloud providers.

Over time, a computer’s clock is prone to drift. This is problematic as many
network services require the all computers on a network share the same accurate
time. The Network Time Protocol (NTP)E is one way to provide clock accuracy in
a network, even if virtual machines are involved [VMware 2011], as in the multi-
Cloud deployment of the traffic management application. The NTP protocol is
specially designed to synchronize the time on a network of machines. It uses the
concept of a stratum to describe how many NTP hops away is a machine from
an authoritative time source, in order to properly synchronize it. Figure @ il-
lustrates the separation of an NTP network of machines in stratums (i.e. levels),

indicating the distance of the reference clocks (stratum 0) depicted at the top of

Zhttp://aws.amazon.com/cloudwatch/
Phttp://www.ntp.org/

http://www.ntp.org/

170 Chapter 8. Implementation

Figure 8.6: Time synchronization through the NTP protocol

the figure. Yellow arrows indicate a direct connection, while red arrows indicate
anetwork connection. A configuration file determines which NTP server to query
and the drift file stores the time drift for each machine. In our traffic management
running example, the incorporated machines (i.e. Flexiant VM, OpenStack VM,
local machine hosting the Monitor Manager and the Adaptation Manager) are
timely synchronized using primarily the “0.europe.pool.ntp.org server” as the refer-
ence clock and all the underlying machines are at stratum 1 (Figure @). Other

alternative NTP clocks are also included in the configuration file.

Other clock synchronization algorithms, dealing with the temporal ordering
of events, produced by concurrent processes, include: (i) those that use logical
clocks to create event sequence numbers; and (ii) those that use physical clocks
to synchronize events. Lamport’s algorithm [Lamport 1978] makes use of phys-
ical clocks, i.e. it assigns unique timestamps (numbers) to all the events of the
system to achieve a total or partial ordering of the events. In general, it requires
a monotonically increasing software counter for a clock, that has to be incre-

mented for each new event. Physical clock-based algorithms, such as Cristian’s

8.3. ECMAF’s Implementation 171

Reference clock
| O.europe.pool.ntp.org server
/
/i
/4

NTP NTP O NTP | |

[|
! |
! I's 1
3 - q tratum
: config config config |
| 2N g T 2 2 S 1
— — 1
! I
\ Flexiant VM OpenStack VM Local machine /
S -

e e e o e e e e e e e Em e e o e e e e e e e = e =

Figure 8.7: NTP time synchronization for the traffic management application VMs

algorithm [Cristian 1989] or Berkeley algorithm [Gusella and Zatti 1986] adjust
the system clocks of the system components, based on server time or a master

machine time accordingly.

Monitor Manager

SLO assessment As already briefly analyzed in Section , the SLO assess-
ment is performed by the Metrics Aggregator component. This is a Java-based
component that parses the WSLA document defining the SLOs and assesses the
measured events against the SLO thresholds. Simple metrics (e.g. row execution
time of the MonitorService, availability of the DeviceConfig service, etc.) are as-
sessed upon their delivery, whereas composite metrics (e.g. average CPU_load of
the flexiantVM, max throughput of the Assessment Service, etc.) are assessed ac-
cording to the frequency dictated by the OWL-Q metric’s definition. If the assess-
ment indicates a warning or critical violation of the specified metric, the “criti-

cality” field is filled accordingly and the assessed event is stored into the TSDB.

Pattern Discovery The pattern discovery algorithm introduced and analyzed
in section @ has been implemented in Java, utilizing two DSLs for processing the
monitoring events stream and defining the association rules between the causing

and caused events. The first one is Esper (see Section @) that is used to process

172 Chapter 8. Implementation

the monitoring events stream, collected by the TSDB storing the raw monitoring
events, through a suitable JSON query (Listing @). The second one is Drools Rule
Engine (see Section @), which is exploited to define the association rules (List-
ing @), i.e., the rules defining the causal relationship between the event pattern

and the caused SLO violation.

Listing 8.6: Sample association rule in DRL for the event pattern with ID=2001

rule "rulel-TM-TD-durationKPI"
when
(FlexiantVM-FreeMemory < 300MB) && (FlexiantVM-FreeMemory > 100MB) && (FlexiantVM_CPU_load
> 95%)
&& (NetworkUptime < 98%) && (ExecTimeDeviceConfigService > 20sec) && (
ExecTimeDeviceConfigService < 22sec)
then

violation(TM-TD-durationKPI)

As far as the event processing is concerned, the event stream retrieved from
the TSDB via a JSON query is divided into groups of events containing the events
(stored in a Hashmap with an incremental key (i.e. the event ID) and value a
LinkedHashSet storing the time-ordered events) within the time interval defined
by the considered aggregate metric (see Figure @). Then, each Hashmap is pro-
cessed to determine if it corresponds to a SLO violation or not. In the former case,
the subset of events until the last critical event of the considered metric is ex-
amined, while in the latter one, all the LinkedHashSet’s objects are processed (a
separate Hashmap is used to preserve the interval number and the correspond-
ing position of the last critical event of the considered metric (0 for non-critical
intervals)). For the calculation of the power set of the individual LinkedHashsets,
required by the Pattern Discovery Algorithm, we use the powerset function pro-
vided by the google guava@ library. A limit of 30 events per interval is posed by
this function. Although, in practice, it is unusual to have more than 30 warning
or critical events within a an interval, an exception will be thrown if the metric

definition requires infrequent measurement.

*https://code.google.com/p/guava-libraries/

8.3. ECMAF’s Implementation 173

Pattern Detection Another functionality provided by the Metrics Aggregator
component is the event pattern detection. The discovered patterns identified by
the Pattern Discoverer are sent to the Metrics Aggregator component, which is re-
sponsible for detecting them at run-time, in order to prevent the actual expected
violation form happening, thus enabling proactive adaptation. For this reason, we
are exploiting the Esper CEP engine, providing special features for pattern detec-
tion. EPL language can be used to define event patterns, similarly to the listeners
defined in Listing @ filtering incoming events. For instance, Listing @ defines
the EPL statement of the pattern with ID=2001 in our running example. This state-
ment defines the order of events within the pattern and the max time between

the first and the last event (e.g. 1 minute and 20 seconds).

Listing 8.7: EPL statement for pattern with ID=2001

SELECT * FROM pattern [every (FlexiantVM-FreeMemory(criticality=warning) -> FlexiantVM-CPU-1load(
criticality=critical) -> NetworkUptime(criticality=critical) -> ExecTimeDeviceConfigService(

criticality=warning)).win:time (1 minute 20 seconds)]

Similarly, we can define more complex EPL statements for patterns combin-
ing logical and time operations. For instance, we assume that the Pattern Discov-
erer identifies an event pattern comprising an e; event followed by an e4 event
within 20sec, but in the meantime there should be no eg event. Listing @ formally

defines this pattern, as well as the composite patterns introduced in section @L.

Listing 8.8: EPL statements for complex event patterns

SELECT * FROM pattern [every (e; — not eg — eg).win.length(20)]

SELECT * FROM pattern [every (ce; — wes — wey.win.length(5))]

SELECT * FROM pattern [every (ce; — wea — ces.win.length(7))]

SELECT * FROM pattern [every (ce; — wez — (ceq and wes) — weg)]

SELECT * FROM pattern [every (eq — not ey — es5)l]

SELECT * FROM pattern [every (ce; — wez —(ceq and wes) — (we7 or wej))]

Storing Events KairosDB, presented in Section @, can store data points of any

type of metric. When pushing data in the database we need to provide the unique

174 Chapter 8. Implementation

ID of the metric. The KairosDB required fields for the inserted data points are
the following: Metric name, Value, Timestamp, other tags to distinguish between
the different measurements (e.g., VM id, cloud provider, VM-type, application
name, task name). Additionally, KairosDB by default provides a series of internal
metrics to monitor the application’s performance. These metrics are written to
the data store one per minute and their statistics can be viewed on the KairosDB
Web interface (Figure @). However, one can adjust how often they are reported
by suitably modifying the kairosdb.properties file. These internal metrics are the

following:

+ JVM statistics: Free memory, Max memory, Threads
* API statistics: HTTP requests statistics, Telnet statistics

+ Datastore statistics: Query time, Write size (i.e., the number of rows writ-

ten to the data store during the last write)

KairosDB comes with a series of aggregators that perform an operation over
all data points of a specific metric that exist in the sampling period. Aggregators
can also be combined together and are processed in the order they are specified
in the imported JSON query file. The output of one aggregator is sent as input to
the next. For example, the JSON query in Listing @ includes two aggregators on
the jvm.total.memory metric. The first one divides data points of the specific time
interval by 1024 and the second one calculates the average value of the divided
data point values.

All aggregators, except rate and div, allow downsampling, i.e., reducing the
sampling rate of the data points and aggregating these values over a long period
of time. The basic KairosDB aggregators that the user can easily modify/combine

to provide added value functionality are the following:
+ avg - returns the average value

« dev - returns the standard deviation

g s W

O 0 N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

8.3. ECMAF’s Implementation 175

Listing 8.9: sample JSON query on the KairosDB including two aggregators

{
"metrics": [
{
"tags": {1},
"name": "kairosdb.jvm.total_memory",
"aggregators": [
{
"name": "div",
"divisor": "1024"
I
{
"name": "avg",
"align_sampling": true,
"sampling": {
"value": "1",
"unit": "milliseconds"
}
}
]
}
15
"cache_time": O,
"start_absolute": 1391464800000,
"end_absolute": 1391551200000
}

+ div - returns each data point divided by a divisor

« histogram - calculates a probability distribution and returns the specified

percentile for the distribution

« least_squares - returns two points for the range which represent the best

fit line through the set of points.
+ max - returns the largest value
¢ min - returns the smallest value

* rate - returns the rate of change between a pair of data points.

176 Chapter 8. Implementation

e sum - returns the sum of all values

KairosDB provides two methods for pushing data (i.e. the raw monitoring
events in our case). The first and the simplest one is via telnet. The syntax is con-
cise and easy to use. For instance, the following command in Listing is used

for pushing data:

Listing 8.10: Pushing the monitoring events in the KairosDB via Telnet

put <metric name> <timestamp> <value> <tag> <tag>... /n

The second method is the REST API, which can be exploited through HTTP
requests for adding and/or querying measurement data for metrics. If one wants
to batch large amounts of data, she/he can gzip a JSON file and upload it with the
content type set to “application/gzip”. The general structure of the JSON file is
illustrated in Listing . The first entry inserts three data points of one metric,
while the second one adds a single data point of another metric.

Figure @ depicts the KairosDB graphical Web interface, which provides use-
ful functionalities, such as aggregation of multiple metrics in specific time ranges,
using the incorporated aggregators mentioned below, queries in JSON and JS Ob-
ject format and metric data points plotting. These functionalities (except the plot-
ting one) are provided by the KairosDB API, which has been extended to meet our
needs for more comprehensive JSON support, so as to be easily processed by the
Pattern Discoverer component, which requires an event stream as a JSON file,

containing an array of data points.

Publishing / Subscribing Events Concerning the publish / subscribe system,
utilized by ECMAF to filter the SLO violations and the detected event patterns
leading to SLO violations transferred to the adaptation engine, we use the Scal-
able Internet Event Notification Architectures (Siena)@ publish/subscribe event
notification service. Siena is expressive enough to capture all appropriate event

information through an extensible data model without sacrificing scalability and

*Thttp://www.inf.usi.ch/carzaniga/siena/

10
11
12
13
14
15
16
17
18
19
20
21

8.3. ECMAF’s Implementation 177

Listing 8.11: Pushing the monitoring events in the KairosDB via the REST API

Lnn
name: "CPU-"usage,""
datapoints:[[1391464800, 87%],[1391464920, 73%],[1391465040, 92%]
7,
tags:{""
Cloud_provider:""Flexiant,"

VM-"ID:"7001"

¥
{ll n
name: "Memory-"usage,""
timestamp: 1391464800,""
value:469,""
tags:{""
Cloud_provider:""AmazonVM,"

VM-"ID:"7033"

performance during event delivery. The technical basis of Siena is an innovative
type of network service called content-based networking [Carzaniga et al. 2011],
which is a novel communication infrastructure in which the flow of messages
through the network is driven by the content of the messages, rather than by ex-
plicit addresses assigned by senders and attached to the messages. Through this
publish / subscribe mechanism, the Adaptation Manager subscribes only to spe-
cific metrics, for which she/he is interested. Thus, whenever a metric’s violation
(i.e. reactive adaptation) occurs or a critical event pattern (i.e. proactive adapta-
tion) leading to a violation of the subscribed metrics is detected, the Metrics Ag-
gregator immediately sends them to the Adaptation Engine to efficiently handle

the malfunction, exploiting the incorporated rule-based adaptation mechanism.

178 Chapter 8. Implementation

KairosDB
Time Range

Absolute Relative

From* or 1 |Hours %]ago

Metrics

F Y-lIlIA1IIIHl'jll'!ll'—'—.lllﬂlll”l‘%

Name* kairosdb.jvm.free_memory

Group By
Aggregators

SUM 4] Sampling 1 [Milliseconds 4
Tags

* Required Fields

Load Graph Delete Data

Query in @ JSON or © JS Object

{
"metrics": [.
{

"tags": {},
"name": "kairosdb.jvm.free_memory",
"aggregators": [

{

"name": "sum",
Link to Graph

Query Time: 111 ms
Sample Size: 60
Data Points: 60

M kairosdb.jvm.free_memory
13000000

12000000
11000000
10000000
9000000
8000000

7000000

6000000

11:35 11:40 11:45 11:50 11:55

Figure 8.8: The KairosDB web interface

8.3.2 Adaptation Engine
Adaptation Rules

Regarding the adaptation rules, they can be efficiently modeled in the pro-

posed event meta-model through the incorporated relevant classes (see Section EI).

8.3. ECMAF’s Implementation 179

Thus, the Event part of the ECA triplet is described by the Event class, the Condi-
tion is described by the warning and critical SLOs of the corresponding metric,
the Action is expressed through the Action class, while the whole rule is uniquely

identified by the Adaptation_Rule class.

In the ECMAF framework, the adaptation rules are realized using the Drools
Rule Language (DRL)@ presented in Section @ DRL is exploited to define both
simple adaptation rules mapping critical events to adaptation actions (Listing),
as well as more complex rules mapping event patterns to suitable adaptation
strategies (Listing), as they are determined by the corresponding technique,
analyzed in Section B

Listing 8.12: A Simple DRL adaptation rule of the traffic management application

rule "LowMemoryScaling Rule"
when
AvailableMemory (OpenStackVM) < 100MB
then
scale_up("high ,VM") //Provided that the current deployment is on a
"medium" VM

end

Listing 8.13: An adaptation rule mapping an event pattern to a scaling action in

DRL

rule "Patternl Rule"
when
DetectedPattern(Patternl) // Pattern pl = cel -> we2 -> we_4
then
scale_up(medium VM) AND substitute(AssessService,newAssessService)
//Provided that the current deployment is on "low" VM and
there is an equivalently functional Assessment Service

end

*?http://docs.jboss.org/drools/release/5.2.0.Final/drools-expert-docs/html/ch05.html

180 Chapter 8. Implementation

Adaptation Enactment Mechanisms

As far as the Adaptation Enactment is concerned, it can be realized by various
tools and depends on the type of the adaptation actions. It is mainly part of on-
going and future work to implement as many adaptation sub-engines as possible,
that can realize the adaptation actions defined in the proposed adaptation actions
meta-model (see Section @). However, some basic adaptation actions are already
realized, especially the ones mapping to the mechanisms provided by the Cloud
providers (e.g. horizontal and vertical scaling). For instance, if an adaptation ac-
tion dictates a “scaling up” action of a deployment instance, then this action may
be performed by the scaling mechanism of the Cloud provider. Other adaptation
actions may require human intervention (e.g. replacement of a sensor used by a
service or start up of a local machine).

Regarding the scaling actions provided by the Cloud providers, in this section
more details are provided for the OpenStaCkE Cloud computing platform, which
is utilized by the traffic management SBA, as the primary Cloud Computing plat-
form. OpenStack is primarily deployed as an Iaa$ solution and it can be used for
building both private and public Clouds. The technology consists of a series of
interrelated projects that control pools of processing, storage and networking re-
sources throughout a data center, able to be managed or provisioned through a
Web-based dashboard, command-line tools or a RESTful API.

Figure @ depicts the basic architecture of an OpenStack VM. In order to per-
form the actions dictated by the triggered adaptation rules, we employ a basic

OpenStack setup consisting of:

1. A controller node, which provides the necessary services for managing
the VM. The controller node contains one network interface in the manage-
ment network. The experimental setup employs: a Database (Oracle MySQL
RDBMS), a Message broker (Apache Qpid with enabled), a synchronization

service (NTP) and virtualization services (VMware for controller and net-

*http://www.openstack.org/

8.3. ECMAF’s Implementation 181

work nodes and Kernel-based VM (KVM) for the compute nodes). Other
basic services include: (i) Identity (Keystone) service, which is responsible
for the authentication and authorization of the interaction and communi-
cation between a user and a service, (ii) Image (Glance) service, which en-
ables users to discover, register and retrieve VM images. Its functionality
is augmented by using a REST API that enables users to query virtual ma-
chine image meta-data and retrieve an actual image, (iii) Compute (Nova)
service, which is a Cloud computing fabric controller which compasses all
sorts of components from computing processes to networking modules, (iv)
Networking (Neutron) service, which is responsible for all the networking
infrastructure among various OpenStack services; and (v) Dashboard (Hori-
zon) that is the all-in-one management user interface for configuring Open-
Stack. This allows users to deploy/destroy instances, observe resource us-

age of VM instances, apply security policies etc.

2. Anetwork node, which is responsible for hosting the services that provide
networking functionality to compute instances. In particular, they host the
DHCP server (Quantum DHCP Agent), meta-data proxy services and Virtual
Bridging services (Open-vSwitch + Quantum Agent) with tunneling and Vir-
tual Routing (Quantum L3 Agent) services. The network node contains one
network interface in the management network, one in the instance tunnels

network and one in the external network.

3. At least one compute node deployed on demand of the adaptation engine.
Compute nodes form the resource core of the OpenStack Compute cloud,
providing the processing, memory, network and storage resources to run
instances. The compute node contains one network interface on the man-

agement network and one on the instance tunnels network.

OpensStack uses by default five type of VMs (Figure), based on the storage

and computation power, called flavors. However, the user may edit his/her own

182

Chapter 8. Implementation

Controller Node
controller

Supporting Services

Database
MySQL or MariaD8

Message Broker
RabhitMQ or Qpid

Optional Services

Block Storage
Cinder Management
Object Storage
Swift Proxy
Database Service

Trove Management
Networking Orchestration

Neutron Server Heat
ML2 Plug-in

Basic Services

Identity
Keystone

Image Service
Glance

Compute
Nova Management

Telemetry
Dashboard Ceilometer Core

Horizon

Network Interfaces

1: Management
10.0.0.11/24

Network Node
network

Basic Services

Networking
ML2 Plug-in
Layer 2 Agent (OVS)
Layer 3 Agent
DHCP Agent

Network Interfaces
1: Management
10.0.0.21/24

2: Instance Tunnels
10.0.1.21/24

Compute Node
compute

Basic Services

Compute
Nova Hypervisor
KVM or QEMU

Networking
ML2 Plug-in
Layer 2 Agent (OVS)

Optional Services

Telemetry
Ceilometer Agent

Network Interfaces
1: Management
10.0.0.31/24

2: Instance Tunnels
10.0.1.31/24

Figure 8.9: The three-node architecture of OpenStack

templates, choosing the virtual cores, the memory and the disk of the provisioned

VM on demand, based on the configuration of the enacted adaptation action.

Name Virtual cores Memory Disk Ephemeral

ml.tiny 1 512 MB 1GB 0GB
m1.small 1 2GB 10 GB 20 GB
ml.medium 2 4 GB 10 GB 40 GB
ml.large 4 8 GB 10 GB 80 GB
ml.xlarge 8 16 GB 10 GB 160 GB

Figure 8.10: The default flavors of OpenStack

8.4. Conclusions 183

8.4 Conclusions

To sum up, in this chapter we have analyzed how we have implemented and
tested the proposed ECMAF framework. The first part addresses issues regarding
the implementation of the Traffic Management SBA, used throughout the disser-
tation as a running example. The second part deals with the realization of the pro-
posed meta-models and focuses more on the component model, that is exploited
by the pattern discovery algorithm, while the last part discusses the implemen-

tation of the monitoring and the adaptation engines.

184

Chapter 9

Evaluation

Contents
.1 Monitoring Evaluation 186
.11 TSDBEvaluation 186
b.1.2 Pattern Discovery Algorithm Evaluation 190
|9.1.3 Pattern Detectiod 194
B.2 AdaptationEvaluation 196
.21 Adaptation Enactment Evaluation 196
9.3 Overall Evaluation 203
D.4 Conclusions00 uuuiuiiii.. 208

This chapter is devoted to a thorough evaluation of the ECMAF framework.
Three sets of experiments are conducted and presented in the following sections.
The vast majority of the experiments focuses on evaluating performance scala-
bility, in terms of computation time, by varying specific parameters. The first set
examines the ECMAF’s monitoring engine and attempts to investigate the effect
of all parameters that are of interest in each case. The second set of experiments
evaluates the adaptation engine, while the third one evaluates the overall evalu-
ation of the complete framework.

For the purposes of the evaluation, we use the traffic management application

deployed on two VMs, according to their individual requirements (Section @).

185

186 Chapter 9. Evaluation

Apart from the events detected by the deployed monitoring components, we also
generate synthetic events in order to have an adequately large sample dataset for
the pattern discovery and detection subsystems, as well as for the mapping detri-
mental event patterns to suitable adaptation actions. The experiments, except
the adaptation ones, are performed on a machine with quad-core CPU 2.6GhZ,
8GB RAM memory and Mac OS X Mavericks operating system. The computation

time values are an average of 20 runs.

9.1 Monitoring Evaluation

This section focuses on the evaluation of the ECMAF’s monitoring engine. More
specifically, Section evaluates the performance of the TSDB, while Section

evaluates the performance and accuracy of the Pattern Discoverer component.

9.1.1 TSDB Evaluation

In this section we describe an experimental evaluation of our TSDB storage
system, for monitoring data under three different deployments: (i) running on a
single node, (ii) three nodes running in the same Cloud provider; and (iii) three
nodes running under different Cloud providers (multi-Cloud). In addition, we cal-
culate the end-to-end latency under the first setup, to have a clear view of our

monitoring engine’s total response time.

In particular, our storage system consists of a KairosDB using Cassandra as a
database store. To distribute the traffic between the origin servers (in the mul-
tiple node setups), we run a load balancer at the top, which is responsible for
delivering the HTTP requests (queries) at the TSDB nodes equally. As a result, we
distribute the workload among the nodes and we add additional redundancy to

our setup when a server fails.

To demonstrate the performance and scalability of our storage system we col-

lect one million events, also known as data points, using the monitoring com-

9.1. Monitoring Evaluation 187

ponents and we store them into the TSDB. Then, these events are passed to the
Adaptation Engine through the Siena publish/subscribe mechanism.

To evaluate the system, we retrieve different numbers of data points from the
total amount of one million and we measure the response time of the system as
well as the total time (i.e. end-to-end latency) to pass the events from the TSDB
to the Adaptation Engine. We run the same queries in three different setups, as
shown in Figure Ell In the first setup we have the TSDB running on a single vir-
tual machine. Afterwards we deploy TSDB and the other components in three
different virtual machines running on the same cloud provider (Flexiant). In the
last setup we have three virtual machines running in different cloud providers,
Amazon, Azure and Flexiant. The total time refers to single node setup.

Table @ summarizes the response time results of the approaches above. For
the queries of five thousand and ten thousand data points, the three approaches
are really close in performance level. If we request larger sets of data the single
node approach is getting really slow, making it a bad choice in a heavy workload
system. On the other hand, the other two approaches behave equivalently, so we
believe that the slight increase in latency at the multi-cloud approach is caused
by the cross network communication between different Cloud providers. Since
the events we want to monitor, appear across multiple Clouds, choosing the last
setup would give us data locality and the advantage to store the events in the same
cloud they occur, avoiding additional network overhead. As far as the total time
is concerned, the publish/subscribe mechanism exhibits significant performance,
as it can efficiently pass huge amounts of events to the adaptation engine within

reasonable latencies.

Table 9.1: KairosDB response time under different setups / end-to-end latency

Data Points 5k 10k 50k 100k 200k 500k 1M

1 Node 136ms 180ms 475ms 752ms 1337ms 2436ms 4440ms

3 Nodes-Single Cloud 129ms 160ms 293ms 492ms 820ms 1988ms 2930ms
3 Nodes-Multi Cloud 130ms 165ms 302ms 505ms 842ms 2042ms 3112ms
end-to-end latency | 1070ms | 1970ms | 8674ms | 16302ms | 35683ms | 82526ms | 161545ms

188 Chapter 9. Evaluation

4.5

4.0 1 node i
3 nodes-Single Cloud - %0enee

35+ 3 nodes-Multi Cloud —— i

Response time (seconds)

00 1 1 1 1 1 1
5 10 20 50 100 200 500 1000

Datapoints (K)

Figure 9.1: TSDB - Evaluation, Response time in read queries under different se-

tups.

Table 9.2: End-to-end (TSDB+Siena) response time, throughput under different

setups

Number of events published (K) 5 10 50 | 100 | 200 | 500 | 1000

Single query latency (sec) | 0.59 | 0.82 | 1.5 | 2.21 | 3.68 | 7.65 | 11.88

Single query throughput (Kops/sec) | 8.5 | 12.2 | 33.3 | 452 | 543 | 65.4 | 84.2

Our next experiment measures performance of the integrated (TSDB plus pub-
lish/subscribe engine) system focusing on end-to-end latency (time to complete
one or more queries over 1M data points) and throughput (publish ops per sec-
ond). Table @ reports our results focusing on a single query going over 1M data
points with increasing scope. Our results show that latency and throughput are
increasing with an increasing number of publish-event operations. In practice,
such large queries are expected to hurt responsiveness (the time from the occur-
rence of an event to its publishing). Smaller, more frequent queries should result
into longer end-to-end latencies (although the response time of individual event

publish operations will improve) and lower aggregate throughput. Experiments

9.1. Monitoring Evaluation 189

with 100 consecutive queries over 10K data points each, publishing a total of 1M
events, take 15 sec (compared to 11.88 sec with a single query) and result in a
throughput of 67 Kops/sec (compared to 84.2 Kops/sec for a single query). Fig-
ures @ and B depict the corresponding charts of the latency and throughput

results.

HEnd-to-end latency

W Single Query|Latency

82

Number of published events (K)

5 118

0 20 40 60 80 100 120 140
Time (sec)

Figure 9.2: Single TSDB query and end-to-end latencies

Total throughput

™
| aaal
i Il I I = b
5 10 50 100 200 500

Number of published events (K)

o
o

o]
o

~
o

o

H 0
o

w
o

Total throughput (Kops/sec)
D
o

N
o

=
o

1000

Figure 9.3: Total throughput of a single TSDB query and its publication

As far as the performance of assessing the single raw monitoring events by

190 Chapter 9. Evaluation

the Metrics Aggregator component, we rely on the results of our previous work
in [Zeginis 2009]. In this work, focusing on monitoring the QoS of Web services
using SLAs, we have conducted experiments to evaluate the performance of as-
sessing raw monitoring events against the thresholds, defined as SLOs in a WSLA
document. Thus, the results combine the times of parsing the WSLA document
to retrieve the corresponding thresholds and assessing a single raw event to de-
termine its criticality (i.e. success, warning, or critical). The experiment results
(Figure @) reveal an almost linear relationship between the number of detected
monitoring events and the time required to be assessed. These results will be con-

sidered for the overall evaluation, analyzed in Section @

Assessment time (sec)

Time (sec)
= = [[
w o w (=] w

o

5k 10k 20k 50k 100k
No of Monitoring Events

Figure 9.4: Assessment time while increasing the number of monitoring events

9.1.2 Pattern Discovery Algorithm Evaluation

This section describes an experimental evaluation of the proposed pattern
discovery algorithm. The aim of this evaluation is to measure: (i) the algorithm’s
performance and (ii) the algorithm’s accuracy, in order to optimize the definition
of the considered aggregate metric (i.e., its optimal interval). An event dataset is
used, comprising 100k events, including events from Section @’s 7 metrics for

the traffic management multi-Cloud SBA, collected in a 7-minute time period. The

9.1. Monitoring Evaluation 191

events are provided by: a service-level middleware based on the Astro monitor-
ing tool (service availability, execution time and throughput); the Amazon Cloud-
watch PaasS (CPU utilization, data transfer and disk usage metrics for underlying
VMs) and a Cloud resource monitor (CPU load, swap and free memory metrics),
for monitoring the Flexiant and Openstack VMs. The event timestamp is defined
in a millisecond accuracy and during a pre-processing of the event stream we
identify five (two 2-size, one 3-size and two 4-size) periodic patterns in it. The
2- and 3-size patterns are periodically injected unchanged in the stream with-
out other mediated events, unlike the 4-size patterns which are interleaved with
other random events (one or two events). Thus, taking into consideration this
periodicity of the injected patterns, we expect that the pattern discovery algo-
rithm is able to extract them from the monitoring event stream and to identify
their X score. The main goal of this experiment is to discover patterns causing De-
vice Configuration SaaS execution time violations (i.e., violations of 3 aggregate

metric).

The first experiment evaluates the algorithm’s raw relative and absolute accu-
racy in discovering all the incorporated and already-known periodic patterns of
the 100k-size dataset. The former considers only the five known patterns, while
the latter additionally considers their sub-patterns (providing that their A score
is larger than 0), as they can also drive proactive adaptation. For instance, the
sub-pattern {ey, ea} (i.e., sub-pattern of known {ey, eo, e4} pattern) is a relevant
pattern, as upon its detection we can trigger a suitable adaptation strategy. The
bursty or random patterns in the event stream are ignored, as experiments have
shown that they map to perfect accuracy results. Thus, the algorithm’s precision
(Equation Ell), recall (Equation) and F-measure (Equation @) are measured
while fluctuating the interval size from 4 to 20 events. Precision is the fraction
of retrieved patterns that are relevant, while recall is the fraction of relevant pat-
terns that are retrieved. In addition, F-measure can be interpreted as a weighted

average of the precision and recall, where an F-measure score reaches its best

192 Chapter 9. Evaluation

value at 1 and worst score at 0.

relevant_discovered_patterns

recision =
P total_discovered_patterns

relevant_discovered_patterns

recall = (9.2)

total_relevant_patterns

2 x precision * recall
F-measure = — (9.3)
precision + recall

Figure @ shows that relative precision is 1 for small intervals and falls while
increasing the interval size, while absolute precision fluctuates similarly at lower
levels (as more irrelevant sub-patterns are discovered). This decrease is normal,
as for higher intervals more irrelevant patterns (i.e., larger patterns than already-
known ones) are retrieved compared to the total discovered patterns. We must
note that the precision starts to fall over 8-size intervals, i.e., above the double of
the maximum pattern (4 events).

Figure @ shows that the algorithm’s absolute recall is 1 for all considered in-
terval sizes, as the predefined event patterns are always discovered, except for
4-size and 6-size intervals where the algorithm fails to discover two and one 4-
size patterns respectively, due to interval overlapping. Moreover, relative recall is
always 1, as the discovered sub-patterns compensate the “lost” relevant patterns
(for 4- and 6-size intervals), as they also map to adaptation strategies addressing
the whole pattern. Considering these accuracy results, metric E3’s optimal defi-
nition is to measure it in intervals containing in average 8 events, as this interval
size enables the most accurate pattern discovery results.

The second experiment evaluates the algorithm’s execution time, based on:
(i) the dataset size; and (ii) the time interval. The former sub-experiment evalu-
ates the algorithm’s performance on different dataset sizes for 10-, 20- and 30-
size intervals, while the latter is applied on 5k, 20k and 50k-size datasets with an
interval fluctuation from 5 to 30 events (upper limit to compute the powerset).

Figure @ presents the respective results showing that the algorithm’s execution

9.1. Monitoring Evaluation

193

1.2

Precision

0.2

« mrelative precision

==fmmgbsolute precision

4 6 8 10 12 14 16 18 20

Interval size (No of events)

Figure 9.5: Pattern discovery algorithm’s precision

=)mahsolute recall

=l=relative recall

6 8 10 12 14 16 18 20
Interval size (No of events)

Figure 9.6: Pattern discovery algorithm’s recall

1.20

2

o
(S

F-measure
o o
5 3

o
]
o

=)
8

=l ralgtive F-measure

== ghsolute F-measure

4 6 3 10 12 14 16 18 20
Interval size (No of events)

Figure 9.7: Pattern discovery algorithm’s F-measure

194 Chapter 9. Evaluation

time almost linearly increases with an increasing dataset size as expected. Larger
intervals seem to hurt more the algorithm’s performance, due to higher b*g prod-
ucts. However, such execution time is acceptable, as this is an offline algorithm
not affecting the overall monitoring and adaptation framework performance. Fur-
thermore, the results in Figure @ reveal a changing relation between execution
time and interval size; for larger intervals, it increases with a burst over 20-size
intervals, due to rapid increase of b*g (740 (b=148, g=5) for 30-size interval com-
pared to 92 (b=23, g=4) for the 25-size and 48 (b=12, g=4) for the 20-size intervals),
posed by the considered unique sets” high increase. In fact, execution time for the

largest interval (30) is more than doubled with respect to 20-size intervals.

350000

=#=interval 10
300000 ~#=interval 20

250000 interval 30

200000

150000

Execution time (ms)

100000

50000

o e — —— -
20 40 60 80 100
Dataset size (k)

Figure 9.8: Pattern discovery execution time based on the dataset size

9.1.3 Pattern Detection

In this section we evaluate the performance of the pattern detection system.
In particular, this experiment measures the pattern detection time of the Esper
CEP engine utilized to detect the discovered event patterns at run-time while
fluctuating the pattern size. The Esper engine works as a turned upside-down
database [Esper 2014]. Instead of storing the data and running queries against

stored data, it allows applications to store queries and run the data through. The

9.1. Monitoring Evaluation 195

response from the Esper engine is real-time when conditions that match EPL
queries are satisfied. The execution model is thus continuous rather than only
when a query is submitted. Thus, even overlapping patterns do not affect the
overall performance of the EPD, as the result will be returned as soon as the condi-
tion is met. The results in Figure verify this conclusion, as for all considered
pattern sizes (i.e. the ones returned by the event pattern discovery) the time fluc-

tuates around 8ms.

160000

={=5k events r
140000
20k events /
120000 ==50k events /
100000 /
80000
60000 /

40000

0 e = . =
5 10 15 20 25 30
Interval size (No of events)

Execution Time (ms)

Figure 9.9: Pattern discovery execution time based on the interval size

Pattern detection performance

m

f—_ 9.00

o

£

-

s

‘5 8.00

(8]

[J]

3

()]

o

[=

S

[J]

£ 700 : : . .

e 2 3 4 5 6
Pattern size

Figure 9.10: Performance of the EPD based on the pattern size

196 Chapter 9. Evaluation

9.2 Adaptation Evaluation

In this section we evaluate the performance and the accuracy of the adapta-
tion engine, which is responsible of enacting suitable adaptation actions upon the
detection of a critical event (i.e. reactive adaptation) or a detrimental event pat-
tern verified to cause specific SLO violations (i.e. proactive adaptation) through
the ECMAF’s incorporated pattern discovery mechanism. Thus, the total duration
of the adaptation process comprises the time interval from the occurrence of the
critical event or the critical event pattern, to finding and triggering of the corre-

sponding adaptation rule and to enacting the adaptation strategy.

9.2.1 Adaptation Enactment Evaluation

In this section we perform evaluation of the adaptation enactment mecha-
nisms utilized by the ECMAF framework. Especially, this evaluation focuses on
the performance of the scaling actions provided by the OpenStack Cloud comput-
ing platform. In the Traffic Management running example, this platform is used
to deploy the Assessment Web service on. We selected this platform as the base
of the adaptation enactment evaluation, as it is a private platform that is easily
configurable with many scaling features. However, it is in our plans (as it is an-
alyzed in Section) to implement or exploit existing adaptation enactment
mechanisms, in order to cover as many adaptation actions as possible, includ-
ing those modeled in the proposed adaptation actions meta-model. These exper-
iments were performed on a machine with Intel®Core i5 480M @ 2.67GHz chipset,
8GB RAM memory, 500GB SATA disk and Windows®operating system. The compu-

tation time values are an average of 20 runs.

The following experiments evaluate the scaling actions provided by Open-
Stack. Whereas traditional applications require more powerful hardware to scale
(i.e. “vertical scaling”), cloud-based applications typically request more discrete

hardware (i.e. “horizontal scaling”). OpenStack itself is designed to be horizon-

9.2. Adaptation Evaluation 197

tally scalablell, Rather than switching to larger servers, one may procure more
servers and simply install identically configured services. Ideally, one scales out
and loads balance among groups of functionally identical services (for example,
compute nodes or nova-api nodes) that communicate on a message bus.

Determining the scalability of a Cloud and how to improve it is a challenge,
as it involves many variables to balance. In fact, no existing solution meets every-
one’s scalability goals. However, it is helpful to track a number of metrics. Since
one can define virtual hardware templates, called “flavors” in OpenStack (see Fig-
ure), she/he can start to make scaling decisions based on the provided fla-
vors. These templates define sizes for memory in RAM, root disk size, amount of
ephemeral data disk space available and a number of cores for starters.

Although this starting point meets the initial requirements of the Cloud SBA,
during its execution in a vulnerable multi-Cloud environment, new requirements
may be posed and SLO violations or critical discovered event patterns may persist
over time. Consequently, a common suitable adaptation action for multi-Cloud
SBAs is the scaling to higher “flavors”, in order to meet the new requirements
and constraints posed by the SBA Adaptation Manager.

The following experiments evaluate the performance of horizontal scaling
actions, while increasing the number of VM instances (from 1 to 10 instances).
The first set of experiments evaluate the performance (i.e. execution time and
throughput) of provisioning the supported by the utilized VM “flavors” (i.e. tiny,
small and medium). Throughput is measured in a minute scale (i.e. how many VM
provisions can be performed within 1 minute).

In particular, these experiments evaluate the performance of the scaling ac-
tions, based on the image size and on the VM’s “flavor” (see Figure). For this
reason, we are using three different images with increasing sizes (“CIRR0S-032,
64" image = 12,6MB, “FEDORA-20, 64” image = 201,1MB and “RHEL-7, 64” image
= 415MB). These images are “clean”, i.e. they do not install any other software

during the provision process. In the future, we plan to perform this evaluation

http://docs.openstack.org/openstack-ops/content/scaling.html

198 Chapter 9. Evaluation

on more powerful machines, supporting all the OpenStack “flavors” and other
customized ones, as well as on other larger images. We expect from this experi-
ments to see an almost linear relationship between the performance (execution
time) and the number of VM instances.

The individual experiments (Figures -) for each VM flavor show, in
general, a good behavior in terms of performance scalability, even for the largest
image (RHEL-7) (almost 2 minutes to provision a VM with an 400MB image on a
“tiny” VM). The results reveal that the execution time of provisioning a VM (inde-
pendently of its flavor) increases almost linearly while increasing the number of
VM instances. Similarly, in accordance to the execution time results, throughput
(i.e. VM provisions per minute) almost exponentially decreases while increasing
the provisioned VM instances. However, the time difference between the execu-
tion time of the different images does not reveal any obvious relationship be-
tween these two parameters, i.e., image size and number of instances (31,5sec,
62,4sec and 105,35sec to provision one instance with a CIRROS, a FEDORA and
a RHEL image respectively). These results are in line with our expectations, ex-

pressed before carrying out the experiments.

Execution time - "tiny" VM

600.0
«={J=CIRROS, 64

5000 “=0==FEDORA-20, 64
o
@ RHEL-7, 64
< 4000
u
£
o 3000 -
=]
E=]
] -
9 2000
<
w

100.0

0.0
1 2 3 4 5 6 7 8 9 10

No of instances

Figure 9.11: VM provision time / No of instances, image size (“Tiny” VM)

Similarly, the second set of experiments evaluates the performance (execu-

9.2. Adaptation Evaluation 199

g 1]
Throughput - "tiny" VM
2.500
==C|RROS, 64
E 2000 @=i==FEDORA-20, 64
£
> RHEL-7, 64
a
5 1.500
)
=]
2
£, 1.000 -
=]
o
™
i =
F o500
0.000 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
No of instances

Figure 9.12: VM provision throughput / No of instances, image size (“Tiny” VM)

- . mn 1
Execution time - "small" VM
600.0 7
*CIRROS, 64

500.0 ¢ -_FEDORAQO, 64
)
b RHEL-7, 64
£ 4000
[+}]
£
e 3000 -
[=]
B
3
2 200.0
>
w

100.0

0.0 T T T T T 1
1 2 3 4 5 6 7 8 9 10
No of instances

Figure 9.13: VM provision time / No of instances, image size (“Small” VM)

tion time and throughput) of provisioning an incremental number of VM instances
(from 1to 10 instances) for the supported VM “flavors” (i.e. tiny, small and medium).

Therefore, these experiments aggregate the results of the previous experiments,

200 Chapter 9. Evaluation

n n
Throughput - "small" VM
1.400
==

1200 i CIRROS, 64
= \ e FEDORA-20, 64
£ 1.000
= R RHEL-7, 64
w
[~}
S 0.800
e
NN
20600
[T+
=1
g 0.400 |
[

0.200 -

0.000 : : :

1 2 3 4 5 6 7 g8 9 10
No of instances

Figure 9.14: VM provision throughput / No of instances, image size (“Small” VM)

Execution time - "medium" VM

600.0
e==(C|RROS, 64

. 5000 e=(=sFEDORA-20, 64
[*]
[1]
£ 4000 RHEL-7, 64 _ >
(1]
£
c 300.0 ﬂ
]
b=
S 1
[200.0 M(
>
(¥¥)

1000 TS

0.0 : : : : . .

No of instances

Figure 9.15: VM provision time / No of instances, image size (“Medium” VM)

focusing on the provision performance on the different VM “flavors”. The fol-

lowing charts (Figures —) presents the results of the experiments for the
three experimental images (i.e. “CIRROS-032, 64”, “FEDORA-20, 64” and “RHEL-7,

9.2. Adaptation Evaluation 201

64”). For this experiments, we expect that execution times would increase while

increasing the instance scope.

The individual experiments for each experimental image show again a good

1

behavior in terms of performance. The results reveal that all the three “clean’
images behave similarly, i.e. the execution time increases almost linearly, while

increasing the number of provisioned VM instances. However, when we tried

Throughput - "medium" VM

0.900

={=CIRROS, 64
0.800

==(==FEDORA-20, 64

RHEL-7, 64

e o @
[I
o o o
a o o©

Throughput (ops/min)

0.200

0.100 -

0.000
1 2 3 4 5 6 7 8 9 10

No of instances

Figure 9.16: VM provision throughput / No of instances, image size (“Medium”

VM)

Execution time - CIRROS 64 image

350.0

iy M
300.0 -
ee="small" VM

250.0 "medium" VM

200.0

150.0 7

100.0 -

Execution time (sec)

50.0

0.0

No of instances

Figure 9.17: VM provision time / No of instances, VM flavor (CIRROS-032 image)

202 Chapter 9. Evaluation

Throughput - CIRROS 64 image

2.500

= tiny" VM

w0 small" VM

\ "medium" VM

™~
=]
=]
=)

1.500

=
=]
=]
s

Throughput (ops/min)

e
u
=]
S]

0.000

1 2 3 4 5 6 7 8 9 10
No of instances

Figure 9.18: VM provision throughput / No of instances, VM flavor (CIRROS-032

image)

Execution time FEDORA-20 64 image

450.00

m="tiny" VM
400.00 —
wD=tsmall" VM
= 350.00
a "medium" VM
< 300.00
£
B 250.00
c
Q 20000 =
B
g
2 150,00 i
x
w 4

100.00 —877

50.00

0.00 T T T
1 2 3 4 5 6 7 8 9 10

No of instances

Figure 9.19: VM provision time / No of instances, VM flavor (FEDORA-20 image)

to provision VMs with default images provided by various Linux providers (e.g.
openSUSEﬂ, Ubuntull and others), that are downloading a couple of packages dur-
ing the installation, we got very large times (over 8 minutes for a single instance).
Throughput, again, exponentially decreases while increasing the number of VM
instances. As in the previous set of experiments, the results are in line with our

expectations.

*http://www.opensuse.org
*http://www.ubuntu.com

9.3. Overall Evaluation 203

Throughput - FEDORA-20 64 image

1.200 =="tiny UM

e gall" VM

<\ "medium" VM

Throughput (ops/min)
o (=] o o -
~N sy [o2] [+:] o
(=] o o o (=]
(=] o o o o

0.000

No of instances

Figure 9.20: VM provision throughput / No of instances, VM flavor (FEDORA-20

image)

Execution time RHEL-7 64 image

600.00
fm"tiny" VIV

500.00
wD="small" VM

"medium" VM

400.00

18] w
=] =}
=4 o
1=} o
=] o

Execution time (sec)

100.00

0.00 T T T T T
1 2 3 4 5 6 7 8 9 10
No of instances

Figure 9.21: VM provision time / No of instances, VM flavor (RHEL-7 image)

9.3 Overall Evaluation

This section elaborates on the overall evaluation of the ECMAF framework. In
order to perform this evaluation we take into consideration the results of the ex-
periments that were conducted in the previous sections. The overall evaluation
discerns two cases. The first one (Figure) deals with reactive adaptation, com-
bining the results of getting the monitoring events, assessing them and storing

them to the KairosDB and enacting a suitable scaling action. The second one (Fig-

204 Chapter 9. Evaluation

Throughput - RHEL-7 64 image

Q "ty VM
0.500 wm="small" VM
k "medium" VM

0.400

0.600

o
o
=]
S

Throughput (ops/min)
-
8

0.100

0.000

No of instances

Figure 9.22: VM provision throughput / No of instances, VM flavor (RHEL-7 im-

age)

ure) deals with proactive adaptation and thus combines the following times:
(i) the time of getting the monitoring results and storing them to the KairosDB,
(ii) the time of querying the KairosDB to get an event stream, (iii) the time of dis-
covering the detrimental event patterns within the considered event stream, (iv)
the time of detecting such a pattern; and (v) the time of enacting a suitable scaling

action.

Collection of
o Assessment of .
monitoring - Adaptation
monitoring
events and Enactment
events

KairosDB storage

Figure 9.23: The reactive adaptation path of ECMAF

Collection and Discovery of Detection of
assessment of Storage to the . v critical event Adaptation
- N critical event
monitoring KairosDB . patterns at run- Enactment
patterns (offline) .
events time

Figure 9.24: The proactive adaptation path of ECMAF

The next experiments focus on the overall (end-to-end) performance of the

ECMATF, both for the reactive (Figures and) and proactive (Figures

9.3. Overall Evaluation 205

and) adaptation scenarios, meticulously analyzed in Section @ These two
scenarios, based on the traffic management running example, describe the over-
all functionality of the proposed framework and clearly indicates its efficient han-
dling in monitoring and adapting SBAs deployed on multiple Clouds.

The first experiment deals with the ECMAF’s performance on the reactive
adaptation scenario described in Section @ This scenario involves the imme-
diate handling of a response time violation of the Assessment service, hosted on
a OpenStackE VM. Thus, three times should be taken into account for the overall
performance, as illustrated in Figure : (i) the time to collect and assess the
monitoring events, (ii) the time to publish them to the Adaptation Engine and
store them into the TSDB; and (iii) the adaptation enactment time, i.e. the time of
the “scaling-out” action to deploy two more “tiny” VM instances with RHEL OS,

in order to address the demanding load.

Absolute times - Reactive adaptation scenario

200
180

=
D
o

E
£ 140
£ 120
T 100
S g0+ — — — Adaptation time (sec)
=
® 60 - — — — - ' B B BN | ' B B BN | K pub/sub + TSDB time (sec)
40 i Assessment time (sec)
20
0 e - -
Sk | 10k | 50k 100k Sk | 10k | 50k 100k Sk | 10k | 50k |100k:
1 node 3 TSDB nodes - Single- |3 TSDB nodes - Multi-
Cloud Cloud

Number of published events
Figure 9.25: Time distribution in a reactive adaptation scenario

The results in Figures and show that the majority of the end-to-end
time is consumed in executing the adaptation action. Independently of the TSDB

setup, the publishing time and the time to store the monitoring events into the

*http://www.openstack.org

206 Chapter 9. Evaluation

Times percentage - Reactive adaptation scenario
100%
90%
80%

8 70%

(]

8

S 60%

2

o 50%

o L

@ a0% - — — — - Adaptation time (sec)

-§30%-------- i pub/sub + TSDB time (sec)
20% T Assessment time (sec)

10%

0% . . .
5k |10k |50k 100k 5k |10k |50k 100k 5k |10k |50k 100K

1 node 3 TSDB nodes - Single- | 3 TSDB nodes -
Cloud Multi-Cloud

Number of published events

Figure 9.26: Percentage time distribution in a reactive adaptation scenario

TSDB, as well as the assessment time, do not significantly affect the overall perfor-
mance time in handling this reactive adaptation scenario. Only when publishing
a great amount of events (50k and 100k) the assessment time starts to have a sub-

stantial impact on the overall performance.

The second experiment deals with the ECMAF’s performance on the proactive
adaptation scenario described in Section @ This scenario involves the handling
of the critical event pattern consisting of a CPU usage warning violation of the
VM hosting the Monitoring service and available free memory violation of the
same VM. This event pattern has been discovered and related to cause a violation
of the execution time SLO of the Monitoring service. In this scenario five times
should be taken into account for the overall performance, as illustrated in Fig-
ure : (i) the time to collect and assess the monitoring events, (ii) the time to
store them into the TSDB, (iii) the pattern discovery time, (iv) the pattern detec-
tion time; and (v) the adaptation enactment time, i.e. the time of provisioning one
more instance of a “medium” Openstack VM with Fedora OS, thus preventing the

expected execution time violation.

9.3. Overall Evaluation 207

Absolute times - Proactive adaptation scenario

250

200

o
3
g 150
B Adaptation time (sec)
c
-§ 100 i Pattern Detection time (sec)
§ Pattern Discovery time (sec)
w
50 — — — -~ — —— — WTSDBtime (sec)
i Assessment time (sec)
o — — —
Sk 20k 50k 5k 20k 50k 5k 20k 50k
1 node 3 TSDB nodes - Single-Cloud | 3 TSDB nodes - Multi-
Cloud
Number of published events
Figure 9.27: Time distribution in a proactive adaptation scenario
Times percentage - Proactive adaptation scenario
100%
90%
B0%
o
i 70%
o
E 60%
'E 50% W Adaptation time (sec)
_§ 40% JPattern Detection time |sec)
é 30% [l Pattern Discovery time (sec)
w 20% W TSDB time (sec)
10% @ Assessment time (sec)
0%
1 node 3 TSDB nodes - Single- 3TSDB nodes -
Cloud Multi-Cloud

Number of published events

Figure 9.28: Percentage time distribution in a proactive adaptation scenario

The results in Figures and show that the majority of the end-to-end
time is consumed again in executing the adaptation action (“scaling-out” action).
Similarly to the reactive adaptation scenario, the times to store the monitoring
events into the TSDB and to detect the already discovered pattern, do not signifi-

cantly affect the overall performance time in handling this proactive adaptation

208 Chapter 9. Evaluation

scenario. Only when publishing a great amount of events (20k and 50k) the assess-
ment time and the pattern discovery time start to have a substantial impact on

the overall performance.

9.4 Conclusions

To sum up, this chapter evaluates the performance, as well as the accuracy
of the individual components of the ECMAF framework. The first two parts of
the chapter focus on the evaluation of the individual components of the ECMAF’s
monitoring and adaptation engines respectively, while the final part focuses on
the overall evaluation of the proposed framework. The overall results are in gen-
eral satisfactory regarding both regarding the reactive adaptation and proactive
adaptation paths. However, they are amenable to improvements and optimiza-

tions, as they are described in the next chapter.

Chapter 10

Conclusions and Future Research

Contents
[10.1 Synopsis of Contributiond 209
fl0.2 Directions for Future Work 213

10.1 Synopsis of Contributions

The primary objective of the research behind this dissertation is to motivate
the need for monitoring and adapting Service-based Applications (SBAs) deployed
on multiple Clouds, across all the functional layers of the SOA and Cloud stack.
This need led to the proposal of a new innovative monitoring and adaptation
framework for Cloud-based SBAs, named ECMAF. This framework advances ser-
vice research by addressing these two processes in a cross-layer way and addi-
tionally supports many challenging features in service monitoring and adapta-
tion, such as event pattern discovery and proactive adaptation, in a unified and
integrated manner.

In particular, in this dissertation we identify the major problems stemming
from the lack of cross-layer monitoring and adaptation techniques addressing
all the functional layers of the SOA and Cloud context. The conducted literature

review revealed a gap in this service area, due to the current mainly fragmented

209

210 Chapter 10. Conclusions and Future Research

approaches. Thus, it is crucial to explicitly relate different conceptual elements of
the SBAs and the exploited Cloud artifacts to interrelate them and discover cross-
cutting event patterns leading to specific SLO violations. To achieve this, there is
a need to develop high-level meta-models, which relate: (i) elements of the SBA
with the underlying infrastructure (local or virtualized), (ii) monitoring events
with suitable adaptation strategies and the corresponding mechanisms, that are
available at different layers; and (iii) monitoring events with their source com-
ponents. Based on these models, novel cross-cutting approaches can propagate
aligned monitoring events and reflect the relations and the impact of the adapta-

tion activities on the different layers.

The proposed ECMAF framework is able to detect monitoring events across
the SBA and Cloud functional layers and to derive suitable adaptation strategies
using the incorporated Adaptation Manager. ECMAF integrates monitoring mech-
anisms within each Cloud layer and across Cloud providers. A Monitor Manager
collects the timely synchronized monitoring events and stores them in a time-
series database (TSDB), which is responsible for the raw measurements’ storage
and the extraction of aggregated values, which, in turn, are utilized by the Met-
ric Aggregator and the Pattern Discoverer components. The former one assesses
the aggregate metrics against the thresholds defined in the SLOs of the corre-
sponding SLA document (expressed in the WSLA language), while the latter one
discovers frequent patterns of monitoring events leading to specific SLO viola-
tions. This pattern discovery technique confers proactive capabilities to the EC-
MAF, while the efficient rules management reinforces its reactive adaptation ca-
pabilities. The Monitor Manager also propagates important events to the inter-
ested subscribers such as the incorporated Adaptation Rule Manager. This com-
ponent is responsible for processing the output of the assessment process and the
detected critical event patterns. Then, it either triggers a simple adaptation rule
for addressing the single SLO violation or triggers a more complex adaptation,
addressing detected critical event pattern, thus proactively adapting the system

before the actual SLO violations occurs.

10.1. Synopsis of Contributions 211

The proposed architecture uses an event meta-model, a component meta-
model and an adaptation actions meta-model for the description of the moni-
toring events, the SBA’s components and the supported adaptation actions re-
spectively. The event meta-model describes the most common monitoring event
types and patterns that occur during the Cloud SBA execution. It is generic enough
and extensible to incorporate any other event type defined by domain-specific
service providers. The component meta-model describes the source components
for each event type that constitute the SBA system, as well as the dependencies
among the qualitative and quantitative attributes of a SBA and the monitored
source components producing events at run-time. The adaptation actions meta-
model describes the adaptation actions that can be enacted on each one of the
functional layers of a SBA. All these models facilitate: (i) the correlation between
events which lead to critical performance violations or faults, (ii) the mapping of
critical events or critical event patterns to suitable adaptation actions, (iii) the de-
scription of cross-layer dependencies between the various system components;
and (iv) the assessment of the current system state. Collectively, they capture
all information required for optimizing and adapting applications deployed over
multiple Clouds.

In a nutshell, the main benefits of the proposed monitoring and adaptation

framework for Cloud-based SBAs are the following:

« Distributed workload: The monitoring workload is distributed across the
functional layers. Furthermore, monitoring and adaptation may be dele-
gated to different components based on the monitored metrics and the en-

acted adaptation actions.

« Extensibility: ECMAF can integrate new monitoring and adaptation tech-
niques with the existing ones, while preserving its functionality and in-

tegrity.

« Cross-layer and Multi-Cloud capability: The framework is able to support
all Cloud and SOA layers.

212 Chapter 10. Conclusions and Future Research

* Pro-active and reactive adaptation: Discovery of warning event patterns
enables pro-active adaptation, while the efficient rules management rein-

forces both pro-active and reactive adaptation capabilities.

+ Functional and non-functional (QoS) properties are supported.

As far as the applicability of the ECMAF framework is concerned, it can have
a substantial impact to SOA stakeholders, especially to those who resort in multi-
Cloud deployments of their SBAs. This framework enables them to have a clear
view of how their applications perform in such distributed virtualized environ-
ments, where they do not have direct access to the underlying resources (i.e. host-
ing machines). Moreover, the incorporated pattern discovery mechanism assists
them in performing a root cause analysis in the monitoring events stream and
identifies the main source of malfunctions in this multi-tier environment. The
time synchronization techniques and the time-series database (TSDB) utilized by
the Monitoring Engine enable application developers to track the monitoring ex-
ecution history, maintaining the actual order of the monitoring events and thus
reliably discovering their causal relationships. Concerning SBA adaptation man-
agers, they can take advantage of the proposed framework, as it provides semi-
automatic adaptation capabilities, that can be exploited to define the desired map-
ping of simple SLO violations to suitable adaptation actions provided by the avail-
able adaptation mechanisms. Additionally, the incorporated event Pattern Dis-
coverer enables injecting proactiveness in a SBA adaptation engine via mapping
event patterns to respective adaptation strategies (involving other lower level
adaptation actions) through an automatic mapping mechanism. This mapping
lowers the adaptation cost and at the same time makes SBAs more attractive to
the potential customers.

The applicability and usability of the proposed framework in realistic settings
is backed up by the experimental evaluation that we conducted. The experiments
prove that all phases of the monitoring and adaptation process scale well and can

efficiently manage both simple and complex scenarios. The performance evalu-

10.2. Directions for Future Work 213

ation of the cross-layer monitoring framework in different deployment settings
shows that performance of TSDB scales while increasing the number of storage
servers and has minimal impact in a multi-Cloud scenario based on the traffic
management running example, involving different Cloud providers. As far as the
performance and accuracy of the pattern discovery process is concerned, the re-
sults show that they are optimal when suitably configured by appropriately se-
lecting the dataset and interval (window) size. Moreover, the evaluation of the
adaptation process reveal satisfactory results both in terms of reactive and of
proactive adaptation features. Finally, the overall evaluation, combining the re-
sults of the monitoring and adaptation experiments, shows that ECMAF can effi-
ciently handle the individual critical events, as well as the critical event patterns

causing specific SLO violations.

10.2 Directions for Future Work

As for future work, we are planning to optimize the proposed pattern discov-
ery technique in terms of accuracy and performance, so as to enable efficient
handling of all the monitored metrics within the optimized time ranges, as well
as to support larger intervals to accommodate the huge amount of monitoring
events detected in large-scale systems. The Adaptation Engine will be enhanced,
so as to be able to address more complex adaptation strategies spanning across
different functional layers. Moreover, we intend to employ a more comprehen-
sive rule processing system, that will extract semantically equivalent rules from

the simple adaptation rules defined by the SBA Adaptation Manager.

The three proposed meta-models are extensible enough to incorporate new
UML classes that will express additional aspects of the constantly evolving Cloud
environment or will be dictated by the SBA evolution process. Consequently, the
event meta-model could be enhanced to address new metrics supported by the
exploited monitoring mechanisms. Respectively, the component meta-model is

amenable to many additions based on the virtual resources provided by the con-

214 Chapter 10. Conclusions and Future Research

stantly evolving offerings of the Cloud providers. Similarly, the adaptation ac-
tions meta-model will be enriched with new adaptation actions provided by the
available Cloud adaptation enactment mechanisms.

As far as the monitored properties supported by the ECMAF framework are
concerned, we plan to exploit WSSL language [Baryannis and Plexousakis 2014],
which is a novel service specification language based on the fluent calculus, ad-
dressing issues related to the frame, ramification and qualification problems. One
of its main applications is in specifying pre-conditions and post-conditions of Web
services and verifying whether they are satisfied or not. Thus, we can support
more comprehensive adaptation rules addressing not only QoS aspects, but also
functional characteristics of the monitored SBAs.

Furthermore, as part of the work presented in [Zeginis et al. 2012a] and es-
pecially the extensions proposed for OWL-Q language [Kritikos and Plexousakis
2006], we plan to employ OWL-Q with new aspects addressing all the functional
and non-functional properties of an SBA and the penalties posed upon their vio-
lation. Moreover, another future challenge is the definition of composite OWL-Q
metric formulas, that can measure more complex aggregate metrics of the mon-
itored SBAs. These formulas can infer metric values for composite Web services,
exploiting the corresponding values of the constituted simple Web services [Zegi-
nis 2009].

Regarding the existing Monitor Manager, we plan to enrich the cross-layer
monitoring mechanism by developing a reporting tool that will enable system
administrators and business experts to observe the problematic situations and
perform statistical analysis. This analysis will also facilitate the Pattern Discov-
erer by injecting to the existing logic-based mechanism statistical results, that
can be used to limit the considered sets in extracting the critical event patterns.
In the long-term, we will exploit semantic descriptions to automate the various
activities of our approach and to derive new knowledge in terms of monitoring
events, concerning external services.

Finally, we are also planning larger-scale end-to-end multi-Cloud experiments

10.2. Directions for Future Work 215

involving long-running SBAs, other than the traffic management running exam-
ple. Based on these results, we expect to optimize the performance and accuracy
of the ECMAF framework. These experiments would also involve functional as-
pects of the measured SBAs, supported by the aforementioned WSSL language, as

well as event patterns combining functional and QoS properties.

216 Chapter 10. Conclusions and Future Research

Acronyms

ADT Average Daily Traffic

AOP Aspect-Oriented Programming

API Application Programming Interface
AQIl Air Quality Index

BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web Services
BPM Business Process Management

CEP Complex Event Processing

ECA Event-Condition-Action

EPD Event Pattern Detector

EPL Esper Event Processing Language
DaaS Data-as-a-Service

DRL Drools Rule Language

DSL Domain Specific Language

laaS Infrastructure-as-a-Service

IDE Integrated Development Environment
KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LBPD Logic-based Pattern Discovery

minsup Minimum Support

10.2. Directions for Future Work 217

MA Monitoring and Adaptation
MaaS Monitoring-as-a-Service
MDT Metric Derivation Tree

NaaS Network-as-a-Service

oS Operating System

PaaS Platform-as-a-Service

PS Prioriry Score

RTML Real Time Markup Language
QoS Quality of Service

SaaS Software-as-a-Service

SBA Service-based Application
SCC Service Composition and Coordination
SECaa$S Security-as-a-Service

SN Service Network

Sl Service Infrastructure

SLA Service-level Agreement

SLO Service-level Objective

SOA Service-Oriented Architecture
SOC Service-Oriented Computing
THI Temperature-Humidity Index

™ Traffic Management

218 Chapter 10. Conclusions and Future Research

TSDB Time-series Database

UML Unified Modeling Language
VM Virtual Machine

VSP Virtual Service Platform
WAR Web Application ARchive
WSLA Web Service Level Agreement
XaaS Everything-as-a-Service

XML XML Meta-data Interchange

Bibliography

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th International Conference on Very Large
Data Bases. VLDB "94. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
487-499.

Alcaraz Calero, J., K6nig, B., and Kirschnick, J. 2012. Using cross-layer techniques
for communication systems. In Premier reference source. Igi Global, Chapter

Cross-layer monitoring in Cloud computing.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., and Xu, M. 2007. Web services agreement specification

(ws-agreement). Tech. rep. March.

Artikis, A., Sergot, M., and Paliouras, G. 2010. A logic programming approach to ac-
tivity recognition. In Proceedings of the 2Nd ACM International Workshop on Events
in Multimedia. EIMM "10. ACM, New York, NY, USA, 3-8.

Artikis, A., Sergot, M. J., and Paliouras, G. 2012. Run-time composite event recog-
nition. In DEBS, F. Bry, A. Paschke, P. T. Eugster, C. Fetzer, and A. Behrend, Eds.
ACM, 69-80.

Artikis, A., Weidlich, M., Gal, A., Kalogeraki, V., and Gunopulos, D. 2013. Self-
adaptive event recognition for intelligent transport management. In BigData

Conference. IEEE, 319-325.

219

220 Bibliography

Barbon, F., Traverso, P., Pistore, M., and Trainotti, M. 2006. Run-time Monitoring

of Instances and Classes of Web Service Compositions. In ICWS. IEEE, 63-71.

Baresi, L. and Guinea, S. 2005. Dynamo: Dynamic Monitoring of WS-BPEL Pro-

cesses. In ICSOC. Springer, 478-483.

Baresi, L., Guinea, S., and Pasquale, L. 2007. Self-healing BPEL Processes with Dy-
namo and the JBoss Rule Engine. In ESSPE ‘07 in conjunction with the 6th ESEC/FSE
joint meeting. ACM, 11-20.

Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D., and Zeginis, C. 2013a. Lifecycle Management of Service-based Ap-

plications on Multi-Clouds: A Research Roadmap. In MultiCloud.

Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D., and Zeginis, C. 2013b. Lifecycle management of service-based appli-
cations on multi-clouds: a research roadmap. In Proceedings of the international

workshop on Multi-cloud applications and federated clouds. ACM, 13-20.

Baryannis, G. and Plexousakis, D. 2014. Fluent calculus-based semantic web ser-
vice composition and verification using wssl. In Service-Oriented Computing ICSOC
2013 Workshops. Lecture Notes in Computer Science Series, vol. 8377. Springer

International Publishing, 256-270.

Benbernou, S., Cavallaro, L., Hacid, M. S., Kazhamiakin, R., Kecskemeti, G., Pazat,
J.-L., Silvestri, F., Uhlig, M., and Wetzstein, B. 2008. PO-JRA-1.2.1, State of the
Art Report, Gap Analysis of Knowledge on Principles, Techniques and Method-

ologies for Monitoring and Adaptation of SBAs. Tech. rep., S-cube. July.

Bettini, C., Wang, X. S., Jajodia, S., and Lin, J.-L. 1998. Discovering frequent event
patterns with multiple granularities in time sequences. IEEE Trans. Knowl. Data

Eng. 10, 2, 222-237.

Blair, G., Bencomo, N., and France, R. B. 2009. Models@ run.time. Computer 42, 10,
22-27.

Bibliography 221

Bo, H. 2011. Stream Database Survey. Tech. rep., University of Waterloo, Com-

puter Science Department.

Bratanis, K., Dranidis, D., and Simons, A. J. H. 2011. Slas for cross-layer adapta-
tion and monitoring of service-based applications: a case study. In QASBA. ACM

International Conference Proceeding Series. ACM, 28-32.

Carzaniga, A., Papalini, M., and Wolf, A. L. 2011. Content-based publish/subscribe
networking and information-centric networking. In Proceedings of the ACM SIG-

COMM Workshop on Information-centric Networking. ICN "11. ACM, 56-61.

Chaturvedi, S., Prasad, K. H., Faruquie, T. A., Chawda, B., Subramaniam, L. V., and
Krishnapuram, R. 2013. Automating pattern discovery for rule based data stan-

dardization systems. In ICDE. IEEE Computer Society, 1231-1241.

Cristian, F. 1989. Probabilistic clock synchronization. Distributed Computing 3, 146-

158.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weerawarana, S. 2005.
Colombo: Lightweight middleware for service-oriented computing. IBM Systems

Journal 44, 4, 799-820.

Danylevych, O., Leymann, F., and Nikolaou, C. 2011. A framework of views on ser-
vice networks models. In EOMAS. Lecture Notes in Business Information Pro-

cessing Series, vol. 88. Springer, 21-34.

Deri, L., Mainardi, S., and Fusco, F. 2012. tsdb: A Compressed Database for Time
Series. LNCS. Springer, 143-156.

Dib, D., Parlavantzas, N., and Morin, C. 2012. Towards multi-level adaptation for
distributed operating systems and applications. In ICA3PP (2). Lecture Notes in

Computer Science Series, vol. 7440. Springer, 100-109.

Dranidis, D., Kourtesis, D., and Ramollari, E. 2007. Formal verification of web ser-

vice behavioural conformance through testing.

222 Bibliography

Dranidis, D., Metzger, A., and Kourtesis, D. 2010. Enabling proactive adaptation
through just-in-time testing of conversational services. In ServiceWave. Lecture

Notes in Computer Science Series, vol. 6481. Springer, 63-75.
Drools. 2014. Drools expert user guide. Tech. rep.

Durand, J., Otto, A., Pilz, G., and Rutt, T. 2014. Cloud application management for
platforms. OASIS.

Dustdar, S. 2014. Principles and methods for elastic computing. In CBSE’14, Proceed-
ings of the 17th International ACM SIGSOFT Symposium on Component-Based Software

Engineering (part of CompArch 2014). 1-2.
Esper. 2014. Esper reference version 5.0.0.

Farrell, A., Sergot, M., Salle, M., and Bartolini, C. 2004. Using the Event Calculus
for the Performance Monitoring of Service-Level Agreements for Utility Com-

puting. In WEC. Vol. 6. Citeseer.

Fernandez, E. B. 2012. Introduction to the special issue on recent advances in web

services. Future Internet 4, 3, 618-620.

Freitas, A. L., Parlavantzas, N., and Pazat, J.-L. 2011. Cost reduction through sla-
driven self-management. In ECOWS. IEEE, 117-124.

Fugini, M. and Siadat, H. 2009. Sla contract for cross-layer monitoring and adap-
tation. In Business Process Management Workshops. Lecture Notes in Business In-

formation Processing Series, vol. 43. Springer, 412-423.

Garefalakis, P. and Magoutis, K. 2012. Improving datacenter operations manage-

ment using wireless sensor networks. In iThings.

Gjerven, E., Rouvoy, R., and Eliassen, F. 2008. Cross-layer self-adaptation of

service-oriented architectures. In MW4SOC. ACM, 37-42.

Bibliography 223

Guinea, S., Kecskemeti, G., Marconi, A., and Wetzstein, B. 2011. Multi-layered mon-
itoring and adaptation. Lecture Notes in Computer Science Series, vol. 7084.

Springer, 359-373.

Gusella, R. and Zatti, S. 1986. An election algorithm for a distributed clock syn-

chronization program. 364-371.

Hamilton-Wright, A. and Stashuk, D. W. 2008. Statistically based pattern discov-
ery techniques for biological data analysis. In Applications of Computational Intelli-
gence in Biology. Studies in Computational Intelligence Series, vol. 122. Springer,

3-31.

Hasselmeyer, P., Katsaros, G., Koller, B., and P., W. 2012. Using cross-layer tech-
niques for communication systems. Premier reference source. Igi Global, Chap-

ter Cloud monitoring.

Hellerstein, J. L., Ma, S., and Perng, C.-S. 2002. Discovering actionable patterns in

event data. IBM Systems Journal 41, 3, 475-493.

Hielscher, J., Kazhamiakin, R., Metzger, A., and Pistore, M. 2008. A Framework for
Proactive Self-adaptation of Service-Based Applications Based on Online Test-
ing. In ServiceWave (2008-12-14), P. Mahonen, K. Pohl, and T. Priol, Eds. Lecture

Notes in Computer Science Series, vol. 5377. Springer, 122-133.

Horn, P. 2001. Autonomic Computing: IBM’s Perspective on the State of Informa-

tion Technology. Tech. rep.

Huhns, M. and Singh, M. 2005. Service-oriented computing: key concepts and

principles. IEEE Internet Computing 9, 1, 75-81.

Inzinger, C., Hummer, W., Satzger, B., Leitner, P., and Dustdar, S. 2014. Generic
event-based monitoring and adaptation methodology for heterogeneous dis-

tributed systems. Software: Practice and Experience 44, 7, 805-822.

Inzinger, C., Satzger, B., Leitner, P., Hummer, W., and Dustdar, S. 2013. Model-
based adaptation of cloud computing applications. In MODELSWARD. 351-355.

224 Bibliography

Jiang, S., Hallsteinsen, S., and Lie, A. 2011. An experimental facility for cross-layer
adaptation of service oriented distributed systems. In NIK. Tapir Akademisk

Forlag, 97-108.
Josh, A. 2012. Types of cloud computing: Private, public and hybrid clouds.

Karastoyanova, D. and Leymann, F. 2009. BPEL'n’Aspects: Adapting Service Or-

chestration Logic. In ICWS (2009-11-12). IEEE.

Karp, R. M. and Rabin, M. . 1987. Efficient randomized pattern-matching algo-

rithms. IBM Journal Research and Development 31, 2, 249-260.

Kazhamiakin, R., Pistore, M., and Zengin, A. 2009a. Cross-layer adaptation and
monitoring of service-based applications. In MONA+ Workshop of ICSOC/Service-

Wave. LNCS Series, vol. 6275. 325-334.

Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., and Leymann, F.
2009b. Adaptation of service-based applications based on process quality fac-
tor analysis. In Proceedings of the 2009 International Conference on Service-oriented

Computing. ICSOC/ServiceWave’09. Springer-Verlag, 395-404.

Keller, A. and Ludwig, H. 2003. The wsla framework: Specifying and monitoring
service level agreements for web services. Journal of Network and Systems Man-

agement 11, 1, 57-81.

Keogh, E., Chu, S., Hart, D., and Pazzani, M. 1993. Segmenting Time Series: A Sur-
vey and Novel Approach. In Data mining in Time Series Databases. Publishing Com-

pany, 1-22.

Kongdentha, W., Motahari-Nezhad, H. R., Benatallah, B., Casati, F., and Saint-Paul,
R. 2009. Mismatch Patterns and Adaptation Aspects: A Foundation for Rapid

Development of Web Service Adapters. IEEE Trans. Serv. Comput. 2, 94-107.

Konsolaki, K. 2012. Monitoring qos for composite web services. M.S. thesis, Uni-

versity of Crete, Greece.

Bibliography 225

Kopetz, H. and Ochsenreiter, W. 1987. Clock synchronization in distributed real-

time systems. IEEE Trans. Computers 36, 8, 933-940.

Kritikos, K. and Plexousakis, D. 2006. Semantic QoS Metric Matching. In ECOWS.

IEEE Computer Society, Zurich, Switzerland.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21, 7, 558-565.

Laxman, S., Sastry, P. S., and Unnikrishnan, K. P. 2007. Discovering frequent gen-
eralized episodes when events persist for different durations. IEEE Trans. Knowl.

Data Eng. 19, 9, 1188-1201.

Leitner, P., Hummer, W., and Dustdar, S. 2013. Cost-based optimization of service

compositions. IEEE T. Services Computing 6, 2, 239-251.

Leitner, P., Michlmayr, A., Rosenberg, F., and Dustdar, S. 2010a. Monitoring, pre-
diction and prevention of sla violations in composite services. In ICWS. IEEE

Computer Society, 369-376.

Leitner, P., Wetzstein, B., Karastoyanova, D., Hummer, W., Dustdar, S., and Ley-
mann, F. 2010b. Preventing sla violations in service compositions using aspect-
based fragment substitution. In ICSOC. Lecture Notes in Computer Science Se-

ries, vol. 6470. 365-380.

Li, H.-F., Lee, S.-Y., and Shan, M.-K. 2004. An efficient algorithm for mining fre-

quent itemsets over the entire history of data streams.

Magoutis, K., Devarakonda, M. V., Joukov, N., and Vogl, N. G. 2008. Galapagos:
Model-driven discovery of end-to-end application - storage relationships in dis-

tributed systems. IBM Journal of Research and Development 52, 4-5, 367-378.

Mahbub, K. and Spanoudakis, G. 2007. Monitoring WS-Agreements: An Event Calculus-

Based Approach. Springer.

226 Bibliography

Manku, G. S. and Motwani, R. 2002. Approximate frequency counts over data

streams. 346-357.

Marquezan, C. C., Wessling, F., Metzger, A., Pohl, K., Woods, C., and Wallbom, K.
2014. Towards exploiting the full adaptation potential of cloud applications.
In Proceedings of the 6th International Workshop on Principles of Engineering Service-

Oriented and Cloud Systems. PESOS 2014. 48-57.

Mell, P. and Grance, T. 2011. The nist definition of cloud computing. Tech. rep.,
National Institute of Standards and Technology (NIST).

Metsch, T. and Edmonds, A. 2011. Open cloud computing interface - infrastruc-

ture. OCCI-WG.

Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. 2010. End-to-end sup-
port for qos-aware service selection, binding, and mediation in vresco. IEEE T.

Services Computing 3, 3, 193-205.

Mok, A. K. and Liu, G. 1997. Efficient run-time monitoring of timing constraints.

Real-Time and Embedded Technology and Applications Symposium, IEEE 0, 252.

Moscato, F., Aversa, R., Martino, B. D., Fortis, T.-F., and Munteanu, V. 1. 2011. An

analysis of mosaic ontology for cloud resources annotation. In FedCSIS. 973-980.

Moser, O., Rosenberg, F., and Dustdar, S. 2008. Non-intrusive Monitoring and Ser-

vice Adaptation for WS-BPEL. In WWW. ACM, 815-824.

OASIS-BPEL. 2007. Web Services Business Process Execution Language Version
2.0. Specification, Organization for the Advancement of Structured Informa-

tion Standards (OASIS).
OWL. 2012. Owl 2 web ontology language document overview. Tech. rep.

Papadogiannakis, A., Vasiliadis, G., Antoniades, D., Polychronakis, M., and

Markatos, E. P. 2012. Improving the performance of passive network moni-

Bibliography 227

toring applications with memory locality enhancements. Computer Communi-

cations 35, 1, 129-140.

Papazoglou, M. P. 2008. Web Services: Principles and Technology. Pearson, Prentice

Hall.

Patnaik, D., Ramakrishnan, N., Laxman, S., and Chandramouli, B. 2012. Streaming
algorithms for pattern discovery over dynamically changing event sequences.

CoRR abs/1205.4477.

Popescu, R., Staikopoulos, A., Brogi, A.,0011,P.L.,and Clarke, S. 2012. A formalized,

taxonomy-driven approach to cross-layer application adaptation. TAAS 7, 1, 7.

Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., and Clarke, S. 2010. Taxonomy-

driven Adaptation of Multi-Layer Applications using Templates. In SASO.

Richardson, 1. and Lane, S. 2009. CD-JRA-1.1.4, Coordinated design knowledge
models for software engineering and service-based computing . Tech. rep., S-

cube. August.

Romer, K. 2006. Distributed mining of spatio-temporal event patterns in sensor
networks. In Euro-American Workshop on Middleware for Sensor Networks in con-

junction with DCOSS 2006. San Francisco, USA, 103-116.

Rouvoy, R.,Barone, P.,Ding, Y., Eliassen, F., Hallsteinsen, S. 0., Lorenzo, J., Mamelli,
A.,and Scholz, U. 2009. Music: Middleware support for self-adaptation in ubiqui-
tous and service-oriented environments. In Software Engineering for Self-Adaptive

Systems. Lecture Notes in Computer Science Series, vol. 5525. Springer, 164-182.

Romer, K. 2008. Discovery of frequent distributed event patterns in sensor net-
works. In EWSN (2008-01-27). Lecture Notes in Computer Science Series, vol.

4913. Springer, 106-124.

Sakurai, S., Ueno, K., and Orihara, R. 2008. Discovery of time series event patterns
based on time constraints from textual data. In Information and Mathematical

Sciences. Studies in Computational Intelligence.

228 Bibliography

Schmieders, E., Micsik, A., Oriol, M., Mahbub, K., and Kazhamiakin, R. 2011. Com-
bining sla prediction and cross layer adaptation for preventing sla violations.
In 2nd Workshop on Software Services: Cloud Computing and Applications based on

Software Services.

ShaikhAli, A., Rana, O. F., Al-Alj, R., and Walker, D. W. 2003. Uddie: An extended
registry for web services. In Proceedings of the 2003 Symposium on Applications and

the Internet Workshops (SAINT'03 Workshops). IEEE Computer Society.

Shanahan, M. 1999. The Event Calculus Explained. Artificial intelligence today, 409-

430.

Sim, A. T. H., Indrawan, M., Zutshi, S., and Srinivasan, B. 2010. Logic-based pattern

discovery. IEEE Trans. Knowl. Data Eng. 22, 6,798-811.

Song, H., Raj, A., Hajebi, S., Clarke, A., and Clarke, S. 2013. Model-based cross-layer
monitoring and adaptation of multilayer systems. Science China Information Sci-

ences 56, 8, 1-15.

Spanoudakis, G. and Mahbub, K. 2006. Non-Intrusive Monitoring of Service-Based

Systems. International Journal of Cooperative Information Systems 15, 3, 325-358.

Taher, Y., Boubeta-Puig, J., van den Heuvel, W.-]., Ortiz, G., and Medina-Bulo, 1.
2013. A model-driven approach for web service adaptation using complex event
processing. In ESOCC Workshops. Communications in Computer and Information

Science Series, vol. 393. Springer, 346-359.

Tosic, V., Pagurek, B., Esfandiari, B., Patel, K., and Ma, W. 2002. Web service offer-
ings language (wsol) and web service composition management (wscm). In In

Proc. of the Object- Oriented Web Services Workshop at OOPSLA 2002.

Treiber, M. 2009. Models and mechanisms for coordinated service compositions.

S-Cube Deliverable CD-JRA-2.2.2.

Villari, M., Brandic, ., and Tusa, F. 2012. Achieving Federated and Self-Manageable

Cloud Infrastructures: Theory and Practice. 1GI Global.

Bibliography 229

VMware. 2011. Timekeeping in vmware virtual machines. Tech. rep. December.

Vouk, M. A. 2008. Cloud computing - issues, research and implementations.

CIT 16, 4, 235-246.

Webb, G.I. and Zhang, S. 2005. K-optimal rule discovery. Data Mining and Knowledge

Discovery 10.

Wei, Y. and Blake, M. B. 2010. Service-oriented computing and cloud computing:

Challenges and opportunities. IEEE Internet Computing 14, 6, 72-75.

Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, L., Dustdar, S., and Leymann, F.
2009. Monitoring and analyzing influential factors of business process perfor-
mance. In Enterprise Distributed Object Computing Conference, 2009. EDOC '09. IEEE

International. 141 -150.
White, S. 2004. Introduction to bpmn. Tech. rep.

Yousif, T. A. 2013. Application of thom’s thermal discomfort index in khartoum

state, sudan. Journal of forest products and industries 2, 5, 36-38.

Zaki, M. J. and Hsiao, C.-J. 2002. Charm: An efficient algorithm for closed itemset

mining. In SDM. SIAM.

Zeginis, C. 2009. Monitoring the QoS of Web Services using SLAs - Computing

metrics for composed services. M.S. thesis, University of Crete, Greece.

Zeginis, C., Konsolaki, K., Kritikos, K., and Plexousakis, D. 2011. ”ECMAF: An
Event-Based Cross-Layer Service Monitoring and Adaptation Framework”. In

NFPSLAM-SOC. Springer.

Zeginis, C., Konsolaki, K., Kritikos, K., and Plexousakis, D. 2012a. Ecmaf: An event-
based cross-layer service monitoring and adaptation framework. In Proceed-
ings of the 2011 International Conference on Service-Oriented Computing. ICSOC'11.

Springer-Verlag, Berlin, Heidelberg, 147-161.

230 Bibliography

Zeginis, C., Konsolaki, K., Kritikos, K., and Plexousakis, D. 2012b. Towards proac-

tive cross-layer service adaptation. In WISE. Vol. 7651. Springer, 704-711.

Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K., and Plexousakis,
D. 2013a. Towards cross-layer monitoring of multi-cloud service-based appli-

cations. In ESOCC. 188-195.

Zeginis, C., Kritikos, K., and Plexousakis, D. 2014a. Event pattern discovery for
cross-layer adaptation of multi-cloud applications. In Service-Oriented and Cloud
Computing. Lecture Notes in Computer Science Series, vol. 8745. Springer Berlin

Heidelberg, 138-147.

Zeginis, C., Kritikos, K., and Plexousakis, D. 2014b. Event Pattern Discovery of Multi-
cloud Service-based Applications. Advances in Systems Analysis, Software Engi-

neering, and High Performance Computing. IGI-global.

Zeginis, C. and Plexousakis, D. 2010a. Towards realizing ws cross-layer monitoring

and adaptation. In PhD Symposium of ECOWS’10.

Zeginis, C. and Plexousakis, D. 2010b. Web service adaptation : State of the art and

research challenges. Tech. rep., FORTH.

Zeginis, D., D’Andria, F., Bocconi, S., Gorronogoitia Cruz, J., Collell Martin, O., Gou-
vas, P., Ledakis, G., and Tarabanis, K. 2013b. A user-centric multi-Paa$S applica-
tion management solution for hybrid Multi-Cloud scenarios. Scalable Computing:

Practice and Experience 14, 1, 17-32.

Zengin, A., Marconi, A., and Pistore, M. 2011, CLAM: Cross-layer Adaptation Man-

ager for Service-Based Applications. In QASBA "11. ACM, 21-27.

Zhou, C., Chia, L. T., Silverajan, B., and Lee, B. S. 2003. UX—An Architecture Provid-
ing QoS-Aware and Federated Support for UDDI. In the International Conference

on Web Services (ICWS03).

Appendices

231

€ee

Appendix A

Event Meta-Model Description

Table A.1: Event meta-model: classes and properties analysis

Class: description

Property

Description

Relationship
with other
classes / class

properties

Event: A superclass of every monitored event

eventID

the unique identifier of a monitored event

ordering Identifies the ordering of the two involved events (sequential or parallel) -
logicalop The logical operator (AND, OR) combining the two involved events -
CompositeEvent: A complex event
timelnterval The maximum time interval in millisecond for waiting for the second event to appear | —
comprising two or more Events
firstEvent The first of the two events comprising a composite event Event class
secondEvent The first of the two events comprising a composite event Event class
name The name of the metric of the event (e.g. average execution time) -
timestamp The unix time of the event occurrence -
SimpleEvent: A simple monitored event
criticality The criticality (success, warning or critical) of the monitored event determined after | —
(either raw or aggregate)
assessement
hasLayer Defines the layer of the monitored event, either a Cloud or a SOA one Layer class
hasComponent The source component that produced the event (they defined in the respective com- | Component class
ponent model)
Layer: The SOA or Cloud layer, where the mon- | name The name of the layer, i.e., [aaS, PaaS, BPM or SCC -
itored event was detected
componentID The unique identifier of the source component (e.g. 7001), as it is defined in the com- | componentID property

Component class: The source component of
the respective application’s component model

that emitted the event

ponent model

of the application’s com-

ponent model

vee

uonydriosaq [9poN-eIdIN JuaAT v xipuaddy

componentName The name of the source component (e.g. FlexiantVM_CPU) as it is defined in the com- | componentName prop-
ponent model erty of the application’s
component model
state The state of the component, i.e., active or inactive type property of the ap-
plication’s component
model
type The type of the source component defines its high-level Cloud layer, i.e., IaaS, PaaS | IaaS_component,
or SaaS PaaS_component
or SaaS_component
classes of the appli-
cation’s component
model
Functional_event: An event related to func- | type The type of the functional event, as it is described by the class’ subclasses (e.g. soft- | —
tional characteristics of the application wareEvent, I/O_event, HardwareEvent, etc.)
NonFunctional_event: An event related to propertyName The name of the related property/metric (e.g. throughput, availability, etc.) -
non-functional/performance characteristics propertyURI The OWL_Q URI defining the property/metric definition -
of the application (e.g. KPI-violation, operator The operator that should be applied on the assessment of the event -

SLA-violation or ContextModification)

Gee

constraintURI The WSLA URI defining the SLO and its assessment function -
NumericNF_event: A numeric non-functional | detectedNumericValue The value measured by the corresponding monitoring mechanism subclass of
event (e.g. service throughput, execution warningSLO The warning threshold of the SLO NonFunctional_event
time, etc.) criticalSLO The critical threshold of the SLO elass

patternID The unique identifier of the event pattern -
EventPattern: An event pattern discovered

eventNumber The number of events comprising the event pattern -
mapping to an association rule

frequency The number of occurrences of the event pattern in a specific event stream -

causing_event

The causing event (either simple or composite) leading to a specific SLO violation

Event class

caused_event

The caused event (i.e. SLO violation) of the discovered event pattern

SimpleEvent class

ruleID The unique identifier of the adaptation rule -
AdaptationRule: The adaptation rule name The name of the adaptation rule (i.e. an if...then clause) -
mapping to the discovered event pattern hasEventPattern The property mapping the adaptation rule with the corresponding event pattern SimpleEvent class
fireActions The property mapping the adaptation rule with the corresponding fired adaptation | —
actions
AdaptationAction: The adaptation action actionID The unique identifier of the adaptation action -
dictated by the corresponding adaptation rule | name The name of the adaptation action (e.g. FlexiantVM scaling up) -

Table A.1: Event meta-model: classes and properties analysis

9¢C

uonydriosaq [9poN-eIdIN JuaAT v xipuaddy

LET

Appendix B

Component Meta-Model Description

Table B.1: Component meta-model: classes and properties analysis

Class: description Property Description Relationship
with other
classes / class
properties

componentID the unique identifier of a component -

Component: A superclass of every component

producing events

componentName The name of the component (e.g. FlexiantVM CPU) -
state The state of the component (i.e. active or inactive) -

IaaS_component: An Iaa$S layer component - - subclass of Infras-
tructureComponent
class

AssistantDevice: An assistant deviceusedbya | — - subclass of Infras-

service or software (e.g. temperature sensor) tructureComponent
class

InfrastructureComponent: A super class at | — - subclass of Component

the infrastructure layer class

0s The operating system running on the VM -
0S_version The version of the operating system(e.g. Ubuntu 12.04) -

VM: A virtual machine hosting an application

part

0S_latestVersion

The latest version of the operating system(e.g. Ubuntu 14.04)

provider The provider of the VM (e.g. Flexiant) -
datacenter The VM’s datacenter -
cluster The cluster of the VM (e.g. “low”, “medium”, “high”) -
location The country location of the VM (e.g. the UK) -

8¢C

uonydriosaq [9poN-e3aN Juauoduwo) ‘g xipuaddy

includesCompute

The compute node of the VM

Compute class

includesStorage

The storage node of the VM

Storage class

includesNetwork The network node of the VM Network class

hasVMSLA Defines the SLA of the non-functional characteristics of the VM SLA class
Compute: The compute node of a VM (i.e.CPU | — - contained class of VM
or memory) class

cores The number of the CPU’s cores (e.g. 2 or 4)

frequency The frequency of the CPU (e.g. 2,4GHz) subclass of compute
CPU: The CPU of the hosting VM

architecture The architecture of the CPU (i.e. 32bit or 64bit) class

upgradeable Aboolean value defining the if the CPU can be upgraded based on the moth-

erboard’s chipsets interface

amount The total amount of memory (e.g. 8GB)

maxMemory The max RAM memory supported by the motherboard subclass of compute
Memory: The RAM memory of the hosting VM

frequency The frequency of the RAM memory (e.g. 1333MHz) class

availableSlots

The number of motherboard’s available RAM slots

Storage: The storage disk of the hosting VM

capacity

The capacity of the disk (e.g. 1TB)

type

The type of the disk (i.e. HDD or SSD)

containing class of VM

class

6¢C

speed The rpm speed of the disk (e.g. 7200rpm)
bandwidth The internet connection bandwidth (e.g. 10Mbit/s)
containing class of VM
wirelessProtocol The security protocol of the wireless network (e.g. WPA2, WEP)
class
Network: The network of the hosting VM ISP The ISP of the network
availableISPs All the available ISPs

router: The router transmitting the network’s

routerInterface

The router’s interface (e.g. ethernet, token ring))

firmwareVersion

The version of the router’s firmware

subclass of network

bandwidth firmwareLatestVersion The latest version of the router’s firmware class
Switch: The switch used in the network ports The number of switch’s ports subclass of network
class
batteryLevel The sensor’s battery percentage level
frequency The current transmitting frequency of the measured values Subclass of the
Sensor: A sensor utilized by a service or maxFrequency The max transmitting frequency of the measured values supported by the | AssistantDevice class
software sensor
type The sensor’s type (e.g. temperature sensor)
removableBattery Defines a removable or a built-in battery
rechargeable Defines the rechargeability of the battery

ove

uonydriosaq [9poN-e3aN Juauoduwo) ‘g xipuaddy

MobileDevice: A mobile device utilized by a

service or software

0s

The operating system of the mobile device

0S_version

The current version of the mobile device’s 0S

0S_latestVersion

The latest version of the mobile device’s 0S

subclass of the

AssistantDevice class

CellPhone: A cell phone utilized by a service

or software for alerting purposes

supported network The familiar network operator of the cell phone (e.g. cosmote, vodafone)
availableNetworks The available network operators
maxMemory The maximum memory supported by the cell phone (i.e. SD card storage)

memoryIntensiveApps

A list of the most memory intensive running applications

storagelntensiveApps

A list of the applications occupying high internal capacity

subclass of the

MobileDevice class

GPS: A GPS device utilized by a service or

software for alerting purposes

current satellite

The name of the satellite currently providing the geographical location

availableSatellites

The available satellites

mapsProvider

The provider of the GPS’s maps (e.g. Cygic, TomTom)

mapsVersion

The version of the installed maps

mapsLatestVersion

The latest version of the installed maps

subclass of the

MobileDevice class

Tablet: A tablet device utilized by a service or

software for alerting purposes

memoryIntensiveApps

A list of the most memory intensive running applications

storagelntensiveApps

A list of the applications occupying high internal capacity

PaaS_component: A PaaS layer component

(e.g. Datastore, Appserver)

Subclass of component

class

8 44

Platform: A cloud platform providing a set of

add-ons (i.e. PaaS components)

provider The Paa$ provider (e.g. Heroku, Windows Azure) -
URL The platform’s URI -
Description A brief description of the platform -
verticalScaling Defines the vertical scaling capabilities of the platform -

horizontalScaling

Defines the horizontal scaling capabilities of the platform

providesComponent Defines the PaaS components provided by the specific platform -
SaaS_component: A Saas layer component runsOnPaaS The Paa$S where the SaaS component runs on PaaS_component class
(e.g. aservice, an SLA, etc.) runsOnlaas The IaaS where the SaaS component runs on laaS_component class
BPM_Component: A BPM component (e.g. | — - subclass of
Business Process, KPI) SaaS_component
class
BusinessGoal: A functional goal of the busi- | includesBG Defines sub-goals of the business goal contained class of Busi-

ness process

nessGoal class

BusinessProcess: A business process defining

the workflow of a SBA

includesBusinessProcess

Defines sub-processes of the SBA main business process

contained class of the

BusinessProcess class

includesControlFlowPattern

Defines the control flow patterns of the BP

ControlFlowPattern

class

ve

uonydriosaq [9poN-e3aN Juauoduwo) ‘g xipuaddy

includesDataFlow

Defines the data flows of the BP

DataFlow class

includesTask

Defines tasks comprising the BP

Task class

requiresin Defines the input required by the BP Input class
providesOut Defines the output provided by the BP Output class
hasBG Defines the business goal of the BP BusinessGoal class
hasKPI Defines the KPIs of the SBA’s business process KPI class
version Defines version of the BP model -

BP_model: The model of the SBA’s BP
describesBP Defines the BP described by the model BusinessProcess class
metric Defines the specific metric of the KPI -

KPI: A KPI defining non-functional operator Defines the operator to be used during the KPI assessment -

constraints for the BP threshold Defines the threshold of the KPI constraint -
mapsToSLO Defines SLO mapping to this KPI -

Task: A single task/activity of the BP mapsToOperation Defines the operation realizing the specific task Operation class
performsTask Defines the task realized by the specific role Task class

Role: The role performing the specific
name The name of the role -

task/activity
availability Defines the availability of the role -

eve

DataFlow: A data flow between two or more ac-

tivities of the BP

includesDataBinding

Defines the binding of the data flow

containing class of the

DataFlow class

DataBinding: The binding connecting an bindsToln Defines the input of the data binding Input class
output of one service with the input of
P P bindsToOut Defines the output of the data binding Output class

another service

type Defines the type of the control flow pattern (e.g. sequential, parallel -
ControlFlowPattern: A control flow pattern condition The condition to be assessed for the pattern selection -
between the BP’s activities includesComponentPositioning | Defines the positioning of a task in the BP -

includesCF_positioning Defines the positioning of the control flow in the BP -

position The exact position in the BP -
ComponentPositioning: The positioning of a

value The assessed value to select this component positioning -
component (i.e. task) in the BP

bindsToTask Defines the positioning of the exact task in the BP Task class
CF_positioning: The positioning of a control position The exact position in the control flow containing class of the

; ControlFlowPattern
flow in the BP value The assessed value to select this control flow positioning -
la

type The input type (e.g. integer, string) -
Input: The input required by a service or a BP stringValue The string value of a service or activity input -
activity numValue The numeric value of a service or activity input -

vve

uonydriosaq [9poN-e3aN Juauoduwo) ‘g xipuaddy

mapsToln Defines the mapping of inputs between a BP activity and the corresponding | Input class
service
type The output type (e.g. integer, string) -
stringValue The string value of a service or activity output -
Output: The output provided by a service or a
numValue The numeric value of a service or activity output -
BP activity
mapsToln Defines the mapping of an input and an output between a BP activity and | Input class
the corresponding service
mapsToOut Defines the mapping of outputs between a BP activity and the correspond- | Input class
ing service
URI The URI for accessing the web service -
WSDLbinding The type of WSDL binding (i.e. Document, RPC) -

Service: A web service realizing a BP activity

validBindingStyles

The valid binding styles of the service

containsOperations Defines the operations of the web service Operation class
requiresin Defines the input of the web service Input class
providesOut Defines the output of the web service -

hasSLA Defines the agreed SLA between the service provider and consumer SLA class

requiresAssistantDevice

Defines the assistant device required for the service’s functionality

AssistantDevice class

i} 44

SimpleService: A simple web service

Subclass of Service class

CompositeService: A composite web service

containsControlFlowPattern

The control flow pattern linking the individual simple web services

ControlFlowPattern

class

containsDataFlow

The data flow linking the individual simple web services

DataFlow class

Operation: An individual operation of a web requiresin The input required by the operation -
service realizing a BP activity providesOut The output provided by the operation -
SCC_component: An SCC component (e.g. ser- | — - subclass of
vice, operation) SaaS_component
class

version The current version of the software
Software: A software utilized by an SBA web latestVersion The latest stable version of the software subclass of
service (e.g. CEP engine, rule engine) configuration The proper configuration of the software for the SBA execution SaaS_component class

usesAssistantDevice

An assistant device required by the software (e.g. special sensor)

Profile: The profile describing the functional
and non-functional characteristics of a web

service

describesService

Defines the service described by the profile

Service class

44

uonydriosaq [9poN-e3aN Juauoduwo) ‘g xipuaddy

FunctionalProfile: The functional profile of a

web service

subclass of Profile class

object The object for which the condition holds -
Conditions: The conditions realizing the operator The operator of the condition (e.g. Number of inputs=2 -
functional profile value The value/threshold of the condition -

describesProfile The functional profile of the conditions FunctionaProfile class
Preconditions: The preconditions that must | — - subclass of Conditions
hold for the specific service class
Postconditions: The postconditions that must | — - subclass of Conditions
hold for the specific service class
NonFunctionalProfile: The non functional | — - subclass of Profile class
profile of a web service describing perfor-
mance characteristics
Constraint: Defines a constraint of the non | describesNFprofile The non functional profile referred by the constraint NonFunctionalProfile
functional profile class

metric The metric of the simple constraint -
SimpleConstraint: A simple constraint

threshold The constraint’s threshold -

mapping to an SLO

Lve

operator

The constraint’s operator

mapsToSlo

The SLO mapping to the constraint

SLO class

CompositeConstraint: A composite
constraint containing other individual

frnint
H1SEFats

logicalOperator

The logical operator linking the individual constraints (e.g. AND, OR)

containsConstraint

Defines the containing constraints of the composite constratint

SLA: The SLA contracted by the SBA provider

and the consumer

The SBA’s consumer

consumer -
provider The SBA’s provider -
date The date of the SLA contract -

validity_period

The valdiity period of the SLA

containsServiceLevel

The levels of an SLA

ServiceLevel class

requirements The requirements for the specified service level -

penalty The posed penalty when the service level is violated -
ServiceLevel: The service levels of the

level The specified level number (1 is the strictest level) -
contracted SLA

cost The cost for serving this service level -

metric The metric of the SLO -

threshold The SLO’s threshold -
SLO: An SLO of the specified SLA’s level operator The SLO’s operator -

i 44

uonydriosaq [9poN-e3aN Juauoduwo) ‘g xipuaddy

	Introduction
	SOA and Cloud Computing
	SBA Layers
	Cloud Deployments

	Motivation
	Monitoring and Adaptation Lifecycle
	Requirements
	Thesis Contribution and Impact
	Dissertation Outline

	Running Example
	Traffic Management Running Example
	Monitoring Task
	Assessment Task
	Device Configuration Task
	Application Requirements

	Application Components
	Traffic Management Scenario
	Monitoring and Adaptation Scenarios
	Conclusions

	Literature Review & Fundamentals
	Cloud and SBA Modeling
	Comparison

	Monitoring and Adaptation
	Cross-layer Approaches
	Cloud Monitoring and Adaptation
	Comparison

	Pattern Discovery
	Mathematical and Statistical Approaches
	Temporal Approaches
	Logic-based Approaches
	Comparison

	Technical Fundamentals
	Conclusions

	ECMAF Framework
	Solution's Scope
	ECMAF Architecture
	Single-Cloud Deployment
	Multi-Cloud Deployment

	ECMAF's Benefits
	Conclusions

	Meta-Models for Cloud SBA Monitoring and Adaptation
	Event Meta-Model
	Meta-Model Description
	Traffic Management Event Model
	Adaptation-Related Monitoring Events

	Component Meta-Model
	Meta-Model Description
	Traffic Management Component Model

	Adaptation Actions Meta-Model
	Meta-Model Description
	Traffic Management Adaptation Actions Model

	Conclusions

	Monitoring and Pattern Discovery
	Cross-layer Monitoring
	Metric Definition
	Event Representation
	Event Processing

	Pattern Discovery
	Pattern Discovery Algorithm
	Enhanced Pattern Discovery Algorithm
	Pattern Discovery on the Running Example

	Processing of Event Patterns
	Conclusions

	Adaptation
	Cross-layer Proactive and Reactive Adaptation
	Rule-based Adaptation
	Mapping Event Patterns to Adaptation Actions
	Adaptation Actions Configuration
	Rule Generalization

	Running Example
	Conclusions

	Implementation
	Traffic Management Application's Implementation
	Meta-models' Realization and Exploitation
	ECMAF's Implementation
	Monitoring Engine
	Adaptation Engine

	Conclusions

	Evaluation
	Monitoring Evaluation
	TSDB Evaluation
	Pattern Discovery Algorithm Evaluation
	Pattern Detection

	Adaptation Evaluation
	Adaptation Enactment Evaluation

	Overall Evaluation
	Conclusions

	Conclusions and Future Research
	Synopsis of Contributions
	Directions for Future Work

	Bibliography
	Appendices
	Event Meta-Model Description
	Component Meta-Model Description

