
 

Computational modeling of observational learning inspired by 
the cortical underpinnings of human and monkey primates1 

 

 

Emmanouil Hourdakis 
March, 2012 

 

University of Crete 
Department of Computer Science 

 

 

Thesis submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy 

 

 

Doctoral Thesis Committee:   First member, Professor Panos Trahanias, University of Crete (Advisor) 
                                                 Second member, Professor Helen Savaki, University of Crete 
                                                         Third member, Associate Professor Antonis Argyros, University of Crete  
                                                 Fourth member, Senior Lecturer Yiannis Demiris, Imperial College  
                      Fifth member, Assistant Professor Vasilios Raos, University of Crete 
                      Sixth member, Professor Michael Vrahatis, University of Patras 
                      Seventh member, Professor Michael Zervakis, Technical University of Crete 

 

 

 
                                                            
       The work reported in this thesis has been conducted at the Computational Vision and Robotics (CVRL) laboratory of the 
Institute of Computer Science (ICS) of the Foundation for Research and Technology – Hellas (FORTH), and has been financially 
supported by a FORTH-ICS scholarship, including funding by the European Commission through project MATHESIS (FP6 IST-
027574).  



  



__ 

UNIVERSITY OF CRETE 

D EPARTMENT OF COMPUTER SCIENCE 

Computational modeling of observational learning inspired by the cortical 
underpinnings ofhuman and monkey primates 

Dissertation submitted by 

Hourdakis Emmanouil 

in partia l fulfillment of the requirements for the 

Doctor of Philosoghy d~ree in Computer Science 

Author: Ii 
H~ i manouil 

Examinat'ion Committee~c;7-/A~ 
Panos Trahania~, Pro~ ssar, University of Crete 
/c--/ . 

( "' c c--z---;;. 
Eleni Sav\ki , Professor,.-University of Crete 

~\. / 
Antonis Argyros I\ssociate Professor, University of Crete 

~- . 

YiannYs Oemiris, Senior Lecturer, Imper ial College 

-,...--- ...... 
/ .~ 

Vasil ios Raos, Assistanl Professor, Uni vers ity of e retc 

cJ~f/f~ ~f'J 

Michael Vrahatis, Professor, Uni versity o f Parras . 

.-/ 

~fiibrzervaki~p;:--~:eChniC1! 1 University of Crete 
rT~ 

Departmental approval : ( -.......--. -J/~v;Z}. I ~ 
Panos TrKhanias, Professor, Chairman of the Department 

I [eraklion, March 2012 

G 
I 



 
  



 

Page i 
 

Acknowledgements 

 

This thesis would never have been completed without the valuable contribution of many people, to 

whom I’m greatly indebted. 

First and foremost I want to express my gratitude to my advisor, Prof. Panos Trahanias, for his guidance, 

support and patience during the course of this PhD. He has taught me the values of a good researcher 

and all these years he has been a source of true inspiration and encouragement. I am deeply thankful for 

the example he has provided as a successful person, researcher and friend. 

I would also like to sincerely thank the members of my advisory committee, Assoc. Prof. Antonis 

Argyros, and Prof. Eleni Savaki, for their support and useful suggestions throughout the course of this 

thesis. Sincere thanks to Assist. Prof. Yiannis Demiris, Assist. Prof. Vasilios Raos, Prof. Michael Zervakis, 

and Prof. Michael Vrahatis for participating in the examination committee of this thesis. 

My deep appreciation also goes to the Foundation for Research and Technology – Hellas (FORTH) and 

the University of Crete, where the current thesis was conducted, for providing an excellent and 

stimulating environment to carry out my research. FORTH has also provided financial support which is 

gratefully acknowledged.  

Many thanks are also due to my colleges at the Computational Vision and Robotics Laboratory (CVRL) for 

the friendly atmosphere, interesting discussions and all the fun times we had. Special thanks go to 

Michail Maniadakis, whose support and discussions throughout this PhD were invaluable.  

I also want to thank my late father, whose role model of a hard-working and sincere person has given 

me all the necessary provisions to face life. Even though I miss him, I know that he will always be there 

in my heart to guide me. A deep thanks to my mother and my two sisters for their support and patience 

throughout the rough times of this PhD. They have always been there by my side and, even more 

importantly, they will always be.  

Last, but certainly not least, I would like to thank all my good friends and especially my brotherhood 

friend Mihalis Mpeladakis and my pals Kostis Igoumenakis and Markos Sigalas, who supported me all 

these years in many different ways. Most importantly, because they were always there for me when I 

needed them. 



 

 

 

  



 

Page iii 
 

Abstract 

In the current thesis we have studied the cognitive process of observational learning from a 

computational modeling perspective. In this context we have employed data from neuroscientific 

experiments, including higher-level imaging and single-cell recordings, in order to develop two 

computational models of observational learning, inspired by the neurophysiology of human and 

Macaque primates. To accomplish this we have devised a framework for designing computational 

models based on neuroscientific findings, and used it in order to develop two novel implementations of 

the cortical process in simulated agents. To facilitate learning during observation, both models are based 

on the intuition that, during action execution and observation, the activated cortical networks in the two 

primates overlap extensively. As a result, both agents treat perception as an active, cross-modal, 

simulation of others’ actions and learn new motor skills without the active involvement of their body. 

The first model maintains adequate consistency with the relevant brain areas and connectivity in 

Macaques, and effectively provides insights about the cortical underpinnings of observational learning, 

which can be summarized in three categories: (i) neuronal, i.e. how learning can be implemented at the 

cellular level during observation, (ii) regional, by identifying the potential role of a certain region in 

associating the motor representation with the visual image of the observer, (iii) system, how the 

emergent pattern of activations observed during action observation and action execution is formed, and 

what are the reasons for the lower activations during observation. In addition, due to the use of the 

aforementioned modeling methodology, the agent is able to exhibit three important behavioral 

functions: (i) observational learning in a similar manner as its biological counterparts, (ii) knowledge 

generalization to different domains and knowledge integration on top of existing representations and 

(iii) embodiment correspondence based on the overlapping pathway of activations. 

The second model employs a phenomenological approach to design a motor control system that is 

loosely based on the function of the regions that become active in humans during execution and 

observation. For this reason we have developed novel implementations for each of the subsidiary motor 

control processes, and integrated them in order to produce an agent able to learn only by observation. 

The main contributions include: (i) a model that replicates the reward prediction properties of the 

dopaminergic neurons in the Basal Ganglia, used to implement a variant of reinforcement learning, (ii) a 

way to segregate the multidimensional control of the embodiment of the agent to basis functions using 

a novel primitive model, (iii) a method to implement embodiment correspondence using associative 
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networks, which enables an agent to develop and match symbolic representations of its own body and 

the demonstrator’s, (iv) how higher-order motor control can be designed as an epiphenomenon of the 

motor control system, i.e. as a subsidiary process built on top of basis motor functions and (v) how 

learning can be implemented during observation using simple motor rules that can be derived only by 

observation. 
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Περίληψη 

Στην παρούσα διατριβή μελετήσαμε την γνωσιακή διεργασία της μάθησης μέσω παρατήρησης σε ένα 

υπολογιστικό πλαίσιο.  Για αυτό το λόγο, χρησιμοποιήσαμε δεδομένα από νευροεπιστημονικά 

πειράματα, όπως για παράδειγμα πειράματα καταγραφών και απόκρισης νευρώνων, ώστε να 

αναπτύξουμε δύο υπολογιστικά μοντέλα μάθησης μέσω παρατήρησης, εμπνευσμένα από την 

νευροφυσιολογία των ανθρώπων και πιθήκων Macaque αντίστοιχα. Για να επιτύχουμε τον σκοπό αυτό 

προτείναμε ένα πλαίσιο για τον σχεδιασμό υπολογιστικών μοντέλων, βασισμένο σε ευρήματα από τις 

νευροεπιστήμες, το οποίο χρησιμοποιήσαμε ώστε να αναπτύξουμε δύο καινοτόμες υλοποιήσεις της 

προαναφερθείσας βιολογικής διεργασίας σε προσομοιωμένους πράκτορες. Για να επιτύχουν μάθηση 

μέσω μόνο παρατήρησης, και τα δύο μοντέλα βασίστηκαν στο ότι κατά την διάρκεια εκτέλεσης και 

παρατήρησης μιας συμπεριφοράς, τα νευρωνικά δίχτυα που ενεργοποιούνται στον εγκέφαλο των δύο 

πρωτευόντων ειδών επικαλύπτονται εκτενώς. Ως αποτέλεσμα αυτού του γεγονότος, και οι δύο 

πράκτορες μεταχειρίζονται την διεργασία αντίληψης σαν μια ενεργή εξομοίωση των συμπεριφορών, 

και μαθαίνουν νέες συμπεριφορές κίνησης χωρίς να χρησιμοποιούν το σώμα τους. 

Το πρώτο μοντέλο διατηρεί ικανοποιητική συνέπεια με τις σχετικές περιοχές και συνδεσιμότητα του 

εγκεφάλου στους πιθήκους Macaque, και παρέχει πολύ σημαντικές ενδείξεις σχετικά με τα ερείσματα 

που λαμβάνουν χώρα στον φλοιό των πιθήκων Macaque κατά την διάρκεια της μάθησης μέσω 

παρατήρησης, που μπορούν να συνοψισθούν σε τρείς κατηγορίες. Σε επίπεδο: (ι) νευρώνα, εξηγώντας 

πώς η μάθηση μπορεί να υλοποιηθεί σε κυτταρικό επίπεδο κατά την διάρκεια παρατήρησης, (ιι) 

εγκεφαλικής περιοχής, με το να αναγνωρίσει τον δυνητικό ρόλο μιας συγκεκριμένης περιοχής στο να 

συσχετίζει τις κινητικές αναπαραστάσεις με την οπτική εικόνα του παρατηρητή και (ιιι) συστήματος, 

δηλαδή πως σχηματίζεται το αναδυόμενο σχέδιο ενεργοποιήσεων που έχει παρατηρηθεί κατά την 

διάρκεια εκτέλεσης και παρατήρησης μιας συμπεριφοράς, και τους λόγους της χαμηλότερης 

ενεργοποίησης κάποιων περιοχών κατά την διάρκεια παρατήρησης. Επίσης, λόγω της χρήσης της 

προαναφερθείσας μεθοδολογίας, ο πράκτορας μπορεί να επιδείξει τρεις σημαντικές συμπεριφορές: (ι) 

μάθηση μέσω παρατήρησης, με τρόπο παρόμοιο με αυτόν που χρησιμοποιούν οι αντίστοιχοι 

βιολογικοί ομόλογοι του, (ιι) γενίκευση γνώσης σε διαφορετικούς τομείς και ολοκλήρωση γνώσης 

χρησιμοποιώντας προϋπάρχουσες αναπαραστάσεις και (ιιι) αντιστοιχία του σώματος του με άλλα 

σώματα χρησιμοποιώντας ως βάση το μονοπάτι των επικαλυπτόμενων ενεργοποιήσεων. 
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Το δεύτερο μοντέλο χρησιμοποιεί μια φαινομενολογική προσέγγιση για να σχεδιάσει ένα κινητικό 

σύστημα που βασίζεται χαλαρά στην λειτουργία των περιοχών που ενεργοποιούνται στους 

ανθρώπους, κατά την διάρκεια εκτέλεσης και παρατήρησης μιας συμπεριφοράς. Για αυτό το λόγο, 

αναπτύξαμε μια καινοτόμα υλοποίηση για κάθε μια από τις δευτερεύουσες κινητικές διεργασίες, και 

τις ενσωματώσαμε ώστε να παραχθεί ένας πράκτορας που μπορεί να μάθει μέσω μόνο παρατήρησης. 

Ανάμεσα στις βασικές συνεισφορές της δουλειάς περιλαμβάνονται: (ι) ένα μοντέλο που αναπαράγει τις 

ιδιότητες πρόβλεψης της ανταμοιβής που έχουν οι ντοπαμινεργικοί νευρώνες στα βασικά γάγγλια, (ιι) 

ένα τρόπο για να διαχωρίσουμε το πολυδιάστατο έλεγχο του σώματος του πράκτορα, (ιιι) μια μέθοδο 

για να αντιμετωπίσουμε το πρόβλημα αντιστοιχίας του σώματος χρησιμοποιώντας νευρωνικά δίχτυα 

συσχετισμού, (iv)  πώς ο υψηλότερης τάξης κινητικός έλεγχος μπορεί να σχεδιαστεί επιφαινομενικά, 

βάσει του κινητικού συστήματος, ως επικουρική διεργασία χτισμένη από πάνω από άλλες βασικές 

κινητικές λειτουργίες και (v) πως η μάθηση μπορεί να υλοποιηθεί κατά την διάρκεια παρατήρησης 

χρησιμοποιώντας απλούς κινητικούς κανόνες που μπορούν να εκμαιευτούν μόνο από παρατήρηση. 
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Observational learning is the ability to learn and acquire new motor knowledge only by observation. 
Otherwise referred to as mental practice, or mental imagery, observational learning is formally defined 
as the symbolic rehearsal of a physical activity in the absence of any gross muscular movements 
(Richardson, 1967). In primates, mental imagery is a very important skill, and a core component of the 
cortical network that allows them to understand and reproduce meaningful cross-modal communication 
(Zagacki et al., 1992). Recently, neuroscientific findings have shed more light on the cortical 
underpinnings of this process, by discovering that the network of brain regions that is used for action 
execution overlaps extensively with the one used for action observation (Raos et al., 2004; Raos et al., 
2007; Evangeliou et al., 2008; Kilintari et al., 2010). Inspired from this finding, in the current thesis, we 
have developed computational agents that can learn during observation, i.e. without the active 
involvement of their body.  

In the context of computational modeling, the implementation of observational learning is an important 
step towards the development of robots that can reproduce meaningful behavior by social interaction. 
Traditionally, in the computer science literature, social learning has been studied based on imitation, i.e. 
by physically interacting with others (Schaal et al., 2003; Wolpert et al., 2003; Ijspeert et al., 2002a). In 
contrast, mental imagery can enable an ongoing, inter-subjective, learning process during which an 
agent continually acquires new knowledge from its environment without the need to interact with it 
physically.  

In primates, capacities for imitation have been reported for as early as the third year of an infant’s life 
(Meltzoff and Moore, 1977). Evidently, while still during infancy, humans have already developmentally 
acquired a formal representational system of their external world, capable of integrating information 
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from all senses and processing percepts (Fig. 1.1). The fact that this ability is found so early in an infant’s 
life is the result of both ontogenetic and epigenetic development (Jones, 2009), and pinpoints the 
importance of observation for the socialization of the species.  

 
Fig. 1.1. Two-year old infants can exhibit imitation skils. a,b: Macaque infants imitate lip smacking 
movements. c.d.: Two to three week old human infants imitating facial gestures. Images adopted from 
(a, b: Ferrari et al., 2006) and (c, d: Meltzoff and Moore, 1977). 

Similarly, in computational modeling, observational learning can provide a framework for developing 
artificial agents that can acquire new skills only by observing the actions of their counterparts, thus 
broadening the possible ways that robots can socialize. More importantly, modeling the underpinnings 
of this system will open new ways for robotics to implement inter-subjective communication and 
different forms of cross-modal interaction, leading to novel methods for associating perception and 
cognition, integrating different senses together, and assigning meaning to a behavior. 

1.1 The cognitive explanation of the cortical underpinnings of overlapping 
pathways 

Mental imagery is a high-order cognitive function, i.e. it is realized through a number of conscious and 
subconscious processes in the brain. Insights for its cortical underpinnings come from recent 
neuropsychological studies, which have investigated the neural activity in the cerebral cortex of human 
and monkey primates during action observation and action execution (Raos et al., 2004; Raos et al., 
2007; Kilintari et al., 2010; Evangeliou et al., 2008). Results have identified a common representational 
substrate between motor observation and motor execution, suggesting that there is a close functional 
equivalence between the two processes (Jeannerod and Johnson-Frey, 2003). In monkeys, high 
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resolution imaging experiments were able to identify a network of regions that actively participate in 
execution and observation, extending from visual (Kilintari et al., 2010) to somatosensory and motor 
regions (Raos et al., 2007; Raos et al., 2004; Kilintari et al., 2010; Evangeliou et al., 2008; Savaki 2010). 
Similar findings have been reported for human primates, where researchers have identified an 
analogous network of active regions, involved in motor preparation and planning (Caspers et al., 2010).  

The aforementioned neuroscientific evidence suggests that in both monkey and human primates, 
perception of motor actions is mediated by motor knowledge (Viviani and Stucchi, 1989). The cognitive 
interpretation of this mechanism is that, when we observe an action performed by a conspecific, we 
activate our own motor system in order to understand it. Consequently, our grounded motor 
experiences, i.e. the rules and knowledge that we have accumulated throughout our interactions with 
others and the environment, are used as a substrate in order to understand and perceive an observed 
action (Decety and Ingvar, 1990).  This striking property of our perceptual system is also responsible for 
our ability to learn during observation. Motor mental images include a representation of the body of the 
demonstrator, rather than just the consequences of its actions (Jeannerod, 1994), indicating that 
perception is embodied and modal. For this reason, motor imagery has been established as an 
important method for improving motor performance (Driskell et al., 1994), while several studies have 
associated it with active skill learning (Finke, 1980; Denis, 1985) and muscle strength increase (Yue and 
Cole, 1992). 

Since observation and execution activate the same conceptual representations, to understand the 
content of mental motor images one must look more closely into the functions of the motor control 
system. The overlapping pathways discovered by the aforementioned studies (Raos et al., 2007; Raos et 
al., 2004; Kilintari et al., 2010; Evangeliou et al., 2008; Savaki 2010) suggest that motor execution and 
motor imagery share a common representational substrate (Jeannerod, 1994). In the former case action 
execution is performed covertly, using the body of the agent, while in the latter, the motor act is 
rehearsed mentally, without producing any overt motor output. Similarly to visual imagery, which 
pertains to the representations of a visually perceived object, motor imagery pertains to the motor 
physiology of the agent (Jeannerod and Johnson-Frey, 2003; Decety et al., 1997). This convention 
provides an important indication on how motor control is structured in the primate brain, and in the 
current thesis it is explored in order to develop computational agents that support observational 
learning. 

1.2 How observational learning can help towards developing social robots 

Our ability to adapt to our social environment is one of the primary components behind the evolution of 
our intelligence (Barresi and Moore, 1995). For primates, socialization is an inter-subjective process 
during which an agent learns to develop concepts from its environment based on the interaction with 
others (Box and Gibson, 1999). Consequently, the cognitive processes that underpin perception and 
action understanding, i.e. our ability to perceive and assign meaning to the behaviors of others, 
constitute a major component for developing social cognition (Blakemore et al., 2004).  
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In the literature, social psychologists and anthropologists have proposed two theories in order to explain 
the underlying principles behind socialization, the Theory of Mind (ToM, Gordon 1986; Heal 1986) and 
the Theory-Theory (Carruthers and Smith 1996). Their formulation has given impetus for an extended 
debate regarding socialization and how it is facilitated in primate cognition, mostly because both 
suggestions have a strong theoretical basis but lack evaluation from experimental evidence. Theory-
theory suggests that our mind possesses the core of a ‘folk’ psychological theory, which is epigenetically 
encoded and enables us to understand social events such as perceiving, assigning meaning to actions 
and identifying intentions. In contrast, ToM takes a simulation stance, and suggests that to understand 
others we actively simulate their actions using our own experiences (Gallese and Goldman, 1998). By 
imagining ourselves in the place of the social partner we are interacting with, we can detect its 
intentions and anticipate its future actions. Therefore, humans do not only perceive, sense and move, 
but can also activate their own conceptual representations for perceiving, sensing and moving when 
observing others. The core of this ability lies in the capacity of primates to perform mind reading (Baron-
Cohen, 1997; Leslie and Thaiss, 1992), i.e. use their own grounded experiences to make behavioral 
predictions about others’ actions (Perner, 1991).  

Behaviorally, ToM is interlinked with the functional system that supports executive control (Perner and 
Lang, 1999). For example children with autism spectrum disorder are unable to exhibit ToM because 
they suffer from basic motor dysfunctions (Ozonoff et al, 1991). Using the same line of thought, Russel 
(Russel, 1996) has argued that executive function is important for the development of self-awareness, 
and therefore a prerequisite for ToM. Even though capacities that could facilitate the ToM have been 
observed in young infants (Wimmer and Perner, 1983), its cortical underpinnings are largely unknown. 
Until recently, the major evidence came from the existence of mirror neurons, a class of visuo-motor 
cells, in the Macaque’s ventral premotor cortex, that facilitate action recognition (Rizzolatti et al., 1996). 
The findings discussed in section 1.1 above, not only provide cortical evidence for the existence of ToM 
in primates (Raos et al., 2007; Raos et al., 2004; Kilintari et al., 2010; Evangeliou et al., 2008; Savaki 
2010), but go one step further to unravel its basic mechanisms: understanding others involves a 
complete reenactment of their sensorimotor representations (Savaki, 2010). 

In addition, the evidence for overlapping pathways has another important implication: it can refine basic 
conceptions about cognition. The active involvement of the primates’ somatosensory areas during 
observation (Raos et al., 2004) provides evidence in favor of contemporary theories that view cognition 
as embodied (Dautenhahn, 1996; Anderson, 2003). It suggests that we understand others by simulating 
the consequences of what we observe up to the level of our sensory systems. This makes an important 
statement about the relationship between our mind and our body, proposing that they co-develop and 
are closely interlinked. In addition, the existence of this shared neural substrate provides evidence on 
how the stimuli from different senses are integrated within our cognitive system. Vision, hearing and 
touch are not passive perceptual events, but active inter-modal simulations of our own somatosensation 
codes. In other words, even though perception is modal, it is encoded in multi-modal conceptual 
representations. 
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It is therefore evident that modeling the process of observational learning based on the cognitive 
mechanisms described above will open new ways to implement social skills in robots, i.e. develop agents 
that can assign conceptual meaning to human behavior. Moreover, the cognitive hypothesis of a shared 
representational system for perception and action can extend to other domains and provide an 
important functional basis for implementing social processes, such as empathy, listening, response 
facilitation and agency attribution. 

1.3 Scope of the thesis 

From the discussion in the previous sections it is evident that observational learning can give a great 
impetus towards developing robots that possess the ability to interact and learn by observing others. In 
the current thesis, we have examined how computational agents can be designed to support this ability 
using inspiration from the cortical and neural underpinnings of the process in the brain of primates. To 
accomplish this, we have focused on two species that possess observational learning capacities: humans 
and monkeys. To understand how this function is performed cortically, we have examined the large 
body of neuroscientific studies that pertain to observation and execution, and derived novel 
computational implementations inspired by the two neurophysiological models (Hourdakis et al., 2011; 
Hourdakis and Trahanias, 2011a; Hourdakis and Trahanias 2011b; Hourdakis and Trahanias, 2011c; 
Hourdakis and Trahanias 2011d; Hourdakis and Trahanias, in press b). In both cases, our working 
hypothesis was the fact that, in the two species, a common neural pathway between execution and 
observation is being activated (Raos et al., 2007).  

One important distinction between the neurophysiological models of the two primates is in the 
resolution of the available data. In monkeys, due to the fact that single cell penetrations are permitted, 
neuroscientific data can be gathered up to the level of single neurons. In contrast, in human subjects, 
available data are extracted from imaging studies and therefore are limited to providing a spatial 
resolution up to the level of neuronal populations. To compensate for this fact, we have developed two 
models. The first one, which was based on Macaque monkeys, was designed to be consistent with 
certain cortical processes that take place in the brain of the species during observational learning and 
can be described up to the level of single cells (Hourdakis et al., 2011; Hourdakis and Trahanias, 2011b). 
To guide model development we combined data from all available neuroscientific sources, including 
lesion studies, higher-level imaging data and single-cell recordings, in order to derive a computational 
model that is consistent with the neuronal properties that have been identified as important to the 
process of observational learning. In the case of the second, human model, regional activation data 
provided us with general information regarding the areas that participate in observational learning, and 
the extent to which each area is correlated with a specific cognitive function. To compensate for the 
limited amount of available information, the second model was designed using a phenomenological 
approach (Arkin, 1998), i.e. by focusing on the behavioral aspects of the cortical process, rather than its 
exact biological details. For this reason, we’ve identified the abstract roles that are carried out by the 
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overlapping regions during execution and observation, and combined them in order to facilitate 
observational learning. 

1.4 Theoretical questions that rise from the computational implementation of 
observational learning 

Our working assumption for the development of the two models is that there is a close functional 
equivalence between motor observation and motor execution. The research discussed in the previous 
section, as well as a plethora of studies which we will review in later chapters, provide evidence on the 
cortical underpinnings of this phenomenon by suggesting that the two processes use the same neural 
systems. This finding provides an important framework for examining how motor observation is 
facilitated in both human and monkeys: The fact that mental and overt motor images share the same 
neural structures suggests that action observation employs, to a certain extent, the cognitive functions of 
motor control (Savaki, 2010). This includes a large category of cortical processes that pertain to body 
perception, goal representation, higher-order control of movement and motor execution. In order to 
develop computational agents that can facilitate observational learning it is important to understand the 
contribution of all these processes during observation. Consequently, the development of the two 
models was guided by three theoretical questions, which pertain to how the process of observational 
learning can be modeled within a computational context. These are outlined and briefly discussed 
below.  

A. What are the representations in a mental imagined state and how can they be coupled with the 
motor control system? 

Undoubtly, the most important issue that one must look into prior to developing a computational model 
of a cortical process, is the type of representations that will be used to describe it. In our case, this 
pertains to the representations of the mental imagined state, i.e. what the agent will perceive when 
observing others’ actions. The evidence that we discuss in this thesis suggests that, in primates, this 
representation is obtained by converting the visual image from the observation of the demonstrator to 
an overt mental image, using the agent’s motor control system (Raos et al., 2007; Raos et al., 2004; 
Kilintari et al., 2010; Evangeliou et al., 2008; Savaki 2010). Computationally, the involvement of the 
motor control system means that various important problems pertaining to embodiment 
correspondence (Nehaniv and Dautenhahn, 2002), sensorimotor integration (Tin and Poon, 2005) and 
state representation (Kawato, 1999) must also be considered. Moreover, a computational model of 
observational learning must be able to suggest a way for these processes to become active and 
contribute to the formation of the mental image, without the active involvement of the agent’s body.  

To confront this problem, we focused on the fact that action observation and action execution share the 
same neural representation codes (Savaki, 2010). Consequently, in both models, observation was 
refined as an active perceptual process, during which the observer was able to associate perceived 
actions, obtained from vision, with the representations of its own cognitive system. Moreover, the fact 
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that the motor component is activated during observation suggests that the mental image of an 
observed movement is tightly coupled to the motor image of the observer (Jeannerod, 1994). To 
understand this association we have derived novel implementations for the motor system of the two 
agents, based on contemporary theories of motor control. This involved the development of models for 
state representation, state estimation, motor control and, in the case of the human model, higher-order 
control and reward processing. Moreover, we have suggested how these subliminary processes can be 
actively employed during observation of a movement, using the internal simulation of the motor control 
system. 

B. How can learning be facilitated without the active involvement of the body of an agent? 

The second question regards to how learning can be facilitated during observation alone, i.e. without 
the active involvement of the agent’s body. This is a challenging issue in robotic research, since all 
contemporary approaches for learning are based on knowledge grounding (Harnad, 1990), i.e. learning 
by direct interaction with the environment (Ijspeert et al., 2002a; Billard, 2000). To implement learning 
only by observation, one requires an understanding of the cortical underpinnings of the 
neurophysiological model at various resolution levels: (i) at the neural level, one must resolve how 
learning can be implemented in the synapses between neurons, (ii) at the cortical level, how different 
regions can facilitate plasticity, while (iii) at the behavioral level  how can motor control be structured 
accordingly so that an agent can learn from simple percepts derived only by observation.  

All three issues are investigated thoroughly in the two developed models. In the first case, the high 
modeling resolution of the Macaque imaging data enabled us to understand how plasticity can be 
modeled at the synaptic and regional level of our computational agent, given the overlapping neural 
pathways during observation and execution. More specifically, we have used biologically inspired 
neuron and synapse models to develop the computational agent, and found that learning can be 
facilitated due to a synchronization in the neural responses of certain regions. At the behavioral level, 
the second model, using a phenomenological approach, implements a hierarchy of motor control 
functions, which enable it to learn in the peripheral components of its motor system, using simple 
control rules that can be derived only by observation. 

C. What is the neurophysiological basis of the mechanism that is responsible for activating the 
sensorimotor representations in primates during observation? 

The activity reported in primates during action observation is caused by the top-down modulation of the 
cortical regions that respond to the observer watching an action. To understand the neural 
underpinnings of these overlapping pathways one important issue that must be resolved pertains to the 
neurophysiological basis of the mechanism that activates the sensory and motor control centers of the 
agents during observation. Put more simply, what are the reasons that cause the motor control system 
of an agent to become active when observing an action? To answer this question one must develop an 
understanding of the top-down and bottom-up pathways that are responsible for causing these 
activations, both cortically and computationally.  
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The high resolution of the Macaque model enabled us to evaluate important assumptions regarding the 
reasons for the overlapping activations. The agent that was developed exhibited a tendency to activate 
the same motor areas during execution and observation emergently, a phenomenon that was attributed 
to the connectivity between the computational regions. More importantly, the agent using models of 
biologically inspired neurons and synapses, was able to replicate, to a certain extent, the levels of 
activation during observation found by neurophysiological studies in the Macaque brain. The second 
model, which was designed in a lower resolution, used a behavioral approach to suggest that the 
activation of the overlapping pathways during observation and execution could be caused as an 
epiphenomenon of the activation of the motor control system during observation. 

The three theoretical questions were used as a substrate in order to guide model development, and are 
explicitly addressed during the description of both models. In the following section we outline the major 
contributions of the work, as well as the list of Journal and Conference publications that were produced.   

1.5 Thesis Contributions 

In the current thesis we have studied, developed and experimentally verified two computational models 
of observational learning, inspired by the neurophysiology of human and Macaque primates. To 
accomplish this, we have devised a framework for designing computational models based on 
neuroscientific findings, and used it in order to develop two novel implementations of the cortical 
process in simulated agents. To facilitate learning during observation, both models were based on the 
intuition that, during action execution and observation, the activated cortical networks overlap 
extensively. This constitutes a novel way for designing computational models of motor learning, by 
treating perception as an active, cross-modal, simulation of others’ actions. As a result of this, the two 
developed computational agents can learn new motor skills without the active involvement of their 
body. To the best of our knowledge, this is the first attempt to model this process computationally, as all 
contemporary approaches to motor learning focus on imitation, which involves the use of an agent’s 
body. 

Further to the above, contributions of this thesis include a novel methodology for designing and 
implementing biologically inspired computational models, a method to quantify the quality of a 
biologically inspired neural network, as well as two computational models of observational learning 
inspired by neurophysiological data.  

The first model provided very important indications about the cortical underpinnings of observational 
learning in Macaque primates, which can be summarized in three categories: 

(i) Neuronal, i.e. how learning can be implemented at the cellular level during observation.  
(ii) Regional, by identifying the potential role of a certain region in associating the motor 

representation with the visual image of the observer.  
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(iii) System, how the emergent pattern of activations observed during action observation and 
action execution is formed, and what are the reasons for the lower activations during 
observation. 

In addition, due to the use of the aforementioned modeling methodology, the agent was able to exhibit 
three important behavioral functions: 

(i) Observational learning in a similar manner as its biological counterparts. 
(ii) Knowledge generalization to different domains and knowledge integration on top of existing 

representations. 
(iii) Embodiment correspondence based on the overlapping pathway of activations. 

The second model employed a phenomenological approach to design a motor control system that is 
loosely based on the function of the regions that become active in humans during execution and 
observation. For this reason we have developed novel implementations for each of the subsidiary motor 
control processes, and integrated them in order to produce an agent able to learn only by observation. 
The main contributions are outlined below: 

(i) A model that replicates the reward prediction properties of the dopaminergic neurons in the 
Basal Ganglia, used to implement a variant of reinforcement learning.  

(ii) A way to segregate the multidimensional control of the embodiment of the agent to basis 
functions using a novel primitive model.  

(iii) A method to implement embodiment correspondence using associative networks, which 
enables an agent to develop and match symbolic representations of its own body and the 
demonstrator’s. 

(iv) How higher-order motor control can be designed as an epiphenomenon of the motor 
control system, i.e. as a subsidiary process built on top of basis motor functions. 

(v) How learning can be implemented during observation using simple motor rules that can be 
derived only by observation.  

1.5.1 List of publications 

The aforementioned contributions and relevant results have been published in scientific journals and 
presented in peer reviewed conferences as follows: 
 
Journal Publications: 

1. Invited Journal Submission: E. Hourdakis and P. Trahanias, Improving the performance of Liquid 
State Machines based on the separation property, under review by the Journal of 
Neurocomputing. 

2.  E. Hourdakis and P. Trahanias, “Observational learning inspired by human primates”, under 
review by the Journal of Adaptive Behavior. 
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3. Ε. Hourdakis, Ε. Savaki and P. Trahanias, “Computational modeling of cortical pathways involved 
in action execution and action observation”, Neurocomputing, vol. 74 , Issue 7, pp.1135-1155, 
2011. 

Conference Publications: 
4. E. Hourdakis and P. Trahanias, ”Improving the performance of liquid state machines based on 

the separation property”, Engineering Applications of Neural Networks, EANN11, Corfu, Greece, 
2011. Awarded with the best student paper award. 

5. E. Hourdakis and P. Trahanias, “Observational learning based on models of overlapping 
pathways”, International Conference on Artificial Neural Networks, ICANN11, Helsinky, Finland,  
2011 

6. E. Hourdakis and P. Trahanias, “Observational learning based on overlapping pathways”, Second 
International Conference on Morphological Computation, MORPHCOMP11, Venice, Italy. 

7. E. Hourdakis and P. Trahanias, “Computational modeling of online reaching”, European 
Conference on Artificial Life, ECAL11, Paris, France 

8. Ε. Hourdakis and P. Trahanias, “A framework for automating the construction of computational 
models, Congress on evolutionary computation, Norway 2008. 

9. Ε. Hourdakis, Μ. Maniadakis and P. Trahanias, “A biologically inspired approach for the control 
of the hand”, Congress on Evolutionary Computation, Singapore 2007. 

10. M. Maniadakis, E. Hourdakis and P. Trahanias, “Modeling overlapping action 
execution/observation brain pathways”, International Joint Conference on Artificial Neural 
Networks, IJCNN, Atlanta 2007. 

1.6 Thesis outline 

To facilitate readability and comprehensibility, the thesis is structured in 7 chapters. In the current 
section we briefly outline the content of each chapter, by providing a comprehensive overview of all the 
topics that will be discussed.  

In chapter two, we visit the large body of literature that is related to observational learning and motor 
control. We introduce this review by discussing about the established methods in biologically inspired 
brain modeling, in order to give the reader a comprehensive overview of the contemporary approaches 
in the field. In this context, the discussion is mainly focused towards: 

i. Popular methods used to image the brain and how these are mapped in different model 
resolutions. 

ii. The extent to which a computational implementation of a biological process can be considered 
as a valid model of the process itself.  

Having established a solid theoretical framework for computational modeling, we shift our discussion 
towards biologically inspired methods for modeling motor control. Due to the interdisciplinary nature of 
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the processes that are involved in designing a motor control system, the review covers a wide range of 
topics such as: 

i. Primitives and the importance of modularity in motor control. 
ii. Internal models and issues regarding state representation and state estimation. 

iii. Policy learning and planning in motor control systems.  

All these processes are vital for the development of a motor control system. To implement learning in 
this system, one must look into additional topics that pertain to embodiment correspondence and 
motor learning by imitation, which are also reviewed in this chapter. Finally, we conclude the discussion 
by visiting the most popular biologically inspired motor control models in the literature, and analyze 
their strengths and weaknesses. 

Chapter three provides a complete overview of the cortical underpinnings of observational learning in 
human and monkey primates. We first look into phenomenological reasons that can explain the 
overlapping pathway of activations during action execution and action observation. We then continue to 
investigate the cortical functions that are performed in the regions that become active during 
observation, by examining interdisciplinary data from various neurophysiological studies. The chapter 
concludes by analyzing the social functions that have been attributed to the overlapping pathways.  

Chapter four introduces the computational modeling approach that was used to develop our agents. For 
this reason it briefly discusses topics such as the brain structure, neural codes, functional areas, 
modularity and cortical representations. Having established a comprehensive overview of the subject, 
we then discuss our own modeling approach, based on the concept of computational pathways, and 
how it was employed in order to develop the two artificial agents. Finally, we describe the biologically 
inspired neural network that was used to develop the second agent, and suggest a measure that can 
quantify its quality by evaluating the network’s ability to separate different datasets. 

Chapter five presents the first of the two computational models, which was inspired by 
neurophysiological data from studies in Macaque monkeys. It starts by discussing the cognitive abilities 
that enable Macaques to learn by observation, and how the overlapping pathway of activations can 
facilitate this function. In addition, the chapter describes the modeling approach that was used to 
implement the neurophysiological model and provides details for the synapse and attractor neural 
networks that were used. It continues to discuss the intuition behind the development approach, by 
looking into how a neural code can be represented computationally, as well as various methods from 
the literature that pertain to its implementation.  

Having presented all the underlying tools that were used to develop the model, the chapter continues to 
discuss the development of a computational agent that is based on the neurophysiology of the Macaque 
monkey during observation. In this context, we describe how the different motor components of the 
agent are implemented computationally and integrated together in order to produce a working model 
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of observational learning. Finally, we carry out an extensive evaluation of the agent’s ability to learn only 
by observation, in a manner that is similar to its biological counterparts.  

Chapter six presents the second model, which was based on the neurophysiology of human primates. 
For this reason, it discusses the cognitive functions and the types of learning that humans can afford, 
paying special attention to their ability to learn new skills only by observation. We then continue to 
describe the role of the areas that have been found by neurophysiological studies to be active during 
observation, and suggest a novel method to structure the motor control system in order to enable 
learning during observation. We continue to discuss the development of the computational agent, 
focusing on how the proposed theory of pathways can allow us to integrate the different functions that 
are carried out during motor control. In this context, we present the four submodels that were designed 
in order to enable the agent to perform motor control. Having described the development of the model 
we then provide an extensive evaluation of the computational agent’s ability to learn new skills only by 
observation.  

The final chapter of the thesis revisits the two models presented, and discusses the various issues that 
were raised during their implementation. More specifically we focus on the modeling resolution of the 
two models and the types of assumptions that can be validated by each one. In addition we place the 
two models in the literature by drawing comparisons, where applicable, with other works, and discuss 
how the current work has progressed the state of the art. The section also provides an evaluation of the 
pathway modeling approach that was used to implement the two models, and how it can be employed 
as an extended method for modeling biologically inspired data from neurophysiological studies. 
Moreover, we discuss the importance of observational learning for (i) developing robots that can fully 
interact with their environments, and (ii) facilitating the emergence of social cognition in computational 
agents. The chapter is concluded by outlining directions for future work, and in particular how the two 
models can be extended in order to: (i) consider additional processes that are associated with 
observational learning such as agency attribution and motor inhibition, (ii) provide a basis for the 
development of social processes in robotics, including concepts that pertain to intersubjective 
communication and empathy. 
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As briefly outlined in the introduction, observational learning is a higher-order cognitive ability, which is 
extensively based on motor control and involves a large number of auxiliary cortical functions. Each of 
these functions contributes in a different way to the process, by carrying out tasks such as state 
representation (Kawato, 1999), embodiment correspondence (Nehaniv and Dautenhahn, 1999), symbol 
grounding (Harnad, 1990) and motor control (Billard, 2000). In the robotic literature, since the early 
nineties, many researchers have realized that biology can provide working conceptual models for each 
of these problems, and focused on designing computational agents that can solve them based on 
principles from neuroscience. This trend led to a number of models (Schaal, 1999; Schaal et al., 2003; 
Dautenhahn and Nehaniv, 2002) at different resolutions levels (Webb, 1991), which employed biological 
principles in order to suggest new methods for solving difficult engineering problems.  

In the current section we provide a comprehensive overview of the literature of computational 
modeling of motor control processes. We first discuss issues regarding model resolution and level of 
detail, in order to give the reader a perspective on the extent to which a computer simulation can be 
considered as a replica of a biological process. We then continue to review the most recent works in 
computational modeling of motor control, since it is closely related to observational learning. For this 
reason we discuss state of the art models, which solve problems that are associated with motor control, 
such as embodiment correspondence, primitive functions, internal models, policy learning and higher-
order motor control. Even though we do not entirely exclude other approaches, our main focus is on 
models implemented via neural networks, because they follow principles that are similar to the brain’s 
organization (Amit, 1989).  
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2.1 Computational modeling of natural processes 

An increasing number of researchers nowadays is focusing on extracting basic principles from biological 
systems in order to suggest new solutions for engineering problems (Webb, 2000). This trend is 
supported by recent advances in imaging neuroscience, which have enabled scientists to understand 
many of the properties underlying the function of the nervous system. 

In the context of engineering, a biologically inspired model is a model that replicates, in simulation, the 
underpinnings of a natural process (Fig. 2.1). The benefits from modeling natural processes are twofold 
(Webb, 1991). On one end, computer scientists can employ principles from natural systems in order to 
confront difficult engineering problems. To accomplish this, computational models focus on developing 
working solutions of a given problem, rather than replicating the precise physiological structure of the 
underlying biological process (Zipser, 1992). On the other end, neuroscientists are offered the capability 
to employ robots, due to their analogy with animal physiology, in order to gain more insights into the 
cortical underpinnings of a biological mechanism (Dean, 1991). In this case, the modeling resolution that 
is used is high, in an attempt to capture the details of the cortical process under investigation.  

In the literature, these two opposing views have generated a long standing debate regarding the correct 
level of correspondence between a model of a biological process and the process itself (Webb, 2000). 
Some argue that a simulation of a process is bound to be misleading, since it cannot capture the real 
world complexity (Mataric and Cliff, 1997). Others criticize over-complexity, deeming it as unable to 
produce robust, working solutions to a problem (Koch, 1999; Maynard, 1974). 

 

Fig. 2.1. The different stages of development of a biologically inspired model. The simulation is based on 
the properties of the source process, and must produce results that are verifiable by the target 
behavior. Image adopted from (Webb, 2000).  

In our opinion, it is neither the focus on detail or abstraction that ensures the quality of a model. Indeed, 
a model faithful in every detail to a biological process is bound to be incomprehensible as the biological 
process itself, and will not contribute anything new to the understanding of the system (Collin and 
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Woodburn, 1998). Webb (Webb, 2000) has argued that there are five dimensions on which a simulation 
model can be judged:  

(i) Relevance, i.e. whether it is able to generate hypotheses that are applicable to biology.  
(ii) Level, defined by its elementary units.  
(iii) Generality, i.e. the range of biological systems that it can represent. 
(iv) Structural accuracy, or how well it represents the mechanisms underlying the behavior.  
(v) Performance, i.e. to what extent the model behavior matches the target behavior. 

 
In practice, there isn’t any specific point in the space of these parameters that defines a good model, 
since there are fundamental tradeoffs when benefiting one quality over another (Levins, 1966). Instead, 
a good model is well defined if it can explicitly identify its position in each of the five aforementioned 
dimensions. All computational models must be abstracted from the underlying biological process they 
are replicating so that they can be computationally tractable. It is however important that this 
abstraction is clearly expressed, and reflected in the extent to which they make predictions about the 
modeled process. 

In the next section we review approaches in imaging neuroscience, in order to give the reader a 
perspective on the types of data, and the methods used to obtain them, that are available to 
computational modelers. 

2.1.1 Functional NeuroImaging 

Until recently the only way to investigate the underpinnings of primate cognition was either through 
brain lesioned patients (Geschwind, 1965), or by studying the electrical signals of patients going through 
neurosurgery (Penfield and Rasmussen, 1938). This picture however has changed in recent years, since 
new methods in functional neuroimaging have produced a vast amount of data regarding the function of 
the brain (Fristen, 1997; Roland, 1993; Posner and Raichle, 1994). 

To decipher the brain function it is important to gain a deep understanding of its workings at many 
different levels, from cellular to regional and interregional. An impetus towards this goal is given by the 
wealth of data that has been made available by neuroscientists. This is evident from several conferences 
(ICCI, BVAI, CNS, ICCM, ALIFE X), scientific journals (Neurocomputing, Neural Computation, Cognitive 
Neuroscience, Brain Research, Behavioral and Brain Sciences) and workshops (CompMod, CSMS, Brain 
Connectivity), that focus on modeling results from such imaging studies, in order to build systems that 
are inspired from the functioning of all kinds of biological species.  

The first breakthrough towards understanding the brain came at the beginning of the century, when 
neuroscientists incorporated staining methods such as cytoarchitectonics in order to segment the 
cerebral cortex into topographic maps (Brodman, 1905), based on the regional diversity of its 
histological structure (Fig. 2.2). More recently, functional neuroimaging offered new insights to the way 
these spatially arranged regions contribute to different brain processes. Using techniques such as PET 
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(Ter-Pogossian and Phelps et al. 1975), fMRI (Ogawa and Lee, 1990), MRI (Mattson and Simon 1996), 
MEG (Cohen, 1968), ERP (Rohrbaugh, Parasuramanan et al. 1993) and 14C-Deoxyglucose (Sokoloff, 
Reivich et al. 1977), among others, scientists were able to unveil aspects of brain processing by 
investigating the activation history of a cortical region and determining its contribution to a cognitive 
process. 

 

Fig. 2.2. The four major subdivisions identified in the human brain, (i) frontal, (ii) parietal, (iii) temporal 
and (iv) occipital. Each lobe, marked with a different color, is specialized in a different form of 
processing. Image adopted from (Purves et al., 2001).  

Imaging studies can be classified into two types based on the nature of signals that they monitor in the 
brain. On one end, there are methods that measure the electric basis of a neural activity 
(magentoencephalography and event related potentials) while on the other, those that measure the 
metabolic increase in the brain (positron emission tomography, functional magnetic resonance imaging 
and 14C-deoxyglucose). Each imaging type differs in its spatial and temporal resolution. For example 
fMRI signals can provide a spatial resolution of 2mm and temporal resolution in the order of seconds, 
while PET is restricted to 5mm spatial resolution and temporal in tens of seconds. Practically, this means 
that certain events in the brain may only be observable by a method that has the appropriate resolution. 
For example in Macaques, 14C-deoxyglucose experiments (Raos et al., 2007; Raos et al., 2004) were able 
to identify an extended overlap between regions during action observation and action execution, due to 
the fact that they have a resolution of two orders of magnitude higher (20 microns).  

Nonetheless, all the aforementioned methods can reach at best a spatial resolution of 5mm and a 
temporal resolution of a few seconds. This means that events in the brain that are in the order of 
milliseconds, such as the firing activity of individual cells, are not directly observable by any of the above 
methods. To compensate for this, researchers carry out single cell recording experiments, where they 
penetrate the brain with a number of electrodes that measure a neuron’s response (Hubel, 1957). The 
acquired spike trains from this process are processed statistically in order to extract information related 
to how neurons respond to a stimulus. Then a neuron can be classified by calculating its receptive field, 
i.e. the response associated to a conditioned stimulus, or using a discrimination threshold, i.e. the 
smallest change in a stimulus that can be detected by the neuron (Series et al., 2004).  
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Fig. 2.3. PET image scans obtained during experiments studying human language. The four images 
demonstrate different regions that become active when subjects carry out language tasks. Image 
adopted from (Kandel et al., 2000). 

The most common way to assign a cognitive role to this activity is by functional specialization: if a brain 
region is active during a specific cognitive process then it probably contributes to it in some way (Zeki 
and Watson, 1991). This concept is one of the dominant ways to interpret brain activity, and has 
produced a great amount of studies that localize brain function to specific cortical locations (Fig. 2.3).  

For motor control, research has identified several networks that become active in the primate’s brain, 
each dedicated to performing a specific function. As a result, various cognitive mechanisms that 
participate in motor control have been analyzed and studied extensively. The computational modeling 
approaches that have been developed based on these findings are reviewed in the next section.   

2.2 Computational neuroanatomy of motor learning and control 

In the previous section we have reviewed methods that permit brain activity to be measured, 
interpreted and modeled. In current section we look more closely into how relevant imaging results 
have been employed in order to develop biologically inspired computational models of motor control. 
Particularly, we focus on two categories of functions, imitation and motor execution, due to the fact that 
they are closely linked to the process of observational learning. Both processes are realized at a higher 
level in the brain, meaning that they employ a number of subliminary cognitive functions in order to be 
carried out. Motor execution pertains to the category of cognitive functions that enable a verterbrate 
agent to purposefully move its body (Schaal et al., 2007), while imitation is the cognitive process that 
enables it to integrate new motor knowledge based on its interaction with others (Billard, 2000; Schaal 
et al., 2003). 
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2.2.1 Computational modeling of motor control 

From the perspective of computer science, motor control refers to the category of processes that 
transform the sensory inputs of an artificial agent into motor commands. Even though this appears to be 
a simple task, the intrinsic nonlinear dependencies imposed by the muscelotoskeltal system make it very 
complex (Synofzik et al., 2008). In addition, other difficulties that are associated with the control of high 
degrees of freedom bodies, such as the inaccuracies that are inherent in the perception of sensory 
signals and the continually changing properties of the environment, increase the complexity of the 
problem.  

The fact that primates are able to exhibit robust motor skills effortlessly has steered the modeling 
community towards seeking solutions for the aforementioned problems in nature. In this context, 
cognitive neuroscientists suggest that motor control is a three stage process (Jeannerod, 1994): (a) at 
the highest level a path must be planned; (b) at the second level, the brain must compute the inverse 
kinematics for each position in this path; (c) finally, at the lowest level it must produce the appropriate 
sets of muscle forces in order to make the body move along the desired trajectory. In the computational 
modeling literature, these problems are solved using several subsidiary processes that can be 
summarized into four important motor control components: (i) primitives, (ii) internal models, (iii) state 
representation and (iv) sensorimotor integration. The computational implementations for each of these 
processes are reviewed and discussed in the following sections. 

Primitives 

From the perspective of a computational system, the control of a vertebrate’s embodiment is a very 
complex problem. Most of its complexity rises from the fact that there exist inherent nonlinearities 
between the joints of the body. A direct consequence of these nonlinearities is that the effect of a 
control command depends on the state of the robot, and therefore it produces different outputs in 
different body postures. A direct solution to this problem is to form a state space of all the available 
motor input/output pairs and store them based on the possible configurations of the body. This 
however results in a high-dimensional and complex system, which becomes computationally implausible 
to solve in multi-part bodies (Gomi and Kawato, 1996).  

To confront this difficulty, vertebrates have evolved their motor system to recruit their limbs’ degrees of 
freedom into coordinated muscle patterns (Mussa-Ivaldi et al., 1994). This important convention 
reduces motor control to the regulation of a few basis motor behaviors, where each behavior is 
responsible for the coordination of one or more muscle groups. Such primitive based systems have been 
discovered in many vertebrate animals and in different forms (Grillner, 2006; Bizzi et al., 2008). In 
Macaque monkeys, neurophysiological experiments have revealed specific neurons that are correlated 
with the execution of basis motor behaviors (Rizzolatti et al., 1988). For example, their primary motor 
cortex is somatotopically organized, in a way that specific neurons respond to specific directions of the 
movement (Georgopoulos et al., 1988), and can be thought as encoding coordinated force patterns that 
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move the hand towards a specific direction. Similar systems have also been observed in humans 
(Thoroughman and Shadmehr, 2000). 

Computationally, the use of coordinated patterns of muscle activations provides an efficient framework 
(Fig. 2.4) for reducing the high-dimensionality that is inherent in multi-joint control (Ijspeert et al., 
2002a; Ijspeert et al., 2002b). Primitives can serve as basis functions that help to solve the complex 
differential equations, by reducing the dimensionality of the computational problem to a tractable set of 
commands. Due to this, the literature has focused extensively on understanding the biological 
underpinnings of the motion of high degrees of freedom bodies using models of primitives (see Degallier 
and Ijspeert, 2010 for a recent review).  

The basic intuition behind motor primitives is that they are a dynamical system that consists of two 
components. The first is a canonical system that drives every individual degree of freedom separately, 
while the second a system that couples and synchronizes different degrees of freedom together 
(Ijspeert et al., 2003). In vertebrates, bodies have evolved to perform two types of motions, discrete and 
oscillatory, each having its corresponding primitive model, attractors and limit cycles.  

Limit cycles are phasic oscillatory movements. The first evidence of such system was provided by 
(Brown, 1912), which described a network of Central Pattern Generators able to generate rhythms in 
cats. Other experiments based on lampreys (Cohen and Wallen, 1980) and Salamanders (Delvolve et al., 
1999) have revealed how a network can be designed in order to exhibit similar patterns of rhythmic 
activity.  In (Kiehn et al., 1997) the authors have developed a limit cycle primitive model that can be 
used to produce oscillating movement patterns in robots.  

 

Fig 2.4. A schematic illustration of the role of a dynamic primitive model in a computational model of 
motor control. Image adopted from (Schaal et al., 2005). 

In contrast, discrete primitives consist of a stable dynamical system that converges to a point attractor 
(Ijspeert et al., 2003). Biological evidence for the existence of discrete primitives has been found in 
frogs, which show how the spinal circuitry is structured in order to produce a modular movement (Bizzi 
et al., 2008 for a review). One of the first biologically inspired models of discrete primitives was 
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suggested by Feldman (Feldman, 1966), and was based on creating a series of stable equilibrium points 
across the space of the robot’s hand. Based on similar principles, Schaal (Schaal and Sternad, 1998) has 
presented a model of discrete primitives, which can orient the joints of the body in order to push it 
towards a specific posture. Their model inputs the joint of the hand and implements a function that 
generates the corresponding torque vector to achieve the desired pose (Fig. 2.5). More recent 
implementations include the FLETE (Bullock and Contreras-Vidal, 1993) and the VITE (Bullock and 
Grossberg, 1988a) models, which have been used in order to explain several different motor control 
phenomena based on self-organization (Bullock and Contreras-Vidal, 1993; Bullock, Contreras and 
Grossberg, 1992). The first model uses two neuron pools that specify the desired joint angle, in addition 
to a co-contraction signal that controls the joint stiffness. Control is achieved using two motor pools of 
interneurons (Baldissera et al., 1987; Hultborn et al; 1976) that inhibit the output in order to prevent 
saturation. In a similar manner, the VITE model (Bullock and Grossberg, 1988b) achieves limb control by 
using a neural network to change the lengths of agonist and antagonist muscles. Consequently the 
model does not change the trajectory of approach, but rather a desired final state of the system, 
encoded as a difference vector in the muscle of the body. Due to its simplicity, the model has been 
extended in various instances. In (Bullock and Grossberg, 1989) the authors used the VITE model to 
design a hybrid controller that can switch between joint and Cartesian space, while in (Gaudian and 
Grossberg, 1992) to model visually guided movements. 

 

Fig. 2.5. The discrete trajectory as implemented by (Schaal et al., 2000). (a) activation of the model. (b) 
speed of the muscle in response to the activation of the primitive model. (c) the trajectory of the limb. In 
all three images the x axis corresponds to the timing of the model, while the y axis to the value of the 
plotted variable. Image adopted from (Degallier and Ijspeert, 2010).  

To achieve flexible and stable control, it is quite common to combine the two primitive models, discrete 
and oscillatory, under the same dynamical system. For example in (Schaal et al., 2000) the authors 
present a dynamical system that can create a trajectory based on predefined properties and open task 
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parameters. The discrete primitive in Schaal’s system is based on the VITE model discussed above, while 
the rhythmic movement is triggered using a similar difference vector of amplitudes. Another primitive 
used to generate both types of movements is the one developed by Shoner and Santos (Shoner and 
Santos, 2001). In their work, the authors presented a model that can generate discrete and oscillatory 
movements using limit cycle attractors, able to resume its original trajectory even in cases where the 
limb position is changed during movement.  

One important issue in defining a primitive model is its initialization. In humans, it is hypothesized that 
motor control is based on a simple model of primitives, that is synthesized using reinforcement learning 
(Doya, 1999). However, as Kawato has argued, proper construction of a primitive model can 
computationally become as complex, as solving for the actual equations of the inverse dynamics (Gomi 
and Kawato, 1996). To confront this problem, authors have used local learning methods in order to 
initialize their primitive models, the most popular of which being imitation learning (Schaal et al; 2007). 
In the next section we discuss how another component of the motor control system, the internal 
models, can be used to encode the representations required by primitives. 

Internal models 

In the previous section we discussed how motor control can be segregated into coordinated muscle 
patterns, in order to facilitate the movement of a complex muscelotosceletal system. In the central 
nervous system (CNS), this modular motion is encoded in the spinal circuits of vertebrates, i.e. at the 
end of the hierarchical system that is responsible for motor control (Mussa-Ivaldi et al., 1994). The 
higher cognitive centers of the brain are responsible for synthesizing them appropriately in order to 
generate a complex behavior.  

This synthesis occurs on the basis of the task parameters at hand, and is strongly dependent on the state 
of the body. In this context, motor control can be regarded as a two stage process: (i) the representation 
of visual information to task goal parameters, such as a corresponding target position, and (ii) the 
consequent transformation of these parameters to torque commands (Gordon et al., 1994). To form 
such representations a computational agent must implement certain coordinate and state 
transformations that pertain to its body. In the CNS, these operations are carried out by a series of 
forward and inverse models, collectively identified by the robotic literature as internal models (Kawato, 
1999; Tin and Poon, 2005). 

For any movement, a controller needs to compute the force necessary for the muscle to make the 
required motion. This operation requires transforming the dynamical information of the arm, into the 
corresponding set of kinematic and dynamic parameters that are required to move it. In the brain, it has 
been suggested that these processes are being carried out by internal models that emerge as 
representations of the casual relationship between an action and its consequences (Fig. 2.6).  

Representing such transformations however is a very computationally intensive process. Bellman 
(Bellman, 1957) has pointed out that the storage and computations required for a task is correlated to 
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the dimension of its individual components. Since the body consists of 600 muscles, the number of 
possible motor representations scales up to an untractable number. Consequently, in the robotic 
literature, early solutions that pertain to maintaining table lookups (Atkeson, 1989) for all possible 
configurations of the body were abandoned for the sake of biologically inspired implementations of 
internal models. 

 

Fig. 2.6. Schematic illustration of the processes implemented in a forward (left) and inverse (right) 
model. Image adopted from (Arbib, 2003).  

A forward model is a model that represents the casual relationship between the percepts of our body 
and the commands that must be exerted in order to control it. One of the problems in the computation 
of this transformation is that there exist inherent delays in the processing of the environment (Ito, 
1970). For example feedback from vision can take up to 10ms to climb up the cognitive hierarchy of the 
occipital areas (Nowak and Bullier, 1997). In addition there are delays in the propagation of 
somatosensation signals, as well as inherent delays associated with motor control.  Consequently, the 
role of the forward model is to learn to provide a future state estimate, by making a sophisticated 
prediction based on the agent’s and environment’s state (Kawato et al., 1987).  

One of the main problems in this computation is that executed actions must be combined with 
consequences that are temporally delayed, usually separated in a timescale of tens of milliseconds (Ivry, 
1996). A well-defined prediction model must provide the means to cope with the instabilities that arise 
from such delays in state estimation (Miall and Wolpert, 1996), and can be developed using an online 
feedback control method that will train it to predict the state variables, based on the history of motor 
commands and the control that is being elicited by the motor system (Ariff et al., 2002; Flanagan et al., 
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2003). A common practice to achieve this is by using supervised learning. Given a motor command, and 
the output of a network that predicts the consequences it has on the body of the agent, one can easily 
devise a supervised learning signal that will teach the network how to predict it (Wolpert et al., 1995). 

The predictions made by a forward model are used by the motor system in order to identify the effects 
that a certain motor command has on the state of the agent. Each prediction, known as efference copy, 
is passed by the neural systems that implement the forward model into the corresponding systems of 
planning and action execution.  

The second class of internal models that exists in the CNS is called inverse models (Wolpert et al., 1998). 
An inverse model is a system that can calculate the motor command that is required in order to achieve 
a desired state. In contrast to forward models which, as discussed above, can be learned relatively easy, 
inverse models require more complex computations, and are limited by the design of the motor control 
system. The role of an inverse model is to invert the operation of the control, and derive a motor 
command that will cause a desired state change, based on the state of the agent and the environment. 
In the literature, three main approaches have been used in order to teach such systems:  

(i) Direct inverse modeling (Miller, 1987; Kuperstein, 1988). 
(ii) Distal supervised learning (Jordan and Rumelhart, 1992).  
(iii) Feedback error learning (Kawato, 1990). 

 
In contrast to direct inverse modeling, distal supervised and feedback error learning use the error of the 
movement, in order to derive the errors in the motor command, and consequently can acquire a proper 
control model despite miscalculations in the movement.  

Even in cases where the motor command is relatively simple however, training an inverse model still 
remains a difficult computational task. Most of the problems rise from the fact that there is an inherent 
delay in the execution of a motor command and its corresponding consequences. Therefore, it is difficult 
to derive a learning signal that will accurately predict the consequences caused by the body’s 
movement. To compensate for this, researchers have suggested combining the operation of forward 
and inverse models (Fig. 2.7). The main intuition behind this approach is that the operation of an inverse 
model can be augmented using a forward model that is responsible for predicting the motor 
consequences. In the Macaque brain it has been suggested that a specific class of neurons in the ventral 
premotor area could provide such an interface between forward and inverse models, by converting 
observed actions into motor plans (Rizzolatti et al., 2001). In addition, neurophysiological evidence has 
shown that the cerebellum can be a possible site for implementing multiple forward and inverse models 
(Ito, 1970; Miall et al., 1993), where evidence demonstrate that the region constructs an inverse and 
forward model of the eye movement in order to learn simple reflexes (Shidara et al., 1993). This 
intuition has been employed in (Wolpert and Kawato, 1998), where it is demonstrated how 
combinations of forward and inverse models can carry out motor transformation tasks. A similar 
approach has been followed by Demiris (Demiris and Hayes, 2002) who suggested that a behavior can 
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be learned by implementing the interactions between a forward and an inverse model using 
feedforward neural networks. In both approaches, the system produced was able to execute fast and 
coordinated movements. However their main drawback lies in the local encoding of behaviors, which 
means that an agent would require a distinct forward/inverse pair for each different behavior. 

 

Fig. 2.7. A schematic illustration of how the processes implemented in a forward and an inverse model 
can be integrated together. The inverse model calculates the commands required to move the body, 
based on estimations derived by the forward model. Image adopted from (Churchland, 2002).  

The ability of vertebrates to carry out complex movements is strongly dependent on the formation of 
accurate internal models (Wolpert and Ghahramani, 2000). Such cortical systems are responsible for 
adapting to the specifics of the executed movement, and produce appropriate joint torques that 
compensate for any unexpected events in the environment (Lackner and Dizio, 1994). This means that 
adaptation is a very crucial part in the design of an internal model (Shadmehr and Brashers-Krug, 1997). 
Psychophysical studies have shown that humans can adapt their motor control skills in other tasks 
(Conditt et al., 1997), directions of movements (Gandolfo et al., 1996), hand positions (Shadmehr and 
Moussavi, 2000), speeds (Goodbody and Wolpert, 1998) and visual motor environments (Krakauer et al., 
2005).  

Computationally, to achieve this adaptation, the internal model requires an appropriate representation 
of the state of the embodiment of the agent. To implement it, research has focused on using various 
neural codes, the most popular of which being population codes, because they can provide a spatial 
representation of the environmental state (Poggio, 1990). This type of fixed encoding provides a 
consistent representation of the environment (Pouget and Snyder, 2000) and therefore allows the 
system to adapt to any possible alterations in the motor control easily, by modifying the synaptic 
connections between specific neurons (Poggio and Bizzi, 2004). In (Josh and Maass, 2005), the authors 
demonstrate how a biologically inspired neural network can be trained to learn a motor control task 
using population codes. 
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In general, due to their ability to compensate for inherent problems in vertebrate movement, such as 
sensorimotor delays and feedback adaptation, internal models have been extensively used in order to 
model the state representation and estimation processes of motor control. More recently, research has 
also focused on how such models can be used to observe and interpret the movement of others 
(Wolpert et al., 2003; Mussa-Ivaldi and Bizzi, 2000; Lackner and Dizio, 1998). In the next section we 
discuss how such representations can be used by a planning component in order to facilitate complex, 
coordinated movement. 

Planning and policy learning 

Motor planning is the process during which the output of the motor control system is structured in 
order to achieve some behavioral goal. It is usually defined based on an external task, such as a target 
location or a trajectory that must be followed, and produces a deterministic sequence of movements 
that accomplishes it. Humans learn such task level representations during the early stages of the 
vertebrate motor development (Frith and Frith, 2003; Saxe et al., 2004).  

In cognitive neuroscience, there is a clear distinction between trajectory planning and trajectory 
execution (Nelson, 1983; Bizzi et al., 1984; Flash and Logan, 1985). Planning involves the cognitive 
processes that resolve any redundancies in the body of the agent, and transform a task goal to the 
appropriate sequence of commands that must be followed in order to reach it (Uno et al., 1989), while 
trajectory execution is the utilization of these commands in order to move the body of the agent.  

Depending on the underpinnings of the motor control system, there are four main approaches to 
planning. The first is reactive action selection, a stochastic policy that is usually implemented using 
architectures of actor-critics (Barto et al., 1983), and is based on the interactions of the agent with the 
environment. The second planning strategy is known as predictive action selection and is based on 
maximizing some value or cost function, by trying to increase the probability of receiving immediate or 
future rewards from the environment. The third action selection strategy represents each motor 
behavior as a discrete solution that carries out certain rewards when executed. The role of the 
computational model is to evaluate sequentially each alternative candidate, in order to find the one that 
can yield the most rewards. Finally, when actions are continuous, the action selection strategy can be 
implemented by finding the point where the derivative of a reward function is zero, in order to obtain 
the desired direction of movement. 

Using the appropriate action selection strategy, a motor system can be formulated in terms of a learning 
model that must find the correct control policy in order to achieve the goals of the behavioral task. 
Mathematically, this problem can be defined as (Schaal et al.., 2003): ܷ = ,ݔ)ߨ ,ݐ ܽ)			(2.1) 
where ܷ is the output of the motor control system, ߨ is the control policy that must be acquired by the 
robot, ݔ is the robot’s state, ݐ is time and ܽ is the parameterization of the computational model that is 
responsible for implementing the policy ߨ. Equation (2.1) suggests that a policy should implement a 
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direct mapping from the agent’s state vector ݔ, to a continuous vector ܷ that controls its body. The 
search for this policy ߨ is an optimization problem. It can be solved by assigning a certain cost function 
to the task, and using non-linear optimization methods in order to minimize it. This intuition has been 
extensively used in the framework of optimal control theory, where research has focused on suggesting 
solutions that minimize energy type quantities. For example, in (Hoft and Arbib, 1991) the authors 
describe how the kinematics of pointing movements can be explained by a cost function that minimizes 
the jerk, i.e. the first order derivative of the acceleration component. Using calculus methods, the 
authors were able to derive a fifth order polynomial that specifies the initial and final values of the 
acceleration of the movement. The minimum jerk hypothesis has also been investigated in (Flash and 
Hogan, 1985), while other researchers have focused on different aspects of energy functions, such as 
the minimum torque (Uno et al., 1989), the minimum metabolic energy (Alexander, 1997) and the 
minimum variance model (Harris and Wolpert, 1998). 

 

Fig. 2.8. Learning motor control policies through imitation. The image illustrates a human demonstrating 
the task, and the corresponding behavior as executed by the robot. Image adopted from (Peters and 
Schaal, 2006). 

Searching for appropriate policies is also compatible with the way primates learn. For example imitation 
learning can be regarded as a behavioral process during which policies are transferred from one 
conspecific to another by direct interaction (Fig. 2.8). This intuition has been exploited in robotics in 
order to develop models that can learn domain specific policies (Toussaint and Goeric, 2007), integrate 
new policies based on the demonstrator’s representations (Peters and Schaal, 2007; Guenter et al., 
2007) and learn through fast online algorithms (Bagnell et al., 2004). Other authors have explored how 
learning new policies can be achieved from observing demonstrating trajectories. In (Miyamoto and 
Kawato, 1998), the authors have developed a model that can extract an initial policy from a 
demonstrated movement, which is later refined through a self-learning process. Learning of new, non-
autonomous, control policies has also been implemented using spline interpolation, where the model 
tries to fit a given trajectory into a spline, based on some via points which are temporally parameterized 
(Kawamura and Fukao, 1994). In a more biologically inspired sense, Billard and Mataric (Billard, 2000; 
Billard and Mataric, 2001) have developed a model where joint angular trajectories can be 
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approximated by a policy that segments them for each joint movement, and demonstrated how it can 
be used to generate joint angle trajectories that were described by bell shaped velocity profiles.  

Policy learning also becomes important in the context of primitives discussed in the previous section. If 
we consider that the motion of an agent is governed by the dynamical system described in eq. (2.1), 
then the search for an appropriate policy π can be determined by the repertoire of basis motions that 
are available to the agent. This research direction has been explored by many models. In (Ijspeert et al., 
2003) the authors used policy search in order to enable robots to synthesize basic motor primitives into 
more complex behaviors. The same authors (Ijspeert et al., 2002a; Ijspert et al., 2002b) have suggested 
an alternative system to the spline based policy learning, based on autonomous dynamical learning and 
the use of motor primitives. In this context, searching for an appropriate policy is accomplished by 
rewarding all possible states, and identifying the one that will elicit the most rewards (Fig. 2.9). In such 
cases, planning is considered as a symbolic process, in which the representation of goals and percepts 
from the environment are combined in order to achieve the relevant task objectives (Lozano-Perez, 
1982).  

 

Fig. 2.9. A schematic representation of how rewards from the environment can be integrated within a 
computational model to solve action related problems. Image adopted from (Engelbrecht, 2007). 

Most of the aforementioned action selection strategies are implemented using reinforcement learning 
(Lin, 1991). For example in (Atkeson and Schaal, 1997) the authors use this scheme in order to teach a 
robot a policy of the task dynamics, and demonstrate how goals can be used to learn task level policies 
of the movement based on reinforcement learning. Other models have employed different methods to 
facilitate learning of new policies, including supervised and competitive learning (Houk and Wise, 1995). 
In (Widrow and Smith, 1964) the authors used a supervised neural network in order to learn various 
tasks from human demonstration. The same intuition can be found in a number of works that 
implement direct policy learning, based on supervised signals derived from a robot teacher (Hayes and 
Demiris, 1994; Grudic and Lawrence, 1996; Sammut et al., 1992).  

2.2.2 Computational modeling of motor learning 

In the previous section we have reviewed the three main components that have been identified by 
computational modelers as the grounding elements of a motor control system. In the current section we 
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discuss about the additional cognitive processes that are required in order to implement motor learning. 
Traditionally, in the computational modeling literature, motor learning is facilitated through imitation. 
Observational learning, the acquisition of novel skills only by observation, is a sub-category of imitation 
itself. For this reason, in the current section, we review topics that pertain to the design of imitation 
mechanisms in robotics, including embodiment, correspondence, and motor learning.  

Action representation and the (embodiment) correspondence problem 

Most contemporary theories in neuroscience claim that cognition is embodied, i.e. our thoughts and 
reasoning are tightly coupled and co-develop along with our body (Thelen and Smith, 1994). The 
importance of embodiment for cognitive development has been demonstrated by many research 
studies (Barsalou and Wiemer-Hastings, 2005; Damasio and Damasio, 1994), while extensive 
neuroscientific evidence have investigated how the link between the body and its perception can be 
formed and developed in biological agents (Tsakiris, 2010). This evidence has triggered extensive 
discussions on the important role that our body plays into forming our cognition (Synofzik et al., 2008; 
Tsakiris et al., 2007). The most simple definition of body ownership is that it is the perception of one’s 
body (Gallagher, 2000). This is distinguished from the perception of an object mostly because the feeling 
of our body is always present (James, 1890).  

In the context of motor control body representation has a very significant role, since our whole motor 
system is structured in order to confront the degeneracies that are imposed by our musculetoskeletal 
system. Moreover, to learn from a demonstrator, we must be able to match its body parts to ours. In 
the computational modeling literature this is known as the embodiment correspondence problem 
(Alissandrakis et al., 2002; Dautenhahn and Nehaniv, 2002). In practice, embodiment correspondence is 
a matching process (Fig. 2.10), which allows us to map the perceived state of the demonstrator, to the 
embodiment state of the agent (Byrne, 2003).  

 

Fig. 2.10. Embodiment correspondence implemented based on the rules of a chess game. The different 
sequences that the knight can use to approach the queen pertain to different matching processes. In a 
similar manner, an embodied agent can exploit different strategies to match the body of the 
demonstrator. Image adopted from (Alissandrakis et al., 2002). 
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The cortical underpinnings of the correspondence problem have attracted a lot of attention among 
computational modelers and neuroscientists. For its solution two main theories have been proposed, (i) 
specialist and (ii) generalist. The first, proposes that there are specific functional correspondence 
mechanisms that are dedicated to imitation learning. For example in the Active Intermodal Matching 
model (Meltzoff, 2002), the authors suggest that the visual representation of a behavior is inherently 
converted to a representation that contains information about the body-part relationship. In contrast, 
generalist theories suggest that the correspondence problem is mediated by the same control 
mechanisms that have been developed for imitation. The Ideomotor Theory (Greenwald, 1970), the 
main advocate of this trend, puts forward the argument that the representations of body movements 
can be interpreted on the basis of the sensory feedback the agent receives.  

The solution to the correspondence problem lies in the matching process between the perceived 
behavior and the agent’s motor control system. In this context there are two fundamental theoretical 
components that must be understood. The first refers to the matching criterion that can be used when 
recognizing a certain behavior, while the second to the coordinate frame that the correspondence will 
take place (Meltzoff and Moore, 1994). For example if matching can only be specified in kinetic 
coordinates, the agent will not be able to perceive any relevant kinematic or dynamic properties of the 
movement. In (Miyamoto and Kawato, 1998) the authors explore how this frame transformation can be 
accomplished in movements specified in Cartesian coordinates, using the kinematics of the arm, which 
are defined in joint angle coordinates.  

Alternatively, if the observer can only perceive movement related parameters, then the matching 
process is quite straightforward (Kawato, 1999). For example, when the trajectory is specified based on 
intermediate location points (Miyamoto et al., 1996), then the movement recognition system can be 
adapted using standard classification algorithms. Learning of dynamic parameters in this case can be 
accomplished using predictive forward models (Miall and Wolpert, 1996; Wolpert et al., 1998; Wolpert 
et al., 2003), in which the agent predicts the kinematic or dynamic parameters of a movement based on 
its own motor control system and the state of the demonstrator. Such intuition has been explored in 
(Demiris and Hayes, 2002), where the authors have used pairs of forward and inverse models in order to 
predict the properties of the observed movement. This bi-directional approach of behavior matching is 
compatible with recent neuroscientific evidence regarding the functioning of the mirror neuron system 
in primates (Rizzolatti et al., 1996), as well as contemporary theories of cognition such as the theory of 
mind reading (Gallese and Goldman, 1998).  

To understand a demonstrated behavior the motor control system must implement a nonlinear 
mapping between the observed parameters of the demonstrator and the internal state of the observer. 
It is thus important for the teacher to be able to provide identifiable parameters, and for the student 
robot to be able to convert them to meaningful internal representations. This can be accomplished in a 
straightforward manner, if the student and the teacher share bodies that have the same kinematic and 
dynamic structure (Dautenhahn and Nehaniv, 2002). On the other hand, if the ability to observe directly 
the properties of the movement is not inherently encoded into a model, other methods can be used in 
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order to uncover the hidden states of the observer (Arulampalam et al., 2002). In contrast, external 
coordinates, such as the acceleration of the end point of an arm are considered task-level 
representations. Task level representations are easier to perceive by observation and offer an implicit 
solution to the possible mismatch between the bodies of the demonstrator and the executor. However, 
they require an inherent knowledge of the motor control system, meaning that the agent must be able 
to convert the properties of the perceived movement from the external space into internal 
representations of its motor control system. This transformation can be accomplished with the use of 
inverse models (Bullock et al., 1993; D’Souza et al., 2001), such as the ones discussed in the previous 
section. In (Widrow and Smith, 1964) the authors train a neural network using such external 
coordinates, which are recorded directly from human behaviors, and demonstrate how they can be used 
in order to learn the pole balancing problem. Similar approaches have been used in various other 
computational models (Lin, 1991; Hayes and Demiris, 1994; Grudic and Lawrence, 1996), where the 
authors utilize movement representations defined in external task space in order to solve the 
embodiment correspondence. 

The solution to the correspondence problem underpins the basis of motor perception. If computational 
agents can perceive and understand the motion of bodies of their conspecifics, then they can manage to 
learn from their observation. In the next section we discuss how such mechanisms can be utilized in 
order to build motor control systems that can integrate new knowledge. 

Motor learning by imitation 

Having discussed the underpinnings of motor control, in the current section we review the 
computational modeling literature that pertains to motor learning. In particular we will focus on 
biologically inspired approaches to imitation, because they are closely related to the process of 
observational learning. Most of the computational models in this field are based on neural networks, i.e. 
distributed computational systems that mimic the functioning of the brain in different levels of 
resolution (Jordan and Rumelhart, 1992). In the computational modeling community, imitation started 
attracting attention during the 80s, because it could provide an efficient framework for automating the 
manual programming that was required for the industrial robots used at the time (Fig. 2.11). 
Contemporary approaches to imitation are based on symbol learning (Dillman et al., 1995), while most 
of the models employ biologically inspired principles (Pook and Ballard, 1993; Arbib et al., 2000; Oztop 
and Arbib, 2002). 

In primates, imitation is the main form of social learning because it facilitates the transfer of motor 
knowledge across agents by demonstration. The cognitive mechanisms that support imitation are 
developed in the early stages of the primate’s life (Meltzoff and Moore, 1977), thus allowing the 
expansion of their motor system by integrating new knowledge (Bandura and Wood, 1989; Brass and 
Heyes, 2005; Iacoboni, 2005), and facilitating the social interaction of group members under the same 
context. In particular humans and apes are endowed with imitation abilities that are superior to other 
species (Bard and Russell, 1999; Whiten et al., 1996). For example, infants go through various 
developmental stages that pertain to imitation (Piaget, 1962), such as developing the ability to 
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immediately replicate an action by observing it. In fully developed humans, neuroscientific evidence 
suggests that there is a common system for encoding action and perception (Viviani, 2002). This has 
caused the computational modeling community to redefine traditional views about cognitive imitation, 
held until recently (Wilson, 2001).  

In the robotic literature, studies have extensively focused on the cortical process of imitation (Schaal, 
1999; Breazeal and Scassellati, 2002; Dautenhahn and Nehaniv, 2002) mostly because it is a convenient 
way to reduce the size of the state-action space that must be explored by a computational agent during 
learning (Atkeson and Schaal, 1997). In (Meltzoff and Moore, 1995) the authors suggest that imitation 
can also be used as a bootstrapping process for communication, while recently, several cognitive, 
cultural and social theories that pertain to social interactions have been associated to imitation 
mechanisms (Montague et al., 2002; di Pellegrino et al., 1992; Frith and Frith, 1999; Piaget, 1951; 
Tomasello et al., 1993; Meltzoff and Moore, 1994; Byrne and Russon, 1998). 

Despite the large attention, there is nowadays a little consensus on what is defined by imitation (Byrne 
and Russon, 1998; Heyes, 2002). In the literature, the most common form that can be found is true 
imitation (Tomasello, 1997), but there are also other forms such as contagion (Thorpe, 1963), response 
facilitation (Byrne, 1994), emulation (Nagell et al, 1993), deferred (Ito and Tani, 2004) and observational 
learning (Hourdakis et al., 2011). 

 
Fig. 2.11. Robot learning by demonstration. a. A human exhibiting a series of movements. b. A robot 
replicating those movements. Image adopted from (Schaal et al. 2003). 

A general definition of imitation has been given in (Schaal et al., 2003), where the authors summarize 
the essential elements of an imitation system using the following equation: ܨ = ,(ݐ)ݖ)݃ ,(ݐ)ݑ  (2.2)				(ݐ
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 corresponds to the loss function that must be minimized and is defined accumulatively based on the ܨ
relevance between the motor behavior of the demonstrator and the teacher. The vectors ݖ and ݑ define 
the evolution of the internal state of the agent and external states of the environment respectively, 
while ݐ denotes time. Equation (2.2) can be extended by adding supplementary terms that describe the 
deviations from the trajectory of the teacher and the demonstrator (Mataric and Pomplun, 1998; 
Nehaniv and Dautenhahn, 1999). To develop a basic conceptual system based on eq. (2.2) one must 
implement four important components:  

(i) A visual system that can encode the action to be imitated. 
(ii) Internal models that encode the sensory consequences and body states of the agent. 
(iii) A component that encodes the goal of the imitated action. 
(iv) A motor control system. 

One of the main problems with implementing these components is that they are interrelated. For 
example, to convert the visual information into action one must take under consideration the 
underpinnings of the motor control system. In the case that this is implemented using movement 
primitives, as discussed in a previous section, one major question that must be confronted is how 
behavior matching can occur on the basis of primitive movements (Sutton et al., 1999; Sternad and 
Schaal, 1999) given that low level representations do not scale well when the body has many degrees of 
freedom (Schaal, 1999). In the following section we review the most prominent computational modeling 
approaches to imitation, and discuss how these issues are resolved. 

Computational models of motor learning 

Due to the benefits that roboticists can gain from modeling imitation, several research groups have 
focused on developing methods for teaching robots by demonstration. Most of the approaches in this 
field have focused on neural network development, due to the fact that they can mimic, to a certain 
extent, the functioning of specific brain areas in the cerebral cortex (Vos and Scheepstra, 1993; Vos et 
al., 1997; Smeets et al., 1994; Willner et al., 1993). Although there exist interdisciplinary computational 
approaches that model imitation mechanisms (e.g. the use of Hidden Markov Models in Inamura et al., 
2001), in the current section we focus only on biologically inspired neural networks because they are 
more related to the context of this thesis.  

Most of the models in this field have been based on the neuroscientific finding of mirror neurons, a 
group of neurons in the premotor area of the cerebral cortex that fires both when a monkey executes 
and observes a specific behavior (Rizzolatti et al., 1996). Even though mirror neurons have been only 
associated with action recognition, many computational modelers extended their application to action 
generation as well, in order to suggest possible ways for implementing imitation. This assumption has 
been followed for many years in the literature, resulting in a series of models of mirror neurons that 
exhibit imitation based on an interpretation that was not fully compatible with the associated 
neuroscientific data. Despite this fact, research on this field has exhibited very competent models of 
motor learning, which we will review extensively in the current section.  
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In (Oztop et al., 2006) the authors have derived a basic taxonomy of the imitation models, based on the 
computational principles that have been used for their implementation. Consequently, they have 
categorized models depending on the learning method employed and whether they are consistent with 
the neurobiological findings that have been reported for the process. Even though, as we have 
discussed, most of the models that were developed in the early 00’s were based on a misinterpretation 
of the neuroscientific data, they were able to exhibit one important property that is consistent with the 
way the brain of primates functions: action observation and action execution share a common coding 
system (Rizzolatti et al., 1996; Raos et al., 2007). 

The first model we discuss (Tani et al., 2004) uses a recurrent neural network in order to learn spatio-
temporal patterns, that are utilized as primitive behaviors (Fig. 2.12). The authors associate specific 
parametric bias vectors with basic motor patterns during a self-organizing process, that uses the same 
neurons for action generation and recognition. Each primitive is represented as a spatio-temporal 
pattern of activations, which is learned due to the recurrent connections that exist in the layers of the 
neural network. After training, the model is able to predict series of temporal sensorimotor patterns, 
and associate them with specific parametric bias vectors.  

The latter are also used to recognize observed behaviors, and for this reason the authors have claimed 
that their architecture is consistent with the response properties of mirror neurons in the Macaque 
brain. One of the strong benefits of the approach is that all behaviors are stored distributively in the 
synapses of the recurrent neural network. However, even though the model provides an important basis 
for learning new behaviors as dynamical systems, it does not include any components for the planning 
or state representation processes. As a result, it can only be used to reproduce a spatiotemporal 
sequence of sensorimotor patterns, rather than act as a complete model of an imitation process. 

 

Fig. 2.12. The RNNPB neural network during the learning phase, where the network learns new motor 
behaviors based on the parametric bias vectors. Image adopted from (Tani et al., 2004). 
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The next two imitation models we discuss (Demiris and Hayes, 2002; Haruno et al., 2001) have one 
important similarity. They implement a mechanism where new behaviors are learned based on the 
cooperation of a forward and an inverse model.  Each recurrent controller inputs the target of a 
behavior and outputs the motor commands that are required in order to execute it. One very important 
assumption that both architectures make is that the demonstrator’s joint angles are available to the 
agent at all times. The forward model is responsible for estimating the next state of the agent, which is 
directly fed to an inverse model in order to compute the necessary control commands. In the case of 
(Demiris and Hayes, 2002) each paired forward-inverse controller learns to output a confidence value 
that represents the extent to which the given behavior is similar to the one encoded. The same 
controller that is responsible for movement recognition is also responsible for movement execution, and 
based on that, the authors have claimed that their model is inspired by the function of mirror neurons. 
One drawback of the model is that behaviors are stored modularly, i.e. one requires a distinct forward-
inverse controller for each new behavior. Consequently, the agent’s storage capacity requirements scale 
up with the number of behaviors that are taught to the agent. 

In the same line of approach, the MOSAIC model (Haruno et al., 2001) also employs internal models in 
order to implement the motor control component of the agent. Similarly to the (Demiris and Hayes, 
2002) architecture, the authors suggest that a controller of forward-inverse model pairs can be used in 
order to encode a distributed representation of a behavior (Fig. 2.13).  

 

Fig. 2.13. The three hierarchical levels involved in the MOSAIC model. At the top level the goal tasks are 
represented, while at the second level, the motor sequence required to achieve these tasks. The bottom 
level involves the neural dynamics that produce the motor sequence. Image adopted from (Wolpert et 
al., 2003). 

One of the strengths of the proposed model is that it is not associated with a specific learning method, 
but is rather a conceptual formalization of how a motor control hierarchy can implement learning by 
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imitation. Due to this, various different algorithms have been adopted to the architecture, including 
gradient descent (Wolpert and Kawato, 1998) and expectation-maximization (Wolpert et al., 2003). 
Using the MOSAIC, the authors in (Doya et al., 2000) were able to implement an imitation system that is 
able to learn the task of swinging for a one-degree of freedom joint stick. One of the important 
components of the model is the use of responsibility signals, i.e. continuous values that represent 
predictions of the error of a controller when describing an observed action. Even though both models 
provide a consistent framework towards implementing learning of new behaviors by imitation, their 
claims of being a conceptual implementation of mirror neurons are not fully justified. 

The fourth model that implements imitation based on biologically inspired approaches is the one 
developed by Borenstein and Rupin (Borenstein and Rupin, 2005). In their work, the authors follow a 
complete different line of thought from other related models, and investigate how evolutionary 
optimization can be used to prove the concept of mirror neurons on simulated agents. To accomplish 
this, the authors model the problem of observation and execution using an evolutionary framework, and 
show that when simulated agents are evolved to reproduce the output that is observed by a teacher, 
the fittest individuals develop an inherent tendency to use the same neurons for recognition and 
generation of an action. The use of genetic algorithms have been employed in several different motor 
control models in the literature, such as the ones in (Clif et al., 1993; Nolfi and Floreano, 2004), because 
they provide an attractive optimization framework to overcome the non-linearities that are inherent in 
motor control. One of the main drawbacks of these models is that the neural architectures that were 
used in order to implement the simulated agents were rather simplistic, i.e. they consisted of single 
feedforward neural networks. Moreover, the encoding of the teacher and agent states followed simple 
binary neuronal input, a convention that neglects the complexity of the actual biological input that is 
available to the mirror neurons in the Macaque monkey. 

Using principles of associative learning (Hassoun, 1993), several authors have developed neural network 
imitation models of motor control. The benefits from this approach is that the developed neural 
networks are used as content addressable memories, which are computationally more efficient since 
they require only a partial input pattern in order to reconstruct the full representation encoded. The 
association in such architectures is performed usually between motor, visual and somatosensory stimuli. 
In (Elshaw et al., 2004) the authors use such an associative memory in order to correlate motor, 
language and visual representations. In their results, the authors claim that their model replicates the 
operation of mirror neurons, since the neurons in the hidden layer responded to both visual inputs and 
motor codes.  

All the models in this category are based on the associative hypothesis of mirror neurons, which justifies 
mirror neuron development as the result of motor, visual and somatosensory events occurring 
concurrently when imitating. In (Billard and Hayes, 1999) the authors present the DRAMA architecture 
(Fig. 2.14), which can learn new spatio-temporal motor patterns using a recurrent neural network with 
Hebbian synapses. In (Kuniyoshi et al., 2003) the authors present an associative memory which can 
couple motor codes with visual information, while in (Oztop et al., 2005) the authors have developed a 
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Hopfield neural network that can generate different hand postures using Hebbian based synapses. One 
major drawback in these computational models is that they assume that the mirror neuron system is 
used during both action generation and action recognition, which as Rizzolatti pointed out is a false 
assumption (Rizzolatti and Craighero, 2004).  

 

Fig. 2.14. A schematic illustration of learning new motor control processes using the DRAMA 
architecture. Image adopted from (Billard and Hayes, 1999). 

The Mirror Neuron System (MNS, Oztop and Arbib, 2002) model is probably the most consistent, in 
terms of the cortical process of mirror neurons than any other model discussed up till now. This is 
because in their model, the authors make the important distinction between the mirror and canonical 
neurons in the prefrontal cortex, i.e. they discriminate between the cells that are responsible for action 
execution and action generation (Fig. 2.15).  

 

Fig. 2.15. A schematic representation of the Mirror Neuron System developed by Arbib to model the 
cortical responses of mirror neurons during action recognition. Image adopted from (Arbib, 2004). 



2.2 Computational neuroanatomy of motor learning and control 

 
March 2012  Page 37 

In addition, mirror neurons are developed strictly for action understanding, and not action execution. 
The intuition behind the model is based on the fact that mirror neurons have been hypothesized during 
infancy (Kohler et al., 2002), and consequently they must emerge through a developmental process that 
takes place in the early years of the primate’s life. The first MNS model suggests that, the input that the 
infants receive during self-generated behaviors can be employed in order to reproduce the response 
properties of mirror neurons. The authors did not implement however a neural motor control 
component, while the remaining parts of the model have been designed conceptually, using schemas 
(Arbib, 1981). The model has generated several predictions regarding the function of mirror neurons, 
based on experiments that use different kinds of grasps and velocity profiles. In addition, it was 
extended by (Bonaiuto, et al., 2005) into a new version, which used recurrent neural networks, a more 
biologically plausible network than the backpropagation model that was employed by its predecessor. 
Moreover, the MNS2 model is based on additional neurophysiological experiments (Kohler et al., 2002), 
that demonstrate how sounds can be associated with motor codes in the auditory mirror neurons.  

The final model we discuss is the one mostly related to the content of this thesis, as it uses the concept 
of mirror neurons in order to infer the mental state of other agents. To accomplish this, the Mental 
State Inference (MSI, Oztop et al., 2005) model is based on the assumption that the motor response of 
mirror neurons is only the utilization of a system with additional cognitive functions. Using visual 
feedback, the MSI model assigns a predictive role to mirror neurons, and postulates that their use is for 
understanding others’ intentions (Oztop et al., 2005). The mirror neurons implement a forward 
prediction circuit in the model, which tries to infer the sensory consequences of the motor behaviors 
executed by the agent. However this assumption is not compatible with the view that mirror neurons 
are responsible for action recognition only.  

All the aforementioned models are contemporary approaches to motor control and learning, inspired by 
findings from cognitive neuroscience. In the next chapter we review the cortical underpinnings of these 
processes in order to understand how they are facilitated in the brain of human and monkey primates. 
This will enable us to understand the neurophysiological details of observational learning in the brain, 
and derive computational agents that can support it. 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

Cortical Underpinnings of  
Observational Learning 

 

 

 

 
In the current chapter we review the neurophysiological studies that investigate the cortical properties 
of observational learning in the brain of human and Macaque primates. As already mentioned, the basic 
assumption that is employed throughout this thesis is that, the observation and execution of an action 
activates the same neural networks in the brain of the aforementioned species. This fact highlights one 
important property of the cerebral cortex during observation: to understand a conspecific’s behavior, 
primates reenact observed actions using their own motor control system (Savaki, 2010). To shed more 
light into how this mechanism is facilitated in the brain, in the current chapter we analyze the regions 
that become active during execution and observation, and attempt to decipher their function using 
evidence from neuroscience. In addition, we examine the capacity to imitate in both species, in order to 
understand how the overlapping pathways facilitate observational learning. 

3.1 Cortical regions that participate in action execution and action 
observation 

The main hypothesis that inspired research work in this thesis is that the observation of an action 
activates the primary motor (MI) and primary somatosensory (SI) areas somatotopically (i.e. the 
forelimb representation for arm actions) in the same manner as the execution of the same action (Raos 
et al., 2004). One of the first findings of such common coding mechanism was reported in the Macaque 
ventral premotor Cortex (F5), where researchers have pinpointed the existence of neurons with mutli-
modal properties (coined as mirror neurons, Fig. 3.1), able to respond to the observation and execution 
of goal directed movements (Di Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996). This 
simple mechanism was unique in its kind, and was interpreted by researchers as the basis for the 
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recognition of others’ actions (Rizzolatti and Fadiga, 1998; Jeannerod, 1994). In humans, 
neuroanatomical evidence suggests that the F5 area of the Macaque monkey is the precursor of 
Brodman area 44 (von Bonin and Bailey, 1947; Rizzolatti and Arbib, 1998), which also has an active 
involvement during observation.  

Nowadays, neuroscientific studies have identified a plethora of regions, apart from F5 and B44, that 
participate in action observation. These have been collectively identified as the Mirror Neuron System 
(MNS, Rizzolatti and Craighero, 2004), even though there is still missing evidence as to whether all 
regions in the MNS contain mirror neurons. Nonetheless, analogous overlapping systems have been 
shown to exist in both human (Rizzolatti, 2005) and monkey primates (Raos et al., 2007), and as it is 
widely believed among neuroscientists they subserve the species’ social capacities. 

 

Fig. 3.1. Visual and motor responses of mirror neurons during grasping experiments. (a) The observation 
and execution of a grasp behavior elicits a firing if the experimenter uses his/her hand. Image adopted 
from (Rizzolatti et al., 2001).  

Even though the existence of mirror neurons is considered to be an evidence of support of the 
simulation theory, most researchers nowadays suggest that our ability to understand others is 
underpinned by a pathway of activating regions instead of two areas (F5 and PfG) containing mirror 
neurons. Unlike the MNS, whose primal function is based on the activity of mirror neurons, new 
evidence suggest that there are plethora of regions being activated during action execution and action 
observation. For the sake of convenience, and to avoid confusion with the neurophysiological 
mechanism loosely coined as the MNS, in the remaining of the chapter, we shall name this mechanism 
Execution/Observation matching system (EOMS).  

3.1.1 Macaque Monkeys 

In monkeys, due to the ability to penetrate and record single neurons in the cerebral cortex, researchers 
were able to identify specific neurons that respond to the observation of others’ actions. These, so 
called, mirror neurons have been discovered in premotor and parietal areas (Gallese et al., 1996), and 
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are characterized by the fact that they discharge both when the monkey executes a goal-directed action 
and when it observes the same action being executed by a demonstrator (Fadiga et al., 2000).  

More recently, 14C-Deoxyglucose experiments have shown that the network of regions that is being 
activated in Macaques during observation extends further than the parieto-frontal regions and includes 
the primary motor and somatosensory cortices (Raos et al., 2004; Raos et al., 2007; Evangeliou et al., 
2008; Kilintari et al., 2010). The same finding has also been confirmed by a recent meta-analysis of 
imaging studies, which showed that the action observation network expands bilaterally to both 
hemispheres, and far beyond the mirror neuron areas (Caspers et al,. 2010). These results suggest that 
when observing, Macaques make use of an extensive network of motor areas in order to understand 
what has been observed (Fig. 3.2). Quite interestingly this network includes the primary motor and 
somatosensory cortices.  

         

Fig. 3.2. Activations in the brain during an execution and observation task. Green areas mark the regions 
activated during observation, red areas the ones during execution, while with yellow the authors have 
marked the regions that are activated during both execution and observation. Image adopted from Raos 
et al., 2007). 

3.1.2 Humans   

The discovery of mirror neurons in monkeys has motivated researchers to investigate whether a similar 
overlapping system exists in humans (Rizzolatti, 2005). The first study to compare the observation of 
human hand actions and objects has reported the activation of the left inferior frontal gyrus, an area 
that contains motor representations of hand actions (Rizzolatti et al., 1996) and is homologous to the F5 
area in the monkey (Petrides and Pandya, 1997). This finding gave impetus to numerous studies that 
investigated whether action processing in the human brain is characterized by the same cognitive 
properties found in Macaques (Buccino et al., 2004; Iacoboni et al., 1999). Nowadays, even though 
single cell recordings are not feasible, data from neurophysiological (Fadiga et al., 1995; Hari et al., 1998; 
Cochin et al., 1999; Brighina et al., 2000; Nishitani and Hari, 2000; Strafella and Paus, 2000; Sundara et 
al., 2001; Maeda et al., 2002) and neuroimaging (Decety et al., 1997; Grezes and Decety, 2002; Iacoboni 
et al., 1999; Astafiev et al., 2004) experiments were able to pinpoint the existence of a homologous 
overlapping network during execution and observation (Fig. 3.3).  
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Fig. 3.3. Activation of brain regions during observation and execution experiments. Image adopted from 
(Iacoboni et al., 2005). 

The above evidence is further complemented by neurophychological studies that confirm the role of the 
above mentioned regions to motor imagery. Sirigu (Sirigu et al., 1995) showed that subjects with 
degeneration in the primary motor cortex mentally simulate movements that are decelerated compared 
to their corresponding executed ones. The same author (Sirigu et al., 1996) has shown how lesions in the 
parietal lobe produce extended problems in our ability to imagine an observed action. In (Brass et al., 
2000; Craighero et al., 2002) the authors have reported that when subjects are prompted by the 
observed movement they tend to respond faster, indicating a close link between the human observation 
and execution networks. 

However, due to the restrictions in humans, it is not yet clear whether the above areas contain mirror 
neurons, or the extent to which the human EOMS system facilitates observation as in monkeys. Dinstein 
(Dinstein et al., 2008) has claimed that functional measures of brain activity are unable to conclude 
whether or not there are mirror neurons in these areas because they are limited to analyzing thousands 
of neurons, and therefore cannot provide evidence as to whether there are distinct cells that fire during 
observation and execution. Moreover, the same author has suggested that mirror neurons should show 
adaptation (i.e. a reduce in the energy output of a neuronal population after repeated stimulations, see 
Grill-Spector et al., 2006) in their measured responses, which was not confirmed at the time. This view 
however was recently dismissed due to findings that demonstrate a cross-modal (Kilner et al., 2009) and 
unimodal (Dinstein et al., 2007) adaptation in the neuronal populations of the human ventral premotor 
cortex. Nowadays, it is widely accepted among neuroscientists that humans have developed a formal 
imitation system that is extensively based on the function of the overlapping regions in the EOMS. In the 
next section we investigate the cognitive functions that are carried out in each of these regions, in order 
to understand how they contribute to the aforementioned processes.  

3.1.3 Cognitive functions in the activated regions 

The evidence discussed above suggests that motor execution and motor imagery activate the same 
regions and, to a certain extent, the same category of processes in the cerebral cortex (Jeannerod, 
1994). In the current section we examine the neuronal correlates of the aforementioned regions, in 
order to understand the cognitive functions that they perform. In chapters 5 and 6 we will use this 
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derivation to design the functionality of our computational agents. From the discussion in the previous 
section we have identified seven main regions that actively participate in observation and execution in 
monkeys and humans: (i) parietal cortex, (ii) primary motor cortex, (iii) premotor cortex, (iv) 
somatosensory, (v) visual, (vi) Basal Ganglia and (vii) SMA. The cognitive function that is performed in 
each region is briefly discussed in the following. 

Parietal Lobe 

The parietal cortex is a visual and somatosensory association area. In its inferior part, it contains 
neurons that are tuned to the object size and shape (Shikata et al., 1996). For example the Anterior 
Intraparietal area (AIP), located in IPL, contains neurons that are selective to (i) the shape properties of 
an object (visual neurons) and (ii) the execution of different grasp behaviors (motor neurons) (Fig. 3.4, 
Murata et al., 2000). These neurons also respond to goal directed actions, i.e. they fire as soon as the 
object to be grasped is presented (Sakata et al., 1995). Due to this, AIP is considered to play an 
important role in representing the affordances of a given object, through its connections with the F5 
premotor area (Matelli et al, 1994), by associating the shape properties of an object with the motor 
behaviors that are required for manipulating it.   

 
Fig. 3.4. Examples of different classes of neurons in the Anterior Intraparietal area (AIP) reported in 
(Murata et al., 2000). Image adopted from (Jeannerod et al., 1994). 
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The second area in the parietal lobe that was found to be activated during both observation and 
execution is the Superior Parietal cortex (SPL). It contains, among others, neurons that are selective to 
single and combined joint stimulations, i.e. their firing responses are correlated to the position of the 
agent’s body parts (Sakata et al., 1973). For this reason SPL has been considered as a somatosensory 
association area, where various representations from the SI and other parietal regions are coupled to 
form a common neural code (Sakata et al., 1973). The region receives strong input from the 
somatosensory cortex and its neurons can be grouped into five different classes, based on the 
properties of their receptive fields: (i) directional skin, (ii) non-directional skin, (iii) single joint, (iv) 
combination of joints and (v) joint – skin (Sakata et al., 1973). Most of the somatosensation properties of 
the neurons in SPL are caused due to the projections from the primary somatosensory cortex (Jones and 
Powel, 1969). In its posterior part, where areas 5 and 7b reside, neurons have been associated with the 
perception of body form and extrapersonal space (Chow and Hutt, 1953; Crosby et al., 1962). Recent 
studies report that SPL also has an active role during the observation of a behavior (Evangeliou et al., 
2008; Raos et al., 2007; Chaminade et al., 2002), supposedely by integrating proprioceptive and visual 
information, in order to form posterior beliefs about the position of the hand. 

Premotor area 

The premotor cortex is responsible for activating the correct motor behaviors in response to sensory 
stimuli, such as two dimensional patterns (Mitz et al., 1991), color (Halsband and Passingham, 1985), 
size and shape (Petrides, 1982). In its ventral part resides region F5, which is involved in the control and 
initiation of hand movements (Kurata and Tanji, 1986), and contains two classes of neurons that are 
related to motor control: canonical and mirror neurons.  

Canonical neurons, when active, initiate a specific primitive behavior. They fire only when the object 
that is associated with an action is presented, but not to the presentation of the action itself (Murata et 
al., 1997), i.e. the neurons become active in the sight of objects that afford manipulation (Sakata et al., 
1995). Jeannerod (Jeannerod et al., 1995) and Murata (Murata et al., 1997) interpreted this activity as 
encoding of segments of motor acts, otherwise referred to as motor schemas (Arbib, 1981).  Motivated 
by these properties, Rizzolatti has suggested that F5 contains a vocabulary of motor acts (Rizzolatti et 
al., 1988), where some neurons encode general commands related to grasping, and others implicit 
information about the specifics of the grasp. 

Mirror neurons become active when the primate executes or observes a goal-related motor act (Gallese 
et al., 1996; Rizzolatti et al., 1988). They are grouped into different functional classes, depending on 
whether they correlate with one or more elementary movement patterns, such as holding, tearing, 
manipulating and grasping. In monkeys, one of the distinct properties of these cells is that they will only 
respond to transive behaviors, i.e. ones that are coupled with objects in the environment (Rizzolatti, 
1988). In addition, the firing properties in each class are not uniform: Some neurons will fire during the 
final steps of a grasping behavior, while others at the initial formation of the grasp. 
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Primary somatosensory cortex 

The Primary Somatosensory cortex (SI) has four major cytoarchitectonic subdivisions, areas 3a, 3b, 1 and 
2 (Kaas et al., 1979), each containing a complete representation of the contralateral part of the body 
(Fig. 3.5). Area 3a receives input from muscle and joint receptors (Krubitzer et al., 2004), and its neurons 
contain overlapping receptive fields for all fingers of the body. These representations are propagated to 
motor and parietal areas through the respective SI connections (Darian-Smith et al., 1993; Huffman, 
2001).  

 
Fig. 3.5. Schematic illustration of the somatotopies existing in the primary somatosensory cortex. Each 
unique body modality has its own assigned population of neurons. Image adopted from (Kandel et al., 
2000).  

Individual areas in the SI are functionally distinct on the day of birth (Krubitzer et al., 2004), which 
suggests that its organization emerges developmentally in order to reflect the use of the hand. In the 
human EOMS, it has been proposed that the activation of the SI during action observation may be due 
to the anticipation of the somatensory consequenses of the seen actions (Savaki, 2010; Raos et al., 
2007).  

Primary motor cortex 

The primary motor cortex is somatotopically organized in order to facilitate the control of different 
muscle groups (Penfield and Rasmussen, 1950). The receptive fields of its neurons overlap extensively 
within the area, and consequently the stimulation of specific neurons elicits the movement of multiple 
body muscles (Woosley et al., 1979).   

Even though the region does not accept any direct visual sources, it does exhibit visual  activity (Kwan et 
al., 1986; Riehle, 1991; Wannier et al., 1989), due to the indirect input from the premotor cortex (Barbas 
and Pandya, 1987; Kurata, 1991). Additional visual information is mediated through the connections 
from the Supplementary motor area, which in turn receives projections from area 7a in the parietal.  
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In general there is a large debate regarding the movement related properties in the MI (Evarts, 1968). 
Studies have shown that neurons are correlated with the force that is exerted by the body (Evarts, 
1968), which is probably accommodated through the projections of the region to the spinal cord (Dum 
and Strick, 1991). MI cells also seem to be correlated with both magnitude (Schwartz, 1994) and 
direction (Georgopoulos et al., 1982) of the force of the hand. In addition, other parameters such as 
acceleration (Flament and Hore, 1988), movement initiation (Thach, 1978), target position (Crutcher and 
Alexander, 1990) and muscle co-activation (Humphrey and Reed, 1983) have all been associated with 
the activity of the MI neurons. Based on this evidence, Todorov (Todorov, 2000) was able to derive an 
almost linear approximation of the MI activity with the multi-joint kinematics in Cartesian coordinates as 
well as the end point force of the hand (Todorov, 2003).  

 

Fig. 3.6. Directional preference of the neurons in the primary motor cortex. The activity of individual 
neurons is correlated to the direction of the moving hand. Image adopted from (Kandel et al., 2000). 

Due to the aforementioned properties the primary function of the MI region is believed to be the 
control of voluntary movements (Evarts, 1968). This is accomplished through neurons that are 
correlated with parameters of the motion, including force and direction of movement (Fig. 3.6, 
Georgopoulos et al., 1988; Caminiti et al., 1990), as well as the mechanics of the joints (Thach, 1978). 
The main contribution of the area in motor control is by dissociating the variables at each behavioral 
level (Saltzman, 1979), and exerting motor control commands through its connections with the spinal 
cord. The fact that MI neurons respond to discrete subsets of joint kinematics (Crutcher and Alexander, 
1990; Scotts and Kalaska, 1997), as well as the fact that single neurons in the area move multiple arm 
muscles (Buys et al., 1986), in both monkeys (McKiernan et al., 1998) and humans (Colebatch et al., 
1991) has led neuroscientists to believe that the behavioral role of the region is to control and 
synthesize movement primitives.  
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Supplementary motor area 

The supplementary motor area (SMA) is also activated in monkeys during observation (area F6, preSMA, 
Raos et al., 2007) and contains neurons that produce a phasic response to visual signals of arm reaching 
movements (Kandel et al., 2000). In (Boecker et al., 1998) the authors reported that the activity of 
neurons in SMA is positively correlated with the increasing complexity of the movement that is being 
performed. This evidence, along with the dense projections it shares with the dorsal premotor cortex, 
has led neuroscientists to suggest that the former is mainly involved in the higher-order control of a 
behavior. This is accomplished by continually updating the related motor information and inhibiting 
various components of the motor control system (Shima et al., 1996). In general SMA participates in the 
planning of the executed behavior (Meltzoff and Gopnik, 1993) even though there is still not clear 
evidence as to how this is achieved. 

Visual Streams 

The cortical organization of the visual perception streams in primates is quite complex. Signals that 
originate from the photoreceptors at the retina travel through regions V1-V4 in order to reach higher 
order visual areas such as V5, STS, IPL, IP and STS. This integration occurs almost instantaneously, lasting 
at most 10ms (Nowak and Bullier, 1997), and depends on the feedforward connections between these 
regions (Thorpe et al., 1996). Visual processing occurs mainly at the higher order layers of the occipital 
and parietal lobes, which are responsible for assigning conceptual representations to these visual 
incentives (Fodor, 1982) through two different pathways: the ventral and the dorsal stream (Fig. 3.7, 
Ungerleider and Mishkin, 2000; Goodale and Milner, 1992; Ungerleider and Haxby, 1994).  

 

Fig. 3.7. Ventral and dorsal pathways, which are involved in processing visual perception (Goodale and 
Milner, 1992). Image adopted from (Arbib, 2003). 

The ventral stream defines the path from the visual cortex to the inferior temporal lobe. In its lower 
layers, the neurons are selective and specialized to specific stimuli such as shifts in stimulus position, 
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size or illumination. These are integrated together in the inferotemporal cortex, where neurons show 
selectivity for concrete objects. In contrast, the dorsal stream projects to the parietal lobe and is 
responsible for categorizing the objects’ visual features, by integrating visuo-motor transformations 
related to the hand – object interactions.  

The visual recognition of body postures occurs in region Sulcus Temporalis Superior (STS). Neurons in 
the area become active when the monkey observes a conspecific performing a similar action but do not 
fire when the agent performs the same task (Perrett et al., 1989). For this reason, STS is believed to 
encode the observation of interactions between an object and an agent by exhibiting purely visual 
responses (Jellema et al., 2002). In humans, STS exhibits a greater activity during action observation, an 
effect that is attributed to the increased attention to the visual stimulus (Iacoboni, 2005). STS projects to 
the Ventral Intraparietal Area (VIP), which is also located in IPL, and contains neurons that are 
responsive to a moving stimulus, with a broader degree of tuning.  

Spinal Cord 

The spinal circuitry holds a hierarchical architecture of basic motor patterns (Nichols, 1994). It consists 
of networks of opposing channels, known as motor neuron pools, each responsible for the excitation or 
inhibition of particular muscle groups. During motor control, different neurons compete for the control 
of their related muscles (Heijst et al., 1998). In relevant experiments (Poggio and Girosi, 1990a), 
researchers have concluded that the spinal cord is made of discrete control modules that store limb 
postures as force fields (Poggio and Girosi, 1990b).  

It is often usual to consider the spinal cord as a non-plastic region, however there have been several 
studies indicating evidence of self-organization in Sc (Wolpaw and Carp, 1993; Mendell, 1984). This is 
exhibited mostly at the initial stages of vertebrate motor development (van Heijst and Vos, 1997), for 
example during the initial weeks of the embryos, where spinal activity is more inherent (de Vries et al., 
1982). Control is exerted by the Sc circuits based on its reciprocal connections with the primary motor 
cortex, where force field muscle primitives are stored (Mussa-Ivaldi et al., 1994). In addition, the spinal 
cord is somatotopically depressed during action observation, in contrast to its excitation during action 
execution (Stamos et al., 2010). 

Basal Ganglia 

The Basal Ganglia consist of a system of functionally distinct neural networks that accept information 
from different parts of the frontal lobe. Their function is to associate the stimulus from the environment 
with rewards, and due to their modular structure they are able to process concurrently different 
functions (Wilson, 1998). Presence of a reward results in the secretion of dopamine, where 
approximately 80% of the dopaminergic neurons exist in the Basal Ganglia.  

Various neuroscientific studies have associated the Basal ganglia with learning goal directed behaviors 
(Graybiel, 1995; Miyachi et al., 1997). The dopamine neurons fire upon delivery of unexpected rewards 
(Shultz, 1998) or rewards that can be predicted (Shultz, 1998), and due to this property, the region is 
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believed to play a crucial role in encoding the underpinnings of reinforcement learning (Montague et al., 
1996).    

 

Fig. 3.8. Activity of the dopaminergic neurons in the Basal Ganglia. Images A and B show how the 
neurons can form their responses into predicting the rewards that will be elicit by the experimenter. 
Image adopted from (Dayan and Abbot, 2001).  

The sub-circuit of the Basal Ganglia that pertains to motor control projects to the prefrontal lobe. During 
the execution of a behavior, the dopamine neurons display a phasic increase when the subject is given a 
reward or presented with a stimulus that predicts a future reward (Fig. 3.8). This phasic effect is 
important for inhibiting specific components of the movement. Additional studies suggest that the Basal 
Ganglia are mainly involved in learning motor behaviors (Graybiel, 1995) by predicting the reward 
outcomes of the executed actions. 

3.2 Functional roles of the overlapping neural pathways 

One of the first suggestions for the role of the MNS was that it facilitates imitation (Rizzolatti et al., 
2001). However this view has received a lot of criticism due to the fact that adult monkeys are unable to 
exhibit imitation skills (Visalberghi and Fragaszy, 1990), and therefore the MNS could not have evolved 
to subserve this function. Due to this, cognitive neuroscientists nowadays suggest that the function 
accommodated by the mirror neurons is action understanding (Jeannerod, 1994).  
A proposal about the function of the MNS, based on the mirror neurons properties, was put forward by 
Gallese and Goldman (Gallese and Goldman, 1998), which suggested that it is a system for (i) 
understanding actions based on their goals and (ii) deciphering the mental states of the observer. This 
mechanism requires an inverse process during which the goals that have been extracted by the observer 
will be recurrently propagated within the MNS circuitry (Wolpert et al., 2003). In cases where the 
observation of a behavior does not yield a match from the existing repertoire of known motor actions a 
new behavior must be generated. 
In this context it is important to distinguish the types of behavior acquisition that can occur during 
imitation (Visalberghi and Fragaszy, 1990; Byrne, 2003; Heyes, 2001). One the one end, there is behavior 
matching, i.e. the ability to recognize an action that is already existent in the repertoire of the observer, 
while on the other, is the capacity to learn new motor sequences (Rizzolatti, 2004). The latter also 
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facilitates behavior substitution, i.e. the ability to refine already known motor patterns from the 
repertoire of the agent. 
As for learning by imitation, a process that requires complex mechanisms (Schaal et al., 2003), 
researchers have not yet concluded if it is supported by the initial MNS. For example, in Monkeys, the 
typical mirror neurons in the premotor and parietal cortices do not respond to similar biological 
movements if they are not associated with a target. This intransistive property of the cells suggests that 
mirror neurons do not fire in response to body displacements, but specifically to goal directed actions. 
The fact that mirror neurons are activated even in cases where the final parts of an action are not visible 
(Umilta et al., 2001), further supports the claim that the mirror neurons are associated only with action 
recognition.  
In contrast to the claims that the MNS is a primary component behind these functions, more recently 
researchers were able to identify a more extensive overlap of activations during action execution and 
action observation (Savaki, 2010; Raos et al., 2004). This finding has given impetus to a more elaborate 
theory that explains how the aforementioned cognitive mechanisms can be facilitared in primates. The 
findings of overlapping pathways suggest that when we observe, we simulate the consequences of our 
actions up to the level of our somatosensory systems. Evidence that support this claim can be found in 
recent high resolution imaging studies, which show the activation of the primary motor and 
somatosensory areas during action observation (Raos et al., 2007; Raos et al., 2004; Kilintari et al., 2010;l 
Evangeliou et al., 2010; Savaki 2010). These additional regions are part of a more extended set of 
cortical areas, coined as the EOMS in this thesis, and provide evidence for the simulation theory and the 
ability of primates to reenact observed actions using their own cognitive system. 
Based on the evidence we reviewed above, most regions in the EOMS are associated with handling 
motor control and its consequences. Because of this, the activation of the EOMS during the observation 
of a movement has led researchers to suggest that it is a mechanism evolved to subserve the mental 
simulation of others’ behaviors (Savaki, 2010). In addition, a variety of other functions such as imitation 
(Carr et al., 2003; Gallese and Goldman, 1998), action understanding (Umilta et al., 2001; Gallese et al., 
1996), intention attribution (Iacoboni et al., 2005), empathy (Wicker et al., 2003) and language 
(Rizzolatti and Arbib, 1998) have also been explained based on the properties of the EOMS. 
Nowadays, the conceptual reasoning mechanism that is supported by the EOMS is one of the dominant 
theories for explaining humans’ social abilities (Gallese et al., 2004). It is widely accepted among 
cognitive neuroscientists that mind reading is facilitated by a direct simulation of the observed 
behaviors, based on the functions of the regions in the overlapping pathways (Raos et al., 2007; Gallese 
and Goldman, 1998). 
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In the previous section we visited the large body of literature that pertains to the cortical underpinnings 
of observational learning. To develop computational agents inspired from these findings, our first goal 
was to devise a proper framework so that the regional activation data reported for each cortical area 
can be integrated within a computational context, in a way that they will produce the appropriate 
behaviors in each agent.  

In the current chapter we outline the underpinnings of a computational modeling methodology that was 
developed to assist this purpose. We first start the discussion by focusing on the problems that should 
be considered when suggesting a methodology for designing models of brain processes (section 4.1). 
Based on these principles, we continue to outline the core components of our proposed pathway 
modeling methodology, developed for designing biologically inspired models (section 4.2). In addition, 
we discuss contemporary approaches to modeling the brain with neural networks, as well as the 
mathematical formulation of the biologically inspired neuron model that was used throughout the 
development of the two computational agents that are considered in the current thesis (section 4.3). 
The chapter is concluded by presenting an analysis of the computational capabilities of the biologically 
inspired network that was employed for the development of the second agent, and the definition of a 
computational measure that quantifies its ability to classify different datasets (section 4.4).  

4.1 Modeling the brain 

Even though there is a vast amount of models developed based on knowledge from biology and 
neuroscience, there are very few methodologies for building such models. A well-defined computational 
model building methodology should be able to suggest specific means so that the information from 
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biology can be embedded within a computational context, i.e. be able to define a cognitive behavior in 
engineering terms (Barto, 1991). To achieve this, it is important to:  

(i) Suggest a model design approach that is based on the principles that underlie the brain 
functioning. 

(ii) Provide means to integrate neuroscientific data within the model. 
  
Both issues are discussed in this chapter. The former is discussed in section 4.2, in order to introduce our 
proposed method of computational modeling. The latter issue is treated in section 4.3, which focuses on 
how neuroscientific data from various imaging and recording studies can be utilized using biologically 
inspired neural networks. 

4.1.1 Brain modeling methodologies 

One of the most popular frameworks for brain modeling is Arbib’s schema theory (Arbib 1992), which 
suggests that brain processes can be viewed as schemas, i.e. higher assemblies of regions responsible 
for specific functions within the model. Since it was introduced, the approach received increased 
attention (Arbib and Iberall, 1990; Arbib et al., 1990; Oztop and Arbib 2002; Tani et al., 2004), because it 
provides a method for integrating data from functional neuroimaging studies directly into 
computational models.  

Even though Arbib’s theory is a convenient way to model the functional activations of a cortical process 
up to the level of single neural networks, it cannot capture the dynamics of a behavior with respect to 
the whole model. Moreover, due to the interdependencies among cortical regions in the cerebral cortex 
(Phillips et al., 1984), functional localization, i.e. the identification of concrete functions in specific 
neuronal structures, is very difficult to demonstrate at the level of a schema.  

Another theory that attempts to build a correspondence between natural and computational models is 
the parallel distributed processing framework (PDP, Rumelhart and McClelland, 1987; Rumelhart et al., 
1986). PDP has been used to explain various effects of stimulus-stimulus and stimulus-response 
compatibility experiments (Zhang, Zhang et al. 1999; Erlhagen, Mukovskiy et al. 2006), by suggesting 
that multimodal information must be processed on an initial stage of the model, and combined with 
other information processing modules in order to achieve various cognitive tasks.  

The ability of the methodology to develop a model based on parallel sub-processes can offer important 
computational benefits. However its strict commitment to parallel processing reduces the applicability 
of the method and makes it difficult to draw direct inferences between the generated models and the 
respective cognitive processes they are modeling.  

Both aforementioned methodologies provide means to map the activation data reported for a region to 
specific engineering structures. However, in the cerebral cortex, it is not just the local regional 
activations that give rise to the richness of behaviors and cognitive functions, but also their functional 



4.2 Pathways and a modular approach to modeling                     

 
March 2012  Page 53 

interaction (Horwitz 1989). In this context, it is important to consider that an activation result reported 
for a particular region does not only portray the region’s activity, but also the effect that other 
anatomically linked regions have, while projecting on it. In functional neuroimaging, such correlations 
can be extracted using structural equation modeling (McIntosh et al. 1994).  

Computationally, task dependent correlations among interacting brain regions can suggest a pathway of 
associated functions. To portray them appropriately in a computational model, a methodology should 
not only be able to consider them, but also suggest ways to link them to behaviors. In the next section 
we describe our own approach to modeling cortical functions directly into computational models, and 
attempt to confront the aforementioned issues. The introduced methodology is employed extensively 
throughout this thesis, in order to develop artificial agents inspired by the cortical processes described 
in chapter 3. 

4.2 Pathways and a modular approach to modeling 

As already mentioned, both neurophysiological models of action observation involve a large number of 
cognitive functions in order to be carried out. Since the main goal of this thesis is to develop biologically 
inspired implementations of these processes, it is first important to device a theoretical framework that 
will enable the data reported in the aforementioned neuroimaging studies to be integrated within a 
computational context.  

 

Fig. 4.1. Schematic illustration of how the pathway methodology can be used to develop biologically 
inspired computational models based on natural systems. The first three steps indicate the properties 
that the computational modeler must extract from the natural system, while steps 4-6 show how these 
are utilized by pathways in order to build a large-scale computational model of the process.  

To accomplish this we focus on two principles that characterize the brain’s interactions: functional 
organization and functional integration. The former pertains to the locality of functions within specific 
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brain regions, while the latter, to the mutual activation of different functions in order to achieve a 
specific goal.  

To model the above interactions we employ the concept of pathways from neuroscience, and formulate 
it within a computational context. Similarly to their biological counterparts, computational pathways are 
independent processing streams that perform a specific behavioral function. Each pathway consists of 
several computational regions, which cooperate in order to realize a specific modeled process (Fig. 4.1). 

One region may belong to different pathways, however its involvement in any pathway means that it 
must contribute to it a specific function. To allow flexibility in this theoretical framework, we do not 
impose any particular constraints as to how each region must be modeled, even though in the current 
thesis, all regions are developed using biologically inspired neural networks. In particular, each pathway 
is characterized by two important properties: 

1. The regions that participate in its processing. 
2. The directionality of the flow of its information.  

 
The first property allows a computational modeler to identify how the pathway will implement the 
function that it performs. Evidence for the regions that participate in a pathway can be derived based on 
neuroimaging methods such as fMRI, PET, MEG and 14C-Deoxyglucose, which identify the activity of 
cytoarchitectonically segregated regions in the cerebral cortex during a specific cognitive function. Due 
to the fact that the pathway determines the connectivity between its regions, the activity of various 
different regions concurrently can give rise to phenomena of feature binding and association, which are 
believed to be the main form of learning in the cerebral cortex (Doya, 1999). For example most of the 
cortical synapses are based on associative rules, such as Hebbian plasticity. The main property of this 
associative learning scheme is that synapses will increase their strength when a pre-synaptic and a post-
synaptic input correlate, and decrease otherwise (Tsumoto and Suda, 1979). As a result, neurons that 
belong to different regions within the same pathway will tend to increase their selectivity towards 
certain stimuli features, and form their response tuning based on the sensory experience of the agent 
(Blakemore and Cooper, 1970). This principle is employed throughout the regions of the computational 
agent we describe in chapter 5.  

The second property specifies the basis upon which different pathways can interact together. To identify 
the directionality of the information one must look into how different regions are connected, and 
eventually how the signals will travel within a pathway, i.e. in a feedforward, recurrent or 
backpropagate manner. A direct consequence of this is that the modeler can easily identify the 
input/output conventions that are employed by each pathway, clearly discretizing between the inputs 
that a specific cognitive function requires, and the outputs that it will produce. This enables the 
integration of different processes together, into building a coherent, large-scale, computational model 
of a biological process based on the synthesis of autonomous/local functions.  
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The most important benefit from the use of computational pathways is modularity. As a principle, 
modularity is realized at all the levels of the processing hierarchy in the brain, from the low-level spinal 
systems to the higher-order association areas (Fodor, 1982). In (Plaut and Hinton, 1987) it is been 
suggested that the multiplicity of cognitive functions performed by the cerebral cortex implies that the 
brain uses modular architectures. The use of pathways can introduce the benefits from employing 
modular architectures directly into computational models.   

From a computational perspective, modularity is a very important principle when it comes to designing 
large-scale biologically inspired agents. This is because complex processes often require many different 
tasks to be realized at once and therefore modularity can introduce important benefits to the model by 
discretizing dissociated functions, and explicitly defining which of the model’s regions will be employed 
to accomplish them. Moreover, additional benefits from the use of modular structures include: 

• Learning speed 
Decomposed functions are easier to learn than high dimensional ones. 

• Generalization 
Networks that perform discrete functions can generalize better since they provide a clearer, 
distinct representation of the input/output conventions that are used to train them. 

• Coping with errors 
Modularity can confront traditional computational modeling problems such as cross-talk, which 
arise from the increased interdependencies in distributed architectures.  

4.3 Modeling the brain with biologically inspired neural networks 

Having established a method for describing the functional interactions among regions, in the current 
section, we discuss how each cortical area can be modeled. In chapter 3 we have reviewed how imaging 
techniques are relying on various measures of neuronal activity, such as blood flow and glucose 
consumption, in order to understand the cortical underpinnings behind the brain’s function. Based on 
these findings, we discuss how this data can be modeled using Neural Networks, in order to capture 
detailed aspects of a cognitive process, and map them into specific engineering structures.  

In the current section we only focus on the general modeling principles that were employed during the 
development of the two agents, and describe the neural network and neuron models that were used. In 
later chapters (chapters 5, 6) we show how these biologically inspired tools were used to develop the 
appropriate representations in the two agents. 

4.3.1 Neural Networks 

Early explorations of the brain’s function led to the theory of representation, i.e. the view that cognition 
develops based on static, segregated symbols (Newell and Simon, 1976). Using these symbols, our brains 
have co-evolved in order to produce meaningful communication (Deacon, 1997). Nowadays, most brain 
modeling research uses neural networks as a building block to construct such representations. Even 
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though a neural network has no greater relevance to a cortical process than any other method (Miall, 
1989), it is usually preferred because it shares similar structural properties with the brain:  

(i) It consists of a large number of densely interconnected, processing units.  
(ii) It represents knowledge distributively, based on the collective activation of its neurons. 
(iii) It violates the same sepparability assumptions of information processing (Palmer and 

Kimchi, 1986) as the cortical regions in the brain.  
 
Due to the above reasons, in the computational modeling literature, neural networks are usually treated 
as representations of a specific hypothesis, about the structure and function of a region in the nervous 
system (Nordlie et al., 2009). 

The most important grounding unit of a neural network is the neuron. It is the elementary 
computational building block, which performs a single operation and controls the nature of the neural 
code that will be exhibited by the network. In (Maass, 1997), neural networks are categorized into 1st, 
2nd and 3rd generation, depending on the neuron type they use. The first generation networks consist of 
the McCullogh-Pitts model, a conceptually simple neuron that performs only a single binary operation. 
In contrast to the first generation networks, neurons in the second generation produce a continuous, 
analog value as output. Due to this property they have been associated with a number of learning rules, 
such as reinforcement learning and backpropagation (Zipser, and Andersen, 1988).  

 

Fig. 4.2. The action potentials emitted by a spiking neuron model the membrane dynamics in the actual 
cortical cell. Image adopted from (Dayan and Abbott, 2001).  

The third generation of neural networks is more consistent with the function of the cortical cells, than 
any of its predecessors (Fig. 4.2). The only output produced by these neurons is in the form of a spike, 
i.e. a binary pulse that has a temporal dimension.  The main advantage of spiking neuron models over 
formal neurons is that the latter use a weighted sum of the input, and therefore cannot convey any 
temporal information, which is important when modeling cortical processes. 
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Relevance of the spiking neuron model to cortical cells 

 In contrast to other neuron models, spiking neurons model the electric effects that are produced due to 
the distribution of ions in the membrane of the actual cortical cells. This class of models has its origins 
on the first Hodgkin and Huxley model (Hodgkin and Huxley, 1952), and was designed to describe the 
temporal change of the sodium, potassium and leak currents during axonal transmission. The model has 
been successfully applied in a number of different experimental situations (Jack et al., 1975), and was 
recently used to describe the underpinnings of spike generation in cortical neurons (Ekeberg et al., 1991; 
Bush and Douglas, 1991).  

Despite its close biological relevance, Hodgkin and Huxley neurons have a considerable computational 
overhead, due to the high dimensionality and nonlinearity of the differential equations used. To 
compensate for this, researchers have proposed variants of the initial model (Nagumo et al., 1962; 
Abbot and Kepler, 1990; FitzHugh, 1961) that make different types of simplification assumptions. The 
most famous reduction is the one proposed by Stein (Stein, 1967). In the so-called Leaky Integrate and 
Fire (LIF) model, the effects of the potential difference between the cell and its surroundings, caused by 
the concentration of the ion channels in the membrane, are reduced to a single analog value, the 
membrane potential (Fig. 4.3).  

 

Fig. 4.3. How the fluctuations in the membrane potential cause a neuron to fire a spike-after potential. 
Image adopted from (Gerstner and Kistler, 2002). 

The neuron is characterized by supplementary properties that modulate its firing response:  

(i) The refractory period models the timing interval after the emition of an action potential, 
during which the membrane is not accessible.  

(ii) The threshold value characterizes the limit of ion concentration that the soma must exceed 
before emitting a spike. 

(iii) The resting potential, which describes the hyperpolarization phase that the neuron 
undergoes after the emission of a spike.  



Chapter 4  Modeling Approach 
 

Page 58  E. Hourdakis Ph.D. Thesis 

The LIF model is the most popular amongst researchers, because it holds a delicate balance between 
modeling resolution and neuronal consistency. In (Abbott and Kepler, 1990) the authors demonstrate 
how the Hodgkin and Huxley model can be reduced to a LIF model, in the limit where the timing 
properties of the membrane are the dominant time scale.  

More importantly, depending on the input and the configuration of the neuronal parameters, the model 
can exhibit a variety of neural codes (Fig. 4.4). For example networks of LIF neurons, with a threshold 
value above the average intracellular current input, can act as coincidence detectors (Kempter et al., 
1998), implementing a variant of radial basis function units in the temporal (Hopfield, 1995) domain (in 
chapter 5 we explore this principle in order to bind different motor and visual representations together). 
In (Eliasmith and Anderson, 2003) the authors describe how an elementary network of spiking neuronal 
networks can perform various mathematical operations such as addition of scalar values and vector 
representation. In (Christodoulou et al, 1992) the authors demonstrate how the neuron can reproduce 
the spike irregularity of biological trains, by changing the reset mechanism of the membrane potential. 

 

Fig. 4.4. Different neural responses exhibited by a spiking neuron. A. Irregular firings, B. Regular firings C. 
Spike bursts and D. Latency code. Image adopted from (Gerstner and Kistler, 2002). 

Perhaps the most interesting aspect of the spiking neuron is the temporal integration of the membrane 
potential. This property enables the neuron to form a short-term memory of its inputs. For this reason, 
the most common use of spiking neural networks is in circuits that transform their inputs into a spatio-
temporal pattern of neuronal activations. Popular examples of such networks include the model of 
synfire chains (Abeles, 1991) and the Liquid State Machine (LSM, Maass et al., 2003), which are used in 
the implementation of the second agent and are reviewed later on in section 4.3.3. A detailed review 
about the properties of the LIF model can be found in (Jack et al., 1975). 
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It is important to note however, that real cells have a larger variety of ion channels, than the neurons in 
the giant axon squid (Manwani and Koch, 1999), and therefore can exhibit a richer set of properties. 
Even though there are compartmental models that can compensate for the spatial dimension of the 
distribution of ions in the membrane’s potential, they require a much larger computational overhead 
and are difficult to be incorporated into large scale computational models.  

4.3.2 The Leaky Integrate and Fire neuron model 

For the implementation of the neural networks in the two agents we employ the aforementioned 
spiking neuron model (Maass, 1997), which has a non-continuous, non-linear synaptic response, and 
resembles to a high extent the behavior of biological neurons. Spiking neurons have been widely used in 
modeling biological brain regions (Todorov, 2000; Kempter et al., 1998) and brain functions 
(Christodoulou et al., 1992) since they can approximate any continuous function (Maass, 1997), capture 
the temporal properties of their pre-synaptic inputs and exhibit short-term memory effects (Bugmann 
1997). Additionally, they can be coupled with a large variety of associative (Song et al., 2000; Gerstner 
and Kistler, 2002) and reinforcement learning rules (Baras and Meir, 2007). Several variations of the 
spiking neuron have been proposed (Jack et al., 1975; Stuart and Sakmann 1994; Abbott and Kepler 
1990), ranging from anatomically consistent to computationally oriented (Gerstner 1998), all having 
their basis on the initial Hodgkin-Huxley model (Hodgkin and Huxley, 1952; see also Cronin, 1987 for a 
mathematical analysis). 

 

Fig. 4.5. Schematic representation of the computations (input transformation, spike generation) carried 
out by a spiking neuron. Image adopted from (Floreano and Mattiussi, 2008). 

In the current work spiking neurons were used due to their fidelity with regards to the response 
properties of cortical cells. More specifically, the non-linear membrane potential reset after each spike, 
the refractory period, and the all-or-none spike afterpotential mechanism (Gerstner and Kistler, 2002) 
lead to neuronal interactions that have analogies to the operation of real cortical networks. From a 
computational perspective these three properties give rise to network interactions that are non-linear 
and semi-chaotic. This creates a biological faithful setting, in which it is interesting to investigate how 
cognitive mechanisms such as observational learning can unfold.  

For the development of the two simulated agents we have adopted the standard form of the Leaky 
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Integrate and Fire (LIF) neuron model (Stein, 1967) due to the fact that it can encode the three 
aforementioned properties without requiring an excessive computational overhead. The internal 
dynamics of each neuron are described by a differential equation (eq. 4.1) that models the fluctuations 
of the membrane potential variable u due to the driving current I passing through the neuron: 

߬௠ ݐ߲ݑ߲ = (ݐ)ݑ− +  (4.1)			(ݐ)ܫܴ
 

where R and ߬௠ are the resistor and membrane potential time constants. In LIF models, spikes are 
characterized by their firing time		ݐ(௙), which is the moment that the potential crosses a threshold value 
(θ): 

:(௙)ݐ ൯(௙)ݐ൫ݑ = 				݀݊ܽ			ߴ ݐ݀(ݐ)ݑ݀ ቤ ݐ		 = (݂)ݐ > 0			(4.2) 
 

After the emission of a spike, the membrane potential is reset to a constant value ݑ௥ <  ߴ
 lim௧→௧(௙);௧வ௧(௙) (ݐ)ݑ =  (4.3)			௥ݑ

 
The spike response model used for each presynaptic neuron model is the Dirac (ߜ) function. 
 

௝ܵ(ݐ) =෍ߜ൫ݐ − ௙௝൯௙ݐ 		(4.4) 
The spike responses, reduced to points in time through eq. (4.4) are scaled by the weight wij, of the 
synapse between the pre-synaptic neuron j and the post-synaptic neuron i, and summed to construct 
the input I(t) of the post-synaptic cell i. 
 

(ݐ)௜ܫ = ቐ෍ݓ௜௝ ௝ܵ(ݐ)௝ ݐ	݂݅			 − (݂)ݐ > ݐ	݂݅																							0݂݁ݎ − (݂)ݐ ≤ ݂݁ݎ 	(4.5) 
 
The absolute refractoriness of each neuron, i.e. the time period after the emission of a spike where the 
input current has no effect on the membrane potential, is modeled by setting the input current to zero 
for a short time period (ref) after each spike emission. 

Due to their rich set of properties, spiking neurons have been extensively used by computational 
scientists in order to model the cortical properties of the cerebral cortex. One of the most popular 
neural networks that employs spiking neurons is the Liquid State Machine, which in the current thesis, 
was employed during the development of the second artificial agent. In the next sections we outline the 
properties of this network and suggest a method to optimize its computational capacities. 
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4.3.3 Liquid State Machines 

As already mentioned, the most noteworthy property of spiking neurons is their ability to preserve the 
spatio-temporal properties of their input. This principle has recently been employed in order to 
construct networks that can perform a large number of computations, known as Liquid State Machines 
(LSMs). Following their introduction (Maass et al., 2002), LSMs have been used in various pattern 
classification tasks, including speech recognition (Verstraeten et al., 2005) and movement prediction 
(Burgsteiner et al., 2007). The notion behind LSMs has also been extended to problem domains outside 
computational modeling, where researchers use physical mediums for the implementation of the liquid, 
such as a bucket of water (Fernando and Sojakka, 2003) or real cell assemblies (Dockendorf et al., 2009). 
In the current thesis, the LSM has been used extensively in order to model the cortical regions of the 
artificial agent described in chapter 6. For this reason, in the following sections, we carry out an 
extensive analysis of its classification capability, and suggest a measure that can improve its quality. 

An LSM consists of three components: (i) the liquid, i.e. a pool ܯ of spiking neurons that accepts input 
from different sources and outputs a series of spike trains, (ii) a filter ܮ that is applied on the output of 
the liquid in order to create a state matrix ܵ, and (iii) one or more memoryless readout maps that are 
trained to extract information from ܵ (Fig. 4.6). The main conception behind this setup is that the 
complex dynamics of the input are transformed by the liquid to a high dimensional space, in a way that 
preserves their recent and past properties. This can be compared to a pool of water with a stone thrown 
in it. The disturbances that are caused in the liquid could be used by a trained observer to deduce the 
properties of the motion of the stone before entering the water.  

To improve the classification performance of an LSM, one must ensure that for two different input 
histories, the liquid states produced are significantly different (Legenstein and Maass, 2007). This 
property, known as separation, has recently received increased attention in the literature, due to its 
close correlation with the performance of LSMs. In (Maass et al., 2002) the separation between two 
different liquid states is calculated by measuring the Euclidean distance of their state vectors, i.e. the 
filtered neuron output sampled at one time instance. A similar geometric interpretation has been given 
by (Goodman and Ventura, 2006), in which the separation of the liquid is measured as the Euclidean 
distance between the centroids of the states that belong to different classes. In (Dockendorf et al., 
2009), the authors use spike train distance metrics instead of Euclidean distance. From the perspective 
of a classification system, it has been suggested that the rank of the state matrix ܵ can be used to 
measure the quality of the liquid (Legenstein and Maass, 2007). According to this measure, the larger 
the number of linear independent variables produced by a liquid state, the better the classification that 
can be performed by the LSM.  

Attempts to improve the performance of an LSM in the literature have shown that it is very difficult to 
devise a proper measure or structural criterion to optimize the quality of the liquid. For example in 
(Matser, 2010) the authors have concluded that randomly generated liquids outperform any attempt to 
structurally modify the LSM. In (Kok, 2007) the authors use both reinforcement learning and genetic 



Chapter 4  Modeling Approach 
 

Page 62  E. Hourdakis Ph.D. Thesis 

algorithms in order to optimize the classification performance of the LSM. Finally in (Norton and 
Ventura, 2010) the authors use the centroid separation measure in order to drive the synaptic 
modification of the LSM.  

 

Fig. 4.6. Four readouts reading information from a liquid of a Liquid State Machine. Image adopted from 
(Arbib, 2003). 

In the current section we propose a criterion that measures the separation of the liquid states that 
correspond to different classes based on the class means and variances (Hourdakis and Trahanias, 
2011a; Hourdakis and Trahanias, in press a). The classification performance of an LSM is subsequently 
improved by employing an evolutionary framework to minimize the introduced criterion. In addition we 
present experimental results, which attest on the performance and accuracy of the approach, and 
discuss the benefits of the proposed measure. 
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Separation Property 

Similarly to Support Vector Machines, the LSM acts as a kernel that transforms the low-dimensional 
space of an input signal to the spatio-temporal space of the liquid. When used for classification, it is 
important that this transformation yields liquid states that are well separated across different classes.  

This separation can be geometrically quantified by employing simple criteria to describe how class 
vectors scatter throughout the domain space. In the current work, we quantify the separation property 
by employing two measures. The first requires the means of different classes to be as far away as 
possible from each other, while the second that the class variances are minimal. The reason that these 
two measures signify the extent to which different classes are separated is illustrated in Fig. 4.7, for a 2-
dimensional, two-class case. 

 

Fig. 4.7. Graphical illustration of the two measures used to quantify the separation of class data. Class 1 
(blue circles) is well separated from class 2 (red circles) if (a) the class means are as far away as possible 
from each other and (b) the class variances are small. (c) An example of how data points from classes 
with large variance can overlap. 

Figure 4.7 shows how, in the 2-dimensional space, the means and variances of different classes can be 
used to measure the separation of the dataset. The first measure refers to the means of the two classes, 
and ensures that the baricenters of the data points are geometrically as far away as possible (Fig. 4.7a). 
The second requires that the class variances are small, so that their respective points will not overlap 
(Fig. 4.7b). To illustrate this concept, Fig. 4.7c shows how two classes with large variances can overlap, 
despite them having well separated means.  

In the following we describe how the separation property can be implemented computationally, and 
applied to an LSM in order to measure its classification capacity. 
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Measure formulation 

Based on the separation property, discussed above, in the current section we describe a measure that 
can quantify the liquid’s quality. Accordingly, to evaluate a classification task that refers to ߱௜ different 
classes, we define three quantities:  

(a) The between-class scatter matrix: 

ܵ௕ =෍ ௜ܲெ
௜ୀଵ ௜ߤ) − ௜ߤ)(଴ߤ −  (4.6)				଴)ఁߤ

where ߤ଴ = ∑ ௜ܲߤ௜௹ఐୀଵ  is the global mean vector for all ܯ classes, ௜ܲ  is the a priori probability of class ߱௜, 
and ߤ௜ is the mean of the liquid states that correspond to class ߱௜. The ܵ௕ matrix is a measure of the 
average distance between the class means and the global mean of the dataset.  

 

(b)  The within-class scatter matrix: ܵ௪ =෍ ௜ܲߑఐெ
௜ୀଵ 				(4.7) 

where ߑ௜  is the covariance matrix of the data that belong to class 	߱௜, and ௜ܲ  is as in eq. (4.6). 
Consequently, the sum of the elements of the main diagonal in matrix ܵ௪ corresponds to the average 
variance of all the features in the dataset. 

(c) The covariance matrix ܵ௠ with respect to the ߤ଴ global mean: 
 	ܵ௠ = ܵ௪ + ܵ௕			(4.8) 
As eq. (4.8) shows, the ܵ௠ matrix can be used as a measure of the sum of variances of the features 
around the global mean. Consequently, the separation of different classes can be measured by 
considering a quantity that is proportional to the trace of the ܵ௠ matrix and inversely proportional to 
the trace of the ܵ௪ matrix, as described in eq. (4.9): ܴܦܨ =  (4.9)				ሼܵ௪ିଵܵ௠ሽ݁ܿܽݎݐ
which is the generalization of the Fisher Discriminant Ratio (FDR) (Fisher, 1936) to more than two 
classes. For a one dimensional, twο-class problem, it is evident that for equiprobable classes, the matrix ܵ௪ is proportional to ߪଵଶ + ଵߤ) ଶଶ while ܵ௕ is proportional toߪ − ,ଵߤ ଶ)ଶ, whereߤ ,ଶߤ ଵ andߪ  ଶ are theߪ
class means and variances. In the next sub-section we will outline how eq. (4.9) can be used to quantify 
the separation of the liquid states for different classes.  

Integrating the FDR measure with the liquid states 

To compute the FDR measure (eq. 4.9) one must obtain a representation that contains discrete class 
vectors for each dataset. For an LSM, this means that the continually changing dynamics of the liquid 
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states must be transformed into a set of discrete values. To accomplish this, in the current paper, we 
represent all liquid states as a set of discrete geometric locations in a n୲୦ dimensional input space, 
where n is the number of neurons in the liquid. To create this representation, we excite the LSM with a 
task stimulus, and simulate its neurons for a certain period of time. The discrete spike-trains output in 
each liquid state are filtered using the exponential function in order to obtain a continuous signal that 
preserves the intensity of the spike train in the temporal domain:. ݏ௡ = exp(݋௡)			(4.10) 
where ݋௡ is the spike train output by neuron ݊. To apply the FDR measure, we sample the spatio-
temporal patterns of the liquid’s filtered action potentials with respect to each input, and construct a 
state matrix ௜ܵ for each respective class ݅, as shown in eq. (4.11): 

௜ܵ = 	 ൥ݏଵଵ ⋯ ⋮ଵ௝ݏ ⋱ ௜ଵݏ⋮ ⋯ ௜௝ݏ ൩				(4.11) 
where ݏ௜௝ is the filtered output of the jth spiking neuron in the liquid and i is the index of the time 
window in which the outputs of the neurons are sampled. For each task, we create ݊ matrices ܵ, each 
corresponding to a different class. The FDR measure can then be calculated by obtaining each class’s 
mean and covariance matrix, and applying eqs. (4.6-4.9). 

Graphically, the concept can be illustrated in the following figure (Fig. 4.8). The discrete spike trains that 
are output during simulation are converted to continuous signals using an exponential filter. The output 
of this filter is then subsequently sampled with a resolution ݀ݐ, in order to obtain the data for the 
separation measure. 

In the next section, we describe how the steps of sampling and computing the FDR measure, outlined 
above, can be integrated in an evolutionary framework that will optimize the performance of an LSM. 

 
Fig. 4.8. Transforming the output of a Liquid State Machine into a geometrical representation, by 
filtering the liquid states, and subsequently sampling them every dt steps. 
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Genetic Algorithm based Liquid Evolution 

As mentioned in the introduction, the separation of the liquid is positively correlated with the 
performance of the LSM (Legenstein and Maass, 2007). Consequently, one can improve the classification 
performance of the trained readouts by designing a liquid that has a high separation measure. To 
accomplish this we minimize the FDR (eq. 4.9) of a liquid, using genetic algorithms (GAs). GAs are a 
stochastic optimization method that can optimize complex functions by exploiting their parameter space 
(Fogel, 1994). Due to their ability to find good solutions in multi-modal and non-differentiable functions, 
they have been extensively used to optimize the performance of neural networks. In these cases 
researchers encode properties such as the architecture, weights or neuronal models of the network and 
exploit them in order to minimize some objective optimization function (see Yao, 1999 for a review). To 
evolve the LSM we utilize three types of properties: (i) the parameters of the neurons in the liquid, (ii) 
the architecture of the liquid, and (iii) the local properties of each architecture. Each of these properties 
is encoded into a different section of the chromosome that will be employed by the Genetic Algorithm 
to fine tune the LSM. The effect these parameters have on the liquid performance is discussed in the 
following. 

The first part of the chromosome encodes the firing threshold of all neurons in the liquid and the mean 
of the Gaussian noise added to the neurons’ output on every step. These two parameters control the 
responsiveness and generalization properties of each neuron. In the first case, if the firing threshold of a 
neuron is low, then it will require to integrate more spikes before firing a post-synaptic potential, 
making the liquid less responsive to the perturbations of the low input signals. The second parameter 
controls the mean of the white noise added to each neuron, which affects the generalization properties 
of the training.  

The second part of the chromosome encodes three different architectures for the LSM. Each 
architecture specifies a different way for connecting the inputs to the liquid, and the inter-liquid 
connectivity (Fig. 4.9).  

 
Fig. 4.9. The three architectures used in the genetic algorithm, shown from a different perspective in 
order to highlight how the components are connected together. In each architecture the liquid 
component of the LSM is shaded with red, while the inputs with green. 

In architecture 1, all input neurons are connected to all neurons within the liquid. Thus all task 
information is integrated in overlapping liquid locations. This is the original setup suggested in (Maass et 
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al., 2002). In the second architecture the neurons that encode the input from different sources project 
to different locations in the liquid. In this case, the resulting LSM will produce a state vector whose 
entries correspond to particular input properties. The third architecture also incorporates the properties 
of the input, but discriminates it depending on whether they are temporally varying or static throughout 
the classification task. Temporally varying inputs project to different locations within the liquid, while 
the constant input signals are propagated to all neurons.  

The last part of the chromosome encodes the properties common to all architectures. These include the 
size of the liquid map and the locality of the connections in the liquid (i.e. the size of the neighborhood 
that each neuron is allowed to connect to). Because of the exponential descending output of the 
dynamic synapses of the LSM (Rieke, 1999), the last parameter affects the chaotic dynamics of the 
liquid, i.e. the period in which a certain input has an effect on the liquid state. 

To evolve the chromosomes we use 3 different operators, mutation, crossover and selection. Mutation 
was implemented by adding a random number drawn from a Gaussian distribution, with zero mean and 
standard deviation that starts from 1 and decreases linearly until it reaches 0 in the final generation. To 
perform crossover, the GA selects (with probability 0.5) a bit from each parent chromosome in order to 
form a child. Selection was implemented using a roulette wheel function. 

LSM implementation 

To implement the neurons in the liquid we use the Leaky Integrate and Fire (LIF) model (Stein, 1967), 
because it is a computational convenient way to simulate spike dynamics. However since we aim at 
optimizing the model through an optimization procedure, in this case we enrich the differential equation 
of the neuron with additional parameters, in order to allow the GA to exploit them during evolution. In 
this version of the LIF model, the evolution of the membrane potential is governed by the following 
equation: 

τ୫ dV୫dt = −(V୫ − V୰ୣୱ୲) + R୫ ∗ ൫Iୱ୷୬(t) + I୧୬୨ୣୡ୲ + I୬୭୧ୱୣ൯				(4.12) 
where V୫ is the membrane voltage, τ୫ = C୫ ∗ R୫ is the membrane time constant, R୫ is the 
membrane resistance, C୫ is the resistor capacitance, I୧୬୨ୣୡ୲ is a constant current injected to the neuron 
and I୬୭୧ୱୣ a Gaussian random variable with zero mean and a small variance noise. After the emission of 
a spike, the membrane potential is reset to its resting value V୰ୣୱ୲. Iୱ୷୬(t) is the incoming current from 
the presynaptic neurons, and is calculated according to the following equation: 

Iୱ୷୬(t) = ൜ ∑ w୧୨EPSP୨(t)୨ 			if	t − t(f) > ref0																																if	t − t(f) ≤ ref     (4.13) 

The absolute refractoriness of each neuron, i.e. the time period after the emission of a spike where the 
input current has no effect on the membrane potential, is modeled by setting the input current to zero 
for a short time period (ref) after a spike emission at t(f). EPSP୨ is the output of the jth pre-synaptic 
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neuron, t is the current simulation time, while w୧୨ is the weight connecting the presynaptic neuron i and 
the postsynaptic neuron j. 
Neurons within the liquid are connected with the dynamic synapse model suggested by (Markram et al., 
1998). In this model, a synapse’s n postsynaptic potential (EPSP୬) changes dynamically due to the arrival 
of new spikes. It is governed by the following equations: EPSP୬ = K ∗ R୬ ∗ u୬				(4.14) u୬ାଵ = u୬ exp ൬− Δtτ୤ୟୡ୧୪൰ + U ൬1 − u୬ exp ൬− Δtτ୤ୟୡ୧୪൰൰				(4.15) R୬ାଵ = R୬(1 − u୬ାଵ) exp ൬− Δtτ୰ୣୡ൰ + 1 − exp ൬− Δtτ୰ୣୡ൰				 (4.16) 
The maximum output of the synapse is governed by the absolute synaptic efficacy	K. The change of the 
efficacy is determined using the variables u୬ and	R୬, which are calculated using eqs. (4.15) and (4.16), 
respectively. τ୤ୟୡ୧୪ and τ୰ୣୡ are constant parameters, experimentally specified. u୬ defines the utilization 
of the synaptic efficacy which decays exponentially based on the τ୤ୟୡ୧୪ parameter to its resting value U. R୬ is the fraction of available synaptic efficacy and defines the strength of the EPSP୬ at a given spike. It 
reduces due to the arrival of new spikes and recovers exponentially according to the τ୰ୣୡ parameter. At 
t=0, the following initializations occur: uଵ = U and Rଵ = 1. Δt is the time difference between the nth and 
(n+1)th spike. 

At the initialization of a simulation all neurons are placed in a 3-dimensional grid and are assigned a 
triplet of x, y, z coordinates. In the liquid, the probability that two neurons are connected is governed by 
the following equation: 

pୡ(a, b) = C(a, b) ∗ eୈ(ୟ,ୠ)మ஛మ 				(4.17) 
Equation (4.17) defines the connection probability of two neurons being connected, according to their 
distance in this grid. ܽ denotes the presynaptic neuron and ܾ the postsynaptic neuron. The constant ܥ(ܽ, ܾ) takes different values according to the excitation status of the pre- and post-synaptic neurons 
(i.e. whether the neurons are inhibitory (I) or excitatory (E)). These are set to 0.2 for EE, 0.3 for EI, 0.4 for 
II and 0.2 for IE. D(a, b) is the Euclidean distance between the two neurons, while λ scales the average 
length of each connection. 

Experimental Results 

In the current section we evaluate the performance of the FDR measure and the GA optimization 
framework on a number of different classification tasks. For this reason, we focus on two issues: (i) the 
ability of the proposed measure to predict the quality of the liquid in an LSM, and (ii) whether the 
optimization framework can reduce the error of the readouts by minimizing the FDR. 
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Comparison	with	popular	measures	in	the	literature	
For the first classification task, we compare the performance of the two most popular measures in the 
literature, namely the centroids and rank measures, against the FDR. For this reason we use an LSM with 
one linear regression readout to classify whether the rate of the input is above a particular value, in this 
case five Hertz. Input is encoded as a random Poisson rate and applied for 1000ms to a pool of LIF 
spiking neurons. The liquid used for this purpose consists of a pool of 125 spiking neurons, arranged in a 
3 dimensional grid. States are sampled every 10ms for 1 second and input to 4 readout units.  

The FDR, Rank and Centroids measures were (a) calculated for the two state vectors ଵܵ and ܵଶ from eq. 
(4.10) that correspond to classes ߱ଵ and ߱ଶ, and (b) compared against the performance of a linear 
regression readout for 16 different simulations (Fig. 4.10). 

 
Fig. 4.10. Evaluation of the FDR, Rank and Centroids measures against their ability to predict the 
performance of the linear readout map of an LSM. In each subplot the x,y axes correspond to different 
configurations for an LSM. The color in each x,y entry corresponds to the value of the error (for subplot 
a) or the negative value of the measure (for subplots b,c,d).  

A good measure should be positively correlated with the error of any trained readout that is used to 
extract information from the liquid. As Fig. 4.10 shows there is a clear correlation between the value of 
the error of a readout map and the value of the FDR measure (for both cases high values close to 1 are 
colored with red shades, while low values close to 0 are colored with blue). Furthermore, the results 
presented in Fig. 4.10 show that the proposed measure outperforms the Centroids measure and, at the 
same time, performs better than the Rank measure. By comparing Fig. 4.10a and Fig. 4.10b, it is evident 
that the FDR measure can predict with satisfying accuracy the performance of the linear regression 
readout and, therefore, the separation of the liquid in the LSM (readout error/FDR correlation was 0.86). 
Due to space limitations we do not provide the corresponding contour plots for the other three 
readouts, although we note that the results were similar to the ones presented in Fig. 4.10. Measure	evaluation	
In the current section we consider three additional classification tasks, in order to evaluate whether the 
FDR measure can predict the performance of an LSM while solving them. Each task incorporates a 
different method for encoding the input. This is important since diverse input encodings can have a 
different effect on the liquid dynamics. Population codes (Rieke, 1999) provide a consistent 
representation of the input by using distributed and partially overlapping neuron groups in order to 
encode the values of a variable. In contrast, rate codes (Rieke, 1999) produce a higher homogeneity 
when used as input because they employ the same neuron to represent different input values. 
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Consequently in the three tasks discussed below, rate codes are used to encode the input in two cases, 
whereas population codes are used in the third case. The liquid in all the aforementioned classification 
tasks follows the initialization and topology settings discussed in (Maass et al., 2002). To evaluate the 
measure on different classification methods we employ four different readouts: the first readout is 
implemented with a multi-layer perceptron using the backpropagation rule to train the weights 
(Rumelhart et al., 1986). The second readout implements linear regression (Duda et al., 2000). The third 
readout implements a classifier that uses least squares to find the regression coefficients (Duda et al., 
2000), while the fourth the p-Delta rule on a parallel perceptron layer (Auer et al., 2008). 

Classifying different behaviors 
The first task requires the LSM to classify two different motions of an object, based on the projection of 
its image on a 9x9 grid of receptive field neurons. The output of the retina field is encoded as a group of 
81 neurons, each one corresponding to a different cell. These neurons fire random Poisson spikes of 
30Hz when their corresponding cell in the retina field is occupied, and at a rate of 5Hz otherwise. This 
output is then projected to a liquid with 63 neurons, where we record the post-synaptic potentials of 
the neurons for 3 sec (3000ms).  

The LSM is used to classify two different motions of an object, when it is projected on a 9x9 grid of 
receptive field neurons. The following figure illustrates a sample motion of 5sec duration. 

 

Fig. 4.11. The activations of the neurons in the retina field as the object moves through different 
locations. Neuron activations are spread through a neighborhood of size 1, i.e. for each location, the 
neighboring neurons are also activated.  

Information from the liquid response is classified using four readouts: (i) Linear regression, (ii) 
Feedforward neural network, (iii) Linear classification and (iv) p-Delta rule. The liquid must learn to 
classify whether the movement on the retina belongs to either one of the two behaviors for 9 different 
simulations. The error is calculated by subtracting the readout value from the actual behavior being 
performed for each step of the simulation, and normalized to 1. Due to space limitations, results are not 
presented for this task in the form of contour plots but rather as graphs of the errors of the readouts 
against the FDR (Fig. 4.14a). 

As Fig. 4.14a illustrates, FDR follows quite closely the corresponding error in all cases. The correlation 
between the FDR measure and the readout error was in all cases above 0.8, indicating a close 
relationship between the two.  
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the integration of temporal information in the liquid states. More specifically, we consider a binary 
classification task in which an LSM must classify whether the end point of a moving planar robotic arm is 
closer (or not) than a predefined distance to a given target location. The difficulty of the task lies in the 
fact that the time-varying control model of the arm must be combined with the static signal of the end 
point location and produce discrete liquid states, even in cases where the input dynamics are not so 
different.  

Input in this case consists of two different channels. The first encodes the spatial location of an end 
point position in (ݔ,  space coordinates and the second the inverse kinematics of different arm (ݕ
trajectories. Input joint positions are generated by creating different trajectories using a two-link planar 
arm based on one start position (Fig. 4.15a), three speed profiles (Fig. 4.15b) and five random ending 
positions for the train and test sets (Figs. 4.15c,d). The training set consists of the trajectories between 
the initial position (Fig. 4.15a) and a random end position (Fig. 4.15c). The test set is generated using a 
different set of ending positions (Fig. 4.15d). 

To determine the trajectory between a starting and ending position, a random speed profile is chosen 
from the templates in Fig. 4.15b. The joint configurations of the robot across the pathway of a trajectory 
are obtained using an iterative solution to the inverse kinematics problem, based on the pseudo-inverse 
of the robot’s Jacobian. 

To encode the target position we use a population code with 10 neurons for each dimension (i.e. the ݔ,  coordinates). Thus for the two dimensional space 20 input neurons are used. The simulated robotic ݕ
arm that is employed in the experiments consists of 2 joints, namely elbow and shoulder, whose values 
are also encoded using population codes. 

 
Fig. 4.15. a. The initial position of the robot’s arm. b. The three speed profiles used to generate random 
movements. c. The five different configurations of the arm of the robot for the five ending positions of 
the train set. d. The five different configurations of the arm for the test set. 

The classification task we consider requires the LSM to predict whether in the next location, the end 
point of the robot’s arm will be closer than a predefined distance to the object in ݔ,  coordinates. To ݕ
classify a given location correctly, the LSM must make a prediction on the speed of the arm at any given 
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time. Hence, the liquid state must integrate information about the location of the robot’s end-point 
effector position in previous time steps. To generate the different liquid states we conducted 100 
simulations for the train set kinematics and 30 simulations for the test set kinematics. To learn the 
classification task, these liquid states were input to 4 readout units, namely a feedforward neural 
network, a parallel perceptron layer, a linear regression and a linear classification readout. 

Even though the results reported here regard the optimal individual produced by the genetic algorithm, 
it should be noted that similar results were obtained for all chromosomes in the last generation. The GA 
was run for 18 generations in order to minimize the FDR criterion (Fig. 4.16). As the four rightmost plots 
in Fig. 4.16 show, while the genetic algorithm was used to minimize the FDR measure, it also reduced 
the error on all four readout maps. 

 

Fig. 4.16. The results from the evolution of the LSM for 18 generations of the 100 individuals. The left 
plot shows the best and mean fitness (y-axis) of the population on each generation (x-axis). The right set 
of four plots shows the average error of the four readouts across the generations (y-axis) of the 100 
individuals (x-axis) in the final population. 

The subplots in Fig. 4.16 demonstrate how the GA was able to optimize the performance of the LSM by 
reducing the classification error of the readouts. The error was reduced from 0.3 to 0.1 in all four 
readouts maps (Fig. 4.16, right four subplots), simply by optimizing the FDR measure on the liquid (Fig. 
4.16, left subplot) during the evolutionary process.  

The improvement in the liquid performance is also evident when we examine the output of the four 
classifiers in the optimal individual produced by the GA. As Fig. 4.17 shows, all the readouts are able to 
classify different movements with a high degree of accuracy. In the first example (plot a), the robot’s 
arm never reaches the target location in a distance closer than required. In the second (plot b), it 
approximates the end location in the final 10 simulation steps. In both plots, we show the stimulus input 
to the liquid (top graph of plots a,b), the output of the four readouts (blue lines in bottom four graphs of 
plots a,b) and the target for each readout (red lines in bottom four graphs of plots a,b). Each graph is 
labeled with the corresponding readout map. The x-axis represents the simulation time in 100ms 
intervals for all graphs. 
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Fig. 4.17. The output of the four trained readouts for two sample movements (four bottom subplots) 
and the input projected to the liquid (top subplot). GA	framework	evolved	LSM	parameters	
In the current section we present the statistics of the genetic evolution with respect to the chromosome 
parameters for the 30 most optimal individuals in the final generation. These are important since they 
can describe the strategies employed by the GA to solve the classification task. We also measure the 
effect that each parameter has on the liquid performance, by calculating its correlation with the error of 
the linear regression readout.  

As Table 4.1 shows, the architecture of a liquid has a significant effect on the performance of the 
readouts, since its correlation with the error is very high. In the current task, the first architecture 
produced fitter individuals than architectures 2 and 3. The locality of the connections (λ parameter) and 
the noise added to each neuron (Inoise) are also positively correlated. The medium value of 3 for the λ 
parameter in the optimal chromosomes shows that local synapses are better suited for connecting the 
neurons in a liquid. Finally, the threshold of the neurons and the size of the liquid are negatively 
correlated with the liquid’s performance. The latter result has also been pointed out by (Maass et al., 
2002). 

Having established a concrete modeling framework, in the next two chapters we describe the 
development of two computational agents that were based on the LIF spiking neuron model. The 
computational agent described in chapter 5, employs the spike neuron to develop various 
representations through different plasticity rules. In contrast, the agent we describe in chapter 6 
employs the LSM, in order to form a spatio-temporal pattern of spike activations. 



Chapter 4  Modeling Approach 
 

Page 76  E. Hourdakis Ph.D. Thesis 

Table 4.1. The variables evolved by the GA. For each variable we list the average value in all the 
chromosomes from the best population, its correlation with the error of the linear regression readout 
throughout the genetic evolution and the range of permitted values used by the GA. 

Parameter Average value on 
the best 
population 

Correlation with 
error 

Range used in 
the GA 

[X, Y, Z] [5, 6, 5] [-0.18,-0.23, -0.32] [0..6] for all X, Y, 
Z 

λ 3   0.188 [0..8] 
Vthresh 0.02 -0.21 [5e-3..5e-2] 
Inoise 0.0005   0.3 [5e-8..5e-7] 
Architecture 1   0.633 [1..3] 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Observational learning based on the cortical 
underpinnings of Macaque primates 

 

 

 
 

 

In the current chapter we describe the design and implementation details of the computational model 
that was developed in order to investigate how the overlapping activations during execution and 
observation facilitate observational learning. The model is inspired by the neurophysiological data that 
pertain to action observation in Macaques, and were reviewed in chapter 3. To integrate them within a 
computational context we combine the pathway methodology and the biologically inspired neural 
networks that were discussed in chapter 4.  

In the following sections we summarize the goals set for the model (section 5.1), and the modeling 
approach that will be used in order to accomplish them (section 5.2). We then continue to describe the 
development and implementation details of the computational agent (sections 5.3-5.6), along with an 
extensive evaluation of its ability to perform observational learning, in a manner similar to its biological 
counterparts (section 5.7).  

5.1 Problem Statement 

According to the imaging experiments in (Raos et al., 2004; Raos et al., 2007), Macaques activate 
additional neural regions during observation, apart from area F5, including cortical areas that are 
associated with proprioception and motor control. Even though monkeys are not capable of imitation, 
however they can recognize the actions of other agents and posses the ability to associate known motor 
patterns to unknown stimulus incentives from the environment (Subiaul et al., 2004). The extended 
pathway of activations facilitates these abilities by using a broader circuit of brain regions during 
observation, that extends beyond area F5 and the mirror neurons. Considering the cognitive role of 
those regions during the execution of a behavior (see section 3.2.2), in the following sections we 
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investigate how a computational agent can recognize actions and associate behaviors from its repertoire 
of motor actions to novel objects from the environment only by observation.  

To make use of the available neurophysiological data, which in monkeys can reach up to the activation 
of single cells, we have focused on developing the model’s representations at the neuronal level. This 
enabled us to evaluate important assumptions in respect to observational learning which, inline with the 
three theoretical questions discussed in the introduction (see section 1.4), are summarized below: 

1. What types of representations participate in the formation of the motor image during 
observation, and what is the contribution of the motor control system in this process? 
This issue is derived from theoretical question A and pertains to the properties of the mental 
image that is formed by an observer, and how it can be developed using the motor control 
system of the agent. 
 

2. How can the computational agent exhibit behavioral skills similar to the ones found in 
Macaques, using the pathway of overlapping activations? 
The second issue that we investigate is based on the theoretical question B, and focuses on how 
the computational agent can exhibit observational learning, in a manner that is compatible with 
the cognitive imitation capacities found in Macaques. 
 

3. How are the action recognition abilities of the Macaque monkeys supported by the activated 
regions during observation? 
The final issue that we focus on regards the neurophysiological basis of the system that supports 
the imitation skills in Macaques, and pertains to theoretical question C. More specifically, based 
on the high resolution level of the model, it focuses on the types of sensorimotor 
representations that can be employed by a computational agent, in order to compensate, 
through mental simulation, for the immobility of its embodiment during observation. 

5.2 Modeling approach 

To develop the model it is first important to identify the cognitive functions that are performed in the 
activated regions. In line with the discussion in chapter 3, the regions that become active in Macaques 
during observation are responsible for: (i) executing motor behaviors, (ii) maintaining the sensorimotor 
representations of the movement and (iii) handling visual perception.  

To implement these functions computationally we need to identify the effect that the model’s inputs 
have to each neural network. To accomplish this we identify certain pathways within the model, i.e. 
streams of network interactions that process different types of information. We then continue to 
discuss the nature of the representations that can be implemented at the single and population neuron 
levels, as well as the underpinnings of the input and synaptic learning models that will be used to 
develop these representations in the computational agent. 
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5.2.1 Identifying the Model Pathways 

In the current section we derive the cognitive functions that will be performed by the model, and 
identify the regions that will be used to implement them. To accomplish this we employ the pathway 
modeling methodology, which was described in chapter 4, in order to group the functionality of the 
regions that become active during observation and execution in Macaques, into three respective 
functions (Fig. 5.1): (i) object perception, (ii) proprioceptive association and (iii) motor control.   

 
Fig. 5.1. Layout of the proposed model. The three pathways are marked with different colors; object 
recognition: yellow; proprioceptive association: red; behavior learning: blue. Different types of synapses 
are also marked with different colors: STDP: black, reinforcement: red, GA: green. The lines crossing the 
neurons in some networks (e.g. SPL) indicate the existence of lateral inhibitory connections in the 
respective networks. 

Cortically, object perception is facilitated by the regions of the occipital lobe, where visual incentives are 
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integrated together into forming a coherent representation of the incoming percepts. The outcome of 
these projections is evident in the activity of IPL, where the dorsal pathway ends, which encodes a 
higher-order representation of the perceived objects. Consequently, the first pathway we identify for 
the model includes regions V1V4 as well as regions in IPL, and will be responsible for developing a 
representation of the perceived object.  

The second function that is activated during observation is proprioceptive association. To facilitate this 
function the primate must combine the visual incentives from the demonstrator’s motion, with its own 
sensorimotor codes of the movement. Consequently, this pathway will include regions that pertain to 
the visual perception of body parts (STS), regions that encode the proprioception of the agent (Sc, SI) as 
well as higher integration areas that are responsible for associating the motor and visual incentives into 
a common neural code (SPL, IPL). 

The final pathway that we focus regards motor control, and employs information from the other two 
pathways in order to learn and generate a motor behavior. It involves regions in the premotor, parietal 
(dorsal and ventral) and primary motor cortex (MI), and is used to implement the association between 
an object representation and a respective behavior, using the connections between the premotor cortex 
and IPL.  

Based on these three pathways, the final goal of model development is to integrate their functions 
together in order to produce a working model of cognitive imitation, able to exhibit the corresponding 
imitation capacities found in Macaques (Subiaul et al., 2004). The connectivity between different neural 
networks is derived in accordance to the connections between the respective cortical areas in the brain 
(Kandel et al., 2000) and is depicted in Fig. 5.1. 

Figure 5.1 presents an outline of the computational model, along with the respective connections 
between the regions. The object recognition pathway is assigned the role of forming the neural 
representations that encode the objects presented to the agent. This is accomplished in the V1V4corners, 
V1V4XYaxisRatio and IPLvisual networks. The second pathway, proprioceptive association, is responsible for 
forming the neural representations of the action of the agent, as well as building the correspondence 
between the actions of the observer and demonstrator agents. It originates from Scproprioceptive region, 
and involves the IPLmotor, STS, SI, SPL and VIP networks. The last three regions are part of the circuit that 
performs action correspondence. Finally the third, motor control, pathway involves regions Sccontrol, MI 
and F5 and will be employed in order to facilitate motor control.  

Highlights of the model 

The model presented in Fig. 5.1 consists, to the best of our knowledge, the first computational 
implementation of an artificial agent that uses its motor control system in order to learn during 
observation. This is accomplished by employing the representations derived from the motor image of 
the agent during execution, in order to compensate for the spinal cord immobility (Stamos et al., 2010) 
during observation. To our knowledge, this is the first attempt to model the process of observational 
learning, i.e expand an artificial agent’s motor control system without employing its embodiment.  
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Even though the model is designed in large scale, it considers in detail the neuronal properties of the 
cortical regions that become active during execution and observation in Macaques. These types of high 
resolution models are currently missing from the motor control literature, since researchers either 
consider the neuronal properties at small scale models, or resolve to making several simplification 
assumptions when designing large-scale ones. In our case, the high-level of detail was facilitated by two 
important factors: (i) the use of the computational pathways methodology, which enabled us to identify 
how the cortical representations of each region can be coupled together into realizing the model’s 
higher order functions and (ii) the high level biologically inspired models of neurons (LIF model) and 
synapses (STDP, Bienerstock-Monroe) that were used to implement each cortical region. As we will 
discuss in the following sections, this allowed the model to exhibit several properties that are consistent 
with the neurophysiological model of action observation/execution in Macaques, including: (i) similar 
regional activations during observation and execution (section 5.7.2) and (ii) evidence as to how the 
overlapping mechanism can facilitate learning during observation (section 5.7.3). 

Another important property of the model is that it makes a clear distinction between canonical vs mirror 
neurons in the Ventral Premotor (F5) region. As discussed in chapter 2, this property is very important in 
order to discriminate between the neurons that are responsible for action recognition, and the neurons 
used for encoding the agent’s primitive behaviors. As a result, the computational model was able to 
make an important distinction between the processes of action recognition, and action execution, and 
employ them accordingly during observation. More importantly, due to the aforementioned fact, the 
computational neurons that were used to model the mirror neurons in the F5 region exhibited 
intransitive and associative properties, similarly to their cortical counterparts. 

In addition, the results that we present in this chapter show several computationally attractive 
properties that were exhibited by the computational agent. These include the capacity to (i) learn new 
behaviors only by imitation, (ii) associate known behaviors to unknown stimulus from the environment 
only by observation, (iii) preserve previous learned behaviors after a learning cycle and (iv) generalize 
knowledge to similar objects. 

Finally, due to the high resolution that was used, the model allowed us to derive important assumptions 
regarding to: (i) the reasons for the lower activation in some regions of the cerebral cortex of Macaques, 
(iI) the type of observation/recognition that can be facilitated by the overlapping pathways and (iii) the 
role of some regions into performing embodiment correspondence. 

The development and implementation of these computational properties is discussed in the remaining 
sections of this chapter. More specifically we describe: (i) the types of neural representations that can 
be developed based on the biologically inspired neuron model that was used (section 5.2.2), (ii) the 
plasticity and synaptic models employed to develop the agent (sections 5.2.3), (iii) the encoding of the 
visual and proprioceptive input (section 5.3.1), (iv) the information processing carried out by each neural 
network (section 5.3), and (v) the setup of the circuitry that is used to produce the output signals for the 
motor control of the agent (section 5.4). 
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5.2.2 The nature of the model’s neural code 

As already mentioned, the regions in the computational model are implemented using networks of 
spiking neurons. Each network is designed in order to perform a transformation of the input signal into a 
corresponding symbolic code. Such representations can be developed by manipulating the patterns of 
neurons and synapses in a network, in order to explicitly design it to exhibit the appropriate neuronal 
activity.  

The building block for developing a symbolic representation is the output of the spiking neuron model 
that was described in chapter 4. Even though spiking neurons communicate through a single temporal 
event, the spike after-potential, they can exhibit a variety of voltage dependent behaviors. The most 
important of these are: post-synaptic potential (PSP) integration, paired-pulse facilitation and 
depression, rebound facilitation, bursting and slow integration of PSPs (see Zucker, 1989 for a review). 
These simple properties give rise to complex representational phenomena at both the single neuron and 
population levels (Durstewitz and Seamans, 2000; Amit and Brunel, 1997), providing different ways for 
encoding an input stimulus. These are discussed in the two sections below, while in section 5.3 we 
describe how such neural codes are employed by the computational agent in order to exhibit the 
appropriate behaviors. 

Representations at the single neuron level 

The main benefit of spiking neurons over other formal neuron models is that spikes are point processes 
characterized by their timing. This property adds a temporal dimension to the neurons’ output and 
facilitates very powerful forms of information processing (Maass, 1997). Consequently, spiking neurons 
can use diverse forms to communicate their message, which in practice means that a stimulus can be 
encoded by a neuron with different code conventions. 

From a computational perspective, the nature of a neuron’s code is very important. Two neurons can 
encode the same stimulus in a different way, thereby creating different representations for the same 
event. Since plasticity is dependent on the output of the neurons at both ends of a synapse, the way 
that a neuron chooses to communicate its message has a direct effect on the learning abilities of the 
network (Fig. 5.2).  

The most common way to treat a spike is to consider it as a momentary temporal event with no spatial 
dimension. This type of neural code, known as temporal, has been observed in various areas of the 
cortex (Mainen and Sejnowski, 1995), e.g. in the auditory system it is used to perform echolocation 
(Knudsen and Konishi, 1979). Temporal codes have redefined traditional views about cortical 
representations, by showing that synchronization of neuronal firings across different regions can bind 
features together. The most common way to simplify the processing in a temporal code is to average it 
over a certain period of time. This code convention is known as the rate code. Rate codes have been 
observed in stretch receptor neurons, where the force that is applied in the muscle is correlated with 
the firing rate of the neuron (Adrian, 1926). Some however argue that the cerebral cortex does not have 
the capacity to evaluate more than one spike at a given time, and therefore it is unable to process rate 
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codes properly (Thorpe et al., 1996). To compensate for this, researchers have suggested that the timing 
of the first spike might convey all the information about a certain stimulus. This scheme, known as time-
to-first spike, has been successfully applied into models for fast face recognition (Delorme and Thorpe, 
2001). In a similar manner, rank-order codes suggest that the latency in a neuron’s firing can encode all 
relevant information about a stimulus (Thorpe et al., 2001). This scheme uses the time that is required 
for a neuron to fire an action potential, by encoding a stimulus feature distributively, in the latencies of 
a neuronal population. Another method for translating the output of a neuron is to consider it as having 
on and off states during which the neuron either exhibits high firing activity or is completely shunted. 
This code scheme, known as the burst code, is a computationally convenient way for binding 
instantaneous features together, since it produces a succession of consecutive spikes within small 
periods of time.  

 

Fig. 5.2. Visual representation of 3 neural codes that can be exhibited by the spiking neuron model. 
Image adopted from (Florano and Mattiussi, 2008).  

The above conventions consist of different interpretations of a neuron’s output at the dendrite level. 
The choice of a neural code has a strong effect on the dynamics of a model, because it can create 
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different forms of interactions between the neurons. In addition to the single level neural code, stimulus 
features can also be encoded at the population level, which is the topic discussed below.  

Representations at the population level 

The composition of a neural network has a strong effect on the processing capabilities of a model.  By 
defining different neuron and synapse models, architecture and connectivity, one can build networks 
that perform almost any function observed in the brain. Moreover, different spatial structures can result 
in the network performing a completely different computation.  

The nature of the neural code exhibited by a network can be described based on the distribution of the 
tuning curves of its neurons. Tuning curves are the most widely accepted convention for characterizing a 
neuron’s behavior, because they describe how a cell responds to its pre-synaptic inputs. The most 
common type of tuning curve is the bell shaped profile, where the mean firing rate of a neuron is 
represented by a Gaussian function.  

Depending on whether the tuning curves of its neurons overlap, a network can exhibit three different 
types of neural codes. On the one extreme, if a grid of neurons is characterized by tuning curves that 
overlap extensively, the code exhibited by the network is known as population code (Fig. 5.3).  

 

Fig. 5.3. A.The distribution of tuning curves for an ensemble of neurons that encode a population code. 
B. The tuning of a neuron based on a preferred, noisy, stimulus. Image adopted from (Arbib, 2003). 

Population coding provides an overcomplete representation of the stimulus, using a distributed pattern 
of neuronal activations. Each neuron contributes, or is tuned as it is usually referred, to more than one 
stimulus features, while the number of neurons that is used for a representation is greater than the 
dimensionality of the stimulus. Population codes have been observed in many regions of the cerebral 
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cortex, for example Georgopoulos (Georgopoulos et al., 1982) described how the properties of cell 
ensembles in the primary motor cortex can encode a population code vector of the monkey’s hand 
direction and speed. This type of representation is a very good predictor of a stimulus event than the 
activity of any individual neuron (Schartz and Moran, 1999), however some criticize it as causing losses 
in the acuity of the neuronal representation (Zhang et al., 1998).  

On the other end, a population of neurons can have non-overlapping receptive fields. This leads to 
another widely used coding scheme known as local coding. Local codes can divide the input space of the 
stimulus into segregate regions, and thus can perform better at discriminating different features. The 
cost for this optimized separability property is that their representational capacity is small. The number 
of states that can be represented by a certain population is bounded by the number of cells within the 
population. In the brain, local codes have been found in various regions, such as the infero-temporal 
cortex (Tamura and Tanaka, 2001), where researchers have identified neurons that become active only 
in response to specific complex shapes.  

A compromising solution that takes advantage of both neural codes is sparse coding (Dayan and Abbott, 
2001), where sensory input is encoded using a small number of active neurons. The sparseness of a 
population is measured by the proportion of active neurons at any given stimulus presentation (Rolls 
and Tovee, 1995). Usually, in a sparse code, the ratio of the number of active/inactive neurons is small. 
By modifying this proportion one can switch the computational capacities of a neuronal population 
towards optimized representation or memory. The high representational capacity of sparse codes is 
depicted in the fact that they have minimum entropy (Field, 1994; Barlow et al., 1989). Examples of 
sparseness in cortical systems can be found in the V1 cortex, which uses sparse codes in order to 
represent image sequences (Vinje and Gallant, 2000) or the auditory cortex of rats, where neurons 
produce a single spike response to a sound (DeWeese et al., 2003). 

5.2.3 Models of synapses 

In the current section we describe two learning methods that will enable us to develop the 
aforementioned neural codes in a computational agent. For this reason we focus on how two popular 
learning schemes, associative and reinforcement learning, can  be implemented in networks of spiking 
neurons. 

Associative learning through STDP synapses 

Associating the neural representations that are encoded in different neural networks is an important 
function of the proposed model. Computationally, these associations are formed using the Spike-Timing 
Dependent Plasticity (STDP) synaptic learning rule (Song et al., 2000) which is implemented in the 
connections between regions SPL,  IPL (IPLmotor, IPLvisual and VIP), F5 and SI. As opposed to traditional 
Hebbian rules, STDP ensures that: (i) non-causal relationships between neurons will not be enforced 
(Song et al., 2000) and (ii) correlated input activity between neurons will give rise to increased variability 
in the post-synaptic responses (Stevens and Zador, 1998). The above are accomplished by driving the 
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neuron into a state where it exhibits a balanced, but irregular, firing distribution. This irregularity makes 
the neuron sensitive to the pre-synaptic action potentials that arrive at its membrane, even after 
converging to a balanced firing regime. The rule is defined by the following equation: 

(ݐ߂)ܨ = ቐ ା݁ܣ ௱௧ఛశ		݂݅	ݐ߂ < ݐ߂	݂݅	௱௧ఛష	ି݁ିܣ−0 ≥ 0		(5.1) 
 

In eq. (5.1) the timing constants ߬ା, ߬ି determine the time window that when ݐ߂ falls in, the synapse is 
either strengthened or weakened. Polarization and depression of an STDP synapse is relative to the time 
difference (Δt) between the firings of the pre and postsynaptic neurons. The learning rate parameters ܣା,  determine the maximum change of synaptic modification that is allowed to occur. With the ିܣ
appropriate initialization of the ߬ା and ߬ି timing constants, the integral of an STDP function becomes 
negative (Fig. 5.4), and therefore the rule presents a tendency to weaken the connection. Because of 
this property, non-causal coincidences (caused by pre-synaptic spiking events, occurring sporadically 
before and after the post-synaptic action potential) after a few cycles vanish. In contrast, pre-synaptic 
neurons that present a strong tendency to fire only before a post-synaptic action potential will 
eventually strengthen their synapses with that neuron, leading to more stable and robust associations.  

 
Fig. 5.4. The depression (bottom right) and polarization (top left) updates (y axis) in the weight of the 
STDP connections for different values of Δt (x axis). The parameters of eq. (5.1) are set to: A+=0.0002, A-

=-0.0002, τ+=2, τ-=5. The choice of these parameters results in the integral of F(Δt) being negative, so 
that the synapse will present a tendency to weaken. 

Due to these properties, STDP has been employed in a large number of computational models including 
ones that deal with temporal pattern recognition (Gerstner et al., 1996), coincidence detection 
(Gerstner et al., 1996) and directional selectivity (Mehta and Wilson, 1999). Nonetheless, STDP fails to 
deal with some standard problems of associative learning, such as recovering neurons that are unable to 
fire, due to for example small input. To confront this problem, in our simulation we have selected a 
relatively small value for the threshold θ of eq. (4.2) (see also Table 5.1), in order to ensure that on each 
training session a considerable number of neurons will be active. The importance of the robust 
associations formed due to STDP in the current model implementation becomes evident during the 
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observation alone and observational learning phases, where the model is able to activate the same 
neural representations as in the observation/execution phase even though the proprioceptive input is 
not available. Figure 5.4 illustrates how the weight is updated relative to the time difference between a 
presynaptic and a postsynaptic spike, for an STDP connection with parameters: A-= -0.0002, A+= 0.0002 
and ߬ା = 2, ߬ି = 5. 

Associations between two regions that are connected with STDP synapses are formed by correlating 
neurons with similar firing frequencies. STDP accomplishes this by strengthening the synaptic 
connections between a presynaptic and a postsynaptic neuron if the former’s firings contribute 
maximally to the latter’s spike responses. This contribution is determined by exponentially 
strengthening a synapse between the two neurons, if the presynaptic neuron’s firing has occurred 
within a small time window (determined by the τ- and τ+ parameters) before the postsynaptic neuron’s 
last firing. In our model STDP is used in two instances: (i) to form associations among the neural 
representations that are encoded in different neural networks and (ii) to promote competition between 
the neurons of the same networks. 

 

Fig. 5.5. Temporal coincidences as captures by the STDP algorithm. Circled spiking events will result in 
the neuron strengthening the synapse. Image adopted from (Gerstner and Kistler, 2002). 

In the first case, where associations between two neural networks are formed, we use excitatory STDP 
synaptic connections sparsely created from the neurons of one neural network towards the neurons of 
another. Additional details about the parameters of these connections are given in Table 5.1. 

In addition to the inter-network connectivity described above, STDP is also used to connect neurons of 
the same network. This second type of learning synapses, termed as lateral-inhibitory, is implemented 
as inhibitory STDP connections densely formed among the neurons of the same network (networks that 
employ lateral inhibitory connections are marked with a line crossing their neurons in Fig. 5.1, e.g. SPL 
network). The lateral-inhibitory connections ensure that the dominant firing neurons of a network will 
suppress the stimulation of less active cells. As a result the distributed representation encoded in each 
network will consist of neurons whose firing patterns concentrate more on the peaks of their tuning 
curves, and thus are more stable when responding to different inputs. Table 5.1 lists the neural 
networks that employ excitatory and lateral-inhibitory synapses, while section 5.3 discusses the type of 
information processing that is carried out by those networks. 
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Reinforcement learning 

In our model new behaviours are taught through the same circuit for execution and observation, using 
the connections between the premotor dorsal neural networks. The synapses between those networks 
are adjusted in a series of observation/execution cycles (observation/execution phase), using 
reinforcement learning. More specifically, in this phase the agent is shown the visual depiction of an 
object (encoded in the V1V4corners and V1V4XYaxisRatio networks see section 5.3.1) and a certain behaviour 
(encoded in the STS network). This results in activating neurons in the perieto-frontal networks (through 
the proprioceptive association and visual object recognition pathways), which project directly to the 
F5canonical neurons. This gives rise to the initial execution of a random behaviour, which is progressively 
corrected in a series of observation/execution cycles using reinforcement learning based on a reward 
signal. The latter calculates the extent to which a behaviour generated by the motor control circuitry 
resembles the behaviour that was demonstrated to the agent. It is calculated on every step, for the 
whole presentation Ta=100ms of the object, using the following equation: 

)ݎ ௔ܶ) = ∑ ൫ܯ௜௡ௗ௘௫,ௗ் − ௜௡ௗ௘௫,௚்ܯ ൯ + ∑ ൫ܯ௧௛௨௠௕,ௗ் − ௧௛௨௠௕,௚்ܯ ൯்ೌ்ೌ + ∑ ൫ܯ௠௜ௗௗ௟௘,ௗ் − ௠௜ௗௗ௟௘,௚்ܯ ൯்ೌ3 ∗ ௔ܶ− 0.5			(5.2) 
 
where ܯ௙௜௡௚௘௥,ௗ்  (finger assumes the instances index, middle, thumb) is a binary reinforcement signal (0 

or 1) that indicates whether the demonstrator’s finger moved during the 1ms period and ܯ௙௜௡௚௘௥,௚்  a 
binary value that is set to 1 when the observer’s corresponding finger moved during the same period 
and 0 otherwise. ܯ௙௜௡௚௘௥,ௗ்  and ܯ௙௜௡௚௘௥,௚்  are calculated every 1ms for the three fingers of our agent, 

and the result is summed and rescaled to the ቂ− ଵଶ⋯ ଵଶቃ range in order to estimate the reward signal (ݐ)ݎ 
used in eq. (5.3). At the end of each cycle Ta=100ms, this reward signal is used to compute the weight 
update of the reinforcement learning synapses between the neurons of the F5mirror-F5canonical networks. 
Negative values indicate a negative reward, i.e. the generated behaviour does not resemble the 
demonstrated one, while positive values indicate a positive reward.    
Using the reward signal from eq. (5.2), reinforcement learning is then applied in order to update the 
connections mentioned above. Each connection’s update is derived by combining the reward signal that 
is generated using eq. (5.2) and an eligibility trace (ݐ)ݖ which determines the extent of the contribution 
of a presynaptic neuron to the postsynaptic neuron’s firing state, according to the following equation: 
(ݐ)ݓ  = ݐ)ݓ − 1) + ߛ ∗ (ݐ)ݎ ∗  (5.3)				(ݐ)ݖ
 
where ߛ is the step size parameter, which in our model was experimentally set to the value of 0.002. 
Assuming that the process that generated the F5canonical neurons’ spike trains is a point-process with 
probability of generating a spike (ݐ)ݕ)ߤ,  :the eligibility trace is calculated using eq. (5.4) ,(ߠ
ݐ)ݖ  + 1) = ߚ ∗ (ݐ)ݖ + ∇ఓ(௬(௧),ఏ)ఓ(௬(௧),ఏ)   (5.4) 
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In our models the bias-variance trade-off parameter ߚ is set to 0.5. Due to the linear dynamics of the LIF 
model, an analytical form of the probability of generating a spike (ݐ)ݕ)ߤ,  .can be derived from eqs (ߠ
(4.1-4.5) (Baras and Meir, 2007), resulting in the eligibility trace of eq. (5.5): 
ݐ)ݖ  + (߂ = ߚ ∗ (ݐ)ݖ + ൫(ݐ)ߞ − ൯(ݐ)ߪ ߣܿ ∗෍exp ൬ݐ − ௝߬௠ݐ ൰௙ 		(5.5) 
 
where f denotes all presynaptic firing events (tj) that have occurred after the last post-synaptic spike, ζ(t) 
is the spiking point process, λ determines the steepness of the sigmoid function and c = τm/R (from eq. 
4.1). 

5.3 Implementation of the Model pathways  

In the preceding sections we have outlined the details regarding the neuron and synaptic models used 
throughout the networks of our model. In the current section we provide an analytic description of how 
all these are employed in order to construct a model of observational learning, based on the extended 
overlapping activations between action observation/execution. Following the design principle of 
pathways described in chapter 4, we start by identifying the inputs in our model, and continue to 
provide details about the implementation of the (i) object recognition, (ii) proprioceptive association 
and (iii) behavior learning pathways. 

5.3.1 Input encoding 

Our simulated agent receives three types of input: (i) information regarding the objects present in the 
scene, (ii) proprioceptive input that indicates the joint positions of its fingers and (iii) information 
portraying the demonstrator’s finger joint positions. 

For encoding the objects present in the scene, their 2D projections are acquired by means of the 
Webots simulator and the Matlab software is employed in order to process these images and calculate 
two properties which are used as identifiers of their shape: (i) the number of corners, and (ii) their XY 
axis ratio (For more details on how these two properties are extracted from each image refer to section 
5.5.2). The two properties, when combined, are sufficient for describing the different contours of the 
objects (Fig. 5.10) used in our experiments.  Each of these variables is encoded in a distinct neural 
network; the first property is encoded in the V1V4corners network, while the second in the V1V4XYaxisRatio. 
These input networks contain tuning neurons, i.e. neurons that are tuned to respond to specific values 
of these two properties.  

To accomplish this, each tuning neuron is pre-coded in order to acquire an average firing rate that is 
proportional to the difference between the network’s input and its tuning value, i.e. to respond with a 
maximum firing rate when the input of the network is equal to its tuning value, and reduce the average 
firing frequency proportionally otherwise. Their membrane potential is calculated using eq. (5.6): 
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 p(t) = p(t − 1) + p୰ ∗ eି଴.ହ∗(ୟି୩)஢మ మ			(5.6) 
 
At any time step ݐ, an exponential function of the difference between the network input k and the 
neuron’s tuning value a is added to the membrane potential p(t) of each neuron. The width of the 
tuning curve is set by the tuning sigma variable (σ). For higher values of σ, neurons respond to a larger 
range of inputs. Spike emission occurs when the membrane potential of the neuron exceeds the 
threshold value ݌௥. An input network encodes a certain variable using a population of tuning neurons, 
each adjusted to respond to a uniformly distributed range of values (using variations of the a and σ  
parameters).  

This tuning neuron class is also used to construct the Scproprioceptive and STS networks. These two networks 
encode the agent’s finger joint position (Scproprioceptive) and the joint positions of the demonstrator (STS), 
respectively. Both networks comprise of three distinct sub-populations, each encoding the range of 
values of the joint angles for a specific finger. In the current experiments we use simulated agents with 
three fingers, namely index, middle and thumb. Thus each sub-population in the Scproprioceptive and STS 
networks is responsible for encoding the joint position of its corresponding finger. The tuning values 
assigned to the neurons of the three sub-populations span the range of the possible joint positions for 
each finger in the simulator. The network input k for each sub-population is set on each simulation step 
to the position of the joints in the agent’s and demonstrator’s body postures, respectively. 

5.3.2 Object recognition pathway 

The first entry point of information in the current model is through regions V1V4corners and V1V4XYaxisRatio. 
Those two networks are responsible for encoding the properties of the demonstrated object into 
population code as described in section 5.3.1. The output from those two networks is associated in 
region IPLvisual which during training forms neuronal clusters in response to its inputs. The formation of 
clusters in IPLvisual is accomplished by connecting neurons that are close together with excitatory links, 
and neurons that are distant from each other with inhibitory synapses. To determine their topological 
position in the network, neurons are assigned a pair of integer x,y coordinates during initialization. 
Neurons that have a Euclidean distance smaller than 3 units are connected with excitatory synapses, 
while neurons more far apart with inhibitory synapses. The weights of the excitatory synaptic links are 
initialized to a random value in the range of [0..0.1] while the weights of the inhibitory synapses to a 
random value in the range of [-0.1..0]. The learning rates (A+, A- parameters of eq. 5.1) of the STDP 
connections are set to 0.0002, following research that indicates that a small value for the learning rate 
of an associative connection facilitates the extraction of the first principal component of the input 
(Gerstner and Kistler, 2002). The time constants τ+,τ- of the STDP connections are set to 2 and 5, 
respectively, which results in a learning time window that weakens or strengthens the synapse between 
pre and postsynaptic neurons when their spike time difference falls into the range of [-10..0]ms and 
[0..20]ms, respectively. The V1V4corners and V1V4XYaxisRatio networks are densely connected to the IPLvisual 
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region, so that when an object is viewed by the agent more than one cluster of neurons is activated. 
These compete during training (through their inhibitory connections), and the dominant cluster 
suppresses the activation of others. To ensure that diverse objects are clustered in different topological 
regions in the network space of IPLvisual, a competition mechanism has been used in the synapses 
between V1V4corners- IPLvisual and V1V4XYAxisRatio- IPLvisual. More specifically, the weights of all synapses of a 
neuron in IPLvisual from the V1V4corners and V1V4XYAxisRatio networks are normalized in the [0..1] range. As a 
result, when a certain neuron in the input strengthens its connections with a specific cluster, it also 
suppresses the strength of the connections between that cluster and the remaining neurons in the 
input. 

The neural code in IPLvisual  is formed as follows. When an object is present in the scene, we extract a 2D 
figure from the simulator and use the Matlab software to calculate the number of corners, using the 
Harris and Stephens operator (Harris and Stephens, 1988) and its X/Y axis ratio (see section 5.5.2). The 
values extracted from the visual processing stage are input to the V1V4corners and V1V4XYaxisRatio networks, 
respectively. As a result, neurons in those two networks start firing with an average firing frequency that 
is relative to how close is their tuning value to the input. The active neurons in the two input networks 
subsequently activate different neurons in the IPLvisual network. The clusters that these neurons belong 
to will then compete with each other for the representation of the input network. Due to the 
normalization in the synapses of the IPLvisual neurons, the cluster that wins the competition will also 
suppress the strengths of the connections with the remaining input neural representations. After a small 
number of simulation steps, neurons in IPLvisual with relatively small firing frequencies will be shunted by 
neurons with more dominant firings and the final neural code representing the object will be formed. 

5.3.3 Proprioceptive association pathway 

This pathway includes regions Scproprioceptive, SI, SPL, IPLmotor, VIP and STS, and is assigned two tasks: (i) to 
form the neural codes that represent the motion of the fingers of our cognitive agent (these codes are 
used from the motor control circuitry through the SI-MI connections and for generating a behavior 
through the IPLmotor-F5mirror connections) and (ii) to build a correspondence between the agent’s and the 
demonstrator’s actions (through the VIP-SPL circuit). An analytic description of the two functions 
performed by the pathway is given in the following. 

The process that allows the formation of the proprioceptive codes of the pathway involves the 
Scproprioceptive, SI, SPL, IPLmotor and VIP regions. More specifically; in the developed model, Scproprioceptive 
contains three sub-populations, each assigned to one of the index, middle and thumb fingers. The 
neurons in these sub-populations use the tuning neuron model described in section 5.3.1 and are 
assigned tuning values that span the [0..1.2] range of possible joint positions (i.e. their average firing 
rate is relative to the joint position of the simulated agent). Scproprioceptive projects to the SI network which 
also contains neuron sub-populations assigned to specific fingers. Each finger neuron class of the 
Scproprioceptive network is connected with excitatory synapses to the corresponding neuron class in the SI 
network. In turn each sub-population in the SI network projects to a different cluster of neurons in SPL. 
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Finally, SPL projects to the IPLmotor network which, through its connections with F5mirror, provides 
information on the proprioceptive codes of the agent when generating a behavior. The fact that IPLmotor 
does not accept any connections from visual processing areas (e.g. IPLvisual) ensures that it will only 
respond to purely motor information. The neural codes formed in regions SI, SPL and IPLmotor become 
progressively sharper (i.e. less distributed and concentrating more on the peaks of their tuning curves) 
as they are projected from the one region to the other. In SPL and IPLmotor, due to the lateral inhibitory 
synaptic links, the neural code contains only high firing frequencies as less active neurons are shunted 
by more dominantly firing neurons. This helps the model to converge faster during training, as the 
associative processes implemented in SPL (with region VIP) and IPLmotor (with F5mirror) strengthen only the 
synapses of dominant firing neurons.  As a result, the sparse neural code formed in these regions is 
robust to perturbations caused by small changes in the input patterns, since any random neurons that 
might become active will be quickly shunted by the more dominant firing neurons. When the agent 
moves a finger, the value of its joint position is input to the respective sub-population of the Scproprioceptive 
neural network. Neurons in this network with a tuning value equal or close to the current joint position 
will start firing with high frequency. Due to the excitatory synapses between Scproprioceptive and SI, a sub-
population in the SI network will also start firing when its assigned finger is active. The active SI neurons 
are used to recurrently provide proprioceptive information to the MI neural network for motor control 
(through the SI-MI connections), as well as to project to the Superior Parietal network (through the SI-
SPL synapses). The term recurrently here is used to indicate the closed loop of information between the 
SI network and the motor control circuit (the information encoded in SI depends on the output of the 
motor control circuit from the previous time step, which in turn, also depends on the information from 
SI, due to the SI-MI connections, in order to generate the movement of the agent for the next time-
step). The SPL network is sparsely (with a measure of 40%) interconnected to the IPLmotor network (i.e. a 
neuron from SPL is connected to 60% of the neurons in IPLmotor), which holds a distributed 
representation of the motion of the active fingers. 

In addition to the formation of the proprioceptive codes, the proprioceptive association pathway is also 
responsible for the action association function. This is accomplished using the SI-SPL-VIP circuitry as 
follows: SPL, apart from SI, also accepts connections from VIP, i.e. the region encoding a distributed 
representation of the demonstrator’s active fingers. These synapses (VIP-SPL) undergo a competition 
process, which aims at associating the neural representations of the agent’s fingers with the neural 
representation formed for the demonstrator’s fingers. More specifically, during training, the joint values 
of the demonstrator’s fingers are input in the STS neural network. STS projects directly to VIP, with 
excitatory STDP synapses, and as a result the STS-VIP circuit encodes a distributed neural representation 
of the perceived motion of the fingers of the demonstrator. Therefore, the role of VIP in the current 
implementation is to hold a neural representation of how the model represents the actions of the 
demonstrator. To associate this representation with the actions of the agent, the model uses the 
connections between VIP and SPL (i.e. the action association is coded in the VIP-SPL synapses). By 
design, region SPL contains separate neuron groups that correspond to each finger in the agent’s body. 
Each group in SPL is connected with the corresponding cluster from SI that encodes the motion of the 
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same finger. The weights of these connections are drawn from a Gaussian distribution with mean 0.02 
and sd 0.01. The connections between VIP and SPL are used in order to create an association between 
the local SPL code (i.e. grandmother cell representation) representing the agent’s actions, and the 
distributed code held in VIP representing the demonstrator’s actions. This association is formed due to a 
competition mechanism, that normalizes the weights of all synapses (in respect to the sum of their 
weights) leading to the same neuron in SPL from VIP in the [0..1] range. This normalization process 
forces the neurons in SPL to compete in order to create an association with the active VIP neurons. The 
neurons that win the competition (i.e. become active) in SPL, strengthen their synapses with the active 
neurons in VIP (due to STDP) and also weaken their connections with the inactive neurons in VIP (due to 
synaptic normalization). The excitatory synapses from SI to SPL will give a competitive advantage to 
those SPL neurons that correspond to the active fingers of the agent during the execution of a behavior. 
Thus after a few training cycles, and since the agent learns on every iteration to perform the 
demonstrated behavior better, the neurons in SPL that refer to the active fingers of the agent will 
become more active, and strengthen their connections with the active VIP representation. 
Consequently, a certain VIP representation (formed in response to the active fingers of the 
demonstrator) will also activate the correct combination of fingers in SPL (that refer to the 
corresponding fingers of the agent). This circuitry between VIP and SPL is used during observation, in 
order to activate the correct SPL neurons (since the agent is kept immobile and therefore there is no 
information from the Scproprioceptive network). 

5.3.4 Behavior learning pathway 

The behavior learning pathway exploits information from the previous two pathways in order to observe 
and execute a behavior using the same networks. The entry point for the behavior learning pathway is in 
the premotor network which accepts connections from the following neural networks: (i) IPLmotor which 
provides information about the motor behavior that is being executed by the agent, (ii) VIP network 
encoding the current demonstrated behavior, and (iii) IPLvisual which provides information about the 
viewed object. The neurons in the F5mirror network use the same neuron model that is described in eqs. 
(4.1-4.4), while their synapses are updated following the STDP learning rule of eq. (5.1). The latter choice 
is in consistence with the associative learning hypothesis (Heyes, 2001) which suggests that mirror 
neurons acquire their response properties because of associative learning and the correlated experience 
caused by simultaneously observing and executing an action. In addition, mirror neurons have been 
shown to respond only to transitive actions, i.e. when an object is present in the scene and the primate 
executes or observes a behavior (Myowa-Yamakoshi and Matsuzawa, 1999; Umilta et al., 2001). To 
model this property we have used a group of LIF neurons with increased firing thresholds. Previous 
research has shown that using a firing threshold slightly above the mean value of the membrane 
potential during asynchronous input changes the computation performed by a LIF unit from linear 
integration of the presynaptic input, to a coincidence detector (Konig et al., 1996).  Therefore, by 
normalizing the input current sent to the F5mirror neurons from the IPLmotor, IPLvisual and VIP regions, to 
appropriate ranges, the neurons in the F5mirror network will only become active when the IPLvisual (object 
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present) and at least one from the IPLmotor (executing) or VIP (observing) networks is active. This concept 
is depicted mathematically in the following equation: 

(ݐ)ிହ௠௜௥௥௢௥,௜ܫ  = ∑ ௜,௝ݓ ௝ܵ(ݐ)஺ூ௉௠௢௧௢௥,௝4 ∗ ௝ܰ + ∑ ஺ூ௉௩௜௦௨௔௟,௞2(ݐ)௜,௞ܵ௞ݓ ∗ ௞ܰ + ∑ ௏ூ௉,௢4(ݐ)௜,௢ܵ௢ݓ ∗ ௢ܰ 				(5.7) 
 
Equation (5.7) normalizes the input received from IPLmotor and VIP networks in the ሾ0⋯0.25ሿ range and 
the input received from region IPLvisual in the ሾ0⋯0.5ሿ range. In addition the firing threshold of each 
neuron in the F5mirror network is set to 0.6. As a result, the mirror neurons of our model cannot be 
activated from the visual representation of an object alone (since they do not respond as linear 
integrators), but require additionally the input from at least one of the IPLmotor or VIP neural networks. 
The scaling of the input from the latter two networks to the ሾ0⋯0.25ሿ range ensures that pure input 
from either the IPLmotor or VIP networks will not activate the mirror neurons. This is used in order to 
ensure that the behavior learning pathway will only be activated when the agent is observing or 
executing in the presence of an object, and thus implicitly models the mirror neurons’ selectivity for 
transitive actions (Umilta et al., 2001). The choice of normalization constants along with the associative 
learning rule used to update the synapses of the F5mirror neurons is discussed under the spectrum of the 
existing theories regarding the formation of mirror neurons in section 7.2. Mirror neurons are connected 
to the F5canonical network which also receives connections from IPLvisual  region. The synaptic links between 
F5mirror-F5canonical are updated using the reinforcement learning rule from eq. (5.3), while the synapses 
between F5canonical-IPLvisual using the STDP connections from eq. (5.1).  

5.4 Motor control of the simulated agent 

The Sccontrol neural network, which controls the fingers of our simulated agent, accepts neuron signals 
from the MI neural network which encodes in a distributed manner the input signals received from 
F5canonical. The complete layout of the motor control circuitry is illustrated in Fig. 5.6. The F5canonical 
network contains three neurons, each corresponding to a specific finger in the simulated body of the 
agent. The F5canonical-MI-Sccontrol-SI-Scproprioceptive circuitry (motor control circuitry) is evolved using genetic 
algorithms (the evolutionary process is described in the section 5.4.1) so that when a neuron in the 
F5canonical network is active the finger assigned to that neuron will move. In addition the Sc network is 
depressed during observation. 

The motion of a finger in the simulated robot is preprogrammed to activate the population of neurons in 
the Scproprioceptive network that corresponds to that finger. Neurons in those three populations of the 
Scproprioceptive network are preprogrammed as discussed in section 5.3.3. Ten neurons are used in each 
population with k values spanning the [0..1.2] range, i.e. all the possible joint positions of each finger in 
the simulator. The Scproprioceptive-SI networks are connected by forming synapses between a population of 
neurons in the Scproprioceptive network, encoding the motion of a specific finger joint, and the population of 
neurons in the SI network assigned to that finger joint. The SI network is then densely connected to the 



5.4 Motor control of the simulated agent 

 
March 2012  Page 95 

MI network in order to recurrently propagate the motion information that it receives from 
Scproprioceptive towards MI. 

 
Fig. 5.6. The F5canonical-MI-Sccontrol-SI-Scproprioceptive circuitry, used to control the fingers of the simulated 
agent. After evolution, the circuit is configured so that activations in the F5canonical neurons result in the 
respective motor commands in the Sccontrol network. Instance shown in the figure depicts the case where 
the thumb neuron is activated in F5canonical resulting in the corresponding activation in the Sccontrol 
network. The dashed arrow at the bottom of the figure shows how the motor commands from Sccontrol 
are input to the Scproprioceptive network at the next step. 

More details on how the signals from Sccontrol are translated to motor commands are included in section 
5.4.2. The motor control circuit plans each consequent motor command using the state of the F5mirror 
neurons and the proprioceptive information from SI. When a motor command is executed from the 
simulator, it is subsequently encoded in the Scproprioceptive network and projected to the MI network 
through the SI. This recurrency is important so that the agent will close its fingers up to a certain point. 

5.4.1 Evolution of the motor control circuitry 

Genetic algorithms are employed in order to configure the motor control circuitry. The operation of the 
latter is governed by a number of parameters whose operational values need to be estimated. Genetic 
algorithms employing simple higher order fitness functions derived from the interaction of the agent 
with the environment can effectively provide appropriate estimates of the sought parameters.  

The training and evolutionary procedure is designed so that the motion of each finger of the agent will 
be controlled through the activation of a specific neuron in the F5canonical group of neurons. For this 
reason the evolutionary process exploited the parameters of the neurons in the Sccontrol and MI 
networks, as well as the following connections: F5canonical-MI, MI-MI, MI-Sccontrol and SI-MI.  The 
evaluation of each chromosome was accomplished using higher level fitness functions that rewarded in 
each trial the network configurations that generated a motion of a finger, if its assigned F5canonical neuron 



Chapter 5  Observational learning inspired from Macaques 
 

Page 96  E. Hourdakis Ph.D. Thesis 

was active (Fig. 5.6). The chromosomes used for the evolutionary process were constructed by encoding 
the τm , ref and R parameters (from equations 4.1, 4.5) of the MI and Sccontrol neurons using an 8-bit value 
representation for each. In addition to that, the parameters of the connections among the F5canonical-MI, 
MI-MI, MI-Sccontrol and SI-MI networks were also encoded in the chromosomes. For each of these 
connections we used a 1-bit value to determine whether a connection between two neurons will be 
formed, 1-bit for the excitation status (i.e. 1 or 0 to indicate whether the connection is excitatory or 
inhibitory) and an 8-bit value to determine the connection’s static weight. 

The encoded strings corresponding to the neuron parameters of the MI network were placed next to the 
encoded strings of the connections from and towards the MI network. The encoded parameters from 
the MI-Sccontrol connections were placed next, followed by the Sccontrol neuron parameters. The resulting 
chromosome string is shown in Fig. 5.7. 

 

Fig. 5.7. The structure of the chromosome that encodes the neuron and connection parameters in the 
motor control circuit during genetic evolution. 

As Fig. 5.7 shows, the chromosome string is designed to keep the encodings of a neuron’s parameters 
close to its connections in order to minimize unwanted effects from possible separations during 
crossovers of the genetic evolution. Upon each evolutionary trial the neurons in the F5canonical network 
are activated sequentially for 100 steps and the motion of each finger in the body of the simulated agent 
is recorded. At the end of each 100 steps trial all neurons’ membrane potentials are set to their resting 
value so that consequent 100 steps phases will be independent from each other.  The circuitry F5canonical-
MI-Sccontrol-SI-Scproprioceptive is evaluated upon each generation, by summing the motion of the finger that 
is associated with the active neuron in the F5canonical network and subtracting the motion of the other 
fingers. For example during the first 100 steps of the first trial, we activate the first neuron in the 
F5canonical network and calculate the fitness of the networks according to: 

௙݂௜௡௚௘௥ଵ =෍ܯ௙௜௡௚௘௥ଵଵ଴଴ −෍ܯ௙௜௡௚௘௥ଶଵ଴଴ −෍ܯ௙௜௡௚௘௥ଷଵ଴଴ 		(5.8) 
Mfinger,i corresponds to the transformation of the joint of finger i during the 5ms period and is calculated 
by subtracting the last position of a joint from its current position. Each trial consists of 700 simulation 
steps. The neurons in the F5canonical network are activated separately for the first 300 steps, while during 
the remaining 400 steps we activate combinations of the fingers. The fitness function used in this 
second case is:  
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௙݂௜௡௚௘௥ଵ,ଶ,ଷ = ෍൫ܯ௙௜௡௚௘௥ଵ + ௙௜௡௚௘௥ଷ൯ଵ଴଴ܯ	+௙௜௡௚௘௥ଶܯ 		(5.9) 
The final fitness for each simulation trial of 700 steps is calculated by summing the individual fitness 
functions from the single and combined finger motions: ்݂ ோூ஺௅ = ௙݂௜௡௚௘௥ଵ + ௙݂௜௡௚௘௥ଶ + ௙݂௜௡௚௘௥ଷ +	 ௙݂௜௡௚௘௥ଵ,ଶ +	 ௙݂௜௡௚௘௥ଵ,ଷ + ௙݂௜௡௚௘௥ଶ,ଷ + ௙݂௜௡௚௘௥ଵ,ଶ,ଷ				(5.10) 
At the beginning of the evolution all connection weights are randomly initialized in the [0..1] range. The 
connections between the neurons of the F5canonical-MI, MI-MI, MI-Sccontrol and SI-MI are created randomly 
with a probability of 50% to form a connection, and 50% for this connection to be excitatory. We used 
two genetic operators for evolving the chromosomes shown in Fig. 5.7, mutation and single-place 
roulette wheel crossover. During mutation, the algorithm randomly switches the bits of the 
chromosomes with a probability of 2%. During crossover, each chromosome in the genetic population is 
evaluated and placed in an ordered sequence according to its fitness. Chromosomes with higher fitness 
values have a higher probability of being chosen for crossover. When selected, a random point is set in 
the chromosome, which divides the string in two distinct pieces, and all bits following that point are 
copied from the chromosome with the higher fitness to the chromosome with the lower fitness value. 
This training procedure was repeated for approximately 650 generations until the activation in each 
F5canonical neuron (through the motor control circuitry) resulted in moving the finger of the agent that 
was assigned to that neuron. The average population fitness for the 650 generations is shown in Fig. 5.8. 
The configuration of the most optimal individual was decoded and used to initialize the connections and 
neuron parameters in the motor control circuitry.  

 

Fig. 5.8. The fitness (y axis) of the population during the initial 650 generations (x axis) of the 
experiment. 

The accuracy of the motor control module to move the fingers of the agent to unknown positions is 
proportional to the distance between the designated target value, and the values used during evolution 
for evaluating the fitness of the algorithm. This suggests that the target positions that are used to 
evaluate the performance of the circuit during evolution must be carefully sampled, so that they span 
the target position space appropriately. 
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5.4.2 Control of the joints in the Sccontrol network 

The joints of the simulated agent are controlled through the Sccontrol network using three populations of 
neurons, one assigned to each finger. Each population contains two neurons responsible for the 
contraction of the joint that controls the finger, and two neurons responsible for its expansion. The 
contribution of each neuron to the overall contraction or expansion of each joint is calculated by 
averaging the number of spikes it emits during a period of T=5ms according to eq. (5.11): 
 v = n(T)T 		(5.11) 
 
where n(T) is the number of spikes emitted by a neuron during period T. Half of the neurons in each 
population are responsible for the contraction of a joint and half are responsible for its expansion. The 
normalized sum of the average firing rates of the population controlling the expansion of the joint is 
subtracted from the normalized sum of the average firing rates of the population controlling its 
contraction. At the end of the 5ms period the result from eq. (5.12) is sent as a motor command to the 
simulator. r୩ is used to determine the force that is applied to the joint of the robot. 
 r୩ = ∑ vୡ୒ − ∑ vୣ୒N 			(5.12) 
 
In eq. (5.12), vୡ represents the average firing rate for each of the N neurons controlling the opening of a 
joint ݇, while vୣ is the average firing rate for each of the neurons controlling its closing. At the end of 
each 5ms period the acceleration of the joints in the simulator is set to 0 so that positive values of the r୩ 
will result in the robot opening the finger, while negative values result in closing it. Figure 5.9 illustrates 
how the output spikes of the Sccontrol network are transformed into motor commands for the simulator. 

 

Fig 5.9. Control of the fingers in the hand component of our simulated agent through the Sc network 
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5.5 Model implementation details and domain applicability of the variables 
used in the model 

In the current section we provide supplementary implementation details regarding the development of 
the model. These include (i) the initialization of the neurons and synapses of the neural networks and (ii) 
the visual processing stage of the model.Table 5.1 lists the neuron, synapse and network parameters. 

Table 5.1. Simulation parameters for the neurons, connections and networks in the model 
Neuron simulation parameters Symbol  Equation Implementation Value 
LIF Membrane 

resistance 
Rm Eq. (4.1)  10Ω 

 Time constant ߬௠ Eq. (4.1)  30msec 
 Reset potential ݑ௥ Eq. (4.3) -60mV 
 Firing threshold θ Eq. (4.2) -10mV 
 Refractory period ref Eq. (4.5)  1msec 

Input Tuning Value a Eq. (5.6)  0...1.2 (simulation units) 
 Tuning sigma ߪ Eq. (5.6)  4 

Connection simulation parameters Symbol  Equation Implementation Value 

STDP Learning rate A+, A- Eq. (5.1)  0.0002 
 Time constant ߬ା Eq. (5.1)  2ms 
 Time constant ߬ି Eq. (5.1)  5ms 

Reinforcement Learning rate ߛ Eq. (5.3)  0.002 
 Reward value (ݐ)ݎ Eq. (5.3)  -0.5..0.5 

Neural network simulation parameters    
 Network size Neuron model Connection type 
V1-V4corners 10 Input neuron None 
V1-V4X/Yaxis ratio 10 Input neuron None 
IPLvisual 20 LIF STDP 
IPLmotor 25 LIF STDP 
SPL 15 LIF STDP (from SI) 
VIP 25 LIF STDP 
STS 15 Input neuron None 
F5mirror 15 LIF using eq. (5.7) STDP 
F5canonical 3 LIF Reinforcement (from F5mirror) 

STDP (from IPLvisual) 
MI 15 LIF Updated by the GA 
SI 30 LIF Updated by the GA 
Sccontrol 12 LIF Updated by the GA 
Scproprioceptive 30  Input neuron None 
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5.5.1 Domain Applicability of the parameters used 

The neuron parameters set in eqs. (4.1-4.5) were chosen so that neurons would respond with regular 
spiking events, i.e. exhibit input adaptation. The reset potential u_r was set to -60mV, while the firing 
threshold θ to -10mV (well above u_r) in order to allow a considerable integration of pre-synaptic action 
potentials between firings. The refractory period ref was set to 1ms (i.e. a low value), so that the neuron 
would respond to different frequencies given varying input current. Finally, membrane resistance Rm 
was set to 10Ω, and time constant τm to 30ms, so that the effect of the input current to the membrane 
potential of the neuron would be compatible with the u_r and θ values above.  

Learning rate of the STDP synapses was set to 0.0002, according to research that indicates that a small 
value of learning rate allows an associative synapse to extract the first principal component of the input. 
Time constants τ_+ and τ_- were set to 2ms and 5ms respectively so that the time window of synaptic 
modification would consider spike time differences in the range of 0..20ms, which is in accordance to 
the time limits chosen for the experiment cycles (100ms). The negative time constant τ_- was set to a 
larger value than the positive one, so that the integral of the STDP function is negative, leading to a 
higher depolarization than polarization of the synapse, thus preventing non-causal relationships 
between neurons to be enforced. The parameters for the reinforcement learning connection were set as 
in (Baras and Meir, 2007). For the learning rate of the reinforcement connection a value of 0.002 was 
used so that changes in the model caused by the reinforcement learning connections would occur in a 
smaller timescale than changes due to STDP. 

5.5.2 Visual processing models  

In this section we outline the visual input processing models used for the objects in the scene. 

Harris and Stephens operator 

To obtain the corners in an image, the partial derivatives (Ix, Iy) of the image’s intensity signal (I) at the x, 
y coordinates are calculated and then smoothed with a kernel function F.  
 T = ൥ F(I୶)ଶ F൫I୶I୷൯F൫I୷I୶൯ F൫I୷൯ଶ ൩ (5.13) 

In our implementation we use a rotationally symmetric 2D Gaussian kernel, with standard deviation 0.5 
and kernel size 3x3, for the F function due to its smoothing properties. Corners, identified as points of 
interest are found if the R value:  R = det(T) − kሾTrଶ(T)ሿ  (5.14) 

is above a certain threshold value, which in the current experiments was set to 0.3. k is a tuning 
parameter experimentally set to 0.15. 
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Computation of XY axis ratio for an object 

The image is converted from intensity to binary using a thresholding method (Otsu, 1979). The binary 
image is labeled in order to find the number of connected pixels and determine the object shape in the 
image (Haralick, and Shapiro, 1992). Then in the labeled version of the image the x and y axis lengths are 
calculated by finding the length (in pixels) between the first and the last pixel in each respective 
direction.  

5.6 Experimental setup 

To model the body posture of the agent we modified the Hoap2 robotic simulator, incorporated in the 
Webots package (Olivier, 2004), in order to include three fingers (thumb, middle and index) which are 
attached to the robot’s palm. For the current experiments we have used two behaviors, each associated 
with the motion of one or more fingers. The first behavior entailed closing of the robot’s middle and 
thumb fingers while the index finger remained inactive, and the second behavior involved closing the 
index finger while maintaining inactive the remaining ones. Since Webots controls the motion of fingers 
via joint angles, we have consistently employed the latter to encode finger positions, control the motion 
of fingers and relate robot body postures. 

The experimental setup consists of two simulated robots. The first is assigned the role of the 
demonstrator, while the second the role of the observer. The demonstrator is preprogrammed to 
exhibit the behavior associated with the object present in the scene. The observer either executes this 
behavior in parallel with the demonstrator or just observes it without moving. The whole set of 
experiments is divided in three phases: (i) observation/execution, (ii) observation alone and (iii) 
observational learning. Each phase is composed of cycles, i.e. a fixed number of steps during which a 
certain behavior is demonstrated to the simulated agent. After the completion of each cycle the 
simulated robot is reset to its initial position. During one observation/execution cycle the agent is 
required to (i) observe the demonstrator performing a behavior, (ii) move simultaneously using the 
same combination of fingers, and (iii) touch the object. To assess whether the object is touched on each 
trial, the robot simulator has been embellished with binary touch sensors along its fingers. After the end 
of the observation/execution phase the agent is taught to execute correctly different behaviors, 
associate these behaviors with the object present in the scene and consequently be able to execute 
them whenever that object is shown, without having access to the demonstrator’s motion. During the 
observation alone and observational learning phases, the agent is still required to observe another 
agent performing the same act but is not allowed to move. All cycles have a fixed length of 100ms, and 
are partitioned to two stages, (i) presentation of the object and (ii) grasp. During the first two phases, 
two different objects are used, a box, and a sphere, and each is associated with a different behavior. 
During the observational learning phase a third, novel, object is used, which is distinctly different from 
the other two objects (Fig. 5.10). 
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changes the appropriate connections between VIP and SPL in order to learn the correspondence 
between the fingers in its own action and the action of the demonstrator. 

5.6.2 Observation alone phase 

During the observation alone phase the simulated agent is again shown an object and the corresponding 
motion of the demonstrator. However during this phase, the output of the Sccontrol neural network is not 
sent to the simulator and thus the neurons in the Scproprioceptive network are inactive. Due to this, any top-
down and bottom-up modulatory effects, caused by the Scproprioceptive activation, are cancelled during 
observation. As a result, the activations of the model regions during observation are only attributed to 
the information propagated by the other two input streams (i.e. object recognition and observation of 
demonstrator’s movement). 

5.6.3 Observational learning phase 

During observational learning, the simulated robotic agent is shown one of the behaviors that were 
taught during the observation/execution phase, and a novel object. The aim of this phase is to test 
whether it can learn to associate an already known behavior to a new object, without replicating it with 
its own simulated body, but with observation alone. 

5.7 Results 

In the following section we present and discuss the evaluation of the model focusing on four issues: (i) 
the learning of the two behaviors during the observation/execution phase, (ii) the extent to which the 
individual networks could be activated during the observation alone phase and whether these lower 
activations yielded any interesting properties regarding the learning capacities of the model, (iii) 
whether the agent could learn to associate a known behavior with a new object during the 
observational learning phase and whether the two behaviors taught during observation/execution are 
preserved after observational learning, and (iv) how the agent responds to unknown objects other than 
the ones it was trained. 

5.7.1 Behavior learning 

The agent learns new behaviours by observing the demonstrator. Each behaviour exhibited by the 
demonstrator is encoded in the STS network, while the object in the V1V4corners and V1V4XYAxisRatio 
networks. The input networks activate the visual object recognition, proprioceptive association and 
behaviour learning pathways as outlined in section 5.3. The agent executes a behaviour, and the F5mirror-
F5canonical connections are updated using reinforcement learning. In addition, after a few trials, a cluster 
starts forming in IPLvisual which encodes the object present on the scene and the IPLvisual-F5canonical 
connections strengthen. After the completion of the Ta=100ms cycle the simulator is reset to its starting 
position.  
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Reinforcement training is run for 70 cycles until the agent minimizes the error between the executed 
and demonstrated behaviours. The output of the training error, re-scaled to the [0..1] range, is plotted 
in Fig. 5.12 for the two behaviours considered during the observation/execution phase. As the figure 
shows, the error reaches 0 after approximately 70 cycles. At this point, the spikes on both error plots 
diminish, since the algorithm has converged, and the response of the F5canonical neurons on subsequent 
cycles does not require any further rectification. 

 
Fig. 5.12. Training error for the reinforcement learning connections during the demonstration of the first 
(left plot, close middle and thumb fingers) and second (right plot, close index finger) behaviour. The 
error signal from the three F5canonical neurons is summed and plotted over all trials. 

After training, given a known object the agent is able to select and execute the correct behavior without 
any assistance from the demonstrator (i.e. the STS and VIP networks are inactive). This is accomplished 
as follows. When the object is shown to the agent, the cluster of neurons in IPLvisual that was formed 
during training in response to that object becomes active, and the F5canonical neurons that have been 
associated with that cluster start firing. The agent starts moving its fingers through the motor control 
circuit, and the proprioceptive association pathway is activated. Finally the F5mirror neurons become 
active (due to connections from IPLvisual and IPLmotor which are both now active) and the correct 
behavior unfolds using the connections from both the F5mirror and IPLvisual networks. 

 
Fig. 5.13. The behaviour executed by the agent when presented with the sphere object, after the 
observation/execution phase. Above: A plot of the world coordinates of the three finger tips, along with 
a wireframe, transparent version of the object. Below: Velocity profiles for the index, middle and thumb 
fingers during the 100ms cycle.  
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In Figs 5.13 and 5.14 we show the trajectories and speed profiles of the first (Fig. 5.13) and second (Fig. 
5.14) behavior, executed by the agent when the two objects that were used during training are 
presented. 

 
Fig. 5.14. The behaviour executed by the agent when presented with the box object, after the 
observation/execution phase. Above: A plot of the world coordinates of the three finger tips, along with 
a wireframe, transparent version of the object. Below: Velocity profiles for the index, middle and thumb 
fingers during the 100ms cycle.  

After reaching the object, the simulated agent stops closing its fingers but still continues to exert a force 
for a small period. This force varies from trial to trial and depends on the speed of each finger when 
approaching the object. 

5.7.2 Neural network activations during execution and observation cycles 

As already mentioned, during the observation alone phase (i) the output of the Sccontrol network was not 
used to control the joints of the simulated robot and, (ii) none of the neurons in the Scproprioceptive network 
were active. Despite this fact, the model activated regions SPL, IPL, MI and SI at a lower rate compared 
to the activation level during execution. This is attributed to the fact that after the successful completion 
of the observation/execution phase the neurons that are activated in the SPL network in response to the 
observation of the demonstrator’s finger motion correspond to the neurons that encode the agent’s 
respective finger motions. Figure 5.15 illustrates the activations during the observation/execution and 
observation alone phases for the four neural networks. 
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Fig. 5.15. The activations of the IPL, SPL, SI, MI and F5 networks, during the observation/execution (blue 
bars) and observation alone cycle (red bars). The left activation plot shows the network activations 
during the first behavior (close middle and thumb), while the right plot shows the network activations 
during the second behavior (close index). Network activations are produced by averaging all neuron 
spike emissions over a 100ms trial, for all neurons of a network. The legend on each plot shows the 
percent of activation during observation compared with the activation during execution. 

Computationally we can attribute the network activations during observation alone to the active visual 
input of the model, originating from regions V1V4corners, V1V4XYaxisRatio and STS. During observation, the 
agent is still shown the object and demonstrated with the associated behavior. Thus, SPL using only the 
synaptic links from VIP becomes active during observation, with a smaller firing rate. Consequently 
connections between the SPL-SI, SI-MI and SPL-IPLmotor networks activate the latter networks in each 
pair. The neurons in the subpopulations of the SI are activated at a lower rate than during execution 
since there is not input from the Scproprioceptive network. The lower activations of the SI network result in 
the MI SPL and IPLmotor networks (which accept projections from SI) to also be activated at lower rates. 
Finally, since the IPLmotor, IPLvisual and VIP networks are active during both observation and execution, the 
F5mirror and F5canonical neurons also become active. 

5.7.3 Investigation of the neuron properties during observation/execution 

The results presented in the previous section indicate that the model exhibited lower regional 
activations during observation of a behavior as in (Raos et al., 2004). However these activations cannot 
be beneficial to a computational model if the corresponding neural representations that are active 
during observation are not consistent with the ones during execution. Moreover, to facilitate the form 
of observational learning we are considering, apart from activating the aforementioned networks during 
observation alone, it is also important to activate the appropriate neural representations that 
correspond to the demonstrated behavior. In the current section we look more thoroughly to the 
individual neuron activations in the IPLmotor and SPL regions of the model in order to investigate whether 
any informative predictions can be derived regarding the neuron activations during the 
observation/execution and observation alone phases.  
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A comparison of the active neurons during observation and execution indicates that the above 
mentioned networks activate the same neurons during the two phases. Consequently, the lower 
regional activations during the observation alone phase are caused due to some of the neurons that 
were active during the observation/execution phase being activated at a lower percent during 
observation.  Figure 5.16 (plots 1, 2) illustrates the neuron activations for the SPL region, during the 
execution (blue bars) and observation (red bars) of the first (left plot) and second (right plot) behaviors. 

 
Fig. 5.16. Neuron activations for the observation/execution (blue bars) and observation alone (red bars) 
phases for the SPL network during the first (plot 1, close middle and thumb) and second (plot 2, close 
index) behavior and IPL network during the first (plot 3, close middle and thumb) and second (plot 3, 
close index) behavior. 

As Fig. 5.16 illustrates, the SPL region activated the same pattern of neurons during execution and 
observation. This indicates that after training, due to the competition mechanism implemented in the 
connections of VIP-SPL, the neurons in SPL learn to correctly identify the code stored in VIP, and activate 
accordingly. This is evident from the activations shown in Fig. 5.16 (plots 1, 2), where neurons #1,2,3 
correspond to the middle finger, neurons #7,8,9 correspond to the thumb finger, while neurons #4,5,6 
correspond to the index finger. During execution (blue bars) and observation (red bars) of both 
behaviors the same combination of fingers is active. This means that the neurons in SPL that are 
selective to the motion of a finger of the agent, also respond (using the visual feedback from VIP) when 
the demonstrator is moving the respective finger. Similarly, the same neurons are also activated in 
IPLmotor. Figure 5.16 (plots 3, 4) illustrates this by plotting the activations of the IPLmotor region, during the 
execution (blue bars) and observation (red bars) of the first (left) and second (right) behaviors. 

5.7.4 Observational learning 

During this phase the goal is to assess the ability of the agent to associate a novel object with one of the 
two behaviors taught during the observation/execution phase and subsequently be able to execute this 
behavior whenever this object is presented. This learning process is implemented in the connections 
between F5mirror-F5 canonical and IPLvisual-F5canonical in the behavior learning pathway. The main difference 
between the observational learning and the observation/execution phase is that during the former, the 
agent is not allowed to move.  

As already mentioned, in the current phase, the agent is shown a novel object and at the same time 
demonstrated a known behavior, but is not allowed to move. Therefore the STS, V1V4corners and 
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V1V4XYaxisRatio regions are activated. Using the synaptic links between VIP and SPL, the agent knows how 
to activate the neurons in SPL that correspond to the active fingers of the demonstrator, and 
consequently all the remaining networks as outlined in section 5.3. These activations project through 
the IPLmotor network to the F5mirror network.  

 

Fig. 5.17. Trajectories and speed profiles of the three fingers of the agent in response to a novel object 
before the observational learning phase. Above: A plot of the world coordinates of the three finger tips, 
along with a wireframe, transparent version of the object. Below: Velocity profiles for the index, middle 
and thumb fingers during the 100ms cycle. 

Due to the learning during the observation/execution phase, the neurons in the F5mirror network that are 
activated are the ones that respond maximally to the behavior being demonstrated. In addition due to 
the new object being shown in IPLvisual the neuron cluster that will be activated will be associated with 
the active neurons in F5mirror and F5canonical. After approximately 25-30 observational learning trials, the 
neurons with lower firing frequencies are suppressed and the only neurons that fire in the F5mirror 
network are the ones responding to the known behavior shown to the agent. These neurons build their 
synaptic efficacies with the neurons of IPLvisual that demonstrate a new object, and thus an already 
known behavior will be associated with a new object. Figure 5.17 illustrates the behavior that the agent 
executes when viewing a novel object (2-corner object of Fig. 5.10) before observational learning. As the 
figure shows, before observational learning the agent moves its fingers sporadically. 

Subsequently we presented the 2-corner object, and programmed the demonstrator to exhibit the first 
behavior (close middle and thumb fingers) without allowing the agent to move. Figure 5.18 shows how 
the agent responds after observational learning.  
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Fig. 5.18. Trajectories and speed profiles of the three fingers of the agent in response to a novel object 
after the observational learning phase. As the figure illustrates, the agent has learned to associate the 
first behaviour with a novel object only by observation. Above: A plot of the world coordinates of the 
three finger tips, along with a wireframe, transparent version of the object. Below: Velocity profiles for 
the index, middle and thumb fingers during the 100ms cycle. 

As Fig. 5.18 illustrates, after the observational learning stage, when the new object is shown to the 
agent, the latter activates only the middle and thumb fingers. This indicates that the agent has learned 
to associate a previously taught behavior with a new object only by observation. 

Finally, we note that after the observational learning phase, the agent is still able to execute the two 
behaviours learned during the observation/execution phase. This is due to the fact that in the IPLvisual 
network, different objects activate different clusters of neurons. Thus when the novel object is 
presented during the observational learning stage, it activates a different cluster in the IPLvisual network 
than the other two objects. Consequently, learning of the new behaviour during the observational 
learning stage will employ a different set of synapses between the IPLvisual and F5canonical networks  
and will not interfere with the synapses used in previous behaviours.  

 
Fig. 5.19. The two behaviours executed by the agent when shown the sphere (left) and box (right) 
objects. As the figure shows, the agent after the observational learning phase is still able to execute the 
two behaviours taught during the observation/execution phase.  
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This property allows the agent to learn to associate new or existing behaviours to novel objects, without 
disturbing previous knowledge, as long as the object shown each time is considerably different to 
previous objects. As Fig. 5.19 illustrates, after the observational learning stage, the agent is still able to 
execute the (i) close middle and thumb behaviour (left plot) when shown the sphere object, and the (ii) 
close index finger (right plot) when shown the box object. 

5.7.5 Generalization abilities of the agent 

In addition to the evaluation of the agent’s capacity to execute the correct behaviour, we also tested its 
ability to generalize to unknown objects. More specifically a series of objects were shown to the agent, 
some similar to the ones used during the training phase, and some different. The different objects used 
during this stage include (i) a box with 5 corners and the same X/Y axis ratio, (ii) a box with four corners 
and a 2/3 of the initial axis ratio, (iii) a shape with 8 corners, (iv) an ellipsoid with 2/3 of the initial XY axis 
ratio and (v) an ellipsoid with 3 times the initial XY axis ratio (Fig. 5.20).  
 

 
Fig. 5.20. The 5 new objects used during the testing phase. 

 
The behaviours executed by the agent when those objects were present are shown in Table 5.2. It is 
evident that the agent can generalize the taught behaviors to unknown objects, i.e. is able to select the 
correct action even when the object that is presented is not an exact replica of the object used during 
training. This effect is caused due to the population coding used to encode the object properties in the 
input networks and the self-organization process in the IPLvisual region.  

One of the main properties of population coding is that neurons except from the representation that are 
selective to (i.e. where they exhibit a maximum firing rate activation) they also participate with lower 
activation to other representations. Due to the Gaussian shaped kernel (eq. 5.6) that is used for 
encoding the membrane potential of each cell, neurons also contribute to neighbouring values to their 
selective value. As a result, when for example the value of 4 is input to the V1V4corners network, to 
indicate an object with four corners, neurons that participate in the representations for the 5 and 3 
corners also become active with lower firing frequencies. Consequently these active neurons will also 
strengthen their connections during training with the IPLvisual neurons. This property is controlled by the 
σ variable of eq. (5.6), which manipulates the range of selectivity for a given neuron. If σ is excessively 
high, then a certain neural representation will include neurons that participate in several other 
representations, whereas if it is very low, the neurons active in a certain representation will not be 
active anywhere else. In the current simulation we have used the value of 4 for the σ parameter, which 
allowed us to achieve the generalization properties presented in Table 5.2. 
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Table 5.2. The behaviours executed by the agent when different objects, than the ones trained, are 
presented.  

Shape description Behaviour selected 
box with 5 corners and the same XY axis ratio Behaviour 1 
box with four corners and a 2/3 of the initial 
axis ratio 

Behaviour 1 

shape with 8 corners No behaviour 
sphere with 2/3 of the initial XY axis ratio Behaviour 2 
sphere with 3 times the initial axis ratio No behaviour 

 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6 

Observational learning using a 
phenomenological model inspired by human 

primates 
 
 

 
 
 

 

In the current chapter we describe the development of a computational model of observational 
learning, loosely inspired by the neurophysiology of the human cerebral cortex, during action 
observation. In contrast to monkeys, humans can facilitate true imitation, i.e. the acquisition of novel 
motor skills. For this reason, in the current chapter, we describe an artificial agent that was developed to 
investigate how this ability can be embellished in a computational context, only by observation.  

Due to the limited amount of data in the case of humans, the model follows a phenomenological 
approach, i.e. some biological constraints were loosened, in order to gain more flexibility in the 
behavioral design of the agent. This was accomplished only by identifying the cognitive functions that 
become active during observation, and suggesting a way to combine them so that the agent could 
exhibit observational learning skills. In this context, instead of the representation based approach that 
was employed in the previous chapter, we use the biologically inspired network that was described in 
chapter 4. In the following sections we outline the problem statement (section 6.1) and the modeling 
approach that is used to confront it (section 6.2). We then continue to discuss the development of the 
computational agent (section 6.3) and present an extensive evaluation of its ability to perform 
observational learning (section 6.3.3).  

6.1 Problem Statement 

As already discussed, the data available from human imaging experiments are much more confined 
compared to the corresponding ones in Macaques. This is because in humans, single cell penetrations 
are not permitted, and consequently the only available information pertains to higher level imaging 
studies that report the activation of certain regions during action observation. However, there is a close 
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correspondence between the Macaque and human brains, and in many cases there are areas 
homologous to both species (Passingham, 2009). For this reason to facilitate the development of the 
current model, we seek inspiration from the monkey neurophysiology when more detailed data on a 
region are not available.  Moreover, the development approach that was used in this model is different. 
Instead of deriving a model that is fully consistent with the cortical areas in humans, we focused on how 
some higher-order cognitive functions could be employed to facilitate observational learning. 

In this context, and in line with the theoretical questions outlined in chapter 1 (see section 1.4), the 
scope of the model regards the following two issues: 

1. Conclude on how the extended human motor abilities can be modeled, and how they can be 
employed during observation in order to derive a mental representation of the demonstrator’s 
movement. 
In relation to theoretical question A, this issue pertains to the type of representations that will 
be used in order to form the mental imagined state of the agent during observation.  
 

2. Understand how true imitation, i.e. the acquisition of novel motor skills, can be facilitated only 
by observation, inspired by the general functions that are performed in the regions of the 
human execution/observation network. 
This issue is associated with theoretical question B, and regards the learning capabilities of 
humans during observation, and how they can be modeled given the overlapping pathways that 
have been observed. 

 
As discussed in chapter 3, humans have extended capacities for observational learning, compared to 
Macaques. To investigate how this can be modeled in a computational context, in the development of 
the agent, we also employ two additional regions the SMA and the Basal Ganglia. The functions 
performed in those two regions, as discussed, pertain to reward perception and higher-order motor 
control. Based on this intuition, in the current model we investigate how the extended overlapping 
pathway can facilitate observational learning of novel motor actions. In the next section we outline the 
modeling approach employed, which is followed by the implementation of the computational model. 

6.2 Modeling Approach 

To confront the two theoretical questions outlined above, we also employ the methodology of 
pathways. For this reason we identify the regions that become active during the observation of other 
human actions, and define how the activated functions can be integrated within the computational 
model to facilitate observational learning. In humans, one important property of their motor control 
system is that it develops in different stages of their life. In the first stage, humans acquire a motor 
control system that can: 

1. Reach effortlessly towards any location. 



6.2 Modeling Approach                        

 
March 2012  Page 115 

2. Refine its target location during the execution of a movement, and follow any deviations in the 
trajectory.  

 
These skills are exhibited by humans from the first stages of motor development and can be performed 
throughout their lives effortlessly. In addition, after having fully developed their motor control system, 
humans can acquire novel skills through imitation. The flexibility of their motor component suggests one 
important fact: they do not need to learn the underpinnings of each new behavior from scratch every 
time they are imitating. Instead, learning must be facilitated at a peripheral level of motor control, and 
employ the motor control system in order to acquire the description of new skills, based on already 
developed representations.  

6.2.1 Highlights of the model 

To facilitate the flexibility of the human neurophysiological model we must draw a clear distinction 
between the innate system that can perform reaching and the system that is responsible for the 
acquisition of novel motor skills. To accomplish this, the developed model encompasses a wider set of 
regions during observation, in order to facilitate learning of new motor skills without using the agent’s 
embodiment. This constitutes a novel approach in the literature, since contemporary models of motor 
learning focus on imitation, i.e. the acquisition of novel skills by direct interaction.  

To accomplish this, we have developed a motor control system that is structured in different hierarchical 
levels. On the one end, the agent is embellished with low-level motor execution modules that allow it to 
reach effortlessly towards any direction. At a higher-level, these modules are manipulated by a higher-
order motor control component, in order to facilitate different strategies of approach towards an object. 
As a result of this architecture, the agent does not need to learn the underpinnings of a new motor act 
each time it is observing, but rather a small set of peripheral variables. This novel approach, that 
implements learning at the peripheral components of the motor control system, is a very important step 
towards robots that learn to expand their knowledge using simple variables that can be extracted only 
by observation. 

In addition, the proposed model implements four important components of motor control, based on 
biologically inspired principles: (i) a novel primitive model that can be synthesized in order to produce 
complex behaviors, (ii) a reward assignment module, that implements the properties of the 
dopaminergic neurons in the Basal Ganglia, (iii) a higher-order motor control component that is 
structured on the peripheral levels of the motor system, as well as (iv) a state estimation module that 
can perform embodiment correspondence, by matching the state of the demonstrator and the observer 
in action space.  

In the following sections we describe the implementation of the computational agent that is based on 
these principles. We first start by discussing the nature of the model’s neural code (section 6.2.1) and 
continue to describe the model’s pathways (section 6.3.1) as well as their implementation (section 
6.3.2). The chapter is concluded by presenting an extensive evaluation of the agent’s ability to learn 
novel motor skills only by observation (section 6.3.3).  
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6.2.2 The nature of the model’s neural code 

To complement our modeling approach, in the current implementation, we have used the Liquid State 
Machine that was described in chapter 4. LSMs rely on the use of biologically realistic neural networks 
for processing continuous input channels of information (Maass et al., 2003). Their powerful 
computational abilities can be attributed to the capacity of these networks to transform the temporal 
dynamics of an input signal into a high dimensional spatio-temporal pattern, which preserves recent and 
past information about the input. This information can be retrieved with a high degree of accuracy using 
certain types of classifiers.  

The most important benefit from using Liquid State Machines is that they can preserve the input signals 
in the temporal domain, and thus are ideal for modeling the temporal functions associated with motor 
control. In addition they can capture any cognitive function, given that the properties of separation and 
approximation are met (Maass et al., 2003). Since the approximation property is guaranteed if one uses 
appropriate types of classifiers to extract information from the liquid (Legenstein and Maass., 2007), in 
the current model, we employ the criterion that was presented in chapter 4, in order to increase the 
LSM’s separation. In the next section we outline the development and implementation details of the 
computational agent. 

6.3 Computational Model of Human observational learning 

Due to the fact that the body remains immobile during observation, the types of learning that can be 
implemented based on mental simulation have been the center of a longstanding debate in the 
literature. On the one end, cognitive neuroscientists (e.g. Sackett, 1934) suggest that mental practice 
can facilitate learning only when motor tasks include a symbolic or cognitive component, for example 
the association that can be formed between an object and an action. This view however is contrasted by 
evidence that demonstrates the improvement in physical motor performance during observation 
(Egstrom, 1964). On a different view, Heuer (Heuer, 1989) has postulated that mental practice has an 
intrinsic physical component which can be employed during observation to facilitate motor learning. 
Corbin (Corbin, 1967) and others (VanLehn, 1989; Sackett, 1935) have extended on this view, and 
suggested that mental imagery can help experienced humans to develop a mental plan of the observed 
movement. Learning in this case would take place in the peripheral effects of the movement (Corbin, 
1967), by employing components that compensate for the loss of physical execution, and facilitate the 
acquisition of novel skills. 

From the above, it is evident that in order to understand how novel skills can be acquired during motor 
imagery one must first identify the content of motor representations in the brain. In the current chapter 
we develop a computational model that can learn only by observation.  For this reason, we investigate 
how motor control can be structured accordingly in order to enable some of its peripheral components 
to be optimized during observation. To accomplish this we focus on evidence that points out how the 
brain facilitates motor control, by decomposing the low level motor, higher-order motor control and 
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reward components into modular systems that perform a specific function. Each modular system, which 
we call computational pathway, is identified by the regions that participate to accomplish its function 
and the directionality of the flow of its information. For the implementation of the cortical regions in 
each pathway we use Liquid State Machines. 

In the rest of the chapter we describe the development of the proposed computational model of 
observational learning. We first derive a formal definition of observational learning in the context of 
computational modeling (section 6.3.1). Based on this definition, in section 6.3.2, we describe the 
implementation of the model, while in section 6.3.3 we show how it can facilitate learning during 
observation in a series of experiments that involve execution and observation of motor control tasks. 

6.3.1 Definition of observational learning in the context of computational modeling 

In the current section we derive the theoretical substrate for the process of observational learning in the 
context of computational modeling. We first focus on how the individual cognitive processes described 
above can be integrated together in order to support the model’s function. To accomplish this we 
decompose the whole model into modular subsystems, which we call computational pathways 
(Hourdakis et al., 2011; Hourdakis and Trahanias, 2011b; Hourdakis and Trahanias, 2008), and assign 
specific functions to each of them. We then continue to derive a mathematical formulation of 
observational learning in the context of computational modeling, which is used in the subsequent 
section to implement the proposed model.  

Pathways and modular approach to modeling 

As discussed in chapter 2, to accomplish a complex task such as motor control, there are several 
cognitive functions that must be carried out in the cortex. To reduce the complexity of regulating all 
these processes, the brain makes use of modular structures (Fodor, 1982). In (Rallard and Dull, 1986) it 
is suggested that due to the limited number of neurons in the brain, the cerebral cortex is forced to use 
modular architectures. Modularity is inherent in all the stages of the cognitive processing hierarchy at 
both macroscopic and microscopic levels. At the lower end, cells are organized in heterogeneous circuits 
of increasing complexity (Hubel and Wiesel, 1962), which are subdivided in different functional areas. 
Each area processes a unique modality in different dimensions (Rallard and Dull, 1986) and degrees of 
precision (Douglas and Martin, 1998). At the macroscopic level, areas are organized into multiple 
parallel processing streams (a.k.a. pathways), which are responsible for carrying out a specific cognitive 
function (Kosslyn et al., 1990; Van Essen et al., 1992). 

Modularity is also an attractive principle from a machine learning perspective. It reduces the 
dimensionality of a complex system into specialized building blocks, thereby confronting traditional 
computational problems such as cross-talk (Plaut and Hinton, 1987). In the context of motor control, the 
production of goal directed movements requires the coordination of interdisciplinary processes. 
Modularity can help towards understanding how the sensory and motor processing streams can be 
integrated together, by dissociating their behavioral parameters in different levels of functional 
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processing. For this reason, to implement the task of reaching, we define segregate processing streams 
which we call computational pathways (Hourdakis et al., 2011; Hourdakis and Trahanias, 2011c; 
Hourdakis and Trahanias, 2008). Each pathway is assigned a distinct cognitive function and is 
characterized by two factors: (i) the regions that participate in its processing and (ii) the directionality of 
the flow of its information.  

Based on the discussion in chapter 2, for the problem of observational learning of motor actions we 
identify six different pathways: (i) motor control, (ii) reward assignment, (iii) higher-order motor control, 
(iv) proprioception, (v) visual and (vi) state estimation. The functional decomposition of the model into 
the above modular processes will prove important in the next sub-section, where we derive a definition 
of observational learning in the context of computational modeling. 

Mathematical derivation of observational learning 

The fact that all regions that become active during execution also become active during observation 
suggests that when we observe, we recruit our motor component to understand an observed action. 
Consequently, in terms of the motor component, the representations evoked during mental imagery 
bare no difference with the ones evoked during the execution of the same action (except that in the 
former case, the activation of the muscles is inhibited at the lower levels of the corticospinal system). 
Thus to implement mental motor imagery we must first define the motor control component of the 
agent.  

To accomplish this we adopt the definition in (Schaal et al., 2003), which suggests that when we reach 
towards a location, we look for a control policy ߨ that generates the appropriate torques so that the 
agent moves to a desired state. This control policy is defined as: ݒ = ,ݍ)ߨ ,ݐ ܽ)				(6.1)	 
where ݒ are the joint torques that must be applied to perform reaching, ݍ is the agent’s state, ݐ stands 
for time and ܽ is the parameterization of the computational model. The main difference between 
execution and mental imagery is that, in the latter case, the vector ݍ is not available to the agent, since 
its hand is immobile. Consequently, the mental imagined state must be derived using other available 
sources of information. Therefore in the case of motor imagery, eq. (6.1) becomes:  ݒ௢ = ,௢ݍ)ߨ ,ݐ ܽ௢)				(6.2) 
where ݍ௢ is the imagined state of the agent, ߨ is as in eq. (6.1) and ܽ௢ is the parameterization of the 
computational model that is responsible for action observation. ݐ denotes the time lapse of the 
(executed or observed) action and is not distinguished in eqs. (6.1) and (6.2) because neuroscientific 
evidence suggests that the time required to perform an action mentally and overtly is the same (Parsons 
et al., 1998). Moreover, since we operate under the neuroscientific claim that we use our motor system 
to simulate an observed action (Jeannerod, 1994; Roth et al., 1996), the policy ߨ in eqs. (6.1) and (6.2) is 
the same. This assumption is supported by various neuroscientific evidence. Jeannerod (Jeannerod, 
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1988) has shown that action observation uses the same internal models that are employed during action 
execution. Fadiga (Fadiga et al., 1999) demonstrated that motor imagery activates the same neural 
pathways as in motor execution. 

From the definitions of eqs. (6.1) and (6.2) we identify a clear distinction between observation and 
execution. In the first case the agent produces a movement and calculates its state based on the 
proprioception of its hand, while in the second the agent must use other sources of information to keep 
track of the imagined state estimate. Another dissimilarity between eqs. (6.1) and (6.2) is that the 
computational models ܽ and ܽ௢ are different. However, as we discussed in chapter 3, the activations of 
the regions that pertain to motor control in the computational models ܽ and ܽ௢, overlap during 
observation and execution. Therefore, there is a shared sub-system in both models that is responsible 
for implementing the policy ߨ (which is the same in both equations). In the following we refer to this 
shared sub-system as the motor control system	݉. 

In the case of the execution computational model	ܽ, the state estimate of the agent is predicted based 
on the proprioceptive information of its movement, by a module	ݍ :݌ =  (6.3)			(݉,ݎ݌)݌
where 	݌ is the agent’s internal (execution) module, ݎ݌ is its proprioceptive state and ݉ is the 
parameterization of its motor control system; ݍ is the state of the agent. 

During observation, the state estimate can be derived from the observation of the demonstrator’s 
motion and the internal model of the agent’s motor control system. Therefore, in the case of mental 
imagery of an action, the state estimate ݍ௢ is obtained by a module		݌௢: ݍ௢ =  (6.4)				(݉,݋)௢݌
where 	ݍ௢ is the mentally imagined state of the agent during observation, ݌௢ is the agent’s internal 
(observation) model, ݋ is the visual observation of the demonstrator’s action and ݉ is the same motor 
control component as in eq. (6.3). The co-occurrence of the visual observation component ݋ and the 
motor control system ݉ in eq. (6.4) constitute the basis of mental motor imagery. It states that to 
perform motor imagery, the computational agent must be able to integrate the information from the 
observation of the demonstrator with its innate motor control system. This claim is supported by 
neuroscientific evidence that suggests that action perception pertains to visuospatial representations, 
rather than purely motor ones (Chaminade et al., 2004). 

The theoretical framework outlined in eqs. (6.1-6.4) describes the ground principles of our 
computational model. Since eqs. (6.1) and (6.2) use the same control policy	ߨ, to match the vectors ݒ 
and ݒ௢ during observation and execution the agent must produce an imagined state estimate ݍ௢ that is 
the same as its state ݍ would be if it was executing.  
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Fig. 6.1. A schematic illustration of the observation/execution system described by eqs. (6.1-6.4). The 
components marked in green are used during execution, while the ones marked in blue during 
observation. The motor control and state estimate components are used during both execution and 
observation. 

Thus observational learning requires the implementation of an internal (observation) model ݌௢ which 
will estimate the agent’s imagined state ݍ௢ based on the observation stream ݋ and the motor control 
module ݉. Equations (6.3) and (6.4) state that these estimates can be computed using the shared motor 
control system ݉ of the agent. In the first case (execution, eq. 6.3), the agent must employ information 
from the proprioceptive pathway (ݎ݌) in order to compute its state estimate	ݍ, while in the second 
(observation, eq. 6.4), it must use information from the visual observation of the demonstrator (݋) to 
compute its imagined state estimate	ݍ଴. Moreover, by examining eqs. (6.1) and (6.3) (execution), and 
eqs. (6.2) and (6.4) (observation) we derive another important property of the system: To implement the 
policy π the motor control system must employ a state estimate, which in turn requires the motor control 
system in order to be computed.  This indicates a recurrent component in the circuit that must be 
implemented by connecting motor control with the proprioception and visual perception modules 
respectively.  

Figure 6.1 illustrates a schematic representation of this concept, where each sub-system consists of a 
separate component in the computational model. The motor control and state estimation modules are 
shared during execution and observation, while the proprioception and visual perception modules are 
activated only for execution and observation respectively. In what follows we examine more closely how 
each individual sub-system can be implemented computationally, based on biologically inspired 
principles. We first examine the implementation of the motor system	݉, followed by the internal 
execution (݌) and observation (݌௢) models. 

Reaching based on an adaptive policy 

Motor control, as suggested by cognitive neuroscientists, is an integrated process that combines several 
different computations including higher-order motor control and monitoring of the movement. Many of 
our motor control skills are acquired at the early stages of infant imitation, where we learn to regulate 
and control our complex musculoskeletal system (Touwen, 1998). Moreover, learning of new motor 
skills is a developmental process that continues throughout our lives, and during which our motor 
system adapts and learns new control strategies.  
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The above suggest that learning in the human motor system is implemented at different functional 
levels of processing: (i) learn to regulate the body and reach effortlessly during the first developmental 
stages of an infant’s life and (ii) adapt and learn new control strategies after the basic reaching skills 
have been established. This hierarchical form offers a very important benefit: one does not need to 
learn all the kinematic or dynamic details of a movement for each new behavior. Instead, new skills can 
be acquired by using the developed motor control system, and a small set of behavioral parameters that 
define different control strategies.  

To embellish our computational agent with this flexibility in learning, its motor control system has been 
designed based on these principles. It consists of (i) an adaptive reaching component, that after an initial 
training phase can reach towards any given location, and (ii) a higher-order motor control component 
that implements different control strategies based on already acquired motor knowledge. In the current 
sub-section we outline the development of the reaching component, while in the following the 
development of the higher-order motor control component. 

To perform reaching, the central nervous system must transform a given target location into a series of 
joint torques that move the end point location of the hand. In humans, neuroscientists have speculated 
that the target location is represented as a vector, pointing from the end position of the hand towards 
the object that must be reached (Gordon et al., 1994). This assumption is further supported by the 
evidence discussed in chapter 2 regarding the directional and force tuning of the cortical cells in the 
primary motor cortex.  In (Todorov, 2000), Todorov has derived an almost linear local approximation 
between the activity of the primary motor cortex and the force activation of individual muscles. In this 
case, a reaching behavior is treated as a local control task where the agent produces traction forces that 
move its hand towards the nearest point in a given trajectory (Fig. 6.2).  

 

Fig. 6.2. The forces exerted by the local control policy of the motor control component and the effect 
they have on the movement of the plant. Red circles indicate the end position of the hand before the 
force is applied (the direction of the force is marked by an arrow in each position), while white circles 
show the target position that the hand must reach. 

Computationally, such force dependent control is a difficult task due to the high dimensionality and non-
linearity that is inherent in the kinematics of the multi-joint arm. Evidence from neuroscience however, 
suggests that at the cortical level this problem can be confronted by the use of motor primitives, i.e. low 
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level self-organized spinal circuits that coordinate elementary motor behaviors (Thoroughman and 
Shadmehr, 2000). These basic motor patterns are developed during the early stages of vertebrate 
development where spontaneous neural activity in the spinal cord is inherent (de Vries et al., 1982).  

In addition to primitives, neuroscientists have also speculated that reinforcement learning has an 
important role in the adaptation of this process by helping towards the formation of concrete motor 
patterns (Flash and Hochner, 2005). As discussed in chapter 3, the primary control center that processes 
reward in the brain is the Basal Ganglia, which regulates motor control through its connections with the 
premotor cortex. Based on this evidence, the developed computational agent is embellished with an 
adaptive reaching system which is implemented in the interactions of the primitive and reward 
assignment pathways. Section 6.3.3 presents the results of this adaptive system and demonstrates how 
the agent can follow any given trajectory with very good performance. 

Higher-order motor control component 

The second component of the motor control system pertains to a higher-order motor control. In the 
current paper, this is treated as an epiphenomenon of motor control and its role is to shape the 
trajectory when approaching the object. This is accomplished by inhibiting the forces exerted by the 
motor control component in a way that alters the curvature of approach towards the object (Fig. 6.3).  

 
Fig. 6.3. A schematic representation of the forces that are applied to the object during reaching. The 
higher-order motor control component applies a force CF, in addition to the force applied by the 
reaching component (RF). The resultant force (u) changes the trajectory of the hand. In position B, the 
hand is closer to the object and therefore, the magnitude of the force is reduced in order to allow the 
reaching component to take over the motion.  

The inhibition of the higher-order motor control component is realized as a force that is applied at the 
beginning of the movement and allows the hand to approach the target object with different 
trajectories (CF force in Fig. 6.3). To ensure that the hand will reach the object in all cases, the effect of 
this force must converge to zero as the hand approaches the target location. This allows the reaching 
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component to progressively take over the movement and ensure that the hand will arrive on the object. 
This is illustrated in Fig. 6.3, where the magnitude of the force (CF) is reduced in position B, and 
therefore the reaching force (RF) has a greater effect on the movement. In section 6.3.2 we describe the 
neural implementation of this component. 

The fact that the higher-order motor control component depends on one single parameter, the initial 
force applied at the beginning of the movement, will prove important when we discuss the 
implementation of observational learning. The intuition is that new motor behaviors can be defined at 
the peripheral level of motor control, based on simple parameters that can be derived only by 
observation. For example in the higher-order motor control component discussed above, the initial 
force applied at the beginning of the trajectory could easily be inferred by the visual observation of a 
demonstrator without having to deal with complex aspects such as the kinematic/dynamic parameters 
of the observed movement. Moreover the system discussed above implements another important 
aspect of human motor control: the fact that humans have an innate ability to reach prior to any 
acquisition of novel skills or observational learning. Consequently, new skills can be taught without 
having to learn from scratch all the underpinnings of motor control, but a small set of simple variables 
instead.  

Motor representations during execution and observation 

During a motor control task, representations are inherent at all stages of the sensorimotor processing 
loop. One accepted hypothesis is that the cerebral cortex develops internal models in order to encode 
the extrinsic environment (Wolpert et al., 2003; Mussa-Ivaldi and Bizzi, 2000). For example, objects are 
encoded based on their features in neuronal populations with highly correlated properties. During 
perception, the role of the internal models is to remove any redundancies in these representations in 
order to form concrete concepts that accurately represent the input (Barlow, 1972). Cortically, the 
neurons that encode a certain representation are characterized by their response tuning, i.e. an 
increased activity in the firing rate of the cell that indicates the intensity of a certain stimulus feature 
(Blackemore and Cooper, 1970). Computationally this form of processing can be replicated with models 
of associative plasticity such as Hebbian synapses (Amari and Takeuchi, 1978) or unsupervised learning 
(Linsker, 1986).  

In respect to observational learning, several authors have suggested that action perception is a visuo-
motor event, rather than purely motor (Chaminade et al., 2004). This means that to estimate the body 
posture, the cerebral cortex makes use of information from proprioception and the visual input. In 
Macaques it was shown that there exist specific orientation cells that encode the body schema 
representations in an egocentric frame of reference (Perrett and Harries, 1990). 

As discussed in the previous section, state estimation in our model is bi-modal, i.e. it must be dealt 
separately for execution and observation. However, according to eqs. (6.3) and (6.4), the state estimates 
that will be produced by the observation and execution models must be the same. For the first 
execution case, the state estimate is extracted by a feedforward neural network that is trained to 
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calculate the end point position of the hand based on the proprioceptive input of the agent. For the 
observation case, the imagined state of the agent, i.e. the covert perception of the movement, is formed 
using also a feedforward neural network that encodes a symbolic representation of the perceived 
movement positions. The derivation of these components, and how these are integrated together 
during execution and observation, is discussed in detail in the following section, where we outline the 
implementation of the computational agent. Figure 6.4 shows a graphic illustration of how the system 
components we described in this section are mapped on the modules of Fig. 6.1. 

 

Fig. 6.4. A schematic layout of how the motor control system can interact with the proprioception and 
observation streams of the agent. 

6.3.2 Model Implementation 

Each of the separate sub-systems in Fig. 6.4 consists of a different process that is activated during motor 
control. To implement these processes computationally we follow biologically inspired principles. For 
this reason, we have carried out an analysis on how each individual cortical function is realized in the 
brain, and extracted the putative principles that can be used to implement it. Based on this analysis, 
each component in Fig. 6.4 is decomposed into several regions that contribute to its function. These are 
shown in Fig. 6.5, where each box corresponds to a different region in the computational agent. In this 
context, it is important to note that the functions identified are combined in the context of 
computational modeling in order to facilitate the required behavioral capacities, and do not replicate all 
the related cortical processes in the brain. The implementation of these regions, as well as their cortical 
underpinnings, are described in detail in the current section. 

In Fig. 6.5 all regions are labeled based on the corresponding brain areas that perform similar functions, 
and are grouped according to the pathway they belong. For each of these regions (except of MI and Sc 
which are discussed in this section) we derive a neural implementation. For the reward assignment and 
higher-order motor control pathways we use Liquid State Machines (Maass et al., 2003), a recently 
proposed biologically inspired neural network that can process interdisciplinary functions, without 
requiring a circuit dependent construction. Such homogeneity is also inherent in the cortex, where 
stereotypical cortical microcircuits are being used for processing different functions. LSMs consist of 
biologically inspired neurons with locally recurrent dynamic synapses. This structure allows the neural 
network to preserve recent information from an input stream in the form of a spatio-temporal pattern 
of activation of its neurons. In the brain, similar neural activity, that acts as a short term memory 
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storage, has been reported in all regions that we investigate (and specifically for the primary motor 
(Evarts and Tanji, 1976), premotor (Weinrich and Wise, 1982), somatosensory (Zhou and Fuster, 1996), 
supplementary motor (Tanji and Taniguchi, 1980) and visual cortex (Mikami and Kubota, 1980)). 
Information from the high dimensional transient states produced by an LSM can be extracted with 
conventional classification techniques.  In (Maass et al., 2003) it was shown that LSMs can carry out any 
function provided that the properties of separation and approximation are fulfilled. 

 

Fig. 6.5. Layout of the proposed computational model consisting of six pathways, marked in different 
colors: (i) visual (blue), (ii) proprioception (red), (iii) higher-order motor control (green), (iv) reward 
assignment (grey), (v) motor control (orange) and (vi) state estimation.  

For the implementation of the visual, state estimation and forward model pathways we use feedforward 
neural networks and self-organizing maps which we describe later in this section. In the current section 
we describe the detailed derivation of each of these components. We first start by outlining the 
principles from control theory that will be used to produce the motion in our simulated agent, and 
continue to explain the implementation of each individual pathway. 

Robotic Hand Control 

To model the effect that the torques have on the joints of the robot we use established laws from 
control theory. The second order kinematics of the robot hand are modeled using the following 
equation: ݍ)ܦ, ሶݍ , ሷݍ ) = ሷݍ(ݍ)ܪ + ,ݍ)ܥ ሶݍ ሶݍ( 			(6.5) 
where ܦ is the controller that produces the torques that must be applied to the joints of the robot given 
its state q, and its first and second order derivatives, ݍሶ  and ݍሷ  respectively. ܪ is the joint-space inertia 
matrix and ܥ describes the Coriolis and centripetal effects from the joint movement. Equation (6.5) can 
be extended with additional terms such as the viscocity of the joints or the gravity loading of the plant. 
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In the current implementation, we applied the model on a simulated frictionless two-link plant, and 
therefore, without loss of generality, we didn’t include these parameters. 

The aim of the computational model is to derive the appropriate local control laws that will allow the 
plant to reach towards any location. In practice we look for a control policy that will map the state 
vector of the robot to a control vector from the computational model in a way that minimizes the error 
of reaching. This policy is defined in eq. (6.1) for execution and eq. (6.2) for observation. The output of 
our model is the signal produced by the spinal cord circuit. In a biological agent the torques produced 
would be applied to the hand and result in movement. However since we use a simulated agent we find 
the second order kinematics of the hand by integrating eq. (6.5) and solving against the acceleration: qሷ = H(q)ିଵ൛τ୮ − C(q, qሶ )qሶ ൟ			(6.6) 
The next configuration state of the robot is calculated using the acceleration qሷ  from the equation above, 
were ݍ ,ܥ ,ܪ and ݍሶ 	are as in eq. (6.5). The goal of the computational model is to produce the 
appropriate ߬௣ vector of joint torques that will enable the agent to perform reaching. To evaluate the 
proposed model we use a simulated two-link planar arm. Control is accomplished by applying torques to 
the elbow and shoulder joints respectively. Therefore in the presented simulations the ߬௣ vector is two 
dimensional. In the following, we first describe the computational implementation of the motor 
pathway, which encodes the primitive model of the agent, and subsequently, we discuss the reward 
assignment, state estimation and visual perception pathways.  

Motor pathway 

Due to the high nonlinearity and dimensionality that is inherent in controlling the arm, devising an 
appropriate policy for learning to reach can be quite demanding. In the current paper this policy is 
established upon a few higher order primitives. It turns out that, in the adopted planar arm, in order to 
perform any reaching behavior, only four higher order primitives are required namely up, down, left and 
right (Fig. 6.6). In humans such modules are formed during the first stages of the vertebrate motor 
development. 

 

Fig. 6.6. The higher order primitive model proposed. The four plots show the force map of the primitive, 
i.e. the forces that are applied to the end position of the limb when the corresponding primitive is 
active. In the current model we use four different modules, namely up, down, left and right. 
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From a mathematical perspective the method of primitives, or basis functions, is an attractive way to 
solve the complex nonlinear dynamic equations that are required for motor control. For this reason 
several models have been proposed, including the VITE model that describes a way to regulate sets of 
agonist and antagonist muscles to move the limb to a desired state or the FLETE model that consists of a 
fixed parameterized system of differential equations that produce basis motor commands (see Degallier 
and Ijspeert, 2010 for a review). More recent studies in vertebrates suggest a force dependent encoding 
of motor primitives. For example experiments in paralyzed frogs revealed that limb postures are stored 
as convergent force fields (Bizzi et al., 1991). In (Giszter et al., 1993) the authors describe how such 
elementary basis fields can be used to replicate the motor control patterns of a given trajectory. 

In order to make the agent generalize motor knowledge to different domains, the primitive model must 
be consistent with two properties: (i) superposition, i.e. the ability to combine different basis modules 
together and (ii) invariance, so that it can be scaled appropriately. Primitives based on force fields satisfy 
these properties (Gizster et al., 1993). As a result by weighting and summing the four higher order 
primitives shown in Fig. 6.6 we can produce any motor pattern required. 

The higher order primitives are composed from a set of basis torque fields, implemented in the Sc 
module. By deriving the force fields using basis torque fields, the primitive model creates a direct 
mapping between the state space of the robot (i.e. joint values and torques) and the Cartesian space 
that the trajectory must be planned in (i.e. forces and Cartesian positions), resembling the way motions 
are processed by humans (Gordon et al., 1994). We first define each torque field in the workspace of the 
robot, and then transform it to its corresponding force field. Each torque field is described by a Gaussian 
multivariate potential function: 

G൫q, q଴୧ ൯ = −eቌ൫୯ି୯బ౟ ൯౐୏౟൫୯ି୯బ౟ ൯ଶ ቍ			(6.7) 
where q଴୧  is the equilibrium configuration of each torque field, q is the robot’s angle and K୧ a stiffness 
matrix. The torque applied by the field is derived using the gradient of the potential function: τங(q) = ∇G൫q, q଴୧ ൯ = K୧൫q − q଴୧ ൯G൫q, q଴୧ ൯			(6.8) 
Previous research has indicated that in order to achieve stability, two types of primitives must be 
defined: discrete and rotational (Degallier and Ijspeert, 2010). The rotational primitives are harmonic 
oscillators associated with a joint. The discrete ones apply a force on the hand based on a shaped valley 
with different equilibrium points. To ensure good convergence properties we have used 9 discrete and 9 
rotational basis torque fields, spread throughout different locations of the robot’s workspace (Fig. 6.7). 
These are generated from eq. (6.8) using different stiffness matrices. To generate the discrete torque 
fields (left block in Fig. 6.7) we use a semi-definite skew symmetric matrix		Kୢ୧ୱୡ, while to generate the 
rotational fields we use a rotation matrix, 	K୰୭୲. 
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Fig. 6.7. Nine basis discrete (left block) and rotational fields (right block) scattered across the [π..π] 
configuration space of the robot. On each subplot the x axis represents the elbow angle of the robot 
while the y axis represents the shoulder angle. The two stiffness matrices used to generate the fields are Kୢ୧ୱୡ 	= 	 ቂ−0.672 00 −0.908ቃ and  K୰୭୲ 	= 	 ቂ 0 1−1 0ቃ. 
Each plot in Fig. 6.7 shows the gradient of each torque field. The axes correspond to the			q1, q2 joint 
values of the robot’s hand. Since we want the model of higher order primitives to be based on the forces 
that act on the end point of the limb, we need to derive the appropriate torque to force transformation. 
To accomplish this we convert a torque field to its corresponding force field using the following 
equation: φ = J୘ ∗ τ			(6.9) 
In eq. (6.9), τ is the torque produced by a torque field while φ is the corresponding force that will be 
acted to the end point of the plant if the torques are applied. J் is the transpose of the robot’s Jacobian. 
In the current implementation where the plant is located in a 2 dimensional workspace, the 6x3 
Jacobian matrix can be constrained to a 2x2 matrix as: 

J = ൤−lଵ ∗ sin(qଵ) + lଶ ∗ sin(qଵ + qଶ) −lଶ ∗ sin(qଵ + qଶ)lଵ ∗ cos(qଵ) + lଶ ∗ cos(qଵ + qଶ) lଶ ∗ cos(qଵ + qଶ) ൨	(6.10) 
where lଵ, lଶ are the lengths of the robot’s hand segments (shoulder-elbow and elbow-hand) while qଵ, qଶ 
is the robot’s elbow and shoulder angles. Each higher order force field from Fig. 6.6 is composed by 
summing and weighting the basis force fields from eq. (6.9). To find the weight coefficients, we form a 
system of N linear equations by sampling M vectors P from the robot’s operational space, for all B basis 
force fields.  

቎φଵଵ(xଵ) ⋯ φଵ୆(xଵ)⋮ ⋱ ⋮φଵଵ൫x୑൯ ⋯ φଵ୆൫x୑൯቏ ൥aଵ⋮a୑൩ = ቎Pଵଵ⋮Pଶ୑቏			(6.11) 
Each higher order force field is formed by summing and scaling the basis order force fields with the 
weight coefficients	a. The vector	a is obtained from the least squares solution to the equation:  
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Φ ∗ α = P			(6.12) 
In the results section we show the force fields that are produced by solving the system in eq. (6.12), as 
well as how the plant moves in response to a higher order force field. 

Reward assignment pathway 

To be able to reach adaptively, the agent must learn to manipulate its primitives using control policies 
that generalize across different behaviors. In the cerebral cortex one of the dominant themes used for 
learning is by receiving rewards from the environment. This paradigm, known as reinforcement learning 
in engineering, does not require an exact learning signal of the error but rather a scalar, temporally 
delayed, reward function (Barto, 1995). It is more consistent with the type of feedback provided to 
humans during learning, where exact information on the error is usually not available. An agent that 
learns based on reinforcement learning tries to find a policy that will maximize the probability of 
receiving immediate or future rewards. In the cerebral cortex, reward is processed in the dopaminergic 
neurons of the Basal Ganglia. One of the properties of these neurons is that they start firing when a 
reward is first presented to the primate, but suppress their response with repeated presentations of the 
same reward stimulus (Joel et al., 2002). At this convergent phase, the neurons start responding to 
stimuli that predicts a reinforcement, i.e. events in the near past that have occurred before the 
presentation of the reward.  

In the early nineties, Barto (Barto, 1995) suggested an actor-critic architecture that was able to facilitate 
learning based on the properties of the Basal Ganglia. This architecture gave inspiration to several 
models that focused on replicating the properties of the dopamine neurons (see Joel et al., 2002 for a 
review). In the current paper we propose an implementation based on liquid state machines, and 
demonstrate how the interactions of this region with other neural networks of the brain can be 
modeled. The proposed implementation follows the actor-critic architecture and is shown in Fig. 6.8. 

 

Fig. 6.8. a. The liquid state machine implementation of the actor-critic architecture. Each liquid column 
is implemented using a liquid state machine with feedforward delayed synapses. The critics are linear 
neurons, while the readouts are implemented using linear regression. b. The actor-critic architecture 
mapped on the model of Fig. 6.5. 
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The input source to the circuit consists of Poisson spike neurons that fire at an increased firing rate 
(above 80Hz) to indicate the presence of a certain event stimulus. Each input source projects to a 
different liquid column, i.e. a group of spiking neurons that is interconnected with feedforward, delayed, 
dynamic synapses. 

The actors, i.e. the cortical region that learns based on the predicted rewards of the critics is 
implemented using a set of linear regression readouts that are trained to output a firing rate 
proportional to the sum of firing rates of each liquid column. Input from different sources is modeled as 
a set of rate code neurons that each projects to a separate liquid column using linear synapses with zero 
delay. The role of a liquid column is to transform the rate code from each input source into a spatio-
temporal pattern of action potentials in the spiking neuron circuitry (Fig. 6.9). 

Transmission of a spike train in each synapse is carried out with a delay of 5ms into ten neuronal layers 
that exist in each liquid column. This sort of connectivity facilitates the formation of a temporal 
representation of the input, and implicitly models the timing of the stimulus events. The occurrence of 
an event results in the activation of the first layer of neurons in a liquid column which is subsequently 
propagated towards the higher layers with a small delay. As a result, the activation of a certain neuronal 
layer within each liquid column represents the occurrence of a stimulus event at a particular timing 
interval. This temporal representation is important for the implementation of the imminence weighting 
scheme that is used to train the synapses of the dopaminergic Critic neurons discussed below. 

 

Fig. 6.9. The spatio-temporal dynamics of an event as they are transformed by a liquid column. The plot 
shows the temporal decay of a certain event by the liquid column’s output for four stereotypical 
columns. 

The Critic neurons (P1, P2, P3) model the dopamine neurons in the Basal Ganglia. Their role is to learn to 
predict the reward that will be delivered to the agent in the near future. To accomplish this, the critic 
neurons use the temporal representation that is encoded in each liquid column and associate it with the 
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occurrence of a reward from the environment. This is accomplished by training the synapses between 
the liquid columns and the critic neurons using the imminence weighting scheme (eqs. 6.13-6.15), in a 
way that they learn to predict the occurrence of a reward by associating events in the near past.  

To implement the synapses between the liquid columns and the P, A neurons, we use the imminence 
weighting scheme (Barto, 1995). In this setup, the critic must learn to predict the reward of the 
environment using the weighted sum of past rewards: P୲ = r୲ାଵ + γr୲ାଶ + γଶr୲ାଷ + ⋯+ γ୲rଵ			(6.13) 
where the factor γ represents the weight importance of predictions in the past and r୲ is the reward 
received from the environment at time t. To teach the critics to output the prediction of eq. (6.13) we 
update their weights using gradient learning, by incorporating the prediction from the previous step: v୲ୡ = v୲ିଵୡ + nሾr୲ + γP୲ − P୲ିଵሿx୲ିଵୡ 			(6.14) 
where v୲ୡ is the weight of the Critic at time t, n is the learning rate and x୲ୡ is the activation of the critic at 
time t. The parameters γ, P and r are as in eq. (6.13). The weights of the actor are updated according to 
prediction signal emitted by the critic: v୲ୟ = v୲ିଵୟ + nሾr୲ − P୲ିଵሿx୲ିଵୟ 			(6.15) 
where v୲ୟ is the weight of the Actor at time t, n is the learning rate and x୲ିଵୟ  is the activation of the actor 
at time t-1.  In the results section we demonstrate how the output of the Critic neurons approximates 
the response properties of the dopamine cells discussed above, as well as how the actor neurons learn 
to control the higher order primitive model. 

The A1, A2, A3 neurons learn based on the signal emitted by the Critic neurons. To model them in the 
current implementation we use a set of linear neurons. The input to each of these linear neurons 
consists of a set of readouts that are trained to calculate the average firing rate of each liquid column 
using linear regression. Each actor neuron is connected to all the readout units, with synapses that are 
updated using gradient descent.  

The main intuition behind the proposed implementation is to transform a certain stimulus event to a 
temporal neural code that represents the timings of its occurrence. In section 6.3.3 we illustrate how 
this circuitry can replicate the properties of the dopaminergic neurons in the Basal Ganglia (discussed in 
chapter 2). 

Visual observation pathway 

The role of the visual observation pathway is to convert the iconic representation of an object into a 
discrete class label. This label is used by the motor control and higher-order motor control pathways in 
order to associate the object with specific behavioral parameters. To implement this circuitry liquid 
state machines were also employed. To encode the input we first sharpen each image using a Laplacian 

filter and consequently convolve it with 4 different Gabor filters with orientations π, ஠ଶ, 2π and −஠ଶ 

respectively (Fig. 6.10).  
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The four convolved images from the input are projected into four neuronal grids of 25 neurons, where 
each neuron corresponds to a different location in the Gabor output. Information from the liquid 
response is classified using a linear regression readout that is trained to output a different class label 
based on the object type. 

 

Fig. 6.10. A schematic depiction of the visual input of the agent. The iconic projection of the object is 
filtered, converted to neural code and input to an LSM for classification.  

Forward model pathway 

As discussed, one of the main transformations that take place during reaching is the cognitive 
implementation of a forward model (Wolpert, 1997). In the current paper, the forward model is 
responsible for keeping track of the execution and imagined state estimates using two different 
functions. The first one is implemented in the regions of the somatosensory and parietal lobe, and uses 
the proprioceptive input from the spinal cord in order to derive the end point position of the agent’s 
body. During observation, the second function of the forward model is to accept information from the 
visual observation stream and in order to keep track of the demonstrator’s end point position. In both 
cases the networks consist of feedforward neural nets that are trained using backpropagation.  

To implement the first function we have designed the SI network to encode the proprioceptive state of 
the agent using population codes. This is inspired from the local receptive fields that exist in this region 
and the somatotopic organization of the SI (Kaas et al., 1979). Population codes assume a fixed tuning 
profile of the neuron, and therefore can provide a consistent representation of the encoded variable. To 
learn the forward transformation we train a feedforward neural network in the SPL region that learns to 
transform the state of the plant to a Cartesian x, y coordinate. In the results section we demonstrate 
how the above network is able to solve the forward kinematics problem using the agent’s 
proprioceptive state estimates. 

For the visual perception of the demonstrator’s movement we have also used a feedforward neural 
network that inputs a noisy version (i.e. with added Gaussian white noise) of the perceived motion in an 
allocentric frame of reference. In this case the network is trained to transform this input into an 
egocentric frame of reference that represents the imagined state estimate of the observer. The noise 
that is used in each simulation affects the ability of the agent to correctly perceive the demonstrated 
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behavior. In the results section we show how different noise levels can compromise the perception of 
the agent and, to a certain extent, its ability to learn during observation. 

State estimation pathway 

During observation, the role of the estimation model is to translate the demonstrator’s behavior into 
appropriate motoric representations to use in its own system. In the literature, this problem is known as 
the correspondence problem between one’s own and others’ behaviors (Brass and Heyes, 2005). To 
create a mapping between the demonstrator and the imitator we use principles of self-organization, 
where homogenous patterns develop through competition into forming topographic maps (Udin and 
Fawcett, 1988). This type of neural network is ideal for developing feature encoders, because it forms 
clusters of neurons that respond to specific ranges of input stimuli. Furthermore, self-organization is 
believed to be a fundamental process in the function of perceptual systems (Rolls and Treves, 1998). 

The structure of the self-organizing map (SOM) is formed, through vector quantization, during the 
execution phase based on the output of the forward model pathway discussed above. During its 
training, the network is input the end point positions that have been estimated by the forward model 
pathway, and translates them into discrete labels that identify different position estimates of the agent. 
During observation, the same network is input the computed imagined state of the visual observation 
model and outputs the respective labels that represent the demonstrator’s movement. As discussed in 
the previous section, in order to implement observational learning, the outputs of the map in both cases 
must coincide.  

For the implementation of the visual observation of the agent we have experimented with different 
topologies and network sizes and found that the size of the map affects the detail of the representation. 
Larger maps produce more detailed encodings and can represent a broader range of positions, while 
smaller maps discretize the input space more accurately. In the results section we demonstrate how 
different configurations of the SOM map affect the perception capabilities of our agent. 

Reaching policy 

Based on the higher order primitives and reward subsystems described above, the problem of reaching 
can be solved by searching for a policy that will produce the appropriate joint torques to reduce the 
error: qୣ = qො − q			(6.16) 
where qො  is the desired state of the plant and q is its current state. In practice we do not know the exact 
value of this error since the agent has only information regarding the end point position of its hand and 
the trajectory that it must follow in Cartesian coordinates. However because our higher order primitive 
model is defined in Cartesian space, minimizing this error is equivalent to minimizing the distance of the 
plant’s end point location with the nearest point in the trajectory: dୣ = |l − t|			(6.17) 
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where ݈ and ݐ are the Cartesian coordinates of the hand and point in the trajectory, respectively. The 
transformation from eq. (6.16) to eq. (6.17) is inherently encoded in the higher order primitives 
discussed before. From the output of the forward model we obtain the end point Cartesian location of 
the hand, while from the demonstrator we obtain the point in the trajectory that must be reached. 
These are injected as rate codes into a liquid state machine, where a readout neuron is taught to 
estimate the subtraction of the two input rates using a feedforward neural network.  

The policy is learned based on two elements: (i) activate the correct combination of higher order 
primitive force fields, and (ii) set each one’s weight. Due to the binary output of the actor neurons, 
when a certain actor is not firing, its corresponding force field will not be activated. In contrast, when an 
actor is firing, its associated force field is scaled using the output of the subtraction readouts, mentioned 
above, and added to compose the final force. 

To teach the actors the local control law, we use a square trajectory shown in Fig. 6.11, which consists of 
eight consecutive points pଵ. . p଼. The agent is taught the trajectory backwards, i.e. starting from the final 
location (p଼) in four blocks. Each block contains the whole repertoire of movements up to that point. 
Therefore, in the first block the actor learns to perform the left motion. Whenever it finishes a trial 
successfully, the actor is delivered a binary reward, and moves to the next phase which includes the 
movement it just learned and a new behavior. 

 

Fig. 6.11. The initial trajectory used to train the robot. It consists of 8 points that form 4 perpendicular 
vectors in four different directions (up, right, down, left).  

Reward is delivered only when all movements in a block have been executed successfully. Therefore, the 
agent must learn to activate the correct force field primitives using the prediction signal from the Critic 
neurons in Fig. 6.8. The final torque that is applied on each joint is the linear summation of the scaled 
higher order primitives: τ୮	 = 			 ൣxୣ,ଵ ∗ (Jିଵ)୘ ∗ φ୳୮൧ୟୡ୲ଵ 											+ 			 ൣxୣ,ଶ ∗ (Jିଵ)୘ ∗ φୢ୭୵୬൧ୟୡ୲ଶ 					+ 		 	ൣ	xୣ,ଷ ∗ (Jିଵ)୘ ∗ φ୰୧୥୦୲൧ୟୡ୲ଷ+ 			ൣxୣ,ସ ∗ (Jିଵ)୘ ∗ φ୪ୣ୤୲൧ୟୡ୲ସ						(6.18) 
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where ݔ௘,௜ is the output from the neural network distance readout, while ሾ ሿ௔௖௧ is an operator that 
includes each force field in eq. (6.18) only if the corresponding actor from the Basal Ganglia module is 
active. ߮ is obtained from eq. (6.9) for each higher order force field, and ܬ from eq. (6.10). 

Higher-order motor control pathway 

Higher-order motor control is implemented at the peripheral components of the motor control system, 
by exerting an additional force that shapes the trajectory of the hand. As discussed in section 6.3, this 
force must have a large value in the beginning of the movement and reduce progressively as the hand 
approaches the object. When this force converges to zero, the innate reaching component of the agent 
takes over the motor control of the hand, and brings the end point of the plant towards the object 
irrespectively of its position.  

To implement this concept computationally we use liquid state machines. The network consists of two 
liquids of 125 LIF neurons each, connected with the dynamic synapses and local connectivity (the 
models of neurons and dynamic synapses that were used are the same as in the reward assignment 
pathway). The first liquid is designed to model a dynamic continuous attractor which replicates the 
descending aspects of the force, while the second is used to encode the values of the additional force 
that will be exerted to the agent (Fig. 6.12). 

To replicate the descending aspect of the force on the attractor circuit we use a liquid that inputs two 
sources; a continuous analog value and a discrete spike train. During training, the former, simulates the 
dynamics of the attractor by encoding the expected rate of descent as an analog value. The latter 
encodes different starting values based on the perceived starting force of the demonstrator.  

The analog neuron during the tuning of the attractor is input pre-coded values that simulate the 
expected output, i.e. the expected rate of descent for the attractor. For the current simulations, rates of 
descent were sampled from three different values, 0.8, 0.1 and 0.9 respectively. During training of the 
circuit, the values expected by the attractor are calculated and input to the analog input neuron, which 
is connected to all neurons of the first liquid of the circuit. In this phase, the first liquid is simulated for 
1000ms duration and its liquid states are recorded. One linear readout neuron, whose connections are 
setup through linear regression, is used to extract the desired values for the attractor. This is 
accomplished by using the input to the analog neuron as training values and finding the correct 
weighting coefficients to reproduce them (so that the input analog neuron will be simulated internally 
by the readout neuron). 

The burst code neuron is programmed to fire a burst at the beginning of the simulation with duration 
equal to the rate of descent. For example if the rate of descent is 0.05, meaning that on each simulation 
step the attractor output value is expected to be reduced by 0.05, the burst code neuron will fire a burst 
of spikes (i.e. a Poisson spike train with average rate over 80Hz) for 5ms. To complete the training phase 
we gather 500 training samples of different rates of descent and 50 testing samples that are used to 
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evaluate the attractor’s performance. After training the output of the readout neuron is connected to 
the liquid of the attractor and the artificial analog neuron used during training is disconnected. 

The second liquid in the circuit consists of 125 LIF neurons interconnected with local connectivity. The 
input to the network consists of three sources. The first is the readout trained by the attractor circuit 
that outputs the rate of descent of the movement. The second is the neuron that inputs the start force 
of the movement. The third source is a population code that inputs the symbolic labels from the map of 
the state estimation pathway.  

The second neuron encodes the start force observed as a burst code. For example if the observed force 
is 0.1Nt then this input neuron will output a burst code (a Poisson spike train with average rate over 
80Hz) for the first 100ms and maintain for the rest simulation a low activity (Poisson spike train with 
average rate below 10Hz). The third neuron in the circuit encodes the symbolic labels output from the 
state estimation pathway. The input to the circuit is the label output by the SOM module, which is 
encoded as a population code vector and input to the LSM. Following the 100ms temporal resolution 
used for the simulations during observation learning, the liquid used to train the higher-order motor 
control component is also simulated for 100ms, i.e. on every time-step of the simulation.  

 

Fig. 6.12. The circuitry of the higher-order motor control pathway showing all the individual components 
and attractor and higher-order motor control liquids. 

After collecting the states for the observer every 100ms, the liquid states are trained for every label 
presented to the circuit up to that moment. For example if the simulation is on the 5th step, then the 
input to the network is a five dimensional vector that contains the symbolic labels up to the first 500ms 
of the simulation. The output of these liquid states are trained using a feedforward neural network 
readout that must learn to approximate the start force of the demonstrator and rate of descent of its 
movement, based on the simulated liquid states.  
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6.3.3 Results 

In the current section we present the results of the proposed model. We first illustrate the training 
results for each individual pathway of the model. We then continue to show the ability of the motor 
control component to perform online reaching, i.e. reach towards any location with very little training. 
Finally, we present the results of the observational learning process, i.e. the acquisition of new 
behaviors only by observation.  

Motor control component training 

The first result we consider is the convergence of the least squares solution for the system of linear 
equations in eq. (6.11). Figure 6.13 presents the solution for the “up” higher order primitive, where it is 
evident that the least squares algorithm has converged to a good result. The three subplots at the 
bottom show three snapshots of the hand while moving towards the “up” direction when this force field 
is active. Similar solutions were obtained for the other three primitives, where the least squares solution 
converged to 7 (left), 2 (right) and 5 (down) errors (the error represents the extent to which the 
directions of the forces in a field deviate from the direction that is defined by the primitive).  

 

Fig. 6.13. The force field (upper left subplot) and torque field (upper right subplot) as converged by the 
least squares solution for the “up” primitive. The three subplots at the bottom show the snapshots of 
the hand while moving when the primitive is active. 

Reward assignment pathway 

The policy for reaching was learned during an initial imitation phase where the agent performed the 
training trajectory, and was delivered a binary reinforcement signal upon successful completion of a 
whole trial. Since the reward signal was only delivered at the end of the trial, the agent relied on the 
prediction of the reward signal elicited by the critic neurons. In the following we look more thoroughly 
in the response properties of the simulated dopaminergic critic neurons and how the actors learned to 
activate each force field accordingly based on this signal. 
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Figure 6.14 illustrates how the critic neurons of the model learned to predict the forthcoming of a 
reward during training. In the first subplot (first successful trial) when reward is delivered at t=4, the 
prediction of the 1st critic is high, to indicate the presence of the reward at that time step. After the first 
10 successful trials (Fig. 6.14, subplot 2), events that precede the presentation of the reward (t=3) start 
eliciting some small prediction signal. This effect is more evident in the third and fourth subplots where 
the prediction signal is even higher at t=3 and starts responding at t=2 as well. 

 

Fig. 6.14. The prediction signal emitted by the critic component of the model during the initial stages of 
the training (subplot 1), after 10 trials (subplot 2), after 20 trials (subplot 3) and after 30 trials (subplot 
4). 

The effects of this association are more evident in Fig. 6.15, where it is shown how after training, even 
though rewards are not available in the environment, the neurons start firing because they predict the 
presence of a reward in the subsequent steps. Using the output of this prediction signal, the actor, i.e. in 
the case of the model the F5 premotor neurons that activate the force fields in the MI, forms its weights 
in order to perform the required reaching actions. 

 

Fig. 6.15. The actual reward signal given to the robot at the end of a successful trial (upper subplot), and 
the reward predicted by the critic component after training (bottom subplot). The x-axis represents the 
100ms time blocks of the simulation while the y-axis the values of the reward and prediction signals 
respectively. 

Forward model 

In the current section we present the results from the training of the two feedforward neural networks 
that were used in order to implement the forward models of the agent. In the first case, the network 
was trained in order to perform the forward transformation from the proprioceptive state of the agent 
to the end point position of its hand. For this reason the joint positions of the simulated agent were 
extracted in every step of the simulation and encoded as population codes in the Sc module. The 
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feedforward neural network consisted of two layers of sigmoidal activation neurons, and was trained for 
100 iterations, to output the end point position of the hand (Fig. 6.16). 

 

Fig. 6.16. The output of the forward model neural network. Red crosses model the actual end point 
location of the hand, while blue circles the output of the network. The x, y axes represent the Cartesian 
coordinates.  

The visual observation of the demonstrated movement was also processed by a feedforward neural 
network. In this second case the network input consists of a noisy version of the demonstrated 
movement in alocentric coordinates, and was trained to transform it in an egocentric frame of 
reference. In this context, the noise represents the observer’s ability to perceive a behavior correctly. 
Figure 6.17 demonstrates the output of the training of the neural network using three different noise 
levels, 0.001, 0.005 and 0.01, respectively. 

      

Fig. 6.17. The output of the visual observation model of the agent, using three different noise levels. The 
x, y axes represent the Cartesian coordinates. 

To complete the implementation of the reaching policy the model must learn to derive the distance of 
the end effector location from the current point in the trajectory. This is accomplished by projecting the 
output from the forward model and perception pathways in an LSM and using a readout neuron to 
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calculate their subtraction. Experimentally it was estimated that to shape the liquid dynamics and learn 
this transformation, the dynamic synapses must have delays of approximately 10ms. 

Since our model resolution was set to 100ms, we averaged the output of the readout neuron over the 
10 steps of the simulation. In Fig. 6.18, we illustrate two sample signals as input to the liquid (top 
subplot), the output of the readout neuron in the 10ms resolution (middle subplot) and the averaged 
over the 100ms of simulation time output of the readout neuron (bottom subplot).  

 

Fig. 6.18. The output of the distance LSM after training. The top plot illustrates two sample input signals 
of 5.5 seconds duration. The bottom two plots show the output of the neural network readout used to 
learn the subtraction function from the liquid (middle plot), and how this output is averaged using a 
100ms window (bottom plot).  

The whole simulation trial lasted 5.5 seconds. As the results show the liquid was able to extract the 
distance information with a good accuracy. Due to the local control laws used to implement the 
reaching policy, any small errors in the computation of distance are actually compensated in latter steps. 

Online reaching 

Having established that the individual pathways/components of the proposed model operate 
successfully, we now turn our attention to the performance of the model in various reaching tasks. The 
results presented here are produced by employing the motor control, reward assignment and forward 
model pathways only.  

 

Fig. 6.19. Three trajectories shown to the robot (red points) and the trajectory produced by the robot 
(blue points). Numbers mark the sequence with which the points were presented. 
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We note here that the model wasn’t trained to perform any of the given reaching tasks, apart from the 
initial training/imitation period at the beginning of the experiments, shown in Fig. 6.11. After this stage 
the model was only given a set of points in a trajectory and followed them with very good performance. 
The first three trajectories we tested were variations of a straight line motion (Fig. 6.19). 

As Fig. 6.19 shows the agent was able to follow all three trajectories quite precisely. The average 
normalized deviation of the agent’s position from the points of the trajectory was 0.03 or 3% which 
shows that the resulting performance was very satisfactory.  

In order to evaluate further the performance of the model we used two more complex trajectories. The 
first required the robot to reach towards various random locations spread in the robot’s workspace (Fig. 
6.20, Trajectory 1) while the second complex trajectory required the robot to perform a circular motion 
in a cone shaped trajectory (Fig. 6.20, Trajectory 2). Figure 6.20 illustrates how the aforementioned 
trajectories were followed by the robot. 

 
Fig. 6.20. Two complex trajectories shown to the robot (red points) and the trajectories produced by the 
robot (blue points). Numbers mark the sequence with which the points were presented. 

To evaluate the performance of the model quantitatively we created 100 random trajectories and tested 
whether the agent was able to follow them. Each of these random movements was generated by first 
creating a straight line trajectory (Fig. 6.21, left plot) and then randomizing the location of 2, 3 or 4 of its 
points; an example is illustrated in Fig. 6.21, right plot. The error was calculated by summing the overall 
deviation of the agent’s movement from the points in the trajectory for all the entries in the dataset. 
The results indicate that the agent was able to follow all trajectories with an average error of 2%. This 
suggests that the motor control component can confront, with high accuracy, any reaching task. 

          

Fig. 6.21. The template used to generate the random test set of 100 trajectories (left plot) and a random 
trajectory generated from this template (right plot). 
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Fig. 6.23. The output from the linear classification readout that was used to classify the three objects. 
The y axis represents the output class label while the x axis the time step in the simulation. 

Higher-order motor control circuit and attractor tuning 

As mentioned in the previous section, the higher-order motor control circuit consists of 2 liquids which 
model the descending force that is exerted to the hand of the agent. Herewith we present the results of 
the attractor liquid, i.e. the sub-circuit that was developed in order to model the dynamics of a 
continuous attractor. The following figure illustrates the spike after potentials of the liquid circuit that 
was described in section 6.3, for 1000ms simulation, as well as the response of the attractor during this 
period. As Fig. 6.24 illustrates, despite the varying liquid response, the attractor is able to produce a 
stable response. 

 

Fig. 6.24. Output of the training of the attractor circuit. The top plot illustrates the response of the liquid 
while the bottom one the output of the readout that is used to simulate the attractor. The x axis in all 
plots represents time in 100ms intervals. 

After the tuning of the attractor, the circuit was disconnected from the simulated input and was able, 
given any input, to replicate the attractor dynamics required. Using this optimized liquid, we then 
implemented a linear regression readout that was trained to model the exact force that is exerted to the 
hand during reaching. This was accomplished by designing the trained attractor to project directly to the 
second liquid column of the higher-order motor control pathway, and using one linear regression 
readout to output the force that must be exerted during the execution of the behavior. Figure 6.25 
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illustrates the output of the readout unit, which can produce a stable response despite the varying liquid 
dynamics. The output of the readout is used to inhibit directly the force produced by the motor control 
component. As the figure shows, the attractor dynamics cause the output of the readout to descent to 
zero after the first steps of the simulation.  

 

Fig. 6.25. The output of the trained readout that models the force exerted by the higher-order motor 
control pathway (bottom subplot, blue line) and the desired force value (bottom subplot, red line) for 
the same period. The top subplot illustrates the input to the circuit, while the middle subplot the liquid 
dynamics. The x axis in all plots represents time in 100ms intervals.  

Observational learning 

In this section we illustrate the results from the observational learning experiments, which involve the 
function of all the pathways of the model. To test the ability of the agent to learn during observation we 
have generated sample trajectories by simulating the model using predefined parameters. The agent 
was demonstrated one trajectory at a time, and its individual pathways were trained for 1500ms. The 
role of this phase was to evaluate the agent’s ability to learn a demonstrated trajectory only by 
observation, i.e. without being allowed to move its hand. Subsequently, to evaluate the extent to which 
the agent learned the demonstrated movement we run an execution trial, where the agent was 
required to replicate the demonstrated behavior. 

In the following figure we illustrate one sample trajectory that was demonstrated to the agent (Fig. 6.26, 
left subplot, red circles), the output of the higher-order motor control module (Fig. 6.26, bottom right 
subplot), the corresponding class labels generated by the model and the mental imagined state of the 
agent during a 1500ms trial (Fig. 6.26, top right subplot). The noise used for the visual observation 
pathway was 0.05 (i.e. on each sample a value was added drawn from a Gaussian distribution with mean 
0.05), while the size of the state estimation map was 81 labels. As the figure illustrates (Fig. 6.26, left 
subplot) the agent was able to keep track of the demonstrated trajectory with very good accuracy.  The 
top right subplot in Fig. 6.26 illustrates the class labels that were generated by the state estimation 
pathway using the visual observation pathway’s output in green and the states (in red) that would have 
been generated if the agent was executing the behavior covertly. 
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Fig. 6.26. The mental imagined estimate of the hand during observational learning. The left subplot 
illustrates the trajectory demonstrated (red circles) to the agent and the trajectory imagined by the 
computational model (blue stars). The top right subplot illustrates the output of the SOM in the state 
estimation pathway while the bottom right subplot illustrates the output of the linear regression 
readout in the higher-order motor control pathway (red circles are the desired values of the force while 
blue boxes are the output of the readout). 

As the plot illustrates the two lines coincide to a large extent. To verify that the agent learned the new 
behavior after the observational learning phase we run the same simulation using the forward model for 
the state estimation. The following figure illustrates the trajectory that was actually executed by the 
agent during execution. 

 

Fig. 6.27. The trajectory executed by the robot during the execution phase. The left subplot illustrates 
the trajectory demonstrated (red circles) to the agent and the trajectory imagined by the computational 
model (blue stars). The top right subplot illustrates the output of the SOM in the state estimation 
pathway while the bottom right subplot illustrates the output of the linear regression readout in the 
higher-order motor control pathway (red circles are the desired values of the force while blue boxes are 
the output of the readout). 
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As discussed in section 6.3, the noise levels and size of the state estimation map had a direct effect on 
the performance of the model. Larger noise levels altered the perception of the agent and compromised 
its ability to mentally keep track of the observed movement. Figure 6.28 illustrates the response of the 
agent for 0.1 and 0.2 noise levels. 

 

Fig 6.28: The output of the observation pathway under the influence of 4 different noise levels. As the 
four plots illustrate, the model’s perception capabilities are compromised by the existence of noise.  

As the results of this section demonstrate the developed computational agent is able to acquire new 
motor skills only by observation. The quality of learning is correlated with the agent’s perceptual 
abilities, i.e. the extent to which it can perceive an observed action correctly. This skill is facilitated due 
to the design of the model that allows new motor skills to be learned based on a set of simple 
parameters that can be derived only by observation. 
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In the current chapter we discuss the cognitive and computational implications of the two 
neurophysiological models we have presented throughout the thesis. For this reason we focus on issues 
regarding model complexity, and whether the modeling resolution used was able to capture the 
underpinnings of the biological systems that were modeled. In addition, we consider contemporary 
theories, regarding model development and control, and attempt to explain the emergent properties 
exhibited by both models. 

The discussion is structured in four sections. In the first (section 7.1), we revisit generic contributions on 
the computational issues that underpin the Liquid State Machines. We then continue to analyze the 
properties of the first computational agent (section 7.2), focusing on how they relate to the 
neurophysiological model of Macaques during observation. In the third section (7.3), we overview the 
implications from the human model, and discuss its most important properties. The chapter is 
concluded by suggesting future work, and the issues that we plan to focus based on the development of 
the two models (section 7.4). 

7.1 Measuring the separation of Liquid State Machines 

One of the main contributions of this thesis was the development of a computational method for 
improving the classification capabilities of LSMs, by focusing on the separation property of the liquid. 
This was calculated using the Fisher’s Discriminant Ratio, a measure that is maximized when the class 
means are far from each other, and the class variances are as small as possible. To evaluate the FDR 
measure against a broad range of classification tasks, we incorporated different types of neuron 
encodings for the input. As the results show, the FDR criterion accurately predicts the performance of 
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the readouts without having any knowledge on the algorithm used to train them. Due to this fact, the 
GA, by minimizing the value of the FDR criterion, also improved the performance of all considered 
classifiers. 

In contrast to other criterions, the FDR is a supervised measure, i.e. requires the class labels in order to 
compute the quantities in eqs. (4.6-4.9). Consequently, the evolutionary framework that was presented 
is also supervised. We consider this a benefit of the method, since it allows the design of liquid 
architectures that are suited to the specific dynamics of a general classification task. 

Moreover, one important issue about the FDR measure is that it does not make any assumptions about 
the structure of the data. For instance, other methods of class separability, such as the divergence or 
Bhattacharyya distance must make a Gaussian assumption in order to be computed. In contrast, the FDR 
measure is constructed from simple low-level criteria, that describe the geometrical scatter of feature 
vectors in the problem space, and therefore does not make any assumption about the input data.  

This work has a potential to be expanded in order to investigate new ways of reducing the 
computational load of LSMs, by exploiting additional methods for increasing the separation between 
different classes. In this context, we will evaluate whether transforming the liquid states, by projecting 
them along the eigenvectors of the argument of the FDR measure, can increase their separation. This 
addition can complement the proposed methodology and offer a concrete set of mathematical tools 
that can evaluate and further advance the computational performance of LSMs. Moreover, the 
application of the proposed framework in relevant tasks seems very promising. Candidate tasks are the 
ones that can readily benefit from the enhanced computational abilities of the proposed LSM structure, 
such as (a) the development of large-scale computational models that are composed of multiple 
components with distinct functionalities and (b) scene segmentation in video sequences.  

7.2 Cognitive implications of the Macaque model 

Recent neuroscientific experiments investigated the activation of regions in the brain cortex of primates 
when observing or executing a grasp behavior (Raos et al., 2007; Raos et al; 2004; Evangeliou et al., 
2008; Kilintari et al., 2010). Results from these studies indicate that the same pathway of regions was 
activated during observation and execution of a behavior. This has led researchers to believe that during 
observation the primate is internally simulating the observed act, using its own execution circuits to 
comprehend it.  

The above mentioned neuroscientific studies suggest that the mirror neurons are only part of a larger 
circuitry that is employed by primates in order to simulate an observed behavior (Savaki, 2010). This 
circuitry involves regions in the primary somatosensory and motor cortex, as well as regions in the 
parietal lobe (Evangeliou et al., 2008). The current thesis, based on the neuroscientific results of (Raos et 
al., 2007; Raos et al; 2004), suggests how this extended overlapping pathway can be reproduced in a 
computational model of action observation/execution, and used for implementing learning by mere 
observation. The model has allowed us to derive informative predictions regarding the possible reasons 
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for the overlapping activations during observation, as well as the role of specific regions in the circuitry. 
Given the limitations of a computational model to describe the cortical functions of the brain, these 
predictions are only considered and discussed in the context of computational modeling. 

The information processing properties that characterize the regions involved in the execution and 
observation of grasping tasks in primates were modeled based on three computational principles. The 
binding of neural representations across different networks was modeled using associative learning 
synapses implementing the STDP rule (Song et al., 2000). The feedback required for teaching the agent 
new behaviors is modeled using a derivation of the Bienenstock-Cooper-Munro learning rule for spike 
neurons (Baras and Meir, 2007). This algorithm only requires a reinforcement learning signal (which in 
our case is binary), instead of a supervised one. Finally, following the assumption that primates already 
know how to execute a lower primitive behavior well before the experiments, the motor control circuit 
was configured using a genetic algorithm. This allowed us to generate a computationally adequate 
network configuration, using higher level fitness functions of the behavioral tasks. 

Results from the model evaluation indicate that by shunting the motor output of an observing agent, 
there are several regions in the computational model that are activated at a lower firing rate, compared 
to their activation during execution. Computationally, and maybe biologically, the lower activations that 
those networks exhibit are attributed to the fact that during observation alone the proprioceptive input 
of the agent is not available. As a result, during observation the number of active afferent projections 
towards each network is smaller, and therefore its activation is lower.  

The average regional activations obtained by our model resemble the ones obtained by 
neurophysiological experiments. The differences between the model and recorded regional activations 
are attributed to the fact that for modeling purposes we have considered a subset of the large number 
of neuronal classes that exist in those regions. 

The activations during observation are accomplished using an action correspondence circuitry, within 
the proprioceptive association pathway, that allows the agent to learn to associate its own joint angles 
with the joint angles of the demonstrator during the observation/execution phase. As a result, while 
observing another agent performing a known grasp behavior, the model excites the corresponding 
neural representations in the parietal regions that refer to its own body posture. The activation of those 
regions during observation is, at least computationally, responsible for partially activating the remaining 
regions in the model. In the current implementation, this correspondence problem is only solved in 
action space, i.e. the agent matches its own actions with the actions performed by the demonstrator 
(Dautenhahn and Nehaniv, 2002). This is accomplished in the STS-VIP-SPL circuitry, where the joint 
values of the demonstrator from STS are translated to a distributed code in VIP (representing how the 
agent perceives the observer’s action) and matched with the agent’s own action, coded in SPL. Due to 
the existence of SPL in this pathway, the agent must also learn to manipulate its own body before 
relating its effectors to the demonstrator’s. More elaborate versions of this correspondence association 
mechanism could include mapping between dissimilar bodies, mapping of the state space of the 
demonstrator or even associating body postures perceived in different frames of reference (Dautenhahn 
and Nehaniv, 2002). 
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In addition to the overlapping pathway of regions activated during observation and execution, our 
model exhibits another important property. It shows that, not only the same regions, but also the same 
neural representations are activated during observation, a fact that as we have shown facilitates 
learning. This effect is attributed to the STDP synapses and the linear (outside the refractory period) 
integration (eq. 4.5) that is used to model the incoming current of the neuron. The importance of these 
two properties becomes more evident when looking at how neural representations are formed during 
training of the model. During the observation/execution phase, the synapses that use STDP undergo a 
competition process for the control of post-synaptic cell firings (Song et al., 2000). The synapses that 
lose the competition depolarize, leaving only those that represent a causal relationship between two 
neurons to survive. The term causal here is used to describe the relationship between the response 
behavior of the pre- and post-synaptic neurons. In contrast to Hebbian learning, that treats causality as 
correlation (derived from cell co-activation), STDP requires a pre-synaptic neuron to fire persistently 
before the post-synaptic action potential in order to strengthen the connection. As a result, in the 
current model implementation, after the observation/execution phase, only the synapses that describe 
a robust association (i.e. persistent and mutually correlated at the level of individual spikes) between 
their two neurons would remain strengthened. Consequently, during the observational learning and 
observation alone phases the networks continue to activate the same neural representations as before 
even though some of the inputs to the model are kept silent.  

The fact that these common neural representations continue to be activated, and further strengthened, 
even when neurons fire with lower frequencies, is attributed to the linear model used for integrating 
pre-synaptic input (eq. 4.5). More specifically, even though all networks in the model exhibit a lower 
firing frequency during observation and observational learning phases, the action potentials of their 
neurons maintain their temporal relationship. Thus, neurons that are active in these common 
representations will exhibit proportional firing frequencies (i.e. a presynaptic neuron that fires just 
before a post-synaptic neuron during the observation/execution phase, will continue to do so during the 
observation phase, because both neurons fire with lower frequency). We also point out that the 
retrieval of a pattern using partial input can be accomplished using Hebbian synapses (Billard and Hayes, 
1999; Chaminade et al., 2008). However given the architecture of the model networks and the choice of 
the neuron model of the current implementation, the use of STDP connections allows to better address 
certain issues that would require additional considerations if Hebbian synapses were used. 

To develop the properties of the neurons in the F5mirror network we have used two computational 
principles, associative learning and input normalization. In computational neuroscience, theories 
regarding the formation of mirror neurons fall into two categories. The first, adaptation hypothesis, is 
implicitly suggested in various articles (Rizzolatti and Craighero, 2004; Ramachandran, 2000), and claims 
that mirror neurons are the result of ontogenetic development, and thus most of their wiring is 
genetically inherited. The theory is supported by experimental evidence that demonstrates the ability of 
infant primates to imitate (Meltzoff and Decety, 2003; Ferrari et al., 2003; Ferrari et al., 2006). According 
to the adaptation hypothesis, mirror neurons have been favored by natural selection due to their 
properties that facilitate action understanding, an important component of social cognition. The second 
theory suggests that mirror neurons are the result of associative learning following the experience of the 
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primate with grasping execution and observation (Heyes and Ray, 2000; Heyes, 2001). The theory 
attributes the formation of mirror neurons to common sensorimotor contingencies, i.e. correlated 
experience caused by simultaneously observing and executing an action. To explain the transitive 
property of mirror neurons, the associative learning hypothesis has used concepts such as stimulus 
generalization, i.e. the modulation of a neuron’s response to a stimulus, caused by differences between 
the learning stimuli and the experienced stimuli (Pearce, 1987).  

More recently, new hypotheses on the formation of mirror neurons are starting to emerge, that suggest 
only a certain amount of genetic predisposition at the neuron level in mirror neurons (Lepage and 
Theoret, 2007). Attempts to combine the two theories together have also been made, which show that 
mirror neurons could have been the result of ontogenetic development and associative learning (e.g. 
Del Giudice and Manera, 2009).  

The approach used in this model is consistent with the associative learning hypothesis. More specifically, 
in the F5mirror network of the first agent, the neurons acquire their matching properties during the first 
observation/execution learning stage, while the simulated agent observes and learns to execute an 
action simultaneously. The associative STDP synapses and the correlated activity caused from the 
observation and execution streams being active at the same time facilitates their development. The 
normalization constants are used to fit into the model the tendency of mirror neurons to fire only when 
an object is present, i.e. when goal-directed actions are involved. Their use allows the F5mirror network of 
the model to shape its response in respect to the aforementioned property, even though only some 
aspects of their cortical connections are considered. 

In the Macaque brain, populations of mirror neurons have been found in the ventral premotor area F5 
(Gallese et al., 1996) and the inferior parietal lobe (Gallese et al., 2002). For the human EOMS, even 
though direct cell recordings are not available, fMRI and PET imaging data show that it expands to areas 
beyond those two regions (Caspers et al., 2010). However there is still an ongoing debate on whether 
these mirror neurons are part of a common or an overlapping neural code. For example a recent fMRI 
study in human aIPS (Dinstein, 2008) has showed that even though there are some overlapping parts of 
a neural code during executed and observed movements, their spatial pattern of activities is distinctly 
different. Both the overlapping and common code interpretations of the neuronal activations during 
execution and observation have their pros and cons. If the neural codes shared during observation and 
execution are common, then building the pathway of networks for observation should only be 
concerned with replicating that of execution. However in this case additional issues such as resolving the 
sense of agency should be dealt at the level of inter-regional activations of these regions. If, on the other 
hand, the neural representations are only overlapping during execution and observation, then the non-
overlapping parts of the representation could be used to deal with issues such as agency attribution.  

The model also makes an informative prediction, regarding the role of the superior parietal cortex, and 
in particular region SPL in the design of imitation models. Even though this area is usually neglected by 
the computational modeling community, our results show that it could be used for implementing an 
action correspondence mechanism in artificial agents. Cortically, the region contains neurons that are 
somatotopically organized to respond to various joint and skin stimulation of an agent’s body, and for 
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this reason SPL has been attributed with holding a representation of the body schema of the agent 
(Sakata et al, 1973). The recently found activation of SPL during observation of grasping behaviors, 
reported in the results of (Evangeliou et al., 2008), opens a whole new perspective on the possible role 
of the region during imitation tasks. In the context of computational modeling, given the activation of 
this region during observation alone, the strong projections it has with regions SI and the connections 
from IPL, the model shows that SPL can activate accordingly in order to respond to the actions of the 
agent and the demonstrator. 

7.3 Cognitive implications of the Human model 

The final issue that we discuss is the computational implementation of observational learning based on 
human neurophysiological data. For this model, we have exploited the fact that when observing, human 
primates activate the same pathway of regions as when executing. The cognitive interpretation of this 
fact is that when we observe, we use our motor system, i.e. our own grounded motor experiences, in 
order to understand what we observe. The developed model was able to learn new motor skills by mere 
observation, by adopting the peripheral, higher-order motor control, component of its motor system 
during observation.  

The fact that the brain activates the same pathways to simulate an observed action is an important 
component of human intelligence, and as it has been suggested a basis for social cognition (Baron-
Cohen et al., 1993; Saxe et al., 2004).. In the computational modeling community, most research in this 
area has focused on the function of mirror neurons. The evidence of activating pathways throughout the 
cerebral cortex suggests that the cortical overlap of the regions is much more extended than the mirror 
neuron areas, in agreement with the mental simulation theory. More importantly, since action 
observation activates the same regions as in action execution, motor imagery and observational learning 
can be used to revise our understanding about the content of motor representations. Computational 
models such as the one presented can help us understand the basis under which all these processes can 
work together in order to accomplish a behavioral task. 

Modularity has been an important aspect of the modeling process. At the cortical level modularity was 
implemented using pathways of interacting regions that realize a specific cognitive function. At the 
motor level, modularity was applied by designing motor synergies, i.e. pre-organized motor circuits that 
coordinate several muscles of the agent’s body. This allowed us to decompose the complex process of 
motor control and implement all cognitive functions separately. The final output of the model was then 
implemented as a coordinated process of all the underlying sub-systems.  

The final model was designed to perform two main functions: (i) online reaching, i.e. enable the agent to 
reach towards any given location with very little training, and (ii) observational learning, i.e. the 
acquisition of novel skills only by observation. To implement the reaching component we have devised a 
local reaching policy, where the computational model exerts forces that move the hand towards a 
desired location. The benefit of this approach is that any errors in the movement can be compensated at 
the latter stages of motor control. To implement observational learning of reaching we first examined 
the content of the motor representations in the cerebral cortex of human and monkey primates. For this 
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reason we have structured the motor control component into an innate reaching control system and a 
peripheral higher-order motor control system. Learning during observation was implemented on the 
higher-order motor control component based on simple control parameters. This intuition was very 
important for the implementation of the observational learning process, since the agent wasn’t required 
to restructure its whole motor system in order to acquire new behaviors.  

7.4 Future work 

In the current thesis we have developed two computational models of observational learning, inspired 
by the neurophysiology of human and Macaque primates. In both cases we have made use of the fact 
that primates during observation activate a pathway of regions that overlaps extensively with the one 
developed for action execution. Due to this, both agents were able to activate their own motor 
representations in order to acquire new knowledge. 

Having established a working model of observational learning, one of the important aspects that is 
interesting to investigate in the future is the cortical underpinnings of motor inhibition during 
observation. More specifically, what are the reasons that cause the human’s body to stay immobile 
when only observing others. Cortical inhibition must exist at the spinal levels by preventing the 
excitation of the muscle reflexes. In this context, it is interesting to exploit possible implementations of 
the cerebellum, and how its function can facilitate the inhibition of specific components of the 
movement.  

Moreover, the developed models can provide a basis for implementing agency attribution, i.e. the 
process that allows the cortical agents to perceive their body as their own. Despite its potential benefits, 
agency attribution has received little attention within the computational modeling community. Early 
attempts to investigate the process focused on self-recognition, by employing purely visual (Berthouze 
and Itakura, 1997; Michel et al., 2004) or pre-coded modules (Billard and Mataric, 2004), in order to 
derive whether an agent is the initiator of its own movement. These approaches however do not 
consider the structure and function of the motor control system which, as suggested by cognitive 
neuroscientists, has a pivotal role in the perception of an action (Jeannerod, 2003). 

More recent models facilitate agency attribution by exploiting the incongruence between the 
sensorimotor representations of an acting and an observing robot. In (Tani, 1998), the authors 
implement a robot that can identify its own actions, using a comparison module that estimates whether 
the motor commands and body state of the agent coincide. A similar intuition is used in the models of 
(Wolpert and Kawato, 1998; Haruno et al., 2001), which resolve the function by monitoring the causal 
relationship between an action and its afferent sensorimotor cues. In cases where a predicted action 
effect, derived using forward models, coincides with the motor control commands the behavior is 
attributed to the acting agent (Demiris and Meltzoff, 2008). 
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There are several problems associated with the above approaches. They don’t make a clear distinction 
between the sense of agency and sense of body ownership, which as suggested by cognitive 
neuroscientists pertain to different processes (Synofzik et al., 2008). As a result, the function of assigning 
the correct agent to an action is reduced to a matching process, between the body state and the motor 
output, a computation that is not always guaranteed due to the noise and non-linearities inherent in 
motor control (Synofzik et al., 2008).  

Another common property of the aforementioned methods is that they use modal architectures that 
generate a static and momentary distinction between the observed and executed behaviors. This 
approach neglects the large number of representational levels that exist in the motor image of an acting 
agent (Jeannerod, 2003), and could be exploited in order to derive a more robust implementation of 
agency attribution. More importantly, due to their commitment to action execution (a comparison is 
only possible if the agent is acting), they cannot be applied to a large category of sub-processes of 
imitation, including the mental simulation models discussed in this thesis, where the results of the 
action are covert and unavailable to the agent (Hourdakis et al., 2011; Hourdakis and Trahanias, 2011b).   

To confront these issues one can employ the motor control system of the two computational agents, in 
order to investigate how the functional activations in the overlapping pathway of regions can be used to 
distributively resolve the agency of an observed movement. This consists of a novel method for 
confronting the problem, by employing the underpinnings of the robot’s motor control system, instead 
of its momentary output, in order to identify the correct agent of an action.  

This new approach has important advantages. Computationally, distributed representations are more 
robust and can generalize better to unknown domains. Moreover, by employing the observer’s motor 
image, the method will utilize all the subliminary processes that participate in the recognition of an 
action in order to resolve its agency. This involves a large number of cognitive functions, including 
attention, action planning, goal identification and motor execution. Consequently, the robots will be 
able to develop a conceptual representation of agency that is based on the same spatio-temporal 
properties that characterize their motor control system.  

Another important aspect that one can consider for future work is the enrichment of the computational 
modeling methodology presented in chapter 4, in order to be able to consider quantitative information 
derived directly from neuroscientific data. In this context, it is important to investigate how low level 
data, such as the neuronal tuning curves, and higher level regional activations can be integrated within 
the same computational context. To accomplish this we plan to develop a novel neural network that will 
provide appropriate structures in order to achieve this purpose. It will consist of generic biologically 
inspired neurons, and provide a convenient framework for the computational modeler to customize its 
neurons, in order to exhibit the appropriate responses at the cellular level, as well as methods for 
combining the output of neuronal ensembles in order to accomplish certain behavioral functions. 
Moreover, we plan to consider how this network will be combined with the pathway computational 
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modeling methodology, in order to facilitate the development of large scale, biologically inspired 
computational models.   

 All in all, the work presented in this thesis has the potential to lead to novel methods for implementing 
mental simulation, a core cognitive function in primates that has long underpinned their social 
interactions. By taking advantage of the methods described in this thesis, computational modelers have 
the potential to develop artificial agents that will build and develop their cognitive system without 
interacting physically with their environment. As a result, robots can engage into an ongoing and 
continuous learning process, in which even though they do not consume any excessive power load, they 
continue to learn from their social partners, in a similar manner as humans do. Moreover, by combining 
the perspective of developing methods for resolving the sense of agency, robots will be able to 
construct a mental image of themselves, which will be grounded in their sensorimotor interactions with 
the world. Consequently, they will be able to develop intersubjective representations, that will facilitate 
their social interactions, such as empathy, language, emotions and perhaps even consciousness.   
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