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ABSTRACT

The purpose of this study is the development of a computational framework for studying the
dynamic changes of active transcription, and its interaction with chromatin remodeling and
chromatin alterations during cellular responses to genotoxic stress. For this purpose, ultraviolet
light C (UVC) was used as a genotoxic stress factor, damaging skin cells, specifically skin
fibroblasts (VH10, CSB and 1BR.3), while the activity of Nucletiode Excision Repair (NER)
pathway and the repair products of Global Genome NER (GG-NER) and Transcription Coupled
NER (TC-NER) sub-pathways were used to evaluate the examined mechanisms.

Various types of Next Generation Sequencing (NGS) experiments have been used to study the
stages of the transcription cycle in normal conditions, and in response to Ultraviolet C irradiation
(UVC) induced stress. Specifically, for studying the kinetics of RNA Polymerase 2 (RNAPII)
molecules from the transcription initiation state, to promoter proximal pausing (PPP), and the
transition to productive elongation, Chromatin immunoprecipitation sequencing (ChlP-seq) data
of the hypophosphorylated RNAPII (RNAPII-hypo), the elongating isoform of RNAPII (RNAPII-
ser2P), and the RNAPII-ser5P isoform (transcription initiation) was generated and analyzed.

To study the productivity of RNAPII molecules during the above stages, Capped Analysis of
Gene expression sequencing (CAGE-seq) data and nascent RNA synthesis sequencing (NnRNA-
seq) data was used. To study the interactions of chromatin with active transcription and its
alteration during the states of active transcription, Assay for Transposase-Accessible Chromatin
(ATAC-seq) data was generated and analyzed, and ChIP-seq data of H3K27ac and H3K27me3
histone modifications.

To study the effectiveness and genomic landscape of NER repair-synthesis events, for both
GG-NER and TC-NER sub-pathways, a novel assay called aniFOUND-seq was developed and
analyzed, coupled with data of excised DNA during NER activity (XR-seq) and NER damage
sequencing data (damage-seq). The functional assessment of TC-NER at active genes was
carried out through the study of mutations in melanoma and lung adenocarcinoma cancer
genomes, and XR-seq data meta-analysis respectively.

The results of these essays are divided into four sections:

(1) Development and application of algorithms for the analysis of NGS data related to human
disease. (a) Implementation of stand-alone analysis pipelines for the analysis of ChlP-seq,
NRNA-seq, and ATAC-seq datasets that include: Quality control (QC) assessment of sequenced
short-reads, short-read preprocessing, short-read mapping against the under study reference
genome/transcriptome, alignment processing, alignment summarization in genomic features
and visualization via heatmaps and average profiles, generation of genomic tracks viewable in
genome browsers (IGV, UCSC), NGS signal clustering upon functional genomic regions,
correlation of biological and technical replicates, dimensionality reduction methods to identify
technical/biological similarities/differences between samples, differential expression analysis,
peak calling analysis, differential binding analysis, differential accessibility analysis and other
statistical comparisons between biological conditions.

(b) Implementation of a “de novo” elongation wave identification algorithm using Hidden Markov
Models (HMMs), and DRB-nRNA-seq datasets.



(2) Cellular responses under genotoxic stress conditions. (a) Development of a computational
pipeline for the study of the reorganization of transcription and the chromatin rearrangements
upon UV-induced stress that include: genome annotation reconstruction, and characterization of
transcribed units’ activity (promoters, genes, enhancers, PROMoter uPstream Transcripts -
asPROMPs) along the human genome, the quantification of the RNAPII release from PPP sites,
and the evaluation of the RNAPII elongation wave kinetics.

(b) A proposed model describing the ‘safe’ mode mechanism of transcription elongation; upon
UVC-induced stress, steady-state transcription levels of virtually all actively transcribed genes
are re-adjusted to fast and uniform release of RNAPII elongation waves from PPP sites that
scan the transcribed genome for DNA lesions.

This mechanism maximizes the speed of lesion sensing, the probability that a damage will be
identified by an elongating RNAPII molecule and removed by TC-NER along the actively
transcribed elements. As a result, environmentally exposed genomes are characterized by a
modest and homogeneous mutation prevalence across the actively transcribed genome in both
strands, as opposed to the non-transcribed elements where higher mutation rates are observed.
In case NER is unsuccessful or is not recruited efficiently during the stress recovery process,
unrepaired DNA lesions can provoke error-prone DNA synthesis and result in mutagenesis during
replication.

(3) Extending the previously described ‘safe’ mode mechanism of transcription elongation, the
results of the particular dissertation also support a model of continuous transcription initiation
that can fuel the widespread UV-triggered escape of RNAPII into transcription elongation, that
safeguards the integrity of the actively transcribed genome. The particular mechanism is
supported by a global increase of chromatin accessibility at all actively transcribed promoters
serving as a platform that favors unrestrained transcription initiation, coupled by preservation of
the active mark H3K27ac and repressive mark H3K27me3 mark during early response to
genotoxic stress.

(4) A genome-wide analysis pipeline for the evaluation of aniFOUND-seq methodology.
aniFOUND, is the first methodology (at the time of writing this thesis) that can exclusively label,
capture and map the post-damage newly synthesized repaired chromatin in its native form (see
materials and methods). Coupling of aniFOUND to NGS, allows the mapping and
characterization of the NER efficacy of different chromosomal regions of the human genome.
aniFOUND-seq was successfully applied to map the repair-synthesis activity along damaged
skin fibroblasts (1BR.3 cells) with particular attention to promoter and enhancer sequences.
Furthermore, aniFOUND-seq was applied for the assessment of NER-UDS activity in several
chromosomal regions, including the fraction of repetitive DNA. Specifically, the repair efficacy
during the first 4 hours after damage induction was clarified for rDNA and telomeres, for which
contradictory explanatory models have been suggested. This is the first time that NGS-based
approaches are adopted for shedding light in the above-mentioned inquiries regarding repair of
telomeric DNA. Evidently, the cumulative nature of aniFOUND-seq (in terms of both damage
types and repair assessment period) renders it applicable for the cases that require capturing of



the whole repair process, or the repair activity during moderately-to-considerably long-time
windows.



NEPIAHWH

O oKOTTOG TNG OUYKEKPIPEVNG MEAETNG, OTTOTEAEDE TNV dnuIoupyia £vOg UTTOAOYICTIKOU TTAAIGiou
avAAUONG IO TNV JEAETN TWV DUVANIKWY AAAQYWYV TNG EVEPYNS HETAYPAPAG, KABWGS KAl TNG
OAANAETTIOPAONG TOUG PE TNV avadiauopewaon TG XPWHATIVAG, KATA TNV atrokpion oTo
YEVOTOEIKO OTPEG. Na Tov OKOTTO auTo, N uttEPIwdNG akTivoBoAia C (UVC) xpnoiuoTroinénke oav
OTPECOYOVOG TTAPAYOVTOGS YIa TNV dnuioupyia BAABwWY O€ depPATIKG KUTTAPA, KAl CUYKEKPIYEVA
KUTTaPIKEG O€IpéG IvoBAacTwy dépuaTtog (VH10, CSB and 1BR.3), eV 0 HNXAVIOPOG EKTOUNG
VOUKA£oTIBiWV (NER), Kal ouyKekpigEva Ta ETTIBIOPOWTIKA TTAPAYWYA TWV UTTO-UOVOTTATIWV
Global Genome NER (GG-NER) kai Transcription Coupled NER (TC-NER) xpnoigotroinénkav
yia TNV agloAdynon Twv UTTO PEAETN UNXOVICHUWV.

MNa TNV EAETN TwV OTAdIWY TOU YETAYPAPIKOU KUKAOU O€ KAVOVIKEG OUVORKES, KABWG Kal o€
ouvOnkeg €kBeong otnv UVC akTivoBoAia, xpnoigotroinonkav TexvikéG aAAnAouxiong véag
yevidg (Next Generation Sequencing - NGS). Zuykekpipéva, yia TNV JEAETN TNS KIVNTIKAG TWV
Hopiwv TNG RNA tmoAupepdong 2 (RNAPII), atmd 1o o1ddio évapgng TNG HETAYPAYPNS, OTO OTADIO
TTavong (promoter proximal pausing - PPP), yéxpl kal Tnv JETARACN OTO GTNV TTAPAYWYIKA
ETMPAKUVON, TTapdxOnkav Kal avaAudnkav dedopéva NGS avoooKATAKPIMVNONG TG XPWHATIVNG
(Chromatin immunoprecipitation sequencing - ChlP-seq) Tng uttopwo@opuliwuévng RNAPII
(RNAPII-hypo), Tng pwaoopuhiwpévng otnv oepivn 2 RNAPII (RNAPII-ser2P), kai Tng
QWoeopuAiwpévng otnv oepivn 5 RNAPII (RNAPII-ser5P)

[Na TNV JEAETN TNG TTAPAYWYIKOTNTAS TwV Hopiwv TG RNAPII ota TTapatrdvw otddia Tng
METaypaQng, xpnoluotroinénkav dedouéva CAGE-seq (Capped Analysis of Gene expression
sequencing), kabwg kai dedouéva NGS aptiyevoug ékgpaong RNA (nascent RNA synthesis
sequencing - nRNA-seq)

MNa TNV HEAETN TNG AAANAETTIOPAONG TNG XPWHATIVAG Kal TwV avadiaopPWoEWY TG KATd TO
QAIVOUEVO TNG EVEPYNG METAYPAPNG, EvEpyoTTOINONKaV Kal avaAubnkav NGS dedopéva
Kataypagng Tng mpooBaciudtntag TG Xpwuativng ATAC-seq (Assay for Transposase-
Accessible Chromatin), kaBwg ka1 dedopéva ChlP-seq Twv ETTIVEVETIKWY TPOTTOTTOINTEWYV TNG
Xpwuativng H3K27ac kai H3K27me3.

MNa TNV aTTOCA@AVICON TNG ATTOTEAEOUATIKOTNTAG TOU PnXaviopou NER Kal TwWV UTTO-POVOTTATIWV
GG-NER kai TC-NER, avamtuxfnke pia véa NGS texvoAoyia, To aniFOUND-seq, n otroia
ouvdudoTnke ue dedouéva XR-seq (ueBodoAoyia evioTTiopou ektourig DNA katd Tnv dpdon Tou
pMnxaviopou NER), kaBwg kal pe NGS dedopéva evrotriopoU BAaBuwy Tou DNA TtTou
TTpokaAouvTal atmd Tnv UVC akTivoBoAia (damage-seq). H AeiToupyikr atroTtiunon tou
pMnxaviopou TC-NER o€ evepyd HETAYPAPIKEG HOVADES TTPAYHATOTTOINONKE PE TV avaAuon
0edopEvwy PETOAAQYWY YOVISIWUATWY PE KapkKivo Tou d€puaTog (melanoma) kabwg Kai Kapkivo
Tou TTveupova (lung adenocarcinoma), o€ cuvOuaouo Pe peTa-avaAuon dedouévwv XR-seq.

Ta ammoteAéopaTa Twy TTapardvw cuvowifovTtal o€ 4 TUAUATA:

(1) Avatrtugn kal epapuoyr aAyopiBuwv yia Tnv avaAuon dedopévwv NGS tTou oxetiCovtal hE
TNV avBpwTTivn TTaBoyévela: (a) AvamTuén evog autévouou TTAaiciou avaAuong 6edouévwy
ChlIP-seq, nRNA-seq, kai ATAC-seq TTou TTEPIEXEI TNV TTOIOTIKI ATTOTINNON TWV OEDOUEVWV
(Quiality Control - QC), Tnv Trpo-emmegepyaacia Twv PiIkpwv diaBacudtwy (reads), Tnv avTioToixion
TwV SloBacudTwy oTo yovIdiwpa/ HETAYPAPWHA ava@opdg, TNV TTECEpYATia TwV



QVTIOTOIXIOEWYV, TNV oUVOWYN TWV AVTIOTOIXIOEWV OE YOVIDIAKEG TTEPIOXEG AVAPOPAGS KAl TNV
OTITIKOTTOINGON TOUG, TNV dnuioupyia eyypa@wy yia TTAOynon o€ yovidIakoUG QUAAOUETPNTES
(IGV, UCSC), Tnv opadotroinon Tou NGS ofuartog o€ AEITOUPYIKE JETAYPAQPA, TIGC CUCXETIOEIG
METOEU BIOAOYIKWYV KAl TEXVIKWY ETTOVAAAWEWY TWV OEDOUEVWY, TNV EQAPHOYT HEBOdWYV PEiwoNng
OIaCTACEWY VIO TV AvayvVwPEIoT TEXVIKWV/BIOAOYIKWY OPOIOTATWV/SIAQOPWY TwV OEO0UEVWY,
TNV avAAucon dIaQopIKAG EKPPACNG, TV avaAuon eUpeonG TTEPIOXWV UE evioxuuévo ChiP-seq
onpa (peak calling), Tnv avaAuon diagopikAg TTpdadeong, TNV avaAucon dIagopIkAG
TTPOCRACINOTATAG TG XPWHATIVAG, KAl GAAEC OTATIOTIKEG CUYKPIOEIG HETAEU TWV UTTO-HEAETN
BioAoyikwyv cuvBnkwv. (B) AvatrTuén evog ahyopibuou yia Tov eviotiopd Tou “de novo”
peTaypagikoU kUuatog TG RNAPII, xpnoipotroiwvtag Kpupd Mapkofiava MovTtéda (Hidden
Markov Models - HMMs) ka1 dedopéva DRB-nRNA-seq.

(2) Kuttapikr) attékpion o€ OUVONAKEG YEVOTOEIKOU OTPEG: (a) AvAaTTTugn evog TTAaiciou avaAuong
yla TNV JEAETN TNG avadiopydvwaong TNG ETAYPAPAS Kal TNG XPWHATIVNG ETTEITA aTTd £€KBEON O€
UV-C. 210 ouyKekpluévo TTAdiolo avaAuong trepiéxovTal: KatdAAnAn TTpocapuoyr Twv
METaYPAPWYV avagopdg (UTTOKIVNTEG, yovidia, evioxuTtég, PROMoter uPstream Transcripts -
asPROMPS) kai xapaktnpiopdg g evepydTnTdg TOUG, TTOCOTIKOTTOINON TNG £6600u TNG RNAPII
atré 10 onpeia PPP kal atroTipnon Tng KIVATIKAG TNG KOTA TNV TTOPAYWYIKA ETTIMAKUVON.

(b) 'Eva TrpoTeIvOpEVO HOVTEAO TTOU TTEPIYPAQEI TOV Pnxavioud “safe mode” Tng mapaywyikng
ETTINAKUVONG. ZUYKEKPIPEVA, KATA TNV ATTOKPION OTO YEVOTOEIKO OTPEG TTOU TTPOKAAEITAI aTTd TNV
UVC akTivoBoAia, TTapartnpeital n ypryopn Kai opoidpopen atreAeubépwaon tng RNAPII atrd Ta
PPP onueia Twv evepywyv JETAYPAPWY, TTPOKOAWVTAG TO EEOTTAOUA £VOG JETAYPAPIKOU KUPATOG
TO OTTOIO HE TNV OEIPA TOU AVIXVEUEI TO JETAYPOPUWHEVO YOVIBiWHa yia BAGBEG.

O OUYKEKPIPEVOG UNXAVIOPOG UEYIOTOTTOIEI TNV TaXUTNTa evioTTiouou DNA BAaBwv, Tnv
mOavoeTNTA Avayvwpiong aTrd Ta eTiNKouueva popia RNAPII, kal agaipeong Toug atréd 1o TC-
NER OTIG HETAYPOAPIKEG HOVADEG TWV EVEPYWYV YOVIDIWV. XAV ATTOTEAETUA, YOVIDIWUATO
ekTEONUEVA O€ TTEPIBAANOVTIKOUG TTAPAYOVTEG XOPAKTNEICOVTAl OTTO TTEPIOPICUEVO Kal
OMOIOPOPPO BABPSG PETAAAQYWY, OE TTEPIOXEG EVEPYWV PETAYPAPWY, Kal OTIG 2 DNA aAucideg,
o€ avTiBeon Ye TIG TTEPIOXEG TTOU Bev peTaypagovTal atmd Tnv RNAPII étTou TTapaTnpeital
augnuévog BaBudg petalaywy. Ze epitrtwon Tmou 1o NER eival avetTiTuxég, n dev
oTpaTtoAoynBei eMTUXWG KaTA TNV d1adikacia TNG avakapyng aTré Tnv €KBEoN OTIG OTPECOYOVEG
ouvOnkeg, un d1opbwpéveg DNA BAGRES utTOpOUV va TTpokaAécouv eo@aAuévn DNA ouvBeon n
oTroia Ba €xel oav ATTOTEAECHA TNV PETAANAIYEVED.

(3) EmekTeivovTag TNV TTEQIYPOQPr) TOU PNXAVIOPOU “safe mode” Tng TTapaywyIkng ETTIUAKUVONG,
TA ATTOTEAECUATA TNG CUYKEKPIUEVNG BIaTPIBAG uTTooTNPICoUV £va PJovTéAO BiapkoUg Evapéng TNG
METAYPOQNG, TO OTT0I0 TPOYOodOTEI TNV eKTEVA £€000 TWV RNAPII popiwv atré 1o PPP £reita amo
¢kBeon otnv UVC, d1a@uAdooovTag £T01 TNV OKEPAIOTNTA TOU EVEPYA JETAYPOAPUHUEVOU
yoviSiwpaTog. O unxaviouég autdg TTAaICIVETAI atTd TV KAaBoAIKA auénon Tng
TTPOORACIUOTNTAG TNG XPWHATIVNG, O OAEG TIG EVEPYEG JETAYPAPIKEG JOVADEG, TTAICOVTAG TOV
POAO HIaG TTAATQOPUAG N OTToIa UVOET TNV adIAKOTTN £vapén TNG METAYPAPAG, VW TTAPAAANAa
olaTnEoUVTal Ol ETTIYEVETIKEG TPOTTOTTOINCEIG TwV I0TOVWY H3K27ac kal H3K27me3 katd tnv
OIdpKEID TWV TTPWTWYV OTadiwv KUTTAPIKAG avakauyng Emmeita atrd tnv €ékBeon otnv UVC
aKTIVOBOAIQ.

(4) Avatrtugn evog TAaiciou avaAuong Tou OAGKANPOU TOU YOVIBIWHATOG YIa TNV ATTOTIMNGCN TNG
aniFOUND-seq ueBodou. To aniFOUND, atroteAei Tnv TTpwTn HéB0SO (KaTd Thv didpkeia TG



OUYYPAPNG TNG CUYKEKPIMEVNG HEAETNG) TTOU ETTITPETTEI TOV OTTOKAEIOTIKO XAPOKTNPIOUO Kal TV
QvAKTNON TWV VEOOUVTIOEUEVWY TUNPATWY TNG £mMOIOPBwHEVN XpwHATIVAG, ETTEITA OTTO TNV
atroudkpuvon Twv DNA BAapwy atré Tov pnxaviopd NER. O cuvduacuog 1ng pebddou
aniFOUND pe Tnv texvoloyia NGS, TTITPETTEI TOV EVTOTTIONS KOl TOV XOPAKTNPIOUS TNG
QTTOTEAECUATIKOTATAG TOU pnxaviopoUu NER oT1o o€ 0AOKANPO TOo avBpwTTivo yovidiwua.

To aniFOUND-seq €@apuOOTNKE ETTITUXWG YIQ TV aviXveuon €TTIBIOPOWUEVWV TTEPIOXWV OE
IvoBAdoTeg 6€puaTog (1BR.3 KUTTAPIKN CEIPA), ME EUPAC OTIG TTEPIOXES TWV UTTOKIVNTWV KAl
evioxutwyv. EtimrAéov, 10 aniFOUND-seq aglotroinbnke yia Tnv ammoTtignon Tng 6pactnpIiotnTag
Tou NER-UDS, 0¢ dId@Qopeg TTEPIOXEG TOU AVOPWITTIVOU YOVISIWMPATOG, OTTWG Ol TTEPIOXES
emavaAnwewv DNA (DNA repeats). Zuykekpipéva, atTooa@nVvioTNKE N aTTOTEAECHUATIKOTNTA TNG
emdIOPOwong Tou DNA KaTd TIg 4 TTPWTEG WPEG ETTEITA ATTO TNV dnpIoupyia BAABwWY, yia TIG
TTEPIOXEG PIBOCWHIKOU DNA Kai Twv TEAOUEPWY, VIO TIG OTTOIEG HEXPI TWPA UTTAPXAV
QVTIKPOUOUEVA HOVTEAQ TTEPIYPAPNG. KaTd CUVETTEIA, 0 CWPEUTIKOG XapakTripag Tou aniFOUND-
seq (o€ 6poug TUTTWV BAaBWYV, KABWG Kal TTEPIOdOU £TIBIOPBWONG) TO KABIOTA KATAAANAO yIa
MEAETEG TTOU atTaIToUV TNV OAIKN afloAdynon Tng diadikaciag emdidpbwaong Tou DNA katd Tnv
OIAPKEIA OXETIKA HEYAAWV XPOVIKWY dIaCTNUATWV.



EYXAPIZTIEZ

Oa BeAa va euxapICTHOW TOUG YOVEIG HOU, TOUG TUVODEAPOUG ou Kal TO Gueao TTepIBGAAov
Hou TToU OAa auTd Ta Xpovia pe OTAPIEE WOTE va OAOKANPWOEI N OUYKEKPIPEVN BIATPIRA.
IS10iTepEG euxapioTieg Ba nBeAa va dwow atnv Mapia ®oucTépn, n oTroia Pe KaBodrynoe Kal Pe
oTAPIEE NOIKA Kal OIKOVOUIKG OTRV PWEXPI OTIYHAG TTOPEIa HOU OTOV XWPO TNG £PEUVAG.



Contents

1 INEFOTAUCTION ...ttt e e e e et e e e e e e e e s r e e e e e e e e e nnnrne s 14
1.1 GENOTOXIC SEIESS. ...ttt 14
1.2 Cellular reSpoNSES t0 gENOIOXIC SITESS ... ..uuuuuuuuuiiinniiiiiiiiiiibiieeiiie bbb ebeeeseeeennnenne 16
L3 N R e e e a et et et aeeaa e e eaaans 17
1.4 Diseases related to defective repair mechanisms. ..........ccccceeiiiieiiiiiici e, 19
IR T (T 1= = L 24

1.5.0 T@IOMIEIES. ...ttt ettt e e e e et e e e e e e st r e e e e e e e 24
1.6 RNA polymerase Il transcription MaChINEIY .............uuuuiuiiiiiiiiiiiiiiiiiieeeeeeee 25
1.6.1 TraNSCIPLION CYCIE ...coiiiiiiiiiiiiiiiieeeee ettt 26
1.6.2 NON-COAING traNSCIPLION ....cevviiiiiiiiiiiiiiiiii ettt 29
1.6.3 Transcription during UV irradiation...........ccoooeiiiiiiiiiiiiis et e e e eanens 32
1.7 Chromatin and tranSCHPLION .........oouiiiiie e e e e e e e e a e e e e 32
1.7.1 Chromatin aCCeSSIDIlILY .......uvuuiiiieeiieiee e e e e e e e aaanes 35
1.7.2 Roadmap Chromatin STAES .........eeviiiiiiiiiiiiiiiiiiieii ettt 37
1.8 HIUMING SEOUENCING . ...ttt 37
1.9 Basic components of NGS data analySiS. .............uuuuuumimiiiiiiiiiiiiiiiiiiiiieeeeeeees 39
IS TR NS AN {1 PP 39
1.9.2 FASTQ files and quality control (QC) .......coiiieiiiiiiiee e eaeees 39
1.9.3 GENOME ASSEMBIY ....oiiiiiiiiiiiiiiiii ettt 42
1.9.4 SOrt-read MAPPING ...ceeeeeeeeiiiiiiiiiieieiei ettt ettt et et e e e et e e et e e e et e e eeeeeeeeees 43
1.9.5 SAM = BAM fll@S ... et e e e e e aaane 45
1.9.6 AlIGNMENT COUNTING .. .iiiiiieiieee e e e e e e e e e e e et e s s e e e e e e eeattb e e eeaeeeennees 48
1.9.7 RPKM, TPM and CPM NOIMMAlIZAtION .....ceeieeei et e e e e e e ennennas 49
1.9.8 BED, bedGraph and bigWig files. ..o 50
1.9.9 RefSeq, UCSC and Ensembl human gene Sets..........ccccvvvviiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeee 52
1.10 Hidden Markov MOdelS (HMMS) ........uuuuiiiiiiiiiiiiiiiiii e 52

2 MaterialS and METNOAS .......uuuiiiiiiiiiiiiiei bbb 59

2.1 HUMAN CEIITINES ... 59

2.2 Cell population SYNCAIrONIZAION. .........coii i e e 59



e L6 YL O Or Y | I g = o L= 11T ] o [T 60

2.4 ACELIC NIStONE EXLIACTION ....ciiiiiiiiiie it e e e e e e 60
2.5 1N VIVO CTOSSINKING ..o 60
2.6 Chromatin Immunoprecipitation sequencing, ChIP-Seq...........ccccoiiiii 61
2.7 Total RNA and nascent RNA (NRNA) eXtraction...........coooeeeiiieiei e 61
2.8 Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-
1= ) I USSPPPPPRN 62
2.9 Construction of NGS compatible DNA lIDraries ... 63
2.10 Next Generation SEQUENCING ......uuuuiiieeeeeieeiiiiiee e e e e e et re s e e e e e e e e e ettt e e e e e e e aarrar e aeaaees 64
2.10.1 ChIP-seq of RNAPI ISOfOIMIS .....ccuiiiiii i 64
2.10.2 RNAPII-SEr2P DRB ChIP-SE(Q ... uuuuuutuuiuiiitiiiiiiiniiiinnnennnnnnnsnnennnnssenenrneernsnnnennns 65
2.10.3 Histone modifiCationS- ChIP-SEQ ........uuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeereeeeeeeeeeeeneneee 66
2.10.4 +DRB RNAPII-NYPO ChIP-SEQ ... .uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeiieieeeeeeeseesesaeeseeenenennnenne 66
2.10.5 VH10 QNd CSB NRNA-SE( ... tuttuuuuuununnnninnnunttinunnttsnseesssssssssssssssssssesssessssaeseeseneeennennne 67
2.10.6 Pre-DRB NRINA-SE. ... ietiiiii ittt e e e et e e et e e e e e et e aeaanas 67
B O A AN I = =T o OSSP 68
2.10.8 Start-RNA SYNENESIS.....cuiiiii i e e et e e e e e e e eraaaaas 68
2.10.9 Cap analysis of gene expression sequencing (CAGE-S€Q) .........uuvvuvrrmrmmmmmmmmmmnnninnnns 69
2.10.10 EXcision repair SeqUENCING (XR-SEQ) .. .uvuurruruumuuumrnnninniinineiinnnennnnnnnnnnnennnennnneennnenns 70
2.10.11 NHF1 time-COUIrSE XR=SE( ....cceieiiiiiiii i e eee it e e e e et e e e e e e arraaas 72
2.10.12 XPC XR-seq of CPD damages coupled with double DRB (DRB2) treatment (pulse—
CRASE—PUISE) ...t 72
2.10.13 ANMIFOUND-SEQ. .. tttttttttttttititteeaaaeeeeeeeeseeebae e see bbb 73
2.11 PEAK CalliNg ..uun ettt e e e e e e 75
2.12 Dimensionality redUCTION ..........oouiiiiii e e e e e e e e e 75
2.13 Bootstrapping statistical analysis and effect Sizes ............ooeviiiiiiiiiii e 76
B S UMIMIAIY .ttt e e e ettt et bk oo oo e e ettt e e bt e e e et e e e e e h e e e e et e eerba e eeaas 77
3.1 Development and application of algorithms for the analysis of NGS data related to human
ISEASE ... 77
3.2 Cellular responses under genotoxic stress CONditioNS. ............ooevvveiiiieeeriieeiiiiiee e eeeeeaeinns 77
3.3 A genome-wide analysis pipeline for the evaluation of aniFOUND-seq methodology....... 78

R SUIS ... e s 79



4.1 Automated analysis Of NGS datal ..........uuuiiiiiiiiiiiiie e e 79

4.1.1 Quality control (QC) of raw FASTQ fil€S......ccuviiiiiiiieeeee e 79
4.1.2 Adapter clipping and quality trimming of raw FASTQ files ..., 80
4.1.3 ChIP-seq analysis PIPElINE ... 80
4.1.4 Nascent RNA-seq (NRNA-seq) analysis pipeline..........coooooeieiiiin 91
4.1.5 ATAC-seq analysis PIPEIINE ........ouuiiiiii e a e 95
4.2 Genome-wide identification of de novo elongation Waves .........ccccoeeevvvviiiiiiiineeeeeceeiiinn, 96
4.2.1 Quality control, prefiltering and read MapPINg .........ccovviiiiiiiiii e 96
4.2.2 Genome annotation rECONSIIUCTION .......ccoeeiieeieeeee e 97
4.2.3 Transcriptional activity determination ...........ccooooooiiiiee e 97
4.2.4 DAta VISUALIZATION ... 98
4.2.5 Data PrepParation ..........uuiiii i e e ee et e e e e e e e e e e aaar 100
4.2.6 HMM set-up and traiNing...........oouuuiiiiiie e e e et e e e e e e e aarts s s e e e e e e eeanaaaaaans 101
4.2.7 HMM PreOICTIONS ... 102
4.2.8 Wave front comparisons and elongation rate estimation ..., 103
4.3 A computational pipeline for the study of the reorganization of transcription and chromatin
alterations UPoN UV-INAUCEA SITESS. ......ccoiiiiiiiiiie et e e e et e e e e e e aeaeees 104
4.3.1 Gene transcripts and eXoNs anNOTALION .........ccoooeeeiieeee e 104
4.3.2 Transcript activity status determination ...........cooooooioeireeee e 105

4.3.3 Transcription start site (TSS) annotation of MRNAs, enhancers and asPROMPTs ..106
4.3.4 mMRNA TSS activity determination .............oouuiiiiiiii e 106

4.3.5 Transcriptional directionality of actively transcribed TSSs and actively transcribed
enhancers determMiNALION..............iii i e e et e e e e e e e eaaaeaa e e e eeaeeenanes 108

4.3.6 ChlP-seq read density analysis reveals patterns of extensive reorganisation of

LU= Yo g o] 1 o) o [PPSR 112
4.3.7 nRNA-seq read density analysis reveals patterns of nascent RNA production
asymmetries between proximal and distal gene regions ............ccccceeeiieeeiiiiiiiiiiinn e 116
4.3.8 Analysis of RNAPII-ser2P DRB ChiP-seq and pre-DRB nRNA-seq delineates the
RNAPII elongation wave release in normal skin fibroblasts............ccccccooii i 117
4.3.9 omni-ATAC-seq read density analysis reveals patterns of global chromatin
accessibility increase along transcriptional regulatory regions upon UV ................eevveeeen. 121
4.3.10 H3K27ac and H3K27me3 marks remain stable after UV..............cccoeeeie, 124

4.3.11 Release of de novo elongation waves promote sensing of DNA damages............. 126



4.3.12 De novo release of RNAPII elongation wave promotes DNA repair............ccccvvvee... 132

4.3.13 De novo release of RNAPII elongation wave restricts the mutation prevalence in the

transcribed strand of all aCtiVe gENES .........cooo i 135
4.3.14 UV-dependent increase of chromatin accessibility is paralleled by RNAPII transition
INtO tranNSCriPtioN €IONQALION ......evviiiiiiiiiiiiii ettt 140
4.3.15 Genome coverage analysis of nRNA-seq data reveals global inhibition of
transcription upon early recovery from UVC-stress induction ............ccccceeveeeeiiiiiiiiiien e, 142
4.3.16 Treatment with DRB retains the RNAPII signal in PICs during early recovery from

UV C-INAUCEA SITESS ...eeiiiiiiiiiiiiiiiiieieetee ettt ettt e et et ettt e e et e e e e e e e e e aeeeeeeaeees 142
4.3.17 Increased nascent RNA synthesis from active promoters during early recovery from
L0 AV @ 0o (1 ToT =0 I (=TS 144

4.3.18 Continuous transcription initiation during UVC recovery is coupled to nascent RNA
S NI SIS - 147

4.3.19 Balanced level of RNAPII-hypo at PICs favors homogeneous TC-NER function....148

4.3.20 Uninterrupted transcription initiation drives the cell’ transcriptome to DNA-damage
rEeCOVErY Via TC-NER .....oooiiiiiiiiiiiiiiiiieieeeee ettt 152

4.4 A genome-wide analysis pipeline for the evaluation of aniFOUND-seq methodology.....156

4.4.1 An analysis pipeline for the estimation of NER activity on repeated genome using

ANIFOUND-SE( ...ttt 159
5 CONCIUSIONS = DISCUSSION ...ceeeeeeee ettt et e et e et et et e e e e e e ennn 164
B R B EIEINCES. ..o e et 169

1 Introduction

1.1 Genotoxic Stress

Genomes are constantly exposed to DNA-damaging agents, which disrupt genome integrity by
producing DNA lesions, altering DNA chemistry and structure. It has been estimated that every
cell experiences up to 10> spontaneous or induced DNA lesions per day (De Bont & van
Larebeke, 2004). Cells try to eliminate these alterations by either DNA repair or apoptosis, but
lesions may not always be removed leading to mutagenesis and increasing the risk to develop
cancer.

Genotoxic agents have long been associated with the development of human cancers. These
include environmental agents such as the ultraviolet (UV) radiation that increase the risk of skin
cancers (Pleasance, Cheetham, et al., 2010), cigarette smoke that increases the risk of lung



cancer (Pleasance, Stephens, et al., 2010), aflatoxins that are related with liver cancer
(Alexandrov et al., 2013), amine dyes with bladder cancer (J. Kim et al., 2016), benzene with
leukemia (Snyder, 2012), and vinyl chloride with hepatic cancer (Fedeli et al., 2019). Additional
sources of genotoxic stress are several therapeutic agents, such as anticancer drugs cisplatin
and Topoisomerase | and Il inhibitors, but also some endogenous metabolic products or by-
products such as reactive oxygen species (ROS) and errors generated during the replication
procedure. A perplexing diversity of lesions arises in DNA by these genotoxins. ROS can cause
DNA base lesions including hydrolysis (deamination, depurination, and depyrimidination)
whereas exposure to alkylating agents (O%-Methylguanine) or oxidation (8-oxoG). UV exposure
is linked with formation of cycloboutene pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidine
photoproducts (6-4PPs). lonizing radiation (IR) induces single and double DNA strand breaks,
while chemotherapeutic drugs are responsible for inter- and intra-strand DNA crosslinks (Ciccia
& Elledge, 2010). Over 100 oxidative modifications have been identified in DNA (Cadet et al.,
2003).

The primary structure of the DNA double helix can be altered by such lesions, resulting in
defects during the transcription and replication processes. Nevertheless, faulty repair of DNA
lesions may lead to genomic mutations that can be inherited through cell division with
deleterious consequences for human health. Since genotoxic stress effects can be (directly or
indirectly) involved in both tumor initiation and tumor progression, or even be a prerequisite for
tumorigenesis, studying and understanding the cellular responses to genotoxic insult is a vital
step for the prevention and treatment of human disease.

Repair mechanism Lesion feature Genotoxic source
(examples)

Base excision repair (BER) Oxidative lesions Reactive oxygen
species (ROS)

Nuclectide excisicn repair Helix-distorting lesions U\ radiation

(NER)

Translesion synthesis Various lesions Various sources

Mismatch repair (MMR) Replication errors Replication

Single stand break repair Single strand breaks lonizing radiation, ROS

(SSER)

Homologous recombination Double-strand breaks lonizing radiation, ROS

(HR)

Non-homologous end Double-strand breaks lonizing radiation, ROS

joining (NHEJ)

DMNA interstrand crosslink Interstrand crosslinks Chemotherapy

repair pathway

Table 1 DNA repair mechanisms are specialized to repair the different types of DNA damages. Adapted
by (Torgovnick & Schumacher, 2015), TABLEL.



1.2 Cellular responses to genotoxic stress

Cells regularly respond to genotoxic insults using an intricate defense system. These responses
involve various cellular factors that form an extensive signal transduction network. The specific
network includes a complex signaling cascade termed as the DNA damage response (DDR) that
bridges the DNA damage sensing (initial signal) with the activation of specific transcription factors,
which successively regulate the expression of genes implicated in DNA repair pathways, cell cycle
arrest to allow time for repair, and in some cases, initiation of senescence or apoptosis programs
(Ciccia & Elledge, 2010).

Despite there is no single repair machinery that can handle all types of damage, evolution has
molded a layer of complex and sophisticated DNA repair systems that altogether cover most of
the genotoxic insults that affect cell's vital genetic information. These mechanisms are highly
conserved across mammals and can be categorized to at least five distinct, partly overlapping
pathways: Nucleotide-excision repair (NER), base-excision repair (BER), mismatch repair (MMR),
homologous recombination (HR) and non-homologous end joining (NHEJ) (Friedberg et al., 2005;
Lindahl & Wood, 1999). The main function of each mechanism can be depicted as follows (Table
1).

Oxygen radicals Polyaromatic
SRR i Op Oy OH ‘Ol O, hydrocarbons A
2 replication stress R s e < oo
[ DNA damaging agents ] ?Ionlzlng radiation X X & 'vEngradiation
Chemotherapeutics @ UV light Chemotherapeutics @

T1 1T

. L A

Base mismatches ssDNA breaks DNA adducts dsDNA breaks
52, & P RPN P
Types of DNA damage o koY ; >
,'-‘~ S g & = Intrastrand crosslinks Interstrand crosslinks
» N e Abasic sites Y
Insertions / deletions N 5 3 é
g p ~die
l L LT 8-Oxoguanine 5p
N NNy l
[ DNA repair mechanisms ] Mismatch repair Base-excision repair Nucleotide-excision repair ~ dsDNA break repair
Transcription-coupled- / Homologous recombination /
global genome repair non-homologous end-joining

Figure 1 DNA damage and repair mechanisms. Adapted from figure 3 in (Helena et al., 2018).

NER is involved in the removal and replacement of bulky, helix distorting DNA adducts by sensing
the distortion caused to the DNA double helix and by excising the oligonucleotide containing the
lesion and replacing it with newly synthesized DNA (Figure 2). NER lesions mostly arise from
exogenous agents (like UV), while exceptions include some kinds of oxidative lesions. This
pathway is one of the main models used in this study and will be analyzed more precisely in the
next sections.

BER removes and replaces small chemical alterations of DNA bases. This type of lesions is more
frequently related to DNA miscoding that may be responsible for causing mutagenesis. BER is



mainly triggered by damages originating endogenously (like ROS). Lesions related with either
NER or BER affect only one of the DNA strands where the injured part is removed and the
resulting gap is replaced by using the intact complementary strand as a template.

MMR is activated when A-G and C-T do not pair correctly, but also when erroneous DNA
replication or DNA polymerase misincorporation errors result in DNA insertions/deletions. During
this process, mismatches are recognized, excised, and DNA resynthesis corrects the damaged
sequence.

Double strand breaks (DSBs) seem to be more problematic, since both strands are affected,
however HR and NHEJ are the specialized machineries that are dealing with such injuries. HR is
activated during DNA replication, taking advantage of the original version of the sequence (copy
of the sequence) for aligning the breaks. NHEJ is mostly activated during the G1 phase of the cell
cycle and takes advantage of the DNA ligase IV that uses the overhanging pieces of DNA adjacent
to the DSBs to join and fill in the ends.

Nucleotide Excision Repair

DNA is damaged

Transcription-coupled 7 R e Global excision
repair repair

W RNA polymerase XPC/hHR23B ‘w

i stalls (+/- DDB) binds @D xPEIDDE2
xrc@® — damage is ‘XPCIhHR23B
CSB. recoghized 6

xrc@ S

TFIIH & = RPA*
(with TTDA) ~ xpa

N3 XPA RPA, XPG, and TFIIH bind

TFIIH unwinds DNA helix

XPFIERCC1 Y .2
DNA B.
pol . N - ;
— DNA polymerase fills gap,
- . ligase seals nick

=— normal nucleotide sequence restored

XPG and XPF/ERCCI cuft,
lesion excised

clean template for transcription«—"~—— clean template for replication
Figure 2 Nucleotide Excision Repair graphic. Image from (Fuss & Cooper, 2006).

1.3 NER

Nucleotide-excision repair (Figure 2) is responsible for the removal of the widest range of DNA
lesions, including UV-derived photoproducts (6-4PPs and CPDs), numerous bulky chemical
adducts, intrastrand crosslinks and ROS-generated lesions. NER is divided to two sub-pathways



(Figure 2): The Global Genome-Nucleotide Excision Repair (GG-NER), which is responsible for
lesion removal throughout the whole genome, with a more stochastic activity, and Transcription
Coupled-Nucleotide Excision Repair (TC-NER), which removes lesions from the transcribed
strand of the actively transcribed regions.

NER is considered the most flexible repair mechanism in terms of damage recognition, since the
sensing enzymes that participate in the recognition process do not focus on the lesions per se,
but they rather recognize multiple formations of abnormal bulks in the DNA helix. In GG-NER,
lesion sensing depends on the stochastic action of XPC--RAD23B or UV-DDB1/2 (XPE) complex.
In TC-NER, damage recognition is performed by the stalling of RNA polymerase Il (RNAPII) on
DNA adducts and the impairing of RNA synthesis reaction during transcription. TC-NER is a faster
procedure than GG-NER, but is exclusively limited to the template strand of the transcribed
elements. Also, recruitment of the two TC-NER exclusive factors Cockayne Syndrome B (CSB)
and Cockayne Syndrome A (CSA) at stalled RNAPII damage sites is crucial in humans and other
eukaryotes for the activation and completion of the subsequent core NER reaction (Spivak, 2015;
Vermeulen & Fousteri, 2013).

Following the damage detection, the two sub-pathways merge, and recruitment of the basal
transcription factor TFIIH facilitates the opening/melting of DNA-containing lesion through the
operation of Xeroderma pigmentosum (XP) XPB and XPD subunits.

Consequently, proteins XPA, RPA and XPG are recruited, with XPA checking the existence of
any harmful DNA damage and transmitting signals to the 5' DNA endonuclease XPF-ERCC1
complex, while RPA binds and secures the complementary to the damage single-stranded (ss)
DNA, assisting the coordination of repair and the right orientation of the DNA endonucleases. The
XPG DNA endonuclease associates with and grants stability to TFIIH (lto et al., 2007), while
incision 5' to the damage by XPF-ERCC1 precedes the 3’ incision by XPG (Staresincic et al.,
2009).

In turn, DNA repair synthesis factors use the undamaged strand as a template to fill the 25-30
nucleotide (nt) gap created by the excised damage-containing DNA, a procedure that is strongly
affected by the cell cycle status (Lehmann, 2011). Particularly, gaps in non-cycling cells are filled
by PCNA, RFC1 and DNA polymerases (DNA pol) delta and kappa, while gaps in dividing cells
are filled by DNA pol epsilon and delta (Ogi et al., 2010). Accordingly, in non-cycling cells sealing
of repaired DNA is performed by XRCC1-DNA ligase llla complex, while in dividing cells sealing
of repaired DNA is performed by both DNA ligase | and XRCC1-DNA ligase llla (Moser et al.,
2007).

Importantly, similar to all the repair machineries, NER acts on DNA in the context of chromatin.
The presence of chromatin structure inhibits the repair process, thus chromatin remodeling and
histones post-translational modifications (PTM) are essential (before and during the repair
process) and serve as a primer of repair events, functioning further as the regulatory platform that
guarantees that DNA repair is coordinated with other cellular events. After the DNA repair is
completed, the prior chromatin structure must be faithfully restored. This procedure is described
as the access/repair/restore model (ARR) (Green & Almouzni, 2002).

Regarding the NER sub-pathways, interaction between GG-NER and histone acetyltransferase
(HAT) p300 has been reported, suggesting a functional role of p300 during the early stages of
damage recognition (Datta et al., 2001; Rapi¢-Otrin et al., 2002). It has also been proposed that



p300 protein is recruited to UV-induced DNA lesions located in heterochromatin, contributing to
the relaxation of chromatin structure in these loci (Q. E. Wang et al., 2013). DDB1 protein has
also been reported to be associated with GCN5 acetyltransferase (Martinez et al., 2001), which
in turn facilitates repair factors recruitment and NER induced repair through the H3K9
acetylation (H3K9ac)(Guo et al., 2011). Similarly, stabilization of the DDB2 protein by poly(ADP-
ribosyl)ation leads to the recruitment of the chromatin remodeler enzyme ALC1, outlining a
molecular mechanism for PARP1-mediated regulation of NER (Pines et al., 2012). Finally,
chromatin assembly factor CAF-1 is believed to play a role in chromatin structure restoration
after DNA repair is completed (Green & Almouzni, 2002)

Regarding the TC-NER mechanism, the CSB protein is a member of the SWI2 / SNF2 family of
DNA-dependent ATPases, and has been linked to chromatin remodeling activity in vitro(Citterio
et al., 2000). It has also been found to interact with acetyltransferase p300 and together with
CSA are prerequisites of nucleosome binding protein HMGNL1 recruitment, which enhances the
rate of repair in chromatin (Birger et al., 2003; Vermeulen & Fousteri, 2013). Additionally,
SPT16, a subunit of the histone chaperone FACT, facilitates H2A and H2B, which in turn are
displaced at an accelerated pace from UV-induced DNA lesion sites. SPT16 is targeted to
stalled RNAPII sites during TC-NER and is essential for efficiently restarting the RNA synthesis
upon damage removal (Dinant et al., 2013). Finally, Histone methyltransferase DOT1L is a
driver for gene expression recovery after a genotoxic insult (Oksenych et al., 2013).
Considering the above, it is clear that chromatin remodeling and histone PTMs are essential for
the assembly of TC-NER at damage sites, but also for the subsequent restoration of active
transcription.

1.4 Diseases related to defective repair mechanisms.

Defects in DNA repair mechanisms result in a very broad spectrum of human diseases including
neurodevelopmental defects, premature ageing, neurodegeneration and cancer. (Table 2).
Some characteristic examples will be described below, with an emphasis to NER-deficient
related diseases (Figure 3).

Ataxia Telangiectasia (AT) is a neurodegenerative human disease, with a clinical outcome of
radiation sensitivity, chromosomal instability and predisposition to cancer. AT is linked with
homozygous mutations in the ATM gene (432 mutations have been reported, leading to protein
instability), a protein kinase that initiates the DSB repair process (Torgovnick & Schumacher,
2015), with up to 30% of patients developing lymphoid cancer since ATM plays a critical role in
T and B cells differentiation (Lumsden et al., 2004). Patients with heterozygous missense
mutations have higher prevalence to develop breast, colorectal and stomach cancer (Paglia et
al., 2010; Thompson et al., 2005), while hypomorphic mutations in ATR lead to Seckel
syndrome, characterized by growth retardation, microcephaly and a characteristic “bird-headed”
facial appearance (O’Driscoll et al., 2003).

In hereditary breast cancers, approximately 5-7% of mutations are related to BRCA1 and
BRCAZ2, which in turn play a major role in different repair machineries. Particularly BRCA1 acts
in HR and NHEJ and single-strand annealing (SSA) via its different interaction domains, while
BRCAZ2 has the main role of mediating the recruitment of RAD51 protein to DSBs during HR.




Non-functional NER mechanism is a result of germ-line mutations in genes encoding for various
factors that are involved in the different steps of the pathway. Although genetically distinct, the
overlapping clinical features of these pathologies often create confusion to scientists regarding
the correct classification and diagnosis of cases. Defects in GG-NER sub-pathway result in
Xeroderma Pigmentosum (XP), which is an autosomal recessive and rare human disease,
characterized by increased cancer risk (between 1000 to 10.000 times higher depending on the
type) due to environmental stress sensitivity and an increased chance of developing tumors at
internal organs. In addition, 25% of patients express progressive heurodegeneration.

Seven complementation groups with NER-deficiency have been genetically assigned in XP (XP-
Ato -G). An additional one, carries mutations in the POLH gene that encodes for DNA
polymerase n (eta), that specializes in error--free replication of DNA damage-containing DNA,
leading to XP variant (XPV) syndrome (Masutani et al., 1999).

Disorder Main symptoms DNA repair defect Mode of
inheritance
Xeroderma pigmentosum  Sensitivity to sunlight; slow neurodegeneration; NER (7 variants) pol 5 Autosomal
skin cancer recessive
Cockayne'’s syndrome Sensitivity to sunlight; growth retardation; Defective NER and TCR Autosomal
neurological impairment; progeria recessive
Trichothiodystrophy Sensitivity to sunlight; dystrophy; short brittle Defective NER, particularly of ultraviolet- Autosomal
hair with low sulfur content; neurological and induced damage; closely related to recessive
psychomotoric defects ERCC2 and ERCCS3 defects
Down syndrome Mental retardation; progeria Defective repair of oxidative DNA No precise mode

damage (trisomy of chromosome 21)

of inheritance

Ataxia-telangiectasia and Progressive ataxia caused by cerebellar Defective DNA damage response and Autosomal
ataxia-telangiectasia-like degeneration; progeria; wheelchair dependency DSB repair recessive
disorder

Nijmegen breakage Similar to ataxia-telangiectasia Defective DNA damage response and Autosomal

syndrome DSB repair recessive

Alzheimer's disease Progressive neurodegeneration leading to Increased oxidative stress and damage;  Autosomal
dementia, memory loss and cognitive decline defective repair of oxidative damage and dominant

DSB repair (nonhomologous end joining)

Parkinson's disease Tremor; bradykinesia; postural rigidity and Oxidative stress and DNA damage; Autosomal
postural instability; degeneration of dopaminergic  mutations in a-synuclein and parkin dominant
neurons in substantia nigra area variants

Huntington’s disease Progressive chorea and dementia; severe CAG repeat expansion in huntingtin (HD) Autosomal
neuronal loss in the striatum and cerebral cortex  gene, and oxidative damage to DNA dominant

Several spinocerebellar Various problems with bodily movements similar Expanded CAG repeats in various genes  Autosomal

ataxias to those experienced with Huntington's disease; dominant
progressive loss of neurons in various loci

Friedreich's ataxia Limb ataxia; cerebellar dysarthria; sensory loss; GAA expanded repeats in frataxin Autosomal
skeletal deformities (FXN) gene recessive

Myotonic dystrophy Muscle weakness and wasting; cataracts; CTG expansion (type 1); CCTG Autosomal

types 1 and 2 testicular atrophy; cognitive decline expansion (type 2) dominant

Spinocerebellar ataxia Progressive degeneration of postmitotic neurons  Mutated DNA tyrosyl Unknown

with axonal neuropathy-1 phosphodiesterase 1 (TDP1) gene

needed for SSB repair

Triple-A syndrome Adrenal insufficiency; achalasia; alacrima; Mutation in AAAS gene, which encodes  Autosomal
neurodegeneration; autonomic dysfunction ALADIN protein recessive

Amyotrophic lateral Progressive degeneration of motor neurons; Defective Cu-Zn superoxide dismutase  Autosomal

sclerosis muscle weakness and atrophy, leading to fatality  (SODC; SOD1); oxidative stress; recessive

defective DNA repair (BER?)

Table 2 Disorders that arise by defective DNA repair mechanism. Table from .



Defective TC-NER results in Cockayne Syndrome, a progeroid disorder that is characterized by
severe developmental abnormalities and mental retardation (Marteijn et al., 2014). CS is another
rare human disease (2.7 per million live births) and it was first reported in 1936 (Cockayne, 1936)
by the English physician Edward Alfred Cockayne (1880-1956), who made the first description of
the features of the syndrome, based on the clinical characteristics of two siblings that expressed
dwarfism, deafness and retinal atrophy (Cockayne, 1946). Mutations in CSA and CSB genes that
encode for the homonymous indispensable TC-NER proteins is shown to be responsible for the
classical CS pathology (Mayne & Lehmann, 1982; Tanaka et al., 1981). Approximately 60% of
CS mutations were identified in the CSB gene, while the rest in CSA, but without a clear genotype
/ phenotype relationship (Laugel et al., 2010). CS patients live an average of 12 years and the
clinical symptoms of the syndrome include (in addition to those aforementioned) cutaneous
photosensitivity, deafness, cataracts, large cold extremities, growth and developmental
abnormalities, microcephaly, dysmyelination, demyelination, increased brain calcification and
vasculopathy, progressive neurodegeneration, and mental retardation (Karikkineth et al., 2017).

NER Disease and Mutated gene
Cockayne
Syndrome
UV Sensitive (Cs) Trichothiodystrophy
Syndrome XP/CS (TTD)
TTDN1
[ cors
€SB (ERCCE)
XPB (ERCC3)
CSA (ERCCS) ] !
XPD (ERCC2)
!
A ERCCI XPV XP/TTD
(POLH) TTDA
XPF (ERCC4)
XPC

[:] Neurodegeneration/Neurodevelopmental abnormalities

E] Cancer

Cancer + Neurodegeneration/Neurodevelopmental abnormalities

Figure 3 Genotype/phenotype relationships between NER disorders highlighting the overlap with
observed neurological and cancer abnormalities. Adapted from (Liakos et al., 2017).



Additionally, some mutation in XPB, XPD and XPG encoding genes can lead to combined
XP/CS phenotypes. The clinical characteristics of these patients include the skin disorders of
the XP syndrome and the neurological abnormalities of the CS disease, as also severe
developmental abnormalities, underdeveloped reproductive system and retinal atrophy.
Moreover, patients with germ-line mutations in the genes XPA, XPB, XPD, XPF, XPF, XPG may
express progressive neurodegeneration in combination with cancer depending on the genomic
location of the mutation. The particular neurological disorders include progressive deafness,
abnormal gait, mild microcephaly while in severe cases there is extensive neuronal death in
various areas of brain, spinal cord and peripheral nervous system (Kraemer et al., 2007).

Cerebro-oculo-facio-skeletal Syndrome (COEFES) is a rare human autosomal recessive syndrome
characterized by microcephaly, cataracts and / or microphthalmia, severe developmental
abnormalities, arthrogryposis, severe postnatal growth failure, facial dysmorphism and mental
retardation. This syndrome is considered a NER-related disease, associated with a defective
TC-NER mechanism. Mutations linked with COFS have been identified in the CSB, XPD, XPG
and ERCCL1 genes (Suzumura & Arisaka, 2010).

Mutations in the XPB, XPD, TTDN1 and TTDA genes can also cause an autosomal recessive
disease called Trichothiodystrophy (TTD), that is characterized by brittle hair with a lack of
sulfur, skin fading, developmental problems in the nervous system and demyelination (Kraemer
et al., 2007). The lack of increased cancer susceptibility in TTD patients creates a partial
overlap of symptoms with those of CS, however deafness, optic atrophy and cachexia are
absent in TTD (Rapin, 2013).

UV Sensitive Syndrome (UVSS) is an autosomal recessive human disorder, with some common
clinical characteristics with CS (photosensitivity, telangiectasia and freckles), but UVSS patients
do not express the severe developmental and neurological abnormalities that CS patients
express. This syndrome is linked with mutations found in CSB (Horibata et al., 2004), CSA
(Nardo et al., 2009), and UVSSA. UVSSA protein has been found to interact with RNA
polymerase Il and other complexes of the TC-NER mechanism, and that it stabilizes CSB
protein through interaction with USP7 protein (Nakazawa et al., 2012; Schwertman et al., 2012;
X. Zhang et al., 2012).

Thus, mutations in one of the genes that are involved in the NER mechanism can lead to
different diseases (Figure 3), pointing to the fact that mutation position and consequently the
amount and stability of the produced protein could correlate with the resulting complexity. For
example, different mutations in the CSB gene can lead to 3 different diseases related to the TC-
NER sub pathway (UVSS, CS and COFS). Conversely, a disease may be the result of
mutations in several genes involved in the NER mechanism.

Deficiencies in NER can directly result in increased mutation rates in affected cells that in turn
may lead to carcinogenesis (Helleday et al., 2014; Marteijn et al., 2014). Most common NER-
related mutations result by miss-replication of damaged and unrepaired DNA. In particular, UV
related mutational signatures, which are associated to NER-deficient mutations (C > T), or
smoking mutations (C > A) were identified in skin and lung cancers genomes (Hefferin &
Tomkinson, 2005; Pleasance, Stephens, et al., 2010) respectively (Figure 4). Similar mutational



asymmetries have been reported to be associated with the TC-NER pathway and be related to
mutagenesis in liver cancer (A > G) (Haradhvala et al., 2016). Notably, genome-wide
guantification of mutation density, has uncovered a reduced mutation rate located at NER intact
regions, such as DNA regulatory elements (Polak et al., 2014), and the complementary DNA
strand of actively transcribed genes. Specifically, it was shown that in squamous cell carcinoma
(SCC), lower mutation levels around DNAsel hypersensitivity sites is related to XPC activity
(Perera et al., 2016), while in melanoma and lung adenocarcinoma cancers, a lower mutation
prevalence is observed in the complementary strand of all active genes, independently of the
transcription levels, because of the homogenous activity of the TC-NER machinery (Alexandrov
et al., 2013; Lavigne et al., 2017).

Therefore, it seems that the probability of developing a tumor strongly depends on the balance
between the number of DNA damages accumulated in the cell and the capability of the repair
machineries to handle them, in concert with the timely initiation of the appropriate cell-cycle
check-points, or the programming of cell-death.
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1.5 Repeats

Repetitive DNA is a major component of eukaryotic genomes. It has been estimated to
comprise ~50% of the human genome, while there are computational studies reporting that this
percentage might be even higher (66-69%) (de Koning et al., 2011).

There are two main groups of repeats in eukaryotes, tandemly repeated satellites, restricted to
specific chromosomal regions, and repeats interspersed with genomic DNA. Interspersed
repeats consist of mainly inactive copies of a large collection of currently and anciently active
transposable elements (TESs) like DNA transposons and retroelements, which can be further
classified into more distinct categories. Repetitive DNA sequences are considered to have
played a major role in evolution of eukaryotic genomes (Garcia-Perez et al., 2016; Kidwell &
Lisch, 1997). The particular sequences are considered to have a potential role in genetic
variation and regulation, while their high tendency for co-localization within nuclear space,
suggests that their genomic position may play a role in genome folding (Cournac et al., 2016;
Shapiro & Von Sternberg, 2005).

Since repair mechanisms tend to prioritize their actions in functional regions in order to avoid
critical cell dysregulation, it is yet unclear how damages in DNA repeats are treated during these
processes. To shed more light in this question, and using NER products as a model
(aniFOUND-seq, see materials and methods), a genome wide analysis methodology of NER-
repair activity along these regions has been developed and is described in detail in the results
section 4.4.
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1.5.1 Telomeres

Telomeres are a special type of nucleoprotein complexes, located at the end of eukaryotic
chromosomes, and they are considered to contain no valuable genetic information. Telomeres
consist of multiple small repetitive nucleotide sequences (telomeric repeats) that form



heterochromatin and they participate in characteristic structures at the ends of chromosomes that
are called “telomere caps”.

In humans, every telomere contains about 5,000 repetitions of the TTAGGG sequence.
Telomeric sequences have a crucial role in cell viability, since they protect the ends of
chromosomes from being identified by the cell as DSBs in need of repair. They protect the
chromosome from euchromatin loss during DNA replication, and they also prevent
chromosomes from binding one another (Blasco, 2005; Soediono, 1989). Telomere length is a
determinant of cell reproductive age, and when it reaches a minimum “critical” length,
"reproductive aging" is induced, which protects the organism against carcinogenesis. After each
cell devision, telomeres’ length is reduces until a critical point is reached and DNA damage
response is activated, leading cellular senescence or apoptosis. Decreased telomere length in
healthy cells has been linked to diseases such as cancer, heart disease, diabetes,
arteriosclerosis, pulmonary fibrosis, obesity.

To circumvent the limited number of possible cell divisions, tumors employ activation of
telomerase or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms
(TMMs) (Blasco, 2005). Telomerase is an enzyme that adds t-type repeats to the chromosome
ends. In contrast, ALT is based on recombination of telomeric regions and results in several
characteristics, including telomeres of heterogeneous length and sequence composition. These
TMMs are crucial for tumorigenesis, making them valuable drug targets for cancer therapy.
However, to precisely identify and interfere with these mechanisms in various tumor types, more
insight into the different telomere structures is needed.

1.6 RNA polymerase Il transcription machinery

RNA polymerase Il (RNAPII) transcription is a fundamental and highly regulated cellular
process, one of the most important steps in control of cell growth and differentiation. During
transcription, encoded genetic information of DNA is transmitted to the messenger RNA
(mRNA), in a process where the enzyme RNAPII uses coding DNA sequences as a template to
synthesize RNA.

In eukaryotic organisms, synthesis of mMRNA and some classes of non-coding RNAs like long
non-coding RNA (IncRNA), microRNA (miRNA), some small nuclear RNA (snRNA) and small
nucleolar RNA (snoRNA), is performed by RNAPII. RNAPII enzyme, is a 550 kDa multiprotein
complex consisting of 12 different subunits in humans (Hahn, 2004). RPBL1 is the largest subunit
of RNAPII, and its Carboxy-Terminal Domain (CTD) is composed by 52 heptapeptide repeats of
the consensus Tyrosine-Serine-Proline-Threonine-Serin-Proline-Serine (Y1S2P3T4Ss5P6S7)
(Egloff, Dienstbier, et al., 2012). A special feature of the amino acid residues of YSPTSPS is
that they can be post-translated modified independently, creating a great variety of
combinations that characterize and specify the different stages of the transcription cycle (see
below). CTD is a signaling and interaction platform between the transcription machinery and
other factors that contribute in RNA splicing, mMRNA modification (Bentley, 2014), and also with
factors that modify the CTD, thus regulating the transcription process in a recursive manner
(Egloff, Dienstbier, et al., 2012). The subunit complex RPB4/6 is required for the initiation of the
transcription machinery, while the other 10-subunit catalytic core is capable of elongating the
RNA transcripts.



1.6.1 Transcription cycle

As stated above, the CTD heptapeptide YSPTSPS repeats trigger a variety of post-translational
modifications. Specifically, tyrosine, threonine and all three serines can be modified through
phosphorylation. Even the two prolines can be divided between cis- and trans- conformation
(Heidemann et al., 2013). Other CTD residue modifications include glycosylation and
methylation (Kelly et al., 1993; Sims et al., 2011).

The phosphorylation status of RNAPII is regulated by a number of kinases and phosphatases,
which act on the various stages of the transcription cycle and regulate its process. To clarify the
functional role of phosphorylation in transcription, various monoclonal antibodies were
developed to target the different isoforms of RNAPII (Heidemann et al., 2013) and used in
Chromatin Immunoprecipitation (ChIP) techniques (Bataille et al., 2012; H. Kim et al., 2010;
Mayer et al., 2010). The findings of these studies led to the concept of the "CTD code" and also
the definition of transcription cycle (Komarnitsky et al., 2000).

1.6.1.1 Transcription Initiation

The first step of the transcription cycle is the formation of the Pre-Initiation Complex (PIC) at the
promoters of transcribed elements (Rapi¢-Otrin et al., 2002; Sikorski & Buratowski, 2009; M. C.
Thomas & Chiang, 2006). In summary, TFIID, a basal transcription factor, recognizes specific
sequences in the promoter region (such as the TATA sequence and the DPE-Downstream
Promoter Elements region) and binds to it. This is followed by the recruitment of the general
transcription factors TFIIA, TFIIB, and TFIIF together with a hypophosphorylated CTD-
containing RNAPII complex (RNAPII-hypo). This complex is initially unstable, as the double
helix in the promoter region is not accessible. Subsequent binding of the transcription factor
TFIIH, which contains protein subunits with helicase action (ATP-dependent), modifies the DNA
by double helix strand dissociation. At the unwound DNA region of the promoter, the
transcription bubble is formed and the PIC is stabilized (Figure 6).
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RNAPII starts composing RNA resulting in the production of small RNA molecules, smaller than
10 nucleotides, which are eventually eliminated. Whether RNA polymerase will progress to the
early elongation step depends on TFIIH and other general transcription factors, such as the
Mediator complex (Boeing et al., 2010; Hirose & Ohkuma, 2007; Levine, 2011). In particular, the
CDK7 kinase, which is part of TFIIH protein complex, phosphorylates Ss of Y1S2P3T4Ss5P6eS7
and RNAPII is able to escape from the promoter and slowly progress through the transcription
start site (TSS) of the genes (Levine, 2011).

1.6.1.2 Promoter Proximal Pausing

When polymerase reaches +30 to +50 nucleotides from the (TSS), it pauses, in areas called
Proximal Promoter Pausing (PPP) Sites (Gilmour & Fan, 2009). RNAPII pausing is mediated by
DRB Sensitivity-Inducing Factor (DSIF) and Negative Elongation Factor (NELF), which bind to
the newly synthesized RNA molecule. The release of RNAPII from PPP sites is considered a
very important molecular switch of gene expression during development (Levine, 2011) (Figure
7).



1.6.1.3 Transcription Elongation

Transcription elongation begins with the release of RNAPII from PPP, a tightly regulated
process, which depends also on various developmental and environmental signals. Initially, the
Positive Transcription Elongation Factor b (P-TEFb) complex is recruited to PPP regions. The
P-TEFb complex consists of the cyclin dependent kinase CDK9 and one of several cyclin
subunits, cyclin T1, T2, and K (Fu et al., 1999). P-TEFb is essential for the regulation of RNAPII
transcription elongation, as it phosphorylates S2 of RNAPII CTD heptad repeats but also NELF
(negative elongation factor) factor, which is subsequently removed, and the DSIF factor, which
is converted to a positive elongation factor. After these steps, RNAPII is released into productive
elongation and progresses fast towards the 3’ end of gene bodies synthesizing mRNA. (Lavigne
et al., 2017; Sainsbury et al., 2015) (Figure 7).

1.6.1.4 Transcription Termination

When RNAPII passes through an active poly (A) site (PAS), while travelling through the
transcribed element, cleavage and polyadenylation (CPA) factors bind to both the transcript and
the RNAPII molecule. These factors include CPSF (cleavage and polyadenylation specificity
factor), CstF (cleavage stimulatory factor), CGl (cleavage factor 1) and CFIl (cleavage factor ),
and are responsible for the cleavage and the polyadenylation of the nascent RNA (nRNA)
molecule. CPSF binds directly to the nRNA molecule, while CstF, CFl and CFlI bind to the
phosphorylated serine 2 of RNAPII CTD. CPSF and CstF also recognize specific patterns at the
3 'end of the newly formed RNA. Due to these interactions, transcription decelerates and
pauses. Then, the RNA molecule is cleaved, and the 3 'end is polyadenylated, steps that
facilitate the exit from the nucleus to the cytoplasm and the forthcoming translation. SETX
(setaxin) is also reported to be involved in the transcription termination process of some genes,
possibly by disassembling R-loops (M. Thomas et al., 1976), to allow the entry of 5'-3'
exoribonuclease 2 (XRN2). Degradation of the 3’ region segment of the newly formed RNA by
XRN2, results in the termination of transcription (tornado model) (Porrua & Libri, 2015) (Figure
7).

In some cases, termination might occur at several positions inside the transcribed element, for
the prevention of aberrant transcript formation, but also the production of different transcripts
(alternative transcripts). This can result in different mMRNAs with altered regulatory properties or
different encoded proteins. Finally, termination can be blocked/forced in response to particular
cellular signals, as in cancer or virally infected cells. In such cases, unsuccessful transcriptional
responses may have disastrous effects for the cell (Proudfoot, 2016).
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Figure 7 Transcription cycle (Egloff, Zaborowska, et al., 2012).

1.6.2 Non-coding transcription

In earlier decades, research on transcription had focused on protein coding genes due to their
abundance and how easy it was for researchers to isolate their sequences, as also their
associated transcripts. However, the development of new technologies with greater sensitivity
and discretion revealed that only 2% of the genome corresponds to protein-encoding genes
(Dunham et al., 2012), while it was also found that approximately 62-75% of the human genome
is transcribed (Dunham et al., 2012).

Thus, in addition to non-coding (nc) transcripts such as transfer RNA (transfer RNA, tRNA),
ribosomal RNA (rRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), research
interest became also focused on other types of small non-coding transcripts like microRNAs
(miRNAs), PIWI-associated RNAs (piRNAs), small interfering RNAs (siRNAs), but also long
non-coding RNAs, IncRNAs like long intervening noncoding RNAs (lincRNAs), Natural
Antisense Transcripts (NATSs), enhancer RNAs (eRNAS), circular RNAs (circRNAS), competing
endogenous RNAs (ceRNAs), PROMoter uPstream Transcripts (PROMPTSs) and others (Figure
8).

ncRNAs are functional RNA molecules that lack protein coding capacity, but act through
multiple mechanisms that regulate gene expression. These mechanisms include RNA-RNA
base pairing, RNA-protein interactions and intrinsic RNA activity, gene splicing, nucleotide
modification, protein transport, regulation of gene expression through degradation, regulation of
diverse cellular functions such as RNA processing, mRNA stability, translation, protein stability
and secretion (Szymanski et al., 2003).

The distance of ncRNAs from their target protein-coding genes is more highly conserved than
their RNA sequence, implying that position-specific cis effects are driving ncRNA evolution



(Kaikkonen & Adelman, 2018). ncRNAs are known to have a strong effect in epigenetic
signaling, as they play an important role in genomic imprinting (Koerner et al., 2009), in
chromatin remodeling and in defining DNA methylation patterns. Moreover, recent studies
suggest that “the act” of transcription modulates chromatin accessibility, transcription factor
occupancy, and epigenetic state, rather than the sequence or nature of the ncRNA product
(Kaikkonen & Adelman, 2018). ncRNA activity occurs in a cell type (Qiu et al., 2017), tissue
(Roadmap Epigenomics Consortium et al., 2015) and developmental stage specific manner,
and their dis-regulation may result to pathogeny. In the particular thesis, the transcription activity
at IncRNAs, PROMPTs and eRNAs, as well as of protein coding genes will be addressed.
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Figure 8 RNA Classification tree and the roles of non-coding RNAs in Transcriptional Regulation. Adopted
by (Sriyothi et al, 2018).

1.6.2.1 eRNAs

Enhancer transcription units are very similar to protein coding genes promoters. In enhancers,
transcription seems to start from a nucleosome depleted region surrounded by nucleosomes, at
the edges of which independent PICs are formed that can trigger bidirectional transcription
(sense and antisense in respect to the Watson strand). Additionally, it has been confirmed that
binding of RNAPII is also present in enhancer elements’ promoters (Core et al., 2014; de Santa
et al., 2010; Koch et al., 2011), while the typical steps of transcription cycle are also detectable,



including transcription initiation, transcription pausing in a distance of about 70 bases from the
enhancer transcription start site (eTSS), and transcription elongation (Henriques et al., 2018).
As mentioned above, enhancers are transcribed bidirectionally, producing similar amounts of
eRNAs in both directions (Andersson et al., 2014). Enhancer transcription products are
relatively short in length (~2kb), non-coding, unstable (Andersson et al., 2014), and sensitive to
exosome degradation (Andersson et al., 2014, Core et al., 2014, Henriques et al., 2018), while
the production levels are highly correlated with the enhancer’s functional activity (W. Li et al.,
2016).

Enhancers interact with DNA to upregulate gene transcription through enhancer-promoter
looping and tracking of the transcriptional machinery (W. Li et al., 2016). This fact suggests that
eRNAs favor enhancer activity and thus affect the protein-coding gene transcription, but there is
also evidence that the act of transcription per se might also play a role in the activation of target
genes (W. Li et al., 2016). This can be done either by creating a favorable chromatin
environment for the activation of protein-coding genes located at distal regions, or in the case of
some intragenic enhancers, by attenuating the host gene expression, thus regulating important
cellular processes (Cinghu et al., 2017). Additionally, eRNAs could be bound to transcription
repressors, to inhibit their function.

These mutually exclusive functions suggest that enhancers and their products may be
functionally and mechanistically diverse, but further evidence is needed to fully understand their
functions in gene regulation, development and disease.

1.6.2.2 PROMPTs

Recent studies have shown that the majority of transcriptionally active protein-coding genes
show patterns of antisense transcription activity, initiating either upstream (divergent) or
downstream (convergent) of the “host” TSS (Andersson et al., 2014; Core et al., 2008; Ntini et
al., 2013). This phenomenon of bidirectional transcription occurs in a significant fraction of
active promoters (Meng & Bartholomew, 2018) and is lately considered a general feature of
protein-coding transcription (Andersson et al., 2015). These transcripts share some
characteristics with eRNAs since they are relatively short, non-coding and unstable as they are
degraded rapidly by the RNA exosome, but in contrast to eRNAs, they have a poly-A tail.
Except from their antisense activity (asPROMPTSs), some PROMPTSs are transcribed in the
sense direction of their host protein-coding promoter (assuming an extended promoter region
+/- 2kb relative to TSS) (Ntini et al., 2013; Preker et al., 2008).

PROMPTS’ transcript production seem to be positively correlated with the host gene’s
transcription activity, suggesting a possible role in the regulation of protein gene expression. It
has been also shown that divergent asPROMPTSs show a higher abundance of 3' poly(A)
signals than divergent PROMPTSs elements, resulting in a more rapid degradation, that in turn
enables efficient elongation of downstream transcripts (Ntini et al., 2013). This imbalance might
enforce the choice of promoter directionality. Finally, it has been shown that RNA levels of
certain PROMPTSs are altered in stress conditions, suggesting a possible regulatory role of this
subset of elements that participate in some ways in the DDR process (Lloret-Llinares et al.,
2016).

Nevertheless, the general function of PROMPTSs remains obscure, and additional scientific
efforts could unravel their potential role in transcription and regulation of gene expression.



1.6.3 Transcription during UV irradiation

UV-C induced stress affects transcription by interrupting the progression of an actively
elongating RNAPII molecule. In particular, RNAPII complexes are stalled at DNA lesions, a
phenomenon that triggers the recruitment and assembly of TC-NER factors.

Early in vitro experiments showed that RNAPII could remain stalled at CPD lesions for 20 hours
(Selby et al., 1997), while in mouse CSB-deficient cells, it was found that it could remain stalled
for more than 48 hours in vivo (Garinis et al., 2009). Additionally, the "footprint" of an RNAPII
molecule that is stalled at a CPD lesion has been found to be “covering” the damage site 10
bases in front of the CPD and 25 bases behind it (Tornaletti et al., 1999). Since the TC-NER
factors need access to the damage sites, the respective stalled RNAPII molecules should be
removed after the damage recognition step.

Several models have been proposed for the fate of the stalled RNAPII; (Bregman et al., 1996)
suggested that the damage-stalled RNAPII molecules are targeted by ubiquitination and then
removed and degraded. In line with this model, a recent study suggests that the total damage-
recovery of genes requires a continuous supply of RNAPII elongating molecules, as any
molecule that encounters a damage will be removed through ubiquitination (Chiou et al., 2018).
According to this model, the recognition of the next damage site (relative to the repaired
damage site, in the direction of gene transcription) will be performed by the trailing RNAPII
molecule. However, other studies suggest that this mechanism is acting only when the damage
cannot be repaired, and the recovery of the transcriptional is impossible (Anindya et al., 2007;
Woudstra et al., 2002).

The second model claims that RNAPII “backtracks” from the damage site, giving access to the
repair factors to perform their function. This backtracking is followed by the activation of the
nucleolytic activity of RNAPII, which cuts the overhang of the newly synthesized transcript, thus
allowing the smooth recovery of transcription when the damages are repaired (Hanawalt &
Spivak, 2008; Vermeulen & Fousteri, 2013). During this process, an important role is believed to
be played by the TFIIS factor, which induces the nucleolytic activity of RNAPII (Donahue et al.,
1994; Sigurdsson et al., 2010), and is colocalized with RNAPII at the regions of DNA lesions
(Fousteri et al., 2006). Furthermore, a decrease in TFIIS levels has been found to lead to an
abnormal recovery of cell transcription after UV irradiation (Jensen & Mullenders, 2010). The
backtracking of RNAPII from the lesion site requires the relaxation of the chromatin structure
behind the molecule, so that it can slide backwards. It has been suggested that proteins such as
p300 and HMGN1 may modify the nucleosomes behind the stalled RNAPII, creating a looser
structure to facilitate this process (Hanawalt & Spivak, 2008).

1.7 Chromatin and transcription

Eukaryotic genomic DNA coexists with proteins, forming a complex that is known as chromatin.
The configuration of this complex and its relative flexibility regulate the overall function of the
genome. Chromatin is a nucleoprotein complex that consists of repetitive histone octamers
wrapped by DNA, forming special structures, called nucleosomes (Figure 9).
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Figure 9 Histone octamer. Adopted from (Eickbush & Moudrianakis, 1978).

Histone octamers are composed by two histone 2A (H2A) - histone 2B (H2B) dimers, and a
tetrameric core of histone 3 and histone 4, as depicted in Figure 9. In turn, nucleosomes are
composed by 147 base pair (bp) length DNA, which wraps 1.7 times around the histone
octamers, organizing very long DNA sequences into small structures. At the entry and exit sites
located on the surface of the nucleosome core, DNA is bound by histone H1, known also as
linker histone (Kowalski & Patyga, 2012). This primary, and simple chromatin structure can be
transformed to higher-order structures through interactions between histones and the linker
histone. Through nucleosome forming, the DNA is compacted up to 20,000 times more so it can
fit in the small volume of the nucleus.

Nucleosomes are constantly in a dynamic state and are flexible to alterations in order for cellular
processes such as transcription, replication and DNA repair to take place in the context of
chromatin. For this reason, several protein complexes are responsible for the rearrangement of
nucleosome structure, reposition and redistribution (Zentner & Henikoff, 2013). Dysfunction of
chromatin remodeling mechanisms has been associated with human disease, including cancer.
Chromatin structure may be modified by several mechanisms. ATP-dependent remodeling
complexes use ATP hydrolysis energy to shift the nucleosomes and swap or remove histones
from the chromatin fiber. Histone variants create localized specific domains within the chromatin
fiber, while histone chaperones control the delivery of free histones and act synergistically with
chromatin remodelers during histone deposition and removal. Finally and most in focus in this
study, post-translational modifications (PTMs) of histones, such as phosphorylation,
ubiquitination, methylation and acetylation (Figure 10), directly or indirectly influence chromatin
structure. These mechanism act cooperatively to regulate the chromatin structure and DNA
accessibility (see next chapter) (Rossetto et al., 2012).
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Figure 10 Schematic of the most common epigenetic modifications. Adopted from Abcam.

Histone PTMs affect gene expression, without changing the DNA nucleotide content. The
histone N-termini that overhang from the packed octamer, are less structured and thus more
exposed to PTMs and the enzymes (‘writers) that deposit them (Bannister & Kouzarides, 2011,
Kouzarides, 2007). There are at least 9 different types of PTMs, summarized in Figure 10.
Histone PTMs play an important role in processes such as replication, transcription, repair and
packaging of DNA. Histone PTMs seem to act in two main ways. First, by affecting the link
between nucleosomes and DNA, causing either local unwinding of the structure, or further
condensation, and secondly, by inducing protein (PTMs ‘readers’) recruitment that further
modifies chromatin through their enzymatic action. Furthermore, specific histone PTMs have
been associated with cell cycle stages, as well as with regulatory genomic regions such as
enhancers and promoters (Figure 11) (Smolle & Workman, 2013).
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Figure 11 Histone PTMS associated with transcriptional activation and repression.

In regard to transcription, histone modifications can be divided into two major groups: those
associated with actively transcribed chromatin that is called “euchromatin”, and those
associated with inactive transcriptional chromatin, which is termed heterochromatin. Histone
PTMs are functioning in activating and suppressing transcription, but their outcome depends on
both the modified histone residue per se, as also their relative position in the genome. In this
thesis, the focus will be centered in the acetylation of lysine 27 residue of the histone H3 protein
(H3K27ac) modification, a major mark of associated to transcription activation, and the tri-
methylation of the same lysine residue of histone H3 (H3K27me3), a PTM that is correlated with
transcriptional repression of nearby genes

H3K27ac is a characteristic mark of active transcription in promoter and enhancer regions of
mammalian genome, and a valuable tool for the identification of actively transcribed elements
(Creyghton et al., 2010; ENCODE et al., 2012), while H3K27me3 is a characteristic modification
of repressed elements. These two marks seem to exhibit mutual exclusive patterns of chromatin
binding (Karlic et al., 2010; Shlyueva et al., 2014; Tie et al., 2009).

There are studies demonstrating that histone modifications turnover, and/or degradation around
DNA lesions consist crucial steps in conserved pathways that assist the cell to cope with
genotoxic stress (Misteli & Soutoglou, 2009; Polo & Almouzni, 2015).

1.7.1 Chromatin accessibility

The position of the nucleosomes play an important regulatory role in transcriptional activation as
it regulates the “accessibility” of transcription binding sites to Transcription Factors (TFs) and
other transcription complexes. Specifically, the structure of “open” (accessible) chromatin



defines a network of physical interactions through which promoters, enhancers, repressors and
chromatin-binding factors simultaneously regulate gene expression. Thus, the accessible areas
of chromatin are considered to be the main genomic regulatory regions (John et al., 2011) and
are characterized by nuclease hypersensitivity (Gross, 1988). Consequently, chromatin
accessibility plays a central role in several biological and pathological processes, such as
development, differentiation (de la Torre-Ubieta et al., 2018; Maezawa et al., 2017; Murtha et
al., 2015), tissue regeneration, aging, and cancer (Liu et al., 2019)(de la Torre-Ubieta et al.,
2018; Maezawa et al., 2017; Murtha et al., 2015; Simon & Kingston, 2013; Tsompana & Buck,
2014). It must be noted that despite the importance of chromatin organization and post-
translational histone modifications in the various cellular processes and responses, the way
chromatin is reorganized in various regulatory areas of the genome, after exposure to genotoxic
agents like UVC irradiation, have not yet been elucidated.

The Next Generation Sequencing revolution gave scientists the ability to develop sophisticated
techniques and the opportunities to study the accessible regulatory regions of the chromatin in a
genome-wide fashion. These technigues include MNase-seq, DNase-seq, FAIRE-seq, ATAC-
seq, each of which has distinct characteristics, advantages and limitations (Tsompana & Buck,
2014)(Chang et al., 2018).
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Figure 12 Genome organization in eukaryotes. From (Chang et al., 2018)



Furthermore, latest advances in single cell omics technologies allow scientists to study cell-to-
cell heterogeneity, and draw rare variation within cell populations by applying single-cell ATAC-
seq (scATAC-seq ) and single-cell DNAse-seq technigues (scDNA-seq).

In this thesis, the focus will be on the ATAC-seq methodology as a tool to study chromatin
accessibility dynamics in response to genotoxic factors, and particularly UV (Schick et al.,
2015).

1.7.2 Roadmap chromatin states

The NIH Roadmap Epigenomics Mapping Consortium is a data repository of human epigenomic
and transcriptomic data, as also a resource of genome-wide epigenetic information of over 100
human cell types and tissues, that assist basic-biological and disease-oriented research
(Roadmap Epigenomics Consortium et al., 2015). The roadmap database includes processed
data (alignment files, genome browser tracks, peak calling files, intergenic expression contigs,
differentially methylated regions etc.) of multiple sequencing protocols, such as ChiP-seq of
histone modifications (H3K27ac, H3K27me3, H3K4mel etc.), chromatin accessibility (DNAseq-
seq), mRNA-seq, and DNA methylation profiles, as also genome-wide chromatin state
annotations using the chromHMM algorithm (Ernst & Kellis, 2017) coupled with processed
ChlIP-seq data of H3K4me3, H3K4mel, H3K36me3, H3K27me3, and H3K9me3 (core set - 15
chromatin states (see example Figure 13), supplemented by H3K27ac (18 chromatin state), or
imputed data using H3K4mel, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H4K20mel,
H3K79me2, H3K36me3, H3K9me3, H3K27me3, H2A.Z, and DNase (25 chromatin states)
across multiple cell types. In this study, the stable 15-state annotation of primary Normal Human
Dermal Fibroblasts (NHDF) cells is used.
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Figure 13 Chromatin states of H1-Embryonic stem cells (H1-ES)

1.8 lllumina Sequencing

DNA (or complementary DNA in the case of RNA, cDNA) sequencing includes several methods
and technologies that are used to determine the exact nucleotide sequence order in a DNA



molecule. The first attempts of DNA sequencing began in 1965 using 2-dimensional
Chromatography, while nowadays next-generation sequencing (NGS) methodologies are the
most widely used technologies.

In this study, all the analyzed NGS datasets are generated by the lllumina sequencing
methodology, which is the most popular and widely used technology nowadays. The particular
technology incorporates reversible dye-terminators that enable the identification of single
nucleotides as they are washed over DNA strands. lllumina sequencing is widely used for ChlP-
seq, RNA-seq, chromatin accessibility sequencing assays (ATAC-seq, DNAse-seq, FAIRE-seq,
Mnase-seq), Exome sequencing, Whole genome sequencing, Methyl-seq, et al.

In lllumina sequencing, the use of adapters is a key step to a successful sequencing
experiment, since they allow the fragment binding to the flow cell, enabling the PCR
amplification of only the adapter-ligated DNA sequences, as also the indexing of each sample in
order to perform multiplexed sequencing runs of multiple samples (see http://tucf-
genomics.tufts.edu/documents/protocols/TUCFE Understanding lllumina TruSeq Adapters.pdf)
. Sequencing can be performed in single-end mode, where one stretch of each fragment is
sequenced, or in paired-end sequencing mode, where both ends of each fragment are
sequenced. That provides extra information, knowing exactly how far apart two reads are
located in the genome. The diagram below (Figure 15) displays the difference.

Cluster density
750-850/mm? lane

HiSeq 2000

Flow Cell

~ 32 tiles perlane

/’ fiow out
7

Illumina uses a glass ‘flowcell’, about the size of a microscope slide, with 8 separate ‘lanes’.

The HiSeq instrument scans both upper and lower surfaces of each flowcell lane.

Figure 14 lllumina HiSeq 2000 sequencer parts. Adapted by https://hackteria.org/wiki/HiSeq2000_-
_Next_Level_Hacking.
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Figure 15 Difference between single and paired-end reads. From
http://thegenomefactory.blogspot.com/2013/08/paired-end-read-confusion-library.html

1.9 Basic components of NGS data analysis

1.9.1 FASTA file

FASTA files are used to store nucleotide or amino acid sequence information. They may include
at least one, or multiple sequences. Each FASTA record is characterized by two consecutive
fields. The first field start with the “>” character and includes the name or/and id of the sequence
record, as also comments and descriptions about the sequence that always should precede the
sequence name. The second field includes the nucleotide or amino acid sequence string, either
in one line or split into multiple lines. In Figure 16, an example of a FASTA record is illustrated,
and in particular the first nucleotides of the human ribosomal DNA complete repeating unit with
GenBank Id U13369.1.

>U13369.1

GCTGACACGCTGTCCTCTGGCCACCTGTCGTCGGAGAGGTTGGGCCTCCGGATGCGCGCAGAGGLTCTGGC
CTCACGGTGACCGGCTAGCCGGCCGCGCTCCTGCCTTGAGCCGCCTGCCGCGGCCCGCAGGOGCCTAOCTATT
CTCTCGCGCGTCCGAGCGTCCCGACTCCCGOGTGCCGGCCCGGOTCCGGGTCTCTGACCCACCCGGGGGLG
GCGGGGAAGGCGGCGAGGGCCACCGTGCCCCGTGCGCTCTCCGLTGCGGGCGCCCGGLGCGCCGCACAAC

CCCACCCGCTGGCTCCGTGCCGTGCGTGTCAGGCGTTCTCGTCTCCGCGGGGTTGTCCGCCGCCCCTTCC
CCGGAGTGGGGGGTGGCCGGAGCCGATCGGCTCGCTGGCCGGCCGGCCTCCGLTCCCGGGGGGLTCTTCG
ATCGATGTGGTGACGTCGTGCTCTCCCGGGCCGGOGTCCGAGCCGCGACGGGCGAGGGULCGGACGTTCGTG
GCCGAACGGGACCOTCCTTCTCGCTCCGCCCGCGCGOTCCCCTCGTCTGCTCCTCTCCCCGCCCGCCGGCC
GGCGTGTGGGAAGGCGTGGGGTGCGLACCCCOGGCCCGACCTCGCCGTCCCGCCCGCCOGCCTTCOLTTCGC

Figure 16 FASTA record of U13369.1 GenBank sequence

1.9.2 FASTQ files and quality control (QC)

During sequencing, for each sequenced nucleotide a quality score is assigned that reflects the
possibility that the specific symbol is incorrectly reported. FASTQ files allow the storing of both
the sequenced fragment fraction, and the corresponding quality of each nucleotide. Both strings
are encoded with ASCII characters, since quality scores reach double digits. There are some
discrepancies in the way that the quality scores are encoded between different platforms, but in
this study only the Phred+33 system (Phred) will be considered, since nowadays this is the


https://en.wikipedia.org/wiki/ASCII

default encoding method. Phred quality score was first used in the automated sequencing
during the Human Genome Project (Adams, 2008). The sequence assembly program was
called Phrap and the Phrap program used phred scores to help clear discrepancies in
overlapping sequences. Quality scores remain of high importance, especially when short read
technology is applied. Phred quality scores are defined by Q = —10 log,,P, where Q is the
actual Phred value, and P is the base-calling error probability. Indicative Phred values are
depicted in the Table 3.

Phred-33 Q score | P ofincorrect nt call =Nt call accuracy

10 10% 90%

20 1% 99%

30 0.1% 99.9%
40 0.01% 99.99%
50 0.001% 99.999%

Table 3 Indicative Phred quality scores

The FASTQ format is similar to FASTA, but the description of the sequence uses an ‘@”
character instead of a “>” at the beginning. Immediately below the sequence is the description
of the quality score, beginning with the + character. The next line contains the quality scores in
ASCII format. In Figure 17, an example of two lllumina HiSeq 2000 FASTQ records is
illustrated.

@HISEQ:86:C8YOKACXX:5:1101:1915:2131 1:N:0:ACAGTG
GGCTGGGCATGGTGGCACCCACCTGTAGTCCTAGGTACTCGGGAGGCTGAG  pemm—" Readsequence
+
CCBFFFFFHHHHHIIBFHIIIJJICGIIIIJIIGIGHGIJIIIJGIJECFGI
QHISEQ 86 :C8YOKACXX:5:[1101f2087:2041 1:N:0:
TTGGAGAGAGGGGCTGGAGNCTGCGACAGGCTGCCCTCTCCCTCTCTGCCCC Phred-33 score

+
Q@@DDDDDHHDDSFIEGIC#1:C=FHH16B@DFHIEAB=BFGH97C@CHGI ‘/////
Sequence Id

First yellow box: Sequencer model

Second yellow box: Sequencer tile

Third yellow box: Sequence index

Figure 17 Example of two lllumina 2000 FASTQ records.

FASTQ sequence information and per nucleotide phred-33 quality scores gives the opportunity
to generate quality control (QC) tests that are informative about the usability of the reads, or
parts of the reads, or even the whole dataset. QC tests are also informative about basic
statistics of the sequenced library, or about potential contamination of the libraries with
unexpected endogenous or exogenous factors.

Examples of these tests include per base Phred quality check, per sequence Phred quality
check, per sequence GC content check, read duplication rate check, read length distribution



check, overrepresented sequences reporting, adapter content reporting, check for external
library contamination (blast search), nucleotide composition and others. These tests can be
applied using the FASTQC suite (Andrews, 2015), FASTX-Toolkit (Gordon et al., 2014), RseQC
(Liguo Wang et al., 2012), rnaqgc (Zhou et al., 2018), or even custom scripts. Some indicative
results of the above-mentioned QC tests are depicted in Figure 18.
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Figure 18 Indicative FASTQ QC tests using the FASTQC suite. (a) Per base sequence quality check. This
quality check gives an overview of the Phred score distribution for each base pair. In many sequencing
protocols, quality tends to be lower at the 3’ end of the read, especially when the sequence length
increases. If the mean of the Phred distributions are under 20, then if the particular nucleotide(s) is at
one of the 5’ or 3’ ends of the reads, the trimming of that base pair should be considered for all the
library reads. (b) Per tile sequence quality. The particular quality check refers only to lllumina
experiments, and takes advantage of the information of the flowcell tile which each read came from
(Figure panw me tiles). The particular heatmap visualization, illustrates clusters of low quality
nucleotides in specific read positions and tiles, and can reveal transient problems such as bubbles or
smudges through the flow cell, or debris inside the flow cell lane. If such problematic clusters occur in
the inner body of the sequenced reads, it should be considered to remove all the reads coming from the
problematic tiles. (c) Sequence duplication level reports. The specific quality test reveals the level of
identical sequences coming from a sequenced library. If the sequence duplication is high (over 30%),
then potential problems related with PCR overamplification or low complexity library material could be
suspected. Especially, if the sequencing protocol is ChIP-seq or ATAC-seq, then after read mapping
elimination of duplicated alignments should be considered. On the contrary, if the examined sequences



come from RNA-Seq libraries, some sequences belonging to highly expressed transcripts may be over-
sequenced. (d) GC content distribution test. The particular QC module, tests the GC % along the
examined sequenced reads, and compares it with the GC % distribution that comes from a random
library. Deviations between the observed and the expected distribution may be a result of a specific
library contamination, such as adapter sequence dimers.

Following QC, FASTQ files are often processed to eliminate low-quality nucleotides or/and
sequences using appropriate software, such as cutadapt (Martin, 2011), timmomatic (Bolger et
al., 2014), seqtk (H. Li, 2012) et al.

Another source of FASTQ contamination are the adapter sequence that remains at the ends of
the sequenced reads (see Figure 19).

Read runs into adapter Full adapter in the beginning Full adapter in the beginning
Read ]  E—— I
— 1 [ 1 [
Adapter
| Adapter within read Partial adapter in the beginning
Removed sequence | — ] —
| ——

Figure 19 Adapter removal using cutadapt. Adapted by (Martin, 2011).

These contaminants can be removed by providing the respective nucleotide sequences to the
afore-mentioned tools.

QC of short reads is also applied after the alignment of the sequenced reads against the
reference genome/transcriptome of origin. This procedure includes visual inspection of the NGS
signal using a genome browser as UCSC or IGV (Integrative Genome Browser), genome
coverage calculation of the aligned library, estimation of the total number of actively transcribed
genes, summarization of the total number of peaks in ChlP-seq experiments and chromatin
accessibility assays (ATAC-seq, DNAse-seq), estimation of the noise-to-signal ratio et al (see
next sections and results section).

1.9.3 Genome assembly

One of the major challenges in NGS analysis, and particularly in DNA sequencing, is to
assemble the sequenced reads to their original order, to form the unified chromosomal
sequences of the reference genome. The basic steps of this procedure include finding the
overlapping regions between sequenced reads and form “contigs”, scaffolds, and finally
chromosomes. Many genomes have only been assembled to the scaffold level (Hubbard et al.,
2002).

Chromosome sequences are not identical between individuals of the same species. For
example, each human has about 3-4 million single nucleotide polymorphisms (SNPs) with
respect to the human “reference genome” (UCSC or Ensembl builds) which is an accepted,



standardized sequence. Since 2011, over 575,000 exonic sequences were annotated (Kent et
al., 2002), while today there are over 20,000 annotated protein coding genes. Nowadays,
hg19/GRCh37 and hg38/GRCh38 genome builds are the most commonly used for the analysis
of NGS data.

De-novo assembly is applied when an organism is sequenced for the first time, and reads
should be assembled from scratch. On the contrary, for individual genomes of a well-studied
organism (like human), the respective reference genome serves as a template that guides the
assembly procedure. If no reference is available, sometimes a closely related genome can be
very helpful. Regarding the technology used for whole-genome sequencing, which is the
appropriate methodology for genome assembly applications, different platforms produce
different error rates and different read lengths. Long reads are very useful during the assembly
process, but they are more prone to sequencing errors.

1.9.4 Short-read mapping

One of the most essential steps in NGS data analysis is the short-read mapping. After obtaining
high-quality FASTQ files, reads must be assigned to their positional origin along the examined
reference genome/transcriptome, to reconstruct biologically meaningful measurements, such as
the level of MRNA produced by a gene (RNA-seq), the genomic locations of protein binding
(ChlP-seq), the extent of chromatin accessibility (ATAC-seq, DNAseg-seq) et al. in order to gain
valuable information about the biological outcome of the NGS experiment. For this reason,
specialized and well-engineered software called short-read mappers or aligners is used.
Because of sequencing errors and differences between the reference genome and the
sequenced subject, the alignment process should allow nucleotide alterations such as
mismatches, deletions and insertions.

Bowtie and BWA have been two of the most popular short-read aligners since 2009. Bowtie
extends previous Burrows-Wheeler algorithm applications, by utilizing the Burrows-Wheeler
indexing approach, with a quality-aware backtracking algorithm that permits mismatches.
(Langmead et al., 2009) (Figure 20). BWA also utilizes Burrows-Wheeler transform algorithm,
and for exact matches is very similar to Bowtie. For inexact matches, a backtracking approach
is developed to seek for matches between genome segments and the read within constant
distance (H. Li & Durbin, 2009) (Figure 21).
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Figure 20 Exact and inexact alignment. Different approaches when there is no exact match for 'ggta’
sequence (mismatch when 'a' is replaced by 'g'), exact alignment (top) and Bowtie (bottom) processes.
Number pairs in boxes represent row matrix suffixes, X marks denotes an empty range and aborts aborts
in the exact match algorithm, or backtracks in the inexact algorithm, and green ticks represents the
finding of a non-empty range with one or more occurrences of a mapping for the read.
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Figure 21 Digital tree of ‘GOOGOL’ string. “A” denotes the start of the sequence, while the number pairs
give the SA interval of the string represented by the node (H. Li & Durbin, 2009). The dashed arrow
illustrates the brute-force search route for the sequence ‘LOL’, allowing at most one mismatch, and
labels in squares denote the mismatches. Finally, the only valid hit is the bold node [1, 1] representing
the sequence ‘GOL’".

1.9.5 SAM - BAM files

Short-read mappers report alignments of sequenced reads against the genome reference in
several formats, but in the last years the golden standard has become the Sequence Alignment
Map (SAM) format. This kind of files are usually processed by samtools (H. Li et al., 2009), a
specialized toolkit that has been developed for this purpose. SAM files include a header section
that informs the analyst if the alignments are sorted, reports the version of the software that
generated the file, provides a list of chromosomes that were included in the genome reference,



as also their respective length, and lists all the operations that have been already applied on the
file (alignment commands, samtools commands etc). An example of a SAM file header is
illustrated in Figure 22.

VN:1.6 :coordinate
SN:chrM :116571
SN:chri 1249250621
SN:chr2 $243199373
SN:chr3 :198022430
SN:chr4 :191154276
SN:chrs :180915260
SN:chré 1171115067
SN:chr?7 :159138663
SN:chr8 :146364022
SN:chr9 $141213431
SN:chrie LN:135534747
SN:chri1 LN:135006516
SN:chri2 LN:133851895
SN:chri3 LN:115169878
SN:chri4 LN:1067349540
SN:chris LN:102531392
SN:chri16 LN:96354753
SN:chri17 LN:81195210
SN:chris LN:78077248
SN:chri9 LN:59128983
SN:chr2e LN:630625520
SN:chr21 LN:48129895
SN:chr22 LN:51304566
SN:chrX LN:155270560
SN:chryY LN:59373566
ID:bwa PN:bwa VN:0.7.12-r1039 CL:bwa mem -t 30 -T 20 /media/raid/resources/igeno
mes /Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa /dev/fd/63
ID:samtools PN:samtools PP:bwa VN:1.10 CL:samtools view -bS -q 36 -@ 2 -
ID:samtools.1 PN:samtools PP:samtools VN:1.10 CL:samtools sort -@ 2 -
ID:samtools.2 PN:samtools PP:samtools.1 VN:1.10 CL:samtools markdup -r -@
- CCFVPANXX_aniPOND_2_4_18s5003061-1-1_Fousteri_lane8PD01062018_sequence.clean.T20.filter
ed.quality.30.and.uniquely.aligned.dedup.banm
@PG ID:bwa-7884D9B5 PN:bwa VN:©.7.12-r1039 CL:bwa mem -t 30 -T 20 /media/raid/resourc
es/igenomes/Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa /dev/fd/63
@PG ID:samtools-32432D32 PN:samtools PP:bwa-7884D9B5 VN:1.10 CL:samtools view -
bS -q 30 -@ 2 -
@PG ID:samtools.1-6B48385E PN:samtools PP:samtools-32432D32 VN:1.10 CL:samtool
s sort -@ 2 -
ID:samtools.2-6BCAG1E  PN:samtools PP:samtools.1-6B48385E VN:1.10 CL:samtool
-r -@ 2 - CCFVPANXX_aniPOND_2_4_18s003061-1-1_Fousteri_lane8PD24652018_sequence.
clean.T20.filtered.quality.30.and.uniquely.aligned.dedup.bam
@PG ID:samtools.3 PN:samtools PP:samtools.2 VN:1.10 CL:samtools merge -@ 5 PD4
.filtered.T720.dedup.bam CCFVPANXX_aniPOND_2_4_18s5003061-1-1_Fousteri_lane8PD01062018_seque

nce.clean.T20.filtered.quality.30.and.uniquely.aligned.dedup.bam CCFVPANXX_aniPOND_2_4_18s
003061-1-1_Fousteri_lane8PD24652018_sequence.clean.T20.filtered.quality.30.and.uniquely.al
igned.dedup.bam

@PG ID:samtools.4 PN:samtools PP:samtools.2-6BCAO1E VN:1.10 CL:samtools merge

-@ 5 PD4.filtered.T20.dedup.bam CCFVPANXX_aniPOND_2_4_18s5003061-1-1_Fousteri_lane8PD010620
18_sequence.clean.720.filtered.quality.30.and.uniquely.aligned.dedup.bam CCFVPANXX_aniPOND
_2_4_18s003061-1-1_Fousteri_lane8PD24052018_sequence.clean.T20.filtered.quality.30.and.uni

Figure 22 An indicative example of SAM file header

The rest of the SAM file includes the alignments, in a tab delimited format as illustrated in Figure
23.

7001425F :159: CCFVPANXX:8:2316:13302:42796 16 chr1 3407662 60 31M1026M
* 0 0 TGCACTCGGGGAAGGAACGGGGGCGGGAGCTGGGGGGGGGGCTCTCCCTCT FF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBB NM:1:1 MD:Z:317G20 AS:1:44 XS:1:19

7001425F : 159: CCFVPANXX:8:2307:2742: 59800 16 chr1 3407681 60 51M *
0 0 GGGGGGGGGGCTGGGGGGGGGGGCTCTCCCTCTCCCCATAGGAAAGCTCTC FFFB/BF////
/BFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBBB NM:1:2 MD:Z:4C3A42 AS:1:42 XS:1:20

Figure 23 An indicative example of two alignments stored in a SAM file

Sam records column-wise information includes (in the order reported as follows): (1) the read
name/ld, (2) the SAM flag that indicates if the read is paired, mapped in a proper pair (paired-
end), is unmapped, has its mate unmapped (paired-end), is mapped in the reverse strand, its
mate is mapped in the reverse strand (paired-end), is first in a paired alignment (paired-end), is
second in a paired alignment (paired-end), is not a primary alignment, is a low quality alignment,
is a duplicated alignment, is a supplementary alignment, and also combinations of flags (table
4), (3) the chromosome name, (4) the chromosome position where the alignment between the



read and the chromosome starts, (5) the MAPQ mapping quality, (6) the CIGAR string that is
informative about insertions or deletions (31M1D20M = 31 consecutive matches followed by
one deletion and 20 consecutive matches), (7) the name of the read’s mate (paired-end), (8)
same as (4), but for the read’s mate (paired-end), (9) the length of the template, (10) the read
sequence, (11) the read quality (Phred score), and optional fields that include “tags” (may be
aligner specific) and are informative about the number of mismatches (NM:i:2 = two
mismatches), the position of the mismatches (MD:Z:4C3A42 = 4 consecutive bases with exact
match with the reference, a “C” that does not match with the reference, 3 consecutive bases
with exact match with the reference, an “A” that does not match with the reference, 42
consecutive bases with exact match with the reference), the aligner score (AS:i:42 = quality
score equals to 42), and others.

MAPQ scores are similar to Phred scores (see section 1.9.2) and are informative about the
quality of the alignment: MAPQ = —10 log,,P(mapping position is wrong). There are a lot of
discrepancies regarding the definition of MAPQ values between different aligners, as each
software generates different ranges of these values and consequently it’s difficult to create a
universal thresholding.

BAM file format is the binary form of SAM files.

The SAM file structure enables the possibility to apply filters in order to discard low quality
reads, uncertain alignments, potential PCR duplicates, but also to select alignments coming
from specific genomic regions, such as particular chromosomes, intergenic regions, genes and
enhancers, or even randomly sample mapped or/and unmapped reads. These operations are
easily applied using samtools or custom scripts, and combinations of SAM flags ids (table 4).

Table 4 SAM flags with their decimal (fist column) and hexadecimal (second column) interpretation, and
their description (third column). Valid combinations of flags are very common and provide valuable
information about the alignment. For example flag = 1040 = 16 + 1024 means that the alighment is
mapped in the reverse complement (16) and it is a potential PCR duplicate (1024). From (H. Li & Durbin,
2009).

Bit Description
1 0x1 template having multiple segments in sequencing
2 0x2 each segment properly aligned according to the aligner
4 0x4 segment unmapped
8
6

0x8 next segment in the template unmapped
0x10 SEQ being reverse complemented
32 0x20 SEQ of the next segment in the template being reverse complemented
64  0x40 the first segment in the template
128 0x80 the last segment in the template
256 0x100 secondary alignment
512 0x200 not passing filters, such as platform/vendor quality controls
1024 0x400 PCR or optical duplicate
2048 0x800 supplementary alignment




1.9.6 Alignment counting

High quality alignments are further processed to create read-counts at genomic regions of
interest, such as exons, promoters, genes, enhancers et al. Read-counts represent the total
number of alignments coming from a specific genomic locus, and is reported as an integer.
When overlapping genomic elements (for example overlapping genes) are present in an
examined annotation, and reads are mapped in the overlapping region, uncertainties regarding
the origin of the alignments occur. To avoid these ambiguities, read-counting can be performed
using specialized tools that follow some specific rules (Figure 24) that aid the counting process
(Anders et al., 2015; Liao et al., 2014).

Union IntersectionStrict IntersectionNotEmpty

Cread ]
Feature [ Feature | Feature [
.
Feature [ No hit Feature [
Cead )
| Featwrei | [ Feawei | Feature [ No hit Feature [
Cread —{read )
| Feawre1 | | Feawei | Feature [ Feature | Feature [
[Cread 1
Feature I Feature | Feature [
[ Feawre2 |
Cresd
No hit Feature | Feature |
[ Festrez |
Cread 1
No hit No hit No hit
[Feawrez |
* Picture reproduced from HTSeq web site

hetp/fwww-huber.embl.de/users/anders HTSeq/doc/count himl

Figure 24 Different counting modes that provide different approaches to summarize alignments that
overlap to multiple genomic features. From (Obenchain, 2013).

Other tools like bedtools (Quinlan & Hall, 2010), are simply reporting the total intersections
between the alignments and the examined references, and are more useful for visualization
purposes, such as average profiles of alignment density, heatmaps of read density, and others
(see results section). Read-counting is also used to generate genome-wide profiles of NGS
signal distribution, that in turn can be visualized by particular tools called “genome browsers”



(Kent et al., 2002; J. T. Robinson et al., 2011) (see examples in results section). The counting
procedure is applied along the reference genome, by binning the chromosomes using a
predefined segment size (for example 250 bp), counting reads in each bin, normalizing the bin-
counts using a constant factor (optional), and generating bigWig files (see section 1.9.8)
compatible with a genome browser interface. The counting procedure can be replaced by a
similar process called “genome coverage” calculation, that summarizes the alignments in a per-
base resolution (Figure 25).
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genomecov
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Figure 25 Bedtools genomecov [https://academic.oup.com/bioinformatics/article/26/6/841/244688]
command for the creation of genome coverage profiles of an alignment file. Different options may
generate different file types (BED, BEDGRAPH) as described in section 1.9.8.

1.9.7 RPKM, TPM and CPM normalization

Feature counts are not comparable between genomic elements of varying length, or between
datasets of different alignment depth (different number of total alignments). This is because
samples that are sequenced to a higher depth will naturally result in features that gain higher
levels of counts, while longer features will also gain more mapped reads in their locus than
smaller features. To tackle these biases, several normalization strategies are widely applied in
the NGS analysis field. Reads per kilobase per million mapped reads (RPKM, applicable for
single-end reads) or fragments per kilobase per million mapped reads (FPKM, applicable for
paired-end reads) (Mortazavi et al., 2008) was one of the first approaches that addressed these
issues, while transcripts per million (TPM) measurement came to make an improvement to the
particular methodology (Wagner et al., 2012). The corresponding formulas that calculate
RPKM/FPKM and TPM are described in Figure 27.
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Figure 26 RPKM/FPKM calculation formula
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Figure 27 RPKM/FPKM calculation formula.

Both methods take into consideration the feature length and the library depth during the
normalization process, but TPM is considered more consistent because after the calculation
each examined sample is represented by the similar number of total normalized reads, while in
RPKM not (Wagner et al., 2012).

While the particular normalization methods help to remove the gene length and sequencing
depth bias, they should be used with caution when applying comparisons between datasets,
since they don’t take into account that different concentrations of NGS signal (RNA, total
amount of binding of a specific protein, total nucleosome-free regions) might be very different
between different biological conditions, tissues and treatment (library composition effect).

For that reason, some additional normalization methods have been implemented that take into
consideration the so-called “library composition” effect. The two most widely used normalization
methods that normalize for both library depth and library composition are the Median Ratio
Normalization (MRN) method used by DESeq?2 software (Love et al., 2014), and the trimmed
mean of M-values (TMM) method used by edgeR software (M. D. Robinson et al., 2009), that
are used for performing differential enrichment analysis of NGS datasets across a set of
genomic features. The calculus behind these two methods will not be described in this section,
since it's beyond the scope of this study. There are detailed descriptions of both approaches in
the respective software publications (Love et al., 2014; M. D. Robinson et al., 2009).

1.9.8 BED, bedGraph and bigWig files

The Browser Extensible Data (BED) files are tab delimited files that are used to store
alignments, or any type of genomic features that can be described by genomic coordinates.
Each record is stored in one line, and contains 3-12 columns and one optional track definition
line. The first three columns are mandatory since they describe the positional coordinates: (1)
the chromosome name, (2) the starting position of the record in the respective chromosome,
and (3) the ending position of the record in the respective chromosome. The starting and ending
positions refer to the Watchon-Crick direction (plus strand) of the reference genome. The 9
additional lines include: (4) The record name, (5) a score value with a range between 0 and



1000, (6) the feature strand orientation, (7) the thickstart, that may refer to the starting position
of the starting codon of a gene, (8) the thickend, that may refer to the ending position of the stop
codon of a gene, (9) the itemRgb is an RGB value that colors the record when it's displayed in a
genome browser, (10) the blockCount which refers to the number of blocks (for example the
total exons of a gene), (11) the blockSize, a comma separated list of block sizes and (12) the
blockStart, a comma separated list of block starting positions. An example of 10 BED records is
illustrated in Figure 28.

52321861 52321862 NM_145262
50606613 50606614 NM_001317851
31607414 31607415 NM_001323638
77593585 77593586 NM_024721
96214003 96214004 NM_001286722

4524512 4524513 NM_001127206 0 +
74218814 74218815 NM_005576
54367015 54367016 NM_014212
136243114 136243115 NM_153710
2923532 2923533 NM_001315502 0 +

Figure 28 BED records of protein coding and long non coding RNAs

The bedGraph format allows the interpretation of continuous values in a BED-like formal that is
very useful for storing scores, such as normalized counts of NGS signal, or large blocks of
genomic space with the same measurement. An example of such records is illustrated in Figure
29.

10029
10063
10065
10069
10071
10075

10076
10078
10080
10082
10109

ONODH WN ==

Figure 29 bedGraph records of BED alignments. Each record corresponds to a genomic block with the
same number of alignments overlapping in each of the consecutive base pairs included in the particular
block.

BigWig files are created using bedGraph files and are stored in an indexed binary format (Kent
et al., 2010). They are very useful since they are of much smaller size than bedGraph files and
they can be displayed in genome browsers as signal graphs (see results section).



1.9.9 RefSeq, UCSC and Ensembl human gene sets

RefSeq genes is a comprehensive and non-redundant genome annotation supported by the
National Center for Biotechnology Information (NCBI), and includes a set of curated and
predicted gene models, transcripts, exons and UTRs. Annotation predictions use the accession
prefixes XM_, XR_, and XP_, while the curated annotations (Genbank) start from NM_, NR_,
and NP_ (O’Leary et al., 2016).

Ensembl (Flicek et al., 2011) uses both predicted and curated annotations for human, and the
curation process is performed by the HAVANA project (Harrow et al., 2012). Automatically-
annotated gene models include pseudogenes, non-coding RNAs, and alternative splicing
events, while transcript annotation is based on experimental data coming from several data
repositories like UniProt (Bateman et al., 2017) and RefSeq .

UCSC has been one of the many collaborators in Human Genome Project, and straight after the
human genome assembly process was complete, the genome sequence was released in their
genome browser site. UCSC gene annotation is constructed automatically, based on UniProt
and Genbank (Hsu et al., 2006).

All human genome annotations can be downloaded from the respective database repositories,
as also from specialized tools such as bioMart (Kinsella et al., 2011) and UCSC Table Browser
(Karolchik et al., 2004).

At the date of this study, for the GRCh38/hg38 human genome build, RefSeq has annotated
26,671 gene models and 226,309 exons, Ensembl database includes 60,587 gene models and
510,285 exons, and UCSC includes 27,982 gene models and 236,062 exons.

1.10 Hidden Markov Models (HMMs)

Data sets in which data points are potentially interdependent, comprise a special data type that
is known as “sequential data”. The specific type of data points is displayed in a specific order,
and its classification is important (x,, x,,...xy_1, Xy,). Some basic examples of sequential data
are “time series” (weather data, stock data, audio data, etc.), and "spatially dependent data”,
such as DNA sequences and characters that form sentences in natural languages. This data
type can be modeled by the following formula:

N
P =pG0) | | pGoalns,xnoz, xr)
n=

In the particular notion, each conditional distribution depends on all the previous observations.
In the special case where the above rules is relaxed and each conditional distribution depends
only by the previous observation, the resulting model in known as “first-order Markov model”:
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Higher-order Markov models can also be defined, by letting more than one dependent
observation to affect the model. For example, a second-order Markov model can be defined as
follows:
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Additionally, if the conditional distributions p(x,|x,—1) depend on adjustable parameters, such
as those that might be inferred by training datasets, and all the distributions share the same
parameter values, then the Markov model is considered “stationary” and “homogenous”.

In the special occasion where x,, latent values are discrete, then the model is called “Markov
chain”. In the particular study, first-order stationary Markov models will be used.

The initial distribution of a first-order stationary Markov model, is a special latent variable since
there is no parent observation:

K
T = p(Xqp = 1);2 T =1
k=1

The transition distribution p(x,|x,—1) is defined by a K x K matrix that is called transition matrix:

K
Ao = (i = 1|x(n-1y; = 1),Zk_1Ajk —1,j=1,..K

where (11, A) are the parameters of the models.
To estimate (11, A), maximum likelihood estimation (MLE) is applied, for a given sequence of
observations {x;, x;,..., xy}:
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To train the transition matrix A of a first-order Markov model, K? parameters should be defined,
while for a L-order Markov model, K**parameters should be defined, making the parameter

estimation procedure unfeasible for big values of L. This limitation is bypassed by Hidden
Markov Models (HMMs) (Rabiner & Juang, 1986).

HMM is an extension of mixture models (schema below), where “hidden” latent variables z,,,n =

1.. N define the outcome of the observation, and hidden latent variables are described by a
Markov chain:
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where hidden variables are described by the Markov chain:

P@) =p() | [pzalza-n)
n=2

with initial probability:

p(zy = 1) =my

with transition matrix:

p(znk = 1|Z(n—1)j = 1) = Ajk

and emission probability (observation probability):
p(xnlzn)

that may follow one of the discrete or continuous distributions. HMMs can be represented
graphically as illustrated in Figure 30.

Figure 30 Lattice (left) and trellis (right) representations of the same HMM transition matrix. HMMs
have a “sticky” before meaning that they stay in the same hidden state for multiple observation periods.
From (“Pattern Recognition and Machine Learning,” 2007).

HMMs are widely used in speech recognition (Rabiner & Juang, 1986; Sun & Jelinek, 1999),
natural language modelling (Manning et al., 2002), handwriting recognition (Nag et al., 1986),



for the gene and protein sequence predictions (Best, 2004; Cunningham, 1999; Krogh et al.,
1994) and other applications.

Parameter estimation (6) of the HMM can be accomplished by using Baum-Welch algorithm
(Munro et al., 2011), a special case of the Expectation Maximization (EM) algorithm, which uses
a set of observations as input:

bj(yi) = P(Xn = xi|Zn =))
to obtain a N (observations) x K (hidden state) matrix:
B = {b;(y:)}

a transition probability matrix A with predefined transition probabilities, and a predefined initial
state probability Tr:

6 = (m,4,B)

Baum-Welch is defined by two processes called “forward” and “backward” algorithms, and their
recursions can be run in parallel. The two processes are described below.

Forward process:

The probability of observing x;...X,, in state i at time n is set as:
a;(n) = P(X; = x;, X = X, Z, = i|0)

and can be calculated using the recursion:

(1) a;(1) = m;b; (1)

N
() ai(n+1) = biOnin) ) G
Jj=1
Backward process:

The probability of observing the partial sequence x,,,,...xy using that starting state i at time n is
set as:

bi(n) = P(Xn+1 = Xpt1) o AN = lezn =1, 8)



and can be calculated using the recursion:

(LD b(N) =1

) bi(m) = ) b+ Dagib(ensn)
=1

The temporary variables can be calculated using the Bayes’ theorem. The probability of being at
state i at time n, given the observations X with parameters 8, is calculated as follows:

P(Y,_;, X|0
B = P2y = 17, 0) =~ ot
a(b(n)

1.1 aj(n)b;(n)

while the probability of being in state i at time n, and j at time n+1, given the observations X and
parameters 0, is calculated as follows:

$ij(n) = P(Zy, = 1, Zn41 = JIX, 0)
P(Z, =i, Zney =/, X|0) _ a;(n)a;jbj(n + 1)bj (xpn41)

P(X]0) R=1Zw+1 W (M) @y by (0 + Dby, (Xn41)

After the above calculations, the HMM parameters are updated as follows:

(1) The initial state probability:
m; =vi(1)

(2) The expected number of transitions from state i to state j over the expected total number of
transitions from state i:

. _ 2%1:1 $ij(n)
N n= 1yl(n)

R

(3) How many times is expected that the observations will be equal to v, in state i, compared to
how many times is expected that the state i will be visited:
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All the above calculations are repeated until a desired number of iterations, or until
convergence.

After parameter estimation, the most probable hidden state sequence Z* = (z3,...,zy) IS
predicted, using the Viterbi algorithm (Viterbi, 1967):

Z* = argmax p(Z|X) = argmax p(X,Z) = argmax logp(X, Z)
Z V4 zZ

Viterbi makes use of messages of the form:

@(zy) = 10gpCenlzn) + min[w(zp_1) + logp(zn|2n-1)]
n-—1
8(zn) = zn—1
where &(z,,) stores the z,_,value, and are initialized as follows:
w(z1) = logp(x1]2;) + log p(z1)

After all w messages are calculated, the next step is executed:

zy = argmax[w(Zy)]
ZN
and starting from zy backtracking is performed based at:

Zn-1 < 6(z3)

that finds the most probable path.

All the theory, formulas and algorithm descriptions in this section are referring to the lecture
presentations of the Machine Learning Course of the Department of Informatics and
Telecommunications of the University of Athens, by Michael Titsias, the book: (Bishop, 2006),
and Wikipedia https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm.



2 Materials and methods

2.1 Human cell lines

In the present study the experiments were conducted using normal human skin fibroblasts
(VH10) (Kolman & BohuSova, 1992) as well as skin fibroblasts of CS-B patients (CS1AN )
(Arlett et al., 2008)(Nardo et al., 2009). Both cell lines were immortalized by the human
telomerase reverse transcriptase (htert) method (Lee et al., 2004). Cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM, Thermo Scientific) enriched with 10% v / v fetal
bovine serum (Fetal Bovine Serum, FBS, Thermo Scientific) and 1% v / v penicillin-streptomycin
(Thermo Scientific), preserved in an incubator at 37 ° C and 5% carbon dioxide (C0O2), and
cultured in a laminar flow hood.

2.2 Cell population synchronization

Previously established protocols to synchronize cells in G1 were applied to limit cell-cycle
heterogeneity and achieve steady-state levels of RNAPII, histone modifications, chromatin
accessibility and nascent transcripts across the transcribed region (promoters, enhancers,
asPROMPTs and gene bodies) (Lavigne et al., 2017; Liakos et al., 2020). Briefly, serum-
starvation for 72 h of cells at confluency enriched for cells in GO/G1. After release in complete
medium for 3 h, rapid recovery of steady-state levels of transcription and the examined factors
was allowed (F. Chen et al., 2015) to take place before the exposure to UV irradiation.

Cell synchronization was also achieved at certain cases using inhibitors of transcription. The
drug 5,6-Dichloro-1-B-D-ribofuranosylbenzimidazole (DRB) is a P-TEFb kinase inhibitor that
inhibits transcription. Specifically, it inhibits the phosphorylation of the CTD sequence of RNAPII
through interaction with the factors P-TEFb and DSIF. This results in the stalling of RNAPII
molecules at PPP, as the mechanisms for their release to transcription elongation are not
functional. Inhibition of transcription is reversible; once the DRB factor is removed, the RNAPII
molecules are phosphorylated and released from the PPP regions to enter transcription
elongation.

DRB treatment also allows the uncoupling of the dynamics of two previously indistinguishable
subclasses of elongating RNAPII molecules: the ones that are already engaged in elongation
prior to stress (pri-elongating) and the “de novo” PPP-released polymerases (Ip et al., 2011;
Jonkers et al., 2014; Levens et al., 2016; Yamaguchi et al., 2013).

Triptolide (TRP) inhibits transcription by binding to the XPB subunit of TFIIH, which is required
during the first steps in transcription to open the double-stranded DNA and to create a
“transcription bubble” (Figure 1.6). TRP inhibits the ATPase activity of XPB, preventing the
formation of the transcription bubble, and therefore inhibits transcription initiation. TRP
treatment is irreversible as it binds covalently to XPB and activates a rapid proteasome-
dependent degradation of RNAPII (Bensaude, 2011; Titov et al., 2011; Vispé et al., 2009).



The above inhibitors were placed directly in the medium, at time points described in detail in the
respective experimental schematics (see next sections).

2.3 UVC Cell irradiation

The cells were exposed to UVC radiation (254nm, TUV Lamp, Philips). Doses corresponding to
8, 15 and 20 J / m? were applied. Prior to UV exposure, the medium was removed from the
cells, and a PBS wash was performed to remove nutrient residues that could absorb the
irradiation. The plates were then left to recover in normal medium (10%FCS) for a certain
period of time at 37 ° C.

2.4 Acetic histone extraction

Cells were placed on ice and washed twice with cold PBS, collected in PBS 1x solution
containing 1 mM EDTA, 0.5 mM EGTA (Egtazic Acid) and 1 mM PMSF (Phenylmethylsulfonyl
Fluoride) followed by centrifugation at 2000 rpm for 5 minutes at 4 ° C. The supernatant was
removed, the cell pellet was resuspended in PBS (10X pellet volume) and then centrifuged at
2000 rpm for 5 minutes at 4 ° C. Cell pellet was resuspended in 10 volumes of Lysis Buffer
(10mM HEPES PH 7.9, 1.5mM MgCI2, 10mM KCI, 0.5M Dithiothreitol (DTT), 1.5mM PMSF)
and then sulfuric acid was added to a final concentration of 0.2M. The samples were incubated
on ice for 30 minutes and then centrifuged at 10,080 x g for 10 minutes at 4 ° C. The
supernatant was collected and trichloroacetic acid (TCA) was added at a final concentration of
20%. Vortex was applied and incubated for one hour on ice. Centrifugation at 14,000 rpm for 15
minutes at 4 ° C was applied, the supernatant was removed and 1 ml of cold acetone (-20 ° C)
was added to the residue. Then, centrifugation at 14,000 rpm for 5 minutes at 4 ° C was applied,
the acetone supernatant was removed and speedvac was performed. Finally, the pellet was
resuspended in a suitable volume of TE solution (10 mM Tris, 1 mM EDTA) and the samples
were stored at -80 ° C.

2.5 In vivo crosslinking

Formaldehyde creates reversible protein-DNA, protein-protein and protein-RNA chemical
bonds. Formaldehyde was added to the cell medium at a final concentration of 1% (from 37%
stock solution). After incubation for 12 minutes, glycine (stock 2.5 M) was added to the medium
to a final concentration of 0.125 M for 6 minutes to stop the above reaction. The cells were then
washed twice with cold PBS 1x and collected in PBS 1x containing 1 mM EDTA, 0.5 mM EGTA
and 1 mM PMSEF. Finally, cells were divided into 2 * 107 cell/pellets, and either used directly for
chromatin lysis as described in Lavigne et al., 2017, or they were frozen in liquid nitrogen and
stored at -80 ° C.



2.6 Chromatin Immunoprecipitation sequencing, ChiP-seq

Chromatin immunoprecipitation (ChIP) of crosslinked UV or non-irradiated chromatin was
carried out from at least two independent cultures of cells per condition as described in (Lavigne
et al., 2015, 2017). Antibodies used in the ChIP experiments are listed in the table below.

Table 5 Antibodies used in the ChIP-seq experiments in this study

Antibody Brand Catalogue Number
anti-Pol 1l-hypo (BWG16) Millipore 05-952

anti-Pol II-Ser5P Millipore 04-1572-

anti-Pol 1I-Ser2P Abcam ab5095
anti-H3K27ac Abcam ab4729

After precipitation, ChIPped DNA was quantified on a Qubit 2.0 Fluorometer (dsDNA HS Assay
Kit, Thermo Scientific) and ChlIP specificity was checked by qPCR analyses performed with 10—
100 pg of ChIP and Input DNA in duplicate reactions with gPCRBIO SyGreen mix (PCR
Biosystems) on a Roche Light Cycler 96 instrument. At least two independent ChlIP replicates
were validated by ChIP—qPCRs. If individual ChIPs showed sufficient enrichment in control
genomic regions, respective ChIP and Input DNA (1-10 ng) were subjected to library prep for
NGS. (Lavigne et al., 2017; Liakos et al., 2020).

2.7 Total RNA and nascent RNA (nRNA) extraction

Cells were grown on 55 cm surface plates to a confluency of about 80%. After the medium was
removed, cells were harvested in 500yl of trizol (Trizol, Life technologies) on ice. Next, 100 pl of
chloroform (A1935 chloroform-isoamyl 24: 1, Applichem) was added and stirred with a vortex
apparatus for a few seconds. The samples were then centrifuged for 15 minutes at 12,000 rpm.
After centrifugation, the upper phase was carefully collected in a new eppendorf vial. In order to
precipitate the RNA, 20 pg of glycogen, 1/10 sample volume of sodium acetate 3M pH5.5, and
2.5 volumes of ice-cold 100% ethanol were added. The samples were then left for at least 12-16
hours at -80° C and then centrifuged at 16,000 rpm at 4° C, and the pellet was rinsed with 70%
ethanol. Then, the amount of nucleic acids in the samples was measured with the nanodrop
spectrometer.

At this stage, except from RNA, the samples contain a quantity of DNA. To remove DNA, 20ug
were incubated at 37°C for 30 minutes with DNase |, according to the manufacturer's
instructions (Turbo DNase, Ambion, Life Technologies). This was followed by purification with



acid phenol (acid phenol)/ chloroform pH 4.5 (ThermoFisher Scientific), homogenization, and
centrifugation for 15 minutes at 16,000 rpm.

The supernatant was collected in new eppendorf vials, and an equal volume of chloroform
(A1935 chloroform-isoamyl 24: 1, Applichem) was added. This was followed by homogenization
and centrifugation at 16,000 rpm and finally precipitation for at least 12-16 hours at -80° C. The
samples were centrifuged at 16,000 rpm at 4° C. The pellet was next washed with 70% ethanol
and subsequently dissolved in clean RNAse-free water. RNA concentration was measured on
the nanodrop spectrometer and stored at -80° C.

For the newly synthesized RNA (nRNA) isolation experiments, EU (Ethylene Uridine) was used
as a uridine analog to label the newly synthesized RNA as follows: 5-10 minutes before the
extraction of total RNA with Trisol, EU-labeled uridine analogue, 100 yM Click-iT ™ (Nascent
RNA Capture Kit, C10365, ThermoFisher Scientific) was added and purification of total RNA
was performed as described above at the indicated time. An initial amount of 5-10 g of total
RNA was used for each nRNA sample. After DNA removal by DNAse I, only EU-labeled
molecules were selected. This was achieved by the biotin-azide -EU chemistry using the Click-
iT ™ package (Nascent RNA Capture Kit, C10365, ThermoFisher Scientific), which contains
magnetic beads covered with biotin-azide. The manufacturer's protocol was applied, with some
modifications during the cDNA synthesis stage.

For the synthesis of cDNA, nRNA was used as the starting material, without being released
from the magnetic beads. In other words, cDNA was synthesized on magnetic beads (on beads
cDNA synthesis).

2.8 Assay for Transposase Accessible Chromatin with high-throughput
sequencing (ATAC-seq)

ATAC-seq is a method used to map and study accessible ("open") chromatin regions in a
genome-wide fashion (Buenrostro et al., 2013, 2015).The basic principles of the protocol are
described in Figure 31.
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Figure 31 ATAC-seq methodology. (A) ATAC-seq is based on the activity of Tn5 transposase, which is
attached with in vitro adapters, suitable and compatible with next generation sequencing (NGS)
techniques. Tn5 transposase can cleave and integrate specific adapters at genomic regions where
"open" chromatin is present, such as the regulatory regions of promoters and enhancers. (B) Following
the transposase reaction, DNA is isolated and then amplified by PCR. Prior to amplification, adapters
have to be ligated with a 72°C extension step. During the subsequent PCR, additional sequence is
incorporated into the adapters, which include common sequencing ends and a sequencing barcode.
From (Buenrostro et al., 2015).

For this study, an improved ATAC-seq protocol (omni-ATAC-seq) was used, which reduces
mitochondrial DNA contamination and is characterized by a higher signal / noise ratio than the
original method (Corces et al., 2017).

2.9 Construction of NGS compatible DNA libraries

Double-stranded DNA fragments derived from either chromatin immunoprecipitation or RNA
isolation (cDNA) were modified to be compatible for NGS. The protocol that was used, results in
the binding of a 6-nucleotide sequence (lllumina NEBNext adapters) to the cDNA, which acts as
a molecular identity (index). This methodology allows for the parallel sequencing of multiple
samples together (multiplexed samples), which can be separated after the sequencing
procedure using bioinformatics techniques (demultiplexing) (Figure 32).
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Figure 32 Adapted by lllumina

Briefly, the basic steps of this procedure are: (1) Blunt ending (end repair) addition at DNA ends,
(2) A-base addition at 3’ end of DNA, (3) lllumina NGS adapters attachment, (4) DNA
fragmentation (150 bp - 500 bp), and (5) DNA fragment PCR amplification.

2.10 Next Generation Sequencing

All libraries in this study were sent to Genecore-EMBL and sequenced using the Illlumina HiSeq
2000 platform for 50 sequencing cycles (maximum of 50 bp per sequenced read), resulting to
one FASTQ file per sequenced library, including hundreds of millions of 50-nucleotide sequence
reads, which were analyzed by the bioinformatics pipeline described in the results section.

2.10.1 ChIP-seq of RNAPII isoforms

To study the genome wide binding kinetics of the different RNAPII isoforms (pre-initiating,
initiating and elongating) during UVC stress recovery in normal human cells (VH10), a series of
RNAPII ChiP-seq experiments were performed, as depicted in the schema below.
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Specifically, for the RNAPII pre-initiating isoform “hypo” crosslinking was performed at 0 h (NO
UV) and +UV 1.5 h after UVC irradiation, for the initiating isoform “ser5P” at 0 h (NO UV) and
+UV 0.5 h, and for the elongating isoform “ser2P” at 0 h (NO UV), and +UV at 0.5, 1, 2, 6 and
48 h after UVC induction.

2.10.2 RNAPII-ser2P DRB ChiP-seq

Inhibition of RNAPII transition into transcription elongation, enables the unmasking of the
kinetics of the already elongating -prior to UVC irradiation- RNAPII molecules (pri-elongating)
from the ones that are released in response to UVC (de novo elongation). For studying the pri-
elongating RNAPII molecules, transcription inhibition was performed by DRB, 10 min before UV
irradiation. After irradiation, cells were allowed to recover for indicated times in the presence of
DRB before crosslinking, chromatin isolation and ChIP for RNAPII-ser2P, as depicted in the
schema below.
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VH10 cells anti-RNAPII-S2P ChIP-Seq

The generated samples by the above-mentioned experiments included NO UV -DRB, NO UV
+0h +DRB, NO UV +10 min +DRB, NO UV +30 min +DRB, +UV +10 min +DRB, and +UV +30
min +DRB conditions.

Subsequntly, to study the genome-wide binding profile of “de-novo” elongating RNAPII
molecules, the experimental set-up described in the schema below was followed.
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The generated samples will be referred as RNAPII-ser2 pre-DRB +UV -DRB and pre-DRB +UV
+DRB.

2.10.3 Histone modifications- ChiP-seq

ChlIP-seq experiments of histone modifications, and specifically H3K27ac and H3K27me3 are
informative about the genome-wide transcriptional active or repressed status of chromatin,
respectively, along all the functional genomic elements of interest in the particular study (genes,
enhancers, asPROMPTS).
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In this study, to examine potential alterations of the particular histone modifications during early
recovery from genotoxic stress in VH10 cells, H3K27ac NO UV and +UV 2 h, as also
H3K27me3 NO UV and +UV 2 h were generated (schema above).

2.10.4 +DRB RNAPII-hypo ChiIP-seq

To study the genome-wide profile of RNAPII-hypo binding in response to UVC stress, ChIP-seq
experiments were performed using the RNAPII-hypo isoform specific antibody 8WG16 (table 5)
in the experimental conditions described in the schema below.
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As depicted in the schema above, cells were UV- irradiated and left to recover for 2 h when the

levels of RNAPII-hypo are known to be depleted (Heine et al., 2008; Lavigne et al., 2017; Rockx
et al., 2000) (DMSO NO UV vs DMSO + UV +2 h). Consequently, DRB inhibitor was applied (or
not) to block the release of RNAPII into productive elongation from PPP sites. Crosslinking was

applied 2 h after the addition of DRB (or DMSO for the control cells).

2.10.5 VH10 and CSB nRNA-seq

To study the effect of UVC irradiation on nascent RNA synthesis in normal and TC-NER
deficient cells, a set of nRNA-seq experiments was performed following the experimental set-up
that is depicted in the schema below.

-+ UV 15J
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VH10 and CS-B cells

Chip-seq libraries from VH10 and CSB cells in NO UV +0 h, NO UV +24 h, +UV +0.5 h, +UV +2
h, and +UV +24 h conditions were generated.

2.10.6 pre-DRB nRNA-seq

Transcription synchronization was achieved using 100 uyM of the DRB inhibitor for 3 hours
directly in the medium. At the end of this period, the medium was replaced with a fresh one
without the inhibitor. This was followed by EU labeling and collection of total RNA, as depicted
in the schema below.
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VH10 and CS-B cells

Pre-DRB nRNA-seq experiments according to the experimental set-up depicted in the schema
above were performed for both VH10 and CSB cells at NO UV +0 min, +10 min, +1 h and +2 h
conditions, and +UV 0 h, +10 min, +1 h and 2 h conditions.

Data generated with a variation of the nRNA-seq protocol, called BruUV-seq, were also
analysed in this study. The particular methodology is strand-specific and incorporates
Bromouridine (Bru) instead of EU for labeling the nascent transcripts (Magnuson et al., 2015)
(schema below).

Brulv-seq Strand-specific
(Magnusson et al., 2015)

¢ SN ™

L2
+gry @h +30 min

For the particular study, HF1 BruUV-seq datasets of NO UV and +UV 30 minutes were
downloaded from GEO with accession number GSE75398.

2.10.7 ATAC-seq

To study the genome-wide landscape of chromatin accessibility in normal human skin cells
(VH10) upon genotoxic stress, omniATAC-seq experiments were performed as described
above, following the experimental schema below.
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Specifically, as depicted above, VH10 omni-ATAC-seq libraries in NO UV and +UV +2 h
conditions were generated.

2.10.8 Start-RNA synthesis

According to this protocol, VH10 cells were irradiated (or not) with UVC, allowed to recover for
two hours, and then treated with the transcription elongation inhibitor DRB or the transcription



initiation inhibitor TRP by adding them to their medium (schema below). For each experimental
condition, short RNAs less than 200 nucleotides (nt) were isolated and an RNA-DNA linker was
attached to their 3 'end. Subsequently, a reverse transcription reaction was performed using a
common primer complementary to the linker sequence. gPCR reactions were then conducted to
guantitatively compare start-RNA levels in particular genetic regions where RNAPII-ser2P ChlP-
seq or nRNA-seq signal was detected (Liakos et al., 2020).
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According to the schema above, short RNAs at NO UV /+ DRB /T 2.5h, + UV/-DRB /T 2.5h,
+UV/+DRB/T25hand + UV /+ TRP /T 2.5h were isolated.

2.10.9 Cap analysis of gene expression sequencing (CAGE-seq)

Identification of transcription start sites (TSSs, eTSSs, PROMPT TSSs) and their associated
promoters require 5’ end—specific signature sequences for annotating their transcription profiles.
For this reason, techniques that perform cloning of short sequence tags from the 5’ end of
cDNA, using cap analysis of gene expression (CAGE) (Shiraki et al., 2003) and 5-SAGE
(Hashimoto et al., 2004; Wan et al., 2004) were developed. In these protocols, DNA-linkers are
attached to the 5’ end of cDNA to create a recognition site for the restriction endonuclease
Mmel adjacent to the 5’ ends. cDNA cleavage is in turn performed by Mmel 20 and 18
nucleotides downstream of the recognition site, creating a two-base overhang. Finally,
amplification is applied followed by concatenation of sequencing tags for NGS sequencing
(Kodzius et al., 2006)(Figure 33). CAGE-seq accurately determines all kinds of transcription
start sites, abundance and directionality of RNAPII transcription at TSSs (Andersson et al.,
2014; Liakos et al., 2020; Noguchi et al., 2017).
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Figure 33 CAGE-seq protocol

For this study, FANTOMS strand specific CAGE-seq alignment files of normal Dermal fibroblast
primary cells (6 Donors with source codes: 11269-116G9, 11346-117G5, 11418-118F5, 11450-
119A1, 11454-119A5 and 11458-119A9) and normal skin fibroblasts (2 Donors with source
codes: 11553-120C5 and 11561-120D4) were downloaded from
ftp://ftp.biosciencedbc.jp/archive/fantom5/datafiles/phase2.2/basic/human.primary_cel. h CAGE
and were combined to generate a consensus BAM file. BAM files were further processed and
separated into forward and reverse references, and saved as two separate BAM files.

2.10.10 EXcision repair sequencing (XR-seq)

XR-seq methodology (Hu et al., 2015) provides a genome-wide map of excised-DNA sequences
during NER repair activity (see section 1.2). Nucleotide excision repair in humans creates two
cuts around the DNA-lesion site, resulting in a ~30 bp sequence. The particular fragments are



isolated and subjected to next-generation sequencing producing strand-specific, base-resolution
maps of repair of the two classes of UVC-induced DNA lesions, cyclobutane pyrimidine dimers
(CPDs) and (6-4) pyrimidine—pyrimidone photoproducts [(6-4) PPs]. Experiments were conducted
in normal cells (NHF1 human skin fibroblasts), as also in cells defective in either transcription-
coupled excision repair (CSB cells) or global genome excision repair (XP-C cells), addressing the
contribution of each NER-pathway to the overall repair profile (Figures 34 and 35). Further
analysis of XR-seq datasets enables the capturing TC-NER profile at promoters, enhancers and
gene bodies of actively transcribed elements (Hu et al., 2015, 2017; Lavigne et al., 2017; Liakos
et al., 2020).
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Figure 34 The XR-seq method. From (Hu et al., 2015).
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Figure 35 XR-seq data after 1 h recovery from UVC irradiation pinpoints precisely and exclusively the
location and levels of transcription-dependent repair (TC-NER pathway) when the assay is performed in
GG-NER-deficient cells (xeroderma pigmentosum (XP)-C cells). From (Hu et al., 2015)



XR-seq data of CPD containing excised DNA fragments in wild-type (WT) NHF1 skin fibroblasts,
XP-C, and CS-B mutant cells were downloaded by Gene Expression Omnibus with accession
number GSE67941.

2.10.11 NHF1 time-course XR-seq

When XR-seq is applied over a time course, the kinetics of NER after UVC irradiation can be
mapped (Adar et al., 2016)(schema below). Measurements of repair activity at UVC-induced
CPDs at 1, 4, 8, 16, 24, and 48 h and 6-4 photoproducts at 5 and 20 minand 1, 2, and 4 h in
normal human skin fibroblasts (NHF1) were generated using the protocol depicted in Figure 36,
and were downloaded from GEO with accession number GSE76391.
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Figure 36 NHF1 time-course XR-seq

2.10.12 XPC XR-seq of CPD damages coupled with double DRB (DRB2) treatment
(pulse—chase—pulse)

In the particular variation of the XR-seq protocol, cells were first incubated in DRB for 2 h, to
block new molecules of RNAPII from entering transcription elongation and allowing the already
elongating RNAPII complexes to complete and terminate transcription. After 2 h of DRB
treatment, the inhibitor was washed off, and the cells were incubated for 10 min, and then DRB
was added again (Figure 37).
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Figure 37 DRB2 XPC XR-seq of CPD experimental set-up. Adapted from (Chiou et al., 2018).

DRB2 procedure allowed the release of only a limited number of RNAPII molecules during the
10-min DRB-free chase period, enabling the repair of DNA lesions at the 5" end of the gene.
The three biological conditions denoted in Figure 37 are reported as CPD XPC +UV 1 h
+DMSO, +UV 1 h +DRB and +UV 1 h +DRB2 XR-seq datasets in the rest of this study. The
above datasets were downloaded from GEO with accession number GSE106823.



2.10.13 aniFOUND-seq

aniFOUND-seq, is a novel, antibody-free method that can capture the repaired chromatin after
UVC irradiation. The particular methodology takes advantage of the unscheduled DNA synthesis
(UDS), which occurs during the repair of the UVC-induced DNA lesions and in particular the DNA
synthesis step that takes place after the incision of the damaged DNA fragment. The elimination
of any DNA synthesis (i.e during replication) other than UDS is a key step in aniFOUND, so that
the DNA resulting from UDS is solely and specifically labelled. This is achieved by arresting cells
in GO/G1 by both contact inhibition and serum starvation. Additionally, to inhibit DNA synthesis in
the small number of cells still escaping GO/G1, cultures were treated with hydroxyurea (HU) during
the DNA labeling step. The chromatin associated with newly synthesized EDU- labeled DNA is
next isolated (Click-IT chemistry) and this material can be subjected to high-throughput omics
analyses like Protein Mass Spectrometry and DNA Next Generation Sequencing (NGS). The
main steps of aniFOUND-seq protocol are depicted in Figure 38.
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Figure 38 lllustration of aniFOUND method (a) An asynchronous population of fibroblasts is
synchronized to GO/G1 phase by serum starvation and contact inhibition and (b) DNA lesions are
induced by UVC-irradiation. (c) The lesions are left to be repaired in the presence of labelled nucleotides
(EdU). HU is added in this step to eliminate the replication of any escapers. Potential fates of the UVC-
derived lesions include repair by NER itself, procession by EXO1, repair of any formed DSBs. Since no
replication occurs UDS will be the only source for DNA labelling. (d) Biotin molecules are conjugated on
the labelled nucleotides, the chromatin is extracted (e) and sheared (f) and the labelled chromatin
fragments are isolated with streptavidin beads. (g) On-beads library construction procedure is carried
out that is followed by next generation sequencing (h).



The aniFOUND-seq protocol does not give strand-related information, since capturing of the
whole repair related newly synthesized DNA is of particular interest. Even though, with particular
experimental adjustments, strand-specificity can be applied to aniFOUND-seq, as only the
repaired strand is labelled. This can be accomplished by a DNA denaturation step after the
binding to the streptavidin beads followed by a strand-specific library protocol adaptation.

2.11 Peak Calling

One of the major analysis modules of ChIP-seq and ATAC-seq experiments is the identification
of regions significantly enriched with NGS signal, that correspond to protein binding events
(ChIP-seq) or nucleosome free regions (ATAC-seq). The identification procedure of these
events is called “peak-calling”, and there are multiple choices of specialized software that can
be applied, depending on the NGS protocol, the under-study factor, the data quality etc.

In this study, MACS2 (Y. Zhang et al., 2008) and epic2 (Stovner et al., 2019) were used, as
described in the results section.

Briefly, MACS2 was designed for TF binding site identification (default algorithm behavior), but it
is also applicable in chromatin accessibility assays (ATAC-seq, DNAse-seq) by using
appropriate parameterization (the --shift -100 --extsize 200 parameters center a 200 bp window
on the Tn5 binding site), in RNAPII ChIP-seq data (--nomodel option), or even in narrow and
broad histone maodifications (--nomodel, --broad parameters). Epic2 is an ultra-performant
version of the SICER algorithm [https://www.ncbi.nIm.nih.gov/pmc/articles/PMC4152844/] that is
designed to identify peaks in ChlP-seq datasets with wide binding profiles, such as histone
modifications (H3K27ac, H3K27me3, H3K4mel etc.). During peak detection, the “wideness”
can be controlled using appropriate window sizes, and setting the number of gaps between the
window search.

2.12 Dimensionality reduction

Dimensionality reduction is a collection of methodologies where a set of dimensions, for
example in a {gene by sample} matrix with genes, (g1, ..., gn), gn € R? is transformed into a
smaller set of (zy, ..., z,), z, € R™ dimensions, where M << D. These methodologies are
considered a category of unsupervised learning systems.

The advantages of applying dimensionality reduction in high dimensional datasets include data
compression (in terms of storage and processing speed), and data visualization, in a human
readable interpretation of 2 or 3 dimensions.

Lower-dimensional spaces, such as principal component spaces, are often been treated as
inputs to supervised learning algorithms (clustering methods) or non-linear dimensionality
reduction methodologies (t-SNE, UMAP, diffusion maps) and contribute to better generalization
(in the case of clustering) or human-readable visualization (in the case of non-linear
dimensionality reduction).

Principal Component Analysis (PCA) (Pearson, 1901) is one of the most widely used methods
of linear dimensionality reduction methodologies applied in the field of Bioinformatics. It is a
mathematical algorithm that reduces the dimensional space, while maintaining most of the
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variation in the data matrix, and reveals patterns of similarity/dissimilarity between the examined
groups (in the case of {gene by sample} matrix example, groupings between the samples}) like
clustering. In PCA, dimensions are reduced by data projection to lower dimensions (principal
components - PCs) in a search of identifying the best data summary using the least number of
PCs (at least less than the examined features - genes). Each PC is created with the
requirement of minimizing the distance between the data points and their projection onto the
particular PC, while consecutive PCs are created with the additional requirement of not being
correlated with all previously created PCs (geometrically orthogonal) (Lever et al., 2017). Each
PC explains a percentage of the variation of the dataset, starting from PC1 which depicts the
higher variation value (see Figure 41b).

In the example of the {gene by sample} matrix, PCA can be applied in the whole, z-scored data
matrix to reduce the gene dimensions, or by sub-setting the original matrix to the most variable
rows (genes). By focusing on genes that exhibit the highest variability in the dataset is
sometimes helpful in highlighting biological signals in NGS datasets and might favor the PCA
procedure (Brennecke et al., 2013). The selection of these variable features can be done by
using mean-by-variance analysis or dispersion analysis (Stuart et al., 2019).

2.13 Bootstrapping statistical analysis and effect sizes

To apply per sample comparisons between two read-count distributions, a permutation strategy
was applied. For each distribution comparison and for each of the tested sets, 10,000 (or 1,000)
samplings of 100 data points were randomly generated, and 95% confidence intervals of mean
differences of log, counts between two groups were calculated. Effect sizes of log2 values
between two distributions were calculated using Cohen’s method (CES).



3 Summary

The purpose of this study is the development of a computational framework for studying the
dynamic changes of active transcription, and its interaction with chromatin remodeling and
chromatin alterations during cellular response to genotoxic stress. For this purpose, ultraviolet
light C (UVC) was used as a genotoxic stress factor, damaging skin cells, specifically skin
fibroblasts (VH10, CSB and 1BR.3), while the activity of Nucletiode Excision Repair (NER)
pathway and the repair products of Global Genome NER (GG-NER) and Transcription Coupled
NER (TC-NER) sub-pathways were used to evaluate the examined mechanisms.

Various types of Next Generation Sequencing (NGS) experiments have been used to study the
stages of the transcription cycle in normal conditions, and in response to Ultraviolet C irradiation
(UVC) induced stress. Specifically, for studying the kinetics of RNA Polymerase 2 (RNAPII)
molecules from the transcription initiation state, to promoter proximal pausing (PPP), and the
transition to productive elongation, Chromatin immunoprecipitation sequencing (ChlP-seq) data
of the hypophosphorylated RNAPII (RNAPII-hypo), the elongating isoform of RNAPII (RNAPII-
ser2P), and the RNAPII-ser5P isoform (transcription initiation) was generated and analyzed.

To study the productivity of RNAPII molecules during the above stages, Capped Analysis of
Gene expression sequencing (CAGE-seq) data and nascent RNA synthesis sequencing (nRNA-
seq) data was used. To study the interactions of chromatin with active transcription and its
alteration during the states of active transcription, Assay for Transposase-Accessible Chromatin
(ATAC-seq) data was generated and analyzed, and ChIP-seq data of H3K27ac and H3K27me3
histone modifications.

To study the effectiveness and genomic landscape of NER repair-synthesis events, for both
GG-NER and TC-NER sub-pathways, a novel assay called aniFOUND-seq was developed and
analyzed, coupled with data of excised DNA during NER activity (XR-seq) and NER damage
sequencing data (damage-seq). The functional assessment of TC-NER at active genes was
carried out through the study of mutations in melanoma and lung adenocarcinoma cancer
genomes, and XR-seq data meta-analysis respectively.

The results of these essays are divided into four sections:

(1) Development and application of algorithms for the analysis of NGS data related to human
disease. (a) Implementation of stand-alone analysis pipelines for the analysis of ChlP-seq,
NnRNA-seq, and ATAC-seq datasets that include: Quality control (QC) assessment of sequenced
short-reads, short-read preprocessing, short-read mapping against the reference
genome/transcriptome under study, alignment processing, alignment summarization in genomic
features and visualization via heatmaps and average profiles, generation of genomic tracks
viewable in genome browsers (IGV, UCSC), NGS signal clustering upon functional genomic
regions, correlation of biological and technical replicates, dimensionality reduction methods to
identify technical/biological similarities/differences between samples, differential expression
analysis, peak calling analysis, differential binding analysis, differential accessibility analysis and
other statistical comparisons between biological conditions.

(b) Implementation of a “de novo” elongation wave identification algorithm using Hidden Markov
Models (HMMs), and DRB-nRNA-seq datasets.

(2) Cellular responses under genotoxic stress conditions. (a) Development of a computational



pipeline for the study of the reorganization of transcription and the chromatin rearrangements
upon UV-induced stress that include: genome annotation reconstruction, and characterization of
transcribed units’ activity (promoters, genes, enhancers, PROMoter uPstream Transcripts -
asPROMPs) along the human genome, the quantification of the RNAPII release from PPP sites,
and the evaluation of the RNAPII elongation wave kinetics.

(b) A proposed model describing the ‘safe’ mode mechanism of transcription elongation; upon
UVC-induced stress, steady-state transcription levels of virtually all actively transcribed genes
are re-adjust to fast and uniform release of RNAPII elongation waves (green triangles, Figure
39) from PPP sites that scan the transcribed genome for DNA lesions.
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Figure 39 ‘Safe’ mode mechanism of transcription elongation (Lavigne et al., 2017).

This mechanism maximizes the speed of lesion sensing, the probability that a damage will be
identified by an elongating RNAPII molecule (red dots, figure 39) and removed (purple rings,
figure 39) by the TC-NER (crosses, figure 39) along the actively transcribed elements. As a result,
environmentally exposed genomes are characterized by a modest and homogeneous mutation
prevalence across the actively transcribed genome in both strands, as opposed to the non-
transcribed elements where higher mutation rates are observed (Alexandrov et al., 2013). In case
NER is unsuccessful or is not recruited efficiently during the stress recovery process, unrepaired
DNA lesions can provoke error-prone DNA synthesis and result in mutagenesis (turquoise star,
figure 39) during replication (Lavigne et al., 2017).

(3) Extending the previously described ‘safe’ mode mechanism of transcription elongation, the
results of the particular dissertation also support a model of continuous transcription initiation
that can fuel the widespread UV-triggered escape of RNAPII into the transcription elongation,
and safeguarding the integrity of the actively transcribed genome. The particular mechanism is
supported by a global increase of chromatin accessibility at all actively transcribed promoters
serving as a platform that favors unrestrained transcription initiation, coupled by preservation of
the active mark H3K27ac and repressive mark H3K27me3 mark during early response to
genotoxic stress.

(4)A genome-wide analysis pipeline for the evaluation of aniFOUND-seq methodology
aniFOUND, is the first methodology (at the time of writing this thesis) that can exclusively label,
capture and map the post-damage newly synthesized repaired chromatin in its native form (see



materials and methods) (Stefos and Szentai, under revision]. Coupling of aniFOUND to NGS,
allows the mapping and characterization of the NER efficacy of different chromosomal regions
of the human genome. aniFOUND-seq was successfully applied to map the repair-synthesis
activity along damaged skin fibroblasts (1BR.3 cells) with particular attention to promoter and
enhancer sequences. Furthermore, aniFOUND-seq was applied for the assessment of NER-
UDS activity in several chromosomal regions, including the fraction of repetitive DNA.
Specifically, the repair efficacy during the first 4 hours after damage induction was clarified for
rDNA and telomeres, for which contradictory explanatory models have been suggested. This is
the first time that NGS-based approaches are adopted for shedding light in the above-
mentioned inquiries regarding repair of telomeric DNA. Evidently, the cumulative nature of
aniFOUND-seq (in terms of both damage types and repair assessment period) renders it
applicable for the cases that require capturing of the whole repair process, or the repair activity
during moderately-to-considerably long-time windows (Stefos and Szentai, under revision).

4 Results

4.1 Automated analysis of NGS data

The NGS data analysis process is performed automatically as a unified pipeline for each type of
NGS data (ChIP-seq, nRNA-seq, ATAC-seq), or step by step, for more efficient inspection and
revision of the intermediate results. Specific reports enable the possibility to apply changes in
the initial configuration of the parameters of each analysis module, or even bypass (whenever
applicable) one of the analysis steps that does not fit to the analysis plan. Most, but not all,
modules can be run using multiple cores, while parallelization is also applied in the level of total
processed files. All modules have been run and tested only in UNIX-based systems (Ubuntu
and Kubuntu). The pipelines were applied in a Unix terminal by following a default set-up, or
adjusted appropriately based on the analysis requirements.

4.1.1 Quality control (QC) of raw FASTQ files

QC of raw NGS files (FASTQ) is an essential step for the evaluation of the sequencing and
library preparation quality (see introduction). For every FASTQ file, a quality control assessment
is applied using the FASTQC toolkit. As described in the introduction, the resulting html report
contains valuable sequencing quality metrics and statistics. This module can be run separately
for inspection of QC reports that can result in adjustments of the analysis preferences.

An additional analysis option using a “blast search” can be applied in search of potential
contaminant sequences based on the FASTQC “Overrepresented Sequences” results
(Andrews, 2015), using the BLAST search engine (Altschul et al., 1990). In that case, a FASTA
file containing the sequences of the candidate contaminants should be provided, and an
additional blast report will be generated as an output (Figure 40 left panel). By default, this
option is not enabled.



Score = 56.4 bits (29), Expect = 4e-08

Identities = 65/80 (81%), Gaps = 4/80 (5%)

Strand = Plus / Plus

Query: 29079 ggtestttagaacgatctggtcttaccctgetaccaactgttcatoggttattgttggag 29138
Shjct: 35273 ggrEgtggagaac-attiggtcttaccctgasaccaattgetcateagtta--g-gagac 35328 O

Query: 29139 attgttctctgaaatgggaa 29158

Sbjct: 35329 attggtctctgaaatgggaa 35348

ACACGTCTGAACTCCAGTCA; Type: regular 3'; Length: 33; Trimmed: 337469 times

Score = 48.8 bits (25), Expect = 8e-06 -
Identities = 59/76 (77%) 9 ; 10-19 29 bp: 2; 30-33 bp: 3
Strand = Plus / Minus

Query: 34086 ttatctgtacttctcagccagggecagagecacagaggecaggaacttgtecacagecac 34145
Sbjct: 50700 ttatctgtacttctcagecageacageagacacggeagacaggaacttgtcgaaggcage 50641
Query: 34146 atggacctcaggggtg 34161

Sbjct: 50640 atgcacttcaggegty 50625

Score = 25 (48.8 bits), Expect = 1.2e-10, Sum P(5) = 1.2e-10

Identities = 59/76 (77%), Positives = 59/76 (77%), = Minus / Plus
Query: 34161 CACCCCTGAGGTCCATGTCCCTGTCCACAAGTTCCTGGCCTCTGTGICTCTGOCCCTCAC 34102

Shjct: 50625 CACCCCTGAAGTCCATGCTCLCTTCGACAAGTTCCTGTCTCLCGTGTCTGCTGTCATGGE 50684
Query: 34101 TGAGAAGTACAGATAA 34086

Shjct: 50685 TGAGAAGTACAGATAA 50700

4.1.2 Adapter clipping and quality trimming of raw FASTQ files

Any known or observed (based on the QC reports) abnormalities present in the FASTQ files
should be eliminated before proceeding to the mapping step. For every FASTQ file, adapter
clipping and quality trimming is performed using the python tool cutadapt(Martin, 2011). By
default, the tool searches for occurrences of “Ns” (according to the IUPAC nucleotide code, any
of the nucleotides A,T,C,G) in the § and 3’ ends of each read and trim them, then searches for
bases in the 5’ and 3’ for bases with Phred-33 quality score (see introduction) less than 20 and
trims them, and finally using the adapter information included in FASTQC “Adapter Content” and
“Overrepresented Sequences” it clips any contaminants present in the examined library. Filtered
sequences of length less the 20 nucleotides are discarded. The output of this module is (a) a
filtered FASTQ file, and (b) the cutadapt report (Figure 40 right panel), while it is also possible to
output the filtered sequences in a separate FASTQ file. If the adapter sequences used during
the generation of each examined library are known a-priori, a comma-separated list of the
respective sequences are provided.

4.1.3 ChIP-seq analysis pipeline

4.1.3.1 Short-read mapping and alignment filtering

The most common step during NGS data analysis is the mapping of the filtered FASTQ reads
against the under-study reference genome. For every filtered FASTQ file, bwa-mem (H. Li,
2013) with default parameters is applied, with a provided reference genome index generated by
the “bwa mem index” command. To define a “uniquely” aligned set, hits with a MAPQ score (see
introduction) less than 30 are filtered out using samtools, while chimeric and secondary
alignments are filtered out using the ‘XA’ and ‘SA’ tags. Additionally, only alignments with at
most 2 mismatches between the subject and the reference sequences are kept, in order to
account for sequencing errors and SNPs between the reference cell line and the sequenced
genome. In the case of paired-end reads, only proper paired-mates are kept, using the



command samtools view -f 0x2 | samtools sort -n - | samtool fixmate -m - - | samtools sort -
before applying deduplication with samtools markdup. If technical replicates are present in the
dataset, files are concatenated using samtools merge, while if biological replicates are present,
all files are first down-sampled to the lower alignment depth between replicates using samtools
view -s, and concatenated using samtools merge.

4.1.3.2 Peak calling analysis

To identify genomic regions significantly enriched with ChlP-seq alignments that represent DNA
binding events, peak-calling is applied. Peak-calling is performed at the merged datasets, if
replicates are present. Several peak-calling approaches are available, depending on the type of
the ChlP-seq protocols used in the study. In the particular study, 5 different procedures have
been used, namely "TF”, “Pol2”, “Histone_narrow”, "Histone_broad”, and “ATAC”. ChlP-seq
peak calling is commonly applied using a control library to model the background signal, but if
this is not applicable, the background signal distribution can be formed by using the examined
sample. “ATAC” mode, which is suitable for ATAC-seq datasets, is an exception since a typical
ATAC-seq experimental design does not include generation of control libraries. Precomputed
effective genome sizes (defined as the length of the “mappable” genome) are set accordingly,
based on the examined organism and the respective genome build.

TE: This mode is appropriate for transcription factors and similar types of ChiP-seq
experiments, where a relatively “narrow” binding profile is expected. In this mode, MACS2 peak-
caller is applied, with “--keep-dup all” option enabled, and gvalue threshold set to 0.05, and
log2FC > 1. If the reads are paired-end, “-f BAMPE” and “--shift 0” are also applied.

Polll: This mode is suitable for different types of RNAPII ChIP-seq experiments, like hypo-
RNAPII, RNAPII-ser5P, and RNAPII-ser2P (see materials and methods). In this mode MACS2
peak-caller is applied, with “--keep-dup all” and “--nomodel” options enabled, and qvalue
threshold equals 0.05, and log2FC > 1. If the reads are paired-end, “-f BAMPE” and “--shift 0”
are also applied.

Histone narrow: This mode is appropriate for ChlP-seq experiments of histone modifications,
with a relatively narrow binding profile, like H3K27ac, H3K4m32 and H3K4me3. In this mode
epic2 peak-caller is applied, with “--keep-duplicates” option enabled, window size set to 200,
gap setto 1, and FDR threshold set to 0.05. An external threshold of log2FC (signal over
background) is set to 1.

Histone broad: This mode is appropriate for ChlP-seq experiments of histone modifications,
with a relatively broad binding profile, like H3K27me3, H3K4mel and H3K9mel. In this mode
epic2 peak-caller is applied, with “--keep-duplicates” option enabled, window size set to 400,
gap set to 3, and FDR threshold set to 0.05. An external threshold of log2FC is set to 1.

ATAC: This mode is suitable for ATAC-seq protocols, like classic ATAC-seq and omni-ATAC-
seq (see materials and methods). MACS2 peak-caller is applied, with “--keep-dup” all, --
nomodel, --shift -100 --extsize 200 and --call-summits options enabled, and gvalue threshold set
to 0.05, and log2FC > 1. If the reads are paired-end, “-f BAMPE”, “--nolambda”, “--shift 0” are
also applied.




Direct comparisons between the total number of peaks between samples cannot be applied
without downsampling the BAM files to the same level of mapped reads, and without the same
peak-calling mode applied.

4.1.3.3 Sample similarity analysis

Sample similarity assessment is a quality control step, essential for any NGS data analysis
pipeline. The purpose of this analysis module is to provide visualizations that will reveal
expected/unexpected similarities or differences between samples that will help the analyst to
draw conclusions about the quality of the datasets. Identification of problematic datasets can
help avoiding the creation of biases that could affect the subsequent analysis steps, and prevent
the drawing of inaccurate biological conclusions.

High quality and non-merged BAM files produced during the ‘Short-read mapping and alignment
filtering’ step (section 4.1.3.2) are summarized in 4 sets of genomic regions used as references,
and are further processed to produce individual visualizations. The specific annotations are: (1)
An “extended promoter” set, that includes the 4 kb regions centered at RefSeq transcription
start sites (TSSs) (see introduction), (2) a “gene bodies” set, that includes all RefSeq genic
regions, (3) all 3 kb annotation-agnostic genomic windows of the examined genome build, with a
sliding window of 500 bp, using the BAM headers of the aligned samples, and (4) a consensus
peak set from section 4.1.3.2. For the creation of the latter region set, all peak-sets are
concatenated, sorted based on their genomic coordinate, and merged using the bedtools merge
-d 0 command.

4.1.3.3.1 Heatmaps of sample-to-sample correlations

Data correlation is a very common procedure that aids the identification of similarities or/and
differences between the under-study datasets. For every library, filtered alignments are
examined for overlaps using the aforementioned genomic sets, and are reported using the R
summarizeOverlaps function, with “Union” mode enabled (Figure 19), resulting in a {region by
sample} count matrix, for each feature set. Rows with a total sum less than 10 are discarded,
and each count matrix is processed using the R cor function, producing a {sample by sample}
Pearson correlation matrix. Euclidean distances of pairwise sample correlations are computed
using the R dist function, to produce a distance dissimilarity matrix. Finally, hierarchical
clustering is applied on the provided distance matrix using the R hclust function with the
“average” method enabled.

Heatmaps of pairwise sample correlations are generated using R pheatmap function, with rows
and columns clustered based on the aforementioned methodology. An example correlation
heatmap of 4 ATAC-seq samples (see materials and methods) are depicted in Figure 41.
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Figure 41 Sample similarity plots. (a) Correlation heatmap of ATAC-seq samples described in materials
and methods. Hierarchical clustering groups the replicates of each condition together. (b) PCA plot
visualization for a set of Hela H2Bub ChlIP-seq datasets. The experimental set up includes 3 biological
conditions: (1) nouv, where cell are in normal conditions, (2) uv2h, where cell are recovering for 2 hours
after irradiation with UVC ( 20 J/m?) and (3) uv24h, where cell are recovering for 24 hours after
irradiation with UVC ( 20 J/m?2). The first replicates of nouv and uv2h were run in different time periods
than the rest of the samples. Read counts are generated using the RefSeq human gene set as a
reference, and PCA is calculated using the most variable features using a mean to variance strategy (see
materials and methods). In this example, a batch effect is captured in the reduced dimensional space.
Specifically, the first batch of nouv and uv2h conditions (nouv_1 and uv2h_1) are very similar based on
the first PC. The same is true with the second batch of nouv and uv2h (nouv_2 and uv2h_2), while the
second PC seems to capture the biological condition differences between both batches. On the contrary,
the uv24h replicates which were generated in a single batch are grouped together using the PC1 and
PC2 dimensions. (c) FRIP plot visualization for a set of Hela H2Bub ChlIP-seq datasets described in (b). As
a reference feature set, RefSeq transcripts were used.

4.1.3.3.2 Principal Component Analysis sample comparison

Principal component analysis (PCA) can be applied to visualize differences or similarities
between NGS datasets. PCA is specifically useful for identifying problems with experimental
designs, mislabeled samples, batch effects and other unexpected flaws.

Count matrices are created and filtered as described above, while the most variable genomic
features (most variable rows) are selected using the R mean.var.plot method (Stuart et al.,
2019). The new {most variable features x samples} matrix is z-transformed and used as an input
for the R prcomp function, which in turn calculates the principal components.To visualize the
new dimensional space, the first two principal components are used to generate scatter plots
using R ggplot (Figure 41 (b)).

4.1.3.3.3 Fraction of Reads In Peaks (FRIP)

Calculating the percentage of mapped reads that fall into enriched regions (peaks or other
functional genomic sets that are highly correlated with the under-study factor) is a good



indication of the quality of immunoprecipitation and the experiment per se (Ji et al., 2008).
Typically, a small fraction of the alignments in ChlP-seq overlaps with significantly enriched
genomic regions (peaks, genes, enhancers etc), as the majority of the mapped reads
represents background. In most cases FRIiP values show a high correlation with the magnitude
of enriched regions. FRIP is a useful statistic for comparing ChlP-seq datasets generated by the
same antibody across different cell types, as also for comparisons between antibodies using the
same binding factor. Comparisons between biological/technical replicates or biological
conditions within the same experimental setup can also be applied.

For this analysis, all the BAM files are indexed using samtools, and are processed using
deeptools plotEnrichment (Ramirez et al., 2014), to produce signal enrichment fractions across
the provided regions, relative to the total genome alignments. An example of the resulting bar
graph is shown in Figure 41 (c).

4.1.3.4 Differential binding analysis

Differential binding analysis is performed to identify genomic regions with statistically significant
differences in ChlP-seq enrichment, between different biological conditions and treatments.
These differences may not be apparent through general visualization strategies such as
average profiles (see below), because of the complexity of the datasets. In some cases where
particular biological treatments may cause global alterations in the binding profile of the under-
study factor (like UVC induced stress), the most significant changes can be captured using the
appropriate methodologies such as diffBind with DESeg2 analysis enabled (Stark & Brown,
2011). There are two main types of differential binding tools: (1) “Peak-based” methods that
perform the whole analysis in a predefined genomic region set (peaks, genes, HMM chromatin
states) like diffBind and Manorm (Shao et al., 2012), and region-based systems, that perform
the analysis in genomic windows using a predefined size, a gap size for performing
concatenations between consecutive windows of similar binding profiles and a sliding window.
This category of tools includes csaw (Lun & Smyth, 2015) and diffReps (Shen et al., 2013). In
this study, the particular analysis module is performed by using diffBind software, and by
applying pairwise comparisons “ConditionA_vs_ConditionB”, where ConditionB should
represent the denominator of the underline comparison. Analysis for differential binding is
applied on the filtered and merged peak-sets generated in the 4.1.3.2 section. Peaks of both
conditions are concatenated and merged to create a consensus peak-set. If batch effects or any
additional confounding factor are present in the experimental set-up, they can be modeled in the
experimental design formula of the algorithm (see the diffBind vignette) by enabling the blocking
factor parameter in the dba.contrast function. The analysis can be performed either by using
DESeq2 (default) or/and edgeR. The particular analysis module generates a set of outputs
depicted below:

(1) A tab-delimited text report of all the examined regions with column-wise information structure
as follows:

1st column: Chromosome of the examined genomic region.
2nd column: Starting base position of the examined genomic region.
3rd column: End base position of the examined genomic region.



4th column: Length of the examined genomic region.

5th column: Strand orientation of the examined genomic region (if present).

6th column: “ConditionA” average RPKM of normalized read counts.

7th column: “ConditionB” average RPKM of normalized read counts.

8th column: Concentration - mean (log) reads across all replicates in both groups (normalization
using the respective analysis algorithm).

9th column: "ConditionA" Concentration - mean (log) reads across all replicates of "ConditionA"
condition (normalization using the respective analysis algorithm).

10th column: "ConditionB" Concentration - mean (log) reads across all replicates of
"ConditionB" condition. (normalization using the respective analysis algorithm)

11th column: Fold difference - mean fold difference of binding affinity of group 1 over group 2
(Concentration ConditionA - Concentration ConditionB). Absolute value indicates magnitude of
the difference, and sign indicates which one is bound with higher affinity, with a positive value
indicating higher affinity in the first group

12th column: p-value calculation - statistic indicating the significance of the difference.

13th column: FDR (False Discovery Rate): adjusted p-value calculation - p-value subjected to
multiple-testing.

14th column: Closest TSS (gene id) to the genomic region center.

15th column: Distance of the closest TSS to the closest genomic region center.

(2) Based on (1), a tab-delimited text report including all the significantly altered binding events
present in the examined genomic regions. A threshold of FDR < 0.05 is applied.

(3) The {regions by samples} raw count matrix.

(4) The {regions by samples} normalized count matrix. Normalization is performed by using
either DESeq2, or edgeR, or no normalization at all (custom normalization).

(5) A volcano plot (scatter plot), summarizing the significant differentially bound regions based
on the aforementioned FDR threshold, expressed as -log10 FDR, and the magnitude of
difference, expressed as log2 Fold difference. An example of such visualization is presented in
Figure 42 (a).

(6) An MA plot (scatter plot), summarizing the significant differentially bound regions based on
the mean (log) reads across all samples in both groups, expressed as log10 normalized counts,
and the magnitude of difference, expressed as log2 Fold difference. An example of such
visualization is presented in Figure 42 (b).

(7) A heat-density scatter plot, comparing ConditionA (y-axis) and ConditionB (x-axis)
normalized counts on each examined genomic region, transformed into log10 space.
Normalization is performed using the total alignment depth.
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Figure 42 Differential binding/ accessibility visualization. (a) Volcano plot representing differentially
accessible regions (DARs) between irradiated and non-irradiated cells. Regions with significantly
increased (DAR-gain) or decreased (DAR-loss) accessibility are depicted in red and green, respectively.
(b) Left panel: MA plot showing the individual (grey dots) and average (blue line) FC (Log2 FC) in ATAC
read density at ATAC-seq peaks, between +UV and NO UV, as a function of the average (from replicates)
ATAC-seq read density in NO UV. Right panel: Percentage of peaks with increased FC (Log2 FC>0) is
indicated on a kernel density plot. (c) Heat-density scatter plot comparing ATAC-seq read density before
and after UV at all accessible regions (ARs - ATAC-seq peaks).

4.1.3.5 Peak annotation analysis

After the completion of the peak-calling and differential binding analysis modules, the regional
distribution of these loci based on genome annotations is of particular interest. This information
is very important, as biological hypotheses can be declared about persistent occurrences of
DNA binding factors in specific regulatory areas. For this reason, genomic annotations of
binding events are created. Annotations are generated using RefSeq gene-bodies and promoter
annotations, as well as FANTOMS enhancers. This creates the following categories:

(1) Extended promoter regions: 4 kb regions, centered to RefSeq TSSs.

(2) Genic enhancers: FANTOMS5 enhancers, localized in a RefSeq gene region, without
overlapping the respective extended promoter region.

(3) Genic regions: regions included in RefSeq genes, but not in an extended promoter region or
a genic enhancer.

(4) Intergenic enhancers: FANTOMS enhancers, localized between RefSeq genes, without
overlapping an extended promoter region.

(5) Intergenic: All the regions not included in the categories (1) - (4).

Peak annotations are also performed with respect to roadmap chromHMM chromatin states
(see introduction). Peaks are centered and examined for overlap with the chromatin state
regions, and each peak is assigned to a unique state. The annotations are summarized as a
percentage of the total annotations, using (a) a pie chart and (b) a radar plot of annotation
fractions (Figure 43).
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Figure 43 Classification of (a) ATAC-seq peaks (ARs) and (b) aniFOUND-seq and XR-seq repair signal
(materials and methods) according to NHDF roadmap chromHMM annotation. The dashed line
represents active regulatory loci.

4.1.3.6 Motif enrichment analysis

Peak regions contain valuable regional information that defines its functional dynamics, as they
represent a snapshot of DNA binding events that potentially regulate transcription through
promoter/enhancer interactions. Another layer of functional information is the sequence content
included in these regions, and in particular motif sequences that correspond to transcription
factors and repressors, and indicate potential binding in these genomic loci. Motif enrichment
analysis is a way to validate the efficiency of a particular TF ChIP-seq, by identifying its
corresponding binding motif in the called peaks, but also discovering multiple motifs that imply
factor colocalization in potential protein complexes. The particular analysis is been applied using

HOMER (Heinz et al., 2010)(Figure 44) or/and i-cisTarget (Herrmann et al.,

al., 2015) tools.
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4.1.3.7 Heatmaps, average profiles, boxplots and genomic tracks generation

Visualization of the alignment signal across the genome annotation is particularly useful, as it
enables the examination of the binding profiles across the datasets in multiple genomic regions,
allows the detection of global or partial differences between biological states, and reveals the
guality of the ChIP between replicates, as also of the total experimental design. For all the types
of visualization, read counting is performed using the filtered alignments generated in section
4.1.3.1 coupled with several genomic region sets as references. For this step,
summarizeOverlaps is used with the “inter.feature=TRUE” and “ignore.strand=TRUE” options
enabled. Also, reads are centered before applying read counting.

Four main types of visualizations are generated by this analysis module:

(1) Average profiles of read density: This type of visualization allows the examination of the
average distribution of the NGS signal along a genomic region set, and reveals the “shape” of
the binding, as also the enrichment level along this shape. For this purpose, RefSeq TSSs,
TTSs, gene bodies, as well as peak summits (in case of MACS2 peaks) or peak centers (in
case of epic2) are used:

(a) In the case of gene bodies, all regions are initially extended to a predefined length (2kb). The
inner part of each region is divided to a total of 160 genomic segments (bins) of the same
length, while the flanking regions to a total of 20 bins each, creating a 200-bin vector for each
gene (bj1, biz, ... , bizgo), Where i is the i-th element.

For each examined BAM file, read overlaps are generated for each bin, reverse-strand
references are flipped, read depth normalization is applied (multiplication by
1,000,000/alignment depth), and the mean of counts of each bin position is calculated to
generate a 200-length vector of average counts for each dataset.

Additional plots of gene bodies are also generated, using a gene length limit. In particular,
genes with length over 10 kb, 20 kb, 40 kb, 60 kb, and 100 kb are extracted and limited to a
total length of 10 kb, 20 kb, 40 kb, 60 kb, and 100 kb respectively, in order to create constant
length references. This set-up can result in more realistic illustrations of the signal distribution,
since the variable gene length effect is eliminated. Genes are then treated as described above
to create one plot per gene set.

(b) In the case of TSSs, TTSs, peak summits and peak centers, regions are extended to 1 kb, 2
kb, and 5 kb, and binned to a total of 200 segments, and counting and averaging are performed
as described in (a).

Representative examples of such visualizations are included in Figure 45.
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Figure 45 Average profile plots illustrating the read densities of ATAC-seq, H3K27ac, H3K27me3, and
RNAPII-hypo ChiIP-seq datasets before (NO UV, solid line), and after UV (+UV, dashed line), along active,
inactive, and repressed transcription start sites (TSSs, a) and enhancer RNAs (eTSSs, b).

(2) Heatmaps of read counts: This type of visualization allows the examination of the global, or
per-cluster distribution of the NGS signal in a set of genomic regions of interest, in a region-per-
region resolution. Regions are sorted in ascending order based on their RPKM value, and bin-
count vectors are generated as described in the above. The resulting {regions x bins} count
matrix is used to generate heatmaps of read densities using the R pheatmap function and
complexHeatmap R package (Gu et al., 2016). Bin-counts are also clustered using k-means
clustering with a predefined k equals to 5, and/or hierarchical clustering based on euclidean
distances that rearrange the {regions x bins} count matrix before generating additional
heatmaps plots.



Representative examples of such visualizations are included in Figure 50.

(3) Boxplots of total read density: Total reads per examined region-set can define per sample
read-count distributions that are informative about global differences/ similarities between signal
enrichment in particular genomic clusters, between biological conditions and samples. For each
genomic region-set described in 4.1.3.7 section, per sample read-count vectors are generated
using summarizeOverlaps, counts are converted to RPKM values and boxplots are generated
using R ggplot.

Representative examples of such visualizations are illustrated in Figure 46.
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Figure 46 Boxplots of NGS signal read-counts for different assays at active, repressed and inactive
regions, comparing non-irradiated (-UV) and irradiated (+UV) cells.

(4) Genome browser tracks: Genome browsers are powerful genomic exploration tools that can
host NGS data using several file-types (BAM, BED, bedGraph, bigWig), that allow the
identification of interesting signal patterns along the genome, and comparison with publicly
available tracks. Exploration can be applied either in the context of specific genomic locations
such as promoters, genes, enhancers, super-enhancer or even in very large genomic areas
(chromosomes), as another quality control of the NGS signal distribution and the experimental
set-up. Although genome browsers are compatible with several file types, the more efficient file
types are bigWig for alignment files and bigBed for region files, because of their relatively small
size.



In this analysis step, all filtered, sorted and indexed BAM files are processed with deeptools
bamCoverage with RPKM value transformation enabled, to generate genome browser
compatible bigWig files. Additionally, for every BED merged peak-set file, a bigBed file is also
generated. The resulting UCSC compatible track lines have the following structure (bigWig and
bigBed respectively):

track type=bigWig name=$Sample_name description="$Sample_name" color=$R,$G,$B
maxHeightPixels=128:64:16 visibility=full autoScale=on
bigDataUrl=3URL/$Sample_name.merged_reps.dedup.bw

track type=bigBed name=$Sample_name_peaks description="$Sample_name peaks"
bigDataUrl=3URL/$Sample_name.merged_reps.dedup.TF_peaks.bb

where $Sample_name refers to the sample name, $URL is specified as the output folder, and
$R,$G and $B correspond to Red, Green and Blue in RGB color code. Colors are generated
using Colorbrewer (Brewer et al., 2003) and RGB transformations, using R col2rgb function.
ColorBrewer colors are generated using the R diverging color palette “Dark2”. If replicates are
present, they are assigned the same color. Regarding the generated file names, “merged” refers
to merged replicates, while “dedup” refers to deduplicated alignments (see previous analysis
steps).

4.1.4 Nascent RNA-seq (nRNA-seq) analysis pipeline

4.1.4.1 Short-read mapping and alignment filtering

In nascent RNA sequencing protocols like nRNA-seq, TT-seq (Schwalb et al., 2016), PRO-seq
(Mahat et al., 2016), NET-seq (Mayer et al., 2015) et al, unlike ChlP-seq, libraries are generated
using cDNA, and therefore different analysis methodologies are applied. In the alignment step,
for each filtered FASTQ file, a first alignment run is applied against the ribosomal DNA repeat
unit of the reference organism, in order to filter out ribosomal reads which is the main source of
contamination in NRNA-seq protocols. In this analysis module, hisat2 (D. Kim et al., 2015) with
default parameters is applied by setting a ribosomal DNA repeat unit reference index with
disabled splicing-aware mapping. Unmapped reads are extracted from the BAM files and
converted to FASTQ files using samtools view -f 0x4 -b | samtools fastq command, and a
second round of alignment is performed. This time, to eliminate a fraction of mMRNA reads, which
is the second most common source of contamination in nRNA-seq protocols, splicing-aware
mapping is performed. Hisat2 is run using predefined splice sites and a reference genome
index. Using the sixth column of the SAM file and the flag marker “N”, all spliced alignments are
excluded and reported in a separate BAM file, and uniquely aligned reads are detected using
the ZS:i: SAM flag. Alignment filtering and replicate merging is applied as described in the ChlP-
seq analysis module, omitting the deduplication step (only duplicate marking is performed),
unless if the reads are paired-end. In the case of strand-specific protocols, strand-aware
mapping is performed, and additional strand-aware alignment files are generated.



4.1.4.2 Transcription unit identification

This mode is equivalent to ChIP-seq peak-calling (see section 4.1.3.2). The purpose of this
analysis module is to identify transcribed units across the genome, based on nascent RNA
signal enrichment. These elements include actively transcribed genes, enhancers and super
enhancers. This analysis module is applied on each filtered BAM file separately using an HMM-
based algorithm which is described in detail in chapter 4.2.

4.1.4.3 Alignment similarity analysis

This analysis module is applied as described in the ChlP-seq analysis pipeline in section
4.1.3.3.

4.1.4.4 Fraction of reads in peak (FRIP)

This analysis module is applied as described in the ChlP-seq analysis pipeline (section 4.1.3.3).
Comparing the ChiP-seq FRIP results (Figure 41) with the corresponding nRNA-seq results
(Figure 47), it is obvious that in the nRNA-seq datasets, unlike the ChlP-seq datasets, the vast
majority of the NGS signal is located within specific areas (genes in the particular example)
indicating that in nRNA-seq the background signal is minimal.
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Figure 47 FRIP plot visualization for a set of VH10 nRNA-seq datasets described in section 2.10.5. (1)
nouv, where cell are in normal conditions, (2) uv05h, where cell are recovering for 30 minutes after
irradiation with UVC ( 15 J/m?), (3) uv2h, where cell are recovering for 2 hours after irradiation with
UVC (15 J/m?), (4) uv24h, where cell are recovering for 24 hours after irradiation with UVC ( 15 J/m?),
and (5) nouv24h, 24 hours after the nouv pull-down. As a reference feature set, RefSeq transcripts were
used.

4.1.4.5 Differential expression analysis

Differential expression analysis is applied when seeking quantitative changes in gene
expression levels between different biological conditions and samples, measured by RNA-seq.
In the case of NRNA-seq methods, changes between nascent transcription levels. The particular
analysis is performed using pairwise comparisons "ConditionA_vs_ConditionB", where
ConditionB should represent the denominator of each comparison. Analysis for differential
nascent RNA expression is applied using DESeg2 or/and edgeR packages, with the RefSeq
gene-set as a reference, and counting reads only in the intron sequences to avoid overcounting
processed RNA contaminants. If batch effects or any additional confounding factors are present
in the experimental set-up, they can be modeled in the respective design matrix included in the
comparison formula of each applied tool (Love et al., 2014; M. D. Robinson et al., 2009).
Notably, confounding factors can be “removed” by the count matrix using the R function



removebatcheffect from limma package (Ritchie et al., 2015), and the corrected count matrix
can be used for further analysis and visualization purposes (clustering, heatmaps, average
profiles etc). The particular analysis module generates a set of outputs depicted below:

(1) A tab-delimited text report of all the examined regions with column-wise information structure
as follows:

1st column: Chromosome of the examined genomic region.

2nd column: Starting base position of the examined genomic region.

3rd column: End base position of the examined genomic region.

4th column: Genomic region id (gene id as defined in the fourth column of the analyzed
reference. If not present “chr:start-end” will be assigned, where “chr”,’start” and “end” refer to
the 1st, 2", and 3rd column respectively).

5th column: GC content of the sequence content of the examined genomic region (in the case of
a custom annotation, 0 is assigned).

6th column: Strand orientation of the examined genomic region (if it is absent in the custom
annotation, * will be assigned).

7th column: Genomic region name (in the case of a custom annotation, gene id will be
repeated).

8th column: Biotype of the examined genomic region (in the case of a custom annotation,
“custom” will be assigned).

9th column: Length of the examined genomic region (in the case of a custom annotation, length
will be calculated by the gene coordinates).

10th column: “ConditionA” average RPKM of normalized read counts.

11th column: “ConditionB” average RPKM of normalized read counts.

12th column: Concentration - mean (log) reads across all replicates in both groups
(normalization using the respective analysis algorithm).

13th column: "ConditionA" Concentration - mean (log) normalized reads across all samples of
"ConditionA" condition (normalization using the respective analysis algorithm).

14th column: "ConditionB" Concentration - mean (log) normalized reads across all samples of
"ConditionB" condition (normalization using the respective analysis algorithm).

15th column: Fold difference - mean fold difference of expression enrichment of group 1 over
group 2 (Concentration ConditionA - Concentration ConditionB). Absolute value indicates
magnitude of the difference, and sign indicates which one is expressed higher, with a positive
value indicating higher expression in the first group.

16th column: p-value calculation - statistic indicating the significance of the difference.

17th column: FDR (False Discovery Rate): adjusted p-value calculation - p-value subjected to
multiple-testing correction.

(2) Based on (1), a tab-delimited text report including all the significantly altered differential
expressed genes. A threshold of FDR < 0.05 is applied.

(3) The {genes by samples} raw count matrix.

(4) The {genes by samples} normalized count matrix. Normalization is performed by using either
DESeq2, or edgeR.



(5) A volcano plot, summarizing the significant differentially expressed regions based on the
significance level, expressed as -log10 FDR, and the magnitude of difference, expressed as
log2 Fold difference.

(6) An MA plot, summarizing the significant differentially expressed genes based on the mean
(log) reads across all samples in both groups, expressed as log10 normalized counts, and the
magnitude of difference, expressed as log2 Fold difference.

4.1.4.6 Heatmaps, average profiles, boxplots and genomic tracks generation

This analysis module is applied as described in the ChlP-seq analysis pipeline in section
4.1.3.7.

4.1.5 ATAC-seq analysis pipeline

4.1.5.1 Short-read mapping and alignment filtering

For every filtered FASTQ file, mapping, alignment filtering, alignment deduplication and replicate
merging is applied as described in the ChIP-seq analysis module (section 4.1.3.1). The output
of this analysis module includes the individual and merged (if replicates are present) BAM files
of each analyzed sample.

4.1.5.2 Peak calling analysis

This analysis module is applied as described in the ChlP-seq analysis pipeline in section
4.1.3.2.

4.1.5.3 Alignment similarity analysis

This analysis module is applied as described in the ChlP-seq analysis pipeline in section
4.1.3.3.

Differential accessibility analysis is applied when a scientist wants to identify alterations in
chromatin accessibility between different biological conditions, as measured by ATAC-seq,
DNAseg-seq, MNAse-seq or FAIRE-seq. The particular analysis module is designed for ATAC-
seq protocols, and is applied as described in the ChlP-seq analysis pipeline in section 4.1.3.4.

4.1.5.4 Peak annotation analysis

This analysis module is applied as described in the ChlP-seq analysis pipeline in section
4.1.3.5.

4.1.5.5 Motif enrichment analysis

This analysis module is applied as described in the ChlP-seq analysis pipeline in section
4.1.3.6.



4.1.5.6 Heatmaps, average profiles and genomic tracks generation

This analysis module is applied as described in the ChlP-seq analysis pipeline in section
4.1.3.7.

4.2 Genome-wide identification of de novo elongation waves

The particular algorithm is designed for estimating the transcription elongation wave-end of
actively transcribed RNAP2 molecules during normal cellular conditions or during early
genotoxic stress conditions, using primarily pre-DRB nRNA-seq datasets (see materials and
methods). As an example dataset, human VH10 pre-DRB nRNA-seq experiments were used in
NO UV +0 min, +10 min, +1 h and +2 h conditions, and +UV 0 h, +10 min, +1 h and 2 h, as also
CSB pre-DRB nRNA-seq experiments in NO UV +0 h, +10 min, +20 min, +1 h and +2 h
conditions, and +UV +0 h, +10 min, +20 min, and 2 h (materials and methods, section 2.10.6).
For the prediction of the transcription wave front in each examined dataset, a Hidden Markov
Model (HMM, see section 1.10) was implemented and applied as described below.

4.2.1 Quality control, prefiltering and read mapping

FASTQ files were processed for quality trimming and adapter clipping as described in the
section 4.1.2. In order to exclude all the rRNA reads that comprise the major source of RNA
contamination in these kind of data, high-quality FASTQ files were first aligned against the
human ribosomal DNA complete repeating unit (U13369.1), keeping all the unmapped reads
that were in turn aligned to the UCSC hg19 reference genome, using the module described in
section 4.1.4.1. Only primary, and high-quality alignments were retained, and duplicated
alignments were discarded, and genome browser tracks were generated accordingly (Figure
48).
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Figure 48 IGV genome browser tracks of VH10 and CSB pre-DRB and nRNA-seq datasets.
Patterns of transcription elongation wave progression are observed in both cell types during
transcription recovery from DRB

4.2.2 Genome annotation reconstruction

To define a reference gene set, 54,669 transcripts from RefSeq v.72 were downloaded. Initially,
only protein coding and IncRNA genes were selected, two gene categories that are both
transcribed by RNAPII (Bunch, 2017). These two biotypes will be referred to as “mRNAs” during
the rest of this study. TSSs were clustered using a radius of 500 bp, and the longest transcript
was kept for further analysis. Furthermore, TSS pairs with a distance less than 1kb were
eliminated to avoid overlapping TSS flanking regions during read counting. This resulted in a
total of 19,775 genes.

4.2.3 Transcriptional activity determination

To determine the activity status of each transcript, VH10 and CSB NO UV 2 h filtered BAM files
were summarized at each transcript, excluding annotated exonic regions in order to minimize
the effect of MRNA contamination. The first kilobase of each transcript was also omitted, in
order to better gauge the density of polymerase that actively elongates through the gene-body,
by avoiding the over-counting from PPP (Jonkers et al., 2014). Gene-counts were transformed
to RPKM values and kernel density plots of log,RPKM values for each dataset were plotted
(Figure 49).
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Figure 49 Kernel density plots of VH10 (left) and CSB (right) nRNA-seq NO UV 2h log, RPK Mcounts at
RefSeq transcripts reveal two main transcript populations for each cell line.

The resulting bimodal RPKM distributions denoted two main transcript populations for each cell
line: active and inactive elements. The bisection point was commonly set to RPKM = 0.03
resulting in 12,435 active transcripts for VH10 cells, and 12,846 active transcripts for CSB cells.
Taking into consideration that a wide range of transcription elongation rates are reported in
different studies, from 1-6 kilobases per minute (kb/min) (Ardehali & Lis, 2009; Darzacq et al.,
2007; Singh & Padgett, 2009), in order to gain robust results at all the processed datasets, only
transcripts over 60 kb were considered for the rest of this analysis, as also the intersection of
active genes between cell lines, resulting in a total of 3,048 commonly transcribed elements. As
a negative gene set, 2,004 commonly inactive genes with a length over 60 kb were selected.

4.2.4 Data visualization

To generate heatmaps and average profiles of nRNA-seq signal the nRNA-seq analysis module
was applied (section 4.1.4.6), using the 3,048 commonly transcribed genes (VH10 and CSB,
see above) as a reference set (Figures 50 and 51).
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Figure 50 Heatmaps of nRNA-seq read-counts along actively transcribed RefSeq transcripts with length
over 60 kb upon DRB removal. White color scale denotes low read density, while blue (VH10) and red
(CSB) color scales denote high read density.

0
TSS +15kb 30kb +45kb +60kb TSS +15kb 30kb +45kb +60kb
6] 1 | | 1
I 1 f— O h 6 I | S O h
\ ! = 10 min ] : ! = 10 min
al : I = 1h : I == 20 min
I ] —
| 1 4. 1 | 1h
1 | | 1
} | |
2, | . VH10 +UV s | | CSB+UV
| T I 1
————— = e — i e L e e e st
0.l 1 T 0 1 1
T Il ! T T T ’ I 1
TSS +15kb 30kb +45kb +60kb TSS +15kb 30kb +45kb +60kb

Figure 51 Average profiles of NRNA-seq read-counts along actively transcribed RefSeq transcripts with
length over 60 kb after removal of DRB. Comparison of VH10 and CSB No UV and +UV conditions by
setting an arbitrary threshold (horizontal dashed line, average normalized counts = 1) reveals patterns of
elongation wave inhibition to a greater extent at TC-NER deficient cells (compare vertical dashed lines
between VH10 and CSB).



Visual inspection of the generated graphs revealed patterns of elongation wave progression in
all the analyzed datasets after removal of DRB (see materials and methods 2.10.6). In NO UV
conditions, RNAPII elongates at a much higher rate than the +UV conditions for both datasets.
This UV-induced deceleration of RNAPII progression is propably due to the stalling of RNAPII
upon encountering DNA-damages. Additionally, in VH10 +UV condition, patterns of faster
transcription recovery are gradually detected in contrast to CSB +UV where RNAPII molecules
appear to remain stalled at DNA lesions for a longer time period due to the non-functional TC-
NER mechanism (Figure 50, 10 minutes and 60 minutes +UV, and Figure 51 10 minutes and 60
minutes +UV).

4.2.5 Data preparation

Both active and inactive annotations were split into genomic bins, in order to create a bin-vector
for each transcript, for each examined dataset, that will be used for NGS signal counting, data
transformation, and normalization (section 4.1.4). For all the NO UV 10 min datasets, a bin size
of 250 bp was used, while for NO UV 20 min, NO UV 1 h and NO UV 2 h, bin sizes of 500 bp, 1
kb and 2 kb were applied respectively. For +UV 10 min datasets, a bin size of 250 bp was used,
while for the remaining +UV datasets, a bin size of 500 bp was applied. For the NO UV and +UV
0 h samples, bin-vectors of 250 bp, 500 bp, 1 kb, and 2 kb were also generated accordingly.

Read alignments in each examined dataset were extended to a 200 bp fragment length (in order
to reach the average fragment length of the libraries), and only the 3’ ends were considered for
counting. For each examined dataset, the resulting 3’ end points were examined for genomic
overlap with the respective active and inactive bin-vectors to generate bin-count vectors.

For each bin-count feature, a pseudocount was added, and all bin-count vectors were divided
by the corresponding 0 h bin-count vector, to eliminate the effect of the nRNA-seq background
signal.

In order to eliminate the effect of mMRNA contamination in each of the examined nRNA-seq
experiments, for each genomic bin with an exon coverage larger than 20%, the corresponding
normalized count was considered as a missing value, and all missing values were replaced by
the outputs of a cubic splines interpolation, which is applied along the entire bin-count vector (R
smooth.spline function). Consequently, to remove the PPP enrichment bias of the specific NGS
protocol, for each bin-count vector, all bin-counts were divided by the average of the first five
bin-counts, as an internal normalization.

Finally, all normalized bin-count ratios were discretized, using a range from 0.0 to 1.0, with a
step size of 0.05, resulting in a maximum of 20 possible values for each vector, that represent
the emission states of each HMM (see section 1.10). All elements that were annotated at the
reverse strand were flipped in order to keep the same count-vector structure for all the
examined elements.

Training set

To generate a robust training set for HMM parameter estimation, that includes all the instances
of transcriptional activity, active transcripts of varying expression levels were included, as also



non-transcribed elements. Specifically, all active transcripts were grouped to 3 expression
clusters based on their RPKM value, and a random choice of 450 highly expressed, 175
mediumly expressed, and 175 lowly expressed transcripts was applied. Also, a random choice
of 250 inactive transcripts was added to the active training list, resulting in a training set of 950
bin-counts.

4.2.6 HMM set-up and training

For each examined dataset, an individual HMM was implemented, in order to predict which of
the examined bins are engaged by the de novo RNAPII elongation wave, and which bins are not
reached yet by RNAPII molecules (most probable hidden state path). To design these models,
the hmm.discnp R package was used (https://cran.r-project.org/package=hmm.discnp), where
each HMM = (m, A, B) consists of a set of hidden states called “RNAPII engaged” (E) and
“‘RNAP2 free” (F), H = {E, F}, with initial state probabilities = = [0.8,0.2] and hidden state
transition probabilities A = [0.95,0.05; 0.05 0.95], and a total of 20 observed states 0 =
{0.00,0.05,...,1.003} for each training bin-count feature, following any of the finite discrete
distributions depending on the state of the Markov chain (https://cran.r-
project.org/web/packages/hmm.discnp/index.html), specified non-parametrically, Rho =
[rhoij],rhoij =P(Y =y |S =y). Figure 52 summarizes the aforementioned design.
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Figure 52 Automaton representation of the initially defined HMMs, with two hidden states: E (RNAPII
engaged) and F (RNAP2 free). Before parameter estimation, emission probabilities were determined
using the uniform distribution.

Emission probabilities B were estimated using the Baum-Welch algorithm (section 1.10).


https://cran.r-project.org/web/packages/hmm.discnp/index.html
https://cran.r-project.org/web/packages/hmm.discnp/index.html

4.2.7 HMM predictions

Predictions were applied at all 3,048 VH10-CSB commonly transcribed bin-counts, for each
dataset, using the HMMs described in section 4.2.6. Particularly, the Viterbi algorithm (section
1.10) was used to predict the most probable path of hidden states underlying each of the
observation sequences (https://cran.r-project.org/web/packages/hmm.discnp/index.html). The
generated Viterbi paths were then translated into genomic coordinates (BED files), by merging
consecutive predictions of the “E” state to a single BED record. All transcripts including more
than one “E” blocks, were discarded from the rest of the analysis as instances of unreliable
predictions. Additionally, for NO UV 10 min samples, all predictions less than 5 kb or greater
than 20 kb were excluded, for NO UV 20 min all predictions less than 10 kb were excluded, for
VH10 NO UV 60 min all predictions less than 40 kb were excluded, for +UV 10 min all
predictions over 15 kb were excluded, for CSB +UV 20 min all predictions over 40 kb were
excluded, for VH10 +UV 1 h all predictions over 60 kb were excluded, and for +UV 2 h all
predictions over 80 kb were excluded. Moreover, only transcripts with valid predictions for both
cell lines were considered for further analysis.

Finally, BED files of valid bin predictions were converted to BIGBED files to generate genome
browser compatible track lines (Figure 53).

el
ICo o . . B S B NN BN NN D [ e (M S — . - I W
VIl pa0dl pIedT pIBT pINT  pIiA | PIED pIEd L pdid BILL | BEED EEA AL BII iR all WGl aED G Bk ad Rl wad  at aEid o aind i
159 kb
5300 kb Ik 5340 kb G0 kb eIk 5400 kb 3!. kb
I 1
VH10NOUV10mln“"lh‘I-I”“ e a |l||..‘l‘. o Wt Lia b b b " — | Y T |]himw
wonowzons MMMNWMMMMW
- ba 4 naa b leaidn ot . 1 ol —ar uu.u‘ﬂlj

EXT2

mm MMMWMMMMMMMw.mwuhww

—H “H—# |HH- t

il ‘H.I‘hu dd v ol b | . | l e | T i A i i i ol PRT TET I | i i Ala i .Juu‘....thW
I

VHHO +UV 1h
! it ] sttt et Lt ol detibatin e, TR R R R TRTY TP AVU A Aoy PN JMMMIW“

VH10 +UV 2h
™ L‘I RTHIY DRREPRP A AR TRV | Y PR T TR 1Y TR I N EE S T 18 LLW“IMLME‘MMW&WN“IMM hw“www“
o e ————



https://cran.r-project.org/web/packages/hmm.discnp/index.html

Thil
(o wom— - T . T N NN NN NN N e I S S Em—— S T — T T —
PIGIL pI6.Z PI6AZT PINI  PIL3 eI pIZI PIRL @Iz pILA PRI pEEL  pILZ  PISD P13 pILL WZ @l @l g3 aed eBa o gBo L2 Wl @22 @il wi2i 22 a el

a5 n4s0 4 245004 nassedk  2aseem Erean 2ac0 i naceod  ;aecew n;azel 27k
1 L 1 1 L 1 1 L L 1 1 L L L 1 1 L

o
| 1 ! 1 1 L
CSBNOUWV 10min| || , .HM e L L e ...H.»‘.....‘.J.M
——

CERNOIV el L .M. OV 100 PR S VR I ‘\Hx. . o Ll PRI VR PR PP PP R I .....w...,wmht“lW‘
MW 10| v il ettt R R o e ool b AL

CSBNOW 2h .mdwmmmwm.mm.mm.....‘.........um.u...m.ﬂmmuuw

w— bbb H e 1 ) .
C—
o) PTPN14
CSB+UV 10 min .\|..r..‘M T o Py L L Vo ] e o ] e 1 A R s kil .,h.J.MM‘ il
=
CSB+UV 20 min ||, HI\U.L RN [0 PO o S W iy e S (o iy L g g s AN b M
I
CSB+UV 1h e o ATV val Tite i1 e e et S e P st e e S TP PR ¥ POl DO WPy 107 PRTTY

Figure 53 IGV genome browser tracks of two indicative genes, EXT2 and PTPN14 depicting the viterbi
predictions for VH10 and CSB datasets respectively.

4.2.8 Wave front comparisons and elongation rate estimation

For each examined dataset, the average wave front position was reported. For datasets where
the average prediction is over 60 kb, due to variable gene lengths in the reference transcript set,
the wave front is reported to be over 60 kb (>60). For all the consecutive time point pairs where
a fixed prediction was available, elongation rates were estimated as the average covered
kilobases per minute for the particular time period (Figure 54).
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Figure 54 Elongation wave progress prediction by HMMs. For each cell type and for each time point
(whenever applicable) the average position of elongation waves in active genes of length over 60 kb are
summarized. Elongation rates are calculated between consecutive time points (whenever applicable).

As expected, the HMM predictions in +UV conditions confirmed the initial observations
regarding the average profiles and heatmaps of nascent RNA-seq signal (Figures 50 and 51),
that in CSB cells where TC-NER is non-functional, DNA-lesions block the progression of



transcription elongation in a higher extent than in VH10 cells, since they remain essentially
unrepaired. On the contrary, in VH10 cells where DNA damages are repaired at a reasonable
rate by TC-NER, lesion repair allows the faster progression of the elongation wave along the
recovery period (Figures 54 and 55).
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Figure 55 Box plots of elongation wave front positions as predicted by the HMMs. Comparisons between
VH10 and CSB were applied using the Wilcoxon rank sum test, with p-value < 0.001 for the +UV 10
minutes comparison, and p-value = 0.0086 for the +UV 10 minutes comparison.

4.3 A computational pipeline for the study of the reorganization of transcription
and chromatin alterations upon UV-induced stress.

High throughput profiles of RNAPII binding (ChlP-seq), histone modifications (ChIP-seq),
nascent transcription activity (nRNA-seq) and chromatin accessibility in hnTERT immortalized
VH10 skin fibroblasts [see sections 2.1 and 2.2] were generated to obtain an accurate and
global view into the molecular events regulating transcription re-organization and chromatin
alterations in response to UVC induced stress.

4.3.1 Gene transcripts and exons annotation

RefSeq mRNAs defined in section 4.2.2 were used as a gene annotation set. To extract a
consensus exon set, all overlapping transcripts were concatenated, and overlapping exons of
the same strand were merged, while those encoded in opposite strands were excluded. This
resulted in 164,896 RefSeq exonic regions



4.3.2 Transcript activity status determination

To study the process of transcription reorganization using the aforementioned mRNA set as a
reference, transcripts were classified to 3 categories based on their transcriptional profile. These
categories consist of active, poised, and inactive genes, and were classified as follows:
ChliP-seq datasets of RNAPII-ser5P, RNAPII-ser2P and RNAPII-hypo in NO UV condition (see
materials and methods) were mapped against the UCSC hg19 reference genome (see section
4.1.3.1), and peak calling was performed using the “Pol2” mode described in section 4.1.3.2.
Gene promoters (-250 bp to +100bp around TSS) with NO UV RNAPII —

ser2P RPM (read counts in the specified region * 1,000,000/ alignment depth) > 0.7, which
overlap with any NO UV RNAPII-ser2P significant peak were characterized as active (8,954
transcripts). Active transcripts are considered affected by the transcription machinery showing
patterns of transcriptional elongation. Promoters with NO UV RNAPII — ser5P RPM > 0 which
overlap with any NO UV RNAPII-ser5P significant peak or NO UV RNAPII-hypo significant
peak, but without overlapping any NO UV RNAPII-ser2P significant peak were characterized as
poised (953 transcripts), while the rest of the annotations were characterized as inactive (genes
that are not transcribed in the particular cell line and condition). The particular annotation
characterization is summarized in Figure 56.
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Figure 56 (a) Refseq mRNAs activity status defined by intersecting promoters with significant peaks
RNAPII-hypo (green), -ser5p (purple) and -ser2P (blue) ChIP-seq. RNAPII-ser2P list was further filtered by
selecting only genes with Dp > 0.7 RPM. RNAPII- ser2P containing genes were considered as active (solid
green), while the union of RNAPII-ser5P and -hypo genes that did not overlap -ser2P genes were defined
as poised. The rest of the transcripts were considered as inactive. (b) Heatmaps illustrating the
distribution of RNAPII ChIP-seq signal (RNAPII isoforms as indicated) in NO UV condition at promoter
regions (-250 bp to +2 kb relative to TSS) and gene bodies (+100 bp to +2 kb relative to TSS), categorized
by transcript activity status (defined in a).



4.3.3 Transcription start site (TSS) annotation of mRNAs, enhancers and
asPROMPTs

The TSS annotation was based on all known protein coding and non-coding RNA RefSeq
transcripts release 86, that were retrieved from UCSC table browser, using the hgl9 genome
build (http://genome-euro.ucsc.edu/cgi-bin/hgTables). To classify the TSSs based on their
biotypes (Table 6), the BioMart database was used (Kinsella et al., 2011), and all small non-
coding RNAs and pseudogenes were excluded.

Table 6 Biotype classification of RefSeq TSSs.

antisense 1,084 processed transcript | 536
IG_V _gene 1 protein_coding 56,262
IG_V_pseudogene 1 pseudogene 904
lincRNA 3,442 sense_intronic 86
miRNA 1,478 sense_overlapping 16
misc_RNA 7 snoRNA 770
polymorphic_pseudogene | 31 snRNA 22

For any Refseq gene model that contained more than one transcript, all elements were
clustered together using a 50 bp TSS radius, and the longest transcript was finally reported,
resulting in 30,473 TSSs.

4.3.4 mRNA TSS activity determination

All TSSs were divided into 3 categories, based on their transcriptional activity. Each element
was extended to 2 kb in each direction, and the extended genomic elements were intersected
with RNAPII-ser2P NO UV, H3K27ac NO UV and H3K27me3 NO UV peak sets. Regions that
overlapped with RNAPII-ser2P and H3K27ac peaks, were categorized as active. Regions
overlapping with H3K27me3 peaks, but not with RNAPII-ser2P and H3K27ac peaks were
categorized as repressed. Finally, regions with no overlap with any of the aforementioned peak
sets were categorized as inactive. The Figure 57 depicts the categorization procedure of the
TSS references.



ATAC H3K27ac H3K27me3 RNAPII ser2 s = 1*
=9 -11- BT Ioa=an= T =1 = ke
1 (N 1 | b2 o

(N 1 | > =
: : : ' 1 y 15,819 Lo ?..: E]
1 (N (N 1 | ‘8| Er°s
1 1 )| 1 1 5 5 <
-y q == TTIEEeEeer T ... ) bo X o
: ----- I: ------ ++-- = ————— 1 2,943 - - § LT
1 1 1 | B ke
Coa®as B u ______ Ll oo ) 7,608 [~
2 g 2 L}
o - Min ] Max . L L
NGS reads

Figure 57 (a) Heatmaps of NO UV ATAC-seq and NO UV H3K27ac, H3K27me3 and RNAPII-
ser2P ChlP-seq signal at RefSeq TSSs. TSS activity status was defined by intersecting TSS
flanking regions (2 kb in each direction) with H3K27ac ChlP-seq (green), H3K27me3 ChIP-seq
(red), and RNAPII-ser2P ChlP-seq (pink). H3K27ac and RNAPII- ser2P containing TSSs were
considered as active, H3K27me3 TSSs that did not overlap H3K27ac or RNAPII-ser2P were
defined as repressed. The rest of the TSSs were considered as inactive. (b) Average profiles of
NO UV ATAC-seq and NO UV H3K27ac, H3K27me3 and RNAPII-ser2P ChIP-seq signal at
active TSSs as defined in (a).

All elements that overlapped with both H3K27ac and H3K27me3 peaks were considered as
dubious, and were excluded from the annotation. The activity categorization resulted to 15,819
active, 2,943 repressed and 7,608 inactive TSSs (Figure 57).
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Figure 58 An indicative example of an active (R3HDMA TSS, green box) and a repressed TSS (KSS1R TSS,
red box), showing mutually exclusive patterns of H3K27ac (NO UV and +UV, green track lines) and



H3K27me3 (NO UV and +UV, purple track lines) binding profiles, illustrated as a UCSC Genome Browser
snapshot. R3HDMA TSS (active TSS) is also enriched with ATAC-seq signal (NO UV and +UV, dark-red
track lines) and RNAPII-ser2P (N OU and +UV, blue track lines).

4.3.5 Transcriptional directionality of actively transcribed TSSs and actively
transcribed enhancers determination

All active TSSs defined in section 4.3.4 were further analyzed in order to be classified with
respect to their transcription directionality. Initially, all elements were split into unidirectional and
bidirectional references. Active TSS pairs annotated in opposite strand orientation, with
TSSdistance = —2 kb and TSSdistance < +2 kb’ where TSSdistance = TSSforward strand coordinate ~—

TSS,everse strand coordinate ( INtEr-TSS distance”) were categorized as “bidirectional” TSSs, while
the rest of the references were categorized as “unidirectional” TSSs (Figure 59).

Bidirectional TSS pairs were further grouped into two categories, convergent bidirectional pairs
With TSSgistance < 100 bp, and divergent bidirectional pairs with TSSistance > 100 bp.
Convergent and divergent TSS coordinates were further adjusted using strand-specific CAGE-
seq data of primary skin and dermal fibroblasts (see materials and methods, section 2.10.9) as
follows: TSS regions were extended to 2 kb in each strand direction, and per-base CAGE
coverage was calculated in order to detect the nucleotide occupied by the maximum sense
CAGE signal (CAGE summit). Using the transcriptional inactive TSS pairs as a control
reference set, CAGE summits were also detected using the same procedure to form the CAGE
summit background distribution. Any active CAGE summit with a value over the mean of the
background distribution, was set as the new TSS, while all the bidirectional pairs with a non-
significant CAGE summit in the aforementioned 500bp region were excluded from the
annotation. This procedure resulted in 1,410 active bidirectional TSS pairs, of which 905 pairs
were characterized as divergent and 505 pairs as convergent. An example of an active
bidirectional TSS-pair id is illustrated in Figure 59.



Scale 10 kb} hg19
chr3 50,590,000 50,595,000 50,600,000 50,605,000 50,610,000 50,615,000 50,620,000 50,625,000
NCBI RefSeq genes, curated subset (NM_*, NR_*, and YP_") - Annotation Release GCF_000001405.25_GRCh37.p13 (2017-04-19)
C3orf18 : [ |
C3orf18 44 [ ] ?
C3orf18 f— u *
C3orf18 4 1
HEMK1 ¢ H =
HEMK1 H _
250 bp radius search
b Scale 2 kb} { hg19
ch3: 50,603,000 50,604,000 50,605,000 50,606,000 50,607,000 50,608,000 50,609,004
137 &¢ 1 n_dermal_d Y
- k
1 |
- |+
|
- ﬂ -t A < - -
NCBI RelSeq genes, curated subset (NM_% NR_*, and YP_*) - Annotation Release'GCF_000001405.25 GRCh37.p13 (2017-04-19

C3orl18 = ==z HEMK 1 !
C3ort18 = HEMK | m——
ey BhDODS it i

C30rf18 —sssst e s < - -

Figure 59 UCSC Genome Browser track of bidirectional TSSs (a) Bidirectional promoters with multiple
annotated TSSs are further examined by searching CAGE-seq signal peaks in both directions (250 bp
radius). (b) A unique sense CAGE-seq summit (green track lines) defines the new TSS of each TSS-pair
member.

The remaining 12,859 unidirectional TSSs were further analyzed to detect asPROMPTSs (see
section 1.6.2.2) in order to gain a complete overview of the non-coding antisense transcription
events occurring around active TSSs. To identify upstream antisense (uaRNA) and downstream
antisense (daRNA) transcripts, any active gene model containing more than one mRNA
transcripts, was processed in order to keep only the leftmost annotated TSS for the forward
strand annotated genes, and the rightmost TSS for the reverse strand annotated genes. The
antisense CAGE summit was detected as described above, using a search space of -2 kb
upstream up to +1 kb downstream of each active unidirectional TSS. Using the inactive
unidirectional references, and the same search space, an antisense CAGE summit background
distribution was created as described above. All the antisense CAGE summits linked with

an active unidirectional TSS with a with a higher summit than the average value of the
respective background distribution, were considered as asPROMPT TSSs. This procedure
resulted in 5,366 pairs of active unidirectional - asPROMPT TSSs, which were further
subdivided to 1,444 divergent and 3,922 convergent pairs, as described above. Two examples
of MRNA TSS - asPROMPT pairs (convergent and divergent) are depicted in igure 60.
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Figure 60 UCSC Genome Browser track of unidirectional TSS - asPROMPT pairs (a) Convergent TSS pairs.
Cage signal summits define the mRNA TSS (purple circle) and the asPROMPT TSS (red circle). The
asPROMPT TSS is located downstream of the mRNA TSS. (b) DivergentTSS pairs. Cage signal summits
define the mRNA TSS (purple circle) and the asPROMPT TSS (red circle).The asPROMPT TSS is located
upstream of the mRNA TSS.

Finally, to annotate enhancer TSSs (eTSSs), 65,423 human FANTOMS5 enhancers were
downloaded by FANTOMS site (https://fantom.gsc.riken.jp/5/datafiles/latest/), and categorized to
6,766 active, 4,730 repressed and 39,227 inactive following the same described in section 4.3.4
(see Figure 61 for a summary).
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Figure 61 (a) Heatmaps of NO UV ATAC-seq and NO UV H3K27ac, H3K27me3 and RNAPII-ser2P ChIP-seq
signal at FANTOMS5 eTSSs. TSS activity status was defined by intersecting TSS flanking regions (2 kb in
each direction) with H3K27ac ChIP-seq (green), H3K27me3 ChlIP-seq (red), and RNAPII-ser2P ChIP-seq
(pink). H3K27ac and RNAPII- ser2P containing TSSs were considered as active, H3K27me3 TSSs that did
not overlap H3K27ac or RNAPII-ser2P were defined as repressed. The rest of the TSSs were considered
as inactive. (b) Average profiles of NO UV ATAC-seq and NO UV H3K27ac, H3K27me3 and RNAPII-ser2P
ChlP-seq signal at active eTSSs as defined in (a).

All active intergenic enhancers that don’t overlap with actively transcribed promoters (2 kb
around TSS) and their respective gene bodies (intergenic enhancers) were further processed, to
keep only eTSSs (annotation mid-point) with a distance over 10 kb from the annotation borders
of active transcripts, as also a distance over 2 kb from neighboring eTSSs. All active eTSSs
were extended to 1 kb sideways, to detect sense and antisense CAGE summits as described
above. The same strategy was repeated for all the inactive eTSSs in order to create the sense
and antisense CAGE summit background distributions as described above. Consequently, only
active intergenic sense and antisense CAGE summits with a height greater than the respective
mean of the background distributions were considered, resulting in 1,228 active references.
Summarizing the TSS and eTSS annotation, active bidirectional TSS pairs, active unidirectional
TSSs paired with an asPROMPT, and active intergenic enhancers are illustrated in Figure 62 as
graphical schemas.
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Figure 62 (a) active unidirectional mRNA TSSs (+ or - strand) for which an associated active PROMPT is
transcribed in the antisense direction, (b) active bidirectional TSSs of MRNA-mRNA pairs transcribed in
opposite directions, (c) active FANTOMS intergenic enhancer TSSs (eTSS ).

4.3.6 ChlP-seq read density analysis reveals patterns of extensive reorganisation
of transcription

To examine the effect of low dose (8 J/m?) of UVC induced stress on transcription, RNAPII-
ser2P ChlP-seq datasets in NO UV, +UV +0.5 h, +UV +1 h, +UV +2 h, +UV +6 h, +UV +48 h,
RNAPII-ser5P ChiP-seq datasets in NO UV, +UV +0.5 h and +UV +48 h, and RNAPII-hypo
ChiP-seq datasets in NO UV, +UV +0.5 h, +UV +1.5 h (see materials and methods section
2.10.2) were analyzed as described in the section 4.1.3. Read density heatmaps were
generated using segMINER (Ye et al., 2011) and revealed an extensive reorganization of
RNAPII binding distribution, across all the active mRNAs defined in section 4.3.2. In particular, a
global increase of RNAPII-ser2P elongating signal in the gene bodies of all long (over 60 kb)
active genes was detected followed by a parallel RNAPII-ser5P and RNAPII-hypo signal
decrease in the promoter regions (Figure 63). Interestingly, this phenomenon was not present in
the poised and inactive regions (Figure 63 b).



a RNAPIl-ser2P  ACTIVE (> 60kb) n = 2,531 b Fold Changes (FC)
+UV (8 J/m?) (+UV (8 J/m2) / NO UV)

- NO UV +0.5h 7 +48h INPUT 20 - RNAPII- ser2P  ser5P  hypo
E 18 —~|—+0.5h 255 > : :
£ g\ 35[0 W
E =50 ACTIVE
Ef 214 o _Iggh 35 n=8,954
= £12 \ ~INPUT 4
3 %10 N\ POISg%g
3 é 8 v:‘f’"z‘:\\‘ zi‘lﬁ =
2 6
@
S 4 INACTIVE
h 5 n=9,868
= g = 0 0 ) ) :
+60 S
'é” i‘?s{ C’\A‘l‘ﬁ reads deh?/s\g(y Distance from TSS (kb) —i Log, FC
So & EE
W@ ¥ 45 0+15

Figure 63 Transcription elongation wave is triggered at all active mRNAs, in response to UV irradiation.
(a) Heatmaps of RNAPII-ser2P and INPUT signal at all active genes of length > 60 kb (visualized from TSS
up to TSS+60 kb) before and after UV irradiation, ranked by increasing escape index (El, see below) (b)
Heatmaps illustrating the Log2 Fold Change (FC) of RNAPII-ser2P, -ser5P, and -hypo isoforms, comparing
normalized read-counts between irradiated and non-irradiated cells at promoter (-250 bp to +100 bp
relative to TSS) and gene bodies (+101 bp to +2 kb relative to TSS), separated by gene activity status.

Interestingly, RNAPII-ser2P ChlP-seq average gene density analysis revealed a gradual
decrease of RNAPII molecule progression throughout the gene bodies (Figure 63 (a)). This
decrease was determined by estimating the average transcription elongation wave front for
each time point. Particularly, an arbitrary threshold was initially set (average per 500 bp - bin
read density equals to 8) and the intersection point with each average count vector line was
considered the transition point for each dataset. These positions were estimated with respect to
the TSS and were expressed in kb. Average elongation rates (kb/min) were estimated by
combining wave front information between pairs of datasets as previously described (Nicolai et
al., 2015) (Lanfeng Wang et al., 2015; Zhong et al., 2011).

To quantify the observed RNAPII signal redistribution in response to UVC, the ratio of average
RNAPII RPM at gene bodies (gene regions from +101 bp up to +2 kb relative to TSS, for genes
over 2 kb length) over average RNAPII RPM of promoters (gene regions from -200 bp to +100
bp relative to TSS, for genes over 2 kb length) was calculated for each biological condition, for
every gene, and every RNAPII ChiP-seq dataset (Promoter Escape Index - El, see Figure 64).
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Figure 64 Escape Index calculation. The ratio of average RNAPII RPM at gene bodies (gene regions from
+101 bp to +2 kb relative to TSS for genes over 2 kb length) is divided by the average RNAPII RPM at
promoters (gene regions from -200 bp to +100 bp relative to TSS, for genes over 2 kb length). The figure
is adapted by (Brannan et al., 2012) and edited accordingly.

The particular metric represents the degree of elongating RNAPII molecule escape from PPPs
into transcription units.

As a result, a significant and time-resolved increase of El was observed at the early time points
(from +UV +0.5 h up to +UV +2 h) of RNAPII-ser2P and RNAPII-ser5P (Table 7), as compared
to the NO UV condition (AEI, +UV EI/NO UV EI). In contrast, genes that are not regulated by the
transcription machinery in steady state (inactive mRNAs, not significant RNAPII binding at
promoters in NO UV condition), were still not affected by the reorganization process. These
differences were tested for statistical significance using Chi-square tests (x?), validating that the
observed number of active genes with AEI>1 differ from the equivalent expected values in
poised genes (Table 7).

Table 7 Summary of RNAPII AEls > 1 for time series analysis of -hypo, -ser5P, and -ser2P isoforms and for
gene activity categories defined in section 4.3.2. Chi-square test (x2) applied to validate if active genes’
AEls > 1 differ from expected value (poised genes’ AEls) for each A condition.
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- 50
3l 0.5h 8)/NO UV <.0001
B 48h 8J/NO UV ; <.0001
<l 1.5h 8)/NO UV <0001 9 MIN
Pl 43h 8)/NO UV . 0.9203



To examine if the aforementioned changes were explained by concurrent increase in gene-body
signal density and decrease in promoter signal density, the average differences of RNAPII
binding between +UV and NO UV conditions were summarized as an average profile of read
density (Figure 65). The particular visualization was generated by a similar strategy as
described in section 4.1.3.7 section with an intermediate step of dividing the +UV average count
vector by the equivalent NO UV average count vector and plotting it as a Log2 FC average
profile.
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Figure 65 RNAPII reorganization during early UV stress recovery. (a) Average plots of read densities for
RNAPII-ser2P, - ser5P and -hypo on active, poised and inactive genes from TSS to TSS + 2kb, before (NO
UV) and after (+UV) irradiation, as differential binding profiles (Log2 FC= (normalized read-count vector
+UV)/ (normalized read-count vector NO UV)). (b) Correlation plot between RNAPII EI (NO UV) and
proportion of read-count loss at peak summits after UV irradiation for -ser2P, -ser5P, and -hypo
isoforms, at NO UV condition.

The heatmap analysis of RNAPII-ser2P ChiP-seq (Figure 65 (a)) also revealed a homogenous
pattern of transcription reorganization upon UVC induced stress, across the different gene
activity levels in NO UV condition, as depicted by the El values. To further explore this
observation, correlation analysis between constitutive NO UV El of RNAPII-ser2P or RNAPII-
ser5P and El changes after UV (AEI(+UV vs NO UV)) was performed for all active genes,
demonstrating that Els of lowly-expressed/ lowly-escaped genes are increased significantly
compared to Els of highly-expressed/ highly-escaped genes (anti-correlation, Figure 66 (a)).
Furthermore, differential analysis of peak summit height between NO UV and +UV conditions
revealed a more pronounced loss of early-elongating RNAPII reads around PPP sites for less
expressed genes (Figure 65 (c)). Also, taking into consideration that the entry of RNAPII into
gene bodies is not correlated to gene size (Figure 66 (b)), this mechanism facilitates the release
of RNAPII elongation waves from PPP regions even at lowly-expressed genes, providing critical
functionalities to the cell.
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Figure 66 Correlation plots between EI (NO UV) for RNAPII-ser2P (a, left panel) and RNAPII-ser5P (a,
right panel) and El change after UV (AEI(+UV/NO UV)) for all active mRNAs. Pearson Correlation
Coefficient (PCC) scores are reported. (b) same as in (a) for RNAPII-ser2P AEI (+UV / NO UV) vs gene
length (bp).

4.3.7 nRNA-seq read density analysis reveals patterns of nascent RNA
production asymmetries between proximal and distal gene regions

To explore the effect of UVC induced stress in nascent RNA production in actively transcribed
genes, NRNA-seq libraries in VH10 and CSB cells, in NO UV +0 h, NO UV +24 h, +UV +0.5 h,
+UV +2 h, and +UV +24 h (see materials and methods, section 2.10.5) conditions were
analyzed as described in section 4.1.4. Gene activity was determined using the methodology
described in section 4.2.3 and common active genes over 100 kb between VH10 and CSB cells
were considered for further analysis. Average density vectors of genes with length greater than
40 kb were generated, and +UV +0.5 h, +UV +2 h vectors were divided by the NO UV +0 h
vector, while the +UV +24 h by the NO UV +24 h vector. Log?2 ratios were illustrated as average
profiles, to reveal that regions directly downstream of PPP show considerable increase in
NRNA-seq signal at +UV 0.5 h, and +UV +2 h conditions (Figure 67). This was followed by a
global decrease of nRNA-seq signal in the more distal gene regions, while for the +UV +24 h
ratio in VH10, a homogenous pattern of nRNA-seq was observed across the whole gene
lengths. On the contrary, in CSB cells +UV +24 h / NO UV +24 h ratio the nRNA-seq asymmetry
pattern persists.
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Figure 67 Characterization of the UV-dependent global and transient changes of nascent RNA synthesis.
a, Average plots showing the difference in nRNA-seq read densities from transcription start sites (TSS) to
transcription termination sites (TTS) (gene lengths are normalized to 100 bins and only bins 5 to 95 are
displayed for clarity) for genes larger than 40 kb before and after low doses of UV irradiation (15 J/m?)
(Log2 FC between compared treatments are indicated). nRNA were labeled with EU for 10 min before
indicated time, see also Methods.

Strikingly, although the overall nRNA level in CSB cells is reducedl, nascent RNA synthesis is
still detectable at the beginning (5 'end) of active genes even at later time points when
transcription initiation is expected to be inhibited (Figure 67, right panel). Comparing the nRNA
signal between the two cell lines, 2 hours after UV exposure, we conclude that nRNA molecules
are continued to be synthesized in both CS-B and VH10 cells

Reasonably, while in normal cells transcription recovery is completed after 24 h of UVC
exposure, CS-B cells cannot complete the transcription of active genes, although new RNA
molecules continue to be transcribed at the beginning of the genes.

The above quantifications suggest that the previously reported decrease of nascent RNA is due
to the fact that the overall level of transcription elongation decreases throughout the gene
bodies during early cellular response in UVC induced stress (Figure 63, right panel), possibly
because of the increased stalling of RNAPII molecules upon encountering DNA lesions.
Additionally, regarding the observations in late response (+UV 24 h), it seems that transcription
recovery is driven by a functional TC-NER machinery in VH10, as opposed by a non-functional
TC-NER machinery in CSB cells.

4.3.8 Analysis of RNAPII-ser2P DRB ChiP-seq and pre-DRB nRNA-seq delineates
the RNAPII elongation wave release in normal skin fibroblasts



To verify that the release of RNAPII from PPP is performed “de novo” upon UVC-stress, pre-
DRB nascent RNA-seq and RNAPII-ser2P ChIP-seq experiments were generated (see
materials and methods, sections 2.10.2 and 2.10.6).

VH10 VH10 RNAPII-ser2 pre-DRB +UV -DRB and pre-DRB +UV +DRB were analyzed as
described in section 4.1.3. Heatmaps visualization of +UV conditions on active genes over 10
kb, revealed that DRB treatment cancels the aforementioned stress-dependent RNAPII wave
generation and propagation (Figure 68 (a)). Additionally, escape Index analysis (El, figure 64)
shows that RNAPII escape dramatically decreases in promoter-proximal regions (Figure 68 (b)).
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Figure 68 (a) Heatmaps illustrating the distribution of ser2P-RNAPII reads at active genes over 10kb
(regions plotted: TSS -1 kb to TSS +10 kb, ranked by increasing El as in Figure 63), after UV induction
(+UV), in the presence (+) or not (-) of DRB. (b) RNAPII-ser2P NO UV El comparison with +UV El (+ and —
DRB) at all active mRNAs. Percentage of transcribed elements with increased escape after UV (AEI > 1,
dark green dots) is illustrated in a color scale (blue-white-red, from minimum to maximum values). X?
tests determine if the genes with AEIl > 1 significantly differ between treatments (**P < 0.0001).

To focus on pri-elongation RNAPII molecules (polymerases that were engaged on elongation
before UV irradiation), VH10 DRB ChIP-seq experiments of RNAPII-ser2P in NO UV -DRB, NO
UV +0 h +DRB, NO UV +10 min +DRB, NO UV +30 min +DRB, +UV +10 min +DRB, +UV +30
min +DRB conditions (see materials and methods, 2.10.4) were analyzed using the
methodology described in section 4.1.3. Heatmaps and average profile visualization showed a
substantial retain of RNAPII molecules upon UV in the distal parts of long active genes over 60
kb that were traveling before the time of DRB as summarized in Figure 69.
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Figure 69 RNAPII stalling at PPP uncovers the kinetics of elongating RNAPII molecules prior to UV stress
(pri-elongating). (a) Heatmaps of RNAPII-ser2P signal at active genes over 60 kb (region plotted: TSS to
TSS+60 kb), ranked by increasing NO UV El (Figure 63). (b) Average profile of RNAPII-ser2P signal derived
from (a) highlighting the pri-elongating RNAPIl wave backend positions, based on an arbitrary threshold
(dashed line) representing the transition state. Elongation rates are calculated from differences between
wave backend positions from consecutive time points.

To quantify the kinetics of pri-elongating RNAPII molecules based on RNAPII-ser2P DRB-ChIP-
seq data, elongation rates in both NO UV and +UV conditions were estimated as described in
section 4.3.6, showing a substantially decreased rate (Figure 69 (b)) but not a total loss of
ongoing elongation.

Additionally, VH10 pre-DRB nascent RNA-seq libraries were analyzed in NO UV +0 h, NO UV
+10 min, NO UV +20 min, NO UV +1 h and +UV +0 h, +UV +10 min, +UV +1 h, and +UV +2 h
(see materials and methods, section 2.10.6). All samples were analyzed using the
methodologies described in sections 4.1.4 and 4.2. The generated heatmaps and average
profiles of nascent RNA signal revealed that DRB treatment had efficiently eliminated all the
elongating RNAPII molecules from gene bodies at the time of UVC stress (Fig. 70, time = 0 h),
while after the removal of the drug, UV- or non-irradiated cells resumed elongation with different
kinetics (Figure 70).
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Figure 70 Released de novo elongation wave decelerates progressively in response to UVC induced
stress. (a) Heatmaps of nascent RNA signal at long active genes (60 kb, plotted from TSS to TSS+60 kb),
ranked by increasing NO UV El (see Figure 63). (b) Average profiles of nascent RNA signal derived from
(a), highlighting de novo elongation wave release of RNAPII. Differences in wave front positions at an
arbitrary threshold (dashed line) were used to calculate average (n = 2,531) elongation rates in
consecutive time points (when applicable).

Strikingly, UV irradiation did not suppress the nascent transcription recovery after the removal of
DRB (Figure 70), but it triggered a wave of productively elongating RNAPII molecules, released
in all the active gene bodies, replicating the UV-triggered phenomenon described above (Figure
63). Transcription elongation rates of de novo released RNAPII molecules, calculated as
described above (section 4.3.6), revealed a decreased pattern of elongation recovery in early
UVC response (Figure 70 (b)), similar to the pri-elongating (Figure 69 (b)) molecules, confirming
the overall changes measured in ser2P-RNAPII molecules illustrated in Figure 63. To analyze
these observations in higher resolution, the HMM algorithm described in section 4.2 was applied
in each of the examined datasets (Figure 71, and section 4.2).
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Figure 71 HMM wave-front prediction in VH10 pre-DRB nRNA-seq datasets. NFATS gene is illustrated as
an indicative example. Solid lines under each dataset signal corresponds to the elongation wave
annotation generated by the procedure described in section 4.2.

Interestingly, in distal regions of long active gene bodies, de novo nascent RNA-seq signal was
still detectable, but in lower levels (Figures 51, 53, 55, and 70 (b)), showing that de novo
released RNAPII molecules still elongate, but at slower rates. This phenomenon was also
detectable at later time points during damage recovery, where RNAPII molecules progressed
cumulatively between +2 h and +6 h (Figure 63).

Summarizing the nRNA-seq analysis, it's shown that in response to genotoxic threats, there is a
significant increase of nascent RNA signal in PPP regions of all active genes, as an increasing
trail of RNAPII molecules switches to a damage-sensing productive elongation state throughout
the active gene-bodies. Consequently, nascent RNA synthesis rate is promptly and constantly
affected along active genes, as a result of the deceleration of both de novo released and
already transcribing RNAPII molecules during the DNA damage-sensing procedure. The
particular model explains the recent findings, suggesting that transcription initiation and
elongation still take place in PPP regions upon UV-irradiation, even though progress into gene
bodies is significantly delayed (Bugai et al., 2019a; Liakos et al., 2020; Williamson et al.,
2017a).

4.3.9 omni-ATAC-seq read density analysis reveals patterns of global chromatin
accessibility increase along transcriptional regulatory regions upon UV

To examine if, and to what extent, the widespread UVC triggered release of elongating RNAPII
molecules, and the increase in nascent RNA production downstream of the TSS of active genes
(Figures 63 and 70) (Borisova et al., 2018; Williamson et al., 2017b) are linked with putative
alterations in chromatin accessibility, a set of omni-ATAC-seq experiments were designed
(materials and methods, section 2.10.7). In particular, VH10 omni-ATAC-seq experiments in NO
UV and +UV +2 h conditions were generated, and analyzed using the methodology described in
section 4.1.5.

Peak calling analysis of VH10 samples resulted in a set of 106,052 Accessible Regions (ARS)



across all conditions, and correlation analysis across the whole genome showed patterns of
reproducibility among biological replicates of each condition (Figure 72 (a)).
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Figure 72 Quality Control (QC) of VH10 omni-ATAC-seq libraries (materials and methods). (a) Correlation
heatmap of ATAC-seq signal along the datasets revealed biological replicate reproducibility for both NO
UV and +UV conditions. Grouping of rows and columns was performed by using hierarchical clustering
between Pearson's Correlation Coefficients (PCCs). Bin-count vectors of genome-wide segments (3 kb
windows) of ATAC-seq signal were generated for each dataset, low-density windows among all datasets
were excluded and PCCs were calculated for each pair of vectors.

AR annotation showed an enrichment of accessible loci at promoters, intragenic, and intergenic
regions with transcriptional regulatory function (TSSs, TSS flanks and enhancers according to
NHDF 15-state roadmap annotation, Figure 43).

ATAC-seq signal was summarized at all ARs to generate heatmaps and average profiles of
chromatin accessibility signal along the consensus AR set (Figure 73 (a)). The particular
visualizations revealed a pattern of global gain of chromatin accessibility in response to UVC-
stress. Consequently, log, ratios of +UV over NO UV signal (FC) were generated and
visualized as scatter plots, to report a global increase of chromatin accessibility after UVC stress
induction at 97.9% of promoter, 94.6% of intragenic, and 94.4% of intergenic ARs (Figure 73
(c)). Differential accessibility analysis was performed using the DESeq?2 (Love et al., 2014)
mode of diffBind (Stark & Brown, 2011)(see section 4.1.3), avoiding edgeR, since the TMM
normalization (M. D. Robinson et al., 2009) relies on a core of sites that don't systematically
change their accessibility affinities, an assumption that is violated in the design of the particular
experiment. Differentially Accessible Regions (DARSs) were defined by applying

abs(log,(FC)) > 1 and p — value < 0.001 to extract 6,410 loci, with significant increase in
chromatin accessibility upon UV (DAR-gain) (Figure 73 (d)).



a b C d

% Increased Accessibility

— NO UV
3 +UV /-UV) >1
o " —-= UV ( )>1, DAR-loss DAR-gain:
= - 1000 25 6410
NO UV +UV 3 . . °
* o B LN
- cc "y i
fr— § g ’ % . ©
&= I ’ 2 g
- .0 2 _Z s 2
e = . So
3 = = G 10 3
— %
f— / g 12, > ;,
> ‘ = g B | T —
=) Z 2 .
o = g . o
b4 L o i e
c 5= " i s =
= = 8’ o p \‘ D 100, ° ’ }
= : b AN 3 5 45 05 05115225
= =E o 2 L/ X
@ £ o Log, (Fold Change)
s g °. 104
) z 3 A
s — g - Promoter Intragenic Intergenic
@ ¢ 7
o ! . 10, e 1000, f . DAR-gain 2082 2160 2168
="g8 . % P 3 e
= &2 5 : 2
@ ¢ 5 4 -
o : % wf ol €1
I I a4 - . ¥ B
Q ATAC-seq @ N ~ - 2 .
~ Peak J &9
Center °. 10] 13.3 4.7
LN T ST T 7 F o 0
o ATAC-seq peak NO UV Signal Density
Min B ] Max AT center Low High
ATAC-seq ATAC-seq D':]! "
reads Log,(FC) ensity of dots

Figure 73 Global increase of chromatin accessibility during early recovery from UVC-stress induction. (a)
Left panel: Heatmap illustration of ATAC-seq signal around ATAC-seq peak centers (1 kb flanks) in NO UV
and +UV conditions, separated based on their genomic position relative to RefSeq transcripts
(intergenic, intragenic and promoter peaks), sorted by increasing NO UV signal. Right panel: Heatmap
illustrations depicting the log, Fold Change (log, FC) between +UV and UV ATAC-seq signal in regions
described in the “Left panel”. (b) Average profile of NOUV (solid curve) and +UV (dashed curve) ATAC-
seq signal at regions described in (a). (c) Heat density scatter plots of ratios of +UV ATAC-seq signal over
NO UV ATAC-seq signal, in regions described in (a). (d) Upper panel: Scatter plot (Volcano plot)
summarizing the differential accessibility analysis results between ATAC-seq +UV and NO UV conditions.
Differential accessible regions (DARs) with significantly increased (DAR-gain) or decreased (DAR-loss)
accessibility, are visualized in red and green, respectively. Bottom panel: Proportion of DAR-gain loci in
intergenic, intragenic and promoter ARs.

DAR-gain loci were localized at promoter regions representing 13,3% of all promoter ARs
(Figure 73 (d)), defining a potentially functional relevant chromatin opening at TSS regions.
DAR-gain loci located at intragenic regions or within active FANTOMS5 enhancers, were
examined for potential links to “targeted” promoters. All direct (promoter) and indirect (intergenic
and intragenic enhancers) gene links were functionally analyzed using REACTOME pathway
analysis (Fabregat et al., 2017) to identify (adjusted p — value < 0.05) a number of biological
pathways previously associated with DDR processes, including cellular response to stress, DNA
repair, transcription regulation by TP53 and cell cycle checkpoints, and a broad range of
significant Gene Ontology (GO) terms (Figure 74). The particular results are in alignment with
the widespread PPP release of elongating RNAPII molecules at all active genes upon UV
irradiation (Figures 63, 67 and 70).
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to the processes involved in UV-response or transcription.

4.3.10 H3K27ac and H3K27me3 marks remain stable after UV

To examine if the global increase in chromatin accessibility is coupled with changes in post-
translational modifications (PTMs) of histones around transcriptional regulatory regions during
the recovery period from UVC irradiation, ChlP-seq experiments of the silencing chromatin mark



H3K27me3 and the activation mark H3K27ac were conducted. In particular, VH10 H3K27ac and
H3K27me3 ChiIP-seq experiments in NO UV and +UV +2 h were desighed and generated (see
materials and methods, section 2.10.3). To focus on TSSs of MRNAs and enhancers, the NGS
data analysis was performed using the genome annotation depicted in figures 57 and 61 as
references. In particular, average profiles, heatmaps and boxplots of the H3K27ac, H3Kme3
and RNAPII-hypo ChIP-seq signal, as also the ATAC-seq signal were generated using the
pipeline described in section 4.1.3, using 2 kb extended TSS and eTSS references (Figure 75).
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Figure 75 H3K27ac and H3K27me3 histone modifications remain essentially stable during early recovery
from UV-stress induction. (a) Heatmap illustrating ATAC-seq, H3K27ac, H3K27me3 and Pol II-hypo ChlIP-
seq signal at NO UV and +UV conditions at genomic regions 2 kb around active, inactive and repressed
TSSs and eTSSs, respectively. (b) Box plot summarization of ChlP-seq signal at genomic regions 2 kb
around active TSSs and eTSSs, respectively. Each signal distribution contains the 25th—75th percentiles,
while error bars represent the higher/ lower values included in 1.5 * IQR (inter-quartile range, or
distance between the first and third quartiles). 95 % confidence intervals (Cl) of mean differences
between + UV and NO UV of log, counts were calculated as described in materials and methods,



section 2.13. Effect sizes of log, counts between NOUV and +UV samples were calculated using Cohen’s
method (CES).

The particular visualizations (Figure 75) confirmed that the genome-wide significant increase of
chromatin accessibility that was detected in the accessible genome of VH10 cells during the
early response to UV-induced damage (Figure 73), was also detectable in all actively
transcribed MRNA and enhancer promoters. Markedly, the particular phenomenon was
associated with preservation (slight but not significant increase) of H3K27ac +UV signal levels
(Fig. 75 (a) and (b), 95% CI includes 0), but also no increase of H3K27me3 signal in response
to UV at actively transcribed regions. Accordingly, no gain of H3K27ac, or RNAPII-hypo at
repressed promoters was detected, and H3K27me3 showed a relatively stable pattern across all
the repressed references.

Interestingly, RNAPII-hypo ChIP-seq signal level was significantly decreased at actively
transcribed promoters upon UV-induced stress (Figure 75, 95% CI includes 0), a result that is in
sharp contrast with the global increase of the ATAC-seq signal in the same references and
cellular conditions.

4.3.11 Release of de novo elongation waves promote sensing of DNA damages

Since DNA lesions that are formed in the transcribed strand of actively expressed genes are
detected by elongating molecules of RNAPII, the aforementioned UVC dependent trigger of
elongation waves (sections 4.3.6, 4.3.7, and 4.3.8) could result in increased DNA lesion-sensing
that will in turn enhance the assembly of TC-NER machinery for faster and more frequent
damage repair.

To investigate this hypothesis, a functional link between the probability of RNAPII stalling and
the detection of DNA lesions was examined. In particular, higher doses of UVC ( 20 J/m? ) were
applied to VH10 cells in order to induce a larger number of DNA lesions, and RNAPII-ser2P
ChiP-seq datasets in NO UV, +UV +1 h, +UV +2 h and +UV +48 h were generated (see
materials and methods, section 2.10.1) and analyzed as described in section 4.3.6. Heatmaps
analysis of ChIP-seq signal revealed that the widespread release of RNAPII wave at all active
gene bodies (Figure 76) is also reproduced in higher lesion density, while average profile
analysis of ChIP-seq signal and elongation rate estimation (see scetion 4.3.6) showed that the
higher lesion rate was adequate to cause increased staling of RNAPII molecules at different
time points during recovery (Figure 76).
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Figure 76 RNAPII elongation wave deceleration upon UVC-stress depends on UV dosage. (a) Heatmaps
illustrating NO UV and +UV (1 h: bright green, 2 h: gold, and 48 h: black ) RNAPII-ser2P signal
distributions at genes over 60 kb (plotted from TSS to TSS +60 kb), ranked by increasing NO UV El (see
Figure 63), for 8 ] /m?and 20 J/m? UVC doses. (b) Average profiles of RNAPII signal as described in (a).
Wave front positions are estimated using an arbitrary threshold, representing the transition state. (c)
Average (n = 2,531) elongation rates (kb/min) were estimated using consecutive time points for
conditions defined in (a), and average wave front positions determined in (b).

Seeking for more insights regarding the functional consequences of the stress-dependent
transcriptional wave release, an analysis of ChiP-seq signal at regions of actively transcribed
genes, prone to lesion induction was performed. This analysis was based on regions that are
considered potential DNA adducts, and in particular di-pyrimidine TpTs (TTs) since they are the
most frequently dimerized pyrimidines after UV exposure (Ramanathan & Smerdon, 1986).
Additionally, UV-induced CPDs and 64s are governed by TT abundance (Adar et al., 2016; Mao
et al., 2016; Teng et al., 2011).

To efficiently annotate TT dinucleotide loci, all active genes were scanned for XTTX motif
occurrences in the non-template strand, where X = {A, C, G}. All neighboring dinucleotides of a
distance less than 70 bp were filtered out, and their distance from their corresponding TSS was
recorded. This resulted in a final list of n = 29,612 active genic TTs.

RNAPII-ser2P ChlP-seq alignments were summarized to generate read density profiles at
extended TT genomic regions (-400 bp to +400 bp relative to TT center). TTs were clustered in
6 categories, relative to their distance from their corresponding TSS (table 8), while the clusters
were further annotated for each RNAPII-ser2P +UV condition (8 //m? +UV +1 h, +UV +2 h, +UV
+6 h) as “upstream” or “downstream”, based on their relative topology with respect to the wave-
front, as estimated in section 4.3.6. PPP-specific TTs (TSS up to 3 kb) were not considered for
this analysis.



Table 8 TT-cluster annotation, with respect to the wave-front positions as summarized in Figure 63.

CLUSTER Number of TTs Start End
| 4218 3000 10000 Upstream Upstream Upstream
Il 7916 10001 32500 Upstream Upstream Upstream
] 2242 32501 45000 Downsteam  Upstream Upstream
v 1954 45001 59500 Downsteam Downsteam Upstream
\'} 3254 59501 100000 Downsteam Downsteam Downsteam
Vi 5267 100001 1150817 Downsteam Downsteam Downsteam

Heatmap analysis of RNAPII-ser2P signal at extended TT regions showed that RNAPII
accumulation at potential damaged sites was maximized in clusters annotated as “upstream” at
+UV +2 h condition (Figure 77).
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Figure 77 Sensing of DNA lesions by RNAPII is significantly increased in regions affected by the UVC-
dependent elongation wave. (a) Heatmap visualization of NO UV and +UV RNAPII-ser2P signal along
extended TT regions located at active mRNAs, sorted by increasing distance relative to TSS. TT loci were
classified as upstream or downstream with respect to RNAPII-ser2P wave front positions, which
pinpoints the border between de novo and pri-elongating RNAPII molecule populations. (b) Average
profiles of RNAPII signal as described in (a). (c) Top panel: Box plots of log2 ratios of +UV RNAPII signal
over NO UV RNAPII signal, as described in (a). Pairwise two-sided t-tests using Benjamini-Hochberg (BH)
adjustment were performed, and corrected p-values are reported accordingly. Boxes refer to the first
quartile, median and third quartile. Whiskers refer to the 10-90% interquartile range. Bottom panel:
Percentages of boxplot data points with a value > 1 (for each boxplot). (d) Top panel: Average S-F scores
(RNAPII read counts at the read density summit subtracted by the average RNAPII read counts at TT
flanking regions) of all regions described in (a). Standard errors of the mean (SEM) are illustrated.
Pairwise Wilcoxon rank-sum tests using Benjamini-Hochberg (BH) adjustment were performed, and
corrected p-values are reported accordingly. Bottom panel: Percentages of high ‘S-F’ scores with a value
> average([S — Flexon start 1T + 3*SD[S — Flexon start- (€) Plot showing the comparison of average S-F



scores of all regions upstream (Up) and downstream (Down) of the respective wave-front position, for
each +UV time point. Standard errors of the mean (SEM) are illustrated. Pairwise Wilcoxon rank-sum
tests using Benjamini-Hochberg (BH) adjustment were performed, and corrected p-values are reported
accordingly.

To quantify the RNAPII signal density around TT loci, the log, ratios between +UV and NO UV
alignments were calculated (fold change (FC)) across all regions and plotted as boxplots (Figure
77). As depicted in Figure 77, in the +UV 2 h, up to 68.1 % (Cluster I, Figure 77 (c)) of the
analyzed loci showed a higher enrichment of RNAPII signal, while RNAPII molecules exhibited
a decreased stalling at TT regions at 6 hours after UV exposure. To precisely evaluate the
distribution of RNAPII signal on TT dinucleotides, the difference between TT-counts and
flanking region-counts for all the analyzed loci were calculated (S-F score) and plotted as a
mean - standard error of the mean plots (Figure 77 (d)). S-F scores confirmed that the average
RNAPII lesion stalling increases significantly in the genomic regions affected by the do novo
elongation wave (Figure 77 (e)). Indeed, the fraction of damages detected by RNAPII gained the
highest value of 28.2 % of the total analyzed loci in +UV 2 h - cluster | (Figure 72 (d)), thus
validating that the UVC induced elongation wave release, increases the damage detection
probability along active gene bodies. As a control region set, a set of Ensembl exon start
positions were retrieved (see section 4.3.1), and analyzed as the TT loci (see above), to reveal
that RNAPII signal is not specifically accumulated around exon start positions (because they are
not preferentially enriched with di-pyrimidines), proving that the signal detected at exon start
sites corresponds to the elongation wave that passes by, without specific stalling.
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Figure 78 UVC-dependent elongation wave does not enhance exon specific stalling of RNAPII. (a)
Heatmap visualization of NO UV and +UV RNAPII-ser2P signal at extended exon regions located at active
mRNAs, sorted by increasing distance relative to TSS. Exons were classified as upstream or downstream
with respect to RNAPII-ser2P wave-front positions, which pinpoints the border between de novo and
pri-elongating RNAPII molecule populations. (b) Average profiles of RNAPII signal as described in (a). (c)
Top panel: Average S-F scores (RNAPII read counts at the exon read density summit subtracted by the
average RNAPII read counts at exonic flanking regions) of all regions described in (a). Standard errors of
the mean (SEM) are illustrated. Pairwise Wilcoxon rank-sum tests using Benjamini-Hochberg (BH)
adjustment were performed, and corrected p-values are reported accordingly. Bottom panel:
Percentages of high ‘S-F’ scores with a value > average[S — Flexon start TT + 3*SD[S — Flexon start-

Wilcoxon rank-sum tests using Benjamini-Hochberg (BH) adjustment were performed, and corrected p-
values are reported accordingly.

To evaluate the importance of the de novo UVC-triggered elongation wave, as opposed to the
already travelling RNAPII molecules (pri-elongating molecules) during the DNA-lesion



identification procedure, DRB VH10 RNAPII-ser2P in NO UV +30 min +DRB and +UV +30 min -
DRB conditions (Figure 69) were analyzed as described above (Figure 77).
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Figure 79 Inhibition of the de novo elongating RNAPII molecules, drastically reduces the RNAPII damage
recognition process. (a) Average DRB-ChIP-seq S-F scores (pri-elongating) compared to no-DRB-ChIP-seq
S-F scores (pri-elongating and de-novo elongating) for regions Upstream (Up) or Downstream (Down) of
the theoretical wave front (Figure 63). S-F scores were corrected by inferring the average S-F score
calculated for all Down loci. (b) Summary of the effect of DRB inhibition on differences in proportion of
regions displaying high S-F scores (see Figure 77). Chi-square test (X?) compares the number of genes in
Up and Down categories for each condition and determines if observed number of regions with high S-F
scores differs from the expected values.

S-F scores were calculated for all the clusters described in table 8 and showed that in the
absence of de novo elongated RNAPII molecules, the pri-elongating molecules were uniformly
engaged in lesion detection along almost all the TT loci clusters.

4.3.12 De novo release of RNAPII elongation wave promotes DNA repair

To examine if the elongation wave-driven accumulation of RNAPII molecules in putative CPDs
is also linked with preferential repair of those damages, a meta-analysis of XR-seq data (see
materials and methods, section 2.10.10) was conducted. Specifically, XR-seq data of CPD
damages at wild-type (WT) NHF1 skin fibroblasts, XP-C mutant cells (Xeroderma
Pigmentosum) and CS-B mutant cells (Cockayne Syndrome) (see introduction, section 1.4)
were retrieved by Gene Expression Omnibus (GEO), accession number GSE67941 using the
sra toolkit (Leinonen et al., 2011). FASTQ files were generated using fastq-dump (sra-toolkit),
and analyzed using the procedure described in section 4.1.3. An additional step of strand-
specific alignment separation was performed to create forward and reverse alignment files.
Heatmaps and average density profiles of strand-specific repair sighal were generated to reveal
patterns of preferential repair at specific loci, according to the examined dataset (see Figure 80).
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Figure 80 UVC-triggered wave release is coupled with increased repair activity in active mRNAs on both
strands. (a) Strand specific heatmaps of XR-seq signal 1 h after irradiation at active transcripts over 60 kb
(plotted from TSS to TSS +60 kb), ranked by increasing NO UV RNAPII-ser2P El (see Figure 63), in WT cells
(both TC-NER and GG-NER pathways are functional), in XP-C (GG-NER deficient cells), and in CS-B (TC-
NER deficient cells). Heatmaps of RNAPII-ser2P ChIP-seq in VH10 cells in NO UV condition are shown
(left). (b) Average density plots of XR-seq signal, as defined in (a).

In XP-C cells with non-functional GG-NER, TC-NER is favored, so the excision signal is
preferentially accumulated at the transcribed strand of actively expressed genes (Figure 80). On
the other hand, in CSB cells with non-functional TC-NER, GG-NER is favored, and the excision
signal was shared between both transcribed and non-transcribed strands of active genes,
depicting the stochastic function and global profile of the particular repair pathway. In WT cells,
where both TC-NER and GG-NER are functional, excision signal is present in both transcribed
and non-transcribed strands, with a higher prevalence at the transcribed strand of active genes,
since most of the CPDs are repaired by the TC-NER mechanism in the first hour after UVC
damage induction. Additionally, the repair signal is accumulated in an homogenous fashion at
all active gene bodies, regardless of the steady state of RNAPII activity (El values, Figure 63).

Next, using the merged strand alignments, the excision signal was summarized at TTs, using a
new flanking space from —30 bp up to +30 bp relative to TT center. The analysis was performed
as described in section 4.3.11, and the respective visualizations are depicted in Figure 81.
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Figure 81 UVC-triggered de novo elongation wave, promotes NER repair of DNA lesions. (a) Heatmaps
illustrating the XR-seq repair signal in NHDF (normal cell, both NER pathways functional), XPC
(Xeroderma Pigmentosum cells, GG-NER deficient), and CSB (Cockayne Syndrome cells, TC-NER
deficient) cell lines at extended TT loci (from -70 bp up to +70 bp relative to TT center) located in active
genes, sorted by increasing distances relative to TSS. TT loci were classified as upstream or downstream
with respect to RNAPII-ser2P wave front positions, which pinpoint the border between de novo and pri-
elongating RNAPII molecule populations. (b) Average profiles of XR-seq signal as described in (a). (c) Top
panel: Average S-F scores (XR-seq read counts at the TT read density summit subtracted by the average
XR-seq read counts at TT flanking regions) of all regions described in (a). Standard errors of the mean
(SEM) are illustrated. Pairwise Wilcoxon rank-sum tests using Benjamini-Hochberg (BH) adjustment
were performed, and corrected p-values are reported accordingly.

The generated heatmaps of WT and XP-C XR-seq alignments showed an expected enrichment
of repair activity in the clusters | and Il, since these loci are affected by the released elongation
wave during the first hour of UVC recovery (see section 4.3.12). Indeed, after the theoretical de
novo wave front (clusters lll, 1V, V and VI), the WT and XP-C XR-seq signal accumulation in
putative CPDs was uniformly lower (Figure 81), while in the CSB heatmap, all clusters showed a
low, but stable pattern of GG-NER repair. Average density profiles of excision signal and S-F
scores were also calculated as described in section 4.3.12, confirming the observations about



the wave-enhanced TC-NER repair on putative CPDs as opposed to the unaffected GG-NER
pathway. Interestingly, even in the distal TTs, that are not affected by the wave-release, TC-
NER activity was significantly detectable, because of the slowly travelling pri-elongating RNAPII
molecules (Figures 77 and 79) that still detect downstream DNA-lesions.

Interestingly, given that XR-seq detects DNA excised damages at the time of the assay (Hu et
al., 2015), and RNAPII molecules still stall at TT loci 2 hours after UV treatment (Figure 77), it
seems that just a small proportion of CPDs are being repaired at 1 h post UV (time of excision),
which implies that full recovery of all CPD lesions may last for several hours.

4.3.13 De novo release of RNAPII elongation wave restricts the mutation
prevalence in the transcribed strand of all active genes

To examine if there is a causative effect between the UVC induced wave release and the
mutation prevalence at actively transcribed genes, an analysis was conducted in datasets of
clinical-relevant genotoxin-exposed tissues that have developed cancer, which were previously
linked to NER activity (Alexandrov et al., 2013). These data revealed mutational asymmetries
between the transcribed (TS) and non-transcribed strand (NTS), with lower mutational
prevalence in the TS, implying a TC-NER dependent reduction of single nucleotide
polymorphisms (SNPs). In particular, the analysis included skin melanoma, which is linked with
high probability of UV (C(G) > T(A)) mutation, the hallmark of UV-exposed genomes (Helleday
et al., 2014; Lehmann, 2000; Pleasance, Cheetham, et al., 2010; You et al., 2001), and smoke
(G(C) > T(A)) mutation, the most frequent smoking adduct-generated mutation, repaired by TC-
NER (Alexandrov et al., 2013; Haradhvala et al., 2016; Pleasance, Stephens, et al., 2010)
(Figure 82).

d C>A C>G c> T>A T>C T>G
—_
o 25% Slgnature 7
Q.
pgzo%
g % 15%
%= S10%
R L A
0% VHCUYRS J»— 4910} I4. < g fRUvEsUL VOREOORCUDRRVUECUDRCUDHIVORLVORLOURLUDE
b C>A C>G C>T T>A T>C T>G
10% i | I ——
Slgnature 4
5%

Mutation Type
Probability

VOHAVUHAUOHAVUHCUDHAVORADOHAVOHAUOHAVOHEUO K
OHMHHACCLCOUUUCOOOM b b o o€ U OO DL b e bt e

Figure 82 Patterns of substitutions for Signature 7 (a) and 4 (b) described in (Alexandrov et al., 2013).
Mutational signatures are based in the trinucleotide frequencies of the human genome. The figure is
adopted by the supplementary information of (Alexandrov et al., 2013).



Human melanoma and lung adenocarcinoma merged genome-wide maps of validated
mutations were downloaded from ftp://ftp.sanger.ac.uk/pub/ cancer/AlexandrovEtAl (table 9).

Table 9 Summary of the mutation datasets of human melanoma and lung adenocarcinoma from
(Alexandrov et al., 2013).

Cancer Total Whole Whole | Original Removed | Filtered Mutations
Type Samples | Genomes | Exomes | Mutations | Mutations | Mutations | Analyzed
Lung 660 24 636 1,963,661 | 117,685 1,845,976 | 1,797,343
Melanoma | 396 - 396 340,592 47,986 292,606 292,046

Whole genome sequencing (WGS) and whole exome sequencing (WES) samples were
analyzed separately. Melanoma was scanned for the UV-specific C > T (or the reverse
complement G > A) substitutions, while the lung adenocarcinoma dataset was scanned for the
TC-NER-specific G > T (or the reverse complement C > A) substitution. Next, using bedtools
and getfasta (Quinlan & Hall, 2010), the respective trinucleotides were extracted and filtered in
order to keep the most probable characterized trinucleotide events (Figure 82); for melanoma
T(C)C > T(T)C and G(G)A > G(A)A, while for lung adenocarcinoma T(G)G > T(T)G and C(C)A >
C(A)A, to generate trinucleotide BED-like files (Figure 83).
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Figure 83 BED-like file of mutation trinucleotides for Melanoma datasets.
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Mutations were further separated to template strand (TS) and non-template strand (NTS)
trinucleotides based on the Watson-Crick strand reference and the strand orientation of the host
transcript (Figure 84).
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Figure 84 (a) Procedure used to generate mutational profiles on VH10 active genes over 60 kb (from TSS
to TSS +60 kb) using human melanoma and lung adenocarcinoma datasets [ref]. (b) Table summarizing
the pipeline used to extract the most common UV-specific and smoking-specific mutation trinucleotides
of human melanoma and lung adenocarcinoma tumors.

To analyze the mutation trinucleotides based on the nascent expression activity gene-status,
non-stressed BRU-seq data from HF1 cells (human skin fibroblasts) (Andrade-Lima et al., 2015)
and GRO-seq data from MRC5VA cells (Williamson et al., 2017b) were download by GEO with
accession number GSE65985 and GSE91010 respectively, as sra files, and were analyzed
using the methodology described in section 4.1.4. RefSeq mRNA expression counts were
converted to log, RPKM values, and gene activity was estimated by setting a vertical line that
dichotomizes the RPKM bimodal distribution (see Figure 49 for example), separating genes to
inactive and active references, for each examined cell line.

Active genes were further divided in three categories of the same size where Hi, Med, and Lo
denote high, medium and low nascent expression levels respectively, and only the annotated
references over 60 kb were retained, and sorted in a descending expression order. Melanoma
trinucleotide signal was summarized at HF1-sorted transcripts, while lung adenocarcinoma
trinucleotide signal was summarized at MRC5VA-sorted transcripts, by averaging the number of
mutations detected in all analyzed samples (for WES or WGS datasets) over the examined
references, and by considering a region of 1 Mb of DNA (Mutation Prevalence = number of
mutations counted per Mb per sample). As WES data is not linear because of the heterogenous
exon density across transcripts, mutation prevalence values were further corrected for each
examined genomic window, as a function of the relative exon density measured in each region
(see formula in Figure 85).
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Figure 85 Mutational prevalence calculation.

Heatmaps and average density profiles of mutation prevalence were generated in a strand-
specific fashion depicted below (Figures 86 and 87).
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Figure 86 Low levels of mutation prevalence in actively transcribed genes in Melanoma samples. (a)
Heatmaps illustrating the mutational density of UV (C > T) at active genes over 60 kb (plotted from TSS
to TSS+60 kb), in a strand specific manner (template (TS) and non-template (NTS) strand separately).
mRNAs are classified by activity levels, based on the respective normal skin fibroblasts nascent RNA
levels (E for expressed, and NE for non-expressed). (b) Average mutation prevalence profiles across
gene-bodies over 60 kb (plotted from TSS to TSS+60 kb), for “E” (solid line) and “NE” (dashed line)
transcripts. (c) Left panel: Per gene average mutation prevalence profiles in the same order as described
in (a). Curve correction was performed using a moving average with n=200. RPKM expression levels are
depicted by the green curve. Right panel: Pairwise comparisons of average mutation prevalence



between TS and NTS, for Hi, Med, and Lo expression categories and NE transcripts. For each comparison
a two-sided Wilcoxon rank-sum test using the BH adjustment was applied. N.S indicates Non-Significant
P-value (> 0.05).
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Figure 87 Low levels of mutation prevalence in actively transcribed genes in Lung Adenocarcinoma
samples. (a) Heatmaps illustrating the mutational density of cigarette smoking (G > T) at active genes
over 60 kb (plotted from TSS to TSS+60 kb), in a strand specific manner (template (TS) and non-template
(NTS) strand separately). mRNAs are classified by activity levels, based on the respective normal lung
fibroblasts nascent RNA levels (E for expressed, and NE for non-expressed). (b) Average mutation
prevalence profiles across gene bodies over 60 kb (plotted from TSS to TSS+60 kb), for “E” (solid line)
and “NE” (dashed line) transcripts. (c) Left panel: Per gene average mutation prevalence profiles
illustrated in the same order as described in (a). Curve correction was performed using a moving average
with n=200. RPKM expression levels are depicted by the green curve. Right panel: Pairwise comparisons
of average mutation prevalence between TS and NTS, for Hi, Med, and Lo expression categories and NE
transcripts. For each comparison a two-sided Wilcoxon rank-sum test using the BH adjustment was
applied. N.S indicates Non-Significant P-value (> 0.05).

To apply statistical comparisons between prevalence score distributions, and to avoid inclusion
of multiple zero data points (mutations are rare genomic events), the sparse mutation data
matrices were aggregated over row groups of 15 genes within each expression cluster.

The particular visualizations (Figures 86 and 87) revealed detailed insights of the tumors’
genomic mutation landscape. Specifically, the localization of mutations in gene-bodies was
determined precisely to uncover a uniform pattern, even in the more distal parts of long genes
(Figures 86 and 87).



As expected, both heatmaps and average profiles confirmed that NTS of actively transcribed
genes are more prone to mutation forming than the TC-NER protected TS (Alexandrov et al.,
2013; Haradhvala et al., 2016; Pleasance, Stephens, et al., 2010)(TS < NTS), while in both
strands, lower mutation rates were observed in expressed genes (E) in contrast to the non-
expressed genes (NE) (Figure 86 and 87). Strikingly, analysis of the mutational prevalence
along the different expression groups in the two transcriptomes (skin and lung fibroblasts)
revealed homogenous levels of genetic alterations for both DNA strands across the whole gene
bodies, suggesting that the widespread and uniform release of RNAPII upon genotoxic stress
impacts significantly on the mutation landscape of the active transcriptome.

4.3.14 UV-dependent increase of chromatin accessibility is paralleled by RNAPII
transition into transcription elongation

To demonstrate the functional advantages that are linked with the phenomenon of the chromatin
accessibility expansion during the early recovery after UV-induced stress, an integrative
analysis of CAGE-seq data of normal dermal and skin fibroblast primary cells (materials and
methods, section 2.10.9) and VH10 ATAC-seq NO UV and +UV +2 h, and VH10 RNAPII-ser2P
NO UV and +UV +1 h was performed. The specific analysis was conducted using the annotation
described in section 4.3.5, in order to examine the patterns of NGS signal along the
transcriptional directionality of bidirectional genes, asPROMPTs and enhancer elements.
Bidirectional genes and unidirectional genes-asPROMPT pairs were sorted by their inter-TSS
distance, defined as the distance separating the significant CAGE summits detected on each
strand (section 4.3.5). The heatmap and average profile visualizations of NGS signal were
generated using the methodologies described in section 4.1.4.
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Figure 88 PPP release of RNAPII upon genotoxic stress. (a) Heatmap illustration of CAGE signal (black,
strand specific analysis, two strands separated), ATAC-seq signal (blue, NO UV and +UV 2 h), and RNAPII-
ser2P signal (purple, NO UV and +UV 2 h) at extended TSS regions of active bidirectional TSS pairs (+/-
2kb). TSS pairs are sorted by interTSS distance from the most convergent to the most divergent pair. (b)
Heatmap illustration same as in (a) but for active convergent and divergent unidirectional TSS/
asPROMTSs pairs. PROMPTSs (orange arrow) are transcribed in the antisense direction relative to mRNAs,
from either the minus strand (Upper panel, see CAGE minus strand signal) or the plus strand (Bottom
pane, see CAGE plus strand signal). The straight dashed lines denote the mRNA TSS position, while the
sigmoidal dashed line indicate the asPROMPT position. TSS pairs are ordered by interTSS distance from
the most convergent to the most divergent pair. (c) Heatmap illustration same as in (a) but for active
intergenic enhancers. (d), (e) Average profiles of NO UV and +UV RNAPII-Ser2P categories defined in (a)
and (b), but only for divergent TSS-pairs. Zoomed illustrations are provided accordingly. (f) Average
profiles same as in (d) and (e), but for all active intergenic enhancers. (g), (h), and (i) Scatter plots of
pairwise Escape Index (EI) comparisons between NO UV and +UV RNAPII-ser2P, for categories indicated
in (d), (e), and (f). Proportion of elements with higher escape in +UV condition are reported. Chi-square
tests (X2) between active and inactive elements of each annotation category were performed to
determine if the observed number of elements (active elements) with AEl > 1 differs from the expected
values (inactive elements AEls).

To study the transcriptional dynamics at play in both directions (strands), avoiding the signal
interference between overlapping references, the focus was addressed on the non-overlapping
pairs of TSSs (divergent bidirectional TSSs, and divergent unidirectional TSS/ asPROMPT TSS
pairs). Using the particular annotation set-up, the escape index of each annotated transcript was
calculated as described in section 4.3.6, including the asPROMPTSs, while the enhancer



elements’ El was calculated in a similar fashion: The read density of enhancer bodies is
calculated as the average of two region flanks ranging from 2 kb up to 100 bp upstream of eTSS
and from 100 bp up to 2 kb downstream of eTSS, while the read density of enhancer promoters
is calculated at the region ranging from 100 bp upstream to 100 bp downstream of eTSS. The
calculated Els were visualized using scatter plots as described in section 4.3.6 (Figure 88 (g-i)).
The particular illustrations revealed that the UV-dependent increase in chromatin accessibility
depicted in figures 73 and 75 is corroborated by the transition of RNAPII into transcription
elongation, at all the examined actively transcribed elements, as depicted by the reduction of
RNAPII signal at promoters and the parallel increase of RNAPII signal at gene bodies.
Quantifications using El confirmed that the RNAPII elongation increases in response to UV-
induced stress for the majority of actively transcribed elements (90.1% of bidirectional
promoters, Chi-square test P = 5.1 x 1072, 70.1 % of asPROMPTSs, Chi-square test P =

4.5 x 1078, and 68.6 % of enhancers, Chi-square test P = 2.5 x 107%%).

4.3.15 Genome coverage analysis of nRNA-seq data reveals global inhibition of
transcription upon early recovery from UVC-stress induction

To examine the percentage of the repressed transcription activity along the human genome
during UVC recovery, all hg19 canonical chromosomes were split to 50 bp segments, and
alignment-depth normalized counts were calculated per bin using VH10 nRNA-seq NO UV and
+UV 2h datasets (see materials and methods, section 2.10.5). Summarization of all the bins
where log,FC (+UV / NO UV)) <0, relative to the total number of bins, revealed that the 63.65
% of the transcribed genome shows inhibition of transcription, a result that is in agreement with
other studies(Andrade-Lima et al., 2015; Bugai et al., 2019b; Lavigne et al., 2017; Magnuson et
al., 2015; Williams et al., 2015), while a local increase in nRNA signal downstream of all active
TSSs is detected during UV-recovery (Figures 67 and 70).

4.3.16 Treatment with DRB retains the RNAPII signal in PICs during early
recovery from UVC-induced stress

To discover if RNAPII is able to be recruited at active promoters upon UV, +DRB RNAPII-hypo
ChlIP-seq experiments with conditions NO UV +DRB 2 h, +UV 2 h DMSO , +UV 4 h DMSO and
+UV 4 h +DRB 2 h, (see materials and methods, section 2.10.4) were generated and analyzed
using the methodology described in section 4.1.4, generating heatmaps and average profiles of
NGS signal (Figure 89) using the extended TSS-pairs reference described in section 4.3.5.
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Figure 89 Inhibition of RNAPII PPP release retains pre-initiating RNAPII binding at active promoters after
UVC-damage induction. (a) Heatmap illustration of +DRB RNAPII-hypo ChlIP-seq experiments as
described in Figure 88 (a-c). (b) Average profiles of +DRB RNAPII-hypo ChIP-seq experiments as analyzed

in (a).

This analysis revealed that in the +UV 2 h DMSO and +UV 4 h DMSO conditions, only a
minimal level of RNAPII-hypo signal is detected at actively transcribed promoters, as opposed
to +UV 4 h +DRB 2 h condition, in which a significant retain of RNAPII-hypo signal is detected at
all active elements (Figure 89). The recovery of RNAPII-hypo signal was even more evident
when comparing the +UV 4 h +DRB 2 h with the NO UV +DRB 2 h condition, where the level of



RNAPII-hypo signal is rescued at all the analyzed TSS categories (Figure 89). Consequently, by
preventing the UVC triggered transition of RNAPII molecules from PPP sites into active
elongation at 2 h after UV induction, a time-point where the RNAPII-hypo level was almost non-
detectable (Figure 75), a latent and continuous de novo recruitment of RNAPII-hypo molecules
in PICs is revealed. This result clarifies the previously detected depletion of RNAPII-hypo
(Figure 75, figure 89 -DRB samples), suggesting that upon early recovery from UVC-stress
induction, new molecules of RNAPII are recruited at PPPs, and by the time of recruitment, they
are released to gene bodies in order to increase the damage-scanning activity of the cell.

4.3.17 Increased nascent RNA synthesis from active promoters during early
recovery from UVC-induced stress

Since UVC stress does not inhibit the initiation of transcription, nor the escape of RNAPII from
PPP into productive elongation, the next step was to examine whether these phenomena are
coupled by increased production of newly synthesized RNA around the genomic regions of
active TSSs. To address this hypothesis, VH10 nRNA-seq datasets at NO UV and +UV 60
minutes conditions, as also the strand specific HF1 BruUV-seq datasets at NO UV and +UV 30
minutes from (see materials and methods, section 2.10.6) were analyzed using the
methodology described in section 4.1.4, to produce heatmaps and average profiles of NGS
signal using the TSS references described in section 4.3.5.
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Figure 90 De novo UVC-derived nascent RNA synthesis at all active promoters. (a) Heatmap illustration
of NO UV 1 h and +UV 1 h pre-DRB nRNA-seq signal as depicted in Figure 88 (a-c). (b) Strand specific
heatmap illustration of BruUV-seq NO UV 30 min and +UV 30 min BruUV-seq as depicted in Figure 88 (a-
c). Forward (F, +) and reverse (R, -) strands are visualized separately. (c), (d) Average profiles of nRNA-
seq signal corresponding to (a) and (b) respectively.

The resulting visualization (Figure 90) replicates the previously shown global increase of EU-
labelled and Bru-labelled RNA signal in the first kilobases of active genes (see section 4.3.7)
and supports the hypothesis that this increase could arise by the elevated RNAPII initiation at
active TSSs (Figure 89), as previously proposed (Magnuson et al., 2015). Specifically, at TSSs
corresponding to unidirectional and bidirectional elements, nRNA level is significantly increased
towards the mRNA direction, but also towards the antisense direction, due to the asPROMPT
transcription activity. In the same fashion, active enhancers show a global increase in nRNA
synthesis, towards both directions relative to the enhancer TSS (Figure 90). The later
observations regarding the short-transcribed elements (asPROMPTS and enhancers),
combined with the similar findings at active mRNAs (Figure 63), support the hypothesis that
active promoter regions are transcribed “de-novo” during the early UVC-recovery process.



4.3.18 Continuous transcription initiation during UVC recovery is coupled to
nascent RNA synthesis

To further verify that the initiation of transcription is productive and uninterrupted after UV
radiation in the genomic regions proximal to the different classes of TSSs, localization and
quantification of start-RNAs was performed. The particular procedure is informative about the
magnitude of the engaged RNAPII production within the initially transcribed sequence (~ 100
first nucleotides) (Williams et al., 2015). For this purpose, VH10 start-RNA synthesis
experiments were conducted using NO UV /+ DRB/T 2.5h,+ UV/-DRB/T 2.5h, + UV / +
DRB/T 2.5hand + UV /+ TRP /T 2.5h conditions (see materials and methods, section 2.10.8).
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Figure 91 Start-RNA quantification using gPCR. Bar graphs depicting the Fold Change (FC), for each
tested gene (left panel), and for all genes together (average of all genes, right panel). Standard Errors of

e




the Mean (SEM) are illustrated accordingly. Two-sided Student’s t test are applied as indicated (right
panel) and p-values are reported

The resulting quantification of the gPCR analysis showed that the levels of start-RNAs after UV
exposure were similar to those of non-irradiated cells (Figure 91). More precisely, DRB-
dependent inhibition of RNAPII release from PPP sites did not prevent the detection of
significant levels of start-RNAs after UV exposure, as opposed to the clear reduction in start-
RNA levels following the TRP-dependent inhibition of transcription initiation (Figure 91, two
sided Student's t test p-value = 0.0037 compared to "NO UV / + DRB / T 2.5h", p-value = 0.0016
compared to "+ UV /- DRB /T 2.5h" and p-value = 0.0009 compared to "+ UV /+ DRB/ T 2.5h
"), thus showing that after UV exposure, both transcription initiation and the corresponding RNA
synthesis take place in the respective genomic regions.

4.3.19 Balanced level of RNAPII-hypo at PICs favors homogeneous TC-NER
function

To clarify the functional implications of continuous transcription initiation during UV recovery,
XR-seq data (analyzed in section 4.3.12), and specifically CPD XP-C datasets that precisely
and exclusively pinpoint the location and levels of transcription-dependent repair (TC-NER
pathway) were reanalyzed in the concept of the active TSS pairs and eTSSs. The alignments
were analyzed in a strand-specific manner, considering only the excision of CPD-lesions from
the transcribed strand (TS) of MRNAs, asPROMPTSs, and enhancers, which corresponded to
the forward “+” (blue) or the reverse “-” (red) genomic strands, (Figure 92) depending on the
element annotation. Strand specific heatmaps and average profiles of XR-seq signal were
generated as described in section 4.1.3.
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Figure 92 DNA-damages at transcribed strands of active elements are repaired homogeneously. (a)
Strand-specific heatmaps illustrating the XPC XR-seq repair signal on template strand (TS, blue or red
accordingly) of actively transcribed elements as depicted in Figure 88. Blue dashed lines set the border
to 500 bases downstream of CAGE summits for each strand. (c) Strand-specific average profiles of XPC
XR-seq signal as indicated in (a). Only divergent elements are included in this visualization.

The particular visualization revealed an expected balance in repair activity between transcription
directions in active bidirectional promoters and enhancers, and a mild imbalance between
MRNA-asPROMPT promoter pairs (Figure 92).

To further examine the patterns of TC-NER repair efficacy along transcription directionality, and
in comparison with transcription initiation activity at the same regions, an analysis of XPC XR-
seq, CAGE-seq and RNAPII-hypo signal (see materials and methods, sections 2.10.1, 2.10.9,



and 2.10.10) was conducted at divergent bidirectional TSS and unidirectional TSS/ asPROMTs
pairs.
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Figure 93 Comparisons between TC-NER repair activity at transcribed promoter regions and
transcription initiation activity (a) Left panel: Representation of the genomic intervals used for
calculating Log2 Fold Change (FC) ratios of sense XPC XR-seq and CAGE-seq signal. Right panel: Box plots
of Log2 FC of CAGE-seq and XPC XR-seq sense reads between bidirectional promoter pairs. Box plots
depict the 25th—75th percentiles and error bars depict the 1.5 * IQR (inter-quartile range). Two sample
F-tests were applied for each of 10,000 sampling pairs of 100 data points with replacement from each
population to test for significant difference between sample variance. The calculated P expresses the
percentage of the non-significant F-tests (F-test P >= 0.05) out of all tests (b) Same as (a), but for
unidirectional MRNA-PROMPT pairs. 95% confidence intervals (Cl) of mean differences between log2
counts was applied as described in materials and methods tade. Effect sizes of log2 counts between
datasets were calculated using Cohen’s method (CES).

As depicted in Figure 93, sense CAGE-seq, sense XR-seq, and RNAPII-hypo (NO UV and +UV
+1.5 h) sense alignments were counted at regions starting from mRNA TSS up to 2 kb (to the
direction of the mRNA transcript), while for asPROMPTSs, from CAGE summit up to 500 bp (to
the direction of the asPROMPTSs transcript). Counts were normalized by the element length and
sample size and summarized as log, fold change (log,FC) ratios between forward (+) and
reverse (-) mMRNA counts for bidirectional pairs, and log,FC ratios between mRNA and
asPROMPT counts for mMRNA-asPROMPT pairs (Figure 93). XPC XR-seq and CAGE-seq count
ratios were visualized using boxplots and coupled by a bootstrapping F-test approach (materials
and methods 2.13) to support a balance of TC-NER repair efficacy in each direction of
bidirectional active promoters (Figure 93, F-tests p-value = 0.). This result is also in agreement
with RNAPII-hypo ChIP-seq data showing equal amount of RNAPII molecules recruitment at

PICs (Figure 94) and equivalent production of capped mRNAs (CAGE-seq, Figures 93 and 94,
median Log2 FC = 0, F-tests p-value = 0).
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Notably, in transcriptional pairs with a large variability in CAGE-seq signal levels between
strands (MRNAs-asPROMPTSs, Figure 94), signal density between strands was balanced for
TC-NER (XR-seq (XP-C)) and RNAPII-hypo (Figure 94, F-Tests: P = 0).

While this phenomenon was previously observed, it was hardly explained (Adar et al., 2016; Hu
et al., 2015). The particular quantification showed that TC-NER is not correlated with the steady
state levels of CAGE at asPROMPTs (PCC = 0.1343). Additionally,the fact that the log,FC of
XPC XR-seq signal between mRNAs and PROMPTSs is significantly smaller than the CAGE-seq
signal (Figure 94, 95 % CI excludes 0) also matches with the UV-independent RNAPII-hypo
uniformity (Figure 94).



The same analysis was also applied at enhancer regions, resulting in a balanced pattern of TC-
NER repair between the bidirectionally transcribed enhancer units.

4.3.20 Uninterrupted transcription initiation drives the cell’ transcriptome to
DNA-damage recovery via TC-NER

To evaluate the biological importance of the uninterrupted transcription initiation at all active
regulatory regions during the early UV-stress recovery, a strand-aware meta-analysis of XPC
XR-seq of CPD damages in +UV 1 h +DMSO, +UV 1 h +DRB and +UV 1 h +DRB2 XR-seq
conditions (see materials and methods, section 2.10.12) was conducted using the methodology
described in section 3.1.3, to produce heatmaps and average profiles of CPD XR-seq signal
around potential pyrimidine dimers (TTs, section 4.3.11) and all the classes of TSS-pairs
defined in section 4.3.5. TT regions overlapping with enhancers were filtered out to avoid
counting repair signal that arise from eRNAs, and ‘S-F’ scores for different TT-clusters were
calculated as described in section 4.3.11.

a TC-NER on TS around ACTIVE genic TTs (XR-seq reads from XP-C cells, data from Chiou et al., 2017) d TC-NER on TS around TSSs
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Figure 95 TC-NER activity is heavily dependent by transcription initiation. (a) Upper panel: Illustration of
XPC DRB experimental timeline. Lower panel: Heatmaps of XPC XR-seq signal at TT regions located in the
transcribed strand of active genes, at timepoints indicated in the experimental timeline illustration. (b)
Average profiles of XPC XR-seq repair signal as indicated in (a) for TT-clusters defined in section 4.3.11
(+UV 1 h clustering). (c) Visualization of the percentage (%) of high S-F scores (see section 4.3.11) at all
clusters presented in (a) and (b). Wave front is illustrated as a light green dashed line, while the asterisk



denotes high decrease of XR-seq signal in DRB2 condition. (d) Strand-specific average profiles of XPC XR-
seq signal at TSS-pairs. Conditions analyzed are indicated accordingly.

Visualizations and quantifications depicted in Figure 95 outline the fact that when DRB is
applied directly after UV-exposure, TC-NER activity at pyrimidine dimers localized between
active TSSs and the +UV 1 h wave front of the stress-released RNAPII (as defined in section
4.3.11) is affected drastically (Figure 95, DRB +UV +1h, clusters 0-ll, and (d)).

Subsequently, when only a restricted amount of pri-elongating RNAPII is allowed to be fired
immediately before the UVC induction, and a parallel blockage of de novo RNAPII release after
UVC irradiation is applied (Figure 95, DRB2 experiments), an inadequate delivery of RNAPII
molecules impairs TC-NER activity at all transcribed loci (compare signal before and after
asterisk positions in Figure 95).

To further evaluate whether the continuity of RNAPII initiation results to a high extent of ongoing
repair activity as depicted in +UV +DMSO condition in Figure 95, NHF1 time-course XR-seq
experiments of CPD damages in +UV +1 h, +UV +4 h and +UV +8 (see materials and methods,
section 2.10.11) were analyzed as described above with minor adjustments. TT dinucleotides
located in the reverse strand of active mRNAs, or between the TSS and 2 kb downstream of
TSS of transcript-pairs with inter-TSS distance < 100 bp, were excluded. Heatmaps, average
profiles and S-F scores of XR-seq signal at TT loci were generated as described in section
4.3.11.
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Figure 96 TC-NER activity is preserved along the recovery period due to the uninterrupted transcription
initiation procedure. (a) Heatmaps of time-course NHF1 XR-seq signhal at 1 h, 4 h and 8 h post UV
irradiation at TT loci located in the transcribed strand (TS) of active mRNAs. TTs are separated to clusters
as described in section 4.3.11 (+UV 1 h clustering) (b) Average profiles of XR-seq repair activity for the



regions illustrated in (a). (c) Percentages (%) of high S-F scores for clusters as indicated in (a) (see section
4.3.11 for details), (d), (e), and (f), Same as (a), (b), and (f) respectively, but for inactive genes.

This analysis showed that a considerable amount of TC-NER excision events was preserved at
damage-sites localized immediately downstream of active TSSs at 4 h and 8 h during the
damage recovery (compare Figure 95 with Figure 96). Importantly, the extent of excision events
on the transcribed strand changes during damage recovery (+ 8 h) from the proximal to the
distal part of long active genes (Figure 96 clusters IlI-VI, and Figure 95).

4.4 A genome-wide analysis pipeline for the evaluation of aniFOUND-seq
methodology

To evaluate the specificity of aniFOUND-seq (see Material and Methods), a genome-wide
comparison between XR-seq (see materials and methods) (Adar et al., 2016) and damage-seq
(Adar et al., 2016) assays was performed. Since the particular variation of aniFOUND-seq
(materials and methods tade) does not produce strand specific data, and XR-seq and damage-
seq datasets are strand specific, the analysis was performed using a single-end set-up. Two
replicates of 1BR.3 aniFOUND-seq +UV 4 h pull-down (PD) and aniFOUND-seq INPUT
(INPUT) were analyzed using the methodology decribed above, and the resulting alignments
were extended to an average of 200 bp fragments using the 5’ -> 3’ direction.
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Figure 97 Correlation between aniFOUND-seq biological replicates. Left panel: Spearman correlation,
calculated along the genome using 10 kb windows (as described in section 4.1.3.3.1). Right panel:
Spearman correlation calculated at different chromatin states according to the NHDF 15-state
ChromHMM annotation (see introduction, section 1.7).

The center of each read was used as described in section 4.1.3.5, in order to annotate each
read uniquely based on the NHDF-Ad_Adult_Dermal_Fibroblasts core 15-state model roadmap
chromatin state annotation (Roadmap Epigenomics Consortium et al., 2015). The 8th chromatin
state, “ZNF genes & repeats" was excluded, since it is analyzed more precisely in a separate
analysis module (see below). The same procedure was also applied at two replicates of NHF1
CPD XR-seq +UV 1 h and +UV 4 h datasets, and at two replicates of NHF1 64 XR-seq +UV 5
min, 20 min, 1 h, 2 h and 4 h datasets (see materials and methods, section 2.10.11), which



were merged based on the photolesion category (CPDs and 64s), omitting the step of fragment
length extension. The merging of the different time points after UV exposure was applied after
taking into consideration the main differences between the two repair assays: (a) XR-seq
captures the excised DNA fragments along the early steps of NER, while aniFOUND-seq
captures the newly synthesized DNA at the lesion gaps, after the DNA cleavage is completed,;
(b) aniFOUND captures the repair-synthesis events in a cumulative fashion, while XR-seq
captures a 10-minute-long excision activity; (c) aniFOUND captures total UDS activity, which is
associated with the repair of both CPDs and 6-4 PPs, while XR-seq focuses on one type of
photolesion per experiment.

Similarly, for damage-seq, two replicates of NHF1 CPD +UV 0 h and NHF1 64 damage-seq
+UV 0 h, as also NHF1 damage-seq INPUT libraries were processed as described above.

All chromatin state counts were aggregated per category, normalized by the total genome
coverage of each chromatin category, as also by a sample size factor (1,000,000 /

total alignments). The resulting normalized values were summarized either as ratios
normalized by their corresponding input dataset (Figure 98 (a)), or as percentages of the total
counts (Figure 98 (e)) using a radar plot visualization.
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Figure 98 Genome-wide distribution of aniFOUND-seq signal. (a) Repair and damage ratios in different
chromatin states. The chromatin states are defined according to the 15-state ChromHMM annotation
(see materials and methods, section 2.10.11). Repair ratios are calculated by aniFOUND-seq reads,



normalized by their INPUT reads for each state. Similarly, damage ratios resulted from normalized
damage-seq signal by their INPUT signal.

(b) Snapshots of UCSC Genome Browser. Upper panel: depiction of a gene and its flanking regions. The
blue arrow indicates the direction of transcription. Lower panel: enhancers located in an area free of
genes. The lower track (chromHMM) shows the ChromHMM states; yellow boxes with black outline
correspond to enhancers. The enhancer regions in all tracks are shown in boxes.

(c) aniFOUND signal in active and inactive transcription start sites. Left panel: Heatmaps with the signal
of aniFOUND, nRNA, H3K27ac and ATAC-seq 2 kb around the transcription start sites of active and
inactive genes (TSSs), and active and inactive enhancers (eTSSs). Right panel: Box plots with the signal
distributions of the gene sets shown in the corresponding heatmaps of the left panel. Boxes show the
25th - 75th percentiles and error bars show the data range to the larger and smaller values. For each
active/inactive set, 10,000 samplings of 100 data points were randomly generated, and 95% confidence
intervals of mean differences between active and inactive regions were calculated. Effect sizes of log2
counts between active and inactive sets were calculated using Cohen’s method (CES).

(d) DNA damage and repair on bidirectional promoters. Left panel: Heatmaps of aniFOUND and damage-
seq around the TSSs of bidirectional genes. The sorting was done based on the distance between the
TSSs of the two bidirectional genes. Right panel: Aggregate plots of aniFOUND and damage-seq around
the TSSs for the gene sets shown in the left panel.

(e) Distribution of aniFOUND and XR-seq signal along chromatin states. For XR-seq, all the available data
sets up to 4 hours after irradiation were merged (5 min, 20 min, 1 h, 2 h and 4 h for 6-4PPs, and 1 h and
4 h for CPDs). The states are defined according to the 15-state ChromHMM annotation. For each library
the number of reads that correspond to a chromatin state has been corrected by the total genomic
length of the state. Y-axis shows the percentage of the corrected reads that fall in each state. For the
hypothetical library in which all states were equally represented, a polygon with all its sides positioned
ataround 7 % (= 100 % / 14 states) would result.

(f), (g) Box plots of aniFOUND-seq and XR-seq signal in active and inactive TSSs and eTSSs, designated as
in (c). Boxes show the 25th - 75th percentiles, and error bars show the data range to the larger and
smaller values. For each active/inactive set, 10,000 samplings of 100 data points were randomly
generated, and 95% confidence intervals of mean differences between active and inactive regions were
calculated. Effect sizes of log2 counts between active and inactive sets were calculated using Cohen’s
method (CES).

Radar plots of damage-seq ratios revealed a rather expected (Adar et al., 2016) homogeneous
formation of CPDs and 6-4PPs, since they are captured directly after irradiation by the protocol
procedure (materials and methods, Figure 98 (a)). On the contrary, aniFOUND-seq radar plots
showed that the UDS reads were unevenly distributed across the 14 chromatin states (Figure
98 (a), aniFOUND-seq). Notably, active TSSs and their corresponding flanking regions (states
1, 2, and 3), as well as enhancer-associated regions (states 6, 7 and 12) showed elevated
repair-synthesis. These results suggest faster NER-activity during the 4-hours UVC recovery
period in actively transcribed regions in comparison to repressed and quiescent regions.
Heatmaps and boxplots of NGS signal on 2 kb-extended active TSSs and eTSSs (VH10
TSS/eTSS activity, see above) revealed that aniFOUND-seq repair signal is detected
significantly around these regions (Figure 98 (b),(c)). Comparisons of the aniFOUND-seq repair
signal with VH10 nRNA-seq +UV 2 h (see materials and methods), ATAC-seq +UV 2h (see
materials and methods), and H3K27ac ChiIP-seq +UV 2 h datasets (see materials and methods)
displayed enhanced levels of UDS at highly accessible regions, and specifically around actively
transcribed TSSs and eTSSs (Figure 98 b and c), as opposed to inactive elements (Figure 98



5¢, 95 % Confidence Interval of log2 count differences does not include 0). Notably, a
characteristic pattern of repair signal is observed at bidirectionally transcribed mMRNA TSSs
(Figure 98 (c) and (d)), equivalent to previously detected nascent-RNA NGS signal profiles in
bidirectionally transcribed TSS-pairs (see Figure 90), confirming that NER takes place rapidly
and effectively at all actively transcribed and accessible loci (Liakos et al., 2020). However,
observing the UDS activity at non-transcribed regions, aniFOUND-seq signal is still detectable
as a result of the GG-NER activity at these regions, captured by the assay.

To evaluate the potential effects of damage activity on UVC lesion repair at active bidirectional
promoters, CPD damage-seq signal heatmaps and average profiles were also generated using
the same annotation as reference, to reveal a complementary signal pattern between the two
assays (Figure 98 (d)). Consequently, to validate the genome-wide UDS signal profile at actively
transcribed promoters, NHF1 CPD and 64 XR-seq merged alignments were summarized at 14
roadmap chromatin states (as described above) as percentages of total counts, and also at
actively transcribed TSSs and eTSSs, to generate boxplot quantifications (Figure 98 (g) and(f)).
Radar plot visualization of aniFOUND-seq and XR-seq in figure 98 (e) demonstrates that the
distribution of aniFOUND-seq repair signal across different chromatin states is analogous to the
64 XR-seq signal. This result is consistent with the fact that the majority of 6-4 photoproducts
are repaired during the first 4 hours after damage induction. Further, the preferential enrichment
of CPD XR-seq signal in chromatin state categories related to active transcription (TSSA,
TssAFInk, TxFInk, Tx, EnhG and Enh) was paralleled with reduced CPD signal in chromatin
states related to repressed chromatin and heterochromatin (Het, TssBiv, BivFInk, EnhBiv,
ReprPC and ReprPCWK) and is in line with the fact that CPD repair is accomplished by TC-NER
during the early UVC recovery (Adar et al., 2016; Hu et al., 2015).

Additionally, boxplots of repair signal distributions at actively transcribed TSSs and eTSSs
(Figure 98 (c), (f), and (g)) demonstrate that the NER repair activity at the actively transcribed
genome is elevated in comparison to the non-transcribed elements during the early recovery
response, for all the repair datasets. Nonetheless, aniFOUND-seq and XR-seq activity is also
detectable at inactive elements (Figure 98 (c), (f), and (g), white filled boxplots), showing that
GG-NER is also present in the early UVC damage response.

4.4.1 An analysis pipeline for the estimation of NER activity on repeated
genome using aniFOUND-seq

Repetitive DNA comprises a considerable part of the genome (~50%, see introduction) that is
still “under-examined” in the field of DNA damage and repair. To study the UDS activity at these
regions, aniFOUND-seq raw reads were analyzed as follows:

Raw FASTQ reads of both PD and INPUT conditions were processed using the methodologies
described in section 4.1.1 and 4.1.2, but initially all sequences were trimmed at the 3’ end to a
constant length of 50 bases in order to eliminate any effect of variable read length bias between
the different datasets.

High quality FASTQ sequences were provided as an input to RepeatMasker software
(Nishimura, 2000), by first converting them to FASTA files, and splitting them to 300,000
sequence chunks in order to run the algorithm more effectively. RepeatMasker was run with
parameters: -e crossmatch -pa 30 -q -low -species human -a -inv -lcambig -html -source -gff -



excln -u -nopost to produce pairwise alignment files of repeat elements against the examined
FASTA sequences, using RepBase (Jurka et al., 2005) and Dfam (Hubley et al., 2016) as a
repeat species reference. The resulting alignments were further processed using
ProcessRepeats, a RepeatMasker utility, to produce repeat specific annotation files, containing
information about the alignment of every repeat species against each sequenced read. For each
library, all annotation files were summarized to produce a count-like matrix with repeat species
names as rows, sample ids as columns, and cells containing the number of total repeat species
occurrences in each of the examined samples, resulting to a total of 1,279 unique repeat
species identified in all datasets, that were further summarized to a total of 68 repeat families of
origin. To determine potential differences of repair activity along the repeated DNA sequences,
differential enrichment analysis between the aniFOUND-seq and the INPUT libraries was
performed. The specific analysis was performed using the DESeq2 software (Love et al., 2014)]
by providing the count matrix described above, and using the INPUT condition as a reference
sample. Size factors and dispersion were estimated using the default settings of the program,
and the statistical testing was performed using a negative binomial Generalized Linear Model
(GLM), based on the estimated size factors. Only results with a p-adjusted value threshold lower
than 0.05 were reported.
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Figure 99 Repeat enrichment on aniFOUND-seq reads (a) Differentially represented repeat families in
aniFOUND-seq and input libraries. The bars show the log2 ratio of the aniFOUND-seq library reads over
the input library reads that are annotated to the same repeat family. The repeat families are defined
according to the classification system of Repbase. The color of each bar denotes its adjusted p-value.
Only families with an adjusted p-value lower than 0.05 are shown. (b) Distributions of mapped read
ratios on rDNA and SMAD3 gene between aniFOUND and input libraries. On the Y-axis, the
logarithmized fold change of 1,000 random samples is shown. For each random sample the reads were
aligned on an extended reference genome consisting of the UCSC hgl9 and a single copy of the human
rDNA (NR_046235) sequence (see Materials and Methods). Effect sizes refer to the difference from zero
of the distributions depicted by the box plots and were calculated by using Cohen’s method (CES). (c)
Random samples of UDS (upper panel) and DNA damage (lower panel) signal on telomeres as estimated
with aniFOUND-seq and damage-seq, respectively (see Materials and Methods). Y-axis shows the
number of telomeric reads that resulted from 1,000 TelomerHunter runs on samples with 100,000
alignments each (see online methods). For both aniFOUND-seq and damage-seq, pull-down and input
libraries have been plotted. 95% Confidence Intervals (95% C.1.) of log2 differences between pull-down
and input libraries were calculated using 10,000 samples of 100 data points from each examined library.
Effect sizes were calculated using Cohen’s method (CES). (d) Custom IGV genome browser track of
human NR_046235 repeat unit, illustrating aniFOUND-seq PD and aniFOUND-seq INPUT signal.

The results of this pipeline were used to evaluate the aniFOUND-seq repair prevalence on the
repeated DNA. Figure 99 (a) summarizes that the most differentially enriched repeat family is
rRNA, that seems to be less efficiently repaired compared to the INPUT background distribution,
during the early UV-damage response, denoting that damages at the particular genomic
sequences are repaired at a lower rate. Comparing the particular result with the literature, it
seems that there are contradictory findings concerning the speed of rDNA repair, with some
studies declaring that ribosomal repeats are repaired at a slower rate, likely because of
inadequate repair factors accessibility at damage sites (34,35 Stefos). On the contrary, there is
a study reporting significant TC-NER activity taking place at rDNA sequences during the early
recovery process, attributing this phenomenon to the removal of damaged sequences to the
nucleolar periphery that enables the repair machinery [36 Stef], while in another recent study, it
was shown that rDNA is not subjected to TC-NER [37 Stef].

To further validate this finding, an additional analysis pipeline was conducted: Initially, the hg19
human reference genome (FASTA) was extended by adding the 45S pre-ribosomal N5
(RNA45SN5) NCBI sequence (https://www.ncbi.nlm.nih.gov/nuccore/NR_046235) as a new
chromosome, using the >NR_046235.3 identifier. aniFOUND-seq PD and INPUT quality-filtered
FASTQ files were aligned against the new genome build and analyzed using the methodology
described in section 4.1.3.1 with some modifications: (a) The option -T 0 was added to bwa
mem run, in order to allow low quality alignments, in order to maximize the number of the
multiple alignments. (b) BAM files were not filtered using alignment quality or duplicated records
information. Merged alignments were normalized to a similar read depth (19,000,000 reads) and
sampled 1,000 times to produce 100,000 read chunks that were in turn summarized at
NR_046235.3 chromosome and SMADS, an indicative actively repaired gene to produce
boxplots of log, PD normalized counts over INPUT normalized counts for each region (Figure
99 (b)). To apply a statistical comparison between the PD and INPUT count distributions for
each element, 1,000 samplings of 100 data points were randomly generated, and 95%



https://www.ncbi.nlm.nih.gov/nuccore/NR_046235

confidence intervals of mean differences between PD and INPUT regions were calculated.
Effect sizes of log, counts between PD and INPUT sets were calculated using Cohen’s method
(CES). The patrticular analysis confirmed that the rDNA is a region that is not preferentially
repaired during the first hours of NER-repairs using the aniFOUND-seq set up (Figure 99 (b) ,
95 % ClI excludes 0).

Moreover, the differential repeat enrichment analysis showed that satellites were also repaired
with a slower rate (Figure 99), a result that is in line with a previous study, reporting that
satellite-rich regions are repaired slower by NER machinery than other regions (Sanders et al.,
2004). To examine in more detail the UDS activity at human telomeres, a telomeric content
enrichment analysis was performed. Telomeres are typical repetitive regions consisting of
tandem 6 nucleotide-long sequences. Nevertheless, while their susceptibility to DNA damage
and the cell's capability to repair them are tightly associated with aging and cancer, it is not yet
clear whether they are prone to damaging factors and if they are repaired by the cell to the
same extent as the rest of the genome. For this analysis, the same alignment set-up as in the
rDNA analysis was used (see above). Both mapped and unmapped reads were scanned for
TGAGGG repeat occurrence, but only the unmapped sequences are considered as telomeric
content (Feuerbach et al., 2019). Merged alignments were down-sampled to a similar read
depth, and each subsample file was scanned for TGAGGG enrichment, using TelomereHunter
(Feuerbach et al., 2019) with default parameters. Candidate telomeric reads were classified into
3 categories: (1) “Intrachromosomal” reads, which comprise of telomeric repeats that are
mapped to the chromosomal regions of the genome, except from the first and last band. These
regions are considered “pseudo” telomeric (“pseudotelomeric”) and were used as a control set.
(2) “Subtelomeric” reads consist of telomeric reads aligned to the first or last band of a
chromosome, while (3) all unmapped reads were categorized as “intratelomeric”, which
represent the actual telomeric content. The outputs of all the telomeric quantifications were
summarized, to produce a telomeric content distribution for each region category, for both PD
and INPUT, but also for CPD damage-seq, 64 damage-seq and INPUT damage-seq datasets.
To compare the intratelomeric and intrachromosomal distributions between aniFOUND (or
damage-seq) datasets and their corresponding INPUT libraries, a similar approach to calculate
confidence intervals were applied as described in the rDNA sequence analysis pipeline (see
above).

Boxplots of sampled counts revealed that true telomeric reads were under-represented in
aniFOUND-seq, while pseudotelomeric reads were repaired to a baseline level (Figure 99 (c)
upper panel), a finding that supports the hypothesis that telomeres are subjected to UVC-
derived UDS at lower frequency compared to the rest of the genome. On the contrary,
application of the same analysis pipeline at damage-seq samples showed that damage
prevalence is higher in telomeric regions compared to the overall genome (Figure 99 (c) lower
panel), showing that the observed, lower level of UDS activity at telomeres during the early
response to UV irradiation is not an effect of reduced DNA damage occurrence. This result is in
agreement with a proposed model suggesting that telomeres are vulnerable to UVC irradiation
related lesions, but repair of these damages is almost absent (Rochette & Brash, 2010),
opposing to another proposed model suggesting that telomeres are partly protected from UVC,
and both categories of photolesions (CPDs and 64s) are removed fast and homogeneously, in
comparison with other genomic sequences (Parikh et al., 2015).



5 Conclusions - Discussion

This study, describes a computational framework, developed for the study of transcription
reorganization and chromatin alterations in response to UVC-induced stress, using primarily
NGS data from human skin fibroblasts (Andrade-Lima et al., 2015; Lavigne et al., 2017; Liakos
et al., 2020; Magnuson et al., 2015; Williamson et al., 2017b). The computational methodologies
described above, provide genome-wide quantitative and qualitative illustrations of the NGS
signals from a wide range of protocols (ChIP-seq, nRNA-seq, ATAC-seq, CAGE-seq, XR-seq,
and aniFOUND-seq), regarding (1) the binding profiles of the three main RNAPII isoforms (from
pre-initiation complex formation, to Promoter Proximal Pausing (PPP), and the entry into
productive elongation), (2) the production of hascent RNA, (3) the chromatin accessibility, and
(4) the histone modifications H3K27ac and H3K27me3, during the cellular responses to UVC-
induced genotoxic stress.

The analysis pipelines included in the results section (see section 4) can serve as a guide for
the analysis of the aforementioned NGS types, while the outputs of these modules can aid the
research analyst with critical conclusions regarding the under-study biological phenomena.

Regarding the particular study, a novel metabolic function associated with active transcription is
characterized, proposing that in response to UVC induced stress, damaged cells switch
transiently to a ‘safe mode’ of RNAPII elongation (Figure 39). This mechanism promotes a
global, accelerated and synchronous de novo escape of elongation waves of RNAPII molecules
from PPP sites of active mRNAs into the gene bodies which cover the 50% of the transcribed
genome [51 Lavigne]. The maximization of the entry of RNAPII molecules in gene bodies result
to a rapid and homogenous DNA lesion identification at transcribed strands of mRNAs,
regardless of the location of the DNA lesion, the mRNA length and prior to UVC levels of
transcription. Complementarily, the expansion of NER activity is observed at damage sites
overlapping the transcription elongation wave proximity.

In addition, detailed annotation of active regulatory regions revealed that the UV-induced
release of RNAPII-Ser2P molecules from PPP sites is not limited to active genes, but is also
detectable at PROMPTs and enhancers, as shown by the increase in RNAPII-Ser2P Escape
Index (EI) in the respective genomic regions. In addition, the de novo binding of RNAPII-hypo
molecules at PIC sites, and the detection of start-RNA molecules during cell recovery after UVC
exposure, support a model where transcription initiation is not inhibited, but instead it supplies
RNAPII molecules to the various transcription units (genes encoding proteins, long non-coding
RNAs, PROMPTSs, enhancers), in order to rapidly repair them via the TCR pathway. The
experiments conducted in this study support that the continuous release of RNAPII molecules
from PPP regions urges the molecules to shift to transcription elongation, thus reducing the
NGS RNAPII-hypo signal in all actively transcribed TSSs. The particular defence mechanism
affects the somatic mutation landscape of cancer genomes, such as melanoma and lung
adenocarcinoma, by displaying low and homogenous mutation prevalence in all productively
transcribed genes. Consequently, these results indicate that the widespread release of
elongation waves boosts NER efficacy and can preserve genetic accuracy, while deficiencies in
these mechanisms may hinder the genome-safeguarding effects. Interestingly, this mechanism



could potentially benefit the genotoxin-affected tissues and improve cancer therapeutics, by
inhibiting the ability of tumour cells to boost transitioning of RNAPII into productive transcription
elongation, while promoting genotoxic stress.

Comparing these results with two recent studies that investigate the effect of repair mechanisms
in somatic mutations in cancer biopsies, it can be said that the described mechanism may be
responsible for the fact that various point mutations appear to be significantly reduced in areas
upstream of TSS, or around DNase hyper-sensitive sites (DHS) (Haradhvala et al., 2016;
Perera et al., 2016; Sabarinathan et al., 2016). Maps of somatic mutations of genotoxins-
exposed cancer genomes such as melanoma and lung adenocarcinoma [7 Lavigne] have
previously been demonstrated to contain NER-specific signatures (see 6,14 Lavigne). The
particular tumours arise from skin and lung tissues that may have been exposed to NER-related
genotoxic stress, such as UV-irradiation and tobacco smoke. It's also shown (see Figure 87)
that the mutation prevalence remains low throughout the TS of gene bodies of actively
transcribed genes, independently of the level of expression, while reduced mutation prevalence
is also observable in the NTS of actively transcribed genes, confirming better efficacy of both
TC-NER and GG-NER.

Based on a mechanistic point of view, the widespread enhancement of productive elongating
molecules into actively transcribed elements, is compatible with previous observations
describing that, while in normal conditions P-TEFb function is restrained by the sequestering
effect imposed by 7SK snRNP inactivating complexes (Nguyen et al., 2001), UV-irradiation
favours an immediate increase in the totality of active P-TEFb molecules in the nucleus (R.
Chen et al., 2008). The functional consequences of this activation are elucidated as follows:
During UVC-stress recovery, the release of P-TEFb kinase activity (via cdk9) is followed by
expanded hyper-phosphorylation of RNAPII CTD (Boeing et al., 2016; Heine et al., 2008),
followed by a widespread and synchronous transition into productive elongation detectable in all
actively transcribed elements (see Figures 76 and 88). The DRB absence further extends the
outcome of the elongation wave-release in non-irradiated cells (see Figure 76), demonstrating
that the magnitude of the wave-release depends on the amount of the engaged PPP loci by the
paused molecules of RNAPII. Subsequently, a central role of P-TEFb in UVC DNA damage
response is suggested, and is supported by a recently published study (Lavigne et al., 2015).
Additionally, the determination of a global UVC-dependent elongation wave release of RNAPII
molecules described in this dissertation, is in line with other finding regarding the detection of
increased binding of RNAPII in most active gene bodies (see Figure 4 of (Gyenis et al., 2014)),
and elevated levels of nascent transcription at the beginning of genes (Andrade-Lima et al.,
2015; Williamson et al., 2017b). De novo RNAPII elongation wave release enables lesion-
scanning at UVC damaged cells, and guarantees that damages located at the TSS proximity will
be repaired. Cells seem to activate a program of ‘safe’ mode elongation that limits potential
biases linked with the stochasticity of transcription initiation (Levine, 2011; Svejstrup, 2002), by
transiently regulating gene expression at the level of PPP release. Additionally, the release of
RNAPII molecules along the actively transcribed genome could enable the identification of the
subsequent lesions by the trailing molecules, even in the case of the model that supports that



the RNAPII molecules are dissociated by the chromatin after the identification of a DNA lesion
(Ratner et al., 1998)(Andrade-Lima et al., 2015)(Venema et al., 1992).

Functional assessment of the described defensive mechanisms with XR-seq data show that the
global release of damage-sensing RNAPII molecules is paralleled by increased repair efficacy in
all active genes, especially in genomic regions affected by the de novo wave propagation of
RNAPII and to the substantial that increases the probability of transcription-dependent repair. It
should be noted that XP-C cells demonstrate an increased excision activity at UV lesions as
compared with WT cells, probably partially because of the lack of repair activity in NTSs of GG-
NER deficient cells, that restricts the XR-seq signal coverage to a smaller part of the genome,
and thus overestimates the read density enrichment in the TS regions of active genes.
Additionally, the absence of GG-NER pathway might affect the probability of the available core
NER factors to be recruited at transcription-blocking lesions.

While the proposed mechanisms promote TC-NER by rapid identification of DNA-lesions at the
TS of active genes, the progression of the transcription elongation wave may result in a more
accessible chromatin environment that could in turn enhance the repair rate of the NTS by GG-
NER. Indeed, earlier studies have shown that repair in the NTS of active genes is faster than in
inactive genes (Sabarinathan et al., 2016). Corroboratively, recent studies support the fact that
chromatin accessibility promotes GG-NER repair along DNAse hypersensitive (DHS) regions
(Adar et al., 2016; Jackson & Helleday, 2016; Perera et al., 2016), concluding that increased
chromatin accessibility promotes both TC-NER and GG-NER accessibility to damaged DNA.

Of particular interest is the fact that the distribution of XR-seq signal in the sense and antisense
strands of mMRNAs and asPROMPTSs of unidirectional TSSs and enhancers (Figure 92) is more
homogeneous than it would be predicted by the corresponding CAGE signal. This finding
reinforces the possibility of a replication process at the transcribed elements, promoted by the
high levels of RNAPII-hypo binding at PIC positions in normal conditions, and the continuous
transition of these molecules into transcription elongation in response to UVC. Regarding the
role of antisense transcription, it has been suggested that the transcription process per se, and
not the transcription products, utilizes and supports biological functions (Murray & Mellor, 2016).
For example, asPROMPT sequences can function either as transcription factor binding
platforms that regulate expression of their related genes (Scruggs et al., 2015), or various RNA-
binding proteins that in turn regulate the expression of target genes (Seila et al., 2009). It is
therefore understood that the successful repair of these loci is particularly important for
maintaining the genomic expression programs, as also the processes necessary for the normal
cell life.

Examining the accessibility of chromatin after exposure to UVC radiation using the ATAC-seq
methodology, a global increase in accessibility at all active regulatory regions (promoters and
enhancers) was observed, thus indicating that these regions remain “open” during the repair of
damaged DNA. In the same context, ChIP-seq experiments showed that H3K27ac post-
translational modification is preserved in the respective genomic regions.

These results are in agreement with similar studies which show that (i) in the case of rapid
transcriptional induction, a significant increase in chromatin accessibility can be observed,



without changes in the degree of chromatin uptake by nucleosomes (Mueller et al., 2017), and
(i) increased gene expression (triggering transcription and promoting the productive stage of
transcription elongation) is often coupled with increased chromatin accessibility (Gray et al.,
2017; Ucar et al., 2017). In particular, this study supports that the increase in chromatin
accessibility in actively transcribed regions is associated with the progression of RNAPII
molecules from transcription initiation, to elongation, after cell exposure to UVC. The acting
mechanism which carries out the increase of chromatin accessibility has not been further
studied in this dissertation; however it is of particular interest to clarify, which chromatin
remodeling molecules are involved in this process, and in what way.

Consequently, this study proposes a model in which RNAPII molecules continuously enter
transcription initiation, and transit to transcription elongation through their release from PPP
sites, to accelerate the processes of DNA lesion identification and repair in the entire
transcribed genome. Overall, these results demonstrate a positive correlation between
increased chromatin accessibility in active regulatory regions, transcriptional dynamics, and
repair through the TC-NER repair pathway, revealing the high complexity of the cellular
response during genotoxic stress.

Furthermore, the H3K27ac preservation at transcription initiation sites prevents the occurrence
of H3K27me3, as these two post-translational modifications are mutually exclusive (Karlic et al.,
2010). Indeed, the ChIP-seq data analysis showed that H3K27me3 modification was found to
be located in a group of non-transcribed genes both before and after UVC exposure, and
therefore did not occur in actively transcribed loci. This is consistent with the fact that
H3K27me3 and PRC2 complex probably do not play a role in UVC-induced transcriptional
response. Supporting the above, recent studies suggest that the presence of RNA inhibits the
recruitment and further action of PRC2 at active genes (Beltran et al., 2016; Kaneko et al.,
2014). The analyzed data also support that in the case of UVC exposure, nascent RNA
production during activation and productive elongation of RNAPII molecules inhibit the binding
of PRC2 to chromatin, and consequently the deposition of H3K27me3.

The stability of the binding levels and pattern of H3K27ac observed in active TSSs, is in
agreement with previous studies claiming that during the early recovery period after UVC
exposure (0-6 h), there is a dose-dependent increase (with higher exposure doses, smaller
increase is observed) of histone acetylation (Ramanathan & Smerdon, 1986). In particular, the
acetylation of histones H3 (Rubbi & Milner, 2003) and H4 (J. Wang et al., 2006) has been found
to increase after UV exposure and these findings have been attributed to a more general
process of chromatin structure "relaxation" after genotoxic stress induction. In fact, it is believed
that DNA repair of the damaged sites requires relaxation of the chromatin structure, in order for
the repair factors to have access at the DNA lesion sites. After the damage is repaired, the
chromatin structure is restored (Polo & Almouzni, 2015; Soria et al., 2012). These results,
regarding the increase in chromatin accessibility and stability of H3K27ac modification in active
regulatory regions, show that the acquisition, or preservation of active chromatin, is essential for
repairing the transcribed genome.

Nevertheless, it should be noted that the levels of chromatin reorganization and gene
expression during cellular response to UVC, depends on the UVC exposure dose (Farrell et al.,



2011; G. Li & Ho, 1998). For example, a recent study showed that when mouse embryonic
fibroblasts were exposed to a UV dose of 80 J / m?, extensive chromatin reorganization was
observed regarding both chromatin accessibility and histone modification levels (Schick et al.,
2015). It seems that when cells are dealing with larger amounts of damages, they make drastic
decisions related to the activation and of apoptosis programs, which reduce the risk of
malignant cell transformation. Such cell fate decisions are accomplished through major
alteration in the structure of chromatin and the pattern of gene expression. On the contrary, this
study shows that low doses of UVC (8 — 20 ] / m?), do not drive the cells to apoptosis, but
triggers the mechanisms that promote the repair of DNA lesions.

Recent research in the field of transcriptional regulation, specifically focusing on the
transcriptional response to heat stress, demonstrates that the activation of paused genes occurs
through a transition from a state of premature transcription, to a state of elongation (Krebs et al.,
2017). The above suggests that rapid induction of gene transcription requires a state of
uninterrupted transcription initiation. In the case of transcriptional response to UVC exposure,
we observe the release of transcriptional waves from PPP sites, into active genes. In addition, a
recent study provides data suggesting that transcription pausing at PPP sites inhibits the
initiation of transcription, as reduced RNAPII pausing leads to increased transcription initiation
and nRNA production (Fitz et al., 2018). Consistent with the above, our findings show that
RNAPII release from PPP sites, and the increase of nNRNA signal at these regions are sufficient
to lead to a de novo initiation of transcription and recruitment of RNAPII molecules at PIC
regions, and in particular in active TSSs, PROMPTs and eTSSs. In a more general context, we
can say that the results of this study extend the idea that continuous release of RNAPII
molecules from PPP sites is an important element of regulation of gene expression (Steurer et
al., 2018).

Moreover, the particular results suggest that bidirectional transcription starts from two distinct
transcription initiation sites (PICs), corresponding to a Nucleosome Depleted Region (NDR)
(Core et al., 2012; Ibrahim et al., 2018; Lai & Pugh, 2017). Indeed, in the bidirectionally
transcribed genes, as also in the mMRNA-PROMPTSs pairs, the binding of RNAPII-hypo takes
place at both ends of a highly accessible chromatin region (based on the ATAC-seq signal),
surrounded by H3K27ac nucleosomes. The above is consistent with the fact that the mRNA
PICs structure has a common architecture with non-coding PICs (Lai & Pugh, 2017).
Consequently, it is arguable that differences in the level of transcription between different types
of transcription elements (MRNAs, asPROMPTSs, eRNAs) under normal conditions occur
primarily because of the transcription initiation rate, the premature transcription termination, and
the sensitivity that non-coding transcripts show in exosome degradation.

Regarding the newly developed aniFOUND-seq methodology, it can be considered as a very
useful tool to complement XR-seq and subtractive Damage-seq (Adar et al., 2016; Hu et al.,
2015, 2017), methods for providing all together a set of tools for the study of DNA damage and
repair. The particular method is applied to map the repair-synthesis activity across the genome,
with particular emphasis to promoters, enhancers and repeats. The newly developed analysis
pipeline is specifically designed for the assessment of NER-UDS activity during the first 4 hours



after damage induction in particular chromosomal regions such as rDNA and telomeres, for
which contradictory explanatory models have been suggested. Notably, this is the first time that
NGS-based approaches have been adapted to shed light to these issues, especially regarding
telomeric DNA. Thus, aniFOUND’s unbiased (antibody-free) manner of detecting DNA repair-
synthesis activity may offer advantages for refining the spatio-temporal understanding of
genome maintenance requiring UDS after damage. The flexible nature of aniFOUND-seq (in
terms of both damage types detected and the potential repair assessment period) renders it
suitable for capturing of the whole repair process or repair activity during shorter or longer time
windows thus allowing alternative perspectives of repaired-synthesized chromatin to be
captured.

Importantly, aniFOUND-seq analysis results are in agreement with, and complete previous
reports showing how NER activity is implemented with different speeds in different genomic
areas/regions (Hu et al., 2015, 2017). Taken together these results confirm that aniFOUND can
isolate and map in high resolution nascent chromatin loci that have undergone efficient NER of
UV-lesions.
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