University of Crete
Computer Science Department

QUERY ORDERING BASED TOP-K
ALGORITHMS FOR QUALITATIVELY
SPECIFIED PREFERENCES

by

IOANNIS KAPANTAIDAKIS

Master’s Thesis

Heraklion, January 2007

University of Crete
Computer Science Department

QUERY ORDERING BASED Topr-K
ALGORITHMS FOR QUALITATIVELY
SPECIFIED PREFERENCES

by

Ioannis Kapantaidakis

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Author:

Ioannis Kapantaidakis, Computer Science Department
Supervisory
Committee:

Vassilis Christophides, Associate Professor, Supervisor

Georgios Georgakopoulos, Assistant Professor, Member
Ioannis Tzitzikas, Assistant Professor, Member

Approved by:

Trahanias Panos, Professor
Chairman of the Graduate Studies Committee

Heraklion, January 2007

QUERY ORDERING BASED TOP-K
ALGORITHMS FOR QUALITATIVELY
SPECIFIED PREFERENCES

Ioannis Kapantaidakis

Master Thesis

University of Crete
Computer Science Department

Abstract

Preference modelling and management has attracted considerable attention in
the areas of Databases, Knowledge Bases and Information Retrieval Systems in recent
years. This interest stems from the fact that a rapidly growing class of untrained lay
users confront vast data collections, usually through the Internet, typically lacking a
clear view of either content or structure, moreover, not even having a particular object
in mind. Rather, they are attempting to discover potentially useful objects, in other
words, objects that best suit their preferences. A modern information system,
consequently, should enable users to quickly focus on the k best object according to
their preferences. In this thesis, modelling preferences as binary relations, we
introduce efficient algorithms for the evaluation of the top-k objects.

Previous related work treated preference expressions as black boxes and dealt
with the idea of exhaustively applying dominance tests among database objects in
order to determine the best ones, resulting in quadratic costs. On the contrary, we
advocate a query ordering based approach. Our key idea is to exploit the semantics of
the input preference expression itself, in terms of both the operators and the
preferences involved, to define an ordering over those queries, whose evaluation is
necessary for the retrieval of the top-k objects. We introduce two novel algorithms,
LBA and TBA.

LBA defines an ordering over queries which are essentially conjunctions of
atomic selection conditions, containing all attributes that the user preferences involve.
The algorithm ensures that the way and order in which objects are fetched respect user

preferences, avoiding any dominance testing, and accessing only the top-k objects,

each of them only once. From a different angle, TBA defines an order of queries
which are disjunctions of atomic selection conditions over single attributes, and uses
appropriate threshold values to signal object fetching termination, ensuring that all
remaining objects are worse than those fetched. Dominance tests are performed only
for already retrieved objects.

Analytical study and experimental evaluation show that our algorithms

outperform existing ones under all problem instances.

Supervisor: Vassilis Christophides

Associate Professor

AATOPIOMOI KOPYPAIQON-K
AIIANTHZIEQN BAXIZTMENOI XE
ATIATAZEIZ EIEPQTHIEQN I'1A

ITo10TIKQEX KAGOPIZTMENEX

ITPOTIMHZEIX

lodvvne Kamavtoiodxng

Metantuyokn Epyacia

Tunua Emomung Ymoloyiotmv
[Tavemotpuo Kprng

IHepiinyn

Ta tehevtaio ypovio, 1n HOVIEAOTOINGT Kot 1 OOXEIPION TOV TPOTIUNCEDV
€Youv mPoceAKLOEL WwiTEPT TPOGOYY 6TOVS Touelc Twv Bdoewv Agdopévav, tov
Bdoewv T'voong kot tov Zvomudtov Avakmong IIAnpogpopudv. Avtd 7o
evolpépov mnydalel amd To YEYOVOS OTL OAOEVA KOl TEPICGOTEPOL UT| ELOTKEVUEVOL
KOWVOL YPNOTEG EPYOVTOL OE EMOPN LE TEPACTIEG GLAAOYES dEOUEVAV, GLVIOME HECH
T0V AlodktOov, Ywpig, KOTA Kovova, vo €xouv [o caen dmoyrn ovTe Yo TO
TEPLEYOUEVO OVTE KOL YloL TN OOUN TNG TANpogopioc, Ywpig kov va €xovv €va
OLYKEKPIUEVO ovTiKeipnevo v’ Oyel Tovg. [To moAd mpoomabovdv va avakaAvyouvv
aVTIKEIPEVA TOV EVOEYOUEVMG Ba TOVG elval YOI, OVTIKEIPEVA, 1E GAAL AOY10, TTOV
ToPldlovV KOADTEPO GTIC TPOTIUNGELS TOVG. ZVVENMC, £VO. GUYYPOVO TANPOPOPLUKO
ocvotnuo Bo mpémel va S1ELKOAVVEL TOVG YPNOTES GTO YPNYOPO EVIOMICUO TV k
Bédtiotwv aviikeévov PAoel TOV TPOTIUNCE®V TOLG. XNV gpyocio avty,
HLOVTELOTOLOVTOG TIC TPOTIUNIGELS MG OLOOIKES OYECEIS, €1GGYOVUE OTMOOOTIKOVG
alyopiBuovg amotipnong tov k BEATIOTOV avTiKEEVOV.

H ¢oc topa oyxetikn €pevva, avtleTOmLE TIC EKPPACGELS ML TPOTIUNCEDV G
«uovpa Koutdy Kot epapuole TV 10€a TV €SOVIANTIKAOV SOOYIKOV EAEYY®V
VIEPOYNG LETAED TOV AVTIKEWEVOV LaG BACNC OEGOUEVAOV Y10 TOV TPOGOIOPIGUO TOV
KOAOTEP®V €’ AVTAOV, YEYOVOG TOL 001 YOUGE GE TETPAYOVIKA MG TPOS TOV apliuod

TOV OVTIKEWEVOV KOOTN. AVTIOET®G, glelg vmootnpilovpe o TPOCEYYIoN TOV

Baciletarl ot ddtaén enepotocwv. H kipla 0éa pag Paciletor oty ekpetdAlevon
™G onuactoloyiog HG £KQpacns omd TPOTUNGCES, GE 0,TL aPopld TOGO TOVG
EUTAEKOUEVOVS TEAEGTEG OGO KO TIG EUTAEKOUEVES TTPOTIUNGCELS, LLE OKOTO TOV OPIoUO
oG odtadng HEToEy eKElveV TV EMEPMTNCEMY, TOV ONOI®V 1 omotiumon sivot
avaykaio, ®ote va avakmbBovv 1o k Bértiota aviikeipeva. Ilapovosialovpe 600
TP TOHTLITOVG aAYOp1Oovs, Tovg LBA kot TBA.

O LBA opilel po d14taén enepmTioe®V, Ol OTOIEC OVCIUCTIKA OTOTEAOVV
ov(eVEELG ATOUIKAOY cLVONKOV EMAOYNG, cvurePAAUPAvovToS O Ta YvopiopoTa
OV EUTAEKOVTIOL OTIS TPOTIUNGES Tov Ypnot. O oiyopBpog eEacporilel 0tL 0
TPOTOG KOl 1) GEPA OVAKTNONG TMOV AVTIKEWEVOV GEPETOL TIG TPOTIUNGELS TOV PN OTN,
ATOPEVYOVTOG TOVG EAEYYOVG LIEPOYNG, Kol mpoomeddloviag uoévo ta k Pértiota
avTikeipeva, pia eopd to kabéva. And dwaupopetikn ontikn, o TBA opilet o dudtadn
EMEPMTNOEMV OV OMOTEAOVV O10(eVEEIS ATOMK®OV CLUVONKOV EMAOYNG TOV® CE
HOVOOIKA YVOPIGUATO, KO ¥PNCLUOTOEL KOTAAANAL KOTAOPALO TILAOV Y10 VO GTULAVEL
T OlKOM| NG OvVAKTNONG ToV ovikeWEvov, eSacpoiiloviag OtL OAa TO
evamopeivovta ovtikeipeva elvar yepdtepa tov avaxtmBéviov. Ev mpokeipévo,
TPOLYUATOTOLOVVTOL EAEYYOL LITEPOYNG LOVO Yo Ta NON avakTnOEVTA avTIKEIEVA.

T6co n avarvtikn) peAétn 660 Kol 1 TEPAUOTIKY] OTOTIUNOT KATAGEKVOOUY
TV VTEPOYN] TV aAYOpiOU®Y OV TAPOLGIALOVUE EVOVTL TOV VOICTOAUEVOV GE OAEG

TIC TEPUTTAGELS TOV TPOPANOTOG,

Enéntng: Baciing Xpiotopiong
Avaminpotmg Kadnyntg

2Tovg yoveig uov Kaaro kar Mopio kair atov adgppo pov Mavo

Evyoaprotieg

Koatapynv 6a ndeha va gevyopiomom tov endmtn pov k. Bacidn Xpiotoeion yia
TOL OG0 [LOV TPOGEPEPE GTA OLOULGL KOl TAEOV POV TG CLVEPYAGING Hag. Xmpic TV
OVCLACTIKY TOL KoBodnynon, T dwpkn otpién kot ™ Ponbeia mov mhvto NTOV
dwatefetévog va mpoceépet, 1 Tapovoa epyacia 0ev Ba propovce va OAokANpmOEL.

Eniong evyaprotd tov xabnynm k. lodvvn Tlitlika pe tov omoio &iyo v
EVKOIPICL VO GLVEPYACTM KOTA TNV EKTOVNOTN NG €PYOGIOG QTG KoL VO OTOKOUIGM
OTNUOVTIKES YVOOELG.

[MapdAinia Ba N0k va gvyapionom Beppd tov k. ['edpyrlo N'ewpyaxdTOLAO Vi
TIC TOAVTULEG TTOPATNPNOELS TOV Ol OToieC PerTiwoay TV Tapovoa epyacia.

‘Eva peyddo evyapiotd oiler otov Ilepuwcdny Tewpytdom, pe tov omoio
polpactNKople TOAAEG dpeg ovlnmoewv. H ovpuPory tov oty katovomon
TOAOTAOK®V TTpofAnudtaov Ntav kabopiotikn evad n tpobuuio Tov yuo Porfeta eivon
& avapopag.

Emiong, 6o nBero va gvyoapiomow 1o Ilavemomuo Kpnme kot v opdoa
[Minpogopaxkmdv Zvomudtov tov Ivetitovtov I[IAnpopopikng vy Oca pov
TPOGEPEPOY OVTA T YPOVIL KOL Y10, TIG YVADGELS TOV OTEKTNOO, KATH TIG GTOVOES LLOV.

‘Eva peydio evyoplotd emiong avikel 6e OAOLG TOLG PIAOVG/EC LOL UE TOLG
omoiovg cvvepydotnka ko’ OAn v ddpkeln TV 6movd®v Hov. Tovg gvyopar 0Tt
KaAOTEPO 01N {®N TOLG.

Televtoio 0AAL PEYOADTEPO ELYOPIOTO OVIKEL GTOVS Yovelg pov Kmota ko
Mopia kot 6tov adep@d pov MAvo yio TV QUéEPIOTN CLUTOPACTUCT TOVG GE OAES TIG
dvokolies. ['a to Adyo avt 1 gpyacio avt givar aplepopévn og avTovg Ko EATiCm
VO OTOTEAEGEL LI LUKpT] OvVTOpOPN Yo TiS Busieg Kot Tig Tpocmdfelég Tovg OAOV avTd

oV KOpo.

Komavtaiddkng I'évvng

Contents

Chapter 1 : INtrodUCLIONcccueriiriiiiiiiiieeceeee ettt 1
Chapter 2 : Orders and Preferencescooveeuieeieeriienieeiieeieeee et 9
2.1 Introduction to Order TheoTY........ccvevieeiierieeiieieeieece e 9
2.1.1 Binary Relations.........cccvieiiiiiiiieeiie et 9
2.1.2 OTARIS ..ottt ettt et et e et e et e aeeenneens 10
2.13 Graphical Representation of Partial Orders..........ccccceceeveivenienennnennn. 12
2.14 NOtIONS 0N POSELS....couviiiiiiiiiiiiiiieeece e 14
2.1.5 From Partial Order of Elements to Linear Order of Blocks................. 15
2.2 Qualitative Preference Modelcccooeeeiiieiiiiiciieeceeeee e 17
2.2.1 USer PIeferencesccuevieriiiiiiiieiieieciceeeeeeee e 17
222 From Tuple to Object Orderingcccueeevverieenieenieeeieenieeieenreennen 22
Chapter 3 : Top-k AIZOTItRMSvviiiiiiiciiiee e e 25
3.1 Object-based Ordering...........coerverieiiriiinieniiieececee e 27
3.1.1 Block Nested Loop (BNL)...c..ooviiiiiieieeiieeieeeee e 27
3.1.2 BEST e 32
3.2 Query Based Orderingccccueeeeueeeeiiieeiieeeiee et 36
3.2.1 Lattice Based Algorithm (LBA)oooiiiiiiiiiieeeeeee e, 36
322 Threshold Based Algorithm (TBA)ccooviiiiiiiiieiiieeeeee e, 51
Chapter 4 : Experimental Evaluation...........cccccoeviiiiienieeiiienieciiececeieeeve e 61
4.1 Experimental EnNvironment............cccooocvveeiiieeniieccieeeiee e 61
4.2 Preference and Testbed Generator............coccueeveeriieiieniiiinieeieeeeeeee 62
4.3 IMEETICS vttt ettt sttt et sttt st sb et et e b et e 64
4.3.1 Experimental parameterscceccveeeiiieeiiieniiee e 64
43.2 Performance parameters...........ceeecveeeeiiieeiiieesiie e 65
4.4 Query Patterns and Evaluation Plans..............coccoeiiiiiiniiiniiiiicee 66
4.5 The effect of database SIZe.........cceeveruieviiriiniiriireeeeeeee e 68
4.5.1 Uniform Testbedooiiiiiiiiierieeeeeeee e 69
452 Correlated Testbed........oooiiiiiiiiiii e 72
453 Anti-Correlated Testbed..........oooiiiiiiiiiiiiceee, 74

4.6 The effect of atomic preferences SIZecovvveevvierieerieenieenieenie e 76

4.7 The effect of preference dimensions............cceeeeeevieeiieenienieenieeieenieens 78
4.8 Effect of the < a4V OTAETING ..eovvvieeiieiieeiieeiieeie et e et e sereeteeeeeebeeseaeennaeas 81
4.9 Effect of the Number of Objects Requested Kccoeevieriininiincnnnne 84
410 CONCIUSIONS ...ttt ettt ettt ettt sbe et sttt e b enees 85
Chapter 5 : Related WOTKccouiiiiiiiiiiiciecce e e 87
5.1 Related Frameworks for Preference Modelling..........ccccccocvveevveeeinennnnen. 87
5.1.1 Kiessling’s Frameworkcccccooiiiiiiiiiiiiiiee e 87
5.1.2 Chomicki’s Frameworkcocoeveiiiiiiniiniinienieiececee e 89
5.2 Top-K AIZOTItRMS...cc.eiiiiiiiieiieiiecie et 92
53 Skyline AIZOTItRMSccccviiieiieiiie e e 94
Chapter 6 : Conclusion and Future Workccccooiiiiiiiiiniiniiiccecceces 97
BiDLIOZIAPNY ..ot ettt e 101

il

List of Figures

Figure 1:

Evaluating the top-4 objects according to qualitatively specified

PLETRIEIICES ...ttt ettt et ettt e ettt e et e et e st e e e e e nteenbeeeneas 2
Figure 2: The Hasse diagram of < over X/ ~ ...ccoooiieiiiiieneee e 13
Figure 3: The <_, < ordering of blocks B, B,, B, of a partially ordered set O......17
Figure 4: Hasse diagram for three atomic preferencesocceeeeerveeiieenieenieenveennen. 21
Figure 5: A 11atION R ..oovieiiiiieiieieees ettt sttt sttt 23
Figure 6: The Hasse diagram of <, OVEI Rcccooiviinininiinininiciceceneseeeeeenee 23
Figure 7: Active and iNactiVe ODJECTS......eeuiriiriiiiiriieiieie e 24
Figure 8: Block Nested Loop AIZOTithmcccviieiiiiieiiieeieeeeeeee e 30
Figure 9: Best AIGOTTthimcccuooiiiiiiiii e 34
Figure 10: Query Ordering Frameworkccccoceviiiiiiiniininiinieeeecee 37
Figure 11: The OB array of P=F &P, .cccceeveriiiiiiiiiiieceeeeeeeeseee e 40
Figure 12: LBA AIZOTItRIM ...cc.ooiiiiiiiiiiiiiicieeeeeee e 41
Figure 13: ConstructQueryBlocks function..........c..cccccevevieviniienieneniiinieesieseeens 42
Figure 14: ParetoComp fUNCHIONcoouiiiiiiiiiiiiiieeiceeete et 43
Figure 15: PriorComp fUNCHON........cccuieiiiieiiiiieieeieecte et 43
Figure 16: Evaluate fUNCHIONccoviieiiiiieiiieeie et 44
Figure 17: Evaluate function for the <, variation of LBA...........cccccoooiniiiis 46
Figure 18: A Query Ordering framework example...........cccoeeueeviieniienieniieeniecieeeee 51
Figure 19: Threshold Based AlgOrithmcccocoiiiiiiiiiiinieeeee e 55
Figure 20: OrderObjects fUNCHONccouiviiriiiiiiiieiieieceeeee et 56
Figure 21: GetNextBlock fUNCHON.......c.c.coiiiiiiiiiiiiiiicicceeeeeeee e 57
Figure 22: Hasse diagram for our default atomic preferences..........ccccceeeueevierieenenne 63
Figure 23: TOtal tMEcocveviiiiiiiiiieiiesteeieee ettt 71
Figure 24: # dOmMINanCe tESSeveeruieriirieiieie ettt ettt seee e 71
Figure 25: Total Time ANALYSIS ...c.ueeeevieeiiieeiieeeiieeeee et eieeeste e sveeesaeeeseveeeavee e 71
Figure 26: LBA scalability over database SI1Zecccceeveeriienieiiienieeieesiee e 71

iii

Figure 27: TBA scalability over database S1Z€ccceevueeuerienerienienieeienieneeeeen 71
Figure 28: TOtal tIMEccvieiiiiiieiiecieeiiecte ettt et eveesaaeeseeseaeenseesaneens 73
Figure 29: # dominance tESEScvieriuiieriiiieiiieeeieeeeiee et e eeereeeseveeeeveesnreeeseeeeaaee e 73
Figure 30: Total Time ANAlYSIScoviiiiiieriiiiieiie ettt 73
Figure 31: LBA scalability over database S1Z€ccceevueruerienerienienieeienienieeeeen 73
Figure 32: TBA scalability over database SIZ€cccceveeveerienieriienienieeieeeeseeeeeen 73
FAigure 33: Total tME ...oveeeeiieeciie ettt ettt e et e e e e e nnaee e 75
Figure 34: # dOmMINAnCe tESESeevuiiiiieriieeiieiie ettt sttt 75
Figure 35: Total Time ANALYSIScccevieririirieniiiieriesieeecee ettt 75
Figure 36: LBA scalability over database SIZ€cccceveevuerienieriienienieeieeeeseeeeeeen 75
Figure 37: TBA scalability over database S1Z€ccceeevvieeiiieeiiiieciie e 75
Figure 38: Total tIMecc.eiiiiiiiieiieiie ettt et e 77
Figure 39: # dOMINAnCe eSSeoueeruiriiriieiieieiterie ettt ettt s 77
Figure 40: Total Time ANALYSISccevieriiierieniieieiiesieee e 77
Figure 41: Total time, uniform testbed (100 MB)ccccoiiiiiiiieiiiieieeeeeeeeeee, 80
Figure 42: Total time, uniform testbed (100 MB)ccooiiiiiiiiiniiieeeeeeeee 80
Figure 43:# queries evaluated - pareto COMPOSItIONcccuevverueereerierieieeienieneeeieeae 80
Figure 44: # queries evaluated-prioritized COMPOSILIONcceevueeiirieniiiiieierieieeene 80
Figure 45: Total time, uniform testbed (100 MB)ccocoviiiiiiiniiniiieeeceeee, &3
Figure 46: Total time, uniform testbed (100 MB)ccoccvieiiiieiiiieieeeeeeeeee s 83
Figure 47: : # queries evaluated-pareto COMPOSItIONcceeeuieriieriieriieeieeniie e 83
Figure 48: # queries evaluated-prioritized cOMPOSItIONcccveveererrienieneenienieee. &3
Figure 49: Total time, uniform testbed (100 MB)cccoeoiiviiiiiiiiiiiieeiecie e 83
Figure 50: :# queries evaluated - pareto COMpPOSItION.........eeecvveeeiiieeecireeriieerieeeireeenns 83
Figure 51: Total time, 100MB uniform testbed...........ccecoeriiiiiiiniiiniiieeeee 84
Figure 52: #Dominance tests, 100MB uniform testbed...........ccccoceviiniiiinininnennee. 84
Figure 53: Total time, 100MB uniform testbed...........ccccoevenieniniiniiniececeeee, 85
Figure 54: #queries evaluated, 100MB uniform testbed............ccocevveiiiniiiiniieeniens 85

v

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

Metric values for the Uniform Testbedcoccoeiiiiiiiiiiniiiiiieeeee 68
Metric values for the Correlated Testbedcccooeeviniiniiiiniiniicieeee, 68
Metric values for the Anti-correlated Testbed..........ccooovevieiinieniniienieenee. 69
Metric values (increasing atomic preference Size)occeeveveeeeveeercveeerneeenns 76
Metric values (increasing dimensionality-pareto composition) 78
Metric values (increasing dimensionality-prioritized composition).............. 78
Metric values (INCTEASING K) ...eevuveeuieriieiieeieeiee sttt ettt e 84
Proposed algorithms in Various CaSEScccueerveerreeireeneeerrieneeereesneeneennnes 85

Chapter 1: Introduction

Preference modelling and management has attracted considerable attention in
the areas of Databases, Knowledge Bases and Information Retrieval Systems in
recent years. This interest stems from the fact that a rapidly growing class of
untrained lay users confront vast data collections, usually through the Internet,
typically lacking a clear view of either content or structure, moreover, not even
having a particular object in mind. Rather, they are attempting to discover
potentially useful objects, in other words, objects that best suit their preferences.
A modern information system, consequently, should enable users to quickly

focus on the £ best object according to their preferences.

In recent years, a lot of research effort has been made for the representation of
user preferences. Mainly there are two different approaches of such type of
personalization, the qualitative ([7], [8], [9], [13], [15], [24], [30]) and the
quantitative ([1], [14], [22], [23]). In the qualitative approach, the preferences
between objects are specified directly, typically using binary relations. In the
quantitative approach, preferences are specified indirectly using scoring
functions that associate a numeric score with every object. An object o is
preferred to an object o' if the score of o is higher than the score of o'. The
qualitative approach is more powerful (in terms of expressive power) than the
quantitative one, because we can model quantitatively specified preferences
using preference relations, while not every (intuitively plausible) preference
relation can be captured by scoring functions [8]. Moreover, there is no obvious

method that the users could follow for specifying and combining scores.

In this work we confine ourselves to the qualitative approach for the
representation of user preferences. More precisely, we advocate a qualitative
preference framework in which users can define atomic and complex
preferences as well. An atomic preference is defined as a reflexive and transitive
binary relation (i.e., non-antisymmetric preorder) over the domain of an

attribute. On the other hand, a complex preference is an expession that imposes

priorities over the atomic preferences by using available preference constructors

(e.g. Pareto, Priorization).

Object Based Ordering

Object Relation

oid | Make | Color /01\/02
ol | bmw | red o4 o5 Top-k Objects

02 | bmw blue \/ B, m

03 VW black o3

04 | ww | red 1[04 o5 |
o5 audi black

. B, | o3 |
06 fiat red

Query Based Ordering

o7 | audi | green

I §q1=bmw A red g2=bmw A blue Q,
B /|| H
P =Pu&P¢ . .

i g3=audi Ared qg4=bmw A black g5=audi A blue | Q,

[red] [blue] [bmW] q6:VW A red q7=audil ~ black q8:VW A blue Q2
H \!/ 1

[black] ~[audi] q9=vw A black ' q,

[vw]

Figure 1: Evaluating the top- & objects according to qualitatively specified
preferences

Assume for example an object relation R(Make,Color) describing cars, as

depicted in Figure 1 where for simplicity objects are identified by a oid . A user
wishing to purchase a car may state that he prefers red and blue cars to black
ones. Furthermore, he also prefers a bmw to an audi, and the latter to vw.

Finally, he states that preferences on (M)ake (P,) are as important as on
(C)olor (P.) (P, &PF.). Since preferences P, and P. are defined over
individual attributes are considered as atomic preferences while P, & P. is a
preference expression. Let us first consider the atomic preference P, stated on
the domain of the attribute Make. The domain values appearing in P,

(i.e.,bmw ,audi ,vw) imply that only objects featuring the corresponding terms
are of interest to the user. Furthermore, since in our example the user is not
wishing to further restrict his car selection (i.e., no additional selections were

made), preference P, will partition objects of R into objects that match the

disjunction of the involved terms (M =bmw)v (M = audi)v (M =vw)and into
objects that do not (e.g.,o,). However, a preference like P,, not only partitions

the matching objects according to the preference terms, but also orders the
resulting partition (e.g., in decreasing order of preference) under the form of a
block sequence (i.e., a linear order of blocks or sets). According to the database

of Figure 1 and preference P, we will have the following block sequence:

{0,,0,} < {05,0,} < {0;,0,}

given that bmw (o,,0,) precedes audi(os,0,) and vw(o;,0,), and thus should
be placed on the top block of objects returned to the user (note that object o, is

filtered out). When a user preference spans more than one attributes, such

as P, & P., we need to filter out objects by considering a disjunction of term
conjunctions rather than atomic terms. The result of the preference P, & F. will

thus consist of blocks of objects matching the disjunction of the Cartesian

Product of the terms involved in P, and P. (o, and o, are filtered out):
(M =bmwAC =red)v (M =bmwA C =blue)v

(M =audi AnC =red)v (M = audi A C = blue)v (M =bmw A C = black)v
(M =vywAC=red)v(M =vwAC =blue)v (M = audi A C = black) v
(M =vwA C =black)

Then, to order this partition, we need to examine the relationship of the user
preferences stated per attribute: in our example preferences Py and Pc are
considered to be of equal importance (P, & P.). Given that red (o,) or blue

bmw’s (o,) are the most preferred ones (top block), while black vw (o,) are the

least preferred ones (bottom block), we obtain the following sequence of blocks

(note that blocks that “tie” in terms of preferences are merged):
{0/} V{0,} < {03 U ios} < {05}

We can easily observe that not all conjunctions of preference terms will yield
non empty results. It is worth noticing that the resulting linear order of blocks

essentially “linearizes” the order of objects induced by the preference P, & P.

as depicted in Figure 1. However, users usually do not wish to obtain the entire

linear order of blocks but only the fop- k£ objects that best suit their preferences.

In this thesis, we devise efficient top-k evaluation algorithms. Specifically, for
the given user preferences our objective is to compute and deliver a linear order

of n blocks (i.e., sets) of objects, where n is the smallest integer that satisfies
n-1
the inequality Z\ B, | >k . In such a linear order, each block would correspond
i=0
to a screen of objects that is shown to the user, satisfying the following
properties with respect to the user preferences:
a) Each block consists of non comparable objects.
b) The first block contains the most preferred objects.

c) For each block B, other than the first and for each object in B, there is a

more preferred object in the previous block (alternatively but not

equivalently, for each block B; other than the last and for each object in

n—1
B, there is a less preferred object in the next block). The objects in UB,-

i=0
are called the top-k objects.
Existing algorithms ([8], [29], [30]) for the evaluation of the top-k objects
according to qualitatively specified preferences, follow an object-based
ordering approach (Figure 1). The key idea of this approach is to sequentially
apply dominance - tests (i.e., compare two objects to determine whether one is
better than the other with respect to user preferences) for every possible pair of
objects. The results of these tests actually specify a preorder (i.e., a reflexive
and transitive binary relation) over the objects of a relation. Subsequently, the
algorithms of this approach “linearize” the preorder i.e., they turn the preorder
to a linear order of blocks in a reasonable manner that respects the preorder and
finally pick and deliver to the user the top-4 objects. The main characteristic of
the object-based ordering approach is that the flow of control of the algorithms

of this family is independent of the user preferences.

Despite the wide applicability of the object-based ordering approach (since it

can be used for any number of atomic preferences without indexing or sorting of

the database objects), the algorithms of this family are not appropriate for large
database systems and real scale Web applications since they have serious
drawbacks. An algorithm that follows the object-based ordering approach will
access all objects of a relation R at least once and will perform at least one
dominance test for every object in R . The total number of dominance tests that
such an algorithm performs is O(n°) where n is the number of objects in R.
This makes them inappropriate for large databases. Moreover, existing
algorithms are inadequate for on-line (i.e., incremental) processing since the
entire preorder over the objects of the relation R needs to be specified in order

to return the top-k objects progressively (i.e., top-1, top-2, ..., top-k).

We advocate a query-based ordering approach for the evaluation of the top-4
objects and we introduce two novel algorithms called LBA (Lattice Based
Algorithm) and TBA (Threshold Based Algorithm) that follow this approach.
Contrary to the object-based ordering approach, the flow of control of our
algorithms, takes into account the preference expression given as input, as well
as, the value ordering of the involved atomic preferences. The main idea of the
query-based ordering approach is to use the specified user preferences for
defining an ordering over queries that need to be evaluated in order to retrieve

the top-k objects (see Figure 1).

In particular, LBA defines an ordering over queries which are essentially a

union of conjunctions of atomic selection conditions, containing all attributes
that the user preference involves. A query Q. precedes Q, if the objects in the

answer of (, (denoted by ans(Q,)) are more preferred than the objects in

ans(Qi'). The evaluation of such a query (O, returns the next block of the
answer B, i.e.,B =ans(Q,). In Figure 1, according to the specified user

preferences the first query that LBA will construct is the following:
o) ::U 4.9, whereq, =M =bmwAC=redand q, =M =bmwAC =blue

since the objects in ans(Q,) are clearly the top objects of R (there cannot be

another object better than the objects inans(Q,)). The evaluation of O, will

return the first block of the answerB,. Nevertheless, such a query based
algorithm should be also able to dynamically reformulate the queriesQ,,
capturing each block when some of the partial queries g, of O, return empty
anwsers. To make this clear, recall again our example of Figure 1 and assume

that o,(bmw,blue) was replaced by an object o, (audi,blue). Now, the

evaluation of Q, will return only o, (i.e.,ans(q,) =<). However, for o, there

will not be a more preferred object in the previous block (i.e., in B,) since o, is

not better that o, . Thus, the (c) property does not hold. Therefore LBA will

replace query ¢, (which results 1in no objects) with query

q, = color ="'blue'n make ='audi' for which it holds that ans(g,’) contains the

best objects of relation R that are not worse than objects in ans(q,). O, will be

reformed as follows: Q, 2=U {4,,¢, } . The evaluation of Q, will return o, and

0, . Now for each of the remaining objects in R there is a more preferred object

in the previous block (i.e., in B, = {0,,0,}).

Notice that LBA will never perform a dominance testing over objects. The
algorithm exploits user preferences and retrieves objects such that it is ensured
that the objects are fetched in a way that respects user preferences. Moreover,
LBA will only access the top-k objects and only once (assuming that available
indexes exist). LBA is also suitable for on-line processing since it returns the

next block of the answer B, without having to compute previously the following

blocks of B, in the linear order.

However, consider a scenario where the total number of objects of a relation R
is relatively very small compared to the number of distinct values that each
domain contains (i.e., the selectivity of each domain value is small) or/and the
number of attributes that the user preference involves is quite large. Since LBA
constructs queries that are actually a combination of atomic selection conditions

that contain all attributes that user preferences involve, in such a scenario LBA

will have many fruitless fetching attempts (i.e., resulting in no object) because
R does not necessarily contain objects for every query that LBA will construct.
Therefore in a scenario like the one described above LBA’s performance is

expected to drop.

For this reason we dense a second algorithm called 7BA (Threshold Based
Algorithm). Like LBA, TBA defines an order of queries however these queries
are disjunctions of atomic selection conditions over just one attribute. As a
result, TBA is expected to have less fruitless fetching attempts. Moreover TBA
uses appropriate threshold values in order to determine when the fetching of
objects should stop. These values work as a guarantee ensuring that objects that
were not fetched are worst than the ones that were already fetched (i.e., work as
an upper bound of the unseen objects). For defining the ordering of queries,
TBA takes into account the selectivities of the atomic selection conditions so
that to avoid fetching more objects than those actually required. However, TBA
needs to perform dominance tests but only for the already retreived objects.
Thus, unlike object-based ordering algorithms, TBA avoids exhaustive

dominance testing among all objects which leads to quadratic costs.

In a nutshell, the contributions of this thesis are:

= We advocate a simple, yet expressive, framework for specifying
qualitatively specified preferences as preorders.

*» We introduce a query based ordering approach for the evaluation of the
top-k objects. Unlike object-based ordering approaches, the key idea of
this approach is to exploit the particular user preference semantics to
define an ordering over those queries, whose evaluation is necessary for
the retrieval of the top-k objects.

» Inspired by the query ordering based approach, we designed and
implemented two progressive algorithms (LBA, TBA) for qualitatively
specified preferences and we study their performances.

= We report the results of an extensive experimental evaluation on large
datasets that shows that the algorithms that we propose outperform the

existing ones under all problem instances that we tested.

The rest of this thesis is organized as follows. In Chapter 2, we introduce some
preleminary material in Order Theory and present our proposed qualitative
preference model. Chapter 3, fully describes the most common algorithms that
have emerged so far and our novel top-4 algorithms. In Chapter 4, we analyze
experimentally the performance of the various top-k algorithms presented
earlier. Chapter 5 discusses related work and finally, Chapter 6 summarizes our

contributions and identifies issues for further research.

Chapter 2: Orders and Preferences

2.1 Introduction to Order Theory

2.1.1 Binary Relations

A binary relation R is an arbitrary association of elements of one set with
elements of another (or perhaps the same) set. More specifically, a binary
relation R from X to Y is a subset of the Cartesian Product X xY (i.e.,

Rc XxY). The statement (x,y)e R is read “x is R-related to y”, and is
denoted by xRy or R(x,y). If X =Y then we simply say that the binary

relation is over X . There are several categorizations of binary relations over a
set X, based on which axioms they satisfy. Common axioms (or relation

properties) defined for binary relations are the following:
= reflexivity: Vx e X it holds that xRx.

» irreflixivity: Vx € X it holds that —(xRx)

* symmetry: Vx,y e X it holds that if xRy then yRx

» antisymmetry: Vx, y € X it holds that if xRy and yRx then x=y
* asymmetry: Vx,y e X itholds that if xRy then —(yRx)

* transitivity : Vx, y,z € X it holds that if xRy and yRz then xRz

= completeness : Vx,y e X it holds that xRy or yRx (or both)

2.1.2 Orders

Certain important types of binary relations can be characterized by the axioms
they satisfy. These types of relations are called orders. Below we present the
most important orders which we intend to use in the following chapters of our

work in order to formally define the model of preferences that we use':

Definition 2.1: A binary relation is a preorder, denoted by <, if it is reflexive

and transitive. A set that is equipped with a preorder is called a preordered set.

Definition 2.2: A binary relation is an equivalence relation, denoted by ~ , if it
is reflexive, symmetric and transitive. For an equivalence relation ~ on a set
X , the set of the elements of X that are related to an element, say x e X, is

called the equivalence class of element x, often denoted as [x].

Definition 2.3: A binary relation which is reflexive, antisymmetric and
transitive is called a partial order and it is denoted by <. A set with a partial

order is called a partially ordered set or poset.

Definition 2.4: A binary relation is a strict partial order, denoted by <, if it is

irreflexive and transitive, and therefore asymmetric.

Note that if a preorder is also antisymmetric, it becomes a partial order, whereas
if it is also symmetric it becomes an equivalence relation. Let < be a non-
antisymmetric preorder (i.e., a reflexive and transitive relation) over X . The
asymmetric part of = 1is the binary relation < over X, defined as
V(x,y)eXxX, x<y<xsyA—(y=x). The symmetric part of =< is the
binary relation ~ over X defined as V(x,y)e X x X, x~y S X3 yAYSX.
It is easy to see that the asymmetric part comprises a strict partial order (i.e., an
irreflexive, asymmetric, transitive) relation, whereas the symmetric one, an
equivalence relation (i.e., a reflexive, symmetric, transitive relation). A partial

order (i.e., a reflexive, antisymmetric, transitive) relation < derives from =

! The preference model that we use is an extended version of [28]

10

among the equivalence classes of the quotient set X/~ as follows:

[x]<[y]&x=y and [x]=[y] & x~y.
For =, being a non-antisymmetric preorder over X , it holds that:
" < is transitive
" ~ is transitive
" X~ YAY<Z=D>X<Z
" X< YAY~Z=>X<Z

For =, being a non-antisymmetric preorder over X, its asymmetric and
symmetric parts are disjoint and their union equals < (i.e., symmetry partitions

<). For any two elements x and y of a partially ordered set, if x<y and
x#y, due to antisymmetry we can write x<y. Similarly, for any two
elements x and y of a preordered set, if x < y and —(y < x), we can write
x < y. In either case, if x < y (respectively, x < y) and there is no z such that
x<z and z<y, (respectively, there is no z such that x<z and z<y) we

will say that y is a cover of x, and denote itas x < y.

A partial order which is complete is called a total (or linear) order or a chain. A

preorder which is complete is called a weak order or a complete preorder.

Elements x and y of a set X, for which it holds that xRy or yRx are said to
be comparable; otherwise, x and y are incomparable. More formally, we

define:

Definition 2.5: Given a relation R over a set X , the incomparability relation

(usually denoted as || when R is some order), is defined as the complement

relation R® over the same set X ;i.e., xRy, iff —(xRy) A—(yRx).

For example, x|| y means that elements x and y are incomparable to each
other (i.e., none of the relations xRy and yRx hold). Note that the above

terminology may be misleading when R is a strict partial order, as its

11

complement R° may capture two very different situations: either
incomparability indeed, or comparable equality; only when R is a preorder or a

partial order the term incomparability have its literal meaning.

2.1.3 Graphical Representation of Partial Orders

Any relation R over a (finite) set X may be visually represented by a directed

graph (V, E), with a bijective mapping of the elements of X onto the vertices

of V' and a bijective mapping of the pairs of R onto the edges of E .

A graph of a partial order (or a preorder, accordingly) would be very “busy”,

carrying a lot of redundant information: self-loops (v,v) for every node,
deriving from reflexivity, as well as transitive edges(v,, v;), with both (v, v,)
and (v,,v,) being present. Furthermore, one may make two more observations:
antisymmetry ensures that in such a graph there could not be any two vertices v,
and v, with both edges (v,,v,) and (v,,v,) present; in conjunction with

transitivity, antisymmetry also forbids any longer loop, meaning that the graph,
with the exception of self-loops, has one and only direction. Exploiting the
above, a partial order may be graphically represented by a Hasse diagram.
Before we formally define a Hasse diagram we need to introduce the following

auxiliary definitions:

Definition 2.6: The transitive closure of a binary relation R on a set X is the

minimal transitive relation R’ on X that contains R .

Definition 2.7: The reflexive closure of a binary relation R on a set X is the

minimal reflexive relation R’ on X that contains R .

Definition 2.8: The transitive reduction of a binary relation R on a set X is the

minimum relation R’ on X with the same transitive closure as R .

Definition 2.9: The reflexive reduction of a binary relation R on a set X is the

minimum relation R' on X with the same reflexive closure as R .

Now we can proceed to the formal definition of a Hasse diagram:

12

Definition 2.10: A Hasse diagram of a partial order is a directed acyclic graph
of its reflexive and transitive reduction, where direction is omitted, as it is

implied by the diagram’s upward orientation.

A Hasse diagram may also depict a neither symmetric, nor antisymmetric
preorder. In this case it essentially represents the partial order of the
equivalence classes of the quotient set X / ~, rather than the preorder itself. The
Hasse diagram of an equivalence relation is simply a set of non-connected
nodes, each of which is a representative of an equivalence class. So, in all cases
above, the Hasse diagram obeys conventions of what each nodes stands for
(class representatives in some cases) and the only case where it directly depicts
a relation is the case of a strict partial order. Note that, in all cases, all lines in a
Hasse diagram correspond to the cover relation < (i.e., the transitive reflexive

reduction of a partial order), reflecting on the strict part < of the partial order

<

Example 2.1: Let us assume the Hasse diagram for a set X ={a,b,c,d,e, [}, a
preorder = over X, with d=b, b=a, d=a, c=a, d=f and f=d. Such a
diagram cannot represent the preorder itself directly, so, as discussed above, it
will depict the partial order of the equivalence classes of the quotient set X / ~.
There are five equivalence classes [a]={a}, [b]=1{b}, [c]={c}, [d]={d, [},
[e]={e}, and let’s choose a single representative from each one to use in the

diagram. The resulting Hasse diagram is illustrated in Figure 2.

[a]

[b] [c] [e]

N

[d]

Figure 2: The Hasse diagram of < over X/~

13

2.1.4 Notions on Posets

In a partially ordered set there are some elements that play a special role. The
most basic examples are given by the maximal and the minimal elements of a

poset.

Definition 2.11: Let a partial order < over a set of elements X . An element

x e X is a maximal element of <,if —3x' € X such that x<x'.

Definition 2.12: Let a partial order < over a set of elements X . An element

x e X is a minimal element of <, if —3x' € X such that x' <x.

We may partition the elements of a partial order relation X into non-
overlapping parts called blocks (or layers or buckets) that cover all of X using
various topological criteria. To define our approach formally we need some

auxiliary definitions that we adapt from [28]:

Definition 2.13: Let us call path from an element x to an element x' of a
partial order <, any sequence of pairs of the form
(x,x),(x,%,),...,(x, 1,x,),(x,,x") such that x<x,x, <x' and x, <x, for

i=2...n. The integer n+1 is called the /length of the path, and it is clear that

there may be zero, one or more paths from x tox’.

Now, assume that B, contains all elements that are maximal (or minimal) with
respect to<. The definition of each other block B, relies on the notion of

distance of an element from B, .

Definition 2.14: The distance of an element x, from B, is defined to be the
length of the longest path from an element x to the element x,, when x ranges

over all elements of B, .

Block B, is defined to be the set of all elements that are at distance i from B, .
Note that if x, belongs to B, then its distance is defined to be equal to 0. It is

easy to see that elements of the same block are incomparable to each other

(otherwise they wouldn’t have the same distance from B,).

14

2.1.5 From Partial Order of Elements to Linear Order of
Blocks

Let < be a binary order relation (e.g., a preorder, a partial order, or a strict
partial order) on a set O # @ and let 2° be the powerset of O minus & . In this

section, we define relations over subsets of O, i.e., over 29, which derive from

the initial order < over O.

Definition 2.15: Assuming that X,Y €2° for which does not necesserily hold

X NY =, we define the following relations over 2 :

2 .
= Let” X<_ YV ,iff VxeX ,3yeY suchthat x<y
= Let X<_Y ,iff VyeY , dxe X suchthat x<y

Note, that apart from transitivity, which is trivial to prove, whether other order
axioms hold in each of these relations over sets, depends on the nature of the
initial poset and probably other assumptions, and need to be proved, thus the use

of the term set order, instead of set relation may be abusive. Let B, B,,..., B, ‘a

sequence of blocks of O that were produced as described in previous section.

Theorem 2.1: If B, contains the maximal elements of <, a <. relation is
defined between blocks B, B,,...,B, (ie., B, <. B, <. ...<; B)).
Proof 2.1: For every element x;, in B, there is a longest path p from some

element of B, to x,. Let x, be the predecessor of x, in p (ie., x, <x/).

Clearly, the sub-path of p ending in x, is the longest path from B, to x;

(otherwise, p is not the longest path to x, thus a contradiction). It follows that

r . . !
x, isin B_, and that x, <x; .

% As a rule of thumb, the first quantifier runs on the left operand set, the second on the right, and
the outer quantifier is denoted by the line above it.

3 For each of these blocks B, itholds B, € 29,

15

Theorem 2.2: If B, contains the minimal elements of <, a <_ relation is

defined between blocks By, B,,...,B, (ie,B, <. B <_...<_B,).

v v

Proof 2.2: For every element x, in B, there is a longest path p from some
element of B, to x,. Let x, be the predecessor of x. in p. The sub-path of p
ending in xl.' is the longest path from B, to xl.' (otherwise, p is not the longest

path to x, thus a contradiction). It follows that x, is in B, , and that x, <x,.
Theorem 2.3: <. relation defines a linear order of blocks.

Proof 2.3: Clearly < is reflexive and transitive (since < is reflexive and

transitive). Moreover, since each block consists of mutually incomparable
elements it is also antisymmetric and thus is a partial order. Due to the

definition “B, <_ B, iff Vx,e€B, dx,eB, such that x,<x,”, we have
B, <. B, <. ...5, By. As a result, < actually defines a linear order
between blocks.

Similarly, we can prove that <_ also defines a linear order of blocks.
Therefore since < and < relations define linear orders of blocks from now

on we could write <o and < to denote those linear orders.

Example 2.2: Figure 3 illustrates the two individual orderings <. and <
between the blocks B, B, B, of a partially ordered set O. <_, ordering occurs
if we use as basic block B, the block that contains the maximal elements of O

and <_; occurs if we use as B, the block that contains the minimal elements.

16

a b Ll a bi By 1o . B,
c d ! L c d' B i d i B
€ L e LB e ci B
A partially E """""" ' i """""""
ordered set O B, <g, B, <g, B, v B, <,; B, < B,

Figure 3: The <, <, ordering of blocks B, B,, B, of a partially ordered set O

2.2 Qualitative Preference Model

Let R(A) denote a relation scheme, where R is the name of the relation and
A={4,4,,...,A} is a set of attribute names with associated domains
dom(4;) . Without loss of generality, we assume the attribute domains pair-wise
disjoint, i.e., dom(4,)"dom(A4,)=< for every i# je[l...n]. As null values
are possible, in order to keep notations simple, we use dom(4,) to denote
dom(4,)U{Ll}, where "L" stands for the null value. We shall also use the
notation dom(A) =dom(A)x...xdom(4,) and
dom(A_)=dom(4)...udom(A,) to denote the Cartesian Product and the

union of domains, of a non empty set of attributes A — A . An object over a
scheme R(A) associates with each 4, € A a value taken from its domain. As
usual o[A] denotes the projection of an object o onto a non empty set of
attributes A A . A relation R over the scheme R(:A) (also called an instance)

is a finite set of objects o such thato[A] € dom(A) .

2.2.1 User Preferences

In order to proceed to the general preference definition we should take into

consideration two important factors:

17

* The user, most times, is not in position to know the objects that a
database contains. Thus, the preferences should be defined on structures
of information that are not influenced by the available objects. Such
structures are the attribute domains.

* The number and the nature of attributes that are involved in a preference
expression vary. Therefore, the definition of a preference should be

based on the attributes that the preference involves.

Definition 2.16: Let us assume a relation scheme R(A). A preference P, over a
non empty set of attributes A=1{4,...4 }e2”\J is a non-antisymmetric
partial preorder over dom(A)=dom(A4)x...x a’om(Am)4 denoted as
P, =(dom(A4),=,), where =p, € dom(A)xdom(A4). For m -tuples
v,V edom(A), v= , V' is interpreted as v is at most as preferable as V' (or

equivalently, V' is at least as preferable as v).

We shall pronounce those v',v for which both v < P, v and V' Sp, V hold, as
equally preferred or indistinguishable w.r.t. preference P,. As symmetry holds
by definition and reflexivity with transitivity are inherited from =, , the

preference equality relation is an equivalence relation, i.e., equally preferred

tuples V',v are equivalent, or belong to the same equivalence class, thus we will

denote this relation as v' ~, v.

If vs, v but =(v' =, v), we can write v<, V' which is interpreted as V' s
(strictly) more preferable than v. As asymmetry and irreflexivity holds by
definition and transitivity is inherited from =, , the asymmetric part <, of
<, comprises a strict partial order relation. If neither v=, V' nor v's, v

hold, then we will say that v',v are incomparable and we will write v ||, V'.

The incomparability relation carries symmetry, by definition, but apart from it,

it satisfies no other order axioms in general.

* The order of factors within the Cartesian Product is considered of no particular significance.

18

When 4 is a trivial single-factor Cartesian Product (i.e., 4= {4,}) we will call
F, =(dom(4,),=,) an atomic preference over 4;, where dom(4,) is the domain

of 4.

1

For a preference P, = (dom(4),=,,), the values of domain dom(A) can be

separated in two concrete categories, proportionally whether they take active

part or no in the preorder =, .

Definition 2.17: Given a preference P, = (dom(A),=,), a value vedom(A4)
that is not involved in the partial preorder relation in any other way except
though reflexivity (i.e., —3v' € dom(4), v/ #v, such that v Sp, v oor v zp, V)
will be called inactive (otherwise, it will be called active) and clearly it is

incomparable to all other values of dom(A4).

We denote V(P,,A) the set of active values of dom(A4) according to P, and

V<(P,,A) the set of inactive values, respectively. Notice that:

= V(P,A)=x_V(P,,A4) where V(P,,4) denotes the set of active

values from the domain of 4, appearing in an atomic preference P,
= V(P,A)UV(P,,4) = dom(A)
= V(P,ANV(P,,A)=D

We make this seperation since inactive values actually don’t take part in the
ordering 3p, > creating, thus, a sense of “indifference” of the user to each
inactive value. In essence, there is no need to take inactive values into account
since only active values have interest to a particular user and need to be

specified (regardless of whether they are actually instantiated in R).

Next we discuss preference expressions, which capture the semantics of
combining or synthesizing user preferences over more than one individual

attributes.

19

Definition 2.18: Let P be an atomic preference over any individual attribute 4,
of arelation R . A preference expression P is defined as:

P=P|(P&P)|(R&P)|(P>)| (P> P)

It should be stressed out that an atomic preference appears only once in a
preference expression. Semantically, this interprets a current limitation in this
work; we are able to capture the relative importance among different
preferences, where each is provided and mentioned only once. On the other
hand, this complies with the fact that values in the active preference domains

also appear only once in the respective preferences. A preference expression P,,

as defined above, spans over the set 4 of attributes it involves, so we are able to

use V(P,,A) as defined earlier. The binary preference operators & and >

define the pareto and proritized composition operations on two preferences as

follows.

Definition 2.19: Preference P, =(dom(A),=,) is the pareto preference
(denoted by P, =F &...&F,) of m atomic preferences P =(dom(4,),=;)

!

defined over 4 whenVv=(y,...v),V = v, ...vm') e dom(A) we have:

= V< v: iff Jie[l...m], such that v/ <p v, and Vje[l..m]-{i} it

holds v/ 5, v,
" Vi~ veiiff Vie[l...m] itholds v/ ~, v,

= V|| v in all other cases

Definition 2.20: Preference P, =(dom(A4),=,) is the prioritized preference,

(denoted byP, =R >...>F,) of m atomic preferences £, =(dom(4,),=,)

defined over 4 whenVv=(v,...v,),V = (vl' ...vm') € dom(A) we have:

= V< v:iff Jie[l...m] such that vi' <p Vv, and Vje[l...i—1] it holds

20

= V'~ viiff Vie[l...m] itholds v/ ~, v

i
= V'||, v in all other cases

Note that a pareto preference is a combination of mutually non dominating

preferences. On the other hand, a prioritized preference treats B as more
important than preference P, , which in turn is more important than 7, etc., up to

preference P, .

Both operators are associative, allowing us to apply each of then on more than
two operands, without using parentheses; the Pareto operator is commutative,
but not the Prioritization one, whereas neither of the two is distributive over the
other. Let us, also, assume that when omitting parentheses, the operators take
priority from left to right.

Example 2.3: Consider, for instance, the relation schema R(A4, B,C) where the
domain of attributes is given respectively by the sets dom(A4)={a,,a,,a,},
dom(B) =1b,,b,,b,} , dom(C)={c,,c,,c;}. Also suppose that a user has defined
the atomic preferences B =(dom(4),z;), P, =(dom(B),=;),
P, =(dom(C),=,) such that a;=, a , a;%, a, , by, b , b=, b, ,
C,3p, € 5 €33, C,. Notice that all values here are active. Figure 4 depicts their

. . 5
corresponding Hasse diagrams’:

Py ' P, | P3
§ [b1] § [c1]
[a] [a] |
A S I R
[as] ! |
B U R R

Figure 4: Hasse diagram for three atomic preferences

> Recall that the above Hasse diagram represents the partial order of the equivalence classes of

the quotient sets.

21

Now, consider two elements (a5,b,,¢)),
(a,,b,,c;) € dom(A)xdom(B)xdom(C) . According to the above definitions we

have:

L. (a3.h) <p ep, (@) due to a,<, a (ie., since a,5, a, and a, #a,)

and b =, b,
2. (ay,b,¢) llp apan (a,h,¢;) because a; <, a, but ¢;<, ¢

3. (a,b,¢) <p opop (a3,0,¢;) as both contain b and because B is

prioritized to B,

4. (a3,D,,¢,) <p apyor (@,b,¢;) due to (1) and since P, is the least

important

2.2.2 From Tuple to Object Ordering

Given a preference P, = (dom(A4),=,,), we can use the definitions above to infer

a non-antisymmetric partial preorder of the objects themselves in a relation R

through projection, as follows:

Vo,0'€R, 0=, o'iff o[A] s, oA4]

0=, o means that o is at most as preferable as o', (or equivalenty, o' is at

least as preferable as o). The process of comparing two objects in order to

decide which one is more preferred than the other is referred in the literature as

b

“dominance testing”. If both 0=, o' and o' =, o hold, we shall pronounce

those objects o',0 as equally preferred and we will denote this relation as

!

o'~, 0o (ie., belong to the same equivalence class). If o=, o' but
—(0" =,, 0), we can write 0 <, o' which is interpreted as o' is (strictly) more
preferable than o or o' dominates o . Finally if neither 0=, o' nor o's, o

hold, then we will say that o',0 are incomparable and we will write o llp, o'.

22

Now let < be the partial order relation which derives from =, among the
equivalence classes of the quotient setR/~, JJo]1<[0'] will mean that the

equivalence class of o is at most as preferable as the equivalence class of o'.
However if [0]<[0'] and [0] #[0'] we can write [0] <[0'] meaning that the user
prefers object o' (or any object equivalent to o') to object o (or any object

equivalent to o).

Example 2.4: Assume preference P=K &P, where B=(dom(A),=,),

B, =(dom(B),=,) are the atomic preferences of Figure 4 and the following

relation R :
oid | A | B | C
o, |a |b |¢
0, |ay | b |c
o; |a, | b |c
o, |a |b,|¢

Figure 5: A relation R

According to the definitions described above we will have the following
relations over the objects of R:0, <, 0,, 0,<,0,, 0,<,0,, 0, ~,0;, 0, ||, 0,
o, |lpo,. As a result, there are three equivalence classes [o,]={0,},
[o,]1=1{0,,0,}, [0,]={0,} defined. The resulting Hasse diagram is illustrated in

Figure 6.

[01]

AN

[02] [04]

Figure 6: The Hasse diagram of =, over R

23

Now, given a preference P over A in a relation R, we shall call active those
objects 0 € R which contain active values over every attribute in 4 ® while the

rest of the objects are called inactive; Active objects, denoted as Act(P, A) are

those that represent items which are interesting to the user, as they contain the
combinations of interesting attribute values. Moreover, active objects can be
ordered with respect to others, while inactive ones are those that cannot be
ordered.

DB Object

“._ Inactive Objects .~

~

Figure 7: Active and inactive objects

For example assume that the relation R of Figure 5 contains one more object
os(a,,b,,c,) . Since a, ¢ V(F,), o5 is considered as inactive object and clearly
it cannot be ordered with respect to the remaining objects of R. In existing
frameworks ([7], [8], [9], [13], [15], [24], [30]), inactive objects are considered
as incomparable to the active ones and thus returned in the first block of the

result (as undominated). For instance, o, will be returned in the same block as
object o,, although the user definitely prefers the latter. As a consequence, our

approach partitions objects of R into active and inactive ones and relies only on

the active objects to retrieve the top- & objects of a relation R (Figure 7).

“olA]eV(P,,A)

24

Chapter 3: Top-k Algorithms

In the previous chapter we have shown how from a given preference

P =(dom(A),=,), we can infer a partial order < (which derives from x,)
among the equivalence classes of the quotient set R/ ~,. Furthermore, we have

seen how to form a linear order of mutually disjoint blocks of classes of objects
that respects< and as a result the initial user preferences. In this linear order
each block would correspond to a screen of incomparable equivalence classes
that is shown to the user, with the most preferred classes of objects appearing
first. Nevertheless, the presence of equivalent and of incomparable objects
leaves space for more than one different orderings of R. In particular we have

considered two linear orders of blocks (<,,<,;) that actually satisfy the above

requirements.

Let us assume a < ordering between the blocks of the answer. In order to

retrieve the most preferred objects of the partial order, all the succeding blocks

have to be previously computed since a < order imposes a “down to top”

orientation. Thus, in the general case that we assume where the number of

available active objects in relation R is large and the number £ is small, a <_;

ordering is not suitable due to the expensive computation cost and its lack of
progressiveness (we actually have to order the entire relation R). As a result of

this observation we mainly focus on the <__ ordering.

For any given user preference P =(dom(A),=s,) and an integer k, our purpose

is to provide efficient evaluation algorithms for computing the top-k objects of

R.

Problem Statement: Given a relation R our objective is for every possible

P =(dom(A),=<,) and k parameter to compute and deliver to the user a linear

order of n blocks of equivalence classes of objects B,,B,,...,B, |, where n is

25

n—1
the smallest integer that satisfies the inequality Z|B,-|2k and |B,-| is the
i=0

cardinality of block B, in objects. In such a linear order, each block would

correspond to a screen of equivalence classes of objects that is shown to the
user, satisfying the following properties:

1. V[o],[0o']€ B, it holds [0]]|[0"]

2. V[o]e B,,—J0']¢ B, such that [0] <[0]

3. Vieg[0...n-1],j€[i...n]itholds B, <_ B, (ie., V[o]eB

, Jo'le B,
such that [0]<[0'])

where < is the induced partial order from <, among the equivalence classes of

n—1
the quotient set R/ ~, and || its incomparability relation. The elements in UB,.
i=0

are called the top-k objects.

n—1
Note that according to the definitions above Z|Bi| can be greater than k. In
i=0

that case the user is able to select between retrieving all objects in

B,,B,,...,B, , or to stop the presentation of objects after showing the k" object

>~ n—-1
(this can happen before all objects of a block have been shown to the user). In

either case we shall denote as g, ,(R) the set that contains the top-k objects of

R according to P.

In this chapter we present two broad approaches that can be applied to tackle the
problem at hand, namely the object-based and the query-based approach.
Section 3.1 details the object-based ordering approach that has emerged so far
and the most common algorithms (i.e., BNL, Best) that follow this approach. In
section 3.2 we present a novel (to the best of our knowledge) query-based

ordering approach and present two query-based top- £ algorithms.

7 Abusing notation we are able to generalize a relation R on objects to a relation on classes (or

sets) of objects as follows: [0] R[0'] iff Vo €[0] Vo' €[0']o R0’ .

26

3.1 Object-based ordering

For the computation of the top-4 objects of a relation R, a relational operator
that has been variously called winnow ([7], [8]), Best [30] or BMO ([13], [15])
has been introduced. Winnow selects the set of the most preferred objects (i.e.,

the first block), according to a given preference expression P =(dom(A),=,).

For the evaluation of the winnow operator two basic algorithms Block Nested
Loop (BNL) [29] and Best [30] have been introduced. The core element of these
algorithms is dominance - testing. They essentially iterativelly eliminate every

object o, for which there is a dominating object o' such thato <, o’. These

algorithms can be also extended to produce the top-4 results matching a
preference expression, as follows: If the result res of the winnow operator has
m objects and m=>k, return them. Otherwise deliver these m objects (i.e.,
return the first block) and for finding the remaining ones winnow is called again
over R\res. So, to obtain the top-k objects a number of iterations need to be
performed (in the worst case we will have & iterations). The main characteristic
of the object-based ordering algorithms is that they are agnostic of the
preference expressions. As a matter of fact, user preferences are treated as a
black box by the dominance test. In the following sections we fully describe

algorithms BNL and Best that are used for the evaluation of winnow operator.

3.1.1 Block Nested Loop (BNL)

BNL algorithm [29] (Figure 8) repeatedly reads the object relation R . The idea
of this algorithm is to keep a window W in main memory of the best
equivalence classes of objects discovered so far. All the classes of objects in the
window are incomparable and they all need to be memorized, since each may
turn out to dominate some input objects processed in a later step. When an
object o is read from R and it is active® (line 5), it is compared to a
representative o' from all classes of the window (line 7) and, based on this

comparison, o is either eliminated or placed into the window or when there is

¥ An object is active according to a preference P = (dom(A),=,) iff o[A]€ V (P, A)

s~p

27

no space into a temporary table Temp which will be considered in the next

iteration step of the algorithm. For any active object o four cases can occur:

o is less preferable than a representative from each equivalence class
within the window (line 8). In this case, o is eliminated and will not be
considered in the current iteration. Of course, o need not be compared
to all class representatives of the window in this case.

o 1is more preferable than one or more representatives in the window
(line 9). In this case, these equivalence classes are eliminated; that is,
these classes are removed from the window.

o 1is equivalent with a window representative. If there is enough room in

the window, o is inserted into the corresponding class (line 12) [o'].
Otherwise, [0'] is removed from the window, is inserted to a temporary
table Temp on disk and then o is inserted into [0] (lines 13-15). o
need not be compared to the remaining class representatives of the
window in this case.

o 1s incomparable with all representatives in the window. In that case o
defines a new equivalence class [o]. If there is enough room in the
window, [o] is inserted into the window (lines 17, 18). Otherwise, o is
inserted to a temporary table Temp on disk (line 20). The objects of the
temporary table will be further processed in the next iteration step of the

algorithm (line 21).

Initially, the first object will naturally be put into the window because the

window is empty. At the end of each iteration, BNL can only output the classes

of the window for which their representative has been compared to all objects

that have been written to the temporary table; these classes contain objects that

are not dominated by any other (i.e., they are top- k objects). Specifically, BNL

outputs and ignores for further processing those classes which were inserted into

the window when the temporary table was empty (line 21). These classes are

guaranteed to be in the next block of the answer B, since they have been

compared to all other objects that were put into Temp . Therefore BNL marks

28

(line 19) all classes that were inserted into the window when Temp was empty.

The remaining classes of W must be compared against those stored in the

temporary table. Thus, BNL has to be executed again, this time using Temp as
input, until there are no remaining classes in 7emp . When the temporary table
is empty (line 4), BNL has found all the objects that belong in the next block

B,. 1f the number of the returned objects is more than & the algorithms stops
(line 24). Otherwise BNL i1s executed again over R\ B, (line 23) in order to find

the next block B,,, until the number of the returned objects exceeds & .

29

Block Nested Loop

input: a relation R, a preference expression P, an integer k
output: the <__-aware top-k objects of R according to P
1: i =0,Result =Temp =Input =W =B = //W keeps the best objects discovered
Repeat
Input =R

For each active object o € Input do:

2:

3

4. While Input # &:
5

6 Dominated = false
7

While (not (Dominated)) A 3o’ € W not compared with o:

8: If 0=, o' then Dominated = true

9: Elself o' <, o then remove [0'] from W

10: Elself o’ ~, o then

11: If MemoryAuvailable then

12: [0"]=[0"Two; stop comparisons for o
13: Else remove [0'] from W

14: Temp = Temp U[o']

15: [0o']=[0"Two; stop comparisons for o
16: If not(Dominated) then

17: If MemoryAuvailable then

18: W = Wulo]

19: If Temp =D then mark([o])

20: Else Temp = Temp U]o]

21: Input = Temp, B, = B, U{[o]eW |mark([o])}

22: return B, , | result |=| result | +| B, |

23: If result| < kthen R=R\B,, i=i+1

24: Until |result| > k

Figure 8: Block Nested Loop Algorithm

30

The main advantage of BNL is its simplicity, since it can be used without
indexing or sorting the input relation R . However, it is sensible to the amount
of the available main memory. A small memory may lead to numerous
iterations while in case where the size of an equivalence class in /W exceeds the
size of W then the algorithm can not terminate. BNL requires to access all
objects of a relation R at least once and to perform at least one dominance test
for every active object in R . This makes BNL inappropriate for large databases.
Another disadvantage of BNL is its inadequacy for on-line processing since it

has to read the entire data relation before it returns the first block B, (line 3).

Best case time complexity: In the best case the result (i.e., all blocks of the
answer) fits into the window and the algorithm terminates in one iteration.

Therefore the best case time complexity of BNL is O(n) where n is the number

of objects in R.

Worst case time complexity: The worst case time complexity of BNL is O(n*)

and occurs when a block of the answer is very large compared to the amount of

the available memory (e.g., all objects in R are incomparable to each other).
Space Complexity: The memory requirements of BNL depend on the size of

window W and not on the size of relation R. Therefore we can write that the

space complexity of BNL is O(1) .

31

3.1.2 Best

Like BNL, Best [30] (Figure 9) is executed in several iteration steps. Each step

consists of a one or more scans over a set of candidate objects which might

belong to the output B, of the i step. The main difference between BNL and

Best is that the latter tries to restrict the search space of the input relation R as

much as possible for the subsequent iterations of the algorithm’. In order to
achieve that, Best keeps in memory for each object o a set D/ that contains all

objects which have been compared to o and have been dominated by it.

However, Best does not suffer by bounded memory requirements as BNL does.

When an active object o’ read from the input R is compared with an object o

which is kept in main memory and temporarily plays the role of the selected

object. Object o, 1s a representative of an equivalence class S; containing some

of the best objects discovered so far. For any active object o' four cases are
possible:

* 0 ~,o0, in this case o' is added to S, and oy remains the selected

object
(line 8).

* o], 0" in this case o' is put into a set U, of the unresolved objects and
o, remains the selected object (line 5).

* 0'<, 04 inthis case o' is put into a set D, which contains the objects
dominated by oy according to <,, and o, remains the selected object
(line 6).

= o0,=<,0 in this case S, is added to the set D’ =D’ US., which

contains the objects dominated by o' according to =, and o' becomes

the selected object (i.e., og =o', S, ={0"}) (line 7).

? Recall that BNL after returning block B, if needed, runs over R = R\ B,

32

After the algorithm completes the database scan there is no object among those
processed that dominate objects in §,. So objects in S, are put into the block 5,

1l

in which Best collects the objects to be returned as the output of the i” -step.
However, there might be some objects o' in U, dominated by o,. For this
reason the algorithm also compares the selected object with the objects in U,
(lines 9,10). At that point, if U, is not empty, Best repeats the whole procedure
but this time using U, as input (i.e., another scan at the end of which a new set
S, will be inserted in B,) (line 12). When at the end of the a scan, U, gets
empty the i” -step is concluded and Best returns the next block B, (line 13). If

the number of the returned objects is more than 4, then the algorithm stops.

Otherwise, Best is executed again this time using as input only the objects in the

sets D for each o € B, (i.e., Input = | J{D! |0 € B}) (line 15).

33

Best
input: a relation R, a preference expression P, an integer k

output: the <__-aware top-k objects of R according to P

I i =0, Result = &, Input =R

2: Repeat

3: Let as o the first Active(o) € Input // o4 is the selected object
4: While J active object o' € Input not compared with o,:

5: If o], o' then U, =U, Lo’

6: Elself o' <, o4 then D* =D Lo’

7 Elself o <, o' then D’ =D’ US, ,0,=0, S, = {0’}
8: Elself o’ ~, o5 then S, =S, Lo’

9: While 3o’ € U, not compared with o, :

10: If o' <, o5 then D = D LUo',remove o' from U,
11: B =BuUS,S =0

12: If U, # < then Input = U,

13: Else return B, ; | result |=| result | +| B, |

14: If [result|<k then

15: Input = U{Df]oeBi}

16: i=i+1

17: Else break

18: Until false

Figure 9: Best Algorithm

34

Best inherits the advantage (i.e., easy implementation) and the disadvantages
(i.e., at least one dominance test for every active object in R, not progressive)
from BNL. However, Best requires only one scan of the relation R

independently to the number £ of returned objects.

Best case time complexity: Like BNL, the best case time complexity of Best is

O(n) where n is the number of objects in R and occurs when the result (i.e.,

the top-k objects) is small comparing to n.

Worst case time complexity: Worst case time complexity of Best is O(n°) and

occurs when all objects of R are incomparable to each other.

Space Complexity: The space complexity of Best is O(|R|) where |R| is the

size of the input relation R (in pages), since the entire relation might be kept in

the D/ sets.

35

3.2 Query Based Ordering

3.2.1 Lattice Based Algorithm (LBA)

The main intuition behind this algorithm is that each block B, of the answer
w.r.t. a preference P corresponds to the result of a selection query OB,
(i.e., B, =ans(QB,)), neglecting object ordering. Block queries OB, may be
collected by “scanning” the active Cartesian Product V' (P, A4) in a top-down

manner, without having to calculate and store the latter. These queries are
essentially unions of conjunctions of atomic selection conditions, containing all
attributes that the user preference involves. LBA incrementally constructs and
evaluates those queries starting from the one that returns the most preferred

objects of R i.e., fromQB,, until the number of the returned objects exceeds

k . For each query OB,, ans(QOB,) comprises incomparable (with respect to <)
equivalence classes of objects and a query OB, precedes OB, (i.e., OB’ <0B.)

if between ans(OB,) and ans(QBi') it holds: ans(QBl.')S% ans(0B)). As a

result, the retrieved objects are already ordered so there is no need to further

compare them.

Given a preference P = (dom(A),=,), each domain value v, e V' (P, 4)) and each
tuple veV(P,A) belong to an equivalence class declared by the symmetric
parts ~,,, ~, of 5, and =, respectively. To simplify the presentation of the

algorithm in the rest of this chapter when we refer to domain values and tuples

we shall actually mean their corresponding equivalence classes.

As we have seen in the previous chapter, a preference expression P over a set

of attributes4={4,...4,}, defines a preference relation (i.e., a non-
antisymmetric partial preorder) over the elements (v,,v,,...,v,) of the active

preference domain V' (P, A). These elements essentially represent conjunctive

36

queries of the form 4 =v, A4, =v, A...A 4, =v, which when executed will

retrieve the matching objects. We call the respective ordering of queries the

Query Lattice".

oid| A B ||l o —— V(P,&Pg, {A, B))

o1 al b1 ¢l

02| a3 b3 |2

o3 a3 b1 c3

od | a2 b3 | c3

05| al b1 c2

06 a4 b2 ¢l

or | a b2 | VP8P, {AB) | [DTop7objects

o8| @ | b5 |4 {o1,05) {07, 09}

o9 al b2 c2 ! ; ; :

10| a2 b4 |c3| L @ 2 {03 @ S| |y
o {2 - 5

Figure 10: Query Ordering Framework

Consider, for example, the preference expression P =P, & P, of Figure 10.1,
such that a,<, a,, a;<, a;, by<, b, by<, b,. Figure 10.2 illustrates the
Hasse diagram of V(P, & F;,{4,B}); it also depicts the induced <, block
ordering OB, <_, OB, <z, OB, on V(P & F;,{4,B}). Clearly, to compute the
most preferred objects (i.e., the top block B)) w.r.t. P=P & P,, we need to
execute the queries 4=a, AB=b and 4=a, A B=>b, deriving from the first
query block OB, . As both queries have non-empty results ({o,,0,} and {o,,0,},

respectively, see Figure 10.3), we guarantee that they and only they return the

most preferred objects (see Figure 10.4).

However, not every query in the lattice is guaranteed to be non-empty.

Consider, for instance, that the user is interested in obtaining the next block B, .

As we can see in Figure 10.3, from the five queries of the second lattice

block OB,, only A =a, A B =5 has a non-empty result ({o,}) which belongs to
the next block of the anwser B,. Yet, all other objects that belong to B,, if any,

have to result from queries that are successors'' of the empty queries in 0B,

1% For simplicity, we omit a “true” top query and a “false” bottom query.

' Or, recursively their successors, in case they are empty.

37

and at the same time, are not successors of any other non-empty query in QO5,.
This is the case of 4=a, AB=0b, in OB,, with result {o,}, being child of the
empty query 4=a, AB=>5 and, at the same time, incomparable to the non-
empty query A=a, AB=5b of OB,. On the contrary, A=a, AB=5b, in 0B,,
although it is a child of two empty queries in OB, it is also a child of the non-
empty one 4=a, AB=5b of OB,; thus, its answer does not qualify for B,.

Recursively, we can compute the bottom block B, as illustrated in Figure 10.4.

As we already state, LBA aims to compute the <. block ordering of the top-&

objects without actually needing to construct the induced ordering of objects.
This is essentially achieved by exploiting the semantics of a preference
expression and, in particular, by linearizing the active Cartesian Product

V(P,A) of all attribute values appearing in the expression. Going one step
further, we don’t even need to construct in advance and then linearize V' (P, 4).
Instead, we can simply construct its <_ block ordering from the <_ block
ordering of its constituent atomic preferences. For example, in Figure 10.1 the
<z block ordering of P, is 4 ={a,,a;}< 4,={a} and of F; is
B, ={b,} <., B, =1{b,,b,} . Thus, we introduce the following two theorems which
provide the means to compute the <_ block ordering of an arbitrary preference

expression progressively.

Theorem 3.1:: Given the <., block orderings X, <. ...<; X, <, X,, and
Y, <g--<g Y <g Y, of two preferences P, and F,, the <, block ordering
2 ims <oy <3 £, <z Z, of preference P =P, & F,, will consist of n+m—1

blocks; each block Z, will comprise elements only from blocks X, and Y,

such that g+r=p.

Proof 3.1: We start with the second part of the theorem, and use induction: It is

obvious that the top (bottom) block Z, (say, Z,, respectively) will derive from

38

the composition of the respective top (bottom) blocks X, (X, ,)and ¥, (X,).
The second block Z, must contain items which are worse than those of Z; in

exactly one of their two constituents, i.e., worse either in X or in Y, but not in
both. Furthermore, it should be worse by a distance of exactly 1 block in this
constituent. To prove this, assume any item in Z deriving from constituents
which either are worse in both X and Y, or are worse by a distance of more
than I blocks in X or Y; then, in both cases, such an item is obviously worse

than some item(s) of Z,, and thus it ought to belong in a block lower than Z, .
As 1+0=1 and 0+1=1 (for X, Y, and Z indices, respectively), the second part
of the theorem holds for block Z,, i.e., for a non trivial induction basis. For the
induction hypothesis, assume that the theorem holds for block Z,, i.e.,
qg+r=k, for those X ’s and Y,’s which are the constituents for X and Y,

respectively. Taking the induction step, it is obvious, by the previous discussion,

that block Z, ,, should comprise those items originating either from X ,, and

k+1

(i.e., the items from either of the precisely next blocks

r+l

Y , or from X, and Y

in X or Y, but not from both of those simultaneously); then, the new sum of
the constituent blocks will have risen by exactly 1 to k+1; g.e.d. Using this
result, and enumerating the values from 0 to »—1 and from 0 to m —1 we arrive
at the actual number of Z -blocks, which is exactly n+m—1; and this

completes the proof of the theorem.

Given the two block orderings 4, <., 4,and B, <, B, of Figure 10.1 for P,
and P, respectively, the block ordering of preference P =P, & P,, will consist
of 3 (i.e., 2+2-1) blocks. As we can see in Figure 10.2 the top block (OB,) will

be formed by combining elements from blocks whose sum of indices is 0, i.e.,

A4, with B, the second (05,), from blocks whose sum of indices is 1, i.e., 4,
with B, and 4, with B, , and the third (OB,), from blocks whose sum of

indices is 2,i.e., 4, with B,. The following theorem can be similarly proved:

39

Theorem 3.2: Given the <. block orderings X

n—1

<oy <z X <5 X, and

Y

m—1

<oy <y 1 < Yy of two preferences P, and P, the <. block ordering

Z <gy - <g £ <z Z, of preference P=P, > F,, will consist of nxm

n+m-2
blocks; each block Z, will comprise elements only from blocks X, and Y,, and
it will hold p =¢gxm+r. For every value of ¢ ranging from 0 to n—1, » will

range from 0 to m—1; i.e., Z,’s will derive from X Y;, X ¥ ,..., XY,

m-172

XX,

XY

Algorithm LBA takes as input a relation R and a preference expression P

involving a subset 4 of R’s attributes. Then, it outputs progressively the <__ -

aware top-k objects of R. To this end, LBA relies on a internal representation

of the sequence of blocks of the active Cartesian Product V' (P, 4) (see Figure
10.2). In particular, array OB 1is used to hold in main memory only the structure
of the < block ordering of V' (P, A). The corresponding Query Lattice is not

materialized but rather the queries needed to construct the requested blocks are

computed and executed on the fly. Each OB entry is essentially a list whose
elements hold only the block indices of the active terms of V' (P, 4) forming a
block of V' (P, 4) . Going back to Figure 10, OB, contains the single element list
<0,0>, standing for A4,, B,, whereas OB, contains the list <0,1>—><1,0>,
standing for A4,, B, and A4,, B,, respectively. The entire OB array of our

example can be seen in Figure 11.

0B,: <0,0>
0B : <0,1>><1,0>
OB,:

Figure 11: The OB array of P=F &P,

After computing OB (line 1), LBA iteratively calls GetBlockQueries (line 4) to

create a list of associated conjunctive queries and Evaluate (line 5) in order to
output successive blocks of objects until the top-k objects were retrieved (or

V (P, A) is exhausted).

40

LBA

input: an object relation R, a preference expression P, an integer k

output: the <__-aware top-k objects of R according to P

l: OB = ConstructQueryBlocks(P.root)
2: result =i=0

3: Repeat

4: Ugq, = GetBlockQueries(QB[i])
5: result+ = Evaluate(Ugq,)

6: i+=1

7: Until result >k or i:|QB|

Figure 12: LBA Algorithm

ConstructQueryBlocks returns the structure of the final expression result in the

form of blocks. It traverses recursively a preference expression tree P (starting
from P.root) and computes bottom-up the number of blocks and their origin in

OB . For each OB entry it generates the structure of the respective <., block

ordering. When & (line 6) and > (line 7) appear as a preference relation

between expressions P.left and P.right , it calls ParetoComp or PriorComp to
construct the corresponding OB . For leaves (i.e., for atomic preferences), their
respective OB entries are computed (line 2) by PrefBlocks which for an atomic
preference P, derives its < block ordering of V(F, 4,). For example, in its
“bottom left” recursion step ConstructQueryBlocks creates a QB with two

entries OB,: <0> and QOB : <I> for the <, block ordering 4, < 4, of

preference P,.

41

ConstructQueryBlocks

input: a preference expression P

output: the OB array of P
l: If P is aleaf then // P is an atomic preference
2: OB = PrefBlocks(V (P, 4)))
Else
OB _left = ConstructQueryBlocks(P left)
OB _right = ConstructQueryBlocks(P.right)

3
4
5
6: If Ptype="&" then ParetoComp(P.left, P.right)
7 Else PriorComp(P.left, P.right)

8

Return P.OB

Figure 13: ConstructQueryBlocks function

ParetoComp and PriorComp implement theorems 3.1 and 3.2 respectively. In
particular, ParetoComp given two input preferences P and P, computes the
OB, for the case of B, & P,. As explained in theorem 3.1 QB will comprise
|P1 .QB|+|P2.QB|—1 blocks; and the sum of the indices of each element in
every block will equal the index of that block. On the other hand, PriorComp
for its input preferences F, P,computes the OB for the case of B> PF,. As
defined in theorem 3.2, OB will comprise |P1 .QB|><|P2.QB| blocks, and the

order of the blocks follows the lexicographical order of the indices of the

corresponding blocks.

42

ParetoComp

input: two operand nodes B and P,

output: the OB of node P=F &P,

1: |P.OB|=|P1.OB|+|P2.0B|-1
2: Forw = 0Oto |P.QB|
3: P.OB[w]=|J{P1.OB[i]1xP2.0B[j]| i+ j = w}
4: Return P.OB

Figure 14: ParetoComp function
PriorComp

input: two operand nodes B, and P,

output: the OB of node P=F > P,

I w=0

2: |P.OB|=|P1.0B|x|P2.0B|

3 Fori = 0to |[P1.OB|-1

4: Forj = 0to |P2.0B|-1

5: P.OB[w] = P1.OB[i]x P2.0B] j]
6: wt=1

7. Return P.OB

Figure 15: PriorComp function
Function Evaluate executes each query g of its input set Ug, . It keeps track of
non-empty queries in SQOs, so that they are executed only once. Also, for the
object block B; currently processed, it keeps track of non-empty queries in
CurSQs (line 4) and of empty ones in FQs (line 5). For each non-empty query
it appends its answer to current block B,. For empty ones, it applies (lines 11 to

17) the previous process on their immediate (or transitive) successors which are

not in SQOs (thus avoiding to execute twice a non-empty query), and not in

CurSQs (i.e., ensuring they are not at the same time successors of any non-

43

empty query). This process is terminated when no more successors are available

(line 11) or there are no more empty queries to inspect (line 17). Finally,

Evaluate outputs the computed block and returns its size (line 19).

Evaluate

input: a list of queries

output: the next block B,

1:
2:

s w

N R AL

10:
11:
12:
13:
14:
15:
16:
17:

For each ¢ in Ug,
If ¢ notin SQs then
If ans(q)!=C then
CurSQsu={q}; B,U=ans(q)
Else FQsU = {q}
Else FOsU ={q}
While FQs!=
For each ¢ in FQOs
FQs\ = {q}
O ={a,1q, = child(q)}
For each ¢ in Q,
If ¢ notin SQs then
If not g in succ(q") forall ¢" in CurSQs then
If ans(q)!= then
CurSQsu={q}; B.U=ans(q)
Else FOsU ={q}
Else FOsU = {g}

18: SOsU = CurSQs ; CurSQs =

19: output B, ; return |Bl,|

Figure 16: Evaluate function

44

Function child() (line 10), returns the direct children of its input query g¢.
There are several ways to implement child(). In our case the implementation of
child() was based on the following observation: We already know the list
element </,l,,...,[> of OB, from which g has originated. Clearly, the direct

children of ¢ must originate only from one or more list elements of OB, ;. For

i+1*
each list element </',L',....,["> of OB,,, let lastblock be the set that
contains each je{l..m} for which /; is the index to the last block of the

corresponding <., block ordering of V(FP,,4;). From the list elements

<1,1',..,1"> of OB

i+1

only those that satisfy the following property may

point to children of ¢ :
= there exists ¢ & lastblock suchthat [=1 +1

" Vkelastblock —{c} itholds I =1, .

Having identified those list elements </',Z,’,...,] "> of OB, which directly
point to children of g=4 =v,AA4,=v,A...A4, =v,, the queries to be
returned by the function are produced as follows:

For each je{l...m} such that l_/.' #1,:

= If / j' =1, +1 then replace v, with the direct children of v, in the

corresponding P, = (dom(4,),=,)

= If lj' =0 then replace v, with the maximal values of =, that are related

to v,

3.2.1.1 <4y -aware LBA

Consider now the case where the size of V' (P, A) is very large compared to the

number of available (active) objects. As a result LBA will have a lot of fruitless

fetching attempts (for most of the queries ¢ it will hold ans(q)=O). This will

lead to poor performance since the algorithm will continuously keep searching

V(P,A) for possible exclusive successors of ¢ that will probably result empty

45

answers too. In such a scenario it would be reasonable to adopt a more
“relaxed” linear order of blocks that however will not go against the intuition
“most-preferred objects first” which is probably the most important constraint
that each linear order of blocks should satisfy. Therefore we define the < e
order of blocks as follows:

Definition 3.1: Let B, <y B, iff V[o]e B,, ,Zf[o’] € B, such that [0']1<][0].
Therefore in an < pe adaptation of LBA, when for a query g holds ans(q) =<

there is no need to search for possible exclusive successors of g since the
identification of the incomparable objects is not a strict requirement here. The

only (but important) difference between the <. and the < P variation of LBA

is that the Evaluate function, is only responsible for fetching objects and no

further examination is required.

Evaluate

input: a list of queries
output: the next block B,

l: For each ¢ in Ug,

2: B U =ans(q)

3: output B, ; return |Bl.|

Figure 17: Evaluate function for the < variation of LBA

It is worth noticing that the < pe variation of the LBA algorithm can be also

sensitive to scenarios where the size of V(P,A4) is large compared to the

number of available objects. Howerer due to the fact that the identification of
incomparable objects is not a strict requirement, it is expected to be more

efficient than the <o variation.

Moreover, since in the < pe variation of LBA we are not actually forced to

identify which queries yield empty queries and which not, we could employ
some different rewriting techniques in order to construct queries which are more

efficient to evaluate. So far, given a block query OB,, for each of its tuples

46

v=0,V,,...,v,) € 0B, one conjunctive query of the form

q, =4 =vrd,=v,n..n4,=v, was formulated and executed individually.
OB, was defined as the union of those conjunctive queries. From now on, we
will refer to this rewriting as MQ (Multiple Queries). A second rewriting
approach would be to define OB, as the disjunction of the conjunctions of the

atomic selection conditions that each tuple ve QB defines. For example

assuming that OB, contains two tuples v=(v,...v,) and V' = v, ...vm'), OB,
will have the following form:

OB =(A =V, Ad,=v, Ao AA, =V V(A =V Ad =V, Acnd, =)
We refer to this rewriting as SQ, (Disjunctive Single Query). Finally, OB, can

be defined as the conjunctive query of m disjunctions (one for each attribute).

Each disjunction refers to a specific attribute 4, and consists of every atomic
selection condition that each tuple v e OB, defines and refers to 4, where any

repeated conditions are removed. For example assuming that OB, contains two
tuples v=(v,...v,) and V' = v, ...vm') , OB, will have the following form:
OB =(4 =V A=V)A(A=v,vad=vIA..A4,=v,VvA =)

We refer to this rewriting as SQ, (Conjunctive Single Query).

3.2.1.2 Analytical Evaluation

In this section we analyze the complexity of LBA by focusing on the cost of
computing the top block of the top-k objects. This choice is motivated by the
fact that generating the top block has the same cost in the worst case as
constructing the entire block ordering. Furthermore, it provides a common
ground for comparison with existing algorithms evaluating skyline queries.

LBA algorithm has a very small startup cost for constructing the <. block

ordering of the input atomic preferences O(|V(B,Al.)|2) and in general can be

neglected. The cost of LBA is mainly due to the number of conjunctive queries
it has to execute in order to construct a block of the answer. A conjunctive query

is usually evaluated by traversing the available indices on the involved

47

attributes, intersecting the oids and then fetching the matching objects from the

disk. When (unclustered) B+-trees are used, the I/O cost for each such query ¢

will be O(log|R|+|ans(q)|). Assuming that » queries are executed in total to

construct the resulting block ordering, the LBA cost is O(r x (log|R| + |ans(q)|)) .

Best case time complexity: In the best case, only one query is required to

construct B, and the number of returned objects is very small (especially for

uniform data distributions). In particular, when |Act(P,A)| >>|V(P, A)

, the

practical cost of LBA drops to 0(10g|R|) .

Worst case time complexity: In the worst case, all the lattice queries need to be
executed to construct the entire block sequence (i.e., k£ is omitted) as just a few
of the leaf queries actually return almost all of the active objects (especially for

skewed data distributions). Thus, the total cost of the index traversals will rise to

while the I/O cost of their

OV (P,)| xlog|R|) where |V(P, 4)|= A>3|V(B,A,.) ,

non-empty answers will be O(|Act(P, A)

), bringing the total worst case cost up
to 0 O(|V(P, A)| xlog |R| + |Act(P, A)|) . In particular, when
|Act(P,A)| <<|V(P,A)| and given that log|R| is usually small (3 to 6,

depending on B+-tree'? fan-out), the practical complexity of LBA in the worst

case becomesO(|V(P, A)|). It should be stressed that the above cost also

characterizes the worst case LBA complexity when requesting only B, .

Space Complexity: The space complexity of LBA depends on the size of the
OB which will store in overall ;1 #blocks(P, A) list elements </,/l,,...,[>,

where #blocks(F, A;) is the number of blocks in the corresponding <. order

of V(P,4).

12 Alternatively, hash indices could be used with a typical cost of 1-2 I/Os.

48

The (best, worst) time complexity of the < P variation of LBA that follows the
MQ approach for constructing queries is the same as the <., variation.
However in practise the <__ variation of LBA will evaluate fewer queries since
the identification of incomparable objects is not a strict requirement in a < e
ordering. In case where one of the remaining two approaches (i.e., SO,
and SQ,) are followed, the algorithm will evaluate at most |QB| queries where
|QB| is the size of the corresponding OB array of a preference expression P .
Each of these queries will cost O(|Act(P, A)|) in the worst case. So the overall

compexity is now O(|0B|x|4ct(P, A))).

It is clear for someone to see that the performance of LBA is very sensitive to

MIAGEE ratio (where Act(P, A) denotes the active objects of R w.r.t. P).

| Act(P, 4)|

It VA <1 then almost for each query ¢ it will hold ans(q) =< and as
| Act(P, A) |

a result only a relatively small number of queries needs to be evaluated in order

to retreive the top- k£ objects. On the other hand if VP, A)|

——— = >1 then for most
| Act(P, A)|

of the queries it will hold ans(q) =% and this will lead LBA to evaluate a large

number of queries (in the worst case |V (P, A)|).

In LBA variations the retrieval of objects is performed in an ordered manner so
there is no need to perform dominance tests to compare the already retreived
objects. Furthermore assuming that available indexes exist, LBA algorithms will
access only the objects that will be returned as the top-k objects and only once.
Moreover it is LBA algorithms are progressive (i.e., they return the next block
of the answer without having to previously compute the following blocks).

However LBA algorithms are sensitive in scenarios where the size of V' (P, A)

is very large compared to the number of available active objects (i.e.,

VA

>1).
| Act(P, A) |

49

50

3.2.2 Threshold Based Algorithm (TBA)

When V (P, A) >> Act(P,A), LBA will be forced to execute a big number of

queries which yield empty answers, before succeeding to arrive at one with a
non empty result. For this reason, we devise a second algorithm, called TBA,
which is a hybrid of the Query Lattice presented previously and the dominance
testing approaches ([29], [30]). TBA incrementally constructs and evaluates
queries to quickly locate and fetch a small portion of R that includes the top- k&
objects. Unlike LBA, these queries are disjunctions of atomic selection
conditions over just one attribute. In order to determine when the fetching of
objects should stop TBA uses appropriate thresholds. These thresholds ensure
that objects that were not fetched are worst than the ones that were already
fetched (i.e., work as an upper bound of the unseen objects). For defining the
ordering of queries, TBA takes into account the selectivities of the atomic
selection conditions so that to avoid fetching more objects than those actually
required. However, TBA needs to perform dominance tests for the already
retrieved objects. Therefore it can be said that TBA adopts ideas from both
query and object based approaches since it uses the specified user preferences to
define an ordering over queries, howerer it also perfoms dominance tests for the

retrieved objects.

od| A | B |C VP8P, (B, C})
ol al b1 ¢
02| a3 b3 c2 | |
3| a3 | b1 |3 | bz b2¢2 b3cl ias,
o4 | a2 b3 c3 b1,03b2133 _____ bslcz @,
05| af b1 o | | | sl LT 2
o6 | a4 b2 P N s T N
o7 | af b2 A T e
o8| a2 b5 cd
9| al | b2 |c2 V(Pg&P,, {B, C})
00| a2 bt |3 | : fol} {06, o7}
pd
{05} {09} &
{03} @ {02}
{04}

Figure 18: A Query Ordering framework example

51

Before we fully describe TBA lets see the intuition behind this algorithm.

Assume, for example, the preference expression P = P, & P. of Figure 18, such
that ¢, <, ¢,¢,<, ¢, and b, <, b,, b, <, b. The Hasse diagram of

V(P & P.,{B,C}) and the induced < block ordering

va
OB, <, OB, <, OB, <., OB, is is depicted in Figure 18.2. Like before, the top
block OB, contains the maximal values of the active preference domain, since it
combines elements from the top blocks B, and C, of the constituent atomic
preferences P, and P.. It is clear that the corresponding value pairs on B or C

behave as thresholds. For instance, there cannot be any object not inspected yet

in the result, that has better values than (b1,c1) and (b2,cl).

Let us now consider, a disjunctive query ¢ on attribute C formed by all active
values of C;; in our example, g is C=c¢, as there is only one value in C,.
Clearly, any object of R that does not belong to the result of g, cannot be better
than objects matching pairs of values obtained by the next block C, of
V(E.,C), ie., the value pairs BOxCl={(bl,c2),(b2,c2)}. In other words, we
lower the threshold by going one block “down” in V(F.,C) (i.e., the active
terms of the attribute we chose to issue the disjunctive query ¢) while we keep
the previous block for V' (P,,B). Next, we need to check for dominance among
the objects returned by g (e.g., 01,06,07); as we derive 06 ~, 07 and ol]||, 06,

all three objects are undominated. Due to transitivity, if for each of the new

threshold values in B, xC, there is a more preferred object in the set of

undominated objects of ans(q), the latter actually constitutes the first block of

the answer, i.e. the undominated objects of the whole relation. Repeating the

process we can construct the block sequence of objects as depicted in Figure 18.

In the general case let preference P =(dom(A4,)x...xdom(4,),=,) and assume

that for each one of the atomic preferences P, =(dom(4,),=p) exists a <.

52

block order X" <. ...<g, X< X" of Active,(dom(A,))/~, where X '

denotes the k" block in the ordering.

Definition 3.2: We define as threshold values the Cartesian Product

Thres = X' x X[?x...x X" where p, is an index that refers to X, and
indicates the first block of X, that was not fetched (initially each p, points to

x).

These values ensure that objects that were not fetched are worst than the ones
that were already fetched (i.e., work as an upper bound of the unseen objects). It

is worth noticing here, that Thres is a set of values of V(P,) contrary to

quantitative threshold based algorithms ([2], [11], [20]) where thresholds are
actually arithmetic scores. Clearly at any point in time, an object that was not

already been fetched cannot be more preferred than a value in

Thres = X' x X1 x...x X" . More precisely the following theorem holds:

Clearly at any point in time, an object that was not already been fetched cannot
be more preferred than a value in Thres = X' x X/ x...x X", More precisely

the following theorem holds:

Theorem 3.3: For each active object o that was not been fetched there is a

treshold value ¢ € Thres such that o<, .

Proof 3.3: Assume that there is an unseen (i.e., not fetched) active object o for
which o[4]=v where v=(v,...v,) such that V¢=(v,...v ") e Thres it holds

t<,0 or t|,o. Thus in that case tuple v must contain at least one atomic
value v, s.t v/ <, v, or v.||,. v, where v is the corresponding value of ¢ for

attribute 4,. But each v, is a maximal value of V (P, 4,) that was not already

been fetched, therefore for each v,, v, it holds v, <, v/

i ~Pi Cic

In the rest of this section we will detail TBA (Figure 19). TBA starts (line 2) by

53

calling PrefBlocks that computes for each consistent atomic preference P, the
<., block ordering over V(F,4,). The result is maintained internally by an

array PB of lists whose elements hold only the block indices of the active terms

of V(P,4). The threshold values are stored in an array Thres of size m (i.e.,

the total number of attributes 4), and initially comprise the top blocks of all PB
lists (line 3). Throughout its execution, TBA keeps in memory two sets with the
objects that were fetched, but not yet returned: Dominated contains all objects
for which some better were found, while Undominated contains the
equivalence classes of objects for which no better object was met. Both sets are
initially empty (line 4). Then, the following 4 steps are repeated, until the

requested answer size is reached or Act(P, A) is exhausted (line 12):

TBA identifies the block of attribute 4, with the lowest selectivity (for
all active values it contains), among those referred by Thres (line 6) and

the respective disjunctive query is executed.

» Function OrderObjectsis called (line 8) to pair-wise compare the

returned objects and update Dominated , Undominated sets accordingly.

= Thres is updated by obtaining the next best block of V'(P, 4;) (line 10).

» Function GetNextBlock is called (line 11) next; depending on its input
parameters it will output one or more blocks of the answer, and also

update accordingly sets Dominated and Undominated .

Let us return to the termination case of exhausting Act(P,A) before k is

reached. This will happen when one of the lists in 7Thres is exhausted (line 12).
We prove this by reduction to the absurd: Assume that the list for attribute

preference P, is exhausted and yet there is an active object o with
value (v;,...,V,_;,V;,V,,;»...). Object o should contain active values on every
attribute, so v, should be active. Thus, v, should have already been inspected,
or else belong in the remaining part of £, ’s list. Both cases contradict the

hypothesis. This condition is treated trough a special value botfom , denoting

the lowest of thresholds; using the bottom threshold as input, GetNextBlock

54

(lines 13-14) will find any set of undominated objects better than it, and thus

will output the next blocks as required.

Threshold Based Algorithm

input: an object relation R, a preference expression P, an integer k

output: the <__-aware top-k objects of R according to P

l: For j=1to m /lfor each atomic preference P
2: PB[j]=PrefBlocks(V (P, 4,))

3: Thres| j]= head (PB[j])

4: Undominated=Dominated=; | result |=0

S: Repeat

6: i =min_ selectivity(Thres)

7: O=Vv(4,=v,),Vv; € Thres[i]

OrderObjects(Ans(Q),Undominated,Dominated)

9: If next(PB[i]) then

10: Thres[i]= next(PB[i])

11: GetNextBlock (Undominated,Dominated))
12: Else

13: Thres = {bottom}

14: GetNextBlock (Undominated,Dominated))
15: break

16: Until |result |>=k

Figure 19: Threshold Based Algorithm

Function OrderObjects takes as input two sets of objects, Input and Dom , as

well as a set of equivalence classes of objectsUnd . If empty, Und is initially

filled with the class of the first object of Input (line 2). OrderObjects updates
the sets Dom and Und after comparing every object o of Input against a single

representative o' of all classes of objects in Und . Four cases may occur:

= If o is found worse than some o' (line 7), it is appended to Dom and it

does not have to be compared against the rest of Und .

55

If o is found equally preferred to some o’ (line 10), it is appended to the
class of o' in Und and again no more comparisons against the rest of

Und are needed.

If o is found better than some o' (line 11), the (flattened) class of o' is
moved from Und to Dom ; OrderObjects continues testing o with the

rest of Und .

If o is incomparable to o', comparisons continue with the rest of Und ,
without any further action. At the end of comparisons, if o is found not
to be dominated by any Und element (line 12), a new class containing

o is appended to Und .

OrderObjects

input: sets of objects Input, Dom , set of classes of objects Und

output: a pair of sets UptDom ,UptUnd

1:
2:

3
4:
5
6

10:
11:
12:
13:

UptDom = Dom

If Und =© then UptUnd =[o,]// o, is the first active object of Input
Else UptUnd =Und

For each active object o in Input

IsDominated = false

For each o' in UptUnd
If o<, 0" then

IsDominated = true

UptDom\ = {0} ; break //inner for
Elself o' ~, o then [0o'lU=0; break
Elself o' <, o then UptUnd\ =[0"]; UptDomu = {0'}
If not(Dominated) then UptUnd L = [o]
return UptDom ,UptUnd

Figure 20: OrderObjects function

Function GetNextBlock takes as input a set of dominated objects (Dom) and a

set of undominated classes of objects (Und). Using the current threshold values

56

(Thres), the required k , and its input parameters, it recursively outputs as many
blocks of the answer as possible. When finished, it returns updated versions of
its input parameters. GetNextBlock checks whether for each of the threshold
values in Thres there is a more preferred object in the set of undominated

objects of Und (line 2). If so, Und 1s the next answer block B,, and then the

current answer size is updated while the set of undominated classes of objects is
reset (lines 3-4). If k£ is not reached (line 5), OrderObjectsis employed to
partition the objects of UptDom in undominated and dominated ones (lines 6-

7). With the sets updated in the previous step, GetNextBlock will be recursively

applied (line 8), until either of the conditions in lines 2 or 5 fail.

GetNextBlock

input: sets of objects Dom , set of classes of objects Und

output: a pair of sets UptDom ,UptUnd
l: UptDom = Dom ; UptUnd =Und
2 If (Vt eThres,30 € UptUnd s.t.t <, o then

3: B. =UptUnd ; output B,

4. UptUnd = ; result|+ = |Bl,|

S: If |result| <k then

6: Temp = UptDom ; UptDom =&

7: OrderObjects(Temp,UptDom, UptUnd)
8: GetNextBlock(UptDom, UptUnd)

Figure 21: GetNextBlock function

Similar to LBA, we can easily define a < P variation of the TBA algorithm in

cases we want a more “relaxed” linear ordering of blocks. The only difference

between the <o and the < pe variation of TBA is to “relax” the conditions in

line 2 of GetNextBlock as follows: if (Vt € Thres, ,Zf o0e€UptUnd st.o<, t)

57

3.2.2.1 Analytical Evaluation

Similar to LBA, TBA has an initialization phase cost which comprises the block

ordering of the involved preferences; the latter is a memory cost of
0(|V([3,Ai)|2) and in general can be neglected. The cost of TBA is mainly due
to the number of disjunctive queries it has to execute in order to retrieve the top-
k objects. Assuming that there are available indices in each attribute that the
preference involves, a disjunctive query over one attribute is usually evaluated

by traversing the available index on the involved attribute, computing the union

of the oids and then fetching the matching objects from the disk. When

(unclustered) B™-trees are used, the I/O cost for each such query g will be

0(10g|R| +|ans(q)|). Assuming that » queries are executed in total to compute

the top-k objects, TBA’s cost is 0(r><(log|R|+|ans(q)|)). However, queries

involve now only disjunctions of preference terms per attribute while the
returned objects are not exclusively active but may include inactive ones
matching at least one active attribute term. In addition, the fetched objects are

compared pair-wise.

Best case time complexity: In the best case, one query (usually from the top
lattice block) is also sufficient for constructing B, and the number of returned
tuples is very small (i.e., ideally k). Thus, the cost of pair-wise dominance

testing can be neglected. In particular, when |Act(P, A)| >>|V(P, A)| the best

case practical cost of TBA is O(log(|R|)) .

Worst case time complexity: In the worst case, TBA exhausts all but the last
block of the query lattice, and the query executed in the next round actually
returns almost all of the active objects. The total number of queries executed in
this case is given by the number of blocks of preference terms per attribute

Z#blocks(Pi, A)) . Assuming a factor ¢ ? of extra inactive objects fetched w.r.t.

i=1

1 Recall that TBA uses the most selective attribute terms and thus the number of inactive tuples expected to be fetched

is relatively small.

58

the number of active ones, in the worst case TBA cost is

O _#blocks(P, A)xlog(R|) +cx|Act(P, A)|) for I/Os and O(|Act(P, A)|2) for
i=1

main memory objects comparisons. In particular, when

|Act(P, A)| >> Z#blocks(B ,4,), the practical complexity of LBA in the worst
i=1

case becomes 0(|Act(P, A)|2) .

Space Complexity: The space complexity of TBA is O(|R), since the entire

relation might be fetched and stored into Undominated, Dominated sets.

TBA exploits selectivities of the atomic selection conditions so that to avoid
fetching more objects than those actually required. Moreover TBA algorithm is
progressive and thus suitable for on-line processing. However, TBA will access
not only the top-k objects but also a portion of the active and inactive ones and
probably more than once. Finally TBA needs to perform dominance tests for the
retrieved objects. Compared to LBA, TBA is more sensitive to the number of
active objects (due to dominance tests), and, at the same time, much less

affected by the size of V'(P, A) (i.e., sum vs. product of the of active preference
domains sizes V' (P, 4,)). This is one of the subjects of our experiments reported

in the following chapter.

59

60

Chapter 4. Experimental Evaluation

In this chapter we experimentally evaluate the top-k4 algorithms presented in
Chapter 3. The goal of this evaluation is to measure the performance as well as
the sensitivity of the presented algorithms against realistic data distributions and
sizes of preferences. Specifically, following the methodology widely used in the
literature ([5], [27], [29], [31]) we consider different kinds of synthetic
databases (correlated and uncorrelated) exhibiting various value distributions.
We also vary the number of the atomic preferences involved, the complexity of

each atomic preference, the composition operators, and the databases size.

4.1 Experimental Environment

All our experiments are carried out on a Pentium 4 CPU at 2.66 GHz with 1 GB
of main memory. The operating system is Windows XP Pro SP2. The
benchmark databases and intermediate results are stored on a 20 GB hard disk.
We opted for an open source, rather than a commercial, framework for the
implementation of our work, thus, all algorithms were implemented in Java on
top of the PostgreSQL 8.1 Query Engine. Each benchmark database follows the

relation schema R(A4,,4,,...,4,) where the domain of attributes is given
respectively by the sets
dom(A) =1a,,a,,...,a,},dom(A4,) =1{b,b,,....,by},...,dom(A,) ={J,s jos- s Jo} -

Each database tuple is 100 bytes long; all indexes were implemented as B*
trees. In some experiments we also implemented hash indexes. Testing has
shown no difference in performance, while the index size and build time for

hash indexes was much worse. Therefore, the performance figures presented in

the rest of this chapter employ B" trees.

61

4.2 Preference and Testbed Generator

Each atomic preference P, is created by first defining the size and the number

of blocks #blocks(P;) of the poset (dom(Aj),ﬁp/_)M. Next all blocks are

populated by randomly allocating all the nodes to them, at least one to each of

them. Then the poset is formed by randomly connecting nodes so that each node

of a block B, can be linked only with nodes of block B, . Block B, will

contain the maximal elements of the poset. We study three different kinds of

databases that differ in the distribution of values over attributes:

Uniform: for this type of database, all attribute values are generated
independently using a uniform distribution. Thus, all distinct values of a

domain have the same selectivity.

Correlated: for a given preference P, a correlated database represents a
testbed in which objects which are good (with respect to P) in one
attribute are also good in the other attributes too. We produce a random
object in a correlated database as follows. First, all attribute values are
generated using a uniform distribution. For each active object, if a
maximal value appears in one attribute then the object is forced to
receive maximal values in the other attributes too. Otherwise the object
remains unchangeable. Therefore, in a correlated database a large
portion of the available active objects are undominated according to P

(i.e., belongto B,).

Anti-Correlated: for a given preference P, an anti-correlated database
represents a testbed in which objects which are good in one attribute are
bad in another attribute. We produce a random object in an anti-
correlated database as follows. First, all attribute values again are

generated using a uniform distribution. If an active object has a value in

' Of course the size should be larger than the number of blocks since each block must contain at

least one node

62

an attribute that belongs to the top half blocks of the corresponding
atomic preference it would randomly receive a value in another attribute
that would belong in one of the bottom half blocks of the corresponding

atomic preference and so on. Thus, the first blocks of V(P,A) do not

exist in an anti-correlated database.

We also studied testbeds that followed the exponential distribution Se™” (mean
S =10). In particular, for each attribute A; we defined a list that contained all
distinct values of dom(4;). The positioning of each value in the list was

performed in several manners: randomly, optimistically (i.e., active values first),

pessimistically (i.e., active values last). The first value in the list would appear

-1 -2
0,1xe'®x|R| times in the database, the second 0,1xe!x|R| and so on.

However, the results were similar to the three kinds of testbeds already
described and as a result we only show the results for the uniform, correlated
and anti-correlated testbeds. In our experimental presentations, unless stated
otherwise, we ask for the top-1 (i.e., the undominated) objects accrording to

P=R &P > P which is our default preference where A =(dom(4,),=,),
P, =(dom(4,),%,), P, =(dom(4,),s,). Figure 22 depicts their corresponding

Hasse diagrams:

Figure 22: Hasse diagram for our default atomic preferences

63

4.3 Metrics

4.3.1 Experimental parameters

In order to analyse the results of our experiments, we define the following
metrics':

P VP A

—_— : =1 then all objects of the database are
| dom(A)| | dom(A)|

active. This metric is affected obviously if we alter |V(P,A)|.

[V (P, 4)|

Specifically we can decrease
| dom(4) |

by increasing the

dimensionality of the preference expression and increase it by also

increasing the atomic preferences size (i.e., increasing the number of

active values in each domain).

| Act(P, A) |
| R

tests will be performed (for the algorithms that perform dominance

ratio: the more this ratio is close to 1 the more dominance

tests). Again this metric is affected by varying the dimensionality of the
preference expression and/or by changing the size of atomic preferences.

: : . . . : Act(P, A
In particular by increasing the dimensionality we decrease |C|(T)|

ratio while by increasing atomic preferences size we increase it.

| di.p (R)|

——————— ratio: for a specific k, this ratio is actually the portion of
| Act(P, A) |

active objects that are top-k . Clearly, we can alter metric 3 if we vary

the number of requested objects £ for each testbed.

!5 Recall that assuming a preference P over a non empty set of attributes A, dom(A) and
V(P,A) are the Cartesian Products of domains and of active value sets respectively,

Act(P, A) is the set of active objects of R w.r.t P and g, ,(R) the set that contains the

top-k objects.

64

V(P4

4. ratio: represents the Cartesian Product space in which
| Act(P, A) |
active objects are distributed. If M<l then almost for each
| Act(P, A) |

tuple veV (P, A) there exists object o € R such that o[A]=v. We can

decrease V.4 ratio by increasing the size of the database and
| Act(P, 4)|

increase it by increasing the dimensionality of the preference.

4.3.2 Performance parameters

In order to present the major factors affecting the performance of each algorithm
we also define the following metrics:

5. Total (running) time of each algorithm. 7Total time comprises into the

Database time (i.e., the time needed by the DBMS to run the queries

and to return the results) and the Main memory time (i.e., the time

needed by each algorithm to run if all objects were available in
memory).

| Act(P, A) _seen |
| Act(P, A) |

ratio: Is the portion of the active objects that were

processed (besides the ones that were returned as top-k) to the total
number of active objects.

| Inact(P, A) _seen|
| Inact(P, A) |

ratio: Is the portion of the inactive objects that

were processed to the total number of inactive objects.

8. |queries evaluated |: is the number of queries that each algorithm

evaluates in order to retrieve the top-k4 objects.

9. The number of dominance tests that each algorithm performs.

Dominance test requires performing at most one "< " test over each of
the m attributes of the objects on which atomic preferences are

expressed. If we assume that the cost of one subsumption check is that of

reachability in graphs then its cost is 0(|E |) where E denotes the graph

edges. Summarizing, the more atomic preferences we have, and the

65

more “better than” relations each atomic preference involves, the more
expensive the dominance test becomes. Assuming that the top- k& objects

are partitioned into ¢ classes of equivalence, then an algorithm will

x(c—-1)
2

c :)
perform at least +| Act(P, A) _seen| dominance tests (i.e., the

number of tests needed to compare the c representatives plus at least one
test for each other active object that the algorithm sees). Of course, this

holds for the algorithms that perform dominance tests.

Note that metrics 7 and 8 are meaningful only for TBA since for BNL and Best

| Act(P, A) _seen| |Inact(P,A)_seen|
| Act(P, A) | | Inact(P, A) |

it holds =1 while for LBA it holds

| Act(P, A) _seen| |Inact(P,A)_seen|
| Act(P, A) | | Inact(P, A)|

=0 regardless of the database or the

preference expression that is used.

4.4 Query Patterns and Evaluation Plans

Beginning in release 8.1, PostgreSQL has the ability to combine multiple
indexes (including multiple uses of the same index) to handle cases that cannot
be implemented by single index scans. The system can form AND and OR
conditions across several index scans. To combine multiple indexes, the system
scans each needed index and prepares a bitmap in memory giving the locations
of table rows that are reported as matching that index’s conditions. The bitmaps
are then ANDed and ORed together as needed by the query. Finally, the actual
table rows are visited and returned. The table rows are visited in physical order,
because that is how the bitmap is laid out; this means that any ordering of the
original indexes is lost. Now we describe how actually PostgreSQL evaluates

each query pattern that TBA and LBA produce.

= TBA constructs and evaluates queries which are simply disjunctions of

atomic selection conditions over just one attribute. A general query g, of

the form following ¢,:=4,=wv...v4,=v,, is broken down into m

66

separate scans of an index on 4;, each scan using one of the

disjunctions. The results of these scans are then ORed together to

produce the result.

LBA that follows the MQ rewriting constructs a set of conjunctive
queries ¢, of the form ¢, =4 =v A4, =v,A...A4,=v,. For the
implementation of g, each index with the appropriate query clause is

used and then the index results are ANDed together to identify the result

TOWS.

LBA that follows the SQ, rewriting constructs queries which are

disjunctions of the conjunctions of the atomic selection conditions. First

for a general query q, of the form

g, =A=vrndy=v,A..n 4, =v,)V (4 =V A, =v) A A4 =)

the result rows for each of the conjunctions are identified as described
before (i.e., each index with the appropriate query clause is used and
then the index results are ANDed together). Then the ANDed results are

ORed together to produce the actual results of g

LBA that follows the SQ, rewriting produces queries which are defined

as conjunctive queries of m disjunctions (one for each attribute). An

example of such a query could be the following:
q;= (4 =v,Vv 4 :vl')/\(A2 =v,VA4, :vzr)/\.../\(Am =v VA, :vm').

Now initially the result rows for each of the disjunctions are identified
(i.e., each index with the appropriate query clause is used and then the

index results are ORed together). Then the ORed results are ANDed

together to produce the actuall results of g, .

67

4.5 The effect of database size

In order to evaluate the effect of the database size on our techniques, we use our

default preference P=PF & P, > P, of Figure 22 and vary the cardinality of the

database from 10 to 1000 MB for each kind of database (uniform, anti-

correlated, correlated). It is easy for someone to see that since V' (P, A) remains

fixed here we will have more and more active objects by increasing the size of
the database due to possible duplicates values. In other words, the larger the

[V (P, 4|

database gets the smaller —————
| Act(P, 4)|

ratio becomes. Also the size of g, ,(R)

becomes larger. For these reasons, the number of dominance tests that each
algorithm needs to perform increases too. The following tables illustrate the

metrics for each of the three testbeds.

Metrics \ 10 50 100 500 1.000
MB
|V(P, A)| 1.728 1.728 1.728 1.728 1.728
8.000 8.000 8.000 8.000 8.000
|d0m(A)| 0.216 0.216 0.216 0.216 0.216
|Act(P,A)| 21.410 107.599 215.001 1.079.549 2.160.391
—|R| 100.000 500.000 1.000.000 5.000.000 10.000.000
0.214 0.215 0.215 0.215 0.216
|qk,P(R)| 69 382 754 3.829 7.500
- 21.410 107.599 215.001 1.079.549 2.160.391
|ACt(P:A)| 0.003 0.003 0.003 0.003 0.003
|V(P’A)| 1.728 1.728 1.728 1.728 1.728
TN 21.410 107.599 215.001 1.079.549 2.160.391
|ACI(P’A)| 0.0810 0.0160 0.0080 0.0016 0.0007
Table 1: Metric values for the Uniform Testbed
Metrics \ 10 50 100 500 1.000
MB
|V(P, A)| 1.728 1.728 1.728 1.728 1.728
8.000 8.000 8.000 8.000 8.000
|dom(A)| 0.216 0.216 0.216 0.216 0.216
|Act(P,A)| 21.410 107.599 215.001 1.079.549 2.160.391
IR 100.000 500.000 1.000.000 5.000.000 10.000.000
0.214 0.215 0.215 0.215 0.216
|qu(R)| 9.074 45.381 90.723 453.615 907.230
P — 21.410 107.599 215.001 1.079.549 2.160.391
|ACt(PaA)| 0.424 0.422 0.422 0.420 0.420
|V(P’A)| 1.728 1.728 1.728 1.728 1.728
s 21.410 107.599 215.001 1.079.549 2.160.391
|ACZ(P’A)| 0.0810 0.0160 0.0080 0.0016 0.0007

Table 2: Metric values for the Correlated Testbed

68

Metrics \ 10 50 100 500 1.000
MB
|V(P, A)| 1.728 1.728 1.728 1.728 1.728
8.000 8.000 8.000 8.000 8.000
|d0m(A)| 0.216 0.216 0.216 0.216 0.216
|Act(P,A)] 21.410 107.599 215.001 1.079.549 2.160.391
—R 100.000 500.000 1.000.000 5.000.000 10.000.000
| | 0.214 0.215 0.215 0.215 0.216
|qk’P(R)| 534 2.815 5.656 28.283 56.464
VN 21.410 107.599 215.001 1.079.549 2.160.391
|ACt(P:A)| 0.025 0.026 0.026 0.026 0.026
|V(P,A)| 1.728 1.728 1.728 1.728 1.728
TN 21.410 107.599 215.001 1.079.549 2.160.391
|ACI(P’A)’ 0.0810 0.0160 0.0080 0.0016 0.0007

Table 3: Metric values for the Anti-correlated Testbed

4.5.1 Uniform Testbed

Figures 23 and 24 illustrate respectively the total time and the number of
dominance tests of the various algorithms in the uniform testbed. Figure 25
shows the total execution time of the algorithm (i.e., database plus main
memory time), while figures 26 and 27 depict the scalability over the database
size for the two proposed algorithms. Clearly, LBA outperforms all other
algorithms by several orders of magnitude. For example for the 1000 MB
testbed BNL takes almost 1.000 sec while LBA consumes only 7 sec which
outperforms the former by 3 orders of magnitude. Due to the fact that the size of

the database increases and V' (P, A) remains fixed, all tuples of V(P,) exist

and as a result, for LBA the queries of the first Query Lattice block suffice for
computing the answer (in our testbed we need to execute only |A0|%|B0O|x|CO|=6
queries). The only effect in performance is that these queries are more

expensive to evaluate since ¢, ,(R) increases and more objects need to be

fetched the larger the database gets. Compared with other algorithms we
observe that LBA not only has better performance but also is more scalable.
TBA maintains a significant advantage over BNL and Best (1 order of
magnitude) and the difference increases fast when the database becomes bigger.
This is due to the fact that TBA will not require in this case any threshold
renewal therefore it fetches and processes only a small portion of the database.
In this specific experiment TBA fetched only the 5% of the database objects
which includes almost 8% of active objects and only 4% of the inactive ones.
The overall runtime for BNL, Best increased significantly since they need to

process more data objects and perform more dominance tests. Thus, BNL and

69

Best are very sensitive to the size of the database. In particular, for databases
larger than 100 MB, Best exhibites poorer performance compared to BNL.
Since Best has more memory requirements, Java’s garbage collector is forced to
run more times which is time-consuming. Best could not terminate successfully
for the 1000 MB database due to the prohibitive size of the algorithm’s memory

requirements.

70

Total Time

1000

800 4

600 1

400

200 4

0
set/
M

1000

3000000

2500000 A

2000000 4

1500000 4

1000000 1

500000 -

dtests 0

Figure 23: Total time

MB 10 50 100 500 1000

Figure 24: # dominance tests

900

B Main Memory Time

800

80

70

@ Database Time

700

60 -

600 - 40 -

500

50

30

400 +

20 A

o

LBA | TBA | Best | BNL | LBA | TBA | Best | BNL | LBA | TBA | Best | BNL

LBA | TBA | Best

10 MB

10 MB 50 MB 100 MB

LBA | TBA | Best LBA | TBA | Best LBA | TBA | Best

1000 MB

Figure 25: Total Time Analysis

~

o

| |®Main Memory Time
O Database Time

H Main Memory Time
100 7@ patabase Time

2

©

60 -

Total Time (sec)
-~

~

Total Time (sec)

40

[])
—

10 MB

50 MB

‘ 100 MB ‘ 500 MB ‘ 1000 MB 07
10 MB 50 MB 100 MB 500 MB 1000 MB

LBA
TBA

Figure 26: LBA scalability over database size Figure 27: TBA scalability over database size

71

4.5.2 Correlated Testbed

Figures 28 to 32 show the performance of the various algorithms in the

correlated testbed. The main characteristics of the correlated testbeds are that

almost 40% of active objects are undominated objects and belong to the result.

However, the number of equivalence classes in which the objects of the result

are partitioned is the same as in the uniform testbeds. As we can see, the relative

performance is unchanged compared to the uniform testbed. The only

differences are that:

Due to the nature of the correlated testbed, we have an increase of the
answer size for each query issued by LBA and TBA, which are identical
to those of the uniform testbed case.

Moreover, the growth of the result itself causes a worth mentioning
increase of the number of dominance tests for the respective algorithms
(TBA, BNL, Best). This can be explained as follows: Assume that the
top-k objects are partinioned into ¢ classes of equivalence. Now let an
incoming object o that belongs to the result which is equivalent to one

of the ¢ representatives and therefore incomparable to the remaining

. c . .
ones. Then in average 5 dominance tests need to be performed in order

to put o into the corresponding class. Now assume an object o’ that

does not belong to the result (i.e., o' is worst than some representatives).
: c . '
Then, in average less that) dominance tests need to be performed to o

in order to find a representative that is better than o'. Hence, in average
more dominance tests are performed for an object that belongs to the
result compared to an object that does not. To conclude, in correlated
testbeds the overall number of dominance tests increases because the
size of the result is bigger than the corresponding result in uniform

testbed.

72

1000 3500000
3000000 -
800 |
2500000 -
600 1 2000000
400 4 1500000
1000000
200 |
500000 -
sec 0 dtests 0 f T T * T +
/MB 10 50 100 500 1000 /MB 10 50 100 500 1000
Figure 28: Total time Figure 29: # dominance tests
1200
90
B Main Memory Time
1000 @ Database Time
800 -
£ oo
g 600
B
400
200
o1
LBA | TBA | Best LBA | TBA | Best | BNL | LBA | TBA | Best LBA | TBA | Best
1000 MB
Figure 30: Total Time Analysis
14

300

124 B Main Memory Time
O Database Time

N
=]
t=3

Total Time (sec)

Total Time (sec)
o
o

N

=)

=3
L

o
k=]
L

250 - B Main Memory Time
1 O Database Time

10

8

6 - -

4

’ I

J —

10 MB 50 MB

100 MB 500 MB 1000 MB 0
10 MB 50 MB 100 MB 500 MB 1000 MB

TBA

Figure 31: LBA scalability over database size Figure 32: TBA scalability over database size

73

4.5.3 Anti-Correlated Testbed

In figures 33 to 37 we illustrate the performance of the various algorithms in the
anti-correlated testbed. The relative performance is again unchanged compared
to the uniform and the correlated testbeds, with only the following differences:

= LBA and TBA have an increased database time since both algorithms
need to evaluate more queries in order to retrieve the top-4 objects. In
particular, in the anti-correlated testbeds LBA evaluates 550 and TBA 4
queries contrary to the uniform and the correlated testbeds where 6 and 1
queries need to be evaluated respectively.

* We have an increased number of dominance tests that the algorithms
perform due to the facts that we have more objects in the result and
because the top-k objects are partinioned into more equivelent classes
compared to uniform testbeds. Specifically, in the uniform testbeds we
have 6 classes of equivalence while in anticorrelated ones we have 40

classes.

TBA and BNL exhibit a similar behavior in the anticorrelated testbed and that is
because TBA needs to fetch (and compare) a significant portion of the database.
For example, in an anticorrelated testbed the percentage of active objects that
TBA fetches increases almost to 60%. However, it is worth noticing that
although TBA requires almost the same number of dominance test compared to
BNL and Best there is a significant difference in their main memory processing
time. This is due to the fact that the latter also includes the time needed by the
algorithm to check if an object is active or not. To conclude, BNL and Best are
penalized by the fact that they need to perform such checks for all objects of the
database contrary to TBA. Above 500MB, Best was unable to terminate

successfully.

74

1200

sey
10 50 100 500 1000
MB

Total Time (sec)

Total Time (sec)

80

@
=3

40

2

=3

Figure 33: Total time

8000000

7000000 4

6000000 4

5000000 4

4000000 -

3000000 4

2000000 4

1000000 -

" " " "

dtest/U . ; . .
wa 1° 50 100 500 1000

Figure 34: # dominance tests

1200
® Main Memory Time
1000 120 @ Database Time
100
goo | 80
60
600 40
20 7
400 o
LBA | TBA | Best | BNL | LBA | TBA | Best | BNL | LBA | TBA | Best | BNL
10 MB 50 MB 100 MB
200 A
0 4
10 MB 1000 MB
Figure 35: Total Time Analysis
1000
- - 900 B Main Memory Time
1 B Main Memory Time I Database Time
O Database Time 800
__ 700
H
© 600
@
£ 500
-
£ 400
o
-
300
T 200
100
| 0 = |
10 MB 50 MB 100 MB 500 MB 1000 MB
10 MB 50 MB 100 MB 500 MB 1000 MB
LBA
TBA

Figure 36: LBA scalability over database
size

75

Figure 37: TBA scalability over database size

4.6 The effect of atomic preferences size

In order to study the effect of the atomic preference’s size we used our default
preference of Figure 22 and enhanced the size of each atomic preference

P =(dom(4,),=,) to involve more values from the corresponding domain

dom(4;) until all values of dom(4;) to take part in s, (in that case we will

ave |V(P’A)|=|ACt(P’A)|:1). So, increasing the size of each atomic

| dom(4) | | R
preference has the effect of increasing the number of active objects and thus the
. |V(P,A)| .
number of dominance tests that need to performed. However, —————— ratio
| Act(P, A) |

remains fixed since in the uniform testbed all values have the same selectivity.
We initially increased the size of each atomic preference up to 16 and then up to
20. The number of blocks of each poset remained fixed. The enhancement was
performed as follows: each additional node is randomly distributed between the
blocks. Then the poset is reformed by randomly connecting the added nodes of a

block B, only with nodes of block B, . In Table 4 we can see the metrics for

this experiment in which we used a 100 MB uniform testbed.

Metrics \ Poset Size 12 16 20
|V(P,A)]| 1.728 4.096 8.000
8.000 8.000 8.000
|d0m(A)| 0.216 0.512 1.0
| Act(P, 4) | 215.001 511.434 1.000.000
R 1.000.000 1.000.000 1.000.000
| | 0.215 0.511 1.0
|%,P(R)| 754 3.019 5.036
e —— 215.001 511.434 1.000.000
| Act(P, A)| 0.003 0.005 0.005
|V(P,A)| 1.728 4.096 8.000
215.001 511.434 1.000.000
| Act(P, A)| 0.008 0.008 0.008

Table 4: Metric values (increasing atomic preference size)

Again the clear winner is LBA. In all instances of the experiment, LBA
outperforms BNL and Best by 2 orders of magnitude. TBA maintains a
significant advantage over BNL and the difference increases the larger the
poset’s size gets since TBA processes fewer active objects than BNL. The
percentage of active objects that TBA fetches varies from 8% to almost 12%.

BNL is significantly affected due to the need to perform more dominance tests.

76

180

Best could not terminate successfully when the size of the poset exceeds 16 due

to the prohibitive size of the algorithm’s memory requirements.

3000000

150 1

120 1

80 4

B0 1

30 4

0

—&—EBNL
—a-BEST
——TBA
——LBA

/'

& i »

0

sec

Total Time (sec)

12 16 20

IV(P, Al

200

Figure 38: Total time

dtests

2500000 4

—ic— BNL
—a-BEST
——TBA
——LBA

2000000 4

1500000

1000000

500000

12

IVEP, &)
Figure 39: # dominance tests

16 20

180 +—

160

B Main Memory Time

@ Database Time

140

120

100

80

60

40

20

=

— o

_ B

LBA ‘ TBA ‘ Best ‘ BNL
12

LBA ‘ TBA ‘ Best ‘ BNL

16

Active Domain Values

Figure 40: Total Time Analysis

LBA ‘ TBA ‘ Best ‘ BNL
20

No new blocks were added to the existing ones as the effect of increasing

existing blocks’ sizes is much stronger, both for LBA and TBA. For the former,

this is due to the fact that the evaluation of a block B, engages the execution of

all the queries in the respective OB, block, thus, the more they are, the longer it

will take. As for the latter, the “wider” a block is, the “longer” its selected

disjunctive query will be and the bigger its answer size will get.

77

4.7 The effect of preference dimensions

In order to study the effect of dimensionality (i.e., the number of attributes
involved in a preference expression), we used a 100 MB uniform testbed and
varied the number of the atomic preferences m between 2 and 5. Each
additional atomic preference was created as described in section 4.2. They have
been composed using pareto and prioritized preferences. Clearly, regardless of

the type of composition, the more attributes involved the more |V (P, A)|
increases while | Act(P, A)| decreases. As a result, the larger m gets, metrics

VPA| | AcP,)|
[dom(4)] |

decrease while M ratio increases. In this
| Act(P, 4) |

particular experiment this happened when m changed from 4 to 5. Table 5 and

Table 6 depict the metrics for this specific experiment.

Metrics \ dimensions 2 3 4 5
|V(P,A)] 144 1.728 20.736 248.832
N 400 8.000 160.000 3.200.000
|d0m(A)| 0.360 0.216 0.130 0.078
|Act(P,A)| 359.206 215.001 129.158 77.453

—R 1.000.000 1.000.000 1.000.000 1.000.000
| | 0.360 0.215 0.219 0.077
|qu(R)| 4.954 754 44 131
P —— 359.206 215.001 129.158 77.453
|ACZ(P3A)| 0.014 0.004 0.0003 0.002
|V(P,A)| 144 1.728 20.736 248.832
359.206 215.001 129.158 77.453
|ACt(P’A)| 0.0004 0.008 0.160 3.213

Table 5: Metric values (increasing dimensionality-pareto composition)

Metrics \ dimensions 2 3 4 5
|V(P,A)] 144 1.728 20.736 248.832
N 400 8.000 160.000 3.200.000
|d0m(A)| 0.360 0.216 0.130 0.078
|Act(P,A)| 359.206 215.001 129.158 77.453

—R 1.000.000 1.000.000 1.000.000 1.000.000
| | 0.360 0.215 0.219 0.077
|qu(R)| 4.954 754 44 12
—_— 359.206 215.001 129.158 77.453
|ACt(PaA)’ 0.014 0.004 0.0003 0.0002
|V(P,A)| 144 1.728 20.736 248.832
359.206 215.001 129.158 77.453
|ACt(P’A)| 0.0004 0.008 0.160 3.213

Table 6: Metric values (increasing dimensionality-prioritized composition)

78

As m increased, |q, ,(R)| decreased both in prioritized and in pareto

V(P4

composition. In the latter case, though, when —————
| Act(P, A) |

becomes larger than

1, | g, »(R)| started increasing again. This behaviour is explicable if we follow

the nature of the two operators. For the case of the prioritized composition, each

time a new individual preference is added, the objects of the previous top block

B, , and only those, are candidates to belong to the new BO' , too. This is due to

the “left to right” priority nature of the > operator. So, the new top block BO'
will comprise |B0| or less objects.

For the case of the pareto composition, on the other hand, while

VP, 4)]

—————— <1, there are enough objects of Act(P, A) to match the structure of
| Act(P, A) |

V(P,4), so |q,,(R)| decreases with the Act(P,A4) decrease. But, when,

[V (P, A

eventually, it holds that
| Act(P, A) |

>1, meaning that Act(P,A) contains less

and less objects while V(P,A) grows wider, the probability of the former

objects to be incomparable to each other rises, too. This leads to a high

probability for each of these objects to belong to the new top block B, thus,
increasing |q, ,(R)| as m increases again. Figure 41 and Figure 42 show the

total times of the various algorithms as a function of dimensionality for pareto

and prioritized composition respectively. LBA performs well until m—;’:‘lf)l)ll
becomes larger than 1 (i.e., when the preference contains more than 4
attributes). At that point, the degradation of LBA is caused by the need to
evaluate a large number of empty queries (see Figure 43 and Figure 44) in order
to search the large space of V(P,A) where the top-k objects are distributed.
VP, 4|

TBA performs better than LBA when ——————
| Act(P, 4)|

>1 and this is due to the fact

that TBA needs to evaluate fewer queries than LBA. For example, for 5
attributes in a pareto preference LBA evaluates 772 queries while TBA only 6.

This difference becomes more important as the number of attributes increases

79

and especially when the preference expression contains > operators. TBA
performs better in the prioritized composition and that is because a fetching
attempt here drops threshold values more than the same fetching attempt in the
pareto composition and that event leads to faster termination of the algorithm. In

this experiment, since | Act(P, A)| decreases and the size of the testbed remains

fixed, the performance of BNL and Best mostly depends on the size of g, ,(R).
When g, ,(R) decreases (e.g., in low dimensionality in the pareto composition

or in prioritized composition), BNL and Best exhibit good scalability. On the

other hand, when g, ,(R) increases (e.g., in high dimensional pareto

composition) their performances drop since more pairwise comparisons are

performed.

150 150

—d—EBNL
—a-BEST
——TBA
—+—LBA

120 1 170 |

90 1 90 1

60

80

30 1 30

0 + T + i T 0

sec
o 2 3 4 b m

Figure 41: Total time, uniform testbed (100 MB)

Sec

Figure 42: Total time, uniform testbed (100 MB)

800

180

700

——‘ @ # queries I |

600

160 *4‘ @ # queries

140

120

500

100
400

80 1

300
60

200

40

100 | 2

o

o

m m
LBA‘TBA‘Best‘BNL LBA‘TBA‘Best‘BNL LBA‘TBA‘Best‘BNL LBA‘TBA‘Best‘BNL LBA‘TBA‘Best‘BNL LBA‘TBA‘Best‘BNL LBA‘TBA‘Besl‘BNL LBA‘TBA‘Besl‘BNL

2 3 4 5 2 3 4 5

of attributes in complex preference

Figure 43:# queries evaluated - pareto
composition

80

of attributes in complex preference

Figure 44: # queries evaluated-prioritized
composition

4.8 Effect of the <i9 ordering

In this experiment we want to study the impact of adopting the more “relaxed”

<4 linear order of blocks vs. <. and identify possible performance trade-offs.

Specifically we repeated experiment of section 4.7 (as dimensionality seems to
be the most crucial factor in the performance of LBA and TBA) but this time we

also included the < e variations of our algorithms. In particular, we included

the following query rewritings:

" LBA-MQ: the < P variation of LBA that follows the MQ rewriting
(i..e., one conjunctive query per tuple of V' (P, 4)).

» LBA-SQ-conj: the <47 variation of LBA that follows the SO,
rewriting (i.e., one conjunction of disjunctions per block of tuples of
V(P,A))

" LBA-SQ-disj: the <, variation of LBA that follows the SQ,
rewriting (i.e., one disjunction of conjunctions per block of tuples of
V(P,A))

» TBA-relaxed : the < e variation of TBA

Figure 45 to 50 illustrate the performance of the various query rewritings in

LBA and TBA algorithms with respect to the number of attributes for pareto

and prioritized composition. As it was expected the < 4 variations of LBA,

v
TBA are more efficient than the corresponding <. ones, since the identification

of all of the incomparable objects is not a strict requirement in the < e order.

Moreover, the LBA variations are more efficient than the TBA variation.
LBA-SQ-conj execution times are the best and outperforms all other <4y
variations by 1 order of magnitude. Although LBA-SQ-conj in each case
constructs the same number of queries as LBA-SQ -disj does, the evaluation of
LBA-SQ-conj’s queries needs fewer index scans and hence leads to better

performance (see section 4.4). Note that we do not plot the results of

81

TBA—relaxed in the prioritized composition because the algorithm behaves

exactly like TBA.

We also replaced simple-key indexes with a complex-key one. In that case
LBA-SQ-disj had better performance than LBA-SQ-conj. However, the
existence of a complex-key index in practical cases is rare since complex-key
indexes are unlikely to be helpful unless the usage of the table is extremely
stylized (e.g., when there are constraints on the leading-leftmost columns).

Therefore we still propose LBA-SQ -conj against LBA-SQ -disj .

Nevertheless there is a trade-off between the performance and the number of the

top-k objects that the <gv variations of LBA, TBA actually return. For

example in the 5 dimensional experiment of the pareto composition, TBA and

LBA returned 131 objects while the < P variations returned only 6. Similarly in

the 5 dimensional experiment of the prioritized composition, TBA and LBA

returned 12 objects while the < pe variations of the algorithms returned only 1.

This is explained by the fact that the identification of the incomparable objects

is not a strict requirement in the < order (recall that the < o order does not

go against the intuition “most-preferred objects first”). Conclusively, we can say

that the < e variations could be very useful in practical cases with preference

expressions of high dimensionality. However, by paying the price of

“sacrificing” a subset of top- & objects in terms of efficiency.

82

40 } an
80 -
a0 70 -
——LBA 60 1 —4—LBA
= LBAMQ = LBA-MQ
. —s—LBA-SQ-con) =ty —e—LBA-SQ-con
—— L BA-SQ-dis) a0 ——LBA-SQ-dig]
30 -
20 1
10
sec y
m 2 3 4 5

Figure 45: Total time, uniform testbed (100 Figure 46: Total time, uniform testbed (100 MB)
MB)

800 — 180 m
700 *4@ # éueries evaluated 160 ’4@
600 140
500 120
100
400 -
80 7
300 - 60
200 40 -
100 20
0 = 0 m m m m ’_‘
3¢9 |3/9/8 |3 g9 |3¢8 s1gl2 (3139 |33 %9 |3/g%
< | L < | L < | Z < | g < | g < | Z < | < | g
g3 g3 a3 g3 a3 3|3 G| 4 3| 9
2 3 4 5 2 3 4 5
of attributes in complex preference # of attributes in complex preference
Figure 47: : # queries evaluated-pareto Figure 48: # queries evaluated-prioritized
composition composition
90 7
80 1 ef—‘lj#queries luated
70 4
5
60 +
4
—— TBA
<y —8—TBA-relaxed 3
40
.
30
1
EENENRNENN
0
o < .3 < .32 < .2 < -3
P S5 R 25| R | 35| B | 35
'_G) '_0 '_0 '_u:
0 T T T = = = =
sec
m 2 %) 4 5 2 3 4 5

of attributes in complex preference

Figure 49: Total time, uniform testbed (100

MB) Figure 50: :# queries evaluated - pareto

composition

&3

Figure 51: Total time, 100MB uniform

200 4

150 4

100 4

50 1

4.9 Effect of the Number of Objects Requested k

In Figures 51 to 54 we report results for our default setting, as a function of & .
k was increased such that each increment would result a new block in the
answer. Table 7 illustrates the metrics for this experiment in which an 100 MB

uniform testbed was used.

Metrics \ k k=1 k=1.000 k=1.500
|V(P, A)| 1.728 1.728 1.728
8.000 8.000 8.000
|d0m(A)| 0.216 0.216 0.216
| Act(P, A) | 215.001 215.001 215.001
R 1.000.000 1.000.000 1.000.000
| | 0.215 0.215 0.215
|%,P(R)| 754 1.253 1.507
TN 215.001 215.001 215.001
| Act(P, A)| 0.004 0.006 0.007
|V(P’A)| 1.728 1.728 1.728
215.001 215.001 215.001
| Act(P, A)| 0.008 0.008 0.008

Table 7: Metric values (increasing k)

We see that the overall execution time for the algorithms was increased due to
the need to process more objects. However, both LBA, TBA still maintain a
signifficant advantage over the rest algorithms. Specially, LBA outperforms
BNL by 2 orders of magnitude while TBA by 1. BNL is more sensitive in &
since in order to construct the next block of the answer, needs to perform
another scan over the database and process again all objects (both active and

inactive ones).

— 1000000

HLEA mLBA

HTBA 1
gooooo { | TEA

OBRL O BNL

OBEST o OBEST

600000

dtests

400000

200000

LBA LBA LBA.
0 T T

LBA LBA LBA

k k=1 k=1000 k=1500 k k=1 k=10100 k=1500

testbed testbed

84

Figure 52: #Dominance tests, 100MB uniform

250

200

150 A

100

50

o

@ Database Time W Main Memory Time

@ # queries

N | -

H

LBA ‘ TBA ‘ Best ‘ BNL | LBA ‘ TBA ‘ Best ‘ BNL

k=1 k=1000

LBA ‘ TBA ‘ Best ‘ BNL

k=1500

Figure 53: Total time, 100MB uniform

testbed

4.10Conclusions

LBA

anlllal

[

LBA ‘ TBA ‘ Best ‘ BNL

LBA ‘ TBA ‘ Best ‘ BNL | LBA ‘ TBA ‘ Best ‘ BNL

k=1 k=1000 k=1500

Figure 54: #queries evaluated, 100MB

TBA

uniform testbed

LBA—SQ —conj

|[V(P,4)|
—<1

| Act(P, 4) |

| V(P,4)|
| Act(P, 4) |

>land &

| V(P,A)|
| Act(P, 4) |

> 1 an

d >

Table 8: Proposed algorithms in various cases

Altogether, we can draw the following conclusions:

» The larger the database gets LBA and TBA become more and more

attractive. BNL and Best do not scale well over the database size and

that is because at least one scan of the database is required.

* The performance of LBA degrades if

Ve, 4]

—————>>1 while TBA
| Act(P, 4)|

outperforms LBA in such a scenario especially when the preference

expression is prioritized.

85

* The performance of BNL, Best drops significantly when a large portion

))) . | Act(P, A

of the database objects are active (i.e., the larger the ratio #
gets) and that is because at least one dominance test needs to be
performed for each active object. LBA is the best algorithm in such
cases since its the only algorithm that does not perform dominance tests.

» The <sv variations of LBA, TBA are more efficient than the <_
variations. Especially LBA-SQ-conj is the most efficient <,

variation.
= BNL is more sensitive in k£ than the rest of the algorithms since in order
to construct the next block of the answer, BNL needs to perform another

scan over the database.

In summary, we propose that a system should implement algorithms LBA,

LBA-SQ-conj and TBA. In particular a system should use LBA in cases

M< 1, TBA in cases where VP, A4)]

————————>1 and the preference
| Act(P, A) | | Act(P, A) |

here

expression contains > operators and LBA-SQ-conj in cases of pareto

compositions of high dimensionality.

86

Chapter 5: Related Work

5.1 Related Frameworks for Preference Modelling

In this chapter, we overview the relative approaches for the representation of
preferences. Because qualitative approaches are more expressive compared to
the quantitative ones and due to the fact that we our framework constitutes also
a qualitative approach in this section the most important and expressively richer
inquiring works of this category are illustrated, pointing out their main

characteristics.

5.1.1 Kiessling’s Framework

Kiessling ([13], [15]) defines preferences as strict partial orders over attribute

domains. In particular, given A4=1{4,...,4,} a set of attributes 4, with
domains dom(4;), a preference P=(A4,<,) is a strict partial order of
dom(A) =dom(A4)x...xdom(A,), shown as <,cdom(A4)xdom(A). For
x,yedom(A), “x<, y” is interpreted as “I like y better than x”. Kiessling

for ease of use defines a number of base preference constructors. Their goal is
to provide intuitive and convenient ways to inductively construct a preference

P=(4,<,). Formally, a base preference constructor has two arguments, the

first characterizing the attribute names 4 and the second the strict partial order

<,. The most common constructors include following:

» For categorical attributes: POS, NEG, POS/POS, POS/NEG,
EXP

» For numerical attributes: AROUND, BETWEEN, LOWEST,
HIGHEST , SCORE

87

POS specifies that a given set of values should be preferred. Conversely, NEG
states a set of disliked values should be avoided if possible. POS/POS and
POS/ NEG express certain combinations. For example, assuming a preference

P=POS/NEG(A, POS —-set{v,,v,,...,v, } NEG —set{v, .,V v . }) we have

it V2w o> Vinin
x <, yiff(x e NEG—set Ay ¢ NEG—set)v (x ¢ NEG—set Ax & POS—set Ay € POS—set)
(i.e., a desired value should be one from a set of favorites. Otherwise it should
not be any from a set of dislikes. If this is not feasible too, better than getting
nothing any disliked value is acceptable). EXP explicitly enumerates ‘better-
than’ relationships for example P = EXP(color{(green,red),(black, yellow)}).
AROUND prefers values closest to a stated value, BETWEEN prefers values
closest to a stated interval. LOWEST and HIGHEST prefer lower and higher
values, respectively. SCORE maps attribute values to numerical scores,

preferring higher scores.

Kiessling produces more complex preferences by using the following complex
preference constructors:

* Pareto preferences: P=F ® P, ®...®Q P.. P is a combination of equally

important preferences, implementing the pareto-optimality principle.

* Prioritized preferences:P=P &P, &...&P,. P evaluates more
important preferences earlier, similar to a lexicographical ordering. B is
most important, P, next, etc.

* Numerical preferences: P =rank,.(B,P,,...,P). P combines SCORE

preferences P by means of a numerical ranking function F .

Kiessling in [19] and [17] was based on the framework described above in order
to construct extensions to XPATH and SQL which he calls Preference XPATH

and Preference SQL respectively.

Compared to our framework, Kiessling does not seperate between active and
inactive objects. Since inactive objects are incomparable to the active ones, he
puts them in the set of the undominated (top-1) objects. Moreover, by defining

preferences as strict partial orders, the user is not able to define equivalence

88

relations. For the computation of the top-k objects of a relation, Kiessling
introduces a relational operator that he calls BMO ([13], [15]). BMO selects the
set of the most preferred objects (i.e., the first block), according to a given
preference expression. For the evaluation of the BMO operator Kiessling

applies Block Nested Loop (BNL) [13].

5.1.2 Chomicki’s Framework

Chomicki, in his work ([7], [8]) emphasizes the view of preferences as first
order logical formulas which he calls preference formulas. Specifically a

preference formula C(t,t,) on R(4,,...,4,), where
t;,t; €dom(A,)x---xdom(4,), is a first order logic formula that defines a

preference relation >. < (dom(A4,)x---xdom(A,))x(dom(A4,)x---xdom(A,)))
on R as follows:
i, = t; iff C(¢,,1))

If ¢, >, ¢, it means that a tuple 7, dominates a tuple 7, in > .. At this point,
two important observations need to be made. Firstly, Chomicki does not assume
any properties for the preference relations contrary to our framework in which
we define preferences as preorders and Kiessling’s framework where
preferences are considered as strict partial orders. Moreover according to
Chomicki, a preference relation is defined directly over the objects of the
database contrary to the remaining frameworks where preference relations are

defined over attribute domains. Each preference relation >_. defines an
indifference relation denoted by = as follows:

Vit €edom(A)x---xdom(A,), t, =, ¢, iff ;% ¢, and ¢, . ¢,
It easy for someone to see that an indifference relation = actually encapsulates

two notions that were defined seperately to our framework. The equivalence

relation ~ and the incomparability relation ||. Therefore a user can not

explicitly define that two or more values are equivalent or incomparable to each

other.

&9

Chomicki considers two different kinds of composition for producing more
complex preferences. The wundimensional composition which involves
preference relations over just one table and the multidimensional one, which
involves preference relations defined to more than one tables. The
undimensional composition is divided into boolean and prioritized composition.
The most commonly used boolean compositions include union, intersection, and

set difference which are defined as follows:

Assume a relation R(4,,...,4,) and the preference relations >.,>. on R.
Moreover let C, be a preference formula on R that defines a preference
relation > on R.
"= >, is the wunion of >.,>-. (denoted by >.uU>.) Iiff:
fome, U=t UV ot
= >, 1s the intersection of >.,>. (denoted by > .nN>.) iff:
o= L=l = U AL =0 L
» > s the set difference of >.,>. (denoted by >.—>.) iff:
R T I SN e
where 7,,t; € dom(A4,)x---xdom(4,) . Now, a prioritized composition is
defined as follows: Assume a relation R(4,,...,4,) and the preference relations
=, on R.Let C, be a preference formula on R that defines a preference
relation >, on R.>. is the prioritized composition of >.,>. denoted by
D> iff: Lime b=t =ct, v 20t A -0 L)) where

t;t; € dom(A)x---xdom(4,).

On the other hand, the multidimensional composition is divided into the pareto
and into the lexicographical composition which are defined as follows:

Assuming relations R(4,,...,4,), S(B,,...,B,) let =_. be a preference relation

on R and > apreference relation on §'.

90

= A preference relation >, on RxS, is the pareto composition of .,
P

> iff Vi ,t; € dom(4,)x---xdom(4,) and
Vt,,t, € dom(B,)x---xdom(B,) it holds
(tty) =, (At Stimct, A=t i ANt =tV =0), where

VF e{C,C'}, X, y=x>, yVX=, .

= A preference relation . on RxS, is the lexicographical composition
of = e iff Vi ,t; € dom(4,)x---xdom(A,) and
Vt,,t; € dom(B,)x---xdom(B,) it holds

(tiat;()}CL (tj’tl’)zti >_C tj V(ti EC tj Atl,(>_C’ tl,)

Similar to Kiessling, Chomicki does not seperate between active and inactive
objects. Inactive objects will be returned as some of the best objects w.r.t a
preference relation. Independently to Kiessling, Chomicki introduces a similar
to BMO relational operator that he calls winnow ([7], [8]). The framework
proposed by Chomicki is very expressive in its principals, yet only a portion of
it has been addressed from the implementation perspective; even more all such
proposals suggest variations of the dominance testing idea leading to quadratic
costs. In [9], a so call weak order framework is introduced, under which a
similar to Best, single pass algorithm, for the evaluation of preference queries is
proposed. Yet, it requires a very narrow semantics in which all non equal
objects of each block are incomparable to each other, and each of them
dominates every object of the succeeding block, and is dominated by every
object in its preceding block. This requirement is much stricter than those of our

framework, employing a much harder to satisfy relation than the <, relation we

introduced.

In [22], [23] a model for representing and storing preferences is proposed.
Numerical values between -1 and 1 are used to express the interest, i.e., the
preference of a user. However, this seems not an intuitive understandable
model. In our framework preferences are modeled in a more natural fashioned

way. Furthermore, the algorithms presented in this work bear similarities with

91

the query rewritings presented in [22], [23] where the integration of
personalization into database queries with the use of structured user profiles has

been proposed.

It is worth mentioning that there are several different alternatives that define
how preference relations order the value space. For instance, [4] distinguishes
between ceteris paribus and totalitarian semantics. According to the ceteris
paribus semantics, for a given preference P a tuple ¢ is more preferred than a
tuple ¢’ iff '<, ¢ and ¢ is equal to ¢’ to every other attribute that describes the
tuples (except the ones involved in the preference). As in our work we do not
impose the latter constraint, our semantics is totalitarian. To our opinion, ceteris
paribus semantics is quite restrictive, and it is unclear if preference queries that
follow the ceteris paribus assumption can be evaluted efficiently in large
databases and real scale web applications (no paper presents experimental
results). CP-nets [3], [10] (that is, Conditional Preference nets) are a graphical
model for representation and reasoning about certain sets of qualitative

preference statements, interpreted under the ceteris paribus assumption.

5.2 Top-k Algorithms

The top-k paradigm has been first introduced ([11], [12]) in order to reduce the
communication cost needed in distributed systems and middleware, in order to
aggregate the ranked results coming from several systems. The authors assume
that each database consists of a finite set of objects. Each object has m values
X,,X,,...,X, , where each x, is actually the score of object o under one of the m
attributes. For each x, it holds x, €[0,1] while f(x,x,,...,x,) is the overall
score of object o for an aggregation function f. The database consists of m
sorted lists L,,L,,...,L,, one for each attribute. Each entry of L, has the form
(0,x,), where x, is the i value of o. Each list L, is sorted in decreasing order

by the x, value. Also, they consider two modes of access to data: the sorted

access and the random one. A sorted access is a sequential access from the top

of a list. Here, the system obtains the score of an object in one of the sorted lists

92

by proceeding through the list sequentially from the top. Thus, if an object o has

the I" highest score in the i list, then [sorted access are required in L, to get

this score under sorted accesses. In random access, the system requests the score

of object o in the L, list, and obtains it in one random access. Of course, a

random access is considered more expensive than a sorted one.

Instead of executing the naive algorithm to obtain the top-k4 objects (look at
every entry in each of the m sorted lists, and compute the overall score of every
object), several algorithms have been proposed. At first, Fagin [12] introduced
an algorithm, named FA (Fagin’s Algorithm). Initially, the FA executes sorted
access to each of the m sorted lists L, in parallel, (i.e., access the top member of
each of the lists, then the second member and so on). FA waits until there is a
set of at least k objects, such that each of these objects has been seen in each of

the m lists. Then for each object that was seen, FA finds the missing values x,,
with a random access to each list Z,. Finally, FA computes the overall scores

according to the aggregation function f for all objects that have been seen and
returns the objects with the k& highest scores. The Threshold Algorithm (TA)
[11] is an enhancement over FA. TA performs sorted accesses in parallel to each

of the m sorted lists L,. For each object o seen, TA performs random accesses
to the other lists to find the score x, of o in every list L and then computes the

overall score of o. For each list L, let X, be the score value of the last object

seen under sorted access. TA computes a threshold value #to be f(x,%,,...,X,)

and works as an upper bound for the unseen objects. The algorithm stops when
at least Aobjects have been seen whose score is at least equal to ¢ and returns the
k objects with the highest scores. Quite similar to TA are also algorithms Multi-

step [26] and Quick-Combine [20].

Furthermore, No Random Access Algorithm (NRA) [11] is proposed for
systems where random access to the ranked lists is not allowed. NRA performs

only sorted accesses in parallel to each of the m sorted lists L,. At each depth

d (i.e., when the first d objects have been visited across all m lists) the bottom

93

values x,'”,x,',...,x " are maintained as the scores last seen from each input

list. For every object o0 NRA computes a lower bound W/ (0) and an upper
bound B (0). The lower bound for an object o at depth d is the score of the
aggregate function f where for each unknown score x, we put 0. In the
computation of the upper bound for each unknown score x, we put the value
x"’. The algorithm maintains the k objects with the largest W' (ties are

broken using an object’s B’ score). Let M,'” be the k” largest worst score.
Then NRA stops when k distinct objects have been seen and all the other
objects outside the top-k objects have an upper bound value less or equal to
M,'”. Quite similar to NRA are also Stream-Combine [18] and SR-Combine

[16].

Finally in [25], the authors introduced Algorithms Upper and Pick for
evaluating top-k selection queries over web-accessible sources assuming that
only random access is available for a subset of the sources. Similarly, Algorithm
MPro by Chang and Hwang [6] addresses the expensive probing of some of the
object scores in top- k selection queries. They assume a sorted access on one of
the attributes while other scores are obtained through probing or by executing a
user-defined function on the remaining attributes. Unlike to the algorithms
presented above, which take the data locality parameter into account, our work
assumes that all data are locally available, thus fetching a tuple implies that all

attribute values are fetched at once as well.

5.3 Skyline Algorithms

Assuming a set D of n-dimensional data objects o=(o,,...,0,) and n score
functions § =(s,,...,s,) , a domination relation (denoted by <) is defined over

the elements of D as follows:
= 0'<,o0:iff Jie[l...n], such that s(0,)<s(0,) and Vje[l...n]-{i} it

holds s(0,) < s(0,)

94

The skyline [29] is defined as those objects of a relation that are not dominated
by any other object. An object dominates another object if it is as good or better

in all dimensions and better in at least one dimension. (i.e.,
Skyline,(D)={o€ D| ,Zfo'eDS.t.0<S 0'}). Skyline queries are directly and

naturally related to the case where all atomic preferences have been composed
using pareto preferences, each atomic preference is a total order of values and
the number of requested objects equals to 1 (top-1 objects). Several algorithms
for computing the skyline have been proposed. These can be categorized into
non-index based (e.g. BNL [29]) and index based (e.g. NN [23], BBS [25]).
Since BNL was already fully described in Chapter 3, below we describe the

index based skyline algorithms.

Kossmann et al. presented in [21] a progressive skyline algorithm (NN). Based
on Nearest Neighbor queries, their algorithm continuously returns skyline
points. Unfortunately, this algorithm has problems with high dimensional spaces
(because of multiple access to the same node, duplicate elimination has to be
performed). Furthermore, as shown in [27], this algorithm has a huge space
overhead; a used data structure could reach the size of the whole data set. An
improved algorithm called BBS (branch-and-bound skyline) for processing
progressive skyline queries in a local scenario was presented by Papadias et al.
in [27]. Like NN, that algorithm is based on Nearest Neighbor queries. It uses a
multidimensional indexing method, such like an R-tree. The minimal distance to
the point of origin (w.r.t. a score function that is monotonic on each attribute) is
assigned to all minimum bounding boxes in the R-tree. At the beginning of the
algorithm, the root entries of the tree are added to a heap structure that sorts its
entries based on their minimum distances. In parallel, a list containing all
possible skyline points S is maintained (initially, the list is set to the empty set).
The algorithm successively removes all bounding boxes b from the heap. If b is
dominated by any point that is already in S, b is discarded immediately.
Otherwise, b’s children are processed one after another: If the child is again a

compound entry, it is added to the heap structure unless is dominated by any

95

skyline point found so far. If the child is a point, it is added to S. Once the heap

is empty, S contains the correct skyline.

As expected the non index-based algorithms are typically inferior to the index-
based ones. However, all these algorithms require appropriate indexes built on
the skyline dimensions. In particular, they require to build (beforehand or on the

fly) indexes over any of the non-empty subsets of a d -dimensional set of a

relation R with d attributes to accommodate 29 —1 different skyline queries.
On the contrary, our work assumes only d indexes (i.e., one index for each
attribute). Moreover, all these index-based algorithms handle only totally
ordered attribute domains and it is unclear if they can still maintain their

competitiveness for partially (pre)ordered preferences.

Recently, the problem of evaluating skyline queries with partially-ordered
domains was studied in [5]. The proposed solution relies on graph encoding
techniques to transform a partial ordered domain into two total orders (using
interval-based labels) and thus exploit index-based algorithms for computing
skyline queries on the transformed space. We believe that the linearization of
partial preorders we propose in this paper based on cover relations provides a
natural semantics for evaluating arbitrary preference queries (and not only the
fragment of skyline queries) whereas avoids the computation costs of generating
and maintaining interval-based labels for graphs. Furthermore, even for small
sized databases (500 and 1000k tuples of unspecified size), the experimental
evaluation presented in [5] demonstrates that the proposed algorithms do not
scale well, when the majority of the attributes that are involved are partially-
ordered. For example, for 2 totals and 1 partially ordered attributes a typical
time of almost 50 sec, whereas, for 1 total and 2 partial order attributes this time
rises above 1200 seconds. No results are presented for more than 2 partially
ordered attributes. In our case, the algorithms we introduced scale much better

w.r.t. the number and nature of the involved preferences.

96

Chapter 6: Conclusion and Future Work

Enabling users to quickly focus on the & best results according to their specified
needs and preferences is essential for several modern applications. In this thesis,
we elaborated the problem of computing the top-4 objects for the case where
user preferences are expressed qualitatively (i.e., as non-antisymmetric
preorders). Initially, we presented existing algorithms and demostrated their
deficiencies, which severely limit their applicability. Subsequently, we
introduced two novel progressive algorithms called LBA and TBA that follow a
query-based ordering approach for the evaluation of the top-4 objects. The
intuition of the query-based ordering is to use the specified user preferences for
defining an ordering over queries that need to be evaluated in order to retrieve

the top-k objects.

In particular, LBA defines an ordering over queries which are essentially
conjunctions of atomic selection conditions, over all attributes that the user
preferences involve. The algorithm does not perform dominance tests over
objects and accesses only the top-k objects and only once. In a similar fashion,
but from a different angle, TBA defines an order of queries which are
disjunctions of atomic selection conditions over a single attribute that the user
preference involves. TBA uses appropriate threshold values and takes into
account the selectivities of the atomic selection conditions in order to avoid
fetching more objects than those actually required. However TBA will access
not only the top-k objects but also a portion of the active and inactive ones and
probably more than once while dominance tests are performed, but only for the

small number of the retrieved objects.

We compared the algorithms analytically and we described the cases where
each of them is expected to outperform the rest. Furthermore, we defined a
relaxation of the classical definition of top-k objects for a rise in efficiency and

presented some variations of our proposed algorithms. Finally, we

97

systematically used various experimental evaluation settings to demonstrate the
effectiveness of the algorithms we introduced and illustrate their superior

performance.

The top- k& algorithms we have introduced take as input a preference expression
P and an integer k£ and return the top-k objects of an object relation R. An
interesting path of exploration involves modifing these algorithms in order to
evaluate efficiently preference based queries, i.e., queries that contain both a
regular (filtering) query part and a preference part. Formally, a preference based

query over an object relation R is a triple O,, =(q,,P,k) where:

= g, is aregular query, providing filtering conditions

= P is apreference relation

» [is apositive integer indicating a top- k answer request
Let Ans(g.) denote the answer of the regular query g, of a preference based
query Q,,; Ans(g,.) consists of a set of unordered objects of R . Consequently,
the corresponding preference query Q = (P,k) of O,, should return an ordered
subset of Ans(q,), which will comprise the answer Ans(Q,;) to the preference

based query.

We can modify our top-4 algorithms, to evaluate preference based queries in
several ways. One approach is to append the filtering conditions of ¢, into each
of the Query Lattice queries that our algorithms construct and evaluate. For
example, assume that at some point TBA needs to evaluate query
A =a,v 4 =a, and suppose that the preference based query adds a filtering
part q.:=A =bA A4, =c; these filtering conditions may be integrated into the
former query, and, thus, TBA will construct and evaluate the updated query
(A4 =avA=a)~A4,=br4, =c. It is obvious that the execution plan of this
updated query will change; the impact of this change on the overall algorithm
performance is not a priori known, and, besides the possible additional attributes
and indexes, it is the DBMS, with its optimization techniques, that constitutes a
critical factor for it. An alternative approach exploits the idea of applying the

algorithms on Ans(g,), rather than on R. This implies that Ans(q,) is

98

evaluated and materialized first, and, as a second step, our algorithms are

applied on Ans(q,).

In our framework, we rely on unconditional, positive preferences for the
presence of values over attributes of a single relational table. As part of our
future work, we plan to enhance our framework with some interesting
extensions such as combining preferences through joins for evaluating
preferences over several tables, allowing preferences to appear more than once
in a preference expression and supporting conditional preferences. Preferences
on the absence of values, as well as negative ones, can be accommodated by
arranging in the preorder the position either of the active attribute terms (former
case), or of the attribute sets (latter case). One final remark concerns inactive
objects. We assumed that there are at least £ active objects in a database with
respect to some preference expression P. However, when the set of active
objects turns out to be relatively small (w.r.t. k), then one may wish to include
some inactive objects in the answer as well. In this respect, objects that are
active with respect to a bigger subset of atomic preferences, or with respect to
atomic preferences over more important attributes, as defined by the user, could
be considered as candidate objects to include in the result, in order to reach the

number k£ which was requested.

99

100

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

R. Agrawal and E. L. Wimmers.: A Framework for Expressing and
Combining Preferences. In Proceedings of the ACM SIGMOD, pages
297-306, Dallas, 2000.

Wolf-Tilo Balke and Ulrich Guntzer: Multi-Objective Query Processing
for Database Systems. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB), pages 936-947, Toronto,
Canada, September 2004.

Boutilier, C., Brafman, R., Hoos, H., and Poole, D. Reasoning with
conditional ceteris paribus preference statements. In UAI-99, pages 71-

80, 1999.

R. Brafman and C. Domshlak: Database Preference Queries Revisited.
Technical Report TR2004-1934, Cornell University Computing and

Information Science, 2004.

Chee-Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan: Stratified
Computation of Skylines with Partially-Ordered Domains. In
Proceedings of the ACM SIGMOD, pages 203 - 214, Baltimore, 2005.

Kevin Chen-Chuan Chang and Seung won Hwang: Minimal Probing:
Supporting expensive predicates for top-k queries. In Proceedings of the

ACM SIGMOD, Madison, Wisconsin, 2002.

Jan Chomicki: Querying with intrinsic preferences. In Proceedings of the
8th International Conference on Extending Database Technology

(EDBT), pages 34-51, London, UK, 2002. Springer-Verlag.

101

[8] Jan Chomicki: Preference formulas in relational queries. ACM Trans.

Database Syst., 28(4):427-466, 2003.

[9] J. Chomicki: Semantic Optimization of Preference Queries. In Ist
International Symposium on Constraint Databases, pages 133-148,

2004.

[10] Domshlak C. and Brafman R. Cp-nets - reasoning and consistency

testing. In KR-02, pages 121-132, 2002.

[11] R. Fagin, A. Lotem, and M. Naor: Optimal Aggregation Algorithms for
Middleware. In Proceedings of the 2001 ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), 2001.

[12] Ronald Fagin: Combining Fuzzy Information From Multiple Systems.
Journal of Computer and System Sciences, 58(1):83-99, 1999.

[13] B. Hafenrichter and W. Kiessling: Optimization of Relational Preference
Queries. In Proceedings of the Sixteenth Australasian Database

Conference (ADC), pages 175-184, Newcastle, Australia, 2005.

[14] V. Hristidis, N. Koudas, and Y. Papakonstantinou: PREFER: A System
for the Efficient Execution of Multiparametric Ranked Queries. In
Proceedings of the the ACM SIGMOD, pages 259-269, Santa Barbara,
USA, 2001.

[15] W. Kiessling: Foundations of Preferences in Database Systems. In
Proceedings of the 28th Intern. Conf. on Very Large Data Bases
(VLDB), pages 311-322, Hong Kong, China, 2002.

[16] Kiessling W. Balke W.-T., Guntzer U: On Real-time Top k Querying for

Mobile Services. In International Conference on Cooperative

Information Systems, Irvine, USA, 2002.

102

[17] W. Kiessling and G. Kostler: Preference SQL - Design, Implementation,
Experiences. In Proceedings of the 28th Intern. Conf. on Very Large
Data Bases (VLDB), pages 990-1001, Hong Kong, China, 2002.

[18] Kiessling W. Guntzer U., Balke W.-T: Towards efficient multi-feature
queries in heterogeneous enviroments. In International Conference on

Information Technology, Las Vegas, USA, 2001.

[19] Kiessling W., Hafenrichter B., Fischer S., Holland S.: Preference
XPATH: A Query Language for E-Commerce. In Proceedings of the 5th

Intern. Conference on Wirtschaftsinformatik, Ausburg, Germany, 2001,
pp- 427 - 440.

[20] Kiessling W. Guntzer U., Balke W.-T: Optimizing Multi-Feature Queries
for Image Databases. In Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB), Cairo, Egypt, 2000.

[21] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in
the sky: An online algorithm for skyline queries. In Proceedings of the
28th International Conference on Very Large Data Bases (VLDB), Hong
Kong SAR, China, 20-23 August 2002, pages 275-286, Los Altos, CA
94022, USA, 2002.

[22] Koutrika G, loannidis Y, Personalized Queries under a Generalized

Preference Model. ICDE 2005: 841-852

[23] G. Koutrika and Y. Ioannidis.: Personalization of Queries in Database
Systems. In Proceedings of the 20th International Conference on Data

Engineering, Boston, USA, pages 597-608, 2004.
[24] M. Lacroix and P. Lavency.: Putting More Knowledge Into Queries. In

Proceedings of the 13rd International Conference on Very Large Data
Bases (VLDB), pages 217-225, Brighton, England, 1987.

103

[25] Marian A. Bruno N., Gravano L: Evaluating Top-k Queries over Web-
Accessible Databases. In International Conference on Data Engineering

(ICDE), Heidelberg, 2002.

[26] Surya Nepal and M. V. Ramakrishna.: Query processing issues in image
(multimedia) databases. In Proceedings of the 15th International
Conference on Data Engineering (ICDE), Sydney, Australia, pages 22-
29, 1999.

[27] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal
and progressive algorithm for skyline queries. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
pages 467-478, New York, NY, USA, 2003.

[28] N. Spyratos and V. Christophides. Querying with preferences in a digital
library. In Dagstuhl Seminar No 05182, Federation over the Web, May
2005.

[29] Stocker K. Brzsnyi S., Kossman D.: The Skyline Operator. In
Proceedings of the 17th International Conference on Data Engineering
(ICDE), Heidelberg, 2001.

[30] Riccardo Torlone and Paolo Ciaccia: Which Are My Preferred Items?. In
Workshop on Recommendation and Personalization in eCommerce,

pages 1-9, Malaga, Spain, 2002.

[31] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and
Qing Zhang: Efficient computation of the skyline cube. In Proceedings
of the 31st International Conference on Very large Data Bases (VLDB),
pages 241-252, 2005.

104

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

