
University of Crete
Computer Science Department

QUERY ORDERING BASED TOP-K
ALGORITHMS FOR QUALITATIVELY

SPECIFIED PREFERENCES

by

IOANNIS KAPANTAIDAKIS

Master’s Thesis

Heraklion, January 2007

University of Crete
Computer Science Department

QUERY ORDERING BASED TOP-K
ALGORITHMS FOR QUALITATIVELY

SPECIFIED PREFERENCES

by

Ioannis Kapantaidakis

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Author:

Ioannis Kapantaidakis, Computer Science Department

Supervisory
Committee:

Vassilis Christophides, Associate Professor, Supervisor

Georgios Georgakopoulos, Assistant Professor, Member

Ioannis Tzitzikas, Assistant Professor, Member

Approved by:

Trahanias Panos, Professor
Chairman of the Graduate Studies Committee

Heraklion, January 2007

QUERY ORDERING BASED TOP-K
ALGORITHMS FOR QUALITATIVELY

SPECIFIED PREFERENCES

Ioannis Kapantaidakis

Master Thesis

University of Crete
Computer Science Department

Abstract

Preference modelling and management has attracted considerable attention in

the areas of Databases, Knowledge Bases and Information Retrieval Systems in recent

years. This interest stems from the fact that a rapidly growing class of untrained lay

users confront vast data collections, usually through the Internet, typically lacking a

clear view of either content or structure, moreover, not even having a particular object

in mind. Rather, they are attempting to discover potentially useful objects, in other

words, objects that best suit their preferences. A modern information system,

consequently, should enable users to quickly focus on the k best object according to

their preferences. In this thesis, modelling preferences as binary relations, we

introduce efficient algorithms for the evaluation of the top-k objects.

Previous related work treated preference expressions as black boxes and dealt

with the idea of exhaustively applying dominance tests among database objects in

order to determine the best ones, resulting in quadratic costs. On the contrary, we

advocate a query ordering based approach. Our key idea is to exploit the semantics of

the input preference expression itself, in terms of both the operators and the

preferences involved, to define an ordering over those queries, whose evaluation is

necessary for the retrieval of the top-k objects. We introduce two novel algorithms,

LBA and TBA.

LBA defines an ordering over queries which are essentially conjunctions of

atomic selection conditions, containing all attributes that the user preferences involve.

The algorithm ensures that the way and order in which objects are fetched respect user

preferences, avoiding any dominance testing, and accessing only the top-k objects,

each of them only once. From a different angle, TBA defines an order of queries

which are disjunctions of atomic selection conditions over single attributes, and uses

appropriate threshold values to signal object fetching termination, ensuring that all

remaining objects are worse than those fetched. Dominance tests are performed only

for already retrieved objects.

Analytical study and experimental evaluation show that our algorithms

outperform existing ones under all problem instances.

Supervisor: Vassilis Christophides

Associate Professor

ΑΛΓΟΡΙΘΜΟΙ ΚΟΡΥΦΑΙΩΝ-Κ
ΑΠΑΝΤΗΣΕΩΝ ΒΑΣΙΣΜΕΝΟΙ ΣΕ
ΔΙΑΤΑΞΕΙΣ ΕΠΕΡΩΤΗΣΕΩΝ ΓΙΑ
ΠΟΙΟΤΙΚΩΣ ΚΑΘΟΡΙΣΜΕΝΕΣ

ΠΡΟΤΙΜΗΣΕΙΣ

Ιωάννης Καπανταϊδάκης

Μεταπτυχιακή Εργασία

Τμήμα Επιστήμης Υπολογιστών
Πανεπιστήμιο Κρήτης

Περίληψη

Τα τελευταία χρόνια, η μοντελοποίηση και η διαχείριση των προτιμήσεων

έχουν προσελκύσει ιδιαίτερη προσοχή στους τομείς των Βάσεων Δεδομένων, των

Βάσεων Γνώσης και των Συστημάτων Ανάκτησης Πληροφοριών. Αυτό το

ενδιαφέρον πηγάζει από το γεγονός ότι ολοένα και περισσότεροι μη ειδικευμένοι

κοινοί χρήστες έρχονται σε επαφή με τεράστιες συλλογές δεδομένων, συνήθως μέσω

του Διαδικτύου, χωρίς, κατά κανόνα, να έχουν μια σαφή άποψη ούτε για το

περιεχόμενο ούτε και για τη δομή της πληροφορίας, χωρίς καν να έχουν ένα

συγκεκριμένο αντικείμενο υπ’ όψει τους. Πιο πολύ προσπαθούν να ανακαλύψουν

αντικείμενα που ενδεχομένως θα τους είναι χρήσιμα, αντικείμενα, με άλλα λόγια, που

ταιριάζουν καλύτερα στις προτιμήσεις τους. Συνεπώς, ένα σύγχρονο πληροφοριακό

σύστημα θα πρέπει να διευκολύνει τους χρήστες στο γρήγορο εντοπισμό των k

βέλτιστων αντικειμένων βάσει των προτιμήσεων τους. Στην εργασία αυτή,

μοντελοποιώντας τις προτιμήσεις ως δυαδικές σχέσεις, εισάγουμε αποδοτικούς

αλγορίθμους αποτίμησης των k βέλτιστων αντικειμένων.

Η έως τώρα σχετική έρευνα, αντιμετώπιζε τις εκφράσεις επί προτιμήσεων ως

«μαύρα κουτιά» και εφάρμοζε την ιδέα των εξαντλητικών διαδοχικών ελέγχων

υπεροχής μεταξύ των αντικειμένων μιας βάσης δεδομένων για τον προσδιορισμό των

καλύτερων εξ’ αυτών, γεγονός που οδηγούσε σε τετραγωνικά ως προς τον αριθμό

των αντικειμένων κόστη. Αντιθέτως, εμείς υποστηρίζουμε μια προσέγγιση που

βασίζεται στη διάταξη επερωτήσεων. Η κύρια ιδέα μας βασίζεται στην εκμετάλλευση

της σημασιολογίας μιας έκφρασης από προτιμήσεις, σε ό,τι αφορά τόσο τους

εμπλεκόμενους τελεστές όσο και τις εμπλεκόμενες προτιμήσεις, με σκοπό τον ορισμό

μιας διάταξης μεταξύ εκείνων των επερωτήσεων, των οποίων η αποτίμηση είναι

αναγκαία, ώστε να ανακτηθούν τα k βέλτιστα αντικείμενα. Παρουσιάζουμε δύο

πρωτότυπους αλγόριθμους, τους LBA και TBA.

Ο LBA ορίζει μια διάταξη επερωτήσεων, οι οποίες ουσιαστικά αποτελούν

συζεύξεις ατομικών συνθηκών επιλογής, συμπεριλαμβάνοντας όλα τα γνωρίσματα

που εμπλέκονται στις προτιμήσεις του χρήστη. Ο αλγόριθμος εξασφαλίζει ότι ο

τρόπος και η σειρά ανάκτησης των αντικειμένων σέβεται τις προτιμήσεις του χρήστη,

αποφεύγοντας τους ελέγχους υπεροχής, και προσπελάζοντας μόνο τα k βέλτιστα

αντικείμενα, μία φορά το καθένα. Από διαφορετική οπτική, ο TBA ορίζει μια διάταξη

επερωτήσεων που αποτελούν διαζεύξεις ατομικών συνθηκών επιλογής πάνω σε

μοναδικά γνωρίσματα, και χρησιμοποιεί κατάλληλα κατώφλια τιμών για να σημάνει

τη διακοπή της ανάκτησης των αντικειμένων, εξασφαλίζοντας ότι όλα τα

εναπομείναντα αντικείμενα είναι χειρότερα των ανακτηθέντων. Εν προκειμένω,

πραγματοποιούνται έλεγχοι υπεροχής μόνο για τα ήδη ανακτηθέντα αντικείμενα.

Τόσο η αναλυτική μελέτη όσο και η πειραματική αποτίμηση καταδεικνύουν

την υπεροχή των αλγορίθμων που παρουσιάζουμε έναντι των υφισταμένων σε όλες

τις περιπτώσεις του προβλήματος.

Επόπτης: Βασίλης Χριστοφίδης

Αναπληρωτής Καθηγητής

Στους γονείς μου Κώστα και Μαρία και στον αδερφό μου Μάνο

Ευχαριστίες

Καταρχήν θα ήθελα να ευχαριστήσω τον επόπτη μου κ. Βασίλη Χριστοφίδη για

τα όσα μου προσέφερε στα δυόμισι και πλέον χρόνια της συνεργασίας μας. Χωρίς την

ουσιαστική του καθοδήγηση, τη διαρκή στήριξη και τη βοήθεια που πάντα ήταν

διατεθειμένος να προσφέρει, η παρούσα εργασία δεν θα μπορούσε να ολοκληρωθεί.

Επίσης ευχαριστώ τον καθηγητή κ. Ιωάννη Τζίτζικα με τον οποίο είχα την

ευκαιρία να συνεργαστώ κατά την εκπόνηση της εργασίας αυτής και να αποκομίσω

σημαντικές γνώσεις.

Παράλληλα θα ήθελα να ευχαριστήσω θερμά τον κ. Γεώργιο Γεωργακόπουλο για

τις πολύτιμες παρατηρήσεις του οι οποίες βελτίωσαν την παρούσα εργασία.

Ένα μεγάλο ευχαριστώ αξίζει στον Περικλή Γεωργιάδη, με τον οποίο

μοιραστήκαμε πολλές ώρες συζητήσεων. Η συμβολή του στην κατανόηση

πολύπλοκων προβλημάτων ήταν καθοριστική ενώ η προθυμία του για βοήθεια είναι

άξια αναφοράς.

Επίσης, θα ήθελα να ευχαριστήσω το Πανεπιστήμιο Κρήτης και την ομάδα

Πληροφοριακών Συστημάτων του Ινστιτούτου Πληροφορικής για όσα μου

προσέφεραν αυτά τα χρόνια και για τις γνώσεις που απέκτησα κατά τις σπουδές μου.

Ένα μεγάλο ευχαριστώ επίσης ανήκει σε όλους τους φίλους/ες μου με τους

οποίους συνεργάστηκα καθ’όλη την διάρκεια των σπουδών μου. Τους εύχομαι ότι

καλύτερο στη ζωή τους.

Τελευταίο αλλά μεγαλύτερο ευχαριστώ ανήκει στους γονείς μου Κώστα και

Μαρία και στον αδερφό μου Μάνο για την αμέριστη συμπαράστασή τους σε όλες τις

δυσκολίες. Για το λόγο αυτή η εργασία αυτή είναι αφιερωμένη σε αυτούς και ελπίζω

να αποτελέσει μια μικρή ανταμοιβή για τις θυσίες και τις προσπάθειές τους όλον αυτό

τον καιρό.

Καπανταϊδάκης Γιάννης

 i

Contents

Chapter 1 : Introduction ...1

Chapter 2 : Orders and Preferences ...9

2.1 Introduction to Order Theory...9

2.1.1 Binary Relations...9

2.1.2 Orders...10

2.1.3 Graphical Representation of Partial Orders ...12

2.1.4 Notions on Posets...14

2.1.5 From Partial Order of Elements to Linear Order of Blocks.................15

2.2 Qualitative Preference Model ..17

2.2.1 User Preferences ..17

2.2.2 From Tuple to Object Ordering ...22

Chapter 3 : Top-k Algorithms ..25

3.1 Object-based ordering..27

3.1.1 Block Nested Loop (BNL)...27

3.1.2 Best ..32

3.2 Query Based Ordering ...36

3.2.1 Lattice Based Algorithm (LBA) ..36

3.2.2 Threshold Based Algorithm (TBA) ...51

Chapter 4 : Experimental Evaluation...61

4.1 Experimental Environment ..61

4.2 Preference and Testbed Generator ...62

4.3 Metrics ...64

4.3.1 Experimental parameters ...64

4.3.2 Performance parameters...65

4.4 Query Patterns and Evaluation Plans...66

4.5 The effect of database size...68

4.5.1 Uniform Testbed ..69

4.5.2 Correlated Testbed ...72

4.5.3 Anti-Correlated Testbed...74

 ii

4.6 The effect of atomic preferences size ..76

4.7 The effect of preference dimensions..78

4.8 Effect of the ∃< ∀ ordering ...81

4.9 Effect of the Number of Objects Requested k ...84

4.10 Conclusions..85

Chapter 5 : Related Work ..87

5.1 Related Frameworks for Preference Modelling.......................................87

5.1.1 Kiessling’s Framework ..87

5.1.2 Chomicki’s Framework ...89

5.2 Top-k Algorithms...92

5.3 Skyline Algorithms ..94

Chapter 6 : Conclusion and Future Work ..97

Bibliography ..101

 iii

List of Figures

Figure 1: Evaluating the top- k objects according to qualitatively specified

preferences ...2

Figure 2: The Hasse diagram of  over /X ∼ ...13

Figure 3: The
∀∃

< ,
∃∀

< ordering of blocks 0 1 2, ,B B B of a partially ordered set O......17

Figure 4: Hasse diagram for three atomic preferences ..21

Figure 5: A relation R ...23

Figure 6: The Hasse diagram of Pƒ over R ...23

Figure 7: Active and inactive objects...24

Figure 8: Block Nested Loop Algorithm ...30

Figure 9: Best Algorithm ...34

Figure 10: Query Ordering Framework ...37

Figure 11: The QB array of 1 2&P P P= ..40

Figure 12: LBA Algorithm..41

Figure 13: ConstructQueryBlocks function ..42

Figure 14: ParetoComp function ...43

Figure 15: PriorComp function...43

Figure 16: Evaluate function ..44

Figure 17: Evaluate function for the
∃

<
∀

 variation of LBA......................................46

Figure 18: A Query Ordering framework example..51

Figure 19: Threshold Based Algorithm ...55

Figure 20: OrderObjects function ..56

Figure 21: GetNextBlock function ..57

Figure 22: Hasse diagram for our default atomic preferences.....................................63

Figure 23: Total time ...71

Figure 24: # dominance tests ...71

Figure 25: Total Time Analysis ...71

Figure 26: LBA scalability over database size ..71

 iv

Figure 27: TBA scalability over database size ..71

Figure 28: Total time ...73

Figure 29: # dominance tests ...73

Figure 30: Total Time Analysis ...73

Figure 31: LBA scalability over database size ..73

Figure 32: TBA scalability over database size ..73

Figure 33: Total time ...75

Figure 34: # dominance tests ...75

Figure 35: Total Time Analysis ...75

Figure 36: LBA scalability over database size ..75

Figure 37: TBA scalability over database size ..75

Figure 38: Total time ...77

Figure 39: # dominance tests ...77

Figure 40: Total Time Analysis ...77

Figure 41: Total time, uniform testbed (100 MB) ...80

Figure 42: Total time, uniform testbed (100 MB) ...80

Figure 43:# queries evaluated - pareto composition ..80

Figure 44: # queries evaluated-prioritized composition ..80

Figure 45: Total time, uniform testbed (100 MB) ...83

Figure 46: Total time, uniform testbed (100 MB) ...83

Figure 47: : # queries evaluated-pareto composition...83

Figure 48: # queries evaluated-prioritized composition ..83

Figure 49: Total time, uniform testbed (100 MB) ...83

Figure 50: :# queries evaluated - pareto composition..83

Figure 51: Total time, 100MB uniform testbed ..84

Figure 52: #Dominance tests, 100MB uniform testbed ..84

Figure 53: Total time, 100MB uniform testbed ..85

Figure 54: #queries evaluated, 100MB uniform testbed...85

 v

List of Tables

Table 1: Metric values for the Uniform Testbed ...68

Table 2: Metric values for the Correlated Testbed ..68

Table 3: Metric values for the Anti-correlated Testbed...69

Table 4: Metric values (increasing atomic preference size) ..76

Table 5: Metric values (increasing dimensionality-pareto composition)78

Table 6: Metric values (increasing dimensionality-prioritized composition)..............78

Table 7: Metric values (increasing k) ...84

Table 8: Proposed algorithms in various cases ..85

 1

Chapter 1: Introduction

Preference modelling and management has attracted considerable attention in

the areas of Databases, Knowledge Bases and Information Retrieval Systems in

recent years. This interest stems from the fact that a rapidly growing class of

untrained lay users confront vast data collections, usually through the Internet,

typically lacking a clear view of either content or structure, moreover, not even

having a particular object in mind. Rather, they are attempting to discover

potentially useful objects, in other words, objects that best suit their preferences.

A modern information system, consequently, should enable users to quickly

focus on the k best object according to their preferences.

In recent years, a lot of research effort has been made for the representation of

user preferences. Mainly there are two different approaches of such type of

personalization, the qualitative ([7], [8], [9], [13], [15], [24], [30]) and the

quantitative ([1], [14], [22], [23]). In the qualitative approach, the preferences

between objects are specified directly, typically using binary relations. In the

quantitative approach, preferences are specified indirectly using scoring

functions that associate a numeric score with every object. An object o is

preferred to an object o′ if the score of o is higher than the score of o′ . The

qualitative approach is more powerful (in terms of expressive power) than the

quantitative one, because we can model quantitatively specified preferences

using preference relations, while not every (intuitively plausible) preference

relation can be captured by scoring functions [8]. Moreover, there is no obvious

method that the users could follow for specifying and combining scores.

In this work we confine ourselves to the qualitative approach for the

representation of user preferences. More precisely, we advocate a qualitative

preference framework in which users can define atomic and complex

preferences as well. An atomic preference is defined as a reflexive and transitive

binary relation (i.e., non-antisymmetric preorder) over the domain of an

attribute. On the other hand, a complex preference is an expession that imposes

 2

priorities over the atomic preferences by using available preference constructors

(e.g. Pareto, Priorization).

redfiato6
blackaudio5

greenaudio7

redvwo4
blackvwo3
bluebmwo2
redbmwo1

ColorMakeoid

redfiato6
blackaudio5

greenaudio7

redvwo4
blackvwo3
bluebmwo2
redbmwo1

ColorMakeoid
Object Relation

q1=bmw ∧ red q2=bmw ∧ blue

q3=audi ∧ red q5=audi ∧ blue

Query Based Ordering

o5

o1

o3

o2

o4

Object Based Ordering

o1 o2

Top-k Objects

o4 o5

o3

B0

B1

B2

q4=bmw ∧ black

q6=vw ∧ red q7=audi ∧ black

q9=vw ∧ black

q8=vw ∧ blue

P = PM& PC

PC
[blue][red]

[black]

PM
[bmw]

[audi]

[vw]

Q0

Q1

Q2

Q3

Figure 1: Evaluating the top- k objects according to qualitatively specified

preferences

Assume for example an object relation (,)R Make Color describing cars, as

depicted in Figure 1 where for simplicity objects are identified by a oid . A user

wishing to purchase a car may state that he prefers red and blue cars to black

ones. Furthermore, he also prefers a bmw to an audi , and the latter to vw .

Finally, he states that preferences on (M)ake (MP) are as important as on

(C)olor (CP) (&M CP P). Since preferences MP and CP are defined over

individual attributes are considered as atomic preferences while &M CP P is a

preference expression. Let us first consider the atomic preference MP stated on

the domain of the attribute Make. The domain values appearing in MP

(i.e.,bmw , audi , vw) imply that only objects featuring the corresponding terms

are of interest to the user. Furthermore, since in our example the user is not

wishing to further restrict his car selection (i.e., no additional selections were

made), preference MP will partition objects of R into objects that match the

 3

disjunction of the involved terms () () ()M bmw M audi M vw= ∨ = ∨ = and into

objects that do not (e.g., 6o). However, a preference like MP not only partitions

the matching objects according to the preference terms, but also orders the

resulting partition (e.g., in decreasing order of preference) under the form of a

block sequence (i.e., a linear order of blocks or sets). According to the database

of Figure 1 and preference MP we will have the following block sequence:

1 2 5 7 3 4{ , } { , } { , }o o o o o o← ←

given that bmw (1 2,o o) precedes audi (5 7,o o) and vw (3 4,o o), and thus should

be placed on the top block of objects returned to the user (note that object 6o is

filtered out). When a user preference spans more than one attributes, such

as &M CP P , we need to filter out objects by considering a disjunction of term

conjunctions rather than atomic terms. The result of the preference &M CP P will

thus consist of blocks of objects matching the disjunction of the Cartesian

Product of the terms involved in MP and CP (6o and 7o are filtered out):

() ()M bmw C red M bmw C blue= ∧ = ∨ = ∧ = ∨

() () ()M audi C red M audi C blue M bmw C black= ∧ = ∨ = ∧ = ∨ = ∧ = ∨

() () ()M vw C red M vw C blue M audi C black= ∧ = ∨ = ∧ = ∨ = ∧ = ∨

()M vw C black= ∧ =

Then, to order this partition, we need to examine the relationship of the user

preferences stated per attribute: in our example preferences PM and PC are

considered to be of equal importance (&M CP P). Given that red (1o) or blue

bmw’s (2o) are the most preferred ones (top block), while black vw (3o) are the

least preferred ones (bottom block), we obtain the following sequence of blocks

(note that blocks that “tie” in terms of preferences are merged):

1 2 4 5 3{ } { } { } { } { }o o o o o∪ ← ∪ ←

We can easily observe that not all conjunctions of preference terms will yield

non empty results. It is worth noticing that the resulting linear order of blocks

essentially “linearizes” the order of objects induced by the preference &M CP P

 4

as depicted in Figure 1. However, users usually do not wish to obtain the entire

linear order of blocks but only the top- k objects that best suit their preferences.

In this thesis, we devise efficient top- k evaluation algorithms. Specifically, for

the given user preferences our objective is to compute and deliver a linear order

of n blocks (i.e., sets) of objects, where n is the smallest integer that satisfies

the inequality
1

0
| |

n

i
i

B k
−

=

≥∑ . In such a linear order, each block would correspond

to a screen of objects that is shown to the user, satisfying the following

properties with respect to the user preferences:

a) Each block consists of non comparable objects.

b) The first block contains the most preferred objects.

c) For each block iB other than the first and for each object in iB there is a

more preferred object in the previous block (alternatively but not

equivalently, for each block iB other than the last and for each object in

iB there is a less preferred object in the next block). The objects in
1

0

n

i
i

B
−

=
∪

are called the top- k objects.

Existing algorithms ([8], [29], [30]) for the evaluation of the top- k objects

according to qualitatively specified preferences, follow an object-based

ordering approach (Figure 1). The key idea of this approach is to sequentially

apply dominance - tests (i.e., compare two objects to determine whether one is

better than the other with respect to user preferences) for every possible pair of

objects. The results of these tests actually specify a preorder (i.e., a reflexive

and transitive binary relation) over the objects of a relation. Subsequently, the

algorithms of this approach “linearize” the preorder i.e., they turn the preorder

to a linear order of blocks in a reasonable manner that respects the preorder and

finally pick and deliver to the user the top- k objects. The main characteristic of

the object-based ordering approach is that the flow of control of the algorithms

of this family is independent of the user preferences.

Despite the wide applicability of the object-based ordering approach (since it

can be used for any number of atomic preferences without indexing or sorting of

 5

the database objects), the algorithms of this family are not appropriate for large

database systems and real scale Web applications since they have serious

drawbacks. An algorithm that follows the object-based ordering approach will

access all objects of a relation R at least once and will perform at least one

dominance test for every object in R . The total number of dominance tests that

such an algorithm performs is 2()O n where n is the number of objects in R .

This makes them inappropriate for large databases. Moreover, existing

algorithms are inadequate for on-line (i.e., incremental) processing since the

entire preorder over the objects of the relation R needs to be specified in order

to return the top- k objects progressively (i.e., top-1, top- 2 , ..., top- k).

We advocate a query-based ordering approach for the evaluation of the top- k

objects and we introduce two novel algorithms called LBA (Lattice Based

Algorithm) and TBA (Threshold Based Algorithm) that follow this approach.

Contrary to the object-based ordering approach, the flow of control of our

algorithms, takes into account the preference expression given as input, as well

as, the value ordering of the involved atomic preferences. The main idea of the

query-based ordering approach is to use the specified user preferences for

defining an ordering over queries that need to be evaluated in order to retrieve

the top- k objects (see Figure 1).

In particular, LBA defines an ordering over queries which are essentially a

union of conjunctions of atomic selection conditions, containing all attributes

that the user preference involves. A query iQ precedes iQ ′ if the objects in the

answer of iQ (denoted by ()ians Q) are more preferred than the objects in

()ians Q ′ . The evaluation of such a query iQ returns the next block of the

answer iB i.e., ()i iB ans Q= . In Figure 1, according to the specified user

preferences the first query that LBA will construct is the following:

0 1 2: { , }Q q q=∪ where 1 :q M bmw C red= = ∧ = and 2 :q M bmw C blue= = ∧ =

since the objects in 0()ans Q are clearly the top objects of R (there cannot be

another object better than the objects in 0()ans Q). The evaluation of 0Q will

 6

return the first block of the answer 0B . Nevertheless, such a query based

algorithm should be also able to dynamically reformulate the queries iQ ,

capturing each block when some of the partial queries jq of iQ return empty

anwsers. To make this clear, recall again our example of Figure 1 and assume

that 2 (,)o bmw blue was replaced by an object 2 (,)o audi blue′ . Now, the

evaluation of 0Q will return only 1o (i.e., 2()ans q =∅). However, for 2o ′ there

will not be a more preferred object in the previous block (i.e., in 0B) since 1o is

not better that 2o ′ . Thus, the (c) property does not hold. Therefore LBA will

replace query 2q (which results in no objects) with query

2 : ' ' ' 'q color blue make audi′ = = ∧ = for which it holds that 2()ans q ′ contains the

best objects of relation R that are not worse than objects in 1()ans q . 0Q will be

reformed as follows: 0 1 2: { , }Q q q ′=∪ . The evaluation of 0Q will return 1o and

2o ′ . Now for each of the remaining objects in R there is a more preferred object

in the previous block (i.e., in 0 1 2{ , }B o o ′=).

Notice that LBA will never perform a dominance testing over objects. The

algorithm exploits user preferences and retrieves objects such that it is ensured

that the objects are fetched in a way that respects user preferences. Moreover,

LBA will only access the top- k objects and only once (assuming that available

indexes exist). LBA is also suitable for on-line processing since it returns the

next block of the answer iB without having to compute previously the following

blocks of iB in the linear order.

However, consider a scenario where the total number of objects of a relation R

is relatively very small compared to the number of distinct values that each

domain contains (i.e., the selectivity of each domain value is small) or/and the

number of attributes that the user preference involves is quite large. Since LBA

constructs queries that are actually a combination of atomic selection conditions

that contain all attributes that user preferences involve, in such a scenario LBA

 7

will have many fruitless fetching attempts (i.e., resulting in no object) because

R does not necessarily contain objects for every query that LBA will construct.

Therefore in a scenario like the one described above LBA’s performance is

expected to drop.

For this reason we dense a second algorithm called TBA (Threshold Based

Algorithm). Like LBA, TBA defines an order of queries however these queries

are disjunctions of atomic selection conditions over just one attribute. As a

result, TBA is expected to have less fruitless fetching attempts. Moreover TBA

uses appropriate threshold values in order to determine when the fetching of

objects should stop. These values work as a guarantee ensuring that objects that

were not fetched are worst than the ones that were already fetched (i.e., work as

an upper bound of the unseen objects). For defining the ordering of queries,

TBA takes into account the selectivities of the atomic selection conditions so

that to avoid fetching more objects than those actually required. However, TBA

needs to perform dominance tests but only for the already retreived objects.

Thus, unlike object-based ordering algorithms, TBA avoids exhaustive

dominance testing among all objects which leads to quadratic costs.

In a nutshell, the contributions of this thesis are:

 We advocate a simple, yet expressive, framework for specifying

qualitatively specified preferences as preorders.

 We introduce a query based ordering approach for the evaluation of the

top- k objects. Unlike object-based ordering approaches, the key idea of

this approach is to exploit the particular user preference semantics to

define an ordering over those queries, whose evaluation is necessary for

the retrieval of the top-k objects.

 Inspired by the query ordering based approach, we designed and

implemented two progressive algorithms (LBA, TBA) for qualitatively

specified preferences and we study their performances.

 We report the results of an extensive experimental evaluation on large

datasets that shows that the algorithms that we propose outperform the

existing ones under all problem instances that we tested.

 8

The rest of this thesis is organized as follows. In Chapter 2, we introduce some

preleminary material in Order Theory and present our proposed qualitative

preference model. Chapter 3, fully describes the most common algorithms that

have emerged so far and our novel top- k algorithms. In Chapter 4, we analyze

experimentally the performance of the various top- k algorithms presented

earlier. Chapter 5 discusses related work and finally, Chapter 6 summarizes our

contributions and identifies issues for further research.

 9

Chapter 2: Orders and Preferences

2.1 Introduction to Order Theory

2.1.1 Binary Relations

A binary relation R is an arbitrary association of elements of one set with

elements of another (or perhaps the same) set. More specifically, a binary

relation R from X to Y is a subset of the Cartesian Product X Y× (i.e.,

R X Y⊆ ×). The statement (,)x y R∈ is read “x is R-related to y”, and is

denoted by xRy or (,)R x y . If X Y= then we simply say that the binary

relation is over X . There are several categorizations of binary relations over a

set X , based on which axioms they satisfy. Common axioms (or relation

properties) defined for binary relations are the following:

 reflexivity: x X∀ ∈ it holds that xRx .

 irreflixivity: x X∀ ∈ it holds that ()xRx¬

 symmetry: ,x y X∀ ∈ it holds that if xRy then yRx

 antisymmetry: ,x y X∀ ∈ it holds that if xRy and yRx then x y=

 asymmetry: ,x y X∀ ∈ it holds that if xRy then ()yRx¬

 transitivity : , ,x y z X∀ ∈ it holds that if xRy and yRz then xRz

 completeness : ,x y X∀ ∈ it holds that xRy or yRx (or both)

 10

2.1.2 Orders

Certain important types of binary relations can be characterized by the axioms

they satisfy. These types of relations are called orders. Below we present the

most important orders which we intend to use in the following chapters of our

work in order to formally define the model of preferences that we use1:

Definition 2.1: A binary relation is a preorder, denoted by ≺ , if it is reflexive

and transitive. A set that is equipped with a preorder is called a preordered set.

Definition 2.2: A binary relation is an equivalence relation, denoted by ∼ , if it

is reflexive, symmetric and transitive. For an equivalence relation ∼ on a set

X , the set of the elements of X that are related to an element, say x X∈ , is

called the equivalence class of element x , often denoted as []x .

Definition 2.3: A binary relation which is reflexive, antisymmetric and

transitive is called a partial order and it is denoted by ≤ . A set with a partial

order is called a partially ordered set or poset.

Definition 2.4: A binary relation is a strict partial order, denoted by < , if it is

irreflexive and transitive, and therefore asymmetric.

Note that if a preorder is also antisymmetric, it becomes a partial order, whereas

if it is also symmetric it becomes an equivalence relation. Let ƒ be a non-

antisymmetric preorder (i.e., a reflexive and transitive relation) over X . The

asymmetric part of ƒ is the binary relation  over X , defined as

(,)x y X X∀ ∈ × , ()x y x y y x⇔ ∧ ¬ ƒ ƒ . The symmetric part of ƒ is the

binary relation ∼ over X defined as (,)x y X X∀ ∈ × , x y x y y x⇔ ∧∼ ƒ ƒ .

It is easy to see that the asymmetric part comprises a strict partial order (i.e., an

irreflexive, asymmetric, transitive) relation, whereas the symmetric one, an

equivalence relation (i.e., a reflexive, symmetric, transitive relation). A partial

order (i.e., a reflexive, antisymmetric, transitive) relation ≤ derives from ƒ

1 The preference model that we use is an extended version of [28]

 11

among the equivalence classes of the quotient set /X ∼ as follows:

[] []x y x y≤ ⇔ ƒ and [] []x y x y= ⇔ ∼ .

For ƒ , being a non-antisymmetric preorder over X , it holds that:

  is transitive

 ∼ is transitive

 x y y z x z∧ ⇒∼  

 x y y z x z∧ ⇒∼ 

For ƒ , being a non-antisymmetric preorder over X , its asymmetric and

symmetric parts are disjoint and their union equals ƒ (i.e., symmetry partitions

ƒ). For any two elements x and y of a partially ordered set, if x y≤ and

x y≠ , due to antisymmetry we can write x y< . Similarly, for any two

elements x and y of a preordered set, if x y≺ and ()y x¬ ≺ , we can write

x y≺ . In either case, if x y< (respectively, x y≺) and there is no z such that

x z< and z y< , (respectively, there is no z such that x z≺ and z y≺) we

will say that y is a cover of x , and denote it as x y≺ .

A partial order which is complete is called a total (or linear) order or a chain. A

preorder which is complete is called a weak order or a complete preorder.

Elements x and y of a set X , for which it holds that xRy or yRx are said to

be comparable; otherwise, x and y are incomparable. More formally, we

define:

Definition 2.5: Given a relation R over a set X , the incomparability relation

(usually denoted as & when R is some order), is defined as the complement

relation cR over the same set X ; i.e., cxR y , iff () ()xRy yRx¬ ∧¬ .

For example, x y& means that elements x and y are incomparable to each

other (i.e., none of the relations xRy and yRx hold). Note that the above

terminology may be misleading when R is a strict partial order, as its

 12

complement cR may capture two very different situations: either

incomparability indeed, or comparable equality; only when R is a preorder or a

partial order the term incomparability have its literal meaning.

2.1.3 Graphical Representation of Partial Orders

Any relation R over a (finite) set X may be visually represented by a directed

graph (,)V E , with a bijective mapping of the elements of X onto the vertices

of V and a bijective mapping of the pairs of R onto the edges of E .

A graph of a partial order (or a preorder, accordingly) would be very “busy”,

carrying a lot of redundant information: self-loops (,)v v for every node,

deriving from reflexivity, as well as transitive edges 1 3(,)v v , with both 1 2(,)v v

and 2 3(,)v v being present. Furthermore, one may make two more observations:

antisymmetry ensures that in such a graph there could not be any two vertices 1v

and 2v with both edges 1 2(,)v v and 2 1(,)v v present; in conjunction with

transitivity, antisymmetry also forbids any longer loop, meaning that the graph,

with the exception of self-loops, has one and only direction. Exploiting the

above, a partial order may be graphically represented by a Hasse diagram.

Before we formally define a Hasse diagram we need to introduce the following

auxiliary definitions:

Definition 2.6: The transitive closure of a binary relation R on a set X is the

minimal transitive relation R′ on X that contains R .

Definition 2.7: The reflexive closure of a binary relation R on a set X is the

minimal reflexive relation R′ on X that contains R .

Definition 2.8: The transitive reduction of a binary relation R on a set X is the

minimum relation R′ on X with the same transitive closure as R .

Definition 2.9: The reflexive reduction of a binary relation R on a set X is the

minimum relation R′ on X with the same reflexive closure as R .

Now we can proceed to the formal definition of a Hasse diagram:

 13

Definition 2.10: A Hasse diagram of a partial order is a directed acyclic graph

of its reflexive and transitive reduction, where direction is omitted, as it is

implied by the diagram’s upward orientation.

A Hasse diagram may also depict a neither symmetric, nor antisymmetric

preorder. In this case it essentially represents the partial order of the

equivalence classes of the quotient set /X ∼ , rather than the preorder itself. The

Hasse diagram of an equivalence relation is simply a set of non-connected

nodes, each of which is a representative of an equivalence class. So, in all cases

above, the Hasse diagram obeys conventions of what each nodes stands for

(class representatives in some cases) and the only case where it directly depicts

a relation is the case of a strict partial order. Note that, in all cases, all lines in a

Hasse diagram correspond to the cover relation ≺ (i.e., the transitive reflexive

reduction of a partial order), reflecting on the strict part < of the partial order

≤ .

Example 2.1: Let us assume the Hasse diagram for a set { , , , , , }X a b c d e f= , a

preorder  over X , with d b , b a , d a , c a , d f and f d . Such a

diagram cannot represent the preorder itself directly, so, as discussed above, it

will depict the partial order of the equivalence classes of the quotient set /X ∼ .

There are five equivalence classes [] { }a a= , [] { }b b= , [] { }c c= , [] { , }d d f= ,

[] { }e e= , and let’s choose a single representative from each one to use in the

diagram. The resulting Hasse diagram is illustrated in Figure 2.

Figure 2: The Hasse diagram of  over /X ∼

[a]

[b] [c]

[d]

[e]

 14

2.1.4 Notions on Posets

In a partially ordered set there are some elements that play a special role. The

most basic examples are given by the maximal and the minimal elements of a

poset.

Definition 2.11: Let a partial order ≤ over a set of elements X . An element

x X∈ is a maximal element of ≤ , if x X′¬∃ ∈ such that x x′≤ .

Definition 2.12: Let a partial order ≤ over a set of elements X . An element

x X∈ is a minimal element of ≤ , if x X′¬∃ ∈ such that x x′ ≤ .

We may partition the elements of a partial order relation X into non-

overlapping parts called blocks (or layers or buckets) that cover all of X using

various topological criteria. To define our approach formally we need some

auxiliary definitions that we adapt from [28]:

Definition 2.13: Let us call path from an element x to an element x′ of a

partial order ≤ , any sequence of pairs of the form

1 1 2 1(,), (,), , (,), (,)n n nx x x x x x x x− ′… such that 1, nx x x x′≤ ≤ and 1i ix x− ≤ for

2i n= … . The integer 1n+ is called the length of the path, and it is clear that

there may be zero, one or more paths from x to x′ .

Now, assume that 0B contains all elements that are maximal (or minimal) with

respect to≤ . The definition of each other block iB relies on the notion of

distance of an element from 0B .

Definition 2.14: The distance of an element 0x from 0B is defined to be the

length of the longest path from an element x to the element 0x , when x ranges

over all elements of 0B .

Block iB is defined to be the set of all elements that are at distance i from 0B .

Note that if 0x belongs to 0B , then its distance is defined to be equal to 0 . It is

easy to see that elements of the same block are incomparable to each other

(otherwise they wouldn’t have the same distance from 0B).

 15

2.1.5 From Partial Order of Elements to Linear Order of
Blocks

Let ≤ be a binary order relation (e.g., a preorder, a partial order, or a strict

partial order) on a set O ≠ ∅ and let 2O be the powerset of O minus ∅ . In this

section, we define relations over subsets of O , i.e., over 2O , which derive from

the initial order ≤ over O .

Definition 2.15: Assuming that , 2OX Y ∈ for which does not necesserily hold

X Y∩ =∅ , we define the following relations over 2O :

 Let2 X Y
∀∃

≤ , iff x X∀ ∈ , y Y∃ ∈ such that x y≤

 Let X Y
∃∀

≤ , iff y Y∀ ∈ , x X∃ ∈ such that x y≤

Note, that apart from transitivity, which is trivial to prove, whether other order

axioms hold in each of these relations over sets, depends on the nature of the

initial poset and probably other assumptions, and need to be proved, thus the use

of the term set order, instead of set relation may be abusive. Let 0 1, , , nB B B… 3 a

sequence of blocks of O that were produced as described in previous section.

Theorem 2.1: If 0B contains the maximal elements of ≤ , a
∀∃

≤ relation is

defined between blocks 0 1, , , nB B B… (i.e., 1 0n nB B B−∀∃ ∀∃ ∀∃
≤ ≤ ≤…).

Proof 2.1: For every element ix in iB there is a longest path p from some

element of 0B to ix . Let ix ′ be the predecessor of ix in p (i.e., i ix x ′≤).

Clearly, the sub-path of p ending in ix ′ is the longest path from 0B to ix ′

(otherwise, p is not the longest path to ix thus a contradiction). It follows that

ix ′ is in 1iB − and that i ix x ′≤ .

2 As a rule of thumb, the first quantifier runs on the left operand set, the second on the right, and
the outer quantifier is denoted by the line above it.

3 For each of these blocks iB it holds 2O
iB ∈ .

 16

Theorem 2.2: If 0B contains the minimal elements of ≤ , a
∃∀

≤ relation is

defined between blocks 0 1, , , nB B B… (i.e., 0 1 nB B B
∃∀ ∃∀ ∃∀

≤ ≤ ≤…).

Proof 2.2: For every element ix in iB there is a longest path p from some

element of 0B to ix . Let ix ′ be the predecessor of ix in p . The sub-path of p

ending in ix ′ is the longest path from 0B to ix ′ (otherwise, p is not the longest

path to ix thus a contradiction). It follows that ix ′ is in 1iB − and that i ix x′ ≤ .

Theorem 2.3:
∀∃

≤ relation defines a linear order of blocks.

Proof 2.3: Clearly
∀∃

≤ is reflexive and transitive (since ≤ is reflexive and

transitive). Moreover, since each block consists of mutually incomparable

elements it is also antisymmetric and thus is a partial order. Due to the

definition “ i jB B
∀∃

≤ iff i ix B∀ ∈ , j jx B∃ ∈ such that i jx x≤ ”, we have

1 0n nB B B−∀∃ ∀∃ ∀∃
≤ ≤ ≤… . As a result,

∀∃
≤ actually defines a linear order

between blocks.

Similarly, we can prove that
∃∀

≤ also defines a linear order of blocks.

Therefore since
∀∃

≤ and
∃∀

≤ relations define linear orders of blocks from now

on we could write
∀∃

< and
∃∀

< to denote those linear orders.

Example 2.2: Figure 3 illustrates the two individual orderings
∀∃

< and
∃∀

<

between the blocks 0 1 2, ,B B B of a partially ordered set O .
∀∃

< ordering occurs

if we use as basic block 0B the block that contains the maximal elements of O

and
∃∀

< occurs if we use as 0B the block that contains the minimal elements.

 17

Figure 3: The

∀∃
< ,

∃∀
< ordering of blocks 0 1 2, ,B B B of a partially ordered set O

2.2 Qualitative Preference Model

Let ()R  denote a relation scheme, where R is the name of the relation and

1 2{ , , , }nA A A= … is a set of attribute names with associated domains

()idom A . Without loss of generality, we assume the attribute domains pair-wise

disjoint, i.e., () ()i jdom A dom A∩ =∅ for every [1]i j n≠ ∈ … . As null values

are possible, in order to keep notations simple, we use ()idom A to denote

() { }idom A ∪ ⊥ , where " "⊥ stands for the null value. We shall also use the

notation 1() () ()mdom A dom A dom A= × ×… and

1() () ()mdom A dom A dom A∪ = ∪ ∪… to denote the Cartesian Product and the

union of domains, of a non empty set of attributes A⊆  . An object over a

scheme ()R  associates with each iA ∈ a value taken from its domain. As

usual []o A denotes the projection of an object o onto a non empty set of

attributes A⊆  . A relation R over the scheme ()R  (also called an instance)

is a finite set of objects o such that [] ()o dom∈  .

2.2.1 User Preferences

In order to proceed to the general preference definition we should take into

consideration two important factors:

1B

0B

1B

2Ba b

c d

e
A partially

ordered set O 2 1 0B B B
∀∃ ∀∃

< <

2B

a b

c d

e

b

a d

e c

0 1 2B B B
∃∀ ∃∀

< <

0B

 18

 The user, most times, is not in position to know the objects that a

database contains. Thus, the preferences should be defined on structures

of information that are not influenced by the available objects. Such

structures are the attribute domains.

 The number and the nature of attributes that are involved in a preference

expression vary. Therefore, the definition of a preference should be

based on the attributes that the preference involves.

Definition 2.16: Let us assume a relation scheme ()R  . A preference AP over a

non empty set of attributes 1{ } 2 \mA A A= ∈ ∅…  is a non-antisymmetric

partial preorder over 1() () ()mdom A dom A dom A= × ×… 4 denoted as

((),)
AA PP dom A= ƒ , where () ()

AP dom A dom A⊆ ×ƒ . For m -tuples

, ()v v dom A′∈ ,
APv v′ƒ is interpreted as v is at most as preferable as v′ (or

equivalently, v′ is at least as preferable as v).

We shall pronounce those ,v v′ for which both
APv v′ƒ and

APv v′ƒ hold, as

equally preferred or indistinguishable w.r.t. preference AP . As symmetry holds

by definition and reflexivity with transitivity are inherited from
APƒ , the

preference equality relation is an equivalence relation, i.e., equally preferred

tuples ,v v′ are equivalent, or belong to the same equivalence class, thus we will

denote this relation as
APv v′ ∼ .

If
APv v′ƒ but ()

APv v′¬ ƒ , we can write
APv v′≺ which is interpreted as v′ is

(strictly) more preferable than v . As asymmetry and irreflexivity holds by

definition and transitivity is inherited from
APƒ , the asymmetric part

AP≺ of

APƒ comprises a strict partial order relation. If neither
APv v′ƒ nor

APv v′ƒ

hold, then we will say that ,v v′ are incomparable and we will write
APv v′& .

The incomparability relation carries symmetry, by definition, but apart from it,

it satisfies no other order axioms in general.

4 The order of factors within the Cartesian Product is considered of no particular significance.

 19

When A is a trivial single-factor Cartesian Product (i.e., { }iA A=) we will call

((),)
ii i PP dom A= ƒ an atomic preference over iA , where ()idom A is the domain

of iA .

For a preference ((),)
AA PP dom A= ƒ , the values of domain ()dom A can be

separated in two concrete categories, proportionally whether they take active

part or no in the preorder
APƒ .

Definition 2.17: Given a preference ((),)
AA PP dom A= ƒ , a value ()v dom A∈

that is not involved in the partial preorder relation in any other way except

though reflexivity (i.e., ()v dom A′¬∃ ∈ , v v′ ≠ , such that
APv v′ƒ or

APv v′ ƒ)

will be called inactive (otherwise, it will be called active) and clearly it is

incomparable to all other values of ()dom A .

We denote (,)AV P A the set of active values of ()dom A according to AP and

(,)c
AV P A the set of inactive values, respectively. Notice that:

 1(,) (,)m
A i Ai iV P A V P A== × where (,)Ai iV P A denotes the set of active

values from the domain of iA appearing in an atomic preference AiP

 (,) (,) ()c
A AV P A V P A dom A∪ =

 (,) (,)c
A AV P A V P A∩ =∅

We make this seperation since inactive values actually don’t take part in the

ordering
APƒ , creating, thus, a sense of “indifference” of the user to each

inactive value. In essence, there is no need to take inactive values into account

since only active values have interest to a particular user and need to be

specified (regardless of whether they are actually instantiated in R).

Next we discuss preference expressions, which capture the semantics of

combining or synthesizing user preferences over more than one individual

attributes.

 20

Definition 2.18: Let iP be an atomic preference over any individual attribute iA

of a relation R . A preference expression P is defined as:

| (&) | (&) | () | ()i i i i iP P P P P P P P P P= � �

It should be stressed out that an atomic preference appears only once in a

preference expression. Semantically, this interprets a current limitation in this

work; we are able to capture the relative importance among different

preferences, where each is provided and mentioned only once. On the other

hand, this complies with the fact that values in the active preference domains

also appear only once in the respective preferences. A preference expression AP ,

as defined above, spans over the set A of attributes it involves, so we are able to

use (,)AV P A as defined earlier. The binary preference operators & and �

define the pareto and proritized composition operations on two preferences as

follows.

Definition 2.19: Preference ((),)
AA PP dom A= ƒ is the pareto preference

(denoted by 1 & &A mP P P= …) of m atomic preferences ((),)
ii i PP dom A= ƒ

defined over A when 1()mv v v∀ = … , 1() ()mv v v dom A′ ′′ = ∈… we have:

 &v v′≺ : iff [1]i m∃ ∈ … , such that
ii P iv v′ ≺ and [1] { }j m i∀ ∈ −… it

holds
jj P jv v′ ƒ

 &v v′ ∼ : iff [1]i m∀ ∈ … it holds
ii P iv v′ ∼

 &v v′ & in all other cases

Definition 2.20: Preference ((),)
AA PP dom A= ƒ is the prioritized preference,

(denoted by 1A mP P P= �…�) of m atomic preferences ((),)
ii i PP dom A= ƒ

defined over A when 1()mv v v∀ = … , 1() ()mv v v dom A′ ′′ = ∈… we have:

 v v′ �≺ : iff [1]i m∃ ∈ … such that
ii P iv v′ ≺ and [1 1]j i∀ ∈ −… it holds

jj P jv v ′∼

 21

 v v′ �∼ : iff [1]i m∀ ∈ … it holds
ii P iv v′ ∼

 v v′ �& in all other cases

Note that a pareto preference is a combination of mutually non dominating

preferences. On the other hand, a prioritized preference treats 1P as more

important than preference 2P , which in turn is more important than 3P , etc., up to

preference mP .

Both operators are associative, allowing us to apply each of then on more than

two operands, without using parentheses; the Pareto operator is commutative,

but not the Prioritization one, whereas neither of the two is distributive over the

other. Let us, also, assume that when omitting parentheses, the operators take

priority from left to right.

Example 2.3: Consider, for instance, the relation schema (, ,)R A B C where the

domain of attributes is given respectively by the sets 1 2 3() { , , }dom A a a a= ,

1 2 3() { , , }dom B b b b= , 1 2 3() { , , }dom C c c c= . Also suppose that a user has defined

the atomic preferences
11 ((),)PP dom A= ƒ ,

22 ((),)PP dom B= ƒ ,

33 ((),)PP dom C= ƒ such that
13 1Pa aƒ ,

13 2Pa aƒ ,
22 1Pb bƒ ,

23 2Pb bƒ ,

32 1Pc cƒ ,
33 2Pc cƒ . Notice that all values here are active. Figure 4 depicts their

corresponding Hasse diagrams5:

Figure 4: Hasse diagram for three atomic preferences

5 Recall that the above Hasse diagram represents the partial order of the equivalence classes of

the quotient sets.

P1 P2 P3

[a1] [a2]

[a3]

[b1]

[b2]

[b3]

[c1]

[c2]

[c3]

 22

Now, consider two elements 3 1 1(, ,)a b c ,

1 1 3(, ,)a b c () () ()dom A dom B dom C∈ × × . According to the above definitions we

have:

1. 3 1(,)a b
1 2&P P≺ 1 1(,)a b due to

13 1Pa a≺ (i.e., since
13 1Pa aƒ and 3a ∼ 1a)

and
21 1Pb bƒ

2. 3 1 1(, ,)a b c
1 2 3& &P P P& 1 1 3(, ,)a b c because

13 1Pa a≺ but
33 1Pc c≺

3. 1 1 3(, ,)a b c
2 3 1P P P� �≺ 3 1 1(, ,)a b c as both contain 1b and because 3P is

prioritized to 1P

4. 3 1 1(, ,)a b c
1 2 3(&)P P P�≺ 1 1 3(, ,)a b c due to (1) and since 3P is the least

important

2.2.2 From Tuple to Object Ordering

Given a preference ((),)
AA PP dom A= ƒ , we can use the definitions above to infer

a non-antisymmetric partial preorder of the objects themselves in a relation R

through projection, as follows:

, , [] []
A AP Po o R o o iff o A o A′ ′ ′∀ ∈ ƒ ƒ

APo o′ƒ means that o is at most as preferable as o′ , (or equivalenty, o′ is at

least as preferable as o). The process of comparing two objects in order to

decide which one is more preferred than the other is referred in the literature as

“dominance testing”. If both
APo o′ƒ and

APo o′ƒ hold, we shall pronounce

those objects ,o o′ as equally preferred and we will denote this relation as

APo o′ ∼ (i.e., belong to the same equivalence class). If
APo o′ƒ but

()
APo o′¬ ƒ , we can write

APo o′≺ which is interpreted as o′ is (strictly) more

preferable than o or o′ dominates o . Finally if neither
APo o′ƒ nor

APo o′ƒ

hold, then we will say that ,o o′ are incomparable and we will write
APo o′& .

 23

Now let ≤ be the partial order relation which derives from
APƒ among the

equivalence classes of the quotient set /
APR ∼ .[] []o o′≤ will mean that the

equivalence class of o is at most as preferable as the equivalence class of o′ .

However if [] []o o′≤ and [] []o o′≠ we can write [] []o o′< meaning that the user

prefers object o′ (or any object equivalent to o′) to object o (or any object

equivalent to o).

Example 2.4: Assume preference 1 2&P P P= where
11 ((),)PP dom A= ƒ ,

22 ((),)PP dom B= ƒ are the atomic preferences of Figure 4 and the following

relation R :

1 1 1 1

2 3 1 3

3 3 1 2

4 1 2 1

oid A B C
o a b c
o a b c
o a b c
o a b c

Figure 5: A relation R

According to the definitions described above we will have the following

relations over the objects of R : 2 1Po o≺ , 3 1Po o≺ , 4 1Po o≺ , 2 3Po o∼ , 2 4Po o& ,

3 4Po o& . As a result, there are three equivalence classes 1 1[] { }o o= ,

2 2 3[] { , }o o o= , 4 4[] { }o o= defined. The resulting Hasse diagram is illustrated in

Figure 6.

Figure 6: The Hasse diagram of Pƒ over R

[o1]

[o2] [o4]

 24

Now, given a preference P over A in a relation R , we shall call active those

objects o R∈ which contain active values over every attribute in A 6 while the

rest of the objects are called inactive; Active objects, denoted as (,)Act P A are

those that represent items which are interesting to the user, as they contain the

combinations of interesting attribute values. Moreover, active objects can be

ordered with respect to others, while inactive ones are those that cannot be

ordered.

Figure 7: Active and inactive objects

For example assume that the relation R of Figure 5 contains one more object

5 4 1 1(, ,)o a b c . Since 4 1(,)a V P A∉ , 5o is considered as inactive object and clearly

it cannot be ordered with respect to the remaining objects of R . In existing

frameworks ([7], [8], [9], [13], [15], [24], [30]), inactive objects are considered

as incomparable to the active ones and thus returned in the first block of the

result (as undominated). For instance, 5o will be returned in the same block as

object 1o , although the user definitely prefers the latter. As a consequence, our

approach partitions objects of R into active and inactive ones and relies only on

the active objects to retrieve the top- k objects of a relation R (Figure 7).

6 [] (,)Ao A V P A∈

DB Objects

Top-k

Active Objects

Inactive Objects

 25

Chapter 3: Top-k Algorithms

In the previous chapter we have shown how from a given preference

((),)PP dom A= ƒ , we can infer a partial order ≤ (which derives from Pƒ)

among the equivalence classes of the quotient set / PR ∼ . Furthermore, we have

seen how to form a linear order of mutually disjoint blocks of classes of objects

that respects≤ and as a result the initial user preferences. In this linear order

each block would correspond to a screen of incomparable equivalence classes

that is shown to the user, with the most preferred classes of objects appearing

first. Nevertheless, the presence of equivalent and of incomparable objects

leaves space for more than one different orderings of R . In particular we have

considered two linear orders of blocks (
∀∃

< ,
∃∀

<) that actually satisfy the above

requirements.

Let us assume a
∃∀

< ordering between the blocks of the answer. In order to

retrieve the most preferred objects of the partial order, all the succeding blocks

have to be previously computed since a
∃∀

< order imposes a “down to top”

orientation. Thus, in the general case that we assume where the number of

available active objects in relation R is large and the number k is small, a
∃∀

<

ordering is not suitable due to the expensive computation cost and its lack of

progressiveness (we actually have to order the entire relation R). As a result of

this observation we mainly focus on the
∀∃

< ordering.

For any given user preference ((),)PP dom A= ƒ and an integer k , our purpose

is to provide efficient evaluation algorithms for computing the top- k objects of

R .

Problem Statement: Given a relation R our objective is for every possible

((),)PP dom A= ƒ and k parameter to compute and deliver to the user a linear

order of n blocks of equivalence classes of objects 0 1 1, , , nB B B −… , where n is

 26

the smallest integer that satisfies the inequality
1

0

n

i
i

B k
−

=

≥∑ and iB is the

cardinality of block iB in objects. In such a linear order, each block would

correspond to a screen of equivalence classes of objects that is shown to the

user, satisfying the following properties:

1. [],[] it holds [] []io o B o o′ ′∀ ∈ & 7

2. 0 0[] , [] such that [] []o B o B o o′ ′∀ ∈ ¬∃ ∉ ≤

3. [0 1], [] it holds j ii n j i n B B
∀∃

∀ ∈ − ∈ <… … (i.e., [] jo B∀ ∈ , [] io B′∃ ∈

such that [] []o o′≤)

where ≤ is the induced partial order from Pƒ among the equivalence classes of

the quotient set / PR ∼ and & its incomparability relation. The elements in
1

0

n

i
i

B
−

=
∪

are called the top- k objects.

Note that according to the definitions above
1

0

n

i
i

B
−

=
∑ can be greater than k . In

that case the user is able to select between retrieving all objects in

0 1 1, , , nB B B −… or to stop the presentation of objects after showing the thk object

(this can happen before all objects of a block have been shown to the user). In

either case we shall denote as , ()k Pq R the set that contains the top- k objects of

R according to P .

In this chapter we present two broad approaches that can be applied to tackle the

problem at hand, namely the object-based and the query-based approach.

Section 3.1 details the object-based ordering approach that has emerged so far

and the most common algorithms (i.e., BNL, Best) that follow this approach. In

section 3.2 we present a novel (to the best of our knowledge) query-based

ordering approach and present two query-based top- k algorithms.

7 Abusing notation we are able to generalize a relation R on objects to a relation on classes (or

sets) of objects as follows: [] []o R o′ iff [] [] o o o o o R o′ ′ ′∀ ∈ ∀ ∈ .

 27

3.1 Object-based ordering

For the computation of the top- k objects of a relation R , a relational operator

that has been variously called winnow ([7], [8]), Best [30] or BMO ([13], [15])

has been introduced. Winnow selects the set of the most preferred objects (i.e.,

the first block), according to a given preference expression ((),)PP dom A= ƒ .

For the evaluation of the winnow operator two basic algorithms Block Nested

Loop (BNL) [29] and Best [30] have been introduced. The core element of these

algorithms is dominance - testing. They essentially iterativelly eliminate every

object o , for which there is a dominating object o′ such that Po o′≺ . These

algorithms can be also extended to produce the top- k results matching a

preference expression, as follows: If the result res of the winnow operator has

m objects and m k≥ , return them. Otherwise deliver these m objects (i.e.,

return the first block) and for finding the remaining ones winnow is called again

over \R res . So, to obtain the top- k objects a number of iterations need to be

performed (in the worst case we will have k iterations). The main characteristic

of the object-based ordering algorithms is that they are agnostic of the

preference expressions. As a matter of fact, user preferences are treated as a

black box by the dominance test. In the following sections we fully describe

algorithms BNL and Best that are used for the evaluation of winnow operator.

3.1.1 Block Nested Loop (BNL)

BNL algorithm [29] (Figure 8) repeatedly reads the object relation R . The idea

of this algorithm is to keep a window W in main memory of the best

equivalence classes of objects discovered so far. All the classes of objects in the

window are incomparable and they all need to be memorized, since each may

turn out to dominate some input objects processed in a later step. When an

object o is read from R and it is active8 (line 5), it is compared to a

representative o′ from all classes of the window (line 7) and, based on this

comparison, o is either eliminated or placed into the window or when there is

8 An object is active according to a preference ((),)PP dom A= ƒ iff [] (,)o A V P A∈

 28

no space into a temporary table Temp which will be considered in the next

iteration step of the algorithm. For any active object o four cases can occur:

 o is less preferable than a representative from each equivalence class

within the window (line 8). In this case, o is eliminated and will not be

considered in the current iteration. Of course, o need not be compared

to all class representatives of the window in this case.

 o is more preferable than one or more representatives in the window

(line 9). In this case, these equivalence classes are eliminated; that is,

these classes are removed from the window.

 o is equivalent with a window representative. If there is enough room in

the window, o is inserted into the corresponding class (line 12) []o′ .

Otherwise, []o′ is removed from the window, is inserted to a temporary

table Temp on disk and then o is inserted into []o′ (lines 13-15). o

need not be compared to the remaining class representatives of the

window in this case.

 o is incomparable with all representatives in the window. In that case o

defines a new equivalence class []o . If there is enough room in the

window, []o is inserted into the window (lines 17, 18). Otherwise, o is

inserted to a temporary table Temp on disk (line 20). The objects of the

temporary table will be further processed in the next iteration step of the

algorithm (line 21).

Initially, the first object will naturally be put into the window because the

window is empty. At the end of each iteration, BNL can only output the classes

of the window for which their representative has been compared to all objects

that have been written to the temporary table; these classes contain objects that

are not dominated by any other (i.e., they are top- k objects). Specifically, BNL

outputs and ignores for further processing those classes which were inserted into

the window when the temporary table was empty (line 21). These classes are

guaranteed to be in the next block of the answer iB since they have been

compared to all other objects that were put into Temp . Therefore BNL marks

 29

(line 19) all classes that were inserted into the window when Temp was empty.

The remaining classes of W must be compared against those stored in the

temporary table. Thus, BNL has to be executed again, this time using Temp as

input, until there are no remaining classes in Temp . When the temporary table

is empty (line 4), BNL has found all the objects that belong in the next block

iB . If the number of the returned objects is more than k the algorithms stops

(line 24). Otherwise BNL is executed again over \ iR B (line 23) in order to find

the next block 1iB + until the number of the returned objects exceeds k .

 30

Block Nested Loop

input: a relation R , a preference expression P , an integer k

output: the
∀∃

< -aware top- k objects of R according to P

1: 0,Result ii Temp Input W B= = = = = =∅ //W keeps the best objects discovered

2: Repeat

3: = Input R

4: While :Input ≠ ∅

5: For each active object o Input∈ do:

6: Dominated = false

7: While (not (Dominated)) not compared with :o W o′∧ ∃ ∈

8: If Po o′≺ then Dominated = true

9: ElseIf Po o′≺ then remove [] from o W′

10: ElseIf Po o′∼ then

11: If MemoryAvailable then

12: [] [] ; stop comparisons for o o o o′ ′= ∪

13: Else remove [] from o W′

14: []Temp Temp o′= ∪

15: [] [] ; stop comparisons for o o o o′ ′= ∪

16: If not(Dominated) then

17: If MemoryAvailable then

18: []W W o= ∪

19: If Temp =∅ then ([])mark o

20: Else []Temp Temp o= ∪

21: ,Input Temp= {[] | ([])}i iB B o W mark o= ∪ ∈

22: ireturn B , | | | | | |iresult result B= +

23: If |result| then k< \ iR R B= , 1i i= +

24: | result | Until k≥

Figure 8: Block Nested Loop Algorithm

 31

The main advantage of BNL is its simplicity, since it can be used without

indexing or sorting the input relation R . However, it is sensible to the amount

of the available main memory. A small memory may lead to numerous

iterations while in case where the size of an equivalence class in W exceeds the

size of W then the algorithm can not terminate. BNL requires to access all

objects of a relation R at least once and to perform at least one dominance test

for every active object in R . This makes BNL inappropriate for large databases.

Another disadvantage of BNL is its inadequacy for on-line processing since it

has to read the entire data relation before it returns the first block 0B (line 3).

Best case time complexity: In the best case the result (i.e., all blocks of the

answer) fits into the window and the algorithm terminates in one iteration.

Therefore the best case time complexity of BNL is ()O n where n is the number

of objects in R .

Worst case time complexity: The worst case time complexity of BNL is 2()O n

and occurs when a block of the answer is very large compared to the amount of

the available memory (e.g., all objects in R are incomparable to each other).

Space Complexity: The memory requirements of BNL depend on the size of

window W and not on the size of relation R . Therefore we can write that the

space complexity of BNL is (1)O .

 32

3.1.2 Best

Like BNL, Best [30] (Figure 9) is executed in several iteration steps. Each step

consists of a one or more scans over a set of candidate objects which might

belong to the output iB of the thi step. The main difference between BNL and

Best is that the latter tries to restrict the search space of the input relation R as

much as possible for the subsequent iterations of the algorithm9. In order to

achieve that, Best keeps in memory for each object o a set oD; that contains all

objects which have been compared to o and have been dominated by it.

However, Best does not suffer by bounded memory requirements as BNL does.

When an active object o′ read from the input R is compared with an object So

which is kept in main memory and temporarily plays the role of the selected

object. Object So is a representative of an equivalence class iS containing some

of the best objects discovered so far. For any active object o′ four cases are

possible:

 P So o′ ∼ in this case o′ is added to iS and So remains the selected

object

(line 8).

 S Po o′& in this case o′ is put into a set iU of the unresolved objects and

So remains the selected object (line 5).

 P So o′≺ in this case o′ is put into a set SoD; , which contains the objects

dominated by So according to Pƒ , and So remains the selected object

(line 6).

 S Po o′≺ in this case iS is added to the set o o
iD D S′ ′= ∪; ; , which

contains the objects dominated by o′ according to Pƒ and o′ becomes

the selected object (i.e., So o′= , { }iS o′=) (line 7).

9 Recall that BNL after returning block iB , if needed, runs over \ iR R B=

 33

After the algorithm completes the database scan there is no object among those

processed that dominate objects in iS . So objects in iS are put into the block iB

in which Best collects the objects to be returned as the output of the thi -step.

However, there might be some objects o′ in iU dominated by So . For this

reason the algorithm also compares the selected object with the objects in iU

(lines 9,10). At that point, if iU is not empty, Best repeats the whole procedure

but this time using iU as input (i.e., another scan at the end of which a new set

iS will be inserted in iB) (line 12). When at the end of the a scan, iU gets

empty the thi -step is concluded and Best returns the next block iB (line 13). If

the number of the returned objects is more than k , then the algorithm stops.

Otherwise, Best is executed again this time using as input only the objects in the

sets oD;
 for each io B∈ (i.e., { | }o

iInput D o B= ∈;∪) (line 15).

 34

Best

input: a relation R , a preference expression P , an integer k

output: the
∀∃

< -aware top- k objects of R according to P

1: 0, Result ,i = = ∅ = Input R

2: Repeat

3: Let as the first ()So Active o Input∈ // So is the selected object

4: While active object not compared with :So Input o′∃ ∈

5: If S Po o′& then i iU U o′= ∪

6: ElseIf P So o′≺ then S So oD D o′= ∪; ;

7: ElseIf S Po o′≺ then , = , { }o o
i S iD D S o o S o′ ′ ′ ′= ∪ =; ;

8: ElseIf then P S i io o S S o′ ′= ∪∼

9: While not compared with :i So U o′∃ ∈

10: If P So o′≺ then , remove from S So o
iD D o o U′ ′= ∪; ;

11: ,i i i iB B S S= ∪ =∅

12: If then i iU Input U≠ ∅ =

13: Else ireturn B ; | | | | | |iresult result B= +

14: If |result|< thenk

15: { | }o
iInput D o B= ∈;∪

16: 1i i= +

17: Else break

18: falseUntil

Figure 9: Best Algorithm

 35

Best inherits the advantage (i.e., easy implementation) and the disadvantages

(i.e., at least one dominance test for every active object in R , not progressive)

from BNL. However, Best requires only one scan of the relation R

independently to the number k of returned objects.

Best case time complexity: Like BNL, the best case time complexity of Best is

()O n where n is the number of objects in R and occurs when the result (i.e.,

the top- k objects) is small comparing to n .

Worst case time complexity: Worst case time complexity of Best is 2()O n and

occurs when all objects of R are incomparable to each other.

Space Complexity: The space complexity of Best is ()O R where R is the

size of the input relation R (in pages), since the entire relation might be kept in

the oD; sets.

 36

3.2 Query Based Ordering

3.2.1 Lattice Based Algorithm (LBA)

The main intuition behind this algorithm is that each block iB of the answer

w.r.t. a preference P corresponds to the result of a selection query iQB

(i.e., ()i iB ans QB=), neglecting object ordering. Block queries iQB may be

collected by “scanning” the active Cartesian Product (,)V P A in a top-down

manner, without having to calculate and store the latter. These queries are

essentially unions of conjunctions of atomic selection conditions, containing all

attributes that the user preference involves. LBA incrementally constructs and

evaluates those queries starting from the one that returns the most preferred

objects of R i.e., from 0QB , until the number of the returned objects exceeds

k . For each query iQB , ()ians QB comprises incomparable (with respect to ≤)

equivalence classes of objects and a query iQB precedes iQB ′ (i.e., i iQB QB′ <)

if between ()ians QB and ()ians QB ′ it holds: () ()i ians QB ans QB
∀∃

′ ≤ . As a

result, the retrieved objects are already ordered so there is no need to further

compare them.

Given a preference ((),)PP dom A= ƒ , each domain value (,)i i iv V P A∈ and each

tuple (,)v V P A∈ belong to an equivalence class declared by the symmetric

parts Pi∼ , P∼ of Piƒ and Pƒ respectively. To simplify the presentation of the

algorithm in the rest of this chapter when we refer to domain values and tuples

we shall actually mean their corresponding equivalence classes.

As we have seen in the previous chapter, a preference expression P over a set

of attributes 1{ }mA A A= … , defines a preference relation (i.e., a non-

antisymmetric partial preorder) over the elements 1 2(, , ,)mv v v… of the active

preference domain (,)V P A . These elements essentially represent conjunctive

 37

queries of the form 1 1 2 2 m mA v A v A v= ∧ = ∧ ∧ =… which when executed will

retrieve the matching objects. We call the respective ordering of queries the

Query Lattice10.

Figure 10: Query Ordering Framework

Consider, for example, the preference expression &A BP P P= of Figure 10.1,

such that 2 1APa a≺ , 3 1APa a≺ , 3 1BPb b≺ , 3 2BPb b≺ . Figure 10.2 illustrates the

Hasse diagram of (& ,{ , })A BV P P A B ; it also depicts the induced
∀∃

< block

ordering 2 1 0QB QB QB
∀∃ ∀∃

< < on (& ,{ , })A BV P P A B . Clearly, to compute the

most preferred objects (i.e., the top block 0B) w.r.t. &A BP P P= , we need to

execute the queries 1 1A a B b= ∧ = and 1 2A a B b= ∧ = deriving from the first

query block 0QB . As both queries have non-empty results (1 5{ , }o o and 7 9{ , }o o ,

respectively, see Figure 10.3), we guarantee that they and only they return the

most preferred objects (see Figure 10.4).

However, not every query in the lattice is guaranteed to be non-empty.

Consider, for instance, that the user is interested in obtaining the next block 1B .

As we can see in Figure 10.3, from the five queries of the second lattice

block 1QB , only 3 1A a B b= ∧ = has a non-empty result (3{ }o) which belongs to

the next block of the anwser 1B . Yet, all other objects that belong to 1B , if any,

have to result from queries that are successors11 of the empty queries in 1QB ,

10 For simplicity, we omit a “true” top query and a “false” bottom query.
11 Or, recursively their successors, in case they are empty.

 38

and at the same time, are not successors of any other non-empty query in 1QB .

This is the case of 2 3A a B b= ∧ = in 2QB , with result 4{ }o , being child of the

empty query 2 1A a B b= ∧ = and, at the same time, incomparable to the non-

empty query 3 1A a B b= ∧ = of 1QB . On the contrary, 3 3A a B b= ∧ = in 2QB ,

although it is a child of two empty queries in 1QB , it is also a child of the non-

empty one 3 1A a B b= ∧ = of 1QB ; thus, its answer does not qualify for 1B .

Recursively, we can compute the bottom block 2B as illustrated in Figure 10.4.

As we already state, LBA aims to compute the

∀∃
< block ordering of the top- k

objects without actually needing to construct the induced ordering of objects.

This is essentially achieved by exploiting the semantics of a preference

expression and, in particular, by linearizing the active Cartesian Product

(,)V P A of all attribute values appearing in the expression. Going one step

further, we don’t even need to construct in advance and then linearize (,)V P A .

Instead, we can simply construct its
∀∃

< block ordering from the
∀∃

< block

ordering of its constituent atomic preferences. For example, in Figure 10.1 the

∀∃
< block ordering of AP is 1 2 3 0 1{ , } { }A a a A a

∀∃
= < = and of BP is

1 3 0 1 2{ } { , }B b B b b
∀∃

= < = . Thus, we introduce the following two theorems which

provide the means to compute the
∀∃

< block ordering of an arbitrary preference

expression progressively.

Theorem 3.1:: Given the
∀∃

< block orderings 1 1 0nX X X− ∀∃ ∀∃ ∀∃
< < <… , and

1 1 0mY Y Y− ∀∃ ∀∃ ∀∃
< < <… of two preferences XP and YP , the

∀∃
< block ordering

2 1 0n mZ Z Z+ − ∀∃ ∀∃ ∀∃
< < <… of preference &X YP P P= , will consist of 1n m+ −

blocks; each block pZ will comprise elements only from blocks qX and rY ,

such that q r p+ = .

Proof 3.1: We start with the second part of the theorem, and use induction: It is

obvious that the top (bottom) block 0Z (say, bZ , respectively) will derive from

 39

the composition of the respective top (bottom) blocks 0X (1nX −) and 0Y (1mX −).

The second block 1Z must contain items which are worse than those of 0Z in

exactly one of their two constituents, i.e., worse either in X or in Y , but not in

both. Furthermore, it should be worse by a distance of exactly 1 block in this

constituent. To prove this, assume any item in Z deriving from constituents

which either are worse in both X and Y , or are worse by a distance of more

than 1 blocks in X or Y ; then, in both cases, such an item is obviously worse

than some item(s) of 1Z , and thus it ought to belong in a block lower than 1Z .

As 1+0=1 and 0+1=1 (for X , Y , and Z indices, respectively), the second part

of the theorem holds for block 1Z , i.e., for a non trivial induction basis. For the

induction hypothesis, assume that the theorem holds for block kZ , i.e.,

q r k+ = , for those qX ’s and rY ’s which are the constituents for X and Y ,

respectively. Taking the induction step, it is obvious, by the previous discussion,

that block 1kZ + should comprise those items originating either from 1qX + and

rY , or from qX and 1rY + (i.e., the items from either of the precisely next blocks

in X or Y , but not from both of those simultaneously); then, the new sum of

the constituent blocks will have risen by exactly 1 to 1k + ; q.e.d. Using this

result, and enumerating the values from 0 to 1n − and from 0 to 1m − we arrive

at the actual number of Z -blocks, which is exactly 1n m+ − ; and this

completes the proof of the theorem.

Given the two block orderings 1 0A A
∀∃

< and 1 0B B
∀∃

< of Figure 10.1 for AP

and BP respectively, the block ordering of preference &X YP P P= , will consist

of 3 (i.e., 2+2-1) blocks. As we can see in Figure 10.2 the top block (0QB) will

be formed by combining elements from blocks whose sum of indices is 0, i.e.,

0A with 0B , the second (0QB), from blocks whose sum of indices is 1, i.e., 0A

with 1B , and 1A with 0B , and the third (0QB), from blocks whose sum of

indices is 2,i.e., 1A with 1B . The following theorem can be similarly proved:

 40

Theorem 3.2: Given the
∀∃

< block orderings 1 1 0nX X X− ∀∃ ∀∃ ∀∃
< < <… , and

1 1 0mY Y Y− ∀∃ ∀∃ ∀∃
< < <… of two preferences XP and YP , the

∀∃
< block ordering

2 1 0n mZ Z Z+ − ∀∃ ∀∃ ∀∃
< < <… of preference X YP P P= � , will consist of n m×

blocks; each block pZ will comprise elements only from blocks qX and rY , and

it will hold p q m r= × + . For every value of q ranging from 0 to 1n − , r will

range from 0 to 1m − ; i.e., pZ ’s will derive from 0 0X Y , 0 1X Y ,…, 0 1mX Y − , 1 0X Y ,

…, 1 1n mX Y− − .

Algorithm LBA takes as input a relation R and a preference expression P

involving a subset A of R ’s attributes. Then, it outputs progressively the
∀∃

< -

aware top- k objects of R . To this end, LBA relies on a internal representation

of the sequence of blocks of the active Cartesian Product (,)V P A (see Figure

10.2). In particular, array QB is used to hold in main memory only the structure

of the
∀∃

< block ordering of (,)V P A . The corresponding Query Lattice is not

materialized but rather the queries needed to construct the requested blocks are

computed and executed on the fly. Each QB entry is essentially a list whose

elements hold only the block indices of the active terms of (,)i iV P A forming a

block of (,)V P A . Going back to Figure 10, 0QB contains the single element list

0,0< > , standing for 0A , 0B , whereas 1QB contains the list 0,1 1,0< >→< > ,

standing for 0A , 1B and 1A , 0B , respectively. The entire QB array of our

example can be seen in Figure 11.

0

1

2

: 0,0
: 0,1 1,0
: 1,1

QB
QB
QB

< >

< >→< >
< >

Figure 11: The QB array of 1 2&P P P=

After computing QB (line 1), LBA iteratively calls GetBlockQueries (line 4) to

create a list of associated conjunctive queries and Evaluate (line 5) in order to

output successive blocks of objects until the top- k objects were retrieved (or

(,)V P A is exhausted).

 41

LBA

input: an object relation R , a preference expression P , an integer k

output: the
∀∃

< -aware top- k objects of R according to P

1: (.)QB ConstructQueryBlocks P root=

2: 0result i= =

3: Repeat

4: ([])iUq GetBlockQueries QB i=

5: ()iresult Evaluate Uq+ =

6: 1i+ =

7: Until result k≥ or i QB=

Figure 12: LBA Algorithm

ConstructQueryBlocks returns the structure of the final expression result in the

form of blocks. It traverses recursively a preference expression tree P (starting

from .P root) and computes bottom-up the number of blocks and their origin in

QB . For each QB entry it generates the structure of the respective
∀∃

< block

ordering. When & (line 6) and � (line 7) appear as a preference relation

between expressions .P left and .P right , it calls ParetoComp or PriorComp to

construct the corresponding QB . For leaves (i.e., for atomic preferences), their

respective QB entries are computed (line 2) by PrefBlocks which for an atomic

preference iP derives its
∀∃

< block ordering of (,)i iV P A . For example, in its

“bottom left” recursion step ConstructQueryBlocks creates a QB with two

entries 0 : 0QB < > and 1 : 1QB < > for the
∀∃

< block ordering 1 0A A
∀∃

< of

preference AP .

 42

ConstructQueryBlocks

input: a preference expression P

output: the QB array of P

1: If P is a leaf then // P is an atomic preference

2: PrefBlocks((,))i iQB V P A=

3: Else

4: _ (.)QB left ConstructQueryBlocks P left=

5: _ (.)QB right ConstructQueryBlocks P right=

6: If . "&"P type = then (. , .)ParetoComp P left P right

7: Else PriorComp(. , .)P left P right

8: Return .P QB

Figure 13: ConstructQueryBlocks function

ParetoComp and PriorComp implement theorems 3.1 and 3.2 respectively. In

particular, ParetoComp given two input preferences 1P and 2P computes the

QB , for the case of 1 2&P P . As explained in theorem 3.1 QB will comprise

1. 2. 1P QB P QB+ − blocks; and the sum of the indices of each element in

every block will equal the index of that block. On the other hand, PriorComp

for its input preferences 1P , 2P computes the QB for the case of 1 2P P� . As

defined in theorem 3.2, QB will comprise 1. 2.P QB P QB× blocks, and the

order of the blocks follows the lexicographical order of the indices of the

corresponding blocks.

 43

ParetoComp

input: two operand nodes 1P and 2P

output: the QB of node 1 2&P P P=

1: . 1. 2. 1P QB P QB P QB= + −

2: For 0 to .w P QB=

3: . [] { 1. [] 2. [] | } P QB w P QB i P QB j i j w= × + =∪

4: Return .P QB

Figure 14: ParetoComp function

PriorComp

input: two operand nodes 1P and 2P

output: the QB of node 1 2P P P= �

1: 0w =

2: . 1. 2.P QB P QB P QB= ×

3: For 0 to 1. 1i P QB= −

4: For 0 to 2. 1j P QB= −

5: . [] 1. [] 2. []P QB w P QB i P QB j= ×

6: 1w+ =

7: Return .P QB

Figure 15: PriorComp function

Function Evaluate executes each query q of its input set iUq . It keeps track of

non-empty queries in SQs , so that they are executed only once. Also, for the

object block iB currently processed, it keeps track of non-empty queries in

CurSQs (line 4) and of empty ones in FQs (line 5). For each non-empty query

it appends its answer to current block iB . For empty ones, it applies (lines 11 to

17) the previous process on their immediate (or transitive) successors which are

not in SQs (thus avoiding to execute twice a non-empty query), and not in

CurSQs (i.e., ensuring they are not at the same time successors of any non-

 44

empty query). This process is terminated when no more successors are available

(line 11) or there are no more empty queries to inspect (line 17). Finally,

Evaluate outputs the computed block and returns its size (line 19).

Evaluate

input: a list of queries

output: the next block iB

1: For each q in iUq

2: If q not in SQs then

3: If ()!ans q =∅ then

4: { }CurSQs q∪ = ; ()iB ans q∪ =

5: Else { }FQs q∪ =

6: Else { }FQs q∪ =

7: While !FQs =∅

8: For each q in FQs

9: \ { }FQs q=

10: 1 1 1{ | ()}Q q q child q= =

11: For each q in 1Q

12: If q not in SQs then

13: If not q in ()succ q′ forall q′ in CurSQs then

14: If ()!ans q =∅ then

15: { }CurSQs q∪ = ; ()iB ans q∪ =

16: Else { }FQs q∪ =

17: Else { }FQs q∪ =

18: SQs CurSQs∪ = ; CurSQs =∅

19: ioutput B ; ireturn B

Figure 16: Evaluate function

 45

Function ()child (line 10), returns the direct children of its input query q .

There are several ways to implement ()child . In our case the implementation of

()child was based on the following observation: We already know the list

element 1 2, , , ml l l< >… of iQB from which q has originated. Clearly, the direct

children of q must originate only from one or more list elements of 1iQB + . For

each list element 1 2, , , ml l l′ ′ ′< >… of 1iQB + , let lastblock be the set that

contains each {1... }j m∈ for which jl is the index to the last block of the

corresponding
∀∃

< block ordering of (,)j jV P A . From the list elements

1 2, , , ml l l′ ′ ′< >… of 1iQB + only those that satisfy the following property may

point to children of q :

 there exists c lastblock∉ such that 1c cl l′ = +

 { }k lastblock c∀ ∉ − it holds k kl l′ = .

Having identified those list elements 1 2, , , ml l l′ ′ ′< >… of 1iQB + which directly

point to children of 1 1 2 2: m mq A v A v A v= = ∧ = ∧ ∧ =… , the queries to be

returned by the function are produced as follows:

For each {1... }j m∈ such that j jl l′ ≠ :

 If 1j jl l′ = + then replace jv with the direct children of jv in the

corresponding ((),)
jj j PP dom A= ƒ

 If 0jl ′ = then replace jv with the maximal values of
jPƒ that are related

to jv

3.2.1.1 ∃
<

∀ -aware LBA

Consider now the case where the size of (,)V P A is very large compared to the

number of available (active) objects. As a result LBA will have a lot of fruitless

fetching attempts (for most of the queries q it will hold ()ans q =∅). This will

lead to poor performance since the algorithm will continuously keep searching

(,)V P A for possible exclusive successors of q that will probably result empty

 46

answers too. In such a scenario it would be reasonable to adopt a more

“relaxed” linear order of blocks that however will not go against the intuition

“most-preferred objects first” which is probably the most important constraint

that each linear order of blocks should satisfy. Therefore we define the ∃
<

∀

order of blocks as follows:

Definition 3.1: Let iB
∃

< jB
∀ , iff [] io B∀ ∈ , ∃[] jo B′ ∈ such that [] []o o′ ≤ .

Therefore in an
∃

<
∀

 adaptation of LBA, when for a query q holds ()ans q =∅

there is no need to search for possible exclusive successors of q since the

identification of the incomparable objects is not a strict requirement here. The

only (but important) difference between the
∀∃

< and the
∃

<
∀

 variation of LBA

is that the Evaluate function, is only responsible for fetching objects and no

further examination is required.

Evaluate

input: a list of queries

output: the next block iB

1: For each q in iUq

2: ()iB ans q∪ =

3: ioutput B ; ireturn B

Figure 17: Evaluate function for the
∃

<
∀

 variation of LBA

It is worth noticing that the
∃

<
∀

 variation of the LBA algorithm can be also

sensitive to scenarios where the size of (,)V P A is large compared to the

number of available objects. Howerer due to the fact that the identification of

incomparable objects is not a strict requirement, it is expected to be more

efficient than the
∀∃

< variation.

Moreover, since in the
∃

<
∀

 variation of LBA we are not actually forced to

identify which queries yield empty queries and which not, we could employ

some different rewriting techniques in order to construct queries which are more

efficient to evaluate. So far, given a block query iQB , for each of its tuples

 47

1 2(, , ,)m iv v v v QB= ∈… one conjunctive query of the form

1 1 2 2:j m mq A v A v A v= = ∧ = ∧ ∧ =… was formulated and executed individually.

iQB was defined as the union of those conjunctive queries. From now on, we

will refer to this rewriting as MQ (Multiple Queries). A second rewriting

approach would be to define iQB as the disjunction of the conjunctions of the

atomic selection conditions that each tuple iv QB∈ defines. For example

assuming that iQB contains two tuples 1()mv v v= … and 1()mv v v′ ′′ = … , iQB

will have the following form:

1 1 2 2 1 1 2 2: () ()i m m m mQB A v A v A v A v A v A v′ ′ ′= = ∧ = ∧ ∧ = ∨ = ∧ = ∧ ∧ =… …

We refer to this rewriting as SQ∨ (Disjunctive Single Query). Finally, iQB can

be defined as the conjunctive query of m disjunctions (one for each attribute).

Each disjunction refers to a specific attribute iA and consists of every atomic

selection condition that each tuple iv QB∈ defines and refers to iA where any

repeated conditions are removed. For example assuming that iQB contains two

tuples 1()mv v v= … and 1()mv v v′ ′′ = … , iQB will have the following form:

1 1 1 1 2 2 2 2: () () ()i m m m mQB A v A v A v A v A v A v′ ′ ′= = ∨ = ∧ = ∨ = ∧ ∧ = ∨ =…

We refer to this rewriting as SQ∧ (Conjunctive Single Query).

3.2.1.2 Analytical Evaluation

In this section we analyze the complexity of LBA by focusing on the cost of

computing the top block of the top- k objects. This choice is motivated by the

fact that generating the top block has the same cost in the worst case as

constructing the entire block ordering. Furthermore, it provides a common

ground for comparison with existing algorithms evaluating skyline queries.

LBA algorithm has a very small startup cost for constructing the
∀∃

< block

ordering of the input atomic preferences 2((,))i iO V P A and in general can be

neglected. The cost of LBA is mainly due to the number of conjunctive queries

it has to execute in order to construct a block of the answer. A conjunctive query

is usually evaluated by traversing the available indices on the involved

 48

attributes, intersecting the oids and then fetching the matching objects from the

disk. When (unclustered) B+-trees are used, the I/O cost for each such query q

will be (log ())O R ans q+ . Assuming that r queries are executed in total to

construct the resulting block ordering, the LBA cost is ((log ()))O r R ans q× + .

Best case time complexity: In the best case, only one query is required to

construct 0B and the number of returned objects is very small (especially for

uniform data distributions). In particular, when (,) (,)Act P A V P A>> , the

practical cost of LBA drops to (log)O R .

Worst case time complexity: In the worst case, all the lattice queries need to be

executed to construct the entire block sequence (i.e., k is omitted) as just a few

of the leaf queries actually return almost all of the active objects (especially for

skewed data distributions). Thus, the total cost of the index traversals will rise to

((,) log)O V P A R× where
1

(,) (,)
m

i ii
V P A V P A

=
= × , while the I/O cost of their

non-empty answers will be ((,))O Act P A , bringing the total worst case cost up

to O ((,) log (,))O V P A R Act P A× + . In particular, when

(,) (,)Act P A V P A<< and given that log R is usually small (3 to 6,

depending on B+-tree12 fan-out), the practical complexity of LBA in the worst

case becomes ((,))O V P A . It should be stressed that the above cost also

characterizes the worst case LBA complexity when requesting only 0B .

Space Complexity: The space complexity of LBA depends on the size of the

QB which will store in overall
1
(,)

m

i ii
blocks P A

=
× list elements 1 2, , , ml l l< >… ,

where # (,)i iblocks P A is the number of blocks in the corresponding
∀∃

< order

of (,)i iV P A .

12 Alternatively, hash indices could be used with a typical cost of 1-2 I/Os.

 49

The (best, worst) time complexity of the
∃

<
∀

 variation of LBA that follows the

MQ approach for constructing queries is the same as the
∀∃

< variation.

However in practise the
∃∀

< variation of LBA will evaluate fewer queries since

the identification of incomparable objects is not a strict requirement in a
∃

<
∀

ordering. In case where one of the remaining two approaches (i.e., SQ∨

and SQ∧) are followed, the algorithm will evaluate at most QB queries where

QB is the size of the corresponding QB array of a preference expression P .

Each of these queries will cost ((,))O Act P A in the worst case. So the overall

compexity is now ((,))O QB Act P A× .

It is clear for someone to see that the performance of LBA is very sensitive to

| (,) |
| (,) |

V P A
Act P A

 ratio (where (,)Act P A denotes the active objects of R w.r.t. P).

If | (,) | 1
| (,) |

V P A
Act P A

< then almost for each query q it will hold ()ans q ≠ ∅ and as

a result only a relatively small number of queries needs to be evaluated in order

to retreive the top- k objects. On the other hand if | (,) | 1
| (,) |

V P A
Act P A

> then for most

of the queries it will hold ()ans q =∅ and this will lead LBA to evaluate a large

number of queries (in the worst case | (,) |V P A).

In LBA variations the retrieval of objects is performed in an ordered manner so

there is no need to perform dominance tests to compare the already retreived

objects. Furthermore assuming that available indexes exist, LBA algorithms will

access only the objects that will be returned as the top- k objects and only once.

Moreover it is LBA algorithms are progressive (i.e., they return the next block

of the answer without having to previously compute the following blocks).

However LBA algorithms are sensitive in scenarios where the size of (,)V P A

is very large compared to the number of available active objects (i.e.,

| (,) | 1
| (,) |

V P A
Act P A

>>).

 50

 51

3.2.2 Threshold Based Algorithm (TBA)

When (,) (,)V P A Act P A>> , LBA will be forced to execute a big number of

queries which yield empty answers, before succeeding to arrive at one with a

non empty result. For this reason, we devise a second algorithm, called TBA,

which is a hybrid of the Query Lattice presented previously and the dominance

testing approaches ([29], [30]). TBA incrementally constructs and evaluates

queries to quickly locate and fetch a small portion of R that includes the top- k

objects. Unlike LBA, these queries are disjunctions of atomic selection

conditions over just one attribute. In order to determine when the fetching of

objects should stop TBA uses appropriate thresholds. These thresholds ensure

that objects that were not fetched are worst than the ones that were already

fetched (i.e., work as an upper bound of the unseen objects). For defining the

ordering of queries, TBA takes into account the selectivities of the atomic

selection conditions so that to avoid fetching more objects than those actually

required. However, TBA needs to perform dominance tests for the already

retrieved objects. Therefore it can be said that TBA adopts ideas from both

query and object based approaches since it uses the specified user preferences to

define an ordering over queries, howerer it also perfoms dominance tests for the

retrieved objects.

Figure 18: A Query Ordering framework example

 52

Before we fully describe TBA lets see the intuition behind this algorithm.

Assume, for example, the preference expression &B CP P P= of Figure 18, such

that 2 1CPc c≺ , 3 2CPc c≺ and 3 2BPb b≺ , 3 1BPb b≺ . The Hasse diagram of

(& ,{ , })B CV P P B C and the induced
∀∃

< block ordering

3 2 1 0QB QB QB QB
∀∃ ∀∃ ∀∃

< < < is is depicted in Figure 18.2. Like before, the top

block 0QB contains the maximal values of the active preference domain, since it

combines elements from the top blocks 0B and 0C of the constituent atomic

preferences BP and CP . It is clear that the corresponding value pairs on B or C

behave as thresholds. For instance, there cannot be any object not inspected yet

in the result, that has better values than (1, 1)b c and (2, 1)b c .

Let us now consider, a disjunctive query q on attribute C formed by all active

values of 0C ; in our example, q is 1C c= as there is only one value in 0C .

Clearly, any object of R that does not belong to the result of q , cannot be better

than objects matching pairs of values obtained by the next block 1C of

(,)CV P C , i.e., the value pairs 0 1 {(1, 2), (2, 2)}B C b c b c× = . In other words, we

lower the threshold by going one block “down” in (,)CV P C (i.e., the active

terms of the attribute we chose to issue the disjunctive query q) while we keep

the previous block for (,)BV P B . Next, we need to check for dominance among

the objects returned by q (e.g., 1, 6, 7o o o); as we derive 6 7Po o∼ and 1 6Po o& ,

all three objects are undominated. Due to transitivity, if for each of the new

threshold values in 0 1B C× there is a more preferred object in the set of

undominated objects of ()ans q , the latter actually constitutes the first block of

the answer, i.e. the undominated objects of the whole relation. Repeating the

process we can construct the block sequence of objects as depicted in Figure 18.

In the general case let preference 1(() (),)m PP dom A dom A= × ×… ƒ and assume

that for each one of the atomic preferences ((),)j j PjP dom A= ƒ exists a
∀∃

<

 53

block order 1 0w
j j jX X X

∀∃ ∀∃ ∀∃
< < <… of (()) /Pj j PjActive dom A ∼ where k

jX

denotes the thk block in the ordering.

Definition 3.2: We define as threshold values the Cartesian Product
1 2

1 2
p p pm

mThres X X X= × × ×… where ip is an index that refers to iX and

indicates the first block of iX that was not fetched (initially each ip points to

0
iX).

These values ensure that objects that were not fetched are worst than the ones

that were already fetched (i.e., work as an upper bound of the unseen objects). It

is worth noticing here, that Thres is a set of values of (,)V P A contrary to

quantitative threshold based algorithms ([2], [11], [20]) where thresholds are

actually arithmetic scores. Clearly at any point in time, an object that was not

already been fetched cannot be more preferred than a value in
1 2

1 2
p p pn

nThres X X X= × × ×… . More precisely the following theorem holds:

Clearly at any point in time, an object that was not already been fetched cannot

be more preferred than a value in 1 2
1 2
p p pn

nThres X X X= × × ×… . More precisely

the following theorem holds:

Theorem 3.3: For each active object o that was not been fetched there is a

treshold value t Thres∈ such that Po tƒ .

Proof 3.3: Assume that there is an unseen (i.e., not fetched) active object o for

which []o A v= where 1()mv v v= … such that 1()mt v v Thres′ ′∀ = ∈… it holds

Pt o≺ or Pt o& . Thus in that case tuple v must contain at least one atomic

value iv s.t i Pi iv v′ ≺ or i Pi iv v′ & where iv ′ is the corresponding value of t for

attribute iA . But each iv ′ is a maximal value of (,)i iV P A that was not already

been fetched, therefore for each iv , iv ′ it holds i Pi iv v ′ƒ .

In the rest of this section we will detail TBA (Figure 19). TBA starts (line 2) by

 54

calling PrefBlocks that computes for each consistent atomic preference jP , the

∀∃
< block ordering over (,)i iV P A . The result is maintained internally by an

array PB of lists whose elements hold only the block indices of the active terms

of (,)i iV P A . The threshold values are stored in an array Thres of size m (i.e.,

the total number of attributes A), and initially comprise the top blocks of all PB

lists (line 3). Throughout its execution, TBA keeps in memory two sets with the

objects that were fetched, but not yet returned: Dominated contains all objects

for which some better were found, while Undominated contains the

equivalence classes of objects for which no better object was met. Both sets are

initially empty (line 4). Then, the following 4 steps are repeated, until the

requested answer size is reached or (,)Act P A is exhausted (line 12):

 TBA identifies the block of attribute iA with the lowest selectivity (for

all active values it contains), among those referred by Thres (line 6) and

the respective disjunctive query is executed.

 Function OrderObjects is called (line 8) to pair-wise compare the

returned objects and update Dominated , Undominated sets accordingly.

 Thres is updated by obtaining the next best block of (,)i iV P A (line 10).

 Function GetNextBlock is called (line 11) next; depending on its input

parameters it will output one or more blocks of the answer, and also

update accordingly sets Dominated and Undominated .

Let us return to the termination case of exhausting (,)Act P A before k is

reached. This will happen when one of the lists in Thres is exhausted (line 12).

We prove this by reduction to the absurd: Assume that the list for attribute

preference kP is exhausted and yet there is an active object o with

value 1 1 1(, , , , ,)k k kv v v v− +… … . Object o should contain active values on every

attribute, so kv should be active. Thus, kv should have already been inspected,

or else belong in the remaining part of kP ’s list. Both cases contradict the

hypothesis. This condition is treated trough a special value bottom , denoting

the lowest of thresholds; using the bottom threshold as input, GetNextBlock

 55

(lines 13-14) will find any set of undominated objects better than it, and thus

will output the next blocks as required.

Threshold Based Algorithm

input: an object relation R , a preference expression P , an integer k

output: the
∀∃

< -aware top- k objects of R according to P

1: 1For j to m= //for each atomic preference iP

2: []PB j = PrefBlocks((,)j jV P A)

3: [] ([])Thres j head PB j=

4: Undominated=Dominated=∅ ; | | 0result =

5: Repeat

6: min_ ()i selectivity Thres=

7: (), []i j jQ A v v Thres i= ∨ = ∀ ∈

8: (Ans(Q),Undominated,Dominated)OrderObjects

9: If next([]PB i) then

10: []Thres i = next([]PB i)

11: GetNextBlock (Undominated,Dominated))

12: Else

13: { }Thres bottom=

14: GetNextBlock (Undominated,Dominated))

15: break

16: Until | |result k>=

Figure 19: Threshold Based Algorithm

Function OrderObjects takes as input two sets of objects, Input and Dom , as

well as a set of equivalence classes of objectsUnd . If empty, Und is initially

filled with the class of the first object of Input (line 2). OrderObjects updates

the sets Dom and Und after comparing every object o of Input against a single

representative o′ of all classes of objects in Und . Four cases may occur:

 If o is found worse than some o′ (line 7), it is appended to Dom and it

does not have to be compared against the rest of Und .

 56

 If o is found equally preferred to some o′ (line 10), it is appended to the

class of o′ in Und and again no more comparisons against the rest of

Und are needed.

 If o is found better than some o′ (line 11), the (flattened) class of o′ is

moved from Und to Dom ; OrderObjects continues testing o with the

rest of Und .

 If o is incomparable to o′ , comparisons continue with the rest of Und ,

without any further action. At the end of comparisons, if o is found not

to be dominated by any Und element (line 12), a new class containing

o is appended to Und .

OrderObjects

input: sets of objects Input , Dom , set of classes of objectsUnd

output: a pair of sets UptDom ,UptUnd

1: UptDom Dom=

2: If Und = ∅ then 1[]UptUnd o= // 1o is the first active object of Input

3: Else UptUnd Und=

4: For each active object o in Input

5: IsDominated = false

6: For each o′ in UptUnd

7: If Po o′≺ then

8: IsDominated = true

9: { }UptDom o∪ = ; break //inner for

10: ElseIf Po o′∼ then []o o′ ∪ = ; break

11: ElseIf Po o′≺ then \ []UptUnd o′= ; { }UptDom o′∪ =

12: If not(Dominated) then []UptUnd o∪ =

13: return UptDom ,UptUnd

Figure 20: OrderObjects function

Function GetNextBlock takes as input a set of dominated objects (Dom) and a

set of undominated classes of objects (Und). Using the current threshold values

 57

(Thres), the required k , and its input parameters, it recursively outputs as many

blocks of the answer as possible. When finished, it returns updated versions of

its input parameters. GetNextBlock checks whether for each of the threshold

values in Thres there is a more preferred object in the set of undominated

objects of Und (line 2). If so, Und is the next answer block iB , and then the

current answer size is updated while the set of undominated classes of objects is

reset (lines 3-4). If k is not reached (line 5), OrderObjects is employed to

partition the objects of UptDom in undominated and dominated ones (lines 6-

7). With the sets updated in the previous step, GetNextBlock will be recursively

applied (line 8), until either of the conditions in lines 2 or 5 fail.

GetNextBlock

input: sets of objects Dom , set of classes of objects Und

output: a pair of sets UptDom ,UptUnd

1: UptDom Dom= ; UptUnd Und=

2: If (, . . thenPt Thres o UptUnd s t t o∀ ∈ ∃ ∈ ≺

3: iB UptUnd= ; output iB

4: UptUnd =∅ ; iresult B+ =

5: If result k< then

6: Temp UptDom= ; UptDom =∅

7: (, ,)OrderObjects Temp UptDom UptUnd

8: (,)GetNextBlock UptDom UptUnd

Figure 21: GetNextBlock function

Similar to LBA, we can easily define a
∃

<
∀

 variation of the TBA algorithm in

cases we want a more “relaxed” linear ordering of blocks. The only difference

between the
∀∃

< and the
∃

<
∀

 variation of TBA is to “relax” the conditions in

line 2 of GetNextBlock as follows: if (,t Thres∀ ∈ ∃ . .)Po UptUnd s t o t∈ ≺

 58

3.2.2.1 Analytical Evaluation

Similar to LBA, TBA has an initialization phase cost which comprises the block

ordering of the involved preferences; the latter is a memory cost of
2((,))i iO V P A and in general can be neglected. The cost of TBA is mainly due

to the number of disjunctive queries it has to execute in order to retrieve the top-

k objects. Assuming that there are available indices in each attribute that the

preference involves, a disjunctive query over one attribute is usually evaluated

by traversing the available index on the involved attribute, computing the union

of the oids and then fetching the matching objects from the disk. When

(unclustered) B+ -trees are used, the I/O cost for each such query q will be

(log ())O R ans q+ . Assuming that r queries are executed in total to compute

the top- k objects, TBA’s cost is ((log ()))O r R ans q× + . However, queries

involve now only disjunctions of preference terms per attribute while the

returned objects are not exclusively active but may include inactive ones

matching at least one active attribute term. In addition, the fetched objects are

compared pair-wise.

Best case time complexity: In the best case, one query (usually from the top

lattice block) is also sufficient for constructing 0B and the number of returned

tuples is very small (i.e., ideally k). Thus, the cost of pair-wise dominance

testing can be neglected. In particular, when (,) (,)Act P A V P A>> the best

case practical cost of TBA is (log())O R .

Worst case time complexity: In the worst case, TBA exhausts all but the last

block of the query lattice, and the query executed in the next round actually

returns almost all of the active objects. The total number of queries executed in

this case is given by the number of blocks of preference terms per attribute

1
(,)

m

i i
i

blocks P A
=
∑ . Assuming a factor c 13 of extra inactive objects fetched w.r.t.

13 Recall that TBA uses the most selective attribute terms and thus the number of inactive tuples expected to be fetched

is relatively small.

 59

the number of active ones, in the worst case TBA cost is

1
(# (,) log() (,))

m

i i
i

O blocks P A R c Act P A
=

× + ×∑ for I/Os and 2((,))O Act P A for

main memory objects comparisons. In particular, when

(,)Act P A >>
1

(,)
m

i i
i

blocks P A
=
∑ , the practical complexity of LBA in the worst

case becomes 2((,))O Act P A .

Space Complexity: The space complexity of TBA is ()O R , since the entire

relation might be fetched and stored into Undominated,Dominated sets.

TBA exploits selectivities of the atomic selection conditions so that to avoid

fetching more objects than those actually required. Moreover TBA algorithm is

progressive and thus suitable for on-line processing. However, TBA will access

not only the top- k objects but also a portion of the active and inactive ones and

probably more than once. Finally TBA needs to perform dominance tests for the

retrieved objects. Compared to LBA, TBA is more sensitive to the number of

active objects (due to dominance tests), and, at the same time, much less

affected by the size of (,)V P A (i.e., sum vs. product of the of active preference

domains sizes (,)i iV P A). This is one of the subjects of our experiments reported

in the following chapter.

 60

 61

Chapter 4: Experimental Evaluation

In this chapter we experimentally evaluate the top- k algorithms presented in

Chapter 3. The goal of this evaluation is to measure the performance as well as

the sensitivity of the presented algorithms against realistic data distributions and

sizes of preferences. Specifically, following the methodology widely used in the

literature ([5], [27], [29], [31]) we consider different kinds of synthetic

databases (correlated and uncorrelated) exhibiting various value distributions.

We also vary the number of the atomic preferences involved, the complexity of

each atomic preference, the composition operators, and the databases size.

4.1 Experimental Environment

All our experiments are carried out on a Pentium 4 CPU at 2.66 GHz with 1 GB

of main memory. The operating system is Windows XP Pro SP2. The

benchmark databases and intermediate results are stored on a 20 GB hard disk.

We opted for an open source, rather than a commercial, framework for the

implementation of our work, thus, all algorithms were implemented in Java on

top of the PostgreSQL 8.1 Query Engine. Each benchmark database follows the

relation schema 1 2 10(, , ,)R A A A… where the domain of attributes is given

respectively by the sets

1 1 2 20 2 1 2 20 10 1 2 20() { , , , }, () { , , , }, , () { , , , }dom A a a a dom A b b b dom A j j j= = =… … … … .

Each database tuple is 100 bytes long; all indexes were implemented as B+

trees. In some experiments we also implemented hash indexes. Testing has

shown no difference in performance, while the index size and build time for

hash indexes was much worse. Therefore, the performance figures presented in

the rest of this chapter employ B+ trees.

 62

4.2 Preference and Testbed Generator

Each atomic preference jP is created by first defining the size and the number

of blocks # ()jblocks P of the poset ((),)
jj Pdom A ƒ 14. Next all blocks are

populated by randomly allocating all the nodes to them, at least one to each of

them. Then the poset is formed by randomly connecting nodes so that each node

of a block dB can be linked only with nodes of block 1dB − . Block 0B will

contain the maximal elements of the poset. We study three different kinds of

databases that differ in the distribution of values over attributes:

 Uniform: for this type of database, all attribute values are generated

independently using a uniform distribution. Thus, all distinct values of a

domain have the same selectivity.

 Correlated: for a given preference P , a correlated database represents a

testbed in which objects which are good (with respect to P) in one

attribute are also good in the other attributes too. We produce a random

object in a correlated database as follows. First, all attribute values are

generated using a uniform distribution. For each active object, if a

maximal value appears in one attribute then the object is forced to

receive maximal values in the other attributes too. Otherwise the object

remains unchangeable. Therefore, in a correlated database a large

portion of the available active objects are undominated according to P

(i.e., belong to 0B).

 Anti-Correlated: for a given preference P , an anti-correlated database

represents a testbed in which objects which are good in one attribute are

bad in another attribute. We produce a random object in an anti-

correlated database as follows. First, all attribute values again are

generated using a uniform distribution. If an active object has a value in

14 Of course the size should be larger than the number of blocks since each block must contain at

least one node

 63

an attribute that belongs to the top half blocks of the corresponding

atomic preference it would randomly receive a value in another attribute

that would belong in one of the bottom half blocks of the corresponding

atomic preference and so on. Thus, the first blocks of (,)V P A do not

exist in an anti-correlated database.

We also studied testbeds that followed the exponential distribution xe ββ − (mean
1 10β − =). In particular, for each attribute jA we defined a list that contained all

distinct values of ()jdom A . The positioning of each value in the list was

performed in several manners: randomly, optimistically (i.e., active values first),

pessimistically (i.e., active values last). The first value in the list would appear
1

100,1 | |e R
−

× × times in the database, the second
2

100,1 | |e R
−

× × and so on.

However, the results were similar to the three kinds of testbeds already

described and as a result we only show the results for the uniform, correlated

and anti-correlated testbeds. In our experimental presentations, unless stated

otherwise, we ask for the top-1 (i.e., the undominated) objects accrording to

1 2 3&P P P P= � which is our default preference where
11 1((),)PP dom A= ƒ ,

22 2((),)PP dom A= ƒ ,
33 3((),)PP dom A= ƒ . Figure 22 depicts their corresponding

Hasse diagrams:

Figure 22: Hasse diagram for our default atomic preferences

 64

4.3 Metrics

4.3.1 Experimental parameters

In order to analyse the results of our experiments, we define the following

metrics15:

1.
| (,) |
| () |
V P A
dom A

 ratio: If
| (,) | 1
| () |
V P A
dom A

= then all objects of the database are

active. This metric is affected obviously if we alter (,)V P A .

Specifically we can decrease
| (,) |
| () |
V P A
dom A

 by increasing the

dimensionality of the preference expression and increase it by also

increasing the atomic preferences size (i.e., increasing the number of

active values in each domain).

2.
| (,) |

| |
Act P A

R
 ratio: the more this ratio is close to 1 the more dominance

tests will be performed (for the algorithms that perform dominance

tests). Again this metric is affected by varying the dimensionality of the

preference expression and/or by changing the size of atomic preferences.

In particular by increasing the dimensionality we decrease
| (,) |

| |
Act P A

R

ratio while by increasing atomic preferences size we increase it.

3. ,| () |
| (,) |

k Pq R
Act P A

 ratio: for a specific k , this ratio is actually the portion of

active objects that are top- k . Clearly, we can alter metric 3 if we vary

the number of requested objects k for each testbed.

15 Recall that assuming a preference P over a non empty set of attributes A , ()dom A and

(,)V P A are the Cartesian Products of domains and of active value sets respectively,

(,)Act P A is the set of active objects of R w.r.t P and , ()k Pq R the set that contains the

top- k objects.

 65

4. | (,) |
| (,) |

V P A
Act P A

 ratio: represents the Cartesian Product space in which

active objects are distributed. If | (,) | 1
| (,) |

V P A
Act P A

< then almost for each

tuple (,)v V P A∈ there exists object o R∈ such that []o A v= . We can

decrease | (,) |
| (,) |

V P A
Act P A

 ratio by increasing the size of the database and

increase it by increasing the dimensionality of the preference.

4.3.2 Performance parameters

In order to present the major factors affecting the performance of each algorithm

we also define the following metrics:

5. ()Total running time of each algorithm. Total time comprises into the

Database time (i.e., the time needed by the DBMS to run the queries

and to return the results) and the Main memory time (i.e., the time

needed by each algorithm to run if all objects were available in

memory).

6. | (,) _ |
| (,) |

Act P A seen
Act P A

 ratio: Is the portion of the active objects that were

processed (besides the ones that were returned as top- k) to the total

number of active objects.

7. | (,) _ |
| (,) |

Inact P A seen
Inact P A

 ratio: Is the portion of the inactive objects that

were processed to the total number of inactive objects.

8. | _ |queries evaluated : is the number of queries that each algorithm

evaluates in order to retrieve the top- k objects.

9. The number of dominance tests that each algorithm performs.

Dominance test requires performing at most one "ƒ " test over each of

the m attributes of the objects on which atomic preferences are

expressed. If we assume that the cost of one subsumption check is that of

reachability in graphs then its cost is ()O E where E denotes the graph

edges. Summarizing, the more atomic preferences we have, and the

 66

more “better than” relations each atomic preference involves, the more

expensive the dominance test becomes. Assuming that the top- k objects

are partitioned into c classes of equivalence, then an algorithm will

perform at least (1) | (,) _ |
2

c c Act P A seen× −
+ dominance tests (i.e., the

number of tests needed to compare the c representatives plus at least one

test for each other active object that the algorithm sees). Of course, this

holds for the algorithms that perform dominance tests.

Note that metrics 7 and 8 are meaningful only for TBA since for BNL and Best

it holds
| (,) _ | | (,) _ | 1

| (,) | | (,) |
Act P A seen Inact P A seen

Act P A Inact P A
= = while for LBA it holds

| (,) _ | | (,) _ | 0
| (,) | | (,) |

Act P A seen Inact P A seen
Act P A Inact P A

= = regardless of the database or the

preference expression that is used.

4.4 Query Patterns and Evaluation Plans

Beginning in release 8.1, PostgreSQL has the ability to combine multiple

indexes (including multiple uses of the same index) to handle cases that cannot

be implemented by single index scans. The system can form AND and OR

conditions across several index scans. To combine multiple indexes, the system

scans each needed index and prepares a bitmap in memory giving the locations

of table rows that are reported as matching that index’s conditions. The bitmaps

are then ANDed and ORed together as needed by the query. Finally, the actual

table rows are visited and returned. The table rows are visited in physical order,

because that is how the bitmap is laid out; this means that any ordering of the

original indexes is lost. Now we describe how actually PostgreSQL evaluates

each query pattern that TBA and LBA produce.

 TBA constructs and evaluates queries which are simply disjunctions of

atomic selection conditions over just one attribute. A general query iq of

the form following 1:i j j mq A v A v= = ∨ ∨ =… , is broken down into m

 67

separate scans of an index on jA , each scan using one of the

disjunctions. The results of these scans are then ORed together to

produce the result.

 LBA that follows the MQ rewriting constructs a set of conjunctive

queries jq of the form 1 1 2 2:j m mq A v A v A v= = ∧ = ∧ ∧ =… . For the

implementation of jq each index with the appropriate query clause is

used and then the index results are ANDed together to identify the result

rows.

 LBA that follows the SQ∨ rewriting constructs queries which are

disjunctions of the conjunctions of the atomic selection conditions. First

for a general query jq of the form

1 1 2 2: ()j m mq A v A v A v= = ∧ = ∧ ∧ =… ∨ 1 1 2 2()m mA v A v A v′ ′ ′= ∧ = ∧ ∧ =…

the result rows for each of the conjunctions are identified as described

before (i.e., each index with the appropriate query clause is used and

then the index results are ANDed together). Then the ANDed results are

ORed together to produce the actual results of jq .

 LBA that follows the SQ∧ rewriting produces queries which are defined

as conjunctive queries of m disjunctions (one for each attribute). An

example of such a query could be the following:

1 1 1 1 2 2 2 2: () () ()j m m m mq A v A v A v A v A v A v′ ′ ′= = ∨ = ∧ = ∨ = ∧ ∧ = ∨ =… .

Now initially the result rows for each of the disjunctions are identified

(i.e., each index with the appropriate query clause is used and then the

index results are ORed together). Then the ORed results are ANDed

together to produce the actuall results of jq .

 68

4.5 The effect of database size

In order to evaluate the effect of the database size on our techniques, we use our

default preference 1 2 3&P P P P= � of Figure 22 and vary the cardinality of the

database from 10 to 1000 MB for each kind of database (uniform, anti-

correlated, correlated). It is easy for someone to see that since (,)V P A remains

fixed here we will have more and more active objects by increasing the size of

the database due to possible duplicates values. In other words, the larger the

database gets the smaller | (,) |
| (,) |

V P A
Act P A

 ratio becomes. Also the size of , ()k Pq R

becomes larger. For these reasons, the number of dominance tests that each

algorithm needs to perform increases too. The following tables illustrate the

metrics for each of the three testbeds.

Metrics \
MB

10 50 100 500 1.000

| (,) |
| () |
V P A
dom A

.
.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

| (,) |
| |

Act P A
R

.
.

21 410

100 000

0.214

.

.
107 599

500 000

0.215

.
. .
215 001

1 000 000

0.215

. .

. .
1 079 549

5 000 000

0.215

. .
. .

2 160 391

10 000 000

0.216

,| () |
| (,) |

k Pq R
Act P A

 .
69

21 410

0.003
.

382

107 599

0.003
.

754

215 001

0.003

.
. .
3 829

1 079 549

0.003

.
. .
7 500

2 160 391

0.003

| (,) |
| (,) |

V P A
Act P A

.
.

1 728

21 410

0.0810

.
.

1 728

107 599

0.0160

.
.

1 728

215 001

0.0080

.
. .
1 728

1 079 549

0.0016

.
. .
1 728

2 160 391

0.0007

Table 1: Metric values for the Uniform Testbed

Metrics \

MB
10 50 100 500 1.000

| (,) |
| () |
V P A
dom A

.
.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

| (,) |
| |

Act P A
R

.
.

21 410

100 000

0.214

.

.
107 599

500 000

0.215

.
. .
215 001

1 000 000

0.215

. .

. .
1 079 549

5 000 000

0.215

. .
. .

2 160 391

10 000 000

0.216

,| () |
| (,) |

k Pq R
Act P A

.
.

9 074

21 410

0.424

.
.

45 381

107 599

0.422

.
.

90 723

215 001

0.422

.
. .
453 615

1 079 549

0.420

.
. .
907 230

2 160 391

0.420

| (,) |
| (,) |

V P A
Act P A

.
.

1 728

21 410

0.0810

.
.

1 728

107 599

0.0160

.
.

1 728

215 001

0.0080

.
. .
1 728

1 079 549

0.0016

.
. .
1 728

2 160 391

0.0007

Table 2: Metric values for the Correlated Testbed

 69

Metrics \
MB

10 50 100 500 1.000

| (,) |
| () |
V P A
dom A

.
.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

| (,) |
| |

Act P A
R

.
.

21 410

100 000

0.214

.

.
107 599

500 000

0.215

.
. .
215 001

1 000 000

0.215

. .

. .
1 079 549

5 000 000

0.215

. .
. .

2 160 391

10 000 000

0.216

,| () |
| (,) |

k Pq R
Act P A

 .
534

21 410

0.025

.
.

2 815

107 599

0.026

.
.

5 656

215 001

0.026

.
. .
28 283

1 079 549

0.026

.
. .
56 464

2 160 391

0.026

| (,) |
| (,) |

V P A
Act P A

.
.

1 728

21 410

0.0810

.
.

1 728

107 599

0.0160

.
.

1 728

215 001

0.0080

.
. .
1 728

1 079 549

0.0016

.
. .
1 728

2 160 391

0.0007

Table 3: Metric values for the Anti-correlated Testbed

4.5.1 Uniform Testbed

Figures 23 and 24 illustrate respectively the total time and the number of

dominance tests of the various algorithms in the uniform testbed. Figure 25

shows the total execution time of the algorithm (i.e., database plus main

memory time), while figures 26 and 27 depict the scalability over the database

size for the two proposed algorithms. Clearly, LBA outperforms all other

algorithms by several orders of magnitude. For example for the 1000 MB

testbed BNL takes almost 1.000 sec while LBA consumes only 7 sec which

outperforms the former by 3 orders of magnitude. Due to the fact that the size of

the database increases and (,)V P A remains fixed, all tuples of (,)V P A exist

and as a result, for LBA the queries of the first Query Lattice block suffice for

computing the answer (in our testbed we need to execute only |A0|×|B0|×|C0|=6

queries). The only effect in performance is that these queries are more

expensive to evaluate since , ()k Pq R increases and more objects need to be

fetched the larger the database gets. Compared with other algorithms we

observe that LBA not only has better performance but also is more scalable.

TBA maintains a significant advantage over BNL and Best (1 order of

magnitude) and the difference increases fast when the database becomes bigger.

This is due to the fact that TBA will not require in this case any threshold

renewal therefore it fetches and processes only a small portion of the database.

In this specific experiment TBA fetched only the 5% of the database objects

which includes almost 8% of active objects and only 4% of the inactive ones.

The overall runtime for BNL, Best increased significantly since they need to

process more data objects and perform more dominance tests. Thus, BNL and

 70

Best are very sensitive to the size of the database. In particular, for databases

larger than 100 MB, Best exhibites poorer performance compared to BNL.

Since Best has more memory requirements, Java’s garbage collector is forced to

run more times which is time-consuming. Best could not terminate successfully

for the 1000 MB database due to the prohibitive size of the algorithm’s memory

requirements.

 71

 Figure 23: Total time

Figure 24: # dominance tests

0

100

200

300

400

500

600

700

800

900

1000

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

10 MB 50 MB 100 MB 500 MB 1000 MB

To
ta

l T
im

e

Main Memory Time
Database Time

0

10

20

30

40

50

60

70

80

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

10 MB 50 MB 100 MB

Figure 25: Total Time Analysis

0

1

2

3

4

5

6

7

8

10 MB 50 MB 100 MB 500 MB 1000 MB

LBA

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

 Figure 26: LBA scalability over database size

0

20

40

60

80

100

120

10 MB 50 MB 100 MB 500 MB 1000 MB

TBA

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

Figure 27: TBA scalability over database size

 72

4.5.2 Correlated Testbed

Figures 28 to 32 show the performance of the various algorithms in the

correlated testbed. The main characteristics of the correlated testbeds are that

almost 40% of active objects are undominated objects and belong to the result.

However, the number of equivalence classes in which the objects of the result

are partitioned is the same as in the uniform testbeds. As we can see, the relative

performance is unchanged compared to the uniform testbed. The only

differences are that:

 Due to the nature of the correlated testbed, we have an increase of the

answer size for each query issued by LBA and TBA, which are identical

to those of the uniform testbed case.

 Moreover, the growth of the result itself causes a worth mentioning

increase of the number of dominance tests for the respective algorithms

(TBA, BNL, Best). This can be explained as follows: Assume that the

top- k objects are partinioned into c classes of equivalence. Now let an

incoming object o that belongs to the result which is equivalent to one

of the c representatives and therefore incomparable to the remaining

ones. Then in average
2
c dominance tests need to be performed in order

to put o into the corresponding class. Now assume an object o′ that

does not belong to the result (i.e., o′ is worst than some representatives).

Then, in average less that
2
c dominance tests need to be performed to o′

in order to find a representative that is better than o′ . Hence, in average

more dominance tests are performed for an object that belongs to the

result compared to an object that does not. To conclude, in correlated

testbeds the overall number of dominance tests increases because the

size of the result is bigger than the corresponding result in uniform

testbed.

 73

Figure 28: Total time

Figure 29: # dominance tests

0

200

400

600

800

1000

1200

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

10 MB 50 MB 100 MB 500 MB 1000 MB

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

0

10

20

30

40

50

60

70

80

90

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

10 MB 50 MB 100 MB

Figure 30: Total Time Analysis

0

2

4

6

8

10

12

14

10 MB 50 MB 100 MB 500 MB 1000 MB

LBA

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

Figure 31: LBA scalability over database size

0

50

100

150

200

250

300

10 MB 50 MB 100 MB 500 MB 1000 MB

TBA

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

 Figure 32: TBA scalability over database size

 74

4.5.3 Anti-Correlated Testbed

In figures 33 to 37 we illustrate the performance of the various algorithms in the

anti-correlated testbed. The relative performance is again unchanged compared

to the uniform and the correlated testbeds, with only the following differences:

 LBA and TBA have an increased database time since both algorithms

need to evaluate more queries in order to retrieve the top- k objects. In

particular, in the anti-correlated testbeds LBA evaluates 550 and TBA 4

queries contrary to the uniform and the correlated testbeds where 6 and 1

queries need to be evaluated respectively.

 We have an increased number of dominance tests that the algorithms

perform due to the facts that we have more objects in the result and

because the top- k objects are partinioned into more equivelent classes

compared to uniform testbeds. Specifically, in the uniform testbeds we

have 6 classes of equivalence while in anticorrelated ones we have 40

classes.

TBA and BNL exhibit a similar behavior in the anticorrelated testbed and that is

because TBA needs to fetch (and compare) a significant portion of the database.

For example, in an anticorrelated testbed the percentage of active objects that

TBA fetches increases almost to 60%. However, it is worth noticing that

although TBA requires almost the same number of dominance test compared to

BNL and Best there is a significant difference in their main memory processing

time. This is due to the fact that the latter also includes the time needed by the

algorithm to check if an object is active or not. To conclude, BNL and Best are

penalized by the fact that they need to perform such checks for all objects of the

database contrary to TBA. Above 500MB, Best was unable to terminate

successfully.

 75

Figure 33: Total time

Figure 34: # dominance tests

0

200

400

600

800

1000

1200

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

10 MB 50 MB 100 MB 500 MB 1000 MB

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

0

20

40

60

80

100

120

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

10 MB 50 MB 100 MB

Figure 35: Total Time Analysis

0

20

40

60

80

100

120

10 MB 50 MB 100 MB 500 MB 1000 MB

LBA

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

 Figure 36: LBA scalability over database

size

0

100

200

300

400

500

600

700

800

900

1000

10 MB 50 MB 100 MB 500 MB 1000 MB

TBA

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

 Figure 37: TBA scalability over database size

 76

4.6 The effect of atomic preferences size

In order to study the effect of the atomic preference’s size we used our default

preference of Figure 22 and enhanced the size of each atomic preference

((),)
ii i PP dom A= ƒ to involve more values from the corresponding domain

()idom A until all values of ()idom A to take part in
iPƒ (in that case we will

have | (,) | | (,) | 1
| () | | |
V P A Act P A
dom A R

= =). So, increasing the size of each atomic

preference has the effect of increasing the number of active objects and thus the

number of dominance tests that need to performed. However, | (,) |
| (,) |

V P A
Act P A

 ratio

remains fixed since in the uniform testbed all values have the same selectivity.

We initially increased the size of each atomic preference up to 16 and then up to

20. The number of blocks of each poset remained fixed. The enhancement was

performed as follows: each additional node is randomly distributed between the

blocks. Then the poset is reformed by randomly connecting the added nodes of a

block dB only with nodes of block 1dB − . In Table 4 we can see the metrics for

this experiment in which we used a 100 MB uniform testbed.

Metrics \ Poset Size 12 16 20
| (,) |
| () |
V P A
dom A

.
.
1 728

8 000

0.216

.

.
4 096

8 000

0.512

.

.
8 000

8 000

1.0
| (,) |

| |
Act P A

R

.
. .
215 001

1 000 000

0.215

.
. .
511 434

1 000 000

0.511

. .

. .
1 000 000

1 000 000

1.0

,| () |
| (,) |

k Pq R
Act P A

 .
754

215 001

0.003

.
.

3 019

511 434

0.005

.
. .
5 036

1 000 000

0.005

| (,) |
| (,) |

V P A
Act P A

.

.
1 728

215 001

0.008

.
.

4 096

511 434

0.008

.
. .
8 000

1 000 000

0.008

Table 4: Metric values (increasing atomic preference size)

Again the clear winner is LBA. In all instances of the experiment, LBA

outperforms BNL and Best by 2 orders of magnitude. TBA maintains a

significant advantage over BNL and the difference increases the larger the

poset’s size gets since TBA processes fewer active objects than BNL. The

percentage of active objects that TBA fetches varies from 8% to almost 12%.

BNL is significantly affected due to the need to perform more dominance tests.

 77

Best could not terminate successfully when the size of the poset exceeds 16 due

to the prohibitive size of the algorithm’s memory requirements.

 Figure 38: Total time

Figure 39: # dominance tests

0

20

40

60

80

100

120

140

160

180

200

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

12 16 20

Active Domain Values

To
ta

l T
im

e
(s

ec
)

Main Memory Time
Database Time

Figure 40: Total Time Analysis

No new blocks were added to the existing ones as the effect of increasing

existing blocks’ sizes is much stronger, both for LBA and TBA. For the former,

this is due to the fact that the evaluation of a block iB , engages the execution of

all the queries in the respective iQB block, thus, the more they are, the longer it

will take. As for the latter, the “wider” a block is, the “longer” its selected

disjunctive query will be and the bigger its answer size will get.

 78

4.7 The effect of preference dimensions

In order to study the effect of dimensionality (i.e., the number of attributes

involved in a preference expression), we used a 100 MB uniform testbed and

varied the number of the atomic preferences m between 2 and 5. Each

additional atomic preference was created as described in section 4.2. They have

been composed using pareto and prioritized preferences. Clearly, regardless of

the type of composition, the more attributes involved the more | (,) |V P A

increases while | (,) |Act P A decreases. As a result, the larger m gets, metrics

| (,) |
| () |
V P A
dom A

 and | (,) |
| |

Act P A
R

 decrease while | (,) |
| (,) |

V P A
Act P A

 ratio increases. In this

particular experiment this happened when m changed from 4 to 5. Table 5 and

Table 6 depict the metrics for this specific experiment.

Metrics \ dimensions 2 3 4 5
| (,) |
| () |
V P A
dom A

144

400

0.360

.

.
1 728

8 000

0.216

.
.

20 736

160 000

0.130

.
. .
248 832

3 200 000

0.078

| (,) |
| |

Act P A
R

.

. .
359 206

1 000 000

0.360

.
. .
215 001

1 000 000

0.215

.
. .
129 158

1 000 000

0.219

.
. .
77 453

1 000 000

0.077

,| () |
| (,) |

k Pq R
Act P A

.

.
4 954

359 206

0.014
.

754

215 001

0.004
.
44

129 158

0.0003
.
131

77 453

0.002

| (,) |
| (,) |

V P A
Act P A

 .
144

359 206

0.0004

.
.

1 728

215 001

0.008

.
.

20 736

129 158

0.160

.
.

248 832

77 453

3.213

Table 5: Metric values (increasing dimensionality-pareto composition)

Metrics \ dimensions 2 3 4 5

| (,) |
| () |
V P A
dom A

144

400

0.360

.

.
1 728

8 000

0.216

.
.

20 736

160 000

0.130

.
. .
248 832

3 200 000

0.078

| (,) |
| |

Act P A
R

.

. .
359 206

1 000 000

0.360

.
. .
215 001

1 000 000

0.215

.
. .
129 158

1 000 000

0.219

.
. .
77 453

1 000 000

0.077

,| () |
| (,) |

k Pq R
Act P A

.

.
4 954

359 206

0.014
.

754

215 001

0.004
.
44

129 158

0.0003
.
12

77 453

0.0002

| (,) |
| (,) |

V P A
Act P A

 .
144

359 206

0.0004

.
.

1 728

215 001

0.008

.
.

20 736

129 158

0.160

.
.

248 832

77 453

3.213

Table 6: Metric values (increasing dimensionality-prioritized composition)

 79

As m increased, ,| () |k Pq R decreased both in prioritized and in pareto

composition. In the latter case, though, when | (,) |
| (,) |

V P A
Act P A becomes larger than

1, ,| () |k Pq R started increasing again. This behaviour is explicable if we follow

the nature of the two operators. For the case of the prioritized composition, each

time a new individual preference is added, the objects of the previous top block

0B , and only those, are candidates to belong to the new 0B ′ , too. This is due to

the “left to right” priority nature of the � operator. So, the new top block 0B ′

will comprise 0B or less objects.

For the case of the pareto composition, on the other hand, while

| (,) | 1
| (,) |

V P A
Act P A

< , there are enough objects of (,)Act P A to match the structure of

(,)V P A , so ,| () |k Pq R decreases with the (,)Act P A decrease. But, when,

eventually, it holds that | (,) | 1
| (,) |

V P A
Act P A

> , meaning that (,)Act P A contains less

and less objects while (,)V P A grows wider, the probability of the former

objects to be incomparable to each other rises, too. This leads to a high

probability for each of these objects to belong to the new top block 0B , thus,

increasing ,| () |k Pq R as m increases again. Figure 41 and Figure 42 show the

total times of the various algorithms as a function of dimensionality for pareto

and prioritized composition respectively. LBA performs well until | (,) |
| (,) |

V P A
Act P A

becomes larger than 1 (i.e., when the preference contains more than 4

attributes). At that point, the degradation of LBA is caused by the need to

evaluate a large number of empty queries (see Figure 43 and Figure 44) in order

to search the large space of (,)V P A where the top- k objects are distributed.

TBA performs better than LBA when | (,) | 1
| (,) |

V P A
Act P A

> and this is due to the fact

that TBA needs to evaluate fewer queries than LBA. For example, for 5

attributes in a pareto preference LBA evaluates 772 queries while TBA only 6.

This difference becomes more important as the number of attributes increases

 80

and especially when the preference expression contains � operators. TBA

performs better in the prioritized composition and that is because a fetching

attempt here drops threshold values more than the same fetching attempt in the

pareto composition and that event leads to faster termination of the algorithm. In

this experiment, since | (,) |Act P A decreases and the size of the testbed remains

fixed, the performance of BNL and Best mostly depends on the size of , ()k Pq R .

When , ()k Pq R decreases (e.g., in low dimensionality in the pareto composition

or in prioritized composition), BNL and Best exhibit good scalability. On the

other hand, when , ()k Pq R increases (e.g., in high dimensional pareto

composition) their performances drop since more pairwise comparisons are

performed.

Figure 41: Total time, uniform testbed (100 MB)

Figure 42: Total time, uniform testbed (100 MB)

0

100

200

300

400

500

600

700

800

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

2 3 4 5
of attributes in complex preference

queries evaluated

Figure 43:# queries evaluated - pareto

composition

0

20

40

60

80

100

120

140

160

180

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

2 3 4 5
of attributes in complex preference

queries evaluated

Figure 44: # queries evaluated-prioritized

composition

 81

4.8 Effect of the ∃< ∀ ordering

In this experiment we want to study the impact of adopting the more “relaxed”

∃
<

∀
 linear order of blocks vs.

∀∃
< and identify possible performance trade-offs.

Specifically we repeated experiment of section 4.7 (as dimensionality seems to

be the most crucial factor in the performance of LBA and TBA) but this time we

also included the
∃

<
∀

 variations of our algorithms. In particular, we included

the following query rewritings:

 LBA MQ− : the
∃

<
∀

 variation of LBA that follows the MQ rewriting

(i..e., one conjunctive query per tuple of (,)V P A).

 - -LBA SQ conj : the
∃

<
∀

 variation of LBA that follows the SQ∧

rewriting (i.e., one conjunction of disjunctions per block of tuples of

(,)V P A)

 - -LBA SQ disj : the
∃

<
∀

 variation of LBA that follows the SQ∨

rewriting (i.e., one disjunction of conjunctions per block of tuples of

(,)V P A)

 TBA relaxed− : the
∃

<
∀

 variation of TBA

Figure 45 to 50 illustrate the performance of the various query rewritings in

LBA and TBA algorithms with respect to the number of attributes for pareto

and prioritized composition. As it was expected the
∃

<
∀

 variations of LBA,

TBA are more efficient than the corresponding
∀∃

< ones, since the identification

of all of the incomparable objects is not a strict requirement in the
∃

<
∀

 order.

Moreover, the LBA variations are more efficient than the TBA variation.

- -LBA SQ conj execution times are the best and outperforms all other
∃

<
∀

variations by 1 order of magnitude. Although - -LBA SQ conj in each case

constructs the same number of queries as - -LBA SQ disj does, the evaluation of

- -LBA SQ conj ’s queries needs fewer index scans and hence leads to better

performance (see section 4.4). Note that we do not plot the results of

 82

TBA relaxed− in the prioritized composition because the algorithm behaves

exactly like TBA.

We also replaced simple-key indexes with a complex-key one. In that case

- -LBA SQ disj had better performance than - -LBA SQ conj . However, the

existence of a complex-key index in practical cases is rare since complex-key

indexes are unlikely to be helpful unless the usage of the table is extremely

stylized (e.g., when there are constraints on the leading-leftmost columns).

Therefore we still propose - -LBA SQ conj against - -LBA SQ disj .

Nevertheless there is a trade-off between the performance and the number of the

top- k objects that the
∃

<
∀

 variations of LBA, TBA actually return. For

example in the 5 dimensional experiment of the pareto composition, TBA and

LBA returned 131 objects while the
∃

<
∀

 variations returned only 6. Similarly in

the 5 dimensional experiment of the prioritized composition, TBA and LBA

returned 12 objects while the
∃

<
∀

 variations of the algorithms returned only 1.

This is explained by the fact that the identification of the incomparable objects

is not a strict requirement in the
∃

<
∀

 order (recall that the
∃

<
∀

 order does not

go against the intuition “most-preferred objects first”). Conclusively, we can say

that the
∃

<
∀

 variations could be very useful in practical cases with preference

expressions of high dimensionality. However, by paying the price of

“sacrificing” a subset of top- k objects in terms of efficiency.

 83

Figure 45: Total time, uniform testbed (100

MB)

 Figure 46: Total time, uniform testbed (100 MB)

0

100

200

300

400

500

600

700

800

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

2 3 4 5
of attributes in complex preference

queries evaluated

Figure 47: : # queries evaluated-pareto
composition

0

20

40
60

80

100

120
140

160

180

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

2 3 4 5
of attributes in complex preference

queries evaluated

Figure 48: # queries evaluated-prioritized

composition

Figure 49: Total time, uniform testbed (100

MB)

0

1

2

3

4

5

6

7

TB
A

TB
A

-
re

la
xe

d

TB
A

TB
A

-
re

la
xe

d

TB
A

TB
A

-
re

la
xe

d

TB
A

TB
A

-
re

la
xe

d

2 3 4 5
of attributes in complex preference

queries evaluated

Figure 50: :# queries evaluated - pareto

composition

 84

4.9 Effect of the Number of Objects Requested k

In Figures 51 to 54 we report results for our default setting, as a function of k .

k was increased such that each increment would result a new block in the

answer. Table 7 illustrates the metrics for this experiment in which an 100 MB

uniform testbed was used.

Metrics \ k k=1 k=1.000 k=1.500
| (,) |
| () |
V P A
dom A

.
.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

.

.
1 728

8 000

0.216

| (,) |
| |

Act P A
R

.

. .
215 001

1 000 000

0.215

.
. .
215 001

1 000 000

0.215

.
. .
215 001

1 000 000

0.215

,| () |
| (,) |

k Pq R
Act P A

 .
754

215 001

0.004

.
.

1 253

215 001

0.006

.
.

1 507

215 001

0.007

| (,) |
| (,) |

V P A
Act P A

.

.
1 728

215 001

0.008

.
.

1 728

215 001

0.008

.
.

1 728

215 001

0.008

Table 7: Metric values (increasing k)

We see that the overall execution time for the algorithms was increased due to

the need to process more objects. However, both LBA, TBA still maintain a

signifficant advantage over the rest algorithms. Specially, LBA outperforms

BNL by 2 orders of magnitude while TBA by 1. BNL is more sensitive in k

since in order to construct the next block of the answer, needs to perform

another scan over the database and process again all objects (both active and

inactive ones).

Figure 51: Total time, 100MB uniform

testbed

Figure 52: #Dominance tests, 100MB uniform

testbed

 85

0

50

100

150

200

250

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

k=1 k=1000 k=1500

Database Time Main Memory Time

Figure 53: Total time, 100MB uniform

testbed

0

2

4

6

8

10

12

14

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

k=1 k=1000 k=1500

queries

Figure 54: #queries evaluated, 100MB

uniform testbed

4.10 Conclusions

| (,) |
1

| (,) |

| (,) |
1 and &

| (,) |

| (,) |
1 and

| (,) |

V P A

Act P A

V P A

Act P A

V P A

Act P A

LBA TBA LBA SQ conj

<

>

>

− −

+ − −

− − +

− + −�

Table 8: Proposed algorithms in various cases

Altogether, we can draw the following conclusions:

 The larger the database gets LBA and TBA become more and more

attractive. BNL and Best do not scale well over the database size and

that is because at least one scan of the database is required.

 The performance of LBA degrades if | (,) | 1
| (,) |

V P A
Act P A

>> while TBA

outperforms LBA in such a scenario especially when the preference

expression is prioritized.

 86

 The performance of BNL, Best drops significantly when a large portion

of the database objects are active (i.e., the larger the ratio
| (,) |

| |
Act P A

R

gets) and that is because at least one dominance test needs to be

performed for each active object. LBA is the best algorithm in such

cases since its the only algorithm that does not perform dominance tests.

 The
∃

<
∀

 variations of LBA, TBA are more efficient than the
∀∃

<

variations. Especially - -LBA SQ conj is the most efficient
∃

<
∀

variation.

 BNL is more sensitive in k than the rest of the algorithms since in order

to construct the next block of the answer, BNL needs to perform another

scan over the database.

In summary, we propose that a system should implement algorithms LBA,

- -LBA SQ conj and TBA. In particular a system should use LBA in cases

where | (,) | 1
| (,) |

V P A
Act P A

< , TBA in cases where | (,) | 1
| (,) |

V P A
Act P A

> and the preference

expression contains � operators and - -LBA SQ conj in cases of pareto

compositions of high dimensionality.

 87

Chapter 5: Related Work

5.1 Related Frameworks for Preference Modelling

In this chapter, we overview the relative approaches for the representation of

preferences. Because qualitative approaches are more expressive compared to

the quantitative ones and due to the fact that we our framework constitutes also

a qualitative approach in this section the most important and expressively richer

inquiring works of this category are illustrated, pointing out their main

characteristics.

5.1.1 Kiessling’s Framework

Kiessling ([13], [15]) defines preferences as strict partial orders over attribute

domains. In particular, given 1{ , , }kA A A= … a set of attributes jA with

domains ()jdom A , a preference (,)PP A= < is a strict partial order of

1() () ()kdom A dom A dom A= × ×… , shown as () ()P dom A dom A< ⊆ × . For

, ()x y dom A∈ , “ Px y< ” is interpreted as “I like y better than x ”. Kiessling

for ease of use defines a number of base preference constructors. Their goal is

to provide intuitive and convenient ways to inductively construct a preference

(,)PP A= < . Formally, a base preference constructor has two arguments, the

first characterizing the attribute names A and the second the strict partial order

P< . The most common constructors include following:

 For categorical attributes: POS , NEG , /POS POS , /POS NEG ,

EXP

 For numerical attributes: AROUND , BETWEEN , LOWEST ,

HIGHEST , SCORE

 88

POS specifies that a given set of values should be preferred. Conversely, NEG

states a set of disliked values should be avoided if possible. /POS POS and

/POS NEG express certain combinations. For example, assuming a preference

1 2 1 2/ (A, { , , , }, { , , , })m m m m nP POS NEG POS set v v v NEG set v v v+ + += − −… … we have

Px y< iff () ()x NEG set y NEG set x NEG set x POS set y POS set∈ − ∧ ∉ − ∨ ∉ − ∧ ∉ − ∧ ∈ −

(i.e., a desired value should be one from a set of favorites. Otherwise it should

not be any from a set of dislikes. If this is not feasible too, better than getting

nothing any disliked value is acceptable). EXP explicitly enumerates ‘better-

than’ relationships for example ({(,), (,)})P EXP color green red black yellow= .

AROUND prefers values closest to a stated value, BETWEEN prefers values

closest to a stated interval. LOWEST and HIGHEST prefer lower and higher

values, respectively. SCORE maps attribute values to numerical scores,

preferring higher scores.

Kiessling produces more complex preferences by using the following complex

preference constructors:

 Pareto preferences: 1 2 nP P P P= ⊗ ⊗ ⊗… . P is a combination of equally

important preferences, implementing the pareto-optimality principle.

 Prioritized preferences: 1 2& & & nP P P P= … . P evaluates more

important preferences earlier, similar to a lexicographical ordering. 1P is

most important, 2P next, etc.

 Numerical preferences: 1 2(, , ,)F nP rank P P P= … . P combines SCORE

preferences iP by means of a numerical ranking function F .

Kiessling in [19] and [17] was based on the framework described above in order

to construct extensions to XPATH and SQL which he calls Preference XPATH

and Preference SQL respectively.

Compared to our framework, Kiessling does not seperate between active and

inactive objects. Since inactive objects are incomparable to the active ones, he

puts them in the set of the undominated (top-1) objects. Moreover, by defining

preferences as strict partial orders, the user is not able to define equivalence

 89

relations. For the computation of the top- k objects of a relation, Kiessling

introduces a relational operator that he calls BMO ([13], [15]). BMO selects the

set of the most preferred objects (i.e., the first block), according to a given

preference expression. For the evaluation of the BMO operator Kiessling

applies Block Nested Loop (BNL) [13].

5.1.2 Chomicki’s Framework

Chomicki, in his work ([7], [8]) emphasizes the view of preferences as first

order logical formulas which he calls preference formulas. Specifically a

preference formula (,)i jC t t on),...,(1 nAAR , where

)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈ , is a first order logic formula that defines a

preference relation 1 1 (() ()) (() ())C n ndom A dom A dom A dom A⊆ ×⋅⋅⋅× × ×⋅⋅⋅×;

on R as follows:

jCi tt ; iff),(ji ttC

If jCi tt ; it means that a tuple it dominates a tuple jt in C; . At this point,

two important observations need to be made. Firstly, Chomicki does not assume

any properties for the preference relations contrary to our framework in which

we define preferences as preorders and Kiessling’s framework where

preferences are considered as strict partial orders. Moreover according to

Chomicki, a preference relation is defined directly over the objects of the

database contrary to the remaining frameworks where preference relations are

defined over attribute domains. Each preference relation C; defines an

indifference relation denoted by C≅ as follows:

)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈∀ , jCi tt ≅ iff jCi tt ;/ and iCj tt ;/

It easy for someone to see that an indifference relation C≅ actually encapsulates

two notions that were defined seperately to our framework. The equivalence

relation ∼ and the incomparability relation & . Therefore a user can not

explicitly define that two or more values are equivalent or incomparable to each

other.

 90

Chomicki considers two different kinds of composition for producing more

complex preferences. The undimensional composition which involves

preference relations over just one table and the multidimensional one, which

involves preference relations defined to more than one tables. The

undimensional composition is divided into boolean and prioritized composition.

The most commonly used boolean compositions include union, intersection, and

set difference which are defined as follows:

Assume a relation),...,(1 nAAR and the preference relations C; , C′; on R .

Moreover let BC be a preference formula on R that defines a preference

relation
BC; on R .

BC; is the union of C; , C′; (denoted by C C′∪; ;) iff:

Bi C j i C j i C jt t t t t t′≡ ∨; ; ;

BC; is the intersection of C; , C′; (denoted by CC ′∩ ;;) iff:

jCijCijCi tttttt
I ′∧≡ ;;;

BC; is the set difference of C; , C′; (denoted by CC ′− ;;) iff:

jCijCijCi tttttt
D ′/∧≡ ;;;

where)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈ . Now, a prioritized composition is

defined as follows: Assume a relation),...,(1 nAAR and the preference relations

C; , C′; on R . Let �C be a preference formula on R that defines a preference

relation
�

; C on R .
�

; C is the prioritized composition of C; , C′; denoted by

C C′; �; iff:)(jCijCijCijCi tttttttt ′∧≅∨≡ ;;;
�

 where

)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈ .

On the other hand, the multidimensional composition is divided into the pareto

and into the lexicographical composition which are defined as follows:

Assuming relations),...,(1 nAAR ,),...,(1 mBBS let C; be a preference relation

on R and C′; a preference relation on S .

 91

 A preference relation
PC; on SR× , is the pareto composition of C; ,

C′; iff)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈∀ and

)()(, 1 mlk BdomBdomtt ×⋅⋅⋅×∈′′∀ it holds

)(),(),(lCkjCilCkjCiljCki tttttttttttt
P

′′∨∧′′∧≡′′ ′′ ;;;;; , where

},{ CCF ′∈∀ , yxyxyx FFF ≅∨≡ ;; .

 A preference relation
LC; on SR× , is the lexicographical composition

of C; , C′; iff)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈∀ and

)()(, 1 mlk BdomBdomtt ×⋅⋅⋅×∈′′∀ it holds

)(),(),(lCkjCijCiljCki tttttttttt
L

′′∧≅∨≡′′ ′;;; .

Similar to Kiessling, Chomicki does not seperate between active and inactive

objects. Inactive objects will be returned as some of the best objects w.r.t a

preference relation. Independently to Kiessling, Chomicki introduces a similar

to BMO relational operator that he calls winnow ([7], [8]). The framework

proposed by Chomicki is very expressive in its principals, yet only a portion of

it has been addressed from the implementation perspective; even more all such

proposals suggest variations of the dominance testing idea leading to quadratic

costs. In [9], a so call weak order framework is introduced, under which a

similar to Best, single pass algorithm, for the evaluation of preference queries is

proposed. Yet, it requires a very narrow semantics in which all non equal

objects of each block are incomparable to each other, and each of them

dominates every object of the succeeding block, and is dominated by every

object in its preceding block. This requirement is much stricter than those of our

framework, employing a much harder to satisfy relation than the
∀∃

< relation we

introduced.

In [22], [23] a model for representing and storing preferences is proposed.

Numerical values between -1 and 1 are used to express the interest, i.e., the

preference of a user. However, this seems not an intuitive understandable

model. In our framework preferences are modeled in a more natural fashioned

way. Furthermore, the algorithms presented in this work bear similarities with

 92

the query rewritings presented in [22], [23] where the integration of

personalization into database queries with the use of structured user profiles has

been proposed.

It is worth mentioning that there are several different alternatives that define

how preference relations order the value space. For instance, [4] distinguishes

between ceteris paribus and totalitarian semantics. According to the ceteris

paribus semantics, for a given preference P a tuple t is more preferred than a

tuple t′ iff Pt t<′ and t is equal to t′ to every other attribute that describes the

tuples (except the ones involved in the preference). As in our work we do not

impose the latter constraint, our semantics is totalitarian. To our opinion, ceteris

paribus semantics is quite restrictive, and it is unclear if preference queries that

follow the ceteris paribus assumption can be evaluted efficiently in large

databases and real scale web applications (no paper presents experimental

results). CP-nets [3], [10] (that is, Conditional Preference nets) are a graphical

model for representation and reasoning about certain sets of qualitative

preference statements, interpreted under the ceteris paribus assumption.

5.2 Top-k Algorithms

The top- k paradigm has been first introduced ([11], [12]) in order to reduce the

communication cost needed in distributed systems and middleware, in order to

aggregate the ranked results coming from several systems. The authors assume

that each database consists of a finite set of objects. Each object has m values

1 2, , , mx x x… , where each ix is actually the score of object o under one of the m

attributes. For each ix it holds [0,1]ix ∈ while 1 2(, , ,)mf x x x… is the overall

score of object o for an aggregation function f . The database consists of m

sorted lists 1 2, , , mL L L… , one for each attribute. Each entry of iL has the form

(,)io x , where ix is the thi value of o . Each list iL is sorted in decreasing order

by the ix value. Also, they consider two modes of access to data: the sorted

access and the random one. A sorted access is a sequential access from the top

of a list. Here, the system obtains the score of an object in one of the sorted lists

 93

by proceeding through the list sequentially from the top. Thus, if an object o has

the thl highest score in the thi list, then l sorted access are required in iL to get

this score under sorted accesses. In random access, the system requests the score

of object o in the iL list, and obtains it in one random access. Of course, a

random access is considered more expensive than a sorted one.

Instead of executing the naive algorithm to obtain the top- k objects (look at

every entry in each of the m sorted lists, and compute the overall score of every

object), several algorithms have been proposed. At first, Fagin [12] introduced

an algorithm, named FA (Fagin’s Algorithm). Initially, the FA executes sorted

access to each of the m sorted lists iL in parallel, (i.e., access the top member of

each of the lists, then the second member and so on). FA waits until there is a

set of at least k objects, such that each of these objects has been seen in each of

the m lists. Then for each object that was seen, FA finds the missing values ix ,

with a random access to each list iL . Finally, FA computes the overall scores

according to the aggregation function f for all objects that have been seen and

returns the objects with the k highest scores. The Threshold Algorithm (TA)

[11] is an enhancement over FA. TA performs sorted accesses in parallel to each

of the m sorted lists iL . For each object o seen, TA performs random accesses

to the other lists to find the score ix of o in every list iL and then computes the

overall score of o . For each list iL let ix be the score value of the last object

seen under sorted access. TA computes a threshold value t to be 1 2(, , ,)mf x x x…

and works as an upper bound for the unseen objects. The algorithm stops when

at least k objects have been seen whose score is at least equal to t and returns the

k objects with the highest scores. Quite similar to TA are also algorithms Multi-

step [26] and Quick-Combine [20].

Furthermore, No Random Access Algorithm (NRA) [11] is proposed for

systems where random access to the ranked lists is not allowed. NRA performs

only sorted accesses in parallel to each of the m sorted lists iL . At each depth

d (i.e., when the first d objects have been visited across all m lists) the bottom

 94

values () () ()
1 2, , ,d d d

mx x x… are maintained as the scores last seen from each input

list. For every object o NRA computes a lower bound () ()dW o and an upper

bound () ()dB o . The lower bound for an object o at depth d is the score of the

aggregate function f where for each unknown score ix we put 0. In the

computation of the upper bound for each unknown score ix we put the value

()d
ix . The algorithm maintains the k objects with the largest ()dW (ties are

broken using an object’s ()dB score). Let ()d
kM be the thk largest worst score.

Then NRA stops when k distinct objects have been seen and all the other

objects outside the top-k objects have an upper bound value less or equal to
()d

kM . Quite similar to NRA are also Stream-Combine [18] and SR-Combine

[16].

Finally in [25], the authors introduced Algorithms Upper and Pick for

evaluating top- k selection queries over web-accessible sources assuming that

only random access is available for a subset of the sources. Similarly, Algorithm

MPro by Chang and Hwang [6] addresses the expensive probing of some of the

object scores in top- k selection queries. They assume a sorted access on one of

the attributes while other scores are obtained through probing or by executing a

user-defined function on the remaining attributes. Unlike to the algorithms

presented above, which take the data locality parameter into account, our work

assumes that all data are locally available, thus fetching a tuple implies that all

attribute values are fetched at once as well.

5.3 Skyline Algorithms

Assuming a set D of n -dimensional data objects 1(, ,)no o o= … and n score

functions 1(, ,)nS s s= … , a domination relation (denoted by S<) is defined over

the elements of D as follows:

 So o′ < : iff [1]i n∃ ∈ … , such that () ()i is o s o′ < and [1] { }j n i∀ ∈ −… it

holds () ()j js o s o′ ≤

 95

The skyline [29] is defined as those objects of a relation that are not dominated

by any other object. An object dominates another object if it is as good or better

in all dimensions and better in at least one dimension. (i.e.,

() { |SSkyline D o D= ∈ ∃ . . }So D s t o o′ ′∈ <). Skyline queries are directly and

naturally related to the case where all atomic preferences have been composed

using pareto preferences, each atomic preference is a total order of values and

the number of requested objects equals to 1 (top-1 objects). Several algorithms

for computing the skyline have been proposed. These can be categorized into

non-index based (e.g. BNL [29]) and index based (e.g. NN [23], BBS [25]).

Since BNL was already fully described in Chapter 3, below we describe the

index based skyline algorithms.

Kossmann et al. presented in [21] a progressive skyline algorithm (NN). Based

on Nearest Neighbor queries, their algorithm continuously returns skyline

points. Unfortunately, this algorithm has problems with high dimensional spaces

(because of multiple access to the same node, duplicate elimination has to be

performed). Furthermore, as shown in [27], this algorithm has a huge space

overhead; a used data structure could reach the size of the whole data set. An

improved algorithm called BBS (branch-and-bound skyline) for processing

progressive skyline queries in a local scenario was presented by Papadias et al.

in [27]. Like NN, that algorithm is based on Nearest Neighbor queries. It uses a

multidimensional indexing method, such like an R-tree. The minimal distance to

the point of origin (w.r.t. a score function that is monotonic on each attribute) is

assigned to all minimum bounding boxes in the R-tree. At the beginning of the

algorithm, the root entries of the tree are added to a heap structure that sorts its

entries based on their minimum distances. In parallel, a list containing all

possible skyline points S is maintained (initially, the list is set to the empty set).

The algorithm successively removes all bounding boxes b from the heap. If b is

dominated by any point that is already in S, b is discarded immediately.

Otherwise, b’s children are processed one after another: If the child is again a

compound entry, it is added to the heap structure unless is dominated by any

 96

skyline point found so far. If the child is a point, it is added to S. Once the heap

is empty, S contains the correct skyline.

As expected the non index-based algorithms are typically inferior to the index-

based ones. However, all these algorithms require appropriate indexes built on

the skyline dimensions. In particular, they require to build (beforehand or on the

fly) indexes over any of the non-empty subsets of a d -dimensional set of a

relation R with d attributes to accommodate 2 1d − different skyline queries.

On the contrary, our work assumes only d indexes (i.e., one index for each

attribute). Moreover, all these index-based algorithms handle only totally

ordered attribute domains and it is unclear if they can still maintain their

competitiveness for partially (pre)ordered preferences.

Recently, the problem of evaluating skyline queries with partially-ordered

domains was studied in [5]. The proposed solution relies on graph encoding

techniques to transform a partial ordered domain into two total orders (using

interval-based labels) and thus exploit index-based algorithms for computing

skyline queries on the transformed space. We believe that the linearization of

partial preorders we propose in this paper based on cover relations provides a

natural semantics for evaluating arbitrary preference queries (and not only the

fragment of skyline queries) whereas avoids the computation costs of generating

and maintaining interval-based labels for graphs. Furthermore, even for small

sized databases (500 and 1000k tuples of unspecified size), the experimental

evaluation presented in [5] demonstrates that the proposed algorithms do not

scale well, when the majority of the attributes that are involved are partially-

ordered. For example, for 2 totals and 1 partially ordered attributes a typical

time of almost 50 sec, whereas, for 1 total and 2 partial order attributes this time

rises above 1200 seconds. No results are presented for more than 2 partially

ordered attributes. In our case, the algorithms we introduced scale much better

w.r.t. the number and nature of the involved preferences.

 97

Chapter 6: Conclusion and Future Work

Enabling users to quickly focus on the k best results according to their specified

needs and preferences is essential for several modern applications. In this thesis,

we elaborated the problem of computing the top- k objects for the case where

user preferences are expressed qualitatively (i.e., as non-antisymmetric

preorders). Initially, we presented existing algorithms and demostrated their

deficiencies, which severely limit their applicability. Subsequently, we

introduced two novel progressive algorithms called LBA and TBA that follow a

query-based ordering approach for the evaluation of the top- k objects. The

intuition of the query-based ordering is to use the specified user preferences for

defining an ordering over queries that need to be evaluated in order to retrieve

the top- k objects.

In particular, LBA defines an ordering over queries which are essentially

conjunctions of atomic selection conditions, over all attributes that the user

preferences involve. The algorithm does not perform dominance tests over

objects and accesses only the top- k objects and only once. In a similar fashion,

but from a different angle, TBA defines an order of queries which are

disjunctions of atomic selection conditions over a single attribute that the user

preference involves. TBA uses appropriate threshold values and takes into

account the selectivities of the atomic selection conditions in order to avoid

fetching more objects than those actually required. However TBA will access

not only the top- k objects but also a portion of the active and inactive ones and

probably more than once while dominance tests are performed, but only for the

small number of the retrieved objects.

We compared the algorithms analytically and we described the cases where

each of them is expected to outperform the rest. Furthermore, we defined a

relaxation of the classical definition of top- k objects for a rise in efficiency and

presented some variations of our proposed algorithms. Finally, we

 98

systematically used various experimental evaluation settings to demonstrate the

effectiveness of the algorithms we introduced and illustrate their superior

performance.

The top- k algorithms we have introduced take as input a preference expression

P and an integer k and return the top- k objects of an object relation R . An

interesting path of exploration involves modifing these algorithms in order to

evaluate efficiently preference based queries, i.e., queries that contain both a

regular (filtering) query part and a preference part. Formally, a preference based

query over an object relation R is a triple : (, ,)PB rQ q P k= where:

 rq is a regular query, providing filtering conditions

 P is a preference relation

 k is a positive integer indicating a top- k answer request

Let ()rAns q denote the answer of the regular query rq of a preference based

query PBQ ; ()rAns q consists of a set of unordered objects of R . Consequently,

the corresponding preference query : (,)Q P k= of PBQ should return an ordered

subset of ()rAns q , which will comprise the answer ()PBAns Q to the preference

based query.

We can modify our top- k algorithms, to evaluate preference based queries in

several ways. One approach is to append the filtering conditions of rq into each

of the Query Lattice queries that our algorithms construct and evaluate. For

example, assume that at some point TBA needs to evaluate query

1 1 1 2A a A a= ∨ = and suppose that the preference based query adds a filtering

part 2 3:rq A b A c= = ∧ = ; these filtering conditions may be integrated into the

former query, and, thus, TBA will construct and evaluate the updated query

1 1 1 2 2 3()A a A a A b A c= ∨ = ∧ = ∧ = . It is obvious that the execution plan of this

updated query will change; the impact of this change on the overall algorithm

performance is not a priori known, and, besides the possible additional attributes

and indexes, it is the DBMS, with its optimization techniques, that constitutes a

critical factor for it. An alternative approach exploits the idea of applying the

algorithms on ()rAns q , rather than on R . This implies that ()rAns q is

 99

evaluated and materialized first, and, as a second step, our algorithms are

applied on ()rAns q .

In our framework, we rely on unconditional, positive preferences for the

presence of values over attributes of a single relational table. As part of our

future work, we plan to enhance our framework with some interesting

extensions such as combining preferences through joins for evaluating

preferences over several tables, allowing preferences to appear more than once

in a preference expression and supporting conditional preferences. Preferences

on the absence of values, as well as negative ones, can be accommodated by

arranging in the preorder the position either of the active attribute terms (former

case), or of the attribute sets (latter case). One final remark concerns inactive

objects. We assumed that there are at least k active objects in a database with

respect to some preference expression P . However, when the set of active

objects turns out to be relatively small (w.r.t. k), then one may wish to include

some inactive objects in the answer as well. In this respect, objects that are

active with respect to a bigger subset of atomic preferences, or with respect to

atomic preferences over more important attributes, as defined by the user, could

be considered as candidate objects to include in the result, in order to reach the

number k which was requested.

 100

 101

Bibliography

[1] R. Agrawal and E. L. Wimmers.: A Framework for Expressing and

Combining Preferences. In Proceedings of the ACM SIGMOD, pages

297-306, Dallas, 2000.

[2] Wolf-Tilo Balke and Ulrich Guntzer: Multi-Objective Query Processing

for Database Systems. In Proceedings of the 30th International

Conference on Very Large Data Bases (VLDB), pages 936–947, Toronto,

Canada, September 2004.

[3] Boutilier, C., Brafman, R., Hoos, H., and Poole, D. Reasoning with

conditional ceteris paribus preference statements. In UAI-99, pages 71-

80, 1999.

[4] R. Brafman and C. Domshlak: Database Preference Queries Revisited.

Technical Report TR2004-1934, Cornell University Computing and

Information Science, 2004.

[5] Chee-Yong Chan, Pin-Kwang Eng, and Kian-Lee Tan: Stratified

Computation of Skylines with Partially-Ordered Domains. In

Proceedings of the ACM SIGMOD, pages 203 - 214, Baltimore, 2005.

[6] Kevin Chen-Chuan Chang and Seung won Hwang: Minimal Probing:

Supporting expensive predicates for top-k queries. In Proceedings of the

ACM SIGMOD, Madison, Wisconsin, 2002.

[7] Jan Chomicki: Querying with intrinsic preferences. In Proceedings of the

8th International Conference on Extending Database Technology

(EDBT), pages 34-51, London, UK, 2002. Springer-Verlag.

 102

[8] Jan Chomicki: Preference formulas in relational queries. ACM Trans.

Database Syst., 28(4):427-466, 2003.

[9] J. Chomicki: Semantic Optimization of Preference Queries. In 1st

International Symposium on Constraint Databases, pages 133-148,

2004.

[10] Domshlak C. and Brafman R. Cp-nets - reasoning and consistency

testing. In KR-02, pages 121-132, 2002.

[11] R. Fagin, A. Lotem, and M. Naor: Optimal Aggregation Algorithms for

Middleware. In Proceedings of the 2001 ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS), 2001.

[12] Ronald Fagin: Combining Fuzzy Information From Multiple Systems.

Journal of Computer and System Sciences, 58(1):83-99, 1999.

[13] B. Hafenrichter and W. Kiessling: Optimization of Relational Preference

Queries. In Proceedings of the Sixteenth Australasian Database

Conference (ADC), pages 175-184, Newcastle, Australia, 2005.

[14] V. Hristidis, N. Koudas, and Y. Papakonstantinou: PREFER: A System

for the Efficient Execution of Multiparametric Ranked Queries. In

Proceedings of the the ACM SIGMOD, pages 259-269, Santa Barbara,

USA, 2001.

[15] W. Kiessling: Foundations of Preferences in Database Systems. In

Proceedings of the 28th Intern. Conf. on Very Large Data Bases

(VLDB), pages 311-322, Hong Kong, China, 2002.

[16] Kiessling W. Balke W.-T., Guntzer U: On Real-time Top k Querying for

Mobile Services. In International Conference on Cooperative

Information Systems, Irvine, USA, 2002.

 103

[17] W. Kiessling and G. Kostler: Preference SQL - Design, Implementation,

Experiences. In Proceedings of the 28th Intern. Conf. on Very Large

Data Bases (VLDB), pages 990-1001, Hong Kong, China, 2002.

[18] Kiessling W. Guntzer U., Balke W.-T: Towards efficient multi-feature

queries in heterogeneous enviroments. In International Conference on

Information Technology, Las Vegas, USA, 2001.

[19] Kiessling W., Hafenrichter B., Fischer S., Holland S.: Preference

XPATH: A Query Language for E-Commerce. In Proceedings of the 5th

Intern. Conference on Wirtschaftsinformatik, Ausburg, Germany, 2001,

pp. 427 - 440.

[20] Kiessling W. Guntzer U., Balke W.-T: Optimizing Multi-Feature Queries

for Image Databases. In Proceedings of the 26th International

Conference on Very Large Data Bases (VLDB), Cairo, Egypt, 2000.

[21] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in

the sky: An online algorithm for skyline queries. In Proceedings of the

28th International Conference on Very Large Data Bases (VLDB), Hong

Kong SAR, China, 20–23 August 2002, pages 275–286, Los Altos, CA

94022, USA, 2002.

[22] Koutrika G, Ioannidis Y, Personalized Queries under a Generalized

Preference Model. ICDE 2005: 841-852

[23] G. Koutrika and Y. Ioannidis.: Personalization of Queries in Database

Systems. In Proceedings of the 20th International Conference on Data

Engineering, Boston, USA, pages 597-608, 2004.

[24] M. Lacroix and P. Lavency.: Putting More Knowledge Into Queries. In

Proceedings of the 13rd International Conference on Very Large Data

Bases (VLDB), pages 217-225, Brighton, England, 1987.

 104

[25] Marian A. Bruno N., Gravano L: Evaluating Top-k Queries over Web-

Accessible Databases. In International Conference on Data Engineering

(ICDE), Heidelberg, 2002.

[26] Surya Nepal and M. V. Ramakrishna.: Query processing issues in image

(multimedia) databases. In Proceedings of the 15th International

Conference on Data Engineering (ICDE), Sydney, Australia, pages 22-

29, 1999.

[27] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal

and progressive algorithm for skyline queries. In Proceedings of the

2003 ACM SIGMOD International Conference on Management of Data,

pages 467-478, New York, NY, USA, 2003.

[28] N. Spyratos and V. Christophides. Querying with preferences in a digital

library. In Dagstuhl Seminar No 05182, Federation over the Web, May

2005.

[29] Stocker K. Brzsnyi S., Kossman D.: The Skyline Operator. In

Proceedings of the 17th International Conference on Data Engineering

(ICDE), Heidelberg, 2001.

[30] Riccardo Torlone and Paolo Ciaccia: Which Are My Preferred Items?. In

Workshop on Recommendation and Personalization in eCommerce,

pages 1-9, Malaga, Spain, 2002.

[31] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and

Qing Zhang: Efficient computation of the skyline cube. In Proceedings

of the 31st International Conference on Very large Data Bases (VLDB),

pages 241-252, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

