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SPECIFIED PREFERENCES 
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Master Thesis 

University of Crete  
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Abstract 
 

Preference modelling and management has attracted considerable attention in 

the areas of Databases, Knowledge Bases and Information Retrieval Systems in recent 

years. This interest stems from the fact that a rapidly growing class of untrained lay 

users confront vast data collections, usually through the Internet, typically lacking a 

clear view of either content or structure, moreover, not even having a particular object 

in mind. Rather, they are attempting to discover potentially useful objects, in other 

words, objects that best suit their preferences. A modern information system, 

consequently, should enable users to quickly focus on the k best object according to 

their preferences. In this thesis, modelling preferences as binary relations, we 

introduce efficient algorithms for the evaluation of the top-k objects.  

Previous related work treated preference expressions as black boxes and dealt 

with the idea of exhaustively applying dominance tests among database objects in 

order to determine the best ones, resulting in quadratic costs. On the contrary, we 

advocate a query ordering based approach. Our key idea is to exploit the semantics of 

the input preference expression itself, in terms of both the operators and the 

preferences involved, to define an ordering over those queries, whose evaluation is 

necessary for the retrieval of the top-k objects. We introduce two novel algorithms, 

LBA and TBA. 

LBA defines an ordering over queries which are essentially conjunctions of 

atomic selection conditions, containing all attributes that the user preferences involve. 

The algorithm ensures that the way and order in which objects are fetched respect user 

preferences, avoiding any dominance testing, and accessing only the top-k objects, 



each of them only once. From a different angle, TBA defines an order of queries 

which are disjunctions of atomic selection conditions over single attributes, and uses 

appropriate threshold values to signal object fetching termination, ensuring that all 

remaining objects are worse than those fetched. Dominance tests are performed only 

for already retrieved objects.  

Analytical study and experimental evaluation show that our algorithms 

outperform existing ones under all problem instances. 
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Associate Professor 
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Περίληψη 
 

Τα τελευταία χρόνια, η μοντελοποίηση και η διαχείριση των προτιμήσεων 

έχουν προσελκύσει ιδιαίτερη προσοχή στους τομείς των Βάσεων Δεδομένων, των 

Βάσεων Γνώσης και των Συστημάτων Ανάκτησης Πληροφοριών. Αυτό το 

ενδιαφέρον πηγάζει από το γεγονός ότι ολοένα και περισσότεροι μη ειδικευμένοι 

κοινοί χρήστες έρχονται σε επαφή με τεράστιες συλλογές δεδομένων, συνήθως  μέσω 

του Διαδικτύου, χωρίς, κατά κανόνα, να έχουν μια σαφή άποψη ούτε για το 

περιεχόμενο ούτε και για τη δομή της πληροφορίας, χωρίς καν να έχουν ένα 

συγκεκριμένο αντικείμενο υπ’ όψει τους. Πιο πολύ προσπαθούν να ανακαλύψουν 

αντικείμενα που ενδεχομένως θα τους είναι χρήσιμα, αντικείμενα, με άλλα λόγια, που 

ταιριάζουν καλύτερα στις προτιμήσεις τους. Συνεπώς, ένα σύγχρονο πληροφοριακό 

σύστημα θα πρέπει να διευκολύνει τους χρήστες στο γρήγορο εντοπισμό των k 

βέλτιστων αντικειμένων βάσει των προτιμήσεων τους. Στην εργασία αυτή, 

μοντελοποιώντας τις προτιμήσεις ως δυαδικές σχέσεις, εισάγουμε αποδοτικούς 

αλγορίθμους αποτίμησης των k βέλτιστων αντικειμένων. 

Η έως τώρα σχετική έρευνα, αντιμετώπιζε τις εκφράσεις επί προτιμήσεων ως 

«μαύρα κουτιά» και εφάρμοζε την ιδέα των εξαντλητικών διαδοχικών ελέγχων 

υπεροχής μεταξύ των αντικειμένων μιας βάσης δεδομένων για τον προσδιορισμό των 

καλύτερων εξ’ αυτών, γεγονός που οδηγούσε σε τετραγωνικά ως προς τον αριθμό 

των αντικειμένων κόστη. Αντιθέτως, εμείς υποστηρίζουμε μια προσέγγιση που 



βασίζεται στη διάταξη επερωτήσεων. Η κύρια ιδέα μας βασίζεται στην εκμετάλλευση 

της σημασιολογίας μιας έκφρασης από προτιμήσεις, σε ό,τι αφορά τόσο τους 

εμπλεκόμενους τελεστές όσο και τις εμπλεκόμενες προτιμήσεις, με σκοπό τον ορισμό 

μιας διάταξης μεταξύ εκείνων των επερωτήσεων, των οποίων η αποτίμηση είναι 

αναγκαία, ώστε να ανακτηθούν τα k βέλτιστα αντικείμενα. Παρουσιάζουμε δύο 

πρωτότυπους αλγόριθμους, τους LBA και TBA. 

Ο LBA ορίζει μια διάταξη επερωτήσεων, οι οποίες ουσιαστικά αποτελούν 

συζεύξεις ατομικών συνθηκών επιλογής, συμπεριλαμβάνοντας όλα τα γνωρίσματα 

που εμπλέκονται στις προτιμήσεις του χρήστη. Ο αλγόριθμος εξασφαλίζει ότι ο 

τρόπος και η σειρά ανάκτησης των αντικειμένων σέβεται τις προτιμήσεις του χρήστη, 

αποφεύγοντας τους ελέγχους υπεροχής, και προσπελάζοντας μόνο τα k βέλτιστα 

αντικείμενα, μία φορά το καθένα. Από διαφορετική οπτική, ο TBA ορίζει μια διάταξη 

επερωτήσεων που αποτελούν διαζεύξεις ατομικών συνθηκών επιλογής πάνω σε 

μοναδικά γνωρίσματα, και χρησιμοποιεί κατάλληλα κατώφλια τιμών για να σημάνει 

τη διακοπή της ανάκτησης των αντικειμένων, εξασφαλίζοντας ότι όλα τα 

εναπομείναντα αντικείμενα είναι χειρότερα των ανακτηθέντων. Εν προκειμένω, 

πραγματοποιούνται έλεγχοι υπεροχής μόνο για τα ήδη ανακτηθέντα αντικείμενα.  

Τόσο η αναλυτική μελέτη όσο και η πειραματική αποτίμηση καταδεικνύουν 

την υπεροχή των αλγορίθμων που παρουσιάζουμε έναντι των υφισταμένων σε όλες 

τις περιπτώσεις του προβλήματος. 
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Chapter 1: Introduction 

Preference modelling and management has attracted considerable attention in 

the areas of Databases, Knowledge Bases and Information Retrieval Systems in 

recent years. This interest stems from the fact that a rapidly growing class of 

untrained lay users confront vast data collections, usually through the Internet, 

typically lacking a clear view of either content or structure, moreover, not even 

having a particular object in mind. Rather, they are attempting to discover 

potentially useful objects, in other words, objects that best suit their preferences. 

A modern information system, consequently, should enable users to quickly 

focus on the k  best object according to their preferences.  

 

In recent years, a lot of research effort has been made for the representation of 

user preferences. Mainly there are two different approaches of such type of 

personalization, the qualitative ([7], [8], [9], [13], [15], [24], [30]) and the 

quantitative ([1], [14], [22], [23]). In the qualitative approach, the preferences 

between objects are specified directly, typically using binary relations. In the 

quantitative approach, preferences are specified indirectly using scoring 

functions that associate a numeric score with every object. An object o  is 

preferred to an object o′  if the score of o  is higher than the score of o′ . The 

qualitative approach is more powerful (in terms of expressive power) than the 

quantitative one, because we can model quantitatively specified preferences 

using preference relations, while not every (intuitively plausible) preference 

relation can be captured by scoring functions [8]. Moreover, there is no obvious 

method that the users could follow for specifying and combining scores.  

 

In this work we confine ourselves to the qualitative approach for the 

representation of user preferences. More precisely, we advocate a qualitative 

preference framework in which users can define atomic and complex 

preferences as well. An atomic preference is defined as a reflexive and transitive 

binary relation (i.e., non-antisymmetric preorder) over the domain of an 

attribute. On the other hand, a complex preference is an expession that imposes 
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priorities over the atomic preferences by using available preference constructors 

(e.g. Pareto, Priorization). 
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Figure 1: Evaluating the top- k  objects according to qualitatively specified 

preferences 

Assume for example an object relation ( , )R Make Color  describing cars, as 

depicted in Figure 1 where for simplicity objects are identified by a oid . A user 

wishing to purchase a car may state that he prefers red  and blue  cars to black  

ones. Furthermore, he also prefers a bmw  to an audi , and the latter to vw . 

Finally, he states that preferences on (M)ake ( MP ) are as important as on 

(C)olor ( CP ) ( &M CP P ). Since preferences MP  and CP  are defined over 

individual attributes are considered as atomic preferences while &M CP P  is a 

preference expression. Let us first consider the atomic preference MP  stated on 

the domain of the attribute Make. The domain values appearing in MP  

(i.e.,bmw , audi , vw ) imply that only objects featuring the corresponding terms 

are of interest to the user. Furthermore, since in our example the user is not 

wishing to further restrict his car selection (i.e., no additional selections were 

made), preference MP  will partition objects of R  into objects that match the 
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disjunction of the involved terms ( ) ( ) ( )M bmw M audi M vw= ∨ = ∨ = and into 

objects that do not (e.g., 6o ). However, a preference like MP  not only partitions 

the matching objects according to the preference terms, but also orders the 

resulting partition (e.g., in decreasing order of preference) under the form of a 

block sequence (i.e., a linear order of blocks or sets). According to the database 

of Figure 1 and preference MP  we will have the following block sequence:  

1 2 5 7 3 4{ , } { , } { , }o o o o o o← ←  

given that bmw ( 1 2,o o ) precedes audi ( 5 7,o o ) and vw ( 3 4,o o ), and thus should 

be placed on the top block of objects returned to the user (note that object 6o  is 

filtered out). When a user preference spans more than one attributes, such 

as &M CP P , we need to filter out objects by considering a disjunction of term 

conjunctions rather than atomic terms. The result of the preference &M CP P  will 

thus consist of blocks of objects matching the disjunction of the Cartesian 

Product of the terms involved in MP  and CP  ( 6o  and 7o  are filtered out):  

( ) ( )M bmw C red M bmw C blue= ∧ = ∨ = ∧ = ∨  

( ) ( ) ( )M audi C red M audi C blue M bmw C black= ∧ = ∨ = ∧ = ∨ = ∧ = ∨  

( ) ( ) ( )M vw C red M vw C blue M audi C black= ∧ = ∨ = ∧ = ∨ = ∧ = ∨  

( )M vw C black= ∧ =  

Then, to order this partition, we need to examine the relationship of the user 

preferences stated per attribute: in our example preferences PM and PC are 

considered to be of equal importance ( &M CP P ). Given that red ( 1o ) or blue 

bmw’s ( 2o ) are the most preferred ones (top block), while black vw ( 3o ) are the 

least preferred ones (bottom block), we obtain the following sequence of blocks 

(note that blocks that “tie” in terms of preferences are merged):  

1 2 4 5 3{ } { } { } { } { }o o o o o∪ ← ∪ ←  

We can easily observe that not all conjunctions of preference terms will yield 

non empty results. It is worth noticing that the resulting linear order of blocks 

essentially “linearizes” the order of objects induced by the preference &M CP P  
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as depicted in Figure 1. However, users usually do not wish to obtain the entire 

linear order of blocks but only the top- k  objects that best suit their preferences. 

 

In this thesis, we devise efficient top- k  evaluation algorithms. Specifically, for 

the given user preferences our objective is to compute and deliver a linear order 

of n  blocks (i.e., sets) of objects, where n  is the smallest integer that satisfies 

the inequality 
1

0
| |

n

i
i

B k
−

=

≥∑ . In such a linear order, each block would correspond 

to a screen of objects that is shown to the user, satisfying the following 

properties with respect to the user preferences: 

a) Each block consists of non comparable objects. 

b) The first block contains the most preferred objects. 

c) For each block iB  other than the first and for each object in iB  there is a 

more preferred object in the previous block (alternatively but not 

equivalently, for each block iB  other than the last and for each object in 

iB  there is a less preferred object in the next block). The objects in 
1

0

n

i
i

B
−

=
∪  

are called the top- k  objects. 

Existing algorithms ([8], [29], [30]) for the evaluation of the top- k  objects 

according to qualitatively specified preferences, follow an object-based 

ordering approach (Figure 1). The key idea of this approach is to sequentially 

apply dominance - tests (i.e., compare two objects to determine whether one is 

better than the other with respect to user preferences) for every possible pair of 

objects. The results of these tests actually specify a preorder (i.e., a reflexive 

and transitive binary relation) over the objects of a relation. Subsequently, the 

algorithms of this approach “linearize” the preorder i.e., they turn the preorder 

to a linear order of blocks in a reasonable manner that respects the preorder and 

finally pick and deliver to the user the top- k  objects. The main characteristic of 

the object-based ordering approach is that the flow of control of the algorithms 

of this family is independent of the user preferences.  

 

Despite the wide applicability of the object-based ordering approach (since it 

can be used for any number of atomic preferences without indexing or sorting of 
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the database objects), the algorithms of this family are not appropriate for large 

database systems and real scale Web applications since they have serious 

drawbacks. An algorithm that follows the object-based ordering approach will 

access all objects of a relation R  at least once and will perform at least one 

dominance test for every object in R . The total number of dominance tests that 

such an algorithm performs is 2( )O n  where n  is the number of objects in R . 

This makes them inappropriate for large databases. Moreover, existing 

algorithms are inadequate for on-line (i.e., incremental) processing since the 

entire preorder over the objects of the relation R  needs to be specified in order 

to return the top- k  objects progressively (i.e., top-1, top- 2 , ..., top- k ).  

 

We advocate a query-based ordering approach for the evaluation of the top- k  

objects and we introduce two novel algorithms called LBA (Lattice Based 

Algorithm) and TBA (Threshold Based Algorithm) that follow this approach. 

Contrary to the object-based ordering approach, the flow of control of our 

algorithms, takes into account the preference expression given as input, as well 

as, the value ordering of the involved atomic preferences. The main idea of the 

query-based ordering approach is to use the specified user preferences for 

defining an ordering over queries that need to be evaluated in order to retrieve 

the top- k  objects (see Figure 1). 

 

In particular, LBA defines an ordering over queries which are essentially a 

union of conjunctions of atomic selection conditions, containing all attributes 

that the user preference involves. A query iQ  precedes iQ ′  if the objects in the 

answer of iQ  (denoted by ( )ians Q ) are more preferred than the objects in 

( )ians Q ′ . The evaluation of such a query iQ  returns the next block of the 

answer iB  i.e., ( )i iB ans Q= . In Figure 1, according to the specified user 

preferences the first query that LBA will construct is the following: 

0 1 2: { , }Q q q=∪  where 1 :q M bmw C red= = ∧ = and 2 :q M bmw C blue= = ∧ =  

since the objects in 0( )ans Q  are clearly the top objects of R  (there cannot be 

another object better than the objects in 0( )ans Q ). The evaluation of 0Q  will 
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return the first block of the answer 0B . Nevertheless, such a query based 

algorithm should be also able to dynamically reformulate the queries iQ , 

capturing each block when some of the partial queries jq  of iQ  return empty 

anwsers. To make this clear, recall again our example of Figure 1 and assume 

that 2 ( , )o bmw blue  was replaced by an object 2 ( , )o audi blue′ . Now, the 

evaluation of 0Q  will return only 1o  (i.e., 2( )ans q =∅ ). However, for 2o ′  there 

will not be a more preferred object in the previous block (i.e., in 0B ) since 1o  is 

not better that 2o ′ . Thus, the (c) property does not hold. Therefore LBA will 

replace query 2q  (which results in no objects) with query 

2 : ' ' ' 'q color blue make audi′ = = ∧ =  for which it holds that 2( )ans q ′  contains the 

best objects of relation R  that are not worse than objects in 1( )ans q . 0Q  will be 

reformed as follows: 0 1 2: { , }Q q q ′=∪ . The evaluation of 0Q  will return 1o  and 

2o ′ . Now for each of the remaining objects in R  there is a more preferred object 

in the previous block (i.e., in 0 1 2{ , }B o o ′= ). 

 

Notice that LBA will never perform a dominance testing over objects. The 

algorithm exploits user preferences and retrieves objects such that it is ensured 

that the objects are fetched in a way that respects user preferences. Moreover, 

LBA will only access the top- k  objects and only once (assuming that available 

indexes exist). LBA is also suitable for on-line processing since it returns the 

next block of the answer iB  without having to compute previously the following 

blocks of iB  in the linear order. 

 

However, consider a scenario where the total number of objects of a relation R  

is relatively very small compared to the number of distinct values that each 

domain contains (i.e., the selectivity of each domain value is small) or/and the 

number of attributes that the user preference involves is quite large. Since LBA 

constructs queries that are actually a combination of atomic selection conditions 

that contain all attributes that user preferences involve, in such a scenario LBA 



 7

will have many fruitless fetching attempts (i.e., resulting in no object) because 

R  does not necessarily contain objects for every query that LBA will construct. 

Therefore in a scenario like the one described above LBA’s performance is 

expected to drop. 

 

For this reason we dense a second algorithm called TBA (Threshold Based 

Algorithm). Like LBA, TBA defines an order of queries however these queries 

are disjunctions of atomic selection conditions over just one attribute. As a 

result, TBA is expected to have less fruitless fetching attempts. Moreover TBA 

uses appropriate threshold values in order to determine when the fetching of 

objects should stop. These values work as a guarantee ensuring that objects that 

were not fetched are worst than the ones that were already fetched (i.e., work as 

an upper bound of the unseen objects). For defining the ordering of queries, 

TBA takes into account the selectivities of the atomic selection conditions so 

that to avoid fetching more objects than those actually required. However, TBA 

needs to perform dominance tests but only for the already retreived objects. 

Thus, unlike object-based ordering algorithms, TBA avoids exhaustive 

dominance testing among all objects which leads to quadratic costs. 

 

In a nutshell, the contributions of this thesis are: 

 We advocate a simple, yet expressive, framework for specifying 

qualitatively specified preferences as preorders. 

 We introduce a query based ordering approach for the evaluation of the 

top- k  objects. Unlike object-based ordering approaches, the key idea of 

this approach is to exploit the particular user preference semantics to 

define an ordering over those queries, whose evaluation is necessary for 

the retrieval of the top-k objects. 

 Inspired by the query ordering based approach, we designed and 

implemented two progressive algorithms (LBA, TBA) for qualitatively 

specified preferences and we study their performances.  

 We report the results of an extensive experimental evaluation on large 

datasets that shows that the algorithms that we propose outperform the 

existing ones under all problem instances that we tested. 
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The rest of this thesis is organized as follows. In Chapter 2, we introduce some 

preleminary material in Order Theory and present our proposed qualitative 

preference model. Chapter 3, fully describes the most common algorithms that 

have emerged so far and our novel top- k  algorithms. In Chapter 4, we analyze 

experimentally the performance of the various top- k  algorithms presented 

earlier. Chapter 5 discusses related work and finally, Chapter 6 summarizes our 

contributions and identifies issues for further research. 
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Chapter 2: Orders and Preferences 

2.1 Introduction to Order Theory 

2.1.1 Binary Relations 

A binary relation R  is an arbitrary association of elements of one set with 

elements of another (or perhaps the same) set. More specifically, a binary 

relation R  from X  to Y  is a subset of the Cartesian Product X Y×  (i.e., 

R X Y⊆ × ). The statement ( , )x y R∈  is read “x is R-related to y”, and is 

denoted by xRy  or ( , )R x y . If X Y=  then we simply say that the binary 

relation is over X . There are several categorizations of binary relations over a 

set X , based on which axioms they satisfy. Common axioms (or relation 

properties) defined for binary relations are the following:  

 reflexivity: x X∀ ∈  it holds that xRx . 

 irreflixivity: x X∀ ∈  it holds that ( )xRx¬  

 symmetry: ,x y X∀ ∈  it holds that if xRy  then yRx  

 antisymmetry: ,x y X∀ ∈  it holds that if xRy  and yRx  then x y=  

 asymmetry: ,x y X∀ ∈  it holds that if xRy  then ( )yRx¬  

 transitivity : , ,x y z X∀ ∈  it holds that if xRy  and yRz then xRz  

 completeness : ,x y X∀ ∈  it holds that xRy  or yRx (or both) 
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2.1.2 Orders 

Certain important types of binary relations can be characterized by the axioms 

they satisfy. These types of relations are called orders. Below we present the 

most important orders which we intend to use in the following chapters of our 

work in order to formally define the model of preferences that we use1: 

Definition 2.1: A binary relation is a preorder, denoted by ≺ , if it is reflexive 

and transitive. A set that is equipped with a preorder is called a preordered set. 

Definition 2.2: A binary relation is an equivalence relation, denoted by ∼ , if it 

is reflexive, symmetric and transitive. For an equivalence relation ∼  on a set 

X , the set of the elements of X  that are related to an element, say x X∈ , is 

called the equivalence class of element x , often denoted as [ ]x . 

Definition 2.3: A binary relation which is reflexive, antisymmetric and 

transitive is called a partial order and it is denoted by ≤ . A set with a partial 

order is called a partially ordered set or poset. 

Definition 2.4: A binary relation is a strict partial order, denoted by < , if it is 

irreflexive and transitive, and therefore asymmetric. 

Note that if a preorder is also antisymmetric, it becomes a partial order, whereas 

if it is also symmetric it becomes an equivalence relation. Let ƒ  be a non-

antisymmetric preorder (i.e., a reflexive and transitive relation) over X . The 

asymmetric part of ƒ  is the binary relation   over X , defined as 

( , )x y X X∀ ∈ × , ( )x y x y y x⇔ ∧ ¬ ƒ ƒ . The symmetric part of ƒ  is the 

binary relation ∼  over X  defined as ( , )x y X X∀ ∈ × , x y x y y x⇔ ∧∼ ƒ ƒ . 

It is easy to see that the asymmetric part comprises a strict partial order (i.e., an 

irreflexive, asymmetric, transitive) relation, whereas the symmetric one, an 

equivalence relation (i.e., a reflexive, symmetric, transitive relation). A partial 

order (i.e., a reflexive, antisymmetric, transitive) relation ≤  derives from ƒ  

                                                 
1 The preference model that we use is an extended version of [28] 
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among the equivalence classes of the quotient set /X ∼  as follows: 

[ ] [ ]x y x y≤ ⇔ ƒ  and [ ] [ ]x y x y= ⇔ ∼ . 

For ƒ , being a non-antisymmetric preorder over X , it holds that: 

   is transitive 

 ∼  is transitive 

 x y y z x z∧ ⇒∼    

 x y y z x z∧ ⇒∼   

For ƒ , being a non-antisymmetric preorder over X , its asymmetric and 

symmetric parts are disjoint and their union equals ƒ  (i.e., symmetry partitions 

ƒ ). For any two elements x  and y  of a partially ordered set, if x y≤  and 

x y≠ , due to antisymmetry we can write x y< . Similarly, for any two 

elements x  and y  of a preordered set, if x y≺  and ( )y x¬ ≺ , we can write 

x y≺ . In either case, if x y<  (respectively, x y≺ ) and there is no z  such that 

x z<  and z y< , (respectively, there is no z  such that x z≺  and z y≺ )  we 

will say that y is a cover of x , and denote it as x y≺ . 

A partial order which is complete is called a total (or linear) order or a chain. A 

preorder which is complete is called a weak order or a complete preorder. 

Elements x  and y  of a set X , for which it holds that xRy  or yRx  are said to 

be comparable; otherwise, x  and y  are incomparable. More formally, we 

define: 

Definition 2.5: Given a relation R  over a set X , the incomparability relation 

(usually denoted as &  when R  is some order), is defined as the complement 

relation cR  over the same set X ; i.e., cxR y , iff ( ) ( )xRy yRx¬ ∧¬ .  

For example, x y&  means that elements x  and y  are incomparable to each 

other (i.e., none of the relations xRy  and yRx  hold). Note that the above 

terminology may be misleading when R  is a strict partial order, as its 
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complement cR  may capture two very different situations: either 

incomparability indeed, or comparable equality; only when R  is a preorder or a 

partial order the term incomparability have its literal meaning.  

2.1.3 Graphical Representation of Partial Orders 

Any relation R  over a (finite) set X  may be visually represented by a directed 

graph ( , )V E , with a bijective mapping of the elements of X  onto the vertices 

of V  and a bijective mapping of the pairs of R  onto the edges of E .  

A graph of a partial order (or a preorder, accordingly) would be very “busy”, 

carrying a lot of redundant information: self-loops ( , )v v  for every node, 

deriving from reflexivity, as well as transitive edges 1 3( , )v v , with both 1 2( , )v v  

and 2 3( , )v v  being present. Furthermore, one may make two more observations: 

antisymmetry ensures that in such a graph there could not be any two vertices 1v  

and 2v  with both edges 1 2( , )v v  and 2 1( , )v v  present; in conjunction with 

transitivity, antisymmetry also forbids any longer loop, meaning that the graph, 

with the exception of self-loops, has one and only direction. Exploiting the 

above, a partial order may be graphically represented by a Hasse diagram. 

Before we formally define a Hasse diagram we need to introduce the following 

auxiliary definitions: 

Definition 2.6: The transitive closure of a binary relation R  on a set X  is the 

minimal transitive relation R′  on X  that contains R . 

Definition 2.7: The reflexive closure of a binary relation R  on a set X  is the 

minimal reflexive relation R′  on X  that contains R . 

Definition 2.8: The transitive reduction of a binary relation R  on a set X  is the 

minimum relation R′  on X  with the same transitive closure as R . 

Definition 2.9: The reflexive reduction of a binary relation R  on a set X  is the 

minimum relation R′  on X  with the same reflexive closure as R . 

Now we can proceed to the formal definition of a Hasse diagram: 
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Definition 2.10: A Hasse diagram of a partial order is a directed acyclic graph 

of its reflexive and transitive reduction, where direction is omitted, as it is 

implied by the diagram’s upward orientation. 

A Hasse diagram may also depict a neither symmetric, nor antisymmetric 

preorder. In this case it essentially represents the partial order of the 

equivalence classes of the quotient set /X ∼ , rather than the preorder itself. The 

Hasse diagram of an equivalence relation is simply a set of non-connected 

nodes, each of which is a representative of an equivalence class. So, in all cases 

above, the Hasse diagram obeys conventions of what each nodes stands for 

(class representatives in some cases) and the only case where it directly depicts 

a relation is the case of a strict partial order. Note that, in all cases, all lines in a 

Hasse diagram correspond to the cover relation ≺  (i.e., the transitive reflexive 

reduction of a partial order), reflecting on the strict part <  of the partial order 

≤ . 

Example 2.1: Let us assume the Hasse diagram for a set { , , , , , }X a b c d e f= , a 

preorder   over X , with d b , b a , d a , c a , d f  and f d . Such a 

diagram cannot represent the preorder itself directly, so, as discussed above, it 

will depict the partial order of the equivalence classes of the quotient set /X ∼ . 

There are five equivalence classes [ ] { }a a= , [ ] { }b b= , [ ] { }c c= , [ ] { , }d d f= , 

[ ] { }e e= , and let’s choose a single representative from each one to use in the 

diagram. The resulting Hasse diagram is illustrated in Figure 2. 

 

Figure 2: The Hasse diagram of   over /X ∼  

[a]

[b] [c]

[d]

[e]
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2.1.4 Notions on Posets 

In a partially ordered set there are some elements that play a special role. The 

most basic examples are given by the maximal and the minimal elements of a 

poset.  

Definition 2.11: Let a partial order ≤  over a set of elements X . An element 

x X∈  is a maximal element of  ≤ , if x X′¬∃ ∈  such that x x′≤ .  

Definition 2.12: Let a partial order ≤  over a set of elements X . An element 

x X∈  is a minimal element of ≤ , if x X′¬∃ ∈  such that x x′ ≤ .  

We may partition the elements of a partial order relation X  into non-

overlapping parts called blocks (or layers or buckets) that cover all of X  using 

various topological criteria. To define our approach formally we need some 

auxiliary definitions that we adapt from [28]:  

Definition 2.13: Let us call path from an element x  to an element x′  of a 

partial order ≤ , any sequence of pairs of the form 

1 1 2 1( , ), ( , ), , ( , ), ( , )n n nx x x x x x x x− ′…  such that 1, nx x x x′≤ ≤  and 1i ix x− ≤  for 

2i n= … . The integer 1n+  is called the length of the path, and it is clear that 

there may be zero, one or more paths from x  to x′ .  

Now, assume that 0B  contains all elements that are maximal (or minimal) with 

respect to≤ . The definition of each other block iB  relies on the notion of 

distance of an element from 0B .  

Definition 2.14: The distance of an element 0x  from 0B  is defined to be the 

length of the longest path from an element x  to the element 0x , when x  ranges 

over all elements of 0B .  

Block iB  is defined to be the set of all elements that are at distance i  from 0B . 

Note that if 0x  belongs to 0B , then its distance is defined to be equal to 0 . It is 

easy to see that elements of the same block are incomparable to each other 

(otherwise they wouldn’t have the same distance from 0B ).  
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2.1.5 From Partial Order of Elements to Linear Order of 
Blocks 

Let ≤  be a binary order relation (e.g., a preorder, a partial order, or a strict 

partial order) on a set O ≠ ∅  and let 2O  be the powerset of O  minus ∅ . In this 

section, we define relations over subsets of O , i.e., over 2O , which derive from 

the initial order ≤  over O .  

Definition 2.15: Assuming that , 2OX Y ∈  for which does not necesserily hold 

X Y∩ =∅ , we define the following relations over 2O  : 

 Let2 X Y
∀∃

≤  , iff x X∀ ∈  , y Y∃ ∈  such that x y≤  

 Let X Y
∃∀

≤  , iff  y Y∀ ∈  , x X∃ ∈  such that x y≤  

Note, that apart from transitivity, which is trivial to prove, whether other order 

axioms hold in each of these relations over sets, depends on the nature of the 

initial poset and probably other assumptions, and need to be proved, thus the use 

of the term set order, instead of set relation may be abusive. Let 0 1, , , nB B B… 3 a 

sequence of blocks of O  that were produced  as described in previous section.  

Theorem 2.1: If 0B  contains the maximal elements of ≤ , a 
∀∃

≤  relation is 

defined between blocks 0 1, , , nB B B…  (i.e., 1 0n nB B B−∀∃ ∀∃ ∀∃
≤ ≤ ≤… ).  

Proof 2.1: For every element ix  in iB  there is a longest path p  from some 

element of 0B  to ix . Let ix ′  be the predecessor of ix  in p  (i.e., i ix x ′≤ ). 

Clearly, the sub-path of p  ending in ix ′  is the longest path from 0B  to ix ′  

(otherwise, p  is not the longest path to ix  thus a contradiction). It follows that 

ix ′  is in 1iB −  and that i ix x ′≤ . 

                                                 
2 As a rule of thumb, the first quantifier runs on the left operand set, the second on the right, and 
the outer quantifier is denoted by the line above it.  

3 For each of these blocks iB  it holds 2O
iB ∈ . 
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Theorem 2.2: If 0B  contains the minimal elements of ≤ , a 
∃∀

≤  relation is 

defined between blocks 0 1, , , nB B B…  (i.e., 0 1 nB B B
∃∀ ∃∀ ∃∀

≤ ≤ ≤… ).  

Proof 2.2: For every element ix  in iB  there is a longest path p  from some 

element of 0B  to ix . Let ix ′  be the predecessor of ix  in p . The sub-path of p  

ending in ix ′  is the longest path from 0B  to ix ′  (otherwise, p  is not the longest 

path to ix  thus a contradiction). It follows that ix ′  is in 1iB −  and that i ix x′ ≤ . 

Theorem 2.3: 
∀∃

≤  relation defines a linear order of blocks.  

Proof 2.3: Clearly 
∀∃

≤  is reflexive and transitive (since ≤ is reflexive and 

transitive). Moreover, since each block consists of mutually incomparable 

elements it is also antisymmetric and thus is a partial order. Due to the 

definition “ i jB B
∀∃

≤  iff i ix B∀ ∈ , j jx B∃ ∈  such that i jx x≤ ”, we have 

1 0n nB B B−∀∃ ∀∃ ∀∃
≤ ≤ ≤… . As a result, 

∀∃
≤  actually defines a linear order 

between blocks.  

Similarly, we can prove that 
∃∀

≤   also defines a linear order of blocks. 

Therefore since 
∀∃

≤  and 
∃∀

≤  relations define linear orders of blocks from now 

on we could write 
∀∃

<  and 
∃∀

<  to denote those linear orders.  

Example 2.2: Figure 3 illustrates the two individual orderings 
∀∃

<  and 
∃∀

<  

between the blocks 0 1 2, ,B B B  of a partially ordered set O . 
∀∃

<  ordering occurs 

if we use as basic block 0B  the block that contains the maximal elements of O  

and 
∃∀

<  occurs if we use as 0B  the block that contains the minimal elements. 
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Figure 3: The 

∀∃
< , 

∃∀
<  ordering of blocks 0 1 2, ,B B B  of a partially ordered set O 

2.2 Qualitative Preference Model 

Let ( )R   denote a relation scheme, where R  is the name of the relation and 

1 2{ , , , }nA A A= …  is a set of attribute names with associated domains 

( )idom A . Without loss of generality, we assume the attribute domains pair-wise 

disjoint, i.e., ( ) ( )i jdom A dom A∩ =∅  for every [1 ]i j n≠ ∈ … . As null values 

are possible, in order to keep notations simple, we use ( )idom A  to denote 

( ) { }idom A ∪ ⊥ , where " "⊥  stands for the null value. We shall also use the 

notation 1( ) ( ) ( )mdom A dom A dom A= × ×…  and 

1( ) ( ) ( )mdom A dom A dom A∪ = ∪ ∪…  to denote the Cartesian Product and the 

union of domains, of a non empty set of attributes A⊆  . An object over a 

scheme ( )R   associates with each iA ∈  a value taken from its domain. As 

usual [ ]o A  denotes the projection of an object o  onto a non empty set of 

attributes A⊆  . A relation R  over the scheme ( )R   (also called an instance) 

is a finite set of objects o  such that [ ] ( )o dom∈  .  

2.2.1 User Preferences 

In order to proceed to the general preference definition we should take into 

consideration two important factors:  

1B

0B

1B  

2Ba b 

c d 

e 
A partially 

ordered set O 2 1 0B B B
∀∃ ∀∃

< <

2B

a  b 

c  d 

e 

b 

a  d 

e  c 

0 1 2B B B
∃∀ ∃∀

< <  

0B
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 The user, most times, is not in position to know the objects that a 

database contains. Thus, the preferences should be defined on structures 

of information that are not influenced by the available objects. Such 

structures are the attribute domains. 

 The number and the nature of attributes that are involved in a preference 

expression vary. Therefore, the definition of a preference should be 

based on the attributes that the preference involves.  

 
Definition 2.16: Let us assume a relation scheme ( )R  . A preference AP  over a 

non empty set of attributes 1{ } 2 \mA A A= ∈ ∅…   is a non-antisymmetric 

partial preorder over 1( ) ( ) ( )mdom A dom A dom A= × ×… 4 denoted as 

( ( ), )
AA PP dom A= ƒ , where ( ) ( )

AP dom A dom A⊆ ×ƒ . For m -tuples 

, ( )v v dom A′∈ , 
APv v′ƒ  is interpreted as v  is at most as preferable as v′  (or 

equivalently, v′  is at least as preferable as v ).  

We shall pronounce those ,v v′  for which both 
APv v′ƒ  and 

APv v′ƒ  hold, as 

equally preferred or indistinguishable w.r.t. preference AP . As symmetry holds 

by definition and reflexivity with transitivity are inherited from 
APƒ , the 

preference equality relation is an equivalence relation, i.e., equally preferred 

tuples ,v v′  are equivalent, or belong to the same equivalence class, thus we will 

denote this relation as 
APv v′ ∼ .  

If 
APv v′ƒ  but ( )

APv v′¬ ƒ , we can write 
APv v′≺  which is interpreted as v′  is 

(strictly) more preferable than v . As asymmetry and irreflexivity holds by 

definition and transitivity is inherited from 
APƒ , the asymmetric part 

AP≺  of  

APƒ  comprises a strict partial order relation. If neither 
APv v′ƒ  nor 

APv v′ƒ  

hold, then we will say that ,v v′  are incomparable and we will write 
APv v′& . 

The incomparability relation carries symmetry, by definition, but apart from it, 

it satisfies no other order axioms in general.  

                                                 
4 The order of factors within the Cartesian Product is considered of no particular significance. 
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When A  is a trivial single-factor Cartesian Product (i.e., { }iA A= ) we will call 

( ( ), )
ii i PP dom A= ƒ  an atomic preference over iA , where ( )idom A  is the domain 

of iA .  

For a preference ( ( ), )
AA PP dom A= ƒ , the values of domain  ( )dom A  can be 

separated in two concrete categories, proportionally whether they take active 

part or no in the preorder 
APƒ .  

Definition 2.17: Given a preference ( ( ), )
AA PP dom A= ƒ , a value ( )v dom A∈  

that is not involved in the partial preorder relation in any other way except 

though reflexivity (i.e., ( )v dom A′¬∃ ∈ , v v′ ≠ , such that 
APv v′ƒ  or 

APv v′ ƒ ) 

will be called inactive (otherwise, it will be called active) and clearly it is 

incomparable to all other values of ( )dom A .  

We denote ( , )AV P A  the set of active values of ( )dom A  according to AP  and 

( , )c
AV P A  the set of inactive values, respectively. Notice that: 

 1( , ) ( , )m
A i Ai iV P A V P A== ×  where ( , )Ai iV P A  denotes the set of active 

values from the domain of iA  appearing in an atomic preference AiP  

 ( , ) ( , ) ( )c
A AV P A V P A dom A∪ =  

 ( , ) ( , )c
A AV P A V P A∩ =∅  

We make this seperation since inactive values actually don’t take part in the 

ordering 
APƒ , creating, thus, a sense of “indifference” of the user to each 

inactive value. In essence, there is no need to take inactive values into account 

since only active values have interest to a particular user and need to be 

specified (regardless of whether they are actually instantiated in R ).  

Next we discuss preference expressions, which capture the semantics of 

combining or synthesizing user preferences over more than one individual 

attributes. 
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Definition 2.18: Let iP  be an atomic preference over any individual attribute iA  

of a relation R . A preference expression P  is defined as: 

| ( & ) | ( & ) | ( ) | ( )i i i i iP P P P P P P P P P= � �  

It should be stressed out that an atomic preference appears only once in a 

preference expression. Semantically, this interprets a current limitation in this 

work; we are able to capture the relative importance among different 

preferences, where each is provided and mentioned only once. On the other 

hand, this complies with the fact that values in the active preference domains 

also appear only once in the respective preferences. A preference expression AP , 

as defined above, spans over the set A  of attributes it involves, so we are able to 

use ( , )AV P A  as defined earlier. The binary preference operators &  and �  

define the pareto and proritized composition operations on two preferences as 

follows. 

Definition 2.19: Preference  ( ( ), )
AA PP dom A= ƒ  is the pareto preference 

(denoted by 1 & &A mP P P= … ) of m  atomic preferences ( ( ), )
ii i PP dom A= ƒ  

defined over A  when 1( )mv v v∀ = … , 1( ) ( )mv v v dom A′ ′′ = ∈…   we have: 

 &v v′≺ : iff [1 ]i m∃ ∈ … , such that 
ii P iv v′ ≺  and [1 ] { }j m i∀ ∈ −…  it 

holds 
jj P jv v′ ƒ  

 &v v′ ∼ : iff [1 ]i m∀ ∈ …  it holds 
ii P iv v′ ∼  

 &v v′ &  in all other cases 

Definition 2.20: Preference ( ( ), )
AA PP dom A= ƒ  is the prioritized preference, 

(denoted by 1A mP P P= �…� ) of m  atomic preferences ( ( ), )
ii i PP dom A= ƒ  

defined over A  when 1( )mv v v∀ = … , 1( ) ( )mv v v dom A′ ′′ = ∈…  we have: 

  v v′ �≺ : iff [1 ]i m∃ ∈ …  such that 
ii P iv v′ ≺  and [1 1]j i∀ ∈ −…  it holds 

jj P jv v ′∼  
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 v v′ �∼ : iff [1 ]i m∀ ∈ …  it holds 
ii P iv v′ ∼  

 v v′ �&  in all other cases 

Note that a pareto preference is a combination of mutually non dominating 

preferences. On the other hand, a prioritized preference treats 1P  as more 

important than preference 2P , which in turn is more important than 3P , etc., up to 

preference mP . 

Both operators are associative, allowing us to apply each of then on more than 

two operands, without using parentheses; the Pareto operator is commutative, 

but not the Prioritization one, whereas neither of the two is distributive over the 

other. Let us, also, assume that when omitting parentheses, the operators take 

priority from left to right. 

Example 2.3: Consider, for instance, the relation schema ( , , )R A B C  where the 

domain of attributes is given respectively by the sets 1 2 3( ) { , , }dom A a a a= , 

1 2 3( ) { , , }dom B b b b=  , 1 2 3( ) { , , }dom C c c c= . Also suppose that a user has defined 

the atomic preferences 
11 ( ( ), )PP dom A= ƒ , 

22 ( ( ), )PP dom B= ƒ , 

33 ( ( ), )PP dom C= ƒ  such that 
13 1Pa aƒ  , 

13 2Pa aƒ  , 
22 1Pb bƒ  , 

23 2Pb bƒ  , 

32 1Pc cƒ  , 
33 2Pc cƒ . Notice that all values here are active. Figure 4 depicts their 

corresponding Hasse diagrams5: 

 
 

Figure 4: Hasse diagram for three atomic preferences 
                                                 
5 Recall that the above Hasse diagram represents the partial order of the equivalence classes of 

the quotient sets. 

P1 P2 P3 

[a1] [a2]

[a3] 

[b1]

[b2]

[b3]

[c1]

[c2]

[c3]
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Now, consider two elements 3 1 1( , , )a b c , 

1 1 3( , , )a b c ( ) ( ) ( )dom A dom B dom C∈ × × . According to the above definitions we 

have: 

1. 3 1( , )a b
1 2&P P≺ 1 1( , )a b  due to 

13 1Pa a≺  (i.e., since 
13 1Pa aƒ  and 3a ∼ 1a ) 

and 
21 1Pb bƒ  

2. 3 1 1( , , )a b c
1 2 3& &P P P& 1 1 3( , , )a b c  because 

13 1Pa a≺  but 
33 1Pc c≺  

3. 1 1 3( , , )a b c
2 3 1P P P� �≺ 3 1 1( , , )a b c  as both contain 1b  and because 3P  is 

prioritized to 1P  

4. 3 1 1( , , )a b c
1 2 3( & )P P P�≺ 1 1 3( , , )a b c  due to (1)  and since 3P  is the least 

important 

2.2.2 From Tuple to Object Ordering 

Given a preference ( ( ), )
AA PP dom A= ƒ , we can use the definitions above to infer 

a non-antisymmetric partial preorder of the objects themselves in a relation R  

through projection, as follows:  

, , [ ] [ ]
A AP Po o R o o iff o A o A′ ′ ′∀ ∈ ƒ ƒ  

APo o′ƒ  means that o  is at most as preferable as o′ , (or equivalenty, o′  is at 

least as preferable as o ). The process of comparing two objects in order to 

decide which one is more preferred than the other is referred in the literature as 

“dominance testing”. If both 
APo o′ƒ  and 

APo o′ƒ  hold, we shall pronounce 

those objects ,o o′  as equally preferred and we will denote this relation as 

APo o′ ∼  (i.e., belong to the same equivalence class).  If 
APo o′ƒ  but 

( )
APo o′¬ ƒ , we can write 

APo o′≺  which is interpreted as o′  is (strictly) more 

preferable than o  or o′  dominates o . Finally if neither 
APo o′ƒ  nor 

APo o′ƒ  

hold, then we will say that ,o o′  are incomparable and we will write 
APo o′& . 
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Now let ≤  be the partial order relation which derives from 
APƒ  among the 

equivalence classes of the quotient set /
APR ∼ .[ ] [ ]o o′≤  will mean that the 

equivalence class of o  is at most as preferable as the equivalence class of o′ . 

However if [ ] [ ]o o′≤  and [ ] [ ]o o′≠  we can write [ ] [ ]o o′<  meaning that the user 

prefers object o′  (or any object equivalent to o′ ) to object o  (or any object 

equivalent to o ). 

Example 2.4: Assume preference 1 2&P P P=  where 
11 ( ( ), )PP dom A= ƒ , 

22 ( ( ), )PP dom B= ƒ  are the atomic preferences of  Figure 4 and the following 

relation R : 

1 1 1 1

2 3 1 3

3 3 1 2

4 1 2 1

oid A B C
o a b c
o a b c
o a b c
o a b c

 

Figure 5: A relation R  

According to the definitions described above we will have the following 

relations over the objects of R : 2 1Po o≺ , 3 1Po o≺ , 4 1Po o≺ , 2 3Po o∼ , 2 4Po o& , 

3 4Po o& . As a result, there are three equivalence classes 1 1[ ] { }o o= , 

2 2 3[ ] { , }o o o= , 4 4[ ] { }o o=  defined. The resulting Hasse diagram is illustrated in 

Figure 6. 

 

Figure 6: The Hasse diagram of Pƒ  over R  

[o1]

[o2] [o4] 
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Now, given a preference P  over A  in a relation R , we shall call active those 

objects o R∈  which contain active values over every attribute in A 6 while the 

rest of the objects are called inactive; Active objects, denoted as ( , )Act P A  are 

those that represent items which are interesting to the user, as they contain the 

combinations of interesting attribute values. Moreover, active objects can be 

ordered with respect to others, while inactive ones are those that cannot be 

ordered.  

 

Figure 7: Active and inactive objects 

For example assume that the relation R  of Figure 5 contains one more object 

5 4 1 1( , , )o a b c . Since 4 1( , )a V P A∉ , 5o  is considered as inactive object and clearly 

it cannot be ordered with respect to the remaining objects of R . In existing 

frameworks ([7], [8], [9], [13], [15], [24], [30]), inactive objects are considered 

as incomparable to the active ones and thus returned in the first block of the 

result (as undominated). For instance, 5o  will be returned in the same block as 

object 1o , although the user definitely prefers the latter. As a consequence, our 

approach partitions objects of R  into active and inactive ones and relies only on 

the active objects to retrieve the top- k  objects of a relation R  (Figure 7). 

 

                                                 
6 [ ] ( , )Ao A V P A∈  

DB Objects

Top-k

Active Objects

Inactive Objects
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Chapter 3: Top-k Algorithms 

In the previous chapter we have shown how from a given preference 

( ( ), )PP dom A= ƒ , we can infer a partial order ≤  (which derives from Pƒ ) 

among the equivalence classes of the quotient set / PR ∼ . Furthermore, we have 

seen how to form a linear order of mutually disjoint blocks of classes of objects 

that respects≤  and as a result the initial user preferences. In this linear order 

each block would correspond to a screen of incomparable equivalence classes 

that is shown to the user, with the most preferred classes of objects appearing 

first. Nevertheless, the presence of equivalent and of incomparable objects 

leaves space for more than one different orderings of R . In particular we have 

considered two linear orders of blocks (
∀∃

< ,
∃∀

< ) that actually satisfy the above 

requirements.  

 

Let us assume a 
∃∀

<  ordering between the blocks of the answer. In order to 

retrieve the most preferred objects of the partial order, all the succeding blocks 

have to be previously computed since a 
∃∀

<  order imposes a “down to top” 

orientation. Thus, in the general case that we assume where the number of 

available active objects in relation R  is large and the number k  is small, a 
∃∀

<  

ordering is not suitable due to the expensive computation cost and its lack of 

progressiveness (we actually have to order the entire relation R ). As a result of 

this observation we mainly focus on the 
∀∃

<  ordering. 

 

For any given user preference ( ( ), )PP dom A= ƒ  and an integer k , our purpose 

is to provide efficient evaluation algorithms for computing the top- k  objects of 

R .  

 

Problem Statement: Given a relation R  our objective is for every possible 

( ( ), )PP dom A= ƒ  and k  parameter to compute and deliver to the user a linear 

order  of n  blocks of equivalence classes of objects 0 1 1, , , nB B B −… , where n  is 
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the smallest integer that satisfies the inequality 
1

0

n

i
i

B k
−

=

≥∑  and iB  is the 

cardinality of block iB  in objects. In such a linear order, each block would 

correspond to a screen of equivalence classes of objects that is shown to the 

user, satisfying the following properties: 

1. [ ],[ ]  it holds [ ] [ ]io o B o o′ ′∀ ∈ & 7 

2. 0 0[ ] , [ ]  such that [ ] [ ]o B o B o o′ ′∀ ∈ ¬∃ ∉ ≤  

3. [0 1], [ ] it holds  j ii n j i n B B
∀∃

∀ ∈ − ∈ <… …  (i.e., [ ] jo B∀ ∈ , [ ] io B′∃ ∈  

such that [ ] [ ]o o′≤ )  

where ≤  is the induced partial order from Pƒ  among the equivalence classes of 

the quotient set / PR ∼  and &  its incomparability relation. The elements in 
1

0

n

i
i

B
−

=
∪  

are called the top- k  objects.  

 

Note that according to the definitions above 
1

0

n

i
i

B
−

=
∑  can be greater than k . In 

that case the user is able to select between retrieving all objects in 

0 1 1, , , nB B B −…  or to stop the presentation of objects after showing the thk  object 

(this can happen before all objects of a block have been shown to the user). In 

either case we shall denote as , ( )k Pq R  the set that contains the top- k  objects of 

R  according to P . 

 

In this chapter we present two broad approaches that can be applied to tackle the 

problem at hand, namely the object-based and the query-based approach. 

Section 3.1 details the object-based ordering approach that has emerged so far 

and the most common algorithms (i.e., BNL, Best) that follow this approach. In 

section 3.2 we present a novel (to the best of our knowledge) query-based 

ordering approach and present two query-based top- k  algorithms. 

                                                 
7 Abusing notation we are able to generalize a relation R on objects to a relation on classes (or 

sets) of objects as follows: [ ] [ ]o R o′  iff [ ] [ ]  o o o o o R o′ ′ ′∀ ∈ ∀ ∈ . 
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3.1 Object-based ordering 

For the computation of the top- k  objects of a relation R , a relational operator 

that has been variously called winnow ([7], [8]), Best [30] or BMO ([13], [15]) 

has been introduced. Winnow selects the set of the most preferred objects (i.e., 

the first block), according to a given preference expression ( ( ), )PP dom A= ƒ .  

For the evaluation of the winnow operator two basic algorithms Block Nested 

Loop (BNL) [29] and Best [30] have been introduced. The core element of these 

algorithms is dominance - testing. They essentially iterativelly eliminate every 

object o , for which there is a dominating object o′  such that Po o′≺ . These 

algorithms can be also extended to produce the top- k  results matching a 

preference expression, as follows:  If the result res  of the winnow operator has 

m  objects and m k≥ , return them. Otherwise deliver these m  objects (i.e., 

return the first block) and for finding the remaining ones winnow is called again 

over \R res . So, to obtain the top- k  objects a number of iterations need to be 

performed (in the worst case we will have k  iterations). The main characteristic 

of the object-based ordering algorithms is that they are agnostic of the 

preference expressions. As a matter of fact, user preferences are treated as a 

black box by the dominance test. In the following sections we fully describe 

algorithms BNL and Best that are used for the evaluation of winnow operator. 

 

3.1.1 Block Nested Loop (BNL) 
 
BNL algorithm [29] (Figure 8) repeatedly reads the object relation R . The idea 

of this algorithm is to keep a window W  in main memory of the best 

equivalence classes of objects discovered so far. All the classes of objects in the 

window are incomparable and they all need to be memorized, since each may 

turn out to dominate some input objects processed in a later step. When an 

object o  is read from R  and it is active8 (line 5), it is compared to a 

representative o′  from all classes of the window (line 7) and, based on this 

comparison, o  is either eliminated or placed into the window or when there is 

                                                 
8 An object is active according to a preference ( ( ), )PP dom A= ƒ  iff [ ] ( , )o A V P A∈  
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no space into a temporary table Temp  which will be considered in the next 

iteration step of the algorithm. For any active object o  four cases can occur: 

 

 o  is less preferable than a representative from each equivalence class 

within the window (line 8). In this case, o  is eliminated and will not be 

considered in the current iteration. Of course, o  need not be compared 

to all class representatives of the window in this case. 

 o  is more preferable than one or more representatives in the window 

(line 9). In this case, these equivalence classes are eliminated; that is, 

these classes are removed from the window.  

 o  is equivalent with a window representative. If there is enough room in 

the window, o  is inserted into the corresponding class (line 12) [ ]o′ . 

Otherwise, [ ]o′  is removed from the window, is inserted to a temporary 

table Temp  on disk and then o  is inserted into [ ]o′  (lines 13-15). o  

need not be compared to the remaining class representatives of the 

window in this case. 

 o  is incomparable with all representatives in the window. In that case o  

defines a new equivalence class [ ]o . If there is enough room in the 

window, [ ]o  is inserted into the window (lines 17, 18). Otherwise, o  is 

inserted to a temporary table Temp  on disk (line 20). The objects of the 

temporary table will be further processed in the next iteration step of the 

algorithm (line 21).  

 

Initially, the first object will naturally be put into the window because the 

window is empty. At the end of each iteration, BNL can only output the classes 

of the window for which their representative has been compared to all objects 

that have been written to the temporary table; these classes contain objects that 

are not dominated by any other (i.e., they are top- k  objects). Specifically, BNL 

outputs and ignores for further processing those classes which were inserted into 

the window when the temporary table was empty (line 21). These classes are 

guaranteed to be in the next block of the answer iB  since they have been 

compared to all other objects that were put into Temp . Therefore BNL marks 
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(line 19) all classes that were inserted into the window when Temp  was empty. 

The remaining classes of W  must be compared against those stored in the 

temporary table. Thus, BNL has to be executed again, this time using Temp  as 

input, until there are no remaining classes in Temp . When the temporary table 

is empty (line 4), BNL has found all the objects that belong in the next block 

iB . If the number of the returned objects is more than k  the algorithms stops 

(line 24). Otherwise BNL is executed again over \ iR B  (line 23) in order to find 

the next block 1iB +  until the number of the returned objects exceeds k .  
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Block Nested Loop 

 
input: a relation R , a preference expression P , an integer k  

output: the 
∀∃

< -aware top- k  objects of  R  according to P  

1:  0,Result ii Temp Input W B= = = = = =∅ //W keeps the best objects discovered 

2: Repeat  

3:  = Input R  

4:  While  :Input ≠ ∅  

5:   For each active object o Input∈ do: 

6:    Dominated = false   

7:    While (not (Dominated))  not compared with :o W o′∧ ∃ ∈  

8:     If Po o′≺ then Dominated = true  

9:     ElseIf Po o′≺ then remove [ ] from o W′  

10:    ElseIf Po o′∼ then  

11:     If MemoryAvailable then   

12:            [ ] [ ] ; stop comparisons for o o o o′ ′= ∪  

13:     Else remove [ ] from o W′  

14:             [ ]Temp Temp o′= ∪  

15:            [ ] [ ] ; stop comparisons for o o o o′ ′= ∪  

16:   If not(Dominated) then  

17:    If MemoryAvailable then   

18:      [ ]W W o= ∪  

19:     If Temp =∅ then ([ ])mark o  

20:    Else  [ ]Temp Temp o= ∪  

21:    ,Input Temp=  {[ ] | ([ ])}i iB B o W mark o= ∪ ∈  

22: ireturn B , | | | | | |iresult result B= +  

23: If |result|   then k< \ iR R B= , 1i i= +  

24: | result |   Until k≥   

Figure 8: Block Nested Loop Algorithm 
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The main advantage of BNL is its simplicity, since it can be used without 

indexing or sorting the input relation R . However, it is sensible to the amount 

of the available main memory. A small memory may lead to numerous 

iterations while in case where the size of an equivalence class in W  exceeds the 

size of W  then the algorithm can not terminate. BNL requires to access all 

objects of a relation R  at least once and to perform at least one dominance test 

for every active object in R . This makes BNL inappropriate for large databases. 

Another disadvantage of BNL is its inadequacy for on-line processing since it 

has to read the entire data relation before it returns the first block 0B  (line 3). 

 

Best case time complexity: In the best case the result (i.e., all blocks of the 

answer) fits into the window and the algorithm terminates in one iteration.  

Therefore the best case time complexity of BNL is ( )O n  where n  is the number 

of objects in R .  

 

Worst case time complexity: The worst case time complexity of BNL is 2( )O n  

and occurs when a block of the answer is very large compared to the amount of 

the available memory (e.g., all objects in R  are incomparable to each other). 

 

Space Complexity: The memory requirements of BNL depend on the size of 

window W  and not on the size of relation R . Therefore we can write that the 

space complexity of BNL is (1)O . 
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3.1.2 Best 
 

Like BNL, Best [30] (Figure 9) is executed in several iteration steps. Each step 

consists of a one or more scans over a set of candidate objects which might 

belong to the output iB  of the thi  step. The main difference between BNL and 

Best is that the latter tries to restrict the search space of the input relation R  as 

much as possible for the subsequent iterations of the algorithm9. In order to 

achieve that, Best keeps in memory for each object o  a set oD;  that contains all 

objects which have been compared to o  and have been dominated by it. 

However, Best does not suffer by bounded memory requirements as BNL does. 

 

When an active object o′  read from the input R  is compared with an object So  

which is kept in main memory and temporarily plays the role of the selected 

object. Object So  is a representative of an equivalence class iS  containing some 

of the best objects discovered so far. For any active object o′  four cases are 

possible: 

 P So o′ ∼  in this case o′  is added to iS  and So  remains the selected 

object  

(line 8). 

 S Po o′&  in this case o′  is put into a set iU  of the unresolved objects and 

So  remains the selected object (line 5). 

 P So o′≺  in this case o′  is put into a set SoD; , which contains the objects 

dominated by So  according to Pƒ , and So  remains the selected object 

(line 6). 

 S Po o′≺  in this case iS  is added to the set o o
iD D S′ ′= ∪; ; , which 

contains the objects dominated by o′  according to Pƒ  and o′  becomes 

the selected object (i.e., So o′= , { }iS o′= ) (line 7). 

 

                                                 
9 Recall that BNL after returning block iB , if needed, runs over \ iR R B=   
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After the algorithm completes the database scan there is no object among those 

processed that dominate objects in iS . So objects in iS  are put into the block iB  

in which Best collects the objects to be returned as the output of the thi -step. 

However, there might be some objects o′  in iU  dominated by So . For this 

reason the algorithm also compares the selected object with the objects in iU  

(lines 9,10). At that point, if iU  is not empty, Best repeats the whole procedure 

but this time using iU  as input (i.e., another scan at the end of which a new set 

iS  will be inserted in iB ) (line 12). When at the end of the a scan, iU  gets 

empty the thi -step is concluded and Best returns the next block iB  (line 13). If 

the number of the returned objects is more than k , then the algorithm stops. 

Otherwise, Best is executed again this time using as input only the objects in the 

sets oD;
 for each io B∈  (i.e., { | }o

iInput D o B= ∈;∪ ) (line 15). 
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Best 
 

input: a relation R , a preference expression P , an integer k  

output: the 
∀∃

< -aware top- k  objects of  R  according to P  

 
1:    0,  Result  ,i = = ∅ = Input R  

2:   Repeat   

3:   Let as  the first ( )So Active o Input∈  // So  is the selected object 

4:   While active object  not compared with :So Input o′∃ ∈  

5:    If S Po o′& then i iU U o′= ∪  

6:    ElseIf P So o′≺ then S So oD D o′= ∪; ;  

7:    ElseIf S Po o′≺ then  , =  , { }o o
i S iD D S o o S o′ ′ ′ ′= ∪ =; ;   

8:    ElseIf  then P S i io o S S o′ ′= ∪∼  

9:   While  not compared with :i So U o′∃ ∈  

10:   If P So o′≺ then , remove  from S So o
iD D o o U′ ′= ∪; ;  

11:     ,i i i iB B S S= ∪ =∅     

12:   If  then i iU Input U≠ ∅ =  

13:   Else ireturn B ; | | | | | |iresult result B= +  

14:   If |result|<  thenk  

15:    { | }o
iInput D o B= ∈;∪  

16:    1i i= +  

17:   Else break  

18: falseUntil   

Figure 9: Best Algorithm 
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Best inherits the advantage (i.e., easy implementation) and the disadvantages 

(i.e., at least one dominance test for every active object in R , not progressive) 

from BNL. However, Best requires only one scan of the relation R  

independently to the number k of returned objects.  

 

Best case time complexity: Like BNL, the best case time complexity of Best is 

( )O n  where n  is the number of objects in R  and occurs when the result (i.e., 

the top- k  objects) is small comparing to n . 

 

Worst case time complexity: Worst case time complexity of Best is 2( )O n  and 

occurs when all objects of R  are incomparable to each other. 

 

Space Complexity: The space complexity of Best is ( )O R  where R  is the 

size of the input relation R  (in pages), since the entire relation might be kept in 

the oD;  sets. 

 

 



 36

3.2 Query Based Ordering 

3.2.1 Lattice Based Algorithm (LBA) 
 
The main intuition behind this algorithm is that each block iB  of the answer 

w.r.t. a preference P  corresponds to the result of a selection query iQB  

(i.e., ( )i iB ans QB= ), neglecting object ordering. Block queries iQB  may be 

collected by “scanning” the active Cartesian Product ( , )V P A  in a top-down 

manner, without having to calculate and store the latter. These queries are 

essentially unions of conjunctions of atomic selection conditions, containing all 

attributes that the user preference involves. LBA incrementally constructs and 

evaluates those queries starting from the one that returns the most preferred 

objects of  R  i.e., from 0QB , until the number of the returned objects exceeds 

k . For each query iQB , ( )ians QB  comprises incomparable (with respect to ≤ ) 

equivalence classes of objects and a query iQB  precedes iQB ′  (i.e., i iQB QB′ < ) 

if between ( )ians QB  and ( )ians QB ′  it holds: ( ) ( )i ians QB ans QB
∀∃

′ ≤ . As a 

result, the retrieved objects are already ordered so there is no need to further 

compare them.  

 

Given a preference ( ( ), )PP dom A= ƒ , each domain value ( , )i i iv V P A∈  and each 

tuple ( , )v V P A∈  belong to an equivalence class declared by the symmetric 

parts Pi∼ , P∼  of Piƒ  and Pƒ  respectively. To simplify the presentation of the 

algorithm in the rest of this chapter when we refer to domain values and tuples 

we shall actually mean their corresponding equivalence classes.  

 

As we have seen in the previous chapter, a preference expression P  over a set 

of attributes 1{ }mA A A= … , defines a preference relation (i.e., a non-

antisymmetric partial preorder) over the elements 1 2( , , , )mv v v…  of the active 

preference domain ( , )V P A . These elements essentially represent conjunctive 
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queries of the form 1 1 2 2 m mA v A v A v= ∧ = ∧ ∧ =…  which when executed will 

retrieve the matching objects. We call the respective ordering of queries the 

Query Lattice10. 

 

Figure 10: Query Ordering Framework 

Consider, for example, the preference expression &A BP P P=  of Figure 10.1, 

such that 2 1APa a≺ , 3 1APa a≺ , 3 1BPb b≺ , 3 2BPb b≺ . Figure 10.2 illustrates the 

Hasse diagram of ( & ,{ , })A BV P P A B ; it also depicts the induced 
∀∃

<  block 

ordering 2 1 0QB QB QB
∀∃ ∀∃

< <  on ( & ,{ , })A BV P P A B . Clearly, to compute the 

most preferred objects (i.e., the top block 0B ) w.r.t. &A BP P P= ,  we need to 

execute the queries 1 1A a B b= ∧ =  and 1 2A a B b= ∧ =  deriving from the first 

query block 0QB . As both queries have non-empty results ( 1 5{ , }o o and 7 9{ , }o o , 

respectively, see Figure 10.3), we guarantee that they and only they return the 

most preferred objects (see Figure 10.4). 

  

However, not every query in the lattice is guaranteed to be non-empty. 

Consider, for instance, that the user is interested in obtaining the next block 1B . 

As we can see in Figure 10.3, from the five queries of the second lattice 

block 1QB , only 3 1A a B b= ∧ =  has a non-empty result ( 3{ }o ) which belongs to 

the next block of the anwser 1B . Yet, all other objects that belong to 1B , if any, 

have to result from queries that are successors11 of the empty queries in 1QB , 

                                                 
10 For simplicity, we omit a “true” top query and a “false” bottom query. 
11 Or, recursively their successors, in case they are empty.  
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and at the same time, are not successors of any other non-empty query in 1QB . 

This is the case of 2 3A a B b= ∧ =  in 2QB , with result 4{ }o , being child of the 

empty query 2 1A a B b= ∧ =  and, at the same time, incomparable to the non-

empty query 3 1A a B b= ∧ =  of 1QB . On the contrary, 3 3A a B b= ∧ =  in 2QB , 

although it is a child of two empty queries in 1QB , it is also a child of the non-

empty one 3 1A a B b= ∧ =  of 1QB ; thus, its answer does not qualify for 1B . 

Recursively, we can compute the bottom block 2B  as illustrated in Figure 10.4. 

 
As we already state, LBA aims to compute the 

∀∃
<  block ordering of the top- k  

objects without actually needing to construct the induced ordering of objects. 

This is essentially achieved by exploiting the semantics of a preference 

expression and, in particular, by linearizing the active Cartesian Product 

( , )V P A  of all attribute values appearing in the expression. Going one step 

further, we don’t even need to construct in advance and then linearize ( , )V P A . 

Instead, we can simply construct its 
∀∃

<  block ordering from the 
∀∃

<  block 

ordering of its constituent atomic preferences. For example, in Figure 10.1 the 

∀∃
<  block ordering of AP  is 1 2 3 0 1{ , } { }A a a A a

∀∃
= < =  and of BP  is 

1 3 0 1 2{ } { , }B b B b b
∀∃

= < = . Thus, we introduce the following two theorems which 

provide the means to compute the 
∀∃

<  block ordering of an arbitrary preference 

expression progressively. 

 

Theorem 3.1:: Given the 
∀∃

<  block orderings 1 1 0nX X X− ∀∃ ∀∃ ∀∃
< < <… , and 

1 1 0mY Y Y− ∀∃ ∀∃ ∀∃
< < <…  of two preferences XP  and YP , the 

∀∃
<  block ordering 

2 1 0n mZ Z Z+ − ∀∃ ∀∃ ∀∃
< < <…  of preference &X YP P P= , will consist of 1n m+ −  

blocks; each block pZ  will comprise elements only from blocks qX  and rY , 

such that q r p+ = . 

 

Proof 3.1: We start with the second part of the theorem, and use induction: It is 

obvious that the top (bottom) block 0Z  (say, bZ , respectively) will derive from 
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the composition of the respective top (bottom) blocks 0X  ( 1nX − ) and 0Y  ( 1mX − ). 

The second block 1Z  must contain items which are worse than those of 0Z  in 

exactly one of their two constituents, i.e., worse either in X  or in Y , but not in 

both. Furthermore, it should be worse by a distance of exactly 1 block in this 

constituent. To prove this, assume any item in Z  deriving from constituents 

which either are worse in both X  and Y , or are worse by a distance of more 

than 1 blocks in X  or Y ; then, in both cases, such an item is obviously worse 

than some item(s) of 1Z , and thus it ought to belong in a block lower than 1Z . 

As 1+0=1 and 0+1=1 (for X , Y , and Z  indices, respectively), the second part 

of the theorem holds for block 1Z , i.e., for a non trivial induction basis. For the 

induction hypothesis, assume that the theorem holds for block kZ , i.e., 

q r k+ = , for those qX ’s and rY ’s which are the constituents for X  and Y , 

respectively. Taking the induction step, it is obvious, by the previous discussion, 

that block 1kZ +  should comprise those items originating either from 1qX +  and 

rY , or from qX  and 1rY +  (i.e., the items from either of the precisely next blocks 

in X  or Y , but not from both of those simultaneously); then, the new sum of 

the constituent blocks will have risen by exactly 1 to 1k + ;  q.e.d. Using this 

result, and enumerating the values from 0 to 1n −  and from 0 to 1m −  we arrive 

at the actual number of Z -blocks, which is exactly 1n m+ − ; and this 

completes the proof of the theorem. 

 

Given the two block orderings 1 0A A
∀∃

< and 1 0B B
∀∃

<  of Figure 10.1 for AP  

and BP  respectively, the block ordering of preference &X YP P P= , will consist 

of 3 (i.e., 2+2-1) blocks. As we can see in Figure 10.2 the top block ( 0QB ) will 

be formed by combining elements from blocks whose sum of indices is 0, i.e., 

0A  with 0B , the second ( 0QB ), from blocks whose sum of indices is 1, i.e., 0A  

with 1B , and 1A  with 0B  , and the third ( 0QB ), from blocks whose sum of 

indices is 2,i.e., 1A  with 1B . The following theorem can be similarly proved: 
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Theorem 3.2: Given the 
∀∃

<  block orderings 1 1 0nX X X− ∀∃ ∀∃ ∀∃
< < <… , and 

1 1 0mY Y Y− ∀∃ ∀∃ ∀∃
< < <…  of two preferences XP  and YP , the 

∀∃
<  block ordering 

2 1 0n mZ Z Z+ − ∀∃ ∀∃ ∀∃
< < <…  of preference X YP P P= � , will consist of n m×  

blocks; each block pZ  will comprise elements only from blocks qX  and rY , and 

it will hold p q m r= × + . For every value of q  ranging from 0 to 1n − , r  will 

range from 0 to 1m − ; i.e., pZ ’s will derive from 0 0X Y , 0 1X Y ,…, 0 1mX Y − , 1 0X Y , 

…, 1 1n mX Y− − . 

 

Algorithm LBA takes as input a relation R  and a preference expression P  

involving a subset A  of R ’s attributes. Then, it outputs progressively the 
∀∃

< -

aware top- k  objects of R . To this end, LBA relies on a internal representation 

of the sequence of blocks of the active Cartesian Product ( , )V P A  (see Figure 

10.2). In particular, array QB  is used to hold in main memory only the structure 

of the 
∀∃

<  block ordering of ( , )V P A . The corresponding Query Lattice is not 

materialized but rather the queries needed to construct the requested blocks are 

computed and executed on the fly. Each QB  entry is essentially a list whose 

elements hold only the block indices of the active terms of ( , )i iV P A  forming a 

block of ( , )V P A . Going back to Figure 10, 0QB  contains the single element list 

0,0< > , standing for 0A , 0B , whereas 1QB  contains the list 0,1 1,0< >→< > , 

standing for 0A , 1B  and 1A , 0B , respectively. The entire QB  array of our 

example can be seen in Figure 11. 

0

1

2

: 0,0
: 0,1 1,0
: 1,1

QB
QB
QB

< >

< >→< >
< >

 

Figure 11: The QB  array of  1 2&P P P=  

After computing QB  (line 1), LBA iteratively calls GetBlockQueries (line 4) to 

create a list of associated conjunctive queries and Evaluate (line 5) in order to 

output successive blocks of objects until the top- k  objects were retrieved (or 

( , )V P A  is exhausted). 
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LBA
 

input: an object relation R , a preference expression P , an integer k  

output: the 
∀∃

< -aware top- k  objects of  R  according to P  

1:    ( . )QB ConstructQueryBlocks P root=   

2:    0result i= =  

3:    Repeat  

4:    ( [ ])iUq GetBlockQueries QB i=  

5:    ( )iresult Evaluate Uq+ =   

6:    1i+ =  

7:   Until  result k≥  or  i QB=  

Figure 12: LBA  Algorithm 

ConstructQueryBlocks  returns the structure of the final expression result in the 

form of blocks. It traverses recursively a preference expression tree P  (starting 

from .P root ) and computes bottom-up the number of blocks and their origin in 

QB . For each QB  entry it generates the structure of the respective 
∀∃

<  block 

ordering. When &  (line 6) and �  (line 7) appear as a preference relation 

between expressions .P left  and .P right , it calls ParetoComp  or PriorComp  to 

construct the corresponding QB . For leaves (i.e., for atomic preferences), their 

respective QB  entries are computed (line 2) by PrefBlocks  which for an atomic 

preference iP  derives its 
∀∃

<  block ordering of ( , )i iV P A . For example, in its 

“bottom left” recursion step ConstructQueryBlocks  creates a QB  with two 

entries 0 : 0QB < >  and 1 : 1QB < >  for the 
∀∃

<  block ordering 1 0A A
∀∃

<  of 

preference AP . 
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ConstructQueryBlocks
 

input: a preference expression P  

output: the  QB  array of P  

1:    If P  is a leaf then // P is an atomic preference 

2:    PrefBlocks( ( , ))i iQB V P A=  

3:   Else 

4:    _ ( . )QB left ConstructQueryBlocks P left=  

5:    _ ( . )QB right ConstructQueryBlocks P right=  

6:    If . "&"P type =  then ( . , . )ParetoComp P left P right  

7:     Else PriorComp( . , . )P left P right  

8:    Return .P QB   

Figure 13: ConstructQueryBlocks  function 

ParetoComp and PriorComp  implement theorems 3.1 and 3.2 respectively. In 

particular,  ParetoComp  given two input preferences 1P  and 2P  computes the 

QB , for the case of 1 2&P P . As explained in theorem 3.1  QB  will comprise 

1. 2. 1P QB P QB+ −  blocks; and the sum of the indices of each element in 

every block will equal the index of that block. On the other hand, PriorComp  

for its input preferences 1P , 2P computes the QB  for the case of 1 2P P� . As 

defined in theorem 3.2, QB  will comprise 1. 2.P QB P QB×  blocks, and the 

order of the blocks follows the lexicographical order of the indices of the 

corresponding blocks. 
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ParetoComp
 

input: two operand nodes 1P  and 2P  

output: the  QB  of  node 1 2&P P P=  

1:    . 1. 2. 1P QB P QB P QB= + −  

2:    For   0 to .w P QB=  

3:     . [ ] { 1. [ ] 2. [ ] | } P QB w P QB i P QB j i j w= × + =∪  

4:    Return .P QB   

Figure 14: ParetoComp function 

PriorComp  
 

input: two operand nodes 1P  and 2P  

output: the QB  of  node 1 2P P P= �  

1:   0w =  

2:   . 1. 2.P QB P QB P QB= ×  

3:   For   0 to 1. 1i P QB= −  

4:   For   0 to 2. 1j P QB= −  

5:    . [ ] 1. [ ] 2. [ ]P QB w P QB i P QB j= ×  

6:    1w+ =  

7:   Return .P QB   

Figure 15: PriorComp  function 

Function Evaluate  executes each query q  of its input set iUq . It keeps track of 

non-empty queries in SQs , so that they are executed only once. Also, for the 

object block iB  currently processed, it keeps track of non-empty queries in 

CurSQs  (line 4) and of empty ones in FQs  (line 5). For each non-empty query 

it appends its answer to current block iB . For empty ones, it applies (lines 11 to 

17) the previous process on their immediate (or transitive) successors which are 

not in SQs  (thus avoiding to execute twice a non-empty query), and not in 

CurSQs  (i.e., ensuring they are not at the same time successors of any non-
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empty query). This process is terminated when no more successors are available 

(line 11) or there are no more empty queries to inspect (line 17). Finally, 

Evaluate outputs the computed block and returns its size (line 19). 

Evaluate  
 

input: a list of queries 

output: the next block iB  

1:   For each q  in iUq  

2:    If q  not in SQs  then 

3:     If ( )!ans q =∅  then 

4:      { }CurSQs q∪ = ; ( )iB ans q∪ =  

5:     Else { }FQs q∪ =  

6:    Else { }FQs q∪ =  

7:   While !FQs =∅  

8:    For each q  in FQs  

9:     \ { }FQs q=  

10:     1 1 1{ | ( )}Q q q child q= =  

11:    For each q  in 1Q  

12:     If q  not in SQs  then 

13:      If not q  in ( )succ q′  forall q′  in CurSQs  then 

14:       If ( )!ans q =∅  then 

15:        { }CurSQs q∪ = ; ( )iB ans q∪ =  

16:       Else { }FQs q∪ =  

17:     Else { }FQs q∪ =  

18: SQs CurSQs∪ = ; CurSQs =∅  

19: ioutput B ; ireturn B   

Figure 16: Evaluate  function 
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Function ()child  (line 10), returns the direct children of its input query q . 

There are several ways to implement ()child . In our case the implementation of  

()child  was based on the following observation: We already know the list 

element  1 2, , , ml l l< >…  of iQB  from which q  has originated. Clearly, the direct 

children of q  must originate only from one or more list elements of 1iQB + . For 

each list element  1 2, , , ml l l′ ′ ′< >…  of 1iQB + , let lastblock  be the set that 

contains each {1... }j m∈  for which jl  is the index to the last block of the 

corresponding 
∀∃

<  block ordering of ( , )j jV P A . From the list elements 

1 2, , , ml l l′ ′ ′< >…  of 1iQB +  only those that satisfy the following property may 

point to children of q :  

 there exists c lastblock∉  such that 1c cl l′ = +   

 { }k lastblock c∀ ∉ −  it holds k kl l′ = . 

 

Having identified those list elements 1 2, , , ml l l′ ′ ′< >…  of 1iQB +  which directly 

point to children of 1 1 2 2: m mq A v A v A v= = ∧ = ∧ ∧ =… , the queries to be 

returned by the function are produced as follows:  

For each {1... }j m∈  such that j jl l′ ≠ :  

 If 1j jl l′ = +  then replace jv  with the direct children of jv  in the 

corresponding ( ( ), )
jj j PP dom A= ƒ  

 If 0jl ′ =  then replace jv  with the maximal values of 
jPƒ  that are related 

to jv  

3.2.1.1 ∃
<

∀ -aware LBA 

Consider now the case where the size of ( , )V P A  is very large compared to the 

number of available (active) objects. As a result LBA will have a lot of fruitless 

fetching attempts (for most of the queries q  it will hold ( )ans q =∅ ). This will 

lead to poor performance since the algorithm will continuously keep searching 

( , )V P A  for possible exclusive successors of q  that will probably result empty 
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answers too. In such a scenario it would be reasonable to adopt a more 

“relaxed” linear order of blocks that however will not go against the intuition 

“most-preferred objects first” which is probably the most important constraint 

that each linear order of blocks should satisfy. Therefore we define the ∃
<

∀  

order of blocks as follows: 

Definition 3.1: Let iB
∃

< jB
∀ , iff [ ] io B∀ ∈ , ∃[ ] jo B′ ∈  such that [ ] [ ]o o′ ≤ . 

Therefore in an 
∃

<
∀

 adaptation of LBA, when for a query q  holds ( )ans q =∅  

there is no need to search for possible exclusive successors of q   since the 

identification of the incomparable objects is not a strict requirement here. The 

only (but important) difference between the 
∀∃

<  and the 
∃

<
∀

 variation of LBA 

is that the Evaluate  function, is only responsible for fetching objects and no 

further examination is required. 

Evaluate  
 

input: a list of queries 

output: the next block iB  

1:   For each q  in iUq  

2:    ( )iB ans q∪ =  

3:   ioutput B ; ireturn B  

Figure 17: Evaluate  function for the 
∃

<
∀

 variation of LBA 

It is worth noticing that the 
∃

<
∀

 variation of the LBA algorithm can be also 

sensitive to scenarios where the size of ( , )V P A  is large compared to the 

number of available objects. Howerer due to the fact that the identification of 

incomparable objects is not a strict requirement, it is expected to be more 

efficient than the 
∀∃

<  variation.  

 

Moreover, since in the 
∃

<
∀

 variation of LBA we are not actually forced to 

identify which queries yield empty queries and which not, we could employ 

some different rewriting techniques in order to construct queries which are more 

efficient to evaluate. So far, given a block query iQB , for each of its tuples 
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1 2( , , , )m iv v v v QB= ∈…  one conjunctive query of the form 

1 1 2 2:j m mq A v A v A v= = ∧ = ∧ ∧ =…  was formulated and executed individually. 

iQB  was defined as the union of those conjunctive queries. From now on, we 

will refer to this rewriting as MQ  (Multiple Queries). A second rewriting 

approach would be to define iQB  as the disjunction of the conjunctions of the 

atomic selection conditions that each tuple iv QB∈  defines. For example 

assuming that iQB  contains two tuples 1( )mv v v= …  and 1( )mv v v′ ′′ = … , iQB  

will have the following form: 

1 1 2 2 1 1 2 2: ( ) ( )i m m m mQB A v A v A v A v A v A v′ ′ ′= = ∧ = ∧ ∧ = ∨ = ∧ = ∧ ∧ =… …  

We refer to this rewriting as SQ∨  (Disjunctive Single Query). Finally, iQB  can 

be defined as the conjunctive query of m  disjunctions (one for each attribute). 

Each disjunction refers to a specific attribute iA  and consists of every atomic 

selection condition that each tuple iv QB∈  defines and refers to iA  where any 

repeated conditions are removed. For example assuming that iQB  contains two 

tuples 1( )mv v v= …  and 1( )mv v v′ ′′ = … , iQB  will have the following form: 

1 1 1 1 2 2 2 2: ( ) ( ) ( )i m m m mQB A v A v A v A v A v A v′ ′ ′= = ∨ = ∧ = ∨ = ∧ ∧ = ∨ =…  

We refer to this rewriting as SQ∧  (Conjunctive Single Query). 

3.2.1.2 Analytical Evaluation 

In this section we analyze the complexity of LBA by focusing on the cost of 

computing the top block of the top- k  objects. This choice is motivated by the 

fact that generating the top block has the same cost in the worst case as 

constructing the entire block ordering. Furthermore, it provides a common 

ground for comparison with existing algorithms evaluating skyline queries. 

LBA algorithm has a very small startup cost for constructing the 
∀∃

<  block 

ordering of the input atomic preferences 2( ( , ) )i iO V P A  and in general can be 

neglected. The cost of LBA is mainly due to the number of conjunctive queries 

it has to execute in order to construct a block of the answer. A conjunctive query 

is usually evaluated by traversing the available indices on the involved 
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attributes, intersecting the oids  and then fetching the matching objects from the 

disk. When (unclustered) B+-trees are used, the I/O cost for each such query q  

will be (log ( ) )O R ans q+ . Assuming that r  queries are executed in total to 

construct the resulting block ordering, the LBA cost is ( (log ( ) ))O r R ans q× + .  

 

Best case time complexity: In the best case, only one query is required to 

construct 0B  and the number of returned objects is very small (especially for 

uniform data distributions). In particular, when ( , ) ( , )Act P A V P A>> , the 

practical cost of LBA drops to (log )O R .  

 

Worst case time complexity: In the worst case, all the lattice queries need to be 

executed to construct the entire block sequence (i.e., k  is omitted) as just a few 

of the leaf queries actually return almost all of the active objects (especially for 

skewed data distributions). Thus, the total cost of the index traversals will rise to 

( ( , ) log )O V P A R×  where 
1

( , ) ( , )
m

i ii
V P A V P A

=
= × , while the I/O cost of their 

non-empty answers will be ( ( , ) )O Act P A , bringing the total worst case cost up 

to O ( ( , ) log ( , ) )O V P A R Act P A× + . In particular, when 

( , ) ( , )Act P A V P A<<  and given that log R  is usually small (3 to 6, 

depending on B+-tree12 fan-out), the practical complexity of LBA in the worst 

case becomes ( ( , ) )O V P A . It should be stressed that the above cost also 

characterizes the worst case LBA complexity when requesting only 0B . 

 

Space Complexity: The space complexity of LBA depends on the size of the 

QB  which will store in overall 
1
# ( , )

m

i ii
blocks P A

=
×  list elements 1 2, , , ml l l< >… , 

where # ( , )i iblocks P A  is the number of  blocks in the corresponding 
∀∃

<  order 

of ( , )i iV P A .  

 

                                                 
12 Alternatively, hash indices could be used with a typical cost of 1-2 I/Os.  
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The (best, worst) time complexity of the 
∃

<
∀

 variation of LBA that follows the 

MQ  approach for constructing queries is the same as the 
∀∃

<  variation. 

However in practise the 
∃∀

<  variation of LBA will evaluate fewer queries since 

the identification of incomparable objects is not a strict requirement in a 
∃

<
∀

 

ordering. In case where one of the remaining two approaches (i.e., SQ∨  

and SQ∧ ) are followed, the algorithm will evaluate at most QB  queries where 

QB  is the size of the corresponding QB  array of a preference expression P . 

Each of these queries will cost ( ( , ) )O Act P A  in the worst case. So the overall 

compexity is now ( ( , ) )O QB Act P A× . 

 

It is clear for someone to see that the performance of LBA is very sensitive to 

| ( , ) |
| ( , ) |

V P A
Act P A

 ratio (where ( , )Act P A  denotes the active objects of R  w.r.t. P ). 

If | ( , ) | 1
| ( , ) |

V P A
Act P A

<  then almost for each query q  it will hold  ( )ans q ≠ ∅  and as 

a result only a relatively small number of queries needs to be evaluated in order 

to retreive the top- k  objects. On the other hand if | ( , ) | 1
| ( , ) |

V P A
Act P A

>  then for most 

of the queries it will hold ( )ans q =∅  and this will lead LBA to evaluate a large 

number of queries (in the worst case | ( , ) |V P A ). 

 

In LBA variations the retrieval of objects is performed in an ordered manner so 

there is no need to perform dominance tests to compare the already retreived 

objects. Furthermore assuming that available indexes exist, LBA algorithms will 

access only the objects that will be returned as the top- k  objects and only once. 

Moreover it is LBA algorithms are progressive (i.e., they return the next block 

of the answer without having to previously compute the following blocks). 

However LBA algorithms are sensitive in scenarios where the size of ( , )V P A  

is very large compared to the number of available active objects (i.e., 

| ( , ) | 1
| ( , ) |

V P A
Act P A

>> ). 
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3.2.2 Threshold Based Algorithm (TBA) 
 
When ( , ) ( , )V P A Act P A>> , LBA will be forced to execute a big number of 

queries which yield empty answers, before succeeding to arrive at one with a 

non empty result. For this reason, we devise a second algorithm, called TBA, 

which is a hybrid of the Query Lattice presented previously and the dominance 

testing approaches ([29], [30]). TBA incrementally constructs and evaluates 

queries to quickly locate and fetch a small portion of R  that includes the top- k  

objects. Unlike LBA, these queries are disjunctions of atomic selection 

conditions over just one attribute. In order to determine when the fetching of 

objects should stop TBA uses appropriate thresholds. These thresholds ensure 

that objects that were not fetched are worst than the ones that were already 

fetched (i.e., work as an upper bound of the unseen objects). For defining the 

ordering of queries, TBA takes into account the selectivities of the atomic 

selection conditions so that to avoid fetching more objects than those actually 

required. However, TBA needs to perform dominance tests for the already 

retrieved objects. Therefore it can be said that TBA adopts ideas from both 

query and object based approaches since it uses the specified user preferences to 

define an ordering over queries, howerer it also perfoms dominance tests for the 

retrieved objects. 

 

Figure 18: A Query Ordering framework example 
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Before we fully describe TBA lets see the intuition behind this algorithm. 

Assume, for example, the preference expression &B CP P P=  of Figure 18, such 

that 2 1CPc c≺ , 3 2CPc c≺  and 3 2BPb b≺ , 3 1BPb b≺ . The Hasse diagram of 

( & ,{ , })B CV P P B C  and the induced 
∀∃

<  block ordering 

3 2 1 0QB QB QB QB
∀∃ ∀∃ ∀∃

< < <  is is depicted in Figure 18.2. Like before, the top 

block 0QB  contains the maximal values of the active preference domain, since it 

combines elements from the top blocks 0B  and 0C  of the constituent atomic 

preferences BP  and CP . It is clear that the corresponding value pairs on B  or C  

behave as thresholds. For instance, there cannot be any object not inspected yet 

in the result, that has better values than ( 1, 1)b c  and ( 2, 1)b c .  

 

Let us now consider, a disjunctive query q  on attribute C  formed by all active 

values of 0C ; in our example, q  is 1C c=  as there is only one value in 0C . 

Clearly, any object of R  that does not belong to the result of q , cannot be better 

than objects matching pairs of values obtained by the next block 1C  of 

( , )CV P C , i.e., the value pairs 0 1 {( 1, 2), ( 2, 2)}B C b c b c× = . In other words, we 

lower the threshold by going one block “down” in ( , )CV P C  (i.e., the active 

terms of the attribute we chose to issue the disjunctive query q ) while we keep 

the previous block for ( , )BV P B . Next, we need to check for dominance among 

the objects returned by q  (e.g., 1, 6, 7o o o ); as we derive 6 7Po o∼  and 1 6Po o& , 

all three objects are undominated. Due to transitivity, if for each of the new 

threshold values in 0 1B C×  there is a more preferred object in the set of 

undominated objects of ( )ans q , the latter actually constitutes the first block of 

the answer, i.e. the undominated objects of the whole relation. Repeating the 

process we can construct the block sequence of objects as depicted in Figure 18. 

 

In the general case let preference 1( ( ) ( ), )m PP dom A dom A= × ×… ƒ  and assume 

that for each one of the atomic preferences ( ( ), )j j PjP dom A= ƒ  exists a 
∀∃

<  
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block order 1 0w
j j jX X X

∀∃ ∀∃ ∀∃
< < <…  of ( ( )) /Pj j PjActive dom A ∼  where k

jX  

denotes the thk  block in the ordering. 

Definition 3.2: We define as threshold values the Cartesian Product 
1 2

1 2
p p pm

mThres X X X= × × ×…  where ip  is an index that refers to iX  and 

indicates the first block of iX  that was not fetched (initially each ip  points to 

0
iX ). 

These values ensure that objects that were not fetched are worst than the ones 

that were already fetched (i.e., work as an upper bound of the unseen objects). It 

is worth noticing here, that Thres  is a set of values of ( , )V P A  contrary to 

quantitative threshold based algorithms ([2], [11], [20]) where thresholds are 

actually arithmetic scores. Clearly at any point in time, an object that was not 

already been fetched cannot be more preferred than a value in 
1 2

1 2
p p pn

nThres X X X= × × ×… . More precisely the following theorem holds: 

 

Clearly at any point in time, an object that was not already been fetched cannot 

be more preferred than a value in 1 2
1 2
p p pn

nThres X X X= × × ×… . More precisely 

the following theorem holds: 

 

Theorem 3.3: For each active object o  that was not been fetched there is a 

treshold value t Thres∈  such that Po tƒ . 

Proof 3.3: Assume that there is an unseen (i.e., not fetched) active object o  for 

which [ ]o A v=  where 1( )mv v v= …  such that 1( )mt v v Thres′ ′∀ = ∈…  it holds 

Pt o≺  or Pt o& . Thus in that case tuple v  must contain at least one atomic 

value iv  s.t  i Pi iv v′ ≺  or i Pi iv v′ &  where iv ′  is the corresponding value of t  for 

attribute iA . But each iv ′  is a maximal value of ( , )i iV P A  that was not already 

been fetched, therefore for each iv , iv ′  it holds i Pi iv v ′ƒ . 

 

In the rest of this section we will detail TBA (Figure 19). TBA starts (line 2) by 
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calling PrefBlocks  that computes for each consistent atomic preference jP , the 

∀∃
<  block ordering over ( , )i iV P A . The result is maintained internally by an 

array PB  of lists whose elements hold only the block indices of the active terms 

of ( , )i iV P A . The threshold values are stored in an array Thres  of size m  (i.e., 

the total number of attributes A ), and initially comprise the top blocks of all PB  

lists (line 3). Throughout its execution, TBA keeps in memory two sets with the 

objects that were fetched, but not yet returned: Dominated contains all objects 

for which some better were found, while Undominated  contains the 

equivalence classes of objects for which no better object was met. Both sets are 

initially empty (line 4). Then, the following 4 steps are repeated, until the 

requested answer size is reached or ( , )Act P A  is exhausted (line 12):  

 TBA identifies the block of attribute iA  with the lowest selectivity (for 

all active values it contains), among those referred by Thres  (line 6) and 

the respective disjunctive query is executed. 

 Function OrderObjects is called (line 8) to pair-wise compare the 

returned objects and update Dominated , Undominated  sets accordingly. 

 Thres  is updated by obtaining the next best block of ( , )i iV P A  (line 10).  

 Function GetNextBlock  is called (line 11) next; depending on its input 

parameters it will output one or more blocks of the answer, and also 

update accordingly sets Dominated  and Undominated . 

Let us return to the termination case of exhausting ( , )Act P A  before k  is 

reached. This will happen when one of the lists in Thres  is exhausted (line 12). 

We prove this by reduction to the absurd: Assume that the list for attribute 

preference kP  is exhausted and yet there is an active object o  with 

value 1 1 1( , , , , , )k k kv v v v− +… … . Object o  should contain active values on every 

attribute, so kv  should be active. Thus, kv  should have already been inspected, 

or else belong in the remaining part of kP ’s list. Both cases contradict the 

hypothesis. This condition is treated trough a special value bottom , denoting 

the lowest of thresholds; using the bottom threshold as input, GetNextBlock  
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(lines 13-14) will find  any set of undominated objects better than it, and thus 

will output the next blocks as required. 

Threshold Based Algorithm 
 

input: an object relation R , a preference expression P , an integer k  

output: the 
∀∃

< -aware top- k objects of  R  according to P  

1:   1For j to m=   //for each atomic  preference iP  

2:    [ ]PB j = PrefBlocks( ( , )j jV P A )  

3:   [ ] ( [ ])Thres j head PB j=  

4:    Undominated=Dominated=∅ ; | | 0result =  

5:     Repeat  

6:    min_ ( )i selectivity Thres=  

7:    ( ), [ ]i j jQ A v v Thres i= ∨ = ∀ ∈  

8:    (Ans(Q),Undominated,Dominated)OrderObjects  

9:    If next( [ ]PB i ) then 

10:    [ ]Thres i = next( [ ]PB i ) 

11:    GetNextBlock ( Undominated,Dominated) ) 

12:   Else   

13:    { }Thres bottom=  

14:    GetNextBlock ( Undominated,Dominated) ) 

15:    break  

16:   Until  | |result k>=  

Figure 19: Threshold Based Algorithm 

Function OrderObjects  takes as input two sets of objects, Input and Dom , as 

well as a set of equivalence classes of objectsUnd . If empty, Und is initially 

filled with the class of the first object of Input (line 2). OrderObjects updates 

the sets Dom and Und after comparing every object o  of Input  against a single 

representative o′  of all classes of objects in Und . Four cases may occur:  

 If o  is found worse than some o′  (line 7), it is appended to Dom  and it 

does not have to be compared against the rest of Und .  
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 If o  is found equally preferred to some o′  (line 10), it is appended to the 

class of o′  in Und  and again no more comparisons against the rest of 

Und  are needed. 

 If o  is found better than some o′  (line 11), the (flattened) class of o′  is 

moved from Und  to Dom ; OrderObjects  continues testing o  with the 

rest of Und .  

 If o  is incomparable to o′ , comparisons continue with the rest of Und , 

without any further action. At the end of comparisons, if o  is found not 

to be dominated by any Und  element (line 12), a new class containing 

o  is appended to Und . 

OrderObjects  
 

input: sets of objects Input , Dom , set of classes of objectsUnd  

output: a pair of sets UptDom ,UptUnd  

1:   UptDom Dom=  

2:   If Und = ∅  then 1[ ]UptUnd o= // 1o  is the first active object of Input  

3:   Else UptUnd Und=  

4:   For each active object o  in Input  

5:   IsDominated = false  

6:    For each o′  in UptUnd  

7:     If Po o′≺  then 

8:      IsDominated = true  

9:      { }UptDom o∪ = ; break  //inner for 

10:     ElseIf Po o′∼  then [ ]o o′ ∪ = ; break  

11:     ElseIf  Po o′≺  then \ [ ]UptUnd o′= ; { }UptDom o′∪ =  

12:    If not(Dominated) then [ ]UptUnd o∪ =  

13:   return UptDom ,UptUnd  

Figure 20: OrderObjects  function 

Function GetNextBlock  takes as input a set of dominated objects ( Dom ) and a 

set of undominated classes of objects (Und ). Using the current threshold values 
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(Thres ), the required k , and its input parameters, it recursively outputs as many 

blocks of the answer as possible. When finished, it returns updated versions of 

its input parameters. GetNextBlock  checks whether for each of the threshold 

values in Thres  there is a more preferred object in the set of undominated 

objects of Und  (line 2). If so, Und is the next answer block iB , and then the 

current answer size is updated while the set of undominated classes of objects is 

reset (lines 3-4). If k  is not reached (line 5), OrderObjects is employed to 

partition the objects of UptDom  in undominated and dominated ones (lines 6-

7). With the sets updated in the previous step, GetNextBlock  will be recursively 

applied (line 8), until either of the conditions in lines 2 or 5 fail. 

GetNextBlock  
 

input: sets of objects Dom , set of classes of objects Und   

output: a pair of sets UptDom ,UptUnd  

1:   UptDom Dom= ; UptUnd Und=  

2:   If ( , . .  thenPt Thres o UptUnd s t t o∀ ∈ ∃ ∈ ≺  

3:    iB UptUnd= ; output iB  

4:    UptUnd =∅ ; iresult B+ =  

5:    If result k<  then  

6:     Temp UptDom= ; UptDom =∅  

7:     ( , ,  )OrderObjects Temp UptDom UptUnd  

8:     ( ,  )GetNextBlock UptDom UptUnd  

Figure 21: GetNextBlock  function 

Similar to LBA, we can easily define a 
∃

<
∀

 variation of the TBA algorithm in 

cases we want a more “relaxed” linear ordering of blocks. The only difference 

between the 
∀∃

<  and the 
∃

<
∀

 variation of TBA is to “relax” the conditions in 

line 2 of GetNextBlock as follows: if ( ,t Thres∀ ∈ ∃ . . )Po UptUnd s t o t∈ ≺  
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3.2.2.1 Analytical Evaluation 

Similar to LBA, TBA has an initialization phase cost which comprises the block 

ordering of the involved preferences; the latter is a memory cost of 
2( ( , ) )i iO V P A  and in general can be neglected. The cost of TBA is mainly due 

to the number of disjunctive queries it has to execute in order to retrieve the top-

k  objects. Assuming that there are available indices in each attribute that the 

preference involves, a disjunctive query over one attribute is usually evaluated 

by traversing the available index on the involved attribute, computing the union 

of the oids and then fetching the matching objects from the disk. When 

(unclustered) B+ -trees are used, the I/O cost for each such query q  will be 

(log ( ) )O R ans q+ . Assuming that r  queries are executed in total to compute 

the top- k  objects, TBA’s cost is ( (log ( ) ))O r R ans q× + . However, queries 

involve now only disjunctions of preference terms per attribute while the 

returned objects are not exclusively active but may include inactive ones 

matching at least one active attribute term. In addition, the fetched objects are 

compared pair-wise. 

 

Best case time complexity: In the best case, one query (usually from the top 

lattice block) is also sufficient for constructing 0B  and the number of returned 

tuples is very small (i.e., ideally k ). Thus, the cost of pair-wise dominance 

testing can be neglected. In particular, when ( , ) ( , )Act P A V P A>>  the best 

case practical cost of TBA is (log( ))O R . 

 

Worst case time complexity: In the worst case, TBA exhausts all but the last 

block of the query lattice, and the query executed in the next round actually 

returns almost all of the active objects. The total number of queries executed in 

this case is given by the number of blocks of preference terms per attribute 

1
# ( , )

m

i i
i

blocks P A
=
∑ . Assuming a factor c 13 of extra inactive objects fetched w.r.t. 

                                                 
13 Recall that TBA uses the most selective attribute terms and thus the number of inactive tuples expected to be fetched 

is relatively small.  
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the number of active ones, in the worst case TBA cost is 

1
( # ( , ) log( ) ( , ) )

m

i i
i

O blocks P A R c Act P A
=

× + ×∑  for I/Os and 2( ( , ) )O Act P A  for 

main memory objects comparisons. In particular, when 

( , )Act P A >>
1

# ( , )
m

i i
i

blocks P A
=
∑ , the practical complexity of LBA in the worst 

case becomes 2( ( , ) )O Act P A . 

 

Space Complexity: The space complexity of TBA is ( )O R , since the entire 

relation might be fetched and stored into Undominated,Dominated  sets. 

 

TBA exploits selectivities of the atomic selection conditions so that to avoid 

fetching more objects than those actually required. Moreover TBA algorithm is 

progressive and thus suitable for on-line processing. However, TBA will access 

not only the top- k  objects but also a portion of the active and inactive ones and 

probably more than once. Finally TBA needs to perform dominance tests for the 

retrieved objects. Compared to LBA, TBA is more sensitive to the number of 

active objects (due to dominance tests), and, at the same time, much less 

affected by the size of ( , )V P A  (i.e., sum vs. product of the of active preference 

domains sizes ( , )i iV P A ). This is one of the subjects of our experiments reported 

in the following chapter. 
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Chapter 4: Experimental Evaluation 

In this chapter we experimentally evaluate the top- k  algorithms presented in 

Chapter 3. The goal of this evaluation is to measure the performance as well as 

the sensitivity of the presented algorithms against realistic data distributions and 

sizes of preferences. Specifically, following the methodology widely used in the 

literature ([5], [27], [29], [31]) we consider different kinds of synthetic 

databases (correlated and uncorrelated) exhibiting various value distributions. 

We also vary the number of the atomic preferences involved, the complexity of 

each atomic preference, the composition operators, and the databases size.  

4.1 Experimental Environment 

All our experiments are carried out on a Pentium 4 CPU at 2.66 GHz with 1 GB 

of main memory. The operating system is Windows XP Pro SP2. The 

benchmark databases and intermediate results are stored on a 20 GB hard disk. 

We opted for an open source, rather than a commercial, framework for the 

implementation of our work, thus, all algorithms were implemented in Java on 

top of the PostgreSQL 8.1 Query Engine. Each benchmark database follows the 

relation schema 1 2 10( , , , )R A A A…  where the domain of attributes is given 

respectively by the sets 

1 1 2 20 2 1 2 20 10 1 2 20( ) { , , , }, ( ) { , , , }, , ( ) { , , , }dom A a a a dom A b b b dom A j j j= = =… … … … . 

Each database tuple is 100 bytes long; all indexes were implemented as B+  

trees. In some experiments we also implemented hash indexes. Testing has 

shown no difference in performance, while the index size and build time for 

hash indexes was much worse. Therefore, the performance  figures presented in 

the rest of this chapter employ B+  trees. 
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4.2 Preference and Testbed Generator 

Each atomic preference jP  is created by first defining the size and the number 

of blocks # ( )jblocks P  of the poset ( ( ), )
jj Pdom A ƒ 14. Next all blocks are 

populated by randomly allocating all the nodes to them, at least one to each of 

them. Then the poset is formed by randomly connecting nodes so that each node 

of a block dB  can be linked only with nodes of block 1dB − . Block 0B  will 

contain the maximal elements of the poset. We study three different kinds of 

databases that differ in the distribution of values over attributes: 

 

 Uniform: for this type of database, all attribute values are generated 

independently using a uniform distribution. Thus, all distinct values of a 

domain have the same selectivity. 

 

 Correlated: for a given preference P , a correlated database represents a 

testbed in which objects which are good (with respect to P ) in one 

attribute are also good in the other attributes too. We produce a random 

object in a correlated database as follows. First, all attribute values are 

generated using a uniform distribution. For each active object, if a 

maximal value appears in one attribute then the object is forced to 

receive maximal values in the other attributes too. Otherwise the object 

remains unchangeable. Therefore, in a correlated database a large 

portion of the available active objects are undominated according to P  

(i.e., belong to 0B ). 

 

 Anti-Correlated: for a given preference P , an anti-correlated database 

represents a testbed in which objects which are good in one attribute are 

bad in another attribute. We produce a random object in an anti-

correlated database as follows. First, all attribute values again are 

generated using a uniform distribution. If an active object has a value in 
                                                 
14 Of course the size should be larger than the number of blocks since each block must contain at 

least one node 
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an attribute that belongs to the top half blocks of the corresponding 

atomic preference it would randomly receive a value in another attribute 

that would belong in one of the bottom half blocks of the corresponding 

atomic preference and so on. Thus, the first blocks of ( , )V P A  do not 

exist in an anti-correlated database. 

 

We also studied testbeds that followed the exponential distribution xe ββ −  (mean 
1 10β − = ). In particular, for each attribute jA  we defined a list that contained all 

distinct values of ( )jdom A . The positioning of each value in the list was 

performed in several manners: randomly, optimistically (i.e., active values first), 

pessimistically (i.e., active values last). The first value in the list would appear  
1

100,1 | |e R
−

× ×  times in the database, the second 
2

100,1 | |e R
−

× ×  and so on. 

However, the results were similar to the three kinds of testbeds already 

described and as a result we only show the results for the uniform, correlated 

and anti-correlated testbeds. In our experimental presentations, unless stated 

otherwise, we ask for the top-1 (i.e., the undominated) objects accrording to 

1 2 3&P P P P= �  which is our default preference where 
11 1( ( ), )PP dom A= ƒ , 

22 2( ( ), )PP dom A= ƒ , 
33 3( ( ), )PP dom A= ƒ . Figure 22 depicts their corresponding 

Hasse diagrams: 

 
 

Figure 22: Hasse diagram for our default atomic preferences 
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4.3 Metrics 

4.3.1 Experimental parameters 

In order to analyse the results of our experiments, we define the following 

metrics15: 

1. 
| ( , ) |
| ( ) |
V P A
dom A

 ratio: If 
| ( , ) | 1
| ( ) |
V P A
dom A

=  then all objects of the database are 

active. This metric is affected obviously if we alter ( , )V P A . 

Specifically we can decrease 
| ( , ) |
| ( ) |
V P A
dom A

 by increasing the 

dimensionality of the preference expression and increase it by also 

increasing the atomic preferences size (i.e., increasing the number of 

active values in each domain).  

2. 
| ( , ) |

| |
Act P A

R
 ratio: the more this ratio is close to 1 the more dominance 

tests will be performed (for the algorithms that perform dominance 

tests). Again this metric is affected by varying the dimensionality of the 

preference expression and/or by changing the size of atomic preferences. 

In particular by increasing the dimensionality we decrease 
| ( , ) |

| |
Act P A

R
 

ratio while by increasing atomic preferences size we increase it. 

3. ,| ( ) |
| ( , ) |

k Pq R
Act P A

 ratio: for a specific k , this ratio is actually the portion of 

active objects that are top- k . Clearly, we can alter metric 3 if we vary 

the number of requested objects k  for each testbed. 

                                                 
15 Recall that assuming a preference P  over a non empty set of attributes A , ( )dom A  and 

( , )V P A  are the Cartesian Products of domains and of active value sets respectively, 

( , )Act P A  is the set of active objects of R  w.r.t  P  and , ( )k Pq R  the set that contains the 

top- k  objects. 
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4. | ( , ) |
| ( , ) |

V P A
Act P A

 ratio: represents the Cartesian Product space in which 

active objects are distributed. If | ( , ) | 1
| ( , ) |

V P A
Act P A

<  then almost for each 

tuple ( , )v V P A∈  there exists object o R∈  such that [ ]o A v= . We can 

decrease | ( , ) |
| ( , ) |

V P A
Act P A

 ratio by increasing the size of the database and 

increase it by increasing the dimensionality of the preference. 

4.3.2 Performance parameters 
 

In order to present the major factors affecting the performance of each algorithm 

we also define the following metrics: 

5. ( )Total running time  of each algorithm. Total time  comprises into the 

Database time  (i.e., the time needed by the DBMS to run the queries 

and to return the results) and the Main memory time  (i.e., the time 

needed by each algorithm to run if all objects were available in 

memory). 

6. | ( , ) _ |
| ( , ) |

Act P A seen
Act P A

 ratio: Is the portion of the active objects that were 

processed (besides the ones that were returned as top- k ) to the total 

number of active objects. 

7. | ( , ) _ |
| ( , ) |

Inact P A seen
Inact P A

 ratio: Is the portion of the inactive objects that 

were processed to the total number of inactive objects. 

8. | _ |queries evaluated : is the number of queries that each algorithm 

evaluates in order to retrieve the top- k  objects. 

9. The number of dominance tests  that each algorithm performs. 

Dominance test requires performing at most one "ƒ " test over each of 

the m  attributes of the objects on which atomic preferences are 

expressed. If we assume that the cost of one subsumption check is that of 

reachability in graphs then its cost is ( )O E  where E  denotes the graph 

edges. Summarizing, the more atomic preferences we have, and the 
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more “better than” relations each atomic preference involves, the more 

expensive the dominance test becomes. Assuming that the top- k  objects 

are partitioned into c  classes of equivalence, then an algorithm will 

perform at least ( 1) | ( , ) _ |
2

c c Act P A seen× −
+  dominance tests (i.e., the 

number of tests needed to compare the c representatives plus at least one 

test for each other active object that the algorithm sees). Of course, this 

holds for the algorithms that perform dominance tests. 

 

Note that metrics 7 and 8 are meaningful only for TBA since for BNL and Best 

it holds 
| ( , ) _ | | ( , ) _ | 1

| ( , ) | | ( , ) |
Act P A seen Inact P A seen

Act P A Inact P A
= =  while for LBA it holds 

| ( , ) _ | | ( , ) _ | 0
| ( , ) | | ( , ) |

Act P A seen Inact P A seen
Act P A Inact P A

= =  regardless of the database or the 

preference expression that is used. 

4.4 Query Patterns and Evaluation Plans 

Beginning in release 8.1, PostgreSQL has the ability to combine multiple 

indexes (including multiple uses of the same index) to handle cases that cannot 

be implemented by single index scans. The system can form AND and OR 

conditions across several index scans. To combine multiple indexes, the system 

scans each needed index and prepares a bitmap in memory giving the locations 

of table rows that are reported as matching that index’s conditions. The bitmaps 

are then ANDed and ORed together as needed by the query. Finally, the actual 

table rows are visited and returned. The table rows are visited in physical order, 

because that is how the bitmap is laid out; this means that any ordering of the 

original indexes is lost. Now we describe how actually PostgreSQL evaluates 

each query pattern that TBA and LBA produce.  

 

 TBA constructs and evaluates queries which are simply disjunctions of 

atomic selection conditions over just one attribute. A general query iq  of 

the form following 1:i j j mq A v A v= = ∨ ∨ =… , is broken down into m  
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separate scans of an index on jA , each scan using one of the 

disjunctions. The results of these scans are then ORed together to 

produce the result. 

 

 LBA that follows the MQ  rewriting constructs a set of conjunctive 

queries jq  of the form 1 1 2 2:j m mq A v A v A v= = ∧ = ∧ ∧ =… . For the 

implementation of jq  each index with the appropriate query clause is 

used and then the index results are ANDed together to identify the result 

rows. 

 

 LBA that follows the SQ∨  rewriting constructs queries which are 

disjunctions of the conjunctions of the atomic selection conditions. First 

for a general query jq  of the form 

1 1 2 2: ( )j m mq A v A v A v= = ∧ = ∧ ∧ =… ∨  1 1 2 2( )m mA v A v A v′ ′ ′= ∧ = ∧ ∧ =…  

the result rows for each of the conjunctions are identified as described 

before (i.e., each index with the appropriate query clause is used and 

then the index results are ANDed together). Then the ANDed results are 

ORed together to produce the actual results of jq . 

 

 LBA that follows the SQ∧  rewriting produces queries which are defined 

as conjunctive queries of m  disjunctions (one for each attribute). An 

example of such a query could be the following: 

1 1 1 1 2 2 2 2: ( ) ( ) ( )j m m m mq A v A v A v A v A v A v′ ′ ′= = ∨ = ∧ = ∨ = ∧ ∧ = ∨ =… . 

Now initially the result rows for each of the disjunctions are identified 

(i.e., each index with the appropriate query clause is used and then the 

index results are ORed together). Then the ORed results are ANDed 

together to produce the actuall results of jq . 
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4.5 The effect of database size 

In order to evaluate the effect of the database size on our techniques, we use our 

default preference 1 2 3&P P P P= �  of Figure 22 and vary the cardinality of the 

database from 10 to 1000 MB for each kind of database (uniform, anti-

correlated, correlated). It is easy for someone to see that since ( , )V P A  remains 

fixed here we will have more and more active objects by increasing the size of 

the database due to possible duplicates values. In other words, the larger the 

database gets the smaller | ( , ) |
| ( , ) |

V P A
Act P A

 ratio becomes. Also the size of , ( )k Pq R  

becomes larger. For these reasons, the number of dominance tests that each 

algorithm needs to perform increases too. The following tables illustrate the 

metrics for each of the three testbeds. 

Metrics \ 
MB 

10 50 100 500 1.000 

| ( , ) |
| ( ) |
V P A
dom A

 
.
.
1 728

8 000
 
0.216 

.

.
1 728

8 000
 
0.216

.

.
1 728

8 000
 
0.216

.

.
1 728

8 000
 
0.216 

.

.
1 728

8 000
 
0.216

| ( , ) |
| |

Act P A
R

 
.
.

21 410

100 000
 

0.214 

.

.
107 599

500 000
 

0.215 

.
. .
215 001

1 000 000
 

0.215 

. .

. .
1 079 549

5 000 000
 

0.215 

. .
. .

2 160 391

10 000 000
 

0.216 

,| ( ) |
| ( , ) |

k Pq R
Act P A

 .
69

21 410
 

0.003 
.

382

107 599
 

0.003 
.

754

215 001
 

0.003 

.
. .
3 829

1 079 549
 

0.003 

.
. .
7 500

2 160 391
 

0.003 

| ( , ) |
| ( , ) |

V P A
Act P A

 
.
.

1 728

21 410
 

0.0810 

.
.

1 728

107 599
 

0.0160 

.
.

1 728

215 001
 

0.0080 

.
. .
1 728

1 079 549
 

0.0016 

.
. .
1 728

2 160 391
 

0.0007 

Table 1: Metric values for the Uniform Testbed 

 
Metrics \ 

MB 
10 50 100 500 1.000 

| ( , ) |
| ( ) |
V P A
dom A

 
.
.
1 728

8 000
 
0.216 

.

.
1 728

8 000
 
0.216

.

.
1 728

8 000
 
0.216

.

.
1 728

8 000
 
0.216 

.

.
1 728

8 000
 
0.216

| ( , ) |
| |

Act P A
R

 
.
.

21 410

100 000
 

0.214 

.

.
107 599

500 000
 

0.215 

.
. .
215 001

1 000 000
 

0.215 

. .

. .
1 079 549

5 000 000
 

0.215 

. .
. .

2 160 391

10 000 000
 

0.216 

,| ( ) |
| ( , ) |

k Pq R
Act P A

 
.
.

9 074

21 410
 

0.424 

.
.

45 381

107 599
 

0.422 

.
.

90 723

215 001
 

0.422 

.
. .
453 615

1 079 549
 

0.420 

.
. .
907 230

2 160 391
 

0.420 

| ( , ) |
| ( , ) |

V P A
Act P A

 
.
.

1 728

21 410
 

0.0810 

.
.

1 728

107 599
 

0.0160 

.
.

1 728

215 001
 

0.0080 

.
. .
1 728

1 079 549
 

0.0016 

.
. .
1 728

2 160 391
 

0.0007 

Table 2: Metric values for the Correlated Testbed 
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Metrics \ 
MB 

10 50 100 500 1.000 

| ( , ) |
| ( ) |
V P A
dom A

 
.
.
1 728

8 000
 
0.216 

.

.
1 728

8 000
 
0.216

.

.
1 728

8 000
 
0.216

.

.
1 728

8 000
 
0.216 

.

.
1 728

8 000
 
0.216

| ( , ) |
| |

Act P A
R

 
.
.

21 410

100 000
 

0.214 

.

.
107 599

500 000
 

0.215 

.
. .
215 001

1 000 000
 

0.215 

. .

. .
1 079 549

5 000 000
 

0.215 

. .
. .

2 160 391

10 000 000
 

0.216 

,| ( ) |
| ( , ) |

k Pq R
Act P A

 .
534

21 410
 

0.025 

.
.

2 815

107 599
 

0.026 

.
.

5 656

215 001
 

0.026 

.
. .
28 283

1 079 549
 

0.026 

.
. .
56 464

2 160 391
 

0.026 

| ( , ) |
| ( , ) |

V P A
Act P A

 
.
.

1 728

21 410
 

0.0810 

.
.

1 728

107 599
 

0.0160 

.
.

1 728

215 001
 

0.0080 

.
. .
1 728

1 079 549
 

0.0016 

.
. .
1 728

2 160 391
 

0.0007 

Table 3: Metric values for the Anti-correlated Testbed 

4.5.1 Uniform Testbed 

Figures 23 and 24 illustrate respectively the total time and the number of 

dominance tests of the various algorithms in the uniform testbed. Figure 25 

shows the total execution time of the algorithm (i.e., database plus main 

memory time), while figures 26 and 27 depict the scalability over the database 

size for the two proposed algorithms. Clearly, LBA outperforms all other 

algorithms by several orders of magnitude. For example for the 1000 MB 

testbed BNL takes almost 1.000 sec while LBA consumes only 7 sec which 

outperforms the former by 3 orders of magnitude. Due to the fact that the size of 

the database increases and ( , )V P A  remains fixed, all tuples of ( , )V P A  exist 

and as a result, for LBA the queries of the first Query Lattice block suffice for 

computing the answer (in our testbed we need to execute only |A0|×|B0|×|C0|=6 

queries). The only effect in performance is that these queries are more 

expensive to evaluate since , ( )k Pq R  increases and more objects need to be 

fetched the larger the database gets. Compared with other algorithms we 

observe that LBA not only has better performance but also is more scalable. 

TBA maintains a significant advantage over BNL and Best (1 order of 

magnitude) and the difference increases fast when the database becomes bigger. 

This is due to the fact that TBA will not require in this case any threshold 

renewal therefore it fetches and processes only a small portion of the database. 

In this specific experiment TBA fetched only the 5% of the database objects 

which includes almost 8% of active objects and only 4% of the inactive ones. 

The overall runtime for BNL, Best increased significantly since they need to 

process more data objects and perform more dominance tests. Thus, BNL and 
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Best are very sensitive to the size of the database. In particular, for databases 

larger than 100 MB, Best exhibites poorer performance compared to BNL. 

Since Best has more memory requirements, Java’s garbage collector is forced to 

run more times which is time-consuming. Best could not terminate successfully 

for the 1000 MB database due to the prohibitive size of the algorithm’s memory 

requirements. 
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                               Figure 23: Total time 

 
Figure 24: # dominance tests 
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Figure 25: Total Time Analysis 
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   Figure 26: LBA scalability over database size 
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Figure 27: TBA scalability over database size 
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4.5.2 Correlated Testbed 

Figures 28 to 32 show the performance of the various algorithms in the 

correlated testbed. The main characteristics of the correlated testbeds are that 

almost 40% of active objects are undominated objects and belong to the result. 

However, the number of equivalence classes in which the objects of the result 

are partitioned is the same as in the uniform testbeds. As we can see, the relative 

performance is unchanged compared to the uniform testbed. The only 

differences are that: 

 Due to the nature of the correlated testbed, we have an increase of the 

answer size for each query issued by LBA and TBA, which are identical 

to those of the uniform testbed case. 

 Moreover, the growth of the result itself causes a worth mentioning 

increase of the number of dominance tests for the respective algorithms 

(TBA, BNL, Best). This can be explained as follows: Assume that the 

top- k  objects are partinioned into c  classes of equivalence. Now let an 

incoming object o  that belongs to the result which is equivalent to one 

of the c  representatives and therefore incomparable to the remaining 

ones. Then in average 
2
c  dominance tests need to be performed in order 

to put o  into the corresponding class. Now assume an object o′  that 

does not belong to the result (i.e., o′  is worst than some representatives). 

Then, in average less that 
2
c  dominance tests need to be performed to o′  

in order to find a representative that is better than o′ . Hence, in average 

more dominance tests are performed for an object that belongs to the 

result compared to an object that does not. To conclude, in correlated 

testbeds the overall number of dominance tests increases because the 

size of the result is bigger than the corresponding result in uniform 

testbed. 
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Figure 28: Total time 

 
Figure 29: # dominance tests 
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Figure 30: Total Time Analysis 
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Figure 31: LBA scalability over database size 
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 Figure 32: TBA scalability over database size 
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4.5.3 Anti-Correlated Testbed 

In figures 33 to 37 we illustrate the performance of the various algorithms in the 

anti-correlated testbed. The relative performance is again unchanged compared 

to the uniform and the correlated testbeds, with only the following differences: 

 LBA and TBA have an increased database time since both algorithms 

need to evaluate more queries in order to retrieve the top- k  objects. In 

particular, in the anti-correlated testbeds LBA evaluates 550 and TBA 4 

queries contrary to the uniform and the correlated testbeds where 6 and 1 

queries need to be evaluated respectively. 

 We have an increased number of dominance tests that the algorithms 

perform due to the facts that we have more objects in the result and 

because the top- k  objects are partinioned into more equivelent classes 

compared to uniform testbeds. Specifically, in the uniform testbeds we 

have 6 classes of equivalence while in anticorrelated ones we have 40 

classes. 

 

TBA and BNL exhibit a similar behavior in the anticorrelated testbed and that is 

because TBA needs to fetch (and compare) a significant portion of the database. 

For example, in an anticorrelated testbed the percentage of active objects that 

TBA fetches increases almost to 60%. However, it is worth noticing that 

although TBA requires almost the same number of dominance test compared to 

BNL and Best there is a significant difference in their main memory processing 

time. This is due to the fact that the latter also includes the time needed by the 

algorithm to check if an object is active or not. To conclude, BNL and Best are 

penalized by the fact that they need to perform such checks for all objects of the 

database contrary to TBA. Above 500MB, Best was unable to terminate 

successfully. 
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Figure 33: Total time 

 
Figure 34: # dominance tests 
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Figure 35: Total Time Analysis 
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       Figure 36: LBA scalability over database 

size 
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  Figure 37: TBA scalability over database size 
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4.6 The effect of atomic preferences size 

In order to study the effect of the atomic preference’s size we used our default 

preference of Figure 22 and enhanced the size of each atomic preference 

( ( ), )
ii i PP dom A= ƒ  to involve more values from the corresponding domain 

( )idom A  until all values of ( )idom A  to take part in 
iPƒ  (in that case we will 

have | ( , ) | | ( , ) | 1
| ( ) | | |
V P A Act P A
dom A R

= = ). So, increasing the size of each atomic 

preference has the effect of increasing the number of active objects and thus the 

number of dominance tests that need to performed. However, | ( , ) |
| ( , ) |

V P A
Act P A

 ratio 

remains fixed since in the uniform testbed all values have the same selectivity. 

We initially increased the size of each atomic preference up to 16 and then up to 

20. The number of blocks of each poset remained fixed. The enhancement was 

performed as follows: each additional node is randomly distributed between the 

blocks. Then the poset is reformed by randomly connecting the added nodes of a 

block dB  only with nodes of block 1dB − . In Table 4 we can see the metrics for 

this experiment in which we used a 100 MB uniform testbed. 

Metrics \ Poset Size 12 16 20 
| ( , ) |
| ( ) |
V P A
dom A

 
.
.
1 728

8 000
 
0.216 

.

.
4 096

8 000
 
0.512

.

.
8 000

8 000
 

1.0 
| ( , ) |

| |
Act P A

R
 

.
. .
215 001

1 000 000
 

0.215 

.
. .
511 434

1 000 000
 

0.511 

. .

. .
1 000 000

1 000 000
 

1.0 

,| ( ) |
| ( , ) |

k Pq R
Act P A

 .
754

215 001
 

0.003 

.
.

3 019

511 434
 

0.005 

.
. .
5 036

1 000 000
 

0.005 

| ( , ) |
| ( , ) |

V P A
Act P A

 
.

.
1 728

215 001
 

0.008 

.
.

4 096

511 434 
 

0.008 

.
. .
8 000

1 000 000 
 

0.008 

Table 4: Metric values (increasing atomic preference size) 

Again the clear winner is LBA. In all instances of the experiment, LBA 

outperforms BNL and Best by 2 orders of magnitude. TBA maintains a 

significant advantage over BNL and the difference increases the larger the 

poset’s size gets since TBA processes fewer active objects than BNL. The 

percentage of active objects that TBA fetches varies from 8% to almost 12%. 

BNL is significantly affected due to the need to perform more dominance tests. 
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Best could not terminate successfully when the size of the poset exceeds 16 due 

to the prohibitive size of the algorithm’s memory requirements. 

 
                            Figure 38: Total time 
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Figure 40: Total Time Analysis 

No new blocks were added to the existing ones as the effect of increasing 

existing blocks’ sizes is much stronger, both for LBA and TBA. For the former, 

this is due to the fact that the evaluation of a block iB , engages the execution of 

all the queries in the respective iQB  block, thus, the more they are, the longer it 

will take. As for the latter, the “wider” a block is, the “longer” its selected 

disjunctive query will be and the bigger its answer size will get.  
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4.7 The effect of preference dimensions 

In order to study the effect of dimensionality (i.e., the number of attributes 

involved in a preference expression), we used a 100 MB uniform testbed and 

varied the number of the atomic preferences m  between 2 and 5. Each 

additional atomic preference was created as described in section 4.2. They have 

been composed using pareto and prioritized preferences. Clearly, regardless of 

the type of composition, the more attributes involved the more | ( , ) |V P A  

increases while | ( , ) |Act P A  decreases. As a result, the larger m  gets, metrics 

| ( , ) |
| ( ) |
V P A
dom A

 and | ( , ) |
| |

Act P A
R

 decrease while | ( , ) |
| ( , ) |

V P A
Act P A

 ratio increases. In this 

particular experiment this happened when m changed from 4 to 5. Table 5 and 

Table 6 depict the metrics for this specific experiment. 

Metrics \ dimensions 2 3 4 5 
| ( , ) |
| ( ) |
V P A
dom A

 
144

400
 
0.360 

.

.
1 728

8 000
 
0.216

.
.

20 736

160 000
 

0.130 

.
. .
248 832

3 200 000
 

0.078

| ( , ) |
| |

Act P A
R

 
.

. .
359 206

1 000 000
 

0.360 

.
. .
215 001

1 000 000
 

0.215 

.
. .
129 158

1 000 000
 

0.219 

.
. .
77 453

1 000 000
 

0.077 

,| ( ) |
| ( , ) |

k Pq R
Act P A

 
.

.
4 954

359 206
 

0.014 
.

754

215 001
 

0.004 
.
44

129 158
 

0.0003 
.
131

77 453
 

0.002 

| ( , ) |
| ( , ) |

V P A
Act P A

 .
144

359 206
 

0.0004 

.
.

1 728

215 001
 

0.008 

.
.

20 736

129 158
 

0.160 

.
.

248 832

77 453
 

3.213 

Table 5: Metric values (increasing dimensionality-pareto composition) 

 
Metrics \ dimensions 2 3 4 5 

| ( , ) |
| ( ) |
V P A
dom A

 
144

400
 
0.360 

.

.
1 728

8 000
 
0.216

.
.

20 736

160 000
 

0.130 

.
. .
248 832

3 200 000
 

0.078

| ( , ) |
| |

Act P A
R

 
.

. .
359 206

1 000 000
 

0.360 

.
. .
215 001

1 000 000
 

0.215 

.
. .
129 158

1 000 000
 

0.219 

.
. .
77 453

1 000 000
 

0.077 

,| ( ) |
| ( , ) |

k Pq R
Act P A

 
.

.
4 954

359 206
 

0.014 
.

754

215 001
 

0.004 
.
44

129 158
 

0.0003 
.
12

77 453
 

0.0002 

| ( , ) |
| ( , ) |

V P A
Act P A

 .
144

359 206
 

0.0004 

.
.

1 728

215 001
 

0.008 

.
.

20 736

129 158
 

0.160 

.
.

248 832

77 453
 

3.213 

Table 6: Metric values (increasing dimensionality-prioritized composition) 
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As m increased, ,| ( ) |k Pq R  decreased both in prioritized and in pareto 

composition. In the latter case, though, when | ( , ) |
| ( , ) |

V P A
Act P A  becomes larger than 

1, ,| ( ) |k Pq R  started increasing again. This behaviour is explicable if we follow 

the nature of the two operators. For the case of the prioritized composition, each 

time a new individual preference is added, the objects of the previous top block 

0B , and only those, are candidates to belong to the new 0B ′ , too. This is due to 

the “left to right” priority nature of the �  operator. So, the new top block 0B ′  

will comprise 0B  or less objects.  

For the case of the pareto composition, on the other hand, while 

| ( , ) | 1
| ( , ) |

V P A
Act P A

< , there are enough objects of ( , )Act P A  to match the structure of 

( , )V P A , so ,| ( ) |k Pq R  decreases with the ( , )Act P A  decrease. But, when, 

eventually, it holds that | ( , ) | 1
| ( , ) |

V P A
Act P A

> , meaning that ( , )Act P A  contains less 

and less objects while ( , )V P A  grows wider, the probability of the former 

objects to be incomparable to each other rises, too. This leads to a high 

probability for each of these objects to belong to the new top block 0B , thus, 

increasing ,| ( ) |k Pq R  as m increases again. Figure 41 and Figure 42 show the 

total times of the various algorithms as a function of dimensionality for pareto 

and prioritized composition respectively. LBA performs well until | ( , ) |
| ( , ) |

V P A
Act P A

 

becomes larger than 1 (i.e., when the preference contains more than 4 

attributes). At that point, the degradation of LBA is caused by the need to 

evaluate a large number of empty queries (see Figure 43 and Figure 44) in order 

to search the large space of ( , )V P A  where the top- k  objects are distributed. 

TBA performs better than LBA when | ( , ) | 1
| ( , ) |

V P A
Act P A

>  and this is due to the fact 

that TBA needs to evaluate fewer queries than LBA. For example, for 5 

attributes in a pareto preference LBA evaluates 772 queries while TBA only 6. 

This difference becomes more important as the number of attributes increases 
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and especially when the preference expression contains �  operators. TBA 

performs better in the prioritized composition and that is because a fetching 

attempt here drops threshold values more than the same fetching attempt in the 

pareto composition and that event leads to faster termination of the algorithm. In 

this experiment, since | ( , ) |Act P A  decreases and the size of the testbed remains 

fixed, the performance of BNL and Best mostly depends on the size of , ( )k Pq R . 

When , ( )k Pq R  decreases (e.g., in low dimensionality in the pareto composition 

or in prioritized composition), BNL and Best exhibit good scalability. On the 

other hand, when , ( )k Pq R  increases (e.g., in high dimensional pareto 

composition) their performances drop since more pairwise comparisons are 

performed.  

 
Figure 41: Total time, uniform testbed (100 MB) 

 

 
Figure 42: Total time, uniform testbed (100 MB) 
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Figure 43:# queries evaluated - pareto 

composition 
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Figure 44: # queries evaluated-prioritized 

composition 
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4.8 Effect of the ∃< ∀  ordering  

In this experiment we want to study the impact of adopting the more “relaxed” 

∃
<

∀
 linear order of blocks vs. 

∀∃
<  and identify possible performance trade-offs. 

Specifically we repeated experiment of section 4.7 (as dimensionality seems to 

be the most crucial factor in the performance of LBA and TBA) but this time we 

also included the 
∃

<
∀

 variations of our algorithms. In particular, we included 

the following query rewritings: 

 LBA MQ− : the 
∃

<
∀

 variation of LBA that follows the MQ  rewriting 

(i..e., one conjunctive query per tuple of ( , )V P A ). 

 - -LBA SQ conj : the 
∃

<
∀

 variation of LBA that follows the SQ∧  

rewriting (i.e., one conjunction of disjunctions per block of tuples of 

( , )V P A ) 

 - -LBA SQ disj : the 
∃

<
∀

 variation of LBA that follows the SQ∨  

rewriting (i.e., one disjunction of conjunctions per block of tuples of 

( , )V P A ) 

 TBA relaxed− : the 
∃

<
∀

 variation of TBA  

 

Figure 45 to 50 illustrate the performance of the various query rewritings in 

LBA and TBA algorithms with respect to the number of attributes for pareto 

and prioritized composition. As it was expected the 
∃

<
∀

 variations of LBA, 

TBA are more efficient than the corresponding 
∀∃

<  ones, since the identification 

of all of the incomparable objects is not a strict requirement in the 
∃

<
∀

 order. 

Moreover, the LBA variations are more efficient than the TBA variation. 

- -LBA SQ conj  execution times are the best and outperforms all other 
∃

<
∀

 

variations by 1 order of magnitude. Although - -LBA SQ conj  in each case 

constructs the same number of queries as - -LBA SQ disj  does, the evaluation of 

- -LBA SQ conj ’s queries needs fewer index scans and hence leads to better 

performance (see section 4.4). Note that we do not plot the results of 
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TBA relaxed−  in the prioritized composition because the algorithm behaves 

exactly like TBA.  

 

We also replaced simple-key indexes with a complex-key one. In that case 

- -LBA SQ disj  had better performance than - -LBA SQ conj . However, the 

existence of a complex-key index in practical cases is rare since complex-key 

indexes are unlikely to be helpful unless the usage of the table is extremely 

stylized (e.g., when there are constraints on the leading-leftmost columns). 

Therefore we still propose - -LBA SQ conj  against - -LBA SQ disj . 

 

Nevertheless there is a trade-off between the performance and the number of the 

top- k  objects that the 
∃

<
∀

 variations of LBA, TBA actually return. For 

example in the 5 dimensional experiment of the pareto composition, TBA and 

LBA returned 131 objects while the 
∃

<
∀

 variations returned only 6. Similarly in 

the 5 dimensional experiment of the prioritized composition, TBA and LBA 

returned 12 objects while the 
∃

<
∀

 variations of the algorithms returned only 1. 

This is explained by the fact that the identification of the incomparable objects 

is not a strict requirement in the 
∃

<
∀

 order (recall that the 
∃

<
∀

 order does not 

go against the intuition “most-preferred objects first”). Conclusively, we can say 

that the 
∃

<
∀

 variations could be very useful in practical cases with preference 

expressions of high dimensionality. However, by paying the price of 

“sacrificing” a subset of top- k  objects in terms of efficiency. 
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Figure 45: Total time, uniform testbed (100 

MB) 

 

 
  Figure 46: Total time, uniform testbed (100 MB) 
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Figure 47: : # queries evaluated-pareto 
composition 

 

0

20

40
60

80

100

120
140

160

180

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

LB
A

LB
A

-M
Q

LB
A

-S
Q

-c
on

j

LB
A

-S
Q

-d
is

j

2 3 4 5
# of attributes in complex preference

# queries evaluated

 
Figure 48: # queries evaluated-prioritized 

composition 

 

 
Figure 49: Total time, uniform testbed (100 
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Figure 50: :# queries evaluated - pareto 

composition 
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4.9 Effect of the Number of Objects Requested k 

In Figures 51 to 54 we report results for our default setting, as a function of k . 

k  was increased such that each increment would result a new block in the 

answer. Table 7 illustrates the metrics for this experiment in which an 100 MB 

uniform testbed was used. 

Metrics \  k k=1 k=1.000 k=1.500 
| ( , ) |
| ( ) |
V P A
dom A

 
.
.
1 728

8 000
 
0.216 

.

.
1 728

8 000
 
0.216

.

.
1 728

8 000
 
0.216 

| ( , ) |
| |

Act P A
R

 
.

. .
215 001

1 000 000
 

0.215 

.
. .
215 001

1 000 000
 

0.215 

.
. .
215 001

1 000 000
 

0.215 

,| ( ) |
| ( , ) |

k Pq R
Act P A

 .
754

215 001
 

0.004 

.
.

1 253

215 001
 

0.006 

.
.

1 507

215 001
 

0.007 

| ( , ) |
| ( , ) |

V P A
Act P A

 
.

.
1 728

215 001
 

0.008 

.
.

1 728

215 001
 

0.008 

.
.

1 728

215 001
 

0.008 

Table 7: Metric values (increasing k ) 

We see that the overall execution time for the algorithms was increased due to 

the need to process more objects. However, both LBA, TBA still maintain a 

signifficant advantage over the rest algorithms. Specially, LBA outperforms 

BNL by 2 orders of magnitude while TBA by 1. BNL is more sensitive in k  

since in order to construct the next block of the answer, needs to perform 

another scan over the database and process again all objects (both active and 

inactive ones). 

 
Figure 51: Total time, 100MB uniform  

testbed 

 

 
Figure 52: #Dominance tests, 100MB uniform  

testbed 
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Figure 53: Total time, 100MB uniform  

testbed 

0

2

4

6

8

10

12

14

LBA TBA Best BNL LBA TBA Best BNL LBA TBA Best BNL

k=1 k=1000 k=1500

# queries

 
Figure 54: #queries evaluated, 100MB 

uniform  testbed 

 

4.10 Conclusions 

| ( , ) |
1

| ( , ) |

| ( , ) |
1 and &

| ( , ) |

| ( , ) |
1 and 

| ( , ) |

V P A

Act P A

V P A

Act P A

V P A

Act P A

LBA TBA LBA SQ conj

<

>

>

− −

+ − −

− − +

− + −�

 

Table 8: Proposed algorithms in various cases 

 
Altogether, we can draw the following conclusions: 

 

 The larger the database gets LBA and TBA become more and more 

attractive. BNL and Best do not scale well over the database size and 

that is because at least one scan of the database is required. 

 The performance of LBA degrades if | ( , ) | 1
| ( , ) |

V P A
Act P A

>>  while TBA 

outperforms LBA in such a scenario especially when the preference 

expression is prioritized. 
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 The performance of BNL, Best drops significantly when a large portion 

of the database objects are active (i.e., the larger the ratio 
| ( , ) |

| |
Act P A

R
 

gets) and that is because at least one dominance test needs to be 

performed for each active object. LBA is the best algorithm in such 

cases since its the only algorithm that does not perform dominance tests. 

 The 
∃

<
∀

 variations of LBA, TBA are more efficient than the 
∀∃

<  

variations. Especially - -LBA SQ conj  is the most efficient 
∃

<
∀

 

variation. 

 BNL is more sensitive in k  than the rest of the algorithms since in order 

to construct the next block of the answer, BNL needs to perform another 

scan over the database. 

 

In summary, we propose that a system should implement algorithms LBA, 

- -LBA SQ conj  and TBA. In particular a system should use LBA in cases 

where | ( , ) | 1
| ( , ) |

V P A
Act P A

< , TBA in cases where | ( , ) | 1
| ( , ) |

V P A
Act P A

>  and the preference 

expression contains �  operators and - -LBA SQ conj  in cases of pareto 

compositions of high dimensionality. 
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Chapter 5: Related Work 

5.1 Related Frameworks for Preference Modelling 

In this chapter, we overview the relative approaches for the representation of 

preferences. Because qualitative approaches are more expressive compared to 

the quantitative ones and due to the fact that we our framework constitutes also 

a qualitative approach in this section the most important and expressively richer 

inquiring works of this category are illustrated, pointing out their main 

characteristics. 

5.1.1 Kiessling’s Framework 

Kiessling ([13], [15]) defines preferences as strict partial orders over attribute 

domains. In particular, given 1{ , , }kA A A= …  a set of attributes jA  with 

domains ( )jdom A , a preference ( , )PP A= <  is a strict partial order of 

1( ) ( ) ( )kdom A dom A dom A= × ×… , shown as ( ) ( )P dom A dom A< ⊆ × . For 

, ( )x y dom A∈ , “ Px y< ” is interpreted as “I like y  better than x ”. Kiessling 

for ease of use defines a number of base preference constructors. Their goal is 

to provide intuitive and convenient ways to inductively construct a preference 

( , )PP A= < . Formally, a base preference constructor has two arguments, the 

first characterizing the attribute names A  and the second the strict partial order 

P< . The most common constructors include following: 

 For categorical attributes: POS , NEG , /POS POS , /POS NEG , 

EXP  

 For numerical attributes: AROUND , BETWEEN , LOWEST , 

HIGHEST , SCORE  
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POS  specifies that a given set of values should be preferred. Conversely, NEG  

states a set of disliked values should be avoided if possible. /POS POS  and 

/POS NEG  express certain combinations. For example, assuming a preference 

1 2 1 2/ (A, { , , , }, { , , , })m m m m nP POS NEG POS set v v v NEG set v v v+ + += − −… …  we have 

Px y< iff ( ) ( )x NEG set y NEG set x NEG set x POS set y POS set∈ − ∧ ∉ − ∨ ∉ − ∧ ∉ − ∧ ∈ −

(i.e., a desired value should be one from a set of favorites. Otherwise it should 

not be any from a set of dislikes. If this is not feasible too, better than getting 

nothing any disliked value is acceptable). EXP  explicitly enumerates ‘better-

than’ relationships for example ( {( , ), ( , )})P EXP color green red black yellow= . 

AROUND  prefers values closest to a stated value, BETWEEN  prefers values 

closest to a stated interval. LOWEST  and HIGHEST  prefer lower and higher 

values, respectively. SCORE  maps attribute values to numerical scores, 

preferring higher scores. 

 
Kiessling produces more complex preferences by using the following complex 

preference constructors: 

 Pareto preferences: 1 2 nP P P P= ⊗ ⊗ ⊗… . P  is a combination of equally 

important preferences, implementing the pareto-optimality principle. 

 Prioritized preferences: 1 2& & & nP P P P= … . P  evaluates more 

important preferences earlier, similar to a lexicographical ordering. 1P  is 

most important, 2P  next, etc. 

 Numerical preferences: 1 2( , , , )F nP rank P P P= … . P  combines SCORE  

preferences iP  by means of a numerical ranking function F . 

 
Kiessling in [19] and [17] was based on the framework described above in order 

to construct extensions to XPATH and SQL which he calls Preference XPATH 

and Preference SQL respectively.  

 

Compared to our framework, Kiessling does not seperate between active and 

inactive objects. Since inactive objects are incomparable to the active ones, he 

puts them in the set of the undominated (top-1) objects. Moreover, by defining 

preferences as strict partial orders, the user is not able to define equivalence 
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relations. For the computation of the top- k  objects of a relation, Kiessling 

introduces a relational operator that he calls BMO ([13], [15]). BMO selects the 

set of the most preferred objects (i.e., the first block), according to a given 

preference expression.  For the evaluation of the BMO operator Kiessling 

applies Block Nested Loop (BNL) [13]. 

5.1.2 Chomicki’s Framework 

Chomicki, in his work ([7], [8]) emphasizes the view of preferences as first 

order logical formulas which he calls preference formulas. Specifically a 

preference formula ( , )i jC t t  on ),...,( 1 nAAR , where  

)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈ , is a first order logic formula that defines a 

preference relation 1 1  ( ( ) ( )) ( ( ) ( ))C n ndom A dom A dom A dom A⊆ ×⋅⋅⋅× × ×⋅⋅⋅×;  

on R  as follows:   

jCi tt ;  iff ),( ji ttC  

If jCi tt ;  it means that a tuple it  dominates a tuple jt  in C; . At this point, 

two important observations need to be made. Firstly, Chomicki does not assume 

any properties for the preference relations contrary to our framework in which 

we define preferences as preorders and Kiessling’s framework where 

preferences are considered as strict partial orders. Moreover according to 

Chomicki, a preference relation is defined directly over the objects of the 

database contrary to the remaining frameworks where preference relations are 

defined over attribute domains. Each preference relation C;  defines an 

indifference relation denoted by C≅  as follows:  

)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈∀ , jCi tt ≅  iff jCi tt ;/  and iCj tt ;/  

It easy for someone to see that an indifference relation C≅  actually encapsulates 

two notions that were defined seperately to our framework. The equivalence 

relation ∼  and the incomparability relation & . Therefore a user can not 

explicitly define that two or more values are equivalent or incomparable to each 

other. 
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Chomicki considers two different kinds of composition for producing more 

complex preferences. The undimensional composition which involves 

preference relations over just one table and the multidimensional one, which 

involves preference relations defined to more than one tables. The 

undimensional composition is divided into boolean and prioritized composition. 

The most commonly used boolean compositions include union, intersection, and 

set difference which are defined as follows: 

 

Assume a relation ),...,( 1 nAAR  and the preference relations C; , C′;  on R . 

Moreover let BC  be a preference formula on R  that defines a preference 

relation 
BC;  on R . 

 
BC;  is the union of C; , C′;  (denoted by C C′∪; ; ) iff: 

Bi C j i C j i C jt t t t t t′≡ ∨; ; ;  

 
BC;  is the intersection of C; , C′;  (denoted by CC ′∩ ;; ) iff: 

jCijCijCi tttttt
I ′∧≡ ;;;  

 
BC;  is the set difference of C; , C′;  (denoted by CC ′− ;; ) iff: 

jCijCijCi tttttt
D ′/∧≡ ;;;  

where )()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈  . Now, a prioritized composition is 

defined as follows: Assume a relation ),...,( 1 nAAR  and the preference relations 

C; , C′;  on R . Let �C  be a preference formula on R  that defines a preference 

relation 
�

; C  on R .
�

; C  is the prioritized composition of C; , C′;  denoted by 

C C′; �;  iff: )( jCijCijCijCi tttttttt ′∧≅∨≡ ;;;
�

 where 

)()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈ . 

 

On the other hand, the multidimensional composition is divided into the pareto 

and into the lexicographical composition which are defined as follows: 

Assuming relations ),...,( 1 nAAR , ),...,( 1 mBBS  let C;  be a preference relation 

on R  and C′;  a preference relation on S . 
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 A preference relation 
PC;  on SR× , is the pareto composition of C; , 

C′;  iff )()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈∀  and 

)()(, 1 mlk BdomBdomtt ×⋅⋅⋅×∈′′∀  it holds 

)(),(),( lCkjCilCkjCiljCki tttttttttttt
P

′′∨∧′′∧≡′′ ′′ ;;;;; , where 

},{ CCF ′∈∀ , yxyxyx FFF ≅∨≡ ;; . 

 A preference relation 
LC;  on SR× , is the lexicographical composition 

of C; , C′;  iff )()(, 1 nji AdomAdomtt ×⋅⋅⋅×∈∀  and 

)()(, 1 mlk BdomBdomtt ×⋅⋅⋅×∈′′∀  it holds 

)(),(),( lCkjCijCiljCki tttttttttt
L

′′∧≅∨≡′′ ′;;; . 

 

Similar to Kiessling, Chomicki does not seperate between active and inactive 

objects. Inactive objects will be returned as some of the best objects w.r.t a 

preference relation. Independently to Kiessling, Chomicki introduces a similar 

to BMO relational operator that he calls winnow ([7], [8]). The framework 

proposed by Chomicki is very expressive in its principals, yet only a portion of 

it has been addressed from the implementation perspective; even more all such 

proposals suggest variations of the dominance testing idea leading to quadratic 

costs. In [9], a so call weak order framework is introduced, under which a 

similar to Best, single pass algorithm, for the evaluation of preference queries is 

proposed. Yet, it requires a very narrow semantics in which all non equal 

objects of each block are incomparable to each other, and each of them 

dominates every object of the succeeding block, and is dominated by every 

object in its preceding block. This requirement is much stricter than those of our 

framework, employing a much harder to satisfy relation than the 
∀∃

<  relation we 

introduced. 

 

In [22], [23] a model for representing and storing preferences is proposed. 

Numerical values between -1 and 1 are used to express the interest, i.e., the 

preference of a user. However, this seems not an intuitive understandable 

model. In our framework preferences are modeled in a more natural fashioned 

way. Furthermore, the algorithms presented in this work bear similarities with 



 92

the query rewritings presented in [22], [23] where the integration of 

personalization into database queries with the use of structured user profiles has 

been proposed. 

 

It is worth mentioning that there are several different alternatives that define 

how preference relations order the value space. For instance, [4] distinguishes 

between ceteris paribus and totalitarian semantics. According to the ceteris 

paribus semantics, for a given preference P  a tuple t  is more preferred than a 

tuple t′  iff Pt t<′  and t  is equal to t′  to every other attribute that describes the 

tuples (except the ones involved in the preference). As in our work we do not 

impose the latter constraint, our semantics is totalitarian. To our opinion, ceteris 

paribus semantics is quite restrictive, and it is unclear if preference queries that 

follow the ceteris paribus assumption can be evaluted efficiently in large 

databases and real scale web applications (no paper presents experimental 

results). CP-nets [3], [10] (that is, Conditional Preference nets) are a graphical 

model for representation and reasoning about certain sets of qualitative 

preference statements, interpreted under the ceteris paribus assumption. 

5.2 Top-k Algorithms 

The top- k  paradigm has been first introduced ([11], [12]) in order to reduce the 

communication cost needed in distributed systems and middleware, in order to 

aggregate the ranked results coming from several systems. The authors assume 

that each database consists of a finite set of objects. Each object has m  values 

1 2, , , mx x x… , where each ix  is actually the score of object o  under one of the m  

attributes. For each ix  it holds [0,1]ix ∈  while 1 2( , , , )mf x x x…  is the overall 

score of object o  for an aggregation function f . The database consists of m  

sorted lists 1 2, , , mL L L… , one for each attribute. Each entry of iL  has the form 

( , )io x , where ix  is the thi  value of o . Each list iL  is sorted in decreasing order 

by the ix  value. Also, they consider two modes of access to data: the sorted 

access and the random one. A sorted access is a sequential access from the top 

of a list. Here, the system obtains the score of an object in one of the sorted lists 
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by proceeding through the list sequentially from the top. Thus, if an object o  has 

the thl  highest score in the thi  list, then l  sorted access are required in iL  to get 

this score under sorted accesses. In random access, the system requests the score 

of object o  in the iL  list, and obtains it in one random access. Of course, a 

random access is considered more expensive than a sorted one. 

 

Instead of executing the naive algorithm to obtain the top- k  objects (look at 

every entry in each of the m  sorted lists, and compute the overall score of every 

object), several algorithms have been proposed. At first, Fagin [12] introduced 

an algorithm, named FA (Fagin’s Algorithm). Initially, the FA executes sorted 

access to each of the m  sorted lists iL  in parallel, (i.e., access the top member of 

each of the lists, then the second member and so on). FA waits until there is a 

set of at least k  objects, such that each of these objects has been seen in each of 

the m  lists. Then for each object that was seen, FA finds the missing values ix , 

with a random access to each list iL . Finally, FA computes the overall scores 

according to the aggregation function f  for all objects that have been seen and 

returns the objects with the k  highest scores. The Threshold Algorithm (TA) 

[11] is an enhancement over FA. TA performs sorted accesses in parallel to each 

of the m  sorted lists iL . For each object o  seen, TA performs random accesses 

to the other lists to find the score ix  of o  in every list iL  and then computes the 

overall score of o . For each list iL  let ix  be the score value of the last object 

seen under sorted access. TA computes a threshold value t  to be 1 2( , , , )mf x x x…  

and works as an upper bound for the unseen objects. The algorithm stops when 

at least k objects have been seen whose score is at least equal to t  and returns the 

k  objects with the highest scores. Quite similar to TA are also algorithms Multi-

step [26] and Quick-Combine [20]. 

 

Furthermore, No Random Access Algorithm (NRA) [11] is proposed for 

systems where random access to the ranked lists is not allowed. NRA performs 

only sorted accesses in parallel to each of the  m  sorted lists iL . At each depth 

d  (i.e., when the first d  objects have been visited across all m  lists) the bottom 
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values ( ) ( ) ( )
1 2, , ,d d d

mx x x…  are maintained as the scores last seen from each input 

list. For every object o  NRA computes a lower bound ( ) ( )dW o  and an upper 

bound ( ) ( )dB o . The lower bound for an object o  at depth d  is the score of the 

aggregate function f  where for each unknown score ix  we put 0. In the 

computation of the upper bound for each unknown score ix  we put the value 

( )d
ix . The algorithm maintains the k  objects with the largest ( )dW  (ties are 

broken using an object’s ( )dB  score). Let ( )d
kM  be the thk  largest worst score. 

Then NRA stops when k  distinct objects have been seen and all the other 

objects outside the top-k objects have an upper bound value less or equal to 
( )d

kM . Quite similar to NRA are also Stream-Combine [18] and SR-Combine 

[16]. 

 

Finally in [25], the authors introduced Algorithms Upper and Pick for 

evaluating top- k  selection queries over web-accessible sources assuming that 

only random access is available for a subset of the sources. Similarly, Algorithm 

MPro by Chang and Hwang [6] addresses the expensive probing of some of the 

object scores in top- k  selection queries. They assume a sorted access on one of 

the attributes while other scores are obtained through probing or by executing a 

user-defined function on the remaining attributes. Unlike to the algorithms 

presented above, which take the data locality parameter into account, our work 

assumes that all data are locally available, thus fetching a tuple implies that all 

attribute values are fetched at once as well. 

5.3 Skyline Algorithms 

Assuming a set D  of n -dimensional data objects 1( , , )no o o= …  and n  score 

functions 1( , , )nS s s= … , a domination relation (denoted by S< ) is defined over 

the elements of D  as follows: 

 So o′ < : iff [1 ]i n∃ ∈ … , such that ( ) ( )i is o s o′ <  and [1 ] { }j n i∀ ∈ −…  it 

holds ( ) ( )j js o s o′ ≤  
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The skyline [29] is defined as those objects of a relation that are not dominated 

by any other object. An object dominates another object if it is as good or better 

in all dimensions and better in at least one dimension. (i.e., 

( ) { |SSkyline D o D= ∈ ∃ . . }So D s t o o′ ′∈ < ). Skyline queries are directly and 

naturally related to the case where all atomic preferences have been composed 

using pareto preferences, each atomic preference is a total order of values and 

the number of requested objects equals to 1 (top-1 objects). Several algorithms 

for computing the skyline have been proposed. These can be categorized into 

non-index based (e.g. BNL [29]) and index based (e.g. NN [23], BBS [25]). 

Since BNL was already fully described in Chapter 3, below we describe the 

index based skyline algorithms. 

 

Kossmann et al. presented in [21] a progressive skyline algorithm (NN). Based 

on Nearest Neighbor queries, their algorithm continuously returns skyline 

points. Unfortunately, this algorithm has problems with high dimensional spaces 

(because of multiple access to the same node, duplicate elimination has to be 

performed). Furthermore, as shown in [27], this algorithm has a huge space 

overhead; a used data structure could reach the size of the whole data set. An 

improved algorithm called BBS (branch-and-bound skyline) for processing 

progressive skyline queries in a local scenario was presented by Papadias et al. 

in [27]. Like NN, that algorithm is based on Nearest Neighbor queries. It uses a 

multidimensional indexing method, such like an R-tree. The minimal distance to 

the point of origin (w.r.t. a score function that is monotonic on each attribute) is 

assigned to all minimum bounding boxes in the R-tree. At the beginning of the 

algorithm, the root entries of the tree are added to a heap structure that sorts its 

entries based on their minimum distances. In parallel, a list containing all 

possible skyline points S  is maintained (initially, the list is set to the empty set). 

The algorithm successively removes all bounding boxes b from the heap. If b is 

dominated by any point that is already in S, b is discarded immediately. 

Otherwise, b’s children are processed one after another: If the child is again a 

compound entry, it is added to the heap structure unless is dominated by any 
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skyline point found so far. If the child is a point, it is added to S. Once the heap 

is empty, S contains the correct skyline. 

 

As expected the non index-based algorithms are typically inferior to the index-

based ones. However, all these algorithms require appropriate indexes built on 

the skyline dimensions. In particular, they require to build (beforehand or on the 

fly) indexes over any of the non-empty subsets of a d -dimensional set of a 

relation R with d  attributes to accommodate 2 1d −  different skyline queries. 

On the contrary, our work assumes only d  indexes (i.e., one index for each 

attribute). Moreover, all these index-based algorithms handle only totally 

ordered attribute domains and it is unclear if they can still maintain their 

competitiveness for partially (pre)ordered preferences. 

 

Recently, the problem of evaluating skyline queries with partially-ordered 

domains was studied in [5]. The proposed solution relies on graph encoding 

techniques to transform a partial ordered domain into two total orders (using 

interval-based labels) and thus exploit index-based algorithms for computing 

skyline queries on the transformed space. We believe that the linearization of 

partial preorders we propose in this paper based on cover relations provides a 

natural semantics for evaluating arbitrary preference queries (and not only the 

fragment of skyline queries) whereas avoids the computation costs of generating 

and maintaining interval-based labels for graphs. Furthermore, even for small 

sized databases (500 and 1000k tuples of unspecified size), the experimental 

evaluation presented in [5] demonstrates that the proposed algorithms do not 

scale well, when the majority of the attributes that are involved are partially-

ordered. For example, for 2 totals and 1 partially ordered attributes a typical 

time of almost 50 sec, whereas, for 1 total and 2 partial order attributes this time 

rises above 1200 seconds. No results are presented for more than 2 partially 

ordered attributes. In our case, the algorithms we introduced scale much better 

w.r.t. the number and nature of the involved preferences. 
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Chapter 6: Conclusion and Future Work 

Enabling users to quickly focus on the k best results according to their specified 

needs and preferences is essential for several modern applications. In this thesis, 

we elaborated the problem of computing the top- k  objects for the case where 

user preferences are expressed qualitatively (i.e., as non-antisymmetric 

preorders). Initially, we presented existing algorithms and demostrated their 

deficiencies, which severely limit their applicability. Subsequently, we 

introduced two novel progressive algorithms called LBA and TBA that follow a 

query-based ordering approach for the evaluation of the top- k  objects. The 

intuition of the query-based ordering is to use the specified user preferences for 

defining an ordering over queries that need to be evaluated in order to retrieve 

the top- k  objects.  

 

In particular, LBA defines an ordering over queries which are essentially 

conjunctions of atomic selection conditions, over all attributes that the user 

preferences involve. The algorithm does not perform dominance tests over 

objects and accesses only the top- k  objects and only once. In a similar fashion, 

but from a different angle, TBA defines an order of queries which are 

disjunctions of atomic selection conditions over a single attribute that the user 

preference involves. TBA uses appropriate threshold values and takes into 

account the selectivities of the atomic selection conditions in order to avoid 

fetching more objects than those actually required. However TBA will access 

not only the top- k  objects but also a portion of the active and inactive ones and 

probably more than once while dominance tests are performed, but only for the 

small number of the retrieved objects.  

 

We compared the algorithms analytically and we described the cases where 

each of them is expected to outperform the rest. Furthermore, we defined a 

relaxation of the classical definition of top- k  objects for a rise in efficiency and 

presented some variations of our proposed algorithms. Finally, we 
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systematically used various experimental evaluation settings to demonstrate the 

effectiveness of the algorithms we introduced and illustrate their superior 

performance. 

 

The top- k  algorithms we have introduced take as input a preference expression 

P  and an integer k  and return the top- k  objects of an object relation R . An 

interesting path of exploration involves modifing these algorithms in order to 

evaluate efficiently preference based queries, i.e., queries that contain both a 

regular (filtering) query part and a preference part. Formally, a preference based 

query over an object relation R  is a triple : ( , , )PB rQ q P k=  where: 

 rq  is a regular query, providing filtering conditions 

 P  is a preference relation 

 k  is a positive integer indicating a top- k  answer request 

Let ( )rAns q  denote the answer of the regular query rq  of a preference based 

query PBQ ; ( )rAns q  consists of a set of unordered objects of R . Consequently, 

the corresponding preference query : ( , )Q P k=  of PBQ  should return an ordered 

subset of ( )rAns q , which will comprise the answer ( )PBAns Q  to the preference 

based query. 
  
We can modify our top- k  algorithms, to evaluate preference based queries in 

several ways. One approach is to append the filtering conditions of rq  into each 

of the Query Lattice queries that our algorithms construct and evaluate. For 

example, assume that at some point TBA needs to evaluate query 

1 1 1 2A a A a= ∨ =  and suppose that the preference based query adds a filtering 

part 2 3:rq A b A c= = ∧ = ; these filtering conditions may be integrated into the 

former query, and, thus, TBA will construct and evaluate the updated query 

1 1 1 2 2 3( )A a A a A b A c= ∨ = ∧ = ∧ = . It is obvious that the execution plan of this 

updated query will change; the impact of this change on the overall algorithm 

performance is not a priori known, and, besides the possible additional attributes 

and indexes, it is the DBMS, with its optimization techniques, that constitutes a 

critical factor for it. An alternative approach exploits the idea of applying the 

algorithms on ( )rAns q , rather than on R . This implies that ( )rAns q  is 
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evaluated and materialized first, and, as a second step, our algorithms are 

applied on ( )rAns q .  

 

In our framework, we rely on unconditional, positive preferences for the 

presence of values over attributes of a single relational table. As part of our 

future work, we plan to enhance our framework with some interesting 

extensions such as combining preferences through joins for evaluating 

preferences over several tables, allowing preferences to appear more than once 

in a preference expression and supporting conditional preferences. Preferences 

on the absence of values, as well as negative ones, can be accommodated by 

arranging in the preorder the position either of the active attribute terms (former 

case), or of the attribute sets (latter case). One final remark concerns inactive 

objects. We assumed that there are at least k  active objects in a database with 

respect to some preference expression P . However, when the set of active 

objects turns out to be relatively small (w.r.t. k ), then one may wish to include 

some inactive objects in the answer as well. In this respect, objects that are 

active with respect to a bigger subset of atomic preferences, or with respect to 

atomic preferences over more important attributes, as defined by the user, could 

be considered as candidate objects to include in the result, in order to reach the 

number k  which was requested. 
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