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Preface

We find it appropriate to start with the statement that all of the work presented henceforth
is not a result of research or innovative approach to the theorem of Mordell and Weil or the
elliptic curves over the rationals. This master thesis is more a detailed survey of one proof of
the Mordell-Weil theorem and a brief description of the main results of elliptic curves over
the rationals. The main chapters are two.

In the first chapter we formulate and show the Mordell-Weil theorem for elliptic curves
defined over any number field. The proof consists of two basic steps. The first one is the
proof of the weak version of Mordell-Weil theorem for the special case m = 2, which can be
found in [20]. The second step is the definition and the thorough study of heights. For these,
we mainly used [21] and [18]. Finally, the proof of the Mordell-Weil theorem is based again
in [20].

The second chapter of this master thesis is focused on the study of elliptic curves over Q.
This chapter has also two parts. The first one is the statement of the basic results regarding
the torsion points and the complete proof of the Lutz-Nagell theorem. This part is follows the
approach of [9]. The next part is about the rank of an elliptic curve over the rationals. The
proofs of the results here are beyond the scope of this master thesis. Except for the elements
of cohomology theory in which [18] was used, the rest of the chapter is based on personal
notes taken in various lectures.

There are also two appendices. We choose to write an appendix for absolute values and
valuations in number fields, since they are extensively used in the first chapter, particularly
in defining and examining the properties of heights. This appendix is based on [8], [12] and
[18]. The second appendix is about the canonical height, and it is also based on [18]. We also
use [15]. The first chapter is focused on the proof of Mordell-Weil theorem, for which we
do not need the Néron-Tate height, but it is used for the formulation of the strong version of
Birch and Swinnerton-Dyer conjecture. Therefore, it is impossible to avoid the study of the
Néron-Tate height.

As we already mentioned the content of this thesis is the complete proof of a significant
result due to the work of two of the leading mathematicians of the previous century. Our
purpose is to present proof using "elementary" notions, in order to arouse the interest, not
only of the expert, but also of the inexperienced reader. We tried to do this to the second
chapter, too, but at some point it is inevitable to avoid the heavy machinery. However, we
hope that anyone will enjoy reading this master thesis!
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Introduction

A natural question that arises is why the Mordell-Weil theorem is important. Apparently, it
provides us with a very useful information about the structure of the group of rational points
of an elliptic curve, but is there any deeper reason, that makes the Mordell-Weil theorem
worth-studying?

Louis Joel. Mordell (1888-1972)

The answer to that question is simple enough, if we think of an elliptic curve as a geometric
object defined by a diophantine equation. One of the goals of number theory, even from
ancient times, is the study of diophantine equations, and the determination of their integral
or rational solutions, the so called diophantine problems. The geometric analogous of that, is
the finding of integral or rational points of the curve that a diophantine equation defines. So,
the general problem that we are interested in, is the following:

Given any curve, are we able to describe the set of the rational points on it,
or even better, to determine it explicitly?

The formulation of this general problem is rather imprecise, because the term "curve" has
not been specified. Historically, the first curves that were studied, were defined over Q. For
simplicity, we stick to the case of smooth curves. Given any smooth curve C, the problem is
to determine the set C(Q) of the rational points on C. It turns out that we may consider the
projective model of the curve, since it differs only in a finite set of points, i.e. the singularities
and the point at infinity. Of course, there is always the possibility for C not to have any
rational points, i.e. C(Q) = ∅. If otherwise, using the classification of curves according to
their genus, we obtain the following brief solution to our problem.
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• If C is curve of genus 0, then the set C(Q̄) is isomorphic to the projective line P1(Q̄).
In other words, we may give a parameterization of C(Q̄) in terms of one-variable
rational functions.
• If C is a curve of genus 1, then it is an elliptic curve. Mordell (1922) proved that in

this case the set C(Q) is a finitely generated abelian group.
• Finally, if C is a curve of genus ≥ 2, then the set C(Q) is finite, which is a result of

great importance due to Faltings.

André Weil (1906-1998)

Weil (1929) extended the result of Mordell for elliptic curves defined over arbitrary num-
ber field.

Strictly speaking, an elliptic curve E defined over a number field K is a nonsingular pro-
jective algebraic curve of genus 1, with at least one K-rational point. The elliptic curve E is
defined by

E |K : Y 2 = X3 + αX + β,
with α, β ∈ K . The interesting is that we are able to define the operation of addition on E, as
it seems in the following figure.

It turns out that (E(K̄ ),+) is an abelian group, and so is (E(K ),+). The theorem of Mordell
and Weil states that the group (E(K ),+) is finitely generated.



CHAPTER 1

Mordell-Weil Theorem for Elliptic Curves over Number Fields

This chapter is focused on the formulation and the proof of the Mordell-Weil theorem for
elliptic curves defined over number fields. We will prove the Mordell-Weil theorem, which
is a generalization of what Mordell showed about rational elliptic curves.

THEOREM 0.1 (Mordell,Weil). Let K be a number field and E |K be an elliptic curve
defined over K. The group E(K ) of the K-rational points of E is finitely generated.

1. Proof of the weak Mordell-Weil theorem for m = 2

Our first step is to prove a weaker version of Mordell-Weil theorem. This is necessary and,
as it is obvious by the proof, it is also not straightforward.

THEOREM 1.1 (WeakMordell-Weil Theorem). Let E |K be an elliptic curve defined over
the number field K, and m ∈ N ∖ {1}. The quotient group E(K )/mE(K ) is finite.

There are proofs of 1.1, and we will mention one of these in the next chapter. However,
it turns out that it suffices to show the weak Mordell-Weil theorem for a specific choice of m
in order to prove the strong version of the theorem. And since we try to present a proof with
elementary tools, we will prove it only for m = 2. The rest of this paragraph is focused on
that proof.

PROPOSITION 1.2. Let L be a finite Galois extension of the number field K, E an elliptic
curve defined over K and m ∈ N∖ {1}. If the quotient group E(L)/mE(L) is finite, then so is
the quotient group E(K )/mE(K ).

Proof. Let

ι : E(K )/mE(K ) −→ E(L)/mE(L)
[P]mE(K ) 7−→ [P]mE(L)

be the natural homomorphism. Then

ker(ι) = {[P]mE(K ) ∈ E(K )/mE(K ) | ι(P) = 1E(L)/mE(L)}
= {[P]mE(K ) ∈ E(K )/mE(K ) | P ∈ mE(L)}
=

(
E(K ) ∩ mE(L)

)
/mE(K ).
9
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It suffices to show that this kernel is finite. If so, the result is immediate by the first isomor-
phism theorem of groups. Let [P]mE(K ) ∈ ker(ι). There exists1 a point QP ∈ E(L), such that
mQP = P. We define the map

λP : Gal(L/K ) −→ E[m](K̄ )
σ 7−→ σ(QP) −QP,

where E[m](K̄ ) := {P ∈ E(K̄ ) | mP = O}. Furthermore, we define

λ : ker(ι) −→ Map
(
Gal(L/K ), E[m]

)
P 7−→ λP.

We observe that for two points P1, P2 ∈ E(K ) we have

λP1 = λP2 ⇒ σ(QP1 )−QP1 = σ(QP2 )−QP2 ⇒ σ(QP1−QP2 ) = QP1−QP2 , ∀σ ∈ Gal(L/K )

⇒ QP1 −QP2 ∈ E(K ) ⇒ [P1]mE(K ) = [P2]mE(K ) .

This means that the map λ is injective. We know that the sets Gal(L/K ) and E[m](K̄ ) are
finite, so the set Map

(
Gal(L/K ), E[m]

)
is finite, too. Hence, the kernel of ι is also finite. □

REMARK 1.3. Let E be an elliptic curve defined over K , of the form

E |K : Y 2 = X3 + αX + β,

where α, β ∈ K . We denote by e1, e2 and e3 the roots of the polynomial X3 + αX + β. In
general e1, e2, e3 ∈ K̄ . Proposition 1.2 allows us to replace the field K by its finite Galois
extension L := K (e1, e2, e3), and prove the finiteness of the quotient group E(L)/mE(L). It
also allows us to assume without loss of generality that E is of the form

(1) E : Y 2 = (X − e1)(X − e2)(X − e3) , e1, e2, e3 ∈ K .

Moreover, we may assume that e1, e2, e3 ∈ RK , that is they are algebraic integers of K .
Indeed, we know that there exists a number δ ∈ RK such that δe1, δe2, δe3 ∈ RK . Therefore,
setting X ′ := δX , we obtain that

(X − e1)(X − e2)(X − e3) =
1
δ3 (X ′ − δe1)(X ′ − δe3)(X ′ − δe3).

If necessary, we enlarge the field K by considering the field K (
√
δ) for instance, in order δ to

be a perfect square in K , and we set Y ′ := δ
√
δY . Thus, we end up to an elliptic curve of the

form
Y ′2 = (X ′ − e′1)(X ′ − e′2)(X ′ − e′3),

where e′i := δei ∈ RK , for every i ∈ {1, 2, 3}, which is the form (1), with the difference that
the roots of the polynomial at the right-hand side of the equation are algebraic integers of the
field K .

At that point, the problem is that, unlikely to the case of Q, we do not have unique factor-
ization. However, we know that RK is a Dedekind domain and so we have unique factorization
for the fractional ideals of K .

1But it is not unique!
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PROPOSITION 1.4. Let E be an elliptic curve over the number field K, of the form (1). Then
we may assume that e1, e2, e3 ∈ RK . Furthermore, for any point P = [x : y : 1] ∈ E(K )∖ {O}
there are r, t, s ∈ RK , such that

x =
r
t2 and y =

s
t3 ,

with g.c.d.(r, t2) = c2 and g.c.d.(s, t3) = c3, where c is an integral ideal of the ring RK .

Proof. Since we proved that we may suppose that e1, e2, e3 ∈ RK , we assume that the
given elliptic curve E, is of the form

E |K : Y 2 = X3 + αX + β,

where α, β ∈ RK . Particularly,

α = e1e2 + e2e3 + e3e1 and β = −e1e2e3.

Let a ∈ K . For the ideal ⟨a⟩, we know that it can be written in the form

⟨a⟩ =
r∏

i=1

pi
ni,

where pi is a prime ideal and ni ∈ Z, for every i ∈ {1, 2, . . . , r }. If α ∈ RK , then the power ni
of the prime ideal pi is a positive integer, for every i ∈ {1, 2, . . . , r }. Then the map

υp : K −→ Z ∪ {∞}
0 7−→ ∞

a 7−→
ni , if p = pi , i ∈ {1, 2, . . . , r }

0 , otherwise

is a (discrete) valuation. Let P = [x : y : 1] ∈ E(K ). We will prove the double equivalence

(2) υp(x) < 0⇔ υp(y) < 0⇔ ∃ l ∈ N : υp(x) = −2l and υp(y) = −3l .

Suppose that υp(x) < 0. Then υp(x) = −k, for some k ∈ N. We observe that

υp(αx + β) ≥ min{υp(αx), υp(β)}
= min{υp(α) + υp(x), υp(β)}

Since α, β ∈ RK , it holds that υp(α), υp(β) ≥ 0. Therefore,

υp(α) + υp(x) ≥ −k and υp(β) ≥ 0.

From these inequalities it follows that

υp(αx + β) ≥ min{υp(α) + υp(x), υp(β)} ≥ −k > −3k = υp(x3)

⇒ υp(x3 + αx + β) = min{υp(x3), υp(αx + β)} = −3k .
But,

υp(x3 + αx + β) = υp(y2) ⇔ 2υp(y) = −3k ⇒ υp(y) < 0.
Also,

2υp(y) = −3k ⇒ 2 | k ⇒ ∃ l ∈ N : k = 2l .
So we have proved (2). Hence, there are integral ideals m, n and t, such that

⟨x⟩ = m
t2

and ⟨y⟩ = n
t3
,
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and g.c.d.(m, t2) = RK = g.c.d.(n, t3). Let t ∈ t. Then

t ∈ t ⇔ t | ⟨t⟩ ⇔ ∃ c ⊴ RK : ⟨t⟩ = tc.
So,

⟨x⟩ = m
t2
=
mc2

t2c2
=
mc2

⟨t⟩2
.

Similarly,

⟨y⟩ = nc
3

⟨t⟩3
.

These relations inform us that mc2 and nc3 are principal ideals of RK . Let r′, s′ ∈ RK such
that,

mc
2 = ⟨r′⟩ and nc

3 = ⟨s′⟩.
Then

⟨x⟩ = ⟨r
′⟩
⟨t⟩2

and ⟨y⟩ = ⟨s
′⟩
⟨t⟩3

.

Equivalently, there are ε1, ε2 ∈ R×K , such that

x = ε1
r′

t2 and y = ε2
s′

t3 .

The result is now immediate, if we set2 r := r′ε1 and s := s′ε2. □

DEFINITION 1.5. Let E be an elliptic curve of the form (1). For every i ∈ {1, 2, 3}, we
define the maps

φi : E(K ) −→ K×/(K×)2

O 7−→ [1](K×)2

[ei : 0 : 1] 7−→ [(ei − e j )(ei − ek )](K×)2 , {i, j, k} = {1, 2, 3}
[x : y : 1] 7−→ [x − ei](K×)2 .

We observe that for points , O the definition of φi is essentially the same, since

Y 2 = (X − e1)(X − e2)(X − e3) = (X − ei)(X − e j )(X − ek )

⇒ Y 2(X − ei) = (X − ei)2(X − e j )(X − ek )
⇒ [X − ei](K×)2 = [(X − e j )(X − ek )](K×)2 .

Further, define

φ : E(K ) −→ K×/(K×)2 ⊕ K×/(K×)2 ⊕ K×/(K×)2

P 7−→ (
φ1(P), φ2(P), φ3(P)

)
.

THEOREM 1.6. Let
E |K : Y 2 = (X − e1)(X − e2)(X − e3),

where e1, e2, e3 ∈ RK , be an elliptic curve over K. Then the map φ, as it was defined in 1.5,
has the following properties:

(i) φ is a group homomorphism.
(ii) ker(φ) = 2E(K )

2Of course, this representation of x and y is not unique.
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(iii) the image φ(E(K )) is finite.

Proof. (i) In order to show that φ is a group homomorphism indeed, it suffices to show
that

(3) φi (P1 + P2) = φi (P1)φi (P2) , ∀ i ∈ {1, 2, 3}.
For this, we have to will consider the following cases for the points P1 and P2.
Case 1. If P1 = O or P2 = O, then (3) holds trivially.
Case 2. Let P1 + P2 = O ⇔ P1 = −P2. Then for each i ∈ {1, 2, 3}, we have

φi (P1 + P2) = φi (O) = [1](K×)2,

and φi (−P2) = φi (P2). So,

φi (P1)φi (P2) = φi (−P2)φi (P2) =
(
φi (P2)

)2
= [1](K×)2,

so (3) is also true.
Case 3. Let P1 = [x1 : y1 : 1] and P2 = [x2 : y2 : 1] be points of E(K ), such that

P1 + P2 <
{
[ei : 0 : 1] | i ∈ {1, 2, 3}} ∪ {O}.

Set P1 + P2 =: P3 = [x3 : y3 : 1]. Consider the line

Y = λX + ν,

which passes through the points P1 and P2. Then the numbers x1, x2 and x3 are
solutions of the qubic equation

(λX + ν)2 = (X − e1)(X − e2)(X − e3).

Equivalently,

(λX + ν)2 − (X − e1)(X − e2)(X − e3) = −(X − x1)(X − x2)(X − x3).

So,

(ei − x1)(ei − x2)(ei − x3) = −(λei + ν)2 ∀ i ∈ {1, 2, 3}

⇒ x3 − ei = (x1 − ei)(x2 − ei)
−(λei + ν)2

(x1 − ei)2(x2 − ei)2

⇒ [x3 − ei](K×)2 = [(x1 − ei)(x2 − ei)](K×)2 = [(x1 − ei)](K×)2[(x2 − ei)](K×)2

⇒ φi (P3) = φi (P1 + P2) = φi (P1)φi (P2).

Case 4. Let P1 = [x1 : y1 : 1], P2 = [ei : 0 : 1] and P3 = P1 + P2 = [x3 : y3 : 1], where
x1 < {e j, ek }, where {1, 2, 3} = {i, j, k}. That means that x3 < {e1, e2, e3}. So,

φi (P1 + P2) = φi (P3) = [x3 − ei](K×)2 = [(x3 − e j )(x3 − ek )](K×)2

= [(x3 − e j )](K×)2[(x3 − ek )](K×)2

= [(x1 − e j )(x2 − e j )](K×)2[(x1 − ek )(x2 − ek )](K×)2

= [(x1 − ei)(x1 − ek )](K×)2[(x2 − ei)(x2 − ek )](K×)2

= [(x1 − ei)](K×)2[(x2 − ei)](K×)2

= φi (P1)φi (P2)
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Case 5. Let P1 = [ei : 0 : 1] and P2 = [e j : 0 : 1]. Then P1 + P2 = [ek : 0 : 1], where
{i, j, k} = {1, 2, 3}. In that case we obtain

φi (P1 + P2) = [ek − ei](K×)2

= [(ek − ei)(e j − ei)2](K×)2

= [(ek − ei)(e j − ei)](K×)2[(e j − ei)](K×)2

= φi (P1)φi (P2).

Case 6. Let P1 and P2 be points of E(K ) such that P1 + P2 = [ei : 0 : 1] and P1, P2 <
{[e j : 0 : 1], [ek : 0 : 1]}, where {i, j, k} = {1, 2, 3}. If one of the points is equal
to [ei : 0 : 1], the result follows immediately. If otherwise, we have

P1 + P2 + [ei : 0 : 1] = O,

since the points [ei : 0 : 1], are points of order 2, for each i ∈ {1, 2, 3}. Then
using the second case, it follows that

φi (P1)φi (P2 + [ei : 0 : 1]) = [1](K×)2 .

We use now the previous case and we have,

φi (P1)φi (P2)[(ei − e j )(ei − ek )](K×)2 = [1](K×)2

⇒ φi (P1)φi (P2) = [(ei − e j )(ei − ek )](K×)2 = φi (P1 + P2).

Now, it is easy to check that any choice of P1 and P2 falls into these six cases.
(ii) According to (i) we know that φ is a homomorphism, and so

φ(2P) = (φ(P))2 = [1](K×)2 , ∀ P ∈ E(K )

⇒ 2E(K ) ⊆ ker(φ).

We will now prove that ker(φ) ⊆ 2E(K ). First we observe that O ∈ 2E(K ). Let, now
P = [x : y : 1] ∈ ker(φ), with x , 0. Setting

X ′ := X − x and Y ′ := Y,

we map the point P to the point P′ := [0 : y : 1]. This means that without loss of
generality we may assume that x = 0, and so P = [0 : y : 1].
• If y = 0, then by defining equation of the elliptic curve we obtain that e1e2e3 = 0.

Without loss of generality we assume that e3 = 0. Since P ∈ ker(φ), we have

φi (P) = [1](K×)2 , ∀ i ∈ {1, 2, 3}.

But

φ1(P) = −e1 , φ2(P) = −e2 and φ3(P) = −e3 = 0.

Hence,
−e1,−e2,−e3 ∈ K2.

• If y , 0, then y2 = −e1e2e3 and so, using again the defining equation of the elliptic
curve, we end up to the same conclusion, i.e. that −e1,−e3,−e3 ∈ K2.
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Let Q = [xQ : yQ : 0] ∈ E(K̄ ), such that P = 2Q. In order to complete the proof of (ii)
we will show that

−e1,−e3,−e3 ∈ K2 ⇒ Q ∈ E(K ).
Let

Y = λ′X + ν′

be the tangent of E at the point Q. Then the point −2Q = [0 : −y : 1] lies on the tangent,
and so

ν′ = −y ∈ K .
The intersection of the elliptic curve with the tangent at Q can be expressed by the
equation

(λ′X + ν′)2 = (X − e1)(X − e2)(X − e3)
= X3 + αX + β,

where
α = e1e2 + e2e3 + e3e1 and β = −e1e2e3 = y2 = ν′2.

Equivalently, we have that

X3 + (−λ′2)X2 + (α − 2ν′λ′)X = 0.

The roots of that equation are 0 and xQ (double root). This means that the number xQ
is double root of the equation

X2 + (−λ′2)X + (α − 2ν′λ′) = 0.

Therefore,

λ′4 = 4(α − 2ν′λ′) and xQ =
λ′2

2
.

For any u ∈ K , we have that

(λ′2 + u)2 = λ′4 + 2(λ′2)u + u2

= (
√

2uλ′)2 − 8ν′
√

2u
(
√

2uλ′) + (u2 + 4α)

The left-hand side of this equation is a trinomial of variable
√

2uλ′. The discriminant of
it is (

8ν′
√

2u

)2

− 4(u2 + 4α) = 4
(

8ν′2

u
− (u2 + 4α)

)
= 0.

By multiplying with u and using the relation β = ν2, we obtain

−u3 − 4αu + 8β = 0.

Setting u′ := −u
2

, we end up to the qubic equation3

8(u′3 + αu′ + β) = 0,

for which we know that the roots are the numbers e1, e2 and e3. So,

u′ ∈ {e1, e2, e3} ⇒ u ∈ {−2e1,−2e2,−2e3}.
3If P is the point [0 : 0 : 1] we have to be careful at the calculations, but we end up in the same equation.
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Assume without loss of generality that u = −2e3. Then

(λ′2 − 2e3)2 = λ′4 − 4λ′2e3 + 4e3
2.

Using the equality α = e1e2 + e2e3 + e3e1, we have that

(λ′2 − 2e3)2 = 4(e1e2 + e2e3 + e3e1) − 8ν′λ′ + 4e3
2 − 4e3λ

′2

= 4(e1e2 + e3
2 + e2e3 + e3e1) − 8ν′λ′ − 4e3λ

′2

= 4e1e2 − 8ν′λ′ − 4e3λ
′2

=
−4
e3

(−e1e2e3 + 2ν′λ′ + λ′2)

=
−4
e3

(ν′2 + 2ν′λ′ + λ′2)

=
−4
e3

(ν′ + λ′e3)2

Thus,

λ′2 − 2e3 = ±
2
√−e3

(λ′e3 + ν) = ± 2
√−e3

(λ′e3 ±
√
−e1e2e3)

⇒ λ′2 − 2e3 = ±2λ′
√
−e3 ± 2

√
−e2
√
−e3.

⇒ λ′2 − e3 + e1 + e2 = ±2λ′
√
−e3 ± 2

√
−e2
√
−e3.

⇒ (λ′ ∓
√
−e2)2 = (

√
−e1 ±

√
−e2)2

⇒ λ′ = ±
√
−e1 ±

√
−e2 ±

√
−e3.

But

−ei ∈ K2 , ∀ i ∈ {1, 2, 3} ⇒
√
−ei ∈ K , ∀ i ∈ {1, 2, 3} ⇒ λ′ ∈ K .

Finally, it follows that

xQ =
λ′2 − a2

2
∈ K and yQ = λ

′xQ + ν
′ ∈ K,

i.e. that Q ∈ E(K ), which was the desired result in order to complete the proof.
(iii) Let PK be the group of all principal ideals of the ring RK of integers of K . We define

the map

η : K×/(K×)2 −→ PK/(PK )2

[x](K×)2 7−→ [⟨x⟩](PK )2

It is easy to check that η is a group homomorphism. Also,

ker(η) = {[x](K×)2 ∈ K×/(K×)2 | η([x](K×)2 ) = 1PK /(PK )2 }
= {[x](K×)2 ∈ K×/(K×)2 | ⟨x⟩ ∈ (PK )2}
= {[x](K×)2 ∈ K×/(K×)2 | ∃ t ∈ K : ⟨x⟩ = ⟨t⟩2}
= {[x](K×)2 ∈ K×/(K×)2 | ∃ t ∈ K, ∃ ε ∈ R×K : x = εt2}
= R×K K×/(K×)2

� R×K/(R×K ∩ (K×)2)

= R×K/(R×K )2



Mordell-Weil Theorem for Elliptic Curves over Number Fields 17

In other words,
ker(η) � R×K/(R×K )2.

But the last quotient group is finite, which is an immediate consequence of Dirichlet’s
units theorem. This means that the kernel of η is also finite. We define the map

φ̂ : E(K ) −→ PK/(PK )2 ⊕ PK/(PK )2 ⊕ PK/(PK )2

P −→ (
η(φ1(P)), η(φ2(P)), η(φ3(P))

)
i.e. the map φ̂ := η ◦ φ. In order to prove the finiteness of φ(E(K )), it suffices to prove
that the image φ̂(E(K )) is finite. Let P = [x : y : 1] ∈ E(K ), i.e. we assume without
loss of generality that P , O. By proposition 1.4, we know that there are r, s, t ∈ RK
such that

x =
r
t2 and y =

s
t3 ,

with g.c.d.(r, t2) = c2 and g.c.d.(s, t3) = c3, where c is an integral ideal of the ring RK .
Then

φi (P) = [x − ei](K×)2 =

[ r
t2 − ei

]
(K×)2

= [r − t2ei](K×)2 .

We may factorize the integral ideal ⟨r − t2ei⟩ in a unique way, such that

⟨r − t2ei⟩ = ab2,
where a and b are integral ideals of RK and the ideal a is square-free. Let, now, m be an
integral ideal of RK , such that b ∈ [m]Cl(K ), where Cl(K ) is the class group of the field
K . Therefore, there exists a b ∈ K× such that b = m⟨b⟩. So,

⟨r − t2ei⟩ = ab2 = am2⟨b⟩2 ⇒ am2 ∈ PK ⇒ ∃ c ∈ K× : ⟨c⟩ = am2.

Since we assumed that the ideals a and m are integral, it follows that c ∈ RK . Hence,

η(φi (P)) = η([r − t2ei](K×)2 ) = [⟨r − t2ei⟩](PK )2 =
[
⟨c⟩ ⟨b⟩2

]
(PK )2 = [⟨c⟩](PK )2 .

By the equation ⟨c⟩ = am2 is finite. Indeed, the ideal a has been chosen uniquely, and
the class group Cl(K ) of K is finite. We will prove that ⟨c⟩ has finite prime divisors. Let
p be a prime ideal, so that υp(c) , 0.
• Let υp(c) = 1. This means that

p | ⟨r − t2ei⟩.
For P = [x : y : 1] ∈ E(K ), we have that

y2 = (x − e1)(x − e2)(x − e3).

Therefore,
y2t2 = (r − t2e1)(r − t2e2)(r − t2e3)

⇒ 1PK /(PK )2 = [⟨r − t2e1⟩](PK )2[⟨r − t2e2⟩](PK )2[⟨r − t2e3⟩](PK )2 .

Hence, there exists a j ∈ {1, 2, 3}, so that j , i and υp(c j ) ≡ 1 (mod 2), where the
c j is constructed as c, for φ j instead of φi. Then

p | ⟨r − t2ei⟩.
Thus,

p | ⟨t2(ei − e j )⟩ and p | ⟨r (ei − e j )⟩
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From these relations it follows that the prime ideal p divides the discriminant of the
polynomial (X − e1)(X − e2)(X − e3) and the ideal g.c.d.(r, t2). This product can
be made independent of the point P and of i.
• If |υp(c) | ≥ 2 then p is a divisor of m and therefore, is in a finite set.

□

THEOREM 1.7 (Weak Mordell-Weil Theorem for m = 2). Let E be an elliptic curve
defined over the number field K. Then the quotient group E(K )/2(K ) is finite.

Proof. For the group homomorphism φ, as it was defined in 1.5, we obtain that

E(K )/ ker(φ) � φ(E(K )),

by the first group isomorphism theorem. But by theorem 1.6, we know that ker(φ) = 2E(K )
and the image φ(E(K )) is finite. So E(K )/2E(K ) is finite, indeed. □

2. Heights

Mordell-Weil theorem deals with the construction of the group of the K-rational points
of an elliptic curve. It is necessary to introduce a notion of measuring the "size" of the
K-rational points. Therefore, we define some functions that are called height functions, or
simply heights.

The goal of this paragraph is to define such functions over elliptic curves, in a way that
they satisfy some appropriate properties. To achieve that, we start by introducing the notion
of height on Q.

2.1. Height of rational numbers. Every reduced rational number is characterized by its
numerator and denominator. Therefore, a natural definition of the height of a rational point is
the following.

DEFINITION 2.1. Let α =
x
y
∈ Q, such as x, y ∈ Z with g.c.d.(x, y) = 1. We define the

height of α by
H (α) := max{|x |, |y |}.

PROPOSITION 2.2. For any given B ∈ R>0, the set

{α ∈ Q | H (α) ≤ B}
is finite.

PROPOSITION 2.3. For any α ∈ Q× we have

H (α) = max{1, |α |∞}
∏

p prime

max{1, |α |p}.

Proof. Let α =
x
y

, where x, y ∈ Z with g.c.d.(x, y) = 1. Then∏
p prime

max{1, |α |p} =
∏

p prime
p|y

max{1, |α |p}
∏

p prime
p|x

max{1, |α |p}
∏

p prime
p∤xy

max{1, |α |p}.
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Since |α |p = 1, for every prime p ∤ xy and |αp | < 1, for every p | x, we obtain∏
p prime

max{1, |α |p} = |y |.

Thus, it suffices to show that
H (α) = |y |max{1, |α |}.

• If |α | > 1, then |x | > |y |, and so

H (α) = max{|x |, |y |} = |x | = |x ||y | |y | = |y |max{1, |α |}.

• If |α | < 1, then |x | < |y |, and so

H (α) = max{|x |, |y |} = |y | = |y |max{1, |α |}.
• Finally, if |α | = 1, we easily check that

H (α) = |x | = |y | = |y |max{1, |α |}.

Therefore, we proved the desired equality in each case. □

2.2. Height of algebraic numbers. By definition, an algebraic number is a root of a ra-
tional polynomial. So, we can associate an algebraic number to all polynomials, which have it
as root. In order to choose uniquely such a polynomial, we do some additional assumptions.

DEFINITION 2.4. Let α be an algebraic integer. The polynomial f with the properties:

(i) f (X ) ∈ Z[X],
(ii) f (α) = 0,

(iii) the leading coefficient is positive,
(iv) the g.c.d. of the coefficients is equal to 1, and
(v) for every polynomial g(X ) ∈ Z[X] ∖ { f (X )} that satisfies properties (i)-(iv), holds that

deg(g) > deg( f ).

is called normalized minimal polynomial of α.

It is obvious, now, that for any algebraic integer α its the normalized minimal polynomial
is unique. So, we could associate the height of α with a measure of the "size" of its nor-
malized minimal polynomial. This leads us to introduce the notion of Mahler measure of a
polynomial.

DEFINITION 2.5. 4 Let f (X ) = a0 + a1X + · · · + anX n ∈ C[X] ∖ {0} and α1, α2, . . . , αn be
the roots of f . We define the Mahler measure of f by

µ( f ) := |an |
n∏

i=1

max(1, |αi |).

4Since we are dealing with algebraic numbers, the normalized minimal polynomials have rational coeffi-
cients. However, the Mahler measure is defined more generally for polynomials with complex coefficients.
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REMARK 2.6. By definition, the Mahler measure µ( f ) of a polynomial f is, up to the
leading coefficient of f , the product of the roots of f outside the complex unit circle. An
explicit way of computing Mahler measure µ( f ), without knowing the roots of f , is given by
Jensen’s formula.

COROLLARY 2.7. Let polynomials f (X ), g(X ) ∈ C[X] ∖ {0} and f ∗(X ) ∈ C[X] ∖ {0} be
the reciprocal polynomial of f , i.e, the polynomial defined by

f ∗(X ) := Xdeg( f ) · f
(

1
X

)
.

For the Mahler measures of the above polynomials we have

µ( f g) = µ( f )µ(g) and µ( f ∗) = µ( f ).

Proof. The first equation is obvious by the definition of the Mahler measure. We assume
that f (X ) = a0 + a1X + · · · + anX n. Then

µ( f ) = |an |
n∏

i=1

max{1, |αi |},

where α1, α2, . . . , αn are the roots of f . Then by definition of f ∗, we obtain that

µ( f ∗) = |a0 |
n∏

i=1

max{1, 1
|αi |
}.

Thus,
µ( f )
µ( f ∗)

=
|an |

∏n
i=1 max{1, |αi |}

|a0 |
∏n

i=1 max{1, 1
|αi | }

=
|an |
|a0 |

n∏
i=1

|αi | = 1,

since by Vieta’s formulas for the polynomial f , we have

a0

an
= (−1)n

n∏
i=1

αi .

□

LEMMA 2.8 (Norm Inequality). Let f (X ) = a0 + a1X + · · · + anX n ∈ C[X]. Then

|a j | ≤
(
n
j

)
µ( f ) , ∀ j ∈ {0, 1, . . . , n − 1}.

Proof. Let α1, α2, . . . , αn be the roots of f . By Vieta’s formulas we obtain
a j

αn
= (−1)n− j

∑
{ j1, j2,..., jn− j }⊆{1,2,...,n}

α j1α j2 · · · α jn− j .

Hence,����� a j

αn

����� =
�������

∑
{ j1, j2,..., jn− j }⊆{1,2,...,n}

α j1α j2 · · · α jn− j

������� ≤
∑

{ j1, j2,..., jn− j }⊆{1,2,...,n}
|α j1 ∥α j2 | · · · |α jn− j |

≤
∑

{ j1, j2,..., jn− j }⊆{1,2,...,n}
max{1, |α j1 |}max{1, |α j2 |} · · ·max{1, |α jn− j |}
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≤
∑

{ j1, j2,..., jn− j }⊆{1,2,...,n}
max{1, |α1 |}max{1, |α2 |} · · ·max{1, |αn |} =

(
n
j

) n∏
i=1

max{1, |αi |}.

⇒ |a j | ≤
(
n
j

)
µ( f ).

□

THEOREM 2.9 (Kronecker). Let f (X ) be a monic polynomial with integer coefficients.
Then µ( f ) = 1 if and only of all nontrivial roots of f are equal to roots of unity.

Proof. (⇐) Trivial.
(⇒) Let f (X ) ∈ Z[X], of degree n, with µ( f ) = 1 and f (0) , 0. We will show that the roots
of f are equal to roots of unity. According to the norm inequality and the fact that µ( f ) = 1,
for the j-th coefficient a j of f we obtain that

|a j | ≤
(
n
j

)
.

For j = 0, we have |a0 | ≤ 1 ⇒ a0 ∈ {−1, 0, 1}. Since f (0) , 0, the standard coefficient |a0 |
is equal to 1. Thus, if we denote by α1, α2, . . . , αn the roots of f , by the Vieta’s relations we
obtain that

(4)
������

n∏
i=1

αi

������ =
n∏

i=1

|αi | = 1.

By corollary 2.7 we conclude that µ( f ∗) = 1, and because |a0 | = 1, we have

(5)
n∏

i=1

max
{

1,
1
|αi |

}
= 1.

We will prove that from the system of the equations (4) and (5) it follows that

|αi | = 1 , ∀ i ∈ {1, 2, . . . , n}.
We assume that

∃ k ∈ {1, 2, . . . , n} : |αk | , 1.
Let |αk | > 1. In order for (4) to be true, there must exists an l ∈ {1, 2, . . . , n} ∖ {k} such that
|αl | < 1. Then

max
{

1,
1
|αl |

}
=

1
|αl |

.

And so,

1 =
n∏

i=1

max
{

1,
1
|αi |

}
=

1
|αl |

n∏
i=1
i,l

max
{

1,
1
|αi |

}
≥ 1
|αl |

> 1,

which is a contradiction. Assume now that |αk | < 1. Then the contradiction follows similarly
to the previous case. □

DEFINITION 2.10. Let α be an algebraic number. We define the height of α to be the
number H (α) given by

H (α) := µ( f )1/ deg( f ),

where f is the normalized minimal polynomial of α.
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REMARK 2.11. Note that the above definition is a generalization of the height of rational
number. Indeed, if α =

r
s

, with g.c.d.(r, s) = 1, then the normalized minimal polynomial of
α is f (X ) = sX − r . Thus

H (α) = ( |s |max{1, |α |}) 1
1 ,

which is equal to |s | if |α | < 1, or |r | if |α | > 1, as expected.

Proposition 2.3 provides us with a decomposition formula, since the height of the rational
point can be calculated using all archimedean and non archimedean valuations ofQ. Our next
step is to establish a decomposition formula for heights of algebraic numbers.

DEFINITION 2.12. Let f (X ) = a0 + a1X + · · · + anX n ∈ K[X], where K is a number field.
For5 v ∈ MK we define the content of f at v to be6

contv ( f ) := max
0≤ j≤n

{∥a j ∥v }.

LEMMA 2.13 (Gauss). The content is multiplicative for every v ∈ MK ∖ M∞K , i.e. for
f1, f2 ∈ K[X] it holds that

contv ( f1 f2) = contv ( f1)contv ( f2).

Proof. Let

f1(X ) = a0 + a1X + · · · + am X m and f2(X ) = b0 + b1X + · · · + bnX n.

We assume that ar , with r ∈ {1, 2, . . . ,m}, is a coefficient of f1, such as

∥ar ∥v ≥ ∥ai∥v , ∀ i ∈ {0, 1 . . . ,m}
and it lies the furthest to the right with that property. Similarly, we choose bs, with s ∈
{0, 1, . . . , n}, in order to have the same properties as ar , with respect to f2. Then,

ar
−1 f1(X ) =

a0

ar
+ · · · + X r + · · · + am

ar

and

bs
−1 f2(X ) =

b0

bs
+ · · · + X s + · · · + bn

bs
.

The coefficients of the polynomials at the left hand side are ≤ 1. Considering the product

1
ar bs

f1 f2

we observe that the coefficient of X r+s is of the form 1+c, where ∥c∥v < 1. For the coefficient
of X i, where i , r + s, we can easily check that its valuation is ≤ 1. That is,

contv

(
1

ar bs
f1 f2

)
= 1⇒ contv ( f1 f2) = ∥ar bs∥v = ∥ar ∥v ∥bs∥v = contv ( f1)contv ( f2).

□

5By MK we denote the set of all equivalence classes of absolute values of K (see Appendix A).
6By ∥ · ∥v we denote the normalized absolute value associated to the place v of K (see Appendix A).
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THEOREM 2.14. Let K be a number field and α ∈ K.Then

H (α) = *.,
∏
v∈MK

max{1, ∥α∥v }+/-
1

[K :Q]

.

Proof. We first assume that K = Q(α), and α ∈ RK = RQ(α), where RK is the ring of
algebraic integers of the field K . In this case, we have7

∥α∥v ≤ 1 , ∀v ∈ MQ(α) ∖M∞Q(α) .

Therefore, ∏
v∈MQ(α)∖M∞Q(α)

max{1, ∥α∥v } = 1.

We will, now, examine the infinite places of α. Archimedean places of K are determined
by its embeddings to R or to C. Let σ1, σ2, . . . , σr be the real embeddings of Q(α) and
σr+1, σr+1, σr+2, σr+2, . . . , σs, σs its complex embeddings. Then,∏

v∈M∞Q(α)

max{1∥α∥v } =
r∏

i=1

max{1, |σi (α) |}
s∏

i=r+1

max{1, |σi (α) |2}.

But this is exactly the Mahler measure of the normalized minimal polynomial of α, let f . So,∏
v∈MQ(α)

max{1, ∥α∥v } =
∏

v∈MQ(α)∖M∞Q(α)

max{1, ∥α∥v }
∏

v∈MQ(α)

max{1, ∥α∥v } = µ( f )

= H (α)deg( f ) = H (α)[Q(α):Q] ⇒ H (α) = *.,
∏

v∈MQ(α)

max{1, ∥α∥v }+/-
1

[Q(α):Q]

.

We showed the desired result in the case of K = Q(α), where α is an algebraic integer. We
will prove now the theorem in the case of algebraic integer α ∈ RK , where K is a number
field, such that Q(α) ≤ K . So

∥α∥v [K :Q(α)] =
∏
w |v
∥α∥w .

We also recall that
∥α∥v ≤ 1⇔ ∥α∥w ≤ 1 , ∀w | v.

Since α ∈ RK and Q(α) ≤ K , α is also an algebraic integer of Q(α) and hence

H (α)[Q(α):Q] =
∏

v∈MQ(α)

max{1, ∥α∥v }

=
∏

v∈MQ(α)

max
1, *.,

∏
w |v
∥α∥w+/-

1
[K :Q(α)] 

=
∏

v∈MQ(α)

∏
w |v

max{1, ∥α∥w}
1

[K :Q(α]

7By M∞Q(α) we denote the archimedean places of Q(α).
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So, we obtain

H (α)[Q(α):Q][K :Q(α)] =
∏

v∈MQ(α)

∏
w |v

max{1, ∥α∥w} =
∏

w∈MK

max{1, ∥α∥w}

⇒ H (α)[K :Q] =
∏

w∈MK

max{1, ∥α∥w}.

In order to complete the proof we have to remove the assumption that α is an algebraic integer.
To that end we enlarge, if necessary, the field K , so that K is a Galois extension of Q. Then
the normalized minimal polynomial of α is of the form

f (X )[K :Q(α)] = an
[K :Q(α]

∏
σ∈Gal(K/Q)

(X − σ(α)) ∈ Q[X].

Let p be a prime number. Since the g.c.d. of the coefficient of f is equal to 1, we have that
contp( f ) := cont|·|p ( f ) = 1. Consequently,

(6) 1 = contp
*.,a[K :Q(α]

n

∏
σ∈Gal(K/Q)

(X − σ(α))+/- = |an |p[K :Q(α)]
∏

σ∈Gal(K/Q)

contp
(
X − σ(α)

)
,

using the multiplicativity proven in Gauss’ lemma (2.13). But∏
σ∈Gal(K/Q)

contp
(
X − σ(α)

)
=

∏
σ∈Gal(K/Q)

max{1, |σ(α) |p}

=
∏

σ∈Gal(K/Q)

max
1, *.,

∏
v |p
∥σ(α)∥v+/-

1
[K :Q] 

=
∏

σ∈Gal(K/Q)

∏
v |p

max{1, ∥σ(α)∥v }
1

[K :Q]

=
*.,

∏
σ∈Gal(K/Q)

∏
v |p

max{1, ∥σ(α)∥v }+/-
1

[K :Q]

.

=
*.,
∏
v |p

∏
σ∈Gal(K/Q)

max{1, ∥σ(α)∥v }+/-
1

[K :Q]

=
∏
v |p

max{1, ∥α∥v }.

The last equality is immediate by the identification of the norms ∥σ(α)∥σ(v) := ∥α∥v, for
every σ ∈ Gal(K/Q) (see more on Appendix A). And so by (6), we have

|an |p[K :Q(α)] =
*.,
∏
v |p

max{1, ∥α∥v }+/-
−1

.
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According to the product formula, we have

|an |
∏

p prime

|an |p = 1⇒ an =
∏

p prime

1
|an |p

=
∏

p prime

∏
v |p

max{1, ∥α∥v }
1

[K :Q(α)]

=
*.,

∏
v∈MK∖M∞K

max{1, ∥α∥v }+/-
1

[K :Q(α)]

⇒ an
[K :Q(α)] =

∏
v∈MK∖M∞K

max{1, ∥α∥v }.

Since the Mahler measure is multiplicative, by the form of f we obtain

µ( f )[K :Q(α)] = an
[K :Q(α)]

∏
v∈M∞K

max{1, ∥α∥v }

⇒
(
H (α)[Q(α):Q]

) [K :Q(α)]
=

∏
v∈MK∖M∞K

max{1, ∥α∥v }
∏
v∈M∞K

max{1, ∥α∥v }

⇒ H (α)[K :Q] =
∏
v∈MK

max{1, ∥α∥v }.

□

DEFINITION 2.15. Let α be an algebraic number. We call the number H (α), which we
defined in 2.10, the global absolute height of α, or just, the height of α. Furthermore, we
define the local K-height of α by

HK,v (α) = max{1, ∥α∥v },
where v ∈ MK , and the global K-height of α by

HK (α) =
∏
v∈MK

max{1, ∥α∥v } =
∏
v∈MK

HK,v (α).

REMARK 2.16. By the definition of the global K-height and the decomposition formula
(2.14), we have that

HK (α) = H (α)[K :Q].

2.3. Heights on projective spaces. Since elliptic curves are objects in the projective
space, we have to extend the definition of the height.

DEFINITION 2.17. Let K be a number field and Pn(K ) its (n + 1)-dimensional projective
space. For the point P = [x0 : x1 : · · · : xn] ∈ Pn(K ) and some v ∈ MK we define the local
K-height of P by

HK,v (P) := max
0≤ j≤n

{∥x j ∥v },

the global K-height of P by

HK (P) :=
∏
v∈MK

max
0≤ j≤n

{∥x j ∥v } =
∏
v∈MK

HK,v (P)

and the global absolute height of P, or just, the height of P, by

H (P) := HK (P)
1

[K :Q] .
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We also define the absolute logarithmic height of P, or simply, the logarithmic height of P,
by

h(P) := log
(
H (P)

)
.

COROLLARY 2.18. According to the definition 2.17 for the point P ∈ Pn(K ) we obtain the
following results:

(i) The global K-height of P is independent of the choice of homogeneous coordinates.
(ii) If L/K is a finite extension, then for the heights of the point P we have

HL (P) = HK (P)[L:K].

Proof. (i) We choose two different expressions [a0 : a1 : · · · : an] and [b0 : b1 : · · · :
bn] for P. Then, there exists λ ∈ K×, such that

ai = λbi , ∀ i ∈ {0, 1, . . . , n}.
Then we have

HK ([a0 : a1 : · · · : an]) =
∏
v∈MK

max
0≤ j≤n

{∥a j ∥v } =
∏
v∈MK

max
0≤ j≤n

{∥λb j ∥v }

=
∏
v∈MK

max
0≤ j≤n

{∥λ∥v ∥b j ∥v } =
∏
v∈MK

∥λ∥v max
0≤ j≤n

{∥b j ∥v } =
∏
v∈MK

∥λ∥v
∏
v∈MK

max
0≤ j≤n

{∥b j ∥v }

By the product formula we have that∏
v∈MK

∥λ∥v = 1,

and so
=

∏
v∈MK

max
0≤ j≤n

{∥b j ∥v } = HK ([a0 : a1 : · · · : an]).

(ii) It is immediate by the theorem 2.14 and the multiplicativity of the degree of field exten-
sions.

□

REMARK 2.19. We assume now that α ∈ K . We observe that

H (α) = H ([α : 1]),

where [α : 1] ∈ P1(K ). This means that we could start by examining the heights on projective
spaces and extending to the heights on number fields, without using the Mahler measure.

PROPOSITION 2.20. Let

f (X ) = a0 + a1X + · · · + ad X d = ad

d∏
i=1

(X − αi) ∈ Q̄[X].

Then

2−d
d∏

i=1

H (αi) ≤ H ([a0 : a0 : · · · : ad]) ≤ 2d
d∏

i=1

H (αi).
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Proof. Without loss of generality we assume that ad = 1. Let K = Q(α1, α2, . . . , αd). In
order to prove the desired inequality we must show for any v ∈ MK , that

(7) 2−d
n∏

i=1

max{1, ∥αi∥v } ≤ max
0≤ j≤d

{∥a j ∥v } ≤ 2d
d∏

i=1

max{1, ∥αi∥v }.

We will prove (7) using induction on the degree d. For d = 1 the desired inequality holds
trivially. We assume that (7) holds for every polynomial of degree ≤ d − 1, with roots that
belong in K . Let

f (X ) = a0 + a1X + · · · + X d =

d∏
i=1

(X − αi) ∈ Q̄[X].

Let also k ∈ {1, 2, . . . , d} such that

∥αk ∥ ≥ ∥α j ∥ , ∀ j ∈ {1, 2, . . . , d}.
We define the polynomial

g(X ) :=
f (X )

X − αk
= b0 + b1X + · · · + bd−2X d−2 + X d−1.

Then
f (X ) = g(X )(X − αk ).

Therefore,
ai = bi−1 − αk bi , ∀ i ∈ {1, 2, . . . , d},

where we set b−1 := 0 and bn−1 := 1. If

ε(v) =
2 , if v ∈ M∞K ,

1 , if otherwise
,

then

max
0≤ j≤d

{∥α j ∥v } = max
0≤ j≤d

{∥b j−1 − αk b j ∥v } ≤ ε(v) max
0≤ j≤d

{∥b j−1∥v, ∥αk b j ∥v }

≤ ε(v) max
0≤ j≤d

{∥b j ∥v }max{1, ∥αk ∥v }

≤ ε(v)d−1
d∏

i=1
i,k

max{1, ∥αi∥v } · ε(v) max{1, ∥αk ∥v } ≤ 2d
d∏

i=1

max{1, ∥αi∥v },

where for the last step we used the induction’s hypothesis. Now, it remains to prove that

2−d
d∏

i=1

max{1, ∥αi∥v } ≤ max
0≤ j≤d

{∥α j ∥v }.

We consider two cases.

• If ∥αk ∥ ≤ 2, then
d∏

i=1

max
0≤ j≤d

{1, ∥α j ∥v } ≤ max{1, ∥αk ∥v }d ≤ 2d
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⇒ 2−d
d∏

i=1

max
0≤ j≤d

{1, ∥α j ∥v } ≤ 1 ≤ ∥αk ∥v = max
0≤ j≤d

{∥α j ∥v }.

• Let ∥αk ∥ > 2. We set ∥bt ∥v = max
0≤i≤d−1

{∥bi∥v }, for some t ∈ {0, 1, . . . , d − 1}, and so

we obtain that

max
0≤ j≤d

{∥α j ∥v } = max
0≤ j≤d

{∥b j−1 − αk b j ∥v } ≥ ∥bt−1 − αk bt ∥v

≥ ∥αk bt ∥v − ∥bt−1∥v ≥
(∥αk ∥v − 1

) ∥bt ∥v

≥ ∥αk ∥v
2
∥bt ∥v

Using the induction’s hypothesis for g, we obtain

∥bt ∥v = max
0≤i≤d−1

{∥bi∥v } ≥ 2−(d−1)
d∏

i=1
i,k

max{1, ∥αi∥v }.

Hence,

max
0≤ j≤d

{∥α j ∥v } ≥
∥αk ∥v

2
· 2−(d−1)

d∏
i=1
i,k

max{1, ∥αi∥v } = 2−d
d∏

i=1

max{1, ∥αi∥v }.

□

THEOREM 2.21. Let B and D be positive constants. Then the set

{P ∈ Pn(Q̄) | H (P) ≤ B and [Q(P) : Q] ≤ D},
is finite. Particularly, the set

{P ∈ Pn(K ) | H (P) ≤ B},
where K is a number field, is finite.

Proof. We choose the homogeneous coordinates of P = [x0 : x1 : · · · : xn] so that at
least one of xi’s is equal to 1. Then, for every v ∈ Pn(Q(P)), we have

max
0≤ j≤n

{∥x j ∥v } ≥ max{1, ∥xi∥v } , ∀ i ∈ {0, 1, . . . , n}.

Equivalently,

HQ(P),v (P) ≥ HQ(P),v ([1 : xi]) ⇒ H (P) ≥ H ([1 : xi]) = H (xi) , ∀ i ∈ {0, 1, . . . , n}.
It is obvious that Q(xi) ≤ Q(P), for every i ∈ {0, 1, . . . , n}, and so it suffices to prove that the
set

Σd := {x ∈ Q̄ | H (x) ≤ B and [Q(xi) : Q] = d},
is finite for every 1 ≤ d ≤ D. Let x ∈ Q̄ of degree d and K = Q(x). If f is the normalized
minimal polynomial8 of x, then it is of the form

f (T ) = a0 + a1T + · · · + ad−1T d−1 + T d ∈ Z[T].

8Here the normalized minimal polynomial coincides with the irreducible polynomial, and so it is monic.
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By norm inequality, for the coefficients of f we have

|a j | ≤
(
d
j

)
µ( f ) =

(
d
j

)
H (x)d , ∀ j ∈ {0, 1, . . . , d − 1}.

Assuming that x ∈ Σd , we obtain that

|a j | ≤
(
d
j

)
Bd , ∀ j ∈ {0, 1, . . . , d − 1}.

Thus, for every coefficient of f we have finite possible values. In other words, x is a root of a
polynomial, the coefficients of which are elements of a finite set. Therefore, there are finitely
many x’s, such that H (x) ≤ B and [Q(x) : Q] = d, for 1 ≤ d ≤ D, fact that completes our
proof. □

REMARK 2.22. We will restate Kronecker’s theorem in a projective version. This result
gives us an explicit description of the projective points of height 1 and it is a consequence of
theorem 2.21.

COROLLARY 2.23 (Kronecker). Let K be a number field and P = [x0 : x1 : · · · : xn] ∈
Pn(K ). Let also k ∈ {0, 1, . . . , n}, such that xk , 0. Then H (P) = 1 if, and only if either

xi

xk
is a root of unity, or xi = 0, for every i ∈ {0, 1, . . . , n} ∖ {k}.

DEFINITION 2.24. A morphism F of degree d is a map between projective spaces, of the
form

F : Pn(Q̄) −→ Pm(Q̄)
P 7−→ [ f0(P) : f1(P) : · · · : fm(P)],

where f0, f1, . . . , fm ∈ Q̄[X0, X1, . . . , Xn] are homogeneous polynomials, of degree d, with
no (non trivial) common zeros in Q̄n. In case f0, f1, . . . , fm ∈ K[X0, X1, . . . , Xn], we say that
the morphism F is defined over K .

DEFINITION 2.25. We define the content of the morphism F : Pn(Q̄) −→ Pm(Q̄) at v,
where F (P) = [ f0(P) : f1(P) : · · · : fm(P)] and v ∈ MK , by

contv (F) := max{|a |v : a is a coefficient of some fi}
= max{contv ( fi) : i ∈ {0, 1, . . . ,m}}.

PROPOSITION 2.26. Let F : Pn(Q̄) −→ Pm(Q̄) be a morphism of degree d. Then there are
constants c1, c2 > 0, depending on F, such that

c1H (P)d ≤ H (F (P)) ≤ c2H (P)d , ∀ P ∈ Pn(Q̄).

Proof. Let P = [x0 : x1 : · · · : xn] ∈ Pn(Q̄) and F = [ f0 : f1 : · · · : fm], where
f0, f1, . . . , fm ∈ Pm(Q̄) are homogeneous polynomials of degree d. We choose an algebraic
number field K , which contains all the coordinates of P and the all the coefficients of the
polynomials fi. We set

ϵ (v) =
1 , if v ∈ M∞K

0 , otherwise
.

Using this function, we are able to concisely write the triangle inequality

∥t1 + t2 + · · · + tn∥v ≤ nϵ (v) max{∥t1∥v, ∥t2∥v, . . . , ∥tn∥v },
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for every v ∈ MK . After all these preliminaries it is easy to compute an upper bound for
H (F (P)). We have

∥ fi (P)∥v ≤ C2,i
ϵ (v)contv (F)HK,v (P)d , ∀ i ∈ {0, 1 . . . ,m}.

The constant C2,i is equal to the number of monomials of fi. Indeed, assuming that

fi (X0, X1, . . . , Xn) =
m∑

j=0

ai j X0
d0, j X1

d1, j · · · Xm
dm, j,

where d0, j + d1, j + · · · + dm, j = d for every j ∈ {0, 1, . . . , n}, we obtain that

∥ fi (P)∥v =









m∑
j=0

ai j x0
d0, j x1

d1, j · · · xm
dm, j








v
≤ C2,i

ϵ (v) max
0≤ j≤n

{


ai j x0
d0, j x1

d1, j · · · xm
dm, j 


v}

≤ C2,i
ϵ (v) max

0≤i≤n
0≤ j≤m

{∥ai j ∥v } · max
0≤ j≤m

{∥x j ∥v }

= C2,i
ϵ (v)contv (F)HK,v (P)d .

Let
C2 = max{C2,i , i ∈ {0, 1, . . . , n}}

Then
∥ fi (P)∥v ≤ C2

ϵ (v)contv (F)HK,v (P)d , ∀ i ∈ {0, 1, . . . , n}
⇒ max

0≤i≤n
{∥ fi (P)∥v } ≤ C2

ϵ (v)contv (F)HK,v (P)d , ∀ i ∈ {0, 1, . . . , n}.

Ans so,
HK,v (F (P)) ≤ C2

ϵ (v)contv (F)HK,v (P)d .

Finally, setting c2 := C2
ϵ (v)contv (F), we have

HK,v (F (P)) ≤ c2HK,v (P)d .

Therefore, changing the constant c2 if necessary, we obtain the inequality

H (F (P)) ≤ c2H (P)d .

We turn now to the proof of the lower bound of H (F (P)). Observe that for the upper bound
we did not use the fact that the fi’s have no nontrivial common roots. Let

I = ⟨ f0, f1, . . . , fm⟩ ⊴ K[X0, X1, . . . , Xn]

Then
(0, 0, . . . , 0) ∈ V(I),

where by V(I) we denote the set of zeros of all polynomials of I Thus,

Xi ∈ I(V(I)) , ∀ i ∈ {0, 1, . . . , n}.
By Nullstellensatz of Hilbert we know that

I(V(I)) = Rad(I),
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where by I(V(I)) we denote the vanishing ideal of V(I) and by Rad(I) we denote the radical
ideal of I. That means that

∃ e ∈ N : Xi
e ∈ I , ∀ i ∈ {0, 1, . . . , n}.

And so

Xi
e =

m∑
j=0

gi j (X0, X1, . . . , Xn) f j (X0, X1, . . . , Xn) , ∀ i ∈ {0, 1, . . . , n}.

Enlarging the field K if necessary, we assume that gi j ∈ K[X0, X1, . . . , Xn]. We can also
assume that each gi j is homogeneous polynomial of degree e−d. We observe that the numbers
e and

contv (G) :=
∏
v∈MK

max{∥b∥v : b is a coefficient of some gi j }

are bounded in terms of m, n, d and contv (F). So, recalling that P = [x0 : x1 : · · · : xn], we
have

∥xi∥ve =









m∑

j=0

gi j (P) f j (P)







v ≤ c2

ϵ (v) max
0≤ j≤m

{∥gi j (P) f j (P)∥v }

≤ c2
ϵ (v) max

0≤ j≤m
{∥gi j (P)∥v }HK,v (F (P)).

Hence, we obtain

(8) HK,v (P)e = max
0≤i≤n

{∥xi∥v } ≤ c2
ϵ (v) max

(i, j)∈{0,1,...,n}×{0,1,...,m}
{∥gi j (P)∥v } · HK,v (F (P)).

We apply the triangle’s inequality for the polynomials gi j , ans so we have

(9) ∥gi j (P)∥v ≤ c3
ϵ (v) max{∥b∥v : b is a coefficient of some gi j }HK,v (P)e−d,

where c3 is a constant that may depend on e, but as we mentioned before e is bounded.
Substituting the relation (9) to (8), it follows that

HK,v (P)d ≤ Cϵ (v) max{∥b∥v : b is a coefficient of some gi j }HK,v (F (P)),

for some constant C. Setting
1
c1

:= Cϵ (v) max{∥b∥v : b is a coefficient of some gi j },

we conclude that
c1HK,v (P)d ≤ HK,v (F (P)),

and so the result follows. □

2.4. Heights on elliptic curves. Every elliptic curve E, defined over a number field K ,
is determined by an equation of the form

Y 2 = X3 + αX + β , α, β ∈ K .

Viewing E as a projective plane curve, the abelian group E(K̄ ), where K̄ is the algebraic
closure of K , of the points of E has the following form

E(K̄ ) =
{
[x : y : 1] ∈ P2(K̄ ) | y2 = x3 + αx + β

}
∪ {[0 : 1 : 0]}.
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The height of O = [0 : 1 : 0] is defined to be equal to 1. Let [x : y : 1] ∈ E(Q̄(x, y)). Then
the height of P is given by

H (P) = *.,
∏

v∈MQ(x,y)

max {∥x∥v, ∥y∥v, 1}+/-
1

[Q(x,y):Q]

.

But for given x, we obtain two possible values for y by the equation y2 = x3 +αx + β, which
are actually opposite numbers and so their valuations are the same. In other words, for every
v ∈ MK1 , the number ∥y∥v is uniquely determined by the choice of the first coordinate x.
This observation leads to the following definition.

DEFINITION 2.27. Let E be an elliptic curve defined over the number field K ,
P = [x : y : z] ∈ E(K̄ ) and Q(P) be the minimal extension of Q containing the coordinates
of P. We define the height of P on E to be the number

HE (P) := *.,
∏

v∈MQ(P)

max{1, ∥x∥v }+/-
1

[Q(P):Q]

.

Furthermore, we define the logarithmic height of P on E by the equation

hE (P) := log
(
HE (P)

)
.

Of course, we define HE (O) = 1 and so hE (O) = 0.

The following proposition reminds us the parallelogram law. Indeed, we prove that up to
an error, the height of a point on an elliptic curve is a quadratic form.

PROPOSITION 2.28. Let E be an elliptic curve over the number field K. There are constants
C1,C2 ∈ R, depending only on E, such that for all P,Q ∈ E(K̄ ), it holds that

2hE (P) + 2hE (Q) − c1 ≤ hE (P +Q) + hE (P −Q) ≤ 2hE (P) + 2hE (Q) + c2.

Proof. We assume that the elliptic curve is of the form

E |K : Y 2 = X3 + αX + β,

where α, β ∈ K . At first, we observe that h(O) = 0 and h(−P) = h(P), for any P ∈ E(K̄ ).
We define the map

x : P2(K̄ ) −→ P1(K̄ )
P 7−→ [xP : 1],

where P = [xp : yp : zp], and let

x(P) = [x1 : 1] , x(Q) = [x2 : 1] , x(P +Q) = [x3 : 1] , x(P −Q) = [x4 : 1].

Here P ± Q may be equal to the point at infinity, if P = ±Q. By the addition law for points
on E, follows that

x3 + x4 =
2(x1 + x2)(A + x1x2) + 4B

(x1 + x2)2 − 4x1x2
and

x3x4 =
(x1x2 − A)2 − 4B(x1 + x2)

(x1 + x2)2 − 4x1x2
.
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We define the map

g : P2(K̄ ) −→ P2(K̄ )
[t : u : v] 7−→ [u2 − 4tv : 2u(At + v) + 4Bt2 : (v − At)2 − 4Btu].

and the map σ : E(K̄ ) −→ E(K̄ ) as the composition of the maps

E(K̄ ) × E(K̄ ) −→ P1(K̄ ) × P1(K̄ )
(P,Q) 7−→ (

x(P), x(Q)
)
,

and9

P1(K̄ ) × P1(K̄ ) −→ P2(K̄ )(
[a1 : b1], [a2 : b2]

) 7−→ [b1b2 : a1b2 + a2b1 : a1a2]

Furthermore, we define the map

G : E(K̄ ) × E(K̄ ) −→ E(K̄ ) × E(K̄ )
(P,Q) 7−→ (P +Q, P −Q)

Then the diagram

E(K̄ ) × E(K̄ )

σ

&&

��

G
// E(K̄ ) × E(K̄ )

��

σ

xx

P1(K̄ ) × P1(K̄ )

��

P1(K̄ ) × P1(K̄ )

��

P2(K̄ )
g

// P2(K̄ )

easily follows that is commutative, i.e.

g ◦ σ = σ ◦ G.

Our next step is to prove that g is a morphism. Obviously, every coordinate of g is a homo-
geneous polynomial of degree 2. So, it suffices to show that

u2 − 4tv = 0
2u(At + v) + 4Bt2 = 0
(v − At)2 − 4Btu = 0

⇒ t = u = v = 0.

If t = 0, it is easy to prove that u = v = 0. If otherwise, let x :=
u
2t

. Then using the first
equation of the system it follows that

x2 =
v

t
.

Thus, we obtain that

2u(At + v) + 4Bt2 = 0⇒ 4x(A + x2) + 4B = 4x3 + 4Ax + 4B = 0

and
(v − At)2 − 4Btu = 0⇒ (x2 − A)2 − 8Bx = x4 − 2Ax2 − 8Bx + A2 = 0.

9This is a natural way to map a product of projective spaces to a projective space of greater dimension.
Actually this map is a special case of the so called Veronese map.
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Let
ψ1(X ) := 4X3 + 4AX + 4B and ψ2(X ) := X4 − 2AX2 − 8BX + A2.

An easy calculation shows that

(12X2 + 16A)ψ2(X ) − (3X3 − 5AX − 27B)ψ1(X ) = 4(4A3 + 27B2) , 0.

This means that ψ1 and ψ2 have no common roots. So g is a morphism indeed. By the
commutativity of the diagram we have

h(σ(P +Q, P −Q)) = h
(
(σ ◦ G)(P,Q)

)
= h

(
(g ◦ σ)(P,Q)

)
.

According to the proposition 2.26 we know that

c1H (σ(P,Q))2 ≤ H (g(σ(P,Q))) ≤ c2H (σ(P,Q))2

⇒ 2h(σ(P,Q)) + c1 ≤ h(g(σ(P,Q))) ≤ 2h(σ(P,Q)) + c2

⇒ 2h(σ(P,Q)) + c1 ≤ h
(
(g ◦ σ)(P,Q)

) ≤ 2h(σ(P,Q)) + c2,(10)

for some positive constants c1 and c2. We will prove now that

h(x(P1)) + h(x(P2)) + c̃1 ≤ h(σ(P1, P2)) ≤ h(x(P1)) + h(x(P2)) + c̃2,(11)

for P1, P2 ∈ E(K̄ ) and some positive constants c̃1 and c̃2. It is easy to verify that if P1 = O,
or P2 = O, then

h(σ(P1, P2)) = h(x(P1)) + h(x(P2)),
which is stronger than the desired inequality. If otherwise, we assume that

x(P1) = [a1 : 1] and x(P2) = [a2 : 1],

and so

σ(P1, P2) = [1 : a1 + a2 : a1a2]⇒ h(σ(P1, P2)) = h([1 : a1 + a2 : a1a2]).

Consider the polynomial f (X ) = (X + a1)(X + a2) ∈ K̄[X]. Then by proposition 2.20 we
obtain that

1
4

H (a1)H (a2) ≤ H ([1 : a1 + a2 : a1a2]) ≤ 4H (a1)H (a2) ⇒

h(a1) + h(a2) − log 4 ≤ h([1 : a1 + a2 : a1a2]) ≤ h(a1) + h(a2) + log 4.
Hence, we proved (11)10. Since

h(x(P)) = h([xP : 1]) = hE (P),

we are able to rewrite equation (11) in the form

hE (P1) + hE (P2) + c̃1 ≤ h(σ(P1, P2)) ≤ hE (P1) + hE (P2) + c̃2.

Consequently, applying for P1 = P +Q and P2 = P −Q, we have

hE (P +Q) + hE (P −Q) ≤ h(σ(P +Q, P −Q)) − c̃1

= h(σ(G(P,Q))) − c̃1

≤ c2 + 2h(σ(P,Q)) − c̃1

≤ 2
(
hE (P) + hE (Q) + ˜̃c2

)
+ c2 − c̃1

= 2hE (P) + 2hE (Q) + C1,

10Remember that H (a) = H ([a : 1]).
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where C1 := 2 ˜̃c2 + c2 − c̃1. Similarly, we prove the other half of the desired inequality. □

The next result is significant for the proof of the Mordell-Weil theorem. It states the
three necessary properties that the function hE must have, in order to complete the proof of
Mordell-Weil theorem. In the literature it is also referred as descent theorem.

THEOREM 2.29. Let E be an elliptic curve over the number field K.

(i) Let Q ∈ E(K ). There exists a constant C1 = C1(E,Q), such that for all P ∈ E(K ) it
holds that

hE (P +Q) ≤ 2hE (P) + C1.

(ii) For each m ∈ Z there exists a constant C2 = C2(E,m) ≥ 0, such that for all P ∈ E(K )
we have

hE (mP) ≥ m2hE (P) − C2.

(iii) For every constant C3 ∈ R>0 the set

{P ∈ E(K ) | hE (P) ≤ C3}
is finite.

Proof. (i) We have

hE (P +Q) ≤ hE (P +Q) + hE (P −Q) ≤ 2hE (P) + c2,

using the notation of 2.28. The result now is immediate if we set C1 := 2hE (Q) + c2.
(ii) We will prove a stronger result. Particularly, we will show that

m2hE (P) − C2 ≤ hE (mP) ≤ m2hE (P) + C2.

We will prove these estimates by induction for m ∈ N0. For m = 0 and m = 1, the result
is trivial. Let m ≥ 2. By proposition 2.28, we have

2hE (mP) + 2hE (P) − c1 ≤ hE
(
(m − 1)P

)
+ hE

(
(m + 1)P

) ≤ 2hE (mP) + 2hE (P) + c2

⇒ −hE
(
(m − 1)P

)
+ 2hE (mP) + 2hE (P) − c1 ≤ hE

(
(m + 1)P

)
≤ −hE

(
(m − 1)P

)
+ 2hE (mP) + 2hE (P) + c2

Using the induction hypothesis we obtain

hE
(
(m + 1)P

) ≥ −hE
(
(m − 1)P

)
+ 2hE (mP) + 2hE (P) − c1

≥ −(m − 1)2hE (P) + 2hE (P) + 2m2hE (P)
−2c2(E,m) + c2(E,m − 1) − c1

=
(
−(m − 1)2 + 2 + 2m2

)
hE (P) + c2(E,m − 1)

−2c2(E,m) − c1

= (m + 1)2hE (P) + c2(E,m − 1) − 2c2(E,m) − c1

Similarly, we prove that

hE
(
(m + 1)P

) ≤ (m + 1)2hE (P) + c2(E,m − 1) + 2c2(E,m) + c1.

Setting

C2 = C2(E,m + 1) := max{0, c2(E,m − 1) + 2c2(E,m) + c2,

c2(E,m − 1) − 2c2(E,m) − c2}
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we get

(m + 1)2hE (P) − C2 ≤ hE ((m + 1)P) ≤ (m + 1)2hE (P) + C2,

which is what we need to complete the induction. So we proved our result for m ≥ 0.
For m < 0 the result follows immediately, using the relation hE (mP) = hE (−mP).

(iii) It suffices to show that the set

{P ∈ E(K ) | HE (P) ≤ eB}
is finite. Let P = [xP : yP : 1] ∈ E(K ). Without loss of generality we assume that
P , O. Then for every v ∈ MQ(P) we have

(12) ∥yP
2∥v = ∥xP

3 + αxP + β∥v ≤ max{∥xP
3∥v, ∥αxP∥v, ∥ β∥v }.

Since the height HE (P) is bounded, then so is ∥xP∥v for every v ∈ MQ(P). This means
that by (12) the ∥yP∥v is bounded by a positive number which depends on B, for each
v ∈ MQ(P). This means that

max{∥xP∥v, ∥xP∥v, 1} ≤ B′ , ∀ v ∈ MQ(P),

where B′ is a positive constant, which depends on B. Therefore, the number H (P) is
bounded. This means that we have finite choices for P. And so, the desired set is also
finite.

□

3. The proof of Mordell-Weil Theorem

We are now in position to prove the Mordell-Weil theorem, which gives us a significant
property about the K-rational points of an elliptic curve. In particular, this theorem states that
every K-rational point of an elliptic curve can be generated by finite K-rational points.

Proof of 0.1. Since E(K )/2E(K ) is finite, as we proved in 1.7, there is a complete system
of representatives

{Q1,Q2, · · · ,Qr }
of it. Let P ∈ E(K ). Then

P = 2P1 +Qi1

for some i1 ∈ {1, 2, . . . , r } and P1 ∈ E(K ). Analogously, we write

P1 = 2P2 +Qi2,

for some i2 ∈ {1, 2, . . . , r } and P2 ∈ E(K ). Continuing as above, we obtain the relations

Pj−1 = 2Pj +Qi j,

where P0 := P, i j ∈ {1, 2, . . . , r } and Pj ∈ E(K ) for each i ∈ {1, 2, . . . , n} (n ∈ N). By
theorem 2.29 for m = 2, we obtain

hE (Pj ) ≤
1
22

(
hE (2Pj ) + C2

)
=

1
4

(
hE (Pj−1 −Qi j ) + C2

)
≤ 1

4

(
2hE (Pj−1) + C1 + C2

)
hE (Pj ) ≤

1
4

(
2hE (Pj−1) + C1 + C2

)
,
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Using this inequality n-times and taking the maximum of all constants that appear, it follows
that

hE (Pn) ≤
(

2
4

)n

hE (P0) +
(

1
22 +

2
24 + · · · +

2n−1

22n

)
C

< 2−nhE (P) + 2C,

where C is a constant that depends on E and the points Qi, with i ∈ {1, 2, . . . , r }. Without loss
of generality we assume that n is large enough, so that 2−nhE (P) ≤ 1. Thus,

hE (Pn) ≤ 1 + 2C.

And since
Pj−1 = 2Pj +Qi j , ∀ j ∈ {1, 2, . . . , n},

it follows that

P = 2nPn +

n∑
j=1

2 j−1Qi j .

This equation states that the every point P may be written as linear combination of the ele-
ments of the set

{Q1,Q2, . . . ,Qr } ∪ {R ∈ E(K ) | hE (R) ≤ 1 + 2C}.
The second set of this union is finite according to 2.29. This fact completes the proof. □

We just shown that the abelian group E(K ) is finitely generated. Since abelian groups are
Z-modules, we shall use the structure theorem of finitely generated modules over principal
ideal domains and we obtain the following result.

COROLLARY 3.1. Let E be an elliptic curve defined over the number field K. For the group
E(K ) of the K-rational points of E, we have

E(K ) � E(K )tor ⊕ Zr,

where by E(K )tor we denote the torsion group of E over K, i.e. the group of all points of finite
order, and r ∈ N0.

DEFINITION 3.2. Let E be an elliptic curve over the number field E. The nonnegative
integer r , that appears in 3.1 is called rank of the elliptic curve E, and it is denoted by rank(E).





CHAPTER 2

Elliptic Curves over the Rationals

The last few decades have witnessed a huge progress in the study of elliptic curves, notably
the study of elliptic curves defined over Q. The purpose of this chapter is to present the most
important results concerning the study of elliptic curves over the rational numbers.

Due to Mordell’s theorem for the group E(Q) of the rational points of the elliptic curve E
we have that

E(Q) � E(Q)tor ⊕ Zr .

This means that the problem of the study of E(Q) initially consists in the study of the torsion
points and of the rank r of E. We begin with the determination of the group E(Q)tor and the
characterization of the torsion points.

1. Torsion points of E(Q)

Two theorems about torsion points are of great significance. We start with the theorem
stated independently by Nagell (1935) and Lutz (1937).

THEOREM 1.1 (Lutz-Nagell). Let E be an elliptic curve over the rationals,

E |Q : Y 2 = X3 + αX + β , α, β ∈ Z.
If P is a nonzero rational point on E of finite order, i.e. if P = [xP : yP : 1] ∈ E(Q)tor, then

(i) xP, yP ∈ Z, and
(ii) yP = 0, in case P is a point of order 2, or yP

2 | 4α3 + 27β2.

This result does not give information about the structure of E(Q)tor in general. The major
step was done by Mazur in 1977, who determined explicitly the possibilities for the structure
of the group E(Q)tor for any elliptic curve E over the rationals.

Before we state Mazur’s theorem let us recall the affine picture of an elliptic curve, assum-
ing that it is defined over the field R.

The affine picture of an elliptic curve has either one, or two connected components, as it is
clear by Figure 1. Projectively, we must consider the point at infinity, in which the open-
ended component of the elliptic curve is closed up. This, in combination with the fact that
elliptic curves, are smooth, means that topologically we get one or two circles. And so,
it turns out that the group E(R) of the real points of E is isomorphic either to S1, or to
S1 ⊕ Z/2Z. If we ask the same question about the torsion subgroup E(C)tor of E(C), the

39
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Figure 1. Affine picture of elliptic curves, depending on how many real roots
the defining polynomial has.

answer is straightforward. Using the fact that E(C) � C/L, where L is a lattice of C, it
follows that

E(C)tor � Q/Z ⊕ Q/Z.

Therefore, the group E(Q)tor ⊆ E(Q) is a finite and abelian subgroup either of S1, or of
S1 ⊕ Z/2Z. So, it is of the form Z/nZ or Z/2Z ⊕ Z/2nZ, for some natural number n. Mazur’s
theorem determines exactly the possible choices for the number n ∈ N.

THEOREM 1.2 (Mazur). Let E be an elliptic curve over Q. Then the torsion group E(Q)tor
of E over Q is isomorphic to one of the following groups:

Z/nZ , n ∈ {1, 2, . . . , 10, 12} or Z/2Z ⊕ Z/2nZ , n ∈ {1, 2, 3, 4}.

Further, each of these groups occur as torsion group over Q of some elliptic curve over the
rationals.

The proof of Mazur’s theorem is beyond the scope of this master thesis. However, as an-
other indication of its validity, we give examples of elliptic curves, that have one of the fifteen
groups Mazur’s result, as torsion group.
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E |Q E(Q)tor
Y 2 = X3 + 2 {O}
Y 2 = X3 + X Z/2Z
Y 2 = X3 + 4 Z/3Z

Y 2 = X3 + 4X Z/4Z
Y 2 + Y = X3 − X2 Z/5Z

Y 2 = X3 + 1 Z/6Z
Y 2 − XY + 2Y = X3 + 2X2 Z/7Z

Y 2 + 7XY − 6Y = X2 − 6X2 Z/8Z
Y 2 + 3XY + 6Y = X3 + 6X2 Z/9Z

Y 2 − 7XY − 36Y = X3 − 18X2 Z/10Z
Y 2 + 43XY − 210Y = X3 − 210X2 Z/12Z

Y 2 = X3 − X Z/2Z ⊕ Z/2Z
Y 2 = X3 + 5X2 + 4X Z/2Z ⊕ Z/4Z

Y 2 + 5XY − 6Y = X3 − 3X2 Z/2Z ⊕ Z/6Z
Y 2 = X3 + 337X2 + 20736X Z/2Z ⊕ Z/8Z

1.1. The proof of Lutz-Nagell theorem. This section of the chapter is focused on the
proof of the theorem of Lutz and Nagell.

The theorem informs us that if P is a rational point on an elliptic curve E, defined over
Q, then its coordinates must be integer numbers. To prove that we would like to show that if
P = [xP : yP : 1] ∈ E(Q), then

|xP |p ≤ 1 and |yP |p ≤ 1,

for each prime number p. Therefore, it makes sense to reduce the given elliptic curve modulo
p.

DEFINITION 1.3. Let p be a prime. The rational number r is called p-integral, if |r |p ≤ 1.
The set of all p-integral rationals is a ring and it is denoted by Z(p).

Let r be a rational number. Then it can be written in the form

r = pn a
b
,

where a, b, n ∈ Z, such that g.c.d.(a, b) = 1 and p ∤ ab. If n < 0, i.e. the prime number p is
a divisor of the denominator of r , then it is impossible to reduce r modulo p, because we can
not extend naturally the notation for integer residues modulo p. Hence, we initially restrict
the definition of the reduction map of rational numbers in the case of p-integral r . So, we
define the map

rp : Z(p) −→ Fp

r 7−→
[a]p[b]p

−1 , if n = 0
[0]p , if n > 0.
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This definition suggests that we should normalize the coordinates of a point by multiplica-
tion with a power of p, in order that the reduction map to make sense. And there lies another
advantage of considering our curves projectively.

DEFINITION 1.4. Let P ∈ P2(Q) and p be a prime number. A choice [x : y : z] of
homogeneous coordinates for P, that satisfies the properties

(i) |w |p ≤ 1, for every w ∈ {x, y, z}, and
(ii) there exists w ∈ {x, y, z} such that |w |p = 1,

is called p-reduced representation of P.

REMARK 1.5. Let P = [pn1 x1 : pn1 y1 : pn3 z1] ∈ P2(Q), where n1, n2, n3 ∈ Z and
x1, y1, z1 ∈ Q such that |x1 |p = |y1 |p = |z1 |p = 1. Then a p-reduced representation is
obtained by multiplying the components of P by p−min{n1,n2,n3}. A p-reduced representation
of a point P is unique, up to a factor of p-adic norm equal to 1. Indeed, if c ∈ Q, such that
|c |p = 1, then [x0 : x1 : x2] = [cx0 : cx1 : cx2] and for each i ∈ {0, 1, 2}, we obtain

|xi |p ≤ 1⇔ |cxi |p ≤ 1

and
|xi |p = 1⇔ |cxi |p = 1.

Moreover, for any given point there is a p-reduced representation with integer coefficients.

Hence, we may extend the definition of the reduction map, as follows:

redp : P2(Q) −→ P2(Fp)
[x : y : z] 7−→ [rp(x) : rp(y) : rp(z)],

where [x : y : z] is a p-reduced representation. It is easy to check that this reduction map is
well defined, which is exactly why we introduced the notion of the p-reduced representation.

We consider now the elliptic curve E. We know that, as a projective curve, E is the zero
locus of a homogeneous polynomial F, of degree 3. Since we can assume without loss of
generality that F ∈ Z[X,Y, Z], such that the g.c.d of its coefficients is equal to 1, then the
reduced polynomial Fp is a nonzero homogeneous polynomial of Fp[X,Y, Z], of degree 3. In
particular, this polynomial Fp is uniquely determined, up to multiplication by scalar, and so
is its zero locus, which is a curve Ep. So, using the reduction map we are able to show that

P ∈ E(Q) ⇒ redp(P) ∈ Ep(Fp),

and more generally, that
P ∈ E(Q̄) ⇒ redp(P) ∈ Ep(F̄p),

Therefore we are able to redefine the reduction map, using the same notation for simplicity,
as a map of curves i.e,

redp : E(Q) −→ Ep(Fp).

DEFINITION 1.6. Let p be a prime number and E be an elliptic curve defined over Q. If Ep
is an elliptic curve, then we say that E has a good reduction to p.
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A priori we do not know that the reduced curve Ep, is nonsingular. In order to examine
that we need to check the discriminant of Ep. Clearly, the discriminant ∆p of Ep and the
discriminant ∆ of E are related as follows

∆p = [∆]p = ∆ (mod p).

Hence, the good reduction of E at p, is equivalent to the convention p ∤ ∆.

If E has a good reduction at p, both E(Q) and E(Fp) are groups.

PROPOSITION 1.7. Let E be an elliptic curve defined over Q, and p be a prime such that E
has a good reduction at it. Then the reduction map

redp : E(Q) −→ Ep(Fp)
[x : y : z] 7−→ [rp(x) : rp(y) : rp(z)],

is a group homomorphism.

Proof. (see corrections to [9] at http://www.math.stonybrook.edu/ aknapp/) □

REMARK 1.8. For the rest of this section, we have to introduce some new coordinates for
the points of the elliptic curve E. For each point P ∈ E(Q) ∖ {O}, so that P = [x : y : 1] and
P is not of order 2 in E(Q), we set

u :=
x
y

and w :=
1
y
.

Then
P = [x : y : 1] = [u : 1 : w],

that is we normalize by dividing by y. We will use widely these coordinates for the points of
E.

PROPOSITION 1.9. For the reduction map defined in 1.7, we have that

ker(redp) = {[u : 1 : w] ∈ E(Q) | |u|p < 1 and |w |p < 1}.

Proof. Let [x : y : z] ∈ E(Q), such that redp([x : y : z]) = Op. The reduction map
is a group homomorphism, so O ∈ ker(redp). So, without loss of generality we assume that
z = 1, and we try to describe the point [x : y : 1] ∈ ker(redp). Of course, for such a point we
have that y , 0, since it would be reduced to 0 otherwise, so we normalize as in remark 1.8.
In order for u and w to reduce to 0, they must be p-adic integers, i.e. |u|p < 1 and |w |p < 1.
Hence, we obtain the desired result. □

Set
E1(Q) := {[u : 1 : w] ∈ E(Q) | |u|p < 1 and |w |p < 1}.

This is exactly the kernel of the reduction map redp, only for the prime numbers p, for which
Ep is an elliptic curve. But we want to remove the assumption of good reduction, or equiva-
lently, the condition p ∤ ∆. So we shall study the set E1(Q), independently of the choice of
the prime number.

LEMMA 1.10. Let [u : 1 : w] ∈ E(Q) and a prime number p. If |w |p < 1, then |u|p < 1
and |w |p = |u|p3.
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Proof. The elliptic curve E is of the form

E |Q : Y 2 = X3 + αX + β.

Let [x : y : 1] ∈ E(Q). We recall the equivalence (2) (see page 7). This was proved generally
for any finite valuation of a number field. We apply it for p-adic valuations of Q. We have

(13) vp(x) < 0⇔ vp(y) < 0⇔ ∃ l ∈ N : vp(x) = −2l and vp(y) = −3l .

By definition, we have that
|r |p = p−vp (r) , ∀ r ∈ Q.

So, we rewrite (13) in the form

(14) |x |p > 1⇔ |y |p > 1⇔ ∃ l ∈ N : |x |p = p2l and |y |p = p3l .

But then

|w |p < 1⇔
�����1y
�����p < 1⇔ |y |p > 1⇔ ∃ l ∈ N : |x |p = p2l and |y |p = p3l .

Thus,

|u|p =
����� xy
�����p = |x |p|y |p = p2l

p3l = p−l < 1.

Also,
|u|p3 = (p−l )

3
= p−3l = |y |p−1 = |w |p.

□

DEFINITION 1.11. For any n ∈ N, set

En(Q) := {[u : 1 : w] ∈ E(Q) | |w |p < 1 and |u|p ≤ p−n}.
The p-adic filtration of E1(Q) is

{O} ⊆ · · · ⊆ En(Q) ⊆ · · · ⊆ E2(Q) ⊆ E1(Q) ⊆ E(Q).

We have
∞∩

n=1

En(Q) = {O}.

COROLLARY 1.12. For the set En(Q) it holds that

En(Q) = {[u : 1 : w] ∈ E(Q) | |w |p ≤ p−3n}.
REMARK 1.13. An important observation based on the lemma 1.10 is that for any point

P ∈ E1(Q), there exists a unique number n ∈ N such that

P ∈ En(Q) ∖ En+1(Q).

This helps us to have a better check of the point P.

PROPOSITION 1.14. For any n ∈ N the set En(Q) is a subgroup of E(Q). Also, the map

ηn : En(Q) −→ pnZ(p)/p3nZ(p)

[u : 1 : w] 7−→ [u]p3nZ(p)

is a group homomorphism, such that

ker(ηn) ⊆ E3n(Q).



Mordell-Weil Theorem for Elliptic Curves over Number Fields 45

Consequently, the homomorphism

En(Q)/E3n(Q) −→ pnZ(p)/p3nZ(p)

is injective.

Proof. The elliptic curve E is of the form

E |Q : Y 2 = X3 + αX + β,

with α, β ∈ Z. Since we use another coordinates’ system, that of u and w, we have to reform
the equation that defines E. By dividing by Y 3, we obtain that

1
Y
=

(
X
Y

)3

+ α
X
Y

(
1
Y

)2

+ β

(
1
Y

)3

⇒ W = U3 + αUW 2 + βW 3.

Let P1, P2 ∈ En(Q). Our goal is to show that P3 := P1 + P2 ∈ En(Q), too. Consider the
coordinates [u1 : 1 : w1], [u2 : 1 : w2] and [u3 : 1 : w3] for the points P1, P2 and P3,
respectively. Then

w1 = u1
3 + αu1w1

2 + βw1
3 and w2 = u2

3 + αu2w2
2 + βw2

3,

and so

w1 − w2 = u1
3 − u2

3 + αu1w1
2 − αu2w2

2 + βw1
3 − βw2

3

= u1
3 − u2

3 + αw1
2(u1 − u2) + αu2(w1

2 − w2
2) + β(w1

3 − w2
3)

= (u1 − u2)(u1
2 + u1u2 + u2

2) + αw1
2(u1 − u2) + αu2(w1 − w2)(w1 + w2)

+β(w1 − w2)(w1
2 + w1w2 + w2

2).

Equivalently, for

A := 1 − αu2(w1 + w2) − β(w1
2 + w1w2 + w2

2) and B := u1
2 + u1u2 + u2

2 + αw1
2,

we have that
(w1 − w2)A = (u1 − u2)B.

Let
W = λU + ν,

be the defining equation of the line L that passes through the points P1 and P2.

Case 1. If P1 , P2, then the slope λ is given by

λ =
w1 − w2

u1 − u2
=

B
A
.

But,

|A|p = |1 − αu2(w1 + w2) − β(w1
2 + w1w2 + w2

2) |p
≤ max{1, |αu2(w1 + w2) |p, | β(w1

2 + w1w2 + w2
2) |p}

We have

|αu2(w1 + w2) |p ≤ |α |p |u2 |p max{|w1 |p, |w2 |p} < 1

and

| β(w1
2 + w1w2 + w2

2) |p ≤ | β |p max{|w1 |p2, |w1 |p |w2 |p, |w2 |p2} < 1,
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so

|A|p = max{1, |αu2(w1 + w2) |p, | β(w1
2 + w1w2 + w2

2) |p} = 1.

Similarly,

|B |p = |u1
2 + u1u2 + u2

2 + αw1
2 |p

≤ max{|u1 |p2, |u1 |p |u2 |p, |u2 |p2, |α |p |w1 |p2}
≤ max{p−2n, p−2n, p−2n, p−3n}
= p−2n.

Hence, we obtain an upper bound for the slope, i.e.

|λ |p =
�����BA

�����p = |B |p|A|p ≤ p−2n.

Case 2. We assume now that P1 = P2. Then the line L is actually the tangent of E at the
point P1. So we compute the slope, in order to find again an upper bound, by differ-
entiation. We have

W = U3 + αUW 2 + βW 3 ⇒ (
1 − 2αUW − 3βW 3)dW =

(
3U2 + αW 2)dU

⇒ dW
dU

�����U=u1

=
3u1

2 + αw1
2

1 − 2αu1w1 − 3βw13 .

But
|1 − 2αu1w1 − 3βw1

3 |p ≤ max{1, |2αu1w1 |p, |3βw1
3 |p},

and
|2αu1w1 |p < 1 , |3βw1

3 |p < 1,
and so

|1 − 2αu1w1 − 3βw1
3 |p = 1.

Therefore,

|λ |p =
������dW
dU

�����U=u1

������p =
����� 3u1

2 + αw1
2

1 − 2αu1w1 − 3βw13

�����p = ���3u1
2 + αw1

2���p
≤ max{|3|p |u1 |p2, |α |p |w1 |p2} ≤ p−2n.

Thus, in each case we have that
|λ |p ≤ p−2n.

Since we need to prove that P3 ∈ En(Q), using that P1, P2 ∈ En(Q), we need to determine the
relations that their coordinates satisfy. Let P1P2 = [ũ : 1 : w̃] be the third point of intersection
of the elliptic curve E and the line passing through P1 and P2. We first recall that u1, u2 and
ũ are solutions of the cubic equation

λU + ν = U3 + αU (λU + ν)2 + β(λU + ν)3

⇔ (1 + αλ2 + βλ3)U3 + (2αλν + 3βλ2ν)U2 + (αν2 + 3βλν2 − λ)U + (βν3 − ν) = 0.
Consequently,

u1 + u2 + ũ = −2αλν + 3βλ2ν

1 + αλ2 + βλ3 .
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Applying again the same argument we have that


|1 + αλ2 + βλ3 |p ≤ max{1, |αλ2 |p, | βλ3 |p}
|α |p |λ |p2 < 1
| β |p |λ |p3 < 1

⇒ |1 + αλ2 + βλ3 |p = 1,

which means that
|u1 + u2 + ũ|p = |2αλν + 3βλ2ν |p.

We also have that,

|ν |p = |w1 − λu1 |p ≤ max{|w1 |p, |λ |p |u1 |p} ≤ p−3n.

Thus,
|2αλν + 3βλ2ν |p ≤ max{|2|p |α |p |λ |p |ν |p , |3|p | β |p |λ |p2 |ν |p} ≤ p−3n

(15) ⇒ |u1 + u2 + ũ|p ≤ p−3n.

By construction we have that P3 = −P1P2. This means that [u3 : 1 : w3] = [−ũ : 1 : −w̃]. So,
for u3 we have

|u3 |p = | − ũ|p = |u1 + u2 + ũ − u1 − u2 |p ≤ max{|u1 + u2 + ũ|p, |u1 |p, |u2 |p} ≤ p−n.

Also,

|w3 |p = | − w̃ |p = |λũ + ν |p ≤ max{|λ |p |ũ|p, |ν |p} ≤ max{p−np−2n, p−3n} < 1.

So, by definition we have that P3 = P1 + P2 ∈ En(Q). Hence, En(Q) is a subgroup of E(Q).
Let P = [u : 1 : w] ∈ En(Q). This means that |u|p ≤ p−n. So,

pn |u|p ≤ 1⇔ |p−nu|p ≤ 1⇔ p−nu ∈ Z(p) ⇔ u ∈ pnZ(p) .

Hence, ηn is indeed a map from En(Q) to pnZ(p)/p3nZ(p). It is obvious that ηn(O) =
[0]p3nZ(p)

. Also, according to (15), we have that

u1 + u2 − u3 ∈ p3nZ(p) ⇒ [u1 + u2 − u3]p3nZ(p)
= [0]p3nZ(p)

⇒ [u1 + u2]p3nZ(p)
= [u3]p3nZ(p)

.

[u1]p3nZ(p)
+ [u2]p3nZ(p)

= [u3]p3nZ(p)
⇒ ηn(P1) + ηn(P2) = ηn(P3) = ηn(P1 + P2),

so ηn is a homomorphism.
Consider the point P = [u : 1 : w] ∈ ker(ηn). Then

ηn(P) = [0]p3nZ(p)
⇒ u ∈ p3nZ(p) ⇒ |p−3nu|p ≤ 1⇒ |u|p ≤ p−3n.

By the last inequality and the fact that |w |p = |u|p3, follows that |w |p < 1, and so we proved
that P ∈ E3n(Q). Hence, ker(ηn) ⊆ E3n(Q). This completes the proof, since it is obvious
that E3n(Q) ⊆ ker(ηn). □

PROPOSITION 1.15. For each prime p, we have

E(Q)tor ∩ E1(Q) = {O}.
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Proof. Let E(Q)tor ∩ E1(Q) , {O}. So, there is a nonzero point in the intersection
E(Q)tor ∩ E1(Q). Particularly, there is a point Q = [uQ : 1 : wQ] of prime order1 q, i.e.
qQ = O. Also, there exists unique n ∈ N, such that

Q ∈ En(Q) ∖ En+1(Q).

For that specific n, we define the homomorphism ηn, as in proposition 1.14. Then

ηn(qQ) = ηn(O) = [0]p3nZ(p)
⇒ quQ ∈ p3nZ(p) .

If p , q, then uQ ∈ p3nZ(p) ⊆ p2nZ(p), while if p = q, then uQ ∈ p3n−1Z(p) ⊆ p2nZ(p). In
each case, we have by injectivity that

uQ ∈ p2nZ(p) ⇒ Q ∈ E2n(Q) ⊆ En+1(Q),

which is a contradiction. □

The previous results are necessary for the proof of Lutz-Nagell theorem, which is actually
an easy-to-state theorem, but its proof is elaborate.

Proof of Theorem 1.1. (i) We consider two cases. If yP = 0, then the point P is of
order 2, and xP is a rational root of the polynomial X3 + αX + β, and so an integer by
Gauss’ lemma. If otherwise, i.e. if yP , 0, we consider the change of coordinates

uP :=
xP

yP
and wP :=

1
yP
.

Then
P = [xP : yP : 1] = [uP : 1 : wP].

We fix a prime number p. By proposition 1.15 we have that P < E1(Q). This means
that |wP |p ≥ 1 ⇔ |yP |p ≤ 1. Since this is true for any prime p, we have that yP ∈ Z.
Then by (14), we also have |xP |p ≤ 1, for every prime p. And, so xP ∈ Z.

(ii) For the first coordinate x2P of the point 2P, we have that

x2P =
xP

4 − 2αxP
2 − 8βxP + A2

4(xP
3 + αxP + β)

=
xP

4 − 2αxP
2 − 8βxP + α

2

4yP
2 .

Set λ(xP) := xP
4 − 2αxP

2 − 8βxP + α
2. Then

λ(xP) = 4yP
2x2P.

According to (i), the numbers λ(xP), yP
2 and x2P are integers, and so it follows that

yP
2 | λ(xP). An easy calculation shows that

(3xP
3 + 4α)λ(xP) − (3xP

3 − 5αxP − 27β)yP
2 = 4α3 + 27β2.

By the last equation and the fact the yP
2 | λ(xP), we conclude that yP

2 | 4α3 + 27β2,
which is the desired result.

1Let Q′ ∈ E(Q)tor. Then there exists a natural number k ≥ 2, so that kQ′ = O. Let q be a prime divisor of
k. Then

q
(

k
q

Q′
)
= O,

so the point
k
q

Q′ easily follows that it is of order 2.
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□

REMARK 1.16. The Lutz-Nagell theorem provides us with a rather not fast algorithm for
finding torsion points on an elliptic curve E, defined over the rationals. For any y, in the set

{k ∈ Z : k2 | 4α3 + 27β2},

we try to find all integers x, which are roots of the polynomial X3 + αX + β − y2. For those
x, we check whether the point [x : y : 1] is a torsion point, or not.
Moreover, given a point P ∈ E(Q) we are able to determine if its order is infinite. We simply
calculate the coordinates of the points nP. If these are not integer numbers, then the point P
is of infinite order. Actually, it turns out that we need to check only the points 2P, 4P and
8P, to check if the point P is of finite order.

The following propositions (see [9]) give us some examples of families of elliptic curves,
the finite points of which, can be explicitly determined.

PROPOSITION 1.17. Let α ∈ Z, such that p4 ∤ α, for every prime number p. Consider the
elliptic curve

E |Q : Y 2 = X3 + αX .

Then, its torsion points, that differ from the point O, are the following:

(i) the point [0 : 0 : 1] of order 2.
(ii) if α = 4, the points [2 : ±4 : 1] of order 4.

(iii) if α = −r2, for some r ∈ Z, then [r : 0 : 1], of order 2.

In other words,

E(Q)tor �

Z/4Z , if α = 4
Z/2Z ⊕ Z/2Z , if ∃ r ∈ Z : α = −r2

Z/2Z , if otherwise
.

The previous result is due to Feuter in 1930, based broadly on an argument suggested by
Mordell. Five years later, Nagell proved the following result for another family of elliptic
curves.

PROPOSITION 1.18. Let β ∈ Z, such that p6 ∤ β, for every prime number p, and let

E |Q : Y 2 = X3 + β.

Then the torsion points of E, that differ from the point O, are the following:

(i) if β = r2, for some r ∈ Z, then the finite order points are the points [0 : ±r : 1] of order
3.

(ii) if β = s3, for some s ∈ Z, then the only finite point is the point [−s : 0 : 1], of order 2.

In other words,

E(Q)tor �
Z/3Z , if ∃ r ∈ Z : β = r2

Z/2Z , if ∃ s ∈ Z : β = s3 .
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2. Torsion Group of Elliptic Curves over Number Fields

The goal of this paragraph is to describe briefly what it is known about the group E(K )tor
of an elliptic curve defined over an arbitrary number field K . One of the most significant
results concerning the torsion subgroup E(K )tor is the following.

THEOREM 2.1 (Merel). For every d ∈ N, there exists a positive integer Bd , such that for
every number field K of degree d and elliptic curve E over K, it holds that

|E(K )tor | < Bd .

This theorem is also known as "the strong uniform boundedness conjecture". The word
"strong" indicates that the bound is uniform in all number fields of the same degree over Q.
It is known as a conjecture of Ogg, but Levi was the first that conjectured the finiteness of
|E(K )tor |. Manin proved a local version of this conjecture in 1969 (see [14]).

THEOREM 2.2 (Manin). For any number field K and any prime number p, there exists an
integer e ≥ 0, such that no elliptic curve defined over K has rational point of order pe.

Merel published an existential proof of this conjecture in 1996, but it was Parent, who
gave precise values for the constant Bd some years later.

We introduce now some standard notation. For d ∈ N, we define the following sets, which
depend only on the choice of the natural number d, as a consequence of the strong uniform
boundedness conjecture.

Φ(d) := the set of all possible isomorphism classes of the torsion group E(K )tor of
an elliptic curve E defined over a number field K of degree d over Q.

S(d) := the set of primes that can appear as the order of a torsion point of an elliptic
curve E defined over a number field of degree d over Q.

= the set of primes p for which there exists an elliptic curve E over a number
field of degree d over Q, such that |E(K )tor | is divided by p.

As a consequence of Frey’s and Falting’s work, we have that

Φ(d) is finite⇔ S(d) is finite.

Merel proved the finiteness of S(d) for each d ≥ 1, and so the strong uniform boundedness
conjecture.

The ideal, for the study of the elliptic curves, would be to establish the set Φ(d), for any
choice of the natural number d. Until today, this is an open question. Mazur’s theorem
determines the set Φ(1). Due to the work of Kamienny, Kenku and Momose the set Φ(2) has
been determined explicitly.

THEOREM 2.3 (Kamienny, Kenku, Momose). Let K = Q(
√

d), be a quadratic number field
and E be an elliptic curve over K. Then

(i) for d = −3, we have E
(
Q(
√
−3)

)
tor � Z/3mZ ⊕ Z/3mZ, with m ∈ {1, 2},

(ii) for d = −1, we have that E
(
Q(
√
−1)

)
tor � Z/4Z ⊕ Z/4Z, and
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(iii) for any other choice of d, we have either that E(K )tor � Z/mZ, for m ∈ {1, 2, . . . , 16, 18},
or that E(K )tor � Z/2Z ⊕ Z/2mZ, with m ∈ {1, 2, . . . , 6}.

For d ≥ 3, we have some results for the torsion subgroup, but not conclusive answer for
the set Φ(d). It is worth-noting that the study of the torsion points of elliptic curves is an
active field of research. Even if the set Φ(d) has not been established for any d, there are
several results concerning specific subsets of Φ(d). We give an indicative example of such a
subset of Φ(d) and of what it is known about it. Let

ΦQ(d) := the set of possible isomorphism classes of groups E(K )tor, where K is a
number field K of degree d over Q and E is an elliptic curve defined over Q.

Due to recent work of Conzalez-Jimenez and Najman the set ΦQ(p), where p is a prime
number, is determined. Practically, this means that we know all possible torsion groups over
prime degree number fields of elliptic curves with rational coefficients.

3. The rank of elliptic curves over Q

We recall that for the group E(Q) of rational points of an elliptic curve E over the rationals,
it holds that

E(Q) � E(Q)tor ⊕ Zr,

where E(Q)tor is the torsion subgroup of E(Q) and r ∈ N0 is the rank of the elliptic curve E.
We studied thoroughly the group E(Q)tor, and so in this section we focus on the rank of E.

The first question that arises is, whether we are able to determine the rank of an elliptic
curve, or not. For specific cases the rank has been determined, but in its generality this is an
open problem for now. In fact we do not know which nonnegative integers appear as rank of
an elliptic curve, or even better if the rank is a bounded number or not.

Another important question that we are interested in is about the generators of Zr . Assum-
ing that we know the rank of an elliptic curve, are we able to establish a system of generators
of Zr?

3.1. The algebraic approach.

3.1.1. Cohomology of profinite groups. First, we note that the definitions and the results
we will mention are more general2, but for simplicity we stick to the case that concerns us.

Let K be a number field and K̄ be its algebraic closure. It is known that K̄ is the direct
limit of all finite Galois extensions L of K , i.e.

K̄ = lim−→
L/K finite & Galois

L.

Moreover, the extension K̄/K is an infinite Galois extension3, such that the group Gal(K̄/K )
is profinite. In particular,

Gal(K̄/K ) = lim←−
L/K finite & Galois

Gal(L/K ).

2Instead of the profinite group Gal(K̄ ), we could state the results for any profinite group G.
3Sometimes the extension K̄ of K is referred as the absolute Galois extension of K .
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This means that Gal(K̄/K ) is also a topological group, such that a basis of open sets around
the identity consists of all subgroups of Gal(K̄/K ) of finite index.

Let M be an abelian group on which the group Gal(K̄/K ) acts. We denote the action of
σ ∈ Gal(K̄/K ) on m ∈ M , by

m 7−→ mσ .

The M is a (right) Gal(K̄/K )-module if the action of G on M satisfies the properties

m1 = m , (m + m′)σ = mσ + m′σ and (mσ)τ = mστ .

If M and N are both Gal(K̄/K )-modules, a Gal(K̄/K )-homomorphism is a homomor-
phism ϕ : M −→ N of abelian groups commuting with the action of G, i.e.

ϕ(mσ) = ϕ(m)σ,

for all σ ∈ Gal(K̄/K ) and m ∈ M .

DEFINITION 3.1. A discrete Gal(K̄/K )-module is an abelian group M , on which the group
Gal(K̄/K ) acts continuously with respect to the topology on Gal(K̄/K ), which described
above, and the discrete topology on M . In other words, the map

Gal(K̄/K ) × M −→ M , (σ,m) 7−→ mσ

is continuous.

The definition of a discrete Gal(K̄/K )-module is rather not so practical, and so we need
other equivalent characterizations.

PROPOSITION 3.2. Let M be a Gal(K̄/K )-module. The following are equivalent:

(i) M is a discrete Gal(K̄/K )-module.
(ii) For each m ∈ M, the stabilizer

Gm := {σ ∈ Gal(K̄/K ) | mσ = m}
is an open subgroup of Gal(K̄/K ).

(iii) If B(1) is a basis of sets around the identity, which consists of open normal subgroups
H of Gal(K̄/K ), then

M =
∪

H∈B(1)

M H,

where
M H := {m ∈ M | mσ = m , ∀σ ∈ H }.

THEOREM 3.3 (Structure Theorem of Profinite Groups (for Gal(K̄/K ))). (i) Let H be
a normal subgroup of Gal(K̄/K ). Then H is open if, and only if the group Gal(K̄/K )/H
is finite.

(ii) Let H be a subgroup of Gal(K̄/K ). The following are equivalent:
(1) H is close.
(2) H is profinite.
(3) H is intersection of infinitely many open subgroups of Gal(K̄/K ).

Proof. (see [17], or [?] ) □
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EXAMPLE 3.4. Let M be the additive abelian group (K̄,+) and the action

Gal(K̄/K ) × K̄ −→ K̄

be the usual one. Since
K̄ =

∪
K≤L≤K̄

L/K finite

L,

the K̄ is discrete Gal(K̄/K )-module. It holds the same if we consider the corresponding
multiplicative group. In other words, the group K̄× is also a discrete Gal(K̄/K )-module.

EXAMPLE 3.5. Let E be an elliptic curve defined over an arbitrary number field K . Then
E(K̄ ) is an additive abelian group and a discrete Gal(K̄/K )-module, because

E(K̄ ) =
∪

K≤L≤K̄
L/K finite

E(L).

We are interested in calculating the largest submodule of a given Gal(K̄/K )-module, on
which Gal(K̄/K ) acts trivially. To that purpose, we define the 0th cohomology group.

DEFINITION 3.6. The 0th cohomology group of the Gal(K̄/K )-module M is defined by

H 0 (Gal(K̄/K ), M
)

:= {m ∈ M | mσ = m , ∀σ ∈ Gal(K̄/K )}.
That is the submodule of M , that consist of all Gal(K̄/K )-invariant elements.

This definition implies the existence of cohomology groups of higher order. Indeed, we
could define the n-th cohomology group for any n ∈ N0, but this not necessary for our goal.
We need only the 0th and the 1st cohomology group. Therefore, it remains to define the 1st
cohomology group.

Let
0 −→ A

ϕ
−→ B

ψ
−→ C −→ 0

be a short exact sequence of Gal(K̄/K )-modules. That is, ϕ and ψ are Gal(K̄/K )-modules
homomorphisms such that ϕ is injective, ψ is surjective and

Im(ϕ) = ker(ψ).

Easily follows that taking the corresponding cohomology groups, we may write the following
exact sequence

0 −→ H 0 (Gal(K̄/K ), A
) −→ H 0 (Gal(K̄/K ), B

) −→ H 0 (Gal(K̄/K ),C
)
.

The problem now is that the map on the right fails to be surjective. We would like to measure
this failure, i.e. this lack of surjectivity.

DEFINITION 3.7. Let M be a Gal(K̄/K )-module, and C1 (Gal(K̄/K ), M
)

the set of all maps

Gal(K̄/K ) −→ M .

This is a group and it is called the group of 1-cochains from Gal(K̄/K ) to M . We define the
group of 1-cocycles (from Gal(K̄/K ) to M) by

Z1 (Gal(K̄/K ), M
)

:=
{
ξ ∈ C1 (Gal(K̄/K ), M

) ��� ξ (στ) = ξ (σ)τ + ξ (τ) , ∀σ, τ ∈ Gal(K̄/K )
}
.
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We also define the group of 1-coboundaries (from Gal(K̄/K ) to M) to be

B1 (Gal(K̄/K ), M
)

:=
{
ξ ∈ C1 (Gal(K̄/K ), M

) ���∃m ∈ M : ξ (σ) = mσ − m , ∀σ ∈ Gal(K̄/K )
}
.

By these definitions we can prove that the group of 1-coboundaries is a normal subgroup of
the group of 1-cochains. The 1st cohomology group of the Gal(K̄/K )-module M is denoted
byH 1 (Gal(K̄/K ), M

)
and it is the quotient group of these groups, i.e.

H 1 (Gal(K̄/K ), M
)
= Z1 (Gal(K̄/K ), M

)
/B1 (Gal(K̄/K ), M

)
.

REMARK 3.8. If we consider the trivial action of Gal(K̄/K ) on M , then

H 0 (Gal(K̄/K ), M
)
= M and H 1 (Gal(K̄/K ), M

)
= Hom

(
Gal(K̄/K ), M

)
.

Indeed, the first relation is immediate by the definition of 0th cohomology. For the second
relation, it suffices to observe that all maps from Gal(K̄/K ) to M , i.e. all the 1-cocycles, are
group homomorphisms and the only 1-coboundary is the trivial one.

We consider again the short exact sequence of Gal(K̄/K )-modules

0 −→ A
ϕ
−→ B

ψ
−→ C −→ 0.

Let c ∈ H 0 (Gal(K̄/K ),C
)
. Then there exists an b ∈ B, such that ψ(b) = c. We define the

ξ ∈ C1 (Gal(K̄/K ), M
)

by
ξ (σ) = mσ − m.

Then ξ ∈ Z1 (Gal(K̄/K ), A
)
. We define the δ(c), to be the cohomology class inH 1 (Gal(K̄/K ), A

)
of the 1-cocycle ξ. This δ is a homomorphism, and by diagram chasing it follows that the
sequence

0 −→ H 0 (Gal(K̄/K ), A
) −→ H 0 (Gal(K̄/K ), B

) −→ H 0 (Gal(K̄/K ),C
)

δ−→ H 1 (Gal(K̄/K ), A
) −→ H 1 (Gal(K̄/K ), B

) −→ H 1 (Gal(K̄/K ),C
)
,

is exact.

Let now M be a discrete Gal(K̄/K )-module and L/K be a finite Galois extension. Since
L/K is Galois the group Gal(K̄/L) is a normal subgroup of Gal(K̄/K ). Further, it is known
that

Gal(L/K ) � Gal(K̄/K )/Gal(K̄/L)
and

[Gal(K̄/K ) : Gal(K̄/L)] = [L : K] < ∞.
This means that M can be considered as a discrete Gal(K̄/L)-module, and so both 1st coho-
mology groups,H 1 (Gal(K̄/K ), M

)
andH 1 (Gal(K̄/L), M

)
, are defined. If ξ : Gal(K̄/K ) −→

M is a 1-cochain, then its restriction ξ |Gal(K̄/L) is a 1-cochain from Gal(K̄/L) to M . There-
fore, it is clear that this restriction of ξ takes cocylces to cocycles and coboundaries to
coboundaries. So, we obtain a restriction homomorphism

Res : H 1 (Gal(K̄/K ), M
) −→ H 1 (Gal(K̄/L), M

)
.

Since Gal(K̄/L) ⊴ Gal(K̄/K ), the submodule

MGal(K̄/L) := {m ∈ M | mσ = m , ∀σ ∈ Gal(K̄/L)}
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is a Gal(K̄/K )/Gal(K̄/L)-module. This observation leads us to write the following compo-
sition of maps

Gal(K̄/K ) −→ Gal(K̄/K )/Gal(K̄/L)
ξ
−→ MGal(K̄/L) ↪→ M,

where the map on the left is the natural projection and the map on the right is the natural
inclusion. That is actually a 1-cochain of Gal(K̄/K ) to M . If ξ is a cocycle or coboundary,
the composition has the same property as well. Thus, we obtain an inflation homomorphism

Inf : H 1
(
Gal(K̄/K )/Gal(K̄/L), MGal(K̄/L)

)
−→ H 1 (Gal(K̄/K ), M

)
.

Using these homomorphisms, the restriction and the inflation, we can construct the following
exact sequence

0 −→ H 1
(
Gal(K̄/K )/Gal(K̄/L), MGal(K̄/L)

) Inf−→ H 1 (Gal(K̄/K ), M
)

Res−→ H 1 (Gal(K̄/L), M
)
.

3.1.2. The groups of Selmer and Shafarevich. Let E be an elliptic curve defined over the
rationals and m ∈ N. Recall that the m-torsion subgroup of E(Q) is defined by

E[m](Q) = {P ∈ E(Q) | mP = O}
and it holds that

E(Q)tor =
∪
m∈N

E[m](Q).

Generally if an elliptic curve E is defined over a number field K , with K̄ be its algebraic
closure, then

E[m](K̄ ) � Z/mZ ⊕ Z/mZ.
Moreover, if the field K is algebraically closed field, the m-multiplication of a point, that is,
the homomorphism

[m] : E(K̄ ) −→ E(K̄ )
P 7−→ mP,

is a surjective homomorphism (see [18], p. 98). We distinguish two cases. If K = C, then

E[m](C) � Z/mZ ⊕ Z/mZ.
If K is algebraically closed but not the field of complex numbers, then K ↪→ C, and so it
holds the same.

As we have mentioned the additive group E(K̄ ) is a discrete Gal(K̄/K )-module. This
means that the sequence

0 −→ E[m](K̄ ) −→ E(K̄ ) −→ E(K̄ ) −→ 0,

is a short exact sequence, where the map on the right is the m-multiplication of points of
E(K̄ ). Hence, we have the exact sequence

0 −→ E[m](K ) −→ E(K )
[m]−→ E(K )

δ−→ H 1 (Gal(K̄/K ), E[m](K̄ )
)

−→ H 1 (Gal(K̄/K ), E(K̄ )
) −→ H 1 (Gal(K̄/K ), E(K̄ )

)
,
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where δ is the connecting homomorphism, as we defined it in the previous paragraph. We
denote byH 1 (Gal(K̄/K ), E(K̄ )

)
[m] the group of all elements ofH 1 (Gal(K̄/K ), E(K̄ )

)
that

have order, which divides the natural number m. Then the sequence

(16) 0 −→ E(K )/mE(K )
δ−→ H 1 (Gal(K̄/K ), E[m](K̄ )

)
−→ H 1 (Gal(K̄/K ), E(K̄ )

)
[m] −→ 0

is exact.

Our purpose now is to determine a bound for the quotient group E(K )/mE(K ). We ob-
serve that the group H 1 (Gal(K̄/K ), E[m](K̄ )

)
depends only on the structure of the group

Gal(K̄/K ), and not on the elliptic curve E, and if it is finite, then so is E(K )/mE(K ). But the
groupH 1 (Gal(K̄/K ), E[m](K̄ )

)
is infinite. The basic idea in order to overcome this obstacle

is to study our problem locally.

Let MK be the set of all places of K and v ∈ MK . We denote by Kv the completion of K
with respect to v, and by K̄v its algebraic closure. Then it is easy to verify that

Gal(K̄v/Kv) ≤ Gal(K̄/K ).

Indeed, the profinite group Gal(K̄v/Kv) acts on Kv, and a fortiori on K , since K ≤ Kv . This
means that each Kv-automorphism of K̄v, restricted to K̄ , can be seen as K-automorphism of
K̄ . Also, since we have assumed that the elliptic curve E is defined over K and K ≤ Kv, it is
also defined over Kv. As in (16), we have an exact sequence

0 −→ E(Kv)/mE(Kv)
δ−→ H 1 (Gal(K̄v/Kv), E[m](K̄v)

)
−→ H 1 (Gal(K̄v/Kv), E(K̄v)

)
[m] −→ 0

of discrete Gal(K̄v/Kv)-modules. Each 1-cochain of H 1 (Gal(K̄/K ), E(K̄ )
)

induces a 1-
cochain ofH 1 (Gal(K̄v/Kv), E(K̄v)

)
. This means that we shall define a homomorphsim

H 1 (Gal(K̄/K ), E(K̄ )
) −→ H 1 (Gal(K̄v/Kv), E(K̄v)

)
.

Similarly, we define a homomorphism

H 1 (Gal(K̄/K ), E[m](K̄ )
) −→ H 1 (Gal(K̄v/Kv), E[m](K̄v)

)
.

Therefore, we obtain the following commutative diagram with exact rows.

0 // E(K )/mE(K )

��

δ
// H 1 (Gal(K̄/K ), E[m](K̄ )

)
��

s
**TTTTTTTTTTT

φ
// H 1 (Gal(K̄/K ), E(K̄ )

)
[m]

ψ

�� ��

// 0

0 // E(Kv)/mE(Kv)
δ
// H 1 (Gal(K̄v/Kv), E[m](K̄v)

)
// H 1 (Gal(K̄v/Kv), E(K̄v)

)
[m] // 0

We would like now to replace the cohomology groupH 1 (Gal(K̄/K ), E[m](K̄ )
)
, with a sub-

set of it, so that it contains the image δ
(
E(K )/mE(K )

)
. It is obvious that

δ
(
E(K )/mE(K )

) ⊆ ker(φ).

This means that

φ
(
δ
(
E(K )/mE(K )

))
= 0⇒ ψ

(
φ
(
δ
(
E(K )/mE(K )

)))
= 0
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⇒ δ
(
E(K )/mE(K )

) ⊆ ker(ψ ◦ φ) = ker(s).

DEFINITION 3.9. The m-Selmer group of an elliptic curve E defined over K ,which is de-
noted by Sel(m) (E, K ), is defined to be the kernel of the map s for all v ∈ MK . In other
words,

Sel(m) (E, K ) := ker *.,H 1 (Gal(K̄/K ), E[m](K̄ )
) −→ ⊕

v∈MK

H 1 (Gal(K̄v/Kv), E(K̄v)
)
[m]+/- .

Analogously, we define the Tate-Shafarevich group, usually denoted by X(E, K ), as follows:

X(E, K ) := ker *.,H 1 (Gal(K̄/K ), E(K̄ )
) −→ ⊕

v∈MK

H 1 (Gal(K̄v/Kv), E(K̄v)
)+/- .

REMARK 3.10. The Tate-Shafarevich group is the set of all elements ofH 1 (Gal(K̄/K ), E(K̄ )
)
,

so that restricted4 to v ∈ MK , are equal to the identity. This means that this group gives us a
measure of the difference between the local and the global.

LEMMA 3.11. For each pair of homomorphisms of abelian groups A
α−→ B

β
−→ C, the

following sequence

0 −→ ker(α) −→ ker(β ◦ α) −→ ker(β) −→ coker(α) −→ coker(β ◦ α)

−→ coker(β) −→ 0.

is exact.

Using this lemma, we may prove that the

0 −→ H 1 (Gal(K̄/K ), E[m](K̄ )
) −→ H 1 (Gal(K̄v/Kv), E(K̄v)

)
[m]

−→
⊕
v∈MK

H 1 (Gal(K̄v/Kv), E(K̄v)
)
[m] −→ 0

is a short exact sequence. This means that the

0 −→ E(K )/mE(K ) −→ Sel(m) (E, K ) −→X(E, K )[m] −→ 0

is a short exact sequence as well, where by X(E, K )[m], we denote the group of all elements
of the group X(E, K ), that they have order that divides m.

THEOREM 3.12. The m-Selmer group Sel(m) (E, K ) of an elliptic curve E defined over a
number field K is finite, for each m ∈ N.

Proof. (see [15], p. 110-117, or [18], p. 60-65) □

COROLLARY 3.13. The groups E(K )/mE(K ) and X(E, K )[m] are finite. In other words,
the finiteness of the group Sel(m) (E, K ) implies the weak Mordell-Weil theorem and the finite-
ness of the group X(E, K )[m].

4This restriction is induced by the inclusion Gal(K̄v/Kv ) ⊆ Gal(K̄/K ).
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We are interested in the group E(K )/mE(K ), in order to determine the rank of the elliptic
curve E. We just mentioned that the m-Selmer group is close to E(K )/mE(K ), meaning that
the difference of the orders of these groups is finite. This difference is a number that depends
on the choice of m.

CONJECTURE 3.14 (Tate). The Tate-Shafarevich group X(E, K ) of an elliptic curve E
defined over K if finite.

Assuming the truth of the conjecture of Tate, we would be able to conclude, not only that
the difference of the orders of E(K )/mE(K ) and Sel(m) (E, K ) is a number that is independent
of the choice of m, but also that the two groups are equal for almost every m ∈ N.

Till the end of 80’s there was no known example of elliptic curve with finite Tate-Shafarevich
group. This conjecture is still an open question. The importance of that conjecture will be-
come more clear, when we will present the strong version of the Birch and Swinnerton-Dyer
conjecture. We will mention some results at the end of the next paragraph.

3.2. The analytic approach. One of our goals is the formulation of the conjecture of
Birch and Swinnerton-Dyer, as part of the study of elliptic curves over the rationals. The
weak version of this conjecture is stated using L-series, and it turns out that L-series is a
necessary tool for attacking many conjectures and open questions in number theory.

3.2.1. The minimal discriminant. We begin by considering an elliptic curve E defined
over the rationals and given in long Weiestrass form, that is

(17) E |Q : Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6.

Without loss of generality we assume that ai ∈ Z, for every i ∈ {1, 2, 3, 4, 6}. Therefore,
the discriminant ∆E of the elliptic curve E is an integer number. Equivalently, it holds that
|∆E |p ≤ 1, for every prime number p. Further,

|∆E |p = 1⇔ p ∤ ∆E .

The problem now is that there are more than one long Weiestrass forms with integer coeffi-
cients for an elliptic curve E. Indeed, applying admissible change of variables, it is possible to
get a long Weierstrass form with integer coefficients from another one with the same property.
Such change of variables are of the form

(18) X = u2X ′ + r and Y = u3Y ′ + su2X ′ + t,

where r, s, t, u ∈ Q and u , 0. The observation that for such a form it holds that |∆E |p ≤ 1, or
equivalently υp(∆E ) ≥ 0, implies that the set

Sp := {|∆E |p | E is given in long Weierstrass form with integer coefficients}

has an upper bound, and even better, a maximum.

DEFINITION 3.15. Let E be an elliptic curve defined over the rationals and p be a prime
number. The equation (17) is called p-minimal model of E, if the number |∆E |p, where ∆E
is the discriminant of E , is equal to the maximal element of the set Sp. If (17) is p-minimal
model for every prime number p, then it is called global minimal model of E.
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The next result ensures that there exists a minimal model for every elliptic curve over the
rationals, and so we may assume that every elliptic curve is given in long Weierstrass form,
which is a global minimal model.

THEOREM 3.16 (Néron). Given an elliptic curve E over the rationals, there exists an
admissible change of variables, so that the resulting equation is a global minimal model for
E. Two global minimal models for an elliptic curve E are related by an admissible change of
variable of the form (18), such that r, s, t ∈ Z and u ∈ {−1, 1}.

REMARK 3.17. We can generalize the notion of the global minimal model to elliptic curves
defined over an arbitrary number fields. For the elliptic curve E over K , we are able to define
the v-minimal model of an elliptic curve for any v ∈ MK . However, it is not sure if a given
elliptic curve has global minimal model, i.e. Néron’s theorem is not true for elliptic curves
over number fields.

3.2.2. Reduction of elliptic curves over Q. We first dealt with the idea of reduction mod-
ulo prime number for the proof of the Lutz-Nagell theorem. We will now give more details,
that we will need in order to define the conductor and so, the L-series of an elliptic curve.

Let E be an elliptic curve over the rationals and p be a prime number. The curve that is
obtained after reduction modulo p is not necessarily an elliptic curve, too. In case it is we say
that E has good reduction at p. Otherwise, it is a singular cubic curve. This means that Ep
has a unique singularity, which is either a node, or a cusp.

Figure 2. Affine picture of an elliptic curve with cusp (on the left), and an
elliptic curve with a nodal point and the tangents on it (on the right).

These two cases of singularities leads us to discrete to different types of bad reduction.

DEFINITION 3.18. Let E be an elliptic curve and p be a prime, so that E has bad reduction
at p. We say that E has multiplicative reduction modulo p, if the singularity of the curve Ep
is a node. Otherwise, we say that E has additive reduction at p.
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In case of multiplicative reduction we have to give an extra characterization, depending on
where the tangents are defined.

DEFINITION 3.19. Let E be an elliptic curve over Q and p be a prime number, such that E
has multiplicative reduction at p. Then the multiplicative reduction at p is said to be split, if
the slopes of the tangent lines at the node are in Fp, and nonsplit otherwise.

DEFINITION 3.20. Let E be an elliptic curve over the rationals and

fp :=


0 , if E has good reduction at p,
1 , if E has multiplicative reduction modulo p at p,
2 , if E has additive reduction modulo p and p < {2, 3},
2 + δp , if E has additive reduction modulo p and p ∈ {2, 3}

,

where δp is defined by Ogg’s formula (see [16]) and is calculated by Tate’s algorithm (see
[22]). The natural number

NE =
∏

p prime

p f p,

is called conductor of E.

3.2.3. Elliptic curves defined over finite fields. We are interested now in elliptic curves
over finite fields. Let q be a prime number and E be an elliptic curve over the finite field Fq.
We would like to valuate the order of the group E(Fq), that is to find appropriate upper bound
for the number N (q) := #E(Fq). We assume that E is defined by an equation of the form 17,
i.e. a long Weierstrass form with integer coefficients. Using the observation that for any x,
we get at most two different values of y, we conlude that

1 ≤ N (q) ≤ 1 + 2q.

But this is a rather not so useful bound and of course it is not the best possible. Heuristically,
we would expect that for any quadratic equation of variable Y in terms of a given X , there
exists a solution with probability 1/2. This means that perhaps the number 1 + q is close to
N (q). Up to an error of 2

√
q this is true, due to Hasse’s work.

THEOREM 3.21 (Hasse). Let E be an elliptic curve defined over the finite field Fq. Then

|N (q) − (1 + q) | ≤ 2
√

q.

Proof. (see [7]) □

This is a result of great importance since it is equivalent to the Riemann hypothesis for
elliptic curves. An elementary proof was given by Manin (see [4], or [13]).

3.2.4. Definition of L(E, s) and their properties. The algebraic approach we tried in or-
der to compute the rank of an elliptic curve E over the rationals is not useful enough. We
obtained an upper bound by computing the order of the group Sel(m) (E,Q), but the difference
between this order and the rank of E, is given by the mysterious group X(E,Q).

This conversation makes it clear that we need to try a different approach. The idea of Birch
and Swinnerton-Dyer was elementary. They claimed that, if the rank of E is a large number,
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then so is N (p) for many primes p. The two mathematicians worked on this idea at late 50’s
until early 60’s (see [2]). They computed the value of the function

f (B) =
∏

p prime
p≤B

N (p)
p

,

for several positive real numbers B. The conclusion was the statement of the following con-
jecture.

CONJECTURE 3.22. For every elliptic curve E over the rationals, with rank r , there is a
constant c, so that

lim
B→+∞

f (B)
c(log B)r = 1.

Or equivalently,
f (B) ∼ c(log B)r,

as B → +∞.

This conjecture anticipates that the computation of the rank r is possible if we compute
the values of N (p) and constant c. However, Birch and Swinnerton-Dyer observed that as
B increases, the constant c can not be determined explicitly, not even approximated with
accuracy. They modified their idea, and so the conjecture itself.

To do so, they defined the L-series of an elliptic curve, using the ζ-function of an elliptic
curve over the rationals. Consider an elliptic curve E defined over Q and given by a global
minimal model. In this case the reduction modulo some prime p is singular if, and only if
p | ∆E , where ∆E is the discriminant of E. Since the conductor NE of E has the same prime
factors with the discriminant of E, then

p | ∆E ⇔ p | NE .

We will define the L-series of E locally, i.e. for any prime number. Let p be a prime number.
If E has good reduction modulo the prime p, then the L-series is defined, as follows

Lp(E,T ) := 1 − a(p)T + pT2,

where a(p) := p + 1 − N (p). Otherwise, we define

Lp(E,T ) := 1 − a(p)T,

where

a(p) :=


1 , if E has split multiplicative reduction at p
−1 , if E has nonsplit multiplicative reduction at p
0 , if E has additive reduction at p

.

DEFINITION 3.23. The L-series of the elliptic curve E over Q, is defined by

L(E, s) =
∏

p prime

Lp(E, p−s)−1,

for each s ∈ C.
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Due to Hasse’s theorem, it can be proven that the infinite product which defines the L-

function converges for all s ∈ C, such thatℜ(s) ≥ 3
2

. Let, now,

Λ(E, s) := (2π)−s NE
s
2 Γ(s)L(E, s).

CONJECTURE 3.24. The L-series L(E, s) has an analytic continuation to the entire complex
plane and satisfies the functional equation

Λ(E, s) = wΛ(E, 2 − s),

where w ∈ {−1, 1}

This conjecture was proven by Deuring for elliptic curves with complex multiplication.
Wiles and R. Taylor (see [25] and [23]) proved it in case of square free conductor. Finally,
the conjecture was proven for all elliptic curves over the rationals by Breuil, B. Conrad,
Diamond and R. Taylor (see [3]).

The number w in the conjecture is called root number, and the order of the root 1 ofΛ(E, s)
depends on it. If for example w = −1, then

Λ(E, 1) = −Λ(E, 2 − 1) ⇒ Λ(E, 1) = 0.

Further, it holds that
w = (−1)ords=1(L(E,s)) .

Now we are ready to state the weak version of Birch and Swinnerton-Dyer.

CONJECTURE 3.25 (Birch, Swinnerton-Dyer). Let E be an elliptic curve over the ratio-
nals. Then

ords=1
(
L(E, s)

)
= rank(E).

In other words, the conjecture informs us the the Taylor expansion of the L-series of E at
s = 1, is of the form

L(E, s) = a(s − 1)r + higher order terms,

such that a , 0 and r = rank(E). Consequently,

L(E, 1) = 0⇔ E(Q) is infinite.

An indicative of the significance and the elegance of the conjecture of Birch and Swinnerton-
Dyer is that it is one of the seven millennium problems, that Clay Mathematical Institute
announced on May, 2000, in Paris.

The first general result regarding this conjecture is due to Coates and Wiles (see [5]).

THEOREM 3.26 (Coates,Wiles). If E is an elliptic curve over the rationals, with complex
multiplication, then

rank(E) ≥ 1⇒ L(E, 1) = 1.

As a combination of the results of Gross and Zagier (see [6]) and Kolyvagin (see [10]), we
have the following theorem



Mordell-Weil Theorem for Elliptic Curves over Number Fields 63

THEOREM 3.27 (Gross,Zagier, Kolyvagin). Let E be an elliptic curve defined over Q. If

ords=1
(
L(E, s)

) ≤ 1,

then the Birch and Swinnerton-Dyer conjecture is true, that is

rank(E) = ords=1
(
L(E, s)

)
,

and the group X(E,Q) is finite.

This result has been generalized by Zhang (see [26]) for modular elliptic curves defined
over totally real number fields.

The weak version of the conjecture was stated in 1963. There exists also a strong version
of the Birch and Swinnerton-Dyer conjecture, stated in 1965. In order ti formulate it, we need
some additional notions.

• Let
E0(Qp) :=

{
P ∈ E(Qp) | P (mod p) ∈ Ens

p (Fp)
}

This is a subgroup of E(Qp), and so we define the index

cp := [E(Qp) : E0(Qp)].

Of course, if E has good reduction at a prime p, then cp = 1. This means that the
number cp is equal to 1 for almost every prime number p.
• Ω is the positive real period of the differential form

ω :=
dy
2y

up to the number of connected components of E, that is

Ω = ν

∫
E(R)
|ω |,

where by ν we define the number of connected components of E. It is known that∫
E(R)
|ω | =

cpNp

p
.

For the proof of this equation Haar measure is used.
• We know (see Appendix B), that for any elliptic curve E, we can define the Néron-

Tate pairing

⟨·, ·⟩ : E(K̄ ) × E(K̄ ) −→ R
(P,Q) 7−→ ĥE (P +Q) − ĥE (P) − ĥE (Q).

This is a Z-bilinear basis. If the set {P1, P2, . . . , Pr }, with r = rank(E), is a Z-basis
of the quotient group E(Q)/E(Q)tor, then we define the regulator of E, by

Reg(E,Q) := det
(⟨Pi, Pj⟩1≤i, j≤r

)
.

We note that if E has zero rank then Reg(E,Q) := 1. Since the canonical height ĥE
is a positively defined quadratic form, the regulator is a positive number.



64 3. THE RANK OF ELLIPTIC CURVES OVER Q

CONJECTURE 3.28 (Birch, Swinnerton-Dyer). Let E be an elliptic curve over the ratio-
nals, so that r = rank(E). Then

lim
s→1

(
(s − 1)−r L(E, s)

)
= |E(Q)tor |−2 · Ω ·

∏
p prime

cp · |X(E,Q) | · Reg(E,Q).

REMARK 3.29. (i) Every number that appears in the strong version of the Birch and
Swinnerton Dyer conjecture, except for the order of the Tate-Shafarevich group X(E,Q),
can be computed by programs such as PARI, SAGE e.t.c.

(ii) The number

det
(⟨Pi, Pj⟩1≤i, j≤r

)
/

E(Q) :
r∑

i=1

PiZ


is independent of the choice of Pi’s. It turns out that it is also equal to the number

|E(Q)tor |−2 · Reg(E,Q).

We finish this section chapter with the remark that until today, all the partial results that
have been proved, indicate that the conjecture of Birch and Swinnerton-Dyer is true. As an
indication of that, we mention that Bhargava, Skinner and Zhang proved that the majority of
elliptic curves, that is at least the 66, 48% of them, have rank equal to 0 or 1, and so they
satisfy the desired conjecture (see [1]). Also, this lower bound can be improved.

As it seems from this brief introduction to this field of mathematics, there are interest-
ing open problems and questions to be answered, including the Birch and Swinnerton-Dyer
conjecture.

All we have to do is keep searching for answers...



Appendix A: Valuations and Absolute Values

In this paragraph we present elements of the theory of valuations that are necessary for the
definition of heights and the proof of their properties.

Given a real or complex number, a naive measure of its size is its absolute value, which
actually indicates its distance from the origin of the real axis or the origin of the complex
plane, respectively. We would like to generalize the notion of the absolute values to algebraic
number fields.

DEFINITION 3.30. Let K be a number field. A real-valued absolute value, is called a map

| · | : K −→ R≥0,

that, for each α, β ∈ K , satisfies the following properties:

(i) |α | = 0⇔ α = 0.
(ii) Multiplicative: |αβ | = |α | · | β |.

(iii) Triangle inequality: |α + β | ≤ |α | + | β |.

If the absolute value, satisfies the following property:

(iii)* Ultrametric inequality: |α + β | ≤ max{|α |, | β |},

then it is called nonarchimedean5. Otherwise, it is called archimedean.

DEFINITION 3.31. Let K be a number field and | · |1 and | · |2 two real-valued absolute values
of K . These are called equivalent, if it holds that

|α |1 < 1⇔ |α |2 < 1,

for every α ∈ K .

Using this definition, we are able to prove the following result, which is a probably more
helpful characterization of the equivalence of absolute values.

PROPOSITION 3.32. Let K be a number field and | · |1 and | · |2 two real-valued absolute
values of K. These are equivalent if, and only if, there is a positive real number s, such that

|α |2 = |α |1s,

for each α ∈ K.

5The ultrametric inequality is stronger than the triangle inequality. Obviously, every nonarchimedean ab-
solute value satisfies the triangle inequality.

65
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This proposition makes it clear that, what we defined as equivalence of real-valued ab-
solute values of a number field, is actually an equivalence relation. This leads us to the
following definition.

DEFINITION 3.33. An equivalence class of absolute values of a number field K is called
place of K . The set of all places of the number field K is denoted by MK . Moreover, we
denote the set of all archimedean places of K , by M∞K .

By definition, an absolute value is a multiplicative map. The exponential analogous of the
absolute value, is also important.

DEFINITION 3.34. Let K be a number field and

υ : K −→ R ∪ {∞},
be a map, which satisfies the following properties:

(i) υ(α) = ∞ ⇔ α = 0,
(ii) υ(αβ) = υ(α) + υ(β), for any α, β ∈ K , and

(iii) υ(α + β) ≥ min{υ(α), υ(β)}. The equality holds in case υ(α) , υ(β).

The map υ is called (real-valued) valuation of K .

REMARK 3.35. As it is obvious the notions of valuations and absolute values are dual.
Some authors use the term "exponential valuation", rather than "valuation". In this case the
terms "valuation" and "absolute value" are identified.

REMARK 3.36. Given a valuation v of K , we can define a (nonarchimedean) absolute value
| · |, by

|α | := cυ(α),

with c is a real number such that 0 < c < 1. The inverse is also true. Given an absolute value
| · |, we can define a valuation υ as the logarithm of the absolute value, i.e. by

υ(α) := logc |α |,
such that 0 < c < 1, with the convention υ(0) := ∞.

We begin with the most simple number field, the field Q. The only archimedean absolute
value is the usual one, and it is denoted by | · |∞. In other words, if α ∈ Q, then

|α |∞ = max{−α, α}.
We want to determine the nonarchimedean absolute valuations. Every rational number α is
written uniquely in the form

α = sign(α)
r∏

i=1

pi
ni,

where sign(α) ∈ {−1, 1}, pi’s are prime numbers and ni ∈ Z, for every i ∈ {1, 2, . . . , r }. For
any prime p, we define the map

υp : Q −→ Z ∪ {∞}

α 7−→
ni , if p = pi, for some i ∈ {1, 2, . . . , r }

0 , if otherwise
,
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with the the convention that υ(0) = ∞. We define now the map

| · |p : Q −→ R≥0

α 7−→ p−υp (α)

It follows easily that υp is a valuation6 of Q and | · |p is an nonarchimedean absolute value of
Q.

DEFINITION 3.37. The valuation υp, is called p-adic valuation of Q and the absolute value
| · |p is called p-adic absolute value, or p-adic norm of Q.

By the definition of p-adic absolute values, we obtain a bijection between p-adic valuations
and p-adic absolute values. Indeed, if α ∈ Q, then

|α |p = p−υp (α) ⇔ υp(α) = − logp( |α |p).

PROPOSITION 3.38. Every archimedean real-valued absolute value of Q is equivalent to
the usual one, i.e. to the absolute value | · |∞, and every nonarchimedean real-valued absolute
value of Q is equivalent to a p-adic norm | · |p, for some prime number p.

Let now p ∈ MQ be a place7 of Q and | · |p its representative. The absolute value | · |p
induces a metric

dp(x, y) := |x − y |p , ∀ x, y ∈ Q.
We denote by Qp the completion of the field Q, with respect to the metric dp. It is also known
that equivalent absolute values induce the same completion of Q. If the absolute value | · |p
is equivalent to the usual one, which symbolically means that p = ∞, then the completion is
the field R of the real numbers, i.e. Q∞ = R. Otherwise, the absolute value | · |p is a p-adic
norm | · |p, and so the completion is the field Qp, i.e. the field of p-adic rational numbers.

A natural question that arises is why we choose the p-adic norms as representatives of
the equivalence classes of MQ. The answer is given by the following proposition, which
is an immediate consequence of the uniqueness of the factorization of a rational into prime
numbers.

PROPOSITION 3.39 (Product Formula). Let α ∈ Q. Then

|α |∞
∏

p prime

|α |p = 1.

We would like, now, to study the absolute values of number fields. One of our purposes
is to define the representatives of places, in a way that they satisfy a relation like the product
formula. In order to do that we need some notation.

DEFINITION 3.40. Let L/K be an extension of number fields, v ∈ MK and w ∈ ML. We
say that w lies over v, or w is an extension of v, and we write w | v, if the restriction of w to
K is v, i.e. if w |K = v.

6More precisely, υp is a discrete valuation.
7By that we mean that p is equal either to a prime number, or to∞.
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Let | · |p be a representative of the place v ∈ MK . Then this absolute value induces a metric
dv , as in the case of Q. We denote by Kv, the completion of K , with respect to v. Easily
follows that if v is a place of the number field K , its restriction in Q a place p of Q, and the
completion Qp of Q is a subfield of the completion Kv of K , with respect to v.

DEFINITION 3.41. Let K be a number field and v ∈ MK , which is extension of the place p
of Q. The local degree of v is the number

nv := [Kv : Qp].

We shall generalize the definition of the local degree to any extension of number fields, and
study the relation of it with the global degree of the extension. This leads us to the following
well-known result.

PROPOSITION 3.42 (Degree Formula). Let L/K be an extension of number fields, and let
v ∈ MK . Then

[L : K] =
∑
w |v

[Lw : Kv].

Proof. (see [12], p. 14) □

DEFINITION 3.43. Let | · |v be an absolute value corresponding to the place v ∈ MK . If by
nv we denote the local degree of v, the normalized absolute value associated to v is the ∥ · ∥v,
defined by

∥α∥v := |α |vnv

for each α ∈ K .

Using the degree formula, we can prove the next result.

PROPOSITION 3.44. Let K be a number field, α ∈ K, and | · |v be an absolute value of Q
corresponding to the place v ∈ MQ. Then∏

w |v
∥α∥w = |NK/Q(α) |v .

Proof. (see [11], p. 39) □

PROPOSITION 3.45 (Generalized Product Formula). Let K be a number field and v ∈ MK .
Then for each α ∈ K×, it holds that ∏

v∈MK

∥α∥v = 1.

Proof. (see [8],p. 172) □

We want now to describe precisely the absolute values of a number field K . Let
n = [K : Q]. We begin with the description of the archimedean absolute values of K . The
field K admits n pairwise distinct embeddings σ : K ↪→ C. Each of these embeddings define
an absolute value, by

|α |σ = |σ(α) |∞ , ∀α ∈ K
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where by | · |∞ we denote the usual absolute value on R or C. Of course, these embeddings
are either real, if σ(K ) ⊆ R, or complex, if σ(K ) ⊈ R. In the case of complex embeddings,
it is easy to verify that conjugate complex embeddings define the same absolute value. The
opposite is also true. Let σ1, σ2 : K ↪→ C be two embeddings of the number field K to
the complex field C. Then | · |σ1 = | · |σ2 if, and only if σ1 and σ2 are complex conjugate
embeddings of K .

We turn our attention to the nonarchimedean absolute values of K . In the case of Q, we
used the p-adic valuations, in order to describe the p-adic norms. We will do the same, except
we will use the prime ideals of K . Let RK be the ring of the algebraic integers of K and p
be a prime ideal of K which lies above the prime number p, i.e. a prime ideal p of the ring
RK , such that p | pRK . Using the fact that RK is a Dedekind domain, we extend the notion of
p-adic valuations to the notion of p-adic valuations. Let α ∈ K . For the ideal ⟨α⟩, we know
that there is unique factorization into prime ideals, up to rearrangement, of the form

⟨α⟩ =
r∏

i=1

pi
ni,

where pi is a prime ideal and ni ∈ Z, for every i ∈ {1, 2, . . . , r }. Then the map

υp : K −→ Z ∪ {∞}
0 7−→ ∞

α 7−→
ni , if p = pi , i ∈ {1, 2, . . . , r }

0 , otherwise

is a valuation8. Since the prime ideal p lies above the prime number p, the p-adic absolute
value is an extension of the p-adic norm. So, we would like to define a p-adic absolute value
| · |p, such that

|p|p = |p|p = p−1.

In order to accomplish that, we need to define | · |p using the ramification index9 ep of p.
Indeed, we define the p-adic norm, as follows

| · |p : K −→ R≥0

α 7−→ p−υp (α)/ep

The normal absolute value associated to the prime ideal p is defined by,

∥α∥p :=
(
NK/Q(p)

)−υp (α),

for every α ∈ K .

The above discussion for the absolute values of a number field K , is summarized in the
next proposition.

PROPOSITION 3.46. Let K be a number field of degree n over Q.

8Actually, like p-adic valuations, the map υp is also a discrete valuation
9The ramification index of the prime ideal p is the nonnegative integer number ep, with the property that

pep ∥⟨p⟩.
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(i) Let σ1, σ2, . . . , σr : K ↪→ R be the real embeddings of K and τ1, τ1, τ2, τ2, . . . , τs, τs :
K ↪→ C be the complex embeddings of K. Then, there is a bijection

M∞K ←→ {σ1, σ2, . . . , σr, τ1, τ2, . . . , τs} , ϱ 7−→ | · |ϱ.
(ii) Let RK be the ring of algebraic integers of the field K. Let also p be a prime number,

such that

pRK =

r∏
i=1

p1
e1 .

Then there is a bijection

{p1,p2, . . . ,pr } ←→ {p-adic valuations on K } , p 7−→ ∥ · ∥p

Consequently, a number field K has one absolute value for each prime ideal, one absolute
value for each real embedding and one for each pair of conjugate complex embedding of
K . Further, the set of all nonarchimedean absolute values corresponds to the set of all prime
ideals.

Let now K be a number field and σ be an automorphism of K̄ . Then σ induces an isomor-
phism σ : K −→ σ(K ). We could likewise identify the sets MK and Mσ(K ). Indeed, if for
each v ∈ MK , we define

|σ(α) |σ(v) := |α |v,
then the map

σ̂ : MK −→ Mσ(K )

v 7−→ σ(v)

is a bijection. So, it follows that Kv � σ(K )σ(v) and so the local degrees nv and nσ(v) are
equal.



Appendix B: Néron-Tate Height

Given elliptic curve E defined over a number field K we defined the height and the loga-
rithmic height of a point on E. Particularly, for two points P,Q ∈ E(K̄ ) we proved that there
are constants c1, c2 > 0, that depend only on E, so that

2hE (P) + 2hE (Q) − c1 ≤ hE (P +Q) + hE (P −Q) ≤ 2hE (P) + 2hE (Q) + c2.

Using to O(1) notation10, we have that

hE (P +Q) + hE (P −Q) = 2hE (P) + 2hE (Q) +O(1).

It is clear now that the logarithmic height on E satisfies the parallelogram law up to an error,
which is expressed by this O(1). Similarly, by the descent theorem, we obtain that

hE (mP) = m2hE (P) +O(1),

for each P ∈ E(K̄ ) and m ∈ Z. A natural question that arises is if we could modify the
logarithmic height hE , so that it becomes a quadratic form.

That was exactly the idea of Néron. He wondered if there is a function which is a quadratic
form and its difference from the height is bounded. To be precise, Néron gave the answer for
every height defined by a morphism, but we will stick to the case of hE .

We begin with the following observation. For each n ∈ N, we have that

hE (2nP) = 4hE (2n−1P) +O(1) = 42hE (2n−2P) +O(1) = · · · = 4nhE (P) +O(1).

Therefore, it follows that
hE (2nP)

4n = hE (P) +
O(1)

4n .

From this equation we conclude that if the sequence 4−nhE (2nP) converges, then the limit
possibly has the desired properties.

LEMMA 3.47. For every P ∈ E(K̄ ), the sequence 4−nhE (2nP) is a Cauchy sequence.

Proof. Let P ∈ E(K̄ ) and m, n ∈ N, such that n ≥ m. We have�����hE (2nP)
4n − hE (2mP)

4m

����� =
������
n−1∑
i=m

hE (2i+1P)
4i+1 − hE (2i P)

4i

������ ≤
������
n−1∑
i=m

1
4i+1

(
hE (2i+1P) − 4hE (2iP)

) ������ .
We know that

hE
(
2(2iP)

)
= 4hE (2i P) +O(1),

10When we write that f = O(1) for a function f , we mean that f is bounded by a constant, i.e. there exists
M > 0, so that | f (x) | ≤ M , for each x in which f is defined.
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so there exists a constant c > 0, so that�����hE (2nP)
4n − hE (2mP)

4m

����� ≤
n∑

i=m

c
4i+1 ≤

c
3 · 4m .

Now it is immediate that the sequence 4−nhE (2nP) is Cauchy. □

DEFINITION 3.48. Let E be an elliptic curve over K , and P ∈ E(K̄ ). We define the
canonical height or the Néron-Tate height of P, by

ĥE (P) := lim
n→+∞

hE (2nP)
4n .

PROPOSITION 3.49. Let E be an elliptic curve defined over the number field K.

(i) For each P ∈ E(K̄ ), it holds that

ĥE (2P) = 4ĥE (P).

(ii) For every P ∈ E(K̄ ), we have that

ĥE (P) = hE (P) +O(1).

(iii) For each B ∈ R>0, the set

{P ∈ E(K ) | ĥE (P) ≤ B}
is finite.

(iv) For each point P ∈ E(K̄ ), we have that ĥE (P) ≥ 0. The equality holds if, and only if P
is a torsion point of E.

Proof. (i) We have that

ĥE (2P) = lim
n→+∞

hE (2n · 2P)
4n = lim

n→+∞
hE (2n+1P)

4n = 4 lim
n+1→+∞

hE (2n+1P)
4n+1 = 4ĥE (P).

(ii) It is immediate from the equation
hE (2nP)

4n = hE (P) +
O(1)

4n .

(iii) From (ii), we have that
| ĥE (P) − hE (P) | ≤ c,

for some positive constant c. Then

ĥE (P) ≤ B ⇔ hE (P) ≤ B + hE (P) − ĥE (P) ≤ B + |hE (P) − ĥE (P) | ≤ B + c.

That is

{P ∈ E(K ) | ĥE (P) ≤ B} ⊆ {P ∈ E(K ) | hE (P) ≤ B + c}.
But the last set is finite due to 2.29. This means that the desired set is also finite.

(iv) The fact that ĥE (P) ≥ 0 is immediate by its definition. We will prove now that

ĥE (P) = 0⇔ P ∈ E(K̄ )tor.

(⇐) Let P be a torsion point of E. This means that the set

{2nP | n ∈ N0}
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is finite. This means that there exists a positive constant D, so that

hE (2nP) ≤ D , ∀ n ∈ N0.

Thus,
hE (2nP)

4n ≤ D
4n , ∀ n ∈ N0.

Taking n → +∞ we obtain that ĥE (P) ≤ 0. And since we know that the Néron-Tate
height is nonnegative number, it follows that ĥE (P) = 0.
(⇒) Let P ∈ E(K̄ ), so that ĥE (P) = 0. By (ii) we have that

ĥE (P) = hE (P) +O(1) ⇒ hE (P) = O(1) ⇒ ∃ c > 0 : |hE (P) | ≤ c.

And since hE (P) ≥ 0, we have that hE (P) ≤ c. From (i) it follows by induction, that

ĥE (2nP) = 4n ĥE (P) = 0.

Hence,
{2nP | n ∈ N0} ⊆ {Q ∈ E(K̄ ) | hE (Q) ≤ c}.

The set on the right is finite, and so is the set {2nP | n ∈ N0}. This means that the point
P is a torsion point.

□

PROPOSITION 3.50. Let E be an elliptic curve defined over the number field K. For every
P,Q ∈ E(K̄ ), the following are true

(i) 2ĥE (P +Q) + 2ĥE (P −Q) = 2ĥE (P) + 2ĥE (Q), and
(ii) ĥE (mP) = m2 ĥE (P) , ∀m ∈ N0.

Proof. (i) From the equation

hE (P +Q) + hE (P −Q) = 2hE (P) + 2hE (Q) +O(1),

we have
hE (P +Q)

4n +
hE (P −Q)

4n = 2
hE (P)

4n + 2
hE (Q)

4n +
O(1)

4n .

Taking n → +∞, we obtain the desired result.
(ii) Analogously.

□

This proposition informs us that the Néron-Tate height is a quadratic form, and so we are
able to define a bilinear form.

COROLLARY 3.51. Let E be an elliptic curve over the number field K. The pairing

⟨·, ·⟩ : E(K̄ ) × E(K̄ ) −→ R
(P,Q) 7−→ ĥE (P +Q) − ĥE (P) − ĥE (Q)

is bilinear.

DEFINITION 3.52. The pairing that defined in the corollary 3.51 is called Néron-Tate pair-
ing.
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Without proving it, we mention the following important result.

PROPOSITION 3.53. The Néron-Tate height is a positive definite quadratic form.

Proof. (see [18], p. 232) □
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