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Abstract

The present work aims to develop a phase sensitive homodyne detection tomography
approach that will be used for the characterization of the quantum state of a laser field.
The approach will be based on the development of an ultra–stable phase sensitive inter-
ferometric arrangement capable to provide measurements of the field quadratures beyond
the classical limit.
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Chapter 1

Coherent States of Light, Homodyne
Detection

1.1 Introduction

In the present chapter we will briefly describe how the quantization of the Electro-
magnetic (E/M) field can lead to a possible state which is called ”Coherent state of
light”[1][2]. We will obtain expressions for the operators that represent the field observ-
ables and study their properties as presented in [3][4]. More emphasis is given to the
properties of this state of light instead of its explicit derivation. Finally, we will present
a well known phase sensitive method, called ”Homodyne Detection”, by means of which
we are able to measure the properties of the signal field we are interested.

1.2 Maxwell’s Equations

The E/M field in a non-dispersive, non-absorbing, homogeneous medium can be ex-
pressed by the Maxwell’s equations:

~∇× ~E = −∂
~B

∂t
(1.1)

~∇× ~H =
∂ ~D

∂t
+ ~J (1.2)

~∇ ~D = ρ (1.3)

~∇ ~B = 0 (1.4)

where ρ, ~J are the charge and current density, respectively. Furthermore, the classical
fields are functions of position and time, but here we use a shorter notation ~E = ~E(~r, t),
~B = ~B(~r, t). In order to arrive at the quantization of the E/M field, we need to substitute

3



into the Maxwell’s equations the scalar and vector potential,

~∇φ = − ~E − ∂ ~A

∂t
and ~B = ~∇× ~A (1.5)

after substituting the Eq.1.5 into Eq.1.2,1.3 we obtain the following equations that scalar
and vector potential satisfy:

~∇(~∇ ~A)−∇2 ~A+
1

c2

∂

∂t
∇φ+

1

c2

∂2 ~A

∂t2
= µ0

~J (1.6)

∇2φ+
∂

∂t
(~∇ ~A) = −ρ

ε
(1.7)

The above equations can be simplified by taking the advantage of gauge invariance of
the Maxwell’s equations, namely, the ~E and ~B are left unchanged under the gauge trans-
formation:

~A −→ ~A = ~A′ −∇χ

φ −→ φ = φ′ +
∂

∂t
χ

(1.8)

Assuming that the E/M field is propagating in free space (ρ, ~J = 0), choosing the vector

and scalar potentials in order that satisfy the conditions ∇ ~A = 0 (Coulomb gauge) and
φ = 0, respectively we end up to the following equation for the vector potential:

∇2 ~A− 1

c2

∂2

∂t2
~A = 0 (1.9)

If we consider a cubic region of space of side L, Fig.1.1,we take running waves and subject
them to periodic boundary conditions.

Figure 1.1: Schematic representation of the quantization cavity cube of side L
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Therefore, the solution of Eq.1.9, becomes:

~A(~r, t) =
∑
~k

∑
p=1,2

ê~k,p A~k,p(~r, t) (1.10)

where,

A~k,p(~r, t) = A~k,pe
i(~k~r−ωkt) + c.c. (1.11)

ωk = ck is the mode angular frequency and the components of the wavevector ~k, take the
values:

ki = 2πni/L, i = x, y, z and ni = 0,±1,±2, ... (1.12)

Furthermore, ê~k,p are the unit polarization vectors and the Coulomb gauge condition im-

plies that wavevector and polarization vectors are transverse: ~k · ê~k,p = 0. We have chosen
the polarizations to be perpendicular with each other: ê~k,p · ê~k,p′ = δp,p′ .

From Eq.1.5 we get that ~E = −∂ ~A
∂t

, since we chose φ = 0. Therefore, the electric
field inside the quantization cavity is:

~E(~r, t) =
∑
~k

∑
p=1,2

ê~k,p E~k,p(~r, t) (1.13)

where,

E~k,p(~r, t) = iωkA~k,pe
i(~k~r−ωkt) + c.c. (1.14)

The magnetic field is also obtained from Eq.1.5:

~B(~r, t) =
∑
~k

∑
p=1,2

~k × ê~k,p
k

B~k,p(~r, t) (1.15)

where,

B~k,p(~r, t) = ikA~k,pe
i(~k~r−ωkt) + c.c. (1.16)

Now we are ready to calculate the total energy of the E/M field inside the quantization
cavity:

H =
1

2

∫
Cavity

dV [ε0 ~E · ~E + µ−1
0
~B · ~B] (1.17)

By substitution of Eq.1.13 and 1.15 into Eq.1.17 we get:

H =
∑
~k

∑
p

H~k,p (1.18)
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where,

H~k,p = ε0V ω
2
k(A~k,pA

∗
~k,p

+ A∗~k,pA~k,p) (1.19)

in the Eq.1.19, we have left the A~k,p and A∗~k,p as they occur in the calculations in order

to match this expression with the respective one in the Quantum Harmonic Oscillator.

1.3 Quantum Harmonic Oscillator

The Hamiltonian for a one-dimensional Quantum-Mechanical Harmonic Oscillator
(Q/M H.O) is:

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 (1.20)

where the position q̂ and momentum p̂ operators obey the commutation relation:

[q̂, p̂] = q̂p̂− p̂q̂ = i~ or (∆q)(∆p) ≥ ~
2

(1.21)

It is more convenient to replace the position and momentum operators by a pair of
dimensionless operators defined as:

â = (2m~ω)−1/2(mωq̂ + ip̂)

â† = (2m~ω)−1/2(mωq̂ − ip̂)
(1.22)

The operators â and â† are called, respectively, the annihilation and creation operators
for the harmonic oscillator.

From Eq.1.22 it follows that:

ââ† = (2m~ω)−1(p̂2 +m2ω2q̂2 − imωq̂p̂+ imωp̂q̂)

= (2m~ω)−1(p̂2 +m2ω2q̂2 − imω[q̂, p̂])

= (2m~ω)−1(p̂2 +m2ω2q̂2 +mω~)

= (~ω)−1

(
Ĥ +

1

2
~ω
) (1.23)

and

â†â = (~ω)−1

(
Ĥ − 1

2
~ω
)

(1.24)

The difference and sum of Eq.1.23 and 1.24 provide the expressions for the commutation
relation and the Hamiltonian, respectively:

[â, â†] = ââ† − â†â = 1 (1.25)

Ĥ =
1

2
~ω(ââ† + â†â) = ~ω

(
â†â+

1

2

)
(1.26)
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Now let us consider |n〉 be an energy eigenstate (number states) of Ĥ with eigenvalue
En.

Ĥ|n〉 = En|n〉 (1.27)

By properly manipulating the Eq.1.26 we are led to the following expressions and prop-
erties for En and |n〉:

En =

(
n+

1

2

)
~ω, (n = 0, 1, 2, ...)

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉

N̂ |n〉 = â†â|n〉 = n|n〉

(1.28)

where, n denotes the energy levels of the Q/M H.O. In Eq.1.28 is apparent the role of
creation and annihilation operators. They add or subtract a quantum ~ω to or from the
total energy, respectively. The ground state of the Q/M H.O is denoted as |0〉 and since
the is no lower state that the ground state, â|0〉 = 0.

1.4 Quantization of Electromagnetic Field

In section 1.2 we defined a quantization cavity in order to solve the Eq.1.9, therefore,
the quantization of the E/M field is achieved by associating the Q/M H.O with each mode
of the radiation in the quantization cavity. A convenient starting point is to introduce
the following variables:

q~k,p = (ε0V )1/2[A~k,p + A∗~k,p]

p~k,p =
1

i
(ε0V ω

2
k)

1/2[A~k,p − A
∗
~k,p

]
(1.29)

Now, modifying the eq.1.19 leads us to the following equation for the Hamiltonian of
the free electromagnetic field:

H =
1

2

∑
~k

∑
p

[p2
~k,p

+ ωkq
2
~k,p

] (1.30)

Therefore, the Hamiltonian takes the form similar to the harmonic oscillator’s, with
”mass” equal to unity. Thus, the annihilation and creation oparators take the form:

â~k,p = (2~ωk)−1/2(ωkq̂~k,p + ip̂~k,p)

â†~k,p = (2~ωk)−1/2(ωkq̂~k,p − ip̂~k,p)
(1.31)

with the physical interpretation that the operators respectively destrory and create one
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photon of energy ~ωk in mode ~kp. The number of photons excited in a cavity mode is
given by the respective operator n̂~k,p:

n̂~k,p|n~k,p〉 = â†~k,pâ~k,p|n~k,p〉 = n~k,p|n~k,p〉, n~k,p = 0, 1, 2, ... (1.32)

Finally, the Hamiltonian can be written in the following form:

Ĥ =
∑
~k

∑
p

1

2
~ωk

(
â~k,pâ

†
~k,p

+ â†~k,pâ~k,p

)
(1.33)

This expression allows a direct comparison with Eq.1.19. Therefore, we get the vector
potential, electric and magnetic field operators:

Â(r, t) =
∑
k

∑
p

√
~

2ε0V ωk
ekp

(
âkpe

−iχk(r,t) − â†kpe
iχk(r,t)

)
, (1.34a)

Ê(r, t) = i
∑
k

∑
p

√
~ωk
2ε0V

ekp

(
âkpe

−iχk(r,t) − â†kpe
iχk(r,t)

)
, (1.34b)

B̂(r, t) = i
∑
k

∑
p

k× ekp

√
~

2ε0V ωk

(
âkpe

−iχk(r,t) − â†kpe
iχk(r,t)

)
, (1.34c)

where phase χk is defined as: χk(r, t) = ωkt− kr.

1.4.1 Coherent States

The Coherent states of light, |α〉, are a linear superposition of number states and
eigenstates of the annihilation operator â. They play an important role to quantum
optics, not only because their properties are closer to these of classical E/M field but also
because coherent states can be produced by a LASER. Since the annihilation operator
is a non-Hermitian operator, its eigenvalues can be complex. Therefore, the eigenvalue
equation for coherent states is the following:

â|α〉 = α|α〉, |α〉 =
∞∑
n=0

〈n|α〉|n〉 (1.35)

We wish to find the expression of coherent states as a linear superposition of the number
states. So, from Eq.1.35 by multiplication from the left with 〈n| we get:

〈n|â|α〉 = 〈n|α|α〉 = α〈n|α〉 ⇒
(
〈α|â†|n〉

)∗
= α〈n|α〉 ⇒

〈n+ 1|α〉 =
α√
n+ 1

〈n|α〉, n = 0, 1, 2...
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Now lets apply the above equation for n = 0 and n = 1 in order to find out the pattern
that it follows

n = 0 : 〈1|α〉 =
α√
1
〈0|α〉

n = 1 : 〈2|α〉 =
α√
2
〈1|α〉 =

α2

√
2!
〈0|α〉

.

.

.

⇒ 〈n|α〉 =
αn√
n!
〈0|α〉

Therefore Eq.1.35 becomes:

|α〉 =
∞∑
n=0

αn√
n!
〈0|α〉|n〉 = 〈0|α〉

∞∑
n=0

αn√
n!
|n〉 ⇒

〈α|α〉 = |〈0|α〉|2
∞∑
n=0

|α|2n

n!
= |〈0|α〉|2 e|α|2 = 1⇒ 〈0|α〉 = eiφ−

1
2
|α|2

where φ is a phase same for all number states so, it plays no role to the total eigenfunction,
it can be omitted then. The coherent state in the number states base is written as:

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 = e−

1
2
|α|2

∞∑
n=0

(αâ†)n

n!
|0〉 = eαâ

†− 1
2
|α|2|0〉 (1.36)

Although number states are orthogonal to each other, coherent states are not orthog-
onal. Consider two different coherent states |α〉 and |β〉,

〈β|α〉 = e−
1
2
|α|2e−

1
2
|β|2
∑
n

∑
m

αn√
n!

β∗
m

√
m!
〈m|n〉 = e−

1
2

(|α|2+|β|2)
∑
n

(αβ∗)n

n!

= eαβ
∗− 1

2
(|α|2+|β|2) 6= δ(α− β)

⇒ |〈α|β〉|2 = e−|α−β|
2

(1.37)

Based on the Baker-Campell-Haussdorf relation,

e(Â+B̂) = eÂeB̂e−
1
2

[Â,B̂], valid if : [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 (1.38)

Furthermore, e−α
∗â|0〉 = |0〉 and [αâ†,−α∗â] = |α|2. Thus from Eq.1.36 and 1.38,

|α〉 = eαâ
†− 1

2
|α|2|0〉 = eαâ

†− 1
2
|α|2e−α

∗â|0〉 = e(αâ†−α∗â)|0〉 (1.39)

This result is written as:
|α〉 = D̂(α)|0〉 (1.40)
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where D̂(α) = e(αâ†−α∗â) is the coherent-state displacement operator, which is also a
unitary operator, since D̂(α)D̂†(α) = D̂†(α)D̂(α) = 1. Its effect on the annihilation and
creation will also be useful:

D̂†(α)âD̂(α) = â+ α

D̂†(α)â†D̂(α) = â† + α∗
(1.41)

We now consider the time evolution of a single-mode coherent state, by acting with
the time evolution operator Û(t) = e−iĤt/~, to the time independent coherent state |α〉.

|α, t〉 = Û(t)|α〉 = e−iĤt/~|α〉 = e−iωt/2e−iωtn̂|α〉 = e−iωt/2e−iωtn̂e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉

= e−iωt/2e−
1
2
|α|2

∞∑
n=0

e−iωtn̂
αn√
n!
|n〉 = e−iωt/2e−

1
2
|α|2

∞∑
n=0

e−iωtn
αn√
n!
|n〉

= e−iωt/2e−
1
2
|α|2

∞∑
n=0

(e−iωtα)n√
n!

|n〉 = e−iωt/2|αe−iωt〉 (1.42)

The last property which is important to punctuate is the uncertainty relation between
the position and momentum operators.

q̂ =

(
~

2ω

)1/2

(â† + â) and p̂ = i

(
~ω
2

)1/2

(â† − â) (1.43)

By taking the expectation value of these operators for a coherent state, we get:

〈q̂〉α = 〈α|q̂|α〉 = 2

(
~

2ω

)1/2

|α|cos(θ) (1.44)

and

〈q̂2〉α = 〈α|q̂2|α〉 =
~

2ω

(
4|α|2cos2(θ) + 1

)
(1.45)

Therefore, the position operator uncertainty is:

(∆q)2
α = 〈q̂2〉α − 〈q̂〉α =

~
2ω

(1.46)

Similarly, we find the variance of the momentum operator:

(∆p)2
α = 〈p̂2〉α − 〈p̂〉α =

~ω
2

(1.47)

Using the above results, we calculate the uncertainty relation:

(∆q)α(∆p)α =
~
2

(1.48)
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Thus, we came to the result that coherent states are minimum-uncertainty states
because the equation 1.21 is satisfied with equality. In a following section we will see a
graphical representation of this result.

1.4.2 Photon Statistics of Coherent States

The coherent-state expectation value for the number operator is obtained with use of
the properties 1.41:

〈n〉 = 〈α|n̂|α〉 = 〈α|â†â|α〉 = 〈0|D̂†(α)â†D̂(α)D̂†(α)âD̂(α)|0〉 = |α|2 (1.49)

where we also took the advantage that the coherent-state displacement operator is a
unitary operator. Following similar steps, we also calculate the photon-number variance:

(∆n)2 = 〈n2〉 − 〈n〉2 = |α|2 = 〈n〉 (1.50)

with fractional uncertainty,
∆n

〈n〉
=

1√
〈n〉

(1.51)

which states that the fractional uncertainty goes to zero with increasing the average
photon-number, i.e. the intensity.

The probability of finding n photons in the single-mode coherent state is obtained
from Eq.1.36:

P (n) = |〈n|α〉|2 = e−|α|
2
∣∣∣〈n|∑

m

αm√
m!
|m〉
∣∣∣2 = e−|α|

2 |α|2n

n!
= e−〈n〉

〈n〉n

n!
(1.52)

It is obvious from the equation above that photons in the coherent state obey the Poisso-
nian probability distribution. Note also that Poisson distribution approaches a Gaussian
distribution for large 〈n〉.

P (n) ≈ 1√
2π〈n〉

e−
(n−〈n〉)2

2〈n〉 (1.53)

1.4.3 Single - mode Electric field operator

The scalar electric field operator of a linearly polarized single-mode, propagating in
the z axis is written as:

Ê(χ) = i

√
~ω

2ε0V

(
âe−iχ − â†eiχ

)
=
E0

2

(
âe−i(χ+π/2) + â†ei(χ+π/2)

)
(1.54)

where E0 =
√

2~ω
ε0V

and χ = ωt− kz.
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The expectation value of the electric field operator is:

〈Ê〉 = 〈α|Ê|α〉 = E0|α|sin(χ− θ) (1.55)

which describes the classically oscillating electric field (corresponding figure). We have
used again the substitution α = |α|eiθ for the eigenvalue of the annihilation operator.
The expectation value for the E2 operator is:

〈Ê2〉 = 〈α|Ê2|α〉 =

(
E0

2

)2

(4|α|2sin2(χ− θ) + 1) (1.56)

Therefore, the uncertainty of the electric field operator is given by:

(∆E)2 = 〈Ê2〉 − 〈Ê〉2 = (E0/2)2 (1.57)

Note that the uncertainty of the field (noise) is independent of the photon number of
the coherent state. Thus, for very large photon number (|α|2), the uncertainty becomes
negligible and the field will tend to its classical representation. On the other hand, for
the vacuum state (|α| = 0) the mean value is equal to zero, as expected, but there is a
non zero uncertainty due to vacuum fluctuations.

Figure 1.2: Phase dependence of the mean value of the electric field for a coherent
state. The black solid line represents the 〈Ê〉, while the blue shaded area represents the
uncertainty of the electric field.

Another useful way to describe an oscillating field is through the phase space, where
each point in the phase space corresponds to a unique state of the system. We introduce
a new set of dimensionless operators, which are called quadrature operators, as:

X̂ =
â+ â†

2
and Ŷ = i

â† − â
2

(1.58)

12



Note that the operators X̂, Ŷ are proportional to the position (q̂) and momentum (p̂)
operators, respectively. Now, the electric field operator can be expressed in terms of this
new set of operators:

Ê = E0

(
X̂sin(χ)− Ŷ cos(χ)

)
(1.59)

The mean values and variances of these operators are:

〈X̂〉 = 〈α|X̂|α〉 = |α|cos(θ) and 〈Ŷ 〉 = 〈α|Ŷ |α〉 = |α|sin(θ) (1.60)

and
(∆X)2 = 〈X̂2〉 − 〈X̂〉2 = 1/4 and (∆Y )2 = 〈Ŷ 2〉 − 〈Ŷ 〉2 = 1/4 (1.61)

Therefore, the minimum uncertainty relation for the operators X̂ and Ŷ becomes:

(∆X)(∆Y ) = 1/4 (1.62)

The representation of coherent state in phase space of the two quadrature operators is
depicted in the following figure. In the appendix is justified that a coherent state can be
expressed as a superposition of eigenstates of either the two quadrature operators, where
both superpositions follow the Gaussian probability distribution.

Figure 1.3: Phase space representation of a coherent state |α〉 with α = |α|eiθ.
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Sometimes it is quite useful to write the electric field operator in terms of a generalized
quadrature operator defined as:

x̂Φ =
1

2

(
âe−iΦ + â†eiΦ

)
(1.63)

with mean value and uncertainty:

〈x̂Φ〉 = |α|cos(Φ− θ) = |α|sin(χ− θ) and (∆xΦ)2 = 1/4 (1.64)

Therefore the electric field operator becomes:

Ê = E0x̂Φ (1.65)

where in this case Φ = χ− π/2. Note that x̂0 = X̂ and x̂π/2 = Ŷ .
In the following section we will talk about an experimental setup where it is possible

to measure the electric field’s quadrature operator and obtain information about the
quantum state of the light we are interested in.

1.5 Balanced Homodyne Detection

Homodyne detection measures the electric field quadrature x̂Φ of the incident light
field as a function of the measurement phase angle[5][6]. The figure below, shows the
experimental arrangement for a homodyne detection measurement.

Figure 1.4: Experimental arrangement of optical components in homodyne detection.

As we see in figure 1.4, the signal to be measured (âs) interferes with a strong coherent
field (âLO), called Local Oscillator, at a beam splitter and the output signals (â1, â2) are
measured at the corresponding detectors. The beam splitter is assumed to be 50:50 with
reflection and transmission coefficients given by:
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R = |R|eiφR =
1√
2
eiφR , T = |T |eiφT =

1√
2
eiφT

and φR − φT = π/2

(1.66)

Each detector measures photocounts, namely the number of photons arriving at them.
However, we are interested to measure the difference between the number of photons
arriving at the two detectors. From the input-output relations for a beam splitter we get:

â1 =
1√
2

(âLO + i âs)

â2 =
1√
2

(âs + i âLO)
(1.67)

Using the above equations, we define the homodyne photocurrent operator as:

N̂ = â†2â2 − â†1â1

= i
[
â†sâLO − â

†
LOâs

]
(1.68)

The phase difference between the signal and the LO can be changed externally by varying
the length of the LO optical path. This means that the LO mode operators are subjected
to the following phase shift:

âLO −→ âLOe
iφD

â†LO −→ â†LOe
−iφD

(1.69)

Thus, the homodyne photocurrent operator becomes:

N̂ = i
[
â†sâLOe

iφD − â†LOe
−iφD âs

]
(1.70)

The expectation value of the homodyne photocurrent operator is:

〈N̂〉 = 〈αs, αLO|N̂ |αs, αLO〉
= |αLO|〈αs|

(
âse
−iΦ + â†se

iΦ
)
|αs〉

= 2|αLO|〈x̂Φ〉s (1.71)

In a similar way we calculate the uncertainty:

(∆N)2 = 〈N̂2〉 − 〈N̂〉2

= 4|αLO|2〈x̂2
Φ〉s + 〈â†sâs〉 − 4|αLO|2〈x̂Φ〉2s

= 4|αLO|2(∆xΦ)2
s + 〈â†sâs〉

= 4|αLO|2
[
(∆xΦ)2

s +
〈â†sâs〉

4|αLO|2

]
(1.72)
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We should note, here, that the phase Φ contains the phase difference induced, the π/2
phase from the eq.1.68 and has also absorbed the argument of αLO. We came into a result
that balanced homodyne detection measures the quadrature of the signal field including
a scaling factor 2|αLO|.

In the right hand of eq.1.72 there are two terms inside the brackets. The first one
is the uncertainty of the signal field’s generalized operator, x̂Φ, while the second one is
the ratio between the mean photon number of the signal pulse (〈â†sâs〉) = |αs|2 and the
mean photon number of the LO pulse (|αLO|2). Our aim is to measure the qudrature
of the signal field, therefore, if the intensity of the Local Oscillator (i.e. the LO ’s mean
photon number) is much stronger than the signal field’s intensity, the second term of the
eq.1.72 becomes negligible compared with the first one which is equal to 1/4. So, for
|αLO|2 >> |αs|2 :

(∆N)2 ∼= 4|αLO|2 (∆xΦ)2
s (1.73)

We have almost reached the wanted result, since in both equations 1.71 and 1.73, there
is a scaling factor. Therefore, by redefining the homodyne photocurrent operator, N̂ , as
N̂ ′ = N̂/(2|αLO|) we conclude:

〈N̂ ′〉 = 〈x̂Φ〉s and (∆N ′)2 = (∆xΦ)2
s (1.74)

Comparing the result above with the equations 1.55, 1.57, the fulfillment of the con-
tition |αLO| >> |αs|, i.e. the intensity of the LO is much greater than the intensity
of the signal we want to measure, makes possible to a balanced homodyne detection
experimental setup to characterize the quantum state of light.
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Chapter 2

Experiment

2.1 Introduction

In this chapter we are going to describe the experimental setup used for the mea-
surement of the coherent state of a laser field. Then, we will present the measurements
performed about the stability characterization of the interferometer and consequently the
calculations regarding the coherent state of LASER.

2.2 Experimental Setup

In the following figure 2.1, we present the experimental setup we used for the homo-
dyne measurements.

Figure 2.1: Schematic representation of the experimental setup used for the homodyne
measurement

A ≈ 40 fs Ti:Sapphire linearly polarized laser pulse of 800 nm carrier wavelength, 1kHz
repetition rate and ≈ 0.6 mJ energy per pulse is entering the Mach - Zehnder inter-
feromenter in BS1 and split by two. In both arms there are λ/2 plates to control the
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polarization in order that the BS2 act as 50:50 for each beam. The two λ/2 plates are
rotated at the same angle because the interference term when two beams come together
is proportional to the dot product of their polarization vectors. The reflected beam corre-
sponds to the Local Oscillator, which is also divided in the BS3 in order to: a) record the
pulse energy (Laser stability) using the photodiode PDL and b) introduce delay using a
mirror placed on a piezoelectric stage, as it is shown in figure 2.1. Finally, the LO pulse
arrives at the BS2 where it interferes with the Signal pulse and exits the interferometer.
On the other hand, the transmitted part of the beam incident on BS1 is considered as
the Signal Field and passes through a variable attenuator before reaching the BS2 and
interferes with LO. At the exit arms of the Mach - Zehnder interferometer there are two
apertures through which only (∅1.9 mm) the central part of the beam is allowed to pass.
In this way, we increase the contrast of the interferences resulted by the superposition of
the Signal and LO fields. Finally, the two signals are incident on a balanced amplified
photodetector in front of which there are OD filters in order to avoid the saturation of
its photodiodes. The output of the photodetector is the subtraction of the two signals
and is recorded by our data acquisition system.

2.3 Photodetector Linearity

The first characterization of the balanced amplified photodetector is to test the lin-
earity of each photodiode independently. In order to do that, we keep one photodiode
open each time and we measure the output signal as a function of the LO power. The
signal was recorded on the oscilloscope with average of 10 pulses.

Figure 2.2: Linearity test measurements of the balanced amplified photodetector photo-
diodes. The left graph is referred to the ”minus” photodiode (the one whose signal is
inverted) and the right graph to the ”plus” photodiode.
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The measurements are presented in figure 2.2 where a linear fit is also shown. We note
that the response of the photodiodes is linear up to ∼ 0.12 mW LO power, therefore, we
take care to keep the LO power below that value.

2.4 Detector Stability

The stability of the detector is crucial for long term accurate measurements. The
imbalance of the detector leads to a shift of the detector baseline which is usually linear
over time and thus cause detection errors. Therefore, it is important to evaluate the
stability of our detection system. A method to obtain quantitative information about
possible detector imbalances is through the Allan Variance[7]. In the following subsection,
we will explain with a simple examples what is the Allan Variance calculation. In the
subsection 2.4.2 we will present our measurements and how the information that Allan
Variance gives us is treated.

2.4.1 Allan Variance

Description of Allan Variance

In the following figure we see a time signal with sample rate 1/τ0. What Allan
Variance[8] algorithm actually does is that it makes temporal windows which are integer
multiples of τ0 and starts scanning the signal as it is depicted in figure 2.3.

Figure 2.3: Time signal with sample rate 1/τ0. It also depicts how the Allan Variance
algorithm is working for two different time intervals (2τ0 and 3τ0).
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So, for each temporal window mτ0, we obtain a list of variances given from the following
formula called Overlapped Allan Variance:

σ2(mτ0) =
1

2m2(N − 2m+ 1)

N−2m+1∑
j=1

j+m−1∑
i=j

(yi+m − yi)2 (2.1)

where, N is the number of samples and the integer m ≤ N−1
2

and yi = xi+1−xi
τ0

is the
fractional frequency.

In figure 2.4a we present a signal which follows a Gaussian distribution with standard
deviation σ = 0.1 [S]. In this signal we have added a baseline which increases linearly
over time. What we observe is that at low values of τ the Allan variance is high due to
high noise. As the τ increases, the Allan Variance drops because the noise averages out.
For higher τ ’s the baseline inclination starts playing important role, so the variance

(a) Time Signal (b) Allan Variance

Figure 2.4: a) Example of a signal where the detector’s baseline changes linearly over
time and b) the respective Overlapped Allan Variance calculation

increases again. Therefore, we trace the τmin for which the Allan Variance takes its
minimum value (red line and arrow in figure 2.4b) and we recalibrate our signal every
t = τmin in order to fix the offset.

2.4.2 Detector Stability measurements

In order to check the stability of our detector, we have blocked the signal arm
and recorded the homodyne signal of vacuum state for about 4 minutes (240[sec] ×
500

[
points
sec

]
= 120000 total points). After that we performed the Allan Variance calcula-

tion in order to find out if the baseline of our detector remains constant. In the figures
below, we present the measured data and the Allan Variance graph.
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Figure 2.5: Vacuum state homodyne signal. The gray data points represent the raw data.
The baseline shift is obvious. The blue data points resulted from recalibration of the raw
data.

In figure 2.5 we see the recorded data of the vacuum input state (gray points). It is obvious
that the detector’s baseline has a linear shift over time. Performing the Overlapped Allan
Variance calculation one gets the graph 2.6a. As we expected, in the Allan Variance
plot appears a minimum at τmin and for higher values of τ the baseline shift leads to the
increment of Allan Variance. Therefore, we construct bins of temporal length equal to
τmin and we recalibrate the vacuum state signal. The Allan Variance of the recalibrated
signal 2.6b has a continuous reduction since the baseline shift has been removed.
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(a) Raw data
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(b) Recalibrated data

Figure 2.6: Overlapped Allan Variance calculation of the a) raw data of vacuum state
input field (gray data points of fig.2.5) and b) recalibrated data (blue data points of
fig.2.5)
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2.5 Shot Noise

There is another test to study the performance of our detector is to measure the
response of shot noise as we increase the LO power. The shot noise results from the
fact that the pulses of the laser are not completely identical. In the figure below 2.7

Figure 2.7: The detector’s output signal as it appears on the oscilloscope’s screen

we show how the signal of the detector appears on the oscilloscope. The shot noise
linearity test include time traces like that of figure 2.5 for the Homodyne signal and the
respective background. We record the signal in both windows (Detector output signal
and Background) at the same time and we calculate the noise in each temporal window.
The detector’s output signal noise is composed from two individual noise sources. The
first one is the electronic noise, which is calculated from the background window, and the
second one is the shot noise. These two noise sources are completely uncorrelated to each
other, therefore, we can calculate the shot noise by subtracting the electronic noise from
the detector output signal noise. What we expect from eq.1.72 is that the homodyne
shot noise will change linearly with respect to LO power since the uncertainty of the
homodyne photocurrent operator is proportional to the LO mean photon number. The
measurements are presented below in a Log−Log graph.
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Figure 2.8: Log−Log plot of the shot noise measurements.

The LO powers used are similar to those used for the figure 2.2. We performed the
overlapped Allan Variance calculation for each time trace and recalibrated the signal if
needed. In order to calculate the shot noise, we subtract the electronic noise from the
signal noise (since they are non−correlated signals). As we explained earlier, we expect
a linear dependence of the shot with respect to the LO power. In order to calculate the
slope, we used the first three points and the result is ≈ 1.3 ± 0.2. This slope value is
acceptable, considering the error of the calculation, however we choose to work at around
0.03 mW LO power in order to be sure.

2.6 Homodyne Measurements

After the detector characterization, the homodyne measurements followed for different
signal input power. First of all, we need to find the correct position for the piezo where
the pulses of the two arms actually interfere. This piezo is attached on a translation
stage which can be moved with a picomotor. We ended up with this setup because our
piezo cannot perform scans greater than ∼ 2.5 µm (∼6 cycles of IR). Therefore, we run
a first order autocorrelation scan with the picomotor stage, a part of which is shown in
the figure below 2.9, with steps of ∼ 40 nm. In this scan, the variable attenuator in
the signal arm was rotated so that the signal was attenuated by a factor of ∼ 100 (OD2
filter).
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Figure 2.9: First order autocorrelation scan

We use the first order autocorrelation scan in order to find the region where the
two pulses are completely overlapped. Once this region is found, we start scanning
with the piezo stage. In the traces that will follow the scan was performed with 240
steps (i.e. 40 steps/cycle) and the piezo stayed at each step for 2 seconds, namely:

2
[
sec
step

]
× 500

[
points
sec

]
= 103

[
points
step

]
(the sample rate is 500 Hz) . The first scan was done

keeping the same power ratio between the LO and the signal.
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Figure 2.10: Homodyne trace with Psignal/PLO ≈ 10−2. The upper figure, is the homo-
dyne signal with respect to phase difference between the LO and the signal. The figure
below is the variance calculated for each step−window (red bar in the upper panel of the
figure).
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Comparing the figure above with Fig.1.2, it is obvious that we cannot measure the
coherent state of light under these conditions. The classical noise coming from the in-
terferometer itself is much higher than the quantum noise. The effect of the classical
noise is more apparent between the extrema of the laser cycle because the slope is higher
and therefore small phase changes (due to the classical noise) have greater impact on the
quadrature value. The Fourier transform of the signal will give us an insight into the
frequencies that compose the given signal.

Figure 2.11: Power spectrum of the homodyne signal shown in fig. 2.10. The frequency
axis of this graph has the units of inverse time because the Fourier transform was per-
formed originally to the signal as a function of the time−stamp of each measurement
point.

The quantum noise can be characterized as white noise. That means that is extended
in all the spectrum and its amplitude in a power spectrum graph is almost constant for
all the frequencies. The figure 2.11 indicates that this in not our case. In order to rid
the homodyne signal of these external noise sources we perform a Band Block filter to
the frequencies 0− 170 Hz. More specifically, notice that there is a quite broad peak at
∼100 Hz and a less conspicuous broad peak at ∼130 Hz. To be safe, we extended the
band of the blocked frequencies up to 170 Hz, where the power spectrum seems to be
flat, since no peak structure is observed thereafter. We note that this frequency is in
agreement with the frequency obtained by the 1/(stability time) of Allan deviation when
a small time interval around the π/2 value of the trace (where the amplitude is considers
stable) was used. The exact procedure we followed is: a) we fit a sinusoidal function to
the homodyne signal, b) we perform the band block filter, c) we add the inverse Fourier
transform to the fitted sinusoidal function.

The application of the procedure mentioned above, to the signal of fig.2.10 has some
interesting points worth noticing (fig. 2.12). First of all, it is obvious that most of the
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classical noise has been removed by the band block filter since the average variance of the
signal (we do not take into account the sinusoidal modulation) has dropped of about 1−2
orders of magnitude. However, a ∼ 200 % enchantment of signal variance around π/2
is still observed, which means that the amplitude of classical noise at frequencies ≥ 170
Hz is greater than the quantum noise. According to 1.73 in order to fix this problem we
need to further reduce the amplitude of the signal field. In this way the amplitude of
the classical noise can be significant smaller compared to the amplitude of the quantum
noise which is independent on the amplitude of the signal field.
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Figure 2.12: On the left we see the raw data obtained, while on the right there is the same
signal after the frequency band block filter. The lower panels show the corresponding
calculated variances.

Something else that we want to comment at this point is the detector’s baseline drift
that we mentioned earlier. A first estimate indicates that since we apply a block filter to
the frequency band 0−170 Hz, there is no need to search for a linear baseline drift because
such kinds of drift are interpreted into low frequency peaks in the power spectrum. In
order to confirm this estimation we applied the overlapped Allan variance algorithm to
the homodyne signal of vacuum state input (i.e. blocked signal arm). The results are
presented below fig. 2.13. The Figs.2.13a,2.13b we show the Allan variance (before and
after recalibration) of the vacuum state as is presented in Fig. 2.6b. Fig. 2.13c shows
the Allan variance (after recalibration) of the vacuum state for a recording time window
corresponding to the time needed to record one cycle of the field. Fig. 2.13d shows the
Allan variance (after recalibration) of the vacuum state after applying the band block
filter in a recording time window of one cycle of the field. As we expected, the baseline
linear drift has been removed since the Allan variance continuously drops. Also, the
minimum Allan variance value is about two orders of magnitude lower because the band
block filter removed most of the signal noise, as well.
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(a) Original full scan
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(b) Full scan after recalibration
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(c) One cycle range after recalibration
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(d) After band block filter

Figure 2.13: Overlapped Allan variance calculation for a) the raw data signal b) the
recalibrated signal c) one cycle temporal window after reclaibration and d) the signal
after applying the frequency band block filter

2.7 Quadrature Measurements

2.7.1 Introduction

In this section we will present in detail the procedure used to analyze the homodyne
traces. In section 1.5, it is shown that the homodyne signal is proportional to the gen-
eralized quadrature operator, x̂Φ, where Φ is the relative phase between the LO and the
signal field input. The analysis presented in this section contains a rescaling procedure,
so that each point in the homodyne trace represent a measurement of the signal field
quadrature. From the rescaled homodyne traces we can now calculate the mean photon
number of the coherent state.
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2.7.2 Vacuum state treatment

The vacuum input state was used as reference in order to calculate the rescaling
factor. According to 1.74, the expectation value of the quadrature operator for vacuum
state (|0〉) input signal is:

〈x̂Φ〉|0〉 =
1

2
〈0|(âe−iΦ + â†eiΦ)|0〉 = 0 (2.2)

while the uncertainty is:

(∆x̂Φ)2
|0〉 = 〈x̂2

Φ〉|0〉 =
1

4
〈0|ââ† + â†â|0〉 =

1

4
〈0|1 + 2â†â|0〉 =

1

4
(2.3)

The uncertainty of a measured quantity ”y” is given from the following formula:

(∆y)2 = 〈y2〉 − 〈y〉2

=
1

N

N∑
i=1

(yi − ȳ)2

=
1

N

N∑
i=1

(
yi −

1

N

N∑
j=1

yj

)2

(2.4)

In order to rescale our signal, we want the factor λ which multiplies each measured
point so as the variance of the quadrature operator for vacuum state input to become 1

4
.

Therefore, in the eq. 2.4 we substitute yi → λyi and we get:

(∆y)2
new =

1

N

N∑
i=1

(
λyi −

1

N

N∑
j=1

λyj

)2

= λ2(∆y)2
old (2.5)

Thus, the proportionality factor λ is:

λ =

√
(∆y)2

new

(∆y)2
old

=
1√

4× (∆y)2
old

(2.6)

Now, after we apply the frequency band block to the measured homodyne trace for the
vacuum state, we calculate its variance. Then, we calculate the factor λ from equation
2.6. In our case, the value of this factor is:

λ = 0.3259

[
1

Cb

]
(2.7)

In the following figure we present the vacuum state homodyne signal after the frequency
band block filter (gray points) and the rescaled signal after the multiplication with the
proportionality factor λ we calculated before.
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Figure 2.14: Homodyne trace for vacuum input state rescale so as the variance of the
signal equals to 1/4

2.7.3 Coherent State homodyne traces

As we mentioned earlier, in order to measure correctly the coherent state of light,
the classical noise needs to be less than the quantum noise. Therefore, we added two
more OD filters (OD> 4) to the signal arm of the interferometer. In the graph below,
we compare the Fourier transform of the coherent state input signal before and after
the addition of these two OD filters. As we expected, the noise is significantly dropped
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Figure 2.15: Fourier transform of the homodyne trace with coherent state input signal
before (blue line) and after (orange line) the additional two OD filters. Significant noise
reduction is observed.

with the additional attenuation of the signal arm. Most of the frequency peaks vanished,
but we don’t know if the classical noise is reduced enough. Following the same steps
mentioned earlier, including the rescaling factor, we present the resulting traces for three
different attenuations of the signal arm. On the left of figure 2.16 we present the final
form of the homodyne traces, while on the right are the calculated variances.
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(a) Psignal/PLO ≈ 10−5

0 /2 3 /2 2
Phase

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
ar

ia
nc

e 
(

x
)2

(b)

0 /2 3 /2 2
Phase

2

1

0

1

2

3

<
x

>
 

(c) Psignal/PLO ≈ 10−6
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(e) Psignal/PLO ≈ 10−7
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Figure 2.16: Homodyne traces after rescale. The optical density of the filter in the signal
arm is approximately a) 4-5 c) 5-6 d) 6-7. In the figures b), d) and f) the respective
variance calculation is depicted.

The mean photon number results from the expectation value of the quadrature oper-
ator since:

〈x̂Φ〉|α〉 = |α|cos(Φ) (2.8)

〈n̂〉 = 〈α|â†â|α〉 = |α|2 (2.9)

where the eigenvalue α was written as α = |α|eiθ and the phase θ is absorbed by phase Φ
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in the expression above. Therefore, the amplitude of each cosine fitted function squared
gives us the mean photon number of the coherent state input. In the table below we
summarize the results of figure 2.16.

〈n̂〉 (∆x̂Φ)2 ± σ Deviation (σ)
1 2.70 0.30 ± 0.03 1.67
2 0.93 0.27 ± 0.02 1
3 0.04 0.27 ± 0.02 1

Table 2.1: Summary of the experimental results

Few comments about the results presented in table 2.1. The calculation of the mean
photon number results from the equations 2.8 and 2.9. The cosine fit function provides
us the amplitude (|α|) of eq.2.8, then is straight forward to calculate the mean photon
number. The variance of the quadrature operator was calculated by taking the mean
value of the variances presented in figure 2.16 for each homodyne trace. The error is the
standard deviation of the variance calculations within a laser cycle. The last column of
the table contains the deviation of the calculated uncertainty from the theoretical value
1/4. It is safe to say that in the homodyne traces we presented, we managed to measure
the coherent state signal since the uncertainty values deviate from the theoretical value
less than 3 standard deviations. Furthermore, the variance do not appear a specific struc-
ture like that of figure 2.10. There is no preferential phase region where the individual
variances exceed the theoretical value, or the opposite. However, in the first homodyne
trace, where the optical density of the filters in the signal arm was less, the deviation of
the uncertainty value is bigger. Thus, we conclude that even in this case, the attenuation
was not sufficient to suppress the classical noise much beyond the quantum noise. Nev-
ertheless, the classical noise constitutes a quite small fraction, since no specific structure
is apparent.

Last but not least, in perfect/ideal experimental conditions where no other noise is
present to the homodyne trace except from the quantum noise, it wouldn’t be necessary
to perform any frequency band block filter. In the power spectrum, the only frequency
peak would be the one which corresponds to the carrier frequency ωc. The rest would
be white noise. Unfortunately, this is not our case. Due to the influence of the classical
noise, we are ”forced” to apply such kind of frequency filter.
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Conclusions

To summarize, we developed an experimental setup for the measurement of the quan-
tum state of light, which is based on Mach-Zehnder interferometer and the utilization
of an amplified balanced homodyne detector. After the complete characterization of the
detection system and the stability of the interferometer we concluded that the quantum
state of light can be measured if the ratio between the Local Oscillator and the Signal
Field is PLO/PSignal > 106. This was achieved by measuring the coherent state of light
produced by a Ti:Sapphire pulsed LASER source whose pulses duration is ≈ 40 fs.
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Appendix

Our aim is to prove that the phase space graph of the coherent state 1.4 is a uniform
Gaussian distribution. As it is presented in the main text, the quantization of the E/M
field leads to the following expression of the annihilation (â) and creation (â†) operators:

â = (2~ω)−1/2(ωq̂ + ip̂)

â† = (2~ω)−1/2(ωq̂ − ip̂)
(2.10)

The Quadrature Operators are correspondingly expressed as:

X̂ =
( ω

2~

)1/2

q̂

Ŷ =
1√
2~ω

p̂
(2.11)

Since the quadrature operators are proportional to the operators q̂ and p̂, |q〉 and |p〉 are

also eigenstates of the quadrature operators, with eigenvalues (ω/2~)1/2 q and 1/
√

2~ω p,
respectively. We will now change the base we are working for reasons which will be
obvious in the result.
Our new eigenstates are, ∣∣∣ ( ω

2~

)1/2

q
〉

= |x〉, (X̂)

∣∣∣ 1√
2~ω

p
〉

= |y〉, (Ŷ )

(2.12)

which are proportional to |q〉 and |p〉, respectively.

|q〉 = b|x〉
|p〉 = c|y〉

Therefore, for the normalization of the |x〉 eigenstates we get:

〈x′|x〉 = δ(x′ − x)⇒ b−2〈q′|q〉 = δ
[ ( ω

2~

)1/2

(q′ − q)
]
⇒

b−2〈q′|q〉 =

(
2~
ω

)1/2

δ(q′ − q)⇒ b =
( ω

2~

)1/4

(2.13)

Similarly,

c =

(
1

2~ω

)1/4

(2.14)
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Now we need to express the coherent state |α〉 in terms of these eigenstates (|x〉, |y〉)

|α〉 = 1̂|α〉 =

∫ ∞
−∞

dx 〈x|α〉|x〉 (2.15)

we have also expressed coherent state as: |α〉 = D(α)|0〉

|α〉 = D(α)|0〉, D(α) = eαâ
†−α∗â (2.16)

The next step is to write the exponential supercript in terms of the operators q̂ and p̂.
Therefore, using the Eq.2.10 and α = |α|eiθ:

αâ† − α∗â = i|α|
√

2ω

~
sin(θ)q̂ − i|α|

√
2

~ω
cos(θ)p̂ (2.17)

If we consider as Â the first term and B̂ the second term of Eq.2.17, then we get the
following commutation relation:

[Â, B̂] = i|α|2 sin(2θ) = constant (2.18)

thus, we can use the Baker-Campell-Haussdorf relation Eq.1.38 and end up to the fol-
lowing expression for the coherent state:

|α〉 = e−i
|α|2
2

sin(2θ)ei|α|
√

2ω
~ sin(θ)q̂e−i|α|

√
2
~ω cos(θ)p̂|0〉 (2.19)

Now we take the inner product with the 〈q| on both sides

〈q|α〉 = e−i
|α|2
2

sin(2θ)ei|α|
√

2ω
~ sin(θ) qe−|α|

√
2~
ω

cos(θ) ∂
∂qψ0(q) (2.20)

where, ψ0(q) is the harmonic oscillator wavefunction for n = 0

ψ0(q) =
( ω
π~

)1/4

e−
q2

2(~/ω) (2.21)

Note:
The Taylor series expansion of a function f(x+ b) around x0 = a

f(x+ b) =
∑
n

f (n)(a)

n!
(x− a+ b)n

Let now x0 = x. Then,

f(x+ b) =
∑
n

bnf (n)(x)

n!
= eb∂xf(x) (2.22)

Therefore Eq.2.20 becomes

〈q|α〉 = e−i
|α|2
2

sin(2θ)ei|α|
√

2ω
~ sin(θ) qψ0(q − q0), q0 = |α|

√
2~
ω

cos(θ) (2.23)
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Using the eigenstates |x〉 which are related to eigenstates |q〉 according to the following
equation

|q〉 =
( ω

2~

)1/4

|x〉 =
( ω

2~

)1/4 ∣∣∣√ ω

2~
q
〉

(2.24)

we get:

〈x|α〉 =

(
2

π

)1/4

e−i
|α|2
2

sin(2θ)ei2|α| sin(θ)xe−(x−|α| cos(θ))2 (2.25)

Following similar steps for the |p〉 eigenstates we get:

〈y|α〉 =

(
2

π

)1/4

e−i
|α|2
2

sin(2θ)e−i2|α| cos(θ)ye−(y−|α| sin(θ))2 (2.26)

Finally, we have:

|〈x|α〉|2 =

(
2

π

)1/2

e
− (x−|α| cos(θ))2

2(1/2)2

|〈y|α〉|2 =

(
2

π

)1/2

e
− (y−|α| sin(θ))2

2(1/2)2

(2.27)

In the above expressions it is apparent that coherent states can be considered as
a superposition of either the X̂ or Ŷ operator. Both superpositions follow a Gaussian
probability distribution with variance equal to 1/4 and centered at |α| cos(θ) and |α| sin(θ)
for X̂ and Ŷ operator, respectively. This result justifies the Coherent state plot in phase
space, presented in the main text.
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