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Abstract

This work is about Jamming, a major threat that affects the security and the quality of com-

munication in wireless networks. This process can be modeled as a two-person zero-sum game

between the jammer and the legitimate entity that wants to communicate. We study the Jam-

mer in a communication with thermal-energy constraints where the players can transmit in

three different levels of energy, trying to outdo one the other by transmitting at higher power

level. In this senario, we investigate and proove the existence of Nash Equilibria for a range of

values of two parameters that are related to the matrix of the game. Afterwards, we introduce

the Jammer in a cooperative communication environment, in order to formulate analytically

how he affects the achieved utility, the choice of the relay by the source and how he chooses

the power allocation of his attack. The performance of Decode-and-Forward and Amplify-

and-Forward techniques are investigated in this context. Our simulation results show that the

Decode-and-Forward technique always gives a higher utility, when the relay succesfully decodes

the signal.



Abstract

Dans ce rapport nous nous intèressons au phénoméne de Jamming, c’est á dire une menace

majeure qui affecte la sécurité et la qualité de la communication dans les resaux sans fil. Ce

processus peut être modélisé comme un jeu de deux personnes; connu sous le nom de ’zero-sum’

entre le Jammer et l’entité souhaitant communiquer. Nous étudions le Jammer dans une com-

munication avec des contraintes d’énergie thermique où les joueurs peuvent transmettre selon

trois niveaux différents d’énergie, en essayant de surpasser l’un l’autre en transmettant avec une

puissance plus élevée. Dans ce senario, nous étudions et prouvons l’existence d’équilibres de

Nash pour une gamme de valeurs de deux paramètres qui sont liés á la matrice du jeu. Ensuite,

nous introduisons le Jammer dans un environnement de communication coopérative, afin de

formuler analytiquement comment il affecte l’utilité atteinte, le choix du relais par la source et

la façon dont il choisit l’allocation de puissance pour son attaque. Les performances des tech-

niques Decode-and-Forward (Décoder-et-Retransmettre) et Amplify-and-Forward (Amplifier-et-

Rétransmettre) sont étudiées dans ce contexte. Notre simulation montre que la technique de

Decode-and-Forward donne toujours une plus grande ’utilité’, lorsque le relai décode le signal

avec succè s.



Abstract

Η εργασία αυτή ασχολείται με το Jamming, μια από τις κυριότερες απειλές για την ασφάλεια και την

ποιότητα της επικοινωνίας στα ασύρματα δίκτυα. Η διαδικασία αυτή μπορεί να μοντελοποιηθεί ως ένα

παίγνιο μηδενικού αθροίσματος, μεταξύ δύο ατόμων, τον Jammer και την οντότητα που επιθυμεί να

επικοινωνήσει. Μελέταμε τον Jammer σε μια επικοινωνία με ενεργειακούς περιορισμούς λόγω θερ-

μοτήτας, όπου οι παίχτες μπορούν να μεταδώσουν σε τρία επίπεδα ενέργειας. Σε αυτό το σενάριο,

διερευνούμε και αποδεικνύουμε την ύπαρξη ισορροπίας Nash για ένα εύρος δύο παραμέτρων που

σχετίζονται με τον πίνακα του παιγνίου. Στη συνέχεια, εισάγουμε τον Jammer σε ένα περιβάλλον

συνεργατικής επικοινωνίας, προκειμένου να διατυπώσουμε αναλυτικά πώς αυτός επηρεάζει την

επιτεύξιμη ωφελιμότητα, την επιλογή του κόμβου-σύνδεσμου από την πηγή και πώς αυτός επιλέγει

την κατανομή της ισχύος του στην επίθεσή του. Η επίδοση των τεχνικών Αποκωδικοποίησης-

Προώθησης Decode-and-Forward και Ενίσχυσης-Προώθησης Amplify-and-Forward μελετάται σε

αυτό το πλαίσιο. Η προσομείωσή μας καταλήγει στο ότι η μέθοδος της Αποκωδικοποίησης-

Προώθησης, δίνει πάντα μεγαλύτερη ωφελιμότητα αν ο κόμβος-σύνδεσμος αποκωδικοποιήσει με

επιτυχία το σήμα της πηγής.
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Chapter 1

Introduction

This work is about the modeling of the jamming security issue with Game Theory techniques.

In this chapter, firstly we will present an introduction to security issues in wireless networks, by

focusing on the jamming problem. We will also introduce our main mathematical tool, that of

Game Theory. After giving some background, we will see how it is used in networks and more

specifically in jamming situations. Afterwards, we will dispose an introduction in Cooperative

Communication, a new approach for routing of packets in wireless networks. The jammer will be

studied in this different environment too. Finally, the outline of this work and its contributions

will be explained.

1.1 Security Issues and Jamming Attacks

In this section, after some basics about the security issue at wireless networks, we present the

threat that is mainly studied in this work: the jammer.

1.1.1 Security in wireless networks

Security is a major concern in wireless networks in order to provide protected communication

in hostile environments. The shared wireless medium, the energy constraints and the dynamic

topology that characterize them arise more challenges on the security issue. The security threats

could be separated into four major categories: passive attacks, active attacks, man-in-the-middle

attacks and jamming attacks.

We present briefly those four categories: A passive attack occurs when a malicious user

listens or eavesdrops the network traffic. For the active attacks we have numerous exemples like

unauthorized access, spoofing (a situation in which one person or program successfully mas-
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Figure 1.1: A Jamming Situation

querades as another by falsifying data and thereby gaining an illegitimate advantage), flooding

attacks, denial-of-service (DoS) attacks etc. The man-in-the-middle attack is a form of active

eavesdropping in which the attacker makes independent connections with the victims and relays

messages between them. Finally Jamming is a special kind of DoS attack, specific to wireless

networks, where an adversary emits radio frequency signals that do not follow an underlying

MAC protocol.

1.1.2 Jamming attack

Security in networks has been studied from many perspectives at the different levels of network

architecture. Many security threats can be addressed through appropriately designed network

security architectures. Our interest focuses on a threat that is not adequately addressed via

those methods, Jamming, a situation where a hostile user tries purposefully to interfere with the

physical transmission and reception of wireless communications by introducing noise in order

to decrease the signal-noise ratio [1].

The shared nature of the wireless medium allows adversaries to observe communications

between wireless devices and easily launch DoS attacks that block the wireless medium and

prevent wireless devices from communicating. Radio interference attacks (jamming) are not

addressable through conventional security mechanisms. A hostile user can transmit continually

in a channel, bypassing the medium access protocol and by that he prevents users from being

able to communicate legitimately or he introduces packet collisions.

The problem of jamming plays a very important role in ensuring the quality and security

of wireless communications. In every jamming situation there exists an entity that wishes to

transmit successfully in order to communicate with another and an entity that tries to make

this communication difficult by introducing noise, the Jammer. The interest of these two are

opposite as the one is trying to outdo the other. In [1] different attack models and philosophies

are presented: The constant jammer who continually emits radio signals, the deceptive jammer
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who constantly injects regular packets to the channel without any gap between, the random

jammer who alternates between sleeping and jamming and the reactive jammer who stays quiet

when the channel is idle.

1.2 Brief Introduction on Game Theory and its Application in

Wireless Networks

Our basic tool for the modeling of jamming situations in wireless networks will be game theory.

Here, firstly we will present some basic concepts of game theory that will be useful for our study.

Afterwards we will see the use of this mathematical tool in networks and finally we will make

an introduction to our problem.

1.2.1 The essentials of game theory

Game Theory is the mathematical study of interaction among independent, self-interested

agents/ players. In order to model the player’s interest we use the ”utility theory” that quan-

tifies his degree of preference across a set of available alternatives. The goal for every player is

to maximize his utility function. In the case of more than one agents, the optimal choice for a

given player depends on the choices of others. In order to deal with this problem certain subsets

of outcomes are identified and they are called solution concepts. In other words, we could say

that a solution concept is a formal rule for predicting how the game will be played. These

predictions are called ”solutions”, and describe which strategies will be adopted by players,

therefore predicting the result of the game. One of the most fundamental solution concepts is

the Nash Equilibrium [2].

Trying to give an intuitive definition of a Nash Equilibrium we could say that a set of

strategies is a Nash equilibrium if no player can increase his expected payoff by unilaterally

changing his or her strategy. A Nash Equilibrium is a stable strategy profile, as no agent would

want to change his strategy if he knew what strategies the other agents were following. A formal

definition of Nash Equilibrium is the following:

Let (S, f) be a game with n players, where Si is the strategy set for player i, S = S1xSs...xSn

is the set of strategy profiles (i.e. a set of plans of actions for all the situations that may arise

in the game ) and f = (f1(x), ..., fn(x)) is the payoff function. Let xi be a strategy profile

of player i and x−i be a strategy profile of all players except for player i. When each player

i ∈ 1, ..., n chooses strategy xi resulting in strategy profile x = (x1, ..., xn) then player i obtains

payoff fi(x). A strategy profile x∗ ∈ S is a Nash Equilibrium (NE) if no unilateral deviation in
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strategy by any single player is profitable for that player, i.e. :

∀i, xi ∈ Si, xi 6= x∗i : fi(x
∗
i , x
∗
−i) > fi(xi, x

∗
−i)

.

The above definition holds when every player’s strategy constitues a unique best response

to the other agents’ strategies. This is the case of a Strict Nash. If not, we have:

∀i, xi ∈ Si, xi 6= x∗i : fi(x
∗
i , x
∗
−i) ≥ fi(xi, x∗−i), that forms a Weak Nash.

A game can have either a pure-strategy or a mixed Nash Equilibrium. In the case of mixed-

strategy a pure strategy, is chosen stochastically. Nash proved that if we allow mixed strategies,

then every game with a finite number of players in which each player can choose from finitely

many pure strategies has at least one Nash equilibrium. Mixed-strategy NE are necessarily

always weak, while pure-strategy NE can be either strict or weak [2].

Another notion from game theory that will be useful in our study is that of the zero-sum

game. A game is called zero-sum if for each strategy profile the sum of the utilities of the

players for this profile equals to zero. These games represent situations of pure competition as

one player’s gain come at the expense of the other player. Nash equilibria in zero-sum games

can be viewed graphically as a saddle point, where any deviation of the player lowers his utility

and increases the utility of the other player [2],[3].

1.2.2 Game theory application in wireless networks

Game theory has been primarily used in Economics, in order to describe the relations between

financial entities, companies, consumers etc. Not surprisingly, game theory has also been used

in networks, initially to describe routing and resource allocation problems in competitive envi-

ronment. The evolution of wireless communication gave rise to problems that could be nicely

presented through game theory.

The limited transmission resources impose a conflict of interests and every user (player) is

called to decide in a distributed way for the strategy that will optimize his payoff. The users of

a wireless network are considered rational, which means that they will always try to maximize

their utility. From another point of view, in modern wireless networks the idea of incentives for

sharing resources arises. These relations of competition and cooperation can be easily described

through game theory. Furthermore this mathematical tool offers the concepts and the methods

to describe and determine analytically the impact of a specific choice of a user, of different

protocols and policies.
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In [4] we can see some typical and indicative problems of wireless networks modeled through

Game Theory. The following concepts arise from these examples: In some cases the players can

mutually increase their payoffs by cooperating (symmetric non-zero sum game). The conflict

of interest is that each of them has to provide a service to the other. In other cases players

have to share a common resource (usually the wireless channel). At this scenario we can have

a zero-sum game, where the gain of a player represents the loss of another, but we can also

have a non-zero sum game where the users successfully share. At these examples we can also

see that a game can be formulated as a static one, where all the users act simultaneously or as

a dynamic one, where players have a sequential reaction.

1.2.3 Modeling jamming with game theory

As mentioned previously, the goal of a Jammer is to cancel the communication of the legitimate

user. If the Jammer succeeds, the legitimate user will not be able to transmit and his payoff

will be zero. If the Jammer fails, the legitimate user will transmit successfully and the payoff

of the jammer will be zero. In other words the utility of the Jammer is exactly the opposite

of the utility of the transmitter. So the game between them can be described as a zero-sum

game. This kind of formulation exists already in [5] and 6] where a power budget constraint is

also taken into account for both players. In [7] although the game is similar, it is formulated

as a non-zero sum game with a power budget, because of the use of a cost for the usage of a

resource.

Another important issue at the formulation of a game is the utility function. The utility

function should include the results of both the Jammer’s and the legitimate user’s actions. As

the study of the Jammer is at the Physical Layer, the most appropriate objective function to

express the utility for the players is that of the SNR.

In [8] the jamming game is again formulated as a zero-sum game with an additional con-

straint about the thermal energy that should not exceed a certain limit. The players decide

whether they will transmit or not, according to the thermal energy they have accumulated until

now. Pure and mixed strategies are studied in relation to the parameters of the game.

1.3 Cooperative Communication

Cooperative diversity is a form of spatial diversity to combat channel fading through cooperative

relaying. In the traditional layered design approach of wireless networks, the route that connects

the source with the destination is selected by a protocol of the network layer, and each node
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Figure 1.2: Cooperative Communication

along this route is responsible of transmitting and, if necessary, retransmitting the packets to

the next hop. Thus, there is no way for the packets to be delivered from an alternative route if

a particular link is degraded. This lack of flexibility becomes more critical in order to achieve

high quality of service, high data rates and efficient utilization of resources in order to meet the

goals of wireless networks [9].

The basic idea of Cooperative Communication is that when a receiver cannot decode a frame,

the retransmission is handled not by its original source but rather by a neighbor that overheard

the transmission successfully, and may have a better channel to the destination.The cooperative

diversity takes advantage of broadcast transmission to send information through multiple relays

concurrently. The destination can then choose the best of many relayed signals, or combine

information from many signals. By effectively transmitting or processing (semi)independently

fading copies of the signal, diversity is a method for directly combating the effects of fading

[10].

In order to have a historical background for the cooperative communication, we should get

back to the work of Cover and Gamal, on the information theoretic properties of the relay

channel [11]. There, we can find the analysis for the capacity of a three-node network consisting

of a source, a destination and a relay. Although at this fundamental work the relay’s only

purpose is to help the main channel, in more recent work users are both information sources

and relays [12].

There are two categories of cooperative communication, namely, amplify-and-forward (AF)

and decode-and-forward (DF). Under AF, the cooperative relay node performs a linear operation

on the signal received from the information source before forwarding it to the destination node.

Under DF, the cooperative relay node decodes the received signal, and re-encodes it before

forwarding it to the destination node [13].

A capacity, outage and coverage analysis of the model of relay channels and cooperative

communication is carried out at [10] and [11]. [13] is focusing on the optimal choice of a relay
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Figure 1.3: A Jamming Situation in Cooperative Communication

between a set of relays in order to maximize the achieved SNR at the receiver, for the Decode

and Forward technique while [14] is presenting the Amplify and Forward scenario. Both the

A-F and D-F techniques are studied at [15].

Although there seems to be much effort on the selection of an optimal relay ([13], [14], [16],[9])

by studying the SNR at the receiver, there is not much work that incorporates the jamming

phenomenon at this problem. Furthermore game theory becomes a popular method to describe

security phenomena in cooperative scenario, like in [17],[18], [19]. In our work a scenario of a

jammer that attacks a network of cooperative communication with a set of possible relay nodes

is studied with the use of game theory.

1.4 Report Organization and Major Contributions

The following work consists of two major parts. The first one is the modeling of the process of

communication jamming under temporal energy constraints. The second part introduces the

jamming attack in a cooperative communication environment.

1.4.1 Jamming as a dynamic game under energy constraints

In [8], jamming is presented as a two-person zero-sum noncooperative game, where two oppo-

nents, a communicator (a transmitter-receiver pair) and a jammer try to outdo one the other

by transmitting a signal with a power level greater than that of the adversary. Both players

are subject to temporal energy constraints, which account for protection of the communicating

and jamming transmitters from overheating. In each slot the players choose randomly their

transmission power between two power levels: zero and a positive value. The general behavior

of the players’ strategies and payoff increment is found to depend on a parameter related to the

payoff matrix, called payoff parameter. In order to solve the game the authors of [8] present a

backward induction methodology for a grid solution that is based on the 2x2 matrix of the game.
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The size of the matrix results from the available choices for each player (zero or positive-value).

In our work, we extend the previous analysis by defining three levels of power transmission:

zero, low and high, where a higher level masks a lower and denotes a successful transmission.

Energy constraints are considered too, for both players.

The existence of pure and mixed equilibria in this game is investigated, in relation to the

payoff parameters that describe the payoff of the players when they both transmit at the high

level or both at the low level.

For this game, the matrix is a 3x3 one, so a new methodology has to be formulated in

order to obtain a solution for matrices bigger than 2x2. Our analysis show that the game

that is described by the bigger matrix can be separated to subgames where the users have two

strategies. So each subgame -that is described by a 2x2 matrix is solved separately, under the

conditions that must be imposed in order this subgame to exist.

So finally, we have the conditions for the Nash Equilibrium in our game and a methodology

in order to search for equilibria in a 3x3 matrix.

1.4.2 Cooperative relaying under the presence of a jammer

In this section we study the jamming problem in an environment of cooperative relaying. Both

the jamming security issue and the cooperative communication have been studied extensively,

but it seems that there is no sufficient work concerning the behavior of a jammer, and accordingly

of the source, in a network of relayed communication. We assume a source, a destination and

a pool of available relay nodes. The utility function is the SNR formula and as far as energy

constraints are concerned, we take into account the power budget of the source and the jammer.

The formulas for the SNR have been studied in the concept of cooperative communication at

[14],[15],[20], without the presence of a jammer.

We take into consideration the case of one relay. The source broadcasts a message that will

be received from the relay and the destination. The Jammer attacks both the initial broadcast

of the source, as well as the channel between the relay node and the destination. We present

the analytical analysis for the power allocation behavior of the jammer and the relay selection

from the source. An algorithm for both problems is proposed. Both the amplify-and-forward

and the decode-and-forward scenario are studied. Finally, a simulation is carried out, in order

to compare the performance of the two techniques.
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Chapter 2

Jamming as a Dynamic Game under

Energy Constraints

2.1 Introduction

Communication Jamming is a power game between two opponents: the Jammer and the Com-

municator (transmitter-receiver pair). Each of them tries to outdo the other by transmitting a

higher power level. Such a situation has been modeled as a two-person zero-sum non-cooperative

game in [8], where two strategies (that correspond to two power levels) are available for the

players: zero and a positive value. However, the equipment of the transmitter has a limitation

on its power heating capability, which leads to an energy constraint for both users, in order to

avoid a thermal breakdown.

Our study extends this model, for more than two available strategies for each player. We

provide the analytical formulation for a game with three available power levels: zero, low, high.

We embed the thermal limitations and we examine the existence of nash equilibria in relation

to two payoff parameters that exist when the players transmit on the same level. In order to

solve the game a methodology for bigger matrices than the one of [8] is presented.

In this chapter, firstly we will present the formulation of the problem as a game and the

payoff as a function of the strategies. Then, we will examine the existence of saddle points and

nash equilibria. We will proceed with the solution of the game in a grid form and study the

mixed equilibria in relation to the payoff parameters. In the end we will have the contribution

of this analysis.
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2.2 Formulate the Problem

We study the case in which selected communication and jamming strategies are exercised in

sychronism over T time-slots, indexed by 1,2,...,T. In the tf th slot (denoting the forward time

index) the communicator transmits an information signal with power level Xtf and the Jammer

transmits a jamming signal with a power level Ytf . The Communicator can transmit on a high

level power (psh), a low level power (psl ) or zero. The Jammer can transmit on a high level power

(pjh), a low level power (pjl ) or zero, too. The high level power masks the lower.

We infer that at the beginning of any time slot, there is accumulation of thermal energy in

the communicating and jamming transmitters owing to past transmissions. Over the current slot

duration, a fraction of this energy is dissipated, while the remainder adds on to energy generated

by the current slot’s transmission. To avoid transmitter failure due to thermal breakdown, the

accumulated thermal energy at the end of any slot should not exceed a threshold (temporal

energy constraint).

We define the folloiwng:

Ztf represents the accumulated thermal energy in the communicating transmitter at the end of

time slot tf . Wtf represents the accumulated thermal energy in the jammer transmitter at the

end of time slot tf . δC is the fraction of the energy that has not be dissipated by the end of

the following time slot, for the Communicator. δJ is the fraction of the energy that has not be

dissipated by the end of the following time slot, for the Jammer.

Assuming that there is no initial accumulated thermal energy, the evolution of the accumu-

lated thermal energy process can be modeles as follows:

For the Communicatior,

Z0 = 0

Ztf = δCZtf−1 +Xtf =

tf−1∑
n=0

δnCXtf−n

under the constraint that Ztf−n ≤ Cmax

For the Jammer.

W0 = 0

Wtf = δJWtf−1 + Ytf =

tf−1∑
n=0

δnJYtf−n
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under the constraint that Wtf−n ≤ Jmax

for all n = 0, ..tf − 1 and tf = 1, ..., T . And while Xtf takes its values from the set 0, psh, p
s
l

and Ytf from the set 0, pjh, p
j
l .

The payoff G(Xtf , Ytf ) to the communicator can be described by the following matrix:

G =


G(0, 0) G(0, pjl ) G(0, pjh)

G(psl , 0) G(psl , p
j
l ) G(psl , p

j
h)

G(psh, 0) G(psh, p
j
l ) G(psh, p

j
h)

 =


0 0 0

1 al 0

1 1 ah


Where 0 < al, ah < 1, are the payoff parameters.

The overall payoff is the expected value of the average payoff per slot for activities over a

sequence of T time slots:

G =
1

T

T∑
tf=1

E[G(Xtf , Ytf )]

Let t = T − tf denote the reverse-time index. For the Communicator, ZT−t admits only

those energies that belong to

Φt = z : z = psh

T−t−1∑
n=0

βnδ
n
C , β0, ..., βT−t−1 ∈ 0, 1∪z : z = psl

T−t−1∑
n=0

βnδ
n
C , β0, ..., βT−t−1 ∈ 0, 1∩[0, Cmax]

where t = 1, ...T

For the Jammer, WT−t admits only those energies that belong to

Ψt = w : w = pjh

T−t−1∑
n=0

βnδ
n
J , β0, ..., βT−t−1 ∈ 0, 1∪w : w = pjl

T−t−1∑
n=0

βnδ
n
J , β0, ..., βT−t−1 ∈ 0, 1∪[0, Jmax]

where t = 1, ...T

We define the following selection probabilities or strategies:

pht(z, w) = Pr(XT−t = psh|ZT−t−1 = z,WT−t−1 = w)

which denote the probability that the communicator selects power psh at reverse-time t, given

that the communicator and jammer have retained z and w units of energy, respectively, from

past transmission. In the same way:

plt(z, w) = Pr(XT−t = psl |ZT−t−1 = z,WT−t−1 = w)

qht(z, w) = Pr(YT−t = pjh|ZT−t−1 = z,WT−t−1 = w)
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qlt(z, w) = Pr(YT−t = pjh|ZT−t−1 = z,WT−t−1 = w)

So the payoff can be expressed:

S0 = E[G(XT , YT )|ZT−1,WT−1]

St = E[G(XT−t, YT−t) + St−1|ZT−t−1,WT−t−1]

Where, T = 1, ...T − 1

We can be also write:

S0 =
[

1− ph0(z, w)− pl0(z, w) pl(z, w) ph(z, w)
]
×


0 0 0

1 al 0

1 1 ah

×


1− qh0(z, w)− ql0(z, w)

ql0(z, w)

qh0(z, w)


St+1 =

[
1− pht+1(z, w)− pl0(z, w) plt+1(z, w) pht+1(z, w)

]

×


St(δCz, δJw) St(δCz, p

j
l + δJw) St(δCz, p

j
h + δJw)

1 + St(p
s
l + δCz, δJw) al + St(p

s
l + δCz, p

j
l + δJw) St(p

s
l + δCz, p

j
h + δJw)

1 + St(p
s
h + δCz, δJw) 1 + St(p

s
h + δCz, p

j
l + δJw) ah + St(p

s
h + δCz, p

j
h + δJw)



×


1− qht+1(z, w)− qlt+1(z, w)

qlt+1(z, w)

qht+1(z, w)


The constraints that are imposed by the energy accumulation, force the following conditions:

I)When z ∈ Φt+1 ∩ (Cmid, Cmax],

pht(z, w) = 0 plt(z, w) = 0

II)When z ∈ Φt+1 ∩ (Cmid−C
δC

, Cmid],

pht(z, w) = 0 plt(z, w) = 1

III)When z ∈ Φt+1 ∩ [0, Cmid−C
δC

],

pht(z, w) = 1 plt(z, w) = 0

IV)When w ∈ Ψt+1 ∩ (Jmid, Jmax],

qht(z, w) = 0 qlt(z, w) = 1

V)When w ∈ Ψt+1 ∩ (Jmid−J
δJ

, Jmid],

qht(z, w) = 0 qlt(z, w) = 1
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VI)When w ∈ Ψt+1 ∩ [0, Jmid−J
δJ

],

qht(z, w) = 1 qlt(z, w) = 0

The strategy sets Pt for the communicator and Qt for the Jammer at reverse time t = 0, .., T −1

will be:

Pt =

{
pht(z, w)

⋃
(
Cmid − C

δC
− z) : z ∈ Φt+1;w ∈ Ψt+1

}
∪
{
plt(z, w)

⋃
(Cmid − z) : z ∈ Φt+1;w ∈ Ψt+1

}
Qt =

{
qht(z, w)

⋃
(
Jmid − J

δj
− w) : z ∈ Φt+1;w ∈ Ψt+1

}
∪
{
qlt(z, w)

⋃
(Jmid − w) : z ∈ Φt+1;w ∈ Ψt+1

}
where

⋃
(.) denotes the unit step function.

2.3 Finite Horizon Game: Existence of a Saddle Point

The matrix of the game -denoting the payoff for both players- is as follows:

C − J 0 pjl pjh

0 (0, 0) (0, 0) (0, 0)

psl (1,−1) (αl,−αl) (−1, 1)

psh (1,−1) (1,−1) (αh,−αh)

We can see that there are no pure strategy Nash Equilibria for the game. According to Nash,

the game -as a game with a finite number of players and action profiles- it will have at least

one mixed-strategy equilibrium. The mixed equilibria will be studied in a following section.

For the finite horizon game, the T is considered finite. Each non trivial element of the strat-

egy sets P0, ..., PT−1, Q0, ...QT−1 is a probability by definition. Therefore it belongs to the com-

pact convex set [0, 1] on the real line. The payoff can be expressed asG(P0, ..., PT−1, Q0, ..., QT−1)

and is also affine in each of the nontrivial elements of the strategy sets. Therefore it is a con-

tinuous functional of them. Hence, the following exist:

max{P0,...,PT−1}G(P0, ..., PT−1;Q0, ..., QT−1)

min{Q0,...,QT−1}G(P0, ..., PT−1;Q0, ..., QT−1)

While playing the game, the communicator assumes the worst case in which the jammer

minimizes the payoff over all possible strategy set sequences Q0, ..., QT−1, against any sequence

that it uses, and chooses a sequence P
′
0, ..., P

′
T−1 such that the maximin payoff VL is achieved:

VL = max{P0,...,PT−1}min{Q0,...,QT−1}G(P0, ..., PT−1;Q0, ..., QT−1) =
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= min{Q0,...,QT−1}G(P
′
0, ..., P

′
T−1;Q0, ..., QT−1)

The jammer chooses a sequence Q
′
0, ..., Q

′
T−1 in order to achieve the minimax payoff VU

VU = min{Q0,...,QT−1}max{P0,...,PT−1}G(P0, ..., PT−1;Q0, ..., QT−1) =

= max{P0,...,PT−1}G(P0, ..., PT−1;Q
′
0, ..., Q

′
T−1)

From the minimax theorem, we het that VL ≤ VU .

A strategy set sequence {P ′0, ..., P
′
T−1} that satisfies VL = min{Q0,...,QT−1}G(P

′
0, ..., P

′
T−1;Q0, ..., QT−1)

is the optimal strategy set sequence for the communicator. Accordingly, a strategy set se-

quence {P ′0, ..., P
′
T−1} satisfying VU = max{P0,...,PT−1}G(P0, ..., PT−1;Q

′
0, ..., Q

′
T−1) is an opti-

mal strategy set sequence for the Jammer. As mentioned before, the elements of strategy sets

P0, ..., PT−1, Q0, ...QT−1 belong to the compact convex set [0, 1] and as the payoff is a continuous

function fo these non-trivial elements, there exists a sequence P ∗0 , ..., P
∗
T−1, and a Q∗0, ..., Q

∗
T−1

such that:

VL ≥ min{Q0,...,QT−1}G(P
′
0, ..., P

′
T−1;Q0, ..., QT−1) ≥ G(P

′
0, ..., P

′
T−1;Q0, ..., QT−1)

and

VU ≤ max{P0,...,PT−1}G(P0, ..., PT−1;Q
′
0, ..., Q

′
T−1) ≤ G(P0, ..., PT−1;Q

′
0, ..., Q

′
T−1)

Therefore, the finite horizon game admits a saddle-point, given by the strategy P ∗0 , ..., P
∗
T−1, Q

∗
0, ..., Q

∗
T−1.

[3]

2.4 The Grid Solution

In this section the finite horizon game will be solved with the technique of backward induction.

Firstly we will define the cases that should be studied and the optimal strategies for each of

them and afterwards we will proceed to the formulation of grid solutions.

2.4.1 Optimal strategies

In order to obtain a set of optimal strategies, the following cases should be studied:

If we put the power constraints on an axis we get the following:

HIGH LOW ZERO ZERO

0 Cmid−C
δC

Cmid
Cmax−C

δC
Cmax

So we can write:
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HIGH LOW ZERO

0 Cmid−C
δC

Cmid Cmax

And for the Jammer:

HIGH LOW ZERO

0 Jmid−J
δJ

Jmid Jmax

Where C and J can take the values psh, psl and pjh, pjl .

The above lead us to the following cases:

1. Cmid ≤ z ≤ Cmax; Jmid ≤ w ≤ Jmax

Noone of the players transmits

2. Cmid ≤ z ≤ Cmax; 0 ≤ w ≤ Jmid−J
δJ

Communicator does not transmit. Jammer transmits at high level

3. Cmid ≤ z ≤ Cmax; Jmid−J
δJ

≤ w ≤ Jmid
Communicator does not transmit. Jammer transmits at low level

4. 0 ≤ z ≤ Cmid−C
δC

; Jmid ≤ w ≤ Jmax

Communicator transmits at high level. Jammer does not transmit.

5. 0 ≤ z ≤ Cmid−C
δC

; 0 ≤ w ≤ Jmid−J
δJ

Communicator transmits at high level. Jammer transmits at high level

6. 0 ≤ z ≤ Cmid−C
δC

; Jmid−J
δJ

≤ w ≤ Jmid
Communicator transmits at high level. Jammer transmits at low level

7. Cmid−C
δC

≤ z ≤ Cmid; Jmid ≤ w ≤ Jmax

Communicator transmits at low level. Jammer does not transmit.

8. Cmid−C
δC

≤ z ≤ Cmid; 0 ≤ w ≤ Jmid−J
δJ

Communicator transmits at low level. Jammer transmits at high level

9. Cmid−C
δC

≤ z ≤ Cmid; Jmid−J
δJ

≤ w ≤ Jmid
Communicator transmits at low level. Jammer transmits at low level

In order to calculate S∗0 :

For the cases 1-3, since the Communicator does not transmit, its payoff will be 0.
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For cases 6 and 7, since the Communicator transmits at a higher than the Jammer level, its

payoff will be 1.

For cases 4, 8 since the Jammer transmits at a higher than the Communicator level, the payoff

for the Communicator will be 0.

For the cases 5 and 9, the players transmit on the same level and the payoff will be given by

the game that is described by the matrix:


0 0 0

1 al 0

1 1 ah



S∗0(z, w) =



value(


0 0 0

1 al 0

1 1 ah

), if 0 ≤ z ≤ Cmid − C
δC

; 0 ≤ w ≤ Jmid − J
δJ

1, if 0 ≤ z ≤ Cmid − C
δC

;
Jmid − J

δJ
≤ w ≤ Jmid

1, if 0 ≤ z ≤ Cmid − C
δC

; Jmid ≤ w ≤ Jmax

0, if
Cmid − C

δC
≤ z ≤ Cmid; 0 ≤ w ≤ Jmid − J

δJ

value(


0 0 0

1 al 0

1 1 ah

), if
Cmid − C

δC
≤ z ≤ Cmid;

Jmid − J
δJ

≤ w ≤ Jmid

1, if
Cmid − C

δC
≤ z ≤ Cmid; Jmid ≤ w ≤ Jmax

0, if Cmid ≤ z ≤ Cmax; 0 ≤ w ≤ Jmid − J
δJ

0, if Cmid ≤ z ≤ Cmax;
Jmid − J

δJ
≤ w ≤ Jmid

0, if Cmid ≤ z ≤ Cmax; Jmid ≤ w ≤ Jmax

In order to calculate S∗t+1

For the case 1,2,3 where Communicator does not transmit, the payoff will be:

St+1(z, w) = St(δCz, δJw)

For the cases 4 and 7 where the Jammer does not transmit because of the energy constraints,

St+1(z, w) = max(St(δCz, δJw), 1 + St(p
s
h + δCz, δJw), 1 + St(p

s
l + δCz, δJw))

For the case 6, the energy constraints affect the Jammer and force him to transmit at the low

level. The payoff will be:

St+1(z, w) = max(St(δCz, p
j
l + δJw), 1 + St(p

s
h + δCz, p

j
l + δJw), al + St(p

s
l + δCz, p

j
l + δJw))
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For the case 8, the energy constraints affect the Communicator and force him to transmit at

the low level.

St+1(z, w) = min(1 + St(p
s
l + δCz, δJw), St(p

s
l + δCz, p

j
h + δJw), al + St(p

s
l + δCz, p

j
l + δJw))

For the cases 5 and 9 where both players transmit at the same level, the payoff will be given by

the outcome of the game that is described by the matrix that follows:

St+1(z, w) =


St(δCz, δJw) St(δCz, p

j
l + δJw) St(δCz, p

j
h + δJw)

1 + St(p
s
h + δCz, δJw) al + St(p

s
l + δCz, p

j
l + δJw) St(p

s
l + δCz, p

j
h + δJw)

1 + St(p
s
l + δCz, δJw) 1 + St(p

s
h + δCz, p

j
l + δJw) ah + St(p

s
h + δCz, p

j
h + δJw)


So we can write,

S∗t+1(z, w) =



value(


St(δCz, δJw) St(δCz, p

j
l + δJw) St(δCz, p

j
h + δJw)

1 + St(p
s
l + δCz, δJw) al + St(p

s
l + δCz, p

j
l + δJw) St(p

s
l + δCz, p

j
h + δJw)

1 + St(p
s
h + δCz, δJw) 1 + St(p

s
h + δCz, p

j
l + δJw) ah + St(p

s
h + δCz, p

j
h + δJw)

),

if 0 ≤ z ≤ Cmid − C
δC

; 0 ≤ w ≤ Jmid − J
δJ

max(St(δCz, p
j
l + δJw), 1 + St(p

s
h + δCz, p

j
l + δJw), al + St(p

s
l + δCz, p

j
l + δJw)),

if 0 ≤ z ≤ Cmid − C
δC

;
Jmid − J

δJ
≤ w ≤ Jmid

max(St(δCz, δJw), 1 + St(p
s
h + δCz, δJw), 1 + St(p

s
l + δCz, δJw)),

if 0 ≤ z ≤ Cmid − C
δC

; Jmid ≤ w ≤ Jmax

min(1 + St(p
s
l + δCz, δJw), St(p

s
l + δCz, p

j
h + δJw), al + St(p

s
l + δCz, p

j
l + δJw)),

if
Cmid − C

δC
≤ z ≤ Cmid; 0 ≤ w ≤ Jmid − J

δJ

value(


St(δCz, δJw) St(δCz, p

j
l + δJw) St(δCz, p

j
h + δJw)

1 + St(p
s
l + δCz, δJw) al + St(p

s
l + δCz, p

j
l + δJw) St(p

s
l + δCz, p

j
h + δJw)

1 + St(p
s
h + δCz, δJw) 1 + St(p

s
h + δCz, p

j
l + δJw) ah + St(p

s
h + δCz, p

j
h + δJw)

),

if
Cmid − C

δC
≤ z ≤ Cmid;

Jmid − J
δJ

≤ w ≤ Jmid

max(St(δCz, δJw), 1 + St(p
s
h + δCz, δJw), 1 + St(p

s
l + δCz, δJw)),

if
Cmid − C

δC
≤ z ≤ Cmid; Jmid ≤ w ≤ Jmax

St(δCz, δJw), if Cmid ≤ z ≤ Cmax; 0 ≤ w ≤ Jmid − J
δJ

St(δCz, δJw), if Cmid ≤ z ≤ Cmax;
Jmid − J

δJ
≤ w ≤ Jmid

St(δCz, δJw), if Cmid ≤ z ≤ Cmax; Jmid ≤ w ≤ Jmax
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In order to obtain the optimal strategies we will start again by their initial values at t = 0. So

for ph∗0, pl
∗
0, qh

∗
0, ql

∗
0, we have:

a) ph∗0(z, w) = 1 b) pl∗0(z, w) = 0 c) qh∗0(z, w) = 1 d) ql∗0(z, w) = 0,

0 ≤ z ≤ Cmid − C
δC

, 0 ≤ w ≤ Jmid − J
δJ

a) ph∗0(z, w) = 1 b) pl∗0(z, w) = 0 c) qh∗0(z, w) = 0 d) ql∗0(z, w) = 1,

0 ≤ z ≤ Cmid − C
δC

,
Jmid − J

δJ
≤ w ≤ Jmid

a) ph∗0(z, w) = 1 b) pl∗0(z, w) = 0 c) qh∗0(z, w) = 0 d) ql∗0(z, w) = 0,

0 ≤ z ≤ Cmid − C
δC

, Jmid ≤ w ≤ Jmax

a) ph∗0(z, w) = 0 b) pl∗0(z, w) = 1 c) qh∗0(z, w) = 1 d) ql∗0(z, w) = 0,

Cmid − C
δC

≤ z ≤ Cmid, 0 ≤ w ≤
Jmid − J

δJ

a) ph∗0(z, w) = 0 b) pl∗0(z, w) = 1 c) qh∗0(z, w) = 0 d) ql∗0(z, w) = 1,

Cmid − C
δC

≤ z ≤ Cmid,
Jmid − J

δJ
≤ w ≤ Jmid

a) ph∗0(z, w) = 0 b) pl∗0(z, w) = 1 c) qh∗0(z, w) = 0 d) ql∗0(z, w) = 0,

Cmid − C
δC

≤ z ≤ Cmid, Jmid ≤ w ≤ Jmax

a) ph∗0(z, w) = 0 b) pl∗0(z, w) = 0 c) qh∗0(z, w) = 0 d) ql∗0(z, w) = 0,

Cmid ≤ z ≤ Cmax, 0 ≤ w ≤
Jmid − J

δJ

a) ph∗0(z, w) = 0 b) pl∗0(z, w) = 0 c) qh∗0(z, w) = 0 d) ql∗0(z, w) = 0,

Cmid ≤ z ≤ Cmax,
Jmid − J

δJ
≤ w ≤ Jmid

a) ph∗0(z, w) = 0 b) pl∗0(z, w) = 0 c) qh∗0(z, w) = 0 d) ql∗0(z, w) = 0,

Cmid ≤ z ≤ Cmax, Jmid ≤ w ≤ Jmax
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Note than when the Communicator does not transmit, the Jammer even if he has the option to

transmit, chooses to remain idle as he has no signal to jam. As we demonstrated previously, as

z increases, S∗t (z, w) decreases and as w increases, S∗t (z, w) decreases.

So we can procede to the formulas of time-slot t and write:

a) ph∗t (z, w) = 1 b) pl∗t (z, w) = 0 c) qh∗t (z, w) = 0 d) ql∗t (z, w) = 1,

0 ≤ z ≤ Cmid − C
δC

,
Jmid − J

δJ
≤ w ≤ Jmid

a) ph∗t (z, w) = 1 b) pl∗t (z, w) = 0 c) qh∗t (z, w) = 0 d) ql∗t (z, w) = 0,

0 ≤ z ≤ Cmid − C
δC

, Jmid ≤ w ≤ Jmax

a) ph∗t (z, w) = 0 b) pl∗t (z, w) = 1 c) qh∗t (z, w) = 1 d) ql∗t (z, w) = 0,

Cmid − C
δC

≤ z ≤ Cmid, 0 ≤ w ≤
Jmid − J

δJ

a) ph∗t (z, w) = 0 b) pl∗t (z, w) = 1 c) qh∗t (z, w) = 0 d) ql∗t (z, w) = 0,

Cmid − C
δC

≤ z ≤ Cmid, Jmid ≤ w ≤ Jmax

a) ph∗t (z, w) = 0 b) pl∗t (z, w) = 0 c) qh∗t (z, w) = 0 d) ql∗t (z, w) = 0,

Cmid ≤ z ≤ Cmax, 0 ≤ w ≤
Jmid − J

δJ

a) ph∗t (z, w) = 0 b) pl∗t (z, w) = 0 c) qh∗t (z, w) = 0 d) ql∗t (z, w) = 0,

Cmid ≤ z ≤ Cmax,
Jmid − J

δJ
≤ w ≤ Jmid

a) ph∗t (z, w) = 0 b) pl∗t (z, w) = 0 c) qh∗t (z, w) = 0 d) ql∗t (z, w) = 0,

Cmid ≤ z ≤ Cmax, Jmid ≤ w ≤ Jmax

And the following two refer to the cases where they both transmit on the same level [8]:

a) ph∗t (z, w) = 1 b) pl∗t (z, w) = 0 c) qh∗t (z, w) = 1 d) ql∗t (z, w) = 0,
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0 ≤ z ≤ Cmid − C
δC

, 0 ≤ w ≤ Jmid − J
δJ

a) ph∗t (z, w) = 0 b) pl∗t (z, w) = 1 c) qh∗t (z, w) = 0 d) ql∗t (z, w) = 1,

Cmid − C
δC

≤ z ≤ Cmid,
Jmid − J

δJ
≤ w ≤ Jmid

2.4.2 The grid solution of the game

After defining the optimal strategies, we will proceed to the grid solution of the game. The

energy constraints define 9 different regions of operation, so the grid solution has the following

form:

ZERO St13 St23 St33

LOW St12 St22 St32

HIGH St11 St21 St31

J/C HIGH LOW ZERO

Accordingly, S∗t (z, w) has a 3x3 structure for all t and can be defined:

S∗t (z, w) =



St11, if 0 ≤ z ≤ Cmid − C
δC

; 0 ≤ w ≤ Jmid − J
δJ

St12, if 0 ≤ z ≤ Cmid − C
δC

;
Jmid − J

δJ
≤ w ≤ Jmid

St13, if 0 ≤ z ≤ Cmid − C
δC

; Jmid ≤ w ≤ Jmax

St21, if
Cmid − C

δC
≤ z ≤ Cmid; 0 ≤ w ≤ Jmid − J

δJ

St22, if
Cmid − C

δC
≤ z ≤ Cmid;

Jmid − J
δJ

≤ w ≤ Jmid

St23, if
Cmid − C

δC
≤ z ≤ Cmid; Jmid ≤ w ≤ Jmax

St31, if Cmid ≤ z ≤ Cmax; 0 ≤ w ≤ Jmid − J
δJ

St32, if Cmid ≤ z ≤ Cmax;
Jmid − J

δJ
≤ w ≤ Jmid

St33, if Cmid ≤ z ≤ Cmax; Jmid ≤ w ≤ Jmax

Taking into consideration the optimal strategies that we have already defined, we can obtain

the following results at t = 0:

a)S0
11 = ah b)S0

12 = 1 c)S0
13 = 1

d)S0
21 = 0 e)S0

22 = ah f)S0
23 = 1

g)S0
31 = 0 h)S0

32 = 0 i)S0
33 = 0
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By using the formulas of S∗t (z, w) at a grid form and at its initial, and by substitution, we

obtain the formulas for St+1.

We should take into account that S∗t (z, w) decreases with z and increases with w and al, ah ≤ 1.

So, taking into account the following:

ZERO St13 St23 St33

LOW St12 St22 St32

HIGH St11 St21 St31

J/C HIGH LOW ZERO

we have that:

St+1
11 =

value(


S11(δCz, δJw) S11(δCz, p

j
l + δJw) S11(δCz, p

j
h + δJw)

1 + S11(p
s
l + δCz, δJw) al + S11(p

s
l + δCz, p

j
l + δJw) S11(p

s
l + δCz, p

j
h + δJw)

1 + S11(p
s
h + δCz, δJw) 1 + S11(p

s
h + δCz, p

j
l + δJw) ah + S11(p

s
h + δCz, p

j
h + δJw)

)

= value(


St11 St12 St13

1 + St21 al + St22 St23

1 + St31 1 + St32 ah + St33

)

St+1
12 = max(St12, al + St22, 1 + St32)

St+1
13 = St+1

23 = max(St11, 1 + St21, 1 + St31)

St+1
21 = min(1 + St21, al + St22, S

t
23)

St+1
22 = value(


St11 St12 St13

1 + St21 al + St22 St23

1 + St31 1 + St32 ah + St33

)

St+1
31 = St+1

32 = St+1
31 = St11

Since the initial conditions S11, S12, S13, S21, S22, S23, S31, S32, S33 have been determined, we

can solve for T = 1, ...(T − 1) -for a finite T, with backward induction.

2.5 The Steady State Solution - Mixed Nash Equilibria

In this section we will examine the mixed equilibria of the game. The matrix of the game has a

3x3 form and the methodology of [8] cannot be used in order to define the values of the payoff

parameters for a mixed Nas Equilibrium.

24



What we propose is the seperation of the matrix to subgames. In order to do that, we will

consider the cases that the Communicator mixes between 2 strategies and not 3. Every subgame

will be solved seperately by imposing appropriate constraints that will justify the choice of the

communicator to play the particular subgame instead of the 3x3 one.

As it occurs from the evolution equation,

S∗t+1(z, w) = maxpht+1,plt+1minqht+1,qlt+1∑
x∈X

∑
y∈Y

pht+1(x/z, w)plt+1(x/z, w)qht+1(y/z, w)qlt+1(y/z, w)[f(x, y) + S∗t (x+ δCz, y + δJw)]

The optimum payoff appears to increase as t increases and the increment when going from t to

t+ 1 is bounded in [0, 1], since all the elements of the payoff matrix lie in [0, 1].

In order to solve the equation for S∗t (z, w) when t→∞, we define the payoff increment

λtij = St+1
ij − S

t
ij , i = 1.2, j = 1, 2, t = 0, 1, 2, ...

from where we get St+1
ij = λtij + Stij

At a steady state situation as t→∞, limt→∞ph
t
11 = pht11, limt→∞qh

t
11 = qht11, limt→∞ph

t
22 =

pht22, limt→∞qh
t
22 = qht22.

In the case the Communicator does not mix all his three strategies, we have to study the

following cases, that formulate 4 subgames.:

Case 1 The Communicator mixes between the strategies low and high. The Jammer mixes

between the strategies low and high, too.

In order this scenario to occur, the following constraints should be satisfied:

(We consider U() as the utility)

Us(ZERO) < Us(LOW )⇒

a) Us(p
s
0, p

j
l ) < Us(p

s
l , p

j
l )

b) Us(p
s
0, p

j
l ) < Us(p

s
l , p

j
h)

c) Us(p
s
0, p

j
h) < Us(p

s
l , p

j
h)

d) Us(p
s
0, p

j
h) < Us(p

s
l , p

j
l )

and

Us(ZERO) < Us(HIGH)⇒

a) Us(p
s
0, p

j
l ) < Us(p

s
h, p

j
l )

b) Us(p
s
0, p

j
l ) < Us(p

s
h, p

j
h)

c) Us(p
s
0, p

j
h) < Us(p

s
h, p

j
h)

d) Us(p
s
0, p

j
h) < Us(p

s
h, p

j
l )
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The above lead to the following:

a) St(δCz, p
j
l + δJw) < al + St(p

s
l + δCz, p

j
l + δJw)⇒

St(δCz, p
j
l + δJw)− St(psl + δCz, p

j
l + δJw) < al

And in the same way:

b) St(δCz, p
j
l + δJw)− St(psl + δCz, p

j
h + δJw) < 1

c) St(δCz, p
j
h + δJw)− St(psl + δCz, p

j
h + δJw) < 1

d) St(δCz, p
j
h + δJw)− St(psl + δCz, p

j
l + δJw) < al

e) St(δCz, p
j
l + δJw)− St(psh + δCz, p

j
l + δJw) < 1

f) St(δCz, p
j
l + δJw)− St(psh + δCz, p

j
h + δJw) < ah

g) St(δCz, p
j
h + δJw)− St(psh + δCz, p

j
h + δJw) < ah

h) St(δCz, p
j
h + δJw)− St(psh + δCz, p

j
l + δJw) < 1

We should formulate the evolution equation for the subgame
St11 St12

1 + St21 al + St22

:

a) St+1
22 = value(

 St11 St12

1 + St21 al + St22

)

b) St+1
12 = max(St12, al + St22) = al + St22

c) St+1
21 = min(1 + St21, al + St22) = al + St22

d) St+1
11 = value(

 St11 St12

1 + St21 al + St22

)

Studying at the steady state:

λt11 + St11 = value(

 St11 St11 − λt12
1 + St+1

21 − λt21 al + St11

)

λt11 = value(

 0 −λt12
1− λt21 al

)

And as λt11 = λt12 = λt21 = λt22 = λ1, we finaly have:

λ1 = value(

 0 −λ1

1− λ1 al

)

Which gives

λ1 =
2− al

3
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So, from the constraints -holding those that can be valid- we get:

al >
1

2
, al > −1, 3ah − al > −2

Which leads to the following:

al >
1

2

3ah − al > −2

Case 2 The Communicator mixes between the strategies low and high. The Jammer mixes

between the strategies low and zero.

The constraints will be:

Us(ZERO) < Us(LOW )⇒

a) Us(p
s
0, p

j
0) < Us(p

s
l , p

j
0)

b) Us(p
s
0, p

j
0) < Us(p

s
l , p

j
l )

c) Us(p
s
0, p

j
l ) < Us(p

s
l , p

j
l )

d) Us(p
s
0, p

j
l ) < Us(p

s
l , p

j
0)

and

Us(ZERO) < Us(HIGH)⇒

a) Us(p
s
0, p

j
0) < Us(p

s
h, p

j
0)

b) Us(p
s
0, p

j
0) < Us(p

s
h, p

j
l )

c) Us(p
s
0, p

j
l ) < Us(p

s
h, p

j
l )

d) Us(p
s
0, p

j
l ) < Us(p

s
h, p

j
0)

The above lead to the following constraints:

a) St(δCz, δJw)− St(psl + δCz, δJw) < 1

b) St(δCz, δJw)− St(psl + δCz, p
j
l + δJw) < al

c) St(δCz, p
j
l + δJw)− St(psl + δCz, p

j
l + δJw) < al

d) St(δCz, p
j
l + δJw)− St(psl + δCz, δJw) < 1

e) St(δCz, δJw)− St(psh + δCz, δJw) < 1

f) St(δCz, δJw)− St(psh + δCz, p
j
l + δJw) < 1

g) St(δCz, p
j
l + δJw)− St(psh + δCz, p

j
l + δJw) < 1

h) St(δCz, p
j
l + δJw)− St(psh + δCz, δJw) < 1
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We should formulate the evolution equation for the subgame
St12 St13

al + St22 St23

:

a) St+1
22 = value(

 St11 St12

1 + St21 al + St22

)

b) St+1
12 = max(St12, al + St22) = al + St22

c) St+1
13 = max(St12, al + St22) = al + St22, for al << 1

d) St+1
23 = St+1

13

Studying at the steady state:

λt22 + St22 = value(

 St+1
12 − λt12 St13 − λt13
al + St+1

22 St+1
23 − λt23

)

λt22 = value(

 al − λt12 al − λt13
al al − λt23

)

And as λt12 = λt13 = λt22 = λt23 = λ2, we finaly have:

λ2 = value(

 al − λ2 al − λ2

al al − λ2

)

Which gives

λ2 =
al
2

So from the constraints:

al > 1,
al
2
> al, −

al
2
> al, al > −1

Case 3 The Communicator mixes between the strategies zero and low. The Jammer mixes

between the strategies low and high.

The constraints will be:

Us(HIGH) < Us(LOW )⇒

a) Us(p
s
h, p

j
l ) < Us(p

s
l , p

j
l )

b) Us(p
s
h, p

j
l ) < Us(p

s
l , p

j
h)

c) Us(p
s
h, p

j
h) < Us(p

s
l , p

j
h)

d) Us(p
s
h, p

j
h) < Us(p

s
l , p

j
l )
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and

Us(HIGH) < Us(ZERO)⇒

a) Us(p
s
h, p

j
l ) < Us(p

s
0, p

j
l )

b) Us(p
s
h, p

j
l ) < Us(p

s
0, p

j
h)

c) Us(p
s
h, p

j
h) < Us(p

s
0, p

j
h)

d) Us(p
s
h, p

j
h) < Us(p

s
0, p

j
l )

The above lead to the following constraints:

a) St(p
s
h + δCz, p

j
l + δJw)− St(psl + δCz, p

j
l + δJw) < al − 1

b) St(p
s
h + δCz, p

j
l + δJw)− St(psl + δCz, p

j
h + δJw) < −1

c) St(p
s
h + δCz, p

j
h + δJw)− St(psl + δCz, p

j
h + δJw) < −ah

d) St(p
s
h + δCz, p

j
h + δJw)− St(psl + δCz, p

j
l + δJw) < al − ah

e) St(p
s
h + δCz, p

j
l + δJw)− St(δCz, pjl + δJw) < −1

f) St(p
s
h + δCz, p

j
l + δJw)− St(δCz, pjh + δJw) < −1

g) St(p
s
h + δCz, p

j
h + δJw)− St(δCz, pjh + δJw) < −ah

h) St(p
s
h + δCz, p

j
h + δJw)− St(δCz, pjl + δJw) < −ah

We should formulate the evolution equation for the subgame
1 + St21 al + St22

1 + St31 1 + St32

:

a) St+1
22 = value(

 St11 St12

1 + St21 al + St22

)

b) St+1
21 = min(1 + St21, al + St22) = al + St22, for al << 1

c) St+1
31 = st22

d) St+1
32 = St22

Studying at the steady state:

λt22 + St22 = value(

 1 + St+1
21 − λt21 St22 + al

1 + St+1
31 − λt31 1 + St+1

32 − λt32

)

λt22 = value(

 1 + al − λt21 al

1− λ31t 1− λt+1
32

)

And as λt21 = λt22 = λt31 = λt32 = λ3, we finaly have:

λ3 = value(

 1 + al − λ3 al

1− λ3 1− λ3

)
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Which gives

λ3 =
1

2

So from the constraints, by holding those that can be valid:

al >
3

2
, al >

5

2
, al − ah >

1

2
, al − ah > 0, ah >

1

2

Which leads to:

al >
3

2
al − ah >

1

2
ah >

1

2

Case 4 The Communicator mixes between the strategies zero and low. The Jammer mixes

between the strategies zero and low, too.

The constraints will be:

Us(HIGH) < Us(LOW )⇒

a) Us(p
s
h, p

j
l ) < Us(p

s
l , p

j
l )

b) Us(p
s
h, p

j
l ) < Us(p

s
l , p

j
0)

c) Us(p
s
h, p

j
0) < Us(p

s
l , p

j
0)

d) Us(p
s
h, p

j
0) < Us(p

s
l , p

j
l )

and

Us(HIGH) < Us(ZERO)⇒

a) Us(p
s
h, p

j
0) < Us(p

s
0, p

j
0)

b) Us(p
s
h, p

j
0) < Us(p

s
0, p

j
l )

c) Us(p
s
h, p

j
l ) < Us(p

s
0, p

j
l )

d) Us(p
s
h, p

j
l ) < Us(p

s
0, p

j
0)

a) St(p
s
h + δCz, p

j
l + δJw)− St(psl + δCz, p

j
l + δJw) < al − 1

b) St(p
s
h + δCz, p

j
l + δJw)− St(psl + δCz, δJw) < 1− 1 = 0

c) St(p
s
h + δCz, δJw)− St(psl + δCz, δJw) < 1− 1 = 0

d) St(p
s
h + δCz, δJw)− St(psl + δCz, p

j
l + δJw) < al − 1

e) St(p
s
h + δCz, δJw)− St(δCz, δJw) < −1

f) St(p
s
h + δCz, δJw)− St(δCz, pjl + δJw) < −1

g) St(p
s
h + δCz, p

j
l + δJw)− St(δCz, pjl + δJw) < −1

h) St(p
s
h + δCz, p

j
l + δJw)− St(δCz, δJw) < −1
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We should formulate the evolution equation for the subgame
al + St22 St23

1 + St32 ah + St33

:

a) St+1
22 = value(

 al + St22 St23

1 + St32 ah + St33

)

b) St+1
23 = max(1 + St32, al + St22) = 1 + St32, for al << 1

c) St+1
32 = St22

d) St+1
33 = St33 = St22

Studying at the steady state:

λt22 + St22 = value(

 al + St+1
21 St+1

23 − λt23
1 + St+1

32 − λt33 ah + St+1
33 − λt33

)

λt22 = value(

 al 1− λt32 − λt23
1− λ32t ah − λt33

)

And as λt22 = λt21 = λt32 = λt33 = λ4, we finaly have:

λ4 = value(

 al 1− 2λ4

1− λ4 ah − λ4

)

Which does not give a real value for λ4.

Combining the results from all the above constraints we can conclude that a mixed nash equi-

librium exists for the game when:

a) al − 3ah < 2

b) al − ah < 1
2

c) ah >
1
2

2.6 Conclusion

In this chapter we have extended the work of [8] for more than 2 strategies. We have formulated

the grid solution for the finite horizon game, with the backward induction technique. The

main finding is that under certain operating conditions, the jamming game has a mixed nash

equilibrium. The value of the conditions have been obtained in relation to the payoff parameters

ah and al.

31



Additionally, we have proposed a methodology in order to end a solution for matrices bigger

than 2x2. Our analysis shows that we can seperate the game into 2x2 subgames under condi-

tions. Each game can be solved seperately. In the end, we combine all the constraints of the

subgames, so as to find the solution of the initial game.

Like in [8], we assume that the players have knowledge of the payoff parameters, as well

as of the parameters that describe the transmitters. Another assumption is that a player can

obtain a correct feedback about the past actions of the other.
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Chapter 3

Cooperative Relaying under the

Presence of a Jammer

3.1 Introduction

In this section we will study the Jammin problem in a cooperative communication environment.

The model of a source, a relay node and a destination is used. Firstly we will introduce

our problem and the formulations for the source-relay channel. Afterwards we will examine

the communication in the relay-destination for the amplify-and-forward scenarion and for the

decode=and-forward too. The results of a simulation that compares the two techniques will

be demonstrated along with the conclusion that we can draw. Finally, the contribution of this

study will be presented.

3.2 Introduction to the Problem

The fundamental idea of the cooperative communication scenario that we are studying is that

when a source broadcasts her message, targeting a specific destination, nodes of the network

that may be closer to the source than the desirable receiver may also receive the message. As

the channel between the source and the destination may have bad characteristics, a relay node

will retransmit this message in order to help the communication, so in the end the destination

will have a contribution of SNR from both the source and the relay node.

The relay node may transmit the message by simply amplifying it (Amplify-and-Forward

case), or can decode the signal and transmit after re-encoding it (Decode-and-Forward case).

If we consider that the communication takes place in two time-slots (in the first we have the
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source broadcast and in the second the transmission of the relay), the Jammer has two slots to

attack. By attacking the first time slot, he affects the channel between the source and the relay

as well as the direct channel between the source and the destination. In the second time slots,

he affects the channel between the relay and the destination.

We assume a pole of R nodes that could serve as a relay. We study the case where the

source has to choose optimally which one will be the node that will finally relay.On the other

hand, the Jammer has to decide optimally for the power allocation on the two time-slots, given

his power budjet.

For our analysis, we consider that the characteristics of the channels and the choices are

known to both players, as well as the choice of one another.

3.3 The Source’s Broadcast

In the first time-slot of the communication the source broadcasts her message. This message will

be received from the destination -probably through a bad channel- and some of the intermediate

nodes that are candidates to act as relays.

Source broadcasts with Ps and we assume a set of R = {1, 2, · · · , R} R relay nodes.

The jammer attacks the broadcast transmission of the source with power J0. At the receiver,

the signal received from the direct channel between source and destination will be:

Ys,d =
√
Psgs,dXs + n+

√
J0hj,dX0,

where gs,d: the source-destination channel gain, hj,d: the jammer-destination channel gain

And the SNR is given by:

SNRs,d , γ0 =
Psgs,d

hj,dJ0 + σ2

3.4 Amplify and Forward Case

In this section -in the context of Amplify-and-Forward scenario- firstly we will formulate the

SNR function for the communication between the relay and the destination. The utility function

for the Jammer -and accordingly for the source- will be defined and an algorithm that solve’s

the power allocation problem of the Jammer will be proposed. The utility function will be

studied in some scenarios of power allocation, in order to investigate the conditions that should

be satisfied for the Jammer. Finally the strategy of the source will be studied and we will

proceed to an algorithm for the optimal choice of relay by her.
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3.4.1 The relay-destination communication

A relay i receives from the source the following signal:

S −Ri : Ys,i =
√
Psgs,iXs + n+

√
J0hj,iX0

According to the AF technique, the relay amplifies Ys,i, with power Pi and forwards.

At the destination D the contribution of relay i will be,

Yi,d =
√
Pigi,dXi,d + n+

√
Jihj,dXi

where, Xi,d =
Ys,i
|Ys,i| : the unit energy - transmitted signal that Ri receives from S

So,

Yi,d =

√
Pigi,d

(√
PSgs,iXS + n+

√
J0hj,iX0

)√
Psgs,i + σ2 + J0hj,i

+ n+
√
Jihj,dXi.

The SNR for relay Ri at the destination has the following expression:

SNRi , γi =
PiPsgi,dgs,i

Pigi,d(J0hj,i + σ2) + (Jihj,d + σ2)(Psgs,i + J0hj,i + σ2)

=

(
1

γs,i
+

1

γi,d

)−1
if SNR large,

where γs,i =
Psgs,i

σ2+J0hj,i
and γi,d =

Pigi,d
σ2+Jihj,d

.

The source could choose one or more intermediate nodes to act as relays. The number of

relays defines the number of time-slots of the communication. More preciesly, if R relays are

used, the number of the time-slots will be R + 1. The extra one time-slot is for the first time-

slot when the source broadcast the message. Each relay will have a SNRi contribution at the

destination.

3.4.2 Jammer’s Utility

For the Jammer, as mentinoed before, the problem that has to be solved is the power allocation

at each time slot. Here, we formulate the utility of the Jammer for the case that many relays are

used and we propose an algorithm for the power allocation problem. The formula for one relay

is directly derived for R=1. Jammer and Source want to minimize and maximize respectively

the same formula that expresses the Utility of the game. The utility (for multiple relays) is

given by:

UAFm =
1

R+ 1
log

(
1 +

R∑
i=0

γi

)
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And the optimization problem for the Jammer is:

Maximize UJ = −UAFm

Subject to:
∑R

i=0 Ji ≤ P ,

Ji ≥ 0 ∀i ∈ R

Algorithm Solving the Jammer’s Problem:

Algorithm 1 Solving the jammer’s problem

1: Initialization: set R∗ = ∅, Ji = 0, ∀i ∈ R
⋃
{0}, set ∆J to some small value

2: while
∑

i∈R
⋃
{0} Ji < 1 do

3: Calculate ∂UJ
Ji
,∀i ∈ R

⋃
{0}

4: Choose i∗ = argmaxi∈R
⋃
{0}

∂UJ
∂Ji

5: Ji∗ = Ji∗ + ∆J

6: end while

3.4.3 Studying the one-relay case

At the case of one relay, i.e. R = 1 , the SNR for relay R at the destination:

SNRR , γR =
PRPsgR,dgs,R

PRgR,d(J0hj,R + σ2) + (JRhj,d + σ2)(Psgs,R + J0hj,R + σ2)

=

(
1

γs,R
+

1

γR,d

)−1
if SNR large,

where γs,R =
Psgs,R

σ2+J0hj,R
and γR,d =

PRgR,d

σ2+JRhj,d
.

UAF =
1

2
log (1 + γ0 + γR)

And the optimization problem for the power allocation in the two time-slots:

MinimizeUAF

Subject to: J0 + JR ≤ P

and J0, JR ≥ 0

In more details we can write:

UAF =
1

2
log(1 +

Psgs, d

hj,dJ0 + σ2
+

PRPsgR,dgs,R
PrgR,d(J0hj,R + σ2) + (JRhJ,d + σ2)(Psgs,R + J0hj,R + σ2)

)

Our goal is to define some conditions that will indicate when the Jammer should follow a

strategy.
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After substituing JR = P − J0, we obtain an one-variable equation

UAF =
Psgs,d

hj,dJ0 + σ2
+

PRPsgR,dgs,R
PrgR,d(J0hj,R + σ2) + (PgS,R − J0hJ,d + σ2)(Psgs,R + J0hj,R + σ2)

We can compute the derivative of the above equation:

dUAF
dJ0

=

−
PSgS,dhJ,d

(hJ,dJ0 + σ2)2
−
PRPSgR,dgS,R(PRgR,dhJ,R + PgS,RhJ,R − hJ,dPSgS,R − 2J0hJ,dhJ,R − hJ,dσ2 + σ2hJ,R)

(PRgR,d(hJ,RJ0 + σ2) + (PgS,R − J0hJ,d + σ2)(PSgS,R + J0hJ,Rσ2))2

(3.1)

For J0 = 0

dUAF
dJ0

∣∣∣∣
J0=0

= −
PSgS,dhJ,d

σ4
−
PRPSgR,dgS,R(PRgR,dhJ,R + PgS,RhJ,R − hJ,dPSgS,R − hJ,dσ2 + σ2hJ,R)

((PRgR,dσ2) + (PgS,R + σ2)(PSgS,R + σ2))2

For J0 = P
dUAF
dJ0

∣∣∣∣
J0=P

=

−
PSgS,dhJ,d

(hJ,dP + σ2)2
−
PRPSgR,dgS,R(PRgR,dhJ,R + PgS,RhJ,R − hJ,dPSgS,R − 2PhJ,dhJ,R − hJ,dσ2 + σ2hJ,R)

(PRgR,d(hJ,RP + σ2) + (PgS,R − PhJ,d + σ2)(PSgS,R + PhJ,Rσ2))2

So we can study the following cases,

(I) , J0 = 0

dUAF
dJ0

∣∣∣∣
J0=0

≤ 0⇒

−
PSgS,dhJ,d

σ4

−
PRPSgR,dgS,R(PRgR,dhJ,R + PgS,RhJ,R − hJ,dPSgS,R − hJ,dσ2 + σ2hJ,R)

((PRgR,dσ2) + (PhJ,d + σ2)(PSgS,R + σ2))2
≤ 0

When this inequality is satisfied, the optinal strategy for the Jammer is to invest zero power at

the first time-slot, which means that the Jammer does not attack the broadcast transmission
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of the source.

(II) , J0 = P

dUAF
dJ0

∣∣∣∣
J0=P

≥ 0⇒

−
PSgS,dhJ,d

(hJ,dP + σ2)2

−
PRPSgR,dgS,R(PRgR,dhJ,R + PgS,RhJ,R − hJ,dPSgS,R − 2PhJ,dhJ,R − hJ,dσ2 + σ2hJ,R)

(PRgR,d(hJ,RP + σ2) + (PgS,R − PhJ,d + σ2)(PSgS,R + PhJ,R + σ2))2
≥ 0

When this inequality is satisfied, the Jammer should invest all his power on the first time-slot.

In other words, he should not attack the channel between the relay and the destination.

(III)

−
PSgS,dhJ,d

σ4
−
PRPSgR,dgS,R(PRgR,dhJ,R + PgS,RhJ,R − hJ,dPSgS,R − hJ,dσ2 + σ2hJ,R)

((PRgR,dσ2) + (PhJ,d + σ2)(PSgS,R + σ2))2
> 0

and

−
PSgS,dhJ,d

(hJ,dP + σ2)2
−
PRPSgR,dgS,R(PRgR,dhJ,R + PgS,RhJ,R − hJ,dPSgS,R − 2PhJ,dhJ,R − hJ,dσ2 + σ2hJ,R)

(PRgR,d(hJ,RP + σ2) + (PgS,R − PhJ,d + σ2)(PSgS,R + PhJ,R + σ2))2
< 0

These inequalities cover the cases where none of the extreme scenarios of (I) and (II) occurs.

The value of J0 (and JR = P − J0) can be determined numerically by the equation dU
dJ0

= 0.

In order to investigate the behavior of the Jammer, we can impose some additional constraints

on the environment of communication, so as to see how the inequalities of the constraints will

change.

Firstly, we can compute the inequalities when hJ,R = hJ,d. This constraint is related to

the topology of the Jammer and refers to the cases when the gain of the channel between the

Jammer and the relay node and the Jammer and the destination are the same.

For the first case. where J0 = 0

−
gS,d
σ4
−

PRgR,dgS,R(PRgR,d + PgS,R − PSgS,R)

(PRgR,dσ2 + (PgS,R + σ2)(PSgS,R + σ2))2
≤ 0

The above inequality always holds when PRgR,d+PgS,R−PSgS,R > 0. The last inequality holds

when P > PS and gS,R is sufficiently big.

For the second case, where J0 = P

−
gS,d

(hJ,dP + σ2)2
−

PRPSgR,dgS,R(PRgR,d + PgS,R − PSgS,R − 2PhJ,R)

(PRgR,d(hJ,RP + σ2) + (PgS,R − PhJ,R + σ2)(PSgS,R + PhJ,R + σ2))2
≥ 0

38



This inequality holds when PRgR,d + PgS,R − PSgS,R − 2PhJ,R < 0

Furthermore, if we consider that σ2 has a very low value -i.e. the noise is very low, then

For the first case

−
gS,d
σ4
−
PRgR,dgS,R(PRgR,d + PgS,R − PSgS,R)

(PRgR,dσ2 + PgS,RPSgS,R)2
≤ 0

For the second case

−
gS,d

(hJ,dP )2
−

PRPSgR,dgS,R(PRgR,d + PgS,R − PSgS,R − 2PhJ,R)

(PRgR,dhJ,RP + (PgS,R − PhJ,R)(PSgS,R + PhJ,R))2
≥ 0

3.4.4 Study of the strategy of the source

As we mentioned, we assume a pool of relay nodes. In the case of one-relay that we are examining

the source has to choose optimally the node that will be used for the relay communication. The

utility function that characterizes the cooperative communication over each relay node, has the

following form:

UAF−Si =
1

2
log(1 +

Psgs,d
hj,dJ0 + σ2

+
PRiPsgRi,dgs,Ri

PrgRi,d(J0hj,Ri + σ2) + (JRihJ,d + σ2)(Psgs,Ri + J0hj,Ri + σ2)
)

Where PRi is the power with which relay i will amplify the received signal, gRi,d is the gain

between relay node i and destination, gs,Ri is the gain between source and relay i, hj,Ri is the

gain between relay i and the jammer and JRi is the power that the Jammer invests for this

relay.

So, the problem that the source tries to solve can be formulated as follows:

argmaxi∈RUAF−Si(i),

where R is the set of the relay nodes.

An algorithm that solves the above problem is as follows:

Algorithm 2 Solving the source’s problem at the AF case

1: Initialization: set i∗ = 0

2: Calculate UAF−Si(i).∀i ∈ R

3: Choose i∗ = argmaxi∈R
⋃
{0} UAF−Si
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3.5 Decode and Forward case

In this section we will study the Jammer and the Source in the case of the Decode-and-Forward

case technique. According to that, the relay node decodes and re-encodes the information that

he receives from the broadcast of the source and then transmits it. In the sections that follow,

we will present the formulations of the SNR for the multiple relays and the one relay case and

we will propose an algorithm that solves the Jammer and the Source problem in this context.

3.5.1 Singal-to-Noise ratio achieved at the Destination without the presnce

of a Jammer

In the Decode-and-Forward technique the role of the relay node is more active and determining.

If the relay-node does not succed to decode the broadcast message of the source then he will

not be able to relay any information to the destination.

For the one relay scenario, the achieved SNR is [13]:

I2 =
1

2
min {log2(1 + SNR2S−R), log2(1 + SNR2S−D + SNR2R−D)}

where SNR2S−R, SNR2S−D, SNR2R−D are the SNR at the source-relay, source-destination,

relay-destination channels respectively.

The first term represents the maximum rate at which the relay can reliably decode the

source message, while the second term represents the maximum rate at which the destination can

reliably decode the source message given repeated transmissions from the source and destination.

Requiring both relay and destination to decode the entire codeword without error results in the

minimum of the two. [15]

Like in the Amplify-and-Forward technique, the Jammer has to allocate his power on the

two time-slots of the communication. In the first time-slot he affects the direct transmission

between the source and the destination and the channel between the source and the relay. If

his activity in the first time-slot is effective enough, the relay may not be able to decode so the

cooperative communication is EKFULIZETAI into a typical communication between a source

and a destination.

For the multiple relays scenario, the SNR at the destination is affected from the signal that

it receives from all the relay nodes that cooperate.

IDF =


log(1 + SNRS−D),SNRS−Ri < γRth∀i ∈ R

1

k + 1
log(i+ SNRS−D +

∑
SNRRi−D),SNRS−Ri ≥ γRth
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Where k is the number of the relays that succesfully decoded the source signal and γRth is

a threshold for succesful decoding at the relay node . The first case corresponds to the scenario

at which no relay can decode the signal of the source. At the second case both the source and

the k relays contribute at the achieved SNR at the destination.

The jammer can attack the broadcast of the first time-slot in order to minimize the number

of relay nodes that will succesfully decode the signal transmitted from the source as well the

direct transmission between the source and the destination. Also it can attack the second time

slot (relay-destination channel) in order to affect the SNR at the destination.

3.5.2 Jammer’s behavior in the one relay case

After presenting the formulas for the SNR in cooperative communication with decode-and-

forward, we introduce the Jammer in this study.

The source broadcasts with PS . The jammer will attack the broadcast transmission (first

time-slot)with power J0, affecting both the source-destination and the source-relay communi-

cation.

So, for the source-destination channel we can write:

Y 2S,d =
√
PSgs,dXS + n+

√
J0hj,dX0

And the SNR will be:

SNR2S−D =
PSgs,d

hj,dJ0 + σ2

For the source-relay channel:

Y 2S,R =
√
PSgs,RXS + n+

√
J0hj,RX0

and the SNR will be

SNR2S−R =
PSgs,R

σ2 + JRhj,R

The relay will decode and forward. At the destination:

Y 2R,D =
√
PRgR,dXR + n+

√
JRhj,dXR

where XR is the signal that the relay node has obtained after the decoding procedure.

If the relay node has succesfully decoded the signal, its contribution to SNR at the des-

tiantion will be:

SNR2R−D =
PRgR,d

σ2 + JRhj,d

The Jammer faces the following problem
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Minimize U2

Subject to: J0 + JR ≤ P

and J0, JR ≥ 0

Where,

U2 =
1

2
log(1 + I2)

and

I2 = 1
2 min {log2(1 + SNR2S−R), log2(1 + SNR2S−D + SNR2R−D)} as mentioned before.

So finally we have the two following optimization problems for the Jammer with the corre-

sponding constraints that describe whether the relay was able to decode the message from the

source:

Minimize UDF1 = 1
2 log2(1 + SNR2S−R)

Subject to: J0 + JR ≤ P

and J0, JR ≥ 0

and log2(1 + SNR2S−R) < log2(1 + SNR2S−D + SNR2R−D)

or SNR2S−R < SNR2S−D + SNR2R−D

or

Minimize UDF2 = 1
2 log2(1 + SNR2S−D + SNR2R−D)

Subject to: J0 + JR ≤ P

and J0, JR ≥ 0

and log2(1 + SNR2S−D + SNR2R−D) < log2(1 + SNR2S−R)

or SNR2S−D + SNR2R−D < SNR2S−R

The final minimum will be min {minUDF1,minUDF2}, with the corresponding strategy. Where,

UDF1 =
PSgs,R

σ2 + JRhj,R

and

UDF2 =
PSgS,d

hj,dJ0 + σ2
+

PRgR,d
σ2 + JRhj,d
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We compute the derivative for the UDF1 :

dUDF1

dJR
= −

PSgs,Rhj,R
(σ2 + JRhj,R)2

and the partial derivatives for the UDF2:

∂UDF2

∂J0
= −

PSgS,dhj,d
(hj,dJ0 + σ2)2

∂UDF2

∂JR
= −

PRgR,dhj,d
(hj,dJR + σ2)2

In order to find the optimal solution for the UDF1,

dUDF1
dJR

= 0⇒
PSgs,Rhj,R

(σ2+JRhj,R)2
= 0⇒

PSgs,Rhj,R = 0

We notice that:

dUDF1
dJR

> 0⇒ PSgs,Rhj,R < 0 is impossible, while

dUDF1
dJR

< 0⇒ PSgs,Rhj,R > 0 always stands for PS 6= 0.

As far as the UDF2 is concerned, following the same method that was used at the A&F case,

we substitue JR = P − J0 ,

UDF2 =
PSgS,d

hj,dJ0 + σ2
+

PRgR,d
σ2 + Phj,d − J0hj,d

and we can obtain the derivative:

dUDF2

dJ0
= −

PSgS,dhj,d
(hj,dJ0 + σ2)2

+
PRgR,dhj,d

(σ2 + Phj,d − J0hj,d)2

For J0 = 0

dUDF2

dJ0

∣∣∣∣
J0=0

= −
PSgS,dhj,d

σ4
+

PRgR,dhj,d
(σ2 + Phj,d)2

For J0 = P

dUDF2

dJ0

∣∣∣∣
J0=P

= −
PSgS,dhj,d

(hj,dP + σ2)2
+
PRgR,dhj,d

σ4

As expected, when the Jammer invests no power at the direct transmission, only the ratio

that describes the relay-destination communication is affected. Similarly when all the power

budget of the Jammer is invested at the first time-slot, the relay-destination communication is

not affected and only the source-destination communication is deteriorated. The effect at the
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source-relay channel does not appear at these formulas as they refer to the case of succesful

decoding by the relay.

So, we can study the following cases:

(I) , J0 = 0

dUDF2

dJ0

∣∣∣∣
J0=0

≤ 0⇒ −
PSgS,dhj,d

σ4
+

PRgR,dhj,d
(σ2 + Phj,d)2

≤ 0

PRgR,d
(σ2 + Phj,d)2

≤
PSgS,d
σ4

(II) , J0 = P

dUDF2

dJ0

∣∣∣∣
J0=P

≥ 0⇒ −
PSgS,dhj,d

(hj,dP + σ2)2
+
PRgR,dhj,d

σ4
≥ 0

PSgS,d
σ4

≥
PRgR,d

(hj,dP + σ2)2

(III)

−
PSgS,d
σ4

+
PRgR,d

(σ2 + Phj,d)2
> 0

and−
PSgS,d

(hj,dP + σ2)2
+
PRgR,d
σ4

< 0

where J0 can be defined numerically.

In order to investigate further the cases (I) and (II), we will introduce some extra constraints.

For (I), J0 = 0, we assume gS,d < gR,d. Then

gS,d < gR,d ⇒
PSgS,d
σ4

<
PSgR,d
σ4

⇒

PRgR,d
(hj,dP + σ2)2

≤
PSgS,d
σ4

<
PSgR,d
σ4

⇒

PR
(hj,dP + σ2)2

<
PS
σ4
⇒

PR
PS

<
(hj,dP + σ2)2

σ4

and since(hj,dP + σ2)2 > σ4

PR > PS

So after the assumption gS,d < gR,d we can see that the inequality dUDF2
dJ0

∣∣∣
J0=0

≤ 0 holds when
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PR > PS .

For (II), J0 = P , we assume gS,d > gR,d. Then

gS,d > gR,d ⇒
PR, gS,d
σ4

>
PRgR,d
σ4

≥
PSgS,d

(hj,dP + σ2)2
⇒

PR
PS

>
σ4

(hj,dP + σ2)2
⇒ PR < PS

So after the assumption gS,d > gR,d we can assume that the inequality dUDF2
dJ0

∣∣∣
J0=P

≥ 0 holds

when PR < PS .

3.5.3 The strategy of the source

As in the Amplify and Forward case, we assume a pool of relay nodes. The source has to choose

optimally the node that will be used for the relayed communication. We consider that the source

has full knowledge of the characteristics of the channels and of the jammer’s strategy. The

utility function that characterizes the cooperative communication for every different available

relay node has the following form:

U2i = I2i

where,

I2i =
1

2
min {log2(1 + SNR2S−Ri), log2(1 + SNR2S−D + SNR2Ri−D)}

The objective of the source is to maximize the utility as follows:

argmaxi∈RU2i(i)

So,

argmaxi∈RUiDF1 =
1

2
log2(1 + SNR2S−Ri)

argmaxi∈RUiDF1 =
1

2
log2(1 +

PSgS−Ri
σ2 + JRihj,Ri

)

Subject to:

log2(1 + SNR2S−Ri) < log2(1 + SNR2S−D + SNR2Ri−D)

SNR2S−Ri < SNR2S−D + SNR2Ri−D

PSgs,Ri
σ2 + JRihj,Ri

<
PSgS,d

σ2 + hj,dJ0
+

PRigRi,D
σ2 + JRihj,d
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or

argmaxi∈RUiDF2 =
1

2
log2(1 + SNR2S−D + SNR2Ri−D)

argmaxi∈RUiDF2 =
1

2
log2(1 +

PSgs,d
σ2 + hj,dJ0

+
PRigRi,D

σ2 + JRihj,d
)

Subject to:

log2(1 + SNR2S−D + SNR2Ri−D) < log2(1 + SNR2S−Ri)

SNR2S−D + SNR2Ri−D < SNR2S−Ri

PSgS,d
σ2 + hj,dJ0

+
PRgRi,d

σ2 + JRihj,d
<

PSgS−Ri
σ2 + JRihj,Ri

So finally, the source’s strategy will be

argmaxi∈Rmin {log2(1 + SNR2S−Ri), log2(1 + SNR2S−D + SNR2Ri−D)}

If we assume that the noise is low enough in order to eliminate σ2 from our formulas, we

can formulate differently the SNR criterion about the succesful decoding:

SNR2S−Ri < SNR2S−D + SNR2Ri−D

PSgs,Ri
JRihj,Ri

<
PSgS,d
hj,dJ0

+
PRigRi,D
JRihj,d

PSgs,Rihj,d − PRigRi,Dhj,Ri
JRihj,Rihj,d

<
PSgS,d
hj,dJ0

PSgs,Rihj,d − PRigRi,Dhj,Ri
JRihj,Ri

<
PSgS,d
J0

J0
JRi

<
PSgS,dhj,Ri

PSgS−Rihj,d − PRigRi,Dhj,Ri

Similarly:

SNR2S−Ri > SNR2S−D + SNR2Ri−D

J0
JRi

> fracPSgS,dhj,RiPSgS−Rihj,d − PRigRi,Dhj,Ri

It holds that 0 ≤ J0
JRi
≤ P − 1
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3.6 Comparing the Strategy of the Source at the DF and AF

scenarios

We will proceed to a comparison through simulation for the two techniques that are used in

Cooperative Communication, in the case of one relay node.We assuming that the two techniques

are applied at exactly the same environment. Meaning, the Jammer’s strategy is the same, the

source’s strategy (same relay node) is the same and the channles have the same characteristics.

With the Amplify and Forward technique the achieved SNR for the source will be:

UAF =
1

2
log(1 +

Psgs,d
hj,dJ0 + σ2

+
PRPsgR,dgs,R

PrgR,d(J0hj,R + σ2) + (JRhJ,d + σ2)(Psgs,R + J0hj,R + σ2)
)

With the Decode and Forward technique:

UDF1 =
1

2
log2(1 +

Psgs,R
σ2 + JRhj,R

)

Subject to:

PSgs,R
σ2 + JRhj,Ri

<
PSgS,d

σ2 + hJ,dJ0
+

PRgR,d
σ2 + JRhJ,d

or

UDF2 =
1

2
log2(1 +

PSgs,d
σ2 + hj,dJ0

+
PRgR,d

σ2 + JRhJ,d
)

Subject to:

PSgS,d
σ2 + hJ,dJ0

+
PRgR,d

σ2 + JRhj,d
<

PSgS−R
σ2 + JRhj,R

If the criterion
PSgs,R

σ2+JRhj,Ri
>

PSgS,d
σ2+hJ,dJ0

+
PRgR,d

σ2+JRhJ,d
holds, we can see from the simulations

that the DF technique achives a better utility for the source than the AF technique.

In our simulation, we assume a pole of 1000 nodes that could act as a relay. The source

chooses the one that will offer her the biggest utility, according to the algorithms that were

proposed earlier in this chapter.
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Figure 3.1: The Difference between the DF and the AF technique when the relay decodes

succesfully in the first one

Figure 3.2: The Difference between the DF and the AF technique when the relay does not

decode succesfully in the first one
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In the simulation we have included various topologies, where the Jammer can be closer to

the source or to the destination, or in a random point between them. Furthermore, different

values for the power budget of the source and the jammer were tested, as well as for the noise

level.

Our goal is to compare the utility for the two techniques. From the results we can say that

if -in the Decode-and-Forward technique- the relay decodes succesfully the broadcast message

of the source, the utility is bigger from that with the Amplify-and-Forward.

In Figures (3.1) and (3.2) we can see the difference between the utility at the Decode-and-

Forward technique minus the utility in the Amplify-and-Forward one. In the case that the

decoding was succesful, we can see that the difference was always positive. On the other hand,

the difference takes positive and negative values in the case that the decoding was not succesful.

3.6.1 Conclusion

In this chapter we formulated the problem of a Jammer in a Cooperative Communication en-

vironment with a source, a relay and a destination. Algorithms that solve the power allocation

problem of the Jammer and the relay selection problem of the source were proposed. A sim-

ulation for the utility obtained from the source in the D-F and A-F technique, demonstrates

that when the relay decodes succesfully the message of the source, the utility achived is always

bigger from the one that the source would achieve with the A-F technique.

The case of the use of multiple relays should be investigated in the furure in order to study

if the contribution of more nodes has an important affect for the destination and how the

performance of the system is deteriorated by the presence of the Jammer.
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Chapter 4

Conclusion

We have studied in this work the Jamming attack phenomenon under a game theoretical analy-

sis, in two different situations: Firstly under thermal energy constraints that affect its choices -as

well as the choices of the source- for power allocation. Secondly, in a cooperative communication

environment with the constraint of a power budget for each player.

In the case of a dynamic game under energy constraints, after formulating the problem and

defining the payoff for the players at the end of the game with the backward induction technique,

we investigate the existence of nash equilibria. In order to solve the 3x3 matrix of the game,

we propose a method in which the game is seperated in 4 subgames with equivalent constraints

that justify the choice of the source to mix between two and not three strategies. For the global

solution of the initial game we combine all the constraints and we derive the set of inequalities

for the payoff parameters ah and al. These inequalities define the conditions under which a

mixed Nash equilibria is achieved for our game.

In a future work the assumption of full knowledge of the game parameters by the palyers

could be removed. Furthermore, the assumption of correct feedback cannot be always satisfied.

In the second part of our study, we focus on a more specific case of jamming. We introduce

the Jammer in the cooperative communication. By using the classic model of a source, a

destination and a relay node in cooperative communication, we obtain the analytical formulas

that describe the SNR at the destination under the presence of a Jammer. The communication

takes place in two time-slots. The source broadcasts in the first one and the relay and the

destination receive the message. In the second time-slot the relay wil transmit the message of

the source either by just amplifying it (Amplify-and-Forward) or by decoding and re-encoding it

(Decode-and-Forward). The Jammer has to decide for his power-allocation on these two time-

slots and the source has to deicde for the node that it will use as a relay. We have proposed
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an algorithm for these problems for both A-F and D-F techniques. Finally we compare the

two techniques through a simulation that shows that if the relay node decodes succesfully the

message of the source, the utility of the D-F technique is higher than this of the A-F.

The case of cooperative communication in multiple time-slots with the use of multiple relays

remains an open issue for mathematical analysis and simulation. Furthermore, the analytical

proof for the dominance of D-F technique when the relay decodes succesfully is planed for future

work. Games where the players do not have knowledge of all the parameters should also be

investigated.
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