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Abstract

The problem of hand pose estimation and tracking is both theoretically and
practically interesting. It is a challenging problem that hasn’t been solved in its
full generality despite the significant amount of effort that has been devoted to it.
This thesis presents methods to track the position, orientation and full articulation
of human hands in various everyday scenarios.

Investigated scenarios include tracking one or two hands and tracking the hand(s)
in isolation or in interaction with the environment. Design choices for the various
presented methods regard the type of input, the selection of appropriate visual
cues and furthermore the way they are synthesized and evaluated, as well as the
optimization algorithms used to solve the formulated optimization problems. All
scenarios use markerless visual observations of the scene as input. We explore the
visual cues of skin color, edges, depth map, and visual hull. These observations can
come either from a network of cameras or from an RGB-D sensor. The choice of
input type partially mandates the visual cues that are employed.

We follow a model-based approach to the problem, formulating the pose esti-
mation task for each frame as an optimization problem. The search space of this
problem uses the adopted representation for the hand kinematics. For the case of
single hand, the search space is this set of kinematics parameters, whereas for hand-
object or hand-hand interaction, this search space is appropriately augmented to
include all the tracked entities. This joint consideration, while resulting in opti-
mization problems with tens of parameters, has the advantage that the interaction
between the tracked objects can be effortlessly modeled and evaluated. The tem-
poral continuity assumption is used by initializing the search for a frame near the
solution for the previous frame.

Joint modeling of the observed entities in the scene allows for effortlessly treating
scenarios of complex interaction between these entities. For the case of hand-object
interaction, we show how the observed occlusions can provide useful information
instead of being an obstacle. For the case of two hands in strong interaction, to the
best of our knowledge, the presented results involve the most complex hand-hand
interaction attempted so far in the relevant literature.

For the task of optimizing the objective functions that result from the adopted
formulation of the problem, we use black-box optimization algorithms. Specifically,
variants of Particle Swarm Optimization (PSO) are employed in most scenarios.
PSO is an evolutionary optimization algorithm that is derivative-free and easily
parallelizable. It is suitable for our task, since it is well-suited to multi-modal, non-
differentiable objective functions. A novel evolutionary optimization algorithm is
also presented in this thesis, and applied to two of the examined scenarios. This
algorithm exploits the useful properties of quasi-random sampling, as well as the
power of evolutionary computing.

The various computational steps of all presented methods are carefully designed
so that they include parallelizable computations. It is then possible to make use of
modern hardware such as the GPU architecture, resulting in practical systems that
achieve real-time or interactive frame-rates.
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PerÐlhyh

To prìblhma thc trisdi�stathc parakoloÔjhshc tou anjr¸pinou qerioÔ èqei tìso
jewrhtikì ìso kai praktikì endiafèron. EÐnai èna apaithtikì prìblhma pou den èqei
lujeÐ sthn pl rh genikìtht� tou, par� th shmantik  ereunhtik  prosp�jeia pou èqei
afierwjeÐ se autì. Aut  h diatrib  antimetwpÐzei autì to prìblhma kai parousi�zei
mejìdouc gia thn parakoloÔjhsh thc 3D jèshc thc pal�mhc tou qerioÔ kai twn
daktÔlwn se èna eurÔ f�sma apì endiafèronta sen�ria.

Tètoia sen�ria perilamb�noun thn parakoloÔjhsh enìc   dÔo qeri¸n, kaj¸c kai
thn parakoloÔjhsh tou qerioÔ(-¸n) memonwmèna   se allhlepÐdrash me to perib�llon.
Epilogèc sqetikèc me th sqedÐash twn di�forwn parousiazìmenwn mejìdwn aforoÔn
sthn epilog  kat�llhlwn qarakthristik¸n eikìnac sumperilamb�nontac ton trìpo
me ton opoÐo aut� mporoÔn na suntejoÔn kai na apotimhjoÔn, kaj¸c kai algìrijmouc
gia thn epÐlush twn problhm�twn beltistopoÐhshc pou prokÔptoun. 'Ola ta sen�ria
problèpoun san eÐsodo optik  parat rhsh thc skhn c qwrÐc qr sh upobohjhtik¸n
shmadi¸n. Ta qarakthristik� eikìnac pou qrhsimopoioÔme eÐnai oi akmèc, oi perio-
qèc qr¸matoc dèrmatoc, h apìstash apì ton aisjht ra kai to trisdi�stato optikì
perÐgramma (visual hull). Oi parathr seic mporoÔn na proèrqontai eÐte apì èna
dÐktuo sumbatik¸n kamer¸n, eÐte apì mÐa k�mera pou epiprìsjeta me to qr¸ma kata-
gr�fei kai thn apìstash tou k�je shmeÐou thc skhn c apì ton aisjht ra (RGB-D
sensor). H epilog  tou tÔpou eisìdou kajorÐzei merik¸c kai ta qrhsimopoioÔmena
qarakthristik� eikìnac.

AkoloujoÔme thn prosèggish mejìdwn pou basÐzontai se montèlo, diatup¸no-
ntac to prìblhma thc ektÐmhshc pìzac se k�je eikìna eisìdou san èna prìblhma
beltistopoÐhshc. O q¸roc anaz thshc autoÔ tou probl matoc basÐzetai sth qrh-
simopoioÔmenh parametropoÐhsh thc kinhmatik c tou qerioÔ. Gia thn perÐptwsh tou
enìc qerioÔ, o q¸roc anaz thshc tautÐzetai me aut  thn parametropoÐhsh, en¸ gia
tic peript¸seic allhlepÐdrashc qerioÔ-qerioÔ   qerioÔ-antikeimènou, autìc o q¸roc
prosaux�netai kat�llhla ¸ste na sumperil�bei ìlec tic parakoloujoÔmenec ontì-
thtec. Aut  h apì koinoÔ je¸rhsh, parìti odhgeÐ se probl mata beltistopoÐhshc
me dek�dec paramètrwn, èqei to pleonèkthma ìti epitrèpei thn montelopoÐhsh thc al-
lhlepÐdrashc twn parakoloujoÔmenwn ontot twn me �meso trìpo. H upìjesh thc
qronik c sunèqeiac qrhsimopoieÐtai mèsw thc arqikopoÐhshc thc anaz thshc sqetik�
me k�poia eikìna sthn perioq  thc ektÐmhshc lÔshc gia thn prohgoÔmenh qronik�
eikìna.

H apì koinoÔ je¸rhsh twn parathroÔmenwn ontot twn thc skhn c epitrèpei thn a-
ntimet¸pish senarÐwn pou perilamb�noun polÔplokh allhlepÐdrash an�mesa se autèc
tic ontìthtec. Gia thn perÐptwsh thc allhlepÐdrashc qerioÔ me antikeÐmeno, deÐqnou-
me p¸c oi prokÔptousec allhlepikalÔyeic mporoÔn na par�sqoun qr simh plhroforÐa
antÐ na antimetwpÐzontai wc prìblhma. Gia thn perÐptwsh twn dÔo qeri¸n se isqu-
r  allhlepÐdrash, oi algìrijmoi pou proteÐnoume antimetwpÐzoun thn pio perÐplokh
allhlepÐdrash qeri¸n pou èqei wc t¸ra anaferjeÐ sth sqetik  bibliografÐa.

Gia th beltistopoÐhsh twn antikeimenik¸n sunart sewn, ìpwc prokÔptoun apì
thn uiojetoÔmenh diatÔpwsh tou probl matoc, qrhsimopoioÔme algìrijmouc belti-
stopoÐhshc pou den apaitoÔn gn¸sh thc parag¸gou thc antikeimenik c sun�rthshc.
Sugkekrimèna, stic perissìterec peript¸seic, qrhsimopoioÔntai parallagèc tou al-
gorÐjmou BeltistopoÐhshc Sm nouc SwmatidÐwn (BSS) (Particle Swarm Optimiza-
tion). O BSS eÐnai ènac genetikìc algìrijmoc pou den apaiteÐ gn¸sh thc parag¸-
gou thc antikeimenik c sun�rthshc pou beltistopoieÐ, kai parallhlopoieÐtai eÔkola.
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EÐnai kat�llhloc gia to prìblhma diìti mporeÐ na antimetwpÐsei mh paragwgÐsimec
sunart seic me poll� topik� bèltista. Parousi�zetai epÐshc ènac nèoc exeliktikìc
algìrijmoc beltistopoÐhshc, kai dokim�zetai se dÔo apì ta exetazìmena sen�ria pa-
rakoloÔjhshc thc kÐnhshc qeri¸n. Autìc o algìrijmoc ekmetalleÔetai tic qr simec
idiìthtec thc hmi-tuqaÐac deigmatolhyÐac, sundu�zont�c tic me thn dÔnamh twn exeli-
ktik¸n upologism¸n.

Ta di�fora upologistik� b mata ìlwn twn parousiazìmenwn mejìdwn eÐnai pro-
sektik� sqediasmèna ¸ste na perilamb�noun upologismoÔc pou epidèqontai parall-
lhlopoÐhsh. GÐnetai ètsi efikt  h ekmet�lleush sÔgqronwn arqitektonik¸n ìpwc oi
k�rtec grafik¸n, ètsi ¸ste ta sust mata pou prokÔptoun na epitugq�noun epidìseic
oi opoÐec, an�loga me to prìblhma, eÐnai pragmatikoÔ qrìnou   kont� se autèc.
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Chapter 1

Introduction

Computer vision methods aim to capture, analyze and understand information con-
tained in images. In this context many interesting questions can be posed. A non-
exhaustive list of related tasks with both theoretical and practical interest includes:
industrial automation in production lines and similar environments especially when
other means of sensing are either costly or not applicable, automation of surveil-
lance applications, image database indexing, medical applications such as diagnosis
aiding, augmented reality for surgery aiding and patient rehabilitation, enhancing
driving safety by visually detecting pedestrians and other obstacles, and gesture
recognition for human-computer interaction.

The problem of effectively recovering the pose (3D position and orientation) of
human body parts using visual markerless observations is interesting because of
its theoretical importance and its diverse applications. The human visual system
exhibits a remarkable ability to seemingly effortlessly solve it. It is interesting to
understand the specific mechanisms of the human brain that are involved in this
process. Furthermore, a wide range of useful applications can be implemented pro-
vided that this fundamental problem is robustly and efficiently solved [7]. Impressive
motion capture systems that employ visual markers [8,9] or other specialized hard-
ware have been developed. However, there is intense interest in developing marker-
less computer-vision based solutions, because they are non-invasive and potentially
cheaper than solutions based on other technologies such as electromagnetic tracking
or inertial measurement units [10,11].

1.1 Description of the Problem

In the general category of problems regarding human articulation tracking, the par-
ticular problem of 3D hand pose estimation is of special interest. Specifically, there
is significant interest for practical systems that can estimate the full, time-varying
pose of one or more human hands in real time. The observed hands are potentially
in interaction with the environment, for example while manipulating objects. The
description of the hand pose must be as detailed as possible to enable capturing the
high versatility and dexterity of hands. Observations of the scene are in the form of
image sequences, either from regular color cameras, or from the most recent RGB-
D sensors [12]. In all cases the observations are markerless, avoiding unnecessary
interference with the scene. Furthermore it is assumed that the visual sensors are
fully calibrated, i.e. both the intrinsics and extrinsics parameters are known.
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1.2 Importance of the Problem

By understanding the configuration of human hands we are in a position to build
systems that can capture human activities and potentially understand important
aspects of the interaction of a human with her/his environment, both physical and
social. Furthermore, practical solutions to the problem enable human-computer
interaction in a more natural way than the usual keyboard-mouse combination.
The touch-screen enabled devices that have recently gained popularity are such an
example of natural user interfaces. Nevertheless, the currently widely used input
methods, including touch-screens, are still lacking in scenarios that involve the ma-
nipulation of three-dimensional objects on-screen, since the input is fundamentally
two-dimensional. Robust solutions to hand pose estimation and tracking enable
natural ways to interact with computer in such scenarios, by effortlessly conveying
three-dimensional information [9]. Human-computer interaction can benefit from
robust hand tracking solutions in many different areas: natural user interfaces, sign
language understanding and interpretation, robot learning by demonstration and
patient rehabilitation.

Apart from practical utility, hand pose estimation and tracking are interesting in
a theoretical level as well. The human visual system exhibits the ability to seemingly
effortlessly perform the task, along with human body pose estimation and related
problems. Algorithmic solutions to hand pose estimation may aid in advancing our
understanding of the inner workings of the human brain.

1.3 Problem Difficulties

A significant amount of literature has been devoted to the problem of pose recov-
ery of articulated objects using visual input. The problems of recovering the pose
of the human body and the human hand present similarities such as the tree-like
connectivity and the size variability of the articulated parts. On the other hand, a
human hand usually has consistent appearance statistics (skin color), whereas the
appearance of humans is much more diverse because of clothing. Moeslund et al. [7]
provide a thorough review covering the general problem of visual human motion
capture and analysis. Four different subproblems in the problem area of human
body pose estimation are identified in [7]. These are: initialization, tracking, pose
estimation and recognition. In this context, for the respective problem of hand pose
estimation, the present work focuses on the middle two subproblems.

Despite the significant amount of work in the field [2], the problem of hand pose
estimation remains open and presents several theoretical and practical challenges
due to a number of related issues. Fundamentally, the kinematics of the human
hand is complicated. Complicated kinematics is hard to accurately represent and
also results in a high dimensional configuration space. Extended self-occlusions
further complicate the problem by resulting in incomplete and/or ambiguous ob-
servations. The problem of tracking a hand in interaction with its environment is
further complicated since the occlusions in that case also occur by the interaction
with other objects.

A variety of methods have been proposed to visually capture human hand motion.
Erol et al. [2] present a review of such methods. Based on the completeness of the
computed pose, they differentiate between partial and full pose estimation methods.
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They further divide the class of full pose estimation methods into appearance-based
and model-based ones. A final distinction is made for methods that estimate a
sequence of hand poses based on video input: methods that maintain a set of possible
alternative solutions for each time step are called Multiple Hypotheses ones, whereas
methods that keep only the best of the considered ones are called Single Hypothesis.

As listed in [2], the problem exhibits numerous difficulties. These difficulties
range from issues that are encountered in most computer vision applications such
as occlusions, to issues specific to the problem such as the high dimensionality of
the hand configuration space:

• High dimensionality: The human hand exhibits more than 20 DOF for articu-
lation alone. These can be reduced with appropriate dimensionality reduction
techniques, but experiments show that no less than six can be used without
significant information loss. This estimation does not even consider the case of
object manipulation–the hand can take otherwise unnatural poses in this case.
This high dimensionality renders naive search algorithms inefficient, giving rise
to the need for sophisticated and/or specialized searching techniques.

• Self occlusions: Since the human hand is very versatile, some parts of it can
occlude others, complicating the observation process. Unless a high-quality
depth map is available, segmentation into parts is unreliable since low-level
information is not sufficient in the case of occlusions. Furthermore, hierarchical
approaches fail since visual evidence about parts (such as fingers or phalanges)
cannot be considered in isolation to the other parts.

• Uncontrolled environments: Many practical applications require the use of
hand pose estimation and tracking systems in cluttered background and ar-
bitrary lighting conditions. Such environments make feature extraction pro-
cesses unreliable: skin color detection is sensitive to lighting conditions, and
cluttered background may hinder the performance of foreground/background
segmentation methods as well as methods based on edge features.

• Rapid hand motion: Hand motion speeds involve 5m/s for translation and
300◦/s for wrist rotation. These speeds give rise to problems such as motion
blur (compromising the performance of edge detectors) and the invalidation
of the temporal continuity hypothesis. Sturman in [13] recommends at least
100Hz to overcome these problems.

• Computational complexity: A video stream at normal frame rates (around
30Hz) and standard resolutions (such as 640 × 480 pixels) has a significant
rate of data. This rate is higher for multiple streams (stereo systems or more
cameras), larger image resolutions and higher frame rates.

More difficulties not listed in [2] include:

• Inaccuracies in modeling: The human hand is composed of numerous bones
held together and mobilized by an intricate system of muscles and tendons.
The usually employed hand kinematics models are merely approximating the
degrees of freedom of hand bones (for the complexity of the thumb base joint,
see [14]). Furthermore, the soft tissues surrounding the bones are deformed
during hand motions, thus imposing difficulties in modeling the appearance of
the hand.
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• Variability across humans: Human hands are not identical: among different
individuals there is a deviation in the sizes and shapes of bones, as well as
the angles and limits of the joints. Ideally a system must be able to adjust
to the observed hands’ dimensions. Two reasons for this kind of per-person
adjustments are: improved accuracy of the estimation (based on a better rep-
resentation of the observations) and better correspondence of candidate poses
to the actual hand configuration.

• Interaction with the environment: In real world scenarios it may be desirable
to track the human hand while it interacts with the surroundings. This may
include manipulated objects or even other hands. In such scenarios, extra
difficulties are imposed because occlusions can now occur in more ways than
the self-occlusions of the isolated-hand scenario.

Most of the listed difficulties are addressed in the presented work. Specifically,
the high degree of dimensionality is effectively handled by powerful evolutionary
optimization algorithms. Furthermore, the high level of self occlusions is inherently
tackled by the adopted model-based approach, by jointly considering the observed
scene. Interaction with objects of known geometry is also similarly treated. On the
other hand, the variability of hand size and appearance across humans is not treated
in this work.

1.4 Thesis Outline

The main claim of this thesis is that careful design and implementation of the steps
of a model-based approach can lead to robust, full DoF hand tracking systems
that perform close to real-time achieving accuracy in the order of millimeters. The
resulting, highly parallelizable computation pipeline, based on an appropriate ap-
proximation of the hand shape, allows the efficient generation of image features and
the exploitation of powerful evolutionary optimization algorithms. Careful design
allows to tap into the power of modern hardware and more specifically the parallel
computation platform of modern GPUs. The underlying computational framework,
within which the presented methods were implemented, is presented in detail in [15].

The rest of this thesis is organized as follows: an outline of the relevant literature
is presented in Chapter 2. The problem formulation of the proposed methodology is
described in Chapter 3 along with necessary tools. In Chapter 4, specific instances
built using this general approach are presented. Chapter 5 concludes the thesis.



Chapter 2

Literature Overview

The recovery of the full 3D configuration of articulated objects such as human
bodies and human hands presents a lot of challenges. Several approaches have been
proposed that address various aspects of the problem such as its dimensionality, the
incomplete and/or ambiguous observations due to scene clutter, its computational
requirements, etc. Moeslund et al. [7] provide a review of research to the general
problem of visual human motion capture and analysis. A review that is specific to
the problem of human hand motion estimation is provided in [2].

Before the overview of hand tracking methods, a few issues relevant to it are
discussed. Namely, the anatomy and modeling of the human hand as well as opti-
mization methods and more specifically black-box optimization are briefly discussed.

2.1 Human Hand Modeling

Hand pose estimation methods use representations of certain aspects of the human
hand, such as its appearance and kinematics. In the following sections we first
provide a brief overview of the human hand anatomy, followed by commonly adopted
models of hand kinematics and appearance. The problems of modelling natural
hand motions as well as the fitting of a generic kinematics model to the metrics of
a specific user are also posed in this context. In this thesis these two problems are
not systematically tackled.

2.1.1 Human Hand Anatomy

To build human hand models, knowledge regarding the human hand anatomy is
required. Based on this knowledge, standard tools for kinematics modeling can
be applied. Natural human hand motion can be modeled using this knowledge of
hand anatomy, as well as statistics of natural motions. Generating the respective
appearance induced by the resulting kinematics model is relevant to the area of
computer graphics.

As described in [2], the human hand is formed of 27 bones (8 bones for the
wrist and 19 bones for the palm and fingers), shown in Figure 2.1(a). Each of
the fingers consists of three bones. Four bones form the palm, each one of them
corresponding to one of the four fingers except the thumb which is directly attached
to the wrist. The names of the bones are descriptive of their position: wrist parts
are called carpals, palm parts are called metacarpals and finger parts are called
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phalanges. Phalanges are further distinguished in proximal, middle and distal ones
in the order from the finger base to the fingertip. Three joint types (shown in
Figure 2.1(b)) are distinguished: carpometacarpal (CMC, joining wrist bones to
bones of the palm), metacarpophalangeal (MCP, joining palm bones to finger bones)
and interphalangeal (IP, joining parts of the finger). The CMC joint of the thumb
is also called trapeziometacarpal (TM) and is the most complex one to analyze and
model.

2.1.2 Hand Kinematics Modeling

With respect to the kinematics modeling of the joints, all the IP joints can be
accurately modeled as single DOF rotational joints, and all five MCP joints as
saddle joints, i.e. joints with two rotational degrees of freedom. The CMC of the
index and the middle finger are almost rigidly joined, thus forming the larger part of
the palm. The CMC of the ring and pinky finger have a small capability of motion,
however this DOF is usually discarded resulting in a rigid palm. As already stated,
the CMC of the thumb is a special case. It has been shown [14] that this joint
has two non-perpendicular and non-intersecting axes of rotation. However, since
this modeling is difficult to handle and fine-tune in practice, the model of a saddle
joint is usually adopted for this case as well. The described kinematics model is
graphically depicted in Figure 2.1(c).

For the purpose of hand tracking, the adopted kinematic model essentially acts
as a set of constraints. The enforcement of the adopted kinematic model is usually
based on standard robotics tools. Specifically, the position and orientation of the
palm are deemed free (i.e. 6 DOF), and the DOFs of finger parts are encoded as
joint angles, measured using a predefined convention. It is worth noting that this
type of model is common but not the only one employed. For an exception, the
reader is referred to [16]. In that work, the kinematic model is imposed by a prior
distribution regarding the relative position of finger parts (this prior is derived from
the adopted kinematics), so the kinematics is not a hard constraint, but rather softly
imposed.

2.1.3 Hand Appearance Modeling

Visual methods for hand pose recovery extract information from the observed image
in order to compute the estimated position, orientation and finger articulation of the
hand. This is performed by extracting relevant features from the input image. Com-
parable synthetic features must then be available from the employed hand model
in different candidate hand poses, allowing the identification of the most suiting
hand pose. Therefore, the appearance of the modeled hand must be synthesized,
or specifically, at least the appearance aspects needed to extract the relevant fea-
tures. This gives rise to different shape and appearance approximations based on
the computational constraints of each method, and the types of employed features.

As a general trend, the modeling of the hand appearance is increasingly im-
proved over time (see Figure 2.2). A first approximation was to assume that each
rigid part can be modeled by a cylinder, employed by [3] (Figure 2.2(a)). The only
type of feature used in that work is image edges, and hence the approximation is
sufficient. On the other end of the spectrum, the single employed “feature” in [5] is
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Solutions to the full DOF hand pose estimation problem
can be classified in two main categories: (1) Model-based

tracking, and (2) Single frame pose estimation. The former
refers to a top-down tracking method based on parametric
models of the 3D hand shape and its kinematic structure.
Model-based tracking is common in many studies for
tracking various types of objects in 2D and 3D [36–39]
(see Section 5 for details). It corresponds to a search exe-
cuted at each frame of an image sequence to find the pose
of the shape model that best matches the features extracted
from the image(s). The search is initiated using a prediction
based on the object’s motion history and dynamics. Some
systems rely on a local search around the prediction to pro-
duce a single best estimate at each frame. However, imper-
fections due to occlusions and complexity of hand motion
do not allow this type of tracker to work well over long
sequences. The alternative approach is keeping multiple
hypotheses at each frame to improve the robustness of
tracking.

The second solution (i.e., single frame pose estimation)
is a more recent one that attacks the problem without mak-
ing any assumptions on time coherence, resulting in a more
difficult problem. This approach can lead to algorithms for
initialization or re-initialization in tracking-based systems.
Another motivation for this approach is the rapid motion
of the hand and fingers. Images of consecutive frames
can be very different, making time coherence assumptions
useless.

3. Hand modeling

In this section, we provide a review on hand modeling in
the context of model-based vision. First, we describe the
kinematic model that forms the basis of all types of hand
models. A kinematic hand model represents the motion

of hand skeleton, but is also a redundant model in the sense
that it does not capture the correlation between joints.
After a review on modeling the natural hand motion, we
present some hand shape models that allow generating
appearances of the hand in arbitrary configurations.
Finally, the kinematic fitting problem, which involves the
calibration of the user specific parameters of the hand
model, is discussed.

3.1. Kinematic hand model

The human hand consists of 27 bones, 8 of which are
located in the wrist. The other 19 constitute the palm and
fingers as shown in Fig. 2a. The bones in the skeleton form
a system of rigid bodies connected together by joints with
one or more degrees of freedom for rotation. Joints
between the bones are named according to their location
on the hand as metacarpophalangeal (MCP) (i.e., joining
fingers to the palm), interphalangeal (IP) (i.e., joining fin-
ger segments) and carpometacarpal (CMC) (i.e., connect-
ing the metacarpal bones to the wrist). The nine IP joints
can be accurately described as having only one DOF, flex-
ion-extension. All five MCP joints, however, are described
in the literature as saddle joints with two DOF: abduction/
adduction (i.e., spreading fingers apart) in the plane defined
by the palm, and flexion/extension. The CMC of the index
and middle fingers are static while the CMC of the pinky
and the ring finger have limited motion capability reflecting
palm folding or curving, which is often discarded yielding a
rigid palm. The CMC of the thumb, which is also called
trapeziometacarpal (TM), is the most difficult to model.
Biomechanical studies [40] have shown that the TM joint
has two non-orthogonal and non-intersecting rotation
axes. The two DOF saddle joint is a restrictive model but
it has been used in many studies. Extending it to a three
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Figure 2.1: Anatomy and kinematic modeling of the human hand retrieved from [1]
and [2]. (a) Anatomy of the human hand with annotated bones (b) and joints. (c)
A commonly adopted model of hand kinematics. The wrist is depicted with the
filled square, and serves as the global frame of reference for the hand (6 DOF). The
legend at the top-left of the figure shows symbols for joints of zero (fixed link), one
and two degrees of freedom (see text for more details).

the full appearance of the hand, and hence a photorealistic hand model is required
(Figure 2.2(c)). Albrecht et al. in [17] study the anatomic properties of the hand in
order to build a realistic hand model for use in computer graphics. They present a
detailed hand model capable of realistic hand motion based on an elaborate skele-
ton, muscles and skinning (a computer graphics technique for the computation of
deformations of non-rigid objects).

2.2 Optimization

Optimization is defined as the task of finding the best fitting element in a set S,
called the search space, given a fitness criterion f , termed the objective function. The
most usual scenario involves a subset of Rn as the search space S, with the objective
function f mapping elements of the search space to R, denoted as f : S ⊆ Rn → R.
For this scenario, the optimization problem is called a minimization if the optimum
value is the lowest one: for the optimum x0, ∀x ∈ S : f(x) ≥ f(x0). In the opposite
case, where ∀x ∈ S : f(x) ≤ f(x0), the problem is called a maximization.

A solution x0 ∈ S is called a local minimum if there is a radius r > 0 such that
∀x ∈ S with |x− x0| < r, it holds that f(x) ≥ f(x0). Furthermore, the element x0
with the lowest objective function value over all elements in S is called the global
minimum: ∀x ∈ S it holds that f(x) ≥ f(x0). The solution to a minimization
problem is defined to be the global minimum.

Many tasks in computer vision are formulated as optimization problems [18–21].
Optimization is a powerful framework that allows the transformation of hard esti-
mation problems to potentially easier, evaluation ones. More specifically, in many
parameter estimation problems that occur in computer vision and other disciplines,
instead of attacking the parameter estimation problem directly, the optimization
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Camera 0 View Camera 1 View

Fig. 5. Three pairs of hand images from the continuous motion estimate plotted in
Figs. 7 and 8. Each stereo pair was obtained automatically during tracking by storing
every �ftieth image set to disk. The samples correspond to frames 49, 99, and 149.

Camera 0 View Bottom View

Fig. 6. Estimated hand state for the image samples in Fig. 5, rendered from the Camera
0 viewpoint (left) and a viewpoint underneath the hand (right).

Figure 3. The 27 DOF hand model is constructed from
39 truncated quadrics. Front view (left) and exploded view
(right) are shown.

used for the tips of fingers and thumb. The shape parameters
of each quadric are set by taking measurements from a real
hand.

3.2. Generation of the Contours

Each clipped quadric of the hand model is projected in-
dividually as described in section 2.1, generating a list of
clipped conics. For each conic matrix ( we use eigende-
composition to obtain a factorization given by

( ��� 9 ��� � 9�� 6 (11)

where

�e� � N P$ � ��� (12)

with
N�N � � ! . The diagonal matrix � represents a conic

aligned with the 	 - and 
 -axis and centered at the origin.
The matrix � is the representation in homogeneous coor-
dinates of a Euclidean transformation that maps this conic
onto ( . We can therefore draw ( by drawing � and trans-
forming the rendered points according to � . The drawing
of � is carried out by different methods, depending on its
rank. For ikj@l'm ) � - �go an ellipse, for ikj@l'm ) � -<� = a pair
of lines is drawn.

The next step is the handling of self-occlusion, achieved
by comparing the depths of points in 3D space. In section
2.1 it was shown how to obtain the depth of a point �*),+ [ -
on the contour generator of a quadric � . In order to check if�3),+:[.- is visible, equation (1) is solved for each of the other
quadrics � % of the hand model. In the general case there
are two solutions + % ` and + %9 , yielding the points where the
ray intersects with quadric � % . The point �3),+ [ - is visible if+ [�� + %� �<'16
�

, in which case the point
�

is drawn. Figure 4
shows an example of the projection of the hand model with
occlusion handling.

Figure 4. Handling self-occlusion: The 3D model (left) and
its generated contour (right) are shown.

3.3. Construction of the State and Observation Vec-
tors

The state vector
	

contains the global pose of the hand
and the configuration of the joints. Additionally, compo-
nents modeling the hand motion, such as velocity and ac-
celeration, can be included. In the most general case the
state vector will have dimension =��-� , where � G � is the
order of the dynamic model.

The observation vector
�

is obtained by detecting edges
in the neighborhood of the projected hand model. Let���% � ( � ��� `% 6 � ��� 9% 6:D D D 6 � ��� ���% + be the set of visible (not oc-
cluded) points on the contour generator of �&% as seen from
camera � � , and let ( �% be the projection of � % on � � . The
image of each point � ��� �% is denoted by

� ��� �% . The vectorf ��� �% normal to ( �% at
� ��� �% can be obtained, as described in

section 2.1. For each point
� ��� �% one looks for edges along

the normal f ��� �% (see for example [3]). The intensity values
in the images are convolved with a derivative of a Gaussian
kernel and an edge is assigned to the position � ��� �% with the
largest absolute value. The observation vector

�
is con-

structed by stacking the inner products f ��� �% � � ��� �% into a sin-
gle vector.

The predicted observation vector for the UKF is obtained
by projecting the hand model corresponding to the state
vector

	 [ )�
J; � " 
'- on each image. One then obtains a
set of reference contours, for which a list of image points� [Z� ( � ��� �% + is computed together with the corresponding
normals. Each of the remaining state vectors

	D. )�

; � " 
'-
is used to compute new contours and new lists

�".
of im-

age points. The vectors
��. )�
 ; � " 
'- are then constructed

by stacking the inner products f ��� �% � � ��� �% , where the points� ��� �% are in the list
� .

. The predicted observation can be
found according to (9).

Each component of the innovation vector will then have
the form fC�h)�� G W� - , where W� is the average position of
the contour points in a single image, � is the corresponding
edge in that image and f is the corresponding normal vector

4

Figure 1. The hand model as polygonal sur-
face (top). The hand model and its degrees of
freedom (bottom).

figuration c, influenced byn joints, is calculated from its
positionvb in a reference hand pose (the ‘binding configu-
ration’ b with the fingers stretched and in the plane of the
palm) as

vc =

n∑

j=1

γjMj,cM
−1
j,b vb. (1)

with Mj,b andMj,c the transfomation matrices of thejth
joint in the binding poseb and posec, resp., andγj the
blending weights for the different joints. A more detailed
description of this type of model can be found in [1, 5].

Constraints of the human hand reduce the model to 30
degrees of freedom (DOFs) as shown in Figure 1. Addi-
tional dependencies between PIP and DIP angles (DIP =
2/3 PIP) further reduce the model to 26 DOFs [6].

The varying statep of the hand model consists of the
translation and rotation of the palm, and the joint angles of
the phalanges. This is coded in the form of a functionF
that, for givenp and intrinsic model parametersM, maps
a pointx̂m given in hand model coordinates into 3D vec-
tors to the predicted position̂xc in camera coordinates. For
simplicity, a pseudo-orthographic projection is assumed:

x̂c = F(x̂m,p,M). (2)
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Figure 2. The calculation of the error func-
tion. An approximation to the closest point
on the surface is calculated by projecting the
model point x̂c onto the tangential plane at
x̂

′

c = (x̂c,x, x̂c,y,Z(x̂c,x, x̂c,y)). This yields the
approximation xc.

3.. Stochastic Meta-Descent

3.1. Stochastic Sub-Sampling

Tracking proceeds by matching the hand model against
depth maps generated by a structured light sensor1. Several
systems providing such data are now available [8]. We use
skin color detection to mask out the background.E is eval-
uated by considering only a rather limited set of points, 45
in our current implementation, to speed up the tracking.

The discrete nature of the sampling process and the noise
in the 3D measurements introduce local minima in the opti-
mization function. By randomly changing the set of points
whereE is evaluated at each iteration step – referred to
as ‘stochastic sampling’ – these spurious minima will also
change, lowering the chance for the tracker to get stuck
there [1].

3.2. Objective Function

For a tracked point̂xm on the hand model, we seek to
minimize the distance between its predicted 3D positionx̂c

and observed 3D positionxc. As we have no information
about this corresponding, observed point, we rather mini-
mize – in a way similar to some ICP implementations –
the distance of̂xc to the tangent plane at the point on the
observed 3D surface with the same image projection, i.e.
x̂

′

c = (x̂c,x, x̂c,y,Z(x̂c,x, x̂c,y)) (still assuming pseudo-
orthographic projection) as illustrated in Figure 2

Z is the depth map provided by the 3D sensor in cam-
era coordinates. If the closest point on this plane isxc, the

1 ShapeSnatcher from Eyetronics (http://www.eyetronics.com/)

(a) (b) (c)

Figure 2.2: Employed hand appearance models. (a) In [3], fifteen cylinders compose
the hand fingers (the palm and the spheres at the fingertips are not used for feature
extraction). (b) In [4], the shape of the hand is built from 39 truncated quadrics.
(c) A very accurate model is employed in [5]. Images (a) and (b) are retrieved from
the respective publications and (c) from [6].

framework allows to solve the easier problem of scoring candidate solutions by
defining an appropriate objective function. After the implementation of the ob-
jective function, a suitable optimization method can be used to solve the original
parameter estimation problem.

There has been a significant amount of work dedicated to developing strategies
and techniques that efficiently solve optimization problems. For analytical, differen-
tiable objective functions the problem has been extensively studied [22]. For these
cases, the key property to exploit is the observation that the local optimum is neces-
sarily located in a position where the gradient vanishes. This leads to the main idea
of gradient descent: by iteratively following the direction opposite to the gradient it
can be shown that one asymptotically approaches a local minimum.

However, in many real world problems it is difficult or even impossible to employ
differentiable objective functions. Furthermore, even for differentiable functions
it may be very difficult to compute the gradient. For this reason, recently there
has been an increasing amount of work regarding so called black-box optimizations
methods, i.e. methods that need only the domain and the objective function of the
problem [23,24].

Many black-box optimization methods fall under the general approach of evo-
lutionary computing. Methods that follow the approach of evolutionary computing
are called evolutionary optimization. Evolutionary optimization is widely regarded
as a powerful strategy to optimize objective functions with significant amounts of
noise, discontinuities and even uncertain values [25, 26]. As identified in [25], four
key ideas govern the design of evolutionary computing methods:

• one or more populations of individuals competing for limited resources,

• the notion of dynamically changing populations due to the birth and death of
individuals,

• a concept of fitness, reflecting the ability of individuals to survive and repro-
duce,
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• a concept of variational inheritance: offspring closely resemble their parents,
but are not identical.

In the hand pose estimation and tracking problem, the parameter estimation
problem can be transformed into the relatively easier one of evaluating the fitness
of a vector of parameters. More specifically, the parameter estimation problem is
formulated: given a set of visual observations of a hand, estimate a set of hand
pose parameters that match these observations. On the other hand, the parameter
evaluation problem is formulated as: given a set of visual observation of the hand
along with a human hand pose parameterization, quantify how well the given pa-
rameterization matches the visual observations. A solution for the second problem
can serve as an objective function in an optimization problem that essentially solves
the first one: optimize over the hand pose configuration space for a given visual
input, thus effectively solving the direct, parameter estimation problem.

This formulation leads to a scoring function that quantifies the discrepancy be-
tween a hypothesized hand pose and the available visual observations of it, the
properties of which must be studied for suitability in an optimization problem. In
practice this function will be multimodal, difficult to differentiate or even discon-
tinuous and hence non-differentiable. Specifically, if a graphics pipeline is involved
as in the case of this thesis, the inherently discrete nature of the rendered images
imposes a significant difficulty in estimating the derivative of the objective func-
tion. Because of these reasons, it is desirable to avoid the necessity to compute
the derivative of the objective function, thus excluding gradient-based optimization
approaches. Black-box optimization techniques on the other hand solely rely on the
availability of the objective function, and can also potentially overcome the multiple
local minima that occur.

In this thesis, hand pose estimation and tracking is formulated as an optimiza-
tion problem as described above. All the objective functions that are employed for
the various hand tracking scenarios have the aforementioned properties that inhibit
the use of gradient-based optimizers. For this reason, all the adopted optimization
techniques are black-box. More specifically, variants of Particle Swarm Optimization
(PSO) [27] are employed in most cases. Additionally, a novel evolutionary optimiza-
tion algorithm is proposed and compared to PSO. This evolutionary technique 3.5.2
is specifically designed for the problem of hand tracking. The algorithm is tailored
to the local optimization problem that occurs under the assumption that consecu-
tive observations of the scene depict the human hand in states that are close to one
another in the hand configuration space.

2.3 Categorizations of Hand Tracking Approaches

Erol et al. in [2] categorize methods as partial or full pose estimation ones, depending
on the level of detail they provide regarding the observed hand. Another catego-
rization within the full pose estimation class identifies appearance-based and model-
based methods. Appearance-based methods estimate hand configurations by estab-
lishing a direct mapping of image features to the hand configuration space [28–41].
Model-based approaches employ a 2D or a 3D hand model. In the case of 3D hand
models, the hand pose is estimated by matching the projection of the model to
the observed image features. The task is then formulated as a search problem in a
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high dimensional configuration space, which typically induces a high computational
cost [3–5,16,42–45]. Most methods for hand pose estimation can be characterized as
either appearance-based or model-based ones. Few methods fall between these two
categories by adopting elements of both. For example, Qian et al. in [45] propose
a model-based method which uses a set of appropriately placed spheres to model
the volume of the hand. They propose an algorithm that combines Particle Swarm
Optimization and Iterative Closest Point to optimize an appropriately formulated
objective function. Although model-based, the authors propose fingertip detection
to efficiently search for candidate poses, thus borrowing elements from appearance-
based approaches.

2.3.1 Appearance-based versus Model-based Methods

Appearance-based Methods

Appearance-based methods estimate hand configurations directly from images using
a pre-computed mapping from the image feature space to the hand configuration
space.

A common strategy to the problem of hand pose estimation is to discretize the
space H of all possible hand configurations. In this approach, a reference database D
is built out of selected hand poses {h1, h2, . . .} ⊆ H, along with their corresponding
appearance. Each entry in the database D is a pair of a hand configuration h and an
image I of the hand in this configuration: D = {(h1, I1), (h2, I2), . . .}. The problem
can be reduced in this way to one of image retrieval: the database image In that best
matches the observed one is paired with the hand configuration hn which comprises
the response of the method. Thus, by discretizing the target domain, the original
regression problem is essentially reduced to a classification one. Alternatively, this
database can be used as a training set for a regression learning technique, or more
generally for any method capable of interpolating between provided samples, where
input is the set of images (processed in order to extract features of interest) and
output the respective hand poses. Methods that pre-process a large set of examples
as just outlined in order to produce a regressor or a classifier are called appearance-
based.

Appearance-based methods attempt to solve a difficult problem since the map-
ping from images to hand poses is highly nonlinear due to the variation of hand
appearances under different views. Further difficulties are posed by the require-
ment of collecting large training data sets and the requirement for accuracy of pose
estimation. On the positive side, appearance based methods are usually fast at
runtime, require only a single camera and have been successfully employed for ges-
ture recognition and grasp categorization tasks [33, 34]. A particular property of
appearance-based methods is that they can be easily specialized to specific hand
motions (e.g. specific types of object grasps or a set of selected gestures): the
provided examples need only be sampled from the poses of interest. This is simulta-
neously a strong and weak point of this approach: such methods are easily applied
to specialized cases, however in order to cover the full set of possible hand poses, a
very large dataset must be employed. As a bottom line, the distinguishing feature
of appearance-based methods is that the required mapping is computed/generated
during the training/engineering phase and remains fixed thereafter. After this stage,
this computed mapping is applied to the input images.
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Model-based Methods

Model-based methods follow a different approach. Methods of this type are em-
ploying a hand model that is used during the estimation process to compute image
features which are compared to respective features extracted from the observed im-
age. More specifically, features such as edges, skin color, or even full appearance
estimation are constructed using the employed hand model. These features are com-
pared to respective features extracted from the observed image(s). A quantification
of this comparison for varying poses of the hand model serves as an objective func-
tion to an optimization routine. Thus, the original problem is effectively reduced to
an optimization one with search space the parameterization of the hand model.

The formulation as a search problem in a high dimensional configuration space
undermines the computational performance of model-based methods. On the other
hand, these methods, unlike appearance-based ones, can be easily adapted to dif-
ferent situations such as varying lighting conditions or object manipulation. The
research areas of model-based methods include the construction of efficient and re-
alistic 3D hand models, the dimensionality reduction of configuration space and the
development of fast and reliable tracking algorithms to estimate the hand posture.

2.3.2 Disjoint and Joint Evidence Methods

One more categorization is based on how partial evidence regarding the individual
rigid parts of the articulated object contributes to the final solution [46]. Disjoint ev-
idence methods [3,16,42,47] consider individual parts in isolation prior to evaluating
them against observations. Joint evidence methods [4, 5, 28, 29, 31, 35, 36, 46, 48, 49]
consider all parts in the context of complete articulated object hypotheses. By
construction, joint-evidence methods treat part interactions effortlessly, but their
computational requirements are rather high. Disjoint evidence methods usually
have lower computational requirements than joint-evidence ones, but need to ex-
plicitly handle part interactions such as collisions and occlusions. Since such issues
are pronounced in the problem of tracking a hand in interaction with objects and in
the problem of two hands tracking, joint evidence methods are more suitable than
disjoint evidence methods for such tasks.

Another advantage of joint-evidence methods over disjoint-evidence ones is the
allocation of search resources: since the articulation configuration of the object of in-
terest is evaluated in whole, instead of partially, configurations that are implausible
because of physics, or other a-priori known constraints regarding the scene. There-
fore the joint-evidence methods typically search in spaces of higher dimensionality
that disjoint-evidence ones, however the search resources can be better allocated.

2.3.3 Comparison of Approaches

Appearance-based and model-based methods exhibit different strengths and weak-
nesses. Comparing them is not straightforward, since there are a lot of aspects and
parameters to consider. As already mentioned, the computational complexity of
appearance-based methods is usually lower than that of model-based ones. Never-
theless, the gap of computational efficiency between the two approaches is narrowing
because of algorithmic improvements and the advance of hardware. Scalability and
versatility favor model-based methods, since the design phase for these methods
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is usually less demanding. As a comparative example, the per-person adjustment
of hand metrics is in most cases a straightforward task for model-based methods
whereas for appearance-based ones, either a new mapping must be computed from
scratch for each set of measurements, or the training must include samples of differ-
ently sized hands. Another aspect that favors model-based methods is the expected
accuracy. In this respect, the appearance-based methods have essentially a fixed ac-
curacy which is fully determined from the computed mapping. On the other hand,
model-based methods are limited only by computational time, since the expected
accuracy of the result is in theory directly related to the amount of performed com-
putations.

2.3.4 Categorization of the Presented Work

In terms of the previously described classifications, this thesis presents model-based,
joint-evidence methods for tracking the full articulation of hands. The common un-
derlying methodology is versatile enough to handle different observation modes as
well as varying scenarios regarding the observed scene. More specifically, obser-
vations from multicamera systems and RGB-D sensors can be used. The treated
scenarios range from a single hand in isolation, to a hand manipulating an object,
to two hands in strong interaction with each other.

The appearance of the human hand is modeled in this work as a set of appropri-
ately transformed cylinders and spheres. This achieves a good approximation of the
hand shape that yields a high degree of computational parallelism (by reusing the
geometric primitives of a cylinder and a sphere) enabling fast synthesis of features.
The kinematics are modeled as a simple kinematic tree similar to 2.2(c) and are
strongly enforced, enabling the compact representation of the finger positions by
only 20 Degrees of Freedom. For more details see Section 3.2.



Chapter 3

Problem Formulation and Tools

This Chapter provides an overview of the problem formulation, the visual cues and
the principles along which they are utilized, as well as necessary tools required for
the implementation of the actual methods presented in Chapter 4.

The problem of 3D hand tracking is formulated as a sequence of optimization
problems. The input to the system is generally assumed to be multi-view, a set of
fully calibrated and synchronized image streams that capture the hand motion from
different viewpoints. This trivially includes the case where the input consists of only
a single view of the scene. The image streams can either consist of regular color
images, or alternatively they may include depth information, captured from RGB-D
sensors such as the Kinect [12]. Each multi-frame, defined as a set of simultaneously
captured images, is used to instantiate an optimization problem (Section 3.1). The
search space of this problem is the hand configuration space (Section 2.1.2 and 3.2).
The objective function of the problem quantifies the discrepancy between a hypoth-
esized hand pose and the observed image(s), including also self-consistency terms
(Section 3.4). Appropriate visual cues are employed in each scenario, permitting the
efficient computation of the objective function, while retaining the essential infor-
mation of the input stream(s) (Section 3.3). For each such optimization problem,
the best scoring hand configuration that is found with a suitable optimization algo-
rithm (Section 3.5) is deemed the solution. This solution is then used to initialize
the search for the next frame (Section 3.6).

3.1 Formulation

The model-based, estimation-by-synthesis approach for hand tracking mandates that
the task is formulated as an optimization problem. Under this formulation, the un-
known parameters of the observed hand pose that are to be estimated become pa-
rameters of the objective function to be optimized. The objective function must be
designed so that its optimum coincides with the sought-after solution. For our spe-
cific problem, the objective function quantifies the discrepancy between a candidate
hand pose and the observations regarding the scene. This is achieved in practice by
comparing visual cues extracted from the observation and computed from candidate
hand poses. Apart from attaining the global optimum at the appropriate hand pose,
the objective function must be carefully designed to aid the optimization process.
The behavior of the objective function around the optimum is crucial for the ac-
curacy of the estimated solution, while the behavior further away determines the

29
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robustness of the resulting method.
The formulation as an optimization problem allows to solve a difficult parameter

estimation problem by converting it to one of parameter scoring/validation. In
practice, for the problem at hand, this means that instead of having to estimate
the pose parameters directly from the visual input, we are in a position to solve
the problem only by quantifying how well a candidate pose fits the observations.
The employed optimization algorithm handles the task of finding the optimum of
this objective function, thus simultaneously solving the original problem of pose
estimation.

The design choices regarding components of the presented methods affect the
overall computational performance of the resulting system. Such components include
the employed visual cues, the optimization algorithms as well as the form of the
objective function. The selection of the miscellaneous components that comprise
the computational pipeline visual cues, along with the way the comparison between
hypothesis and observation is performed, determines the computational cost of the
objective function. Apart from the direct effect on computational cost, the selected
cues can indirectly impact the overall runtime by the degree to which the required
computations are parallelizable. The implementation of this tracking framework
is described in detail and as a unified approach to scene understanding in [15],
including issues on parallelization of the involved computations.

3.2 Hand Model

We base the employed hand appearance and kinematics model on that proposed
in [17] (see also Section 2.1.2). The global position of the hand requires 3 Degrees
of Freedom (DoFs) that specify the center of the palm in the global frame of refer-
ence. The rotation of the palm is encoded with 4 more DoFs using the quaternion
representation of 3D rotations. Rotations in 3D space have 3 degrees of freedom,
and hence the quaternion representation is redundant. Nevertheless, we employ this
redundant representation instead of others that require only 3 parameters, because
this representation has a smooth mapping to 3D rotations that does not suffer from
discontinuities such as the problem of gimbal lock [50]. In sum, the global position
and orientation of the palm are encoded using a total of 7 parameters.

For the 5 fingers of the hand, 20 DoFs are used to fully determined the artic-
ulation pose, specifying the state of finger joints in the form of angles. Each of
the fingers requires 4 DoFs: 2 degrees of freedom for the base, determining flexion-
extension and abduction-adduction, and 2 more DoFs corresponding to the two
remaining joints of the finger. The actual kinematics of the human thumb are more
complex than this simple model (see [14]), however in practice the thumb motion
is adequately approximated with a model similar to the other fingers, with the
same number of DoFs. This parameterization yields a total of 27 parameters that
describe the position, orientation and finger articulation of a human hand in 3D.
Throughout this thesis, such a 27-dimensional vector will be denoted as h, an el-
ement of the hand parameterization space H: h ∈ H. Written out in detail h =
(x, y, z, qw, qx, qy, qz, θthumb, θindex, θmiddle, θring, θpinky) where for each finger, θfinger
groups the four angles that parameterize it: θfinger = (θ1,base, θ2,base, θmid joint, θtip joint).

Visually, the adopted kinematics model is depicted in Figure 3.1. The figure is
adapted from [2], showing the Degrees of Freedom used throughout this work.
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Figure 3.1: Illustration of the adopted model of hand kinematics. Adapted from [2].
As described in the text, the thumb kinematics are approximated using only 4 DoFs,
similar to the other four fingers.

In order to reduce the complexity of the hand kinematics, rules derived by biome-
chanics studies [2] have been proposed. One such common rule links the angle of
the proximal and distal interphalangeal joint: θtip joint = 2

3
θmid joint, where θmid joint

and θtip joint respectively denote the angle of the proximal and distal interphalangeal
joint. This rule is a good approximation when the fingers move freely, however it
breaks when the fingers apply force, e.g. when grasping an object or even pressing
the index against the thumb. As described in the introduction, we are interested
in scenarios where the hands interact with objects, therefore we do not adopt this
simplifying rule. Even more complex static and dynamic constraints of the human
hand motion have been proposed and used throughout the literature (see [2]), how-
ever they are not adopted in this work. The rationale behind this choice is to firstly
aim to solve the fully unconstrained problem, and then add appropriate constraints
where necessary. Enforcing such constraints is not always an easy task, however the
adopted model-based approach for hand tracking is highly extensible, leaving more
room for modifications than appearance-based approaches.

Given specific values for these 27 parameters, the position and orientation of
each part of the hand is fully determined. Our goal is to optimize these parameters,
searching for the pose that best matches the observed visual input. Towards this end,
under the adopted model-based approach, it is necessary to synthesize comparable
visual cues that can then be compared with the observed ones, thus providing a
score of the candidate pose and driving the optimization process.

The process of synthesizing visual cues uses a description of the hand structure
in the form of 3D meshes. We build this description out of mesh representations
of two basic geometric primitives, a cylinder and a sphere as illustrated in Fig-
ure 3.2. Appropriate homogeneous transformations of these two shapes form the 3D
structure of the employed human hand model, similar to [4]. Each transformation
performs two different tasks. First, it appropriately transforms primitives to more
general quadrics and, second, it applies the required kinematics. Using the shape
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Figure 3.2: Hand model with colored parts. Each color denotes a different type of
geometric primitive: blue for elliptic cylinders, green for ellipsoids, yellow for spheres
and red for cones.

transformation matrix

Ts =




e · sx 0 0 0
0 e · sy 0 0
0 0 sz 0
0 0 1− e e


 , (3.1)

spheres can be transformed to ellipsoids and cylinders to elliptic cylinders or cones.
The parameters of Ts, sx, sy and sz are scaling factors along the respective axes.
The parameter e is used only in the case of cones, representing the ratio of the small
to the large radius of the cone before scaling. The convention we adopt is that the
axis of symmetry of the cylinder is parallel to the z axis before this transformation.
If not transforming to a cone, e is fixed to 1. The final homogeneous transformation
T for each primitive (sphere or cylinder) is

T = Tk · Ts, (3.2)

where Tk is the rigid transformation matrix computed from the kinematics model.
The palm and each of the phalanges are considered rigid parts, appropriately

placed in 3D space according to the kinematics described previously. The palm
is built out of an ellipsoid cylinder and two ellipsoids serving as caps. Each joint
has a sphere centered around it, serving the purpose of smoothing the discontinuity
between consecutive rigid parts of the hand. Each of the phalanges consists of a
cone, except for the base of the thumb which is modeled as an ellipsoid.

3.3 Feature Computation and Evaluation

The raw visual input is processed in order to remove known types of noise that may
be present: regular color cameras exhibit varying amounts of white noise whereas
depth sensors also exhibit Gaussian noise in the depth measurements, as well as
more complex types of noise such as shot noise and bands of missing measurements
around objects. Apart from noise reduction, the raw input is further processed to
compute visual features that are then used for hypothesis evaluation. The compu-
tation involved with each feature is composed of two different stages: input prepro-
cessing and hypothesis comparison. The former includes both computing specific
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visual cues from the raw input, but additionally to perform preprocessing steps that
allow to speed-up computations in the upcoming hypothesis comparison stage. Ad-
ditional computations in the first stage can potentially speed up computations at
later stages: the input preprocessing is performed once per input image, whereas
the evaluation of the objective function is performed hundreds or thousands of times
per frame. Therefore, careful choice of preprocessing computations can potentially
speed up the overall process.

In order to synthesize features that are directly and efficiently comparable to the
observed ones, the camera calibration information is required. More specifically, we
resort to visual cues that can be represented as pixel maps, which are computed in
direct correspondence to the input pixels. This is achieved by extracting the view
frustum information contained in the camera calibration information, and simulating
it in the graphics pipeline. Although possible, the radial distortion information is not
taken into account in the graphics pipeline. Instead, an ”undistort map” is computed
during the camera calibration process. During acquisition, this map is applied in
real time on the input observations, effectively removing the radial distortion.

The employed visual cues are: image edges, skin color, depth map and the visual
hull. All features are computed on regular grids, the first three as pixel maps in
one-to-one correspondence with the input and the visual hull as a voxel occupancy
map. This choice facilitates comparison of candidate solutions with the observation,
and allows for significant speed up in a GPU implementation. Additionally (and
complementary) to the issue of computational efficiency, the choice of visual cues is
followed by design choices regarding the quantification of the discrepancy between
hypothesized and observed features. The average difference between the observed
and hypothesized maps is such a quantification, however this is not always suitable as
an objective function in the subsequent optimization process. Special preprocessing
steps in the observed cues, as described in the previous paragraph, allows the use of
more elaborate score fuctions without sacrificing computational efficiency.

3.3.1 Camera Calibration and Computer Graphics

For the problem of camera calibration we resort to the solution implemented in
the OpenCV library [51]. The result of this calibration process is two matrices for
each camera, one related to the intrinsic and one to the extrinsic parameters of the
camera. The extrinsic matrix describes a rotation and translation, capturing the
relation between the global coordinate frame and the camera one. The intrinsic
matrix models the projection from the camera coordinate frame to the projection
plane. For computer vision applications it suffices to be able to map points of the 3D
space to the camera plane. This is modeled as a homogeneous matrix transformation
that maps 4D vectors to 3D vectors, representing respectively 3D points to 2D
points in homogeneous coordinates.

For computer graphics applications however it is also required to perform occlu-
sion testing of rendered objects, allowing the ones closer to the camera to occlude
others further away. This requirement mandates that depth information is not lost
from the projection operation. Towards this end, computer graphics exchange the
projection plane with a projection cube: the first two coordinates are the same as the
projection plane, and the last serves for occlusion testing. Because of the projective
transformation, the last value cannot be directly the depth value, at least not with-
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out non-linear operations. Instead, a linear transformation of the inverse depth is
used in practice. The boundaries of the rendered volume are defined by the faces of
this cube. Apart from boundaries on the projection plane, computer graphics define
the notions of clipping planes, near and far: objects outside this depth range are not
rendered, thus hiding objects behind the virtual camera, avoiding projective distor-
tions of objects very close to it, and hiding objects far away from it. The calibration
information is used below to derive this augmented projective transformation.

The intrinsic parameters matrix is

A =



fx 0 cx
0 fy cy
0 0 1


 (3.3)

where fx and fy denote the focal length expressed in pixel units scaled by the
aspect ratio of the pixels, and cx, cy denote the principal point in pixels. This
matrix projects points in the camera coordinate system on the camera plane. This
projection is denoted as



x
y
w


 =



fxX + cxZ
fyY + cyZ

Z


 =



fx 0 cx
0 fy cy
0 0 1


 .



X
Y
Z


 (3.4)

where (X, Y, Z)ᵀ denotes a point in 3D whereas (x, y, w)ᵀ denotes the respective 2D
point using homogeneous coordinates.

As already outlined, the goal is to adapt the projection matrix so that it retains
the necessary depth information. This can be achieved by augmenting it with an
extra line and column. The additional values determine the positions of the near
and far plane. All values are set to 0 except for the ones that regard the Z coor-
dinate because the near-far plane clipping will be decided based only on the value
of this coordinate. The projection on the right-hand side of Equation 3.4 can be
equivalently written as




fxX + cxZ
fyY + cyZ
aZ + b
Z


 =




fx 0 cx 0
0 fy cy 0
0 0 a b
0 0 1 0


 .




X
Y
Z
1


 , (3.5)

where a and b are parameters of the operation. This operation results in the same
values as Equation 3.4, with the additional third value of (aZ + b)/Z. The vector
on the left-hand-side of this operation corresponds to a point in R3 which, after
dividing the value in the first 3 components by the value in the last one, yields:

(
fxX + cxZ

Z
,
fyY + cyZ

Z
,
aZ + b

Z
, 1)ᵀ. (3.6)

This last value is used for occlusion handling and clipping according to depth. The
value (aZ + b)/Z is a monotonic function of Z since the origin of the camera coor-
dinate frame coincides with the center of projection. Therefore, the values of the
parameters a and b can be fully determined by the two constraints regarding the
near and far plane. Assuming that these two clipping planes are respectively de-
fined by Z = zn and Z = zf in the camera coordinate frame, and that the clipping
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cube defines as near and far respectively the values of 0 and 1, we can impose these
constrains in a system of two equations:

azn + b

zn
= 0

azf + b

zf
= 1.

(3.7)

Solving this system for a and b yields

a =
zf

zf − zn
b =

zfzn
zf − zn

.
(3.8)

In total, given a 3 × 3 intrinsic parameters matrix from a camera calibration
process, and the values zn, zf defining the near and far plane, the projective trans-
formation that appropriately transform the depths and clips them in the range [0, 1]
is: 



fx 0 cx 0
0 fy cy 0
0 0

zf
zf−zn

zf zn
zf−zn

0 0 1 0


 (3.9)

3.3.2 Cropping the Region of Interest

The implementation of the presented work relies heavily in GPU computations, to
synthesize and compare cues of candidate solutions. In [48] we used the calibration
information as described previously in Section 3.3.1. From [46] and on, we added
an extra step in the calibration information to crop both the observation and the
synthesized cues in a region of interest (ROI). This achieves higher accuracy, faster
runtime or both, by allocating computations to the parts of the scene that are
relevant to the task. In practice, since in all the presented works the tackled problem
involves tracking one or more visual entities, it is safe to assume that the area of
interest for the current frame is close to the location of the tracked entities in the
previous frame.

3.3.3 Image Edges

Image edges are a visual cue with numerous applications in computer vision [52,53],
including hand tracking [4, 16]. Edges constitute a useful visual cue for the task
of hand pose estimation because they are robust to white noise and illumination
conditions. Since the hand is uniformly colored and mostly texture-less, edges can
be used to provide information regarding self-occluding poses: edges can be observed
when a finger occludes another part of the hand such as the palm, providing useful
information regarding the hand pose that is not contained in other visual cues such
as the skin color map of the image. We use this visual cue in all the methods
that work without depth information (works [48,49,54]), as an alternative means to
acquire detailed information regarding the scene structure.
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For the hand tracking pipeline, RGB input images are processed using the Canny
edge detector [55]. The parameters of the method, namely the Gaussian blur vari-
ance and the threshold values for the Hysteresis thresholding process are experi-
mentally determined. Indicative parameter values for the low and high threshold of
Hysteresis thresholding are 0.25 and 0.35 respectively, yielding edge maps than only
retain strong edges, thus filtering out background clutter. Gaussian blur should be
tailored to each camera individually, based on the light conditions and the observed
sensor noise. We experimented with high quality cameras (see Chapter 4) that did
not require any blur to yield satisfactory results. The result is a binary map in
pixelwise correspondence to the input image. By convention, the set values of the
map signify edge pixels. For the computation of the objective function, the edge
map of the input image must be compared to the hypothesized hand pose.

We are in a position to synthesize a comparable edge map for a candidate hy-
pothesis by means of graphics rendering. The observed and the synthesized map are
in pixel-wise correspondence since we are using the available calibration information,
as described in Section 3.3.1. Given this correspondence, these two maps will be
identical for the appropriate hand pose, except for inaccuracies in the modeling of
the hand appearance.

The goal now is to quantify the discrepancy between these two maps, formulating
a comparison function. This function will serve as a term in the objective function
of an optimization process. As outlined in the introduction of this Chapter 3, the
discrepancy between these two maps must be quantified in a way that aids the
optimization process. With this goal in mind, the ideal behavior of this comparison
would be to attain its global optimum when these maps coincide, and gradually
fade away with increasing map differences. The sum of differences of these two
maps does not meet this constraint since it exhibits a very abrupt spike close to
the sought-after solution, and is practically flat everywhere else. Any optimization
strategy would essentially be reduced to random sampling of the search space, and
the desired solution would be found only by chance.

A scoring function that exhibits this desired behavior is the average of minimum
distances between edge pixels of the maps. More specifically, for each edge pixel of
the hypothesized edge map, the closest edge point of the observed map is located,
and their distance is computed. The mean value of these distances is a function
that exhibits behavior suitable for optimization. Since we can invest time for the
preprocessing of the input image, as described in the introduction of this chapter,
we apply the Distance Transform [56] to the observed edge map. By adopting
this strategy, the potentially costly computation of minimum distances is reduced
to simple lookups. During hypothesis evaluation, it suffices to mask the Distance
Transform of the observed edges using the hypothesized edge map. The resulting
distances are then summed and divided by the total number of hypothesized edge
pixels, yielding the mean distance of hypothesized edge pixels to the closest observed
ones. This last normalization is necessary because otherwise hypotheses that render
few edge pixels will be favored, hindering the search process.

3.3.4 Skin Color

Skin color is another visual cue that encodes useful information for hand tracking.
Since we are interested in markerless hand tracking, we assume that the observed
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hand is skin colored, and therefore we can exploit this information, which can,
in cases, be complementary to image edges. For example, such a case can arise
when background edges appear close to the observed hand. In such a situation, the
additional information from the skin color segmentation can aid the disambiguation
of hand edges and unrelated ones. We put this visual cue to use in all the presented
methods of Chapter 3.

To detect skin colored regions in the input images, we resort to color segmenta-
tion in the YUV color space. Specifically, we employ the skin color detection module
of the methodology for skin colored blob tracking described in [57]. The parameters
of this method are experimentally determined. The result of this process is a binary
map, again in pixelwise correspondence to the input image, and with the convention
that set values signify detected skin color.

For the comparison of the input skin color map to a hypothesized one, the pix-
elwise correspondence of these maps is again exploited. In contrast to the case of
edges (see Section 3.3.3), the behavior of the average difference between maps is suit-
able as an objective function. This is because the foreground pixels are comparable
in number to the background ones, making the averaged difference an appropriate
function for the purpose of optimization. Since we are interested only in the number
of pixels that differ between hypothesis and observation, the absolute difference is
employed in practice. An efficient way to compute the absolute difference between
binary values is to compute their exclusive OR (XOR).

This approach was adopted in [48], whereas from the next work [46], an adapted
version of F-measure was employed [58]. F-measure is a function that combines
the precision and recall of a classification test in a single quantity. The intuition
behind it is that both precision and recall are important when assessing a test. The
harmonic mean of these two quantities combines them in a single, balanced value:

F = 2
pr

p+ r
(3.10)

where p and r respectively denote the precision and recall of the assessed test. For
more details regarding the F-measure, the reader is referred to [58].

Inspired from this intuitive balancing between precision and recall, we adapted
the F-measure for our case. Based on the F-measure, we formulated a function
that combines the number of foreground and background pixels so that they equally
contribute to the final score.

3.3.5 Depth Map

When available, the cue of depth map of the scene provides very useful information
for the task at hand. This visual cue has been widely used in the relevant literature
for articulated pose estimation and tracking, see for example [47] for human body
pose and [42] for hand pose. Kinect [12], introduced in the end of 2010, marked a
combination of inexpensiveness, ease of use and quality of the estimated depth map
that was not available before. In [46, 59] we employ a Kinect sensor as the single
source of observation, exploiting both available input modalities, namely the RGB
stream and the synchronized depth maps. The RGB stream is processed to extract
skin colored areas (Section 3.3.4) while the depth map is minimally preprocessed.

The depth maps produced by Kinect contain noise, that can be reduced with
appropriate operations. Specifically, in [46] and [59] the input provided from Kinect
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Figure 3.3: Illustration of the definition of the visual hull.

is filtered with a median filter of window size 3 by 3. This operation reduces shot
noise as well as Gaussian noise, both present in the input from Kinect. This filtered
result is then masked with the estimated skin colored areas, yielding the depth map
we use as observation.

Having a concrete model of the geometry of the observed scene, it is possible to
synthesize the depth map corresponding to a candidate solution. This depth map
is in pixel-wise correspondence, making the mean depth difference an appropriate
quantification of the divergence between hypothesis and observation. Furthermore,
this behaves well for the purpose of optimization, since it forms a smooth peak
around the solution. In practice, the depth difference between each hypothesized
and observed pixel is clamped, because after a certain threshold the magnitude of
the difference provides no further information but instead hinders the search process.
After experimentation the specific threshold was set to 4cm for all the experiments
presented in Chapter 4.

3.3.6 Visual Hull

The visual cues described in the previous Sections are all arranged in 2D maps,
in one-to-one correspondence with the input image(s). Even the depth map which
provides 3D information regarding the observed scene is still mapped in a 2D grid,
capturing essentially partial information regarding the scene. Therefore, all visual
cues presented so far are significantly affected by the viewpoint. Aiming to alleviate
this dependence to the selected viewpoint, in [54] we also experimented with the cue
of visual hull [60].

A practical issue that must be addressed with all the previous visual cues for
the case of multi-view input is the balancing between the matching scores for the
same visual score across all different views. Specifically, a comparison between
a hypothesized and an observed visual cue map yields one similarity/discrepancy
score for each view, and these scores must be somehow combined to yield an overall
score. This issue is effortlessly addressed with the visual hull: the cue itself combines
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the visual input across all available views, and therefore the consequent comparison
yields a single matching score, regardless of the number of available views of the
scene.

In practice we approximate the foreground mask for each view using the skin
color map. This is a valid approximation assuming that the observed hand is not
covered or occluded by any other objects such as a glove or a manipulated object.
Having a foreground mask for each available view, it is possible to compute the visual
hull, defined as the intersection of the generalized frusta, visualized in Figure 3.3.
This can be efficiently computed on a regular lattice using GPU acceleration [61].

The visual hull as computed using this method is represented as an occupancy
map. The physical 3D space of the scene is partitioned in a regular lattice. Each ver-
tex of the lattice, called a voxel, is assigned a binary value, representing occupancy.
Qualitatively this representation is similar to the skin color map, since both are
binary representations of occupied areas. Therefore, for the purposes of comparison
and optimization the same principles apply. Specifically, the F-measure between a
hypothesized and an observed occupancy volume is a good choice as a term of an
objective function.

3.4 Modeling Non-Visual Information about the

Scene

Knowledge regarding the observed scene can provide useful constraints, aiding the
optimization process. The kinematics of the human hand offer such a set of con-
straints: the knowledge of the joint ranges can be directly provided as hard limits
of the search space when using joint angles to encode hand poses, as in our adopted
representation. Further information regarding the way human hands move can also
be utilized. Kyriazis in his PhD thesis [15] presents a framework having as goal
scene understanding. In that approach, knowledge regarding the observed scene is
exploited in a unified, systematic matter. The key insight is that, in a physical
world, the laws of physics must hold, imposing constraints on the observed entities.

For the present thesis, within the adopted model-based framework there are
two main ways to impose constraints based on knowledge regarding human hand
motion. The first is to generate hand poses that satisfy such constraints, and the
second is to freely generate hand poses and afterwards test whether they meet the
required constraints. For the first approach, a generative model of natural human
hand motion is required. The search is performed on the parameter space of this
model, and the resulting hand pose is guaranteed to satisfy the constraints, given
that the generative model enforces them strictly. For the second approach, if the
human hand motion knowledge is modeled simply as a set of constraints, penalty
terms associated with these constraints can be added to the objective function. If
a pose violates one or more constraints then a high penalty drives the search away
from this area.

In this work we opt for this last approach because of its extensibility: constraints
can be added or removed from the objective function independently of each other.
This approach proves useful in the case of hand-object interaction since their inter-
action is harder to model. For hand-object interaction scenarios, all that is required
with the adopted approach is to check for and appropriately penalize hand-object
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collisions in candidate poses. When adding penalty terms to the objective function,
care must be taken to avoid creating abrupt or discontinuous behavior: the penalty
term should exhibit gradual transition from the permissible areas to the penalized
ones.

3.5 Optimization

As introduced in Section 2.2, the objective functions that occur in the various ex-
plored scenarios are multimodal, difficult to differentiate and exhibit discontinuities.
For these reasons we choose techniques that are tolerant to such issues, called black-
box optimization algorithms.

In most scenarios we employ variants of the PSO algorithm to optimize the oc-
curring objective functions. PSO is shown to efficiently tackle the high-dimensional,
non-differentiable, multimodal objective functions that occur for the various scenar-
ios. Another useful property of PSO that is exploited is the fact that the initial
population does not have any requirements. This allows us to provide as an ini-
tial population, candidate poses close to the previous solution, thus exploiting the
temporal continuity assumption.

Apart from PSO, a novel evolutionary optimization technique is also presented
in this thesis, proposed in [62]. It is specifically tailored for the local search problem
that occurs for consecutive frames when tracking a hand, assuming that the observed
motion is not very abrupt. The power of evolutionary techniques is combined with
Quasi-random sampling to efficiently search for the best matching hand pose.

Furthermore, as most evolutionary optimization techniques, both employed al-
gorithms are amenable to parallelization: the computation of the objective function
for all the individuals of the population can be performed in parallel. This paral-
lelization is exploited using the GPU architecture, thus significantly speeding up the
optimization process.

3.5.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization technique that was intro-
duced by Kennedy et al [63]. It is an evolutionary algorithm since it incorporates
concepts such as populations, generations and rules of evolution for the atoms of
the population (particles). A population is essentially a set of points in the pa-
rameter space of the objective function to be optimized. The particles evolve in
batches which are called generations according to a policy which emulates “social
interaction”.

Canonical PSO, the simplest of PSO variants, was preferred among other opti-
mization techniques due to its simplicity and efficiency. More specifically, it depends
on very few parameters, does not require extra information on the objective function
(e.g., its derivatives) and requires a relatively low number of evaluations of the ob-
jective function [64]. Following the notation introduced in [65], every particle holds
its current position, a candidate solution, in a vector xt and its current velocity in
a vector vt. Moreover, each particle i stores in vector pi the position at which it
achieved, up to the current generation t, the best value of the objective function.
Finally, the swarm as a whole, stores in vector pg the best position encountered
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across all particles of the swarm. pg is broadcasted to the entire swarm, so that ev-
ery particle is aware of the global optimum. The update equations that are applied
in every generation t to reestimate each particle’s velocity and position are

vt = K(vt−1 + c1r1(pi − xt−1) + c2r2(pg − xt−1)) (3.11)

and
xt = xt−1 + vt, (3.12)

whereK is a constant constriction factor [66]. In Eqs. (3.11), c1 is called the cognitive
component, c2 is termed the social component and r1, r2 are random samples of a
uniform distribution in the range [0..1]. Finally, c1 + c2 > 4 must hold [66]. For all
the experiments involving PSO, the values c1 = 2.8, c2 = 1.3 and K = 2∣∣∣2−ψ−√ψ2−4ψ

∣∣∣
with ψ = c1 + c2 were used.

Typically, the particles are initialized at random positions and their velocities
are initialized to zero. Each dimension of the multidimensional parameter space is
bounded in some range. If, during the position update, a velocity component forces
the particle to move to a point outside the bounded search space, this component
is set to the appropriate limit for this dimension. For the canonical PSO variant,
this is the only constraint imposed on the particle positions and implicitly on their
velocities.

Apart from this canonical variant, in some scenarios we choose another variant
that better explores the parameter space. Specifically, for the scenarios using input
from RGB-D sensors, the canonical variant successfully estimates the 6D global
pose of the hand. However, the estimation of the 20 remaining parameters that are
related to finger angles is not equally satisfactory. To overcome this problem and
increase accuracy, we employ a PSO variant that performs randomization on the 20
dimensions corresponding to finger joint angles, similar to that suggested in [67].

Regarding the computational complexity of the algorithm, the update rules in
Equations 3.11 and 3.12 are essentially simple linear operations. Therefore, usually
the computational bottleneck in a PSO run is the computation of the objective
function. The number of computations of the objective function is determined by
the product of the number of particles multiplied by the number of generations.
Unless a termination condition is met, terminating early the search, this is exactly
the number of total objective function evaluations.

The accuracy of the estimated hand pose is usually dependent on this num-
ber of objective function computations, since the search continuously improves the
estimated result. For this reason, in the experimental evaluation of the explored
methods we vary these two parameters, namely the particle and generation count,
assessing the resulting accuracy for each such configuration.

3.5.2 Evolutionary Optimization with Quasi-random Sam-
pling

Sobol [68] introduced a low-discrepancy sequence of n samples xi in the S-dimensional
hypercube [0..1]S with the aim to approximate the integral

∫

[0,1]S
f(x) dx (3.13)
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Figure 3.4: Left: 256 points on the 2D plane obtained from a pseudo-random number
generator. Right: the first 256 samples of the Sobol sequence. Samples 1 to 10, 11
to 100 and 101 to 256 are in red, blue and green colors, respectively. The Sobol
sequence covers the space more evenly. In our problem formulation, the Sobol
sequence is used to form quasi-random hypotheses of hand configurations in the
27D (single hand) and 54D (two hands) configuration spaces. Example inspired
from http://en.wikipedia.org/wiki/Sobol sequence.

of an arbitrary function f over [0, 1]S by the limit

lim
n→∞

n∑

i=1

f(xi) (3.14)

with the fastest possible convergence. Loosely speaking, for small sample sizes, in
the order of tens or hundreds of samples, the resulting coverage of the sampled
space is more even, leaving smaller gaps than that of a set of points sampled from a
uniform distribution. For a visual comparison in 2D see Figure 3.4. The comparison
favors quasi-random sampling as the number of space dimensions S is increased. For
a more detailed and formal presentation of low-discrepancy and Sobol sequences, the
reader is referred to [69].

As in most evolutionary optimization algorithms, in our approach there is the
notion of a population of candidate solutions or atoms. These atoms are essentially
points in the search space, corresponding to candidate solutions. This population
evolves in steps, called generations. A high-level outline of the proposed evolutionary
Quasi-random search algorithm is presented in Algorithm 1.

The algorithm maintains the full history H of all the search space positions that
have been explored so far, along with their corresponding fitness scores w, and runs
for a fixed number G of generations. In each generation g, 0 ≤ g ≤ G− 1, a center
position hC is defined. For the first generation, hC is set equal to the solution ht−1
sought for the previous frame. N atoms hit are then defined around hC based on
the Sobol sequence. This is done so as to take advantage of the way quasi-random
sampling can evenly sample high-dimensional spaces. Each parameter dimension
has different units and range, so a vector s of scales is used to adjust the original
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Algorithm 1 The proposed evolutionary Quasi-random search algorithm

Input: The solution ht−1 for the previous frame.
Output: The solution ht for the current frame.

H ← ∅; T ← ∅;
hC ← ht−1;
for g = 0 . . . G− 1 do

// Define atoms hit (1 ≤ i ≤ N) around hC (Eq.(3.15))
{hit} ← SobolSequence(hC , N, g);
// compute E for atoms and store fitness
H ← H ∪ {hit};
w(hit) = E(hit);
T ← TopScoringAtoms(H,NT );
hC ← WeightedSum(T ); (Eq.(3.16))

end for
ht ← TopScoringAtoms(H, 1)
return (ht);

range [0, 1] of the Sobol sequence to the appropriate one. More specifically,

hit = hC + s ◦ cg ◦ (2xr+i − 1). (3.15)

In Eq.(3.15), i iterates over the population count, “◦” denotes the Hadamard or
entry-wise product between vectors, xn is the n-th sample of the Sobol sequence of
appropriate dimensions, and r is a large random integer after which we draw samples
from the Sobol sequence. c is a vector of contraction coefficients, with entries in the
range (0..1]. Raising to g denotes entrywise power. The goal of this operation is to
reduce the size of the search space around hC as a function of the generation count.

All the identified atoms hit are inserted in the history H. The objective function
E is consequently evaluated for each of these atoms hit, resulting in corresponding
fitness scores w(hit) = E(hit). Next, from the whole history H, the set T containing
nT atoms with the highest fitness scores is computed. A new center in the search
space hC is located as a weighted sum of these nT atoms, as follows:

hC =
1∑

h∈T q(w(h))

∑

h∈T

q(w(h)) · h. (3.16)

We chose q(x) = exp(ax) because a can be appropriately chosen to scale the weights
so that there is a fixed ratio between the first and second best scoring atoms.

The above procedure is repeated for all G generations. After this computation
is completed, the most fit atom among the whole history H is reported as the result
ht of the optimization process.

From a computational complexity point of view, the most expensive part of the
algorithm is the evaluation of the objective function for a given atom, as in the
case of PSO. N such evaluations are performed in each generation, thus the product
N · G determines the computational budget of the method. It should be noted
that within each generation, the computations for each atom are independent of the
computations for the other atoms. This inherent computational parallelism can be
exploited to achieve very efficient implementations in GPU architectures.
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Regarding stability, if each value in the vector of factors c is chosen to be lower
than 1 then obviously the algorithm converges at some point in the search space.

3.6 Sequence of Optimizations

The explored scenarios involve tracking the poses of one or more entities. Under
the temporal continuity assumption, poses for consecutive frames are close in the
parameter space. In order to explore this assumption, we exploit the fact that the
employed evolutionary algorithms can use an initial population as the starting point
of the search. This initial population effectively determines the search area, since
the motion of the particles in the search space is based on their previous positions.
Exploiting this property, we use perturbations of the solution for the previous frame
to initialize the search for the current one. The perturbations occur by adding
Gaussian noise of appropriate variance to the previous solution. For the first frame
we assume that an initialization pose is available.

3.7 Performance Evaluation

An issue pertinent to all the presented methods is that of performance evaluation.
Apart from empirical assessment, e.g. using visualization tools, it is mandatory
to have a consistent, systematic way to quantify the performance of a proposed
methodology.

Towards this end, the first issue that is raised is the availability of ground truth.
This is not trivial for the involved scenarios since automating the task essentially
requires to solve the problem, while manual annotation is a tedious, time consuming
and error-prone process. In all the presented methods we solve this problem using
synthetic data. Specifically, after capturing a real-world sequence, we track the
relevant entities in an offline process using very high computational budgets. This
results in a sequence of poses that closely resembles the captured ones. The captured
data are discarded, and this sequence becomes the reference that will later serve as
the ground truth. Next, a graphics rendering process is utilized to synthesize image
sequences that would be observed given this reference sequence of poses. During this
step it is possible to directly synthesize the required image features. Furthermore,
it is possible to assess the effect on noisy observations by adding artificial noise to
the synthetic images.

Given that a sequence of images is available along with corresponding ground
truth data, a systematic way to measure the accuracy of a method remains to
be defined. A straightforward approach would be to directly compare the ground
truth sequence with the recovered one, for example by computing the norm of the
difference for each time instant. However this approach suffers from the problem
of (depending on the adopted parameterization) evaluating within the same vector
values that encode position along with ones that encode joint angles. This results
in one type of values to dominate the results compared to the others. Even when
only comparing angle values, for example by computing the norm of the joint angle
difference, the results are not representative: joint angles that are closer to the root
of the kinematic chain have a greater effect in the final position than ones further
away. Furthermore, the final value of the norm of differences in pose space is difficult
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to intuitively grasp, whereas it would be desirable for the quantitative evaluation of
a track to have an intuitive interpretation.

Towards this end, we adopt a common (see [42]) approach: certain key-points
are identified on the adopted hand model including the centers of all finger joints,
the center of the palm as well as all the fingertips. Given a specific hand pose
using the adopted parameterization, it is straightforward to compute the position
of these key-points in 3D space. The error metric used to assess the performance of
all the presented methods is based on this building block: given an estimated pose
and a ground truth one, the average distance between corresponding key-points is
computed. For a sequence of such poses we resort to averaging again, yielding an
overall average distance ∆ for the entire sequence.

A final issue the remains is the randomized nature of all the presented method-
ologies. Because of this fact, even for exactly the same input, the recovered track
varies between runs, essentially adding noise to the estimation of the method’s ac-
curacy. For this reason we perform each experiment multiple times using exactly
the same method configuration, and the average or median of the resulting values
∆i is computed, yielding the final error metric D: D = ∆i. The mean and the me-
dian have both their weaknesses: averaging is prone to outliers, whereas, since the
distances are positive, the median yields a result that intuitively underestimates the
actual discrepancy. Indicative numbers of experiment repetitions are in the range
of 10 to 20 times.
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Chapter 4

Hand Tracking Scenarios

This Chapter presents works that tackle real-world problems involving 3D hand
tracking. The explored scenarios include a single hand in isolation (Sections 4.1, 4.2, 4.5
and 4.6), a hand manipulating an object (Section 4.3), as well as two hands in strong
interaction (Section 4.4). The principles and techniques presented in Chapter 3 are
combined and applied, yielding systems that efficiently and robustly solve real-world
tracking problems, achieving real-time or interactive frame rates. The implemen-
tation of the presented systems is within the computational framework proposed
in [15].

More specifically, this chapter describes six different works [46,48,49,54,59,62],
each of them proposing a method to tackle a specific hand tracking scenario. For
each such scenario, appropriate visual cues are identified, an objective function is
formulated, and an appropriate optimization algorithm is proposed to solve the prob-
lem. All the methods are experimentally assessed in both real-world and synthetic
input.

Firstly, in the work presented in Section 4.1 (see [48]), a multi-camera system
is used to acquire images of a hand moving freely in isolation, i.e. not interacting
with any objects. An appropriate objective function is formulated using the visual
cues of skin color and edges, and Particle Swarm Optimization (PSO) is employed
to optimize it.

In the work presented in Section 4.2 (see [46]), the input is acquired using a
single RGBD sensor, specifically a Kinect [12]. The scenario again involves a single
hand moving freely in isolation. The method uses skin color and depth to segment
the area of interest. This input is provided to an appropriately formulated objective
function, which is optimized with a variant of PSO.

In the work presented in Section 4.3 (see [49]), a multi-camera system is again
employed, observing a hand that manipulates an object of known geometric shape,
but with unknown dimensions. The method uses the visual cues of skin color and
edges, and employs canonical PSO to solve the resulting optimization problem.

A demanding scenario is handled in the work presented in Section 4.4 (see [59]),
where a Kinect is used to acquire observations of two hands in strong interaction.
The objective function uses information from the visual cues of skin color and depth,
and a variant of PSO is used to optimize it.

The method that is presented in Section 4.5 (see [54]) explores the visual hull
as a way to balance the input information across different views. This approach is
compared to the similar one in [48] on multi-camera as well as stereo input.

47
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Table 4.1: Overview of the various hand tracking scenarios handled by works pre-
sented in this thesis.

Input type Multi-camera RGB-D
Hand in isolation Sections 4.1 and 4.5 Sections 4.2 and 4.6

Hand-object interaction Section 4.3
Hand-hand interaction Sections 4.4 and 4.6
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Figure 4.1: Performance of the presented method for different values of selected
parameters. For plots of the top row, the vertical axis represents the mean score
E. For plots of the bottom row, the vertical axis represents mean error in mm (see
text for additional details). (a),(b): Varying values of PSO parameters particles and
generations for 2 views. (c),(d): Same as (a),(b) but for 8 views. (e),(f): Increasing
number of views. (g),(h): Increasing amounts of segmentation noise.

Finally, in the work presented in Section 4.6 (see [62]), the evolutionary opti-
mization technique presented in 3.5.2 is tested in the single hand and two hands in
strong interaction scenarios. Meta-optimization is used to fine-tune the free param-
eters of the algorithm, and the performance is compared to that of the PSO variant
in the respective works above.

Table 4.1 summarizes the different scenarios and input types used throughout
the different works. The rows group the different scenarios and the columns separate
the works by input type.

4.1 Hand Tracking using Multi-view Input

Our first work [48] on hand tracking uses input from a multi-camera system and
proposes a method to solve the problem in the case of a hand in isolation. The
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Table 4.2: Computational performance measurements. Number of multiframes per
second processed for a number of PSO generations and camera views. The cases of
16 and 128 particles per generation are presented.

Generations 2 views 4 views 8 views
10 7.69/2.48 4.22/1.26 2.14/0.63
15 7.09/1.91 3.65/0.97 1.85/0.49
20 6.23/1.55 3.19/0.79 1.62/0.39
25 5.53/1.31 2.85/0.67 1.44/0.33
30 5.00/1.13 2.59/0.57 1.30/0.29
35 4.55/1.00 2.34/0.50 1.18/0.25
40 4.18/0.89 2.15/0.45 1.09/0.23

utilized visual cues are skin color (Section 3.3.4) and edges (Section 3.3.3). The
formulated objective function combines this visual information with a finger collision
term. Canonical PSO is utilized to solve the resulting optimization problem. The
resulting method is tested in real-world and synthetic image sequences for varying
computational budgets of PSO, varying levels of image noise as well as different
numbers of available views.

4.1.1 Method Outline

The input to the method is a sequence of simultaneously acquired images, captured
with a fully calibrated multi-camera system. A multiframe M is defined to be a set
of simultaneously captured images. As already introduced, the utilized visual cues
are skin color and edges. The formulated objective function E(h,M) measures the
discrepancies between skin and edge maps, computed in a multiframe and the skin
and edge maps that are rendered for a given hand pose hypothesis h:

E(h,M) =
∑

I∈M

D(I, h,C(I)) + λk · kc(h). (4.1)

In Equation 4.1, h is the hand pose hypothesis using the adopted parameterization,
M is the corresponding observation multiframe, I is an image in M , C(I) is the set
of camera calibration parameters corresponding to image I and λk is a normalization
factor. The function D of Equation 4.1 is defined as

D(I, h, c) =

∑
os(I)⊗ rs(h, c)∑

os(I) +
∑
rs(h, c) + ε

+ λ

∑
od(I) · re(h, c)∑
re(h, c) + ε

, (4.2)

where os(I), od(I), rs(h, c), re(h, c) respectively denote the observed skin color map,
the distance transform of the observed edges, and the rendered skin color and edge
maps generated by h. A small term 2hε is added to the denominators of Equation 4.2
to avoid divisions by zero. The symbol ⊗ denotes the logical XOR (exclusive dis-
junction) operator. Finally, λ is a constant normalization factor. The sums are
computed over entire feature maps.

The two terms of Equation 4.2 quantify the discrepancy between the observed
and hypothesized skin color maps and edge maps. For the first term, the XOR
operation in the numerator serves to count the pixels with differing values between
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Figure 4.2: Sample frames from real-world experiments. Left: four views of a multi-
frame of a cylindrical grasp. Right: Zoom on hands in several multiframes. Quadru-
ples of thumbnails are from the same multiframe; columns correspond to the same
camera view.

observation and hypothesis (respectively os and rs). This count is divided by the
sum of set pixels in either the hypothesis or the observation, in order to balance
the overall scores among observed skin maps with varying pixel counts across the
available views I in the multiframe M . The numerator of the second term sums the
point-wise multiplication between the distance transform of the observed edge map
and the hypothesized edge map (respectively od and re). Since the convention for
the edge maps is that a value of 0 indicates no edge whereas a value of 1 signifies the
presence of an edge, the numerator is essentially the sum of the distance of each edge
pixel in re to the closest observed edge pixel, as captured by the distance transform
od.

The function kc adds a penalty to kinematically implausible hand configurations.
Only adjacent finger inter-penetration is penalized. Therefore, kc is defined as

kc(h) =
∑

p∈Q

{
−φ(p) φ(p) < 0

0 φ(p) ≥ 0
, (4.3)

where Q denotes the three pairs of adjacent fingers, excluding the thumb, and φ
denotes the difference between the abduction-adduction angles of those fingers. In
all experiments the values of λ and λk were both set to 10.

As described in Chapter 3, the observed edge maps are further processed, and
the resulting distance transform is the map that is actually involved in the objective
function computations (second term of Equation 4.2). This strategy allows the
computation of an objective function with a suitable behavior with only the overhead
of computing the distance transform for each input edge map. On the other hand,
the observed skin color is directly participating in the computations: the binary XOR
operation is computed between the observed and hypothesized skin color maps (first
term of Equation 4.2).

4.1.2 Experimental Evaluation

The quantitative and qualitative experimental validation of the presented method
is performed based on both synthetic and real-world sequences of multiframes. A
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system of eight synchronized, fully calibrated RGB cameras was used to acquire
real-world data.

The quantitative evaluation of the presented method is based on synthetic se-
quences of multiframes. The hand model presented in Section 3.2 is animated so
as to perform motions as simple as waving and as complex as object grasping. A
synthetic sequence of 360 poses of the moving hand occurs from this process. Each
pose is observed by eight virtual cameras surrounding the hand.

The quantitative evaluation assesses the influence of several factors such as PSO
parameters, number of available views (i.e., multiframe size) and segmentation noise,
over the performance of the presented method. Figure 4.1 illustrates the obtained
results.

For each multiframe of the sequence, the best scoring hand pose hbest using the
specified parameter values was estimated. Figures 4.1(a), (c), (e) and (g) provide
plots of the score E(hbest,M) (averaged for all multiframes M) as a function of var-
ious experimental conditions. Similarly, Figures 4.1(b), (d), (f) and (h) illustrate
the actual error in 3D hand pose recovery in millimeters, in the experimental con-
ditions of Figures 4.1(a), (c), (e) and (g), respectively. This error was computed in
accordance to the outline in Section 3.7 as follows. The five fingertips as well as the
center of the palm are selected as reference points. For each such reference point,
the Euclidean distance between its estimated position and its ground truth position
is first calculated. These distances are averaged across all multiframes, resulting in
a single error value D for the whole sequence.

Figures 4.1(a) and (b) show the behavior of the presented method as a function
of the number of PSO generations and particles per generation. In this experiment,
each multiframe consisted of 2 views with no noise contamination. It can be verified
that varying the number of particles per generation does not affect considerably
the error in 3D hand pose recovery. Thus, the number of generations appears to
be more important than the number of particles per generation. Additionally, it
can be verified that the accuracy gain for PSO parameterizations with more than
16 particles and more than 25 generations was insignificant. Figures 4.1(c), (d)
are analogous to those of Figures 4.1(a),(b), except the fact that each multiframe
consisted of 8 rather than 2 views. The error variance is even smaller in this case
as a consequence of the increased number of views which imposes more constraints.
The accuracy gain for PSO parameterizations with more than 16 particles and more
than 25 generations is even less significant.

In order to assess the behavior of the method with respect to the number of
available views of the scene, experiments with varying number of views were con-
ducted. Figures 4.1(e) and (f) show the behavior of the presented method as a
function of the cardinality of the input multiframes. For the experiments with less
than 8 views, the views were empirically selected from the available ones so as to
be as complementary as possible. More specifically, views with large baselines and
viewing directions close to vertical were preferred. In these experiments, 128 PSO
particles and 35 generations were used, and no segmentation noise was introduced
in the rendered skin and edge maps. The obtained results (Figures 4.1(e) and (f))
show that the performance improvement from one view to two views is significant.
Adding more views improves the results noticeably but not significantly.

In order to assess the tolerance of the method to different levels of segmentation
errors, all the rendered silhouette and edge maps were artificially corrupted with
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different levels of noise. The used type of noise is similar to [35]. More specifi-
cally, positions are randomly selected within a map and the labels of all pixels in
a circular neighborhood of a random radius are flipped. The aggregate measure of
noise contamination is the percentage of pixels with swapped labels. In the plots
of Figures 4.1(g) and (h), the horizontal axis represents the percentage of noise-
contaminated pixels in each skin map. Edge maps were contaminated with one
third of this percentage. Noise was independently added to each artificial map rs
and re. In this experiment, 128 PSO particles and 35 PSO generations were used,
and multiframes of eight views were considered.The plots indicate that the method
exhibited robustness to moderate amounts of noise and failed for large amounts of
noise. The exhibited robustness can be attributed to the large number of employed
views. Since the noise of each view was assumed to be independent from all other
views, the emerged consensus (over skin detection and edge detection) managed to
cancel out low-variance noise.

Figure 4.1 also demonstrates that the design choices regarding the objective func-
tion E in Equation 4.1 are correct. This can be verified by the observed monotonic
relation between E and the actual 3D hand pose estimation error.

Finally, Table 4.2 provides information on the runtime of these experiments,
running on the computer described in the next paragraph. The table shows the
number of multiframes per second for various parameterizations of the PSO (num-
ber of generations and number of particles per generation) and various number of
views. The entry in boldface corresponds to 20 generations, 16 particles per gen-
eration and 2 views. According to the quantitative results presented earlier, this
setup corresponds to the best trade-off between accuracy of results, computational
performance and system complexity. This figure shows that the presented method
is capable of accurately and efficiently recovering the 3D pose of a hand observed
from a stereo camera configuration at 6.2Hz. If 8 cameras are employed, the method
delivers poses at a rate of 1.6Hz.

Real-world image sequences were acquired using a multicamera system which
is installed around a 2 × 1m2 bench and consists of 8 Flea2 PointGrey cameras.
Cameras are synchronized by a timestamp-based software that utilizes a dedicated
FireWire 2 interface (800MBits/sec) which guarantees a maximum of 125µsec
temporal discrepancy in images with the same timestamp. Each camera has a
maximum framerate of 30 fps at highest available image resolution which is 1280×
960 pixels. The workstation where images are gathered has a quad-core Intel i7 920
CPU, 6 GBs RAM and an Nvidia GTX 295 dual GPU with 894GFlops processing
power and 896 MBs memory per GPU core.

Using this experimental setup, several sequences of multiframes have been ac-
quired, capturing various types of hand activities such as isolated motions, hand-
environment interactions including object grasping. Figure 4.2 provides indicative
snapshots of 3D hand pose estimation superimposed on the original image data. As
it can be observed, the hand model estimated by the presented method is in agree-
ment with the image data, despite the complex hand articulation and the relatively
distant hand views.
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4.2 Single Hand Tracking Using a Depth Sensor

The method presented in [46] treats the same scenario as above, i.e. a hand freely ar-
ticulating without interacting with the environment. The input modality is however
changed, the multi-camera system is replaced by a single RGB-D sensor. Within the
model-based approach, we formulate the task as an optimization problem, seeking
for the hand model parameters that minimize the discrepancy between the appear-
ance and 3D structure of hypothesized instances of the adopted hand model (see
Section 3.2) and actual observations. The selected visual cues are skin color and the
depth map (see Sections 3.3.4 and 3.3.5 respectively). The resulting optimization
problem is solved using the Particle Swarm Optimization (PSO) variant described
in Section 3.5.1. Extensive experiments demonstrate that accurate and robust 3D
tracking of hand articulations can be achieved in near real-time (15Hz at the time
of publication of [46], currently more than 20Hz due to better exploitation of the
existing parallelism and the advancement of hardware).

4.2.1 Method Outline

The raw input from the Kinect sensor is preprocessed to extract the visual cues
of skin color and depth in the area of interest. Firstly, a median filter of size 3 is
applied to the raw input depth map. The raw skin color map as well as the filtered
depth map are both masked using the average depth of the solution for the previous
frame. This is achieved by keeping a pixel if it is simultaneously skin colored and has
a depth that is within 25cm of the previous solution. This test essentially enforces
the implicit assumption that the tracked hand does not move more than 25cm per
frame with respect to depth. The masked skin colored and depth maps are cropped
and scaled to 64 × 64 pixels. The resulting, cropped skin colored and depth maps,
os and od respectively are used in the next steps.

Given a hand pose hypothesis h and camera calibration information C, a syn-
thetic depth map rd(h,C) is generated by means of rendering. By comparing this
map with the respective observed depth map od, a “matched depths” binary map
rm(h,C) is produced. More specifically, a pixel of rm is set to 1 if the respective
depths in od and rd differ less than a predetermined value dm or if the observation
is missing (signified by 0 in od), and 0 otherwise. This map is compared to the
observed skin color map os, so that skin colored pixels that have incompatible depth
observations do not positively contribute to the total score.

The objective function is a quantification of the distance between a hand pose
hypothesis h and the observation maps O. Specifically, the function E(h,O) mea-
sures the discrepancy between the observed skin and depth maps O computed for a
given frame and the skin and depth maps that are rendered for a given hand pose
hypothesis h:

E(h,O) = D(O, h,C) + λk · kc(h). (4.4)

In Equation 4.4, λk is a normalization factor that has been determined experimen-
tally to balance the contributions of the two terms. The function D in Equation 4.4
is defined as

D(O, h, C) =

∑
min(|od − rd|, dM)∑

(os ∨ rm) + ε
+ λ

(
1− 2

∑
(os ∧ rm)∑

(os ∧ rm) +
∑

(os ∨ rm)

)
. (4.5)
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The first term of Equation 4.5 models the absolute value of the clamped depth dif-
ferences between the observation O and the hypothesis h. Clamping to a maximum
depth dM is necessary, because otherwise a few large depth discrepancies dispropor-
tionally penalize an otherwise reasonable fit. This fact, in turn, creates large varia-
tions of the objective function’s value near the optimum, hindering the performance
of the adopted optimization strategy. A small value ε is added to the denominator
of this term to avoid division by zero. The second term of Equation 4.5 models the
discrepancies between the skin-colored pixels of the model and the observation. λ is
a constant normalization factor that has been experimentally determined so that the
contribution of both term is balanced. The sums are computed over entire feature
maps.

The term kc in Equation 4.4 adds a penalty to kinematically implausible hand
configurations, similarly to Equation 4.3. The elaborate collision scheme described
in Section 4.3.1 was also considered here for kc, taking into account all possible pairs
of relatively moving hand parts. Experimental results however demonstrated that
for the majority of encountered situations, it suffices to penalize only adjacent finger
inter-penetration. Thus we define kc as:

kc(h) =
∑

p∈Q

−min(φ(p, h), 0), (4.6)

where Q denotes the three pairs of adjacent fingers, excluding the thumb, and φ
denotes the difference (in radians) between the abduction-adduction angles of those
fingers in hypothesis h. In all experiments, λ was set to 20 and of λk to 10. The
depth thresholds were set to dm = 1cm and dM = 4cm.

4.2.2 Experimental evaluation

The experimental evaluation of the presented method was based on synthetic data
with ground truth information and on real-world sequences obtained by a Kinect
sensor. The presented method ran on a computer equipped with a quad-core Intel i7
950 CPU, 6 GBs RAM and an Nvidia GTX 580 GPU with 1581GFlops processing
power and 1.5 GBs memory. On that system, the average frame rate was 15Hz.
As described in [15] there was still room for performance improvements, with the
current implementation of the presented method running on a modern PC with rates
exceeding 20Hz.

The synthetic sequence that is used for evaluation consists of the same 360 con-
secutive hand poses used also for [48], described in Section 4.1. Several experiments
were carried out to assess the influence of specific factors to the performance of the
method. Specifically, the considered factors are: PSO parameters, the placement of
the hand with respect to the virtual camera and observation noise.

Figure 4.3(a) illustrates the behavior of the method with respect to the PSO pa-
rameters (number of generations and particles per generation). The product of these
parameters determines the computational budget, as described in Section 3.5.1. The
horizontal axis of the plot denotes the number of PSO generations. Each plot of the
graph corresponds to a different number of particles per generation. Each point in
each plot is the median D of the error ∆ for 20 repetitions of an experiment run
with the specific parameters. A first observation is that D decreases monotonically
as the number of generations increase. Additionally, as the particles per generation
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Figure 4.3: Quantitative evaluation of the performance of the method with respect to
(a) the PSO parameters (b) the distance from the sensor (c) noise and (d) viewpoint
variation.

increase, the resulting error decreases. Nevertheless, employing more that 25 genera-
tions and more than 64 particles results in insignificant improvement of the method’s
accuracy. The gains, if any, are at most 0.5mm. For this reason, the configuration
of 64 particles for 25 generations was retained in all further experiments.

Another investigation considered the effect of varying the distance of the hand
from the hypothesized sensor. This explores the usefulness of the method in different
application scenarios that require observations of a certain scene at different scales
(e.g., close-up views of a hand versus distant views of a human and his/her broader
environment). To do this, we generated the same synthetic sequences at different
average depths. The results of this experiment are presented in Figure 4.3(b). At
a distance of half a meter the error is equal to 5mm. As the distance increases,
the error also increases; Interestingly though, it doesn’t exceed 7.5mm even at an
average distance of 2.5m.

The method was also evaluated with respect to its tolerance to noisy observa-
tions. Two types of noise were considered. Errors in depth estimation were modeled
as a Gaussian distribution centered around the actual depth value with the vari-
ance controlling the amount of noise. Skin-color segmentation errors were treated
similarly to [35], by randomly flipping the label (skin/non-skin) of a percentage of
pixels in the synthetic skin mask. Figure 4.3(c) plots the method’s error in hand
pose estimation for different levels of depth and skin segmentation error. As it can
be verified, the hand pose recovery error is bounded in the range [5mm..25mm],
even in data sets very heavily contaminated with noise.

Finally, we assessed the accuracy in hand pose estimation with respect to view-
point variations. This was achieved by placing the virtual camera at 8 positions
dispersed on the surface of a hemisphere placed around the hypothesized scene.
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Figure 4.4: Indicative results on real-world data.
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Figure 4.5: Performance of single-frame hand pose estimation.

These positions were the same as the camera positions in the experiments presented
in Section 4.1. The data points of Figure 4.3(d) demonstrate that viewpoint varia-
tions do not significantly affect the performance of the method.

Several long real-world image sequences were captured using a Kinect, recording
both RGB and depth data. The sequences exhibit hand waving, palm rotations,
complex finger articulation as well as grasp-like hand motions 1. Indicative snapshots
are shown in Figure 4.4. As it can be observed, the estimated hand model is in very
close agreement with the image data, despite the complex hand articulation and
significant self occlusions.

Finally, besides tracking, we tested the capability of the presented method to per-
form automatic hand model initialization, i.e., single-frame hand pose estimation.
Essentially, this boils down to the capability of PSO to optimize the defined objec-
tive function even when parameter ranges are very broad. To do so, the presented
algorithm ran many times, each initialized at different hand positions and orienta-
tions close to the observed hand (the largest skin color blob). In order to localize
the hand in 3D, the median depth of this blob was used to estimate the depth of the
observation (Z dimension), and the ray defined from the image centroid of this blob
was solved for the X and Y world coordinates. The best scoring hypothesis among
the multiple runs was kept as the recovered pose. To assess the method, a set of 45
frames was selected at regular intervals from a real-world sequence and each hand
pose recognition was performed 20 times. For the quantitative assessment of the

1Results available online at http://www.youtube.com/watch?v=Fxa43qcm1C4 .
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hand pose recognition accuracy, we used as a reference the hand model parameters
that were recovered from an experiment that tracked the hand articulation over the
whole sequence. Figure 4.5 shows the histogram of estimation error D for all the
performed (20 × 45) experiments. As it can be verified, in 74% of them, the esti-
mated pose deviated 4cm or less from the tracked pose. The secondary histogram
peak around 8cm corresponds to some ambiguous poses for which sometimes the
mirrored pose was estimated.

4.3 Tracking a Hand Manipulating an Object us-

ing Multi-view Input

Due to occlusions, the estimation of the full pose of a human hand interacting
with an object is much more challenging than pose recovery of a hand observed
in isolation. In [49] we extend the formulation of the hand pose estimation and
tracking as an optimization problem to include a manipulated object of known
shape class. The parameter space, and therefore also the solution, are the 26-DOF
hand pose together with the pose and model parameters of the manipulated object.
The parameterization jointly considers the hand and the manipulated object so
that a solution (a) best explains the incompleteness of observations resulting from
occlusions due to hand-object interaction and (b) is physically plausible in the sense
that the hand does not share the same physical space with the object. The presented
method was the first to efficiently solve the continuous, full-DOF, joint hand-object
tracking problem based solely on markerless multicamera input. Additionally, it
was the first to show how hand-object interaction can be exploited as a context that
facilitates hand pose estimation, instead of being considered as a complicating factor,
as for example in the case of [42]. The employed optimizer is the Canonical variant
of PSO (see Section 3.5.1). Extensive quantitative and qualitative experiments with
simulated and real world image sequences as well as a comparative evaluation with
a state-of-the-art method for pose estimation of isolated hands are presented.

4.3.1 Method Outline

We parameterize the human hand as described in Section 3.2, illustrated in Fig-
ure 4.6. A human hand pose is denoted as h. In this work, an elaborate collision
model is used (Equation 4.11). The considered primitives of the hand’s collision
model are spheres, illustrated in Figure 4.6.

For the representation of an object, in principle any parametric model can be
used. The representation of common handheld objects such as cuboids, ellipsoids
and cylinders requires 3, 3 and 2 intrinsic shape parameters, respectively. More
complex parametric shape models like superquadrics require as many as 6 param-
eters. Regardless of the intrinsic shape parameterization, 7 additional parameters
are required, 3 for 3D position and 4 for a quaternion-based representation of 3D
orientation. In this work, we provide experimental results with ellipsoids, cuboids
and cylinders, respectively with a total of 10, 10 and 9 parameters. An object pose
is denoted as o.

There is no inherent limitation that prevents the method from being able to
handle more complex object models, provided that this does not increase the di-
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(a) (b)

Figure 4.6: Graphical illustration of the employed 26-DOF 3D hand model, con-
sisting of 37 geometric primitives (a) and the 25 spheres constituting the hand’s
collision model (b).

mensionality of the problem prohibitively. Interestingly, a complex, known 3D ob-
ject represented as a mesh has less DOFs compared to the used parametric object
models (6 DOFs, 3D pose).

Given a joint parametric hand-object model, the goal is to estimate the param-
eters for the model, m = (h, o) which give rise to the hand-object configuration
that (a) is most compatible to the image features present in multiframe M and (b)
is physically plausible in the sense that two different rigid bodies cannot share the
same physical space (inter-penetration constraints). To achieve this, the objective
function E(m,M) is defined as:

E(m,M) =
∑

I∈M

D(I,m) + λkW (m). (4.7)

In Equation 4.7, the first term quantifies the discrepancies of a given hand-object
model m to the actual camera-based observations, while the second term quantifies
the penetration depth between the hand and the object, but also among hand parts
(fingers, palm, etc). λk is a weighting factor experimentally set to λk = 0.1 for
all the presented results. The sum in the first term runs over all available views I
in multiframe M : a partial score D(I,m) of the candidate hypothesis m to each
available image I in the multiframe M is computed. Consequently, they are all
summed to form the first term of E, which constitutes the overall contribution of
visual evidence in the objective function.

To compute D(I,m), we first render comparable image features from each hy-
pothesized hand-object model. More specifically, an edge map re(m) and a skin
color map rs(m) can be generated by means of rendering. The implicit assumption
made at this point is that an object does not contain skin-colored pixels. Thus, the
hand component h of m contributes to the skin color map rs(m) by setting visible
hand pixels to 1, while the object component o of m contributes to the skin color
map rs(m) by setting map pixels to 0. Experimental results have verified that the
presence of a moderate number of skin-colored pixels on the object’s surface does
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not affect the accuracy of the method. D(I,m) is then defined as:

D(I,m) = 1− 2
∑
os(I) ∧ rs(m)

(
∑
os(I) ∧ rs(m)) + (

∑
os(I) ∨ rs(m))

+λ

∑
od(I) · re(m)∑
re(m) + ε

, (4.8)

where os(I), od(I) are respectively the observed skin color and edge maps and ε is
a small quantity to prevent division by zero. The first row of Equation 4.8 models
the discrepancies between the skin-colored pixels of the model and the observations.
Sums are computed over entire feature maps. In contrast to Equation 4.2, this
part of the objective function is now normalized to the interval [0..1]. The second
row models the discrepancies between the rendered edge maps and the observed
edge maps. This is achieved by summing the values of the distance-transformed
observation edge map that concur with the edges of the rendered model. λ is a
constant normalization factor that was set to 0.02 in all experiments.

The role of function W (m) in Equation 4.7 is to penalize (a) hand configurations
where hand parts intersect each other (self-penetration) and (b) hand-object config-
urations where the hand h intersects the object o (interpenetration). Let P (pi, pj)
be the minimum magnitude 3D translation that is required so that the volume of
intersection of geometric primitives pi and pj becomes equal to 0. This is effectively
computed using the Open Dynamics Engine (ODE) [70]. Let also Sh be the primi-
tives of the hand’s collision model, as shown in Figure4.6(b). The self-penetration
Phh of a given hand configuration is defined as

Phh = max
i∈Sh,j∈Sh,i 6=j

{P (i, j)}. (4.9)

The interpenetration Pho is similarly defined as

Pho = max
i∈Sh

{P (i, o)}. (4.10)

Then, W (m) is defined as

W (m) = max{Phh, Pho}. (4.11)

With this approach, both self- and inter- penetrations are treated in a uniform
manner.

4.3.2 Experimental Evaluation

The presented method has been validated extensively based on both synthetic and
real-world sequences of multiframes. First, we demonstrate the accuracy and the
computational performance of the presented Hand-Object Pose Estimation method,
hereafter abbreviated as HOPE on a synthetically rendered dataset where hands
perform different grasps on a variety of objects, shaped as spheres, cylinders or boxes.
We also compare the performance of HOPE to that of the method in Section 4.1,
hereafter abbreviated as PEHI (Pose Estimation of Hands in Isolation). A final
experiment with synthetic data involves the application of HOPE to a data set
showing hands in isolation. The goal of this experiment is to show that HOPE can
also estimate the pose of hands in isolation effectively, as a special case. Besides
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Figure 4.7: Mean error D for hand pose estimation (in mm) for HOPE (left) and
PEHI (right) for different PSO parameters and number of views. (a),(b): Varying
PSO particles and generations for 2 views. (c),(d): Same as (a),(b) for 8 views.

the synthetic data, we also provide qualitative evidence on how HOPE and PEHI
perform on real sequences of multiframes. Although ground truth information is
not available, these indicative results confirm the superiority of HOPE over PEHI
which is in accordance with the experimental results over synthetic data.

Experiments with synthetically produced sequences of multiframes were per-
formed to assess the presented method based on ground truth data. Specifically,
we simulated different grasps of three different objects (an ellipsoid, a cylinder, and
a box) performed by the synthetic hand model. The interaction of the hand with
each of these three objects was observed by 8 virtual cameras surrounding the scene.
This resulted in three sequences consisting of 116 multiframes of 8 frames, each. The
required cue maps (edges, skin color) were synthesized through rendering. The error
metric quantifying the discrepancy between two hand poses, a ground-truth and an
estimated one (see Section 3.7) was computed as follows. The five fingertips as well
as the center of the palm were selected as reference points. For each such reference
point, the Euclidean distance between its estimated position and its ground truth
position is first calculated. These distances are averaged across all multiframes of
each sequence, and all sequences. This results in a single error value D for the whole
dataset.

Figures 4.7(a) and (c) illustrate the estimated error D of the HOPE method as a
function of the PSO parameters. In Figure 4.7(a), D is plotted as a function of the
number of PSO generations and particles per generation, for multiframes consisting
of 2 views. The cameras providing these two views are placed opposite to each other.
D takes values between 22mm and 55mm. It can be verified that for more than
30 generations and more than 32 particles/generation the error in 3D hand pose
recovery for HOPE does not vary considerably and it is in the order of 25mm.

Figure 4.7(b) is analogous to that of Figure 4.7(a) for the PEHI algorithm. In this
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Figure 4.8: Mean error D for hand pose estimation (in mm) of HOPE (green) and
PEHI (red) for different number of views. The computational budget is fixed to 40
generations and 64 particles/generation.

case, the mean error D does not decrease monotonically as a function of particles.
This is attributed to the incomplete/occluded hand observations that undermine the
convergence of PEHI. D now ranges between 51mm and 101mm. It can be verified
that for more than 30 generations and more than 32 particles/generation the error
in 3D hand pose recovery for PEHI is in the order of 55mm. Thus, the error of
PEHI is on average more than twice the error of HOPE.

Figures 4.7(c) and (d) are analogous to Figures 4.7(a) and (b), except the fact
that each multiframe now consists of 8 rather than 2 views. D takes values between
3mm and 29mm for HOPE and between 12mm and 47mm for PEHI. For more that
30 PSO generations and more than 32 particles per generation the error of PEHI is
still more than twice the error of HOPE. Interestingly, what HOPE achieves with
16 particles and 20 generations is equal or better to what PEHI achieves with any
of the tested particles/generations combinations.

In order to better assess the behavior of the method with respect to the number
of available views, additional experiments with a varying number of views were
conducted. Figure 4.8(e) shows the behavior of HOPE and PEHI as a function
of the size of a multiframe. For the experiments with less than 8 views, these
were selected empirically to be as complementary as possible. The computational
budget of PSO was set to 64 particles running for 40 generations. The obtained
results demonstrate that modeling the occluder and the physical constraints is more
beneficial than adding an extra camera. As an example, exploiting these constraints
with two cameras is still better than with three cameras and the hand alone. In
fact, what HOPE achieves with three views is already better to what PEHI achieves
with as many as eight.

Overall, the experiments in Figures 4.7 and 4.8 show a consistent and significant
superiority of HOPE over PEHI which is dominant in the case of a limited number
of available views. This is important because it enables practical joint hand-pose
estimation by a multicamera system with a few cameras that is associated with less
costs, complexity of setup and requirements for computational resources.

Besides its superiority in hand pose estimation, HOPE also estimates the model
parameters of the manipulated object. The average positional error of object detec-
tion across all sequences of multiframes in the experiments presented in Figures 4.7
and 4.8 is 3mm (Euclidean distance between true and estimated positions) and the
average orientation error is 2◦. Table 4.3 shows the actual and estimated object
parameters. The later are averaged for all the multiframes of the sequence that
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Table 4.3: Estimated/actual parameters for the object models in the experiments
with synthetic data.

Object Estimated/Actual parameters (in mm)

Cylinder Radius: 54/55, Height: 127/128
Ellipsoid X: 54/55, Y: 83/85, Z: 126/128
Box X: 77/77, Y 128/129, Z: 155/156

Table 4.4: Estimated/actual parameters for the object models in the experiments
of Figure 4.11.

Object Estimated/actual parameters (in mm)

Cylinder Radius: 51/53, Height: 121/131
Ellipsoid X: 128/116, Y: 128/116, Z: 122/116
Box X: 66/67, Y: 158/150, Z: 84/93

depicts the corresponding object. It can be verified that for all types of objects, the
estimated model parameters are very close to the ground truth.

The runtime of a GPU-powered implementation of HOPE [15] for runs of 40 PSO
generations and 64 particles per generation was 0.31sec for a single-view multiframe
and 2.19sec for an 8-view multiframe at the time of publication of the method. An
online version of the system employing 4 cameras, operated at 2 fps. In multi-
frames of sizes larger than 2, PEHI was approximately 20% faster than HOPE. This
overhead is attributed to the computation of the W (m) component of the objective
function. Since this is a fixed overhead that is independent of the multiframe size,
the relative difference in computational performance decreases with the number of
views.

Concluding the quantitative assessment, we applied both HOPE and PEHI to a
synthetic image sequence (400 multiframes, 8 frames/multiframe) showing non-rigid
motion of hands in isolation. Figure 4.9 plots the mean error D as a function of
the number of the employed views. For both algorithms, 40 PSO generations and
64 particles per generation were used. For HOPE, a cylindrical object was hypoth-
esized. The results show that the performance of the two algorithms is comparable,
a fact that indicates the capability of HOPE to track hands observed in isolation.
Expectedly, HOPE estimated the presence of very small objects (size in the order
of a few mms).

Real-world image sequences were acquired using a multicamera system (Fig-
ure 4.10) installed around a 2 × 1m2 bench and consisting of 8 synchronized and
calibrated Flea2 PointGrey cameras. Each camera has a maximum framerate of
30 fps, at 1280 × 960 image resolution. However, the core processing is performed
on 256×256 windows centered around the previous multiframe solution, as described
in 3.3.2.

Three sequences of multiframes have been acquired, each showing a hand grasp-
ing and manipulating a spherical (301 multiframes), a cylindrical (261 multiframes),
and a box (251 multiframes) object. Figure 4.11(a) provides sample results obtained
by applying HOPE (top row) and PEHI (bottom row) to a specific multiframe of
the sphere sequence. Since the hand is mostly occluded by the sphere in all views,
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Table 4.5: The mean value of the objective function of HOPE and its standard devi-
ation when optimization searches for cylinders, ellipsoids and cuboids for a sequence
showing an ellipsoid (sphere).

Cylinder Ellipsoid Cuboid

Mean value 3.02 2.65 3.95
Stdev. 0.68 0.57 1.17
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Figure 4.9: Performance of HOPE and PEHI on a synthetic sequence of multiframes
that shows hands in isolation. 64 PSO particles and 40 generations have been used
in both cases.

HOPE estimates the hand configuration correctly while PEHI fails completely. Sim-
ilar results were obtained in the case of the cylinder sequence which shows a hand
grasping and turning a cylindrical object up-side down. Figure 4.11(b) shows four
frames acquired from the same camera in different moments in time. HOPE tracks
the configuration of the hand throughout the whole sequence whereas PEHI looses
track of the hand as soon as the later becomes severely occluded by the object.
Figure 4.11(c) shows a similar result for the box sequence. Additionally, in Ta-
ble 4.4, we compare the actual, physically measured object shape parameters to the
ones estimated by HOPE, computed by averaging estimations for all multiframes
of a given sequence. The standard deviation of these estimations is in the order of
a few millimeters. It can be verified that the error in object shape estimation is
satisfactory.

For HOPE, we also ran a simple classification experiment. Although shape clas-
sification is not the focus of this work, this experiment provides an indirect indi-
cation of the accuracy of the optimization process. For the sphere sequence (Fig-
ure 4.11(a)), we ran HOPE assuming a cuboid, an ellipsoid and a cylinder. Table 4.5
shows the mean value and the standard deviation of the objective function of HOPE
in all multiframes of the sequence. As it can be verified, the hypothesis of an el-
lipsoid better explains the observed scene. In fact, 98.67% of the multiframes were
better explained by the ellipsoid, 1.33% by the cylinder and none by the cuboid.

Finally, Figure4.12, shows sample snapshots from the results obtained on a se-
quence of a hand performing fine manipulation of an elongated cuboid. Visual
inspection confirms that the accuracy of HOPE is quite satisfactory, despite the
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Figure 4.10: Camera setup for the experiments with real data.

complex and challenging hand-object interaction. Sample videos out of these exper-
iments are available online2.

4.4 Tracking Two Hands in Strong Interaction

We now examine a third hand tracking scenario, namely tracking two hands using
input from an RGB-D sensor. Specifically, we aim to track the full articulation
of two hands that interact with each-other in a complex, unconstrained manner.
Following the joint modelling approach, the resulting optimization problem has a
54-dimensional parameter space that models all possible configurations of two hands,
each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To
the best of our knowledge, the presented method was the first to attempt and achieve
the articulated motion tracking of two strongly interacting hands at the time of its
publication. Extensive quantitative and qualitative experiments with simulated and
real-world image sequences demonstrate that an accurate and efficient solution of
this problem is indeed feasible.

The adopted hand model (see Section 3.2) is adapted to handle the articulation
ranges of both a right and a left hand. One of each is assumed to be present in the
scene. Within the model-based formulation, the complex occlusions faced in this
scenario are effortlessly handled. These occlusions include the self-occlusions that
occur in the single hand-tracking case, and additionally those that occur while the
hands are in close interaction. The input preprocessing is similar to [46], with the
exception that the working resolution for the cropped skin color and depth map is
128×128 pixels. The objective function is the same as the one used in [46], described
in Section 4.2 (Equations 4.4, 4.5 and 4.6). Finally, the same PSO variant as in [46]
is used here as well to solve the resulting optimization problem.

4.4.1 Experimental evaluation

Synthetic data as well as real-world sequences obtained by a Kinect sensor [12] were
used to experimentally evaluate the presented method. Experiments were performed
on a computer equipped with a quad-core Intel i7 950 CPU, 6 GB RAM and an
Nvidia GTX 580 GPU with 1581GFlops processing power and 1.5 GB of memory.

2http://www.youtube.com/watch?v=N3ffgj1bBGw
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(a) Sphere, frame #103, 4 views, HOPE (top), PEHI (bot.)

(b) Cylinder, 4 frames, view #2, HOPE (top), PEHI (bot.)

(c) Box, 4 frames, view #1, HOPE (top), PEHI (bot.)

Figure 4.11: Sample frames from the results obtained by HOPE and PEHI in real-
world experiments. For HOPE the projection of the estimated 3D object model is
shown in pink color.

The quantitative evaluation of the presented method has been performed using
synthetic data. The employed synthetic sequence consists of 300 poses that encode
typical interactions of two hands. To quantify the accuracy in hand pose estimation,
the distance ∆ between corresponding phalanx endpoints in the ground truth and in
the estimated hand poses is measured. The average of all these distances, for both
hands, over all the frames of the sequence constitutes the resulting error estimate
D. It is worth noting that these distances include estimations for hand points that,
because of occlusions, are not observable in many frames frames of the sequence.

The influence of several factors to the performance of the method was assessed
in respective experiments. Figure 4.13 illustrates the behavior of the method with
respect to the PSO parameters (number of generations and particles per genera-
tion). The product of these parameters determines the computational budget of the
presented methodology, i.e. the number of objective function evaluations for each
each tracking frame. The horizontal axis of the plot denotes the number of PSO
generations. Each plot of the graph corresponds to a different number of particles
per generation. Each point in each plot is the median D of the error ∆ for 20 rep-
etitions of an experiment run with the specific parameters. A first observation is
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Figure 4.12: Snapshots from an experiment where a hand performs a complex ma-
nipulation of an elongated cuboid.

that D decreases monotonically as the number of generations increase. Additionally,
as the particles per generation increase, the resulting error decreases. Nevertheless,
employing more that 45 generations and more than 64 particles results in dispropor-
tionally small improvement of the method’s accuracy. The gains are at most 2mm
or roughly 30%, for a 5-fold increase in computational budget. For this reason, the
configuration of 64 particles for 45 generations was retained in all further experi-
ments. In terms of computational performance, tracking is achieved at a framerate
of 4Hz on the computational infrastructure described above.

In another experiment we assessed the effect of varying the distance of the hands
from the hypothesized sensor. By doing so, we explored the usefulness of the method
in different application scenarios that require observations of a certain scene at differ-
ent scales (e.g., close-up views of hands versus distant views of a human and his/her
broader environment). To do this, we generated the same synthetic sequences at
different average depths. The results of this experiment are presented in Figure 4.14.
At a distance of 50cm the error is equal to 6mm. As the distance increases, the er-
ror also increases; Interestingly though, it doesn’t exceed 8.5mm even at an average
distance of 2.5m. The used synthetic maps do not contain any kind of noise, in
contrast to what happens in practice: the amount of noise is related to the distance
from the sensor for data acquired with a Kinect.

The tolerance of the method to noisy observations was also evaluated. Two types
of noise were considered. Errors in depth estimation were modeled as a Gaussian
distribution centered around the actual depth value with the variance controlling the
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Figure 4.13: Quantitative evaluation of the performance of the method with respect
to the PSO parameters. Each line of the graph corresponds to a different number
of particles as shown in the legend.

amount of noise. Skin-color segmentation errors were treated similarly to [35], by
randomly flipping the label (skin/non-skin) of a percentage of pixels in the synthetic
skin mask. Figure 4.15 plots the method’s error in hand pose estimation for different
levels of depth and skin segmentation error. As it can be verified, the hand pose
recovery error is bounded in the range [6mm..23mm], even in data sets very heavily
contaminated with noise.

The accuracy in hand pose estimation with respect to viewpoint variations was
also assessed. This was achieved by placing the virtual camera at 8 positions dis-
persed on the surface of a hemisphere around the hypothesized scene. The data
points of Figure 4.16 demonstrate that viewpoint variations do not significantly
affect the performance of the method.

In a final experiment, we measured the performance of our single hand tracker
(Section 4.2) on the synthetic data set of the previous experiments. To do so, the
system described in that work was used to track one of the two visible hands. The
resulting error D for this experiment was 145mm. In practice, one instance of the
single hand tracker is able to track accurately each of the two hands while it is not
in interaction with the other. However, as soon as occlusions become extended due
to hands interaction (for example, when one hand passes in front of the other), the
track is often completely lost.

Towards the qualitative evaluation of the presented approach in real data, several
long real-world image sequences were captured using a Kinect, recording both RGB
and depth data. A video with the results obtained from one such sequence of
1776 frames is available online 3. Indicative snapshots are shown in Figure 4.17.
Evidently, the estimated hand postures are in very close agreement with the image
data, despite the complex articulation and strong interactions of the two hands.

3http://youtu.be/e3G9soCdIbc
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Figure 4.14: Quantitative evaluation of the performance of the method with respect
to the average distance from the sensor.

4.5 Single Hand Tracking using the Visual Hull

In our work presented in [54], the visual hull [60] is explored as the main visual cue of
a model-based hand-tracking method that uses input from a calibrated multi-camera
system of arbitrary 3D configuration. The use of the visual hull as the main obser-
vation cue manages a balanced contribution of observations from all available views
to a single visual score. More specifically, the available observations contribute in
the computation of the visual hull according to the available calibration information.
This visual hull is consequently used as the main visual cue, directly yielding a single
score for each candidate hand pose (see Equation 4.12 below). This is in contrast
to the methods presented in Sections 4.1 and 4.3 that compute a partial score for
each available view and then sum them to yield an overall score (see Equations 4.1
and 4.7).

The formulation as an optimization problem makes use of an objective function
that quantifies the discrepancy between the visual hull of the hypothesis and obser-
vation. A term that quantifies the discrepancy between hypothesized and observed
image edges is also used. This objective is minimized using the variant of the Parti-
cle Swarm Optimization (PSO) algorithm presented in Section 3.5.1. We investigate
the behavior of the resulting system in extensive experimental evaluations, compar-
ing it with our approach in [48] that treats the available observations from each view
in an independent way, as described in Section 4.1. The comparisons exhibit the
unexpected result that, for synthetic image sequences without noise simulation the
two methods perform comparably. The situation changes when artificially introduc-
ing progressively increasing levels of noise to the data: there is a point where the
method of Section 4.1 breaks down whereas this approach manages to keep track.
Finally results in real-world data confirm the applicability of this approach.
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Figure 4.15: Quantitative evaluation of the performance of the method with respect
to synthesized depth and skin-color detection noise.

4.5.1 Method Outline

The objective function E(h,O) is appropriately designed and formulated so as to
quantify the discrepancy between a hand pose h, parameterized as described in
Section 3.2, and the observation O. As already introduced, the employed image
features are the visual hull and image edges. The visual hull is computed from the
foreground masks of the object of interest. For our case, given a multiframe M, we
use the skin color maps as the foreground masks, and the method proposed in [61]
is employed to compute the observed visual hull ov(M). The edge maps are also
further processed, undergoing distance transform, yielding the observed distance
transform maps od(I), where I denotes the respective input image of the multiframe
I ∈M .

Given this input, we proceed with the formulation of the objective function E.
Specifically, given a hand pose h, a set of observations O and the camera calibration
information C we compute

E(h,O) = D(O, h,C) + λk · kc(h). (4.12)

where D quantifies the discrepancy between observed and hypothesized hand vol-
umes and image edges, and kc adds a penalty for kinematically impossible hand
configurations. The term λk is an experimentally determined normalization factor.

The function D in Equation 4.12 is computed as following. Given a hand pose hy-
pothesis h and camera calibration information ci ∈ C, skin occupancy maps rs(h, ci)
and edge maps re(h, ci) for each view i are generated by means of rendering. The vol-
ume reconstruction methodology of [61] is then once again employed with input the
rendered maps rs(h, ci) to produce an occupancy volume rv(h) that can be directly
compared with the observation ov(M). The comparison between these occupancy
maps quantifies the discrepancy between the observed and the hypothesized hand
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Figure 4.16: Quantitative evaluation of the performance of the method with respect
to viewpoint variation.

pose. This is achieved by computing

D(M,h) = 1− 2
∑
ov ∧ rv

(
∑
ov ∧ rv) + (

∑
ov ∨ rv)

+ λ

∑
od · re∑
re + ε

, (4.13)

where for the sake of notational simplicity ov denotes ov(M), od denotes od(I), re
denotes re(h, ci) and rv denotes rv(h). A small term ε is added to avoid division by
zero. Regarding the operators, ∧ and ∨ denote per-voxel operations of the respective
maps and the summation is taken over the entire maps.

The function kc in Equation 4.12 adds a penalty to kinematically implausible
hand configurations. It is defined similarly to [48] as in Equation 4.3, penalizing
only adjacent finger inter-penetration. Specifically:

kc(h) =
∑

p∈Q

{
−φ(p) φ(p) < 0

0 φ(p) ≥ 0
, (4.14)

where Q denotes the three pairs of adjacent fingers, excluding the thumb, and φ
denotes the difference (in radians) between the abduction-adduction angles of those
fingers. In all experiments, the value of λk was set to 0.1 and the value of λ was set
to 0.01.

4.5.2 Experimental Evaluation

A number of quantitative experiments was conducted, designed to compare the be-
havior of the presented method to that of Section 4.1. These experiments analyzed
the behavior of the objective functions of the methods, investigated the parame-
terization of PSO, assessed the effect of segmentation noise and also explored the
behavior for different numbers of available views of the scene. Qualitative results in
real-world data are also presented.



4.5. SINGLE HAND TRACKING USING THE VISUAL HULL 71

Figure 4.17: Snapshots from an experiment where two hands interact with each
other (cropped 320× 240 regions from the original 640× 480 images).
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Figure 4.18: Investigation of the PSO parameterization for the presented method
(left) and that of Section 4.1 (right).

In order to perform a fair comparison of the presented method to that of Sec-
tion 4.1, we slightly modify the implementation of that method by including the
processing step described in Section 3.3.2. The computed visual cues of skin color
and edges are appropriately cropped and resized to a fixed working resolution of
128×128. This modification improves the performance of both methods, and there-
fore we compare them on this basis.

In all the experiments with visual hulls we used a reconstruction space of 1283

voxels, centered around the previously estimated position of the observed hand. The
physical dimensions of this space were 240mm along each edge, resulting in a voxel
size slightly larger than 2mm.

We investigated the accuracy of the method for different parameters of PSO.
The computational budget of PSO is determined by the number of particles and
generations, the product of which yields the total number of objective function
computations, as described in Section 3.5.1. We selected a set of values for these
two parameters and computed the accuracy of the presented method, as well as
that of Section 4.1. In order to quantitatively evaluate the pose estimation accuracy
we resort to synthetic datasets with available ground truth. A quantification of the
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Figure 4.19: Investigation of the effect of noise in the two compared methods. The
horizontal axis denotes percentage of corrupted pixels in the synthetic input and the
vertical denotes average distance from the ground truth.

deviation of the estimation from the ground truth is then possible. More specifically,
for all the experiments we used a sequence of 245 multiframes depicting a hand that
performs simple everyday motions such as palm flipping and finger bending. In order
to compare the estimated pose, we adopt a metric along the lines of the description
in Section 3.7: 21 landmark points are placed on the virtual hand, 3 on each finger
and the remaining 6 on the palm. The average distance of all these landmarks
between the estimated and the known pose is measured, and the average over all
the frames of the sequence is computed. We perform this experiment multiple times
and compute the median of these values as the final error estimation for a given
configuration of parameters.

The accuracy of the presented method and of that in Section 4.1 are shown in
Figure 4.18. The left plot shows the performance of the system using the visual
hull as the main observation cue whereas the right shows the results we got with
the method of Section 4.1, with the slight modification described previously. The
horizontal axis corresponds to the number of generations used for the experiment
whereas the vertical axis denotes the measured pose estimation error as described
above. Different graphs in the plots correspond to different particle count configu-
rations. Both methods benefit when using more generations or particles, with the
number of generations playing a more important role in the performance. Evidently
the performance of both methods is comparable. Indicatively, the average error of
the presented method for 62 particles and 30 generations is around 5.3mm whereas
that of Section 4.1 achieves 4.1mm. In every case the differences are small, getting
even smaller as the available budget increases. The performance improvement of
both methods for more particles or generations is small. The additional computa-
tional budget for this improvement is disproportionate, and so for the remaining
experiments we fixed these parameters to (62, 30) for the presented method and to
(64, 30) for that of Section 4.1.

We conducted another experiment, investigating the effect of noise on both meth-
ods. We employed a noise type similarly to [35]: small disks of randomly selected
positions and radii were chosen in the synthetic input images and the pixels in them
were flipped. Figure 4.19 illustrates the results of this experiment. Both methods
behave comparably for low and moderate amounts of noise, however the presented
method manages to keep track for the large noise level of 75% whereas Section 4.1
fails.

Apart from the quantitative evaluation on synthetic data, we applied the pre-
sented method to real-world images. The same multiframe sequence used in Sec-
tion 4.1 was also used here. The sequence depicts a human hand that performed
simple hand motions such as palm flipping, pinching and grasping. The sequence
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Figure 4.20: Results of the presented method in real-world data. Each pair of images
illustrates the same pose from different views.

contains in total 390 frames. The hand model was manually initialized for the first
frame, and the method successfully tracked all the sequence. Sample results of this
track are shown in Figure 4.20. Evidently the fitted hand model closely matches the
observations.

We conducted another experiment in data acquired from a narrow baseline stereo
camera system. Despite the fact that the recovered visual hulls were elongated, the
presented method managed to keep track for several hundred frames while that of
Section 4.1 failed. Sample results from this sequence are shown in Figure 4.21.

4.6 Evolutionary Optimization using Quasi-Random

Sampling

In the work presented in [62] we shift our focus from the various scenarios of hand
tracking to the optimization algorithm used to solve the resulting optimization prob-
lems. In all the works presented in the previous Sections, variants of PSO have been
used for this task. In this Section we present experimental result we obtained in
two different hand tracking scenarios using as optimizer the algorithm described in
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Figure 4.21: Indicative results on data acquired from a stereo baseline system. Each
pair illustrates the same pose.

section 3.5.2. We first outline the method we used to determine appropriate values
for the free parameters of the algorithm. These values were used throughout the
experimental evaluation of the presented algorithm, which is compared against PSO.
The two different scenarios are the case of single hand tracking that is tackled in
Section 4.2 and that of two hands tracking, encountered in Section 4.4.

4.6.1 Meta-optimization

The algorithm outlined in Section 3.5.2 has a number of free parameters, namely
the scaling vector s, the contraction coefficients c, the weight parameter a and the
number NT of top scoring positions that contribute to the calculation of hC . In
order to determine appropriate values for these parameters in a systematic way, we
resorted to meta-optimization, i.e., the use of an optimization algorithm in order to
tune the parameters of another.

To do so, for the case of tracking a single hand, we selected 370 consecutive frames
of a hand waving and performing object grasping motions from one of the sequences
used in Section 4.2. We tracked this sequence with the method of Section 4.2 and
with a very high computational budget, to ensure the highest possible tracking
accuracy. We then synthesized the same sequence using our hand model. Having a
sequence of synthesized images along with the corresponding hand poses as ground
truth, we were able to quantify the performance of a given parametrization of the
evolutionary Sobol search algorithm. The quantification was performed with an
error metric along the lines of the error metric described in Section 3.7. The meta-
optimization for the problem of tracking two interacting hands we followed a similar
approach on a sequence showing two hands in strong interaction.

The parametrization of the meta-optimization problem itself, is as follows. We
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Figure 4.22: The results of meta-optimization yielded an exponential relation be-
tween the kinematic chain depth and the contraction coefficients c for both cases,
single hand tracking and two hands tracking.

partitioned the scaling vector s in three types of parameters, namely the positional
scale, the rotational scale and the scale associated with finger joint angles. Thus,
we reduced the 27 or 54 parameters (single/two hands tracking) to just 3. The
intention behind not keeping all the different parameters is to avoid over fitting for
the specific sequences we used for meta-optimization.

The contraction coefficients c were partitioned with respect to their distance from
the root of the kinematic chain, a choice that reflects the way the scoring function E
is affected by each of the problem parameters. The intuition is that the parameters
describing the position and orientation of the palm must be fixed in order to measure
meaningful values when varying the position of, e.g., a fingertip. We thus identified
four different levels, starting with position and rotation in the root(palm), the DoFs
of the metacarpophalangeal joints at the next level, the proximal interphalangeal
(IP) joints at the third level and the distal IP at the last level (bottom to top in
Figure 3.1). We did not optimize for NT , in all experiments we used N = NT = 16
and G = 25. The three different scale parameters, the four different contraction
coefficients and the weighting parameter a amount to a total of 8 parameters. In
order to find optimal values for those parameters we employed PSO.

The separate meta-optimization of the single hand case and the case of two
hands, resulted in two different sets for these 8 parameters and in some rather inter-
esting results. For both the single hand and the two hands case, in close agreement
with intuition, the optimum contraction coefficients decrease exponentially with the
distance from the kinematic root (see Figure 4.22). Furthermore, for the single hand
case it turned out that the optimal value of a is very close to 0. Thus, the top NT

atoms contribute to the definition of the center hC with equal weight. This however
was not the case for the case of two hands tracking. For that case the optimum
value of a was close to 1.6.

4.6.2 Experimental Evaluation

We present experiments that assess the effectiveness of the evolutionary Sobol search
approach. The presented method was employed to track the articulation of (a) a
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Figure 4.23: The performance of the evolutionary quasi-random search (solid lines)
in comparison to that of PSO (dashed) for the problem of single hand tracking and
for different particle and generation counts (best viewed in color).

single hand and (b) of two strongly interacting hands. The dimensionality of these
two problems is 27 DoFs and 54 DoFs, respectively. The results obtained by the
presented method are compared quantitatively and qualitatively to those obtained
by the methods of Section 4.2 for (a) and of Section 4.4 for (b).

For quasi-random sampling we used the default Matlab implementation of the
Sobol sequence of appropriate dimensions (either 27 or 54).

We conducted several experiments to quantitatively assess the performance of
the presented method in comparison with the approach presented in Section 4.2.
In order to do so, we created synthetic data (i.e., annotated with ground truth)
following the description of Section 3.7.

Specifically, a real-world sequence was tracked with good accuracy using the
method of Section 4.2 and a large computational budget. This sequence consists of
200 frames depicting a hand performing a variety of motions. It should be stressed
that this sequence is different to the one used for the meta-optimization. The re-
sulting track is a sequence of hand poses, closely resembling the observed hand.
We used this track to generate synthetic data, i.e. a sequence of synthetic RGB-D
images. Since this sequence is produced from a known hand track, we can use that
track as the ground truth for that sequence.

Having a sequence with associated ground truth, we compute the distance of a
track from this ground truth. To do so, we select 21 key points on the hand model we
use. The first point is at the root of the kinematic chain inside the palm. Each finger
has 4 of the remaining 20 points, starting with one at the base, having one at each
of the intermediate joints, and with the last placed at the fingertip. This placement
of points can be computed for any given hand pose. Given two hand poses, a ground
truth and an estimated one, we can compute the Euclidean distances between such
corresponding points. The mean value of all these distances is the error measure
we use for a pose estimation of a given frame. For a pose sequence we compute the
mean value of such mean distances, resulting in a single error estimate for the whole
sequence. Due to its stochastic nature, our algorithm does not perform identically
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Figure 4.24: The performance of the evolutionary quasi-random search (solid lines)
in comparison to that of PSO (dashed) for the problem of tracking two strongly
interacting hands and for different particle and generation counts (best viewed in
color).

in different runs. Thus, for any given configuration we repeat the experiment 11
times, yielding 11 different mean errors. The median of these 11 values constitutes
the error value D we report in all the experiments below.

As stated in Section 3.5.2, the two parameters determining the computational
budget of the algorithm are the number of atoms N and the number of generations G
because their product yields the number of objective function evaluations. Particle
Swarm Optimization (PSO) is parametrized similarly by the number of its atoms
called particles and generations. We assessed the performance of our algorithm
in comparison to PSO as a function of these two parameters. The results of this
experiment are visualized in Figure 4.23.

It can be verified that the presented evolutionary Sobol search method performs
better or equal to PSO for the problem at hand. This is amenable to dual interpre-
tation: we either get more accuracy with the same computational budget or we get
the same accuracy with less computational resources. The differences in favor of the
presented approach become far more striking in small atom and generation counts.
This is quite important because it means that higher accuracy can be achieved for
small computational budgets. As an example, the accuracy obtained by 16 atoms of
the presented approach running for 10 generations is equal to the accuracy obtained
by 64 particles of PSO for the same number of generations. Given that the objective
function E is common for both methods, the evaluation of an atom in our approach
is identical to the evaluation of a particle in the method presented in Section 4.2.
This means that the presented algorithm achieves a 4× speed-up over the state of
the art. As an alternative view of the same results, for the same low budget (16
atoms/particles, 10 generations), the presented approach is almost two times more
accurate.

Figure 4.25 shows sample results from the application of the presented algorithm
on the synthetic sequence used in this quantitative evaluation.

Similarly to the case of a single hand, we recorded a sequence showing two hands
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(a)

(b)

Figure 4.25: Sample results from the application of the presented evolutionary
Sobol search method to (a) the single hand tracking and (b) two hands tracking
synthetic data sets. For each frame, the rendered depth map together the estimated
hand model is shown.

in strong interaction. We employed the evolutionary Sobol search algorithm in a
parametric space of 54 DoFs and we experimented with different numbers of atoms
and generations. The obtained results are shown in Figure 4.24 in comparison with
those obtained by the method of Section 4.4.

The complex interaction between the hands generates even more occlusions, so,
it is impossible to resolve ambiguity regarding some poses of the sequence. This,
in turn, implies that the lowest achievable error for the case of two hands is higher
than that of the single hand case. Nevertheless, the advantages of the presented
method are even more prominent in the case of tracking two strongly interacting
hands. The lowest budget configuration we tested, N = 16 and G = 10 was able
to achieve an average error of 15mm whereas the method of Section 4.4 achieved
for the same budget an average error of 26mm. The presented method achieved for
the configuration of N = 64 and G = 25 an error of 8.9, within 1.5mm from the
largest budget we tested, namely (N,G) = (256, 40) which yielded 7.6mm of average
error. Thus, for the case of two hands tracking, the presented solution can achieve
a speed-up of almost 8×, making the tracking of two interacting hands possible in
real time.

Figure 4.25 shows sample results from the application of the presented algorithm
on the synthetic sequence used in this quantitative evaluation. Finally, Figure 4.26
shows sample results from the application of the presented method on the real world
sequences reported in [46,59] 4.

4Results available online at https://www.youtube.com/watch?v=3yvaFuX09xY
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(a)

(b)

Figure 4.26: Sample results from the application of the presented evolutionary
Sobol search method to (a) the single hand tracking and (b) two hands tracking real
world sequences reported in Section 4.2 and Section 4.4, respectively.
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Chapter 5

Discussion

This thesis presented methods for markerless, model-based recovery and tracking of
human hand pose. Examined scenarios include tracking of a single hand in isolation,
a hand manipulating an object, as well as tracking two hands in strong interaction.
The visual input comes either from a multi-camera network or from an RGB-D
sensor.

The most significant contributions of this work are the following:

• Showing that model-based hand tracking is feasible in interactive frame-rates.
This was made possible by carefully choosing and designing all the involved
computational steps. This in turn allowed for an implementation using GPU
acceleration that exploited the resulting computational parallelism.

• Proposing the use of optimization algorithms that robustly tackle the problem.
This includes PSO which has been previously employed for the related problem
of body pose estimation, and also a novel evolutionary optimization algorithm,
specifically tailored for the tackled problem.

• Presenting one of the first model-based methods to tackle the hard problem
of hand-object interaction.

• Presenting the first model-based method to tackle strong hand-hand interac-
tion.

5.1 Impact

As discussed in the introductory Section 1, a system with the ability to track the
full articulation of a human hand has multiple applications. In this spirit we partic-
ipated to the ChaLearn Gesture Challenge 2012 [71] using the system described in
Section 4.2. We provided its output to a simple classifier that differentiates poses
based on the 20-dimensional configuration of the observed fingers. For this submis-
sion we were awarded with the First Prize.

Another recognition of the present body of work was the “Maria Michail Man-
asaki” Bequest Fellowship that was awarded to me for the academic year 2011 –
2012. This fellowship is awarded by the Committee of Graduate Studies of the
Computer Science Department of the University of Crete.

Finally, I interned at Microsoft Research in Cambridge, joining the Interactive
3D Technologies group under the supervision of Professor Shahram Izadi. The
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internship took place during the Spring of 2012, and resulted in a publication [72] and
a U.S. patent [73]. The work in [72] describes a wrist-worn device that can accurately
and efficiently track the finger articulation in real time. Several applications of this
device are also presented.

• Publications

– As described in detail in Chapter 4, the publications that comprise this
thesis are:

∗ Oikonomidis, I., Lourakis, M.I., Argyros, A.A.: Evolutionary quasi-
random search for hand articulations tracking. In: 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition. (2014) [62].

∗ Oikonomidis, I., Kyriazis, N., Tzevanidis, K., Argyros, A.A.: Track-
ing hand articulations: Relying on 3d visual hulls versus relying on
multiple 2d cues. In: Ubiquitous Virtual Reality (ISUVR), 2013 In-
ternational Symposium on, IEEE (2013) 7–10 [54].

∗ Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated
motion of two strongly interacting hands. 2012 IEEE Conference on
Computer Vision and Pattern Recognition (2012) 1862–1869 [59].

∗ Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full dof tracking of a
hand interacting with an object by modeling occlusions and physical
constraints. In: ICCV, IEEE (2011) 2088–2095 [49].

∗ Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based
3d tracking of hand articulations using kinect. In: BMVC, Dundee,
UK (2011) [46].

∗ Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Markerless and efficient
26-dof hand pose recovery. In: ACCV, Springer (2010) 744–757 [48].

– Additional publications documenting research tightly connected to the
work of this thesis:

∗ Kyriazis, N., Oikonomidis, I., Argyros, A.: A gpu-powered compu-
tational framework for efficient 3d model-based vision. Technical
Report 420, FORTH (2011) [74].

∗ Kyriazis, N., Argyros, A.: Scalable 3d tracking of multiple interacting
objects. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2014) 3430–3437 [75].

∗ Kyriazis, N., Argyros, A.: Physically plausible 3d scene tracking: the
single actor hypothesis. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on, IEEE (2013) 9–16 [76].

∗ Paliouras, K.: Automatic definition of the objective function for
model-based hand tracking. Master’s thesis, University of Crete
(2014) [77].

∗ Douvantzis, P., Oikonomidis, I., Kyriazis, N., Argyros, A.: Dimen-
sionality reduction for efficient single frame hand pose estimation.
In: Computer Vision Systems. Springer (2013) 143–152 [78].

∗ Song, D., Kyriazis, N., Oikonomidis, I., Papazov, C., Argyros, A.,
Burschka, D., Kragic, D.: Predicting human intention in visual ob-
servations of hand-object interactions. In: ICRA. (2013) [79].
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∗ Patel, M., Ek, C.H., Kyriazis, N., Argyros, A., Valls Miro, J., Kragic,
D.: Language for learning complex human-object interactions. In:
ICRA. (2013) [80].

• Awards

– “Maria Michail Manasaki” Bequest Fellowship [81] of the University of
Crete 2011 – 2012.

– First Prize in ChaLearn Gesture Challenge 2012, sponsored by Microsoft,
Redmond, USA, in conjunction with ICPR 2012, Tsukuba, Japan, see [71].

• Highlights1

– Invitation for internship at Microsoft Research in Cambridge. The in-
ternship resulted in a publication [72] which was also awarded a U.S.
patent [73].

– More than 510 citations, since 2010, h-index: 72.

– More than 35.000 downloads3 of 3D single hand tracking software4.

– More than 80.000 views5 of the videos which supplement the thesis-related
publications.

– Contributions to several European projects:

∗ GRASP (FP7-215821)

∗ RoboHow.cog (FP7-288533)

∗ WEARHAP (FP7-ICT-2011-9).

5.2 Future Work

Regarding the continuation of this work, several aspects can benefit from theo-
retical breakthroughs, as well as further experimentation. Indicatively, promising
directions of research involve the visual cues, along with the way they are combined
to formulate objective functions, as well as the utilized optimization algorithms.

The employed visual cues are carefully selected so that their computation, syn-
thesis and comparison are all amenable to parallelization. The investigation of other
visual cues should follow this direction, enabling real-time or at least interactive
frame-rates. One such particular direction is the cue of optical flow, induced by
motion due to either actual movement of the observed hand (in consecutive frames)
or by viewpoint variation (simultaneous capture from different cameras). Towards
this end, within the current computational framework it is possible to efficiently
generate and evaluate hypothesized motion fields. The evaluation would essentially

1The figures presented were captured in September 2014.
2Source: Google Scholar c©.
3Sources are Google Analytics c© and the Apache c© server which hosts the web-page of the

software.
4This is the part of our software implementation which has been made public. This software

can be found at http://cvrlcode.ics.forth.gr/handtracking.
5Source is YouTube c©, channels Antonis Argyros and forth3DTracking.
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perform a consistency test on pairs of input images. This approach would rely al-
most directly on the actual input, avoiding image processing steps that require early
decisions such as skin color detection or edge detection.

The optimization algorithms used throughout this work are shown to yield effi-
cient, robust behavior. However further research is worth investing in the selection
of optimization algorithms from the relevant literature, or even the design of novel
ones, tailored to specific scenarios. Regarding the formulation of the objective func-
tion, an idea worth investigating as an alternative to compare occupancy maps such
as the skin color maps, is the Jaccard distance [82]. Furthermore, apart from design-
ing the objective function by hand, it is possible to automate the process, yielding
potentially more accurate results [77].

Finally, another specific direction worth investigating is that of modeling hu-
man hand motion. Section 3.6 describes the way we exploit the temporal continuity
assumption: we create a set of candidate poses by adding Gaussian noise to the
solution for the previous frame. These poses populate the employed evolutionary
optimization algorithms, initializing the search process. An idea that is worth in-
vestigating is to form this initial set using more inform types of noise. Specifically,
knowledge regarding the human hand motion could be exploited, yielding initial
poses that conform to or even predict human hand motion. A scenario that can
take advantage of such an approach is that of known types of hand motion: if it is a
priori known that the observed hand will perform only a specific set of motions, such
a set of gestures, then the discussed approach would be a good candidate to exploit
this information. Towards this end, Douvantzis in [78] applies PCA to sets of hand
poses, aiming to identify the directions of largest variability within the analyzed
data. The resulting linear models capture the natural motion of human hands.
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