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Abstract  

 

In this thesis we examined the linear and nonlinear rheological properties 

of linear polymers with different molar mass and molar mass distribution. 

The polymer of choice was polystyrene, a well-known thermoplastic with 

a wide range of applications. The samples used have molar masses 

ranging from 3 to 70 kg/mol, and reasonably narrow molar mass 

distribution (MMD), below 2. By mixing different polymers we obtained 

blends of different average MMD (up to 5.3).  We focused on the role of 

MMD for the same or different average molar mass, which affects the 

viscoelastic response significantly. We described the linear viscoelasticity 

with the tube model, accounting for the dynamic solvent contribution of 

the small components in the blends via double reptation, and presented 

scaling analysis for the nonlinear shear properties based on the 

characteristics of the transient signals as function of the Weissenberg 

number for the different samples. Our results point to the importance of 

the shape of MMD on the rheological properties of polymers. 
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1.Introduction 
 

Polymers have gain great recognition over the years both at scientific and 

industrial level. Polymers have gained their respective place under the 

spotlight for over a century now. Nowadays, the synthesis techniques 

have reached the highest level and consequently this gives us the 

opportunity to create well-defined polymers with different and 

complicated structures and as a result different properties. On the one 

hand, this is due to the investigation of the interactions of the 

macromolecule’s structures, and on the other, due to the fact that minor 

changes in architecture lead to materials with different chemical, physical 

and mechanical properties. During this thesis the polymer of choice was 

Polystyrene and for this work we have 11 polystyrenes samples, divided 

in individual/pure and blends. The blends are composed with combining 

the individual/pure samples in different combinations and fractions 

shown in Table 1. What is fascinating about our samples is that they have 

a very complex molecular weight distribution (MWD) as well as an 

increased polydispersity. The goal of this work is to show the effect of the 

complex and various molecular weight distribution of the samples and the 

increased polydispersity in polystyrene. In order to achieve our goal for 

this work, we studied the linear and the nonlinear viscoelastic response 

of our samples in a wide range of temperatures on a strain-controlled 

ARES rheometer and a MCR 702 rheometer (Anton Paar) operating in the 

strain-controlled mode. Since we aim to perform both linear and 

nonlinear measurements, we used two different types of geometries. For 

the linear measurements we used parallel plates (PP) of 8mm and 4mm 

and for the nonlinear measurements we used cone portioned plate 

geometry (CPP) of 6mm and 4mm. From the linear measurements we 

produced the master curves for all of our samples using time temperature 

superposition principle shown in chapter 4.1 whereas for the nonlinear 

we performed transient rheological measurements and different shear 

rates, shown in chapter 4.2, in order to have a clearer idea about the 

dynamics of our samples. The analysis of the nonlinear data was done by 

extrapolating different parameters from the transient data. 
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2.Theoretical Background 

2.1 Rheology  

The term Rheology was coined by E.C.Bingham and it refers to the study 

of the deformation and flow of matter1. Rheometry is the term used for 

the measurement of the rheological properties of a material. Rheology is 

particularly useful in characterizing viscoelastic materials which exhibit 

characteristics of both elastic and viscous response. Viscoelastic materials 

also can be divided in two categories: Viscoelastic fluids, which are in a 

liquid state and when they are subjected to a rapid and large deformation, 

they are prone to structural change, and the viscoelastic solids, which 

show a coherence and when a large force is applied, they can be 

deformed substantially. Polymers are viscoelastic materials.  

From a rheological point of view, the most probed flow fields are shear 

and elongational flows. In extensional flow fluid components flow away 

or towards from one another. Whereas In shear flow, fluid components 

shear past one another. Shear flows are commonly used to determine the 

rheological properties of liquid (Newtonian and Non Newtonian Flow).2 

Shear flow can be depicted as layers of fluid sliding over one another with 

each layer moving faster than the one beneath it. The uppermost layer 

has maximum velocity while the bottom layer is stationary3.The two 

plates model is used to define the fundamental rheological parameters4 

in shear flow. Rotational rheometers and viscometers are the most 

common equipment to promote shear flows to a viscoelastic material. 

 

Shear Stress:  

Figure 2.1 exhibits a one-dimensional scenario where a fluid is in between 

two parallel plates, characterized by surface A. The bottom plate is 

stationary, whereas the top plate is displaced with a force F. We define 

the shear stress as: 
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σ=
𝐹

𝐴
 (2.1) 

where F is the shear force in N and A the shear area is in m2. The unit of 

shear stress in Pa. 

 

 

 

 

 

 

 

Shear rate  

In figure 2.2 we have again a one-dimensional scenario where a fluid is in 

between two parallel plates, characterized by surface A and the distance 

between the two plates is h. The bottom plate is stationary, whereas the 

top plate is displaced with a velocity v. We define the shear rate as: 

 

𝛾̇ =
𝑣

ℎ
 (2.2) 

where v is the velocity in m/s and h is the distance between the plates 

(see figure 2.2) in m. Shear rate or gamma dot has units of s-1. 

 

 

 

 

  
 

 

 

 

Figure 2.1 Two plates model used to define the shear stress [2]. 

Figure 2.2. Two plates model used to define the shear rate [2]. 
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shear strain 

Figure 2.3 exhibits a one-dimensional scenario where a fluid is in between 

two parallel plates, characterized by a deflection path s and the distance 

between the two plates is h. The bottom plate is stationary, whereas the 

top plate is being deflected by a distance s. We define the shear rate as: 

 

γ=
𝑠

ℎ
 (2.3)  

where s is the deflection path in m and h is the shear gap in m. Hence the 

shear strain is dimensionless.  

  

  

  

  

  

 

 

  

Under conditions of linear response, the complex G is the ratio of shear 

stress and strain,  

G=
𝜎

𝛾
                                                                                                                                             (2.4)  

and describes the elastic character of the material. To obtain information 

about both the elastic and viscous response at once, small amplitude 

oscillatory shear deformation is applied to a test viscoelastic material. In 

that case, the modulus of eq (2.4) becomes the complex modulus G* and 

consists of two contributions, the in-phase storage modulus (G’) and the 

out-of-phase loss modulus (G’’). In the case of storage modulus being 

larger than the loss modulus the sample can be categorized as viscoelastic 

solid. On the other hand, when loss modulus exceeds the storage modulus 

the material will be categorized as viscoelastic liquid. The loss factor is the 

ratio between the loss modulus and storage modulus and is used to 

describe the ratio of the two portions of the viscoelastic behavior and is 

dimensional.  

Figure 2.3. Two plate model used to define the shear strain [2]. 
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tan⁡(𝛿)=
𝐺′′

𝐺′
                                                                                                                            (2.5) 

 

Given that polymers are characterized by multiple time and length scales, 

we use the storage modulus and loss moduli as functions of the imposed 

frequency of the oscillatory deformation to create a master curve. The 

frequency represents the inverse experimental time scale within which 

the material response is probed, and relates to the length scale associated 

with that response. Hence, the master curve represents that equivalent 

of a spectroscopic information and this type of linear rheological 

measurement is often referred to as mechanical spectroscopy. Figure 2.4 

shows a typical master curve which is decided in different sections as 

described now. 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

At the lowest frequencies, in the so-called terminal region, the loss 

modulus (G’’) dominates over the storage modulus (G’), indicating a 

viscoelastic liquid-like behavior. With respect to their frequency 

dependence, the storage modulus (G’) exhibits a power-law slope of 2, 

and the loss modulus (G’’) of 1. On increasing frequency beyond the 

Figure 2.4. A complete master curve [3]. 
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terminal crossover of the moduli, a plateau region is observed which 

reflects the rubbery behavior of the material with G’>G’’. It is followed by 

an intermediate transition regime with local (high frequency, small 

length) liquid-like response and ultimately the glassy region, where solid-

like behavior dominates5. At the terminal region polymers can flow and 

the chains relax. The plateau range varies and depends on the molecular 

weight. 

 

2.2 Rouse model6 
The description of polymer dynamics is based on coarse graining, and the 

bead-spring models where the friction is equidistributed along the chain 

represent the current state of the art in molecular modeling. For 

unentangled chains, the Rouse model represents a chain by a sequence 

of N (degree of polymerization) beads which are connected by springs size 

b (monomer). The model assumes ideal chains (conforming to the model 

of Kuhn) and ideal conditions no enthalpic or topological interactions. 

 

 

 

 

 

 

 

The chains experience a frictional force proportional to their velocity and 

the total friction coefficient of the Rouse chain is the sum of the 

contributions of each of the N beads given by: 

 ζR=N*ζ (2.6) 

The diffusion coefficient of the Rouse chain is given by the Einstein 

relation:  

DR=
𝐾𝛣𝑇

𝜁𝑅
                                                                                                                                       (2.7). 

Figure 2.5. A chain of N monomers is mapped into a bead-
sprig chain of N beads connected by N-1 springs.4  



11 
 

The Rouse time (τR), is the ratio between the mean square displacement 

of the chain (with end-to-end distance R) and the diffusion coefficient of 

the chain. So, Rouse time is given by the following equation: 

 τR=
𝑅2

𝐷𝑅
=
𝜁𝛮𝑅2

𝐾𝑇
= 𝜏𝜊𝑁

2                                                                                                                (2.8). 

Where το is the relaxation time of the Kuhn monomer  

 

τ0≈
𝜁𝑏2

𝐾𝐵𝑇
≈

𝑛𝑠𝑏
3

𝐾𝐵𝑇
                                                                                                                                    (2.9) 

For times smaller than τR, polymers have a viscoelastic behavior and for 

times longer than τR, the polymers exhibit the response of a liquid.  

 

2.3 Zimm model6 
The Rouse model works for unentangled polymer melts but not for dilute 

polymer solutions (isolated coil). In the latter case, the model of Zimm 

takes into consideration the hydrodynamic interaction which is the long-

range force acting on a particle, mediated solvent that arises from motion 

of one particle.  

The friction coefficient of the chain depends on the viscosity of the solvent 

ηs and is given by Stokes law: 

ζΖ=ηsR                                                                                                                                     (2.10) 

The diffusion coefficient of a chain in the Zimm model is: 

Dz≈
𝐾𝐵𝑇

𝜂𝑠𝑅
                                                                                                                                    (2.11) 

The Zimm relaxation time given by the model: 

τz≈
𝑅2

𝐷𝑧
≈

𝜂𝑠𝑅
3

𝐾𝐵𝑇
≈ 𝜏𝜊𝛮

3/2
                                                                                                                                                                    (2.12) 
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2.4 Tube model  
The diffusion of a long test chain in a dense polymeric system is highly 

constrained. The chain is entangled with the neighboring  chains, and its  

lateral motions are topologically prohibited  as shown in figure 2.6 below.7 

 

 

 

 

 

 

 

 

 

The constraints exerted by the neighboring chains onto the test chain, can 

be described by the tube model and the inhibition of later motion is the 

so-called uncrossability condition. The tube concept due to Edwards, 

opened the route for the successful description of the complication 

motion of long chains in a sea of entanglements. This is the so-called 

reputation model of De Gennes.. 8,9 

 

 

 

 

 

 

 

 

 

Figure 2.6.A test chain (thick line) confined by neighboring 
chains (thin line)5 

Figure 2.7 : Schematic representation of a chain in 

the tube. Real chain: thin broken line; primitive 

path: thick line; entanglements: dotted line [7].  
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The chain is constrained within the tube, whose curvilinear axis is the 

primitive path of the chain. The primitive path comprises a sequency of 

blobs, each have degree of polymerization Ne=
𝑀𝑒

𝑀𝑜
 (of an entanglement 

segment). The tube diameter α (locus of constraints by neighbors) is the 

blob diameter, shown in figure 2.8 and is given by 

 α≈ 𝑏
𝑀𝑒

𝑀𝑜
                                                                                                                               (2.13)  

where Me is the entanglement spacing and Mo is the molecular weight of 

a Kuhn monomer of size b.10 

 

 

 

 

 

 

 

 

 

The primitive path of the tube consists of N/Ne parts of size α, so 

eventually, we can write the following equation about its end-to-end 

distance: 

L≈α (
𝑁

𝑁𝑒
)                                                                                                                                (2.14) 

The relaxation of a chain in a tube is performed via curvilinear diffusion of 

the primitive path and the process is known as reptation. Every time a 

portion of the tube is vacated by the chain, that portion of the tube is 

“forgotten” as shown in figure 2.9 

Figure 2.8.A sketch of tube showing definitions of length scales in the tube model 7 
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The curvilinear diffusion coefficient, Dc, is given by: 

Dc=
𝐾𝐵𝑇

𝑁𝜁
                                                                                                                                 (2.15)  

The time it takes for the chain to diffuse out of the tube is called reptation 

time: 

τrep≈
𝑅2

𝐷𝑐
≈
𝜁𝑏2𝑁3

𝑘𝐵𝑇𝑁𝑒
=
𝜁𝑏2

𝑘𝐵𝑇
∙ 𝑁𝑒

2 ∙ (
𝑁

𝑁𝑒
)3                                                                                        (2.16) 

 

Note that, experiments showed that beyond a critical value of molar mass 

MC≈ 𝑀𝑒 the relaxation time scales as τ ~M3,4 where the difference 

between 3 and 3.4 is significant for large M. The reason for this mismatch 

is that the action of additional relaxation mechanisms, in particular 

contour length fluctuations (pioneered by Doi based on early ideas of De 

Gennes) and constraint release (pioneered by Rubinstein, Colby, De 

Cloizeau and Tsenoglou 6. Figure 2.10 shows zero shear viscosity data 

collected by Berry and Fox on a wide range of polymeric systems, where 

it can be noted that above a critical value of molar mass the slope from 1 

(Rouse) increases to 3.4 for a wide range of polymers. This trend was 

found independent on the polymer chemistry. 

Figure 2.9. Reptation model, the parts that are left empty disappear6. 
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Concerning the mechanism of “contour-length fluctuations” (CLF), seen in 

figure 2.11, the action is at the chain end-segments which have more 

degrees of freedom and relax faster compared to the central segments 

which reptate. Hence the overall chain relaxes faster with partial 

reputation and CLF compared to full reputation. In addition, since the 

portion of end-segments changes with M, the M-dependence of this 

combined relaxation is stronger compared to full reputation.  

 

 

Figure 2.10. Relationship between zero-shear viscosity and molecular weight for 
several nearly monodisperse melt samples where we can see that from a critical 
molar mass, Mc, the slope from 3 goes to 3,4. 7 
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Figure 2.11 : Contour Length Fluctuations process [7] 
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3. Materials and methods 

 

The samples used in this work are polystyrenes, synthesized by radical 

polymerization and have been provided by Professor Michael Monteiro 

from the University of Queensland, Australia. The samples are 

polydisperse linear polymers and their blends. Details about the samples, 

the polydispersity index (PI) and glass transition temperature of the 

samples are provided in Table 1. 

 
Table 1: List of samples and their characteristics in this thesis. 
 

 
 
The Gel permeation chromatography (GPC) method is used widely to 

measure molecular weights of linear polymers. High-quality GPC data 

contains detailed information on many aspects of the polymer's 

molecular weight distribution (MWD)11. Gel permeation 

chromatography (GPC) is a type of size-exclusion chromatography (SEC), 

that separates analytes on the basis of size. The separation is based on 

the elusion time of the different sizes. Figure 3.1 shows the MWD of SB5 

and its pure components as well as the fraction of each component for 

the preparation of the blend. The rest of the GPC figures are presented in 

the Appendix. 

SAMPLES Blend composition 
(mg) 

Mn 
(g/mol) 

PI Tg (oC) 

SB1 A (28.1) D (71.7) 6200 2.41 88 

SB2 B (37.3) E (62.7) 22460 2.50 97.5 

SB3 C (16.7) D (45.8) E (37.5) 16590 2.64 96 
SB4 C (23.4) D (13.1) F (64.0) 30670 2.92 99 

SB5 A (49.8) B (21.1) E (28.9) 5710 5.30 89 
S6 A 3240 1.84 77 

S7 B 11870 1.85 95 
S8 C 21230 1.81 99 

S9 D 9090 1,95 95 

S10 E 41450 1.85 103 
S11 F 70400 1.82 104 
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The glass temperatures values (Tg) were measured by means of 
differential scanning calorimetry (DSC). Figure 3.2 exhibits all the Tg traces 
for all samples, for the second run of the heating scans at 10 oC/min. 
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Figure 3.12.DSC heating curves of all the samples studied. The curves are the 
second heating scans at 10 oC/min 
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Figure 3.1. MWD of samples SB5, S6, S7 and S10 and their fractions in the blend. 
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The samples were shaped in a disc form with the hydraulic press and 

placed in the oven for annealing overnight under vacuum at 150 oC. 

Afterwards the samples were reshaped to 8mm or 4mm discs using the 

hydraulic press under vacuum. The samples were heated to Tg+50oC for 

30 minutes. Subsequently the samples were pressed using either the 

hydraulic press or the manual press in order to reach their final shape. 

This procedure was necessary to ensure that the samples were 

completely homogenous and without any form of air bubbles inside of the 

disc. We faced some difficulties in sample preparation especially the low 

molecular weight samples because they were difficult to handle as they 

were very brittle and broke quite easily. 

 
 

3.1 Rheological Measurements 

 
Rheological measurements were performed on a strain-controlled ARES 

rheometer (TA Instruments) equipped with a force rebalance transducer 

2KFRTN1 and a convection oven, ensuring accurate temperature control 

(0.1±oC). For the experiments, a stainless-steel plate-plate geometry see 

figure 3.3 with diameters of 8mm and 4mm diameter was used. The 4mm 

geometry was necessary for low-temperature measurements near the 

glass transition, where the sample became stiff.  The samples were loaded 

into the rheometer and allowed to melt and homogenize at temperatures 

ranging from 140oC to 160oC for around 60 min. In addition, a, MCR 702 

rheometer (Anton Paar) operating in the strain-controlled mode, was also 

used. This rheometer is equipped with a CTD-180 hybrid oven, which 

provides a temperature control (±0.1oC) by means of Peltier and 

convection system. The same procedure as with the ARES rheometer was 

followed.  
12 
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As already mentioned, for stiff samples we chose a 4 mm diameter plate 

to reduce the effects of the instrument compliance (further details are 

provided below). On the other hand, the 8 mm plate was used for the 

highest temperatures of the measurements mainly for the fact that with 

the 8mm we had better torque resolution.  

 
 
For the nonlinear rheological measurements, a cone partitioned plate 

(CPP) geometry was utilized, figure 3.4 and figure 3.5. Rheological 

measurements were performed on a strain-controlled ARES rheometer 

(TA Instruments) which the CPP was mounted. A correct and good 

alignment of inner and outer partition was ensured before we proceeding 

with the rest of the experiment. The whole setup was left in the oven for 

at least 45 minutes for thermal equilibration and subsequently we 

calibrated the gap at the chosen temperature. Afterwards we proceeded 

with the loading of the sample and annealing it for at least one hour for 

sample thermal equilibration. Then we proceed with adjusting the gap to 

the appropriate value, paying close attention to the normal force, which 

should not exceed the equivalent of 100g in weight. Finally, we were 

ready to proceed with the measurements. 13,14 

 

Figure 3.13. Parallel plate geometry 

[1] 
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For these measurements the temperature of choice was selected from 

the linear viscoelastic data. We targeted an appropriate temperature 

where samples exhibit both a solid-like and a liquid-like behavior (i.e., 

viscoelastic). We used 4 mm and 6 mm diameter discs. However, 

obtaining good and reliable data from the non-linear measurements is not 

something easy. In general, the sheared viscoelastic material may be 

prone to instabilities such as fracture of the sample’s edge (at the 

material/air interface), wall slip and shear banding. Shear banding is 

observed when two different shear rate regions form with different 

velocity profiles under the same externally imposed shear field.. 15 

 

 
 
 
 
 
 
 
 
 
 

Figure 3.14.C the loaded sample, D 
the outer stationary ring 
(partitioned-plate), E the gap 
between the outer ring and the 
upper plate [2] 

Figure 3.15. Cone partition plate setup [3] 

Figure 3.16. (a) wall slip and (b) shear banding [4] 
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Wall slip is usually caused by large velocity gradients in a thin region 

adjacent to the wall shown in figure 3.6. When wall slip occurs, the 

measured viscosity can be significantly lower than the actual viscosity of 

the sample. To overcome this effect, roughened surface are typically 

used16. Edge facture has been studied over the years and the key finding 

is that it originates from the second normal stress difference N2 when it 

exceeds the respective stress associated to the interfacial tension at this 

edge.17 Figure 3.7 is a visual representation. At high rates the edges of the 

sample start to deform inside the sample. This leads to fracture 

propagating inside the sample affecting the measurement.  

 
 

 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17. (a) A visual show of the edge fracture in cone plate[2]. (B) an image of 
edge fracture in a sample. 

(b) 
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The specific tests performed are described below. 

 

3.1.1 Dynamic Strain Sweep (DSS) Tests 

 

During the strain sweep tests the angular frequency and temperature 

were held constant throughout the measurement and the strain 

amplitude varied. At low values of the strain amplitude, the values of the 

storage and loss moduli G’(ω) and G’’(ω) respectively do not depend on 

the strain. This is the linear viscoelastic (LVE). Beyond a critical value of 

the strain the moduli of G’ and G’’ are not constant anymore, see figure 

3.8. This marks the non-linear viscoelastic region, where the structure 

(e.g., chain conformation) of the sample is affected. From the DSS tests 

we were able to determine the value of strain in which we are in the linear 

viscoelastic regime, to perform LVE measurements. 
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Figure 3.18. Dynamic Strain Sweep Test Sample 7 12.000Kg/mol at T=150 oC and 
frequency 100rads/sec 
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3.1.2 Dynamic Frequency Sweep (DFS) Test and Time Temperature 

Superposition 

 

Here we keep a constant chain amplitude in the LVE regime and vary the 

angular frequency. In order to explore the time dependent deformation 

behavior. The DFS test provides the viscoelastic properties of a sample at 

different frequencies, which reflect relevant material timescales. Several 

parameters can be obtained, such as the Storage (Elastic) Modulus (G'), 

the Viscous (Loss) Modulus (G"), loss factor tan(δ) G’’/G’ where δ is the 

loss angle and the Complex Viscosity (η*), in the frequency ranged from 

102 rad/s to 10-2 rad/s. 

 

Time Temperature Superposition (TTS) is a well-known procedure to 

determine the temperature dependance of the rheological behavior of a 

polymer by expanding its dynamic range  at a given temperature at which 

we study the material.18 TTS is implemented by shifting the LVE data 

obtained at several temperatures to a common reference temperature 

(Tref) until they collapse based on the reference temperature. Data can be 

shifted with the use of horizontal shift factor (αT) and vertical shift 

factor(bT). Whereas this is an empirical approach ,αT reflects primarily the 

temperature dependence of the segmental friction coefficient19. The 

function αT is thus a very important one in describing the physical 

properties of a polymer system and determines the time scale and reflects 

the temperature dependence of diffusion coefficient D (with ζ being the 

monomeric friction). 

 

 (αT) =
𝐷(𝑇0)

𝐷(𝑇)
=
𝜁𝑇𝑜

𝜁𝜊𝑇
                                                                                                                      (3.1) 

 

The horizontal shifting was performed manually by shifting the data until 

they collapsed with each other. We calculated the horizontal shift factor 

αT relying to the tan(δ) plot versus frequency by overlapping the data of 

the selected range of temperatures to the selected reference one. 
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The vertical shift factor results from the temperature dependence of 

product of density and absolute temperature20. The modulus scale factor, 

bT is given from the equation: 

 

bT=
𝜌𝑟𝑒𝑓𝛵𝑟𝑒𝑓

𝜌∗𝛵
                                                                                                                             (3.2) 

 

where ρ is the temperature dependent density and for polystyrene is 

given by this equation:21 

 

ρ(Τ)= 1.2503 − 6.05x10-4Τ[Κ] in g/cm3                                                                             (3.3) 

 
 
The true shear strain applied to the sample is always lower than the 

command (motor) strain because the test fixtures and the torque 

transducer are also deformed by the stress, required to shear the sample. 

If the sample/ geometry configuration is stiff compared to the instrument, 

instrument compliance effects become significant and need to be 

corrected.22 

In order to correct the instrument compliance, we use the following 

equations:  

𝐺′𝑠 =
𝐺′𝑚(1−

𝐽𝑖
𝑘𝑔
𝐺′𝑚)−

𝐽𝑖
𝑘𝑔
𝐺′′𝑚

2

(1−
𝐽𝑖
𝑘𝑔
𝐺′𝑚)2+(

𝐽𝑖
𝑘𝑔
𝐺′′𝑚)2

          for the storage modulus G’                                    (3.4) 

 

𝐺′′𝑠 =
𝐺′′𝑚

(1−
𝐽𝑖
𝑘𝑔
𝐺′𝑚)2+(

𝐽𝑖
𝑘𝑔
𝐺′′𝑚)2

          for the loss modulus G’’                                            (3.5)  



26 
 

Where J=
𝛩

𝛭
  is the compliance represented by the ratio between the 

deflection angle and the torque, and, Kg=
2ℎ

𝜋𝑅4
 , h is the measuring gap and 

R is the radius of the geometry used in the measurement. 

 

  

 

Figure 3.9 is a representation of the compliance correction, figure 3.9(a) 

is the compliance correction of the tan(δ) and figure 3.9(b) is the 

compliance correction of Storage and loss modulus. This procedure was 

performed for all samples.  
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Below there is a demonstration of the Time Temperature Superposition 

(TTS), figure 3.10, where the resulting shifted data form the so-called 

master curve, figure 3.11. 
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For sample comparison, we compared all the samples at the same 

distance from their glass temperature, Tg+30oC. For this we used the 

Williams-Landel-Ferry (WLF).  

 

For the horizontal shift factor (frequency axis) αΤ: 

 

𝑙𝑜𝑔𝑎𝑇 = −
𝑐1(𝑇−𝑇𝑟𝑒𝑓)

𝑐2+(𝑇−𝑇𝑟𝑒𝑓)
                                                                                                        (3.6) 

 

where c1 and c2 are constants (specific for each chemistry). 19 

 

In this work the selected reference temperature was selected is 

Tref=Tg+30oC and the new C1
’ and C’

2 is given by23: 

 

 

    C1
’= 

𝐶1𝐶2

𝐶2+(𝑇𝑟𝑒𝑓
′ −𝑇𝑟𝑒𝑓)

  (3.7)   and        C2
’=𝐶2 + (𝑇𝑟𝑒𝑓

′ − 𝑇𝑟𝑒𝑓) (3.8) 

 

 

3.2 Relaxation times  
  

  

  

  

  

  

  

  

  

 

 

Figure 3.22.Master curve at 25 C from oscillatory shear data at six temperatures for a 
1,4-polybutadiene sample with Mw=130000 g mol-1. Figure from R.H. Colby, L.J. 
Fetters and W.W. Graessley, Macromolecules 20.226(1987) 
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The relaxation times shown in the figure 3.12 above are the τrep (also can 

be referred to as τD) which is the reptation or disengagement time, τR 

which is the Rouse relaxation time where τR=τe*Z2 and Z is the number of 

entanglements. In addition,  τe is the Rouse time of an  entanglement 

segment (marking the onset of the entanglements regime), finally το is the 

relaxation time of Kuhn monomer.6 

 

3.3 Step Rate Test  
During the step rate tests the applied continuous shear rate was held 

constant throughout the measurement, and the transient stress (known 

as shear stress growth function) and viscosity (known as shear stress 

growth coefficient) values was measured over a set period of time. After 

the selected measuring period the shear rate was set to zero and we 

monitored the relaxation of the sample for at least 5 to 10 minutes. In the 

figure 3.13 below the dashed blue line is the end of the application of the 

shear rate and the start of the relaxation time of the sample. 
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To compare the non-linear responses of different samples/temperatures, 

we used the Weissenberg Number (Wi) for each specific sample. The 

Weissenberg Number is a dimensionless number used in the study of 

viscoelastic flows and is given by the equation: 

Wi=
𝑒𝑙𝑎𝑠𝑡𝑖𝑐⁡𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠⁡𝑓𝑜𝑟𝑐𝑒𝑠
=τ𝛾̇                                                                                                               (3.9) 

Here, τ is the characteristic time, for instance in this work we used Rouse 

time τR 24 . 

 

3.4 Cox-Merz Rule 
The empirical Cox-Merz rule states that the shear-rate dependent steady-

state viscosity equals the frequency dependent complex viscosity, setting 

equivalence between shear rate and  angular frequency  ω.25,26 

η (𝛾̇) = η* (ω) when 𝛾̇=ω                                                                                                  (3.10) 

Where η* is the complex viscosity and is calculated through the ratio of 

the complex modulus (G*) over the frequency (ω) and  

G*=√(𝐺′)2 + (𝐺′)2                                                                                                          (3.11)  

The Cox-Merx rule has been validated for monodisperse linear polymeric 

melts. 

 

3.5 Molecular Models for linear Viscoelasticity 
 

3.5.1 Unentangled polymers  

The memory function of the Rouse model for a polymer chain with molar 

mass M is  

𝑓𝑅𝑜𝑢𝑠𝑒(𝑡,𝑀) = ∑ exp⁡ (
−𝑝2𝑡

𝜏𝑅(𝑀)
)∞

𝑝=1                                                                                   (3.12) 

By using the approach adopted by van Ruymbeke27 the Rouse time can be 

expressed as  

𝜏𝑅𝑜𝑢𝑠𝑒(𝑀) = 𝐾𝑀2                                                                                                            (3.13) 
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where K is a material coefficient which scales as 
𝜏𝑒(𝑇)

𝑀𝑒
2  , 𝑀𝑒 ⁡is the Kuhn 

molar mass of an entanglement segment, and τe is the relaxation time of 

entanglement strand. As 𝜏𝑒 ⁡depends on the temperature, K is a 

temperature dependent coefficient.  

The stress relaxation modulus G (t, M) for unentangled polymers is 

expressed as  

𝐺(𝑡,𝑀) = ∑
𝜌𝑅𝑇

𝑀
𝑓𝑅𝑜𝑢𝑠𝑒(𝑡,𝑀)𝑤(𝑀)

𝑀𝑚𝑎𝑥
𝑀𝑚𝑖𝑛

                                                   (3.14) 

Van Ruymbeke 27 reported K = 2x10-12 s (mol/g)2 for entangled 

polystyrenes at TPS = 170 °C. . In the present case, K takes the value of ~ 

2x10-9 s (mol/g)2 to obtain the best fit of the observed data. Some 

considerations on the K coefficient follow. The experimental  𝜏𝑒 is 0.002s 

at 150 °C 21,28 and the WLF constants at the same temperature are C1 = 7.2 

and C2 = 103K. It follows that 𝜏𝑒(170⁡°𝐶) = 0.00013 s, and therefore  

𝑀𝑒 = √
𝜏𝑒

𝐾
= √

0.00013

2×10−12
≅ 8.2⁡kg/mol. The latter seems to underestimate 

the experimental 𝑀𝑒 by a factor of about 2 For S11(entangled see table 

1), 𝜏𝑒(131⁡°𝐶) = 0.085  s. The ratio between the entanglement time, 

which also reflects the ratio of the K coefficients, at the two above-

reported temperatures, is 
𝜏𝑒⁡(131°𝐶⁡)

𝜏𝑒⁡(170°𝐶)⁡
≅ 654. This value is not very far from 

the ratio 
𝐾⁡(131°𝐶⁡)

𝐾⁡(170°𝐶)⁡
≅ 1000⁡found as a best fit of the observed data. 

 

3.5.2 Entangled polymers  

The relaxation dynamics of entangled polymers are predicted by the sum 

of three relaxation modes: 1) Fast Rouse, 2) Longitudinal modes, and 3) 

Reptation.  

The fast Rouse relaxation modes can be expressed by equation 3.15 

below, where M/Me is the number of entanglement strands per chain.  

 𝑓𝐹,𝑅𝑜𝑢𝑠𝑒(𝑡, 𝑇,𝑀) =
𝑀𝑒

𝑀
∑ 𝑒𝑥𝑝 (−

2𝑝2𝑡

𝜏𝑅(𝑇,𝑀)
)𝑀

𝑝=𝑀/𝑀𝑒
            (3.15) 
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Importantly, here we consider 𝜏𝑅(𝑀) = 𝜏𝑒𝑀
2/𝑀𝑒

2, with  𝜏𝑒 ⁡being the 

experimental value and  𝑀𝑒  equal to 17.5 kg/mol.  

 

The longitudinal mode function (along the confining tube) can be 

described as Rouse modes. It was analyzed by Likhtman, Milner and 

McLeish29,30 and originates from the fact that because different tube 

segments before deformation are oriented differently, they also stretch 

differently, hence, redistribution of monomers along the tube takes place 

after the deformation. It was shown30 that these relaxation modes 

contribute to the relaxation of 1/5 of the total stress stored in the tube.  

𝑓𝐿𝑜𝑛𝑔(𝑡,𝑀) =
𝑀𝑒

5𝑀
∑ 𝑒𝑥𝑝 (−

2𝑝2𝑡

𝜏𝑅(𝑀)
)

𝑀/𝑀𝑒−1
𝑝=1                                                                     (3.16) 

   

Both fast Rouse and longitudinal modes are active for relaxation times up 

to the Rouse time of the chain. Note that the glassy dynamics at high 

frequencies is not considered in the present work. 

The Rouse contribution to the stress relaxation modulus  𝐺𝑅𝑜𝑢𝑠𝑒(𝑡,𝑀)  for 

entangled polymers writes  

 𝐺𝑅𝑜𝑢𝑠𝑒(𝑡,𝑀) = ∑
𝜌𝑅𝑇

𝑀𝑒
[𝑓𝐹,𝑅𝑜𝑢𝑠𝑒(𝑡,𝑀) + 𝑓𝐿𝑜𝑛𝑔(𝑡,𝑀)]𝑤(𝑀)

𝑀𝑚𝑎𝑥
𝑀𝑚𝑖𝑛

          (3.17) 

 

where ρ is the polymer density, R is the universal gas constant, and  

𝑤(𝑀) = 𝑑𝑊(𝑀)/𝑑𝑙𝑜𝑔(𝑀)  with  the weight fraction of all chains having 

a molar mass below M.  

 

The entanglement relaxation function can be expressed by the time-

dependent diffusion model derived by des Cloizeaux31. 

𝐹𝑇𝐷𝐷(𝑡,𝑀) =
𝜋

8
∑

1

𝑝2
exp⁡(−𝑝2𝑈(𝑡))𝑝⁡𝑜𝑑𝑑                                                    (3.18) 

The function U(t) writes as  

𝑈(𝑡,𝑀) =
𝑡

𝜏𝑟𝑒𝑝
+

𝑀𝑒

𝑀
𝑔 [

𝑡𝑀

𝜏𝑟𝑒𝑝𝑀𝑒
]                                                                (3.19) 
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and  

𝑔(𝑦) = ∑
1−exp⁡(−𝑛2𝑦)

𝑛2
∞
𝑛=1                                                                              (3.20) 

 

The reptation time (which encompasses non-reptative mechanisms as 

well) is defined as 

𝜏𝑟𝑒𝑝(𝑀) = 𝜏𝑒 (
𝑀

𝑀𝑒
)
3.4

              (3.21) 

The first term of equation 3.19 identifies the relaxation by reptation, 

whereas the second term represents the contributions of contour length 

fluctuations.  

The reptation contribution to the total stress relaxation modulus can be 

expressed as follows:  

𝐺𝑟𝑒𝑝(𝑡,𝑀) =
𝜌𝑅𝑇

𝑀𝑒
∑ [𝐹𝑇𝐷𝐷(𝑡,𝑀)]

𝛽𝑤(𝑀)∞
𝑀𝑒

                                                   (3.22) 

where the exponent β is set to a value of 2, according to the double 

reptation concept32. It is now possible to evaluate the total stress 

relaxation modulus by summing equations 3.17 and 3.21: 

𝐺(𝑡,𝑀) = 𝐺𝑅𝑜𝑢𝑠𝑒(𝑡,𝑀) + 𝐺𝑟𝑒𝑝(𝑡, 𝑀)                                                   (3.23) 

For samples (like SB2) which are at the limit between an entangled and an 

unentangled regime, a different approach to fit the data was used. 

Indeed, using the unentangled approach, faster dynamics are obtained. 

Conversely, by using the entangled model, dynamics are overestimated. 

To this end, the total stress relaxation modulus was calculated as the sum 

between the fraction of the short chains, multiplied by the effective 

unentangled modulus, and the fraction of the long chains, multiplied by 

the entangled modulus.  

𝐺(𝑡,𝑀) = 𝜙𝑢𝑛𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑𝐺𝑢𝑛𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑(𝑡, 𝑀) + (−𝜙𝑢𝑛𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑)𝐺𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑(𝑡,𝑀) 

(3.24) 
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4. Results and Discussion 

4.1 Linear Regime 

For the oscillatory measurements the temperature was ranging from 90oC 

to 160oC. At higher temperatures the materials exhibit a liquid-like 

behavior whereas at the lowest temperatures they exhibit a solid-like 

behavior. A DSS (Dynamic Strain Sweep) test was performed in order the 

determine the linear viscoelastic regime, at ω=100rad/s and a strain 

amplitude ranging between 0.1% and 12 %. The DSS was followed by the 

DTS (Dynamic Time Sweep) at 10 rad/s in the LVE regime. The duration of 

the test depended on the sample and the temperature and was at least 

45 minutes. Finally, linear viscoelastic (LVE) spectra were obtained by 

means of DFS (Dynamic Frequency Sweep) tests. This procedure was 

followed for all the samples and at each temperature. The range of the 

temperatures depended on the sample. Typically, the full linear 

viscoelastic spectrum (master curve), from the glassy regime to the 

terminal flow was attained by creating master curves using TTS at a 

reference temperature is Tg+30oC. 
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S11 (70k) and S10 (40k) have a rubbery plateau region since the molecular 

weight is higher than the entanglement molecular weight of 

Me=17kg/mol for polystyrene. On the other hand, there is no plateau for 

the rest of the samples as shown in the figures 4.1 and 4.2 as the 

molecular weight of the samples is smaller than the entanglement 

molecular weight for polystyrene. The master curves shown in Figure 4.2 

demonstrate a primarily viscous response to the deformation, as G’’ 

remains higher than G’ at nearly all frequencies. In figure 4.3 below the 

vertical shift factor bT and the horizontal shift factor aT for all the samples 

are depicted, at a common reference temperature of 130 oC. 
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Figure 4.3 (a) Horizontal shift factors and (b) vertical shift factors at a common 
temperature of 130 C 
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A sensitive indicator of the quality of the LVE master curve is the Van 

Gurp-Palmen plot, which presents the phase angle (δ) versus the complex 

modulus G*. The overlapped data validity of time temperature 

superposition principle18 for the specific polymeric systems. In the figure 

4.4 below the blue dashed line shows the entanglement rubbery plateau 

at the value δmin which decreases as the molecular weight increases and 

the material exhibits more extended elastic response, always with the 

same rubbery plateau modulus. On the other hand, for the unentangled 

linear polymers δmin is related with steady state recoverable compliance 

Js. As the molecular weight decreases the minimum appears at a higher 

modulus since the compliance can be expressed as inverse modulus and 

the value of the phase angle increases (for instance S6 3k and the system 

is completely liquid-like). 

 

 

The figure 4.5 below depicts the complex viscosity master curves of the 

pure (single component) polystyrenes and as well as their blends. At high 

frequencies the curves overlap because of the same segmental behavior. 

All individual samples have a clear rubbery plateau, whereas this is not 

the case for the blends. We can observe that the samples with the higher 

molecular weight have larger complex viscosity, as expected. In the high 

frequency region above the plateau, the viscosity scaling with frequency 

(S11 and S10) conforms to the Rouse prediction of η*~ ω-1/2. On the other 
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hand, the power-law exponent for the unentangled polymers ranges from 

-0.32 to -0.37. This scaling is consistent with the Zimm model33, η*~ ω-1/3. 

 

   

 

We also calculated the zero-shear viscosity. The zero-shear-rate viscosity 

(often called zero-shear viscosity) is a widely used and fundamental 

descriptor of the flow resistance of a fluid. It is important for 

characterizing rheological response at low stress and for examining the 

influence of molecular architecture on resistance to flow. The zero-shear-

rate viscosity is a limiting value that cannot be measured directly; rather, 

it must be estimated by extrapolation. The value determined by 

extrapolation will depend on the viscosity model used, and the range and 

quality of the data used for the extrapolation and the error can be large.34 
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From the literature10 we know that zero-shear viscosity dependence on 

Mw for linear polymer chains follows a trend described by a function like: 

η0=ΚMw
α where alpha is 3.4 for Mw>Mc for monodisperse systems. From 

the figure 4.6 above we can see that the blends with large polydispersity 

significantly deviate from the predicted slopes. This is not something that 

we didn’t expect since as Graessley showed35, the Doi Edwards tube 

model predicted a strong dependence of zero shear viscosity on MWD but 

for polydisperse systems it is essential to account for constraint release. 

Over the years there have been numerous attempts to determine the 

effect of polydispersity on η0 but there is not yet a clear result. In the 

figure 4.6 above we can observe the two stars symbols (open and closed), 

these samples have the same average molecular weight but different 

molecular weight distributions and polydispersity.  

Polymer molecular weight is defined as a distribution rather than a 

specific number because polymerization occurs in such a way to produce 

different chain lengths. Weight average molecular weight (MW) 

and number average molecular weight (MN) are some of the ways we can 
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characterize the polymer molar mass36. The Gel permeation 

chromatography (GPC) method is used widely to measure molecular 

weights of linear polymers. High-quality GPC data contains detailed 

information on many aspects of the polymer's molecular weight 

distribution (MWD)11. Gel permeation chromatography (GPC) is a type 

of size-exclusion chromatography (SEC), that separates analytes on the 

basis of size. The separation is based on the elusion time of the different 

sizes. The relation between these times and sizes is expressed in the figure 

4.7 as distribution. Figure 4.7 exhibits the MWD of SB1 and SB5 and the 

dashed line represents the average Mn of the samples (Table 1). In order 

to quantify the polydispersity of samples SB5 and SB1 with the same Mw 

average, we used a ratio of long chains over short chains. To do so, we 

divide the MWD in two areas. Area 2 is considered to have the short 

chains and area 1 the long ones. With the use of peak analysis for these 

samples, we calculated the area (1) above the average molecular weight 

(dashed line) and the area (2) below for both samples.  
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pFor SB5 the area 1 shown in figure 4.7(a) was calculated with the use of 

peak analysis and was estimated to be around 0.853 whereas the area 2 

shown in the same figure was estimated to be 0.265. The ratio of area 1 

by area 2 for SB5 is 3.21. The same procedure was followed for SB1 shown 

in figure 4.7(b) and the ratio of the area 2 by area 1 for SB1 is 2.39. The 

results of the calculations are shown in table 2 bellow. Based on this we 

conclude that SB5 has more long chains in comparison to SB1 since the 

ratio of SB5 is larger than SB1. This phenomenon led to SB5 having an 

increase in the viscosity in comparison to SB1, as we can see in the figure 

4.6. 

Table 2: Calculation of different areas in the MWDs reported in figure 4.7. 

 
 
 

Finally, we present the comparison between the linear viscoelastic 

experiments and the theoretical models, in terms of stress relaxation 

modulus, G(t), as a function of time. The challenge here was to account 

for the polydispersity of the samples and the complex MWD obtained by 

means of the blends (Table 1 in materials and methods). As reported in 

the previous chapter, we adopted two molecular models, one describing 

the unentangled polymers (Rouse) and one for the entangled systems 

(double Reptation). Each model uses as an input the experimental 

molecular weight distribution. The Glassy modes were excluded in both 

models. As shown in the materials and methods chapter in Table 1 S11, 

S10 and SB4 are entangled whereas the rest of the samples in this work 

are unentangled. For the modeling we included the experimental MWD, 

the entangle polymers were modelled with the use of double reptation 

model using equations 3.21 and 3.22 and there are no fitting parameters. 

We consider 𝜏𝑅(𝑀) = 𝜏𝑒𝑀
2/𝑀𝑒

2, with  𝜏𝑒 ⁡being the experimental value 

and equal to 0.085 at Tg+30oC, 𝑀𝑒  equal to 17.5 kg/mol and β the double 

 SB5 SB1 

Area 1 0.853 0.708 
Area 2 0.265 0.296 
𝑨𝒓𝒆𝒂⁡𝟏

𝑨𝒓𝒆𝒂⁡𝟐
 

3.21 2.39 
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reptation exponent equal to 2. On the other hand, for the unentangled 

polymers we only had one fitting parameter, K which is a material 

coefficient taking the value of of ~ 2x10-9 s (mol/g). This parameter is 

temperature and chemistry dependent and was found in close agreement 

with that reported in the literature27 for polystyrene but at different 

temperature. The difference in our value of K in comparison to the value 

from the literature is mostly associated to the difference in τe because of 

the temperature. These samples were a good model system to test the 

mechanical models with complex MWDs and as seen in figure 4.8 it is 

possible to use such models to describe the dynamics with blends with 

complex distribution. For SB5 the model seems to predict a high-M mode 

which is due to the tail of the MWD, experiments in higher temperatures 

in order to extend the low frequency region may be useful and performed 

in the future. SB2 which is at the limit between an entangled and an 

unentangled regime, a different approach to fit the data was used. We 

used equation 3.24 and the mass fraction for equation 3.22 was taken 

from table 1. 
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Figure 4.8. Shifted stress relaxation modulus as a function of shifted time. Symbols 

and lines represent observed data and theoretical predictions, respectively. The 

panel (A) refer to the individual polymers, whereas panel (B) to the blends 
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4.2 Nonlinear Regime 

With the use of CPP geometry we performed nonlinear shear 

measurements for 3 entangled polystyrene samples, single components 

S11 70k, S10 40k and blend SB4, as well as 4 unentangled samples ranging 

from 12k to 22k. For each sample we performed start-up of shear rate 

tests at different shear rates and a temperature of choice, based on the 

LVE. The selection criterion was for the sample to exhibit viscoelastic 

behavior and Weissenberg number exceeding the value of 1. Figure 4.9 

represent the shear data expressed by the transient shear viscosity over 

the time at various shear rates. The navy, red, blue and purple lines are 

the transient viscosity and the black lines are the linear viscoelastic 

envelope obtained by dynamic frequency sweep tests. 
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At the lowest shear rates, the response of the polymers is linear, as 

confirmed by the coincidence of the steady shear data with the LVE 

envelope, extracted from the dynamic oscillatory data. As the shear rate 

increases the transient viscosity (shear stress growth coefficient) exhibits 

an overshoot which becomes more pronounced,37 before reaching the 

steady-state value. At lower molecular weights we can also observe an 

undershoot14 after the overshoot and before the steady state. This is 

clearly evident at the highest rate of S8 and S7. We can also note that all 

four samples obey the empirical Cox-Merz rule as shown in figure 4.10.  
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Closer inspection of figure 4.10 suggests that at low frequencies we there 

is a small deviation of the steady data from the respective LVE data. 

However, the deviation between the two data sets is below 20% (with 

respect to the LVE data), and if we take into consideration experimental 

uncertainties (including alignment of the tools and sample loading), we 

conclude that this mismatch is minimum.  

Similarly, to the individual samples, the blends investigated also exhibit a 

transient viscosity overshoot as the shear rate increases. As the shear rate 

increases, we can observe the overshoot more clearly. Figure 4.11 

represent the shear data expressed by the transient shear viscosity over 

the time at various shear rates. The pink, olive and violet lines are the 

transient viscosity and the black lines are the linear viscoelastic envelope 

obtained by dynamic frequency sweep tests. 
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The validity of the Cox Mertz rule for all blends is demonstrated in figure 

4.12. Here, the data collapse at low frequencies for SB3 and SB4. Whereas 

a small deviation is observed for SB2. Again, it does not exceed the 20% 

and is attributed to experimental uncertainties. 
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In order to compare the nonlinear data quantitatively, we analyze them 

and discuss below the parameters extracted from the transient viscosity 

signal.  

In the figure 4.13 bellow we have plotted the strain at overshoot as a 

function of the Weissenberg number based on the Rouse time. We 

observe that for the entangled samples, at low WiR values (typically up to 

1) S11 70k and S10 40k, the value  γmax follows the dashed black line which 

is the well-known Doi-Edwards value of 2.338. For faster flows where the 

WiR is greater than 1, γmax increases because there is chain stretching. In 

figure 4.13 the green dashed line is the expectation for monodisperse 

samples, we observe that S11, S10 and S8 which have a low polydispersity 

index value follow this slope. Whereas SB4, SB3 and SB2 that have an 

increased polydispersity index do not follow this slope and seems that 

their slope has increased. 
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In order quantify the average loss of entanglements at steady state we 

plot in figure 4.14 the ratio of the value of ηmax by the ηsteady versus the 

Rouse Weissenberg number. For low values of Weissenberg number, the 

data seems to collapse at the value of 1 (no overshoot) of the ratio ηmax 

and ηsteady. For the entangled systems there is a slight increase with the 

increasing of the WiR with a slope of 0.239, whereas for the unentangled 

systems there is also in increase as the WiR increases but with a slope of 

0.1 as seem in figure 4.14. 

  

  

  

  

  

  

  

 

  

  

  

  

  

  

  

 

 

 

 

Next, we then proceeded to calculate the broadness of the viscosity peaks 

plotted against time for all samples. We calculated this by finding the ηmax 

and ηsteady for every peak and adding their values and then dividing them 

by 2. By this was we got the full width at half maximum (FWHM). In order 

to calculate the width of the curve we subtracted the viscosity value η2 

with the viscosity value η1. This is illustrated in figure 4.15. 
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The FWHM provides information about the process of flow-induced 

disentanglement and is plotted in figure 4.16 for all the samples as 

function of the shear rate. We compared our data with a monodisperse 

entangled sample from the literature seen in the figure 4.16 in purple 

spheres. 
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From the figure 4.16 above we can see that the data from the 

monodisperse sample in the literature collapse with those of our samples 

with the lowest polydispersity, but as the polydispersity of the sample 

increases, we observe an increase in the values of FWHM. For instance, 

SB3 and SB4 with polydispersity of 2.64 and 2.92, respectively, appears 

that have the highest values of FWHM. This is consequence of the fact 

that polydispersity affects the entanglements, and the effective flow-

induced disentanglement process is weaker. 

 

In continuation we plotted the FWM as a function of the Rouse 

Weissenberg number in figure 4.17. From the figure we can see that data 

follow the same trend as they did with the plot of FWHM as a function of 

the shear rate. Samples with the lowest polydispersity have low values of 

FWHM, whereas as the polydispersity of the samples increases the value 

of FWHM also increases. 
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The shear thinning behavior is clearly evidenced in the plot of the ratio of 

steady state viscosity by the zero-shear viscosity versus the Rouse 

Weissenberg number. Figure 4.18 shows that entangled and unentangled 

polymers represent two distinct groups. With the unentangled ones 

having a less sharp sheer thinning in comparison to the entangled ones. 

For the entangled systems, the slope of the high-shear-rate power law is 

-0.839. For the unentangled polymers the slope is -0.5. 
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5. Conclusion 
In this thesis we examined the linear and nonlinear rheological properties 

of linear polystyrene melts with varying molecular weight and molecular 

weight distribution (MWD). The molecular weight distribution was 

elegantly tailored by blending the pure components. The molar masses 

ranges from 3 to 70 kg/mol, and reasonably narrow molecular weight 

distribution (MWD), below 2. By mixing different polymers we obtain 

blends of different average MWD (up to 5.3).  Samples ranged from 

unentangled, to barely entangled, and fully entangled regime. The 

absence of entangles, reflected into a significant brittleness of the 

material. This consideration, in addition to the high sensitivity of the 

rheological results to the presence of air in the specimens, called for a 

meticulous sample preparation and measuring protocol. We showed that 

the linear and nonlinear shear rheology significantly affected the MWD. 

For the linear rheological measurements, we presented sample master 

curves which are characterized by the absence of a plateau in the 

intermediate zone and of a rubbery plateau for the unentangled samples. 

In order to be sure that the time-temperature superposition (TTS) that 

was employed to build the master curves at a reference temperature 

holds, we built the Van Gurp-Palmen plots and we verified that TTS does 

hold for our samples. Additionally, the scaling behavior of the viscosity 

master curves revealed Zimm-like dynamics at early relaxation times that 

become Rouse-like at long relaxation times. We also calculated the zero-

shear viscosity which is important for characterizing rheological response 

at low stress and for examining the influence of molecular architecture on 

resistance to flow. Our entangled samples do follow the scaling law 

predicted by the literature, whereas our unentangled blends with large 

polydispersity significantly deviate from the predicted slopes. This is not 

something that we didn’t expect since as Graessley showed, the Doi 

Edwards tube model predicted a strong dependence of zero shear 

viscosity on MWD but for polydisperse systems it is essential to account 

for constraint release. Furthermore, we modelled our observed data with 

molecular models for both unentangled and entangled linear polymer 

chains. The experimental MWD of our samples was used as an input 
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parameter for the model.  We found out that it is possible to describe the 

dynamics of entangled polymers with no fitting parameters, whereas for 

the unentangled MWD it followed that our samples represented good 

model system to test the molecular models with systems characterized by 

complex MWDs. Nonlinear step rate tests were also performed at 

different temperatures and shear rates and present scaling analysis for 

the nonlinear properties based on the characteristics of the transient 

signals as function of the Weissenberg number for the different samples. 

In the peak strain as a function of the Weissenberg number we observed 

that the entangled samples follow well-known Doi-Edwards’s value of 2.3, 

whereas the unentangles polymers appears to have an increased slope. 

For the ηmax over the ηsteady versus the Rouse Weissenberg number we 

observed at low values of Weissenberg number that the data collapse at 

the value of 1. The entangled systems follow slope of 0.2, whereas for the 

unentangled systems they follow a slope of 0.1. For the FWHM as a 

function of the shear rate it was observed an overlap of our monodisperse 

samples with a monodisperse sample from the literature but as the 

polydispersity increased in the samples so did the value of the FWHM. 

Finally for the ratio of steady state viscosity by the zero-shear viscosity 

versus the Rouse Weissenberg number it was observed that the entangled 

systems follow a slope of -0.8 predicted by literature. To conclude we 

presented a detailed analysis of pure linear polystyrenes and their blends 

characterized by complex MWD combining linear and nonlinear shear 

rheology, differential scanning calorimetry and molecular modelling. We 

showed that blending linear polystyrenes to obtain complex MWD can 

significantly change the mechanical properties of melts. 
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