NMANEMIZTHMIO KPHTHZ
2XOAH OETIKQN EMIXTHMQON
TMHMA ENIXTHMHZ YTIOAOTIXTQN

MpooBaociua d1adikTuaka epyalsia yia TNV KATAOKEUN
NPOORACINWY Kal NPOCAPHOCINWY PopUwV aAAnAenidpaong

Accessible online tools supporting the development of
accessible and adaptable web forms

ewpyloc KapTakng

Metamtuyiakr Epyacia

HpakAeio, Oktwpplog 2007

Mavemiotiuio KpAtng
ZX0AA OeTIKWv ETOTNHMY

TuAua EmoTiung YmohoyioTwy

IpooPacipo dradikTVOKA EPYaAEia VIO TNV KOTAOKELT TPpoosPfacipmy

KOl TPOCUPUOGINOV QOPUOV AAANAETIOPACTS

Epyacia ou utropAnenke amo Tov
Mewpylog Xp. Kaptakng

WG EPIKN EKTTAAPWAOT TWV ATTAITACEWV Y1 TNV ATTOKTNON
METAMTYXIAKOY AIMAQMATOZ EIAIKEYZHZ
ZUYYPaQEac:

Fewpylog Xp. Kaptakng
TuAua EmotAung YmoAoyiotwv
MavemoTpio Kpnng

EionynrikA Emirpoth:

KwvoTavtivog Zte@avidng
KaBnyntig, Emémng

[pnydpng Aviwviou
KaBnyntig, MéAog

Avtvng ZapRiong
AvamAnpwtiic KaBnyntig, Méhog

AexTh:

Mavayiwtng Tpaxavidg
Mpéedpog EmTpotc METATTTUXI0KWY ZTTOUdWV

HpakAeio, Oktwppiog 2007

i

111

Acknowledgements

I am grateful to my supervisor Professor Constantine Stephanidis for his assistance,
encouragement and support.

For their patience and thoroughness in reading my thesis, and an unexpectedly enjoyable
viva, | am indebted to Professor Grigoris Antoniou and Professor Anthony Savidis.

I would also like to thank the Department of Computer Science of the University of Crete
and the Institute of Computer Science (Human Computer Interaction Laboratory) of the
Foundation for Research and Technology — Hellas (FORTH) for providing me with the
means for setting and achieving my research goals.

I would like to thank Mr. Socrates Kartakis and Miss Anna-Maria Gertsou, for their
support during the evaluation stage of this thesis.

For her inspiration and support, I would like to thank in particular Dr. Margherita
Antona.

Finally, I would like to thank Mr. Ioannis Basdekis for helping me overcome emerging

difficulties and problems by providing his valuable scientific insight, inspiration and
support.

v

To master aPEP®GA GTNV OKOYEVELL LLOV,
oV ‘v 10 U6vo otiprypa 6°6Aa T fpatd pov.
210 Xpnoto
Xt Pévia
210 XoKpa
Ytov Ayyelo

vi

vil

MepiAnyn

O MMayxoouiog lotdg yiveTton oAoéva Kot O CNUAVTIKO EPYOAELD Y TIG KAOMUEPIVES LG
dpaoctnprotes. Tavtoypova, ot TEYVOLOYIKES TAATPOPLES KOl GLOKEVEG TPOGPaoNS 6TO
dwadiktvo wAnBaivouv kot yivovtal OAo kat o cOvOeteg (m.y., PDAS, popntéc cuoKeELEC,
1TV, «\n). Eropévac, eivor eEanpetikd onuovtikd ot epoployES Kol Ol LVINPEGIES TOV
dwdktvov v givar mpooPacipueg amd OAovg Tovg ToAiteg g Kowawviag g
[Tinpogopiag, cvumeprrapfavopéveov kol TV otOu®V pe avamnpio, péoco omd pia
TOTKIALOL SLOPOPETIKMOV GUGKELMV.

H mpocfacipdétnto tov dtadiktoov avrtipetomiletor kupiog péoa amd odnyieg ko "de
facto" mpotvma avdnTuENG AOYIGUIKOV, Kol amotteital BAcEL VOUOL GE TOAAEG YDPES.
Emiong eivan dwbéoyua epyaireion mov eAéyyovv OTL Ol EQUPUOYES TTOV OVOTTOGGOVTOL
axolovBovv avtég TG 0dnyleg. Qo1dc0, €ivar KOWE AmodekTd OTL Ol TEPIGGOTEPES
EQOPLOYES KO DITNPEGIES TOL SAGIKTVOL OeV lvar TpooPaoipeg and dtopa pe avoamnpia,
O OTMOTEAEGLO TOV TEPLOPIGUEVOV YVOCEDMV TOV KOTUCKEVACTMV AOYIGUIKOD Yl TOV
[Maykoouio Iotod e Bépata tposPfaciuotnTag kot oto oyetikd epyoieia. Emmiéov, yia
™MV avATTLEN SIEMOEOV TOV SAUOIKTOOV, KATAAANA®V Yo SLOPOPETIKEG TEYVOLOYIKEG
TAOTQOPUEG KOl GLOKEVEC, omalteital mpOcHeTo KOGTOG LAOTOINONG Kol GLVTHPNONG
EVOALOKTIKOV EKOOCEMV TOV SETAPDOV OVTOV.

Enopévac, etvor 101o0tépog onpavTikd v aVTIETOTIGTOOV Ol TOPUTAVE® TPOKANGELS UE
gpyoareio mov pe €0kOAO TPOTO BonBovy 6TV AVATTLEN SUOIKTLOK®V SETAPDOV TKAVOV
VO TPOGOPUOGOLV TI GLUTEPIPOPA TOVS HE ELPLY TPOTO, dNA. VO TPOCUPLOGTOVV GTA
TOKIAQL YOPOKTNPLOTIKA TV YPNOTAV, GTIG OTMOLTNGES KOl TIG TPOTIUGELS TOVG, KaODg
KOl OTO TEYVIKA YOPOKTNPIOTIKG TOV dPOP®V GLOKELAV, Om®G 1 dtdotocn o0dvng,
ATOPEVYOVTOG TNV OVAYKT Yol TOAAOTAES LAOTTOMGES. Me avtd 10 oKOTo, M daTpiPn|
ot TPOTEIVEL Eval O1OIKTLOKO EPYAAEID GLYYPAPNC POPUDOV AAANAETIOPAOTG O1 OTTOLES:
e [piokovtor oe mANPN evopudvien pe to Tpéyov " de facto" mpodTLTIO
npocPaciuotnrog tov dtadktvov WCAG 1.0,
® UTOPOVV VO TPOGOPUOGTOVV GUUP®MVO UE TIC OVAYKES KOl TIS TPOTIUNCELS TOL
EKAGTOTE YPNOTN,
e civol mpooPhoipeg pésa amd S18PopPeG TAATPOPLES KOl CUCKEVEG
e umopolV Vo KATOOKEVAGTOOV YWPIG vo omouteitol €EEIOIKEVUEV YVAOOT TNG
TPOGPRUACILOTNTOS TOV OLOOIKTOOV, 1] OKOUO KOl TNG OVATTLUENG EQUPUOYDV
dadtkTHOL

Koabng 10 epyadreio mov avantiybnke sivor TAnpmg TpocPacio, amotelel va Pripa Tpog

™V Tapoyn evOg EMOPKOVE HEGOL Yo TOL ATOMO LLE OVOTTNPio MOTE Vo ivol o€ Béon ta
01 va mopdyovv TpocPacio mepieyouevo yia tov Iaykoopuio Io1o.

viil

X

Abstract

The Web is becoming an increasingly important vehicle for many types of every day
activities. At the same time, the technological platforms and devices used to access the
Web are increasing both in number and complexity (e.g., PDAs, mobile devices, iTV,
etc). Therefore, it is of crucial importance that web applications and services are
accessible to all citizens in the Information Society, including people with disabilities,
through a variety of different devices.

Currently, Web accessibility is addressed mainly through development guidelines and de
facto standards, and is required by law in many countries. Tools for assessing
conformance to such guidelines are also available. Still, it is widely recognized that most
web applications and services are not accessible by disabled people, due to limited
expertise of web developers in web accessibility issues and related tools. Additionally,
the development of web interfaces appropriate for different technological platforms and
devices often requires the additional cost of maintaining alternative versions.

Therefore, it becomes particularly important to face the above challenges in a cost
effective way, by producing web interface elements capable of intelligent adaptation
behaviour, i.e., capable of adapting to users, diverse characteristics, requirements and
preferences, as well as to different devices, screen resolution, and aspect ratio, avoiding
the need of multiple implementation. Towards this end, this thesis proposes an online tool
which supports the development of fully accessible web resources, and in particular web
forms, that:

Fully comply with current web accessibility de facto standard.

Can be personalised according to users, needs and preferences.

Can be accessed through various platforms and devices.

Can be constructed without specific knowledge of web accessibility, or indeed
web development.

As the developed tool is itself fully accessible, it also constitutes a step towards providing
adequate means for people with disabilities to author web resources themselves.

x1

Table of Contents

ACKNOWICAZEIMENEScueviieiiie ettt ettt e et e e eeeabeeesaeesnneeenaeeens v
I INEEOAUCTION ...ttt sttt sttt et et sb et st esbe e e 1
0.1 The World Wide Web and people with disabilities..........ccccceeevievieeciienieeiieniieenene, 1
0.2 Universal Access to the World Wide Webccoooiiiiiiiiiciiieeeeeeee e, 2
0.3 Universally Accessible Web FOImS..........ccoooviiiiiiieiiieiiiciecciecieeee e 3
0.4 Objectives Of this theSIScceeruiriiriiiiiiiie e 4
0.5 Structure of this thesSiS......c.eeviiiiiiiiiiiieiee e 7
1 Web Accessibility: CUITENt PrACHICEScooverviivuiriierieiieriienieeteeiteste ettt seeens 8
1.1 Problems With Web ACCESS ...c..covuiriiriiiiiiieiiieieeteseeee e 8
1.2 Benefits to People without Disabilities..........cccceevurieiiieeiiieeieeeieeeee e 9
1.3 Problems in Relation with the Use of Browsers and Devicesc.cccoevevveenennee. 10
1.3.1 Variety of Web BrOWSETS........cccciiiiiiieiiiieiiieesiee et eeiee e eveeesveeesnee s 10
1.3.2 Devices with Different Screen Sizes.........coceveeverieniiiienienieiinieneeeeeeeee 10
1.3.3 Different FONt S1ZEScooouiiiiiiiiiiiiiiiieee e 10
1.3.4 Invalid HTML COdecc.eoiiiiiiiiiiiieieeceeeeeeee e 10
1.4 Limited Provision of Web Accessibility........cccovvviieriiiiieiiieciieeeeeeeee e 11
1.5 Accessibility and Device Independenceccoecvevieeiiieniieniienieeieeieeee e 11
1.6 Evaluating web pages accessIDility.....c..eevvieeiiiieiiieeiieeeeeeceeeee e 12
1.6.1 BasSicC CheCKPOINLS.ccueeruieeiieiieeieeiie ettt ettt et e sbeenaaeenneas 12
1.6.2 Manual checkpoints and content accessibility.........cccoeeeeercivienciieeniiieeniee e 17
1.7 Browser COmMPatibility.......cccueeruiiiiiieniieeiiecie ettt 22
1.8 Web Accessibility evaluation toolS..........cccecciieriieeriiecriieeieeeee e 23
1.8.1 BObbY WatChfire.......eoouiiiiiieiieciieiie et 23
L.8.2 A-PTOMPL.....eiiiiiiee ettt et e e et e e et e e e anaee s 23
1.9 DISCUSSION ...ttt ettt ettt ettt st s e sttt et esbe et sete bt et e eaeenaes 24
2 Creation of Accessible Web Forms: Methodologies and Toolscccceeevieeriieenneenns 26
2.1 MEthOAOIOZIEScoueieiiieiieeie ettt ettt ettt e et eeabeesneas 26
2.1.1 Accessibility DY deSIZN c...ovueeiiriiiiiiiieieeiceeee e 26
2.1.2 Filter and transformation tOO01S.........c.ceerviiiiiiiiiiie e 27
2.2 Platforms for the creation of Web SErviCes.........cevieriirierieniieienieeeesceeeee e 28
2.2.1 Microsoft Office SharePoint SETVer...........cccviiviiiieiiieeieeeeeee e 29
2.2.2 Adobe COIAFUSIONcuuiiiiiiieieeiesiieieete ettt 30
2.2.3 €Z PUDBLISN ..o e e 31
2.3 AULhOTING tOOLS ...veiieiieiieiie ettt ettt sttt ebe e e 32
2.3.1 Macromedia Dreamweaver MXccooviiiiiiiiiiieeeiie et 32
2.3.2 Accessible Form Creator (HIiSOftware)cccoevveveiieniieiieniecieeeeeeeeeeeene 33
2.4 Web forms development reqUIremMentseecueereeerieenieeniienieeiee e eiee e eeee e 33
2.4.1 Separating presentation from CONteNtcceccveeveiveeriiierniiieeriieeniee e 33
2.4.2 Full compliance with W3C Accessibility guidelines.......c..ccoceevervineevienecnenne 38
2.4.3 Device iNdePENAEICEcceeecvieiiieiieieieeieeeee et et ereeeae et e e ereesereesbeessseenns 39
2.4.4 Personalisation Capabilities..........ccceeriiiiiieiiieiiienie et 45
2.5 Requirements for tools supporting the development of universally accessible forms 53
3 Accessible Online Tools supporting the accessibility of Web elements 55

Xii

3.1 The Web Harmonia Platform........ooooeieiiiiiiiei 55

3.2 ReqUIrements analySISc..eeecueeeriuieeriiieeeiieeeieeesieeesteeesaeeeseaeeensseeesssaeessseessseesnnnes 58
3.2.1 CONLEXt ANALYSIS ..eeeuvieiiieiieeiieeiieeie ettt ettt ettt e et e ebeesaaeesbeessaeenseas 58
3.2.2 System goals SPEeCITICAtIONccuuiieiiiieeiiieeie e eeeeeeee e e e e svee e eeenaee s 59
3.2.3 SOftWare TEQUITEIMENTSccueeruierieeiieeieetieeteenteeeteeteeereesteesseesseeesseensnesnseas 59
3.2.4 Interface reQUITEIMENLScccuveeeciireeiieeeieeesieeesieeesteeesereeesereeessseeessseeesseeesseeas 59

3.3 Preliminary ProtOtyPIng.....c.ccccveeciieriieiiieiieeieesiie ettt ettt seaeeeneas 59

3.4 TOOD’S ATCHITECTULE ...ttt ettt e 60

4 Functionality and User Interfaces of the Designer and Web Creator tools 62

i B B TS Feq s T Al 010) RS RTSR 62
4.1.1 Create / Edit DESIZNcccuiiiiiiiriiiiiieeicniteeeestee ettt 62
4.1.2 Design EICMENLScccviiiiiiiiieiieciiecie ettt sebe e e esne e 63
4.1.3 Preview DESIZNciiiuieiiieiieiie ettt ettt e 64

4.2 “FOTM CIEaTOT™ ...eiiiiiiieiieeieeeit ettt ettt ettt ettt sat e et esab e et e sateebeesaeeenee 65
4.2.1 Create @ FOIMu...coouiiiiiieie ettt et e e e e e e eeeaeas 66
4.2.2 FOrm EIECMENESoruiiiiiiiiiieiieie ettt sttt e 67
4.2.3 PIEVIEW FOIM..cccciiiiiiiiiiiie ettt e eenre s 70

4.3 Device Independence and Personalization SUppOrt.........c.cccceeecveeriieeieeneenieenneennnn. 70

4.4 Cost-Effectiveness ANalySisc.cccoveeviriinieneriienienieeieeeeseee e 72
4.4.1 Testing the Cost-effectiveness of the Form Creatorccccvevievciienieenennne. 73

4.5 DISCUSSION ...ueieiiieeeitieeeiieeeieeeeteeestbeeestseeessseeessseeasseeassaeasseeessseeeassseessseeesssesensseesnnns 75

5 EVAIUALION ..ttt sttt st nbeees 76
T I 11 T 16 (o) o . AR 76
5.2 Evaluation RESUILScc.eeiiiiiiiiiiiiieiceceeeeee e 78

6 Conclusions and Future Workcocooiiiiiiiiiie e 80
6.1 Contribution 0f this TheSiS......c.eiiiiiiiiiiiiiie e 80
6.2 FULUIE QITECHIONSetiiniiiiiiiiieieeiieettete ettt ettt sttt st s 81

T RETEIEIICES ...ttt ettt ettt e b e et ettt e bt e eaeas 83

13

Table of Figures

Figure 1: Illustration of Web roadmap displaying markup technologies introduced and

main standards for creation of Web CONeNtcccueeiiiiiiiiieiiieee e 6
Figure 2: Web accessibility tutorial participant using computer with headstick................. 8
Figure 3: Steps involved in “Accessibility by design™cccoovveevieniieiiienieciieeie e 27
Figure 4: Three-tier arChiteCtUICcccvvieiiieeiieeciiee ettt eree e e e e e eaaeeeseaeeens 36
Figure 5: Adaptive display of Web content with reconfigurations.c..ccoceeverveneenene 42
Figure 6: A DOM-tree navigation of the MSN home page via Mobile Web. 43
Figure 7: Analysis RESUILSccvieiiiiiiiiiiciicecceeeee ettt 44
Figure 8: Using Link personalization in Www.amazon.CoMcecuveerrreeenveeeniveeesveennns 46
Figure 9: Structure customization in my.yaho0.Comcc.cevueriineirienienennieneenieeeeeeenees 47
Figure 10: Personalization in WAP Portalscccooouieiiieiiiiiiiiiceeeee e 48
Figure 11: Structure Customization according to USers’ roles.........cccecvvevrverirenieerveeneene. 49
Figure 12: Node content personalization in the ATL intranet............ccceeevveeriiveencieeennenns 51
Figure 13: General architecture of Web Harmonia...........ccccooveniiiiniiniininicnicccicnee 57
Figure 14: Supporting tools of the Web Harmonia platform...........cc.cooeeviniininiinennnn 58
Figure 15: Example of mock-ups produced during the iterative prototyping of the
4 S04 107 15T N o o) USSR 60
Figure 16: Create Design Step 1cocvoviiiiiiiniiiiieeeeereeeeceee e 62
Figure 17: Create Desi@n SteP 2ooouiiiiiiiieieeieeeee ettt ettt et 63
Figure 18: Design E1ements LiSt........cc.eeiiiiiieiieiiieiieeiieiie ettt 64
Figure 19: D DeSIZNEr PIE-VIEWETccovviiiiiiieiiiieeiiie et sieeesieeesvee e e veeeavae e 65
Figure 20: Form Creator - forms LiSt.......cccooiiiiiiiiniiiiiiiiiecececeee e 65
Figure 21: Creating @ FOIM.......c.oooiiiiiiiiiieiececee ettt e 66
Figure 22: Add fIE€ tEXt..euuiiiiiiieiiieeeiie ettt e e e e eearaeenes 67
Figure 23: Add open-ended qUESTIONceeeuieiiiieeiiie ettt 67
Figure 24: Multiple choice qUEStION CrEatOrcueiiuieeiieriieeiieie ettt 68
Figure 25: Multiple ChOICE anSWETS.........cociieiiieiiieiieeiiete ettt e 69
Figure 26: Previewing FOrMccociiiiiiiiiiiceececee et 70
Figure 27: Previewing a demo form (DesKtOp PC)..eeevvreeivieeriiieiiiieciie et 71
Figure 28: Previewing a demo form (PDA).......cccoiiiiiiiiiie e 72

Xiv

Figure 29: Dreamweaver requires experience in web development, accessibility
standards, and produces @8 WY SIWY G SOIUtiON........cccuieriiiiiiiieiiieiieeieeeecee e 74
Figure 30: Form Creator requires minimum experience in web development 74

Figure 31: The Form Creator tool complies with WCAG 1.0 Level AAA (automatic

15

1 Introduction

1.1 The World Wide Web and people with disabilities

The Web is an increasingly important resource in many aspects of life. Therefore, it is
essential that the Web is accessible in order to provide equal access and equal opportunity
to all citizens in the Information Society, including people with disabilities. The basis of
web accessibility is that every user, including people with disability, should have access
to the information and experiences available online.

The diversity of the human population encompasses a vast range of physical, sensory and
intellectual differences. Web accessibility addresses all disabilities that affect access to
the Web, including visual, auditory, physical, speech, cognitive, and neurological
disabilities. For example:

e Some people cannot use their arms or hands to type or move a mouse

e Some people with tremors and older people with diminishing fine motor control
can use a keyboard, but not a mouse.

e Some people cannot see at all and use a screen reader that reads aloud the
information in the web page.

e Some people have blurry vision and cannot read text unless it is very large.

Numbers signify that large portions of population have some kind of disability. The level
of impairment that determines the criteria for whether a person is considered to be
disabled varies from country to country, and in some cases within a country. Not
withstanding these difficulties, it is pretty safe to say that somewhere between 10% and
20% of the population of a developed country like Australia has a disability that will
affect their ability to use the Web. The proportion of the population with a disability
appears to be increasing, due mainly to the aging population profile of these countries.

The incidence of disabilities (and limiting illness) that restricts a person's ability to

function in everyday life, as recorded by government agencies in some countries
(Hudson, R., 2005)

United Kingdom, 18% of the population (National Statistics, 2001).

Australia, 17% of the population (Australian Bureau of Statistics, 2003).

United States, 19.3% of the population (US Census Bureau, 2000).

Canada, 12.1% of the population (Statistics Canada, 2001).

New Zealand, 20% of the population (Statistics New Zealand, 2001).

European Union, across the 15 EU countries in 2001, 19.3% of the population
was hampered by physical or mental health problem, illness or disability, with
9.3% severely hampered. (Eurostat, 2003)

In the light of these numbers, still people with disabilities use the Web. A Survey on
Income and Program Participation or SIPP (Bureau of the Census, 2000) estimated the
number of people with certain disabilities and “access” to the Internet. According to this
study, the following percentages of disabled people have Internet access:

21.1% of people with “vision problems”
27.2% of people with “hearing problems”
22.5% of people with “difficulty using hands”
42.2% of people with a learning disability

To allow people with disabilities to make use of content available on the Web, important
regulations and guidelines in the accessibility area have been developed.

However, in addition to providing opportunities for people with disabilities to get
information from the Web and to interact through the Web, there are opportunities for
people to provide information through the Web. Still, in most cases, the Web tends to be
inaccessible to those with visual, auditory, or other physical impairments, and there are
currently no accessible tools for web content development.

1.2 Universal Access to the World Wide Web

As every day activities become more and more dependent on the Web, the impact of the
Digital Divide caused by differences in accessibility to the new technologies (e.g., PDAs,
mobile devices, iTV, etc) is growing in terms of widening differences in all aspects of
life, and affects all people without discrimination. As a result, the internal structure of a
web interfaces is becoming increasingly complex, as there is a continuous demand to
support these new devices, user preferences, tasks and environments. These increasingly
rapid technological changes are likely to significantly change to the way web interfaces
and content are been created.

Users want to view Internet content and use web applications on a variety of devices.
Current devices support a variety of different content types partly determined by their
underlying hardware capabilities. In order to support device independence, web providers
must be able to deliver content in a format compatible with a device. For example if a
handheld device can read GIF images but not JPEG images it is necessary to convert one
format to another. In addition the content must reflect the underlying hardware
capabilities of the device so we may need to do some additional image processing if the
target device can only display four level grey scale output.

So it becomes clear that the Web has evolved into an amazing multimedia environment,
and users desire to access it by several channels. However in order this environment to be
reachable by several devices controlled by “standard” users, the complexity of web pages
has increased and created new barriers for people with disabilities. One definition of web
accessibility states: accessible web sites are perceivable, operable and understandable by
the broadest possible range of users and compatible with their wide range of assistive
technologies, now and in the future (W3C-WAI, 2003). With this definition a link
between accessibility and device independence is been made, although the concept of
accessibility is far older. Because there is no such thing as a “standard” user, hardware, or

navigation software, it is important that Web is designed to support all users, all computer
systems, and all web browsers.

It is also important to note that, while access to people with disabilities is the primary
focus of web accessibility, it also benefits people without disabilities. For example, a key
principle of web accessibility is designing web content that is flexible to meet different
user needs. This flexibility also increases general usability and let people without
disabilities use websites according to their preferences, such as using whichever browser
they want and using keyboard shortcuts. In particular, the following groups will benefit
form accessible web content: people with low literacy level, users using new devices such
as mobile phones, Web-TV and kiosks, low bandwidth users, users in a noisy
environment, users who are driving and users with different learning styles.

It is therefore also important to look into new challenges that web accessibility is facing,
such as:

e Provision of interface alternatives for new devices and technologies that
implement the paradigm of ambient Intelligence and ubiquitous computing to
allow access to information in different environments.

e Intelligent adaptation behaviour and personalisation to address different display
sizes, differentiation of input devices and environment in use

e Constant evolution of web technologies specifications. For example, XHTML 1.0
was created shortly after HTML 4.01 to help the transition of hypertext to a new
generation of mark-up languages for text, and other mark-up versions are likely to
follow soon.

Therefore, access to the web needs to be considered in the wider perspective of Universal
Access, ([Stephanidis et al., 1998a], [Stephanidis et al., 1999], [Stephanidis, 2001a]),
aiming at the provision of access to anyone, from anywhere and at anytime, through a
variety of computing platforms and devices, to diverse products and services..

1.3 Universally Accessible Web Forms

According to Wikipedia', a Web form on a web page allows a user to enter data that is,
typically, sent to a server for processing and to mimic the usage of paper forms. Forms
can be used to submit data to save on a server (e.g., ordering a product) or can be used to
retrieve data (e.g., searching on a search engine). Web forms are included in almost all
web sites since they allow transactions and data gathering from users. And as the Web
grows, more and more transactions will be done online bringing benefits to all Web users,
as they are increasingly going online to do their banking and shopping, request
information, book travel, pay bills and participate in education and training courses.

Forms are one of the most difficult aspects of web development, largely because it means
stepping out from simply presenting information to the user of a site. An especially
challenging task is creating accessible online forms, particularly forms that are accessible

Wikipedia, the free encyclopedia available at: http://en.wikipedia.org/wiki/Main_Page

to screen reader users. This is due to the fact that there are a variety of form control types
— text, checkboxes, radio buttons, menus, etc. —each with its own distinct accessibility
challenges. Additionally, different screen readers handle form control types in different
and somewhat unpredictable ways.

For example, a JAWS® user may attempt to complete an online form by activating the
"Forms Mode," where the user navigates among form controls using the TAB key or
combinations of TAB, SHIFT, and CONTROL. Upon tabbing to a form element, that
element gains focus, and JAWS announces certain information that it perceives to be
relevant. Without specific accessible mark-up, however, JAWS is forced to make
judgments about what information is relevant. For text boxes and text area boxes, JAWS
announces the nearest text preceding the form control; for checkboxes, JAWS reads the
nearest text following the form control; for radio buttons, JAWS reads the text preceding
the complete set of radio buttons, plus (for each button) the text that immediately follows
that button. If text labels are positioned differently from what JAWS expects, JAWS will
provide either incorrect or insufficient information.

Other screen readers behave somewhat similarly, but there are significant differences
across screen readers in how forms are processed, particularly concerning which
information about a form control the screen reader judges to be relevant. Therefore, in
order to make HTML forms reliably accessible to screen readers, web developers must
provide sufficient information to screen readers regarding what to say when they
encounter specific form controls.

Currently, the creation of accessible web forms is addressed in two major sets of
standards and guidelines for web accessibility: Section 508 of the Rehabilitation Act, and
the Web Content Accessibility Guidelines (WCAG 1.0) developed by the W3C. The
1998 amendments to Section 508 of the Rehabilitation Act mandate that only accessible
information technology can be acquired and used by the federal government. These
amendments also establish accessibility standards for websites. These standards must be
met when federal departments and agencies procure, develop, use, maintain or upgrade
electronic and information technology. The WCAG 1.0 might be better suited for all
kinds of situations dealing with the creation of accessible content, and web forms as well.
These guidelines include checkpoints for compliance and coding examples.

1.4 Objectives of this thesis

There are several common challenges encountered when working with web developers to
address web accessibility. The true art of web accessibility is not so much in conforming
to the guidelines but in implementing them effectively and efficiently. Conforming to the
well establish web accessibility standard (WCAG 1.0) can be achieved in many ways, but
it is often particularly effective to consider the accessibility requirements of the end-users
from the start of a web project. The introduction of accessibility into a web form that is
already fully developed can involve significant redesign and recoding, which may be
considered outside a web page's scope and budget. Therefore, addressing the issue of
accessibility as early as possible (during user-interface design and specification) reduces
the risk of redevelopment, but does not eliminate the need for significant manual testing

and recoding, which requires proper knowledge for applying accessibility and usability
guidelines.

Methods and techniques can be learnt for applying this standard early, effectively and
efficiently for a construction of an accessible web form. However, training for the Web
development team remains a key aspect for the successful implementation of all
accessibility features issue. Apparently, there is a basic reason why web developers are
reluctant to introduce accessibility engineering into their development process. Most of
them claim that depending on the lifecycle phase of a web product, incorporating
accessibility may vary from simply altering some HTML files and HTML tags to (re-)
designing from scratch accessible forms with specific auxiliary elements that are quite
difficult to handle. The latter is undoubtedly a nontrivial task that may require active
participation of accessibility experts and trained Web developers rather than using for a
couple of seconds an authoring tool or a form wizard for this purpose.

In addition, to ensure device independence, web forms must be designed so that, when
rendered by browsers, the user's preferred input and output devices are supported. A user
may prefer any combination of mouse, standard and non-standard keyboards, voice input
or output, head wand, standard and non-standard pointing devices, or Braille devices. In
order to achieve this, a web developer must cope with different mark-up versions (e.g.,
HTML 4.01, XHTML 1.0, XHTML 1.1, cHTML, WML, CSS 1, CSS 2) and validate the
outcome of his/hers work through the use of various graphical user interface (GUI)
browsers (e.g., Internet Explorer, Netscape Navigator, Firefox, and Opera) and devices
(e.g., desktop, PDAs, mobile phones) while adjusting the browsers’ settings, or managing
multiple devices with mechanisms to define alternative behaviour (see Figure 1). With
the use of CC/PP (Composite Capabilities/Preferences Profile) for instance, a user with a
specific preference or disability-related need can clarify that even though their browser
handles millions of colours, they personally can only distinguish certain colours.

In this context, the construction of universally accessible web form implies addressing
diversity through the provision of web interface elements capable of intelligent adaptation
behaviour. Such challenge should also be addressed in a cost effective way: web forms
must offer fully accessible and usable components, capable of adapting to devices, screen
resolution and aspect ratio, as well as in their input and output capabilities according to
users’ preferences, without the need to maintain several implementations for each
situation. Due to the nature of web accessibility, it is improbable that web developers can
attain designs which adhere to all users issues.

Web Evolution

Device Independence
CC/PP

ATAG “

Section 504 UAAG AT
o) Web Accessibility

ETSI, ISO TS 16071 180/

Web Usability
\._____‘__-—___

W R

i 1990 1995 i 2000 2005 ' 2006 2007

Figure 1: Illustration of Web roadmap displaying markup technologies introduced and main standards for
creation of web content

Guidelines and tools exist that support web developers for the production of accessible
web forms. However, as W3C states” “we were unaware of any single authoring tool that
fully supports production of accessible Web sites”. To this end, conformance with
accessibility guidelines is being preformed “manually”, due to the fact that until now
relevant provisions are not embedded in programming platforms and tools. Therefore, the
need arises to provide tools able to:

e deliver fully accessible web forms suitable for all users, anywhere and at anytime

e improve the cost-effectiveness and quality of the production of web forms, with

no previous knowledge for web accessibility or and usability guidelines

As a consequence, it is important to look into new ways for the provision of flexibility in
online transactions, i.e., to provide accessible tools for the construction of universally
accessible web forms. Especially now when Web services have evolved as a practical,
cost-effective solution for uniting information distributed between critical applications
over operating system, platform, and language barriers that were previously impassable.
In this respect, this thesis aims to contribute towards the growing demand for
development of universally accessible web interaction forms that will run on and adapt to
different user characteristics, as well as to the characteristics of multiple display devices,
and in particular:

2 Selecting and Using Authoring Tools for Web Accessibility:

http://www.w3.org/WAl/impl/software

Fully comply with WCAG 1.0

Can be accessed by various devices through a web browser

Can be personalised according to user preferences

Can be constructed without prior knowledge of web development

1.5 Structure of this thesis

Chapter 2 of this thesis discusses current approaches and practices in web accessibility,
focusing on web forms construction, and Chapter 3 put forwards a number of
requirements that an accessible tool for the development of accessible forms should
exhibit. Chapter 4 presents briefly Web Harmonia, an interaction platform that facilitate
the actual production of universally accessible web interfaces in a cost-effective and
standards-compatible way, used as a basis for the construction of the Designer and Form
Creator, online tools developed to satisfy the requirements elaborated in Section 3. The
architecture and implementation of the tools in the context of Web Harmonia are reported
in details. Chapter 5 presents the tools functionality and user interfaces, and describes
step-by-step an example scenario of use of the tools for generating a portal’s registration
pages and their forms, focusing on their adaptation capabilities for users with different
types of disabilities and for use with several different types of interaction platforms. .
Chapter 6 presents the accessibility and usability evaluation of the tools an dof generated
forms through their automatic evaluation (e.g,. using Bobby Watchfire) and user tests
with a blind user and a web developer. Finally, section 7 concludes the thesis and
discusses potential future work.

2 Web Accessibility: current practices

According to World Wide Web Consortium (W3C)®, “Web accessibility means that
people with disabilities can use the Web”.

Figure 2: Web accessibility tutorial participant using computer with headstick

In a number of countries, Web accessibility is nowadays required by law (e.g., U.S. Code,
1998) and policies (e.g., European Parliament, 2002). As a result, a number of standards,
guidelines, checklists and techniques for Web accessibility have been proposed
worldwide. For instance, according to the World Wide Web Consortium - Web
Accessibility Initiative (W3C-WAI), websites must at least conform to all Priority 1
checkpoints of the Web Content Accessibility Guidelines (WCAG 1.0). In the USA,
websites are additionally required to comply with the provisions of Section 508 of the US
Rehabilitation Act. However, results of recent surveys show a very low conformance to
any of these guidelines and the majority of Web-based communication and information
for Web tools remain inaccessible to a large number of people. For example, a survey on
websites from Ireland, United Kingdom, France and Germany regarding their
conformance to WCAG 1.0 and HTML standards indicated an average of 40% Priority 1
diagnostic violations (Marincu & McMullin, 2004). W3C provides more information
about Policies Relating to Web Accessibility®.

2.1 Problems with Web Access

Although Web accessibility is important for all users, still most of the web sites are
inaccessible. As a result, for many disabled people it is not just difficult but impossible to
access web content because of the way this content is designed and implemented. Many
blind or visually impaired surfers access the Web using software that reads the content

Introduction to Web Accessibility http://www.w3.org/W Al/intro/accessibility.php:
Policies Relating to Web Accessibility: http://www.w3.org/WAI/Policy/

out to them using a computer generated voice (e.g. screen reader) in the case of graphics
with no labels attached to them graphics explaining their purpose. Everyone to a greater
or lesser degree has to put up with access problems - but the problems of lack of access
are more acute for many disabled people. The following sketch summarily the problem
for each disability category.

Visually disabled users range from the colour blind, to the fully blind. These users can
have problems understanding images that are not accompanied by a text description of
what they show. Without a text description, a user who can not see an image has no way
of knowing what it is, or what it represents. Colour blind users may also have trouble
discerning design elements (including text) whose colors are not sufficiently different
from the elements around them (including the background or page colour). Visually
impaired users may also have problems understanding sites that are not built to
accommodate "viewing" non visually, for example throuhg a screen reader. A screen
reader is a Web browser that reads Websites out loud, thereby making them accessible to
visually disabled users. Often a Website that looks nice visually can not be accessible
when it is listened to through a screen reader.

Similarly to the issues facing the visually impaired, are those that face Web users with
hearing problems. Users with hearing disabilities have no way of understanding
information that is communicated with sound. The simple solution is to provide an
alternative that does not use sound, such as a text description or an image.

Physically disabled users are often incapable of using a mouse. Unless these users' needs
are taken into account when creating Website navigation and input methods (see Figure
2), physically disabled users may a find a site completely inaccessible.

Websites can be complex, and finding the information can be difficult for the most able
of us. The situation is not helped by sites that use an overly complex design, inconsistent
navigation, and distracting, repetitive animation. These design elements can compound
problems for users with Cognitive and Neurological Disabilities, and can make some sites
completely inaccessible for them.

2.2 Benefits to People without Disabilities

Web accessibility also benefits people without disabilities. As an example, alternative
text that is used for images and links, which provide descriptions for those who can not
view the image, let users know what images are about and provides more information on
pages linked too before they click. Web content providers should be aware of auxiliary
benefits of Web accessibility as fully accessible pages work better for everyone who uses
the web, not just those with a special need or limited ability. Making web content
accessible can increase its usability dramatically. One way and another, users may
confront with Web access problems due to user individual factors (e.g., medical, age, low
literacy, etc) as well as by hardware, and software approaches.

2.3 Problems in Relation with the Use of Browsers and Devices

2.3.1 Variety of Web Browsers

A Web browser is a translation device. It takes a electronic file that is been produced by a
Web server written in HTML mark-up language, and translates it into a “visually
formatted” Web page. Although web browsers build in order to perform essentially the
same thing according to W3C specifications, they go about it in slightly different ways,
and can produce significantly different displays. Even the same name-of-browser and
version number, on different systems will produce different viewing results.

For example, the HTML standards say that the TABLE tag should support a
CELLSPACING attribute to define the space between parts of the table. But standards
don't define the default value for that attribute, so unless you explicitly define
CELLSPACING when building your page, two browsers may use different amounts of
white space in your table. Another example is that each browser and each computer
platform display fonts slightly differently. Such differentiations affect the accessibility
level of the resulted pages as each produced component may be translated differently by
assistive technology devices.

Designing and maintaining web content for different versions of a web browser causes
problems for Web designers, because rushing to build content with the features supported
by a newest version of a browser will have to wait.

2.3.2 Devices with Different Screen Sizes

Many experienced Web designers use techniques to control their web page layout, yet
they design their pages on large, 1024x768 pixel screens. When these pages are displayed
on smaller screens (e.g. PDAs, old desktop displays), the browser may not be able to fit
all the content onto the screen. In these cases, the content will scroll of the right of the
page. While this may not sound like much of a problem, users hate scrolling left and right
to view a page.

2.3.3 Different Font Sizes

Most browsers allow users to customize their default font size. Many users who work on
computers all day do this to reduce eye strain. As a result, user preferences may cause the
typeface that you used to design your Web page to increase as much as 50% larger in a
user's browser. This increase in font size can hurt many carefully-planned page designs.

2.3.4 Invalid HTML Code

Invalid mark-up code, which is the use of HTML code without following the proper
mark-up specification (e.g. HTML 4.01, XHTML 1.0), can affect accessibility. It seems
strange to consider that a few coding errors could cause all those problems, but it's true.
Even the simplest errors can cause big problems - particularly in browsers which adhere

10

more stringently to W3C standards. Not to mention that screen readers often have
problems with mark-up code errors - particularly missing attributes.

2.4 Limited Provision of Web Accessibility

Apparently, there are quite some reasons why providers are reluctant to comply with
policy and legislation requirements and introduce accessibility engineering into their
development process. Most web service providers claim that creating accessible web
services requires, among others, a considerable initial investment for equipment and
recruitment of a proper team (e.g., training, technical assistance, purchase of authoring
software and assistive technologies, “translating” web accessibility guidelines).
Depending on the lifecycle phase of a web tool (e.g., new concept, under development
tool, deployed and under maintenance product), incorporating accessibility may vary
from simply altering some HTML files and HTML tags to (re-) designing from scratch
accessible interfaces. The latter is undoubtedly a nontrivial task that may require active
participation of accessibility experts and trained Web developers, but even then there are
considerable long-term benefits, well demonstrated by a number of experts. Sierkowski
(2002) claims that “incorporating accessibility takes time, planning and research however
accessibility allows long-term savings”, and according to Clark (2003), Web accessibility
induces an increase of only 2% of the original budget. However, providers appear to have
low awareness of these benefits.

2.5 Accessibility and Device Independence

A common definition of web accessibility is access to the Web by everyone, regardless of
disability. Such definition implies that accessibility is only about people with disabilities
(Nyman, 2006).

However, in the context of this thesis, accessibility is intended in a wider sense (Nylander
and Bylund, 2002) that also includes device independence — regardless of disability, user
agent or platform. As previously stated, the web is evolving towards a situation where it
has the potential to make its content available to everyone, regardless of the device,
platform, network, culture, geographic location, or physical or mental ability of those
using it. Unfortunately, however, existing tools do not provide solutions for all existing
combinations of user-platform currently in use or likely to emerge in the future.

Users may view Internet content and use web applications on a variety of devices,
including PCs, electronic book readers, PDAs, phones, interactive TVs, voice browsers,
printers and embedded devices such as cameras. Although most of them view the Web
with a graphical Web browser on a desktop or laptop computer with a colour screen
display of 800 by 600 pixels or larger, the Web is not just for those Web browsers and
display resolutions. Nowdays, other ways to use the Web are available, including Web
browsers of PDAs and mobile phones, text-based Web browsers, screen readers,
handheld and subcompact computers, aural browsers, refreshable Braille devices, and
more. Due to this device proliferation, web content providers can no longer deliver one
version of their content to the user as they need to deliver an appropriate form of content
depending on the capabilities of the viewing device. Re-authoring content, in order to
support different mark-up languages or the different capabilities of each device, is clearly

11

impractical, whereas providing content for a single device or browser excludes large
numbers of users.

2.6 Evaluating web pages accessibility

Accessibility evaluation is a rather complex process, especially for inexperienced web
designers. This section presents a summary of the main guidelines for accessibility
evaluation, grouped into two main categories:

e Basic Checkpoints concerning accessibility aspects that can be tested with
automated tools, as well as some relatively easy manual checks.
Valid HTML and CSS
Frames
Use of automated accessibility checking tools
Images and alternative text
JavaScript
text size
semantic markup
CSS
0 Screen reader simulators
e Manual checkpoints that are more difficult to test with automated tools, and
require more time and experience to evaluate manually.
0 Colour contrast
Document titles
Link text
Non HTML formats
Platform discrimination
Keyboard navigation
Data tables
Form controls and labels
Use a screen reader
Content accessibility

O O0OO0O0O0OO0OO0Oo

OO0OO0OO0OO0OO0OO0O0OOo

Running through the checkpoints described below does not make testing with actual
disabled persons using screen readers and other assistive devices unnecessary. However,
it can provide a very good indication of the accessibility status of the website under
evaluation.

2.6.1 Basic Checkpoints
Valid HTML and CSS
The first step towards assessing accessibility is to validate HTML and Cascaded Style

Sheet (CSS) code. However, validity does not equal accessibility. Plenty of sites use valid
markup, but still are far from being accessible. Valid markup is also important to ensure

12

device independence, one of the fundamental building blocks of the web. Using valid
markup is as close possible to guaranteeing that the information can be interpreted
correctly by as many browsing devices as possible.

W3C validators can be used to check if the HTML and CSS used is valid. It is very
convenient to use the Web Developer’ extension toolbar for this task (Tools - Validate
CSS and Tools - Validate HTML).

The W3C validator sites can also be used:

e W3C Markup validation service®
e W3C CSS validator’

Note that the HTML of many badly built websites is difficult to validate because there is
no DOCTYPE or character encoding specified. For these sites, it may be necessary to
manually override in the validator interface.

Some sites completely block access from the validators. For those cases, the use of the
Tools “‘Validate Local CSS’ and ‘Validate Local HTML’ in the Web Developer extension
toolbar will be necessary. Depending on how invalid the HTML is, the Tool ‘Validate
Local CSS’ will also be necessary for some sites that do not block the validators — certain
markup errors will make the CSS validator refuse to do its job.

The HTML Validator® extension will also allow to validate sites that block the W3C
Markup validator. It does this without sending anything to a server, so this is a good
option for sites that are behind a firewall or require a login.

The HTML Validator extension automatically alerts user to any errors and warns client of
possible accessibility issues for every page you load in the browser. We can customise
the level of the accessibility warnings in the “Options” dialog. We should keep in mind
that the HTML Validator extension is based on Tidy, which means that there are cases
where it will not report certain errors that the W3C markup validator catches.

Use of frames

While frames (and iframes) are not necessarily completely inaccessible, they generally do
make a site less accessible and usable, and should be avoided. Frames are also an
indication that the site was built by a web developer with a lack of understanding of both
accessibility and usability (Who framed the web - frames and usability®).

http://chrispederick.com/work/firefox/webdeveloper/

http://validator.w3.org/

http://jigsaw.w3.org/css-validator/

http://users.skynet.be/mgueury/mozilla/
http://www.456bereastreet.com/archive/200411/who_framed the web frames and usability/

© ® 9w

13

If the page contains frames, the contextual menu in 2007 web browsers (e.g., Firefox 2.0,
IE7) will contain an option called “This Frame”. Iframes are a little trickier to find since
the user has to context click within the area occupied by the iframe for the “This Frame”
option to appear in the contextual menu.

Automated accessibility checking tools

Automated accessibility checking tools (see section 2.8) tend to be used mainly by
accessibility novices. The main problem is that the existing automated accessibility
evaluation tools are far from perfect, and should not be relied upon.

These tools will help reveal some issues, and can be used as a guide to get a quick and
very general overview of the accessibility of a website.. However, there are many
possible accessibility problems that these tools will not be able to find, and they will
occasionally report problems that are not really problems. A manual follow-up is always
needed. A site that passes all automated accessibility checks is not necessarily accessible.
Automated tools help to spot accessibility problems that would take much longer to find
by manually going through the markup. The Developer has to evaluate the automatically
generated report and manually inspect the areas that are flagged as problematic.

Images and alternative text

When no alternative text is specified, or if it is specified improperly, anyone who can not
see the images will either miss out on information or get flooded by useless information.

The HTML validator and the accessibility checking tools mentioned above will report if
any images or image maps are missing alternative text since the alt attribute is required. If
the validator does not report any missing alt attributes, the developer knows that any
images in the document have an alt attributes. However, there may still be problems, so it
is important to check how the alt attribute is used.

By using the browser extensions (such as Web Developer) to show the alternative text of
any images in the document, it is necessary to check that the site overall makes sense.
Also, it needs to be checked that the alternative text is actually visible when images are
turned off — many browsers use the text colour specified for the image (or one of its
ancestors) to display the alternative text. If that colour is too close to the background
colour that appears when the image is missing, the alternative text will be very hard or
impossible to read. This is mostly encountered on sites that use a lot of background
images.

Many people misunderstand the alt attribute. It is meant to provide meaningful,
informative text that should be used as an alternative when an informational image or
other graphical object cannot be displayed. It is not intended to provide text that is
displayed in a tooltip. The alt attribute is required for img and area elements.

14

Informational images should have a short description of the image. Decorative images
should have an empty alternative text (Glazkov, 2005). There are sites that in a misguided
attempt to be helpful take great care to describe every decorative image and spacer GIF in
detail, which is very annoying when someone visits a site with a screen reader or text-
only browser (Johansson, 2004).

Use of JavaScript

Not everyone will be able to execute a javascript script or a java applet. For this reason,
alternatives need to be provided and scripts should still be usable when javascript is
disabled:

¢ Many people mistakenly believe that screen readers don’t support JavaScript.
Technically they may not, but they run on top of browsers that do. Further, screen
reader software appears to attempt to infer what a Javascript is trying to do, and
then make some sense of it.

¢ The theory behind Web Standards methodologies is that we can remove either or
both the presentation and behaviour layers and still have plain content. If that is
true (and it is true), then shouldn’t we be able to leverage that, and even
encourage it, if it makes an experience better for some people?

¢ Using these methodologies, we can deal with JavaScript on or off, but we can’t
deal with in between. This is a key problem - screen readers appear to be trying to
infer what is supposed to be happening in the page, but they aren’t actually
interpreting the JavaScript (in the strict sense of the word).

Text size

Many people need or want larger text, in order to be able to read it comfortably. They
may have a visual impairment, be over the age of 40 or like to lean back in their chair
while browsing the web.

Text size depends on how font size is specified. Font size specified in a relative unit like
em or percent lets text resizing work in all browsers. If font size is specified in pixels,
users of Internet Explorer for Windows can not change the font size without first
changing settings in their browser, which very few people do.

So, when load the site in IE/Win and try resizing the text (Ctrl + Scroll wheel or View -
Text Size - Largest), if nothing happens, the site is probably using pixels to specify font
size. Even if font size is specified in a relative unit, there could still be problems related
to changing the text size. The layout needs to be designed to take into account the
possibility of the visitor increasing text size considerable. Many layouts quickly become
unusable as text size increases. Obviously, all layouts will break eventually, but a good
layout should be able to hold up reasonably even if text size is increased a few hundred
percent. It does not have to look as good as it does at the normal text size, but no content
should disappear or become unreadable.

15

If font sizing widgets are added to the site (which is not recommended - Johansson, ,
2006), it is important to make sure the largest setting is really large. Otherwise, what’s
the point in spending time on building those widgets if the end result isn’t much different
from the default?

Semantic markup

Semantic markup is important, since it gives browsing devices a chance of interpreting
and presenting the content in a way that is suitable for the meaning it has. As an
additional benefit, search engines also tend to favour semantic markup.

Proper use of headings will also let assistive devices create a document outline which can
be very useful for screen reader users.

Even though not all assistive devices use all semantic information they are provided with,
if a website does not use semantic markup, it is impossible for any device to derive any
meaning from the text.

To determine if the site uses semantic markup, we view source and look for headings
(<h1> - <h6>), lists (, , <dI>), quotations (<blockquote>, <g>), and emphasis
(,). We can usually spot this pretty quickly since sites that don’t use
semantic markup tend to have constructs like

Heading

where a semantically marked up document would have <hl>Heading</h1>.

Cascaded Style Sheets

An accessible document should be well-structured, meaningful, and readable without
CSS.

Disabling CSS will allows seeing the structure of the underlying HTML with your
browser’s default styling.

If very little happens when the user disables CSS, probably the document uses tables for
layout and lots of presentational markup. Usually, a document of this type presents many
other accessibility problems.

Screen reader simulators
Screen readers are an important assistive technology. Knowing how a screen reader
would speak the contents of the site we are testing will help us determine things like if the

order of the content makes sense, if links and headings are used well, and if alternative
text is used properly.

16

When no screen reader application is available, a good way of getting a reasonable feel
for how the site under evaluation will sound to someone using a screen reader is to use
Fangslo.

Fangs is a Firefox extension that emulates one of the most widely used screen readers,
displaying the output as text instead of using speech.

Results and process iteration

After going through to the previous checklist, any very serious accessibility problem on a
page should have been already identified. At this stage, problems can be fixed and the
checking process iteratively repeated.

The next section discusses accessibility issues that are difficult to test with automated
tools, and require manual evaluation, as well as issues related to web content.

2.6.2 Manual checkpoints and content accessibility

Colour contrast

If there is not enough difference in hue and brightness between foreground and
background colours many people will have trouble reading the text. This can be because
they have a colour deficiency or because they are using a monochrome or greyscale
screen, or they have perfect eyesight, a really good monitor displaying 24-bit colour, and
still have problems because the site is using light grey text on a white background. For
the same reason it is important not to rely on colour alone to convey information. Links,
for instance, should differ from surrounding text not only in colour, for example by also
being bold or underlined.

An easy way to check that the difference in hue and lightness between foreground and
background colours is good enough is to use Jonathan Snook’s Colour Contrast Check "'
tool, either by entering the hexadecimal numbers for the foreground and background
colours or by pulling the sliders and get live feedback on the contrast and colour
difference. Another one similar tool is Gez Lemon’s Colour Contrast Analyser'. Both of
these tools use an algorithm provided by the W3C' to calculate colour visibility.

http://www.standards-schmandards.com/fangs
http://www.snook.ca/technical/colour_contrast/colour.html
http://juicystudio.com/services/colourcontrast.php
http://www.w3.org/TR/AER T#color-contrast

17

One can also change the display to greyscale or monochrome to verify that all text is still
readable. Using Mac OS X'* there are great options for this in the “Universal Access”
preference panel, which lets invert the colours, set the display to monochrome or
greyscale, and change the contrast.

Document titles

Document titles are important for several reasons: it is often the first thing an assistive
device will render when loading a new page, it is used in the browser’s title bar, in
bookmarks, and when printing a document. Descriptive document titles are very useful
for everybody. They are also extremely important for search engine visibility.

Therefore, it is important to check that each document has a unique and descriptive title
and that the title does not use excessive punctuation.

There are no clearly defined rules for which characters to use as title separators.
However, document titles should definitely not contain punctuation used for decorative
purposes, for instance “:: Title ::” or ““...== Title ==...”. Each punctuation character may
be read out loud by screen readers, which will make listening to the titles very tedious.
Another screen reader, Apple’s VoiceOver, reads “»” as right pointing double angle
quotation mark. That rules out that character for use not only in document titles, but also
in links, where it unfortunately is quite popular.

Link text

Links are more useful to everybody if they consist of descriptive text. Most sighted
people scan web pages to get a quick idea of their content, and links are often an
important part of that content. Clear links make scanning faster. Blind and severely vision
impaired people can not scan a page in the same way, and instead tab from link to link or
bring up a list of links, so using descriptive link text really helps. Descriptive links are
also important for search engine visibility, so this is one more case of accessibility being
good SEO.

Links should make sense when read out of context. “Click here” or “here” does not make
for good link text since there is no information at all about the link’s target. Link text that
consists of an entire paragraph, which is common on newspaper websites, contains too
much information and should also be avoided.

In general, the same link text should not be used for links that lead to different
destinations. Ideally each link should be able to stand on its own and make sense out of
context. Some automated accessibility checking tools will warn you of this.

14

http://www.amazon.com/exec/obidos/redirect?path=ASIN/B0002G71T0&link code=as2&camp=1789&ta
g=456bereastree-20&creative=9325

18

There are exceptions to this. Link texts like “Read more” or “Continue reading” may be
ok in a news listing or similar, as long as the title attribute is used to differentiate the links
(Clark, 2005).

To get an overview of all links in a document, one can either load the document in Opera
and open its Links window, or use the “Links list” feature of the Fangs extension.

Non HTML formats

While it is possible to make the content of PDF files reasonably accessible to people who
have the required software, HTML is still the most widely supported format and should
always be the preferred choice. Additionally, far from everybody has Microsoft Word or
Excel or any means to open documents in those formats. If information is only available
in a proprietary Microsoft format (which is often the case), many people are excluded.

If the site makes important information available in PDF, Microsoft Word, Microsoft
Excel, or other proprietary formats, HTML alternatives should also be provided. There is
nothing wrong with making information available in non-HTML formats as long as it is
also available as HTML.

Platform discrimination

One of the fundamental properties of the web is that it should be independent of the
hardware or software used to access it. The web should be for anyone, everywhere and at
anytime. Web accessibility is a much broader issue than catering for disabled people.
Platform discrimination is an excellent example of that.

Platform discrimination means partially or completely limiting access to information or
functionality for users of minority operating systems or web browsers. To address this
checkpoint, one should ideally have access to several different operating systems with
multiple browsers installed. That kind of setup is not practical, so an alternative solution
is to fake the user agent string of the browser used for testing.

it needs to be checked if the site lets user agents other than Internet Explorer for
Windows enter. This action checks only whether the site uses some kind of browser
sniffing that is based on the User Agent string. If the discrimination is based on features
that only exist on a specific platform, faking the user agent string will not help.

Platform discrimination may be unintentional, but all too often it is intentional. It is
extremely rare to find a site that discriminates against users of Internet Explorer for
Windows. Most Mac and Linux users, on the other hand, have probably experienced
being denied access to several sites because they are using an “unsupported” operating
system or browser, which is completely unacceptable.

19

Keyboard navigation

Screen reader users do not use a mouse to navigate the web, so this is very important to
them. There are also many people who are keyboard users by choice, because they find it
faster and more convenient than using a mouse.

Depending on the source order and size of the document, it may also be very beneficial to
non-mouse users if skip links are available. If the document contains a large number of
navigational links before the main content, an in-page link that leads to the start of the
main content will save keyboard users a lot of key-presses.

An accessible site is required to be device independent and not rely on visitors to use a
particular input device, in this case a mouse.

This point can be checked by trying to navigate the site using only the keyboard, and
tabbing through links and form controls. It may be needed to adjust the settings of the
browser to be able to do this. Neither Firefox nor Safari has this enabled by default. If
there are dropdown or fly-out menus, it needs to be checked if they can be activated
without using a mouse.

Data tables

There should be no tables used for layout, and tabular data should be properly marked up
with tables that make use of the available accessibility enhancing elements and attributes.

When tables are used to mark up actual data, they are not just a layout grid. Sighted
people can get a feel for the relationship between header and data cells by looking at the
layout and visual presentation of the table. Blind or severely vision impaired people can
not do that. For a table to be accessible to people using a screen reader or some other non-
visual user agent, it needs to tell the user agent how the information it contains is related.

HTML provides plenty of elements and attributes for that. However, it can be pretty
difficult to understand how to use some of these accessibility features'.

Form controls and labels

Proper labels help everybody since they makes the clickable area larger. Each visible
form control should be explicitly associated with a label element.

Automatically submitting a form when the selected option in a select box is changed
causes problems for keyboard users. Requiring JavaScript to submit the form obviously
makes it impossible to submit it when JavaScript is not available. Relying on JavaScript
for input validation may lead to unexpected values being submitted and stored in the
database.

13 http://www.456bereastreet.com/archive/200410/bring_on_the tables/

20

To assess this checkpoint, one needs to check that each form control has a label
associated with it, that labels are properly marked up with label elements, and that labels
and controls are in the right order (label first, then the control, except for radio buttons
and checkboxes which should be control first, then the label).

If the form uses select boxes for navigation, it needs to be checked if the form is
automatically submitted (with JavaScript) when an option is selected. For cases where
JavaScript is not available, the developer has to make sure that the form can be submitted
and that any client-side validation of the entered data is handled by the server.

Automated accessibility tools will normally alert of form controls that do not have an
associated label.

Use a screen reader

Experiencing what the web is like to somebody who cannot see is important, since it will
help realising the importance of many of the various problematic areas listed above. If
user is sighted, it is very hard to imagine what it is like to use the web without seeing it.

However, accessibility is not just about screen readers. Far from it, equating web
accessibility with “works in screen reader X is a very common mistake, and accessibility
is much more than that.

Most screen readers are very expensive though, so a demo version can be used. The
following is a list of screen readers that are available as demo versions:

JAWS'

Window-Eyes'’
Supernova18

IBM Home Page Reader'”

Content accessibility

If the evaluated site has passed all the checkpoints above, it is quite safe to assume that
the site is technically accessible. That, unfortunately, does not necessarily mean that its
content is understandable to all.

http://www.freedomscientific.com/fs_products/JAWS HQ.asp#Downloads
http://www.gwmicro.com/Window-Eyes/Demo/
http://www.dolphincomputeraccess.com/downloads/index.asp
http://www-3.ibm.com/able/dwnlds/hprétrial.html

21

Writing or otherwise creating and presenting content that is truly accessible to all can be
very difficult. It needs to be kept in mind that badly or incoherently written content can
be difficult to understand even for highly intelligent people.

Obviously, understanding a website’s content can be even more problematic for people
with some kind of cognitive impairment or a learning difficulty (Hudson, Weakley and
Firminger, 2005).

2.7 Browser compatibility

It is difficult to build a Web page that displays perfectly on every version of every
browser running on every computer. Doing so may require to exclude features that a
designer would really like to include on a Web page. Building a Web page that is
compatible with Version 1.0 of every browser would mean building a bland page filled
with plain text.

Therefore, the first step to solving browser compatibility problems is to determine which
browsers are to be really considered.

Avoid the Cutting Edge

Many Web designers feel they have to build cutting-edge features into their Web page.
That is a bad idea, because cutting-edge features are rife with browser compatibility
problems, not to mention the impact they have on your page load time. Most well-known
and well-designed = sites on the Internet, which work under all major browsers (e.g.,
Yahoo, eBay, Amazon.com). do not cutting-edge features (e.g., Java, Dynamic HTML,
Flash).However, they do use JavaScript and Cascading Style Sheets.

Including cutting-edge features in a site does not necessarily cause compatibility
problems, but it greatly increases the chance of browser display errors. If the designer
really feels that these features are needed, it is essential to test the pages under all major
browsers.

Browser Compatibility Report
HTML errors are the leading cause of browser display problems. Making sure that Web
pages are error free is one of the most important steps to take in order to solve browser

display problems.

That means running an HTML validator, such as the HTML Toolbox, over every page in
a site.

Next to HTML errors, compatibility problems are the leading cause of browser display
errors. Compatibility dangers extend to all aspects of HTML.

22

The HTML Toolbox includes a Browser Compatibility report that identifies HTML tags
and attributes that are not compatible with the three most recent versions of Netscape
Navigator and Internet Explorer.

2.8 Web Accessibility evaluation tools

According to W3C, Web accessibility evaluation tools are software programs or online
services that help determine if a Web site is accessible (W3C-WAI, 2007). Many web
developers are introduced to web access through accessibility tools. All accessibility tools
perform automated checks of web pages for accessibility issues and all generally have
additional features, but each tool targets different audiences.

However, web accessibility requires more than just accessibility tools; it requires human
judgment. It is important to remember that accessibility tools can only partially check
accessibility through automation. Two of the most famous tools that are briefly described
bellow, requiring real understanding of the web accessibility standards rather than relying
on a tool to determine if a page is accessible or not.

2.8.1 Bobby Watchfire

Bobby is probably the most widely known of Web accessibility tools at present, and
possibly the most commonly used. Bobby is only an automated tool that points out where
the guidelines appear to be broken. It can very well be that certain guidelines are indeed
followed. Every website is unique and therefore, the Bobby accessibility report should
not be taken literally. All information contained in the report should act as support in the
process of improving accessibility. A human evaluation by the webmaster supported by
the Bobby accessibility report are the optimal instrument one can use into identifying
accessibility problems and finding solutions.

Because it covers all accessibility guidelines, Bobby can identify problems which are
ultimately easy to fix but often overlooked. It's often the case where there was no one to
point them out. At the end of the process webmasters will see that by thoroughly going
through the report and making minor or less minor changes to their website, the degree of
accessibility of their website will have improved significantly.

Bobby has been heavily criticized for issuing misleading messages. For example, Bobby
always says, even in "Bobby AAA Approved" messages: "If you can't make a page
accessible, construct an alternate accessible version." (At least I think it always says that.
The structure of Bobby's messages actually suggests that it would be "triggered" by some
features on a page, but Bobby does not tell what those features might be.) How does that
apply? Besides, it's basically wrong advice anyway: if you can't make a page accessible,
you should try smarter.

2.8.2 A-Prompt

A-Prompt (Accessibility Prompt) is a software tool designed to help Web authors
improve the usability of Web pages created in HTML format. A-Prompt first evaluates an
HTML Web page to identify barriers to accessibility by people with disabilities. A-

23

Prompt then provides the Web author with a fast and easy way to make the necessary
repairs. The tool's evaluation and repair checklist is based on accessibility guidelines
created and maintained by the Web Accessibility Initiative of the World Wide Web
Consortium.

By taking this approach, A-Prompt helps Web authors to include HTML features which
widen the range of users who can access their website. As well as providing better access
for people with disabilities, the resulting Web pages are generally improved for all people
and in a larger variety of circumstances. For example, the inclusion of text alternatives
for all images makes it possible to understand Web pages in a low-bandwidth text-only
situation.

A-Prompt is a very useful program in many ways, but the user needs to understand the
basics of accessibility and to learn some specific features and peculiarities in the
program. The documentation is well-written and includes a help system that explains the
checks and repairs in detail.

Unfortunately, the instructions are subjective and partly rather debatable. There are often
good reasons to use alt texts that are longer than ten words. For practical reasons, mainly
bugs and deficiencies in current graphic browsers, an ‘alt’ attribute value works better if
it is a one-liner, but for accessibility, it should simply be as long as needed.

2.9 Discussion

This Chapter has reviewed current practices in the domain of web accessibility, and has
provided a summary of the accessibility evaluation process and of the role of automatic
evaluation tools. The conclusion can be drawn that accessibility is complex issue, which
in current practices requires considerable expertise both in development and assessment
methods in order to be applied successfully.

Accessibility evaluation tools provide web developers with a very useful first step toward
web accessibility. However, it is important to remember that using such tools to check for
accessibility is just a first step toward web access. Web developers who understand
WCAG 1.0 (or the new WCAG 2) and how they should be implemented into web sites
will be able to help a web development team more than any evaluation tool.

Additionally, a high percentage of the web developers are not familiar with the use of
such tools. The growing number of authoring tools and platforms, as the ones that will be
discussed in the next Chapter, that provide a WYSIWYG environment which hide from
the developer many standard tag attributes, has also favoured the emergence of a
generation of web developers fully focused on the graphic design, and not very familiar
with other subtleties of HTML.

Most web service providers claim that creating accessible web forms requires, among
others, a considerable initial investment for equipment and recruitment of a proper team

24

(e.g., training, technical assistance, purchase of authoring software and assistive
technologies). Available resources, the economic cost and the constraints of 'universal
accessibility' are problems that need to be resolved. Therefore, in order to promote
accessibility and its application by developers, it is necessary to offer to web developers
appropriate tools which reduce the need of accessibility know-how and simply the
development process. Two such tools are proposed in the context of this thesis and
described in Chapter 4, focussing on the development of universally accessible web
forms. By offering proper tools for the development of fully accessible web interaction
elements, the overall accessibility of products and environments can be greatly improved.
In a universal access perspective, such provision entails increased benefits not only for
people with disabilities but also for those users who access the Web through mobile
devices, Web-TV, kiosks or low-bandwidth devices.

25

3 Creation of Accessible Web Forms: Methodologies and
Tools

Web forms are an important tool for users to provide information to a web application or
service. E-commerce sites use forms to find out what people want to buy, where they
want their purchases delivered, and how they are going to pay. Distance and e-learning
sites use web forms for a variety of purposes. Students complete a form when they
register online to a e-class.

Web forms are powerful tools. But they can pose significant accessibility barriers,
especially for people who use screen readers, talking browsers, text browsers, or
refreshable Braille displays. In order for these assistive technology devices to work
properly, the form controls (e.g. text input fields, buttons, etc.) must be labeled in such a
way that assistive technology can associate the correct label with the form control.

Accessibility of web forms usually refers to their access by to people who use screen
readers. People with other types of disabilities are generally less affected by faulty forms.
It should be noted, however, that everyone benefits from a well-organized, highly usable
form, especially those with cognitive disabilities. Web forms are maybe the biggest
problem for them because they require them to do a lot of typing, which is
understandably difficult. Even to those people using a PDA or a mobile device.

This chapter reviews the main available platforms and tools for the development of web
services and mainly web forms, and, based on such an analysis, put forwards set of
fundamental requirements for a new tool supporting the creation of accessible web forms.

3.1 Methodologies

Two are the main methodologies for the provision of accessible material: (a) the
implementation of accessible web elements as a result of a systematic design and
development approach that adhere to well-established accessibility design principles
(“Accessibility by design”); and (b) the use of tools that can be installed “on-top” of a
Web tool, to provide accessible versions of its Web pages (“Filter and transformation
tools”).

3.1.1 Accessibility by design

This approach mainly involves the following steps (see Figure 3):

e Production of a web template (interface) that is compliant with existing
accessibility standards for web content, such as WCAG 1.0 and those provided by
Section 508 regulations.

e Validation of the produced accessibility

— through the use of one or more of the available evaluation tools*’, and

Evaluation Tools: http://www.w3.org/WAI/ER/existingtools.html#Evaluation

26

http://www.w3.org/WAI/ER/existingtools.html#Evaluation

— through manual evaluation by experts.

e User testing with various assistive technologies, such as screen readers and user
agents to assess whether the final product can be usable by the widest possible
range of users. In general, any web tool intended for use by people with disability
has to involve disabled users during the entire development process.

Prototype
fg D”'i’_‘ Implementstion
P i) e Wik Ve
g s Evaluation
Implementation

Prototype
svalustion

Figure 3: Steps involved in “Accessibility by design”

Despite the high availability of resources that can be of assistance throughout all these
steps, Web accessibility still seems to be a complex issue to address for most web
designers and developers, as they all require substantial effort, planning, and well trained
personnel. Although it is possible to reuse the same principles and practical solutions for
the production of accessible web templates, design and implementation of these web
templates is a time-consuming procedure, especially when considering the pre-required
training of the involved team.

3.1.2 Filter and transformation tools

Reasonably, most providers are not thrilled with the idea of redeveloping from scratch
existing web tools only for the purpose of making them accessible. Therefore, suitable
alternatives are required for incorporating Web accessibility in such cases, such as that of
filter and transformation tools*', which allow web users to access pages through a proxy
kind of service that adapts pages according to the needs of individual users. Such an
example is the WebFACE tool which allows the dynamic transformations of web pages,

2 Filter and Transformation Tools: http://www.w3.org/WAI/ER/existingtools.html#Filter

27

http://www.w3.org/WAI/ER/existingtools.html#Filter

and automatically introduces web accessibility enhancements to existing web sites
(Alexandraki et al., 2004). In general and according to W3C, these tools assist Web users
(rather than Web authors) to either modify a page or supplement an assistive technology
or a browser. A particular advantage of this approach is the scalability and reusability of
such tools. A second and more important reason for choosing this approach is that the
control of accessibility features is granted directly to the web user, therefore allowing for
different users to precisely define their preferences according to their individual needs.
The issue that arises though is: How and to what degree can web service providers utilize
such tools effectively?

First of all, it should be noted that such a tool is not be able transform automatically any
Web page to an accessible version as, for example, the page may be broken beyond repair
(i.e., the page contains invalid HTML and, in most cases, does not look the same in
different browsers), which implies that a considerable amount of human effort needs to
be put on revising the source code of the existing Web pages. In this process, the existing
look-and-feel is not necessarily altered, but proper adjustments must be applied in terms
of ‘valid web programming code” to conform with standards for web-based technologies
(e.g., those set by the W3C for HTML, XHTML, CSS, DOM, and SMIL), as well as to
integrate some basic aspects of accessible Web design (e.g., to provide appropriate Alt
descriptions to all images). In any case, these adjustments are much easier to implement
than the task of producing accessible Web pages by design. Finally, once these
adjustments are made, the software package that will allow dynamic transformations of
the Web pages into more accessible versions needs to be installed on the hosting server
and configured appropriately.

Under the light of the above, the option of producing accessible interfaces through filter
and transformation tools can be more preferable in cases of existing user interfaces that
adhere to established standards for web engineering so that only some low cost
adjustments on the mark-up code are further required. But, in addition to this cost, one
must consider the price for acquiring the necessary filter / transformation software.
Nonetheless, it should also be noted that such tools have the potential to assist developers
with no particular background or knowledge in the details of developing sites that are
fully accessible, and can potentially save development time.

3.2 Platforms for the creation of web services

In the last few years, a number of software applications have been developed for creating
web sites and web-based forms. WebAim provides a review of free, online accessibility
tools (WebAIM, 2007). In the next subsections, some of the most popular and successful
platforms are discussed, namely Microsoft Office SharePoint Server”, Adobe
ColdFusion® and eZ Publish®.

2 http://www.microsoft.com/sharepoint/default. mspx

http://www.adobe.com/products/coldfusion/

2 http://ez.no/

28

3.2.1 Microsoft Office SharePoint Server

Microsoft Office SharePoint Server 2007 (MOSS), commonly abbreviated to MOSS, is
the successor to Microsoft Office SharePoint Portal Server 2003. It has a large range of
new features not present in the previous version.

MOSS is a licensed enterprise extension to version 3.0 of the no-cost Windows
SharePoint Services platform - a component available for Windows Server 2003. Its main
strength is enabling information to be organized and aggregated in one central, web-based
application. It can be configured to return separate content for Intranet, Extranet and
Internet locations. The primary areas of investment that Microsoft has made over the
previous version are Excel Services, Infopath Forms Services, the Business Data Catalog,
Enterprise Search, web content management, more specialized document management,
records management, web 2.0 collaboration functionality like blogs and wikis, delivery of
information stored in SharePoint via RSS, Microsoft PowerPoint slide libraries, and the
ability to take content and lists offline with Outlook 2007 and Microsoft Access.

The application uses a Microsoft SQL Server back-end for storing data, with Windows
SharePoint Services providing the document management functionality. The front-end
consists of ASP.NET pages served via Internet Information Services (IIS) on Windows
Server 2003. MOSS 2007 requires .NET Framework 3.0 (with Windows Workflow
Foundation) to be installed.

MySite is an important feature in MOSS 2007 that enables a user to obtain access to a
personalized view of the information that's relevant to them. MySite has a Public view
and a Private view. Users are able to throttle the permissions on various pieces of
information that are in a MySite, so that only their colleagues, manager, or anyone in the
organization can see the information. The Private view of a user's MySite enables to see a
number of interesting pieces of information:

e Workspaces - Users can see and access the workspaces to which they have access
saving on wasted navigation time.

e MyLinks - A list of personal links that are important to user. As a user is browsing
the SharePoint site, they can quickly add a link for a given page to the MyLinks
list, by selecting Add Link from a menu in the upper right corner of the page.

e Personalization Sites - Special Sharepoint sites that personalize content based on a
users role in the organization can be pinned to the appropriate user's MySite based
on their organization role (HR, Facilities, Finanace, etc). Microsoft has released
several role-based personalization templates to help people get started with this
feature.

e Colleague Tracker - Enables users to track the changes that they have permission
to see in their colleague's MySites.

e Outlook email - Web Parts are available for a user's MySite that display their
email and calendar information from Exchange.

e Distribution Groups - In the public version of your MySite you can see the
distribution groups that you're a member of, and when looking at another user's
MySite can see the distribution groups that you have in common with them.

29

e Standard WSS Site Features - Since a MySite is a WSS site at its core, user's
MySites have all of the typical functionality that comes with Windows SharePoint
Services (Document Libraries and Lists, Recycle Bin, Version Control,
Workflow, etc).

e If the system has the appropriate multi-language packs and templates installed,
users can be given the option of creating their MySite in one of the languages
available on the system instead of being forced to use the language that governs
the more public areas of the SharePoint system. This might be useful in a scenario
where a global enterprise is enabling their users in China and Spain to create their
MySite in Chinese or Spanish.

e Collaboration with Office 2007Wi. The MOSS 2007 wiki is rather simplistic. It
lacks many of the conventions of MediaWiki, but it allows RSS export of content,
provides a wysiwyg editor, and is fairly simple to use. As with MediaWiki it
produces hyperlinks with a double square bracket.

On an Office SharePoint Server 2007 or Office Forms Server 2007 site, most user
interface (UI) elements, such as links, form controls, and buttons, are designed to use
Microsoft Active Accessibility (MSAA). MSAA enables people with disabilities to
interact with content by using accessibility tools such as screen readers, which are
devices that provide a synthesized speech or Braille description of what a blind or low-
vision user is unable to see on a computer screen or Web site. However, this tool does not
provide compliance with WCAG 1.0 Level A.

3.2.2 Adobe ColdFusion

ColdFusion is an application server and software development framework used for the
development of computer software in general, and dynamic web sites in particular. In this
regard, ColdFusion is a similar product to Microsoft ASP.NET, Java Enterprise Edition
or PHP.

The primary feature of ColdFusion is its associated scripting language, ColdFusion
Markup Language (CFML), which compares to JSP, C#, or PHP and resembles HTML in
syntax. "ColdFusion" is often used synonymously with "CFML", but it should be noted
that there are additional CFML application servers besides ColdFusion, and that
ColdFusion supports programming languages other than CFML, such as server-side
Actionscript and embedded scripts that can be written in a JavaScript-like language,
known as CFScript.

ColdFusion Server includes a subset of its Macromedia Flex 1.5 technology. Its stated
purpose is to allow for rich forms in HTML pages using CFML to generate Flash movies.
These Flash forms can be used to implement rich internet applications, but with limited
efficacy due to the ActionScript restrictions in place on Flash forms by Macromedia.

Flash forms also provide additional widgets for data input, such as date pickers and data
grids. In previous versions of ColdFusion, some form validation and additional widgets
were available using a combination of Java applets and JavaScript. This option persists
for those who do not wish to use Flash, however not all features are supported.

30

Example:

<cfform format="flash" method="post" width="400" height="400">
<cfinput type="text" name="username" label="Username" required="yes">
<cfinput type="password" name="password" label="Password" required="yes">
<cfinput type="submit" name="submit" value="Sign In">

</cfform>

ColdFusion also includes some XForms capability, and the ability to "skin" forms using
XSLT.

ColdFusion can generate PDF or FlashPaper documents using standard HTML (i.e. no
additional coding is needed to generate documents for print). CFML authors simply place
HTML and CSS within a pair of cfdocument tags and specify the desired format
(FlashPaper or PDF). The generated document can then either be saved to disk or sent to
the client's browser.

ColdFusion 8 has now introduced the cfpdf tag which allows for unprecedented control
over PDF documents including PDF forms, and merging of PDFs.

According to Adobe,” the resulted mark-up complies with Priority 1 checkpoints of the
WCAG 1.0 (Level A), which does not guaranty the production of a fully accessible web
forms.

3.2.3 eZ Publish

eZ Publish is an open source enterprise content management system. It is developed by
the Norwegian company eZ Systems and a growing number of users and developers
worldwide. eZ Publish is available for free download under the GPL licence, as well as
under proprietary licences with commercial support. eZ Publish aims to support the
development of professional web applications in PHP.

eZ Publish supports the development of professional, customized web applications.
Typical applications range from a personal homepage to a multilingual corporate website
including role-based multi-user access, e-commerce functions and online communities.
According to eZ Systems, eZ Publish is used for tens of thousands of web applications of
varying type and size worldwide, among them MIT (specifically the controller's office),
Vogue magazine, NASA, the US Navy DASN and the Swiss public broadcasting
organisation Schweizer Fernsehen. Further examples eZ Publish-based projects are listed
on the eZ Publish reference page™.

eZ Publish is managed via a Web browser, thus additional local software is not necessary.
It also features a rich text editor that allows formatting content similar to a word
processor (e.g. Word). This enables content editing and contribution without HTML
skills. Content management can also be done through the eZ Publish frontend.

» Voluntary Product Accessibility Template:

http://www.adobe.com/resources/accessibility/tools/vpat/coldfusion_8 508.html
26 http://ez.no/customers/references

31

The eZ Publish functional range targets the quick, professional and secure realization of
web applications. Functional criteria are (besides standards such as sitemaps, search and
printing function):

e A logic for content versioning;
¢ A media library; and
e Role-based rights management.

Furthermore, custom changes can be made to eZ Publish. For this, the system's
architecture provides "Extensions", which are meant to contain individual functions. This
allows for the upgrading of the kernel even after customizing new versions. Finally, there
are several hundred contributions provided by the community. eZ Systems integrates
such contributions into the kernel on a continuous basis. This is done especially to avoid
mixed installations of the kernel and custom plugins, which could lead to serious
problems (e.g. for migrating an existing installation to new versions of PHP, as such
plugins are usually supported unpredictably).

As a LAMP application, eZ Publish is based on PHP. The recommended webserver is
Apache. This makes the software independent from the operation system. eZ Publish can
be run on Windows as well as on different UNIX derivatives.

One of the strictly applied development principles is a clean implementation of the
database abstraction layer, which enables the use of nearly any common database by
using drivers, thus rendering changes to the kernel unnecessary. eZ Systems recommends
MySQL, but drivers for PostgreSQL, Microsoft SQL Server and Oracle are also
available. As eZ Publish supports open standards such as XML and SOAP, it can be
flexibly integrated into existing IT infrastructures.

eZ Publish is cluster-ready and enforces the strict separation of information and design
through XML storage of all content. This eases media-neutral design in terms of
accessibility, e.g. for Braille devices or serving WAP browsers and mobile phones.

eZ Publish produces valid (i.e., proper use of mark-up) web material that complies with
Priority 1 checkpoints of the WCAG 1.0 (Level A)

3.3 Authoring tools

3.3.1 Macromedia Dreamweaver MX

Macromedia MX, developed by Adobe, formerly Macromedia, is one of the most popular
and powerful web development applications available today. Its main characteristics are:

o Its WYSIWYG (What you see is what you get) interface allows to create a web
page without looking at the code. This can be especially valuable for novice web
designers.

e The HTML code created in the WYSIWYG interface tends to be cleaner and
more compliant with W3C HTML and XHTML specifications - external link than

32

code created with other tools. Standards compliant code is usually more
accessible more compatible with emerging and assistive technologies.

e Changes can be performed manually, or in the Code view. This feature has really
has set Dreamweaver apart from other web development applications.

e [t integrates smoothly with other Macromedia tools, especially Flash.

Dreamweaver does not have functionality to add additional accessibility features to
forms. Form label tags, fieldset tags, and legend tags must all be done within the code. It
even has a menu function that allows you to add a JavaScript driven, inaccessible jump
menu, which uses a drop-down menu item for navigation. In general, Dreamweaver
supports both CSS and accessibility with an updated evaluation tool that includes WCAG
Priority 2 checkpoints.

3.3.2 Accessible Form Creator (HiSoftware)

The HiSoftware Accessible Form Creator allows to create forms for web sites containing
all the additional markup required to make the forms accessible under Section 508
standards and the W3C WCAG 1.0 Priority 1-3 Guidelines.

The HiSoftware Accessible Form Creator is intended to make creating accessible forms
easy, regardless of the skill of the developer. It is designed for creating accessible HTML
code related to the design, appearance, accessibility and usability for the form. From
there, a web developer can then code the back-end functionality of the form, whether CGI
programs, FrontPage Extensions or other methods are used to get the form to perform its
actions. Please review the documentation for your web editing programs, web server and
other web technology you are using in order to complete these "back-end" configurations.

3.4 Web forms development requirements

Based on the analysis of currently available platforms and tools presented in the previous
section, this section put forward a set of requirements for the development of universally
accessible web forms.

3.4.1 Separating presentation from content

In order to be in compliance with the WCAG 1.0, an author must clearly separate content
from presentation. For example, a book title (Inroads) and emphasized text (webpages
must be accessible) are both traditionally displayed in italics, i.e., they have the same
presentation. But they are different ontologically, since they are different types of
things—one is a title, and one is an emphasized word. The two words could both be
marked up using an <i> tag, which would italicize them both, but a better solution would
be to respect their difference and mark the former with a <cite> tag and the latter with
. This difference in markup reflects the difference in content.

Placing an emphasis on accessibility provides developers with a good reason to separate
content from presentation. It’s easy to imagine screen reading software increasing

33

loudness when reading text marked with an tag, but it’s not so clear what you’d
want it to do when encountering a new . (Does the font change signify change in
emphasis? Does it signify a book title? Does it signify a heading? Does it have no logical
significance in the document?) With a strong content/presentation distinction in hand, it is
much easier to teach students to use a markup language to mark up the logical structure
of a document.

The use of XHTML further reinforces this distinction because strict XHTML lacks the
stylistic elements and attributes of HTML. The presentation aspects of a document are
moved to its associated style sheet. XHTML is simply a reformulation of HTML 4.01 in
XML, so a further advantage to this approach is that students are learning an XML
application. Finally, since XML is much more strict than HTML, it will be easy for
students with a knowledge of XHTML to write (or maintain) HTML documents.

3.4.1.1 Cascaded Style Sheets

CSS benefits accessibility primarily by separating document structure from presentation.
Style sheets were designed to allow precise control - outside of mark-up - of character
spacing, text alignment, object position on the page, audio and speech output, font
characteristics, etc. By separating style from mark-up, authors can simplify and clean up
the HTML in their documents, making the documents more accessible at the same time.

CSS allows precise control over spacing, alignment and positioning. Authors can thereby
avoid "tag misuse" - the practice of misusing a structural element for its expected stylistic
effects. For example, while the BLOCKQUOTE and TABLE elements in HTML are
meant to mark up quotations and tabular data, they are frequently used to create visual
effects instead such as indentation and alignment. When specialized browsing software
such as a speech synthesizer encounters elements that are misused in this way, the results
can be unintelligible to the user.

In addition to preventing element misuse, style sheets can help reduce image misuse. For
instance, authors sometimes use 1-pixel invisible images to position content. This not
only bloats documents, making them slow to download, but can also confuse software
agents looking for alternative text (the "alt" attribute) for these images. CSS positioning
properties mean that invisible images are no longer required to control positioning.

CSS provides precise control over font size, color, and style. Some authors have used
images to represent text in a particular font when they are uncertain of the availability of
the font on the client's machine. Text in images is not accessible to specialized software
such as screen readers, nor can it be catalogued by search robots. To remedy this
situation, the powerful WebFonts of CSS allows users much greater control of client-side
font information. With WebFonts, authors can rely on fallback mechanisms on the client
when the author's preferred fonts are not available. Fonts can be substituted with more
accuracy, synthesized by client software, and even downloaded from the Web, all
according to author specification.

34

CSS allows users to override author styles. This is very important to users who cannot
perceive a page with the author's chosen fonts and color. CSS allows users to view
documents with their own preferred fonts, colors, etc. by specifying them in a user style
sheet.

CSS provides support for automatically generated numbers, markers, and other content
that can help users stay oriented within a document. Long lists, tables, or documents are
easier to navigate when numbers or other contextual clues are provided in an accessible
manner.

CSS supports aural style sheets, which specify how a document will sound when
rendered as speech. Aural style sheets (or "ACSS" for short) allow authors and users to
specify the volume of spoken content, background sounds, spatial properties for sound,
and a host of other properties that can add effects to synthesized speech analogous to
those achieved with styled fonts for visual output.

CSS provides more precise control over the display of alternative content than HTML
alone. CSS2 selectors give access to attribute values, often used to provide alternative
content. In CSS2, attribute values may be rendered in a document along with an element's
primary content.

3.4.1.2 Architectural models

In order to achieve the separation between content and presentation, two major
architectural models are available:

e Three-tier architecture
e Model-View-Controler (MVC) model

Three-tier architecture
A three-tier architecture (see Figure 4) consists of the following:

e Data access layer, responsible for storing and communicating data between the
database and the application. This layer uses stored procedures for faster retrieval
or insertion in the database, reducing the amount of client side processing by
looking up data and maintaining key values and internal integrity. Furthermore,
using stored procedures, the database server creates for each query a plan that
includes all the information required to return the data effectively to the client.
This plan is stored in the system’s cache, so that it can be reused when needed
(Dalton, 1997). Another advantage of the stored procedure is that the database
server can create indexes, thus increasing the speed of interaction.

¢ Business logic layer, contains web-services and data transformation functionality
providing information to the presentation layer in a meaningful form. Web-
services are usually implemented in the C# or JAVA programming language

35

using XML description files for communicating with the stored procedures. Thus,
the business logic layer is totally independent from the implementation of specific
parts of the data access layer, and allows the replacement of the data access layer
without redeveloping the business layer. For example, the SQL Server database
can be replaced by an Oracle database making the appropriate changes only in the
XML description files. Another important feature implemented in the business
logic layer is the data transformation functionality. This feature is used in order to
transform data returned by web services into object types that can be easily
manipulated at the presentation level. In order to achieve the transformation, a
class was developed to capture the data returned by the web services and
subsequently transform the XML data into programming language’s objects that
can further be elaborated. The main benefit of this procedure is that it provides the
ability to rapidly implement the presentation layer of an application without
conveying complex structures. The same layer offers the mechanisms to perform
all the necessary calculations, and the final data to be displayed are conveyed to
the presentation layer.

e Presentation layer, responsible for the user interface of the system and
incorporates the designs created during the design phase. For the implementation
of the presentation layer ASP.NET, PHP, JAVA, ASP, etc is used.

Wizb browear WiAP bronveer P OA browear Accessible Speach
interface irterfacs irterface interfacs irterfacs

Prazaentation Byar

oddris

SOAPIML

Abstract | mplementation of functionaity
Data svere |aer [(datzbase indepandent)

L

o

HML Wb Sarvices
implementad in JAMA

i) I_]I_l::.

Buzinezs logic: layer

Stored procedures

Windows
File
Systermn

Catibass achams

Data accazz e

Figure 4: Three-tier architecture
Model-View-Controler (MVC) model

Model-view-controller (MVC) is an architectural pattern used in software engineering. In
complex computer applications that present a large amount of data to the user, a
developer often wishes to separate data (model) and user interface (view) concerns, so
that changes to the user interface will not affect data handling, and that the data can be
reorganized without changing the user interface. The model-view-controller solves this
problem by decoupling data access and business logic from data presentation and user
interaction, by introducing an intermediate component: the controller.

36

It is common to split an application into separate layers: presentation (UI), domain logic,
and data access. In MVC the presentation layer is further separated into view and
controller. MVC encompasses more of the architecture of an application than is typical
for a design pattern.

e Model: The domain-specific representation of the information on which the
application operates. It is a common misconception that the model is another
name for the domain layer. Domain logic adds meaning to raw data (e.g.,
calculating if today is the user's birthday, or the totals, taxes and shipping charges
for shopping cart items). Many applications use a persistent storage mechanism
(such as a database) to store data. MVC does not specifically mention the data
access layer because it is understood to be underneath or encapsulated by the
Model.

e View: Renders the model into a form suitable for interaction, typically a user
interface element.

e Controller: Processes and responds to events, typically user actions, and may
invoke changes on the model.

MVC is often seen in web applications, where the view is the actual HTML page, and the
controller is the code that gathers dynamic data and generates the content within the
HTML. Finally the model is represented by the actual content, usually stored in a
database or XML files.

Though MVC comes in different flavors, control flow generally works as follows:

e The user interacts with the user interface in some way (e.g., presses a button).

e A controller handles the input event from the user interface, often via a registered
handler or callback.

e The controller accesses the model, possibly updating it in a way appropriate to the
user's action (e.g., controller updates user's shopping cart).

e A view uses the model to generate an appropriate user interface (e.g., the view
produces a screen listing the shopping cart contents). The view gets its own data
from the model. The model has no direct knowledge of the view.

e The user interface waits for further user interactions, which begins the cycle
anew.

Comparing the techniques

A fundamental rule in three-tier architecture is the client tier never communicates directly
with the data tier; in a three-tier model all communication must pass through the
middleware tier. Conceptually the three-tier architecture is linear. This addresses the
question of how to pass information between a user and a database. However, the MVC
architecture is triangular: the View sends updates to the Controller, the Controller updates
the Model, and the View gets updated directly from the Model. This addresses questions
of how a user interface manages the components on the screen. (MVC interface
components are often used in applications with 3-tier architecture.)

37

http://en.wikipedia.org/wiki/View
http://en.wikipedia.org/wiki/Controller
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Event_handler
http://en.wikipedia.org/wiki/Callback_%28computer_science%29
http://en.wikipedia.org/wiki/Shopping_cart

From a historical perspective the three-tier architecture concept emerged in the 1990's
from observations of distributed systems (e.g., web applications) where the client,
middleware and data tiers ran on physically separate platforms. Whereas MVC comes
from the previous decade (by work at Xerox PARC in the late 1970's and early 1980's)
and is based on observations of applications that ran on a single graphical workstation;
MVC was applied to distributed applications much later in its history.

3.4.2 Full compliance with W3C Accessibility guidelines

If the user misunderstands how data should be entered, they may not be able to complete
the form, or may input data incorrectly, which in turn may affect the result of form
interaction. The WCAG guidelines focus primarily on technical accessibility; thus, they
can only partially address the highly subjective and contextual issues surrounding optimal
usability of a specific digital resource. Despite this, they have become widely accepted as
the most authoritative set of guidelines relating to Web accessibility.

Historically, usability and accessibility advocates have met with resistance from Web and
software developers involved in graphic design (Cloninger, C., 2002). Without doubt
though, there has recently been a noticeable culture shift in the Web design community,
where usability, accessibility, and standards compliance are increasingly being seen as
important technical requirements and core objectives in Web-design development
projects. Demonstrations that W3C technologies such as XHTML and CSS need not
hinder aesthetic creativity have encouraged a groundswell among developers who are
driven equally by issues such as compatibility with previous browser versions,
accessibility/usability, and graphic design.

Some improvements in accessibility have been developed as “add-ons.” For example,
IBM has produced Web Adaptation Technology (WAT) to help older users overcome
many of the barriers presented by inappropriately designed Web content (Richards, J. et
al, 2003). WAT works within Internet Explorer to let the user alter characteristics of Web
pages to make them more easily accessible. A central advantage of this system is that it
places minimal responsibility on the developer of the content but instead takes existing
Web content and allows people to alter it so they can read it more easily; it also allows
people to use standard computer equipment to enable useful changes to be made easily
and immediately.

However, the existence of tools such as WAT should not lead designers to conclude that
the accessibility of Web pages is no longer their responsibility. Indeed, the more
accessible a Web page is, the easier it will be for assistive technologies and adaptation
tools to render the page according to users' needs. Conversely, the more inaccessible a
page is, the harder it will be to adapt, meaning that on those occasions when users need it
most, adaptation is least likely to succeed. Therefore, although the continued
development of assistive technologies and adaptation tools is necessary and beneficial,

38

http://en.wikipedia.org/wiki/Xerox_PARC

designers have a responsibility to ensure that any Web content they produce is optimally
accessible in order to maximize the success of these tools.

To develop mainly accessible web forms that are appropriate for all users and devices (if
possible), designers need to know the users and their needs, as well as devices’ technical
characteristics. Although there are various ways of providing such information to
designers, there are many misconceptions about Web usability and accessibility that also
have to be considered and addressed. For example, there is a frequent apparent
assumption among many designers that the use of automated accessibility checking tools,
such as Bobby, provides a sufficient basis for discovering and rectifying accessibility
barriers in a site as far as it concerns a typical desktop pc Whereas such automated tools
can be useful, they can only check for a limited range of access barriers, and there is often
inconsistency between automated tools in reporting accessibility barriers. Once these
barriers are discovered, it is still the responsibility of the designer to resolve the problem
in the most appropriate way, and a lack of understanding of the issues will likely lead to a
sub-optimal solution.

Furthermore, whereas automated tools can create accessible form templates and check
them against simple conditions, such as the absence of text descriptions as an alternative
for images, they are incapable of assessing in more depth the impact on accessibility of
specific interactive form features.

Although the WCAG guidelines are a constructive and necessary part of the drive toward
a more usable Web, clearly, the mere availability of guidelines is not enough to ensure
suitably accessible and usable web forms, nor it seems are legal imperatives to adhere to
them. Even well-written guidelines can be inherently difficult to implement, as they
attempt to summarize some very complicated issues into manageable and memorable sets
of instructions. To be of any value, guidelines must present a generalized rule that can be
followed in a variety of scenarios. However, the fine details of each design scenario,
which ought to dictate the most appropriate solution in each case, are often lost in this
process of summarization. A designer is unlikely to derive the best solution for a
particular scenario for a interaction form from a generalized guideline in isolation. At the
very least it is necessary to investigate any additional information provided alongside the
guideline, including sample scenarios and solutions for each device in use.

3.4.3 Device independence

Recent years have witnessed the explosive growth of mobile handheld devices, such as
cell phones and personal digital assistants (PDAs) in. Many wireless applications have
been developed for those devices, including daily news update, classified advertising,
tourist guide, wireless Web portals, and m-commerce applications. The ability to
communicate from virtually anywhere and the convergence of Web and wireless
technologies offer an unprecedented level of flexibility and convenience, particularly for
ubiquitous information access through mobile devices.

39

However, the unique features of wireless networks (for example, low bandwidth and
unreliability) and mobile devices (for example, small screen size, and low memory and
processing capability), as well as the mobility of users, present challenges for taking
advantage of the convenience of mobile devices for information access. For example,
most Web content is designed and optimized for desktop and broadband clients. Web
content is poorly suited for mobile devices (Zhang and Adipat, 2005); users who carry
those devices around may need different information under different contexts. Therefore,
how to adapt content to meet the needs of users, fit the characteristics of individual
mobile devices, and adjust to dynamic context becomes important.

The World Wide Web Consortium (W3C) defines content adaptation as a process of
selection, generation, or modification that produces one or more perceivable units in
response to a requested uniform resource. In 2005, W3C announced the launch of a new
Mobile Web Initiative (MWI), aiming to address the interoperability and usability
problems in order to make “Web access from a mobile device as simple, easy, and
convenient as Web access from a desktop device”.

3.4.3.1 Selective Content Delivery

There are two types of content delivery to mobile device users: pull and push. In the pull
model, a mobile client sends an information query to a server and the server returns the
relevant content back. In the push model, a server automatically delivers content to
mobile clients via a push proxy without receiving users’ requests. The push model is very
useful in mobile applications such as news alert services, mobile advertising, and real-
time traffic updates.

To prevent users from wading through possibly irrelevant content to find a single item of
information of interest, selecting and delivering content relevant to users’ interest is
essential. This can be achieved by employing user profiles. A push proxy assesses the
similarity between a Web page and a user profile to determine if it might be of interest to
the user. Furthermore, a Web page can be partitioned into several blocks (for example,
sports, business, health, advertisement, among others). Unnecessary or irrelevant blocks
can be removed from the original page. A user profile in a mobile information system can
consist of the following information about a user’s interests and preferences:

e Demographic information;

e Information interests (for example, represented by keywords);

e Browsing history, such as recently visited Web sites, the time of last access, and
visiting frequencies;

e Content presentation preferences, which will be discussed later;

e (Quality of Service (QoS) preferences; and

e Access privilege indicating what information a user can access;

User interests can be inferred and updated based on users’ explicit and/or implicit
feedback (for example, browsing behaviour on mobile devices) (Billsus, Pazzani and

40

Chen, 2000). In a mobile computing environment, user profiles can be stored at different
locations, including a single centralized server as the only profile server; different profile
servers with duplicated or unduplicated user profiles; or local mobile devices.

The push model is generally used for multicasting information to a group of users. It,
coupled with user profiles and intelligent agents, can also be used for content prefetching
for individual users to minimize the transmission delay (sometimes the required
information is not even accessible when it is needed due to a disconnected wireless
network). The idea of prefetching is that a system delivers certain content to a local
mobile device that will likely be accessed by the user soon.

However, the prefetching decision is contingent upon different network conditions and
the likelihood that the user will access this content shortly. Prefetching operations
consume the already limited bandwidth of wireless networks and limited storage of
mobile devices and users often must pay for the service. It will be particularly expensive
if the user does not view the prefetched content eventually.

Therefore, it is vital not only to determine what content should be prefetched and when,
but also to build utility models to analyze the trade-off between the potential benefit of
prefetching and cost under current circumstances (for example, network conditions).

For instance, (Jiang and Kleinrock, 1998) proposes a prefetching decision scheme that
utilizes the access probabilities and prefetch thresholds. The access probabilities indicate
how likely certain content will be requested by a user based on the user’s previous access
history, while the prefetch thresholds computed based on system and network conditions,
cost of bandwidth, and transmission time determine whether the performance may be
improved by prefetching certain content. The content delivery can also be context-aware.

The term context refers to information that characterizes a situation related to the
interaction between users, mobile applications, and the surrounding environment, such as
information about a person, a place, or an object. Context information gathered from
various sensors, networks, devices, user profiles, and other sources can trigger the content
adaptation in order to cope with the dynamic environment.

For example, in a museum, mobile device users should only receive corresponding
introductory information when they enter different exhibition rooms. In the GUIDE
project (a context-aware electronic tour guide) (Cheverst et al 2000), visitors to a city can
access context-aware information and services using their handheld GUIDE units. The
information presented to visitors is tailored based on the visitor’s interest, current
physical location, and attractions already visited.

3.4.3.2 Adaptive Content Presentation

While many of today’s mobile devices already feature Web browsers, browsing the Web
on a mobile device has not become as convenient as expected. Mobile handheld devices
are quite restrictive on the format and length of the received content. They typically
display less than 20 lines of text on the screen; they may run different operating systems

41

and support different markup languages. There is information loss when a Web site uses a
presentational mode that a mobile device does not support. Currently, most Web pages
are designed only for display on desktop computers, making direct presentation of those
pages on small devices aesthetically unpleasant, difficult to navigate, and even
completely illegible.

Merely squeezing original Web content into small screens may not work. Traditionally,
device-specific authoring and multiple-device authoring approaches were used to adapt
Web content presentation for effective display on mobile devices. They either authorized
a set of Web pages that were designed and formatted up-front according to a predefined
guideline for a specific device, or generated a set of different versions of the same Web
page to cover a number of identified target devices. Obviously, those approaches are
device dependent and inflexible.

Therefore, automatic re-authoring and client-side navigation approaches seem more
effective. Such approaches involve developing software to re-authorize a Web page in
real time through a series of transformations, including layout change and content format
reconfigurations, so that the page can be effectively displayed on a device and the user
can interactively navigate the page.

Similar to a user profile, a device profile can be used to support device-related adaptation.
It specifies the MIME media types and physical characteristics of a device including
color depth, screen size, memory size, operating system, as well as supported markup
languages. The generic Composite Capabilities/Preference Profiles (CC/PP) framework”’
provides a mechanism through which a mobile user agent, such as a browser, can
transmit information about the mobile device. A user agent profile based on the CC/PP
framework includes device hardware and software characteristics, information about the
network to which the device is connected, and other attributes (Laakko and Hiltunen,
2005).

2 r'aolg s s”

a e

mew LALSOH Videso Premere: (12
e, How Come’ G-

| Ssanch), §
s ey
i

Figure 5: Adaptive display of Web content with reconfigurations.

Shep Auctond, Autos. Clssfeds, |
Bl Eiats, Fxgong. Tl |

Firwd
View Tools & ¢ (3

(d)

(a)

. www.w3.0rg/2001/di/

42

Figure 5 shows a few screen shots of a Yahoo! Web page displayed on a HP iPAQ h4355
Pocket PC with a 3.5 transflective screen (Figure 9(a)). It has integrated Bluetooth and
WLAN 802.11b for wireless communication and access to the Internet. Figure 9(b)
shows the page displayed on that device without any adaptation. A user must use both
vertical and horizontal scroll bars in order to see the entire content, which can be
cumbersome and may cause loss of context.

There are some simple ways to adapt content presentation based on the features of a
device and user’s preference to improve its navigation. For example, as shown in Figure
9(c), a “Fit to Screen” function can be activated to produce a scaled-down version (Figure
9(d)) of the original Web page to better fit the width of a device through syntactic
translation (without removing any content from the original page); images embedded in a
Web page and the Internet address bar can be removed to reduce the page size and
increase display space; and the font size of textual content can be adjusted by the user.
Such adaptation preferences, once defined, can be stored in the user profile and
automatically used for future adaptation.

Various summarization and visualization techniques have also been used in content
presentation adaptation for mobile devices (Lank and Phan, 2004, Yang and Wang,
2003). Web pages often contain many sections and not all of them are of interest to users.
It is argued that the document summarization on handheld devices should make use of
“hierarchical display,” which is suitable for navigation of a large document and ideal for
small area display (Yang and Wang, 2003). A Web page can be organized into a multi-
level hierarchy with a thumbnail representation at the upper level for providing a global
view and an index to a set of sub-pages at the lower level for details (Adipat and Zhang,
2005). A user can select a desired portion of a Web page to zoom in for further details.

A Mobile Web system has been developed that automatically adapts the presentation of a
Web page on a mobile device based on a three-tier architecture (Buyukkokten, Garcia-
Molina, and Paepcke, 2001). In addition to adaptation functions that users can activate, as
shown in Figure 9(c), Mobile Web also features DOM (Document Object Model)-tree
navigation, summarization, personalized topic spotting, and fisheye view, aiming to make
Web browsing and information seeking on handheld devices more effective.

By following the principle of “overview first, then zoom in for details,” Mobile Web first

automatically parses a Web page and generates a DOM-tree hierarchical view of its
content.

43

M

ENTERTAINMENT

-
Walcoms to msn.com

Welcome to msn.com

v

et A ;I‘J"&"L" m
® MEN Search v o
® Eite Navigation > 3 W NavigEson - = Gorwsi: Kishnosn's Thbnor?’ eovwtioy.
¥ Bearchthe Web 'M::' Rparts " Gy Guides ”, v- .
* Lagal Information m ® MBN SERVICES » P s
™ Contact MSN. P " i s » Toms. Mariten Mrvom ol o suckin?

= Speeta by PO Soor Adotsaats LOCAL INFORMATION

S * i * City Guides

¥ Leok i up b ™ MEN SERVICER
s Search the Web syt
* J w Iﬂ_‘ﬂ

Figure 6: A DOM-tree navigation of the MSN home page via Mobile Web.

The main task of generating a DOM-tree is to identify content blocks and their
relationships in a Web page and to extract labels that can represent those content blocks.
A user can either expand any branch of the tree, or view the summary of a selected
section that is dynamically generated based on heuristic rules. Based on the summary, the
user can determine if he or she wants to see the full content of that section. Mobile Web
stores users’ personal interest as keywords in their user profiles. When a Web page is
displayed, those specified keywords appearing in the page will be automatically
highlighted with different colors for easy spotting, and the page display is automatically
anchored by those keyword occurrences (see Figure 6).

Focus and context visualization techniques are designed to integrate a high-detail focus
area and a low-detail periphery in order to maximize display space. Via a customized
fisheye view component in Mobile Web, users can navigate content through a focus
context view, with the focal content displayed in a larger font size, while peripheral
content is still shown in the surrounding area with reduced granularity of detail, such as a
smaller font size (see Figure 7). Environmental context can also be used to adapt the
content presentation. For example, when the light level is low or the device is on the
move (for example, the user is walking), then the font size of textual content can be
automatically enlarged to ease reading.

Without fisheye With fisheye
Figure 7: Analysis Results

44

3.4.4 Personalisation capabilities

Building personalized Web applications, i.e., those applications that are responsive to the
individual needs of each user, is a challenging task. It involves a myriad of different
technologies that range from simple database views to software agents and collaborative
filtering algorithms.

Personalization has become hype in areas such as electronic commerce, and hundreds of
applications claim to be fully customizable to different user profiles or individuals. The
number of possible personalization variants seems countless.

As with other Web features, a great variety of technologies and systems have been
developed and are available in the market (Communications of the ACM, 2000), but little
or no attention has been paid to the process of modeling and designing personalized Web
applications (an interesting exception can be found in Ceri, Fraternali, Paraboschi, 1999).

3.4.4.1 Scenarios of Personalization

Although it seems impossible to classify all the existing approaches to personalization,
using a simple conceptual framework allows to show the main differences between most
of them. In this context, Web applications are considered as hypermedia applications
(Schwabe, Rossi, 1998) in the sense that users navigate a hypermedia information space
composed of nodes connected by links.

The main difference between a “traditional” static hypermedia application and most Web
applications is that the latter may involve some business logic (application functionality).
In addition, users may alter information while navigating — adding products to a cart for
example. There are thus two approaches to characterize personalization: analyzing how
the underlying application logic may change for each user or analyzing what may change
in the information space the user perceives.

Each of them is discussed in a separate sub-section below. However, both kinds of
variability can be, and usually are, combined.

Personalizing content and links in a Web application is by far the most popular way of
individual customization currently found in the Web, with many different variants. For
instance, recommendations in Amazon.com are based on the history of the user; links to
specific Purchase groups are built from user personal data.

Many Web sites allow the user to select which contents he wants to see from a repertoire
of options (most of them also allow customizing the interface lay-out as well). For
example, in my.yahoo.com there are two levels of personalization: first, which modules
the user will get in his site (e.g., Weather, Headlines, Financial, etc) and then which
information he wants to see within each module (cities, types of news, particular stock
quotations, etc).

45

3.4.4.2 Link Personalization

This strategy involves selecting the links that are more relevant to the user, changing the
original navigation space by reducing or improving the relationships between nodes. E-
commerce applications use link personalization to recommend items based on the clients
buying history or some categorization of clients based on ratings and opinions. Users who
give similar ratings to similar objects are presumed to have similar tastes, so when a user
seeks recommendations about products, the site suggests those that are most popular for
his class, or those that best correlate with the given product for that class.

Link personalization is widely used in www.amazon.com (see Figure 8) to link the home
page with recommendations, new releases, shopping groups, etc. that are personalized.
Amazon.com has taken this approach to an extreme by building a “New for you” home
page and presenting it to each user, with those new products in which he may be
interested.

a Amazon.com--Earth’'s Biggest Selection - M soft Internet Explorel

1 Arguivo Editar Ewxibir Faworitos Feramentas Ajuda _|ﬁ
s = @ el & B & LI
Valtar Syancar Parar Aluglizar Pagirainicial | Pesquisat Favoitos Histrico Coneio Imnprinit Editar Comivs
-noereco It /v, amazon.com/erec/obidos/subst/hameshome. him - - Il T Ihks
End @ hitt: 4 o fobidos/subst/homedt hitrnl#103-3045404-501 8265 @ol Links **
wl 2l
amazoncom. ART & Lawn &Y TODLS & W L
) COLLECTIBLES [2SHOPS | KITCHEN | “payg | HARDWARE (mprarcuns)
WELCOME ELECTROMICS | SOFTWARE VlDEg‘EA&MES QHBEEA,\X-U;Y
HOW TO GIFT TOP FRIENDS & FREE
ORDER IDEAS SELLERS FAVORITES E-CARDS
Hello, Robson. We have recomrrendations for you in Books, Masic, and mare,
Auctions: handcrafted art, sports gear, PC bargains, household gadgets
Heotm z3hops
Penlium luplops L New for You
% Fom $500 @Blrthday wishes do come true! Enter our Wish List Givesway. Robeon
* from .
. . here's what's -
It's Our Fifth Anniversary! New for You.
m FlVE YEARS To celebrate, we've created a special store packed with funny customer (1f ycu're not Robsan, click
—_IA” Froducts = of FAVOR”ES reviews, editors' faverites, unexpected treasures, deep discounts, and much hera.}
— @ w3 i more. Here's to many mere years of happy shopping. New Releases
Ccmputers & Internet
Quick Picks Ergineering
Objects, Components, and Frameworks With Umi » More New Releases
Books O e After a quick introduction to the design process Catalysis, this book moves on to carefully Movers & Shakers
. DIJ- _tm defining objects, their attributes, operations, and collaborations. (Generally, Catalysis & 2.02700
B 5 objects and components are "d=coupled” so that they can work more independently, E;ave Potatoss
s DVD 0 & leading to easier reuse and... Bead more by Toby Speed, Barry
« ¥ideo Root (Illustrator)
+ Electronics 4 1,270%
e Software More Quick Picks: Thz Girl From Ipanemsa
. Tuvs Advanced Object- Oriented Analveis and Design Using Ul (Sigs Raference Library, No 12) ~ Yarious Artists
video G by James J. Odell, Martin Fowler (Foreword) 4 1,456%
« Yideo Games
Tools & Frofessional Wap by Charles Arehart, et al W
« Tools . . & King
Hardware Weh Sty Guide by Patrick I Lynch, Sacah Horton ~ Sean Connery
s Lawn & Patio 4+ 1,951% =l
&1 [[intemet

Figure 8: Using Link personalization in www.amazon.com

3.4.4.3 Content Personalization

Content is personalized when nodes (pages) present different information to different
users. The difference with link customization is subtle since when links are personalized,
part of the contents (the link anchors) present different information. Therefore, content
personalization refers to cases where substantive information in a node is personalized,
other than link anchors.

46

Content personalization can be further classified into two types: node structure
customization and node content customization. Structure personalization usually appears
in those sites that filter the information that is relevant for the user, showing only sections
and details in which the user may be interested. The user may explicitly indicate his
preferences, or it may be inferred (semi-) automatically from his profile or from his
navigation activity. For example, in my.yahoo.com or in www.mycnn.com users choose a
set of “modules” (from a large set including weather, news, music, etc...) and further
personalize those modules choosing a set of attributes of the module to be perceived.
Some “automatic” customization may occur by using the zip code of the user, for
instance to select which sport events he may be interested in. The approach followed in
these applications is that the user should be able to “build” his own page; even layout
may be customized. Figure 9 shows an example of structure customization in
my.yahoo.com.

J Arquivo Editar Egibir Favoritos Feramentas Ajuda

MHOO' Welcome, Robson! - Yahoo! - Update - Account Info - Hzlp - Sign Out

Buy Dell Computers on "YAHOO! Shopping
AWARD-WINNING DESKTOPS AND NOTEBOOKS. CLICK HERE!

WWwW 10 Add Page - Cptions
Company News Oct 24 11:37pm BR
New on My Yahoo! YHOO Oct 24 11:24pm BR

Hestares Rt plion i o o [EF - free trial] Amazon's Report Sparks Smiles in —- of All Places -- tae Met

to ywour favorite cities.
Sector rat TheStreet.com)

s EThe ZEC's Mew Fair Disclosure Eule: Is Tt Beally Fair? [B 4 min] iCther)
o [external] My Faverite Stock, eBav (at The Motley Fool)

o A new tack for T protocel (ZDMHet)

o [external] Gething a Mad Program With Hollywood Panache (Othes)

Join Yahoo! - Check out our
curtent openings around the world

more new stuff...

Edit
Weather Ouestions?
et 61,68 F
Movie Showtimes
Marashors (7 4. 57F m
—— AMC Mercado 20
Los Anzeles. CA 61.75F [loa
05 L0sees 3111 Mission College Boulevard, Santa Clara, CA 95054 (408)571-2262
Hew Tork HY 50.64F Admost Famous - (1:45 PMD, (4:20), 700,940 Bamboogled - ¢12:30 PR, (3:30), 6:30, 9:40 =

Figure 9: Structure customization in my.yahoo.com

WAP portals can be improved with the same approach. In the Infospace application
(www.infospace.com), the user can customize the content and the content provider,
making a kind of content syndication. In this way each customer navigates only through
the information he desires, improving the usability of the site. Figure 10 shows the
customization and its result for the WAP phone.

47

1D 55 BT PRis
mes Edw Epm P Tregmesie

Am ha "

- 2 LA E O AR S s B A
Lk] T P it | e D L B, o, D b Lom B, BT Pt it 11 e 1] Bpormin Bl 8 ot 5
IR] s e e |_ 0l #9714, i 9 8 T il A et ERD

& caralfardien: Edigar noticias
= AT §
wg
— O, ZE
P
Tarwine — _
[T T ek
LTI TS I
B
Eom Pnliern
L e l
Lt =y i ——
B | r
—— ey
PP ek l
e
“1vrdga
P i vt -
[
1. ﬂ
Rl P L e [R P L LT e e T L o mf wn

— T
\--__4:> -

Figure 10: Personalization in WAP Portals

Applications in which different user roles have different access rights or authorizations
provide another good example of structure customization. For example suppose an
academic application where teachers and students have different tasks to perform;
teachers need to access their class schedule to update its contents and students have to
access the classes that are available for enrolment, depending on their GPA.

48

;'-I PUL-Ris: DHrciplines - Meciass# Intemet £
| Bmss s m s mmmeme| Other courses by the
same teacher

Departamsatn de infarmitica

DISCIPLINAS

THMF 2031 Topicos de Bancos de Dados 1T

Al G SERRTES e
3 cradbas - 45 horas

Conteddo Programation !iﬂ"
FronT

faca=Verdann 2ize=IxSatminiric da j
Pos Graduacdo; pads Ser cucsada comad

E=letiva s tanme
para JradoscSpcBEr Mastradio
<BB>1 - IncroducBo<if=1.1 - O que & Drouke mds
HiperTexro/Hiphenidia?
<BB-1,2 - Par gue Hipermidis?<BE+1.3 - 3 liman e Pasquins

Eir mem Banco de Dados
Hiscorla =l
Mmrl Mizuslizer | noalar | h
L
. Teachers can
LR
update the

Syllabus

o 01, PUE Bl Diseiphnas - Migmsall btaimed | aplaer - [1Tmbalhand o ob lisg]

| higav Eh Eaut [n'lh Fenemertas Apds

Students need
information about the
COurse

IMF 2031 Tapicos de Bancos de Dados 1T

Autonz o= Sitaman Hpsrmidia
3 crdditos - 45 horas

Seminaio de Pds Graduacdo; pade ser curzada coma
aletiva para Graduagan

1 - rnrrndurj.‘-’n

1.1- 0 gue a HiparkaskoHipermidia?
1.2 - Por que Hipermida® =

1.3 - Breve Hstoria # fumoe -
1.4 - fplicagdes Hpermedia (com exemplas reats) m‘lf:n

2 - Autona em Sisternas Hipermida
2.1 - Anakco do Cportumidadac

2 - Design Conceitual

; HAreas da Pesquisa

Banco de Dados

Others courses |a

available @ Poafessoress
§a EIE'Sigl'l [mrial Schuabe

TJAOT]
1.1 - Clazzes 2 Belacianamentos

1.2 - Atrbutos, Tpos & Perspectivas

1.3 - Agregagdo @ Heranca

1.4 - Camportamenta

1 £ — Feracifirarin da [nctinriac . |

Figure 11: Structure Customization according to users’ roles

49

When a teacher accesses a class node, he can update the class information (e.g., the
syllabus), so it is important to make the update button available for the classes for which
he is responsible. On the other hand, the student needs to access the syllabus, the course
location, the course program, and of course, he cannot modify the site (see Figure 11).

Another difference is the links to related information, in each case. For the teacher it is
relevant to provide links to “other courses he teaches”, whereas for the student it is
relevant to provide links to other “courses that he may take”.

Node content personalization occurs when different users perceive different values for the
same node attribute; this kind of content personalization is finer grained than structure
personalization. A good example can be found in online stores that give customers
special discounts according to their buying history (in this case the attribute price of item
is personalized). There are many good examples of node content personalization in
intranet applications, where employees’ role and needs determine the tailoring of
information they see.

For example in the ATL (a mobile phone company in Rio de Janeiro) intranet, different
sales channels receive different, customized information about business procedures.
When a call center attendant looks up information about phone repairs, he will receive the
address of a repair center; when a repair center employee looks up information for the
same procedure, he will receive repair instructions for the phone, as shown in Figure 12.
This type of personalization must be designed from the beginning, capturing the
personalization rules for the different user groups that are identified.

50

Call Center view

T bt anct Caparativa Mieowol Inteemot Faplores BEE

P Aj"_ o Para descarta-as use a fragmentzdora de papel

-

PR— B Instructions to

I Servigos lpmlﬁcum defeito repa ira thI'IE
e | Fasse & Passodajas) -

- MERDS DE 72 HORAS
= Sarvigas SAN w encanrharn chante a i i ATL jexcern DOWNTONR porsio prssair

timica) | com MOTA-FISCAL de cempea, para anilise do dafoia di ap

1 - MNE [E 77 BORAS |

& encamnhara chenle @ uma [ATL jexoeie DDA TN ou & quakuerazssiSics
| Wenice sutonzadk, com 3 BOTA Tacal de compra & (s GARANTIS e mamisngio b
aparelbo Do e @ hels de mes atEncia fon s subinzads

T CLIENTE SEH & NOTA FISCAL DE CORPRA ¢ GRRANTAS B APAEELHO

 rlienls SE 3 QarantR o noLa M3l i paderd s atendida, nem geta lofa ATL, nenn palias:
dggndarias Teenices C9an o cienks nida tanha s & nota frcd do spawh, salictsr s
Jiega uma copia 1a loja pe alquiiu o apauelbo

APARELHD CAMCELAD 4 DON CADASTRO MCORRETO fummrin do casdestey

ranm_a nraorbmmanin s alisske_ man s smessnsns lsis e smmede m i da

™= : I S—
iinician| Zjlsan-Ni. | gpbboduen | FWIL- dor | Ehlnde 5| A bpoerd|[Elnieren .. WHeaw] [1m

Repair Center view
S M=l E

Informagdo é Patrimonio!

[\ KH_
= o com defaito Instructions to
: repair a phone
Pesso 2 PassaiSAC) —
e

| 1 -Encaminhar a uma lea ATL cu revends dor solickande que leve 2 nota
| figeal ¢ ¢ contrate &0 apardihe.

Figure 12: Node content personalization in the ATL intranet

51

3.4.4.4 User Profiling

In order to personalize a Web site, the system should be able to distinguish between
different users or groups of users. This process is called user profiling and its objective is
the creation of an information base that contains the preferences, characteristics, and
activities of the users. In the Web domain and especially in e-commerce, user profiling
has been developed significantly because Internet technologies provide easier means of
collecting information about the users of a Web site, which in the case of e-business sites
are potential customers.

A user profile can be either static, when the information it contains is never or rarely
altered (e.g., demographic information), or dynamic when the user profile’s data change
frequently. Such information is obtained either explicitly, using online registration forms
and questionnaires resulting in static user profiles, or implicitly, by recording the
navigational behaviour and/or the preferences of each user, resulting in dynamic user
profiles. In the latter case, there are two further options: either regarding each user as a
member of a group and creating aggregate user profiles, or addressing any changes to
each user individually.

When addressing the users as a group, the method used is the creation of aggregate user
profiles based on rules and patterns extracted by applying Web usage mining techniques
to Web server logs. Using this knowledge, the Web site can be appropriately customized.

A description of several methods for implicit and explicit collection of user profile data is
provided below.

A way of uniquely identifying a visitor through a session is by using cookies. W3C (Web
characterization terminology & definitions) defines cookie as “the data sent by a Web
server to a Web client, stored locally by the client and sent back to the server on
subsequent requests.” In other words, a cookie is simply an HTTP header that consists of
a text-only string, which is inserted into the memory of a browser. It is used to uniquely
identify a user during Web interactions within a site and contains data parameters that
allow the remote HTML server to keep a record of the user identity, and what actions he
takes at the remote Web site.

The contents of a cookie file depend on the Web site that is being visited. In general,
information about the visitor’s identification is stored, along with password information.
Additional information such as credit card details, if one is used during a transaction, as
well as details concerning the visitor’s activities at the Web site, for example, which
pages were visited, which purchases were made, or which advertisements were selected,
can also be included. Often, cookies point back to more detailed customer information
stored at the Web server.

Another way of uniquely identifying users through a Web transaction is by using identd,
an identification protocol specified in RFC 1413 (Identification Protocol) that provides a
means to determine the identity of a user of a particular TCP connection. Given a TCP
port number pair, it returns a character string, which identifies the owner of that

52

connection (the client) on the Web server’s system. Finally, a user can be identified
making the assumption that each IP corresponds to one user. In some cases, I[P addresses
are resolved into domain names that are registered to a person or a company, thus more
specific information is gathered.

As already mentioned, user profiling information can be explicitly obtained by using
online registration forms requesting information about the visitor, such as name, age, sex,
likes, and dislikes. Such information is stored in a database, and each time the user logs
on the site, it is retrieved and updated according to the visitor’s browsing and purchasing
behaviour.

All of the aforementioned techniques for profiling users have certain drawbacks. First of
all, in the case where a system depends on cookies for gathering user information, there
exists the possibility of the user having turned off cookie support on his browser. Other
problems that may occur when using cookies technology are the fact that because a
cookie file is stored locally in the user’s computer, the user might delete it and when she
revisits a Web site will be regarded as a new visitor.

Furthermore, if no additional information is provided (e.g., some logon id), there occurs
an identification problem if more than one user browses the Web using the same
computer.

A similar problem occurs when using identd, inasmuch as the client should be configured
in a mode that permits plaintext transfer of ids. A potential problem in identifying users
using IP address resolving, is that in most cases this address is that of the ISP, and that
does not suffice for specifying the user’s location. On the other hand, when gathering
user information through registration forms or questionnaires, many users submit false
information about themselves and their interests resulting in the creation of misleading
profiles.

3.5 Requirements for tools supporting the development of universally
accessible forms

Based on the discussion in the previous sections, this section puts forward a set of overall
requirements for the development of supporting tools which allow producing fully
accessible and adaptable web forms.

A tool that can help the development of a universally accessible web form must support
the creation of alternative views according to user preferences and the technical
specification of device-browser combination. With this in mind, the first requirement for
such tools is that presentation and content in the created forms must be well separated.

Bearing in mind that web forms must be accessible to users regardless of disability, tools
must take steps to ensure conformance to existing or prospective mark-up standards (e.g.,
HTML 4.01, CSS 1.0, HTML 5.0) and web accessibility standards (e.g,, WCAG 1.0
Level AAA, WCAG 2.0 working draft), creating form elements with correct labelling in

53

prior. Since the Web is both a means of receiving information and communicating
information, it is important that both the Web form produced and the tool itself be
accessible.

In addition to the advancement of mark-up technologies, server-side adaptation offers
maximum author control over the delivered content, including the ability to radically
change the content amount and its styling, navigation, and layout. In order to produce the
most appropriate adaptation, however, the server must have sufficient information about
the delivery context, including the delivery device’s capabilities.

From a developer’s point of view, such tools must be easy to use and should not require
technical background regarding web accessibility. However, web developer should be
able to preview alternative instances of the resulting form and make proper adjustments if
needed. To facilitate use, tools should be web-based and easily available, as well as
usable.

If web developers must rely on tools to do almost all the work concerning the
construction of an accessible web form, the tools they use should be designed to generate
standards—compliant code by default. The requirements summarised in Table 1 can be
drawn from the discussion above:

Table 1: Supporting tools requirements

Requirement

Accessibility Compliance with all Priorities 1, 2 and 3 of WCAG 1.0

Validity Valid mark-up (W3C Specifications)

Availability Web — based

Device Alternative views for other devices

independence

Extensibility Importing interaction resources offered by different interaction
platforms

Orthogonality Making use of business logic produced by external software tools

54

4 Accessible Online Tools supporting the accessibility of Web
elements

As previously documented, forms can present problems for Web users with vision or
mobility impairment, as well as for people with cognitive or learning disabilities. It is
very easy for someone with impaired vision who relies on an assistive output device such
as a screen reader, talking browser or Braille display, to get lost in a form. For these
technologies to work effectively, the devices need to be able to associate a form label
(request or prompt) with the correct form control, such as a text field or checkbox.

Different devices have different capabilities of user interaction and presentation, and
most services cannot adapt their user interfaces to these differences. This means that
users often have to use different versions of a service from different providers to access
the same functionality. The main approach to making services accessible from multiple
devices today is versioning. However, with many different versions of services,
development and maintenance work gets very cumbersome, and it is difficult to keep the
consistency between different versions.

Another popular method is to use Web user interfaces, since most devices run a Web
browser. However, adaptations are still needed, for example, translation between mark-up
languages and layout changes for small screens. It is also difficult to take advantage of
device-specific features and to control how user interfaces will be presented to end users.
Thus, we need new and robust methods for developing services that can adapt to different
devices.

This Chapter describes two tools which have been developed to comply with the web
forms development requirements discussed in the previous section, as well as with the
supporting tools requirements. Following a brief description of the Web Harmonia
platform, the design and implementation of the two tools are reported.

4.1 The Web Harmonia Platform

The vast majority of the available accessibility guidelines are formulated either as general
design principles, or as low level and platform specific recommendations. They are
typically based on past experiences and best practice, while experimental evidence is
typically rare (Casali, 1995). For example, accessibility guidelines developed by W3C-
WALI mainly focus on three aspects, namely page authoring, user agents, and the structure
and presentation of Web documents. By implication, such guidelines without the
accompaniment tolls to support them do not fully support the accessibility of the Web
elements. On the other hand, the proliferation of interaction platforms and their
continuous growth (e.g., HTML, XHTML, CSS, XML, DHTML), necessitate an account
of key requirements that should be preserved, if these developments and future ones are
to comply with the broad accessibility objectives. Moreover, such guidelines offer limited
guidance on the process of integrating accessibility into design and development
activities.

55

Currently, web authors typically design Web applications for the desktop and screen. To
exert maximum control over the final appearance, they often base Web page layouts on
tables, specified using absolute pixel positioning. Because adapting such a site to address
different accessibility requirements or a small display’s design constrains is effectively
impossible, authors in most cases create a parallel site to accommodate these devices. As
the variety of Web-connected devices increases, however, creating a separate site for
each kind of device is both economically and administratively impractical.

Under a Universal Access perspective, given the diversity and complexity of the factors
underlying human interaction with technology, no single design perspective is likely to be
adequate for all potential users or computer-mediated human activities (Stephanidis and
Savidis, 2001). Instead, designing for Universal Access requires a conscious effort and
commitment to analytical and exploratory design, as well as a multidisciplinary effort.
For that reason, Universal Access designers need to analyse trade-offs between multiple
conflicting design criteria in order to satisfy an increasing range of requirements placed
by traditional user requirements and utilisation of new technology. Recent approaches to
HCI design under a Universal Access perspective have emphasised two main contributing
dimensions towards this end (Stephanidis and Akoumianakis, 2003):

» understanding how interactive tasks are carried out by different users, across

different interaction platforms and diverse contexts of use, and
= devising suitable artifacts for each relevant task execution context

The first of these two dimensions implies a user- and context-oriented focus, while the
second implies an adaptation-oriented view of interactive artifacts and suitable means for
defining and structuring adaptations. As a small contribution towards this goal, a platform
is currently being elaborated, named Web-Harmonia (Basdekis et al., 2007), which, along
with its supporting tools, facilitates the actual production of universally accessible web
interfaces in a cost-effective and standard-compatible way. This undergoing work has the
potential to contribute to the wider adoption of design practices that takes into account
user and context diversity in a Universal Access perspective. Moreover, it has the
potential to deliver web material (e.g. interfaces & content) capable of run-time
adaptation behaviour. The tools developed in this thesis constitute supporting tools of
Web-Harmonia.

Recent research illustrates that there is a clear trend for using generic approaches to
define user interfaces such as XUL®, XIML (eXtensible Interface Markup Language)
(Puerta, Eisenstein, 2001), UIML (User Interface Markup Language), RDL/TT and VTT
UI Toolkit (Plomp and Mayora-Ibarra, 2002). Some of the most consolidated options are
XIML and UIML. In both cases, there is the proposal of frameworks for writing generic
widget descriptions, allowing the possibility to develop or incorporate new widgets.

The Web-Harmonia platform offers the possibility to develop a device independent
version of mark-up. To accomplish this, the platform uses generic tags, similar to HTML
tags, to describe presentation elements in a device-independent way by Server-side
adaptation (server selects the appropriate mark-up and style sheet based on the delivery

2 XUL, XML User Interface Language http://www.xulplanet.com

56

context). In addition, access features can be personalised according to user preferences.
The Mark-up generator of Web-Harmonia produces “on the fly” the most appropriate
mark-up (e.g. HTML, XHMTL, cHTML, any future version mark-up) according to
browser capabilities as well as to user profile and presenting features that enrich
accessibility. The general architecture of Web Harmonia is illustrated in the following
image (Figure 13: General architecture of Web Harmonia).

Markup generator

Personalizer

Interface constructs

Business logic

Databases

User Protiles

Figure 13: General architecture of Web Harmonia

57

Web Harmonia supporting tools

Widgets library

Site creatpr

= Form creator _ _
- Desigher In the context of this thesis
» Navigator
= Content creator

+ Data table creator

* Previewer
= Code generator

* Personalizer

Figure 14: Supporting tools of the Web Harmonia platform

Designer and Form Creator, the two online tools developed in the context of this thesis,
utilise the aforementioned platform (see Figure 14). Without requiring any technical
background regarding web accessibility issues, these tools are aimed to simplify the
creation of fully accessible and adaptive web forms. This makes it possible to develop
web services once, and automatically tailor their user interfaces to different user needs
and different devices.

4.2 Requirements analysis

In the requirements analysis phase of the developed tools, the model proposed by Bosson
and Svensson (2001) was followed. This model, described in detail in Fransson, Bosson,
and Svensson (2003), is mainly divided into five phases: context analysis, system goals
specification, system requirements specification, interface requirements specification,
and technical requirements specification.

4.2.1 Context analysis

During the context analysis of Designer and Form Creator, the work domain was
analyzed and documented in relation to three key areas, namely users, tasks and
environment. The main target user group of the two tools includes accessibility
researchers and practitioners such as designers, developers, evaluators, etc., and is
referred to as the ‘Authors’ user group. Also, two secondary user groups of the tool were

58

identified: ‘Users’ and ‘Administrators’. Users constitute people who will actually use the
generated web forms themselves. Administrators have the responsibility to administrate
and maintain the system.

4.2.2 System goals specification

During the system goals specification phase, the Designer and Form Creator tools were
defined in terms of what they should accomplish, what problems they should solve and
what user tasks they should support. The main identified goal of the tools is to provide a
web-based, comprehensive and easy-to use environment for designing and deploying web
forms that do not require knowledge about accessibility issues and most importantly can
utilise existing business logic (e.g. Web services) developed elsewhere. In addition, the
tools, like any other online form wizard, should empower the simplicity in the creation of
a web form, and the production of valid mark-up code that conforms to W3C standards,

4.2.3 Software requirements

Clearly, all types of form elements should be supported by the tools. In terms of available
functionality to each user group, Users should simply be allowed to view, interact with
and print the output. Authors should also be able to author, design and administrate web
forms. Finally, Administrators are to share the same functionality with Authors, but with
full access (create, modify, delete) to all created resources.

4.2.4 Interface requirements

In terms of interface requirements, both tools should incorporate established human-
computer interaction guidelines for high quality interaction. Furthermore, as accessibility
and usability for people with disability are also of interest, user interfaces should conform
to WCAG 1.0 Level AAA. However, conforming to accessibility standards does not
necessarily entail that the produced web pages are usable for people with disability
(Theofanos & Redish, 2003). For this reason, user tests are planned for the evaluation of
upcoming versions of the Designer and Form Creator tools.

4.3 Preliminary Prototyping

Following the analysis of requirements, a number of preliminary paper-based mock-ups
and prototypes of limited interactivity were iteratively produced and expert-based
reviewed. For the development of these prototypes, Microsoft PowerPoint was used as a
facade tool. PowerPoint was chosen as it fulfils the requirements for good prototyping
postulated by Szekely (1994): “Ease of use, Fast turn around, Flexibility, Useful
throughout the development cycle, Executable and Version control”. The outcome of this
phase allowed to work through the details of the system without extensive and time
consuming design and programming iterations, leading quickly to a first interactive
version of the system. Figure 15 shows two mock-ups of the Form Creator user interface.

59

Farm creation: 2/ iecuin Farm creation: 2f

Fisld propertiss sEun Fiald pressntation

Flelds marknd * ave iwquived for submissien Fields marked * ase required for submission

Check Prasentation lype * @ — Radio
o O Shirer part of ol posisble b buttans
Fadio o ~
select Selact
Check . - " z
Faae In case of Selection from multiple chaices
Mot Cael | L) Evesious | oy | Cangel

e o0

Figure 15: Example of mock-ups produced during the iterative prototyping of the developed tools

4.4 Tool’s Architecture

Following the Web Harmonia architecture, both tools are based on a combined Three-
tier and WAMP (variation of LAMP) architecture.

The Three-tier architecture contains a Data Layer, a Business Logic Layer and a
Presentation Layer, which were developed using MySql and PHP.

The acronym LAMP refers to a solution stack of software, usually free software / open-
source software, used to run dynamic Web sites or servers. The original expansion is as
follows:

e Linux, referring to the operating system

e Apache, the Web server

e MySQL, the database management system (or database server)

e PHP, the programming language

The combination of these technologies is used primarily to define a web server
infrastructure, define a programming paradigm of developing software, and establish a
software distribution package.

Though the originators of these open source programs did not design them all to work
specifically with each other, the combination has become popular because of its low
acquisition cost and because of the ubiquity of its components (which come bundled with
most current Linux distributions). When used in combination, they represent a solution
stack of technologies that support application servers.

The acronym WAMP is used to show that the adopted architecture can be attached also
to a Windows operating system, with no further changes. The basic advantages of the
above architecture are:

e Open source

e Low cost technologies

60

Free and low cost development tools
Operating system independency
Interface separation from the logic

61

S Functionality and User Interfaces of the Designer and Web
Creator tools

5.1 “Designer” Tool

The Designer tool allows users to create, modify and mange their web page designs. It
has a very simple wizard-like user interface facilitating step-by step form creation. The
Designer’s main page provides all the already available designs by the current user or by
other users. This helps the user to apply an already created design and skip the design
creation procedure. Through the available list of designs, it is possible to preview
previously developed designs or edit the current ones. In addition, the main page offers to
users the “Create Design” and “Design Elements” modules.

5.1.1 Create / Edit Design

As soon as the user selects to “create a design”, a two step procedure is initiated. Through
the first step of design creation, general information about the design is collected, such as
name, description, header and footer areas availability (Figure 16). After completing the
first step, information about the design’s navigation is requested. There are three possible
options, namely top navigation, side navigation, and top-left navigation. Additionally, the
user is asked about the availability of a logo for the item being designed. After
completing this step, the user saves the design by clicking on the ‘Next’ button (Figure
17).

web . Accessiii
harmoni@

— General

Bl back to lst of designs

Fields marked * are required for submission

Design natne™: |

Dezenption™ |

*Include header area? [

*Include footer area?
Mendt

Home Op 1 Copyright © some

Figure 16: Create Design Step 1

62

web Accessibiit
harmoni@——

—Design elements

Bl back to hst of designs

Fields marked * are required for submission
Select navigation placement™:

Top-running navigation
 Side-running navigation
 Top-and-left navigation fupside-down L)

Wy design has logo [

Figur : Create es1gn tep 2

The basic difference between “create” and “edit” is that although the forms are the same,
when modifying an existing design the fields are already filled with the selected design’s
information.

5.1.2 Design Elements

The “Design Elements” module includes the following five basic functions (Figure 18):
e Add forms, which redirects the user to the “Form Creator” described in the next

section.

e Edit style, where the user can choose among a collection of WCAG 1.0 level
AAA styles.

e Edit logo, where, if logo availability is already selected, the user can upload a
logo image.

e Add/edit free text, for adding any kind of free text in header or footer area, or edit
an already created text.

e Add/edit hyperlink, in order to help the user adding a hyperlink over the header or
footer, or edit an existing one.

63

web
harmoni@—

B add forms r—Design My test Design

B edit style

Header

B editlogo
Flement name Placement

Logo First row, left

8 add hyperlink N.ag'gation First row, middle

Site path Second row, left

Secondaty navigation Second row, middle

E add free text

Footer

Flement name Placement
Ausiliary navigation First row, middle

Style information

Element name Selection
Appled style Drefault

Save |

Figure 18: Design Elements list

5.1.3 Preview Design

The Preview module returns a physical presentation of the created design with the added
elements. For the newly created designs — which do not contain any elements — only the
available placement areas for the elements are presented (Figure 19).

64

Logo's positions

{Secondary Nawigation
Placeholder} {Default Content}

Figure 19: D Designer Pre-viewer

5.2 “Form Creator”

When the user accesses the first page (Figure 20) of the “Form Creator” tool, a list with
the forms assigned to the selected design is displayed, along with a list of forms from
other designs, to help user create a new one.

web
harmoni@ -
El create a new form [~ Design's forms
Form name Action Created Last modified
Eemster Collect m web service "Begister” elements 2007-10-04 2007-10-04

—Forms from other Designs

Form name Action Created Last modified
Iy Test Form Collect in web service 2007-10-02 2007-10-02

Figure 20: Form Creator - forms list

65

5.2.1 Create a Form

In order to create a new form, a number of fields have to be filled in (), such as:
e Form name, which will be presented also in the secondary navigation of the
created page.
e Form action and action’s link, so that the tool can decide how and where the data
inputted in the form will be sent.
e Number of steps, in case the designer wishes to split the form elements in steps.

e Content language, to provide information about the elements “language” and
“character set”.

harmoni@——

— General

B back to forms list

Fields marked * are required for submission

Form name™®: |
Action:

& Collect in web service
 Send data to my emai
© Tust post data

Action link™®: |

How many steps:

® One
C Two
© Three
Page language™: I English 'l

Wy form contains multilingual elements [~
Create and add elements |

Home Op 1 C 2
Figure 21: Creating a Form

&

66

5.2.2 Form Elements

5.2.2.1 Free text

web
harmoni@——

— Text properties

E back to elements

list
Fields marked * are required for submission

Text*: I
Add

Figure 22: Add free text

5.2.2.2 Open-ended questions

web
harmoni@—

— Open-entity question propetties

E hack to elements lst

Fields marked * are required for submission

Question label®: |
Title*: |
Pre-fill answer. |

Response type*:

@ Short text
© Password (hidden text)
 Long text

Wax field size {chars) I 50 VI

Addd

Figure 23: Add open-ended question

67

5.2.2.3 Multiple choice questions

web
harmoni@

Enter search term

El back to elements lst

—Multiple choice question properties

Fields marked * are required for submission

Chuestion label®: |Country
Title™®: |Please, selectyour country

Response type*:

 Single response (yes of no)
" Selection from multiple choices, showing all possible answers (using radio-buttons)

" Multiple selection from multiple choices
Mumber of possible answers (not applicable to single response type): I 2 'l

Add

Figure 24: Multiple choice question creator

68

web
harmoni@—

—List of choices

El back to elements list

B back to element

. Fields marked * are required for submission
creation page

Choice Number 0:

Choice text™®: |Greece
Choice value®: |1
& Selected?

Choice Number 1:

Choice text™®: |UK

Choice value®: |2|
© Selected?
Add |

Figure 25: Multiple choice answers

5.2.2.4 Grouping

5.2.3 Preview Form

69

web
harmoni@—

—Form elements

Bl back to forms st
Bl add free text
Here you can regster
B add open-entity
sername I
question
. . Paszsword I
Bl add multiple choice
. Ermail I
guestion —
E add grouping Receive notification emails?
& Yes
O o
Coungl Greece 'l

Home Op 1

Figure 26: Previewing Form

5.3 Device Independence and Personalization Support

Server-side adaptation supported by Web Harmonia offers maximum author control over
the delivered content, including the ability to radically change the content amount and its
styling, navigation, and layout. According to device’s capabilities (available in the Web
page request’s standard HTTP protocol header), generic tags are been “transformed” to
appropriate mark-up. Moreover the personalisation mechanism may assist users to select
and customize a preferred accessible user interface according to their personal needs.

Table 2 illustrates technical characteristics currently under development, depending on
device’s capabilities:

70

Table 2: Device independence support

Device Markup Adaptation
Automated | Semi- User
automated | defined
HTML 4.01, XHTML 1.0 v
Desktop Transitional
CSS1,CSS2 v v
XHTML 1.0, cHTML v
PDA CSS 1 v
i v
Mobiles Basic HTML, cHTML

The web interface of the default profile is a simplistic WAI — AAA (WCAG 1.0)
accessible form. Its main characteristic is the absence of layout tables, so that the content
becomes readable from the top to the bottom of the page. Additionally, this interface
contains a number of navigation shortcuts, such as quick links access keys and tab
browsing (Figure 27). When a registered user uses a desktop pc with a browser that
supports XHTML, the generated output is a XHTML 1.0 — CSS 2 combination. In case of
devices that support different specifications, proper markup is been generated (e.g., the
PDA in Figure 28).

eD
harmoni@

A Demo Contact Formn

XHTML 1.0

CSS 20

Figure 27: Previewing a demo form (Desktop pc)

71

* Home
* Previgwwe

A Demo Contact Form
Use this form to contact me [Privacy] + Home

» Previewer
Required contact info:
Enter your full name

[|

Enter your émail address

A Demo Contact Form

| Use this form to contact me [Privacy]

Optional nfo about your technical skills: Wou have knowledige
about:
Required contact info:

Dw~leTh'.mul'kw Enter your full name
D Seripting Languages Enter your email address

Are you directly invoheed with creation of web material (¢ g onfine
preentations, web sites)?

O Optional info about your technical skills:
L B You have knowledge about:

Back S Menu Back Menu

||XHTML 1.0|CSS 1.0| HTML 4.0 CSS 1.0

Figure 28: Previewing a demo form (PDA)

5.4 Cost-Effectiveness Analysis

While much web applications are written by professional software engineers,
increasingly, important web materials are being created by non-professionals (end-user).
In the case of web forms, as they allow a user to enter data that is, typically, sent to a
server for processing, and mimic the usage of paper forms, web development knowledge
should not be necessary.

The usual model for producing accessible forms is using self-contained collections of
form components. Accessibility is established by testing conformance of the resulted
form to the best guidelines for accessible authoring (WCAG 1.0). The WCAG themselves
do not specify how the goals are to be implemented as they aim to provide normative
guidelines that can survive the development of technology. Given the absence of
implementation rules, many of the decisions that have to be made at the time of authoring
or evaluation are subjective, and it is not possible for an author to know with certainty
what is required in any given situation. This means that authors need to be very expert in
web accessibility to make authoring decisions. There is ample evidence available to show
that such expertise is not common: even among those who are interested and try to make
their resources accessible though the Web, there are many perceived difficulties and such
people represent only a very small proportion of the people who author digital content for
the use of others.

72

In addition, expertise is often used to design web forms so they perform well on a given
set of devices, such as specified software and hardware, when neither of those selected
are conformant to the recognised accessibility standards and so what suits the proprietary
devices is frequently unsuitable for users with other software or devices.

Currently, an author who attempts to produce an accessible form almost always uses
software (e.g., Macromedia Dreamweaver) that enables them to examine and alter the
mark-up to increase the accessibility of each element. To make this form universally
accessible (peoples dis-abilities, devices technical characteristics), they have to evaluate
it over and over again and test in with several devices.

5.4.1 Testing the Cost-effectiveness of the Form Creator

On the basis of the above discussion, the conclusion can be drawn that the production of
universally accessible forms using currently available methods and tools has limited
practical feasibility, as it is demanding in terms of skills, time and resources.

The proposed tool integrates author expertise for web accessibility, as well as device
independence standards, thus making the development of accessible forms much easier
and simpler. To confirm such a statement, an informal experiment was conducted in order
to assess the effort needed for the production of an accessible web form using a well
known authoring tool (Macromedia Dreamweaver) and the Form Creator tool (see Figure
29 and Figure 30). By the comparison, the following results were drawn:

1. Cleaner separation of structure, navigation, and presentation: Form creator allows the
user to tackle these aspects separately, and then top merge them together. In a typical
setting, earlier prototypes of a form can be created using a default style without
interfering with structure and navigation features, and the final look-and-feel is added
only at the last rounds of prototyping. By using Dreamweaver, author must apply
existing CSS classes in order to cope with appearance.

2. Reduced development effort: this advantage comes from a number of factors: (1) a
well-organized development cycle; (2) the stress on prototyping, which causes less
revisions or major changes; (3) embedded accessibility standards minimize the effort
for testing (4) production of valid mark-up proper for the device in use, minimises the
need of several implementations for each situation

3. Improved maintenance and evolution: cost and time reduction shows also during
evolution, because changes in the initial form design can be automatically propagated
to implementation. Dreamweaver author should provide alternatives for each case.

73

) Macromedia Dreamweaver MX - [Untitled Document {Untitlad-1*)]
@ File Edit view BGEERS Modify Text Commands Site MWindow Help

Commg 199 Chrl+E |I:hara-:ters Media [Head [Ser
—— Image Chri4-Alk+T i
@ @' ‘ Image Placeholder @l | EI E
e i Inkeractive Images]
QY [f| 2 & _ N C <@ {}, E,
l____— —— | = Meda
7
N Table Chrl+al+T
e Table Objects »
g b
Laver
o Frames]
11 </body> Template Objects 3
12 </html>
e Form
< |
_________________ o Textarea N
! Ernail Link.
IO RPPRTI H ik Button ...
Nyperc:n.q h Chrl+alt+A o
Da[ne HICHEE ' Radio Butkon
Ha? kol Rl List/Menu
prizonial R File Field
Text Objects » Image Field
Script Objects » Hidden Field
Head T 4
Sea K ITZQhS " . Radio Group
ecial Characters
P Jurnp Menu
I : '
Appllcatllon Objects Fildst
ASP Objects 3
. Label
ASP.MET Objects 3
ColdFusion Basic Objects 3

aldFzian Flrw Mkierkz »
Figure 29: Dreamweaver requires experience in web development, accessibility standards, and

produces a WYSIWYG solution

— General

Fields marked * are required for submission

Form name™: | |

Action:

® Collect in web service
O Zend data to my email
O Just post data

Action hnk™®

How many steps:

® One
O Two
O Three

Page language™

My form contains multilingual elerments [
Create and add elements
Back to forms list

Figure 30: Form Creator requires minimum experience in web development

74

Additionally, it can be claimed that designing a web form using a well founded and
descriptive formalism improves quality (e.g., the navigation model), with respect to less
organized approaches that require technical skills. Improvements come in terms of
increased navigation power, increased usability, and consistency across the web pages.
Dreamweaver has descriptive a formalism, however the resulted mark-up must be
enriched in order to address accessibility requirements.

5.5 Discussion

In times of increasing complexity and reliance on technology, it is important to ensure
that web material that is being produced can be utilised by the biggest possible audience,
including people with disabilities. Opportunities lost by early introduction of new
technologies must be repaired by careful development of newer technologies, but it is
important to balance cost-effectiveness with outcomes.

The production of tools that help in the development of a universally accessible web form
and web material in general, may contribute in altering the results of recent surveys that
demonstrate a very low accessibility conformance for the majority of Web sites. The two
tools developed in the context of this thesis help towards this direction with the provision
of web resources:

¢ comply with all Priorities 1, 2 and 3 of WCAG 1.0 (Figure 31)
¢ produce valid mark-up (W3C Specifications)
¢ resulting web pages can be accessed through alternative devices (e.g., PDAs)

Y { Check another page:

[watcifise ! =
m-.ﬂ ; f http:/#139.91.186.222/s0lution kartakis/designerlist php
= < hd

1‘/ ‘ - Show Advanced / Accessibility Options Terms of uze

Results for http://139.91.186.222/solution/kartakis/designerilist.php?uid=2 =

Fage last chedied on Sun 071042007 at 7:59pm.

General Quality Accessibility | Privacy

%17 This page complies with all of the automatic checkpaints of the W3C Web Content Accessibility Guidelines.
manual verification.

Automatic Checkpoints Manual Checkpoints
Status Errors Instances Status Warnings Instances
Priority 1 v] o v]]
Priority 2 i 1] a 7 9 9
Priority 3 v] a v]]

Figure 31: The Form Creator tool complies with WCAG 1.0 Level AAA (automatic check)

75

6 Evaluation

WCAG 1.0 is the de-facto standard for developing accessible web sites. There are some
automatic validation tools available to developers, such as Bobby Watchfire. However,
testing the level of compliance against this standard only entails a number of drawbacks:

1. The results of such an automatic validation tool present extremely valuable
information, but are often overwhelmingly long and detailed, making them difficult
to interpret, particularly to non-expert Web developers.

2. An automatic validation tool can only detect a limited number of potential
accessibility barriers, and thus additional manual inspection is required on the part of
developers in order to supplement results.

3. In some cases, automatic validation tools find a resource inaccessible, even though it
does reach an acceptable level of accessibility.

To this effect, although checking against guidelines and using automatic validation tools
provides an approximation of the level of accessibility of the resulted web form, no
indication of the accessibility of the final outcome is provided.

To overcome this drawback, two different approaches to the evaluation of the two tools,
as well as of their outcomes, have been followed. The first was to systematically test
compliance against WCAG 1.0 level AAA with the use of the Bobby WatchFire. The
second was to perform user-based evaluation, targeted towards assessing the tools
accessibility, usability, and usefulness. This testing was performed by one web developer
and one blind user.

6.1 Methodology

In order to assess of the Designer and Form Creator tools from an accessibility
perspective, the ‘Preliminary Review’ process was followed as suggested by W3C-
WAI®. This process mainly involves some manual checking of a sample of pages of the
tool and of the resulting forms, along with the use of several semi-automatic accessibility
checkers. First, the main webpages constituting the tools were examined through the use
of various graphical user interface (GUI) browsers (such as Internet Explorer’® 6.0 and
7.0, Netscape Navigator'' 7, Mozilla 1.6, Firefox>* 1.0 and 1.5, and Opera® 7.54) while
adjusting the browsers’ settings. This preliminary review mainly helped to quickly
identify some accessibility ‘bugs’ in the source code (such as elusive alt tags provision)
and improve the colors and structure of the templates used.

29
30
31
32
33

Evaluating Web Sites for Accessibility (http:/www.w3.org/WAI/eval/)
Internet Explorer (http://www.microsoft.com/windows/ie/)

Netscape Navigator (http://home.netscape.com/browsers/)

Mozilla Firefox (http://www.mozilla.org/)

Opera (http://www.opera.com/)

76

http://www.w3.org/WAI/eval/
http://www.microsoft.com/windows/ie/
http://home.netscape.com/browsers/
http://www.opera.com/

Two of the most effective automatic validation tools available for assessing accessibility
were used to validate the subject site, namely:
¢ Bobby - a popular automatic accessibility evaluation tool, the results of which
provide important, although incomplete information regarding accessibility levels
of a site. As mentioned, Bobby can be a reliable tool to check entire sites for
every guideline that can be validated automatically.
¢ W3C HTML & CSS Validation Tools - not an accessibility evaluation tool as
such, checking however the HTML source code behind a web page for
compliance with the HTML standard as specified in the code of the page. A key
requirement for assistive technologies to correctly interpret web pages is that the
pages must be written in valid HTML, and therefore it is important to include an
HTML validation stage in the methodology.

The second evaluation step that took place was a user-based evaluation, targeted towards
assessing the tools accessibility, usability, and usefulness. This evaluation phase involved
one web developer and one blind user - an experienced web and Jaws (screen reader
technology) user - with some technical knowledge concerning the creation of paper-based
forms and electronic presentations (PowerPoint).

The method utilised in both cases was the ‘think aloud’ protocol, where the users were
asked to vocalise their thoughts whilst exploring the tools and carrying out a
predetermined task. Users were initially given five minutes of free exploration prior to
commencing the task.

The users were guided with the use of specific scenarios. Three quantitative measures
were recorded:

¢ Ease — users were asked to rate how easy the site made it for them to do the task
(between 1 = difficult and 7 = easy)

¢ Navigation — users were asked to rate how easy it was to navigate their way
around the tool (between 1= difficult and 7 = easy)

¢ Impairment — the blind user was asked to rate if her impairment had been taken
into consideration (between 1 = not at all and 7 = completely)

Two other metrics were recorded:
¢ Time taken to complete task
¢ Success or failure of the task

The tasks tested were:
¢ The creation of a web design (web developer)
¢ The creation of a web form (both).

77

6.2 Evaluation Results

Overall, the web pages produced using the tools comply with WCAG 1.0. However,
according to Checkpoint 14.1 Use the clearest and simplest language appropriate for a
site's content, all dialogs should be re-examined. The tools, besides fully accessible
output, generate valid mark-up in three combinations of browser-device examined (Latest
version of Internet Explorer — Desktop, Old version of Netscape Navigator — Desktop,
Internet Explorer - PDA).

Overall, the users completed the tasks successfully. The blind user, although she had
some understanding of the process of creating an online form, experienced more
difficulty in using the tools in comparison to the other participant (web developer); this
user succeeded in completing the task of creating a form, but she asked many
clarifications during the process as she was not familiar with the terms used (e.g.,
mandatory field, form title and others).

Both users were asked to rate how easy it was to navigate their way around the tool(s)
after exploration, and again after they completed the task. The mean rating was 4. The
users were also asked to rate the degree to which their impairment was considered; the
blind user gave an overall impairment rating of 2. The disabled user asked for help pages
(current version does not provide any), not knowing how to use the services provided,
and she experienced lack of feedback through assistive technology, although all
accessibility features have been incorporated.

The main problems that each user experienced are listed below:

Key problems experienced by the blind user:

» Lack of meaningful language: technical terms must be translated into “plain
English”

» Insufficient feedback— information in list boxes not read, alt text not meaningful

» Navigation was not so helpful: user requested a “back to main page” feature at the

end of each screen

Key problems experienced by the web developer:

* Provision of more advanced features

= Use of existing Web services to post form’s data (not available in current version)
* Design was not attractive

= Lack of help pages

= No functionality was available to cancel, undo or redo, the user was forced to start

78

from the beginning each time
» User friendly urls: for demonstrating the resulted form in a PDA, user had to type

a quite long url

The above indicates that there are a number of usability and accessibility problems
associated with the use of information visualisation, mainly with the users in
understanding the data and successfully using the service. The evaluators on this occasion
were not subject matter experts for the services they were asked to look at, therefore
struggled with interpreting the data. As a result, a number of design improvements have
emerged from this process and will be used to further improve the platform and the tools.

These include modifications related to:

¢ provision of sufficient feedback for each action (e.g., make use of “hidden” text
for tipping the user)

improved navigation

provision of alternative design templates

adequate help support

carefully selected labels, headings and wording

* & o o

79

7 Conclusions and Future Work

The World Wide Web was initially designed to be a medium for sharing information, i.e.,
people not only read information, but also contribute. In order for this to become feasible
for people with disabilities, not only web content must be accessible, but also the tools
used to create and modify Web content must be accessible. Ensuring that people with
disabilities are able to contribute content is an important crucial argument for making the
Web accessible.

At the same time, the proliferation of new devices and the need for information access
anywhere and at anytime provide new opportunities to further enhance the Web. Today,
users can interact with Web data via a wide range of devices-browsers, but there is still
lack of universal interchange data formats. This prevents consumers from exploiting the
true value of these rich data. Additionally, there is in many cases lack of compliance with
accessibility guidelines and with more generic W3C standards.

Modern solutions, without exceptions, provide platforms and tools for the development of
web applications that vary in complexity, from simple static web pages, such as a simple
curriculum vitae, to complex processes running CRM (customer relationship
management) or enterprise resource planning (ERP) systems. However, such tools can
not be utilised by a person using a screen reader who needs to design a simple web page
with a simple form. In addition, despite the “rise” of SOAP Web Services, which have
been designed to be accessed by other applications since they are based on open
standards such as HTTP and XML-based protocols (e.g., SOAP, WSDL), there are only
one or two platforms for building interfaces for these applications, and they require
software engineering knowledge. Consequently, even though Web services support the
idea of seamlessly exchanging data over intranets or the Internet between applications
that are written in different programming languages and running on different platforms,
in practice it seems impossible to interconnect a simple web interface with the application
logic provided by someone else.

When building web applications (i.e., interface and content), web developers are working
with a fairly restricted set of widgets, compared to those available for native desktop
applications. In that respect, with the provision of fully accessible native widgets, which
can be manipulated according to personal needs and device characteristics, one can
replicate existing solutions and provide web users with exciting interfaces that bridge the
gap between native applications and web applications. However, building interfaces this
way usually reduces accessibility. . Web interfaces however, ought to provide the same
central functionality to all users and content should be presented in more than one ways.

7.1 Contribution of this Thesis

This thesis has discussed the importance of universally accessible web forms in the
context of the current evolution of the web, towards a global platform for information and
services provision, and has presented two tools, called Form Creator and Designer, which

80

support the provision of universally accessible web forms in the context of the novel web
development platform Web-Harmonia. Web forms were selected as the primary target as
these elements are included in almost all web sites since they allow transactions and data
gathering from users. Web forms are one of the most difficult aspects of web
development, largely because they entail stepping out from simply presenting information
to the user of a site.

Creating accessible online forms is a really challenging task, particularly when forms
have to be accessible to screen reader users. This is due to the fact that there is a variety
of form control types — text, checkboxes, radio buttons, menus, etc. - each with its own
distinct accessibility challenges. The two aforementioned tools offer considerable
advantages with respect to current practice, as they generate web forms which:

e Fully comply with WCAG 1.0
e Can be accessed by various devices through a web browser
e Can be personalised according to user preferences

These tools are claimed to highly simplify and enhance the production of web forms, as
they:
e are operated through a web-based wizard user interface which is itself fully
accessible
e do not require prior knowledge or experience in web accessibility and web
development
e do not require additional programming
e are extensible by importing interaction resources offered by different interaction
platforms
e are orthogonal to other tools, i.e., support the use of business logic produced by
external software tools.

The two prototype tools have been evaluated with respect to both accessibility and
usability. Accessibility testing has been carried out mainly through the use of automated
tools, and the results confirm that both the tools and the produced forms are AAA
compliant. Preliminary usability evaluation was conducted through a small think-aloud
walkthrough involving an experienced web developer and a blind user. The results have
confirmed the usefulness of the tools and have identified some issues for further usability
improvement, including the need for a help facility, undo/redo functions, clearer language
and terminology, more informative alt text, and enhanced navigation for blind users.
However, more extensive usability evaluation is needed.

7.2 Future directions

The need to access and manipulate all types of existing data from everywhere, with every
kind of device, becomes increasingly critical in order to achieve successful solutions.
Nowadays, technologists are searching for a way to make different kinds of data
seamlessly integrate together and transcend multiple data protocols, languages, devices
and users. Web tools that support the creation of standardised web content in a cost
effective way that can be utilised by all, may provide a solution to such issues. To support

81

the complete separation of content — application logic for the presentation, a mechanism
is needed to enable universal access. This mechanism should provide design solutions
and interconnections to business logic developed elsewhere, without the need for data
conversions and further adaptation processes, ensuring that:

¢ Creation of simple web material can be done by all

¢ Presentation elements and content can be adapted for people with disabilities (e.g.
use of assistive technologies) with a high level of usability,

¢ Accessibility features are integrated into, and a natural part of, technical
specifications not requiring a high level of additional effort by content producers
nor bloating content

¢ Device Independence

The actual development of such suite of tools for the support of web content development
will decrease the maintenance costs, but most importantly the development time. The
principal benefit consists of making just widgets maintenance and, if a new target
language (e.g. HTML 5.0) is needed, a new instance of them. Future work is planned to
include:

Further testing with additional devices (e.g., 1TV)

Enrichment of the available form elements (e.g. Likert-style questions)

Inclusion of automated validation methods in the created forms

Development of total solutions for the creation of universally accessible web sites.

82

8 References

Adipat, B. and Zhang, D. (2005): Adaptive and Personalized Interfaces for Mobile Web.
Proceedings of the 15th Annual Workshop on Information Technologies and Systems
(WITS’05). Las Vegas, NV, 2005. 21-26.

Basdekis, 1., et al. (2007, forthcoming): Development of Web-Harmonia - an interaction
platform to facilitate the production of universally accessible web interfaces in a cost-
effective and standard-compatible way. FORTH-ICS, Heraklion, Crete, Greece.

Billsus, D., Pazzani, M. and Chen, J. (2000): A learning agent for wireless news access.
In Proceedings of the International Conference on Intelligent User Interfaces. (New
Orleans, LA, Jan. 9—-12, 2000), 33-36.

Bureau of the Census (2000): “Internet access, computer use, and disability status: 1999.”
Survey of Income and Program Participation (1999, unpublished tabulation).
Washington, DC: Author.

Buyukkokten, O., Garcia-Molina, H., and Paepcke, A. (2001): Seeing the whole in parts:
Text summarization for Web browsing on handheld devices. In Proceedings of the 10th
International WWW Conference. Hong Kong (May 1-5, 2001).

Casali, S. P., (1995): A physical skills-based strategy for choosing an appropriate interface
method. In Edwards, A. D. N., (Ed.), Extra-ordinary Human Computer Interaction: Interfaces for
people with disabilities, Cambridge University Press, pp. 315-342.

Ceri, S., Fraternali, P., Paraboschi, S.(1999): “Data-Driven One-to-One Web Site
Generation for Data-Intensive Applications”. Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999, pp 615-626.

Clark, J.(2003): "Building Accessible Websites" New Riders Publishing, Indianapolis
Indiana.

Clark, J., (2005): Web Standards Group interview, Retrieved 10 September 2007 from
http://webstandardsgroup.org/features/joe-clark.cfm

Clark, J.,(2005): Big Stark and Chunky, CSS articles and tutorials A List Apart, ISSN:
1534-0295. 11 January 2005 — Issue No.

Cloninger, C. (2002): “Usability Experts Are from Mars, Graphic Designers Are from
Venus,” A List Apart, No. 74. Retrieved July 28, 2005 form
http://www.alistapart.com/articles/marsvenus/ .

Communications of the ACM, (2000). Special Issue on Personalization. Volume 43,
Number 8.

83

http://www.alistapart.com/articles/marsvenus/

Dalton, P. (1997): Microsoft SQL Server Black Book. The Coriolis Group.

European Parliament (2002). eEurope 2002: Accessibility of Public Web Sites and their
Content - European Parliament resolution on the Commission communication. January 7,
2005, from
http://europa.eu.int/information_society/topics/citizens/accessibility/web/wai_2002/ep_re
s_web_wai_2002/index_en.htm .

Glazkov D., (2005): Keeping “pretties” out of content, Retrieved 20 July 2007 from
http://glazkov.com/blog/graphics-and-markup/

Hanson, Vicki L., Richards, J.,(2004): The User Experience: Designs and Adaptations,
ASSETS'04, October 18-20, 2004, Atlanta, Georgia, USA. Copyright 2004 ACM 1-
58113-911- X/04/0010

Hudson, R., (2005): Disabilities and Technologies, Retrieved 1 October from
http://www.usability.com.au/resources/statistics.cfm

Hudson, R., Weakley, R., and Firminger, P., (2005): Developing sites for users with
Cognitive disabilities and learning difficulties, Retrieved 10 September 2007 from
http://juicystudio.com/article/cognitive-impairment.php

Jiang, Z. and Kleinrock, L. Web prefetching in a mobile environment. IEEE Personal
Communication (Oct. 1998), 25-34.

Johansson, R., (2004): The alt and title attributes, Retrieved from
http://www.456bereastreet.com/archive/200412/the alt and_title attributes/

Johansson, R., (2006): Setting font size in pixels, Retrieved 20 August 2007 from
http://www.456bereastreet.com/archive/200602/setting_font size in_pixels/

Korpela, J. (1998): IT and Communication. "Improving accessibility with accesskey in
HTML forms and links".
Available at: http://www.cs.tut.fi/%7Ejkorpela/forms/accesskey.html

Laakko, T. and Hiltunen, T. (2005): Adapting Web content to mobile user agents. IEEE
Internet Computing (March—April, 2005), 46-53.

Lank, E. and Phan, S. (2004): Focus+context sketching on a pocket PC. In Proceedings of
ACM CHI 2004 (Apr. 24-29, 2004, Vienna, Austria), 1275-1278.

Lum, W. and Lau, F. (2003): “User-centric content negotiation for effective adaptation
service in mobile computing”. IEEE Transactions on Software Engineering 29, (2003),
1100-1111.

84

http://europa.eu.int/information_society/topics/citizens/accessibility/web/wai_2002/ep_res_web_wai_2002/index_en.htm
http://europa.eu.int/information_society/topics/citizens/accessibility/web/wai_2002/ep_res_web_wai_2002/index_en.htm
http://www.usability.com.au/resources/statistics.cfm

Mao, Z., So, H., Kang, B., and Katz, R. (2001): “Network support for mobile multimedia
using a self-adaptive distributed proxy”. In Proceedings of the 11th International
Workshop on Network and Operating Systems Support for Digital Audio and Video. Port
Jefferson, NY, (June 25-26, 2001), 107-116.

Marincu, C., & McMullin, B. (2004). A Comparative Assessment of Web Accessibility
and Technical Standards Conformance in Four EU States. Retrieved December 23, 2004,
from http://eaccess.rince.ie/white-papers/2004/warp-2004-00/ .

Nylander, S. and Bylund, M. (2002) Device Independent Services, SICS Technical
Report T2002-02, Swedish Institute of Computer Science.

Nyman R., March (2006): What is Accessibility?, Retrieved 10 June 2007 from
http://www.robertnyman.com/2006/03/01/what-is-accessibility/

Platform for Privacy Preferences Project. Available at http://www.w3.org/P3P.

Plomp C.J., Mayora-Ibarra O. A., (2002): Generic Widget Vocabulary for the Generation
of Graphical ans Speech-Driven User Interfaces, International Journal of Speech
Technology, Vol 5, 39-47, 2002.

Puerta, A., Eisenstein, (2001): XIML: A Common Representation for Interaction Data,
Proceedings ACM IUI’01, pp.214-215.

Richards, J., Hanson, V., and Trewin, S., (2003). “Adapting the Web for Older Users,” In
Universal Access in HCI (Vol 4): Inclusive Design in the Information Society, C.
Stephanidis, Editor, (2003), pp. 892—-896.

Schwabe, D., Rossi, G.(1998): “An object-oriented approach to web-based application
design”. Theory and Practice of Object Systems (TAPOS), Special Issue on the Internet,
v. 4#4, pp. 207-225, October, 1998.

Sierkowski, B. (2002). Achieving web accessibility. In Proceedings of the 30th annual
ACM SIGUCCS conference on User services (pp. 288-291). Providence, Rhode Island,
USA.

Stephanidis, C., & Savidis, A. (2001). Universal Access in the Information Society:
Methods, Tools and Interaction Technologies. Universal Access in the Information
Society, 1 (1), 40-55 (Managing Editor: Reinhard Oppermann, GMD, Germany).

Stephanidis, C., Akoumianakis, D. (2003). "A design code of practice for universal
access: Methods and techniques". In R. Proctor & K. Vu (Eds.). "The Handbook of

Human Factors in Web Design", to be published by Lawrence Erlbaum Associates, Inc.

Slatin, J. and Rush, S. (2003): "Maximum Accessibility", Addison-Wesley, Boston.

85

http://eaccess.rince.ie/white-papers/2004/warp-2004-00/

U.S. Code (1998), The Rehabilitation Act Amendments (Section 508). Retrieved January
7, 2005, from http://www.access-board.gov/sec508/guide/act.htm

Yang, C.C. and Wang, F.L. Fractal summarization for mobile devices to access large
documents on the Web. In Proceedings of the International WWW Conference
(Budapest, Hungary, May 20-24, 2003), 215-224.

Zhang, D. and Adipat, B. Challenges, methodologies, and issues in the usability testing of
mobile applications. International Journal of Human Computer Interaction 18, 3 (2005),
293-308.

World Wide Web Sources

Australian Bureau of Statistics, (2003): "Disability, Ageing and Carers Survey: Summary
of Findings". PDF copy available at:
http://www.ausstats.abs.gov.au/ausstats/subscriber.nsf/Lookup/978 A7C78CC11B702CA
256F0F007B1311/$File/44300 2003.pdf

Brown, S. Style sheets for low vision. Available at:
http://people.pwf.cam.ac.uk/ssb22/css/

Dahm, T. Browser Compatibility Tutorial. Available at:
http://www.netmechanic.com/products/Browser-Tutorial.shtml

EUROSTAT, (ECHP UDB 06/2003): "Hampered in daily activities by any physical or
mental health problem, illness or disability ". Available at:
http://epp.eurostat.cec.eu.int/portal/page? pageid=1073,46870091& dad=portal& schem
a=PORTAL&p_product code=HAMPERED

Pilgrim, M. “Dive Into Accessibility”. Available at: http://www.diveintoaccessibility.org/

Shannon, R. “Basic Forms”. Available at:
http:// www.yourhtmlsource.com/forms/basicforms.html

Statistics Canada, (2001): "Prevalence of disability in Canada (2001)". Available at:
http://www.statcan.ca/english/freepub/89-577-XIE/canada.htm

Statistics New Zealand, (2001): "Disability Counts 2001". Available at:
http://www?2.stats.govt.nz/domino/external/pasfull/pasfull.nsf/web/Reference+Reports+D
isability+Counts+2001?0pen

Thatcher, J. “Web Accessibility for Section 508”. Available at:
http://www.jimthatcher.com/webcoursel.htm

86

http://www.access-board.gov/sec508/guide/act.htm
http://people.pwf.cam.ac.uk/ssb22/css/
http://www.netmechanic.com/products/Browser-Tutorial.shtml
http://epp.eurostat.cec.eu.int/portal/page?_pageid=1073,46870091&_dad=portal&_schema=PORTAL&p_product_code=HAMPERED
http://epp.eurostat.cec.eu.int/portal/page?_pageid=1073,46870091&_dad=portal&_schema=PORTAL&p_product_code=HAMPERED
http://www.diveintoaccessibility.org/
http://www.yourhtmlsource.com/forms/basicforms.html
http://www.statcan.ca/english/freepub/89-577-XIE/canada.htm
http://www2.stats.govt.nz/domino/external/pasfull/pasfull.nsf/web/Reference+Reports+Disability+Counts+2001?open
http://www2.stats.govt.nz/domino/external/pasfull/pasfull.nsf/web/Reference+Reports+Disability+Counts+2001?open
http://www.jimthatcher.com/webcourse1.htm

UK National Statistics Office (2001), "Health Status: Limiting Long-term Illness or
Disabilities". Available at: http://www.statistics.gov.uk/cci/nugget.asp?id=916

US Census Bureau, (2003): '"Disability Status: 2000". Available at:
http://www.census.gov/prod/2003pubs/c2kbr-17.pdf

WebAIM (2007). A Review of Free, Online Accessibility Tools. Retrieved September 7,
2007, from http://www.webaim.org/articles/freetools/

World Wide Web Consortium. “Essential Components of Web Accessibility”. Available
at: http://www.w3.org/WAl/intro/components.php

World Wide Web Consortium. "Web Content Accessibility Guidelines 1.0. Available at:
http://www.w3.org/TR/'WAI-WEBCONTENT/

W3C-WAI, (2003): Web content accessibility guidelines 2.0 - internal draft.
www.w3.org/ WAI/GL/WCAG20/, Nov 2003.

W3C-WAI, (2007): Selecting Web Accessibility Evaluation Tools.
http://www.w3.org/W Al/eval/selectingtools.html Ock 2007.

W3C-WAIL: Web characterization terminology & definitions. Available at
http://www.w3.0rg/1999/05/WCA-terms/.

XUL, XML User Interface Language. Available at: http://www.xulplanet.com

87

http://www.statistics.gov.uk/cci/nugget.asp?id=916
http://www.webaim.org/articles/freetools/
http://www.w3.org/WAI/intro/components.php
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/WAI/GL/WCAG20/
http://www.w3.org/1999/05/WCA-terms/
http://www.xulplanet.com/

	Acknowledgements
	1 Introduction
	1.1 The World Wide Web and people with disabilities
	1.2 Universal Access to the World Wide Web
	1.3 Universally Accessible Web Forms
	1.4 Objectives of this thesis
	1.5 Structure of this thesis

	2 Web Accessibility: current practices
	2.1 Problems with Web Access
	2.2 Benefits to People without Disabilities
	2.3 Problems in Relation with the Use of Browsers and Devices
	2.3.1 Variety of Web Browsers
	2.3.2 Devices with Different Screen Sizes
	2.3.3 Different Font Sizes
	2.3.4 Invalid HTML Code

	2.4 Limited Provision of Web Accessibility
	2.5 Accessibility and Device Independence
	2.6 Evaluating web pages accessibility
	2.6.1 Basic Checkpoints
	2.6.2 Manual checkpoints and content accessibility

	2.7 Browser compatibility
	2.8 Web Accessibility evaluation tools
	2.8.1 Bobby Watchfire
	2.8.2 A-Prompt

	2.9 Discussion

	3 Creation of Accessible Web Forms: Methodologies and Tools
	3.1 Methodologies
	3.1.1 Accessibility by design
	3.1.2 Filter and transformation tools

	3.2 Platforms for the creation of web services
	3.2.1 Microsoft Office SharePoint Server
	3.2.2 Adobe ColdFusion
	3.2.3 eZ Publish

	3.3 Authoring tools
	3.3.1 Macromedia Dreamweaver MX
	3.3.2 Accessible Form Creator (HiSoftware)

	3.4 Web forms development requirements
	3.4.1 Separating presentation from content
	3.4.1.1 Cascaded Style Sheets
	3.4.1.2 Architectural models

	3.4.2 Full compliance with W3C Accessibility guidelines
	3.4.3 Device independence
	3.4.3.1 Selective Content Delivery
	3.4.3.2 Adaptive Content Presentation

	3.4.4 Personalisation capabilities
	3.4.4.1 Scenarios of Personalization
	3.4.4.2 Link Personalization
	3.4.4.3 Content Personalization
	3.4.4.4 User Profiling

	3.5 Requirements for tools supporting the development of universally accessible forms

	4 Accessible Online Tools supporting the accessibility of Web elements
	4.1 The Web Harmonia Platform
	4.2 Requirements analysis
	4.2.1 Context analysis
	4.2.2 System goals specification
	4.2.3 Software requirements
	4.2.4 Interface requirements

	4.3 Preliminary Prototyping
	4.4 Tool’s Architecture

	5 Functionality and User Interfaces of the Designer and Web Creator tools
	5.1 “Designer” Tool
	5.1.1 Create / Edit Design
	5.1.2 Design Elements
	5.1.3 Preview Design

	5.2 “Form Creator”
	5.2.1 Create a Form
	5.2.2 Form Elements
	5.2.2.1 Free text
	5.2.2.2 Open-ended questions
	5.2.2.3 Multiple choice questions
	5.2.2.4 Grouping

	5.2.3 Preview Form

	5.3 Device Independence and Personalization Support
	5.4 Cost-Effectiveness Analysis
	5.4.1 Testing the Cost-effectiveness of the Form Creator

	5.5 Discussion

	6 Evaluation
	6.1 Methodology
	6.2 Evaluation Results
	Key problems experienced by the blind user:
	Key problems experienced by the web developer:

	7 Conclusions and Future Work
	7.1 Contribution of this Thesis
	7.2 Future directions

	8 References

