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Abstract

In this thesis we have studied imaging systems that use optical aberrations to per-
form as continuous phase modulation devices.

Compared to Diffracting Optical Elements (DOEs) and Spatial Light Modulators
(SLMs) these devices are in principle scalable both in respect of input power and band-
width, making it possible to be used in any part of the electromagnetic spectrum.
Furthermore, we evaluate, both analytical and numerical, design strategies that allow
the realization of such tunable, continuous phase modulation devices.

Περίληψη

Σε αυτή την εργασία εξετάσαμε συστήματα απεικόνισης τα οποία αξιοποιούν τα οπτικά

σφάλματα απεικόνισης έτσι ώστε να λειτουργούν ως συσκευές συνεχούς διαμόρφωσης

μετώπου κύματος.
Σε σύγκριση με τα περιθλαστικά οπτικά στοιχεία (DOEs) ή τους χωρικούς διαμορφωτές

φωτός (SLMs), οι συσκευές αυτές είναι επεκτάσιμες όσον αφορά τα όρια λειτουργίας τους
σε σχέση με το φασματικό εύρος αλλά και την οπτική ισχύ που μπορούν να διαχειρισ-

τούν, καθιστώντας έτσι δυνατή την λειτουργία τους σε οποιαδήποτε κομμάτι του ηλεκ-
τρομαγνητικού φάσματος. Επιπλέον, αξιολογήσαμε, τόσο με αναλυτικές όσο και με αρι-
θμητικές μεθόδους, στρατηγικές οπτικής σχεδίασης που επιτρέπουν την υλοποίηση τέτοιων
συσκευών.
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Introduction

Optical aberrations can be thought of as an extension of the paraxial theory of optics. Within
the validity of paraxial optics one can robustly define the relation between the object space
and the image space. Rays coming from an object point collapse into a single point in
the image space i.e the image point. Since the paraxial theory is itself based on some
key assumptions, mentioned in chapter 3, it is only natural that optical systems that do
not meet those assumptions can not accurately be described by the theory. In practice all
optical systems and configurations only partially meet the criteria of the paraxial theory.
As a result optical aberrations are always present in an optical system degrading the image
quality. Optical aberrations can be monochromatic or chromatic. The first type exists even
for quasimonochromatic light, deteriorating and deforming the image. The latter results from
the fact that the refractive index is a function of frequency.

In the context of geometrical optics, light propagates along straight lines called rays. A
family of rays forms a ray bundle also known as a pencil of rays. The surface orthogonal to the
pencil of rays is called the wavefront. Within the paraxial theory a sharp focus corresponds
to a spherical wavefront where the focus lies in the center of the sphere. In real systems the
lack of homocentricity of the image forming pencil of rays results to the departure of the
wavefront from the spherical form. The difference between the real and the ideal (spherical)
wavefront is quantified by optical aberrations. On that account we can envisage optical
aberrations as smooth perturbations on the spherical wavefront. It is a well known fact
in optical design that monochromatic aberrations result from the surface type of the optical
elements as well as their positioning in three dimensional space. Consequently a small change
of those parameters will introduce some perturbation on the corresponding wavefront and
provides a way of wavefront modulation. Optical systems that modulate the wavefront in
such a way have been implemented successfully[7],[8] by isolating specific aberration terms
as well as reconstructing polynomial space phase distributions.

In this project we investigate an optical system consisting of mainly two reflective cylin-
drical surfaces in a beam expander configuration [7]. By changing the orientation as well
as the distance between the two mirrors we introduce aberrations to the wavefront. At first
with the use of a raytracing software we check its ability to isolate specific aberration terms.
Moreover by making proper adjustments to the set up we show that any continuous spacial
phase distribution can be generated by combining different aberration terms together. Its
bandwidth of operation is also considered since all elements are reflective leading to ultra-
broadband phase modulation. Furthermore we exploit its use as a continuous phase mask by
varying its parameters in order to achieve infrared wavefront modulation as well as experi-
menting with stacking configurations. At last, with the use of our own raytracing program
that can also handle symbolic calculations we derive an analytic expression for the total op-
tical path length a ray traverses as a function of the input variable ( that defines the starting
position of the rays) and system parameters.At last by establishing a linear relation between
the input and output variables (screen coordinates) we calculate the total optical path as a
function of system parameters and output coordinates in the form of a series approximation
for a 2D analogue of our system.
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1 From Maxwell equations to Geometrical Optics

1.1 Maxwell’s equations

Geometrical optics are defined as the limiting case of wave optics for very small wavelengths
λ → 0. It is well known that such an approximation holds well for the case of visible light,
X-rays and gamma radiation since the field is characterized by very rapid oscillations and
the wavelength is negligible λ < 10−6 m. In such cases the optical laws may be formulated in
the language of geometry, and directly be used in order to solve problems provided that the
size of optical elements and especially stops are not of the order of the wavelength. Within
the limits of such an approximation the energy may be regarded as being transported along
curves (light rays).

The basic equations of geometrical optics are derived directly from Maxwell’s equations
for the case of linear isotropic materials. Additionally the electric charge density ρ as well as
the current density j are assumed to be zero. The four Maxwell equations become :

∇× E(r, t) = −∂B(r, t)

∂t
(1.1)

∇×H(r, t) =
∂D(r, t)

∂t
(1.2)

∇·B(r, t) = 0 (1.3)

∇·D(r, t) = 0 (1.4)

where E,H,D,B, j are the electric vector, magnetic vector, electric displacement, mag-
netic induction. In the case of linear and isotropic materials they are linked :

D(r, t) = ϵ0ϵ(r)E(r, t) (1.5)

B(r, t) = µ0µ(r)H(r, t) (1.6)

(1.7)

Here ϵ is the dielectic function, µ is the magnetic permeability. Also the constants ϵ0 and
µ0 are the dielectric and magnetic permeability constant of the vacuum.

The electric and magnetic field can be in general described using the form [3].

E(r, t) = e(r)eik0L(r)e−iωt (1.8)

H(r, t) = h(r)eik0L(r)e−iωt (1.9)

where L is the optical path and is a real scalar that depends on position , ω is the angular
frequency and k0 = 2π/λ is the wavenumber. The polarization vectors e,h are in general
complex valued and depend on position. Substituting the above into Maxwell’s equations we
get :

∇× [e(r)eik0L(r)] = iωµ(r)µ0h(r)e
ik0L(r) (1.10)

∇× [h(r)eik0L(r)] = [−iωϵ(r)ϵ0 + σ(r)]eik0L(r) (1.11)

∇ · [µ(r)µ0h(r)e
ik0L(r)] = 0 (1.12)

∇ · [ϵ(r)ϵ0e(r)eik0L(r)] = 0 (1.13)
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Here relations (2.10) and (2.12) again with (2.11) and (2.13) are not independent of each
other recalling that for an arbitrary vector function f the identity ∇ · (∇× f) = 0 holds. So
if one of them is satisfied so is the other. Carrying out the necessary algebraic manipulations
(2.10), (2.11) become :

∇L(r)× e(r)− cµ(r)µ0h(r) =
i

k0
∇× e(r) (1.14)

∇L(r)× h(r) + cϵ(r)ϵ0e(r) =
i

k0
∇× h(r) (1.15)

Geometrical optics approximation:
We can see that when λ→ 0 ⇒ k0 → ∞ the right hand side of both equations becomes zero

leading to

∇L(r)× e(r)− cµ(r)µ0h(r) = 0 (1.16)

∇L(r)× h(r) + cϵ(r)ϵ0e(r) = 0 (1.17)

Solving (2.16) for h(r) and substituting in (2.17) we get

[∇L(r) · e(r)]∇L(r)− [∇L(r)]2 + n2(r)e(r) = 0 (1.18)

From (2.16) and (2.17) we can clearly see that on one hand h is perpendicular to both e and
∇L and on the other that e is perpendicular to h as well as ∇L. So in the limiting case
where λ→ 0 e, h and ∇L(r) form an orthogonal triad of vectors. On that account the term
∇L(r) · e on (2.18) vanishes and we end up with

[∇L(r)]2 = n2(r) (1.19)

This is known as the eikonal equation of geometrical optics and as we will see it provides a
robust basis for the concept of rays.
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1.2 Ray propagation

It is well known that in isotropic media the direction of propagation k of an electromagnetic
wave coincides with the direction of energy flow, described by the Poynting vector S . The
time averaged Poynting vector for the case of stationary monochromatic waves in the limiting
case λ→ 0 takes the form [3]

⟨S⟩ = 1

2µ
Re(e× h∗) (1.20)

Using (2.16) we obtain

⟨S⟩ = c

2µ
[(e · e∗)∇L− (e · ∇L)e∗] (1.21)

Since e⊥∇L, the equation becomes

⟨S⟩ = c

2µ
(e · e∗)∇L (1.22)

Remembering that the electric energy density ue for a monochromatic wave is given by

⟨ue⟩ =
ϵ

4
(e · e∗) = ⟨u⟩

2
(1.23)

where u is the time average of the total energy density of the field and also making use of
the relation n2 = ϵµ and n = c/v the expression for the Poynting vector takes the form

⟨S⟩ = v⟨u⟩∇L
n

(1.24)

We can identify ∇L/n from the eikonal equation (1.19) as the unit vector normal to a surface
of equal path length. Such surfaces are called geometrical wave fronts and we can see that
the average Poynting vector is normal to them.

1.2.1 Limits of geometrical optics

It is crucial that we now emphasize on the limits of geometrical optics. The eikonal equation
derived is based on the approximation that for λ → 0 the right hand side of both (2.14)
and (2.15) vanishes. Such an approximation is valid only if the amplitudes e, h are slowly
varying functions of position over domains whose linear dimensions are of the order of the
wavelength. For example the boundaries of shadows or the neighbourhood of a focus are
regions where geometrical optics cannot describe the behaviour of the field correctly. Fur-
thermore phenomena of interference, diffraction or polarization are not taken into account
since they depend on wave-like properties of light.

6



1.3 Ray equation

Light rays can now be defined as trajectories orthogonal to the geometrical wave front where
L = constant. Assuming that s is the arc length along the ray’s curve and r is the position
vector of a point on it and dr/ds is the unit tangent vector then the eikonal equation becomes

∇L = n
dr

ds
(1.25)

A differential equation can be derived in order to specify the rays in terms of the refractive
index n(r)

d

ds

(
n
dr

ds

)
=

d

ds
∇L =

dr

ds
· ∇(∇L) = 1

n
∇L · ∇(∇L)

=
1

2n
∇(∇L)2 = 1

2n
∇n2 ⇒

d

ds

(
n
dr

ds

)
= ∇n (1.26)

The equation (1.26) above is referred to as ray equation and can be used to estimate
the trajectory of a ray in a medium of known refractive index distribution. As an example,
let’s consider the case of homogeneous medium. In this case the refractive index is constant
n(r) = const⇒ ∇n = 0 so the ray equation becomes

d2r

d2s
= 0 ⇒ dr

ds
= a ⇒ r = r0 + s a (1.27)

where a, r0 are constant vectors. Clearly the above solution describes a line passing from
a point O defined by r0 with direction parallel a, thus light in homogeneous media always
travels in straight lines.

dr/ds

r(s)

O

Figure 1: Curved ray in inhomogeneous medium. Here O is the origin, r(s) is the position
vector of a point on the ray and dr/ds is the tangential unit vector to the ray.
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2 Paraxial optics

Most optical systems consist of a sequence of rotationally symmetric reflecting or refracting
components. The axis of symmetry is called the optical axis. Because reflected or refracted
rays remain in the plain of incidence it is useful to define the meridional plane which is a
plane that contains an object point P and the optical axis. The plane perpendicular to
the meridional plane is called sagittal plane and the rays lying on these planes are called
meridional and sagittal respectively. From here on, we define the z axis as the optical axis
and the the x − z plane as the meridional plane. Due to symmetry, rays lying on the
meridional plane are sufficient to fully analyze rotationally symmetric and one-dimentional
optical systems.

For rays that lie on the meridional plane, the starting positions can be determined only
by their distance x from the optical axis provided that the object point P is at z = 0. So far
we have reduced the six scalar parameters of a, r0 needed to describe a ray to three, namely
(x, ax, az). The direction vector components can be defined relative to the optical axes as
(ax = sinϕ, az = cosϕ). Further simplifications can be made considering rays that fulfil the
following conditions :

• The distance x is small compared to the focal length of each optical element in the
system.

• The angle ϕ between the ray and the optical axis as well as reflection and refraction
angles have to be small i.e ϕ << 1.

For ϕ << 1, az = cosϕ ≈ 1, ax = sinϕ ≈ ϕ. So in the paraxial approximation only two
parameters are needed and can be represented as components of a vector, the ray height x
and the ray NA = n ϕ, where n refers to the refractive index:(

x
n ϕ

)
The effect of the optical system on a ray can now be viewed as a 2× 2 matrix operation

on the ray vector.

z

x
ϕ

Figure 2: Parameters of paraxial theory for ray.
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2.1 ABCD matrix theory

In order to better understand the representation of an optical system by a 2 × 2 matrix we
will examine the case of refraction from a spherical surface where n′ > n. As shown in Fig. 3
a ray propagates from left to right. The center C of the spherical surface lies on the optical
axis is the z axis, and V is the vertex and P is the intersection point respectively. The angles
between the surface normal PC and the incident and refracted ray are i, i′ respectively while
the angles with the optical axis are ϕ and ϕ′.
We can see that

ϕ+ α = i, ϕ′ + α = i′

From Snell’s law we know that

n sin(i) = n′ sin(i′)

In the paraxial approximation the incidence and refraction angles are small so sin(i) ≈ i and
we have

n i ≈ n i′

Also for small distances x from the optical axis we have

sin(α) =
x

R
⇒ α ≈ x

R

These expressions allow us to express the angle ϕ′ as a function of the surface and incident
ray parameters:

n′ϕ′ = nϕ− n′ − n

R
x

z

x

ϕ

i'

i

ϕ

a

R

C

P

V

'

n'

n

Figure 3: Refraction from a spherical surface
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Taking into account that the ray height does not change in the case of refraction the
matrix Mf is defined as: (

x′

n′ϕ′

)
=

(
1 0

−n′−n
R

1

)(
x
nϕ

)
Similarly the matrices for reflection Ml from a spherical surface and propagation between
two perpendicular to the optical axis planes of distance d Mt can be defined as

Ml =

(
1 0
2n
R

1

)
,Mt =

(
1 d

n

0 1

)
Matrices for refraction or reflection from plane surfaces are the limiting cases R → ∞.

Furthermore, any rotationally symmetric optical system consisting of a sequence of refrac-
tive or reflective elements can be defined by a matrix MT which is the product of a sequence
of matrices.

MT =MiMi−1Mi−2....M1 =

(
A B
C D

)
where i denotes the order by which the elements are intercepted by the ray. The sign
conventions for the paraxial matrix theory are the following:

• Ray angles ϕ are positive when sinϕ > 0.

• Ray heights are upward positive.

• Radii of curvature are positive if the center of curvature is at the right of the vertex of
the surface.

• Light rays travel from left to right for positive distances d. Negative propagation
distances means that rays travel from right to left.

• When light travels from right to left the refractive index is set as negative n < 0.

2.2 Optical Systems

At this point the term optical imaging has to be explained. In an ideal imaging system
all the rays coming from an object point passing through the system intersect each other
on the other side at a single point thus forming the object point’s image. In most practical
systems this in not the case since aberrations are present but within the limits of the paraxial
approximation perfect imaging is possible. The paraxial theory though remains usefull since
properties of an optical system can be robustly defined.

At first the lateral magnification of the system β can be defined as the ratio of image
height to object height

β =
xI
xO
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Furthermore another kind of magnification, angular magnification can be defined as the ratio
of the angle the ray makes with the optical axes at the image space to the angle in the object
space

γ =
tanϕ′

tanϕ
≈ ϕ′

ϕ

Other important properties defined with the help of paraxial theory are the so called cardinal
points of the system comprised by the principal planes, the focal points and the nodal points.
In the following, each one will be considered so that their importance is understood.

Principal planes: An object point at the principal plane U of the object space is imaged
at the principal plane U ′ of the image space with lateral magnification β = +1. The key
property here being that a ray intersecting the plane U at a height x also intersects U ′ with
the same height allowing us to construct the ray path graphically.Likewise, the points of
intersection of those planes with the optical axes are called principal points U ,U ′.

Focal points: The focal points F (in the object space) and F ′ in the image space have
the following properties. A ray starting from F is transformed into a ray parallel to the
optical axis in the image space. Vice versa, a ray parallel to the optical axis in the object
space intersects F ′ in the image space. The planes perpendicular to the optical axis that
contain F , F ′ are called focal planes. The distance between F and U is called the focal
length f in the object space and the distance between F ′ and U ′ is called the focal length f ′

in the image space. The sign convention is that f is positive if the focal point is located at
the right/left of the principal point in the image/object space. The key property here being
that rays with object height x in the object space form a bundle of parallel rays in the image
space making an angle ϕ′ = −xO/f ′ with the optical axis.

Nodal points: The nodal points of an optical system N (in the object space) and N ′ (in
the image space) are the points of intersection of a ray with the optical axis where ϕ = ϕ′.
At N , N ′ the angular magnification is γ = 1.

F F'U UN N'

f f'

U U'

n n'

xo

xI

Figure 4: Cardinal points of an optical system
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Cardinal points of an optical system control image location and magnification. On the
other hand, another important feature is image illumination. The image can be bright or
dim or unevenly bright in the center compared to the edges. Such image characteristics are
controlled by the size and location of specific apertures in the system. In the following we
will briefly describe the most important of them.

Aperture stop: The aperture stop of an optical system limits the angular breadth of the
rays that come from an axial object and as result affects the illumination of the image. It
can be found when all the apertures of the system are imaged in the object space. This
includes any physical stops or the rims of the optical elements. It is worth mentioning that
a ray that passes through the center of the aperture stop is called a chief ray and rays that
pass through the edges of the aperture stop are called marginal rays. Both provide a simple
way to examine the imaging properties of an optical system.

Figure 5: Entrance and exit pupils of an optical system. [9]

Entrance and exit pupils: The entrance pupil of an optical system is defined as the image
of the aperture stop in the object space. On the other hand, the exit pupil of the optical
system is defined as the image of the aperture stop in the image space. The importance of
the entrace and exit pupils lies in the fact that they provide a way to investigate how rays
coming from off axis angular positions are affected by the apertures and the optical elements
of the system.

2.3 Telescopic systems

One of the most important optical systems is the telescope with many applications in optics
as well as astronomical observations. The telescope is an afocal optical system meaning that
its focusing power is zero and so its focal length lies at infinity. That being said, parallel
rays entering the system emerge parallel from the exit. Although a common believe is that
afocal optical systems are used only in astronomy, or for observation of far away objects,
they can also be used to image objects at a finite distance. In this case they are referred to
as telecentric systems and one of they unique properties is that the image magnification is

12



Figure 6: Entrance and exit pupils of an optical system. [9]

constant and does not depend on object position. An afocal optical system is described by
an matrix of the the form :

M tel ≡
(
M11 M12

0 M22

)
Thus an afocal system has no optical power M tel

21 ≡ 0. Using the ABCD matrix formu-
lation we have for the input and output ray angles:

n′ϕ′ =M21x+M22 nϕ =M22 nϕ⇒ ϕ′ =
n

n′M22ϕ

Thus rays that are parallel entering the optical system emerge parallel. In the case that the
medium in the object and image space is the same n′ = n then the elementM22 is the angular
magnification.

As an example we will consider a two lens optical system situated in air to demonstrate
its principles.

z

x

f2


f1


Figure 7: Telescopic system set up

The paraxial matrix M from U1 to U ′
2 is :

M =

(
1 0

−1/f ′
2 1

)
·
(
1 d
0 1

)
·
(

1 0
−1/f ′

1 1

)
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M21 = −1/f ′
1 − 1/f ′

2 + d/f ′
1f

′
2 = 0

⇒ d = f ′
1 + f ′

2

So the matrix takes the form:

M =

(
−f ′

2

f ′
1

f ′
1 + f ′

2

0 −f ′
1

f ′
2

)

We can see that the angular magnification is

γ =
ϕ′

ϕ
= −f

′
1

f ′
2

As a result the size of the image of a far-distant object only depends on the ratio of the focal
lengths.

Another key property of telecentric systems is that they increase or decrease the width
of a collimated beam. To showcase this beam expanding property lets consider, two parallel
rays (ϕ1 = ϕ2) of different height x1 ̸= x2. If we denote their initial separation by ∆x we can
calculate their displacement at the exit as follows:

∆x′ = x′2 − x′1 = −f
′
2

f ′
1

∆x =
∆x

γ

We can see that their separation explicitely depends on the angular magnification so the
beam expanding ratio is:

∆x′

∆x
=

1

γ
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3 Beyond paraxial approximation

In the paraxial case the imaging quality of an optical system is ideal, meaning that all
rays from an object point converge to a single image point. This is a somehow idealized
behaviour and in reality most systems do not exhibit ideal imaging the image is deformed
and deteriorated. Such distortions of the image are collectively called aberrations. The effects
of aberrations can be studied either numerically by exact tracing of a ray through the optical
system by an approach referred to as ray tracing or by algebraic means namely aberration
theory. Both approaches will be considered in the following section.

3.1 Optical aberrations

There are two types of aberrations monochromatic and chromatic. Monochromatic aberra-
tions are due to the geometry of the system’s surfaces as well as their placement in space. In
the case of monochromatic aberrations we can either study the failure of the output wavefront
to converge into a single point (wavefront aberration) or the displacement of a ray with re-
spect to its paraxial image point (ray aberration). On the other hand, chromatic aberrations
result from the effect of dispersion, i.e. the dependence of refractive index on wavelength.
Chromatic aberrations appear also in paraxial optical systems where for example can affect
the position of the focal points.

Ray aberration: For a rotationally symmetrical optical system, let P ′
0,P

′
1,P1 be the points in

which a ray from an object point P0 intersects the plane of the entrance pupil, the exit pupil
and the paraxial image plane respectively. If P ∗

1 is the paraxial image point of P0 the vector
δ = P ∗

1P1 is called the ray aberration.
Wave aberration: Let W be the wavefront through the centre O′

1 of the exit pupil, associated
with the image-forming pencil of rays which reaches the image space from P0. In the absence
of aberrations, W coincides with a sphere S which is centred on the paraxial image point P ∗

and which passes through O′
1 : S will be called the paraxial reference sphere.

Let Q and Q̄ be the points of intersection of the ray P ′
1P1 with the paraxial reference

Figure 8: Object, image and pupil planes. [9].
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Figure 9: Wave aberration [9]

sphere and with the wavefront W respectively. The optical path length Φ = [Q̄Q] may be
called the aberration of the wave element at Q, or simply the wave aberration, and will be
regarded as positive if Q̄ and P1 are on the opposite sides of Q. In typical commercial optical
systems, the wave aberrations may be as much as forty or fifty wavelengths in strength, but
in instruments used for more precise work (such as astronomical telescopes or microscopes)
they must be reduced to a much smaller value, only a fraction of a wavelength.

3.2 Seidel aberrations

The wave aberration function Φ(ρ, θ, y0) of an optical imaging system with an axis of rota-
tional symmetry depends on the object height y0 from the optical axis and pupil coordinates
(ρ, θ) of a point in the plane of the exit pupil through three rotational invariants y20, ρ

2,
y0ρcosθ. Since the wave aberration function has to be rotationally invariant we can expand
Φ in polynomials of degree 2k in the coordinates.

Φ = Φ(0) + Φ(4) + ...+ Φ(2k) (3.1)

The aberrations of lowest order 2k = 4 are called primary or Seidel aberrations. They
depend on the rotational invariants as [3]:

Φ(4) = −1

4
Bρ4 − Cy20ρ

2cos2θ − 1

2
Dy20ρ

2 + Ey30ρcosθ + Fy0ρ
3cosθ (3.2)

whereB relates to the strength of spherical aberration, C to astigmatism,D to field curvature,
E to distortion and F to coma aberration.Likewise, the ray aberration can be expressed as
a function of the exit pupil coordinates:

δ = ∆x(y0, ρ, cosθ)x̂+∆y(y0, ρ, cosθ)ŷ (3.3)

δ can be estimated using the wave aberration coefficients using the approximate relations
[10]:

∂Φ

∂x
= −∆x

R
,
∂Φ

∂y
= −∆y

R
(3.4)
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So 4.2.2 takes the form

∆(3)x = Bρsinθ − 2Fy0ρ
2sinθcosθ +Dy20ρsinθ

∆(3)y = Bρcosθ − 2Fy0ρ
2(1 + 2cos2θ) + (2C +D)y20ρcosθ − Ey30 (3.5)

In the special case when all the coefficients in Eq. 4.2 have zero values, the wave-front in
the exit pupil coincides, within a degree of accuracy, with the paraxial reference sphere. In
general, the aberration coefficients will have finite values. Each term then represents a par-
ticular type of departure of the wave-front from the ideal spherical form. The curves traced
out in the image plane by the intersection points of all the rays emerging from a fixed zone
ρ = const. of the exit pupil are called aberration curves and help illustrate them graphically.

Spherical aberration (SA): When all coefficients except B are zero, the 3rd order ray aberra-
tions become

∆(3)x = Bρ3sinθ

∆(3)y = Bρ3cosθ (3.6)

The aberration curves are in this case concentric circles whose centres are at the paraxial
image point and whose radii increase with the third power of the zonal radius, but are
independent of the object height y0. This defect of the image is called spherical aberration
and manifests even for paraxial objects, without affecting the beam’s symmetry. If a screen is
placed in the image region at right angles to the axis, there is a position for which the circular
image spot appearing on the screen is a minimum; this minimal ‘image’ is called the circle
of least confusion. As shown in Fig. 10, in a system that suffers from spherical aberration
the focal point depends on the position of the ray in the exit pupil. As rays approach to the
rim of the lens the focal distance decreases (in absolute value).

Figure 10: Spherical aberration [9]

Comma aberration (CA): When all coefficients except F are zero, the 3rd order ray aberra-
tions become :

∆(3)x = −Fy0ρ2sin2θ
∆(3)y = −Fy0ρ2(2 + cos2θ) (3.7)
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Now if y0 is fixed and the zonal radius ρ is kept constant, the point in the image plane
describes a circle twice over as θ runs through the range [0, 2π]. The circle is of radius |Fy0ρ2|
and its centre is at a distance −2Fρ2y0 from the paraxial image point, in the y-direction.
The circle therefore touches the two straight lines which pass through the paraxial image and
which are inclined to the y axis at 30◦. As ρ takes on all possible values, the circles cover a
region bounded by segments of the two straight lines and by an arc of the largest aberration
circle. The overall size increases linearly with the off axis distance of the object point.

Figure 11: Comma aberration [9]

Distortion (DS): When all coefficients except E are zero the 3rd order ray aberrations become
:

∆(3)x = 0

∆(3)y = −Ey30 (3.8)

Figure 12: Barrel and pincushion distortion [9]

Because the the ray aberrations are independent of ρ and θ the imaging will be stigmatic
and independent of the pupil radius. The transverse magnification of the image will however
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will depend on the object height y0. This aberration thus results in a geometric distortion
of the image. As shown in Fig. 12, depending on the sign of E we can have two types of
distortion , barrel (E > 0) and pincushion (E < 0), while the image of straight lines, except
of those that cross the optical axis will be curved.

Astigmatism (AS): When all coefficients except C are zero the 3rd order ray aberrations
become:

∆(3)y = 2Cρy20cosθ

∆(3)x = 0 (3.9)

Figure 13: Astigmatism in the case of the meridional and sagittal plane.[9]

In the case of astigmatism rays that propagate in mutually perpendicular planes have
different foci. For example, as shwon in Fig. 13, lets consider the sagittal and meridional
planes for the case of an off axis object point. Rays that lie on these two planes will focus
at two different foci that are separated by a distance l referred to as the astigmatic focal dis-
tance. In between the foci there is a plane representing the best compromise image location
in a system with astigmatism called the circle of least confusion.

Field curvature (FC): When all coefficients except D are zero the 3rd order ray aberrations
become:

∆(3)x = Dρy20sinθ

∆(3)y = Dρy20cosθ (3.10)

In presence of field curvature, an object segment in the object plane is stigmatically
imaged on a curved surface. This surface is known as the Petzval surface. In the presence of
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Figure 14: Field curvature for an optical system of one lens. [9]

astigmatism the Petzval surface splits into two surfaces, the primary (related to the meridional
plane) and the secondary (related to the sagittal plane).

An example of the effect of (FC) in the image of a cross-hair object, when a flat screen
is placed on the paraxial image plane, is shown in Fig. 15(a). As we can clearly see in the
image is in sharp focus at its center and blurred at the edges. On the other hand, when we
move the flat screen closer to the lens, as shown in Fig. 15(b), the edges are in focus while
the center becomes blurred.

Figure 15: Effect of field curvature. Image of a cross-hair object when the screen is placed
(a) at the paraxial focus, (b) shifted closer to the lens [6]

3.3 Zernike polynomials

The Zernike polynomials are a set of orthogonal polynomials on the unit disk ( defined as the
set of points with radial distance less than unit). There are even and odd Zernike polynomials.
The even Zernike polynomials are defined as :

Zm
n (ρ, ϕ)o = Rm

n (ρ)cos(mϕ)

The odd Zernike polynomials are defined as:

Zm
n (ρ, ϕ)e = Rm

n (ρ)sin(mϕ)
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where ϕ is the azimuthal angle, ρ is the radial distance 0 ≤ ρ ≤ 1 and n, m are non-negative
integers n ≥ m ≥ 0, and Rm

n are the radial polynomials defined as :

Rm
n (ρ) =


n−m

2∑
l=0

(−1)l(n−l)!

l!

(
1
2
(n+m)−l

)
!

(
1
2
(n−m)−l

)
!

ρn−2l for n−m even

0 for n−m odd

Any sufficiently smooth real valued function W (ρ, ϕ) can by be represented in terms of its
Zernike coefficients.

W (ρ, ϕ) =
∞∑

m=0

∞∑
n=m

[Am
n Z

m
n (ρ, ϕ)o +Bm

n Z
m
n (ρ, ϕ)e]

where the coefficients Am
n , B

m
n are given by

Am
n =

(n+ 1)

ϵ2mnπ

∫ 1

0

∫ 2π

0

W (ρ, ϕ)Zm
n (ρ, ϕ)oρdϕdρ

Bm
n =

(n+ 1)

ϵ2mnπ

∫ 1

0

∫ 2π

0

W (ρ, ϕ)Zm
n (ρ, ϕ)eρdϕdρ

and ϵmn is defined by

ϵmn =

{ 1√
2

for m = 0,n ̸=0

1 otherwise

Because the Zernike polynomials are orthogonal on the unit disk they provide a complete
basis to expand wavefront functions of systems with circular pupils.Furthermore, they pro-
vide an alternative, more efficient, way to describe optical aberrations since the Seidel wave
aberration terms directly correspond to specific Zernike polynomials .

Zernike polynomials are widely used in many different fields. For example, they are now
routinely used in ophthalmology in order to describe wavefront aberrations of the cornea.
Likewise, they are used to identify wavefront aberrations of an optical system, or in the
field of adaptive optics to characterize atmospheric distortion. Furthermore, they are used
to characterize higher order errors observed in interferometric analysis. Zernike polynomials
provide a detailed, analytic way to characterize a wavefront in contrast to other characteri-
zation methods that rely on simple averaging metrics like the RMS error. For example, let’s
take the case of two distinctly different wavefronts that compared to an ideal spherical wave-
front, may have the same RMS error. By decomposing them into Zernike polynomials and
calculating their coefficients each wavefront acquires a unique identity, while also quantifying
the various aberration terms.

Primary aberration n m Zernike polynomial
Distortion 1 1 ρcosθ

Field Curvature 2 0 2ρ2 − 1
Spherical 4 0 6ρ4 − 6ρ2 + 1
Coma 3 1 (3ρ3 − 2ρ)cosθ

Astigmatism 2 2 ρ2cos2θ

Table 1: Primary Seidel Aberrations and Zernike Polynomials
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Figure 16: The first 10 Zernike polynomials ordered vertically by radial degree and horizon-
tally by azimuthal degree.

3.4 Ray tracing

We have seen that as long as the geometrical optics approximation is valid light propagation
can be described by rays. The procedure of keeping track of a ray’s origin and direction as
it travels through an optical system is called ray tracing. This technique forms the basis of
optical design and optimization or in other words Optical Engineering. The most valuable
information ray tracing provides is the ray’s position in three dimensional space. Using
this information the optical path of a ray can be calculated and consequently the phase
that was accumulated along the propagation. Tracing of a bundle of rays can help identify
and quantify an optical system’s monochromatic aberrations and even reconstruct the phase
distribution, and thus the wavefront, at its exit. It enables the optical designer to optimize
the configuration at hand and further control its imaging properties. Furthermore since
the optical path can be deduced, tracing a beam of polychromatic light is also possible,
provided that the change, due to dispersion in the refractive index of the materials involved
is accounted for. As a result chromatic aberrations can also be calculated and eliminated.

For the case of homogeneous and isotropic materials, like glass lenses and mirrors, prop-
agation is rectilinear and the law of reflection and refraction at the interface suffice in order
to determine the path of rays. On the other hand, in the case of inhomogeneous media the
ray equation Eq. (1.26) has to be used in order to determine the path of the ray. With
the help of computers tracing a bundle of rays through an optical system can be automated
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provided that all aspects and positions of each element of the system are accurately known.
To elaborate the necessary preconditions are :

• Refractive indices of the materials the elements are made of and their dependence on
wavelength.

• Position, orientation and ordering of the surfaces in all three space dimensions.

• Type of surface e.g parabolic, cylindrical, plane or aspheric and its geometrical charac-
teristics e.g radius, aspheric coefficients.

• Shape and size of the surface’s boundary.

Knowing the above, tracing a ray reduces to the following algorithmic procedure

1. Find the intersection point of the ray with the optical surface that follows. If the
ray does not intersect the surface, or if it is absorbed, finish the tracing of the ray.
Depending on the type of tracing it may be necessary to leave the ray unchanged and
go to step 4. If there is an intersection point go to step 2.

2. Calculate the surface normal at the point of intersection.

3. Apply the law of reflection or refraction and find the new direction of the ray. The
intersection point becomes now the starting point of the ray.

4. If there is another surface in the system go back to step 1. If there is not, end the
tracing of this ray.

The simplest type of raytracing is the sequential ray tracing. In this case, the user defines
the order in which the ray intersects with each surface. In a physical system though, each
ray may intersect the surfaces in a different order or even intersect multiple times with a
specific surface, like in the case of an optical cavity. Likewise, a ray may split into two
rays, a refracted and a reflected at an interface. In such cases, the sequential algorithm fails
to produce valid results and non-sequential raytracing should be used. Unlike sequential
in non-sequential raytracing the intersection point of a ray with each one of the surfaces is
repeatedly calculated and the path is traced based on which one is closer to the ray’s starting
point. Non-sequential ray tracing is used in designing illumination systems such as projector
systems, collimators or LCD displays. In addition to this, non sequential raytracing plays a
vital role in the stability analysis of laser optical cavities. At last it is important to note that
such a practice is computationally demanding and used only if necessary.

Modern raytracing software can also perform polarization raytracing. Here the ray’s
polarization state is taken into account and using Fresnel equations the optical power of
the reflected and refracted ray can be deduced. Furthermore, there exists yet another, less
used, type of raytracing called differential raytracing. In this case each ray represents a local
wavefront with two principal curvatures and two principal directions. These parameters are
traced along with normal ray parameters for each ray during propagation. Such a method
allows the calculation of local astigmatism or the change of local intensity of the wave during
propagation.
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3.5 Ray tracing software

Here we will briefly describe some of the available and commonly used ray tracing software.
A brief description of their key assets accompanied with simple examples will be examined .

RayOpt: A simple, open-source ray tracing Python package. It can be used for optical de-
sign of imaging systems since it includes geometric, paraxial and gaussian ray tracing. The
current distribution already contains all optical materials from http://refractiveindex.info/.
External material and commercial lens catalogs can also be imported and used in the design.

Optica: An new generation optical design software that utilises the symbolic numeric and
graphic capabilities of Mathematica. It can sequential and non-sequential raytracing, polar-
ization ray tracing, energy calculations, and some optimization of optical systems in three
dimensional space. It also performs symbolic modeling of optical systems, diffraction, inter-
ference, wavefront, and Gaussian beam propagation calculations .

An older version of the software (Optica 1.2) was used in this project to calculate the
phase distribution at the exit of optical systems. This version, although it does not include
many of the the new features, can provide basic quantitative information like ray coordinates
on a specific surface or the optical path length of the rays. This functionality was further
enhanced by home-built functions that enabled to retrieve phase distribution in the exit, and
an iterative GUI for tuning the parameters of the optical system in order to optimize it’s
performance. Furthermore, ray information can be extracted in the form of data sets and
further analysed by the user.

To demonstrate its capabilities we will examine a simple optical system, and quantify its
transverse spherical aberration. Specifically, a diopter, comprised by a spherical interface of
radius R = 30 mm and aperture 40× 40 mm2 is illuminated by a line of rays of wavelength
λ = 0.45 µm starting at 20 mm away from the surface vertex spanning at a width of 30 mm.
The medium prior to the spherical interface is air (nair = 1.000877) while after is water of
refractive index nwater = 1.339197.

Figure 17: Refraction from a spherical surface. Raytracing performed by Optica

Using the paraxial matrix theory presented in Chapter 2 we can calculate the focal length of
the system to be

fd =
nwaterR

nwater − nair

= 118.751 mm

measured from the vertex of the surface since the principal planes coincide at that point. The
focal point can thus be calculated to be located at a position z = fd+20 mm = 138.751 mm.
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Now that we have the focal point we can find the coordinates of the interception points of
all rays with the focal plane using the ray tracer and plot their transverse displacement ∆y
versus the focal plane radial distance ρ and eventually find the exact form of Eq. (3.6) by
fitting the data accordingly.

Δy = -3.53 * 10-4 ρ3

-15 -10 -5 5 10 15
ρ

-1.0

-0.5

0.5

1.0

Δy

Figure 18: Transverse spherical aberration. Raytracing data (in red), Fit (in blue)

Zemax [13]: A powerful optical design software with numerous capabilities. Very complex
freeform and non rotationally symmetric systems can be set up. Any kind of configuration
from laser and fiber optics to illumination systems can be simulated. Zemax is also able to
perform aberration analysis and optimization of set ups. Additionally thermal and polariza-
tion analysis are also included.
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Figure 19: Screenshot from Zemax (https://www.zemax.com/)
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4 Optical aberrations as continuous phase masks

We can envisage the wavefront aberrations that emerge in an the optical system as a smooth
perturbation of the phase distribution [8, 7]. In that way, the otherwise undesirable wave-
front errors acquire a new meaning. To elaborate, optical designers have always tackled
the problems posed by aberrations by eliminating them to a required level. In doing so,
an optimization of the optical configuration is necessary. Optical power, surface type and
separation distance of the optical elements is taken into consideration in order to minimize
image deterioration. Viewed in another way we may follow the optimization method in order
to isolate and even maximize a specific aberration, or combine some of them in a controlled
manner in order to modulate the phase field of an optical system to achieve a required optical
phase distribution. Prototypes of such systems have been implemented [8, 7] and they fall
into two main groups: reflective and refractive.

Refractive optical systems:
One of the refractive systems developed [8] was used to induce a pure cubic phase modulation
on the wavefront of a light beam. After spatial Fourier transformation by a converging lens
this lead to the generation of 1D Airy beams [12],[11], [2]. The optical design for such a
device was based on the well known cylindrical beam expander. The system was comprised
by two cylindrical lenses, a diverging and converging one. As shown in Fig. 20 the first
lens is tilted at an angle. Without the tilt, and under paraxial approximation, a collimated
beam entering a cylindrical telescope remains collimated after exiting the system. By tilting
the first cylindrical lens by an angle ϕ1, optical aberrations are induced. A displacement of
the second lens, allows the isolation minimization of all the aberrations except of the coma
aberration. It is important to note that, in this system, the cubic phase modulation takes
place only in the lower portion of the beam [8], as it is clearly shown in Fig. 20(a). The
upper part is dominated by a strong quadratic term. So to get a net cubic phase only the
lower half of the optical system is useful. In order to generate cubic phase modulation in
both x, y directions a second system, with orthogonal orientation, was placed after the first
one, as shown in 20(b). As a result a net 2D cubic phase is achieved.

Another, relatively simpler configuration, where a pure cubic phase modulation is achieved
by using only one optical element was also demonstrated [4]. In more detail, as shown in Fig.
21 a collimated beam illuminates the edge of the planar surface of a cylindrical plano-convex

Figure 20: Tilted cylindrical 1D beam expander. (a) Generation of 1D cubic phase modula-
tion. (b) Generation of 2D cubic phase modulation.(from [8])
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Figure 21: Raytracing result for a cylindrical lens with a decentered aperture under normal
illumination. (taken from [4])

lens. Again only a part of the lens aperture (the upper part) is used in order to introduce
the cubic phase term. Furthermore, although the design is considerably simpler compared
to the tilted beam expander shown in Fig. 20, the wavefront in the exit is tilted in respect
to the z axis
Reflective optical systems:
A reflecting alternative of the refractive beam expander [8] was developed by Mansour et al.
[7]. The system consisted of two cylindrical mirrorsM1,M2 in a beam expander configuration.
Following a similar strategy as in [8] aberrations were introduced by applying small variations
in the orientation or the position of the optical elements. For normal incidence, light is first
reflected from a convex (diverging) cylindrical mirror and then by a concave (converging)
mirror. The orientation and distance between them is appropriately tuned so that the desired
phase modulation is achieved. In the implementation shown in Fig. 22 an identical beam
expander is placed after the first one in an orthogonal orientation in order to achieve a pure
two dimensional cubic phase modulation at both transverse axes. A converging lens is then
used to Fourier transform the incident Gaussian beam [5] and result to a 2D Airy beam [7].

Both of the above configurations share a common characteristic. All optical elements are
of cylindrical type. Such a choice is not coincidental. Cylindrical lenses or mirrors are curved
only in one direction thus they focus or defocus light only in one direction. Additionally the
optical path of a beam incident on a cylindrical optical element is changed in a direction

Figure 22: Representation of a reflective phase generator. (adapted from [7])
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which lies in the plane of (non zero) curvature of the element and is perpendicular to the axis
of propagation. It is for that reason that in order to achieve a 2D cubic phase distribution an
additional system is placed orthogonally after the first in [8, 7]. The first expander produces
a cubic phase distribution in the x direction while leaving the y direction unchanged. The
second system modulates the phase in the y axes while leaving the x axis unchanged and
overall producing a net 2D cubic phase distribution. Apart from providing a convenient way
to modulate the phase for each one of the axis by just placing an exact copy of an optimized
system, the cylindrical elements property to introduce aberrations only at one axis at a time
also simplifies the description of the Seidel terms of wave aberrations described in Eq. (3.2),
and allows for the isolation of each term. In more detail, since modulation takes place at one
axis of the pupil plane i.e the x axis we can safely assume that θ = 0 ⇒ cosθ = 1. So Eq.
(3.2) becomes:

Φ
(4)
1D = −1

4
Bx4 + Fx0x

3 − (Cx20 +
1

2
Dx20)x

2 + Ex30x (4.1)

where x0 is the object height and x is the ray height in the exit pupil. The terms in Eq.
(4.1) have been rearranged to show that the Seidel wavefront aberration terms can be seen
as terms, up to the 4th order, of a Taylor series in respect to the ray height x. This is only
possible in the cylindrical 1D case where there is no effect of the cosθ terms that otherwise
appear in (3.2). Under this perspective, the cylindrical beam expander/telescope can be
viewed as the ideal template phase modulator device. Since the unperturbed beam expander
is itself an afocal optical system (within the limits of the paraxial theory), a collimated beam
that enters the system exits the system in that way. This means that the accumulated phase
field after propagation is a constant phase bias Φ0 since each ray travels the same optical
path length. Any change in the position or the orientation of the optical elements of such a
system will introduce optical aberrations as described in Eq. (4.1). The optical path length
traveled is not the same for each ray and depends on the ray height x, consequently the phase
field also depends on it Φ = Φ(x).
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5 Reflective phase modulator

Let’s now study in more detail the prototype [7] cylindrical beam expander/telescope and
it’s ability to modulate the spatial phase distribution of an input wavefront. As we can see
in Fig. 23 the prototype system is comprised of two cylindrical mirrors M1, M2 in a beam
expander configuration. The optical system is folded in such a way so that the chief ray in
the output is parallel to the chief ray in the input, i.e. the direction of the optical axis of
the system is preserved. Specifically,light is reflected by the first convex diverging mirror M1

and then by the concave converging mirror M2.
If n̂1, n̂2 are unitary vectors normal on the cylindrical surfaces, by setting r1 = 0 we have
[7]:

n̂1 = cosϕ sin θ x̂+ sinϕ sin θ ŷ− cos θ ẑ

n̂2 = − cosϕ′ sin θ′ x̂− sinϕ′ sin θ′ ŷ+ cos θ′ ẑ

r12 = (cosϕ sin 2θ x̂+ sinϕ sin 2θ ŷ− cos 2θ ẑ) d (5.1)

where d = |r12| is the distance between the mirrors θ, θ′ = θ + ∆θ, ϕ, ϕ′ = ϕ + ∆ϕ are the
polar and azimuthal angles of rotation of mirrors M1, M2 and ∆θ, ∆ϕ refer to variations in
the orientation of the second mirror. The system’s parameters that are varied during the
design are the radii of curvature ri, the distance between the mirrors d and the orientation
of the mirrors. So setting up the beam expander geometry in a raytracing software allows
us to experiment with variations of this optical setup, providing valuable insight on how
phase modulation can be achieved and how the phase distribution can be tailored to fit basic
functions.

Figure 23: Cylindrical beam expander. n̂i, p̂i denote the mirror orientation and direction of
curvature. Qi denotes the optical axis at the entrance (i = 1) and the exit (i = 2) of the
system. Inset : polar and azimuthal angles of rotation θ, ϕ. (adapted from [7])
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5.1 Phase distributions

Using Optica we set up our cylindrical beam expander using the geometry described in
Eq. (5.1). In order to manipulate the configuration we use a GUI (graphical user interface).
Through the interface a number of parameters can be changed by hand allowing us to optimize
the configuration by observing the corresponding changes to the phase distribution.

Figure 24

The parameters conserning the rays are the wavelength λ and the ray density. The
parameters to be changed conserning the geometry are summed up in the following table :

Orientation Distance Iris
Tilt angle θ 1st to 2nd mirror distance d Iris position

Vertical tilt angle ϕ 2nd mirror shift Iris width
Corection tilt angle ∆θ 2nd mirror horizontal shift ∆y

Twist angle ψ 2nd mirror vertical shift ∆z

Table 2: Design parameters

Orientation: The angles θ, ϕ refer to the angles that define the unit normal to the vertex of
each surface as in Eq. (5.1). The angle ψ accounts for any rotation of the optical element
around the axis formed by the unit normal to the vertex. The correction tilt angle ∆θ is an
angle that allows to independently change the orientation of the second optical element as
defined in Eq.(5.1).

Distance: The first to second mirror distance d is the euclidean distance from the vertex
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of the first element to the vertex of the second. The second mirror horizontal, vertical shift
∆y,∆z account for additional, independent displacements of the second mirror.

After setting the parameters the optical path length of each ray is calculated. The cor-
responding plot is created after centering the phase distribution around zero. Furthermore
the user can fit a function of choice on the raytracing data and be aware of the quality of the
phase distribution through the RMS error. Additionally, the top view and three dimensional
image of the optical system allow the user to supervise the optimization process.

At first we show that such an optical system can successfully isolate aberration terms up
to 4th order. Following a similar approach to [7]. Using numerical raytracing simulations in
Optica we perturb the prototype system shown in Fig. 23 and iteratively tune the system’s
parameters, in order to isolate each of the Taylor series terms in Eq. 4.1. In our simulations
we set the initial beam to be an one dimensional line of parallel rays. The optical path each
ray travels is then calculated. The graphs that follow depict the spacial phase distribution
at the output as a function of ray height x on the image plane. Simulation data (blue
points) were also fitted with the corresponding xm Taylor term to evaluate the efficiency of
the process. The RMS error from the desired distribution, and the dynamic range are also
estimated.
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Figure 25: Phase modulator configured for linear phase. (a) Phase distribution in the output
(b) 3D representation of the system configuration
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Figure 26: Phase modulator configured for quadratic phase. (a) Phase distribution in the
output (b) 3D representation of the system configuration
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Figure 27: Phase modulator configured for cubic phase. (a) Phase distribution in the output
(b) 3D representation of the system configuration

20 15 10 5 0 5 10 15 20
x (mm)

2.0

1.5

1.0

0.5

0.0

 (w
av

es
)

x4

Figure 28: Phase modulator configured for quartic phase. (a) Phase distribution in the
output (b) 3D representation of the system configuration

ϕ(x) RMS Dynamic Range λ
(waves) (waves) (µm)

linear 43.047 · x 0.19 962 0.8
quadratic 0.1755 · x2 0.027 21.7 0.8
cubic 0.03 · x3 0.29 33 1.0
quartic −16.6149 10−6 · x4 0.016 2.12 0.8

Table 3: Isolation of the Seidel 4th order terms.

Since it is possible to modulate the wavefront in such a way so that the Taylor terms are
isolated, the next step is to examine if the phase distributions of well known functions can
also be reproduced [7]. We advocate that by combining various aberration terms one can
approximate any continuous phase distribution around a point using Taylor’s theorem.

Up until now by isolating aberration terms, we optimized the configuration so that only
one term dominates while the others are minimized. So in order to generate any continuous
phase distribution we optimize the optical system so that the coefficients of Eq. (4.1) match
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the corresponding Taylor coefficients of the required function. Again with numerical simula-
tions we show that the device can be used as a continuous phase modulator by reproducing
some common algebraic functions.

Figure 29: Raytracing results demonstrating that prototype reflecting system can be tailored
so that the induced phase modulation can reproduce a variety of functions

ϕ(x) RMS Dynamic Range λ
(waves) (waves) (µm)

−222.07 cosh(0.03− 0.04x) 0.01 21.0 0.8
−1.02 sinh(0.11− 0.49x) 0.11 18.4 0.8
19.56 sin(0.06− 0.20x) 0.25 37.7 0.8

0.302 sin(7.085 · 10−17 + 0.133x)
2

0.002 0.3 0.8
−42.298 tan(0.043− 0.122x) 0.07 73.8 0.8

5.4xe−0.1x 0.1 50.8 0.8

Table 4: Realization of various functions

We conclude that such a device can be used as a continuous phase mask. Any continuous
phase distribution can be generated by tuning the system appropriately.
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5.2 Spectral Bandwidth

The spectral bandwidth of an optical device refers to the wavelength (or frequency) range over
which the device complies with specifications. The most important specification parameters
for our reflective pahse modulation system are the following:

• The beam quality measured by the RMS difference of the resulting phase distribution
compared to the required one.

• Dynamic range measured by the phase range (Φmax − Φmin) achieved by the device at
the wavelength of operation.

In contrast to the refractive version of the phase modulator system [8] the reflective version of
the system [7] the geometric and the optical path are identical and independent of the wave-
length. Denoting the optical path as L(x) the phase distribution ϕ(x, λ0) can be calculated
as:

ϕ(x, λ0) =
2π

λ0
L(x)

The dynamic range D0 of the phase distribution is then simply calculated as :

D0 = |ϕmax − ϕmin| =
2π

λ0
|Lmax − Lmin|

The inverse dependence of D on wavelength practically limits the useful spectral bandwidth.
The maximum wavelength of operation is set by the application requirements on the minimum
dynamic range the device should achieve.Whereas the shortest wavelength limit is defined by
the quality of the phase distribution, here quantified by the RMS error, since ϕ(x, λ0) also
has an inverse dependence on λ.

To showcase the above we plot the logarithm of the RMS error, dynamic range versus
wavelength diagrams for a set up that achieves cubic phase modulation for λ0 = 1µm.

Figure 30: Dependence of RMS as a function of the operation wavelength (in Log-Log units)
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Figure 31: Dependence of Dynamic range D0 as a function of the operation wavelength (in
Log-Log units)

Fitted Functions of Fig. 30,31
RMS(λ) = 0.033 µm/λ
D(λ) = 8.59 µm/λ

A typically used upper limit of the RMS error of an optical system should achieve is λ/4 [3]:

RMSmax = λ0/4 = 0.25 waves → λmin = 0.13µm

Dmin = 5 waves → λmax = 1.72µm

The useful bandwidth of operation is found to be ∆λ = 0.72µm. The value for the minimum
dynamic range was arbitrarily set to be 5λ. For practical applications a phase distribution
with a dynamic range of even one wave is sufficient enough. Taking that into considera-
tion the bandwidth of operation of our device would be even greater by almost an order of
magnidude ∆λ = 8.46 µm. Additionally since the device consists of reflective mirrors the
phase distribution generated is a smooth continuous function in contrast to the phase field
generated by a spacial light modulator (SLM) where discretization side effects are always
present and the bandwidth of operation does not normally exceed ∆λ = 0.4µm.
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5.3 Scaling up/down the wavelength of operation

At the previous section it was shown that a configuration achieving cubic phase modulation
at a design wavelength λ0 = 1 µm could operate successfully enough in a broad spectral
region of ∆λ = 8.46µm. Due to the limitations posed by the minimum dynamic range, which
can not be lower than a wavelength, as well as the quality of the generated phase distribution
the spectral bandwidth can not be extended to the far infrared FIR region of say 300 µm.
As a result, one would have to redesign the system so that it is now optimized at a new
wavelength of operation λ′.

A design strategy , instead from redesigning from scratch, is to use scaling. In more detail,
for a new wavelength of operation λ

′
= wλ0, where w > 0 is scaling factor, it is sufficient

to use the original design by scaling all distances, mirror physical dimensions, apertures and
radii of curvature by the same factor

λ′ = wλ0, R
′
i = wRi, d

′
i = wdi (5.2)

For example, a cubic phase modulation device optimized at λ0 = 1µm we use the two mirror
system depicted below :

Figure 32: Configuration optimized at λ0 = 1µm achieving cubic phase modulation.

Ri Mirror dimensions
(mm) (mm)

1st 10 (2.5× 3)
2nd 20 (6× 3)

Table 5: Design parameters of the cubic phase modulator

By varying λ and scaling the set up accordingly we acquire the phase distribution for
each wavelength and plot it in the diagram below.
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Figure 33: Phase distribution as a function of the normalized coordinate on the exit pupil
s = x/w, for various scaling parameters w.

Scale factor Dynamic range RMS
(waves) (waves) (waves)

1 17.45 0.199
100 14.71 0.150
200 15.43 0.200
300 13.70 0.150

Table 6: Specifications of scaled systems

It is worth mentioning that the results are presented as a function of the normalized
coordinate s. We can see that the output field size is directly proportional to the scaling
factor w. This behaviour is due to mirror apertures that scale with the same factor. It is
easy to observe that even at the far infrared region of 300 µm both the dynamic range and
the RMS error of the phase distribution have a very small deviation from their initial values.
Any differences result from minute imperfections during the initial configuration optimization
(at λ0 wavelength). These small deviations from a perfect phase distribution (cubic in this
case), blow up as the dimensions of the system are scaled accordingly. As a result minor
adjustments to the configuration were necessary. The main drawback of such an approach is
that since the dimensions of the system scale according to the new operation wavelength, the
mirror apertures and the total length of the system grow up in proportion rendering such a
device impractical for the far infrared region.

5.4 Use of optical system cascading

As discussed in the previous section, where operation at a new wavelength λ = 300µm is
designed, to produce an acceptable dynamic range the system mirror apertures are propor-
tionally increased. An alternative approach is to ”amplify” the output of of the device by
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Figure 34: Raytracing of a cascade of two reflective phase modulators that introduces a net
cubic phase modulation. Distances are measured in mm.

cascading similar devices so that the output of the first is used as an input for the second.
In more detail, we investigate how the second device would further modulate the wavefront
so that the phase distribution is still functionally the same (cubic in our example) while the
dynamic range is increased.

Below we present a cascade of two reflective phase modulators comprised by four mirrors,
that introduces a net cubic phase modulation at λ = 300 µm.

As we can see in Fig. 34 and Table 7, the radii of curvature of the third and fourth mirror
are larger compared to those of the first and second mirror, with the fourth mirror’s being
the largest. This ensures that the output wavefront will not be heavily aberrated so that
one can focus on optimizing the set up by only making adjustments to the orientation of the
optical elements as well as the distance separating them. Specifically in the system depicted
in Fig. 34 only the distance between the mirrors of each sub-system was tuned. Below we
plot the phase distribution of both the two and four mirror system for comparison.

Mirror Ri Mirror dimensions
(mm) (mm)

1st 50 (25× 30)
2nd 200 (60× 30)
3rd 186 (60× 30)
4th 452 (120× 40)

Table 7: Mirror specifications for the system cascade of Fig. 34
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Figure 35: Raytracing results for the phase distribution in the exit of a reflective phase
modulator (2 mirror) and a cascade of two reflective phase modulator devices (4 mirror)

System Dynamic Range RMS
(waves) (waves)

4 Mirror 1.61 0.018
2 Mirror 0.43 0.006

Table 8: Specifications of the 2 and 4 mirror systems

As we can see from Fig. 35 with the cascaded system we achieve a quadrupling of the
dynamic range compared to the simple two mirror system. As we demonstrate by cascading
two cylindrical beam expanders the dynamic range at λ0 = 300 µm is considerably extended,
reaching the the minimum requirement of one wave (λ).

40



6 Analytic raytracing calculations

In order to better understand the behaviour the reflective phase modulator device, an in-
depth mathematical analysis is required. Using the methodology described bellow we have
performed a rigorous raytracing analysis. Our goal is to obtain a mathematical expression
for the optical path length of a ray as a function of system parameters. Although the optical
elements span in 3 dimensions their cylindrical nature allow us to simplify the analysis to two
dimensions. In our analysis we consider that the system consists of two cylindrical reflective
surfaces S1, S2 and a screen S3 as shown in Fig. 36. The radii of curvature are respectively
r1, r2. Note that the two surfaces do not share the same center.

Figure 36: Graphical representation of the geometry of the two reflective spherical surfaces
that comprise the phase modulator device. Dashed lines represent the cylindrical surfaces.
Actual mirrors are denoted with thick red lines Inset: representation of the full geometry
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6.1 Raytracing

Let’s now describe in detail the raytracing steps that we followed in to analytically describe
the propagation of a ray through the reflective phase modulator device.

• The ray’s starting position and direction are described by pi and âi respectively.

• The intersection point of the ray with a reflective surface described as pi+1 is then
calculated.

• The normal to the surface (Si), at the intersection point, n̂i+1 is then calculated.

• Using the law of reflection the reflected ray’s direction âi+1 is then estimated.

The process can be repeated for any number of surfaces. In our case, the system consists of
two reflective surfaces so two iterations are necessary.

p0 p1

p2 p3

a0

a1

a1

a2

n1

n2

S1

S2

S3

Figure 37: Schematic representation of the reflective system with all raytracing parameters
depicted. pi: intersection points, âi: unitary ray direction vectors, n̂i surface normals.
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6.1.1 Estimation of the intersection of a ray with a circular surface

Assuming a ray with starting position pi, final position pi+1 and direction âi the correspond-
ing line equation is :

pi+1 = pi + âidi

where di is the distance between pi and pi+1.
Assuming that the center of the circular reflective surface Si+1, of radius ri+1, is described

by the position vector ci+1 then the intersection point of that ray with surface can be calcu-
lated as follows :
A point P on the circle satisfies the relation

∥P − ci+1∥ = ri+1

Substituting P with a point on the ray P → pi + âidi results in a quadratic equation in di

αd2i + βdi + γ = 0

with

α = (âi · âi), β = 2âi · (pi − ci+1)

γ = (pi − ci+1) · (pi − ci+1)− r2i+1

Solving for di we have :

di =
−β ±

√
β2 − 4αγ

2α
(6.1)

Depending on the value of the discriminant ∆ = β2 − 4αγ there may be two, one or
no intersections of the ray and the surface. Assuming that the ray does intersect with
the reflective surface, only one of the solutions is physically correct and may be taken into
account.

Substituting di back in the line equation will give us the intersection point pi+1. Since
both pi and âi are functions of the ray coordinates, di will also be a function of coordinates
and system parameters (ci+1, ri+1) .

6.1.2 Ray intersection with a plane (observation screen)

If ci+1 is an arbitrary point on the plane of the screen and n̂i+1 is the normal to the plain, a
generic point P on that surface satisfies :

(P − ci+1) · n̂i+1 = 0

Substituting P with a point on the ray and solving for di we get:

di = −(pi − ci+1) · n̂i+1

âi · n̂i+1

= ∥pi+1−pi
∥ (6.2)
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6.1.3 Reflection from a cylindrical surface

Once the intersection point is calculated, the normal to the surface n̂i+1 at that point can be
found and by using the law of reflection the reflected ray’s direction can be then estimated:

âi+1 = âi − 2(âi · n̂i+1) · n̂i+1 (6.3)

The surface normal can be calculated in a number of ways depending on representa-
tion.Bellow r is the radius, cx, cy are the coordinates of the centre of the surface and n̂ is the
normal to the surface.

• Using an implicit representation of the circle :

F (x, y) = (x− cx)
2 + (y − cy)

2 − r2 = 0

n̂ =
∇F

∥∇F∥

• Using a parametric representation of the circle :

S = [cx + rcos(θ), cy + rsin(θ)], θ ∈ [0, 2π]

n̂ =
Sθθ

∥Sθθ∥

• Using rational parametrization of the circle [1]:

S =
[
cx + r

(m2 − 1

m2 + 1

)
, cy + r

( −2m

m2 + 1

)]
, m ∈ [−∞,+∞]

n̂ =
Smm

∥Smm∥
where Sθθ and Smm denote the second partial derivative with respect to θ , m.

Rational parametrization of the circle:
Let’s describe in more detail the rational parametrization of the circle, a parametrization

approach that is not so commonly used. To simplify our analysis we assume that the center
of the circle is at the coordinate system origin so cx = cy = 0 and that r = 1 (unitary radius).
Under these assumptions the parametric equation of a circle takes the form:

S(m) =
[m2 − 1

m2 + 1
,
−2m

m2 + 1

]
At first it is easy to observe that S2

x+S
2
y = 1. Also Sx(m) is an even function whereas Sy(m)

is odd. As a result two points on the circle with the same absolute value of the parameter
m will be symmetric with respect to the horizontal axis. So as m takes values symmetrically
around 0, S(m) traces an arc of the curve which is symmetric with respect to the horizontal
axis. In this representation, the last point namely S(±∞) is excluded but can be found,
by taking the limits for Sx(m) and Sy(m) at ±∞, to be 1 and 0 respectively. Below we
plot S(m) for m ∈ [−2, 2]: As we will demonstrate such a parametrization, although in
principle more complex, allows us to define in a more closed form the optical path length of
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Figure 38: Rational parametrization of the circle. The colors indicates the corresponding m
values.

a ray through our system. Also since only the second and third quadrant of the cylindrical
reflective surfaces are used in our system as shown in Fig. 36 the values for m are restricted
in the range of [−1, 1], simplifying the evaluation process of any expression depending on that
variable. Finally, this parametrization provides an alternative way to describe the quantities
of interest without the use of trigonometric functions, making algebraic expressions easier to
manipulate.
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6.2 Estimation of the optical path length

The optical path length d of a ray that propagates through the system is the sum of three
separate paths:

• the distance d1 travelled from the starting plane to the first mirror.

• the distance d2 1st to the 2nd mirror.

• the distance d3 travelled from the 2nd mirror to the observation screen.

Since we define all rays to start from the same input plane the initial points lie on a line
p0 = [p0x, y]. Likewise, all rays are parallel to each other a0 = [1, 0] so we can easily describe
the first line segment as a function of θ Fig. 39.

d1 = (c1x − p0x)− |r1cos(θ)| (6.4)

Making use of the notation described above as well as the parametric equation for the
circle S(θ) we will find the intersection point with the second surface S2. Assuming that all
rays intersect the 1st circular reflective surface, the intersection points will be of the form :

p1 = [c1x + r1cos(θ), c1y + r1sin(θ)]

where θ varies within an appropriate range in order to trace the illuminated cylindrical mirror
surface . The normal to the surface can then be found to be :

n̂1 = [cos(θ), sin(θ)]

(c1 x - p0 x)

d1 r1 cos(θ )

θ

Figure 39: Estimation of the 1st distance d1.

46



using the law of reflection Eq. (6.3) and â0 = [1, 0] we can find the direction of the reflected
ray:

â1 = [−cos(2θ),−sin(2θ)]

We now have all the necessary information to find d2 through Eq. (6.1). In more detail we
have:

d2 =
1

2
(2r1 cos(θ)− 2 cos(2θ)δx − 2 sin(2θ)δy))

+
√
−4r21 sin

2(θ) + 8r1 sin(θ) (sin(2θ)δx − cos(2θ)δy) + 4r22 − 4 (cos(2θ)δx − sin(2θ)δy) 2

(6.5)

where δx = c2x − c1x, δy = c2y − c1y. Using the above, we find the second intersection point:

p2(θ, ci, ri) = p1(θ, ci, ri) + â1(θ)d2

Since we have analytically estimated p2(θ, ci, ri) and â1(θ) we only need now to estimate
n̂2 in order to get the direction â2 after the second reflection. Assuming that the ray intersects
S2 at some arbitrary point the normal vector at that point will be:

n̂2 = [cos(ϕ), sin(ϕ)]

where ϕ is an angular parameter which allows us to describe S2. We can eliminate the new
parameter, so the problem only depends on one variable, making use of the expression for
p2(θ, ci, ri). In more detail we have :

p2 = [c2x + r2 cosϕ, c2y + r2 sinϕ] = [p2x(θ), p2y(θ)]

⇒ cosϕ =
p2x(θ)− c2x

r2
, sinϕ =

p2y(θ)− c2y
r2

(6.6)

Substituting the expression for the normal vector we can find n̂2 as a function of θ (see
Appendix). Using the law of reflection we can find the new direction vector â2(θ, ci, ri). The
next step is to calculate the distance d3(θ, ci, ri) from S2 to S3 through Eq. (6.2). Thus, we
have estimated all the necessary information to calculate the intersection point of a ray with
the screen.

p3(θ, ci, ri) = p2(θ, ci, ri) + â2(θ)d3

The analytic estimation of d3(θ, ci, ri) and p3y(θ, ci, ri) is quite extended for this section and
is given in detail in the Appendix.
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6.3 Approximations

In the previous sections we have analytically estimated the total optical path length d as a
function of system parameters and a free parameter θ. It is important to mention that θ
serves as an alternative to the input ray coordinates. As our interest lies the modulation of
the phase distribution when the system parameters are changed, it is desirable to express
the total optical path d as a function of the ray coordinates in the output. To elaborate, we
have already seen that the various aberration terms can be properly combined so that the
phase distribution resembles a Taylor expansion of known functions. So if ys is the ray height
coordinate on the output screen we can write:

d(ys, ci, ri) =
k∑

i=0

ai(ys)
i = a0 + a1ys + a2y

2
s + a3y

3
s + ...+ amy

k
s (6.7)

In this description, the coefficients of the Taylor expansion of the optical path length depend
on the system parameters. Consequently, the optimization of an optical system so that it
achieves a required phase distribution reduces down to finding the appropriate system param-
eters so that the respective coefficients satisfy its Taylor expansion. Inversely, this approach
can help us identify the system configurations that would achieve such a task.

In our case :
d = d1 + d2 + d3 = f(ys, ci, ri)

where ys ≡ p3y(θ, ci, ri) (output screen).

At first we have to estimate the analytic functional relation between the input and out-
put coordinates. Unfortunately, the output p3y is a non-invertible function of the input θ. To
bypass this problem we use an approximation of the output coordinates. In more detail, we
expand ys around an arbitrary point and keep terms up to 1st order. At this point it is con-
venient to change the parametrization of the problem because trigonometric functions such
as cos θ, sin θ are hard to work with, considering that derivatives of very long expressions
are involved in our series expansion. Making the direct substitutions:

cos(θ) =
−1 +m2

1 +m2
, sin(θ) =

−2m

1 +m2

all quantities so far can be expressed as a function of m. So up to first order the output
becomes :

ys = A+B(m−m0)

where A = ys(m)|m=m0 , B = ∂ys
∂m

|m=m0 andm0 is an arbitrary point around which we expand.

Inverting the above linear dependence we get :

m = (ys − A)/B +m0

It is worth noting that when m = m0 , ys = A. So making a coordinate shift y
′
s = ys −A we

get:
m = y

′

s/B +m0
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Now we can substitute this expression in d(m) and describe the optical path length as a
function of the output d(y′s, ci, ri,m0) and also estimate the Taylor coefficients up to 4th

order:

ak(ci, ri,m0) =
dk(0)

k!
, k = 0, 1, . . . , 4

At this point it is necessary to explain , in more detail, the importance of the new parameter
m0 that was introduced when a linear relationship between input and output coordinates
was established.

In an ideal beam expander, where parallel incidence is assumed the output rays will be
displaced by an equal amount ∆y = ys − yin while preserving their orientation. In our
case since the reflective elements are curved surfaces the direction vectors inevitably become
functions of the ray position and the system parameters. As a result each ray is displaced by
a different amount which depends on the ray’s initial position yin and the system parameters.

Without loss of generality the input ray parameters can be parametrized using a new
variable, in our case m. So the ray displacement take the form ∆y → ∆y(ci, ri,m). Provided
that ∆y is a continuous, differentiable, function of m we can write :

∆y ≈ ∆y(m0) +
1

2
∆′y(m0)(m−m0) +O(2) (6.8)

From the above equation it is clear that the total ray displacement can be described as a sum
of a fixed amount ∆y(m0) (as in the case of a perfect beam expander) plus an additional
one, that depends on the partial derivatives, accounting for the displacement caused by the
different directions rays with slightly different origins have when they reach the screen. It
is clear now that m0 serves as the parameter that marks a chief ray whose displacement is
considered fixed for all rays and the exact reason why the coordinate shift y′s = ys−A allows
us to expand around zero.

In order to check the validity of our approximation we first optimize configurations using
numerical raytracing software (Optica) and achieve linear, quadratic, cubic phase distribu-
tions. Then we extract the system parameters ci, ri and the iris position yiris and width
w. The last two parameters allow us to determine the appropriate range of values the free
parameter m takes. If yt, yb are the positions of the top and bottom ray then

yt = yiris + w/2

yb = yiris − w/2

For parallel incidence on the first circular surface S1 we can use the rational parametrization
to find the values that m takes for those two rays.

c1y + r1
( −2m

1 +m2

)
= yt,b

Solving the quadratic in m and obtaining the solution that matches the numerical raytracing
we can find the values for m of the top and bottom ray, namely mt,b. For the systems
considered here the second and third quadrant is used. There the parametrization is set up
so those quadrans lie in the interval [−1, 1] for the m parameter so we can easily identify
the right value. The free parameter m0 will lie in the interval [mt,mb] and for the sake of
simplicity we take m0 to be the midpoint of the interval. Now all the necessary quantities
for our approximation namely ci, ri,m0 are known and by direct substitution we can plot the
results of the approximation along with the full analytic expression and raytracing data for
comparison bellow.
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Figure 40: Comparison between raytracing results, the analytic expression and the series
expansion of the phase distribution for a configuration that achieves cubic phase distribution.
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Figure 41: Comparison between raytracing results, the analytic expression and the series
expansion of the phase distribution for a configuration that achieves quadratic phase distri-
bution.
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Figure 42: Comparison between raytracing results, the analytic expression and the series ex-
pansion of the phase distribution for a configuration that achieves clinear phase distribution.
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Conclusions

In this thesis we have studied the properties of a prototype phase modulation system con-
sisting of two cylindrical mirrors that uses aberrations to achieve a continuous modulation
of the phase distribution in the output. In our study, we firstly confirmed, using numerical
raytracing simulations that by varying the distance and orientation of the elements of the
system one can isolate specific aberration terms. Furthermore, we shown that the Seidel
aberrations, can be represented as up to the 4th order terms of a Taylor series expansion of
any continuous phase distribution. Using this analogy, we have demonstrated that various
continuous phase distributions can be reproduced by perturbing the device configuration.
Likewise, this study was focused on design strategies that will allow us to extend the phase
modulation device operation to a much broader spectral range. We have shown, using a
scenario of cubic phase modulation as our reference, that the device is scalable with regard
to the wavelength of operation, to a range that extends to THz frequencies. Besides direct
scaling up approaches that blow up the system’s physical dimensions, we have also studied
alternative approaches like system cascading stacking configurations. Furthermore, we have
performed a rigorous, analytic raytracing analysis of the optical system. In our analysis
the analytic formulas of the optical path length (OPL) traveled by rays, as they propagate
through the system, was retrieved. Using approximations we have retrieved an analytic de-
scription of the (OPL) as a series expansion of the ray output height. Our analytical results
agree well with numerical raytracing. Although quite long and complex our analytic results
provide a systematic approach to optimize of the system configuration in order to achieve a
required phase modulation.
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Appendix

Here we present in detail the derivation of the the relations presented in of Ch. 6.2.
At first lets start with Eq. (6.6):

cos(ϕ) =

1

2r2

{
4r1 cos θ sin

2 θ − 2 sin2(2θ)δx + sin(4θ)δy

− cos(2θ)
[
2r21 cos(2θ)

+ 4δx
(
4r1 sin

2(θ) cos(θ) + δy(sin(4θ) + cos(4θ))
)

+ 4r1(sin θ − sin(3θ))δy

− 2r21 + 4r22 − 4 cos2(2θ)δ2x − 4 cos2(2θ)δ2y

] 1
2 }

sin(ϕ) =

1

2r2

(
− δy(1 + cos(4θ)) + r1(sin θ − sin(3θ)) + sin(4θ)δx − sin(2θ)

[
2r21 cos(2θ)+

4δx
(
4r1 sin

2(θ) cos(θ) + δy(sin(4θ) + cos(4θ))
)
+ 4r1(sin θ − sin(3θ))δy − 2r21+

4r22 − 4 cos2(2θ)δ2x − 4 cos2(2θ)δ2y

] 1
2
)

where δx = cx2 − cx1 and δy = cy2 − cy1.

Those two relationships provide a way to eliminate the parameter ϕ that appears after the
second reflection from S2. We do so by first calculating all quantities related to the second
surface as functions of two variables (θ, ϕ) and then directly substituting the above relations.

The relation for the opl from S2 to S3 is given by:

d3(θ, ϕ) = −(cx2 − cx3 + r2 cosϕ) sec(2θ − 2ϕ)

The analytic expression for the third intersection point (intersection with the vertical screen)
is given by:

p3y(θ, ϕ) = cy2 + r2 sec(2θ − 2ϕ) sin(2θ − ϕ) + (cx2 − cx3) tan(2θ − 2ϕ)

By expanding d3(θ, ϕ) and p3y(θ) using known trigonometric identities so that only sin(ϕ)
and cos(ϕ) terms are present one can follow up with direct substitution.
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Analytic evaluation of the optical path using the rational parame-
terization

Evaluation of d1

We have already seen that the analytic expression of d1 as a function of θ is :

d1 = (c1x − p0x)− |r1cos(θ)| (6.9)

where p0x is the x coordinate of the plane rays start from and c1x is the x coordinate of the
centre of the first surface. In order to express the above as a function of m we make the
direct substitution

cos(θ) →
(m2 − 1

m2 + 1

)
So we get :

d1 = (c1x − p0x)−
∣∣∣∣r1(m2 − 1

m2 + 1

)∣∣∣∣ (6.10)
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Evaluation of d2

We have already seen that the expression for d2 as a function of the angular parameter θ is
given by :

d2 =
1

2
(2r1 cos(θ)− 2 cos(2θ)δx − 2 sin(2θ)δy))

+
√
−4r21 sin

2(θ) + 8r1 sin(θ) (sin(2θ)δx − cos(2θ)δy) + 4r22 − 4 (cos(2θ)δx − sin(2θ)δy) 2

(6.11)

where δx = c2x− c1x, δy = c2y − c1y. Here we can see that terms like sin(2θ), cos(2θ) appear.
To express these as functions of m we expand using known trigonometric identities:

cos(2θ) = cos2(θ)− sin2(θ)

sin(2θ) = 2cos(θ)sin(θ)

Using the substitutions :

cos(θ) →
(m2 − 1

m2 + 1

)
sin(θ) →

( −2m

m2 + 1

)
(6.12)

We have

cos(2θ) → m4 − 6m2 + 1

(m2 + 1)2

sin(2θ) → −4m (m2 − 1)

(m2 + 1)2

So Eq. (6.11) becomes :

1

1 + m22
1 - 6 m2 + m4 cx1 - cx2 + 4 m cy1 - 4 m cy2 - r1 + m2 --6 + m2 cx2 + m (-4 cy1 + 4 cy2 + m r1) +

-4 m -1 + m2 (cx1 - cx2) - 1 - 6 m2 + m4 cy1 + 1 - 6 m2 + m4 cy2 - 2 m 1 + m2 r1 + 1 + m2
2
r2

4 m -1 + m2 (cx1 - cx2) + 1 - 6 m2 + m4 cy1 - 1 - 6 m2 + m4 cy2 + 2 m 1 + m2 r1 + 1 + m2
2
r2

Figure 43: Expression for d2(m).
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Evaluation of d3

At the first part of the appendix we saw how we may calculate d3(θ). Using the methods
developed for the calculation of d2(m) by substituting the trigonometric functions with ra-
tional ones, we present the expression for d3(m). We also perform a coordinate shift so that
c1 = (0, 0), c2 = L(cosω, sinω). In that way the expression is more compact.

2 r2
2 -2 L 1 - 6 m2 + m4

2
Cos[ω] + 8 L m -1 + 7 m2 - 7 m4 + m6 Sin[ω] +

2 1 + m2
4
cx3 - -1 + m2 1 + m2

3
r1 + -1 + 14 m2 - 14 m6 + m8 r1 +

2 1 + m2
2
1 - 6 m2 + m4 -L2 +

L2 1 - 28 m2 + 70 m4 - 28 m6 + m8 Cos[2 ω]

1 + m24
-

8 L2 m -1 + 7 m2 - 7 m4 + m6 Sin[2 ω]

1 + m24
+
32 L m2 -1 + m2 Cos[ω] r1

1 + m23
-

4 L m Sin[ω] r1

1 + m2
+
4 L m 3 - 10 m2 + 3 m4 Sin[ω] r1

1 + m23
- r1

2 +
1 - 6 m2 + m4 r1

2

1 + m22
+ 2 r2

2 

1 + m2
4

-
2 L2 1 - 6 m2 + m4

1 + m22
-
64 L2 m2 -1 + m22 1 - 6 m2 + m4 Cos[ω]2

1 + m26
+

L2 1 - 6 m2 + m4 + 1-66 m2+495 m4-924 m6+495 m8-66 m10+m12

1+m24
 Cos[2 ω]

1 + m22
-
3 L2 1 - 6 m2 + m4 Sin[ω]2

1 + m22
-

L2 1 - 66 m2 + 495 m4 - 924 m6 + 495 m8 - 66 m10 + m12 Sin[ω]2

1 + m26
-
4 L2 m -1 + m2 Sin[2 ω]

1 + m22
-

4 L2 m -3 + 55 m2 - 198 m4 + 198 m6 - 55 m8 + 3 m10 Sin[2 ω]

1 + m26
+
16 L m Sin[ω] r1

1 + m2
-

8 L m 3 - 10 m2 + 3 m4 Sin[ω] r1

1 + m23
+
8 L m 5 - 60 m2 + 126 m4 - 60 m6 + 5 m8 Sin[ω] r1

1 + m25
+ 2 r1

2 -

4 1 - 6 m2 + m4 r1
2

1 + m22
+
2 1 - 28 m2 + 70 m4 - 28 m6 + m8 r1

2

1 + m24
+
4 1 - 6 m2 + m4 r2

2

1 + m22
+

1

1 + m24

16 2 L m -1 + 7 m2 - 7 m4 + m6 Sin[ω] -L2 +
L2 1 - 28 m2 + 70 m4 - 28 m6 + m8 Cos[2 ω]

1 + m24
-

8 L2 m -1 + 7 m2 - 7 m4 + m6 Sin[2 ω]

1 + m24
+
32 L m2 -1 + m2 Cos[ω] r1

1 + m23
-

4 L m Sin[ω] r1

1 + m2
+
4 L m 3 - 10 m2 + 3 m4 Sin[ω] r1

1 + m23
- r1

2 +
1 - 6 m2 + m4 r1

2

1 + m22
+ 2 r2

2 -

1

1 + m2
2 2 -1 + m2 r1  -L2 +

L2 1 - 28 m2 + 70 m4 - 28 m6 + m8 Cos[2 ω]

1 + m24
-

8 L2 m -1 + 7 m2 - 7 m4 + m6 Sin[2 ω]

1 + m24
+
32 L m2 -1 + m2 Cos[ω] r1

1 + m23
-
4 L m Sin[ω] r1

1 + m2
+

4 L m 3 - 10 m2 + 3 m4 Sin[ω] r1

1 + m23
- r1

2 +
1 - 6 m2 + m4 r1

2

1 + m22
+ 2 r2

2 +
1

1 + m23

2 2 -1 + 15 m2 - 15 m4 + m6 r1  -L2 +
L2 1 - 28 m2 + 70 m4 - 28 m6 + m8 Cos[2 ω]

1 + m24
-

8 L2 m -1 + 7 m2 - 7 m4 + m6 Sin[2 ω]

1 + m24
+
32 L m2 -1 + m2 Cos[ω] r1

1 + m23
-
4 L m Sin[ω] r1

1 + m2
+

4 L m 3 - 10 m2 + 3 m4 Sin[ω] r1

1 + m23
- r1

2 +
1 - 6 m2 + m4 r1

2

1 + m22
+ 2 r2

2 +
1

1 + m26

32 L m 1 - m2 Cos[ω] L 1 - 6 m2 + m4
2
Sin[ω] + 2 m 1 + m2

3
r1 - 2 m 1 + m2 3 - 10 m2 + 3 m4 r1 -

2 2 m -1 + m2 1 + m2
2
 -L2 +

L2 1 - 28 m2 + 70 m4 - 28 m6 + m8 Cos[2 ω]

1 + m24
-

8 L2 m -1 + 7 m2 - 7 m4 + m6 Sin[2 ω]

1 + m24
+
32 L m2 -1 + m2 Cos[ω] r1

1 + m23
-

4 L m Sin[ω] r1

1 + m2
+
4 L m 3 - 10 m2 + 3 m4 Sin[ω] r1

1 + m23
- r1

2 +
1 - 6 m2 + m4 r1

2

1 + m22
+ 2 r2

2

Figure 44: Expression for d3(m).
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