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Introduction

For the last century and a half we have been studying phenomena that occur
on shorter and shorter time scales. In order to record and study fast phenom-
ena we need a mechanism that can provide a temporal variation comparable
to the characteristic time of the phenomena. At first, mechanical shutters
were used to record moving horses, with ms resolution and later flashes of
light were used to record bullets splitting apples with us resolution. How-
ever, if we want to record phenomena that occur down to the atomic scales,
we need the means to provide such temporal resolution. For reference, the
atomic unit for time is: t,, = 24as = 24 x 10~ 8sec.

With the invention of the laser, have been able to manipulate many non-
linear processes to our advantage and as a result we have been able to produce
pulses with duration of few femtoseconds, or even sub-femtosecond pulses.
Thus, the means to record phenomena that occur on the atomic scale have
been made possible.

Here, we investigate the generation of intense ultrashort pulses in the
UV region. We are particularly interested in the UV region, which ranges
from 100nm to 400nm, because many molecules have absorption lines in this
region. By having short pulses in the UV region, we can study electron and
nuclear dynamics in molecules through time resolved spectroscopy. This can
be done using an initial pulse (pump) which coherently excites the molecule.
Then, after a variable time delay a second pulse (probe) interacts with the
molecule and by the product yield of the interaction as a function of the
delay between the pump and the probe pulses, we can study the electron or
nuclear wavepacket time-evolution.

One way to achieve pulses with wavelengths in the UV region is through
harmonic generation. Assuming a driver field of central wavelength at 800nm,
its third (270nm) and fifth (160nm) harmonic will be in the wavelength range
of interest. In this thesis we do a numerical simulation of the third-harmonic
generation process when using the polarization gating apparatus. The re-
sults of this calculation will be used as an input to the development of an
experimental setup in IESL-FORTH. The numerical results were obtained



using a code written in Wolfram Mathematica for the needs of this thesis.
Similar calculation can be done for the firth-harmonic as well.

In the first chapter some theoretical background will be presented for
low-harmonics, as well as for high-harmonics in order to note the different
generation processes. Using this background we will investigate the third-
harmonic generation. In the second chapter, the polarization gating tech-
nique, a core component in our calculation, will be discussed. In the third
chapter the numerical results will be presented, while in the last chapter an
experimental arrangement will be proposed.



Chapter 1

Theory

The nonlinear response of matter to intense radiation manifests itself in a
nonlinear dependence of the induced polarization on the electric field of the
incident radiation [4]. The nonlinearity can originate from different processes.
For example, for intensities which are low to moderate (< 103WW/cm?), the
external laser field is much weaker than the static atomic Coulomb field.
Nonlinear interactions taking place under these conditions can be well de-
scribed by a perturbative approach, and we refer to this parameter range
as the regime of perturbative nonlinear optics (Figure 1b). When the elec-
tric field strength becomes comparable or higher than the binding Coulomb
field experienced by the outer-shell electrons, an electron can escape from its
bound state via tunneling before the laser electric field reverses its sign. This
parameter range giving rise to these processes is called as strong-field regime
of nonlinear optics.

Of the nonlinear processes, arguably the most important, widely studied
and used is the harmonic generation, originating back to 1961 when for the
first time the second harmonic was generated[16]. Generally speaking, the
process in which an incident wave of frequency w is upconverted in a medium,
such as crystals and gases, producing a wave of frequency qw, with ¢ being
the harmonic order is called harmonic generation.

The production of low order harmonics is a pertubative nonlinear process
that occurs when a laser field is driven into a medium with sufficient intensity.
In a classical approach, the incident wave, called driver, induces polarization
on the medium, which has a nonlinear dependence on the driver electric
field. As a result, the medium in return radiates at different frequencies,
which are integer multiples of the frequency of the driving field. This can
be better understood in the quantum approach (Figure 1.1a), in which the
harmonic generation is a multiphoton process. An atom of the medium with
ionization energy FE; absorbs ¢ photons with energy hw and is excited to
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Figure 1.1: (a) The process of the third-harmonic generation from an energy level
standpoint. The thick solid line is the ground stare with energy F,, the dotted
lines indicate virtual states and the angled lines indicate states in the continuum.
(b) The different regimes of nonlinear optics [4]. The boundaries between different
regimes are not sharply defined, but depend on the atom in question.

a virtual state. The atom then emits a photon with energy qhw, which is
the harmonic radiation and it is a low harmonic when qghw < Ej. This is
described by perturbation theory and will be analyzed in the next chapter.

On the other hand, for the high harmonic generation, a process in the
strong-field regime, a semi-classical model, called the three-step model was
proposed in 1993 [24, 11]. It involves tunneling ionization of the atom, ac-
celeration of the free electron due to the electric field and the recombination
of the electron with the parent core.

It is important to note the difference of the mechanism of the production
of high and low harmonics. In contrast to the high harmonic generation
(HHG), the low harmonic generation does not involve ionization of the atom
but, is in a sense, a multiphoton scattering process. As a result, the low and
high harmonics have different dependence on various important quantities,
such as the ellipticity, the dependence of the intensity on the harmonic order
etc. The high harmonic process will be discussed briefly in the last section
of this chapter, in order to shed light to this fundamental issue. For the
remainder of this thesis, we will be focused on the perturbative regime, unless
stated otherwise.



1.1 Low harmonic generation

When a wave with electric field & is propagating through a conducting
medium with polarization &, the wave equation describing it is:

vz 108 An PP
Ve 2ot 2 o (1.1)

In order to describe the nonlinear optical interaction, one must know the
dependence of the polarization on the optical fields. In the most general
form the polarization is a functional of the optical fields [32, 3]:

P(r,z,t) = f(E(r,2,t), 0", 2" ")) . (1.2)

The exact expression of the polarization is dependent on the atomic prop-
erties of the medium and is a rather difficult task to retrieve. Thus, several
assumptions and approximations are made in order to simplify the form of
the polarization.

Firstly,we expand the polarization in terms of the moments of the charge
distribution, i.e. we make an expansion of the polarization in which each
term is attributed to the different terms of the multipole expansion. In this
approximation we have:

P(r,z,t) = P(ryz,t) + P(r,2,t) + -+ -, (1.3)

the first term corresponds to the dipole polarization, the next to the quadru-
pole polarization and so on.

In the general case the time-dependent polarizations that are needed for
Eq. 1.1 can be quite complicated, so it is useful to consider the Fourier com-
ponents of the polarization. At this point we assume that the electric fields
we are dealing with are sufficiently weak compared to the atomic fields that
bind the electrons in the medium. Under these conditions, one can expand
the Fourier components of each term in Eq. 1.3 in the Fourier components
of the powers of the optical fields as:

Pr(r,z,w) = 1)(W) r(r, 2,w) + {XP (@) ER(r, 2) o + XD (W) &R (r, 2) Yo +
D)V & (r, z,w) + QP (w ){VTé"TQ(r, 2) ot
Q¥ (W{Vr&i(r, 2)}e + ) (1.4)
In the above equation, the coefficients of the various terms are know as the
nth-order m-pole susceptibilities. The symbol &r(w) is the Fourier transform

of the electric field and the symbol { }, indicates that only the Fourier
component at frequency w of the quantity in braces must be considered.



Using Eq. 1.4 we can write the polarization as a sum of the linear and
nonlinear terms:

Pr(w) = Pr(w) + Prt(w) , (1.5)
with

PEw) = xV(w)é&r(w) + QW (w)VE(w) + - - - (1.6)

and

PN (w) ={xP &R, + XV &, + -+
+ QY& L, 4+ QO{VEN 4 . (1.7)

So far we have used all the terms in polarization from the multipole expan-
sion. However, because the dipole terms are usually much stronger than the
corresponding higher multipole terms, the expansion in Eq. 1.3 converges
rapidly in the wavelength in the range of interest of this thesis (IR), with
the dipole polarization being dominant. That is not the case when the wave-
length is comparable with the characteristic dimensions of the medium. The
higher order terms become more significant as the wavelength of the driving
fields drops to the X-ray region, where the wavelength is of the same order
as the size of an atom [44]. For this study, in which the driving laser pulse
had its peak intensity at 800nm, using only the dipole terms is considered a
good approximation.

It’s more convenient to obtain a perturbation expansion for the polariza-
tion in the time domain by taking the inverse Fourier transform of each term
in Eq. 1.4. Using the justification above, we can use only the dipole terms.
Taking the inverse Fourier transform we have:

F Y2 = F W + FH{PE + FHHBPEN +-.. ) (1.8)

where F~1 is the inverse Fourier transform operator.

Using the convolution theorem which states that: F~-'{F{f}F{g}} =
f*g, where the % symbol indicates the convolution of the two functions f and
g, we get that the polarization in the time domain is the sum of convolutions
between the powers of the time-dependent fields with the time-dependent
response functions of the medium. When the characteristic response time of
the polarization components of the medium is significantly faster than the
time scale in which the field amplitudes vary, the convolution integrals can be



replaced with simple products. Then the time-dependent dipole polarization
1s:

Pr(t) = xWé&rt) + xPEHE) + xPEN) + xWEH ) +--- . (1.9)

The coefficients of the powers of the fields in Eq. 1.9 are in bold to indicate
that they represent the time-dependent response of the medium rather than
the response in the frequency domain, as in Eq. 1.4. They are constants
that are determined by the properties of the medium and are derived in
many nonlinear optics textbooks [3].

We now have the perturbative expansion of the polarization which can
be used to solve Eq. 1.1, which is done in many non-linear optics textbooks,
and extract important properties of the harmonics. In the next chapter we
will present some important properties of low-harmonics obtained by solving
Eq. 1.1, or straight from Eq. 1.9.

1.2 Properties of low harmonics

Harmonics of even order

Firstly, lets assume that the medium in question has inversion symmetry [32].
We then write the second-order polarization:

P = xDg2 (1.10)

If we invert the coordinate system (r — —r = 7’) and write the inverted
variables with primes, we have:

P =P g2 (1.11)

When the coordinate system is inverted both the polarization and the electric
field must change sign while the susceptibility, which carries the symmetry
of the medium, cannot:

‘@T == ’}7 é‘aT - _éail“a X(2) = X/(2) .
Using these relations, Eq.1.11 becomes:
2P = xP&2 (1.12)

The only way for Equations (1.10) and (1.12) to be compatible for each other
is if x? = 0. Similar reasoning can be applied to show that all even-order
dipole susceptibilities are zero in media with inversion symmetry. This is an

7



important result which is general and even stands for the high harmonics as
well: centrosymmetric media cannot generate even-order harmonics in the
dipole approximation. Typical non centrosymmetric media are some crystals
and surfaces, in contrast with gases which are centrosymmetric.

Frequency

While the electric field & is a real quantity, mathematically it is more conve-
nient to use the complex representation. Therefore, we can express an optical
laser pulse by its time-dependent electric field as [6]:

e(t) = E(t)e™" (1.13)

with FE(t) being the time-dependent amplitude (envelope), wy the carrier
(central) angular frequency and €(t) follows the relation &(t) = Re{e(t)}.
Using Eq.1.9 and the expression of the electric field of the pulse we see that
each term in the perturbative expansion oscillates with angular frequency
which is an integer multiple of the central frequency wgy. For example, it is
clear that the third harmonic which has the frequency 3wq originates from
the term Y &3

Note that while the linear term in Eq. 1.9 describes polarizations at
frequency w which arise from fields with the same frequency, the nonlinear
terms connect polarizations at a frequency w to a number of fields that can
be at different frequencies. To be more specific, for example a polarization
of frequency w = w; + wy can be generated by two fields & and & with
frequencies wy and wy respectively, through a second order term.

Intensity

The g-th harmonic intensity I, varies as the gth power of the fundamental
intensity [31]:

I(t) o< I2(t) . (1.14)
This power law dependence is to be expected for a perturbative g-photon
process, since R, = o,1%, where R, is the rate of the n-photon process, o,
is the atomic cross section of the process and I, is the laser intensity. The

power spectrum of the harmonics generated in the perturbative regime is
described by Eq.1.14.

Time duration

Let’s assume a Gaussian envelope of the driving pulse, the normalized inten-
sity is then: I(t) = e(_4ln2(%)2) , where 7, is the FWHM of the pulse. Using

8



Eq.1.14 we have [6]:

t2 t?
Iqw(t)oclfj(t)@e( 72):[6( MT?)] _ ) (1.15)

Comparing the left and the right hand side of the above equation we come
to the important result for the time duration of the harmonic:

Tw

Tqw N (1.16)
This is the case for the high harmonics as well. For a driver pulse with
FWHM of 20fs Eq. 1.16 suggests that FWHM of its third harmonic is
~ 11,5fs and of its fifth to be ~ 8.9fs. Using harmonics of higher orders in
the perturbative regime, we could potentially achieve shorter pulses, but the
intensity decreases exponentially with the harmonic order.

Ellipticity

A general solution for a plane wave propagating in the direction k is given
by [22]: -
E(x,t) = (61 B + g By)e™> ™t (1.17)

where the amplitudes F, and F5 are complex numbers, allowing the possi-
bility of phase difference between the waves of the two transverse directions
€; and €.

When FE; and E5 do not have the same magnitude and their phases obey
the relation: nm < ¢ — ¢ < (n + %)W , the wave is called to be elliptically
polarized. In other words, the end point of the electric field is inscribed in
an ellipse (Figure 1.2a).

In general, the axes of the ellipse are not in the Oz and Oy directions, but
the ellipse is inclined at an angle o with respect to the xz-axis which is given
by the expression [15]:

2FEo, Fo, cos 0

tan(2a) = B —Ep
@ Y

(1.18)

where § = ¢, — ¢, is the phase difference of the two components Ey, and
Ey, that are along the z and y axis respectively.
The ellipticity e of the field is given by [40] :

2|El(l|| 2(t)] sin(¢ —%))]. (1.19)
|EL ()| + | Ex(t)]?

e(t) = tan [% sin~* (

9
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Figure 1.2: (a) Elliptically polarized light oriented at an angle relative to the
x-axis. (b) Normalized harmonic Intensity as a function of the ellipticity of the
driving pulse for different low-order harmonics.

As seen by the above equation, when e = 0 the field is linearly polarized and
when € = 1 the field is circularly polarized.

Due to selection rules, the conversion efficiency of the harmonic generation
process is dependent on the ellipticity of the driving field. The selection
rules favor linear polarization and suggest that circular polarization does
not produce harmonics. This can be seen by the symmetry relations of
the susceptibility components [32]. The dependence of the low-harmonic
intensity on the ellipticity € and order ¢ (Figure 1.2b) is [5] :

1 — €2\ (D
L=(75)
1+ €2
There is a value of ellipticity called ellipticity threshold €, for which the
harmonic intensity becomes half the maximum (I, = I;***/2). For example,

for the third harmonic €2 = 0.414 and for the fifth ¢\, = 0.294.

One can use the dependence of the conversion efficiency on the ellipticity
of the driving field to produce shorter harmonic pulses [12]. This is called
polarization gating technique and it was first used for high-harmonic gener-
ation. Briefly, the driving pulse is modulated to have circular polarization
at its edges and linear at its center. In other words, the pulse has time-
dependent ellipticity, which reaches zero only near the center of the pulse.
As a result, the harmonic generation is limited only near the center of the
driving pulse, which is the most energetic part. Polarization gating will be
discussed in the next chapter in more detail.

(1.20)
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1.3 Conversion Efficiency

As mentioned before, when a laser pulse (driver) is focused on a gas jet,
harmonics of the driving pulse are produced. However, one important as-
pect of the harmonic generation is the conversion efficiency, a measure of
the effectiveness with which the power of the driver pulse is transferred to
the harmonics [33] . In other words, the conversion efficiency is what de-
termines the energy content of the harmonic pulse. In this section, we will
qualitatively discuss some of the competing effects limiting the conversion
efficiency. A proper treatment of this subject requires consideration of all
possible competing effects simultaneously, which is a complex task requiring
numerical evaluation for systems with known parameters such as the focus
of the beam, the length of the interaction, the pulse duration, the atomic
or molecular structure properties of the target etc. In practice, the con-
version efficiency is given experimentally because of its dependence to the
experimental parameters.

The first process that will be discussed here is multiphoton absorption.
Generally, multiphoton absorption that is induced by the driving intensity
can be expected to be the most important since the waves of the funda-
mental are usually the strongest. However, in experiments in which there is
significant conversion of the generated wave, nonlinear absorption induced
by the generated intensity can also be important. Secondly, the medium can
be ionized through multiphoton ionization of two or more photons from the
pump or generated waves or from both simultaneously. When the intensity of
the driver gets sufficiently high, the medium is characterized by a very high
electron density. Another process which affects the conversion efficiency is
the Stark shift of the energy levels of the medium. These processes affect
the conversion efficiency in four ways [33]. They can result in energy loses at
the driver or the harmonic pulse, they can cause saturation of the nonlinear
susceptibility and can cause intensity-dependent phase changes that result
in phase mismatching along with self-focusing and self-defocusing. The loss
of phase matching (phase mismatching) plays a crucial role on the energy
content of the harmonic pulse, so we find it important to discuss it in more
detail in the next paragraph. This is the case in high-harmonics as well.

1.3.1 Phase mismatching

A laser pulse can be described in the time domain such as in Eq. 1.13. It can
also be described in the frequency domain, where the electric field is obtained

11



by performing a Fourier transform of the field in the time domain [6] :

E(w) = /joo e(t)e™dt . (1.21)

o0

In general, the transform gives:
E(w) = U(w)e*®@ (1.22)

with U(w) being the spectral amplitude and ¢(w) being the spectral phase.
A pulse propagating in an absorptive and dispersive material, the electric
field exiting the medium can be described in the frequency domain as:

Eput(w) = Egp(w)e’ ™ (1.23)

where L is the length of the medium and n(w) is the complex index of re-
fraction of the material.

The phase of the low-harmonic wave is inherited by the pump wave [2].
Because the medium that the harmonic pulse is generated in is generally dis-
persive (i.e. the refractive index depends on the frequency), the driver pulse
and the harmonic pulse propagate with different group velocities. In addi-
tion, the harmonic generation is not a single atom response of the medium,
but a collective effect. As a result, the harmonic waves that are generated
from different atoms along the medium gain different phases depending on
where they are generated [4].

Imagine an atom at position zy through which the nonlinear process takes
place and generates a harmonic wave (Figure 1.3a). The harmonic wave gen-
erated and the fundamental wave are co-propagating in the z direction. Next,
imagine an atom at position z; from which a harmonic wave will be generated
as well. Due to the chromatic dispersion of the medium, the group veloci-
ties for the fundamental and the harmonics are different, thus the harmonic
wave generated from z; and the one generated from z; will have different
phases. As a result, contributions from different locations to the generated
wave are not in phase at the end of the medium [14] . The destructive inter-
ference of harmonic waves generated at different locations in the medium can
be viewed as the decrease on the conversion efficiency. This is called phase
mismatching and it plays a crucial role in the reduction of the conversion
efficiency. The experimental parameters need to be optimized in order to
achieve phase-matching conditions.

Assuming weak pump field or non depleted media, the dependence of the
harmonic intensity I, to the phase mismatching Ak is [31] (Figure 2b):

sin?(AkL/2)

X AKL2) (1.24)

12
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Figure 1.3: (a) Phase mismatch for second-harmonic generation. Due to chro-
matic dispersion the wavenumber of the harmonic is more than twice as large as
that for the fundamental wave. (b) Plot of the normalized third-harmonic intensity
as a function of the phase mismatch.

From Eq. 1.24 we see that the harmonic intensity oscillates as a function
of the interaction length. Maxima in the harmonic intensity occur at odd
multiples of the coherence length L. [30], which is given by:

L. =n/Ak (1.25)

At this distance the harmonic field has slipped in phase by 7 rad relative to its
driving field. It is essentially a measure of the dimensions of the medium to
be used, because increasing the length of the medium beyond the coherence
length does not translate in an increase to the harmonic amplitude but rather
to a decrease [14, 4] .

Another important effect that plays a crucial role in phase matching is the
production of plasma in the medium. As the driver pulse propagates through
the medium, it ionizes the medium producing free electrons. Although the
free electrons make a negative contribution to the refractive index, they make
a positive contribution to the wave vector mismatch [9]. As a result, increas-
ing the intensity of the driver pulse may not translate to an increase to the
harmonic intensity, due to the increase to the free electron density. Above a
critical density, the medium is saturated and the harmonic yield is decreas-
ing. In addition, with increasing the driver pulse duration the ionization
rate increases as well. This is because, more atoms of the medium get ion-
ized from the driver pulse before the driver pulse can acquire its maximum
intensity. When the duration is short, on the other hand, the atoms of the
medium are exposed to high intensities for shorter times, thus reducing the

13



ionization rates, which results in higher conversion efficiencies [45, 38].

1.4 High Order Harmonic Generation

As mentioned before, the high harmonic generation (HHG) is a nonlinear
process in the strong field regime, involving ionization of the atom. Different
regimes of ionization of an atom can be distinguished using the Keldysh
paramater which is given by [23]:

]p
o 1.26
v 2, ( )

where I, is the ionization potential and U, is the cycle averaged kinetic
energy of the electron gained from the electric field. This is also called
ponderomotive energy and is given by:

e’ E?
Amw?

U, = (1.27)
where F and w are the electric field and the angular frequency of the light
respectively, e and m are the charge and the mass of the electron. To give
perspective, the Coulomb electric field in a hydrogen atom is ~ 5 x 10°V/cm
corresponding to an equivalent intensity of I, ~ 3 x 1010 /em?.

When ~ > 1 the laser period is shorter than the tunneling time and thus
the multiphoton ionization dominates, in which the atom absorbs a certain
number of photons in order to be ionized. This is described by the lowest
order perturbation theory [30, 4].

When v < 1, the main ionization process is the tunneling of the electron
through the strong suppression of the atomic potential by the electric field.

In the ‘grey’ area of v = 1, their combination co-exists. The electrons are
‘heated’” up while moving under the barrier, leading to multiphoton absortion
from under the potential barrier, best called 'non-adiabatic tunneling [21].

The three step model (Figure 1.4) is a classical model that was proposed
in 1993 [11, 24], revealing the mechanism of high-order harmonic generation.
Consider the interaction of a hydrogen atom with a linearly polarized field.
As the intensity reaches about 10'7//cm?, the field near the peak of each
oscillation is comparable to the atomic Coulomb field. The superposition of
the laser field and the Coulomb field transforms the potential well that binds
the electron into a potential barrier. As a result, the electron tunnels in
the continuum through the barrier suppressed by the field (first step). The
freed electron is then accelerated by the electric field. In one laser cycle,
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Figure 1.4: The three step model [11]. At the top is the electric field in each of
the steps and at the bottom is the atomic response to the field [27].

the electron first moves away from the nucleus, after which it is driven back
when the electric force of the laser field changes direction. During the time
in the continuum, the electron can acquire kinetic energy up to hundreds
of eVs (the second step). Finally, the electron recombines with the parent
ion with the emission of a photon (the third step). The electron recombines
depending on the time it is released in the continuum. The field changes
sign periodically, thus the emitted radiation will consist of the harmonics of
the driving field according to the Fourier transform of the acceleration of the
motion [30]. The maximum kinetic energy that an electron can gain before
it recombines is 3.17U,. Adding to this energy I, that is gained during the
recombination, the maximum energy can be written as:

Emas = 1, +3.170, (1.28)

From Eq. 1.28 and Eq. 1.27 it is apparent that there must be a cut-off region
that is determined by the laser frequency and field strength. For example, for
argon atoms I, = 15.78¢V, intensity 3 x 10"WW/cm? and central wavelength
Ao = 800nm, the corresponding ponderomotive energy is U, ~ 18eV. As
a result, the maximum photon energy can reach ~ 72el/, which puts the
radiation in the XUV range [7].

In Figure 1.5a we see a schematic illustration of a high harmonic spectrum
[42]. The spectrum has a characteristic and universal shape: it falls off for
the first few harmonics, then exhibits a plateau where all the harmonics have
the same strength and ends up with a sharp cut-off.

Electrons generated at different phases around the peak of the field, gain
different amounts of kinetic energy, but recombine with similar probability,
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Figure 1.5: (a) Generic shape of the harmonic spectrum. It consists of the pertu-
bative region, where the intensity drops according to the power law . The intensity
remains constant over a range of harmonics in the plateau region. In the cut-off
region it drops swiftly.

thus giving rise to constant conversion efficiency to photons over an extended
spectral range. This explains the plateau region shown in Figure 1.5a.

Even though this semiclassical model provides a picture of the physics
behind HHG and predicts the cutoff energy, it does not give information
about the phase of the harmonic field and of the strength of the radiation.
A quantum model developed by Lewenstein et al. [25] is at the moment
the prominent theory used to describe the generation of the high harmonics.
This model solves the time dependent Schrodinger equation for a single-active
electron, high intensity limit (U, > I,) and for high harmonics with energies
greater that the ionization potential.
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Chapter 2

The Polarization Gating
Technique

As mentioned earlier, it is of interest to produce a pulse with central wave-
length at 270nm and a duration as short as possible. Using a driving laser
with central wavelength of 800nm we can produce a pulse with the wave-
length of interest by generating the third-harmonic of the fundamental. By
widening the spectrum of the driving pulse, we produce wider band around
the central wavelength, which can support a shorter third harmonic pulse.
So, one solution to generate a short harmonic pulse is to use a few-cycle
driving pulse (for 800nm a field oscillation takes ~ 2.7fs). This is done
with success, resulting in third-harmonic pulses with duration of sub 5fs
[35, 19]. However in general, few-cycle lasers have a low energy content,
namely less than 1mJ, resulting in third-harmonic pulses with low energy
content, as well. In many of the applications, we wish to have a more intense
third-harmonic pulse, using the more energetic and commercially available
many-cycle lasers. To give perspective, many-cycle laser have an energy con-
tent of few hundreds of m.J per pulse (~ 1072J). The scope of this thesis
is to produce a third-harmonic pulse as short as possible using a many-cycle
driving laser.

Using a driving pulse with FWHM 20fs (such as the laser in IESL),
according to Eq. 1.16, we can achieve a pulse with duration of 11,5fs. How-
ever, if we could somehow limit the generation of the third-harmonic in a
short time interval, we could produce shorter pulses. One way to do this is
to use the polarization gating technique which was mentioned earlier. The
short temporal gate that the pulse is generated in, is based on the depen-
dence of the efficiency of the generation on the ellipticity. The polarization
gating technique has been extensively used in the field of HHG. There, using
the polarization gating we prevent electrons, emitted after ionization, from
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Figure 2.1: The arrangement used for the generation of the third-harmonic pulse.
The first part consists of the polarization gating where the pulse acquires a time-
dependent ellipticity suitable for the broadening of the generated spectrum. The
second part is where the third-harmonic pulse is generated, consisting of an atomic
gas jet. In the third part, pulses of different wavelength than the wavelength of
interest are subtracted.

recombining with the parent ions for more than a few times during the driv-
ing pulse. Thus, a broadband continuum spectrum is generated, which may
result in a single sub femtosecond pulse in the XUV wavelength range. Here,
we attempt to use a similar idea in the perturbative regime, to generate short
third-harmonic pulses.

2.1 Overview of the arrangement

In this thesis we make a simulation that is based on an experimental arrange-
ment that is in development in [ESL-FORTH. The arrangement consists of
four parts. First is the polarization gating device which is used to create
an ellipticity modulated driving pulse with linear polarization at the center
of the pulse and elliptical elsewhere. Next, the pulse is focused in a gas jet
where harmonics of the pulse are generated. Then the harmonics and the
fundamental are co-propagating, thus we need to subtract the waves that we
are not interested in. At the last part of the setup there is the detection of
the harmonics and their temporal characterization. In the following section
we will go in more details regarding the first part of the arrangement, the
polarization gating device. The detection and the characterization will be
discussed in the last chapter of this thesis.
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Left-circularly polarized pulse

Figure 2.2: A pulse with a time-dependent ellipticity is formed by a left-circularly
polarized pulse and a delayed right-circularly polarized pulse. Under this field, the
re-collision process is only possible in the small region at the center where the
ellipticity is close to zero [39].

2.2 Polarization Gating

The polarization gating (PG) is an optical arrangement that can modulate
the ellipticity of a pulsed laser field to have linear polarization only at the
center of the pulse. Taking advantage of the sensitivity of the harmonic
generation to the ellipticity, the use of PG can provide a short time interval
during which the harmonic emission takes place.

It was first proposed by Corkum in 1994 [12] for generating single iso-
lated attosecond pulses. Initially, the proposal required two laser pulses with
different center frequencies, but an alternative method using one center fre-
quency, which is easier to implement, is mostly used now. The idea here is to
implement a driver laser field with time dependent ellipticity by superposing
a left and a right-circularly polarized pulse, which are delayed in respect to
each other [39] (Figure 2.2a). In the composed pulse, the polarization varies
from circular to linear and then back to circular. Thus, the necessary time
interval for the generation is created in the center of the pulse.

2.2.1 Wave plate Polarization Gating Technique

The first realization of the polarization gating technique used two wave plates
[29] (Figure 2.3). A linearly polarized input pulse is divided by the first wave
plate, which is a multi-order /4 wave plate, in two pulses with perpendicular
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Figure 2.3: The arrangement of wave plates used to produce an ellipticity modu-
lated pulse. [39]

linear polarization. The wave plate introduces a delay between the two pulses
which is proportional to the thickness of the wave plate:

5:d(i—i) , (2.1)

Ve Vo

where d is the thickness of the plate, v, and v, are the velocities of the light
in the extra-ordinary and ordinary axis of the plate respectively. The second
wave plate is a zero-order A\/4 which converts the polarization from circular
to linear in the central part of the pulse and linear to circular elsewhere. As
a result, after the second wave plate, a pulse whose ellipticity changes with
time is created.

However, this approach is not really applicable in many-cycle lasers. In
order to produce a time interval short enough, down to few femtoseconds,
a large delay between the two pulses introduced by the first wave plate is
required. This translates into a thicker wave plate, which gives rise to two
main problems. Firstly, when the delay has to be increased to high values,
the overlap of the two pulses will occur only at the far edges that have low
energy content and thus leads to a very low conversion efficiency. Secondly,
another problem is that, due to the Kerr effect (dependence of the index
of refraction on the intensity n = n; + nol), the propagation of a pulse
with high intensity through a medium, such as the wave plate, can result in
damaging the wave-plate as well as distortion of the pulse through self phase
modulation. A measure of how significant these nonlinear effects are, is the
B-integral:

2
B = Y nol(2)dz (2.2)
where [(z) is the optical intensity along the propagation axis, z the position
in the beam direction and n, is the nonlinear refractive index of the medium.
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Delay = At

Figure 2.4: A schematic representation of the interferometric polarization gating
approach. [10]

When B > 1 the Kerr effect is significant. Generally, when the length that
the pulse propagates increases, the B-integral increases as well.

2.2.2 Interferometric Polarization Gating Technique

The first realization of the polarization gating to many-cycle lasers was the
interferometric polarization gating technique. The method is shown in Figure
2.4. The initial pulse is split by amplitude into two pairs of pulses and the
polarization of one pair is turned to perpendicular in respect to the polariza-
tion of the other. The pulses of one pair are delayed appropriately in order
to interfere constructively, while the pulses of the second pair are delayed to
form a destructive interference minimum. The two pulses are superimposed
forming an ellipticity modulated pulse withlinear polarization in its central
part. This is done by using either a Double Michelson Interferometer [43]
or a double Mach-Zender [40] one. Here, we take advantage of the fact that
the gate width depends not only on the delay between the two pairs, but
also on the amplitude ratio between the delayed pulses. Even though this
technique has been successful in generating intense single attosecond pulses,
it suffers from energy losses and from experimental inconvenience due to
difficult alignment.

2.2.3 CMC-PG

Here, we use another approach which is a modified wave plate polarization
gating technique called collinear many-cycle polarization gating arrangement
(CMC-PG). It is the wave plate approach, combined with the interfermetric
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Figure 2.5: The collinear many-cycle polarization gating arrangement. ZO \/2
is a zero-order half-wave plate. MO A/4 is a multi-order quarter-wave plate that
splits the pulse in two pulses that have perpendicular polarization and are delayed
to each other. ZO A\/4 is a zero-order quarter-wave plate that converts the circular
polarization near the center to linear. Here, the ratio of the fields is controlled by
the Brewster plates.

polarization gating approach. Essentially, it provides the wave plate ap-
proach with the ability to control the ratio of the two fields. As a result, this
approach is applicable when many-cycle lasers are used. The optical arrange-
ment is shown in Figure 2.5. The CMC-PG setup has long term operational
stability and set-up simplicity. It has been successfully used to generate a
broadband continuum supporting isolated pulses [18].

Amplitude Ratio

One way to implement the control of the ratio of the amplitudes relies in the
Fresnel equations. When a beam approaches a surface, a part of it is reflected
back and another is transmitted through (Figure 2.6a). The Fresnel equations
relate the reflected Eyr and transmitted Eor waves with the incident Eyy,
which are different depending on whether the polarization of the wave is
parallel or perpendicular to the plane of incidence. The Fresnel equations

are [20]:
- 2
Eop = (a 6>E01 , Eor = ( )EOI for parallel (2.3)

a+p a+p

1-— 2
Eor = < aﬁ) Eor , FEor = ( )EOI for perpendicular.  (2.4)

1+ ap 14+ apf
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Figure 2.6: (a) Reflection and refraction of a wave. Depending on the polarization
of the wave, the Fresnel equations determine the amplitudes of the reflected and
transmitted waves. Here, the plane of incidence is the zz plane. (b) Dependence
of the ratio R on the angle of incidence on a Si plate for the reflected part [18].

Using the above expressions we get the reflection and transmission coefficients
which are:

IR_ Od—ﬁ 2 [T_ 2 2
R _I_(Oé‘i‘ﬁ) , T T_a5<a+ﬁ) for parallel (2.5)

1-— 2 2 2
R= (1 i Zg) , T = aﬁ(l n aﬁ) for perpendicular, (2.6)
Hang ., N2

1— in 072
V1 — [(n1/n2) sin 0] and § = ~ N2
cos 0y oMy My
From the above equations, we see that by determining the angle of incidence

of the pulse and the index of refraction, we can control the ratio of the
amplitudes of the two components of the field. We can do this by either
using the reflection, for example using a Silicon plate (Figure 2.6b), or the
transmission which is done by using Brewster plates and a polarized beam
splitter. By using the transmission, we can expect lower energy losses in the
driving pulse.

where o« =
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2.3 Low-Order Harmonic Generation using Po-
larization Gating

In the previous section we discussed the idea, as well as different implemen-
tations of the polarization gating technique. The initial idea was introduced
in the field of high-harmonic generation, as a way to generate single intense
ultra-short pulses in the XUV wavelength range. The PG has been successful
in doing so during the past decade.

However, this thesis is an attempt to utilize the polarization gating tech-
nique to generate a short low-order harmonic pulse. As mentioned before,

Tw
the pulse duration of the generated low-order harmonic is 7., = —, where
q

q denotes the harmonic order and 7, the generating pulse duration. By tak-
ing advantage the dependence of the harmonic generation on the laser pulse
ellipticity, we create a short time interval for the harmonic generation to
take place. In other words, we essentially limit the effective duration of the
driving pulse to the width of the gate. As a result, we can expect that the
polarization gating technique will work for low-harmonics as well.

Here, using the CMC-PG, we will investigate the production of a third-
harmonic pulse by doing a simulation of the process, and we will also consider
if any modifications are needed. This will be the subject of the next chapter.
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Chapter 3

Calculations for the generation
of third-harmonic pulses

To begin with, we suppose a laser with central wavelength at Ay = 800nm
and with duration 7, = 20fs. The laser is initially p-polarized. The electric
field of the laser is then:

B(t) = (%,> _ (Eoeiwget2/72> | (3.1)

where wy = % with ¢ being the speed of light in vacuum and 7 = \/2?7
This pulse will e propagated through the polarization gating. The ellipticity
all along the pulse after the gating can be calculated by Eq. 1.19.

Equation 3.1 describes a pulse with a central frequency wy and a tem-
poral envelope e~**/7°. Using Fourier analysis, it can be shown that such a
pulse corresponds to a superposition of several monochromatic waves, the
frequencies of which span according to: Av = %, where Av is the spec-
tral range. As a result, dispersion effects are expected to become important
when transmission through dispersive media is considered. In CMC-PG, the
implementation uses dispersive media, as a result we must include this in our
calculation. As mentioned in the previous chapter, when a pulse is propagat-
ing through a dispersive medium, the electric field exiting can be described

in the frequency domain as:

B (w) = Egp(w)el e (3.2)

where L is the length of the medium and n(w) is the index of refraction
of the material. From the above equation we see that we need the Fourier
transform of the electric field in Equation 3.1, the refractive index and the
thickness of the medium. Here, we suppose that the wave plates are made
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Figure 3.1: The index of refraction for the ordinary and extra-ordinary axis of
crystal quartz.

from Crystal Quartz, as it was the case in Reference [18]. Then we can
calculate the refractive index for both of the ordinary and extra-ordinary
axes by the Laurent series equation:

A28 TN T8 (3:3)
where A is the wavelength expressed in um and A; are dispersion equation
constants for Crystal Quartz (Figure 3.1a).

Next, we need the thickness of the wave plates. In general, a wave plate
is created by combining two birefringent crystals with different lengths and
the ordinary axis of one crystal being parallel with the extra-ordinary axis
of the other. As a result, by determining the length of the two bifrengent
crystals we can determine the phase difference between the two components.
For one wavelength, when one component is advanced in comparison to the
other by half the wavelength, the plate is a zero-order (ZO) A/2 and when
by a quarter of the wavelength it’s called a zero-order (ZO) A/4. When
the delay is nA + A/4 or nA + A/2, where n is the number of wavelengths
that a component is delayed, the wave plate is called A/4 or A\/2 multi-order
(MO) respectively. However, multi-order wave plates are made by a single
crystal. Consequently, a A/4 MO wave plate introduces a delay of and a
A/2 MO wave plate introduces , . For the zero-order \/2 plate, we assume
a thickness of 0.62mm and for the zero-order \/4 we assume a thickness of
0.67mm, as was the case in Reference [18]. For the A/4 multi-order, however
the dispersion plays a more important role. Because of the large thickness
of the plate, the wave plate does not give the same phase delay for all the
spectral components. This can be seen in Figure b. The thickness is found
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Figure 3.2: I,/Is = 1/6 (a) The intensity of each component of the driving field
after the gating. (b) The ellipticity of the field as a function of time (black line).
The red line is the ellipticity threshold for the third-harmonic. The blue line is
the ellipticity threshold for the 17th harmonic.

from Eq. 2.1 for a certain delay we choose between the two pulses. Here we
choose a delay of 9 cycles, translating to a thickness of 0.83mm.

Next, we move to the part where the harmonics are generated. In general
by using a many-cycle pulse linearly polarized, the harmonics are generated,
producing a spectrum like the one in Figure 1.5. As mentioned before, the
efficiency of the HG depends on the ellipticity of the driving field. However, it
is important to mention here that this efficiency dependence is not the same
for all the harmonics. For low-harmonics the efficiency of the generation is

described by:
1 — €2\ (a-D)
o= (22)" 3.4

I 14 € ¢ (3.4)

where I is the intensity of the driver pulse.

3.1 Optimizing the intensity ratio for the gen-
eration of short third-harmonic pulses

Using the considerations mentioned above, we attempt to use the PG in
order to produce short third-harmonic pulses. For this, we will set the angles
of the wave plates (Figure 2.5): 0§ = 7/8 , ¢ = 0, ( = w/4. With this
configuration, according to the simulation, the two components of the field
are along the p and s polarization and the gate is expected to “open” along
the p-direction. In other words, the pulse within the gate will be p-polarized.
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Figure 3.3: I,/Is = 1/6 (a) Plot of the driver intensity Int;r multiplied by the
efficiency of the generation ef f(€). (b) The angle of the major axis of the ellipse of
the electric field in respect to the p-polarization as a function of time. At different
times, different components dominate.

Using our simulation, we investigate the ratio that optimizes the harmonic
outcome.

I,/I, =1/6

A reasonable choice of ratio is R = 1/6. This is a common ratio when the
gating apparatus is used to generate radiation in between the harmonics of
high-order [43, 40], so it is interesting so investigate whether it works for the
generation of low-harmonic pulses, as well.

In Figure 3.2a we see the intensity of the components of the field. In
Figure 3.2b, we can see the ellipticity as a function of time. For the third-
harmonic, according to Eq. 3.4, the gate width for this ratio is 7, = 4.9fs.
As a result, one would expect that a pulse with such an ellipticity would
produce a third-harmonic pulse with duration 73,4 ~ % Nevertheless, the
Figure 3.3a shows a plot of the “generating intensity” I = eff(e) - I;r as a
function of time. It clearly indicates that there will be generation outside of
the gate as well. This happens because, the efficiency of the generation does
not drop rapidly enough with the ellipticity and in the case that driver inten-
sities are sufficiently high outside the gate, considerable amount of harmonic
generation can occur there as well. This is indeed the case for low-harmonic
generation. As seen by Figure 1.2b, for the third harmonic, the ellipticity
threshold is big enough to allow generation outside of the gate. This does
not happen in high-order harmonic generation, above the 17nth harmonic,
where €;,, ~ 0.1. This is a core difference that arises when considering har-
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Figure 3.4: I,/Is =1/6 (a) Plot of the intensity of driver’s components multi-
plied by the efficiency of the generation ef f(e¢). (b) The harmonic pulse, which
has a p as well as a s-component.

monic generation of low in contrast to high harmonics and leads to a need of
modification when considering the use of the gating technique.

However, we must take into consideration the fact that no matter if the
harmonics are generated from a field with elliptical polarization, they will
always be linearly polarized, according to the selection rules. The orientation
of their polarization is that of the major axis of the ellipse. Using the Gating
Technique with a ratio I,/I; = 1/6 the orientation of the ellipse changes with
time. As a result, the orientation of the polarization of the harmonics will
vary with time as well. In Figure 3.3b we see the angle ¢, as a function
of time. According to the orientation of the ellipse, the component that
generates the harmonic varies from s to p (in-gate) and back to s-polarization.
Because of this, the harmonic outcome will have both a p and a s-component.
Using the angle of the major axis we can calculate the “generating intensity
of the components”: I, = eff(e) - I1r - cos(¢e) and I, = eff(e) - Iir -
sin(¢e;). The result is shown in Figure 3.4a. Using the power law we find
the expected harmonic outcome which is shown in Figure 3.4b. We see that
in the p-polarization there is a single pulse with duration of 75, = 3.2fs.
Nevertheless, this pulse is not the only one generated. In the s-polarization
there are two other pulses, the first of which has a duration of 7'3(:2; =10.3fs
and the second T:,ffﬁf = 9.6fs. If, somehow, we could subtract the s-polarized
pulses, we would have a very short third-harmonic p-polarized pulse, which
however would have a much lower energy content. In applications where a
high energy content is not needed, such a short pulse would be useful. On
the other hand, if we subtract the pulse in the p-polarization we will obtain
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Figure 3.5: I,/Is = 1/3 (a) The ellipticity of the field as a function of time (black
line). The red line is the ellipticity threshold for the third-harmonic. The blue
line is the ellipticity threshold for the 17th harmonic. (b) The harmonic outcome,
there is still a p as well as a s-component, however the single pulse is more intense
than the pulses of the s-polarization.

two pulses of duration ~ 10fs that are delayed by ~ 32fs.

1,/I, =1/3

In the previous section we saw that having a small ratio between the am-
plitudes of the components, we produce a short gate width. However, this
does not translate to the generation of a short harmonic pulse only inside
the gate. As a result, we suspect that by making the ratio bigger, we can
limit the contribution of the harmonic outcome inside the gate. With this
in mind, we set the ratio R = 1/3. Using the same approach as before we
find the gate width for this ratio is 7, = 6.9fs. In Figure 3.5a we see the
ellipticity of the driving pulse after the polarization gating. We can expect a
smaller contribution in the harmonic outcome from outside of the gate. This
is indeed the case, as shown in Figure 3.5b. We see that, as before, there
are pulses in both p and s-polarization. The single pulse with p-polarization
has a duration of 75 , = 4.5fs. In the s-polarization, the first pulse has a
duration of Téi}f = 10.3fs and the second Téf}f = 9.2fs. Even though there
is still harmonic outcome on the s-polarization, the intensity of these pulses
are significantly smaller than the ratio R = 1/6. As we will see later, we can
reduce further the intensity of the out-gate pulses and obtain a single intense
pulse by using the fact that the polarization of the in-gate generated pulse
is perpendicular to the polarization of the “twin” out-gate generated pulses.
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Figure 3.6: (a,c) The ellipticity of the field as a function of time (black line). The
ellipticity is clearly bigger than the third-harmonic threshold outside of the gate,
thus lowering the generation from outside the gate. (b,d) The harmonic outcome.
The pulse in the p-polarization is significantly more intense than the harmonic
outcome on the s-polarization.

I,/I, =04, I,/I, = 0.5

Having the previous results in mind, we continue to lower the ratio. As we
saw earlier, by doing so we make the gate wider, but we lower the contribution
from outside of the gate to the harmonic outcome. As a result, we sacrifice
on the p-polarized pulse duration in order to lower the harmonic outcome
on the s-polarization. In Figure 3.6a there is the ellipticity of the pulse for
R=0.4 and in 3.6¢ for R=0.5. In Figure 3.6b the harmonic outcome is plotted
for R=0.4 and in 3.6d for R=0.5. The gate width is 7, = 7.6fs for R=0.4
and 7, = 8.5fs for R=0.5. As before, the p-polarized pulse is much more
intense than the s-polarized pair of pulses. For R=0.4, the pulse which is p-
polarized has a duration of 75 , = 4.9fs, the first pulse on the s-polarization

has a duration of 732 = 10.5fs and the second 720" = 9.2fs. For R=0.5,
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Figure 3.7: I,/Is = 1 (a) The ellipticity of the field as a function of time (black
line). The gate is wide enough in order to have no generation outside of it. (b) The
harmonic outcome. Here, there is only harmonic outcome in the p-polarization.

the pulse in the p-polarization has a duration of 7'35?2[8 = 5.4fs, while the
harmonic outcome in the s-polarization is insignificant.

IL/I, =1

For the sake of completeness we investigate the case where R = 1, ie. when
do not modify the intensity ratio I,/I;. The ellipticity is shown in Figure
3.7a and the harmonic outcome in Figure 3.7b. In this case the gate width
is 7, = 11.7fs and there is a single pulse with duration of 75 , = 7.6fs.
We see that by not modifying the amplitude ratio, we have only generation
inside the gate, leading to a single pulse. The pulse produced this way is still
shorter than a third-harmonic pulse produced with no polarization gating
(11.7fs according to Eq. 1.16).

3.2 Synopsis

In the previous section we investigated whether CMC-PG works at the pro-
duction on single, intense and short third-harmonic pulses by using various
ratios of the amplitudes of the p and s-components of the driving field. In
this section we attempt to evaluate if it has been successful and under what
circumstances.

First of all, it is apparent that because of the differences between high
and low-harmonic generation process, the CMC-PG needs modification. To
be specific, by using the same intensity ratio I,/ as in high-harmonic gen-
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eration, as was done in previous works [1], we do not obtain a single in-gate
generated pulse. One remedy for this is to lower the ratio. By doing so, we
can have a single pulse in the p-polarization, while lowering the intensity of
the out-gate generated harmonic outcome. However, by lowering the ratio
we sacrifice on the duration of the p-polarized single pulse. As result, this
poses a limit on how short a third-harmonic pulse, which is produced using
polarization gating, can be.

We can take advantage the fact that the single pulse is perpendicularly
polarized with respect to the pair of pulses. Then, by taking advantage of
the Fresnel equations we can choose to reduce the s-polarized components of
the pulse. We will elaborate further on this in the following chapter.
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Chapter 4

Experimental specifications

In this final chapter we will be discussing the experimental implementation of
third-harmonic pulse generation, using the CMC-PG. As mentioned earlier,
the simulation in this thesis is based on an experimental setup that is under
development at IESL-FORTH. The first point to be addressed is how we will
control the amplitude ratio. Next, comes the selection of the atomic gas to
be used for the generation of the harmonics. Then, we will discuss the way
to filter out the IR and harmonics of order higher than the third. Lastly, we
will discuss the detection and the temporal characterization of the pulse. Of
course, due to the high intensity of the laser pulse, the whole setup will be
in vacuum with pressure at least 10~ %mbar.

4.1 Amplitude ratio

As mentioned before, one way to control the amplitude ratio is by taking into
account the Fresnel equations for reflection and transmission on the surface
which separates two adjacent media with different refractive indices. Here,
in order to control the ratio R we use Brewster plates. The Brewster plates
used are from NBK?7, the index of refraction of which can be found from the
Sellmeier equation (Figure 4.1a):
W2 — 14 B )2 N By)\? n B3 \?
)\2—01 )\2—02 )\2—037

where X is the wavelength expressed in um, B; and C; are the dispersion
equation constants for NBK?7.

We make use of the part of the pulse that is transmitted through the
Brewster plates. Then the ratio of the p and s-polarized components is:

(4.1)

L, T,
R:f:% (4.2)

34



1.513 - \ e
\ gt
\ ; >4
\ ;
S 1512 ——NBK7 Y ; x’f .-""F'-'
N Ll
& S
3 - g L
% 1511 Fy - ,*:\-‘. ,*"'-' ;
- - >
5 .y
° . i)
2 - -
1.510 4 lf-" ,-"'J kY
e )‘
- -
Ll A P
1509 }/ -
.-
i -
700 7%0 s(lm ago e(lm Thlc kl’lESS -"\_
wavelength (nm) \

Figure 4.1: R =1 (a) The index of refraction for NBK7. (b) A schematic repre-
sentation of a Brewster plate, shown the three axis which it can be rotated.

where T, and T, are the transmission coefficients for p and s-polarization
respectively. Using the Fresnel equations we can find the ratio as a function
of the angle of incidence. What is important here, is that, what we call
parallel or perpendicular in the Fresnel equations is in respect to the plane
of incidence.

In Figure 4.2a the ratio as a function of the angle of incidence is plotted.
For a single plate, the ratio R = 2 can be achieved at the angle 71.6°. This
translates to a length that the pulse will propagate of 634.2um.

For an intensity of the pulse I, = 10'2W/cm?, the B-integral value is
above 1. As a result, we need to use more plates. By doing so the total
transmittance is T},; = 1115 - - - T,,, where T} is the transmittance for the i-th
Brewster plate. We see that by using more plates, for the same ratio, the
angle of incidence gets smaller. As a result, the beam propagates in less
material, translating to a smaller B-integral as shown in Table 4.1.

# plates | angle | B-integral
1 71.6° 1.69
2 57.3° 0.98
3 49.3° 0.81 L)1, =2
4 44.1° 0.74
d 40.1° 0.70
6 37.2° 0.67

Table 4.1: A table with the value of B-integral for various number of plates in
order to introduce a ratio of I,/I; = 2.
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Figure 4.2: (a) The ratio as a function of the angle of incidence for different
numbers of plates. The more plates we use, the smaller the angle of the plates, in
order to have the same ratio. (b) The reflectivity of a NBK7 Brewster plate for
800nm. Using this we can estimate the energy losses of the pulse due to reflections.

In the calculation of the B-integral it is apparent that there is a limit
to the intensity of the beam that we can use. For intensities higher than
10"W/cm?, the B-integral starts becoming larger.

However, when we use more plates, we sacrifice on the energy content.
Due to the reflections on the two surfaces of each plate, a part of the pulse
will be lost. In Figure 4.2b the reflectivity from a N-BK7 plate is plotted.
For the angle 37.2°, which is the angle that I,/I; = 2 can be achieved by
using 6 plates, in every reflection we can expect an energy loss of ~ 2% in
the p-component and a loss of ~ 7% in the s-component. This translates
to an energy loss of &~ 11.8% in the energy content in the p-component and
~ 39.5% in the s-component for all 6 plates.

4.2 (Gas selection for the generation of the
harmonics

After the polarization gating, the pulse becomes ellipticity modulated, with
linear polarization at the center of the pulse. Next, the beam is focused in
a gas jet where the harmonics of the fundamental will be generated. The
selection of the gas plays a crucial role on the conversion efficiency of the
fundamental into the third-harmonic pulse. As a result, it is crucial to use
the gas that maximizes the energy output.

First of all, not all atomic media are suitable for the upconversion of
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from Reference [26].

a laser pulse with central wavelength of Ay = 800nm. Such a wavelength
corresponds to a photon energy of Ey = hwy = 1.55eV. As a result, the most
important qualification for an atomic medium in order to be suitable, is to
have ionization energy E; > 3E,. When this condition does not hold, we
cannot have third-harmonic generation, below threshold.

A parameter that need to be optimized is the the gas pressure. Gener-
ally, we can expect that by increasing the pressure we will have an increase
in the upconversion efficiency, due to more more harmonics generated. How-
ever, beyond a critical pressure value, the ionization of the gas destroys
phase-matching conditions significant, thus lowering the harmonic output
(see section 1.3).

In Figure 4.3 the number of photons of the third-harmonic pulse is mea-
sured for various noble gasses versus the laser intensity [19]. The pressure
used in this experiment was 15 Torr and the central wavelength of the laser
was 1064nm. According to this plot, the gas that has the highest conversion
efficiency is xenon. In our experiment we will use gas pressure of one order
of magnitude higher than 15 Torr, which was used in this experiment and
laser intensities of between 10 — 10"°W/cm?.
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4.3 Selection of the single third-harmonic pulse

As mentioned before, when we focus a laser in a gas jet the harmonics are
generated. After the harmonics are generated, they co-propagate with the
fundamental. As a result, in order to have a pulse of the third-harmonic we
have to separate it from the fundamental field and the other harmonics.

First, we use a silicon plate. This is a common procedure in order to
subtract the fundamental in HHG experiments [41]. However, because after
the polarization gating apparatus the driving field has p and s-components
the silicon plate does not work well here. In Figure 4.4 the reflectivity of
a silicon plate as a function of the angle of incidence is plotted. If we have
the silicon plate is at the Brewster angle of the fundamental (= 74.5°), the
p-polarized component will be eliminated, while the s-component will be
reduced by a factor of &~ 27%. However, it is important to note that, due to
the dependence of the refractive index on the wavelength, the Brewster angle
is not the same for the third-harmonic pulse, which has central wavelength of
266nm. The Brewster angle for this wavelength is ~ 65°. If the silicon plate
is at this angle, the p-polarized component of the harmonic outcome will be
eliminated, while the s-polarized component will be reduced by &~ 62%. Also,
the p-polarized component of the fundamental will be reduced by ~ 95%,
while the s-component by ~ 40%.
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Figure 4.5: The reflectivity for the 3w mirror as a function of the wavelength.
The mirrors are made from BK7 by OptoSigma. [28]

As we saw in Chapter 3, in the harmonic outcome there is a single pulse
in one polarization and a pair of pulses in the perpendicular one. If we could
have the “twin pulses” in the polarization that the silicon will suppress,
then we will essentially have only the single pulse left. This can be done
by either having the plane of incidence perpendicular to the p-polarization
or by generating them in the p-polarization in the first place. It is much
easier to generate the single pulse in the s-polarization and the pair in the
p-polarization. We can do this by making sure the pulse will be s-polarized
within the gate. In order to achieve this we need a proper configuration of
the angles of the wave plates, for example: 6 = 7/8, ¢ = 7/2 and ¢ = /4
where 6 is the angle is the A/2 ZO, ¢ is the angle of the \/4 MO and ( the
angle of the A\/4 ZO wave plate.

In order to filter out the IR and the higher-order harmonics, we use two
mirrors that reflect mainly at the spectral area which supports a short-in-
time duration third harmonic pulse. The Figure 4.5 shows the reflectance of
a single mirror as a function of the wavelength. We see that at wavelengths
around 260nm the reflectivity is close to 100%, while for wavelengths around
800nm the reflectivity is close to 20% for the s-polarization and ~ 5% for
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p-polarization. By using two mirrors, the reflectivity for the s-component
drops to 4% and for p-component less than 0.2%.

Concluding, by using the combination of the silicon plate and the pair
of 3w mirrors, we can reduce the s-component of the fundamental down to
~ 2.4% of the initial intensity and the p-component to < 0.1%. The losses for
the third-harmonic pulse are &~ 100% for the p-polarized and = 62% for the
s-polarization. Importantly, the silicon plate gives us the ability to suppress
the p-component of the third-harmonic pulse more than 100 times more than
the s-component. This provides a way to subtract the “twin pulses” that are
generated with perpendicular polarization with the single pulse, leaving only
a single short third-harmonic pulse after this stage.

4.4 Detection and temporal characterization

After the IR and the higher-order harmonics are filtered out, the single third-
harmonic pulse goes in the detection chamber in order to be temporally
characterized. However, we cannot, yet, be sure whether we have a pulse. In
order to have a pulse, the relative phases of the different frequencies must
be suitable. As a result, this part of the arrangement is crucial to determine
whether we have a pulse and acquire its temporal characterization.

For the temporal characterization an auto-correlation technique will be
used. By using a first-order auto-correlation measurement, we only have
information about the coherence time [36]. In order to obtain the duration
of the pulse, we must use a second-order auto-correlation measurement. To
do this we must have a second-order nonlinear process. For this we can maybe
use the two-photon ionization process of toluene, as it was used before [1].

However, if the energy content of the third-harmonic pulse is sufficient a
third-order auto-correlation measurement can be used as well. In contrast
to the second-order, where we only have information about the duration of
the pulse, in the third-order we have information about asymmetries in the
temporal profile of the pulse, in addition to the duration. As a result, the
third-order auto-correlation provides a more complete temporal characteri-
zation of the pulse, but it requires a third-order nonlinear process, requiring
more energetic pulses. As a third-order nonlinear process, a candidate is the
three-photon ionization of xenon. The ionization energy of xenon is 12.1eV/,
while the photon energy corresponding to a wavelength of 270nm is 4.6eV .
As a result, xenon can be ionized using three photons. However, it needs
to be evaluated if the intermediate resonances do not affect its nonlinear
properties when broadband pulses are used to ionize the xenon atoms.
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Estimation of energy content of the single third-harmonic
pulse

Here we will attempt to give a quantitative estimation for the energy content
of the third-harmonic pulse before going into the detection chamber. For
the energy content of the driving laser we will assume an energy of 400m.J,
which is the maximum energy per pulse achievable for the laser system in
IESL-FORTH. We can expect to lose close to 27% of the energy due to re-
flections on the wave plates leaving ~ 291m.J. In order to give an intensity
ratio of I,/I; = 1/3 with 6 Brewster plates we need an angle of 45°. For
such an arrangement of Brewster plates we can expect losses of ~ 1% in the
p-polarization and ~ 9% in the s-polarization. This translates to an energy
after the plates of ~ 276mJ. For the third-harmonic generation, we will
assume a conversion efficiency of 10%. As a result, the third harmonic out-
come will have an energy of ~ 27m.J. For the intensity ratio I/, = 1/3 the
in-gate generated component is ~ 3.8 times more intense than the out-gate
generated component. As discussed earlier, after the silicon plate, the out-
gate generated component will be filtered out, leaving a single third-harmonic
pulse with energy content of ~ 18m.J. The 3w mirrors have reflectivity al-
most 100% for the third-harmonic. As a result, we can expect that the
third-harmonic pulse will have an energy content of at least 18m.J and a
duration of 4.5fs.

The experimental arrangement can be seen in Figure 4.6 . It is similar to
the experimental arrangement used in Reference [1], with a few modifications.
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Figure 4.6: The experimental arrangement proposed. It consists of the polariza-
tion gating setup, the focusing of the beam, a gas jet where the generation takes
place. Then there are the silicon plate and the 3w mirrors and lastly the detection
chamber where the temporal characterization takes place.
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