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Abstract

In this dissertation we examine web exploitation from a number of different perspectives.

First, we introduce return-to-JavaScript attacks; a new flavor of Cross-Site Scripting (XSS),

which is able to escape script whitelisting. Second, we design xJS, a system that can prevent

code injections of JavaScript in web applications. xJS is based on the concept of Instruction

Set Randomization (ISR) for isolating legitimate JavaScript from malicious injections. We

evaluate xJS and show that the overhead it imposes in the server’s and the client’s side is

negligible, since xJS is based on the fast XOR operation. Third, we deliver a more fine-grained

randomization framework for web applications, RaJa, which can efficiently cope with language

mixing. RaJa can successfully extract and randomize the JavaScript source code of real-world

applications, which experience heavy code-mixing (i.e. JavaScript is mixed with a server-side

programming language, such as PHP). Forth, we present xHunter, a network-level detector,

which is able to locate JavaScript fragments in the body of URLs. With the assistance

of xHunter we deliver an extensive analysis of the largest to date web-attack repository,

XSSed.com. This particular repository hosts about 12,000 incidents of web exploitation. Our

analysis identifies that 7% of all examined web attacks do not use any markup elements, such

as <script> or <iframe>, for exploiting a web application. All these incidents are hard to

be captured by tools that are based on static signatures and regular expressions. We proceed

and analyze these attacks with xHunter and we deliver a compact signature set, which is

composed by no more than a handful of rules. This rule-set is based on signatures expressed

as JavaScript syntax trees and can be used to detect a broad family of injections that target

web applications.

Finally, we address the problem of data fabrication in data collected by web servers, VoIP
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providers, on-line stores and ISPs. We present Network Flow Contracts (NFCs), a system,

which, in spite of the presence of malicious web servers or untrusted ISPs, enables innocent

users to prove that they have not accessed the illegal content in question. NFCs require every

network request to be cryptographically signed by the requesting user. We present a prototype

implementation as well as a performance evaluation on top of commodity technologies.

The results of this research are the followings. First, Instruction Set Randomization can

be efficiently applied in web applications with low performance overhead and large attack

coverage. Second, web-attack detection at the network level is also possible, although com-

putationally expensive to be applied in real-time. Third, cryptographically signed network

flows can protect users from data fabrication at the ISP level with low cost.

Thesis Advisor: Prof. Evangelos Markatos
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Περίληψη

Σε αυτή τη διατριβή εξετάζουμε επιθέσεις στον Παγκόσμιο Ιστό από μια σειρά διαφορετικών

οπτικών γωνιών. Πρώτον, εισάγουμε τις επιθέσεις return − to − JavaScript, μια νέα μορφή

Cross − Site Scripting(XSS), η οποία δύναται να ξεπεράσει μέτρα που βασίζονται σε script

whitelisting. Δεύτερον, σχεδιάζουμε την αρχιτεκτονική ενός πλήρους συστήματος, xJS, το

οποίο μπορεί να αποτρέψει επιθέσεις εισαγωγής κώδικα JavaScript σε εφαρμογές Παγκόσμιου

Ιστού. Το xJS βασίζεται στην ιδέα της Τυχαιοποίησης Σετ Εντολών (ΤΣΕ), έτσι ώστε να

μπορεί να απομονώσει νόμιμη JavaScript από κακόβουλες εισαγωγές. Κατά την αποτίμηση του

xJS δείχνουμε ότι η επιβάρυνση στην πλευρά του διακομιστή και στην πλευρά του πελάτη εί-

ναι αμελητέα, μιας και το xJS βασίζεται στη γρήγορη εντολή XOR. Τρίτον, κατασκευάζουμε

ένα πλαίσιο τυχαιοποίησης για εφαρμογές Παγκόσμιου Ιστού, RaJa, το οποίο μπορεί να αντε-

πεξέλθει σε περιβάλλοντα όπου γλώσσες, όπως π.χ. η PHP και η JavaScript, αναμιγνύονται

μεταξύ τους. Τέταρτον, παρουσιάζουμε το xHunter, έναν ανιχνευτή επιπέδου δικτύου, ο οποίος

μπορεί να εντοπίσει κομμάτια JavaScript σε URLs. Με τη βοήθεια του xHunter πραγμα-

τοποιούμε μια εκτεταμένη ανάλυση της μεγαλύτερης έως σήμερα πηγής επιθέσεων Παγκόσμιου

Ιστού, XSSed.com, η οποία φιλοξενεί περίπου 12,000 συμβάντα. Η ανάλυσή μας αποδεικνύει

ότι στο 7% όλων των επιθέσεων δε χρησιμοποιούνται συστατικά Markup, όπως < script >

και < iframe >. Τέτοιου είδους επιθέσεις είναι πολύ δύσκολο να ανιχνευθούν από εργαλεία

βασισμένα σε στατικές υπογραφές. Αναλύουμε όλες αυτές τις επιθέσεις με το xHunter και πα-

ρουσιάζουμε ένα σετ μερικών δεκάδων υπογραφών. Το σετ βασίζεται σε υπογραφές, οι οποίες

εκφράζονται με τη βοήθεια συντακτικών δένδρων JavaScript.

Τέλος, αντιμετωπίζουμε το πρόβλημα της αλλοίωσης δεδομένων, τα οποία συλλέγονται από

διακομιστές Παγκόσμιου Ιστού, παροχείς υπηρεσιών V oIP , ψηφιακών καταστημάτων και Παρο-
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χείς Υπηρεσιών ΄Ιντερνετ. Παρουσιάζουμε τα Συμβόλαια Δικτυακών Ροών (ΣΔΡ), ένα σύστημα

το οποίο μπορεί να δώσει τη δυνατότητα σε χρήστες να αποδείξουν ότι δεν έχουν αποπειραθεί

να έρθουν σε επαφή με παράνομο περιεχόμενο. Τα ΣΔΡ απαιτούν κάθε δικτυακή αίτηση να είναι

κρυπτογραφικά υπογεγραμμένη. Παρουσιάζουμε μια πρωτότυπη υλοποίηση, όπως και αποτίμηση

της απόδοσής των ΣΔΡ.

Το αποτέλεσμα αυτής της έρευνας είναι ότι η Τυχαιοποίηση Σετ Εντολών μπορεί να εφαρμο-

σθεί σε εφαρμογές Παγκόσμιου Ιστού με μικρή επιβάρυνση και αντιμετώπιση ενός μεγάλου εύρους

επιθέσεων, ενώ ανίχνευση επιθέσεων Παγκόσμιου Ιστού σε επιπέδου Δικτύου είναι δυνατή, αν

και υπολογιστικά ακριβή για να εφαρμοστεί σε πραγματικό χρόνο. Κρυπτογραφικά υπογεγραμμέ-

νες δικτυακές ροές μπορούν να προστατέψουν χρήστες από την αλλοίωση δεδομένων σε επίπεδο

Παροχέα Υπηρεσιών ΄Ιντερνετ με μικρό κόστος.

Επόπτης: Καθηγητής Ευάγγελος Π. Μαρκάτος
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Chapter 1

Introduction

The World Wide Web (WWW), which we will refer to as the web platform, has evolved into a

large-scale system composed by millions of applications and services. In the beginning, there

were only static web pages aiming at providing information expressed in text and graphics.

Today, the web platform provides alternatives for all native applications that have been

deployed in modern operating systems over the last decades. Users can use web applications

for communicating with other users via instant messaging, for reading e-mail and news, for

editing and viewing video, for managing their photographs and other files, or, even creating

spreadsheets, presentations and text documents. Apart from traditional applications, the web

provides also new applications, which are hard to develop, without taking advantage of the

mass adoption of the web platform. Social networks, such as Facebook and MySpace, blogs

and micro-blogs, such as Twitter, and other content providing services that are built on users’

collaboration, such as YouTube and Flickr, are considered the killer applications of the last

few years.

Moreover, the web browser is considered as the de facto medium for accessing and in-

terconnecting all services, from every-day web surfing to financial transactions related to

e-banking and to the stock market. Every Internet-connected device is able to run a web

browser and, with standard technologies composed by the HTTP protocol, the JavaScript

programming language and the XML dialect, these devices deliver a global interface for ac-

cessing the web platform. It is highly unlikely that the trend towards developing and using
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new web applications is going to change in the near future. On the contrary, the evolution of

the web platform is so rapid, that has driven large IT companies, such as Google, to create

and offer laptops [cr4] equipped with an Operating System [chr] entirely developed over the

the web platform. A system that lives in the cloud.

1.1 Problem Statement and Approach

Unfortunately, the great evolution of the web platform is also connected with the parallel

explosion of security threats that occur in web applications. These threats affect directly

all users that take advantage of the web platform. Especially large web applications, such

as social network utilities, which promote similar content to a large user base, can affect a

significant amount of users in the case they become vulnerable. We are among the first to

highlight this issue [AMA+08, MAA+10].

Moreover, code-injection attacks through Cross-Site Scripting (XSS) in the web browser

have observed a significant increase over the previous years. According to a September-2009

report published by the SANS Institute [SAN], attacks against web applications constitute

more than 60% of the total attack attempts observed on the Internet. Web application vul-

nerabilities such as SQL injection and Cross-Site Scripting flaws in open-source as well as

custom-built applications account for more than 80% of the vulnerabilities being discovered.

XSS threats are not only targeted towards relatively simple, small-business web sites, but

also towards infrastructures that are managed and operated by leading IT vendors [mca].

Moreover, recently widely adopted technologies, such as AJAX [G+05], exacerbate potential

XSS vulnerabilities by promoting richer and more complex client-side interfaces. This added

complexity in the web browser environment provides additional opportunities for further ex-

ploitation of XSS vulnerabilities.

Injecting malicious code using an XSS vulnerability is not the only way to exploit a web

application. An attacker can control a web application using a series of techniques, as we show

in Chapter 2. However, irrespective of the exploitation method, the great majority of already

published web exploits is based on the usage of JavaScript (we quantify this in Chapter 7).
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This is not meant to be surprising. Let us think of a web application based on knowledge we

have so far from native applications. A native application is composed by the data segment

(where data are stored) and the code segment (where code is stored). An attacker who is

willing to compromise the application attempts to inject some code, using for example a buffer

overflow vulnerability [One96], which will eventually glue to the existing code of the program

and force the application to behave according to the attacker’s needs. In a similar fashion,

we can think of a web application as a program, which consists of data (text and graphics

expressed in HTML) and JavaScript code, which orchestrates the web application flow in the

web browser environment. Thus, a web exploit based on JavaScript gives the attacker rich

flexibility in terms of altering the web application’s behavior.

In this thesis we propose technologies that can protect web applications from JavaScript

injections. We first argue that simple JavaScript whitelisting 1 is not sufficient, by introduc-

ing a new XSS flavor; return-to-JavaScript attacks. We, then, build frameworks that isolate

all legitimate JavaScript of a web application from possible code injections. Our approach

is based on a generic principle for countering code injections known as Instruction Set Ran-

domization (ISR). We are the first to apply ISR to web applications. We, furthermore, build

a network-level detector, which is able to locate JavaScript fragments carried out in URLs.

Finally, we propose a framework for user-tracking in every-day Internet activities, that can

protect users from data fabrication caused by malicious ISPs.

1.2 Novelty and Contributions

In this dissertation we make numerous contributions. More precisely, the contributions are

the following:

1. We identify return-to-JavaScript attacks; a new XSS flavor, which can defeat web ap-

plications that use script whitelisting [JSH07] to counter code injections. We discuss

return-to-JavaScript attacks in Chapter 3.

1The form “whitelist” is used instead of “white-list”, due to the massive adoption of the first form by the
community.
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2. We design, implement and evaluate xJS and RaJa; two frameworks, which apply ISR

concepts to web applications. We discuss xJS and RaJa in Chapter 4 and 5.

3. We examine the code base of four real-world web applications and we show that with

minimal modifications all legitimate JavaScript can be efficiently isolated in a machine-

driven way. This is crucial for all applications that aim at applying operations in the

JavaScript part of a web application. We discuss JavaScript code-mixing and isolation

in Chapter 5.

4. We design, implement and evaluate a network-based monitoring prototype that can

efficiently locate JavaScript fragments carried-out in URLs. We discuss xHunter in

Chapter 6.

5. We present an analysis of a large set of about 12,000 real-world web exploits collected

by a well known repository, XSSed.com [FP]. We discuss this analysis in Chapter 7.

6. We design, implement and evaluate Network Flow Contracts (NFCs), a framework

against data fabrication at the ISP’s level. An ISP providing NFCs can guarantee that

all network activity has been logged with the subscriber’s verification. We discuss NFCs

in Chapter 8.

1.3 Dissertation Organization

This dissertation is organized as follows. In Chapter 2 a short introduction of background

knowledge is presented. This chapter is essential for understanding the rest of the content. A

new flavor of XSS exploitation, namely return-to-JavaScript attacks, that can bypass script

whitelisting, is presented in Chapter 3. In Chapter 4 and 5 the architecture and the design

of xJS and RaJa are presented respectively. Both frameworks consider ISR as a mean for

protecting web applications from code injections. In Chapter 6 a network-level XSS detector

is described, namely xHunter. With the assistance of xHunter, a large case study of about

12,000 XSS exploits hosted in a real-world repository is presented in Chapter 7. Network

Flow Contracts are presented and evaluated in Chapter 8. Related work is listed in Chapter 9.
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This dissertation concludes in Chapter 10. A list of publications related to this dissertation’s

content is presented in Appendix A.
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Chapter 2

Background

In this chapter we give a short introduction of some important concepts used in the rest of

this dissertation’s content.

2.1 The Web2.0 Era

The web, as we know it, dates back to early 90s. The basic technologies associated with

the web have not changed through the years, although some of them have heavily evolved.

The term Web2.0 was invented sometime between late 90s and early 2000. It is hard to

give a precise definition for Web2.0. However, it is considered that the major shift from

traditional web pages to Web2.0 applications was due to the introduction of XMLHttpRequest,

a JavaScript function implemented by all modern web browsers, which is able to perform an

HTTP request asynchronously. A web page can update the contents of a very precisely

defined region by performing an HTTP request in the web server using an XMLHttpRequest

call. This partial update gives the notion of interaction. Using partial updates, a web page

can be enhanced with pull-down menus, buttons, actions and other forms of user interface

elements. Thus, the web page is transformed to an application, which resembles the behavior

of a desktop application. There are many libraries in the market that use XMLHttpRequest as

the basic building block for constructing rich client-side interfaces. Very frequently we refer

to this libraries with the term Asynchronous JavaScript and XML (AJAX) [G+05]. Among
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popular web applications built using rich AJAX interfaces, some examples are Gmail, a full

featured e-mail client provided by Google, GoogleDocs, a full featured office suite provided

by Google, Flickr, a photograph manager owned by Yahoo, and Facebook, a social network

utility with more than 500 millions of registered users.

The invention of AJAX gave significant boost to the web’s usage. In parallel, the complex-

ity and the sophistication of modern web browsers transformed the web platform into a rich

media for building easy-to-use applications. More importantly, what many desktop applica-

tions lack, compared to web applications is the easiness of adding collaboration features. A

web application, by definition, provides content sharing among users and makes collaboration

easy. Many web applications, like Facebook for example, have formed a huge user base, which

interacts with content using the same platform. 1 Moreover, the transition from static web

pages to full featured web applications increased significantly the source code. Consider that

a typical web application, like Gmail for example, is composed by tens of thousands lines of

code. This, inevitably, introduces bugs, which can be leveraged as vulnerabilities, which in

turn can be exploited to compromise web applications as it is the case for native applications.

We now give a short review of well-known methods for compromising web applications.

2.2 Security Threats in Web Applications

According to a September-2009 report published by the SANS Institute [SAN], attacks against

web applications constitute more than 60% of the total attack attempts observed on the In-

ternet. Web application vulnerabilities such as SQL injection and Cross-Site Scripting flaws

in open-source as well as custom-built applications account for more than 80% of the vulner-

abilities being discovered. The majority of web attacks are based in code injections, more

frequently occurring by the injection of some JavaScript code in a web application. However,

there are many web attack variants. We shortly discuss the most well known.

1We have shown that this can be abused for malicious purposes [LAAA06, AMA+08, MAA+10].
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2.2.1 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is considered as the most severe variant of a web attack. A web

application suffering of XSS has a great probability to become fully compromised. An XSS

takes place when an attacker injects JavaScript code in a web application that expects some

data input. The server fails to filter out the data input and treats it as code. The result is

that the attacker’s code will be eventually executed in a web browser.

Now, assume that the attacker’s code is set to get the currently loaded cookie of a user’s

session and post it to a server controlled by the attacker. This code will be rendered by

every web browser, which comes in contact with the vulnerable web application. When the

code starts executing in the web browser, the current cookie will be the user’s cookie, who is

viewing the web application. Thus, the final result is for the attacker to collect all cookies,

associated with users interacting with the web application.

There are many different ways to inject malicious content in a web application. More

often, an attacker tries to inject JavaScript, but damage can be also caused by injecting an

iframe or an image.

2.2.2 Cross-Site Request Forgery (CSRF)

Another popular web attack flavor, not as powerful as XSS but being able to become severe

for the end-user, is Cross-Site Request Forgery (CSRF) [BJM08]. During a CSRF attack,

the attacker aims at forcing a victim’s web browser to artificially generate requests towards a

web application. In the case that the victim is logged in the target web application, then the

artificially created requests will be landed at the web application with the victim’s credentials.

Consider, for example, Alice while using Gmail, she opens the attacker’s web site in a new

tab. Upon visiting the attacker’s web server, Alice’s browser is forced to generate a request

that deletes a Gmail inbox. Alice is using Gmail and thus all requests will leave Alice’s web

browser with her credentials. Thus, Alice’s inbox will be deleted. Notice, that we assume

that Alice maintains an open connection with the target web application, while she is visiting

the attacker’s web page.
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2.2.3 Visual Attacks

A family of web attacks is based on deceiving users by creating specially crafted visual condi-

tions. Representative attacks of this category are Clickjacking [HG08] and Phishing [DTH06].

In Clickjacking, the attacker is using overlapped layers to hide from the user her real actions.

For example, consider a dialog box with two buttons, one confirming the action and one

denying it. Consider, now, that the attacker has injected a visual layer, over the dialog box,

which visually exchanges the two buttons. Thus, the user finally receives the dialog box with

the buttons exchanged. If the user wants to deny the action, she will actually click on the

button, which confirms the action. However, the user is not able to know this in advance,

since the confirmation button is hidden under the visual representation of the deny button.

Clickjacking works, because a special visual property of HTML elements, called the z-index,

makes easy to create piles of graphic areas.

On the other hand, Phishing aims at deceiving a user by creating entire clones of actual

web sites and web applications. An attacker creates a web site, which looks identical with a

well-known web application, for example Gmail. The content of the application is served and

controlled by the attacker’s web server. The attacker tricks the user to enter her credentials

in the cloned web site. The user proceeds and does so, since she believes that she is logging in

the authentic web site. The attacker collects the victim’s credentials and uses them to enter

the authentic web site.

2.2.4 Other

Lately, there have been many research efforts towards the invention of very elaborate and

sophisticated web attacks. Apart from XSS and CSRF, there are many ways to exploit a

web application. For example, by sending specifically crafted data, someone can exploit bugs

in an AJAX-based client [SHPS] or by including web pages as a Cascade Style Sheet (CSS)

someone can steal a user’s secret [LSZCC10] (for example the subjects of her web inbox)

from a web application. Moreover, even devices such as routers that use web interfaces for

configuration can be exploited by injecting specific client-side code [BBB09]. All these flavors

of web exploitation can in principle use JavaScript. In the context of this dissertation, we do
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not attempt to deal with all of these problems. However, if the attack is based on JavaScript

usage, then the frameworks we propose can successfully detect and prevent exploitation.

2.3 Instruction Set Randomization

Instruction Set Randomization (ISR) is a generic technique for countering code injections.

The fundamental concept of ISR is to randomize the instruction set of a particular executing

flow, so that every time the flow runs the commands are different. Thus, any code injection is

hard to glue in the rest of the program’s code, unless the key for de-randomizing every instant

is known. As it is described by Angelos D. Keromytis: The basic idea behind this approach

is that attackers don’t know the language “spoken” by the runtime environment on which

an application runs, so a code-injection attack will ultimately fail because the foreign code,

however injected, is written in a different language. In contrast to other defense mechanisms,

we can apply ISR against any type of code-injection attack, in any environment. [Ker09]

ISR has been applied in native applications [KKP03] and in SQL [BK04]. Some con-

cepts of ISR has been applied to counter XSS in Noncespaces [GC09], where a randomized

DOM [LHLHW+04] is introduced. Some discussion about applying ISR concepts for XSS can

be found in [Ker09]. A significant part of this dissertation is devoted in two frameworks, xJS

and RaJa , which introduce ISR in web applications.

10



Chapter 3

Return To JavaScript Attacks

In this chapter we present a new flavor of XSS, which we refer to it as return-to-JavaScript

attack, in analogy with the return-to-libc attack in native code. This kind of XSS attack can

escape script whitelisting, used by existing XSS mitigation schemes. We further highlight

some important issues for DOM-based XSS mitigation schemes. All the attacks listed in this

section can be successfully prevented by xJS and RaJa, which are discussed in Chapters 4

and 5.

3.1 Overview

A practical mitigation scheme for XSS attacks is script whitelisting, proposed in BEEP[JSH07].

BEEP works as follows. The web application includes a list of cryptographic hashes of valid

(trusted) client-side scripts. The browser, using a hook, checks upon execution of a script if

there is a cryptographic hash in the whitelist. If the hash is found, the script is considered

trusted and executed by the browser. If not, the script is considered non-trusted and the

policy defines whether the script may be rendered or not. Script whitelisting is not sufficient.

Despite its novelty, we argue here that simple whitelisting may not prove to be a sufficient

countermeasure against XSS attacks. To this end, consider the following.

Location of trusted scripts. As a first example, note that BEEP does not examine the

script’s location inside the web document. Consider the simple case where an attacker injects
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a trusted script, initially configured to run upon a user’s click (using the onclick action),

to be rendered upon document loading (using the onload1 action). In this case, the script

will be executed, since it is already whitelisted, but not as intended by the original design of

the site; the script will be executed upon site loading and not following a user’s click. If, for

example, the script deletes data, then the data will be erased when the user’s browser loads

the web document and not when the user clicks on the associated hyperlink.

Exploiting legitimate whitelisted code. Attacks may be further carried out through

legitimate whitelisted code. XSS attacks are typically associated with injecting arbitrary

client-side code in a web document, which is assumed to be foreign, i.e., not generated by

the web server. However, it is possible to perform an XSS attack by placing code that is

generated by the web server in different regions of the web page. This attack resembles the

classic return-to-libc attack [Des97] in native applications and thus we refer to as return-

to-JavaScript. Return-oriented programming suggests that an exploit may simply transfer

execution to a place in libc2, which may cause again execution of arbitrary code on behalf

of the attacker. The difference with the traditional buffer overflow attack [One96] is that the

attacker has not injected any foreign code in the program. Instead, she transfers execution to

a point that already hosts code that can assist her goal. A similar approach can be used by

an attacker to escape whitelisting in the web environment. Instead of injecting her own code,

she can take advantage of existing whitelisted code available in the web application. Note

that, typically, a large fraction of client-side code is not executed upon document loading,

but is triggered during user events, such as mouse clicks. Below we enumerate some possible

scenarios for XSS attacks based on whitelisted code, which can produce (i) annoyance, (ii)

data loss and (iii) complete takeover of a web site.

Annoyance. Assume the blog site shown in Figure 3.1. The blog contains a JavaScript

function logout(), which is executed when the user clicks the corresponding hyperlink, Logout

1One can argue that the onload action is limited and usually associated with the <body> tag. The latter
is considered hard to be altered through a code-injection attack. However, note, that the onload event is also
available for other elements (e.g. images, using the <img> tag) included in the web document.

2This can also happen with other libraries as well, but libc seems ideal since (a) it is linked to every program
and (b) it supports operations like system(), exec(), adduser(), etc., which can be (ab)used accordingly.
More interestingly, the attack can happen with no function calls but using available combinations of existing
code [Sha07].
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1: <html>

2: <head> <title> Blog! </title> <head>

3: <body>

4: <a onclick="logout();">Logout</a>

5: <div class="blog_entry" id="123"> {...} <input type="button" onclick="delete(123)"></div>

6: <div class="blog_comments"> <ul>

7: <li> <img onload="logout();" src="logo.gif">

8: <li> <img onload="window.location.href=’http://www.google.com’;" src="logo.gif">

9: <li> <img onload="delete(123);">

10: </div>

11: <a onclick="window.location.href=’http://www.google.com’;">Google</a>

12: </body>

13:</html>

Figure 3.1: A minimal Blog site demonstrating the whitelisting attacks.

(line 4 in Fig. 3.1). An attacker could perform an XSS attack by placing a script that calls

logout() when a blog entry is rendered (see line 7 in Fig. 3.1). Hence, a user reading the

blog story will be forced to logout. In a similar fashion, a web site that uses JavaScript code

to perform redirection (for example using window.location.href = new-site) can be also

attacked by placing this whitelisted code in an onload event (see line 8 in Fig. 3.1).

Data Loss. A web site hosting user content that can be deleted using client-side code

can be attacked by injecting the whitelisted deletion code in an onload event (see line 9 in

Fig. 3.1). AJAX [G+05] interfaces are popular in social networks such as Facebook.com and

MySpace.com. This attack can be considered similar to a SQL injection [Anl02], since the

attacker is implicitly granted access to the web site’s database.

Complete Takeover. Theoretically, a web site that has a full featured AJAX interface

can be completely taken over, since the attacker has all the functionality she needs a-

priori whitelisted by the web server. For example, an e-banking site that uses a JavaScript

transact() function for all the user transactions is vulnerable to XSS attacks that perform

arbitrary transactions.

A workaround to mitigate the attacks presented above is to include the event type during

the whitelisting process. Upon execution of a function, such as logout() (see Figure 3.1),

which is triggered by an onclick event, the browser should check the whitelist for finding

a hash key for logout() associated with an onclick event. However, this can mitigate

attacks which are based on using existing code with a different event type than the one

initially intended to by the web programmer. Attacks may still happen. Consider the Data
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Loss scenario described above, where an attacker places the deletion code in onclick events

associated with new web document’s regions. The attacker achieves to execute legitimate

code upon an event which is not initially scheduled. Although the attacker has not injected

her own code, she manages to escape the web site’s logic and to associate legitimate code with

her own actions. Attacks against whitelisting, based on injecting malicious data in whitelisted

scripts, rather than injecting whitelisted code, have been described in [NSS09].

3.2 DOM-based Attacks

There is a number of proposals [GC09, NSS09, FHEW08] against XSS attacks, which are based

on information and features provided by the Document Object Model (DOM) [LHLHW+04].

Every web document is rendered according to DOM, which represents essentially its esoteric

structure. This structure can be utilized in order to detect or prevent XSS attacks. One of the

most prominent and early published DOM-based techniques is DOM sandboxing, introduced

originally in BEEP.

DOM sandboxing works as follows. The web server places all scripts inside div or span

HTML elements that are attributed as trusted. The web browser, upon rendering, parses

the DOM tree and executes client-side scripts only when they are contained in trusted DOM

elements. All other scripts are marked as non-trusted and they are treated according to the

policies defined by the web server. We discuss here in detail three major weaknesses of DOM

sanbdoxing as an XSS mitigation scheme: (i) node splitting, (ii) element annotation and (iii)

DOM presence.

Node splitting. An attacker can inject a malicious script surrounded, on purpose, by

misplaced HTML tags in order to escape from a particular DOM node. Consider for example

the construct:

<i>{ message }<\i>

which, denotes that a message should be rendered in italic style. If the message variable is

filled in with:

</i><b> bold message </b><i>
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then the carefully placed <i> and <b> tags result the message to be displayed in bold style,

rather than italic.

The authors of BEEP suggest a workaround for dealing with node-splitting. All the data

inside an untrusted div must be placed using a special coding idiom in JavaScript. A more

elegant approach is to randomize the DOM elements [GC09, NSS09]. The attacker then needs

to know a key in order to escape from a node. Consider the example:

<nonce42:div> ... </nonce42:div>

In this case the key is ’nonce42’. As long as the key is complex enough to be predicted

through a brute force attack, this technique is considered sufficient. However, the only pub-

lished implementation so far, Noncespaces, is based on XHTML [PAA+00] which is a strict

HTML dialect. XHTML inherits many properties from XML. Currently, an XHTML doc-

ument must comply to various criterions of validness in order to be rendered by a browser.

Noncespaces is based on this strictness to identify potential attacks. Any code-injection at-

tempt produces a non-valid document, which is rejected by the browser (i.e., the page is not

rendered). An attacker may exploit this strictness by injecting malformed HTML code on

purpose, invalidating this way the target web pages. For a practical example of this attack,

consider a malicious user that posts malformed HTML messages in users’ profiles of a social

network.

Element annotation. Enforcing selective execution in certain areas of a web page

requires identification of those DOM elements that may host untrusted code or parts of the

web application’s code that inject unsafe content. This identification process is far from

trivial, since the complexity of modern web pages is high, and web applications are nowadays

composed of thousands lines of code. To support this, in Table 3.1 we highlight the number

of script, div and span elements of a few representative web page samples. Such elements

can be in the order of thousands in modern web pages. While there is active research to

automate the process of marking untrusted data [Sek09, LC06] or to discover taint-style

vulnerabilities [JKK06, ML08], we believe that, currently, the overhead of element annotation

is prohibitive, and requires, at least partially, human intervention.

DOM presence. All DOM-based solutions require the presence of a DOM tree. However,
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Facebook.com MySpace.com Digg.com
script 23 93 82
div 2,708 264 302
span 982 91 156

Table 3.1: Element counts of popular home pages indicating their complexity.

XSS attacks do not always require a DOM tree to take place. For example, consider an XSS

attack which bypasses the content-sniffing algorithm of a browser and is carried within a

PostScript file [BCS09]. The attack will be launched when the file is previewed, and there is

high probability that upon previewing there will be no DOM tree to surround the injected

code. As browsers have been transformed to a generic preview tool, we believe that variants

of this attack will manifest in the near future.

Another example is the unofficially termed DOM-Based XSS or XSS of the Third Kind

attacks [Kle]. This XSS type alters the DOM tree of an already rendered page. The

malicious XSS code does not interact with the server in any way. In such an attack, the

malicious code is embedded inside a URI after the fragment identifier. 3 This means that

the malicious code (a) is not part of the initial DOM tree and (b) is never transmitted to

the server. Unavoidably, DOM-based solutions [GC09, NSS09] that define trust classes in the

DOM tree at server side will fail. The exploit will never reach the server and, thus, never be

associated with or contained in a trust class.

3For more details about the fragment identifier, we refer the reader to http://www.w3.org/DesignIssues/

Fragment.html.
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Chapter 4

Countering XSS Using Isolation

Operators

xJS is a complete framework for the detection and prevention of XSS attacks in web applica-

tions. Compared to similar frameworks [JSH07], xJS is easy to implement, can be deployed

in a backwards compatible fashion, has very low computational overhead and can cope with

return-to-JavaScript attacks.

4.1 Overview

Several studies have proposed mechanisms and architectures based on policies, communicated

from the web server to the web browser, to mitigate XSS attacks. The current state of the art

includes XSS mitigation schemes proposing whitelisting of legitimate scripts [JSH07], utilizing

randomized XML namespaces for applying trust classes in the DOM [GC09], or detecting code

injections by examining modifications to a web document’s original DOM structure [NSS09].

While we believe that the aforementioned techniques are promising and in the right direction,

they have weaknesses and they fail in a number of cases. As we discussed in Chapter 3,

whitelisting fails to protect from attacks that are based on already whitelisted scripts, while

DOM-based solutions fail to protect from attacks where the DOM tree is absent [BCS09].

To account for these weaknesses, we propose xJS, which is a practical and simple frame-
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work that isolates legitimate client-side code from any possible code injection. The framework

can be seen as a fast randomization technique. Instruction Set Randomization (ISR) [KKP03]

has been proposed for defending against code injections in native code or in other environ-

ments, such as code executed by databases [BK04]. However, we believe that adapting ISR to

deal with XSS attacks is not trivial. This is because web client-side code is produced by the

server and is executed in the client; the server lacks all needed functionality to manipulate the

produced code. For example, randomizing the JavaScript instruction set in the web server

requires at least one full JavaScript parser running at the server. Thus, instead of blindly

implementing ISR for JavaScript, our design introduces Isolation Operators, which transpose

all produced code in a new isolated domain. In our case, this is the domain defined by the

XOR operator.

We design xJS with two main properties in mind:

• Backwards Compatibility. We aim for a practical, developer-friendly solution for

constructing secure web applications and we ensure that the scheme provides backwards

compatibility. xJS allows web servers to communicate to web browsers when the scheme

is enabled or not. A web browser not supporting the framework may still render web

applications, albeit without providing any of the security guarantees of xJS.

• Low Computation Overhead. Our design avoids the additional overhead of applying

ISR in both web server and client, which would significantly increase the computational

overheads. This is because the web code would be parsed twice (one in the server

during serving and one in the client during execution). Instead, the isolation operator

introduced in xJS applies the XOR function to the whole source corpus of all legitimate

client-side code. Thus, the randomization process is fast, since XOR exists as a CPU

instruction in all modern hardware platforms, and does not depend on any particular

instruction set.

We implement and evaluate our solution in FireFox and WebKit1, and in the Apache web

server.
1WebKit is not a web browser itself, it is more like an application framework that provides a foundation

upon which to build a web browser. We evaluate our modifications on WebKit using the Safari web browser.
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1 <div > <div >

2 <img onload=’’render ();’’> <img onload=’’AlCtV ...’’>

3 <script> <script>

4 alert(’’Hello World’’); vpSUlJTV2NHGwJyW/NHY...

5 <script> </script>

6 </div > </div >

Figure 4.1: Example of a web page that is generated by our framework. On the left, the
figure shows the source code as exists in the web server and on the right the same source as it
is fetched by the web browser. The JavaScript source has been XORed and a Base64 encoding
has been applied in order to transpose all non-printable characters to the printable ASCII
range.

Our evaluation shows that xJS can successfully prevent all 1,380 attacks of a well-known

repository [FP]. At the same time, it imposes negligible computational overhead in the server

and in the client side. Finally, our modifications appear to have no negative side-effects in

the user web browsing experience. To examine user-perceived performance, we examine the

behavior of xJS-enabled browsers through a leading JavaScript benchmark suite [sun], which

produces the same performance results in both the xJS-enabled and the original web browsers.

4.1.1 Attacks Not Addressed

xJS aims on protecting against XSS attacks that are based on JavaScript injections. The

framework is not designed for providing defenses against iframe injections and drive-by down-

loads [PMRM08], injections that are non-JavaScript based (for example, through arguments

passed in Flash objects) and Phishing [DTH06]. However, some fundamental concepts of xJS

can be possibly applied to non-JavaScript injections.

4.2 Architecture

The fundamental concepts of our framework are Isolation Operators and Action Based Policies

in the browser environment. We review each of these concepts in this section and, finally,

we provide information about our implementation prototypes. xJS is a framework that can

address XSS attacks carried out through JavaScript. However, our basic concept can be also

applied to other client-side technologies, such as Adobe Flash. The basic properties of the
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proposed framework can be summarized in the following points.

• xJS prevents JavaScript code injections that are based on third party code or on code

that is already used by the trusted web site.

• xJS prevents execution of trusted code during an event that is not scheduled for exe-

cution. Our framework guarantees that only the web site’s code will be executed and

only as the site’s logic defines it.

• xJS allows for multiple trust-levels depending on desired policies. Thus, through xJS,

parts of a web page may require elevated trust levels or further user authentication to

be executed.

• xJS in principle prevents attacks that are based on injected data and misuse of the

JavaScript eval() function. We discuss eval() semantics in detail in Sections 4.4

and 4.5.

4.2.1 Isolation Operators

xJS is based on Instruction Set Randomization (ISR), which has been applied to native

code [KKP03] and to SQL [BK04]. The basic concept behind ISR is to randomize the in-

struction set in such a way so that a code injection is not able to speak the language of the

environment [Ker09] and thus is not able to execute. In xJS, inspired by ISR, we introduce

the concept of Isolation Operators (IO). An IO essentially transposes a source corpus to a

new isolated domain. In order to de-isolate the source from the isolated domain a unique key

is needed. This way, the whole source corpus, and not just the instruction set, is randomized.

Based on the above discussion, the basic operation of xJS is the following. We apply an

IO such as the XOR function to effectively randomize and thus isolate all JavaScript source of

a web page. The isolation is achieved since all code has been transposed to a new domain:

the XOR domain. The IO is applied by the web server and all documents are served in their

isolated form. To render the page, the web browser has to de-isolate the source by applying

again the IO and then execute it.
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Note that, in xJS, we follow the approach of randomizing the whole source corpus and not

just the instruction set as in the basic ISR concept. We proceed with this choice since the

web code is produced in the web server and it is executed in the web browser. In addition,

the server lacks all needed functionality to manipulate the produced code, since it is not

JavaScript-aware. For example, randomizing the JavaScript instruction set needs at least one

full JavaScript parser running at the server. This can significantly increase the computational

overhead and user-perceived latency, since the code would be parsed twice (one in the server

during serving and one in the client during execution). However, the isolation can break web

applications that explicitly evaluate dynamic JavaScript code using eval(). In that case, the

web developer must use a new API, xeval(), since xJS alters the semantics of eval(). We

further discuss this in Section 4.5. Finally, we select XOR as the IO because it is in general

considered a fast process; all modern hardware platforms include a native implementation of

the XOR function. However, our framework may be applied with any other IO.

Figure 4.1 depicts an xJS example. On the left, we show the source code as it exists in the

web server and on the right, we provide the same source as it is fetched by the web browser.

The JavaScript source has been XORed and a Base64 [Jos06] encoding has been applied in

order to transpose all non-printable characters to the printable ASCII range.

4.2.2 Action Based Policies

xJS allows for multiple trust-levels for the same web site depending on the desired operation.

In general, our framework suggests that policies should be expressed as actions. Essentially,

all trusted code should be treated using the policy “de-isolate and execute”. For different

trust levels, multiple IOs can be used or the same IO can be applied with a different key. For

example, portions of client-side code can be marked with different trust levels. Each portion

will be isolated using the XOR function, but with a different key. The keys are transmitted in

HTTP headers (see the use of X-IO-Key, later in this section) every time the server sends the

page to the browser.

Expressing the policies in terms of actions has the following benefit. The injected code

cannot bypass the policy, unless it manages to produce the needed result after the action is
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applied to it. The latter is considered practically very hard, even for trivial actions such as

the XOR operation. One possible direction for escaping the policy is using a brute force attack.

However, if the key is large enough the probability of a brute force attack to succeed is low.

Defining the desired policy set is out of the scope of this thesis. For the purpose of our

evaluation (see Section 4.4) we use one policy, which is expressed as “de-isolate (apply XOR)

and execute”. Other example policies can be expressed as “de-isolate and execute under user

confirmation”, “de-isolate with the X key and execute”, etc.

4.3 Implementation

We implemented xJS by modifying Firefox and WebKit. We also created a module for the

Apache web server.

Browser Modifications. All three modified web browsers operate in the following way.

A custom HTTP header field, X-IO-Key, is identified in each HTTP response. If the key

is present, this is an indication that the web server supports the framework, and the field’s

value denotes the key for the de-isolation process. This is also a practical way for incremental

deployment of the framework in a backwards compatible fashion. At the moment, we do not

support multiple keys, but extending the browser with such a feature is considered trivial.

On the other hand, the web browser communicates to the web server that it supports the

framework using an Accept2 header field for every HTTP request.

As far as WebKit is concerned, we had to modify two separate functions. First, the

function that handles all events (such as onload, onclick, etc.), and second, the function

that evaluates a JavaScript code block. We modified these functions to (i) decode all source

using Base64 and (ii) apply the XOR operation with the de-isolation key (the one transmitted

in X-IO-Key) to each byte. FireFox has a different design. It also uses two functions, one

for compiling a JavaScript function and one for compiling a script. However, these functions

operate recursively. We further discuss this issue in Section 4.4. In both, Firefox and WebKit,

the modifications do not exceed 600 lines of code.

2For the definition of the Accept field in HTTP requests, see: http://www.w3.org/Protocols/HTTP/HTRQ_
Headers.html#z3
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Server Modifications. For the server part of xJS we are taking advantage of the modular

architecture of the Apache web server. During Apache’s start-up phase all configuration files

are parsed and modules that are concerned with processing an HTTP request are loaded. The

main processing unit of the apache web server is the content generator module. A module can

register content generators by defining a handler that is configurable by using the SetHandler

or AddHandler directives. These can be found in Apache’s configuration file (httpd.conf).

Various request phases that precede the content generator exist. They are used to examine

and possibly manipulate some request headers, or to determine how the request will be

handled. For example the request URL will be matched against the configuration, because

a certain content generator must be used. In addition the request URL may be mapped

to a static file, a CGI script or a dynamic document according to the content generator’s

operation. Finally after the content generator has sent a reply to the browser, Apache logs

the request.

Apache (from version 2 and above) also supports filters. Consider the filter chain as a

data axis, orthogonal to the request processing axis. The request data may be processed by

input filters before reaching the content generator. After the generator has finished generating

the response various output filters may process it before being sent to the browser. We have

created an Apache module which operates as a content generator. For every request, that

corresponds to an HTML file in the disk, the file is fetched and processed by our module.

The file is loaded in memory and stored in a buffer. The buffer is transfered to an HTML

parser (based on the HTMLParser module from libxml2 [Vei04]). This is an HTML 4.0 non-

verifying parser with API compatible with the XML parser ones. When the parsing is done

our module traverses the parser’s XML nodes in memory and searches for all nodes that

contain JavaScript (<script> nodes and events). If there is a match the XOR operation is

applied using the isolation key to each byte of the JavaScript source. Finally all source is

encoded in Base64.

After encoding all possible JavaScript source in the web page, the buffer is sent to the

next operating module in the chain; this might be an output filter or the web browser.

Implementing xJS as a content generator module has the benefit of isolating by encryption all
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JavaScript source before any dynamic content, which might include XSS attacks, is inserted.

Our framework can cooperate with other server-side technologies, such as PHP, in two ways:

(a) by using two Apache’s servers (one running xJS and the other one the PHP module) and

(b) by configuring PHP to run as a filter. All evaluation results presented in Section 4.4 are

collected using the second setup.

Secret Key. The secret key that is used for the XOR operation is a string of random

alphanumeric characters. The length of the string can be arbitrary. For all experiments

presented a two-character string is used. Assuming that Sl is the JavaScript source of length

l and KL is the secret key of length L, the encoding works as follows: Enc(Si) = Si ⊕

K(i% L), 0 < i < l. It is implied that the ASCII values of the characters are used. The

secret key is refreshed per request. We do not consider Man-in-the-Middle (MiM) attacks,

since during a MiM an attacker can alter the whole JavaScript source without the need of an

injection through XSS.

4.4 Evaluation

In this section we evaluate the xJS prototype. Our evaluation seeks to answer four questions:

(a) how many real XSS attacks can be prevented, (b) what the overhead on the server is, (c)

what the overhead on the web browser is and, finally, (d) whether the framework imposes any

side-effects in the user’s browsing experience.

4.4.1 Attack Coverage

We first evaluate the effectiveness of the xJS framework to prevent real-world XSS attacks.

xJS aims on preventing traditional XSS attacks, as well as the XSS attacks described in

Chapter 3.

Real-world exploits. To verify that xJS can cope with real-world XSS exploits, we use

the repository hosted by XSSed.com [FP] which includes a few thousands of XSS vulnerable

web pages. This repository has been also used for evaluation in other papers [NSS09]. The

evaluation of the attack coverage through the repository is not a straightforward process.
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First, XSSed.com mirrors all vulnerable web pages with the XSS code embedded in their

body. Some of them have been fixed after the publication of the vulnerability. These updated

pages cannot be of use, since xJS prevents the code injection before it takes place and there

is no way for us to have a copy of the original vulnerable web page (without the XSS code in

its body). Second, we have no access to the vulnerable web server and, thus, we cannot use

our server-side filter for the evaluation.

To address the aforementioned limitations, we conduct the evaluation as follows. First, we

resolve all web sites that are still vulnerable. To this end, we download all 10,154 web pages

listed in XSSed.com, along with their attack vectors. As the attack vector we define the URL

along with the parameters that trigger the vulnerability.3 Since XSS attacks that are based

on a redirection without using any JavaScript cannot be addressed by xJS, we remove all such

cases. Thus, we exclude 384 URLs that have an iframe as attack vector, 416 URLs that have

a redirection to XSSed.com as attack vector and 60 URLs that have both an iframe and a

redirection to XSSed.com as attack vector.

After this first pre-processing stage, the URL set contains all web pages that were vul-

nerable at some period in time and their vulnerability can be triggered using JavaScript; for

example, the attack vector contains a call to the alert() function. We then exclude from

the set all web-pages for which their vulnerability has been fixed after it became public in

XSSed.com. To achieve this, we request each potentially vulnerable page through a custom

proxy server we built using BeautifulSoup [Ric08]. The task of the proxy is to attach some

JavaScript code that overrides the alert() function with a URL request to a web server

located in our local network. Since all attack vectors are based on the alert() function

the web server recorded all successful attacks in its access logs. Using this methodology we

manage to identify 1,381 web pages which are still vulnerable as of early September 2009.

Our methodology suggests that about 1 in 9 web pages have not been fixed even after the

vulnerability was published.

We use the remaining 1,381 pages as our final testing set. Since we cannot install our

modified Apache in each of the vulnerable web sites, we use our proxy for simulating the

3For example, consider the attack vector: http://www.needforspeed.com/undercover/home.action?

lang=\"><script>alert(document.cookie);</script>&region=us
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server-side portion of xJS. More precisely, for each vulnerable page, we request the vulnerable

document through our proxy with a slightly altered vector. For example, for the following

attack vector,

http://site.com/page?id=<script>alert("XSS");</script>

the proxy instead requests the URL,

http://site.com/page?id=<xscript>alert("XSS");</xscript>.

Notice that the script tag has been modified to xscript. Using this methodology, we

manage to build all vulnerable web pages with the attack vector embedded but not in effect.

However, the JavaScript code contained in the web document is not isolated. Thus, the next

step is to force the proxy to parse all web documents and apply the XOR function to the

JavaScript code. At this point, all vulnerable web pages have the JavaScript code isolated and

the attack vector defunct. Hence, the last step is to re-enable the attack vector by replacing

the xscript with script and return the web page to the browser. All web pages also include

some JavaScript code responsible for the alert() overloading. This code modifies all alert()

calls to perform a web request to a web server hosted in our local network. If our web server

records requests, the alert() function is called or, in other words, the XSS exploit run.

To summarize the above process, our experiment to evaluate the efficacy of the xJS frame-

work is the following. We request each web page from the collected set which includes 1,381

still vulnerable web pages through a custom proxy that performs all actions described above.

All web pages are requested using a modified Firefox. We select the modified Firefox in Linux,

because it is easier to instrument through a script. We manually tested a random sample of

attacks with a modified version of WebKit and we recorded identical behavior.

After Firefox has requested all 1,381 vulnerable pages through our custom proxy, we

inspect our web server’s logs to see if any of the XSS attacks succeeded. Our web server

recorded only one attack. We carefully examined manually this particular attack and found

out that it is a web page that has the XSS exploit stored inside its body and not in its

attack vector [xssb]. The particular attack succeeded just as a side-effect of our evaluation

methodology. If xJS was deployed in the vulnerable web server, this particular attack would
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also have been prevented. Hence, all 1,380 real-world XSS attacks were prevented successfully

by our framework.

Attacks presented in Chapter 3. For the attacks presented in Chapter 3, since to our

knowledge they have not been observed in the wild yet, we performed various custom attack

scenarios using a popular web framework, Ruby on Rails [TH06]. We created a vulnerable blog

and then installed the vulnerable blog service to a modified Apache server and browsed the

blog using the modified web browsers. As expected, in all cases, xJS succeeded in preventing

the attacks.

We now look at specific attacks such as the ones based on a code injection in data and the

careless use of eval(). The injected code is in plain text (non-isolated), but unfortunately

it is attached to the isolated code after the de-isolation process. The injected code will be

executed as if it is trusted. However, there is a way to prevent this. In fact, the internal

design of Firefox gives us this feature with no extra cost. Firefox uses a js CompileScript()

function in order to compile JavaScript code. The design of this function is recursive and it

is essentially the implementation of the actual eval() function of JavaScript. When Firefox

identifies the script eval($ GET(’id’));, de-isolates it, calls the eval() function, which in

principle calls itself in order to execute the $ GET(’id’) part. At the second call, the eval()

again de-isolates the $ GET(’id’) code, which is in plain text. The second de-isolation process

fails and thus the code does not execute.

Our Firefox implementation can address this type of attack. WebKit must be further

modified to support this functionality. However, this modification affects the semantics of

eval(). For a more detailed discussion, please see Section 4.5.

4.4.2 Server Overhead

We now measure the overhead imposed on the server by xJS. To this end, we request a set of

web pages that embed a significant amount of JavaScript. We choose to use the SunSpider

suite [sun] for this purpose. The SunSpider suite is a collection of JavaScript benchmarks that

ship with WebKit and measure the performance of JavaScript engines. It is composed of nine

different groups of programs that perform various complex operations. We manually select

27



 1

 10

 100

 50  60  70  80  90  100  110  120

T
im

e 
(m

se
c)

Requests (%)

Server Side Evaluation for Fast Ethernet

Heavy (modified)
Heavy (vanilla)

Medium (modified)
Medium (vanilla)
Light (modified)

Light (vanilla)

Figure 4.2: Server side evaluation when the Apache benchmark tool (ab) is requesting each
web page through a Fast Ethernet link. In the worst case (heavy) the server imposes delay
of a factor of five greater, while in the normal case the delay is only a few milliseconds.

three JavaScript tests from the SunSpider suite. The heavy test involves string operations

with many lines of JavaScript. This is probably the most processing-intensive test in the

whole suite, composed of many lines of code. The normal test includes a typical amount of

source code like most other tests that are part of the suite. Finally, the light test includes

only a few lines of JavaScript involving bit operations.

We conduct two sets of experiments. For the first set we use ab [ab], which is considered

the de-facto tool for benchmarking an Apache web server, over a Fast Ethernet (FE) network.

We configure ab to issue 100 requests for the heavy, normal and light web pages, while the

xJS module is enabled. Then, we perform the same experiments using the tests and with the

xJS Apache module removed. We repeat all the above with the ab client running in a typical

downstream DSL line (8 Mbps).

Figure 4.2 summarizes the results for the case of the ab tool connecting to the web server

through a FE connection. The modified Apache imposes an overhead that ranges from a

few (less than 6 ms and less than 2 ms for the normal and light test, respectively) to tens
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Figure 4.3: Server side evaluation when the Apache benchmark tool (ab) is requesting each
web page through a DSL link. In the worst case (heavy) the server imposes a fixed delay of a
few tens of milliseconds, like in the case of the Fast Ethernet setup (see Figure 4.2). However,
this delay does not dominate the overall delivery time.

of milliseconds (about 60 ms) in the worst case (the heavy web page). While the results are

quite promising for the majority of the tests, the processing time for the heavy page could be

considered significant. In Figure 4.3 we present the same experiments over the DSL link. The

overhead is still the same and it is negligible (less than a roundtrip in today’s Internet) since

now the delivery overhead dominates. This drives us to conclude that the Apache module

imposes a fixed overhead of a few milliseconds per page, which is not the dominating overhead.

4.4.3 Client Overhead

Having examined the server-side overhead, we now measure the overhead imposed on the

browser by xJS. We use the SunSpider test suite with 100 iterations, with every test executed

100 times. We use the gettimeofday() function to measure the execution time of the modified

functions in each browser. Each implementation has two functions altered. The one that is

responsible for handling code associated with events, such as onclick, onload, etc., and the
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Figure 4.4: Cumulative distribution for the delay imposed by all modified function calls in the
Firefox and WebKit implementation, respectively. As delay we assume the time needed for
the modified function to complete minus the time needed for the unmodified one to complete.
Notice that the majority of function calls imposes a delay of a few milliseconds.

one that is responsible for evaluating code blocks of JavaScript. The modifications of Firefox

are substantially different. In Firefox we have modified internally the JavaScript eval()

function which is recursive. These differences affect the experimental results in the following

way. In WebKit we record fewer long calls in contrast with Firefox, in which we record many

short calls.

In Figure 4.4 we present the cumulative distribution of the delays imposed by all modified

recorded function calls for Firefox and WebKit during a run of the SunSpider suite for 100

iterations. As delay we define the time needed for the modified function to complete minus

the time needed for the unmodified one to complete. Observe that the Firefox implementation

seems to be the faster one. All delays are less than 1 millisecond. However, recall that Firefox

is using a lot of short calls, compared to WebKit. Firefox needs about 500,000 calls for the

100 iterations of the complete test suite. In Figure 4.4 we plot the first 5,000 calls for Firefox

(these calls correspond to one iteration only) of the complete set of about 500,000 calls, for
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visualization purposes and to facilitate comparison, and all 4,800 calls needed for WebKit to

complete the test suite, respectively. The majority of WebKit’s calls impose an overhead of

less than one millisecond.

4.4.4 User Browsing Experience

We now identify whether user’s browsing experience changes due to xJS. As user browsing

experience we define the performance of the browser’s JavaScript engine (i.e., running time),

which would reflect the user-perceived rendering time (as far as the JavaScript content is

concerned) for the page. We run the SunSpider suite as-is for 100 iterations with all three

modified web browsers and with the equivalent unmodified ones and record the output of

the benchmark. In Figure 4.5 we plot the results for all different categories of tests. Each

category includes a few individual benchmark tests. As expected there is no difference between

a modified and a non-modified web browser for both Firefox and WebKit. This result is
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reasonable, since after the de-isolation process the whole JavaScript source executes normally

as it is in the case with a non compatible with the xJS framework web browser. Moreover, this

experiment shows that xJS is not restrictive with legitimate web sites, since all the SunSpider

suite (some thousands of JavaScript LoCs) run without any problem or side-effect.

4.5 Discussion

We now discuss potential limitations of our approach and offer possible workarounds.

JavaScript Obfuscation. Web pages served by xJS have all JavaScript encoded in Base64.

Depending on the context this may be considered as a feature or not. For example, there are

plenty of custom tools that obfuscate JavaScript on purpose. Such tools are used by certain

web sites for protecting their JavaScript code and prevent visitors from copying the code.

We should make clear that emitting all JavaScript encoded does not harden the development

process, since all JavaScript manipulation takes place during serving time. While debugging,

web developers may safely switch off xJS. Blueprint [TLV09] also emits parts of a web page

in Base64.

eval() Semantics and Dynamic Code. As previously discussed (see Section 4.4), in order

for xJS to cope with XSS attacks that are based on malicious injected data, the semantics

of eval() must change. More precisely, our Firefox modifications alter the eval() function

in the following way. Instead of simply evaluating a JavaScript content, the modified eval()

function performs de-isolation before evaluation. This behavior can break web applications

that are based on the generation of dynamic JavaScript code, which is executed using eval()

at serving time. While this type of programming might be considered inefficient and error-

prone, we suggest the following workaround. The JavaScript engine can be enhanced with

an xeval() variant which does not perform any de-isolation before evaluation. The web

programmer must explicitly call xeval() if this is the desired behavior. Still, there is no

possibility for the attacker to evaluate her code (using xeval()), since the original call to

xeval() must be already isolated.

Code Templates and Persistent XSS. Web developers frequently use templates in order to
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produce the final web pages. These templates are stored usually in a database and sometimes

they include JavaScript. The database may also contain data produced by user inputs. In

such cases, the code injection may take place within the database (persistent XSS). This may

occur if trusted code and a user input containing malicious code are merged together before

included in the final web page. This case is especially hard to track, since it involves the

programmer’s logic to a great extent. The challenge lies in that client-side code is hosted in

another environment (the database) which is also vulnerable to code injections. xJS assumes

that all trusted JavaScript is stored in files and not in a database. If the web developer wishes

to store legitimate JavaScript in a database then she can place it in read-only tables. With

these assumptions, xJS can cope with persistent XSS. Recall from Section 4.2 that xJS module

is the first to run in the Apache module chain and, thus, all JavaScript isolation will take

place before any content is fetched from databases or other external sources.
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Chapter 5

Applying ISR Directly To

JavaScript

5.1 Overview

RaJa applies randomization directly to JavaScript source. We modify a popular JavaScript

engine, Mozilla SpiderMonkey [spi], to carefully modify all JavaScript identifiers and leave

all JavaScript literals, expressions, reserved words and JavaScript specific constructs intact.

We further augment the engine to recognize tokens identifying the existence of a third-party

programming language. This is driven by two observations:

• JavaScript usually mixes with one and only one server-side scripting language, like PHP,

with well defined starting and ending delimiters.

• Server-side scripting elements when are mixed-up with JavaScript source, they act as

JavaScript identifiers or literals in the majority of the cases (see Figure 5.1).

To verify these speculations we deploy RaJa in four popular web applications. RaJa fails

to randomize 9.5% of identified JavaScript in approximately half a million lines of code, which

contain JavaScript, PHP and markup (HTML/XML). A manual inspection of the failed cases

suggests that failures are due to coding idioms that can be grouped in five specific practices.

Moreover, these coding practices can be substituted with alternative ones. For example, a
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1 <script >

2 var message =

3 <?php echo "Hello World <br/>"; ?>;

4 document .write(message );

5 </script >

Figure 5.1: PHP mixes with JavaScript. In the majority of the cases, the PHP expression
acts as a JavaScript identifier or literal. In this example it acts as a string literal.

web application of approximately 150,000 lines of code, like WordPress, needs only a few

code changes to be RaJa-enabled out of the box. RaJa is not just a randomization scheme,

but rather a complete architecture for randomizing all JavaScript source of a web application,

without the web programmer being aware of it. More precisely, RaJa is based on the following

assumptions:

1. All JavaScript stored in files on the server’s disk is considered trusted.

2. Only the JavaScript stored in files on the server’s disk is considered trusted

The second assumption can be relaxed to account for JavaScript templates in databases,

if read-only tables for this particular purpose are introduced. Based on these assumptions,

RaJa can be enabled in a web application by simply placing the web application’s code in a

web server that runs the RaJa tools and libraries. We discuss all components of the RaJa

architecture in Section 5.2.

5.2 Architecture

In this section we present in detail the RaJa architecture. We highlight all key components

that compose the architecture and code modifications we have performed in existing software.

RaJa builds on well-known and highly used open source projects like Mozilla and Apache.

Finally, we give a short overview in a collection of tools we have specifically build for system

administrators who want to utilize the RaJa framework.
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5.2.1 Overview

RaJa is based on the idea of Instruction Set Randomization (ISR) to counter code injections

in the web environment. XSS, the most popular code-injection attack in web applications,

is usually carried out in JavaScript and, thus, RaJa aims on applying ISR to JavaScript.

However, the basic corpus of the architecture can be used in a similar fashion for other

client-side technologies (for example in Adobe Flash and Microsoft Silverlight applications).

In a nutshell, RaJa takes as input a web page and produces a new one with all JavaScript

randomized. A simple example is shown in Figure 5.2. Notice that in the randomized web

page all JavaScript variables (underlined in the Figure) are concatenated with the random

token 0x78. All other HTML elements and JavaScript reserved tokens (like var and if) as well

as JavaScript literals (like "Hello World", "welcome" and true) have been kept intact. The

randomized web page can be rendered in a web browser that can de-randomize the JavaScript

source using the random token. RaJa needs modifications both in the web server and the web

client, as is the case of many XSS mitigation frameworks [JSH07, NSS09, GC09, APK+10].

In order to perform the randomization, RaJa needs to run as a pre-processor before any

other server-side language (like PHP) takes place. RaJa assumes that only the JavaScript

stored in files1 of the server is trusted. Randomizing all trusted JavaScript ensures that any

code injections will not be able to execute in a web browser that supports the framework.

A sample work-flow of a RaJa request-response communication is as follows. The RaJa-

compliant web browser announces that it supports the framework using an HTTP Accept2

header. The web server in turn opens all files needed for serving the requests and random-

izes each one with a unique per-request key. Typically, a request involves several files that

potentially host JavaScript, which are included in the final document through a server-side

language. For example, PHP uses require and similar functions to paste the source of a

document in the final web response. RaJa makes sure that all JavaScript involved is random-

ized. Finally, the web server attaches an HTTP X-RAJA-KEY header field which contains the

1This assumption can be augmented to support JavaScript stored in a database if we introduce read-only
tables (see discussion in Section 5.5).

2For the definition of the HTTP Accept field, see: http://www.w3.org/Protocols/HTTP/HTRQ_Headers.

html#z3
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1 <!-- Original Document . -->

2 <html >

3 <script >

4 var s = "Hello World!";

5 if (true)

6 document .

7 getElementByName("welcome").

8 text = s;

9 </script >

10 <div id="welcome" ></div >

11 </html >

12

13 <!-- Randomized Document . -->

14 <html >

15 <script >

16 var s0x78 = "Hello World!";

17 if (true)

18 document0x78.

19 getElementByName0x78("welcome").

20 text0x78 = s0x78;

21 </script >

22 <div id="welcome" ></div >

23 </html >

Figure 5.2: A typical RaJa example.

randomization key. The RaJa-compliant web browser can then de-randomize and execute all

trusted JavaScript. Any JavaScript source code that is not randomized can be detected and

prevented for executing. The potential code injection is logged in a file. We now look into

details on how we enable RaJa in the server and client side, respectively.

5.2.2 Server Side

In order to enable RaJa in a web server we use two basic components: (a) an Apache mod-

ule (mod raja.so), which operates as content generator and (b) a library interceptor which

handles all open() calls issued by Apache. Although RaJa can be used with any server-side

technology, for the purposes of this thesis we use PHP. Thus, we have configured the RaJa-

enabled web server to use PHP as an output filter. For all experiments we use PHP acting

as an output filter, but if someone prefers to use PHP as a module and not as a filter, two
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Apache web servers can be used with the RaJa-enabled Apache acting as a proxy to the

PHP-enabled one.

The RaJa Apache module handles initially all incoming requests for files having an ex-

tension of .html, .js and .php. This can be configured to support many other file types.

For each request, it generates a random key and places it to a shared memory placeholder.

It then opens the file in order to fulfill the request. The call to open() is intercepted using

the LD PRELOAD [ldp] functionality, available in most modern operating systems, by the RaJa

randomizer, which acts as follows. It opens the file and tries to identify all possible JavaScript

occurrences. That is, all code inside a <script> tag, as well as all code in HTML events such

as onclick, onload, etc. For every JavaScript occurrence a parser, based on the Mozilla

SpiderMonkey [spi] JavaScript engine is invoked to produce the randomized source. All code

is randomized using the token which is retrieved from the shared memory placeholder. We

analyze in more detail the internals of the SpiderMonkey-based parser below.

The randomized code is placed in a temporary file and the actual libc open() is called

with the pathname of the randomized source. Execution is transferred back to the Apache

RaJa module. The module takes care for two things. First, it attaches the correct Content-Length

header field, since the size of the initial file has possibly changed (due to the extra tokens

attached to JavaScript source). Second, it attaches the X-RAJA-KEY header field to the HTTP

response, which contains the token for the de-randomization process. The key is refreshed

per request. All randomized code is contained in an internal memory buffer. This buffer is

pushed to the next operating element in the Apache module chain. If the original request is

for a PHP file, then the buffer will be pushed to the PHP output filter. It is possible that

PHP will subsequently open several files while processing require() or similar functions.

Each open() issued by the PHP filter is also intercepted by the RaJa randomizer and the

procedure is repeated again until all PHP work has been completed. The size of the final re-

sponse has possibly changed again, due to the PHP processing. PHP takes care for updating

the Content-Length header field.

We present the control flow of the RaJa architecture in Figure 5.3 with all eight steps

enumerated. We now proceed and present a step-by-step explanation of a RaJa-enabled
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Figure 5.3: Schematic diagram of the RaJa architecture.

request-response communication. In Step (1) the RaJa-enabled web client requests index.php

from a RaJa-enabled web server. In Step (2) the request is forwarded to the RaJa module

which in turn in Step (3) generates a key, stores the key in a shared memory fragment and

opens the file index.php. In Step (4) the RaJa randomizer intercepts open() and in Step

(5) it retrieves the key from the shared memory fragment. In Step (6) index.php is opened,

randomized, saved to the disk in a temporary file and the actual libc open() is called with

the pathname of the just created file. In Step (7) control is transferred to the RaJa module

which adds the correct Content-Length and X-RAJA-KEY header fields. If the file is to be

processed by PHP the buffer containing the randomized source is passed to the PHP filter.

All open() calls issued from PHP will be further intercepted by the randomizer but we have

omitted this in Figure 5.3 to make the graph more clear to the reader. Finally, in Step (8)

the final document is served to the RaJa-enabled web browser.
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5.2.3 Randomization

All JavaScript randomization is handled through a custom parser based on the SpiderMon-

key [spi] JavaScript engine. The RaJa parser takes as input JavaScript source code and it

produces an output with all code randomized. For an example refer to Figure 5.2. The

original SpiderMonkey interpreter parses and evaluates JavaScript code without executing it.

Instead, all source is printed randomized with all JavaScript identifiers concatenated with a

random token. Special care must be taken for various cases. We enumerate a few of them.

1. Literals. All literals, like strings and numbers, are parsed and directly pasted in the

output in their original form.

2. Keywords. All keywords, like if, while, etc., are parsed and directly pasted in the

output in their original form.

3. HTML comments. The original SpiderMonkey removes all comments before evaluation.

The RaJa parser pastes all HTML comments in their original form.

4. Language mixing. Typically a web page has a mixture of languages such as HTML, PHP,

XML and JavaScript. The RaJa parser can be configured to handle extra delimiters as

it does with HTML comments and thus identify other languages, such as PHP, which

heavily intermix with JavaScript. We further refer to these languages as alien languages.

We augment the RaJa parser to treat occurrences of alien languages inside JavaScript

according to the following rules.

• Rule 1. An alien language occurrence is treated as a JavaScript identifier if it occurs

inside a JavaScript expression.

• Rule 2. An alien language occurrence is treated as a JavaScript comment and is left

intact if Rule 1 does not apply.

We conclude to these basic two rules after investigating four popular and large, in terms

of lines of code (LoCs), web applications. By manually checking how PHP is mixing with
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1 <!-- Original Source. -->

2 <?php if (user_exists($user)) { ?>

3 var message = <?php echo "Welcome" ?>;

4 <?php } else { ?>

5 var message = "Sign -Up Needed.";

6 <?php } ?>

7

8 <!-- Randomized Source. -->

9 <?php if (user_exists($user)) { }?>

10 var message0x78 =

11 <?php echo "Welcome" ?>;

12 <?php } else { ?>

13 var message0x78 = "Sign -Up Needed.";

14 <?php } ?>

Figure 5.4: Code mixing of JavaScript with alien languages. In this example PHP is used as
an alien language example. In line 3, Rule 1 is applied, while in lines 2, 4 and 6, Rule 2 is
applied.

JavaScript, we observed that in the majority of the cases PHP serves as an identifier or literal

inside a JavaScript expression (see line 3 in Figure 5.4). For a short example of how these

two rules are applied refer to Figure 5.4.

5.2.4 De-randomization

The de-randomization process takes place inside a RaJa-compliant browser. In our case

this is Firefox with an altered SpiderMonkey engine. The modified JavaScript interpreter

is initialized with the random token, taken from the X-RAJA-KEY header field. During the

parsing phase it checks every identifier it scans for the random token. If the token is found,

the internal structure of the interpreter that holds the particular identifier is changed so as

to hold the identifier de-randomized (i.e., the random token is removed). If the token is not

found, the execution of the script is suspended and its source is logged as suspicious.

We take special care in order to assist in coding practices that involve dynamic code

generation and explicit execution using the JavaScript’s built-in function eval(). Each time

a correctly randomized eval() is invoked in a script, the argument of eval() is not de-

randomized. Notice that this is consistent with the security guarantees of the RaJa framework,

since the eval() function is randomized in the first place and cannot be called explicitly by
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a malicious script unless the random token is somehow revealed. However, this approach is

vulnerable to injections through malicious data that can be injected in careless use of eval().

For this case the RaJa framework can be augmented with tainting [Sek09, VNJ+07, NLC07,

NtGG+05].

Self-Correctness. In order to prove that the RaJa parser does not produce invalid JavaScript

source we use the built-in test-suite of the SpiderMonkey engine. We first run the test-suite

with the original SpiderMonkey interpreter and record all failures. These failures are pro-

duced by JavaScript features which are now considered obsolete. We subsequently randomize

all tests, remove all E4X [ECM04] tests because we do not support this dialect, re-run the

test-suite with the raja-eval (a tool capable in executing randomized source) and record

all failures. The failures are exactly the same. Thus, the modified SpiderMonkey behaves

exactly as the original one in terms of JavaScript semantics.

5.2.5 Configuration and Administrator Tools

The RaJa framework can be configured with various dynamic options in order to be deployed

in a web site. For example, it can be configured with the delimiters identifying an alien

language. In Figure 5.5, we depict a sample configuration. It also includes a command-

line tool-chain that can assist a web programmer or system administrator. These are the

followings:

1. raja: Takes as input a token and a JavaScript source through standard input or a file

and produces its randomized equivalent.

2. raja-eval: Takes as input a token and a randomized Javascript source code through

standard input or a file and evaluates it.

3. raja-enforce: Takes as input a token and a web page and identifies how many scripts

can be randomized and how many cannot. The latter works as follows. The first pro-

cessing unit of the tool takes as input the web page and attempts to identify all possible

JavaScript source code occurrences. It first removes PHP and HTML comments and
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1 # RaJa Configuration.

2 # Path to RaJa randomizer.

3 randomizer = /home/raja/framework/raja

4 # Files handled.

5 ext = php, html , js

6 # Meta -tokens.

7 extra -tokens = <?php|?>

Figure 5.5: A typical RaJa configuration file.

then searches for JavaScript. That is, all code inside a <script> tag, as well as all code

in HTML events such as onclick, onload, etc. Notice that the identified code may con-

tain PHP elements. The mixed JavaScript source code is stored for further processing.

The second processing unit is the modified JavaScript parser. For every stored source

code from the previous phase, the parser is invoked to produce the randomized output.

In case the tool fails to randomize the script it outputs a syntax error.

5.3 Case Studies

In this section we test RaJa with popular web applications. We present our experiences from

deploying the framework with existing source code, which is composed by multiple flavors of

server-side and client-side code. We, also, highlight various coding idioms and practices we

found, while trying to enable RaJa in real-world web applications.

5.3.1 WordPress

WordPress is a popular blog engine based on PHP and MySQL. The web application is

composed by approximately 150,000 lines of code (version 2.9). The source corpus includes

PHP, HTML, XML, SQL and JavaScript code, mixed up in various ways. WordPress had

many security vulnerabilities in the past and thus it is considered ideal for testing RaJa.

We install WordPress in an Apache that supports RaJa. We use our tools introduced

in Section 5.2 to scan all the source code of WordPress and spot JavaScript snippets. We

attempt to randomize all 187 identified scripts. The RaJa randomizer manages to successfully
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randomize 169 scripts and fails to randomize 18. The failed tests indicate that the randomizer

cannot process the scripts up to the end due to code interference between JavaScript and

PHP. The successfully passed scripts indicate that the randomizer succeeded on them. It is

questionable if the rest of the PHP code has been modified wrongly due to the randomizer.

We further proceed and check each file using PHP’s lint mode (i.e. invoke the PHP interpreter

using the “-l” option) to check the randomized files syntactically. All files succeed on passing

the PHP syntax check. This means that the randomization process does not introduce errors

in the PHP code.

We manually analyze all failed tests and categorize the problems that drive the RaJa

randomizer to failure. We conclude that there are five general cases where code-mixing

between PHP and JavaScript results in broken randomized source:

• Case 1. Partial injection of JavaScript source using the PHP built-in function echo().

Lines 2-6 in Figure 5.6.

• Case 2. String concatenation. Lines 9-10 in Figure 5.6.

• Case 3. Partial JavaScript code generation by PHP scripting blocks. Lines 13-17 in

Figure 5.6.

• Case 4. JavaScript code generation by using frameworks’ meta languages. Lines 20-23

in Figure 5.6.

• Case 5. Markup injections. Lines 26-30 in Figure 5.6.

We depict examples of all five cases that force RaJa to produce faulty randomized source

code in Figure 5.6. All examples are from the source of WordPress, except for Case 3, where

we use an example from phpBB and for Case 5, where we use an example from phpMyAdmin.

Some examples are slightly altered for better presentation. We now proceed and discuss each

case in detail and provide a workaround where possible.

Case 1. RaJa cannot handle partial fragments of JavaScript, since the source must be first

fully parsed and then randomized. It’s hard for the parser to isolate portions of JavaScript

injected using the PHP built-in echo() function and then re-assemble them in a snippet that
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can be successfully parsed. The example of this case is depicted in Figure 5.6 (lines 2-6) and

it can be substituted with a different coding practice suggested in Figure 5.7 (lines 2-6).

Case 2. RaJa cannot handle complex string concatenation of mixed JavaScript and PHP

variables, since both languages support all quotation flavors in string literals. Thus, string

quoting in PHP interferes with JavaScript quoting and it is hard to isolate one from the other.

The example of this case is depicted in Figure 5.6 (lines 9-10) and it can be substituted with

a different coding practice suggested in Figure 5.7 (lines 9-11).

Case 3. RaJa treats all alien language occurrences as an identifier according to Rule 1

(see Section 5.2). There are some cases where PHP code is injected in a location that cannot

be handled correctly as a JavaScript identifier (recall Rule 1 from Section 5.2). Consider the

case in line 15 of Figure 5.6. The curly brackets surrounding the PHP code denote an object

inside. Thus, the JavaScript interpreter does not expect to parse a common identifier. The

example of this case is depicted in Figure 5.6 (lines 13-17) and it can be substituted with a

different coding practice suggested in Figure 5.7 (lines 14-19).

Case 4. RaJa cannot randomize JavaScript when it is mixed with meta language elements.

The JavaScript source cannot be parsed if the meta language code is removed, since the

removal leaves two subsequent JavaScript identifiers, which in turn produce a syntax error.

The example of this case is depicted in Figure 5.6 (lines 20-23) and it can be overcome either

by extending the parser to identify some meta language elements and ignore them or by giving

a different coding practice suggested in Figure 5.7 (lines 22-26).

Case 5. RaJa cannot randomize JavaScript when it is mixed with HTML special charac-

ters. These HTML characters are expanded by a PHP filter before the script reaches the web

browser. Before the expansion the JavaScript expression is invalid. For example, the most

frequently occurring case is when the sequence of HTML entities &amp;&amp; is expanded

to &&, which is the logical AND in a JavaScript expression. We are not aware of the goal of

the web programmers that use this coding tactic. The example of this case is depicted in

Figure 5.6 (lines 26-30) and it can be overcome by extending the parser to ignore all HTML

special characters.

All workarounds suggested are meant for assisting RaJa to handle complex code mixing

45



Application LoCs Scripts Passed Failed

WordPress 143,791 187 169 18

phpBB 213,681 539 512 27

phpMyAdmin 178,447 263 215 48

Drupal 44,780 8 6 2

Total 580,699 997 902 95

Table 5.1: Summary of scripts that RaJa can successfully randomize in four real-world web
applications.

between JavaScript and PHP. Web programmers may dislike the coding idioms we suggest

and it is not our intention to enforce coding practices. However, we believe that programming

aesthetics may be overlooked in favor of security.

We further proceed and alter all faulty scripts according to the workarounds we suggest

above. The result is a full functional and RaJa-enabled WordPress. We manage to create

and administrate a sample blog using a RaJa-enabled web browser. We present an example

from a randomized script from the WordPress distribution in Figure 5.8.

5.3.2 phpBB, phpMyAdmin and Drupal

We perform similar studies for other three large and popular web applications, namely phpBB,

phpMyAdmin and Drupal. In Table 5.1 we present a summary of our complete study. Specif-

ically, we list all JavaScript snippets identified, the number of them that we can successfully

randomize, as well as all scripts that fail in randomization.

All failed scripts are covered by the five cases we have already presented. It is worth

mentioning that phpBB uses internally a meta-language for better code structuring (see ex-

ample of Case 3 in Figure 5.6). RaJa can effectively identify and randomize most of phpBB

scripts even if the language mixing is triple (PHP, JavaScript and phpBB meta-language). In

Table 5.2 we present all scripts in all four web applications that failed due to one of the five

cases mentioned above.
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Web Application Scripts C1 C2 C3 C4 C5

WordPress 18 3 12 3 0 0

phpBB 27 1 0 0 26 0

phpMyAdmin 48 0 43 2 0 3

Drupal 2 0 2 0 0 0

Total 95 4 57 5 26 3

Table 5.2: Categorization of all mixed scripts in all four web applications.

5.3.3 Summary

In this section we performed an extensive study of four real-world web applications. We

manually spotted scripts that cannot be randomized due to language mixing. However, RaJa

can locate and randomize the majority of the JavaScript in all four web applications. More

precisely, RaJa fails to randomize 9.5% of identified JavaScript in approximately half a million

lines of code, mixed up with JavaScript, PHP and markup. Plan of our future work is

to experiment with a more tolerant JavaScript parser that can recover from syntax errors

introduced due to heavily language mixing.

5.4 Evaluation

In this section we evaluate RaJa. We measure the overhead RaJa imposes on the server

and client side and we test the framework with real-world attacks from a well-known XSS

repository.

Server-Side Overhead. The most crucial part of RaJa performance is the server-side

part. All web pages are examined for JavaScript source code and if an occurrence is found

the RaJa randomizer performs a full-JavaScript parsing session. This process is repeated for

every request (see Section 5.5 about caching issues). This is vital for the security guarantees of

the framework, since the randomization key has to be refreshed in every request. Otherwise,

an XSS exploit can perform a request to discover the key and then launch the actual attack.

In order to measure the overhead imposed on the server-side part, we request a set of web

pages that embed a significant amount of JavaScript using the Apache Benchmark (ab) [ab].

The sample of web pages is collected from the SunSpider [sun] suite, which constitutes a
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1 /* Case 1. */

2 echo "<script type=’text/javascript’>\n";

3 echo "/* <![CDATA[ */\n";

4 echo "document .write(...);";

5 echo "/* ]]> */\n";

6 echo " </script >\n";

7

8 /* Case 2. */

9 $actions [’quickedit’] =

10 ’onclick =" Reply.open(\’’ . $post ->ID . ’\’,\’edit\’);"’

11

12 /* Case 3. */

13 tinyMCEPreInit = {

14 ...

15 mceInit : {<?php echo $mce_options; ?>},

16 ...

17 };

18

19 /* Case 4. */

20 var RecaptchaOptions = {

21 lang : ’{L_RECAPTCHA_LANG}’,

22 index : <!-- IF $C-->{$C}<!-- ELSE -->10<!-- ENDIF -->

23 };

24

25 /* Case 5. */

26 onsubmit =

27 "return

28 (emptyFormElements(this , ’table ’)

29 &amp;&amp; checkFormElementInRange(

30 this , ’num_fields’, ...);"

Figure 5.6: Categorization of all cases that result in faulty randomization due to interference
between JavaScript and PHP.

48



1 /* Case 1. */

2 <script type=’text/javascript’>

3 /* <![CDATA[ */

4 document .write (...);

5 /* ]]> */

6 </script >

7

8 /* Case 2. */

9 $content = ’\’’ . $post . ’\’,\’edit\’’;

10 $actions [’quickedit’] =

11 ’onclick =" commentReply.open(’.$content .’);"’;

12

13 /* Case 3. */

14 <?php $mce_options_s = "{" . $mce_options . "}"; ?>

15 tinyMCEPreInit = {

16 ...

17 mceInit : <?php echo $mce_options_s; ?>,

18 ...

19 };

20

21 /* Case 4. */

22 <!-- IF $CAPTCHA -->

23 var RecaptchaOptions = { ... };

24 <!-- ELSE -->

25 var RecaptchaOptions = { ... };

26 <!-- ENDIF -->

Figure 5.7: Suggested workarounds for all cases that result in faulty randomization due to
interference between JavaScript and PHP.
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1 <script type="text/javascript">

2 <?php if ( $user_login || $interim_login ) { ?>

3 setTimeout_0x123_( function (){ try{

4 d_0x123_ = document_0x123_.getElementById_0x123_(’pass’);

5 d_0x123_ .value_0x123_ = ’’;

6 d_0x123_ .focus_0x123_();

7 } catch(e_0x123_ ){}

8 }, 200);

9 <?php } else { ?>

10 try{

11 document_0x123_.getElementById_0x123_(’login’).

12 focus_0x123_();

13 }catch(e_0x123_ ){}

14 <?php } ?>

15 </script >

Figure 5.8: Example of randomized source code from WordPress (wp-login.php).

collection of JavaScript benchmarks for measuring the performance of JavaScript engines.

The suite is composed by nine different groups of programs that perform various complex

operations. We manually select three JavaScript tests from the SunSpider suite. The heavy

test involves string operations with many lines of JavaScript. This is probably the most

processing-intensive test in the whole suite, composed by many lines of code. The normal

test includes a typical amount of source code like most other tests that are part of the suite.

Finally, the light test includes only a few lines of JavaScript involving bit operations.

We conduct two sets of experiments. For the first set we use ab over a Fast Ethernet (FE)

network. We configure ab to issue 1000 requests for the heavy, normal and light web pages to

stress a RaJa-enabled server. Then, we perform the same experiments using a vanilla Apache.

We repeat all the above with the ab client running in a typical downstream DSL line.

Figure 5.9 summarizes the results for the case of the ab tool connecting to the web server

through a FE connection. The RaJa server imposes an overhead that ranges from a few tens

of milliseconds to about one hundred of milliseconds in the worst case (the heavy web page).

While the results are quite promising for the majority of the tests, the processing time for

the heavy page could be considered significant. However, in Figure 5.10 we present the same

experiments over the DSL link. The overhead is still the same and it is negligible (less than
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Figure 5.9: Server side evaluation when the Apache benchmark tool (ab) is requesting each
web page through a Fast Ethernet link. In the worst case (heavy) the server imposes delay
of about 100 of milliseconds, while in the normal case the delay is only a few milliseconds.

a roundtrip in today’s Internet) since now the delivery overhead dominates. This drives us

to conclude that RaJa imposes a fixed overhead of a few tens of milliseconds per page, which

is not the dominating overhead.

Client-Side Overhead. The additional overhead in the client-side originates from the

fact that a RaJa compliant web browser embeds a modified SpiderMonkey engine, which de-

randomizes each JavaScript identifier while parsing. We expect this overhead to be relatively

small compared to the authentic SpiderMonkey engine, since it involves a string comparison,

relatively to the size of the token, for every identifier parsed.

In order to evaluate the client-side overhead we use the SunSpider [sun] suite, which

includes a collection of JavaScript benchmarks. These tests are meant to stress the JavaScript

engine of a web browser. The benchmarking is carried-out using JavaScript which in the RaJa

case is also randomized and cannot be accounted. However, the code involved for accounting

the benchmarks is significantly lesser than the code of the tests and thus the results slightly

deviate from the real overhead. We plot the benchmark results for all seven different families
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Figure 5.10: Server side evaluation when the Apache benchmark tool (ab) is requesting each
web page through a DSL link. In the worst case (heavy) the server imposes a fixed delay of a
few tens of milliseconds, like in the case of the Fast Ethernet setup (see Figure 5.9). However,
this delay does not dominate the overall delivery time.

of tests in Figure 5.11. As expected, the RaJa-enabled web browser is slightly slower than

the original Firefox.

Attack Coverage. RaJa is designed to detect and prevent all XSS reflection attacks.

We use the repository hosted by XXSed.com [FP] which includes a few thousands of XSS vul-

nerable web pages. This repository has been also used for evaluation in other papers [NSS09,

APK+10]. The majority of these exploits refer to XSS reflection attacks, excluding some

<iframe> injections. We evaluate RaJa, with XSS reflection attacks only, against all web

sites that have not fixed the vulnerability since the exploit’s publication, 1,401 in total. More

precisely, we use the exact methodology presented in [APK+10]. As expected all 1,401 exploits

are successfully detected and prevented from executing.
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Figure 5.11: Client-side evaluation for a RaJa-enabled web browser using the SunSpider
benchmarks. A RaJa-enabled web browser is slightly slower compared to Firefox.

5.5 Discussion

We now discuss some important aspects that we have not highlighted, but they are crucial

for deploying RaJa.

JavaScript Templates in Databases. RaJa assumes that all legitimate JavaScript is

stored in the web application’s files. We consider that an attacker has not compromised the

web server, since then an XSS attack is redundant. We also assume that incoming data from

the network is not placed in files but in a database, since using the filesystem as a data storage

for a web application is considered rather obsolete. However, there is the possibility that a

web application stores legitimate JavaScript code in a database. Since, RaJa randomizes

only JavaScript stored in files, code fetched from a database is considered as a code injection.

We are not aware of any real web application that stores legitimate JavaScript in databases.

However, it is worth mentioning that RaJa can potentially co-operate with such a scheme

provided that the tables storing the legitimate code have been marked as read-only and thus

cannot contain both legitimate and malicious code.

53



Caching. RaJa refreshes the token which serves as the randomization key in every

request. This is crucial for the security guarantees of the framework. If the key is not updated

in every request then an attacker can potentially launch an XSS attack in two phases. In the

first phase the attacker reveals the key and in the second phase performs the injection. This

strategy can break if a caching scheme is applied. For web pages that involve partial caching of

page fragments, this strategy can even produce non-functional web pages. Cached fragments

will have different randomization key from non-cached ones and the browser will not be able

to de-randomize the complete JavaScript source correctly. However, JavaScript is usually

associated with dynamic pages, where caching is hard to be applied effectively. In addition,

when caching is applicable, web servers and browsers tend to cache graphic and video objects,

which are usually larger in size than the JavaScript source code of a web application.
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Chapter 6

xHunter

6.1 Introduction

Although XSS targets web applications, the popularity of the exploitation method along

with the prevalence of the web has made XSS a dominant threat in computer systems [Sym,

SAN]. Unfortunately, such a statement can be officially supported and quantified only by

large IT industry members involved in computer security. Undoubtedly, voluntary efforts

from individuals exist, in order to keep track of the attack landscape of XSS. For example,

XSSed.com [FP] maintains a repository of XSS exploits. The amount of stored incidents

in XSSed.com is an evidence that web sites are continuously threaten from XSS attacks.

Although this particular XSS repository is invaluable to the research community, it can hardly

assist in quantifying the real problem.

We argue that the academic and research community lacks the necessary tools for per-

forming measurement studies and quantifying the threat constituted by XSS attacks. More

precisely, we would like to have the tools for answering questions like the followings:

1. How often are web sites targeted with XSS attacks? Is XSS a frequent phenomenon in

every-day web traffic?

2. Which web sites are the targets?

3. Are there any orchestrated XSS campaigns in world-wide scale?
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4. How do real XSS exploits look like? XSSed.com maintains a large collection of vulner-

able to XSS web sites along with their exploitation. However, many of the URLs listed

contain proof-of-concept exploit code, like the use of the JavaScript eval() function to

display a message, and not code that can cause harm.

To this end, we propose xHunter, a tool that can passively monitor the network for

identifying suspicious URLs. xHunter does not aim on providing any defenses against XSS,

but rather collect statistics about them. The fundamental assumption behind xHunter is that

XSS attacks based on JavaScript code injection (which is the most frequently encountered

case of XSS) are carried out through URLs that contain a part that can produce a JavaScript-

valid syntax tree. Unfortunately, JavaScript has a very relaxed syntax and is very context

independent. Even simple expressions that are usually encountered in URLs can produce

a valid JavaScript syntax tree. In addition, web applications use custom encoding schemes

making URL parsing hard. In this chapter, we present all challenges we encountered while

designing xHunter along with a prototype of the tool.

Organization. This chapter is organized as follows. We present the architecture of

xHunter in Section 6.2. We analyze in detail all major challenges xHunter has to deal with in

Section 6.3. In Section 6.4 we present a preliminary evaluation of xHunter using a sample of

about 11,000 malicious URLs collected from XSSed.com and a sample of 1,000 URLs collected

from a monitoring point in an educational organization with about 1,000 users. In Chapter 7

we use xHunter to analyze the entire repository of XSSed.com.

6.2 xHunter Architecture

In this section we present the basic architecture of xHunter. We first provide a short back-

ground of XSS attacks and then we phrase the two basic assumptions that are fundamental

for the tool’s design. We finally present the work flow of an xHunter run using a real example

taken from XSSed.com.
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6.2.1 Overview

There are basically two large categories of XSS attacks: (a) reflected and (b) stored. During

a reflected XSS attack the injected code is placed in a URL. Once the user clicks on the

malicious URL the injected code executes. On the other hand, during a stored XSS attack,

the adversary injects the malicious payload in some form of storage utilized by the vulnerable

web application. For example, consider a web application that handles a blog engine and

stores all data associated with the blog in a database. An attacker can post an article which

encapsulates the malicious code. This code is rendered in the user’s browser when the user’s

browser renders the blog article. Notice, that even in the case of stored XSS, the attack has

been injected using a URL, since this is the only way the attacker can communicate with the

web application.1

Assumption 1. The first fundamental assumption for xHunter is that XSS attacks are

carried out through the transmission of URLs that contain the malicious code. The malicious

code during an XSS attack is usually expressed in JavaScript. There are plenty of other

methods for exploitation, like injections of an iframe, redirection or leveraging of other

client-side technologies such as Flash, injections in file uploads [BCS09] or Phishing [DTH06].

xHunter focuses only in cases where the web attack is triggered via a URL that contains

JavaScript. These cases constitute a significant fraction of XSS attacks.

Assumption 2. The second fundamental assumption for xHunter is that an XSS attack is

mounted using a URL which contains a part that can produce a valid JavaScript parse tree.

Based on the two assumptions above, xHunter works roughly as follows. It takes as an

input a URL. It scans the input for parts that can produce a valid JavaScript parse tree. The

tool embeds the JavaScript engine of Mozilla SpiderMonkey [spi] for generating parse trees. A

URL is considered suspicious if a part produces a JavaScript parse tree with a certain depth.

For example, consider the JavaScript snippet in Figure 6.1. xHunter can process the source

and produce the syntax tree depicted in Figure 6.1. Notice the indentation of the parse tree.

It is slightly different than the actual parse tree a JavaScript parser can export. The reason

is that xHunter assigns a different weight to different parse nodes (i.e. tokens the parser

1XCS attacks that are mounted through another non-web channel are out the scope of this work [BBB09].
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1 if (user_logged()) {

2 alert(document .cookie);

3 }

4

5 LC:

6 IF:

7 LP:

8 NAME:

9 LC:

10 SEMI:

11 LP:

12 NAME:

13 DOT:

14 NAME:

Figure 6.1: Parse tree of a JavaScript snippet as produced by xHunter.

consumes). This weight is depicted in the figure as indentation level. We further analyze this

later in Section 6.3. Notice also that xHunter does not evaluate the actual code. It is not

aware of neither the DOM [LHLHW+04] structure nor the code of the web application the

malicious code is trying to exploit. xHunter only checks if part of an input can produce a

valid JavaScript syntax tree.

6.2.2 Operation

We now proceed and present a hypothetical xHunter run. xHunter takes as input a URL.

First, the URL is HTML-escaped (for occurrences of HTML encoded entities like &apos;)

and is URL-decoded. Then, the part of the URL which follows the “?” character, usually

named as the query string, is isolated from the rest of the URL. The query string contains all

parameters which take part in an HTTP GET request. 2 All parameters are separated using

the “&” character. Each parameter is in the form key = value. For each pair, xHunter tries

to parse both the key and the value (if they both exist). Apparently, there are XSS attacks

that host the exploit code in the key and not in the value, as it is more common [xssa].

There are two possible outcomes when xHunter tries to parse a particular field. The

field does not parse or the field produces a syntax tree with a certain depth. If the depth

2A similar approach is used for POST requests. In this case the query parameters are part of the HTTP
request.
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http://www.economie.gouv.fr/recherche/lance_recherche.php?
mot=";alert(document.cookie)//&search_go=ok

mot=";alert(document.cookie)// search_go=ok

http://www.economie.gouv.fr/recherche/lance_recherche.php?
mot=";alert(document.cookie)//&search_go=ok

";alert(document.cookie)//mot search_go ok

LC: 
 SEMI: 
 SEMI: 
  LP: 
   NAME: 
  DOT: 
   NAME: 

6
LC:

  SEMI:

    NAME: 2
LC:

  SEMI:

    NAME: 2
LC:

  SEMI:

    NAME: 2

http://xssed.com/mirror/65494

Figure 6.2: Example operation of a hypothetical xHunter run.

exceeds a certain value, the URL is considered suspicious. The depth of the syntax tree

depends on the tokens that compose the field’s text. If there is JavaScript code in the field

then the syntax tree is expected to have a depth of a high value. Notice, for example, in

Figure 6.1 that the code responsible for the alert() code contains six different tokens (lines

9-14). Unfortunately, even simple text can produce a valid JavaScript syntax tree. Hopefully,

real and possibly functional JavaScript code has higher probability to include certain tokens.

Thus, each token is assigned with a weight and the overall depth is computed using each

node’s weight. We further discuss this in Section 6.3.

A theoretical xHunter run is depicted in Figure 6.2. The running example is a URL

from XSSed.com that contains XSS attack code. Notice, how the query string and then the

parameters are isolated from the original URL. Observe, also, that every field, in this par-

ticular case, produces a valid JavaScript syntax tree. Nevertheless, the attack code produces
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the syntax tree with the higher depth (6). Notice the final URL where the attack code has

been underlined. The first character (double quotes) is not highlighted, although it is part

of the field that contains the attack. This character has been omitted, since it produces a

syntax error if included. We further discuss how we deal with partial JavaScript expressions

in Section 6.3.

There are plenty of cases xHunter, as presented here, fails to handle. First, web appli-

cations support URLs that do not fully conform to the specification [BLMM94]. Second,

JavaScript has a relaxed syntax and thus simple text can produce a valid syntax tree. Third,

the XSS exploit code can be partial or mixed up with other irrelevant text. We proceed and

present all these issues in detail in the following section. For each problematic case we discuss

how xHunter is enhanced to solve each issue.

6.3 Challenges

We now proceed and present the three challenges that xHunter has to deal with, as were

mentioned in Section 6.2: (a) web applications quirks, (b) JavaScript relaxed syntax and (c)

exploit isolation. We discuss each of these in detail. We present URL examples taken from

XSSed.com for each particular case.

6.3.1 Web Application Quirks

Web applications use URLs for communicating with web browsers. There is a well defined

specification for URLs [BLMM94]. However, web applications often use their own encoding

scheme or custom delimiters for separating the query string and the parameters from the rest

of the URL. There are cases where xHunter can try alternative methods for parsing a URL.

For example, a significant amount of URLs contained in the XSSed.com repository use “"”,

instead of “?” for separating the query string from the URL. In other cases there is no special

delimiter used at all, thus xHunter, inevitably, scans the whole URL for JavaScript injections.

There are cases which xHunter cannot handle. These are cases where the URL is encoded

using a custom scheme by the web application. In Figure 6.3, we present two example URLs,
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1 [http:// xssed.com/mirror /55309]

2

3 http://www.metacrawler.com/

4 metacrawler/ws/results/Web/

5 !3Cscript !3 Ealert (!2FXthe _

6 miller!2F)!3C!2 Fscript!3E/1/41

7

8 [http:// xssed.com/mirror /64043]

9

10 http://www.turktelekom.com.tr/tt/

11 portal/!ut/p/c0/XYzBCoJAFEX_RQhq

12 9Z5aOoEI .. RshwIQj/

Figure 6.3: Custom encoding used by web applications. In the second example some parts
are omitted for better presentation.

which contain exploit code. In the first case a similar, but not identical, to URL encoding is

used (the character ! is used instead of %). This case can be handled if the scheme is used

frequently (we found just a few cases in the sample collected from XSSed.com). The second

case is impossible to handle, since the web application encodes all URLs in a scheme known

only by itself. Hopefully, in more than 10,000 of URLs collected from XSSed.com there are

only a few cases that follow this paradigm.

6.3.2 JavaScript Relaxed Syntax

JavaScript has a very relaxed syntax. It is quite possible for a text fragment to have a valid

JavaScript syntax tree. For example, consider the two expressions in Figure 6.4. They are

parts taken from a sample of benign URLs and both of them produce valid syntax trees with

high depth. However, these expressions are not JavaScript exploits. xHunter employs two

techniques in order to deal with such cases: (a) the reverse code heuristic and (b) weighted

parse nodes. We proceed and analyze both techniques.

Reverse Code Heuristic

Expressions like the first one listed in Figure 6.4 have the following properties. First, they

can be parsed from left to right and from right to left. Second, they produce a syntax tree

with the same depth, no matter the parsing direction. On the other hand, JavaScript exploit
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code is highly unlikely to produce even a valid syntax tree if parsed from right to left. Thus,

xHunter whenever finds an expression that produces a valid syntax tree, attempts to parse

the expression reversed. The expression is not considered suspicious if the reversed expression

produces a syntax tree with the same depth. This heuristic solves cases in the sample of

URLs collected from XSSed.com, which otherwise would be considered as false positives.

Weighted Parse Nodes

Parse nodes which refer to tokens such as “.” (DOT) and “+” (PLUS), for example, can be

repeated several times in an expression and thus result to parse nodes that contribute to the

final syntax tree’s depth. These tokens occur frequently in URLs, without being part of a

JavaScript program. On the other hand, there are tokens that are more likely to be part

of valid JavaScript code, such as the LP token, which denotes a left parentheses occurrence.

These tokens occur less frequently in URLs and much more frequently in JavaScript code.

xHunter assigns a weight to each parse node. The overall depth of the parse tree is a

weighted contribution of all parse nodes. There are nodes that have no contribution at all

(such as the DOT token), nodes that have negative contribution (such as the NAME token) and

nodes that have high contribution (an LP token has double contribution).

6.3.3 Exploit Isolation

It is highly likely that a JavaScript exploit is not isolated in a URL parameter. For ex-

ample, consider the example in Figure 6.5. The value of the first query string parameter

is ";alert(document.cookie)//. This fragment does not parse as is. However, when the

target web page is rendered the fragment is attached to an existing JavaScript expression and

the exploit code runs. Multiple parsing attempts must be carried out, removing characters

from left and right until a valid JavaScript expression is isolated, in order to detect this code.

xHunter starts parsing from left to right. If the result does not produce a valid syntax tree,

xHunter reduces the parsing window by removing a character from the left. If all charac-

ters are consumed, then xHunter reduces the whole expression by removing a character from

the right, the window is set to the initial size (minus the removed character) and the whole
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1 foo;1,2,3,4,5

2

3 LC:

4 SEMI:

5 NAME:

6 SEMI:

7 COMMA:

8 NUMBER:

9 NUMBER:

10 NUMBER:

11 NUMBER:

12 NUMBER:

13

14 id=331653; t=49;l=1

15

16 LC:

17 SEMI:

18 NUMBER:

19 SEMI:

20 ASSIGN:

21 NAME:

22 NUMBER:

23 SEMI:

24 ASSIGN:

25 NAME:

26 NUMBER:

Figure 6.4: JavaScript has a relaxed syntax. Even simple text fragments can produce a syntax
tree with high depth.

process restarts. This strategy results in a high computational overhead. However, as we

have already stated, xHunter is not meant to be a defense mechanism against XSS attacks

that needs to run in real-time. xHunter is designed to process large web traces for exporting

statistics related to XSS attacks.

6.4 Case Study

In order to perform a preliminary evaluation of xHunter we test the tool with two samples

of URLs. The first one is collected from XSSed.com, the largest XSS repository with public

access. It includes about 11,000 URLs which contain XSS attacks and target real web sites.
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1 [http:// xssed.com/mirror /65494]

2

3 http://www.economie .gouv.fr/

4 recherche/lance_recherche.php?

5 mot="; alert(document .cookie)//

6 &search_go=ok

Figure 6.5: XSS code can be found partial in URLs. In this example the “"” character (double
quotes) must be omitted in order for the rest of the code to produce a valid syntax tree.

The second sample contains 1,000 URLs collected from a monitoring point of an educational

organization with about 1,000 users.

6.4.1 XSSed.com

XSSed.com is a public XSS repository. It contains about 11,000 XSS attacks as of March

2010. The repository classifies all attacks in two categories, namely “XSS” and “Redirection”

(or “Frame Redirection”). The “Redirection” category involves URLs that, when clicked,

perform a redirection from the target web site to a web site of the attacker’s choice. However,

we found many cases that were misclassified. Many URLs that perform a redirection are

listed under the “XSS” category. xHunter has not been designed to detect redirection or

iframe injection. Unfortunately, there is no way to filter out all these redirection URLs from

the original set.

In Table 6.1 we list properties of the URLs marked as suspicious. Observe, that xHunter

succeeds in identifying 8,204 (out of 10,535) URLs, which are known to be XSS exploits. The

most popular exploitation technique is by using the alert() function. However, as we have

already stated, XSSed.com is a repository holding proof-of-concept attacks and not real ones.

Nevertheless, there are also other popular JavaScript constructs used, like document.cookie,

document.write() and String.fromCharCode(). 3 Finally, xHunter records 274 cases where

none of the above constructs is used. For example, there are cases where the exploit code

contains: <img onload=xss()>.

In Table 6.2 we list properties of the URLs marked as clean. Overall, xHunter marks

3These categories overlap. For example it is possible for a URL to contain the code:
alert(document.cookie) or document.write(document.cookie).
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Occurrences 8,204 77.8%

alert() 7,895 74.9%

document.cookie 1013 9.6%

String.fromCharCode() 550 5.2%

document.write() 50 0.4%

Other 274 2.6%

Table 6.1: XSSed.com sample. URLs marked as suspicious.

Occurrences 2,331 22.1%

Redirection 611 5.7%

iframe 292 2.7%

Redirection and iframe 7 0.0%

<script src=""> 389 3.6%

<img src=""> 39 0.3%

POST 779 7.3%

Other 268 2.5%

Table 6.2: XSSed.com sample. URLs marked as clean.

2,331 as not suspicious. Since, all URLs are collected from XSSed.com these are false nega-

tives. However, this is not actually the case. The sample contains redirections, iframes and

<script> elements that include JavaScript source code from a third party web site. xHunter

has not been designed to deal with these cases. We also include in the trace 779 URLs that use

HTTP POST instead of HTTP GET for attacking the web application. XSSed.com provides

this information so we can distinguish all URLs that use POST from URLs that use GET.

The operation of xHunter does not change in the case that has to process a POST request.

The task of the tool is easier since the parameters (included in the POST part) are easily

isolated from the rest of the URL. However, we leave on purpose all these URLs inside the

trace to verify that none of them will be marked as suspicious. Indeed, xHunter successfully

marks all 779 POST URLs as clean.

By subtracting all the above cases, 268 XSS exploits remain marked as clean. With manual

examination we find out that these exploits are mixed. Some of them are redirection attacks

(but classified as “XSS” and not “Redirection”), some other take advantage of web application

quirks we discussed in Section 6.3. Thus, xHunter has less than 3.2% false negatives.
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6.4.2 Benign URLs

We run xHunter with a second trace, which contains 1,000 URLs collected from a monitoring

point in an educational organization with about 1,000 users. All URLs are considered benign.

xHunter marks 20 URLs as suspicious. That is, xHunter has about 2% of false positives. We

manually examine the 20 false positives. All 20 cases are URLs that, instead of ‘‘&’’, use

the ‘‘;’’ character as a delimiter for query parameters. The ‘‘;’’ character is significant

in JavaScript. xHunter can be easily enhanced to treat both ‘‘;’’ and ‘‘&’’ characters as

delimiters that separate parameters in a query string. We modify the tool and we rerun all

experiments. The 20 URLs in the benign trace are not marked as suspicious. The results for

the trace collected from XSSed.com are not altered by this modification.
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Chapter 7

XSS Study

7.1 Introduction

Despite the significant effort by the academic community towards a solution that aims at

protecting web applications and end-users from web attacks [JSH07, NSS09, GC09, Sek09,

TLV09, APK+10] and the various available browser-based solutions [Rei08, Mao06], the land-

scape of web exploitation imposes a real threat. Consider, that according to a Symantec

report published in 2008 [Sym], the second half of 2007 was dominated by incidents related

to Cross-Site Scripting (XSS) exploitation. Moreover, according to a September-2009 report

published by the SANS Institute [SAN] attacks against web applications constitute more than

60% of the total attack attempts observed on the Internet and web application vulnerabilities

account for more than 80% of the overall vulnerabilities being discovered. To make things

worse, there is evidence that modern web attacks are targeting the high ranked web sites,

which accumulate millions of Internet visitors, such as Twitter [XSSc] or web applications

operated by the top leading industry vendors [mca].

There is an ongoing arms race between technologies that aim at providing countermeasures

against web exploitation and attackers inventing more elaborate exploitation techniques. In

order for the security researchers to evolve the state-of-the-art of the tools and technologies

for defending against web attacks, we need to understand the already published incidents

associated with web exploitation. For the first time, we present an extensive analysis of a

67



large repository documenting about 12,000 samples of real-world web attacks.

Methodology. We crawl the most well known repository hosting web attacks, XSSed.com [FP],

and we collect about 12,000 unique exploits. All these exploits are related to real incidents of

web exploitation over the last three years. Each exploit is characterized by a set of metadata

properties, generated by the repository (such as the Target web site, the Submission and Pub-

lication date, etc.). We further process each exploit with a custom URL processor [AKM10]

and derive even more details about the exploitation techniques used (if it is a <script> or

<iframe> injection, if the exploit is transmitted over an encrypted communication channel,

etc.). We finally present a series of statistics and highlight various sets of properties that form

a better picture of the web attack landscape.

Contribution. The contribution of this chapter is the following.

1. For the first time, we present an analysis of a large set of about 12,000 real-world web

exploits collected by a well known repository, XSSed.com [FP]. Our analysis has some

very interesting results. A few representative of them are the following. About 8%

of the web exploits are targeting web sites that communicate over HTTPS, giving the

illusion of a secure communication to the end-user. About 8% of the targets are highly

ranked web sites, according to Alexa.com (Top-1000). It takes a few to hundreds of

days, even for the Top-100 web sites, to patch the published vulnerabilities.

2. We identify the dominant patterns of web exploitation. Attackers first attempt to

exploit a vulnerable web site by trying common attack recipes. These attack recipes

serve as a proof-of-concept (PoC) exploit. It is highly likely that such a PoC exploit is

published by XSSed.com. By studying over 12,000 web exploits we can derive patterns

associated with the most common attack recipes. These patterns can be useful to the

IDS community [R+98, Pax99].

3. We process all web exploits with a custom URL processor [AKM10] and show that there

are exploits that cannot be captured by static filters [BBJ10a]. We further analyze the

JavaScript syntax trees of the web exploits, in the cases that it is applicable, and show

how a sophisticated detector can capture an even broader family of exploits. We derive
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a set of 18 signatures based on JavaScript syntax trees, which can successfully detect

77% of all exploits that cannot be detected using static filters.

Organization. The remaining chapter is organized as follows. In Section 7.2 we present in

details the methodology and the tools used for the data collection. In Section 7.3 we present

the results of our study and in Section 7.4 we expand our thesis towards static filters by

arguing that detectors can be enhanced with JavaScript syntax-tree signatures for capturing

a broader family of web exploits.

7.2 Methodology

In this section we present the tools and techniques we employ to acquire the data. We argue

about the reason we select the particular repository used in this study. We further outline

the process of exporting additional metadata from the data collected with the assistance of

a custom URL processor [AKM10]. We finally present a short introduction over the inherent

properties and additional metadata of the data sample.

7.2.1 Overview

We collect all data from the public repository XSSed.com [FP] using a custom Python crawler.

This particular repository is well known in the web security community. In fact, it has

been used in the past for evaluating a number of proposed anti-XSS frameworks such as

DSI [NSS09], xJS [APK+10] and XSSAuditor [BBJ10a]. There are a few other attack sources,

such as Bugzilla [SC05], the Web Hacking Incident Database (WHID) [whi] and Zone-H [zon].

Bugzilla is probably the largest open source repository hosting application vulnerabilities.

Bugzilla is not suitable for our study, since it does not specialize in web exploitation. Among

the thousand vulnerabilities of desktop applications, it lists only exploits associated with the

top web applications, such as Twitter or Facebook, or exploits for generic web software that is

employed by many web sites. Our study aims at covering every-day incidents associated with

web exploitation. WHID specializes in web exploitation, but covers only incidents that have

massive media exposure. For example, the latest report of WHID covers only 150 incidents

69



 0

 2000

 4000

 6000

 8000

 10000

 12000

XSS HTTP Splitting Script Insertion Redirect Frame Redirect Phishing

N
um

be
r 

of
 e

xp
lo

its

Exploitation Method

XSSed.com Exploitation Methods

XSSed.com exploits96.32

0.12 0.47 2.23 0.84 0.02

Figure 7.1: The six different categories used for exploit classification by XSSed.com.

for the entire 2010. Finally, Zone-H provides information about web site defacement. This is

a particular method of showing and proving that a web site is vulnerable, by changing the

web site’s initial web page. The defacement itself can be carried out with many different

techniques: from compromising completely the web server to exploiting a directory traversal

vulnerability of the web server. Thus, recorded defacements provide little information about

the exploitation techniques used by the attackers. In Section 7.3, we attempt to identify if

there is strong correlation between the incidents recorded by XSSed.com and the defacements

recorded by Zone-H.

XSSed.com hosts over 12,000 of web injections classified in six different attack flavors. In

Figure 7.1 we present a histogram with all exploits categorized according to XSSed.com. The

majority of the exploits are XSS injections. However there are some fractions characterized as

HTTP Parameter Splitting, Script Insertion, Redirection, Frame Redirection and Phishing. In

Section 7.3, we provide a more descriptive classification of all attacks in the collected sample.
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Binary?
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Figure 7.2: Schematic diagram of all steps followed by xHunter for extracting additional
information for each web exploit.

In Table 7.1 we list all properties provided by XSSed.com for each published incident. We

further process each case with a custom URL processor, xHunter [AKM10]. xHunter takes

as input a URL and tries to locate fragments that can produce a valid JavaScript syntax

tree. In parallel with this process, xHunter exports additional details, which further provide

a more descriptive collection of information for each one of the exploits. We list all properties

exported by xHunter in Table 7.2.

7.2.2 URL Processing

We now present in more details all steps followed by xHunter for exporting all additional

information listed in Table 7.2.

xHunter initially considers that the input is encoded in UTF8. There are many different

representations for a given character in UTF8 and this is one of the dominant reasons that
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Data Description

ID The ID of the web exploit.
URL The complete URL needed for

a PoC exploitation.
Category The category as classified by

XSSed.com (see Figure 7.1).
Date Submitted The date the web exploit sub-

mitted to XSSed.com.
Date Published The date XSSed.com manu-

ally verified the exploit and
published it.

Date Fixed The date the vulnerable web
site was patched.

Status FIXED if the vulnerability
has been fixed. UNFIXED
otherwise.

Author The author of the web exploit.
Domain The target domain.
Page rank The page rank of the tar-

get domain according to
Alexa.com.

POST data The POST data required if
the attack exploits a POST
form.

Table 7.1: All information provided by XSSed.com for each web exploit.

the community considers hard to develop accurate filters against XSS. A rich collection of

these representations can be found in the XSS Cheat Sheet [Han]. xHunter takes into account

all possible variations. Furthermore, xHunter applies the UTF8 decoding process until the

URL remains intact in decoding. Note, that there are cases in our sample, where a URL has

been partially encoded in UTF8 twice or more times. This is obviously another obfuscation

trick employed by attackers to evade detection. We use the term UTF8 Level to describe this

behavior (see Table 7.2).

Furthermore, the tool compiles all HTML entities, such as &amp;, &gt; and &lt;, to

their textual representation. It also checks if the URL contains characters outside the ASCII

printable range and if it follows the URL RFC [BLMM94]. URLs following the RFC have the

form of:
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Property Description

HTTPS True if exploit is transmitted
over HTTPS.

Binary True if exploit contains binary
characters.

Malformed False if URL follows strictly
the RFC [BLMM94].

Has Scripts True if exploit contains
<script> elements.

Has iFrames True if exploit contains
<frame> elements.

Has Frames True if exploit contains
<iframe> elements.

Has Images True if exploit contains <img>
elements.

HTML entities True if exploit contains
HTML entities likes &amp;.

UTF8 True if exploit contains any
of the possible UTF8 encod-
ings [Han].

UTF8 Level The number of levels of UTF8
encoding.

Table 7.2: Additional information provided by xHunter for each web exploit included in the
repository of XSSed.com.

protocol://domain/query?p1=v1&p2=v2...&pn=vn

Modern web applications frequently use their own URL schemes, for reasons which are not

publicly documented, making the task of analyzing a URL quite hard. All web exploits that do

not strictly follow the URL specification are marked as Malformed. For all URLs, malformed

or not, xHunter applies a series of regular expressions, in order to locate possible <script>,

<iframe>, <frame> and <img> elements. These are the most common HTML elements used

for injecting foreign code in a web application. We also locate any markup elements except

the aforementioned ones. Regular expressions are not considered safe for capturing web

attacks [BBJ10a]. However, there are plenty of widely used products [Mao06, Rei08], which

base a significant part of their functionality in a set of carefully selected regular expressions.

xHunter relies on regular expressions in part, since its core operation is given a text fragment
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UTF8 Level Exploits (%)

No UTF8 3461 (28%)
One Level 8509 (71%)
Two Levels 121 (0.01%)
Three Levels 8 (0.0006%)

Table 7.3: Exploits that use UTF8 encoding, sometimes multiple times, in order to evade
detection. Levels indicate how many times a fraction of a URL must be UTF8 decoded in
order to have ASCII text.

to export possible JavaScript syntax trees. We rely on regular expressions just for producing

statistics and not for preventing or detecting exploits.

Finally, xHunter tries to locate fragments in the URL or in the data of the POST part of

a web exploit, that can produce a valid JavaScript syntax tree. We depict schematically the

complete operation carried out by xHunter in Figure 7.2.

7.3 Experimental Results

In this section we present the results of an extensive analysis of about 12,000 web incidents

recorded by XSSed.com. For better presentation, we divide the section in three families of

results. First, we present an analysis about generic properties of web exploits. Second, we

present various characteristics about the web sites that are the targets of the attacks. Finally,

we give a short analysis regarding the quality of the repository.

7.3.1 Exploitation Method

One of the fundamental characteristics of a web exploit is the protocol and HTTP method

used to carry out the attack. In Figure 7.3 we depict the protocol, HTTP or HTTPS, and

the HTTP method, GET or POST, used by every web exploit in the data set. As expected,

the majority of the exploits are transmitted over HTTP and use the GET method to perform

the injection. However, it is interesting to note the following. First, there are exploits which

are communicated to the vulnerable web server over HTTPS. Although, the fraction is low,

less than one in ten incidents, it is still worth noticing. HTTPS is considered by many users

as secure, in terms that a third party cannot eavesdrop or steal the user’s data. This belief is
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Figure 7.3: The HTTP property (protocol and method) used by each web exploit.

heavily driven by many browser indicators, such as padlocks or officially signed certificates,

carefully designed to draw the attention on the user that the web site is trusted [SEA+09].

However, a vulnerable in code-injection attack web site is still exploitable no matter the

encryption in the communication channel. Nevertheless, we expect that web sites served in

HTTPS invest, in general, more in security, which requires significant financial resources and

thus the percentage of incidents is low.

As far as the HTTPmethod is concerned, as expected most of the web sites have vulnerable

HTML forms, which are submitted using the GET method. POST method is used more often

for submitting information for further processing and apparently web developers treat more

carefully the respective code. It is still worth noticing that almost all incidents exploiting a

POST form are based on URLs that include GET parameters. The HTTP specification does

not prohibit this behavior, although the intuition behind this programming habit remains

undocumented.
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Many web exploits inject HTML tags, such as <script> or <iframe>, in vulnerable web

applications. This is evident in Figure 7.4 where we present all exploits according to HTML

tags they use (in some cases multiple markup elements are used). As expected, the majority

of all exploits, about 85%, is based on the injection of a <script> tag. The percentages of

exploits injecting <frame>, <iframe>, <img> or any other markup element 1 is quite lower.

However, the interesting part is that nearly one in ten exploits does not use any markup at

all. This is very crucial for anomaly detectors that are based purely on static signatures and

regular expression [R+98, Rei08, Mao06]. We proceed and collect all exploits that do not

use any markup and perform a JavaScript analysis using xHunter. We present our results in

Section 7.4.

Finally, one interesting finding is the use of multiple layers of UTF8 encoding. Encoding

URLs in UTF8 is typical. However, web exploits can take advantage of the encoding in

1It is worth pointing out that there are plenty of exploits that inject generic HTML markup elements.
These elements can be the very common, like <strong>, or even deprecated ones, like <marquee>.
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order to evade detection from a passive monitor, an IDS or a filter implemented in the web

application. In Table 7.3 we list the percentage of exploits that use UTF8 encoding. The

majority of all exploits use UTF8 encoding, about 71%, but there are also just a few that

use multiple layers of UTF8 encoding. A UTF8 Level three indicates that the URL has to be

UTF8 decoded three times in order to become intact in further decoding.

7.3.2 Target Characterization

We now investigate the characteristics of the targets which experience web attacks. In Fig-

ure 7.5 we plot the CDF of all web sites’ rank, as provided by Alexa.com. Observe that

attackers do not seem to be very selective in choosing their victims. About 3% of all vic-

tims can be considered very popular, since they are listed in the Top-100 of Alexa’s ranking.

About 8% can be considered to have average popularity, since they are listed in the first one

thousand of Alexa’s ranking. The remaining is composed by a variety of different web sites’
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Alexa.com, web sites. Notice the increase in 2008, which is also reported by Symantec [Sym].

popularity classes. There are web sites that are listed in the first few thousands of Alexa’s

entries and web sites that can be hardly classified as known, since their ranking is over a few

millions. The intuition is that a broad class of different web attackers exists. All attackers do

not share the same incentives. Some of them target the very prestigious web sites and some

others all vulnerable ones, no matter if they serve a very limited user base.

In Figure 7.6, we plot all victim web sites from the Alexa’s Top-100 for the last couple

of years. For each exploit we record the date the exploit was submitted to the repository.

Notice the increase of reported exploits in 2008. This incident has been also reported by

Symantec [Sym]. In recent days, the rate of exploit submission has been decreased. However,

this rate refers to the Top-100 web sites, which usually have significant financial resources, in

order to make use of the latest security technologies, hire penetration testers, and, in general,

invest on security features. It is worth noticing that there are still a few reported vulnerability
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per month for this class of web sites.

Another interesting aspect we investigate is the period it takes for a web site to repair

the vulnerability. In our sample, for each incident we have recorded three dates: (a) the

submission date, which specifies the date the exploit was submitted to the repository (b) the

publication date, which specifies the date the exploit was published in the repository and (c)

the date the repository was notified that the vulnerability has been repaired. In Figure 7.7,

we plot the days required by a web site to repair the vulnerability. We divide all exploits in

two classes: (i) exploits associated with Top-100 web sites and (ii) all others. We also plot the

days required for repairing the vulnerability as counted from the submission and publication

date, respectively. Notice, that the the publication date is closer to the date of patching than

the submission one. Also, Top-100 web sites seem to be faster in patching. However, even
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the Top-100 web sites require from a few days to a few months to repair a problem. This can

be attributed to the following reasons. First, some vulnerabilities are critical and they are

repaired in the same day, or at least in a few days. Second, some vulnerabilities may not be

that critical and they take a longer period of time to get fixed. Third, some web sites may

repair the vulnerability without communicating it to the repository.

Moreover, we explore whether the victims of a web attack are also the victims of de-

facements. A defacement is an action where an attacker changes the content of a web page,

with a message of her own. Usually, this message is connected with a protest, or it is simply

used as a proof of the technical skills of the attacker. However, the conditions required to

achieve a defacement are not clear. There are cases of defacements that require very limited

technical knowledge. Since a defacement is not directly connected with earning of money, it

is more likely to be carried out easier than an XSS or CSRF attack. Zone-h [zon] is a public
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Figure 7.9: The Top-10 countries that host the most frequently attacked web sites.

repository that hosts more than 75,000 defacement incidents. Notice, that at the same time

this repository hosts seven times more incidents than XSSed.com. For each web attack in

our sample taken from XSSed.com, we query Zone-h to see if the same domain has experi-

enced a defacement. Nearly 15% of domains that have experienced a web attack, have been

also experienced at least one defacement. This leads us to conclude that defacements and

web attacks, like XSS, are not highly correlated. In Figure 7.8 we plot the Complementary

CDF (CCDF) of defacement incidents that have been experienced by web sites reported in

XSSed.com. Most web sites have experienced one defacement incident and a few of them

have experienced a few tens of defacement incidents.

Finally, in Figure 7.9 we list the Top-10 of the most attacked countries, obtained using

geoiplookup [Max06]. Observe that the majority of domains that are listed in XSSed.com

is hosted in the United States and even the rest of the Top-10 is filled up with European

countries. This may be due to several reasons. First, the repository may be not well-known
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outside of the United States and Europe. Notice, that according to geoiplookup XSSed.com

is located in France. Second, this might be evident that web exploitation is most frequently

occurring in the west world. Consider, that there are attack flavors, which are launched using

the web, that have arise in Asian countries but never resulted in any reported incident in the

United States/Europe [CYK10].

7.3.3 Repository Characterization

Finally, in this section, we investigate how fast the repository acts upon new attack events.

In Figure 7.10 we present the days required for XSSed.com to verify and officially publish

a reported incident. Observe that half of the reported incidents have been published from

a few days to a few weeks upon reporting and half of them have been published months

after reporting. Moreover, in Figure 7.11, we plot the amount of published exploits that

have been submitted each date. Observe, the bursty behavior, which suggests that submitted
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exploits are processed in a batch fashion. This is evident, since in order for an exploit to be

published, manually inspection and testing is required. Also, notice that more recent exploits

are processed in smaller batches. Apparently, in recent years the repository experiences better

maintenance, most probably because of the publicity it started to receive. However, we can

only speculate for this, since we have not come in contact with the repository’s maintainers,

in order to eliminate any bias produced by any communication that can affect the results of

this work.

7.4 JavaScript Analysis

In Section 7.3 we conclude that about 7% of all web attacks reported in XSSed.com contain

no markup, such as <script>, <iframe>, <frame>, <img> or any other HTML element (see

Figure 7.4). Exploits that do not use markup are hard to be captured by tools that are based
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SEMI: alert(/XSS/);

LP: alert(/XSS/);

NAME: alert(/XSS/);

OBJECT: alert(/XSS/);

(LC,SEMI,LP,NAME,OBJECT)

  LC: alert(/XSS/);

Figure 7.12: An example of how a JavaScript syntax-tree is extracted from an expression.

on static signatures and regular expressions [Mao06, Rei08, R+98]. This is because it is hard

to express all JavaScript grammar using regular expressions. In this section we take the 7%

of URLs that contain no markup and we try to identify if they embed parts that can produce

a valid JavaScript syntax tree.

7.4.1 Results

A JavaScript syntax tree is composed by a series of tokens that have special semantics in

JavaScript. For example, consider the JavaScript syntax tree, which is depicted in Figure 7.12.

The tree is composed by the tokens LC, SEMI, LP, NAME and OBJECT. This series of tokens

identifies the JavaScript program alert(/XSS/);. The fragment of the program that maps

to each token is also highlighted in Figure 7.12. Notice, that each token does not map directly

to a JavaScript entity. For example, tokens SEMI, which is a shorthand for semicolon, and LP,

which is a shorthand for left parenthesis, map to the same portion of text. Thus, it is better

to think tokens as different states of the JavaScript parser.

The fragment of 7% of all exploits that contain no markup is translated to 838 web attack

incidents. From these 838 incidents we exclude all of the reports that are not categorized

as XSS (see Figure 7.1). We do this in order to filter out incidents that are not directly

related with JavaScript injections (redirections, phishing reports, etc.). Thus, we remain

with 405 exploits, which (a) do not use any markup, and (b) perform an XSS attack. We

perform a JavaScript analysis in all these 405 exploits. We manage to identify 321 cases of

URLs, which contain a fragment that can produce a valid JavaScript syntax tree, like the one

depicted in Figure 7.12. The remaining cases are consisted by URLs that use special encoding

84



 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

Signature Pair

JavaScript Syntax Tree Based Signatures Similarity

Figure 7.13: Similarity of all JavaScript syntax tree based signatures. The size of the radius
represents the Least Common Subsequence (LCS) of a pair of signatures.

schemes [XSSd]. In all 321 identified cases, there are 8 false positives. Some text fragments

of a URL may contain tokens, such as +, - and /, which can force the JavaScript parser

to produce the syntax tree of a valid JavaScript arithmetic expression. The 313 identified

exploits correspond to 77% of all examined cases. Thus, using JavaScript analysis we are able

to identify 77% of 405 incidents that cannot be captured by a signature-based tool.

7.4.2 Syntax-Tree Based Signatures

The most interesting aspect of the JavaScript analysis is that we can conclude that a JavaScript

syntax tree is a convenient form for producing signatures that can describe families of web

exploits. Consider that in all 313 cases there are only 60 unique JavaScript syntax trees.

From the perspective of JavaScript syntax trees, there is a major overlap in the ways at-

tackers are trying to exploit web applications. With 60 syntax trees we are able to identify
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313 web attacks. On the other hand, by investigating the actual injections, we conclude that

all 313 incidents correspond to 140 unique JavaScript programs. For example, the program

alert(’XSS’) and the program open(’www.attacker.com’) are different, but their syntax

trees are exactly the same.

Moreover, these 60 unique JavaScript syntax trees share common tokens in great extent.

To show this, we map each token to a unique letter of the alphabet and we construct strings

that represent each syntax tree. In Figure 7.13 we present the Levenshtein distance [Dam64]

of all possible pairs of JavaScript syntax trees, expressed as strings. Notice, that half of the

comparisons result in a high similarity value. Moreover, for each pair the radius expresses the

Least Common Subsequence (LCS). Even the pairs of syntax trees that have low similarity

have a significant LCS. These facts drive us to create families of signatures based on JavaScript

syntax trees. We manually group all 60 syntax trees in 18 signatures. We list all signatures

in Table 7.4. For each one we present a possible exploit that the signature matches, as well

as the number of overall attacks that were matched by the signature. We use the following

notation to express each signature: (i) brackets () indicate that the token inside is required,

(ii) square brackets indicate that the token inside is optional, (iii) vertical bar | indicates

logical OR and (iv) star * indicates that the token can be repeated arbitrary times.

7.4.3 Discussion

The JavaScript analysis we present in this section has two main contributions. First, we

list a collection of real web exploits, which are based purely in JavaScript and they do not

depend on using HTML elements. It is hard for any tool that is based on static signatures and

regular expressions to detect such exploits, because there is no finite set of regular expressions

that can express all the possible JavaScript programs. The majority of the examples listed

in Table 7.4 is based on the usage of alert(), which is a function that displays a dialog

box with a message inside the web browser’s environment. One can argue that by simply

searching for an alert() expression can sufficiently enhance the range of exploits that can be

captured using static signatures. Indeed, many tools [Rei08, Mao06] use regular expressions

for capturing URLs that embed alert() calls. However, an attacker can use an infinite set
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of functions to attack a web site. In fact, an attacker can take advantage of all of the existing

JavaScript code which is already loaded by a web application [APM09]. Thus, by simply

searching for the alert() call is not sufficient. On the other hand, the programs we list in

Table 7.4 can be valuable for the IDS community, since they can enhance the range of attack

attempts that an IDS can detect. Second, we create a new set of rules which is not based

on regular expressions, but on JavaScript syntax trees. This set of rules can be beneficial for

building more sophisticated IDSs, which can be optimized for web attack detection.
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Signature Exploit Example #

LC SEMI LP NAME

(NAME|NUMBER|OBJECT|STRING)

alert(’XSS’); 60

LC COLON SEMI LP NAME

(NUMBER|OBJECT|STRING)

javascript: alert(/xss/); 48

LC SEMI ASSIGN NAME LP NAME

(NUMBER|OBJECT|STRING [SEMI NAME])

onmouseover = alert(/XSSbySh4v/) 46

LC SEMI ASSIGN NAME LP NAME LP DOT

NAME NUMBER*

onerror = alert(String.fromCharCode(

120, 115, 115))

41

LC SEMI SEMI LP NAME STRING [SEMI DOT

NAME|SEMI NAME|VAR NAME]

;alert(’xss’);// 25

LC SEMI SEMI LP NAME NUMBER [SEMI

NAME|VAR NAME]

;alert(1337); 22

LC COLON SEMI LP NAME DOT

(NAME|OBJECT)

javascript: alert(/xss/.cookie) 10

LC SEMI LP NAME [LP] DOT NAME (SEMI

STRING|NUMBER*)

alert(String.fromCharCode(88, 83,

83))

8

LC COLON SEMI LP DOT NAME STRING* javascript: window.open(’...’); 6

LC SEMI SEMI LP NAME (OBJECT|SEMI

NAME)

;alert(/Jurpie/);// 3

LC SEMI ASSIGN NAME RELOP STRING

(DIVOP NAME*|NAME)

onmouseover="alert(123)">HOVER 3

LC COLON SEMI LP NAME LP (DOT NAME

STRING|NAME OBJECT)

image: expression(

document.write(’XSS’))

2

LC COLON SEMI DOT LP NAME DOT OBJECT javascript:

alert(/XSS/.source).html

2

LC COLON SEMI LP NAME STRING SEMI LP

DOT NAME STRING

javascript: alert(’swfXSSed!

:P’); window.open(’...’)

2

LC SEMI COMMA (LP NAME NUMBER NAME|LP

NAME)

alert(1337),f 2

LC SEMI DIVOP NAME* LP NAME

(NUMBER*|STRING)

{...}alert(40017,0423769097); 2

LC SEMI LP DOT NAME STRING document.write(’xssed by

babaconda’)

1

LC SEMI DEC LP NAME* -xlt script xgt alert(

xps Lapanzi xps )

1

Table 7.4: JavaScript syntax-tree based signatures. For each one we present a possible exploit
that the signature matches, as well as the number of overall attacks that were matched by the
signature. We use the following notation to express each signature: (i) brackets () indicate
that the token inside is required, (ii) square brackets indicate that the token inside is optional,
(iii) vertical bar | indicates logical OR and (iv) star * indicates that the token can be repeated
arbitrary times.
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Chapter 8

Network Flow Contracts

8.1 Overview

Over the past few years an increasing number of organizations has started collecting data

about how and when people use the Internet. Web servers, for example, customarily keep

the IP addresses of all devices which have accessed any of their content. Similarly, VoIP

providers keep logs of all calls each of their customers has made, mostly for accounting,

performance, and advertisement reasons. In some countries, it has even become mandatory

for some organizations, such as ISPs, to keep a copy of all accesses their customers have done

over the Internet for a predefined period of time [dat].

Although such Internet data were originally collected for accounting and performance

reasons, they have been increasingly requested and used by Law Enforcement Agencies (LEAs)

to help the investigation of on-line-related crimes. However, since these data have not been

verified by the end-users involved, they may be inaccurate, fabricated, or even complete

bogus. Based on such fabricated information an innocent user may be falsely accused (or

suspected) of committing an on-line related crime such as accessing a web site which serves

illegal content. To make matters worse, a malicious attacker may even deliberately plant

bogus evidence in order to falsely accuse an innocent victim. For example, the attacker may

plant the victim’s IP address in the logs of a web server which serves illegal content, a server

which could be later captured by LEAs. After inspecting the logs of the captured server,
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LEAs may reasonably think that the victim has accessed illegal material. To make the attack

even more convincing, the attacker may plant such bogus information on several different

places which LEAs may check. In this way, the victim will be in a very difficult position when

it comes to proving her innocence.

One potential solution to this problem would be to access the Internet through anonymiz-

ing services such as Tor and Freenet [DMS04, CSWH01]. Although such services protect

a user’s privacy, it is not clear to what extent they are effective against a malicious attack

such as the one presented in this chapter. For example, if the attacker manages to learn the

victim’s IP address, he may still be able to plant bogus information on access logs. Thus,

even if the victim tries to hide her Internet accesses, it may still be possible for an attacker

to plant fabricated information leading straight to the IP address of the victim. Another po-

tential solution to this problem would be to prohibit the collection of users’ data. Although

this approach could solve the problem, it is not likely that it is going to happen soon. For

example, web site owners have been keeping, and continue to keep, access logs listing all

the IP addresses of their customers along with the content they requested. It is not clear

whether, or when, web site owners will cease to collect such information. Similarly, several

organizations entice users to give their explicit consent in data collection by providing them

with token benefits such as item discounts. To make matters worse, existing laws require

several organizations, such as ISPs to collect and retain access data without requiring the

user’s consent. Thus, it is unclear, if not totally unlikely, that data collection about users’

accesses on the Internet will cease in the near future. For this reason, we present a slightly

different approach. Instead of adopting a system which hides or eliminates the network traces

of a user, we propose a system which tracks and cryptographically proves (signs) all network

activity, i.e. all IP addresses accessed by the user. If the user is falsely accused of committing

an on-line crime, she will be able to prove that she has not accessed the IP addresses involved

at the day of the crime. In addition, we provide a hashing scheme, which makes it practically

impossible for someone to reveal all network history of a user, even if all the logs collected by

our system are exposed in the wild. Unless the user gives her consent, revealing and proving

that her traces are authentic is computationally very expensive.
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8.1.1 Proposal

It seems that the root of the problem we study, is that several different organizations collect

data which are not or can not, in hindsight, be double-checked for their correctness and

authenticity. Incomplete, or fabricated, data, may in turn, be used to accuse users of illegal

or inadmissible activities on the Internet. To rectify this problem, we empower users with

the ability to record their own logs: the logs of their Internet accesses. ISPs, on behalf of the

users, record every Internet access of the user. To make sure that the ISP does not record

more than the user has accessed, users cryptographically sign every Internet access they make.

ISPs, on their part, (i) keep a record of all signed accesses and (ii) honor all accesses for which

they receive a signature. If the ISP receives a request to access a destination IP address, for

which request no signature exists, the request does not go through (a TCP-RST packet is sent

by the ISP for terminating the connection). We fully understand that keeping a log of all of a

user’s Internet accesses, even in an encrypted form, may potentially lead to a serious invasion

of privacy if these accesses are leaked. To make sure that no such invasion can easily happen,

the ISP does not keep the signed record itself, but only a hash of each signed record. Even

if the hash table is leaked by an ISP it would be difficult to reconstruct the original signed

record from the leaked hashes. In addition to this, an innovative use of salting which will be

described later in this chapter makes this potential reconstruction extremely expensive even

for determined attackers who resort to performing a dictionary attack.

We believe that our approach has several advantages:

1. If a user is falsely accused of accessing an IP address, a lookup in the logs can prove

that no such signed record of this access can be found and, thus, no such access has

been made.

2. It protects the users against malicious tampering with their log. All access records are

signed by the user using her private key. As long as the private key is kept safe, it is

computationally hard to insert fake records.

3. It is robust against leakage. Since only hashes of the signed records are stored, a

potential leakage will provide only the hashes and not the original information.
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4. It is resistant to dictionary attacks. The use of date in the calculation of hashed signed

records along with a novel use of salting make dictionary attacks computationally ex-

pensive. This level of expensiveness can be fine-tuned by the user.

8.1.2 Contribution

The contributions of this chapter can be summarized as follows:

• We design, implement, and evaluate a framework that provides Network Flow Contracts

(NFCs). An ISP providing NFCs can guarantee that all network activity has been logged

with the subscriber’s verification. More precisely, the ISP terminates all connections

that have not been digital signed by the subscribers that generate them.

• We propose a lighter version of NFCs, specifically designed for web traffic through the

addition of an HTTP header field, namely X-Signature. An ISP providing NFCs for

the web can guarantee that all web sessions of each subscriber have been logged with

her consent.

• We design, implement and evaluate Dig Encryption, a framework for providing querying

in encrypted data, which is able to resist dictionary attacks.

The rest of this chapter is organized as follows. In Section 8.2 we discuss in detail the

threat models we are addressing. In Section 8.3 we present the overview of an architecture

for providing NFCs, we describe how NFCs can be simply enabled for web traffic through

the addition of an HTTP header and we give a high-level description of Dig Encryption. In

Section 8.4 we perform a performance evaluation for NFCs and Dig Encryption. We discuss

ideas for future work in Section 8.5.

8.2 Threat Model

In this section we present in detail the threat models we address with NFCs.
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8.2.1 Overview

Digital data has become an important factor that characterizes the every-day activities of

our society. Activities performed in the network, such as serving or accessing resources with

pedophiliac content, can be associated with criminal or improper behavior. In certain cases,

such activities can be enough for filing a lawsuit against an Internet end-user. It is hard

to find official evidence about cases where people have been convicted for crime, because

they simply accessed a web site. However, there are numerous anecdotal cases describing a

trend for adopting certain measures and technologies for monitoring the user activity in the

network.

For example, the recent case of WikiLeaks inspired many reporters to author stories about

systems employed from national agencies, in order to track users that access the content

provided by the numerous WikiLeaks mirrors all over the world. Some news stories provided

technical details about HoneyPots that can attract and record users who are interested in the

WikiLeaks content [cia]. In a similar but more officially positioned act, the European Union

(EU) has expressed interest in monitoring all queries submitted to search engines [eu-], in

order to reduce activities connected to pedophiles.

Moreover, each country maintains specific laws and procedures for data retention associ-

ated with data collected by the telecommunications providers. For example, EU suggests that

all data must be kept for a period of 6 months to 2 years [dat]. In the United States (US)

there are similar laws and, recently, in the context of the Internet Stopping Adults Facilitat-

ing the Exploitation of Today’s Youth (SAFETY) Act a bill was published [saf] enumerating

specifically which digital data is to be stored for further tracking of a suspect.

We address concerns about possible implications and privacy issues related to data reten-

tion. We consider that in a constantly evolving world of digital media, the data collection can

become arbitrary and eventually control will be lost. On the other hand, the user has limited

control on data collection process and has little means to defend against accusations that

stem from fake or false data. We do not attempt to alter existing methods for data collection

or propose a new data retention scheme. Instead, we aim at developing novel technologies

that can shield innocent users from groundless claims, emerging from digital data. These,
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technologies can run in parallel with existing schemes.

We now proceed and list some possible scenarios where our proposal can be applicable.

8.2.2 Malicious Web Sites

The easiest way to create fake evidence of a user’s network activity is for a web site to create

artificial logs. This can happen in numerous occasions. First, the operator and owner of

the web site can manipulate the data contained in the log file. Second, an insider employee,

having access to the log infrastructure, can alter the information. Consider that many popular

web sites occupy thousands of employees and many of them have the opportunity to leak (or

modify) private data [Tec]. Finally, a bug in the web site’s code can be exploited by an

external attacker or by malware and give the opportunity to a third party to inject fake

records in the web site’s logs.

In all cases, data must be correlated with information owned by other providers, such

as ISPs or cell phone providers. However, it is possible for the correlation procedure to

have negative results, because a cell provider, for example, has lost or delete the records.

Eventually, the web site’s fake logs will be the only evidence in this particular case. Thus,

an unsuspecting user can be incriminated and have limited flexibility in providing further

evidence in order to defend herself.

8.2.3 Untrusted ISPs

Nowadays, there is no proven trust between an ISP and its subscribers. This claim can be

extended for other digital media providers, such as telephony providers, but we limit the scope

of this work to ISPs. The end-user routes the traffic through the ISP, but has limited control

on the data collected in regards to her network activity. An untrusted ISP can easily create

fake evidence of the user’s network accesses. To make things worse, the ISP is considered the

only authoritative source of information that can prove that a particular subscriber performed

a series of network actions. In the case of a rogue ISP, which provides fake log records, the

user can be seriously incriminated and unable to defend herself.

We consider the probability of rogue ISPs significant, since the number of ISPs world-
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username, 3-tuple
(dst IP, dst Port, protocol) 

Kprivate(dst IP)

SHA1 Hash Base64 Encode

ID (128 bytes) Signature  (350 bytes)S

128 + 1 + 350 = 479 bytes packet

Figure 8.1: NFC packet format. The packet is composed by an identifier, ID, which charac-
terizes the connection, a delimiter S and the Base64 encoding of the signature. The ID is
formed using the SHA1 key generated by hashing the subscriber name concatenated with the
3-tuple information and the signature is the destination IP encrypted with the user’s private
key.

wide is constantly growing. To this end, there are numerous micro-ISPs that purchase In-

ternet in bulk from providers owning a backbone and offer it to subscribers at appealing

prices. Cases where micro-ISPs were affiliated with illegal activities have been recorded in

the past [DMPW09]. In the majority, these activities refer to SPAM and malware distribu-

tion. However, it is still questionable if ISPs will take advantage of the data they collect in

the future.

8.3 Architecture

In this section we provide a detailed description of our proposal, Network Flow Contracts

(NFCs); an architecture for ensuring provable agreement between an ISP and a subscriber

for any network access. We propose that each network flow is signed by the user, with the

assistance of public-key cryptography. In this section we analyze the complete architecture

for signing network flows and producing NFCs and we also present a case study involving

web traffic. Finally, we describe Dig Encryption, a privacy-aware encryption scheme for
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Figure 8.2: The NFC architecture. The ISP maintains for each on-line subscriber two tables:
(a) the Connection Table, and (b) the Signature Table. Every new flow is stored in the
Connection Table and incoming signatures are stored in the Signature Table. If, after time
T, no signature for a new flow is present in the Signature Table the new flow is terminated.

storing NFCs. Dig encryption provides limited data querying in a data-set by imposing time

constraints and, thus, it is resistant to brute force attacks.

8.3.1 Overview

NFCs must be offered by ISPs as a service to users willing to protect themselves from incrim-

ination attacks carried out using artificially modified data logs. NFCs are not a new data

retention scheme and do not aim on substituting existing data retention schemes. On the

contrary, NFCs is a new service and users that care to provably protect their network actions

can take advantage of it.

NFCs must be deployed in the ISP and they need additional software running in the user’s

host. The client-side software must not be distributed by the ISP, since we assume that in the

general case the ISP is not trusted. We present a generic implementation of both the server

and client part of the software. In a real deployment, the client part can be implemented in

the kernel, by OS developers, or in user space as a standalone application.

In a nutshell, the enforcement of NFCs works as follows:

1. The subscriber registers for the service using a web portal operated by the ISP by
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Figure 8.3: The NFC protocol. For every incoming TCP-SYN the ISP waits for the NFC that
signs the new flow. In the case that no signature is received after T seconds from the time the
original TCP-SYN was observed, the ISP terminates the subscriber’s connection by sending an
explicit TCP-RST.

uploading her public key and presumably paying an indicative fee.

2. The subscriber installs a software client, if the OS does not support NFCs, which is able

to sign all outgoing traffic routed by the ISP.

3. For every new flow created by the subscriber, the ISP waits for time T to receive the

flows’s signature. If the signature is not received, the ISP terminates the subscriber’s

connection by explicitly sending a TCP-RST.

This scheme is applicable to all TCP traffic generated by the subscriber. We consider only

TCP traffic, since usually this type of traffic is connected with state-full network activities.

Services that communicate over UDP always have a communication part over TCP in order

to authenticate the user. In Section 8.5 we discuss possible ways to expand NFCs for UDP

traffic.

Below we analyze in more depth, all the internals of NFCs.

8.3.2 Network Flow Contracts

An NFC is a digital contract between a user and the ISP. For all further discussion, we assume

a DSL user connected to an ISP, but the scheme is quite generic to be applicable in other
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Figure 8.4: Enabling NFCs for web traffic requires the addition of a new HTTP header, which
simply signs with the user’s private key the URL resource that the browser is requesting.

cases, such as users connected to a telephony network. For generating an NFC the subscriber

is required to own a pair of public and private key, and operate an NFC client. For running

the NFC client, the user must provide the software with her private key. The NFC client

passively monitors all traffic generated by the subscriber’s host. For each outgoing TCP-SYN

packet, the client retrieves the destination IP address of the packet, it signs the IP address

with her private key and sends the packet containing the signature to an NFC server operated

by the ISP. Digital signatures are usually associated with large documents, where the term

digital signature refers to the outcome of encrypting the document’s hash with a private

key [Sch07]. In this work, we sign IP addresses and thus we do not use any cryptographic

hash function in the signing process.

The ISP maintains for each on-line subscriber two tables: (a) the Connection Table, and

(b) the Signature Table.

Connection Table. The ISP generates a record for each incoming TCP-SYN packet
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received by the subscriber’s host. The record is constructed by taking the user’s identity

and the key produced by hashing the 3-tuple (destination IP, destination port and protocol)

of the new TCP connection. We do not rely on the 5-tuple (source IP/port, destination

IP/port, protocol), because usually NAT/Proxies can overwrite the source part [Cla]. The

ISP proceeds and routes the TCP-SYN packet to the destination, and in parallel monitors the

Signature Table for a signature associated with the new TCP connection. In the case that no

signature has been found in the Signature Table after T seconds from the time the original

TCP-SYN has been observed, the ISP terminates the subscriber’s connection by sending an

explicit TCP-RST. Later, in Section 8.4 we estimate appropriate values for T .

Signature Table. The Signature Table is maintained by an NFC server. A user, who

has been registered to the service, is using an NFC client, which is constantly connected with

the ISP’s NFC server. This connection serves as the information channel that communicates

all NFCs (i.e. the signatures) from the subscriber’s host to the ISP. For each new outgoing

TCP connection, the NFC client sends a packet like the one depicted in Figure 8.1. The

packet is composed by an identifier, ID, which characterizes the connection, a delimiter S

and the Base64 encoding of the signature. The ID is formed using the SHA1 key generated

by hashing the subscriber’s name concatenated with the 3-tuple information and the signature

is the destination IP encrypted with the user’s private key.

An overview of the NFC architecture is depicted in Figure 8.2. The NFC protocol is

presented, step-by-step, in Figure 8.3.

Provable Network Activity. With the assistance of NFCs a user can prove all network

activities issued through the ISP, which supports the service. Consider the case where Alice

is facing possible claims accusing her of having performed illegal network activities. Such

activities include the visiting of web sites serving illegal content, participating in torrents

exchanging copyrighted material and any other network activity that is subject to current

law. We assume that Alice did not perform any of these network accesses. We now review

the threat models presented in Section 8.2 and discuss how NFCs can protect Alice from all

faulty claims.

• Incrimination driven by a web site. A web site can provide LEAs with fake logs that
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indicate that Alice has been one of its visitors in the past. Although, logs produced by

a web server are hard to stand as evidence for an illegal activity, they can be combined

with further information and, thus, have impact on LEAs’ decision. In the case that

NFCs are used, the web site must also provide further information, such as the IP

address of the machine Alice used to access the web site. Moreover, the IP address

will be looked-up in the ISP’s data logs in order for the corresponding signature that

identifies Alice’s connection to be located. If no signature is found, then the logs of the

web site cannot be used for accusing Alice of any access.

• Incrimination driven by an ISP. A more powerful threat model, as described in Sec-

tion 8.2 is when a web server, or any other Internet service, is colluding with the ISP in

order to incriminate Alice and accuse her for accessing illegal resources. In this case, the

evidence is more solid. Alice is accused of accessing an illegal resource, using fabricated

logs produced both by the illegal resource and the ISP which routes the user’s network

traffic. However, if Alice has registered with the NFC service, the ISP must provide

the IP address of the destination resource signed with Alice’s private key. Assuming

that a modern public encryption algorithm [RSA83] is used and the private key of Alice

is kept secret, then producing a fake digital signature of the destination IP address is

considered computationally very hard.

8.3.3 Web Traffic

NFCs can be used for creating contracts between a user and an ISP for any network activity.

Nevertheless, a lighter scheme can be applied only for web traffic. We consider, that web

accessing can be associated more easily with illegal activities performed by the average end

user. Applying NFCs for web traffic is easier, as far as implementation is concerned, and it

is characterized by easy deployment, especially on the client-side.

Enabling NFCs for web traffic requires the addition of a new HTTP header, which simply

signs the URL resource that the browser is requesting with the user’s private key. The

majority of modern web browsers support extensions that can modify the HTTP headers

of every HTTP request performed by the browser [mod]. Instead of creating web browser
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extensions, we choose to create a generic HTTP proxy, which runs on the client machine and

adds the proposed X-Signature header field to the HTTP headers of every outgoing request.

We configure the custom web proxy to attach the special X-Signature field to every outgoing

HTTP request in the following way. The proxy receives the HTTP request, extracts the target

URL, encrypts the URL with the user’s private key, encodes the result in Base64, because

of the fact that HTTP is a text-only protocol, and, finally, attaches the X-Signature field,

which has as a value the produced signature. The request is then forwarded to its destination.

In Figure 8.4 we depict a screenshot showing the custom proxy in action.

Again, the HTTP logs can be altered or artificial HTTP logs can be constructed. However,

the attacker has to also inject fake X-Signature fields, that carry out the destination URL

signed with the user’s private key. One crucial parameter in web NFCs is that the ISP has

to perform deep packet inspection in order to extract the X-Signature value and verify the

signature. We further discuss this issue in Section 8.4.

8.3.4 Dig Encryption

NFCs require the ISP to keep all data logs associated with each user’s network activity. The

data logs must contain all hosts that came in contact with the ISP’s subscribers, as well as the

signatures generated for each connection. There are specific laws for digital data maintenance

in telecommunications. In Europe, for example, the provider must keep all data logs produced

by the costumers for a period of 6 months to 2 years [dat]. Similar laws apply in the US. This

strategy can assist in tracing crimes associated with network activity. However, keeping all

data for large period of times is risky, as far as the privacy of the subscribers is concerned,

since the data can be leaked [Tec] or stolen by a third party. An option for dealing with

data leakage and theft is the ISP to keep all data encrypted. Researchers have designed and

implemented practical techniques for querying encrypted data [SWP00]. Thus, an ISP could

have all data encrypted and partially provide answers to specific queries only in the context

of a trial or when a warrant is issued. Unfortunately, in the case of NFCs, encrypting the

data is not efficient. An ISP that stores all data accesses and all signatures encrypted is still

vulnerable to a brute force attack. Consider the case, where LEAs ask the ISP if a particular
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subscriber accessed all existing URLs. This set of queries will reveal the user’s complete

network activity. In the case where the user is not guilty, this process will result in the user

loosing all privacy. Thus, we optimally seek for a method that will allow LEAs to query an

ISP for the network activity of a particular subscriber, but without being able to perform an

arbitrary number of queries. We also seek a method that prevents anybody from exposing a

user’s privacy, even if the ISP’s facilities are compromised and third parties grant access to

the log files.

In this work, we propose Dig Encryption, or simply Digging, which is a method for stor-

ing only the necessary information in order to provide time-constrained querying. We now

describe an overview of all the steps an ISP must follow, in order to provide dig encryption:

1. The ISP receives an incoming TCP-SYN packet and a signature for this new connection.

The signature has been produced by encrypting the destination IP address of this new

connection using the user’s private key.

2. The ISP proceeds to decrypt the signature with the user’s public key in order to verify

it. If the result is indeed the destination IP address of this new connection the ISP

keeps the signature. Otherwise it transmits a TCP-RST to the user’s host, in order to

terminate the connection.

3. Assuming that the signature is authentic, the ISP produces the Base64 encoding of the

signature. It then concatenates the current date and a random number, used as a salt

and taken from a range of length R, to the Base64 representation of the signature. It

finally, produces a cryptographic hash by hashing the result of the concatenation. The

ISP deletes all information, including the salt, and keeps only the final cryptographic

hash.

The above is an overview of the whole process. In Section 8.4 we provide more details for

the implementation, the cryptographic algorithms used, as well as how large R is.

Now, we assume that there is a case under investigation and there is a warrant issued, that

allows LEAs to query an ISP for the network profile of the suspect. Using the above scheme,
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the ISP by design is able to answer only if a particular subscriber has been connected with a

particular host on a specific date. For example, LEAs can form a query which is composed

by the user, Alice, an IP address, Bob’s machine, and a date D. This query is compiled in:

Did Alice connect to Bob’s machine on date D? In order for the ISP to answer this question

the procedure below is followed:

1. Alice, the suspect, encrypts Bob’s IP address with her private key and submits it to the

LEAs.

2. The LEAs verify that the produced signature is authentic by decrypting the result, which

Alice submitted, with Alice’s public key. If the product is indeed Bob’s IP address, then

the signature is considered authentic. If the signature is authentic, the LEAs submit

the signature and the date D to the ISP for further processing.

3. The ISP takes the signature, it produces the Base64 encoding and concatenates the

result with the date D. It then proceeds and generates the products of the concatenation

of the final result with all possible numbers up to R.

4. The ISP produces all cryptographic hashes by hashing all concatenations.

5. The ISP checks to see if any of the produced hashes exists in the storage, which contains

all hashes associated with Alice’s network activity and replies to LEAs positively or

negatively according to the result.

The above procedure is required for answering one query. The time needed to complete

the whole procedure depends on the chosen value of R and the algorithms used for the

cryptographic hashing. In Section 8.4 we discuss all these properties and we suggest values

for imposing acceptable constraints. Observe, that for each query the ISP has to dig in the

storage, by performing a classic brute force attack in the salt’s space, in order to resolve if

the signature has been recorded or not.

103



 4

 6

 8

 10

 12

 14

 16

 18

 20

Overall Crypto

T
im

e 
(m

s)

Evaluation for Fast Ethernet

RTT (CDF)

18

18.5

19

Overall Crypto

Figure 8.5: NFCs evaluation for an NFC client connected with an NFC server through a Fast
Ethernet network.

8.4 Evaluation

In this section we provide technical details about our own implementation of both NFCs

and dig encryption. We further proceed and evaluate our implementations and propose a

configuration applicable to any ISP that wishes to enable NFCs as a service.

8.4.1 NFCs

We implement NFCs in Linux using libpcap [JLM94] as a basic building block for capturing

network traffic, and OpenSSL [VMC02] for all cryptographic operations. All software is

written in C++ and does not exceed 2,000 LoCs. The setup is the following. A Linux-based

host, emulating Alice’s host, runs the signer software. The software initially connects to a

predefined open port of a Linux based server, which emulates the ISP. It then proceeds and

monitors all TCP traffic for the TCP-SYN flag. For each captured packet, signer generates a
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Figure 8.6: Overhead of RSA encryption with a private key for different architectures.

signature by encrypting the destination IP of the packet with Alice’s private key and sends

it to the server using the established connection. The server, also, runs custom software, the

signer-server, in order to capture all incoming TCP packets that have the TCP-SYN flag on,

extract the 3-tuple information and store it in a hash table. In addition, signer-server

listens to a predefined port for incoming signatures. The packet that contains a signature is

depicted in Figure 8.1. For each incoming signature, the server verifies it by decrypting it

using the user’s public key. If it is authentic it stores it in a hash table, using dig encryption

(see later in this section for the technical details of dig encryption). If, for any reason, the

signature is not authentic or the signature arrives after time T the connection is terminated

by sending an explicit TCP-RST to Alice’s host. In this section we estimate and suggest typical

values for T. For the public-key encryption/decryption RSA is used (the RSA PKCS1 PADDING

algorithm provided by OpenSSL). The length of the keys is 2048 bits. For the hash tables,

the data structures provided by STL [MS95] are used.
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Figure 8.7: NFCs evaluation for an NFC client connected with an NFC server through a DSL
line.

In order to estimate typical values of T we proceed and carry out the following experiment.

A client running the signer software is connected to a server, running signer-server, as

described above. The client generates 100,000 TCP-SYN requests towards the server, using the

hping3 tool in fast mode (10 requests per second). We record the followings: (a) the time

needed for the client to create a signature (this is the Crypto part), (b) the time elapsed from

the arrival of the TCP-SYN packet to the arrival of the signature, as recorded by the server (this

is the Overall part), and (c) the RTT as reported by hping3. We conduct the experiment

for two configurations. The first configuration is composed by two Linux desktops connected

through a Fast Ethernet (FE) network. The client machine is a 6 years old Linux box and

the server machine is a modern Linux box with state-of-the-art hardware. The second setup

is composed by a MacBook Pro laptop and a Linux netbook connected with the Linux server,

through a DSL line. We choose these configurations for the following reasons. As far as

the FE experiment is concerned, where network overheads are negligible, we select the client

to be an old PC with moderate computational capabilities, since we seek to focus on the

overhead imposed by the cryptographic operations. As far as the DSL setup is concerned,

we select a typical commodity laptop (MacBook Pro), representing the average user, and a

Linux netbook, with low computational resources, representing a mobile user.

In Figure 8.5 we depict the results for the FE case. More precisely, we plot a histogram

for the average inter-arrival time of the TCP-SYN and the signature, and the average time

spent in cryptographic operations. We also plot the CDF of RTTs; the distance between the
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beginning of the positive part of x-axis and the Crypto bar is 1. A first look suggests that

the signature arrival time is greater than a typical RTT value. This is notably because of

the computational part associated with cryptographic operations. To support this claim, in

Figure 8.5 we also plot a second graph zooming in the top of the histogram. Notice, that

the majority of the time is spent on cryptographic operations, and the network lag, which

involves the inter-arrival of the TCP-SYN and the signatures packet at the server is in the scale

of the RTT as reported by hping3. Another interesting remark is the following. Notice that

if the standard deviation (depicted in the plot with the vertical error bar) associated with the

crypto computation is accounted, the crypto part can exceed the overall time required for the

two network packets, namely the TCP-SYN and the signature, to arrive at the server. This is

due to the fact that there is buffering in the network driver of the client causing the TCP-SYN

packet to actually leave the host after the cryptographic computation has already started.
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1 def dig(message , r)

2 salt = rand(r)

3 signature =

4 Base64.encode64 (@user_private_key.private_encrypt(message ))

5 c = message + salt.to_s + Date.now()

6 hv = OpenSSL ::Digest::Digest.new("sha512"). hexdigest(c)

7 return(hv)

8 end

9

10 def undig(message , r, d, hv)

11 signature =

12 Base64.encode64 (@user_private_key.private_encrypt(message ))

13 r.times do |i|

14 c = message + i.to_s + d

15 attempt =

16 OpenSSL ::Digest:: Digest.new("sha512"). hexdigest(c)

17 if attempt == hv

18 puts "Message is found at attempt: #{i}."

19 break

20 end

21 end

22 end

Figure 8.9: Prototype implementation of dig encryption in Ruby.

For a better estimation of the cryptographic part, we perform 10,000 private-key encryp-

tions using the RSA implementation provided by OpenSSL in five different architectures,

namely: (a) a modern Linux desktop with state-of-the art hardware (Intel i7, 4 GB RAM),

(b) a 6-year old modest Linux desktop; the one used in the evaluation over FE, (c) a MacBook

Pro running Mac OS X, (d) a Linux netbook and (e) a modern Linux laptop. We provide the

results in Figure 8.6. Notice, that the computational overhead in all platforms, apart from

the old Linux desktop and the Linux netbook is less than 10 ms, which is of the same order

of magnitude with a typical RTT of a FE network.

We repeat the initial experiment on a DSL line. In a similar fashion, we depict the

results, using the same conventions, in Figure 8.7. Notice, that in the case of the MacBook

Pro laptop, the inter-arrival time between the TCP-SYN and the signature is compared to the

average RTT between the laptop and the server. The cryptographic part takes nearly 10 ms,

which is approximately equal to the one-way delay. In the case of the Linux netbook, the
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cryptographic operation dominates, but again the overall delay is less than 100 ms which is

an acceptable delay. Recall, that this overhead is experienced only during the establishment

of a new TCP connection.

Thus, we conclude that NFCs impose an overhead due to cryptographic operations only

when low-computational devices are used. The overhead is not dramatic and it is in the order

of magnitude of an RTT, as far as broadband networks are concerned. A typical safe value

of T can be 100 ms. The software run by the ISP can perform some initial tests in order to

benchmark the computational capabilities in cryptographic operations of the client’s device

for selecting a more accurate threshold.
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8.4.2 Server Overhead

For each incoming signature the NFC server should verify the signature by performing an

RSA decryption using a public key. The cost of decryption is proportional to encryption

using a private key in RSA (see Figure 8.6 for some typical values in different architectures).

The overall overhead of the verification process depends of the amount of traffic the ISP

has to route each time. We use data obtained by IRCache [irc] for approximating typical

volumes of web traffic. The IRCache project provides anonymized web traces collected by

a set of web caches running the Squid software. In Figure 8.8 the CDF of the request rate

extracted from four web caches in the period of one day is plotted. Notice, that the average

request rate is for the heavy loaded cache a few hundred requests/sec. Assuming that the

NFC server can verify a signature in milliseconds, then a typical verification for web traffic

imposes an overhead of seconds. The overhead can be reduced by employing custom hardware

acceleration. Consider that Sun’s UltraSPARC T1, equipped with a Modular Arithmetic Unit

for RSA, could perform 20,425 signature verifications per second using a 2048-bit key utilizing

all 32 cores, 6 years ago [t1].

8.4.3 Dig Encryption

We provide a prototype implementation of dig encryption in Ruby. Part of the code is

depicted in Figure 8.9, where we list the dig() and undig() functions. We now describe

these implementations in detail.

The dig() function takes a message as input and an R value, which is a suggested range

for the random salt. The function encrypts the message with the user’s private key using

the RSA algorithm and it computes the Base64 encoding of the encryption’s result. It then

adds a random value, selected from a range of length R, and the current date to the Base64

representation of the encryption and it computes the SHA512 digest. It finally returns the

last product, which is the cryptographic hash.

The undig() function takes a message as input, a suggested R value, a date d and a

cryptographic hash hv. The purpose of the undig() function is to find a cryptographic hash,

which matches hv. The function encrypts the message with the user’s private key using the
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RSA algorithm and it computes the Base64 encoding of the encryption’s result. It then loops

all possible values, selected from a range of length R. For each value, it concatenates it along

with the current date to the Base64 representation of the encryption and it computes the

SHA512 digest. If the digest matches hv it reports that the undig operation terminated

successfully.

In Figure 8.10 we plot the time taken for an undig operation for various values of R.

Notice that for large values of R, un-digging an encrypted signature can take hours.

8.5 Discussion and Future Work

In this section we discuss some design issues we choose in more detail. We also present our

plans for future work.

8.5.1 Traceability

In Section 8.3.4 we presented an encryption scheme for storing NFCs as being logged by the

ISP. Dig encryption requires the user’s consent, specifically her private key, for investigating

if a particular network access has taken place. An ISP that stores NFCs using dig encryption

and does not perform any other form of data retention makes traceability of a user hard.

For example, consider that Bob is registering for the NFC service. He later performs illegal

activities and finally he deletes his private key, in order to eliminate all traces related to his

activity.

NFCs and dig encryption do not aim on substituting any data retention scheme used by

current ISPs, that allow further investigation about a user’s network history. Instead, NFCs

and dig encryption guarantee that a user can provide provable evidence that she has not

accessed a network resource, if this has actually never happened. A user that lost or deleted

on purpose her private key cannot take advantage of our system to prove anything about her

network history. Instead, the user is subject to current laws and tactics applied in data logs

provided by ISPs.
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8.5.2 UDP Traffic

NFCs are applied to TCP traffic. The vast majority of Internet applications use TCP [BHH+10].

However, a user can also generate UDP traffic, which in turn can be logged by the ISP. UDP

has no state and thus a UDP packet can easily be spoofed. Thus, it is hard to even claim

that UDP traffic can provide any evidence of two hosts communicating over the Internet. On

the other hand, services communicate partially over UDP; all processes that identify a user

communicate over TCP. For example, VoIP applications use TCP for establishing connections

and UDP for delivering audio/video. NFCs could be applied in a sampled portion of UDP

traffic, but it is still questionable whether this could be practical.

8.5.3 RSA Cost

Traditionally, public-key cryptography is computationally expensive. Throughout this chap-

ter, we have presented various measurements regarding the computational overhead imposed

on signing and verifying a signature. As far as the client is concerned, we argue that RSA

encryption does not impose any dramatic overhead that can alter the user’s perception. As

we showed in Section 8.4, even a low-power netbook needs less than 100 ms to compute a sig-

nature with a 2048-bit key. RSA encryption can be rather expensive for mobile devices, such

as smart-phones. We leave this for future work. As far as the server is concerned, hardware

acceleration can be of great assistance. Consider that a Sun’s UltraSPARC T1, equipped

with a Modular Arithmetic Unit for RSA, could perform 20,425 signature verifications per

second using a 2048-bit key utilizing all 32 cores, 6 years ago [t1].
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Chapter 9

Related Work

In this chapter we present related to the content of this dissertation research efforts.

9.1 Web Exploitation and Defenses

The closest studies to xJS and RaJa are BEEP [JSH07], Noncespaces [GC09] and DSI [NSS09].

We have highlighted certain cases where the aforementioned methodologies fail (e.g., see

Chapter 3). We have presented attacks that escape whitelisting (proposed in [JSH07]) and

cases where DOM-based solutions [GC09, NSS09] are not efficient. Our frameworks can cope

with XSS attacks that escape whitelisting (attacks presented in Chapter 3), and do not require

any information related to DOM; both xJS and RaJa can also prevent attacks that leverage

the content-sniffing algorithms of web browsers [BCS09].

Blueprint [TLV09] is a server-only approach which guarantees that untrusted content is

not executed. The application server pre-renders the page and serves each web document in

a form in which all dynamic content is correctly escaped to avoid possible code injections.

However, Blueprint requires the web programmer to inject possible unsafe content (for exam-

ple comments of a blog story) using a specific Blueprint API in PHP. Spotting all unsafe code

fragments of a web application is not trivial. Blueprint further imposes a significant overhead

compared to solutions based on natively browser modifications, like xJS. On the other hand,

as we have shown in Chapter 5, real-world applications, with minimal code-modifications, can
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utilize RaJa, without employing a custom API.

Enforcing separation between structure and content is another prevention scheme for

code injections [RV09]. This proposed framework can deal with XSS attacks as well as SQL

injections. As far as XSS is concerned, the basic idea is that each web document has a well

defined structure in contrast to a stream of bytes, as it is served nowadays by web servers.

This allows the authors to enforce a separation between the authentic document’s structure

and the untrusted dynamic content from user input, which is attached to it. However, in

contrast to xJS and RaJa, this technique cannot deal with attacks that are based on the

content-sniffing algorithms of browsers [BCS09] as well as attacks that modify the DOM

structure using purely client-side code [Kle].

9.1.1 Data Tainting

In [VNJ+07] the authors propose to use dynamic tainting analysis to prevent XSS attacks.

Taint-tracking has been partially or fully used in other similar approaches [NSS09, Sek09,

NtGG+05, NLC07]. Although xJS and RaJa do not rely at all on tainting, a source-code based

tainting technique [XBS06] can certainly assist in separating all server-produced JavaScript,

mark all legitimate client-side code and also identify malicious data. However, the perfor-

mance might degrade.

9.1.2 Sophisticated Web Attacks

Through the years, as the web technologies evolved, exploitation of web applications also

became more sophisticated. Apart from XSS and CSRF, there are many ways to exploit a

web application. By sending specifically crafted data, someone can exploit bugs in an AJAX

based client [SHPS] or by including web pages as a Cascade Style Sheet (CSS) someone can

steal a user’s secret, for example the subjects of her inbox [LSZCC10]. Moreover, even devices

such as routers that use web interfaces for configuration can be exploited by injecting specific

client-side code [BBB09]. Many of these attacks are recently discovered. There is no explicit

categorization of the attacks listed in XSSed.com, which is relevant to these attack flavors.

However, we believe that in the future the repository will host reports for web application
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exploits that use the aforementioned techniques. All, these flavors of web exploitation can

in principle use JavaScript transmitted via URLs and, thus, IDSs can take advantage of the

JavaScript syntax-tree based signatures presented in Chapter 6.

9.2 Instruction Set Randomization

xJS is based on Isolation Operators and it is inspired by Instruction Set Randomization

(ISR) [KKP03]. Solutions based on ISR have been applied to native code and to SQL injec-

tions [BK04]. Keromytis discusses ISR as a generic methodology for countering code injections

in [Ker09] and he mentions that the technique can be potentially applied to XSS mitigation.

However, to the best of our knowledge, there has been no systematic effort towards this ap-

proach before. xJS and RaJa, presented in Chapters 4 and 5, are the first systematic efforts

in applying ISR to web applications and JavaScript.

9.3 Anomaly Detection Systems and Regular Expressions

Network monitors have been also developed for injections in native code. For example

nemu [PAM07] attempts to execute, using emulation, all network traffic in order to iden-

tify a shellcode. In a similar fashion, xHunter attempts to parse all parts of URLs, in order

to identify XSS exploits. Anomaly detection systems, such as Spectrogram [SKS09] try to

separate the benign traffic, which is received by a web application, from the malicious one.

In a similar fashion tools such as NoScript [Mao06], NoXSS [Rei08] and Snort [R+98] use a

series of heuristics, based on regular expressions and static signatures to identify malicious

web requests. The study presented in Chapter 7 can be beneficial for all these frameworks in

two ways. First, the examples of JavaScript exploits listed in Table 7.4 can assist in enhanc-

ing the signature set used by these tools. Although, these example exploits serve more as a

PoC, they are still valuable, since capturing attack attempts is also important. Second, the

signatures introduced in this thesis, which are based on JavaScript syntax trees, can assist in

building more sophisticated IDSs. Finally, there are arguments supporting that the usage of

regular expressions for preventing web exploitation can be considered, under specific circum-
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stances, harmful [BBJ10b]. In a similar fashion, we advocate that regular expressions are not

sufficient for capturing all web exploits, because of their limited expressiveness. JavaScript

has a rich grammar, which is hard to be expressed by a set of static signatures and regular

expressions. On the other hand, a handful of JavaScript syntax trees can express a broad

family of web exploits.

9.4 Browser Operating Systems

Recently, there is an effort for applying operating systems’ principles in the web browser aim-

ing at the creation of a more secure browser architecture. The research community is trying

to transform the web browser into a mini-operating system, which offers web application sep-

aration. For the latest proposals we refer the reader to [WFHJ07, WGM+09, GTK08, RG09,

TMK10]. All these systems promote a browser architecture that processes web applications

like traditional operating systems process native applications. Although, a browser operating

system can guarantee that two web applications cannot interfere with each other, it cannot

guarantee that a web application is not exploitable. The work outlined in this dissertation

can be beneficial for the evolution of these systems. For example, consider the deployment of

a service that passively monitors the execution of web applications for possible exploitation,

just like xHunter , which is presented in Chapter 6. This service can take advantage of the

JavaScript syntax-tree based signatures presented in this Chapter 7. In addition, web appli-

cations running in such operating systems can take advantage of ISR-based services, such as

the ones presented in Chapters 4 and 5.

9.5 Network Flow Contracts

There is plenty of research in regards to privacy related to the network activities performed

by end users. There is a huge effort for designing and implementing complete systems for

providing anonymous communications [RR98, FM02, ZZZR05] and some of them have lead to

concrete systems that exist in the real world [DMS04, CSWH01]. More recently, researchers

identified that privacy leakage can be performed in modern web applications even if the com-
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munication channel between the user and the application is encrypted [CWWZ10]. In another

paper, the researchers propose a technique for dealing with such leakage [ZLW+10]. NFCs,

presented in Chapter 8, review privacy from a different perspective. Instead of providing the

design of a system that hides the network traces of a user, we propose a technology that tracks

and cryptographically proves all network activity. NFCs guarantee that a user can never be

falsely accused by anyone for a network action, as long as the user has never performed this

action.

The idea of providing authenticity and confidentiality of network traffic is not new. There

are concrete efforts for standards towards this direction, such as IPSec [DH03]. Although

the computational overhead of encrypting all traffic is currently restrictive for a massive

deployment, researchers have produced fast and practical implementations for encrypting

TCP traffic [BHH+10]. However, NFCs do not seek a solution for a wide range of threat

models, but rather a practical and efficient solution for a very precise problem. Instead of

producing a very elaborate cryptographic protocol, we provide a fast implementation that

performs cryptographic signing of every TCP-SYN packet, in order to provide guarantees that

every network connection is established with the user’s verification.

Finally, the idea of querying encrypted data is also not new. Researchers have invented

practical techniques for the efficient searching of encrypted content [SWP00]. Dig encryption,

presented in Chapter 8, does not aim for just searching encrypted data, but also applying

time constraints to the querying process, in order to be resistant against dictionary attacks.
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Chapter 10

Conclusion

We have investigated how already proposed approaches for policy enforcement in web browsers,

as is, for example, BEEP [JSH07], fail to defeat XSS attacks under specific circumstances.

We have presented a new flavor of web attacks, which can defeat all policy frameworks that

are based on script whitelisting. This new family of XSS attacks resembles the well-known

return-to-libc attack and thus we refer to them as return-to-JavaScript. During a return-to-

libc attack, the attacker is forcing a program to execute existing code as it was never designed.

For example, she can make an exec() call which is already provided by libc. In the same

fashion, during a return-to-JavaScript attack, the attacker is forcing a web application to

execute existing whitelisted code as it was never designed. For example, she can execute a

function during an onload event, which was originally assigned to an onclick event. Based

on our findings, we proceeded and investigate how ISR, which has been proposed for code-

injections in various environments, can be used for mitigation of XSS (including the new

return-to-JavaScript attacks).

10.1 Using Instruction Set Randomization for XSS Mitigation

In this dissertation we presented two frameworks for XSS mitigation that are based heavily

on ISR, xJS and RaJa.
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10.1.1 xJS

We presented xJS, a practical framework against the increasing threat of XSS attacks. xJS

was motivated by a number of new code-injection attacks that defeat existing approaches,

inn particular with the Return-to-JavaScript attacks (see Chapter 3). xJS is a fast and

practical way to isolate all legitimate client-side code from possible code injections. The xJS

framework suggests the use of Isolation Operators (IO). An IO, such as one that is based on

the XOR function, aims on randomizing all client-side source corpus for protecting it from code

injections. All client-side code is transposed to a new domain, in our case the domain defined

by the XOR function, and thus it is completely isolated from all code injections. Finally, our

framework suggests policies expressed as Browser Actions. The web browser executes all

trusted client-code after it has been de-isolated bye performing an action, in our case the XOR

function.

We implemented and evaluated our solution in Firefox and Webkit, and in the Apache

web server. Our evaluation shows that (a) every examined real-world XSS attack can be

successfully prevented, (b) negligible computational overhead is imposed on the server and

browser side, and (c) the user’s browsing experience and perceived performance is not affected

by our modifications.

10.1.2 RaJa

RaJa is a complete framework for applying ISR directly to JavaScript. RaJa enforces source

code randomization by taking care of code interference between JavaScript and other server-

side programming languages. All source randomization is carried out using the Mozilla

JavaScript engine, SpiderMonkey, augmented with two simple rules to account with code

mixing between JavaScript and PHP. To test the effectiveness of the engine in randomizing

complex sources, we deploy it in four popular large web applications. RaJa manages to ran-

domize 90.5% of identified JavaScript in approximately half a million lines of code, mixed up

with JavaScript, PHP and markup.

We evaluated RaJa in terms of performance and attack coverage. Our analysis suggests

that (a) RaJa imposes a fixed overhead of a few tens of milliseconds per page, which is not
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the dominating overhead (less than a roundtrip in today’s Internet), (b) imposes negligible

overhead in the browser side and (c) can detect all attacks hosted by XSSed.com, which refer

to web sites that are still vulnerable.

10.2 Network Level XSS Detection

In addition, we presented xHunter, a network-level XSS detector that is based on signatures

produced by JavaScript syntax trees.

10.2.1 xHunter

xHunter is a tool that is designed for processing large web traces and isolating suspicious

URLs that contain XSS attack exploits. xHunter tries to identify parts contained in a URL

that produce a valid JavaScript parse tree. If a fragment produces a syntax tree of a certain

depth, then the URL is considered suspicious.

xHunter is not meant for providing defenses against XSS attacks. It rather assists in

collecting properties for performing studies related to XSS attacks. For example, xHunter

can process network traces collected from various sensors distributed all over the world and

give answers to questions like How often web sites are targeted with XSS attacks? or Which

web sites are the targets?.

We analyzed all technical challenges concerning the implementation of xHunter and eval-

uated the prototype. We processed about 11,000 URLs that contain XSS exploits, collected

from XSSed.com, and 1,000 benign URLs collected from a monitoring point in an educational

organization with about 1,000 users. The results suggest that xHunter has less than 3.2% of

false negatives and about 2% of false positives.

10.2.2 JavaScript-based Signatures

Using xHunter we presented an extensive study of 12,000 web attacks hosted in XSSed.com.

All these incidents have been recorded in the period of the last three years. Our study

aimed at drawing a finer picture about the properties of real web exploits. We showed that
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even the more frequently accessed web sites, the ones with an Alexa rank below 1,000, are

vulnerable to web exploitation. We showed that many web applications that communicate

over an encrypted channel can be penetrated using a web exploit. We showed that web

vulnerabilities are not always repaired quickly. Finally, we showed that a significant fraction

of web exploits is not based on injecting markup elements and thus it is hard to be captured

using regular expressions. We performed an analysis based on JavaScript syntax trees in this

set of exploits and we created a rule-set with 18 signatures, expressed as a series of JavaScript

tokens. This work can be beneficial to network-based IDSs which use more sophisticated

engines for identifying malicious patterns.

10.3 Network Flow Contracts

Finally, we addressed problems stemming from the massive collection of digital traces related

to every user’s daily interaction with the Internet. We formed threat models where fake infor-

mation injected in a log file can be used as evidence for incriminating an unsuspecting user.

We further proceeded to present and evaluate Network Flow Contracts, an architecture that

can prove if a network access has actually taken place. An ISP providing NFCs, can guaran-

tee that the network activity of each subscriber has been logged with the user’s verification.

More precisely, the ISP terminates all connections that have not been digital signed by the

subscribers. Furthermore, we presented a minimal version of NFCs, specifically designed for

web traffic, which requires the addition of an HTTP header, X-Signature, for holding the

digital signature of every web request. Finally, we discussed Dig Encryption, a scheme for

storing encrypted information that can be resistant to dictionary attacks.
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Appendix A

Publications

This thesis has produced several publications in peer-reviewed conferences and journals.

The research associated with exploiting issues in social networks is published in the fol-

lowing publications:

Elias Athanasopoulos, Andreas Makridakis, Spyros Antonatos, Demetres Antoniades,

Sotiris Ioannidis, Kostas G. Anagnostakis, and Evangelos P. Markatos. Antisocial

Networks: Turning a Social Network into a Botnet. In Proceedings of the 11th

Information Security Conference (ISC 2008). September 2008, Taipei, Taiwan.

Andreas Makridakis, Elias Athanasopoulos, Spiros Antonatos, Demetres Antoniades,

Sotiris Ioannidis, and Evangelos P. Markatos. Understanding the Behavior of Ma-

licious Applications in Social Networks. In IEEE Network Special Issue on Online

Social Networks (September-October 2010).

The research associated with the return-to-JavaScript attacks is published in:

Elias Athanasopoulos, Vasilis Pappas, and Evangelos P. Markatos. Code-Injection

Attacks in Browsers Supporting Policies. In Proceedings of the 3rd Workshop on

Web 2.0 Security & Privacy (W2SP). May 2009, Oakland, California.

The research associated with applying ISR for countering code injections in web applica-

tions is published in:
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Elias Athanasopoulos, Vasilis Pappas, Antonis Krithinakis, Spyros Ligouras, Evangelos

P. Markatos, and Thomas Karagiannis. xJS: Practical XSS Prevention for Web

Application Development. In Proceedings of the 1st USENIX Conference on Web

Application Development (WebApps). June 2010, Boston, Massachusetts.

Antonis Krithinakis, Elias Athanasopoulos, and Evangelos P. Markatos. Isolating

JavaScript in Dynamic Code Environments. In Proceedings of the 1st Workshop

on Analysis and Programming Languages for Web Applications and Cloud Applications

(APLWACA), co-located with PLDI. June 2010, Toronto, Canada.

Elias Athanasopoulos, Antonis Krithinakis, and Evangelos P. Markatos. An Architec-

ture For Enforcing JavaScript Randomization in Web2.0 Applications (short

paper). In Proceedings of the 13th Information Security Conference (ISC). Boca Ra-

ton, Florida, October 2010.

The research associated with xHunter is published in:

Elias Athanasopoulos, Antonis Krithinakis, and Evangelos P. Markatos. Hunting

Cross-Site Scripting Attacks in the Network. In Proceedings of the 4th Workshop

on Web 2.0 Security & Privacy (W2SP). May 2010, Oakland, California.
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