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Abstract

The growing adoption of network encryption protocols, like TLS, has altered the scene of
network traffic monitoring. With the advent and rapid increase in network encryption
mechanisms, typical deep packet inspection systems that monitor network packet pay-
load contents are gradually becoming obsolete, while in the meantime, adversaries abuse
the utilization of the TLS protocol to bypass them.

In this work, we propose a pattern language to describe packet sequences for the pur-
pose of fine-grained identification of events even in encrypted network traffic. The first
use case for our pattern language is the identification of application-level events in en-
crypted network traffic. We demonstrate its expressiveness with case studies for distin-
guishing messaging, voice, and video events in Facebook, Skype, Viber, and WhatsApp
network traffic. The second use case for our pattern language is the identification of in-
trusions and suspicious events in encrypted network traffic. Similarly, we investigate its
expressiveness with case studies for distinguishing events originating from penetration
tools, such as password cracking, or botnet communications. We provide an efficient im-
plementation for the proposed pattern language, which we integrate into two different
DPI systems. We evaluate the proposed pattern language with respect to the level of ex-
pressiveness and the processing performance. Finally, we demonstrate that the proposed
language can be mined from traffic samples automatically, minimizing the otherwise high
ruleset maintenance burden.

Except for our passive analysis approach, we actively contact IP addresses known to
participate in malicious activities, since we aim to understand the botnet ecosystem in the
wild. We utilize an open-source tool for active probing and TLS fingerprint construction.

Based on packets acquired from TLS handshakes, server fingerprints are constructed dur-
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ing a time period of 7 months. The fingerprints express servers’ responses to a sequence
of several ‘ ‘TLS Client Hello’’ packets with different TLS attributes and we investigate
if it is feasible to detect suspicious servers and re-identify other similar within blocklists
with no prior knowledge of their activities. Based on our findings, we can see that fin-
gerprints originating from suspicious servers are repetitive among similarly configured
servers, while it is rare to overlap with fingerprints that correspond to legitimate domains.
The findings of our measurement study encourage the utilization of actively generated
TLS fingerprints for detecting malicious command and control servers in the wild.

Subsequently, we present the literature that manages to perform network traffic anal-
ysis and inspection after the ascent of encryption. We observe that the research commu-
nity has already started proposing solutions on how to perform inspection even when the
network traffic is encrypted and we review these works. We present the techniques and
methods that these works use and their limitations.

Lastly, we do not omit to examine the countermeasures that have been proposed to
circumvent traffic analysis and we discuss about our system’s limitations related to traffic

analysis resistance.

Keywords: Encrypted traffic analysis, Network monitoring, Packet metadata, Passive traf-
fic inspection, Mobile applications, Intrusion detection, Active probing, TLS fingerprint-

ing, CnC server characterization, Traffic analysis resistance

Supervisor:
Sotiris Ioannidis
Associate Professor
School of Electrical and Computer Engineering

Technical University of Crete



ITepiAndn (Abstract in Greek)

H ovveywg avamtuoodpevn xoblépwon Tmv TEWTOXOAA®Y YL TNY XQUTTTOYPGPNOoT
g %xivnomg Tov dtxtdouv (6Ttwe to TLS TPWTOX0AN0), éxel aANdEEL Tor dedopéva oTny
emonTELR TOL dxTOOL. Me TN paydalo adENGT TWY UNYOVLOUKDY XPLTTTOYPAPNONG, T
TAPASOOLOXA CLOTNUATA YLo ETLOEWENON TG xlvnong Tov dtxTdoL ToL oTNELlovTaL
oty emeEePYnolor TWY TEPLEXOUEVWY TWY TTOUXETWY, OTASLOXA YEVOLY TNV CTTOTEAE-
OLATIXOTNTO TOVG, XOOWE TTAPAAANAL, ®OXOBOVAOL YPNOTEG TOL SLUTOOL EXUETOANEDO-
VTOL TV XPUTITOYPAPNON YLOL YO XPVPOLY TLG SPAUTTNELOTNTES TOUG KO VO ATTOPVYOLY

™V QVEVPEDY] TNG TTAPOLGLS TOVG.

e aUTY TNV EPYOOLA, TTPOTE(VOLUE Uit YAWOOK TTPOTUTTWY YLO YO TTEPLYPAPOVUE
Toe LOTIPBor TTOL LTTAPYOLY OTLG OXOAOLOIES TTAXETWY ALXTVOL, LE GXOTO TV ASTTTOUE-
oM owiyxvevon oLUBAYTWY oxOUo xoL ge xivnomn SxTVOL TOL EXEL XPLUTTOYPOPNOEL.
H mpw™n mepintwon ypnong mov eEetdlovpe eival v ASTTOUEPNG aviyveLoT SP0oTN-
OLOTNTOG EQPOPROYWY OXTOWONG YENOTWY %ol ETULXOLVWVING. Aeglyvovpe Twg elvor
dvvatn N Onulovpyia piog TETOLOG YAWOOOS TOL VO TEPLYPOPEL UE EXPEUOTIXOTN-
T EVEPYELEG OTIWG TNV OVTOAAXYY] UNVOUATWY XAL TNV ETUXOVWVIA LECW XANONS M
BrvteoxAnomg yenotpomolwvtog Tig dtadedouéves spappoyés Facebook, Skype, Viber,
WhatsApp. Mia 3edtepy mepimtwon xeNong YLtoe T YAWOOK TEOTOTWY OV TPOTE-
{vovpe elvot N aviyveLOY TEPLOTATIXWY ELOBOAWY OE CLGTNUATH ETOTTEVOVTOS XLVNOT
OLxTOOL TOL Elval XPLTTTOYPUPNUEVY. ‘OTTWG XL TNV TEONYOVUEVY] TTEPLTTTWON, €Ee-
TALOLUE OV ELVOL EQPLUTO, XOL OV VOL OE TL AETTOUEQELN, VOL OVOLYVWPELOOLUE TN dpot-
oTNELOTATOL TTOL TEPOEPYETOL aTth epYaheio eioduang (penetration tools) 1A emixotvw-
viow dxtdwy TpoYPoppdTwy pourdt (botnets). Mopéyovpe piow amodoTins; LAOTOIMOY
YO CVTY TNY YADGOO TEOTUTTWY, TNV OTOLOL EVOWUOTWYOLUE GE 3V0 SLOPOPETLXA

ovoTNUoTo emiewpnong xivnong Tov dtxtdov. AELoAoyolue Ty LAOTOLNON LOG XON-
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OLUOTIOLWVTOG T XPLTNPL TNG amod0oms Téco oe emimedo opbdtnrag xal axpifeiag,
000 %o og emimedo eMIO0ewY. TEAOG, JelYVOLUE TG M YAWOGOK TTOL TTPOTEIVOLLE
umopel vo. ‘eEopuybel’ (data mining) avtépatoa, meptopilovtog To POPTO pyosiag yLo
™ SLOPOPPWAEY XOL CUVTNENOT EVOG UEYAAOL GLYOAOL OTO TEOTLTT.

H dradixacion TOL avo@EQaue oTNY TOEOTEVL TOERYPOPO, TEPLYQAPETAL OTTO
plor TofnTixod TOTOL eTOTTELXL XKoL AVAALOY] TWY TOXETWY OLxTOOoL. Emimpdabera,
onotpomotnoope pio o TopepPoatiy péhodo, EToL (YOTE Vo ETLXOLVWVYCOVUE E €-
Eumtnpetntéc néow dtevbvoewy IP mov Pploxovtar dtabeoipeg oe dnudoleg Aoteg pe
TIANPOQPOPLES YLow XaxOfBovAeg dpaatnoLtdtntes. O oxomdg pog eivor vor xaTtaAdBovpe
TO OLXOGVOTNULO TWY SIXTOWY TPEOYPOUUATWY PopToT (botnets). ZuyxexpLuéve, Xem-
OLULOTIOLODUE EVOL EQYOAELD AYOLXTOD XWOLXA YL VO TTaPAREOLUE amoTuTTOUaTo TLS
vior xabe €var amtd TOLG EEVTINEETNTESG TTOL ETILXOLVWYOVUE. LTNV EQELVOL [LOG XOLTO-
Qepape vo oLAAEEOLUE TTANPOPOPLEG oE évar Staotnue 7 unvey. To amotuTWpaTe
QUTA EXPEALOLY TLG ATOVTNOELS TWY EELTINEETNTWY o Kioe aAAnrovyto amd 10 “ TLS
Client Hello’’ punvdporto pe SLa@opeTixd yopaxtnototixd (m.y. éxdoon TLS , emt-
Aeypévog adyopLbuog xpumtoypdenong ®.T.A.). Avtd mov Yérovpe vo eEetdoovpe
glval M SLVUTOTNTO YO OVOYYWELGOLUE TNV LILOTNTO X0l SPACTNELOTNTO VTV TWY
eELTINEETNTWY YONOLULOTIOLWOVTAS LOVO QT TO XTTOTUTIWOUOTO, LECO. OE ALOTEG OTTO O~
TOTUTTOULOTA YLOL T OTTOLOL SEY EYOVUE TTPWTVTEPY] YVWOOT. MEGW TWY ATOTEAECUATWY
Ko, PAETOLUE TIWE TOL ATTOTUTIWUOTH TOL LTOAOYLLovToL, emovaioppBavovtol Ue-
ToED €ELTINEETNTWY TTOV CLUUETEYOVY GTYY (LA OLXOYEVELOL JXTOWY TTOOYQOUULATWY
pouttét (botnets). Emiong BAémovpe mwe omoviar dAANAOETUXOADTTTOVIOL UE KLTTOTL-
TOUOTO Ao eEVTNEETNTES YLt TOLG OTOLOVG Elval YVWoT] N 0p0Y yeNon Tovs. Ta
EVPNUATO AVTE ULOG TTLPOTPEVYOLY VOL Y ONOLLOTIOLNGOVUE LT TN ebodoroyio yio var
oVoryvWwELLOLUE X0 VO TOWTOTIOLOVUE EELTINPETNTES TTOL EUTIAEXOVTAL OE XAXOBOVAEG
3OO TNELOTNTEG.

TN OLVEYELR, TTAPOVOLALOVUE (it EXTEVN BLBALOYPOQPLYN LEAETN OYETLXA UE TOL EQ-
YOAELX YLox TNV ETOTTTELX TOV SIXTOOL UETA TNV XAOLEPWOTN TWV TEWTOXOAAWY XPVTTTO-
YOAPNoNG. ALTO TTOL TTOPATNEOVPE EVOL TIWG TTAPOAO TTOL 1| ETTLOTNLOVLXT] XOLVOTYTA

gxet mpoTeivel pion TANDWEA TEXVLXWY YLa TO OXOTTO oV TO, LTTAPYOVY OXOUO EMAELDELS



XOL LELOVEXTNUATO.

Té€Nog, dev TOPOAELTTOVLE VO EEETACOVLUE TLG TEYVLXKES TTOU LTTAPYOLY YLOL TTV OTTO-
TPOTIN TNG OVAAVOYG TWY XPLTTTOYPAUPNUEV®Y ETILXOLYWILKY OE TEPLTTTWOELS XOXOB0V-
ANG XENONG xoL AOYOXQLOLOG. ZUINTAUE OV TO GVOTNUA LoG UTTOPEL Vo avTamteEENDeL

0E TETOLEG TEPLTTTWOELG.

AéEeig KAedta: Kpumrtoypapnuévn xivnon dixtdov, Emorteion dixtdov, Metamin-
P0QOPLES TTAXETWY OLxTOOL, Emioxdmnoy dixtdov pe mabntixég texvixés, E@oppoyég
XWNTWY oLOXELWY, Evtomiouds eloPBoiwyy, [Mapepfotixy Siepedvnoyn Sixtdov, Amo-
tnwpo TLS mpwtoxdihov, Tlepiypoapn eEvmnpetntey CnC , Xvotipota Tov ovTL-

OTEXOVTOL OTNY AVAALGY] X{YNGNG SLXTOOL

Emtémne:
Ywtoeng lwavvidng
Avarinpwtng Kabnyntig
2yoA HAextpoAdywy Mrnyovixddy xot Myyovixewy YToAoYLoTwY

[MoAvteyveio Kpntrg
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Chapter 1

Introduction

The adoption of network encryption is rapidly growing. The 2019 Annual Report of Let’s
Encrypt [195] states that in just four years, global HTTPS page loads have increased from
39% to more than 80% [185]. In 2019, one year after TLS 1.3 been published as an RFC [184],
IETF reports that its adoption is rapidly growing with a 30% of Chrome’s Internet connec-
tions to negotiate TLS 1.3 [187]. Even though network encryption is crucial for the protec-
tion of users and their privacy, it naturally introduces challenges for tools and mechanisms
that perform deep packet inspection and rely heavily on the processing of packet payloads.
Typical applications of deep packet inspection are packet forwarding and 17 filtering [105,
174], while it is a vital operation in intrusion detection and prevention systems [202-204].
In addition, the majority of content and service providers perform network analytics using
deep packet inspection (DPI) to improve network performance and provide good quality
of service and experience to their users. However, with the widespread adoption of net-
work encryption protocols, solutions that rely on retrieving meaningful information from
packet payload contents are becoming less and less effective and new mechanisms must

be employed to keep up with network encryption.

In the meantime, network encryption continues to be abused by malicious actors. Again
in the 2021 TLS Telemetry Report [212], we can see that the proportion of phishing sites
using HTTPS and valid certificates has risen to 83%. The ThreatLabz State of Encrypted
Attacks Report estimates that more than 85% of attacks were encrypted in 2022 [217].
Moreover, although DNS over HTTPS (DoH) and DNS over TLS (DoT) have been proposed
to promote user privacy [52], they have been exploited by Command and Control (CnC)

servers that hide their communications [211]. Malware continues to be a crucial problem
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in the Internet [60] and network encryption makes it more difficult for malware detection
systems to identify them. Typical network intrusion detection systems (NIDS), such as
Snort, inspect packet headers and payloads to report malicious or abnormal traffic behav-
ior. In encrypted packets! though, the only information that makes sense is (i) TLS hand-
shake packets and (ii) TCP/IP packet headers (the data transmitted in packet payloads is
encrypted). So, even popular intrusion detection systems seem to inadequately inspect
encrypted connections. The SSL Readme page of Snort, for instance, reports that when
inspecting port 443, “only the SSL handshake of each connection will be inspected” [201].

Recently, machine learning techniques are widely used for traffic classification, net-
work analytics and malware detection [7,53, 70, 74, 106, 124]. The majority of these works
show that despite having encrypted payloads in network packets, we are still able to clas-
sify network traffic even in a fine-grained manner [14,23,90]. Packet headers contain infor-
mation like IP addresses, port numbers and packet data sizes. Flow duration and packet
inter-arrival times are time-related features that are relevant in encrypted traffic analysis
and can be easily computed. When properly combined, packet metadata can offer valu-
able traffic insights [7].

In this work, we thoroughly examine the state-of-the-art in network traffic analysis
and inspection after the vast adoption of encryption and we identify the limitations of the
proposed solutions. The vision of this work is to address the shortcomings that exist in the
literature and propose approaches for practical and effective traffic analysis in the era of
fully encrypted communications. In this dissertation, we employ passive and active traffic
scanning techniques to investigate network characteristics after encryption. The main
goal for our work in Chapter 2 is to enable practical network inspection for encrypted
network packets (using passive network analysis), while the goal for our work in Chapter 3
is to collect valuable information and gain insights related to the activity of C&C servers
(using active network scanning).

In Section 2.1, we focus on analysing encrypted traffic generated by Over-The-Top
(OTT) mobile applications. Traditional DPI implementations can only extract very coarse-
grained information for the majority of such traffic. Its analysis, however, is an integral
operation for many network systems and needs to be improved to offer detailed traffic

metrics for OTT applications. We implement a system that is able to extract essential in-

'with encrypted packets, we refer to TCP packets that are secured using the TLS protocol.
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formation from encrypted traffic generated by mobile applications. Packets contain meta-
data usable even with encrypted traffic, such as packet sizes—information that can be
extracted from the packet headers.

In Section 2.2, we focus on the identification of intrusion attempts on encrypted net-
work traffic using packet metadata patterns. We examine the automatic generation of ex-
pressive signatures, which are compiled into an Aho-Corasick automaton that enables si-
multaneous multi-pattern matching. We evaluate the effectiveness of the signatures and
we integrate them into an intrusion detection engine.

In Chapter 3, we generate TLS fingerprints using JARM [194], an open-source tool for
active server probing. JARM fingerprints are used by popular Internet scanners, such as
shodan [219] and censys [220]. Our goal is to provide a long-term measurement study of
botnets, using C&C server information that is available in public datasets [214,216].

In Chapter 4, we present the works that we find in the literature that are able to perform
traffic processing and inspection even when the network is encrypted. We examine the
use cases of these works (e.g., network analytics) and how authors achieve to implement
such systems. Having no visibility over the packet payload contents introduces major chal-
lenges. Thus, goal of this literature examination is to identify the means to achieve en-
crypted network traffic analysis and inspection effectively. This study will help the reader
of this dissertation to (i) understand the challenges of traffic inspection when the network
traffic is encrypted or tunnelled, (ii) discover the uses cases and applications of encrypted
traffic analysis, (iii) acquire knowledge on the methods that are used to achieve encrypted
traffic analysis, (iv) deduce which techniques are appropriate respecting the objectives of
a system, (v) recognize the constraints each method presents, and finally, (vi) come across

with the publicly available datasets.

1.1 Objectives and Thesis Statement

Since this work is divided into passive and active network monitoring and analysis, we
partition this section into two pieces.

First, the objectives of our work on passive traffic analysis are the following: (i) process
encrypted network packets, (ii) identify the underlying activity in a fine-grained manner

with high accuracy, (iii) maintain an expressive yet simple enough language to facilitate
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automated mining, and (iv) take advantage of modern hardware architectures to enable
real-time processing. In this part of the dissertation, we aim to provide valuable insights
on the network traffic shape after the growth of network encryption. We have examined
the literature and we have identified that there is a gap in practical solutions that can pro-
cess network traffic and report events in real-time using simple and straightforward tech-
niques. Thus, in this dissertation, we propose a methodology that enables fine-grained
inspection of encrypted network traffic by monitoring packet metadata patterns to indi-
cate specific events or activity. We show that our methodology can be applied in different
use cases and applications, from application analytics to intrusion detection. We inte-
grate the patterns and signatures produced into two high performance DPI systems and
we evaluate the methodology effectiveness and the processing performance.

Second, the objectives of our work on active network scanning and analysis are the
following: (i) contact servers characterized by malicious activity, (ii) collect the packets
exchanged during this communication and construct a fingerprint that corresponds to a
specific server, (iii) export communication patterns between servers of the same botnet
family, (iv) re-identify servers of specific botnet families, (v) study the evolution of such
servers in time. In this part of the dissertation, we aim to build a database with TLS char-
acteristics and configurations of malicious servers on the Internet with ultimate goal to
re-identify them without prior knowledge on the fly. Also, we examine the evolution of

such servers to evaluate this approach.

Thesis Statement In this dissertation, we demonstrate that traffic inspection is still pos-
sible, even after the vast adoption of network encryption, simply by monitoring the se-
quences of packet payload sizes. We show that integrating this functionality into a DPI en-
gine enables real-time processing, which is applicable in diverse test cases, such as usage
analytics and intrusion detection. Finally, we take advantage of the fact that TLS finger-
prints can reveal the identity and activity of CnC servers to perform a measurement study

of botnet configurations based on those fingerprints.

1.2 Contributions of this Dissertation

The key contributions of this dissertation are the following:



1.3. Outline of Dissertation 5

e We present a practical methodology to collect, label, and analyse encrypted traffic
generated by popular mobile applications and vulnerability scanners to identify us-

age events and intrusion attempts (Chapter 2).

e We propose an expressive pattern language to describe packet metadata sequences
that signify such events and we confirm its effectiveness experimentally. We demon-

strate that our pattern language is amenable to automated mining (Chapter 2).

¢ We integrate our pattern language with two DPI engine implementations to evaluate

its performance against real, high-volume network traffic (Chapter 2).

e We probe malicious servers and we construct a database of fingerprints based on the
exchanged client-server TLS handshake packets. Fingerprints are actively produced

on a daily basis for 7 months (Chapter 3).

e We present the evolution of IP addresses that participate in botnets and the TLS fin-

gerprints constructed during a 7-month period (Chapter 3).

¢ We classify unknown TLS fingerprints from suspicious server IP addresses found in
two blocklists (with no prior knowledge of activity), based on our botnet fingerprint

database (Chapter 3).

e We compare the constructed fingerprints from malicious servers against the finger-
prints of legitimate servers. We show that the effectiveness of threat hunting with

outdated fingerprints can be reduced. (Chapter 3).

e We present an extensive literature examination and propose a taxonomy for the state-

of-the-art on encrypted traffic analysis (Chapter 4).

1.3 Outline of Dissertation

In Chapter 2 we present our work with respect to encrypted traffic inspection using packet
metadata patterns. Specifically, we evaluate our approach using two different use cases:
(i) network analytics in Section 2.1 and (ii) network security in Section 2.2. Then, in Chap-

ter 3, we perform active probing for C&C server characterization. In Chapter 4, we review
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the state-of-the-art in encrypted traffic analysis. Finally, in Chapter 5 we discuss several

aspects of this work and its limitations.



Chapter 2
Identification of Events on Encrypted
Network Traffic

In this section, we examine the analysis of encrypted traffic generated by diverse applica-
tions to demonstrate that it is still possible to inspect network traffic, even after the vast
adoption of network encryption. Specifically, we focus on two different use cases: (i) mo-
bile application usage analytics and (ii) network intrusion detection. Traditional DPI im-
plementations can only extract very coarse-grained information for the majority of such
traffic. Its analysis, however, is an integral operation for many network systems and needs
to be improved to offer (i) detailed traffic metrics for mobile applications and (ii) effec-
tive intrusion detection. Network packets contain metadata usable even with encrypted
traffic, such as packet timestamps and sizes—information that can be extracted from the
packet headers or timed. To this end, we perform DPI over encrypted traffic generated by
mobile applications, vulnerability scanners and botnets by inspecting patterns in network

packet metadata.

2.1 Use Case: Application Usage Analytics

First, we focus on using patterns of packet size trains to identify OTT application events
such as messaging, voice and video calls over encrypted traffic (Section 2.1.1). We evalu-
ate the effectiveness of our approach in Section 2.1.2. We provide a full implementation
as part of a DPI engine supporting rulesets with packet train patterns—matched using an

automaton consuming packet sizes—on top of traditional substring and port number pat-
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terns, to efficiently match and report events in encrypted network traffic (Section 2.1.3).
Finally in Section 2.1.4, we discuss about the automation of the pattern generation. Fig-

ure 2.1 shows a high-level overview of the approach that we follow.

Network Flow |=%| Signatures
Generation l

- Packet filtering S Application
- Flow-to-Process l

matching

- Traffic trace
- Netstat log

Event
DPI Engine |—»| Reporting

Figure 2.1: High-level overview: Traffic samples are collected offline and then signa-
tures are created either manually or using data mining. The signatures are
fed to our DPI engine and compiled into an automaton for execution on
live traffic keeping only usage statistics.

2.1.1 Pattern Language

During our analyses, we observed that specific sequences of packet payload sizes reliably
signify discrete events inside an application. In this subsection we describe our proposed

pattern language to express such patterns in network traffic.

Design Goals

We aim for an expressive yet simple enough language to facilitate the automated mining
of rules. While offline mining techniques can be involved during the construction of the
rules, we need to support very efficient and low-latency evaluation of the rules at runtime
on live traffic for use in a production quality DPI system. Another consideration for a prac-
tical system is to minimize the amount of state information that a DPI engine needs to
maintain per flow in order to evaluate patterns across packets of the same flow. These
requirements led us to a simple regex-inspired formulation applied on trains of observed
packet sizes. The advantage of our approach is that it can be implemented with an automa-
ton without the need to retain previously observed packet sizes to support backtracking,

and that it is expressive enough to capture the traffic features of interest.
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Table 2.1: Examples of application event rules.

Application Event Rule

WhatsApp Voice call 3{1,3}, 56-60{1,3}, 400-800

WhatsApp Video call 3{1,3}, 56-60{1,3}, 31,3}, 117 OR
3{1,3}, 56-60{1,3}, 3{1,3}, 144

WhatsApp  Chat message 3{1,3}, 52

Pattern Language Specification

Table 2.1 displays some examples of rules that we extracted during our analysis phase.
The proposed pattern language uses a regex-inspired syntax, and is easy to follow, since it
resembles standard regular expressions. When a network flow contains such sequences of
these pre-defined payload packet sizes, expressed through a rule and in conjunction with
any other traffic characteristics such as port numbers or substrings, then the application
event is reported. For instance, when a captured network flow contains a series of two
packets with payload sizes 3 bytes and 52 bytes respectively, then our system reports the
existence of an outgoing chat message.

In order to deal with retransmitted TCP packets we could either (i) normalize traffic be-
fore applying the rule by discarding such packets or (ii) form the expression to handle the
retransmitted packets, accordingly (like the rules in Table 2.1). The displayed expressions
are able to handle retransmitted packets having a repeat range {1,3}, where 3 is the upper
bound (the maximum number of retransmissions). However, handling retransmissions
through the expression might be risky. Having retransmitted packets is an unpredictable
network behaviour, so we might lose an application event reporting solely due to a not
properly defined upper bound in the repeat range of an expression. Thus, we choose to

handle retransmitted TCP packets by discarding them in a packet filtering phase.

2.1.2 Effectiveness Evaluation

In this subsection we demonstrate the expressiveness of the proposed pattern language by
manually generating pattern signatures for a set of application events and evaluating their
accuracy. We used 25% (randomly chosen) of the ground truth samples as a reference for

the human analyst, and the remaining 75% for the accuracy evaluation (§2.1.2).
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Flow Sample Collection Mechanism

We divide the mobile application network traffic into flows. A network flow is represented
by the standard 5-tuple containing (i) the source IP address, (ii) the source port number,
(iii) the destination IP address, (iv) the destination port number and (v) the protocol. A
network flow then, consists of the packets matching a certain 5-fuple. To categorise the
flows generated by different mobile applications, we need further information. This infor-
mation should include either the domain, the process name or the process id that relates
to the specific network connection. There are multiple ways to achieve this. For instance,
other approaches, like [23], do domain filtering, leveraging the WHOIS protocol. We chose
to employ the process id in order to obtain the required information about each network
flow. In the following subsection we present how we implemented the network flow filter-

ing.

Flow-to-Process Matching Netstat [176] is a command-line network utility that can dis-
play among others, information about network connections. Having superuser privileges,
someone can use netstat to determine the process id (PID) and process name of the pro-
cess that owns the connection socket. In Android devices, netstat is available via the
BusyBox application [175].

To collect all necessary information about each connection established during the net-
work traffic trace collection, we continually invoke netstat and store the output to a file
that will be later used for the flow-to-process characterisation phase (flow/process corre-
lation), during which flows are assigned to their process and (and the corresponding PID),
generating a 7-tuple, with the following format: {process name, process id, source IP ad-

dress, source port number, destination IP address, destination port number, protocol;.

Packet Filtering In order for the TCP protocol to deliver data reliably, it offers many
mechanisms to detect and avoid unpredictable network behaviour, like packet loss, dupli-
cation or reordering. In the proposed methodology, we choose to discard packets that do
not offer substantial information to the flow (e.g. retransmitted packets). In our proposed
method, we focus entirely on handling and processing packet metadata. This means that
we do not take into consideration the packet payload, since we assume that it is encrypted.

The information that we handle lays solely on packet metadata, such as the packet direc-
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Table 2.2: The characteristics of the mobile devices that we used to collect our dataset.

Device Model Android Version Kernel Version
Sony Xperia D5503 Android v.5.1.1 3.4.0-gd26777b
Xiaomi Redmi 3s Android v.6.0.1 3.18.20-g76f906f
Xiaomi MI Note LTE Android v.6.0.1 3.4.0-gf4b741d

Xiaomi Redmi Note 3 Pro Android v.6.0.1 3.10.84-gda78349

tion and payload size. Thus, packets lacking payload do not provide any valuable informa-

tion to our method. To this end, we filter out ACK-flagged packets’.

Sample Traffic Generation

To avoid extracting overly specific application event patterns, we analysed traffic traces
generated during realistic usage of such applications. In addition, we used devices on

both fixed and mobile networks.

Device Variations To ensure variation, we make use of different devices, vendors, An-
droid and kernel versions, as shown in Table 2.2. We used four different Android mobile
devices, a Sony Xperia D5503 (Android v.5.1.1, kernel v.3.4.0-gd26777b), a Xiaomi Redmi 3s
(Android v.6.0.1, kernel v.3.18.20-g76f906f), a Xiaomi MI Note LTE (Android v.6.0.1, kernel
v.3.4.0-gf4b741d), and finally a Xiaomi Redmi Note 3 Pro (Android v.6.0.1, kernel v.3.10.84-
gda78349). In order to obtain full functionality and privileges, we used exclusively rooted
Android devices, with developer options enabled. Thus, we were able to install the BusyBox
application from Google Play store and take advantage of Unix utilities provided through a
single executable [175], as well as the Android tcpdump tool to locally capture network traf-
fic on the device [173]. In addition, we used Android Debug Bridge (ADB) version 1.0.39
and Wireshark 2.4.2. Due to toolset limitations, we did not include Apple devices in our

study.

OTT Application Events We chose four of the most widely used OTT Android applica-
tions to evaluate our methodology: (i) WhatsApp, (ii) Skype, (iii) Facebook Messenger and

(iv) Viber?. The applications’ versions are presented in Table 2.3. Since these applications

'We discard the TCP packets with only the ACK flag set. PUSH/ACK packets are kept.
2Through the dataset collection we make use of different application versions per application. This allows
us to verify the generalisation ability and scalability of our methodology.
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Table 2.3: The Android OTT applications’ versions for each one of the devices that

we used.
Device Model Facebook Messenger Skype WhatsApp Viber
Sony Xperia D5503 146.0.0.33.136 7.46.0.596 2.17.427 7.9.4
Xiaomi Redmi 3s 155.0.0.14.93 8.16.0.6 2.18.65 8.4.04
Xiaomi MI Note LTE 155.0.0.14.93 8.16.0.6 2.18.65 8.4.0.4
Xiaomi Redmi Note 3 Pro 155.0.0.14.93 8.16.0.6 2.18.65 8.4.0.4

are mainly used for communication purposes, we focused on identifying (i) outgoing chat
messages, (ii) voice and (iii) video calls through the encrypted network traffic. Of course,
our work can be extended to support other OTT application events, such as media ex-
change (e.g. photo sharing), as well as iOS devices.

Overall, we collected a set of over 350 samples®. Each individual sample simulates ei-
ther an exchange of an arbitrary number of outgoing messages (messaging), or a single
voice or video call using one of the aforementioned OTT applications. Then, for each sam-
ple we collected (i) a network packet trace, (ii) a file with the information of every TCP
socket that was open during the traffic capture and the process information that created
it, (iii) a screen recording and (iv) a file with the device’s system logs reported by the An-
droid ADB tool, named logcat. Each sample contains only a single application event type
(e.g. sampleO: Skype/messaging).

To validate, we compare the detected application events to the device’s system logs
that are included in the logcat output and screen recordings. Using the logcat file and
the screen recording we are able to cross-check the reported events with the actual ones.
Logcat is a command-line tool that dumps a log of the device’s system messages. We
extracted information such as audio hardware on/off, camera on/off and incoming chat
messages. Unfortunately, we were not able to identify a system event that matches an out-
going chat message. Thus, we had to use the screen recordings to inspect the actual time

of an outgoing chat message departure, as well as the quantity of the outgoing messages.

Accuracy Evaluation

Hit Rate Table 2.4 shows the resulting true positive (TP) rates. Each sample contains

only a single within-application event type (e.g. sample(O: Skype/messaging, sample1:

3These samples were generated using dummy accounts and non-personal mobile devices.
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Table 2.4: TP rates of our methodology. The percentages presented are extracted
through the comparison of the results of our methodology to the actual
ground-truth dataset.

Application Messaging Voice Video
Facebook Messenger 83% 96%  96%
Skype 88% 100%  75%
Viber 100% 54% 88%
WhatsApp 100% 92%  75%

WhatsApp/voice). When a signature reports a within-application event (messaging: 0 or
1, voice: O or 1, video: O or 1), then we compare it to the actual event of the application.
If the event is correctly reported, then the TP counter is increased. Otherwise, we have a
false positive (FP).

The TP rate of our methodology individually for each event is (i) 93% for outgoing chat
message, (ii) 86% for voice and (iii) 84% for video calls. The slightly lower TP rate for voice
and video calls, is due to a trade-off with FPs*. We discovered that, for all applications
under investigation except Viber, video-related flows included voice-related flows as well,
and, thus, a video event includes also a voice event. On the other hand, our signatures for
Viber voice and video events do not follow this trend as they are not complementary to
each other. Thus, we can reach the interesting conclusion, that the core implementation

of the Viber application is different from all the other applications under investigation.

False Discovery Rate In addition to true positives, another metric necessary for the eval-
uation of our methodology is the false positive rate for each application event. Reporting
mobile application events using only encrypted network traffic can be considered risky
since no easy cross-validation can be made. It is not only significant to correctly report the
existence of events, but also to not mistakenly report absent events as existent. Table 2.5
shows the false discovery rates of event reporting using our signatures®. False discovery
rates are always below 8%.

The choice of signature can significantly affect the trade-off between true positive and

false discovery rates. Having a relaxed signature definition leads to almost intact TP rates,

“In the following subsection, we discuss about how the signature formation affects the balance between
TP and FP rates.
SFalse discovery rate can be calculated as FDR = FP/(TP + FP)
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Table 2.5: This table presents the false discovery rates of our methodology. The “Mes-
saging FDR” column shows the percentages of erroneous messaging re-
porting in voice or video samples. Respectively, “Voice / video FDR” col-
umn shows the percentages of erroneous voice/video reporting in messag-
ing samples.

Application Chat FDR Voice/Video FDR
Facebook Messenger 0% 1%

Skype 5.5% 4.2%

Viber 1% 2%
WhatsApp 8% 0.6%

with the cost of high false positives. Similarly, a more strict signature definition gives sat-
isfactory TP rates, keeping the false positives low. We settled on signature definitions that

result in hit rates over 84% and false discovery rates below 8%.

Granularity of Messaging Event Reporting Using our signatures for messaging report-
ing we achieve a total hit rate of 93%—again, compared to our ground truth data collec-
tion. This rate covers the correct identification of the existence of messaging events (i.e.
outgoing text messages) within a mobile OTT application. Moving to a more fine-grained
granularity, we are able not only to show that there is messaging activity within a network
traffic trace, but also to accurately report when an outgoing text message is sent, and count
the number of text messages sent during a messaging session, something we demonstrate

in Section 2.1.4.

2.1.3 Implementation and Performance

In this subsection, we discuss and evaluate an implementation of our proposed pattern

language.

Efficient Automaton

We implemented a data structure to efficiently match packet trains in a streaming fash-
ion against sets of patterns. It is inspired by string searching algorithms such as Aho-
Corasick [3] but instead of characters, it operates on packet sizes represented as 16-bit

integers.
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The Aho-Corasick algorithm is a string searching algorithm that locates elements of a
finite set of strings within an input text. It matches all strings simultaneously, so its com-
plexity does not depend on the size of the searched set. It works by constructing an au-
tomaton executing transitions for each character of the input text. To adapt the algorithm

for matching packet trains, we replaced the 8-bit characters with 16-bit packet sizes.

The algorithm constructs a finite state machine that resembles a trie with additional
“failure” links between the internal nodes. These failure links are followed when there is
no other matching transition and allow for fast transitions to other branches of the trie
that share a common prefix, without the need for backtracking using earlier inputs. This
allows for interleaving a large number of concurrent searches, such as in the case of net-
work connections, because the state of the matcher can be preserved across input data
observed at different points in time by storing a pointer to the current state of the automa-
ton with the state maintained for each connection. Otherwise, backtracking would require

us to maintain expensive per-flow state for previously-seen packet sizes.

For additional performance, a Deterministic Finite Automaton (DFA) can be built by
unrolling the failure links in advance and adding appropriate transitions to map each
failure directly to an appropriate node without the need to follow multiple failure links
at runtime. Expanding the automaton in this way did not provide an advantage in our
case where the automaton is executed for each packet size as opposed to each byte when
searching for substrings, and where the length and number of patterns is much less than
typical substring-based rulesets, so we opted for the more compact data structure where
the failure links are followed at runtime. For a very large number of patterns, however, this
optimization may be worthwhile.

We implemented packet-size repetitions with a range m — n as required by our pat-
tern language by expanding them to n — m + 1 separate patterns. To implement packet
ranges, we attempted at first to expand them into multiple individual 16-bit characters,
leading to excessively large automata in the presence of wide packet size ranges, such
as 100-200{3} which would expand to 100° distinct sequences. To avoid this we use
ranges instead of individual 16-bit characters for the arcs of the automaton. To simplify
the implementation, we preprocess the expressions to collect possibly overlapping ranges
used in them and extract a set of non-overlapping ranges that we use as the alphabet for

the automaton constructed. For example, rule 152-156{1,5},150-600 contains two over-
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lapping ranges, 152-156 and 150-600, which are expanded to an alphabet of three non-
overlapping ranges: 150-151, 152-156, and 157-600. Subsequently, the repetitions in this
example are expanded as shown in Figure 2.2.

152-156,150-151

152-156,152-156

152-156,157-600

152-156,152-156,150-151

152-156,152-156,152-156

152-156,152-156,157-600
152-156,152-156,152-156,150-151
152-156,152-156,152-156,152-156
152-156,152-156,152-156,157-600
152-156,152-156,152-156,152-156,150-151
152-156,152-156,152-156,152-156,152-156
152-156,152-156,152-156,152-156,157-600
152-156,152-156,152-156,152-156,152-156,150-151
152-156,152-156,152-156,152-156,152-156,152-156
152-156,152-156,152-156,152-156,152-156,157-600

Figure 2.2: Illustration of the complete expansion of rule 152-156{1, 5}, 150-600 into
a set of simple sequences of non-overlapping ranges. An alphabet of size
three is used, each character corresponding to the range 150-151, 152-156,
or 157-600.

DPI Engine Integration

We integrated the pattern matching data structure with our proprietary DPI engine that
uses an extensible signature language by implementing a plugin to add a new condition,
that we called packet_train. The signature language uses an event-condition-action model.
The DPI engine raises different events to which sets of conditions and actions can be as-
sociated with. The conditions and actions are implemented as plugins, and are free to
interpret their arguments and construct the necessary state objects that are evaluated on
each event. The rule engine itself handles the logic of the ruleset as a whole, and the plu-
gins are consulted for individual conditions. Each condition plugin declares the pieces of
information that it requires (such as payload or flow-tuple information) and the rule en-
gine ensures that the respective conditions are only used in combination with events that

provide the required information. One such event is the packet event, which contains
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information about packet payload and therefore packet size, that we make use of in our
extension. Other events include connection, which is raised by the connection tracker.
Information can be communicated across events by means of tags stored in the connec-
tion state, assigned by an action called tag and checked by a condition also called tag.
These can be used to chain together rules triggered on distinct events, for example a rule
could match a substring in a certificate to detect the application and tag the connection,
while later the tag can be used in the rule that uses the packet_train condition to avoid

evaluating flows from irrelevant applications.

Figure 2.3 illustrates a rule example. The conditions are evaluated as a conjunction.
Disjunctions can be expressed using multiple rules, or (if the condition itself supports it,
such as ours), with a list of arguments (Figure 2.4). The extension API provides hooks for
populating individual condition arguments into a shared object that is consulted once per
event and communicates back to the rule engine any matching rules. This facilitates con-

ditions performing simultanous matching such as those based on Aho-Corasick or hash-
tables.

facebook_video:
event: packet
conditions:
- port: 443
- packet_train: ’399{1,2}, 51{1,2}, 1000-1260{1,2}, 38’
actions:

Figure 2.3: Example of rule. The underlying data representation language used is YAML.

whatsapp_video:
event: packet
conditions:
- packet_train:
- ’3{1,3}, 48-60{1,3}, 3{1,3}, 117’
- ’3{1,3}, 48-60{1,3}, 3{1,3}, 144’
- ’3{1,3}, 48-60{1,3}, 3{1,3}, 102’

Figure 2.4: Example of rule with a disjunction of patterns handled internally by the
packet_train extension.
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Performance Evaluation

We evaluated the performance of the entire system experimentally using our proprietary
DPI engine in a live traffic test-bed. We used an HPE Proliant DL380 Gen9 server with two
Intel® Xeon® E5-2699 v4 CPUs at 2.20 GHz with hyper-threading enabled, providing us
with 88 logical cores (Icores), and configured with 1TB of RAM. The system has 4x40 Gbps
NICs, two on each CPU socket. CentOS Linux release 7.4.1708 with kernel RPM version
3.10.0-693.11.6.el7.x86_64 was used.

The DPI engine is configured to use 8 lcores for processing the traffic from the four
ports (two lcores per port). These Icores perform just sufficient packet decoding in order
to load balance the traffic internally to 58 lcores configured to perform traffic inspection.
These are the Icores running our implementation. The rest of the lcores in the system are

dedicated to other tasks such as logging and shell access.

The traffic load consisted of real mobile user traffic that varies throughout the day be-
tween 52-153 Gbps with an average of 109 Gbps, 20-25 Gpps and between 67-230K new
connections per second with an average of 161K/s. Throughout the experiments we con-

firmed that the system does not exhibit packet loss.

First we measured the baseline CPU utilization of the traffic inspection lcores using
mpstat over 1 minute intervals. For a traffic of about 130 Gbps at 1pm local time, we mea-
sured a CPU utilization of 34.2%. After enabling our DPI engine extension, and making
sure it is invoked for all packets, we measured 37.6%, an increase of about 10%. We also
took a closer look using the perf tool, to narrow down on the specific function perform-
ing our checks, called extension_packet_train_multiset_match. We measured it at 3%,
even without any actual patterns loaded. This number is an upper bound. If the automa-
ton is fed only packets for pre-screened traffic that belongs only to the application (using

appropriate signatures), the performance impact of our extension is expected to be less.

Subsequently, we loaded packet train signatures, increasing the number of signatures
in each experiment to measure the impact of the number of signatures on the CPU utiliza-
tion. We tried 1-5,10,15 and 20 signatures. The results were within the 2.7-3% range, with
significant variance and without any observable trend. This observation shows that the
bulk of the cost comes from the mere interposition of our extension into the DPI engine’s

pipeline and does not depend on the number of patterns, at least up to a number of 20
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patterns.

2.1.4 Pattern Mining

Rule Mining Methodology

In order to illustrate the robustness of our event signature approach as well as to permit
fast signature extraction for numerous application - event combinations, we automated
the process. The application event rules were extracted from the packet traces by using
frequent pattern mining (FPM) to detect frequent packet sequences and then correlat-
ing these patterns to the ground-truth events. This approach avoids the dependence on
packet statistical measures commonly employed by other studies [1,72,127]. In order to

extract the rules, the following steps are taken on the training dataset:

1. Pre-processing: All packets with a different process id than that of the application
under examination are filtered out. Similarly, as mentioned in the above, TCP re-
transmissions are filtered out. Finally, all local and remote IPs are considered as a

single local and a single remote IP, respectively.

2. Packet statistics: Afterwards, the absolute frequency of all pre-processed packet (source,
destination, payload length) is calculated, and packet tuples whose frequency is greater
than a predetermined percentile are mapped to unique identifiers (called items in
the following). All other packet tuples are grouped according to their source and
destination, as previously, but with the payload length segmented in 4 equally sized
buckets, and similarly mapped to identifiers. This step was taken so as to limit the ef-
fect of variable payload length on the pattern mining (e.g., a long chat message may

have a greater payload length than a shorter one).

3. Trace splitting: The packet traces were split to bursts (or sequences) of traffic (i.e.,
traffic with interpacket temporal distance less than a threshold, in this case set to
1 second) [1,127]. It should be noted that as one of the type of events investigated
is outgoing chat messages, a larger temporal threshold could potentially result in
multiple chat messages included in one burst (chat messages sent in quick succes-
sion). Furthermore, bursts not containing any of the events under investigation are

filtered out. This step is taken in order to divide the traffic to temporally correlated
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sequences, which, in turn, will be used as an input to the frequent pattern mining

algorithm.

4. Frequent Pattern Mining: Frequent pattern mining techniques are used to discern
the correct packet patterns corresponding to the events among potential noise. The
present methodology utilises closed sequential patterns (i.e., a pattern not strictly in-
cluded in another pattern of the same support) as potential application event rules
in order to avoid loss of information. The patterns are mined using the ClaSP algo-

rithm [47].

5. Rule Generation: Finally, the rules are generated by identifying which closed sequen-
tial patterns match well with the ground truth events (i.e., the pattern timestamp is

within a margin of the ground truth event timestamp).

In order to reduce the number of possible generated rules, the supersets of the above
matching patterns are used, and evaluated using the F; measure (i.e., placing equal em-
phasis to both precision and recall). Finally, the generated rule is used to detect applica-
tion events on the test dataset. The training dataset consists of 25% of the samples (the
same samples as those used for training in the main implementation as mentioned in
2.1.2).

It should be noted that the rules generated by the above mining approach differ to
those of the main implementation in that they take into account the direction of packet.
This can be easily included in the DFA engine by encoding outgoing packets with a preced-

ing minus sign to the payload size.

Rule Mining Evaluation

Table 2.6 shows the true positive rates achieved by the automated FPM methodology as
well as the difference to the main implementation results. It can be seen that the FPM
methodology outperforms the main implementation in all cases except Facebook where
it underperforms. Furthermore, from Table 2.7, it can be seen that the performance of the
two approaches on the false discovery rate metric is similar.

The FPM methodology is able to achieve accurate detection of distinct outgoing chat
messages with a true positive rate and false discovery rate (FDR) of 98.55% and 3.54%, re-

spectively, across all applications under investigation. Figures 2.5 and 2.6 show randomly
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Table 2.6: TP rates of the automated FPM methodology. The difference to the main
implementation is given inside the parentheses.

Application Chat Voice Video

Facebook Messenger  42% (-41) 54% (-42)  83% (-13)
Skype 100% (+12) 96% (-4) 100% (+25)
Viber 100% (0)  96% (+42) 100% (+12)
WhatsApp 100% (0)  100% (+8) 100% (+25)

Table 2.7: False discovery rates of the automated FPM methodology. The “Messag-
ing FDR” column shows the percentages of erroneous messaging report-
ing in voice or video samples. Respectively, “Voice / video FDR” column
shows the percentages of erroneous voice/video reporting in messaging
samples. The difference to the main implementation is given inside the

parentheses.
Application Chat FDR Voice/Video FDR
Facebook Messenger 0% (0) 3% (+2)
Skype 2% (-3.5) 8.4% (+4.2)
Viber 3% (+1) 2% (0)
WhatsApp 2% (-6) 3.3% (+2.7)

chosen packet captures from WhatsApp and Skype messaging activity. We choose not
to include the equivalent graphs for the remaining applications due to space constraints.
The vertical lines depict the logged timestamp of the outgoing chat messages, while Main
and FPM points show the detected events using the two proposed methodologies. The
slight temporal deviation of the detected events from the ground truth timestamp can be
explained from the fact that the outgoing message is not truly instantaneous, but rather
spans from the transmission to the delivery acknowledgement.

Figure 2.5 shows a case where both our rule generation methods were able to perfectly
detect the actual events, as opposed to the case shown in Fig. 2.6 where both false posi-
tives and false negatives are present. An interesting observation that can be derived is the
increased Skype traffic during the time window 10:39:06 - 10:39:15. During this time, the

user attempted to choose emoticons which were not pre-loaded.
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Figure 2.5: Packet capture of WhatsApp messaging activity. The vertical lines depict
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Figure 2.6: Packet capture of Skype messaging activity.
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2.2 Use Case: Network Intrusion Detection

In this section, we focus on the identification of intrusion attempts on encrypted net-
work traffic. We examine the automatic generation of expressive and fine-grained sig-
natures. The signatures are tailored for intrusion detection in encrypted networks and
are constructed using sequences of packet payload sizes (Sections 2.2.1 and 2.2.4). We
evaluate the effectiveness of the signatures and we present the results in Section 2.2.2. In
Section 2.2.3 we show how we modify a high-performance intrusion detection engine to
support the matching of packet metadata sequences. For the evaluation, we use two dif-
ferent datasets: (i) a dataset with packet captures from several penetration tools that we
collected in a controlled environment and (ii) a dataset of packet captures from IoT mal-
ware that is publicly available. A high-level overview of this work is presented in Figure 2.7.
In the offline phase, we (i) process the ground-truth dataset retrieved from [171] and the
pentool-dataset that we collected (§ 2.2.2), (ii) we generate signatures and (iii) we build the
automaton. In the online phase, we process the input traffic using our intrusion detection

engine that reports any suspicious activity identified by our signatures.

Offline phase

Ground-truth traffic

. — | Signatures generation |— | Automaton compilation
samples collection

Online phase

Incoming traffic Intrusion detection
collection reporting

Figure 2.7: A high-level design overview of this work.
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2.2.1 Signatures

A thorough examination of the literature and our own analysis, led us to conclude that
the inspection of sequences of incoming packet payload sizes can point to discrete events
that possibly signify an intrusion attempt within a network [90-92]. Figures 2.8, 2.9 and
2.10 show examples of how discrete events in network traffic can be revealed only by ob-
serving their patters of sequences of packet payload sizes. With signatures, we refer to se-
quences of packet payload sizes within a network flow. A network flow is characterized by
the typical 5-tuple {source IP address, destination IP address, source port, destination port,
protocol}. This mean that a signature is unidirectional. Signatures are matched against

incoming traffic anywhere in the network flow.
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Figure 2.8: Illustration of packet payload size sequences within a network traffic cap-
ture of (a) file scanning attempt using the “dirbuster” tool, during the first
1.7 seconds of the active network flows. Each bullet color represents a sin-
gle network flow.

In this section, we describe the signature language that expresses such network traffic
patterns. Our goal is to develop a simple signature language that is expressive enough and
enables automated mining, similarly to Section 2.1. Table 2.8 illustrates some signature
examples that we construct during our analysis. The proposed format is easy to follow.
An intrusion attempt event is reported, right after a network flow matches one or more
signatures. For instance, when different network flows contain a sequence of 4 packets

with payload sizes “22, 976, 48, 16” bytes respectively then our intrusion detection engine



2.2. Use Case: Network Intrusion Detection 25

1000+ . . : .

0

Q

5

o 800

(O]

N

» 600

©

3

<, 400

(o]

o

D 200

v

5 b 1 3 2 3 ;
O!) @ [ . ® @
0 250 500 750 1000 1250 1500

Packet arrival time (ms)

Figure 2.9: Illustration of packet payload size sequences within a network traffic cap-
ture of a ssh password cracking attempt using the “hydra” tool, during the
first 1.7 seconds of the active network flows. Each bullet color represents
a single network flow.
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Figure 2.10: Illustration of packet payload size sequences within a network traffic cap-
ture of alogin attempt to the web server using the “hydra” tool, during the
first 1.7 seconds of the active network flows. Each bullet color represents
a single network flow.

reports a password cracking attempt originating from the Hydra tool [193].

The proposed signature language can be extended by adding regular expression sup-

port for additional expressiveness. Yet, we decide to keep the signature language complex-
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Table 2.8: Signature examples. Each signature corresponds to a sequence of packet
payload sizes that must be matched against a network flow to report an
intrusion attempt event.

Tool/Malware Activity Signature
Hydra SSH Password cracking 22,976, 48, 16
Dirbuster File/directory scanning 608, 80, 155, 156
IRCbot Communication with C&C server 16, 23,19, 13
Mubhstik Communication with C&C server 78,15, 31, 47

ity to a minimum in order to facilitate the automatic signature mining procedure. Simi-
larly to 2.1.1, we normalize the network traffic by discarding retransmitted TCP packets in

a filtering phase, before traffic inspection.

2.2.2 Effectiveness Evaluation

In this section, we evaluate the effectiveness of the proposed signature language. The in-
trusion events that we examine come from activity originated by (i) penetration tools (i.e.,
pentool-dataset) and (ii) IoT malware (i.e., iot-malware-dataset). The traffic that charac-
terises the network activity of penetration tools is collected by us in a controlled environ-
ment and the traffic that characterises the network activity of IoT malware is retrieved
by a public repository [171]. For the pentool-dataset, we used 30% (randomly chosen) of
the packet captures for the signature generation, and the remaining 70% for the evalua-
tion. For the iot-malware-dataset, a big majority of the malware families that exist in the
dataset are contained in a single packet capture file. Thus, we split the network flows
into separate packet captures into (i) signature generation captures and (ii) evaluation
captures. The process is straightforward, since there are files that contain the necessary
information (e.g., which network flows contain a certain malware activity). Just like in the
pentool-dataset, we use the 30% of the total packet captures for signature generation and

the remaining 70% for the signature evaluation 6.

SWhile in machine learning approaches, it is common to use 70% of the dataset for training and 30% for
testing, we do the reverse to stress the effectiveness of our approach in cases of limited data.
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Traffic Processing and Filtering

We divide the network traffic collected during the attacks into network flows. As previously
stated, a network flow is characterized by the standard 5-tuple {source IP address, destina-
tion IP address, source port, destination port, protocol}. Since the network traffic from the
pentool-dataset is generated within a controlled and isolated environment and the IP ad-
dress of both machines is known, we can presume that the resulted flows in a packet cap-
ture indicate the traffic generated by the malicious machine during each corresponding
attack. Regarding the iot-malware-dataset, we use the available logs that describe each
attack and are available in the repository [171]. The iot-malware-dataset contains unen-
crypted network traffic, containing protocols like HTTP. Even though in HTTP traffic the
payloads are not encrypted, we follow the same methodology to produce the intrusion de-
tection signatures using packet metadata. The labels are produced after an analysis using
the Zeek network security monitor [204].

In our methodology we discard retransmitted TCP packets, since such packets do not
offer additional information to the flow. In addition, we assume that packet payloads are
encrypted and thus, our approach proposes processing only packet metadata (e.g., packet
payload size, packet direction). Packets that do not contain payload are also not processed

(TCP ACK packets), since they do not provide any valuable information for our methodol-

ogy.

Sample Traffic Generation

For the collection of the penetration tools dataset (i.e., pentool-dataset), we setup an envi-
ronment with two virtual machines. The first machine runs Kali Linux and the second ma-
chine runs a vulnerable Ubuntu distribution with DVWA [190] installed using a self-signed
certificate to enable HTTPS connections. The two machines are isolated from the network
to ensure that no other machine is affected and a safe intercommunication between the
two machines is established. The Kali Linux machine (IP address: 192.168.56.101) serves
as the malicious entity that communicates with the vulnerable Ubuntu machine (IP ad-
dress: 192.168.56.103) in order to perform various malicious activities (e.g., port scanning,
file/directory scanning, password cracking, sql injection). The tshark tool is installed on

the vulnerable machine and captures the incoming network traffic during the intrusion
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Attacker ’ N Victim
machine machine
192.168.56.101 192.168.56.103

Kali linux: Web server
Dirb, nikto, (DVWA,

sqglmap, hydra, self-signed
nmap, msfconsole certificate)
Logs intrusion Tshark for
event start time network packet
and end time capture

Figure 2.11: Illustration of our testbed setup for traffic collection.

attempts performed by the malicious machine. Figure 2.11 illustrates the testbed setup.

Table 2.9: Activities performed as intrusion attempts to the vulnerable web server.

# Tool Activity

1 Dirbuster Web content scanning in victim machine

2 Nikto Web server scanning in victim machine

3 Hydra Admin login attempt to web server in victim machine

4 Hydra Root login attempt to web server in victim machine

5 Metasploit Directory scanning to web server in victim machine

6 Metasploit File scanning to web server in victim machine

7 Sqlmap SQL injection to web server in victim machine

8 Nmap Detection of remote services version numbers

9 Nmap OS detection, version detection, script scanning, traceroute

We choose some popular vulnerability scanners to evaluate our methodology. Some of
the tools used for the intrusion events generation are DIRB [191], NIKTO [197], SQLMAP [188],
HYDRA [193], NMAP [198], and METASPLOIT [196]. We perform numerous instances of

attacks for different times and days within a one-month period. DIRB is a web content

scanner. NIKTO examines a web server to find potential problems and security vulnerabil-

ities. SQLMAP is a penetration test tool that enables SQL injection exploitations. HYDRA is

used for login cracking. NMAP is a utility that enables network security auditing. METAS-

PLOIT is a penetration testing software (we use the msfconsole, which is the metasploit

framework console). Table 2.9 presents the events generated. Overall, we collected a set
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of over 120 packet captures (half of these packet captures were generated using a different
Kali Linux distribution, to ensure that the signatures are resilient across OS/application
updates). Each individual packet capture simulates an intrusion attempt as described in
Table 2.9. For each packet capture, we log the start time and end time of each intrusion
attempt event.

We do not discuss in detail the testbed setup of the IoT malware dataset (i.e., iot-malware-
dataset) in this section, since a thorough description of the dataset is provided in the pub-

lic repository [171] by the creators. The events that we examine are presented in Table 2.10.

Table 2.10: Malicious activity as retrieved from the IoT-23 dataset [171].

#  Malware Activity

10 Mirai Connection of an infected device and a CC server
11 IRCbot Connection of an infected device and a CC server
12 IRCbot Attack from infected device to a host

13 Muhstik  Connection of an infected device and a CC server
14 Mubhstik Attack from infected device to a host

Signature Effectiveness

In this section, we evaluate the effectiveness of the signatures that are generated by our
methodology. For the evaluation, we use 70% of the total packet traces that contain a
single intrusion event (the remaining 30% packet captures were previously used for the
signature generation).

Each packet capture in the dataset contains only a single intrusion event type (as de-
fined in Tables 2.9 and 2.10). When a signature reports an intrusion event, we compare it
to the actual event. For instance, when a signature reports that “web content scanning”
probably occurs in a specific packet capture, we manually investigate the actual event. If
the intrusion attempt event that happens in the specific packet capture is the same as the
event that was reported, then we mark this report as correct. When an event is correctly
reported, we increase the true positive counter. If the report is incorrect, we increase the
false positive counter for the signature. The true positive rate (TPR) for each malicious
activity is presented in Table 2.11. For the pentool-dataset, the TPR of our signature gen-
eration methodology is 100% individually for each event. This means that the signatures

that are generated to report a specific intrusion attempt event can correctly identify the
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existence of this specific event. For instance, the signature that is generated for the iden-
tification of event no.1 “web content scanning in victim machine” using the dirbuster
tool, correctly reports the existence of such event in every packet trace that indeed con-
tains such event (signature TPR for event no.1: 100%). For the iot-malware-dataset, the
TPR fluctuates between 62% and 100%. Mostly, the signatures that cause a low TPR are ex-
ported by packet captures with limited network flows to contain a malicious activity. For
instance, the IRCbot network flows that contain a communication with a CC server are
1530 (event no.11 TPR: 100%) while the IRCbot network flows that contain an attack are
677 (event no.12 TPR: 62%).

Besides the true positive rate, we measure the resulting true negative rates (TNR) and
false discovery rates (FDR) for each intrusion attempt event. The validation of results
is challenging in encrypted network traffic. A network intrusion detection system must
be able to report any traffic behavior that is suspicious, while it is equally important to
not falsely report events that are not existent in the network. The false discovery rate of
our methodology is reported in Table 2.11. False discovery rate is calculated as FDR =
FP/(TP + FP). In detail, events no.I, no.2, no.7 and events no.10-no.14 are expressed by
signatures that perform very effectively, having high true positive rates and no false pos-
itives. Each signature that is generated by our methodology to identify each one of the
three intrusion events (events no.1, no.2 and no.7) contains no less than two sequences
of packet payload sizes. Thus, to report an event, a network flow must match each one
of the sequences that are contained within the signature. This makes the three signatures
(events no.1, no.2 and no.7) stronger than the remaining signatures that raise a number
of false positives. For each one of the remaining tools (i.e., hydra, metasploit, nmap), our
signature mining methodology produces a single signature. Each signature contains only
a single sequence of packet payload sizes, which makes it easier for the signature to be
matched against a network flow; something that could eventually present false positives.
Moreover, we observed that the signatures that were generated by our methodology for
two events of the same tool were identical. For instance, event no.3 and event no.4 (i.e.,
hydra tool) are described by the same sequence of packet payload sizes. Similarly, event
no.5 and event no.6 (i.e., metasploit tool) share the same signature as well as event no.8
and event no.9 (i.e., nmap tool). As a result, different events of the same tool are reported

simultaneously. For example, the false discovery rate is 11% for the signature of the event
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Table 2.11: Resulting True Positive Rates (TPR), True Negative Rates (TNR) and False
Discovery Rates (FDR) by the signatures examined.

# (Tool) TPR (in-dataset) TNR (normal) FDR (in-dataset) FDR (normal)
1 (Dirbuster) 100% 100% 0% 0%
2 (Nikto) 100% 100% 0% 0%
3 (Hydra) 100% 100% 11% 0%
4 (Hydra) 100% 100% 11% 0%
5 (Metasploit) 100% 100% 11% 0%
6 (Metasploit) 100% 100% 11% 0%
7 (Sglmap) 100% 100% 0% 0%
8 (Nmap) 100% 100% 11% 0%
9 (Nmap) 100% 100% 11% 0%
10 (Mirai) 100% 100% 0% 0%
11 (IRCbot) 100% 100% 0% 0%
12 (IRCbot) 62% 100% 0% 0%
13 (Mubhstik) 100% 100% 0% 0%
14 (Muhstik) 100% 100% 0% 0%

no.3, since the network traffic that is produced during an event no.3 is falsely reported
as event no.4, as well. Still, it is correctly reported as an event no.3. Minimizing the false
positives that an intrusion detection system presents is very important. At this point, we
highlight that the false discovery rate that is presented by some events (e.g., event no.3,
event no.5) is negligible, if we consider that these signatures correctly report the existence
of the tool and the traffic that it generates. Even thought the granularity of the event is
not fine-grained (the generated signature for the hydra tool can not distinguish between
events no.3 and 4), the signature is still able to correctly identify the existence of the traffic
that the tool generates in a network. In addition, we use normal HTTPS traffic samples to
measure the FDR for the signatures generated. These results are presented in Table 2.11
under the column FDR (normal). The samples that we used for this experiment are pub-
licly available [208] (packet captures used: CTU-Normal-20 — CTU-Normal-32). Correctly,
our signatures do not report any intrusion event in the normal traffic dataset, leading to

100% TNR and 0% FDR. .

Comparison to Snort rules As an additional evaluation step, we compare the signatures
generated by our methodology to the most relevant Snort signatures. We download the

latest version of the community Snort rules [210] and we extract the rules that match the
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Table 2.12: Comparison of the effectiveness of the rules that are generated by our
methodology to the effectiveness of the corresponding rules that are used

by Snort.

# (Tool) Our TPR Snort’s TPR
1 (Dirbuster) 100% 0%
2 (Nikto) 100% 0%
3 (Hydra) 100% -
4 (Hydra) 100% -
5 (Metasploit) 100% 0%
6 (Metasploit) 100% 0%
7 (Sqglmap) 100% 0%
8 (Nmap) 100% 0%
9 (Nmap) 100% 80%

same tools. More specifically, we have identified 101 metasploit rules, six nmap rules, one
dirbuster and one sqlmap rule. For hydra, we identified eight Snort rules, which seem to
target the Hydra malware and not the hydra tool — thus, we choose to exclude them from
the evaluation. Finally, since there was no rule for nikto, we used one rule that was present
in an older version of community snort rules. We executed Snort using the equivalent
Snort rules against the same network packet captures that we used for the evaluation in Ta-
ble 2.11. As presented in Table 2.12, only the nmap rule that corresponds to the event no.9
reported positively. Thus, it is apparent that Snort is not effective when performing against
encrypted network traffic, in contrast to our methodology that matches packet metadata
sequences and not packet contents. We do not execute Snort for the iot-malware-dataset,

since it contains network packets that are not encrypted.

2.2.3 Implementation and Performance

Avery efficient algorithm that popular signature-based intrusion detection systems use for
pattern matching is the Aho-Corasick algorithm. Pattern matching is the core operation
of any deep packet inspection system, such as a network intrusion detection system. A
deep packet inspection system dives into the network packet payloads in order to extract
sequences of characters, namely strings. These strings are compared against well known
patterns that describe, for instance, the communication between a known botmaster with

its bots.
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In our approach, we assume that the network traffic that should be inspected by our
intrusion detection system contains encrypted payloads. Thus, we do not extract any pay-
loads and we only process packet metadata. These packet metadata can be derived from
the contents of network packet headers. For example, even in a TLS protected connection,
the packet headers are not encrypted. As we have already mentioned, our methodology
uses packet metadata like the packet payload sizes (i.e., data transmitted in the packet)
and packet directions in order to generate signatures. We express the packet direction im-
plicitly, since a signature will match against one-directional network flows. A signature
that we produce contains sequences of packet payload sizes. These sequences of packet
payload sizes must be matched against the incoming network traffic in order to report an
intrusion attempt event that is described by the corresponding signature. Yet, packet pay-
load sizes are integers and can not be expressed as strings. Thus, integrating signatures of
packet metadata into a typical signature-based intrusion detection system that performs
deep packet inspection in packet payloads, is not trivial. In the following paragraphs, we

describe the implementation of our system.

Simultaneous Multi-Pattern Matching and Efficient Automaton

The choice of the pattern matching algorithm is crucial for efficiently matching large data
streams against multiple patterns. Inspired by the Aho-Corasick string matching algo-
rithm [3], we implement a finite state machine to efficiently match a set of patterns (i.e.,
signatures) against streams of network packets. We extend the Aho-Corasick algorithm to
enable integer matching, instead of strings, similar to [89-91].

The Aho-Corasick algorithm is a very efficient string searching algorithm that matches
the items of a finite set of strings against an input stream. It is able to match a large volume
of patterns simultaneously, so its complexity does not depend on the size of the pattern
set. It constructs an automaton that performs transitions for each 8-bit ASCII character of
the input text. For our approach, we replace the 8-bit characters with 16-bit values that
represent the packet sizes. The algorithm builds a finite state machine, resembling a trie
with added “failure” links between the trie nodes. When there is no remaining matching
transition, we move through the state machine following the failure links, performing fast
transitions to other branches of the trie that share a common prefix. In this way, we avoid

the expensive backtracking operation, so the algorithm allows the interleaving of a large
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number of concurrent searches, such as in the case of network connections, because the
state can be preserved across input data that are observed at different points in time by
storing a pointer to the current state of the automaton, with the state maintained for each
connection. Backtracking is an operation very expensive since it requires the maintenance
of per-flow state for previously-seen packet payload sizes. In order to boost the resulted
performance, we build a Deterministic Finite Automaton (DFA) by unrolling the failure
links in advance, adding them as additional transitions directly to the appropriate node.
To present our automaton’s characteristics, i.e. the automaton size and the compila-
tion time, we generate signature sets out of varying packet sequences, each time increas-
ing the number of signatures and the packet sequence length. Figure 2.12 presents the
size of the automaton in regard to different signature sets. More specifically, we present
the size of our automaton, using 500, 1K, 5K, 10K and 50k randomly generated patterns
of sequence length 6, 8, 10 and 12 packets; for example, the automaton that is generated
using 10,000 signatures, where each signature resembles a sequence of 10 packet sizes, is
around 1.5 GB. Figure 2.13 presents the compilation time of the automaton based on the
same signature sets. The compilation time of the automaton does not affect the end-to-

end performance negatively, since the compilation happens offline and only once.

Packet Processing Parallelization

For the implementation of the pattern matching of our intrusion detection system, we
use the OpenCL framework (Intel OpenCL 2.1 SDK for Intel CPUs) [177,199]. The overall
architecture of our intrusion detection system is presented in Figure 2.14.

The system utilizes one or several CPU worker threads, assigned to a singe input source
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Figure 2.14: Overview of the proposed packet processing architecture.

(NIC or .pcap file). Once a CPU worker thread receives a network packet, it forwards it to a
receive buffer. This buffer is responsible for the traffic processing and filtering, discussed
in § 2.2.2. At this point, the receive buffer is filled with packets that belong to different
network flows. When the buffer is full, our system generates execution batches with the
traffic contained in the receive buffer. The execution batches contain the packet payload
sizes of the received network packets, divided and ordered by network flows. In this way,
we transform the input traffic to sequences of packet payloads. Each sequence refers to a
single flow and is ready to be processed by the pattern matching engine. In the meantime,
the receive buffer is accepting new incoming packets. Maintaining different buffers for

receiving packets and for preparing packets to be processed enables us to avoid packet
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losses. We implement the pattern matching engine of our system as an OpenCL compute
kernel.

In OpenCL, an instance of a compute kernel is called a work-item; multiple work-items
are grouped together and form work-groups. A data buffer required for the execution of
a computing kernel has to be created and associated to a specific context. Unlike other
relevant works that follow a packet-per-thread processing approach (e.g., [94, 131, 132]),
we follow a flow-per-thread approach. This means that each thread reads at least one
network flow from the execution batch and then performs the processing. Whenever a
batch of packets is received and forwarded for flow ordering and processing by the device,
new packets are copied to another batch in a pipeline fashion.

Moreover, in order to fully utilize the SIMD capabilities of the hardware, we represent
the packet payload sizes in the execution buffer as unsigned short integers. In this way,
we are able to access the data using the ushort16 vector data type in a row-major order.
This enables us to fetch information for 16 packets at once [178]. During processing, the
pattern matching kernel uses one ushort value as input, representing one payload size, at
each step in order to traverse the automaton, as described in Section 2.2.3. If a signature
is identified, the engine reports the suspicious flow identifier, packed with the packets
that matched the signature (using the first and the last packet contained in the signature,

together with the signature identifier).

Performance Evaluation

For the performance evaluation of our implementation we use a commodity high-end ma-
chine. The hardware setup of our machine includes an Intel i7-8700K processor with 6
cores that operate at 3.7 GHz with hyper-threading enabled, providing us with 12 logi-
cal cores, configured with 32 GB RAM. The main processor is packed with an Intel UHD
Graphics 630 integrated GPU. In our setup, we use Arch Linux with kernel version 4.19.34-
1-1ts. We perform offline traffic processing, meaning that the application reads the traffic
from memory, thus, for the performance evaluation we focus on micro-benchmarks in
order to present the throughput and latency of the engine’s execution.

The performance results that are presented in Figures 2.15 and 2.16 display the median
values occurring after 30 runs per configuration.

Figure 2.15 presents the processing throughput achieved by our pattern matching en-
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gine using an Intel i7-8700K CPU. In Figure 2.15, the color-filled bars indicate the through-
put achieved by the pattern matching engine when the selection of signatures and input
results to a computationally loaded condition (i.e., the 100% of the traffic reports signature
matches). White-filled bars with borders indicate the throughput achieved in a computa-
tionally relaxed condition (i.e., less than 10% infected traffic), which is the most realis-
tic scenario. We present the throughput using different packet batch sizes. The pattern
matching engine is executed with one automaton of 1000 signatures of varying lengths
(i.e., 6-12 packets). The main processor performs better for smaller batch sizes, resulting
to 85Gbps processing throughput (i.e., 32k network flows per batch) for the realistic sce-
nario and 69 Gbps processing throughput for the worst-case scenario.

In Figure 2.16, the color-filled bars indicate the performance achieved by the pattern

matching engine when the selection of signatures and input, results to a computation-
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ally relaxed condition. Again, in the figure, we present the most realistic scenario, where
we have less than 10% malicious traffic. White-filled bars with borders indicate the per-
formance achieved in a computationally loaded condition (i.e., 100% malicious traffic),
which is the worst-case scenario. We present the latency using different packet batch
sizes. Executing on the main processor adds very low latency, making it ideal for real-
time, latency-intolerant environments. For instance, a batch of 16k network flows results
up to 2ms processing latency, while processing larger batches takes up to 2.5ms. We use

the same automaton as the one used in Fig. 2.15.

2.2.4 Signature Mining

To enable fast signature generation for detecting different intrusion attempts, we aim for
automating the procedure. We extract the intrusion signatures from network packet traces
using frequent sequential pattern mining. More specifically, from our ground-truth sam-
ple collection, we detect frequent packet payload size sequences that correspond to spe-
cific intrusion attempts. Unlike other works, our approach does not depend on network
statistical measures for the encrypted traffic inspection [7, 22]. Figure 2.17 illustrates the

workflow of our methodology.

First, we process the traffic captures so as to keep only the network packets that are
related to the malicious activity. All the remaining packets other than the malicious activ-
ity under examination are discarded. Similarly, as already discussed in §2.2.1, we discard
retransmitted TCP packets, as well. Then, we use the joy tool [182] to extract per network
flow data that are used for signature generation. More specifically, joy receives as input
a packet capture that contains an intrusion event (§ 2.2.2). Joy returns a JSON file with
network flow related information, such as the sequence of packet sizes and arrival times,
DNS names, HTTP header fields and others. For each network flow originated from the
intrusion event under examination, we retrieve the sequence of non-zero packet payload
sizes and the packet arrival times. This sequence of non-zero packet payload sizes is later

used by the signature mining procedure.

For the signature mining procedure we choose to utilize a frequent sequential pattern
mining technique. Such algorithms discover frequent sequential patterns that occur in

sequence databases. Benefiting from such techniques, in our proposed methodology we
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Figure 2.17: Illustration of our methodology workflow. First, we collect a set of ground-
truth packet captures from intrusion attempts. Then, we process these
captures and keep only the network packets that are related to the mali-
cious activity. We use the tool joy [182] to extract sequences of packet
payload sizes per flow and with a frequent sequential pattern mining algo-
rithm, we generate signatures with sequences of packet payload sizes.

choose to utilize a maximal sequential pattern mining algorithm. Maximal sequential pat-
tern mining is used to extract the frequent longest common sequences of network packet
payload sizes contained in traffic. Our methodology uses the resulting sequences as poten-
tial signatures that can indicate an intrusion attempt. The resulting signatures are mined
using the VMSP algorithm [42], with minimum support 50%. Finally, we select the max-
imal sequences that match to the ground truth information that we have. For instance,
if the time window of the intrusion attempt is close (in time) to the sequence’s first oc-
currence inside the network traffic. The generated signatures, then, are used to report
intrusion attempts on a test dataset. The training dataset is the traffic traces that we used
to export the frequent longest common sequences and generate the signatures. This train-
ing dataset consists of the 30% of the total traffic traces that we collected, infected with
different intrusion attempt events (e.g., password cracking). For the generation of the sig-

natures we take into account the direction of the packets (i.e., incoming packets).

How Signature Length Affects Effectiveness One of our design goals is to generate ex-
pressive signatures that will be able to detect intrusion attempt events in a fine-grained
manner. After a manual examination of the signatures generated by the automatic method-
ology that we followed (§ 2.2.4), we found out that the majority of resulted signatures
consisted of short sequences of packet payload sizes (e.g., median sequence length was

3 packet payload sizes). Having signatures with short sequences of packet payload sizes
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results to a more compact automaton (i.e., less memory requirements). Yet, a short se-
quence can eventually result to high false positive rates, as well. A signature construction
decision can significantly disturb the resulting rates of true positives and false positives. A
short signature can lead to high true positive rates- yet, there is the cost of a high false pos-
itive rate. A large signature, with a more strict definition, can give satisfactory true positive

rates and reduce false positives.

To prove our statements we perform an experiment. We use a publicly available dataset
that contains network packet traces with several network intrusion events [80]. The events
are classified into three categories: “Exploits”, “Reconnaissance” and “DoS”. For signature
generation, we use 40% randomly chosen flows from the ground-truth dataset and the re-
maining 60% for the evaluation. Table 2.13 shows the resulting true positive rates (TPR)
for different attack types found into the ground-truth dataset. Each traffic trace in the test
dataset contains a combination of malicious and benign traffic (labeled). When a signa-
ture reports malicious activity we compare it with the actual category of the flow. If the
activity is correctly reported as malicious, then the TP counter is increased. Otherwise,
we have a false positive (FP). The true positive rates, as presented in Table 2.13 show the
effectiveness of each signature according to the signature’s length. For instance, short sig-
natures result to higher TPR. In some cases, however, a short signature that results to a
high TPR is possible to introduce the trade-off of resulting to a high FDR, as well. The
false discovery rate’, as presented in Table 2.14, presents the percentage of signatures that
falsely reported malicious activity. Thus, as occurs from Tables 2.13 and 2.14, the signature

length can significantly affect the signature effectiveness.

Table 2.13: Resulted true positive rates (TPR) of varying signatures between event cat-
egory and size.

Packet Sequence Length
Direction 4 6 8 10 12
Signatures for “Expoits” events 100% 93% 69% 63% 54%
Signatures for “Reconnaissance” events 100% 89% 89% 89% 87%
Signatures for “DoS” events 100% 61% 49% 44% 10%

False discovery rate can be calculated as FDR = FP/(TP+FP)
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Table 2.14: Resulted false discovery rates (FDR) of varying signatures between event
category and size.

Packet Sequence Length
Direction 4 6 8 10 12
Signatures for “Expoits” events 08% 0.7% 0.6% 0.2% 0.1%
Signatures for “Reconnaissance” events 62% 0.9% 0.7% 0.3% 0%
Signatures for “DoS” events 62% 43% 30% 21% 18%

Minimizing False Discovery Rates Figure 2.8 illustrates the sequences of packet payload
sizes that appear within a network packet capture during a scanning attempt with the
“dirbuster” tool. Examining the respective signature from the automatically generated sig-
nature set, we observe that the packet sequence that is depicted by the corresponding
figure is the “608, 80, 155, 156”. This packet payload size sequence is the longest com-
mon sequence in the dataset that was used for the signature generation (§ 2.2.4). Yet, we
speculate that having such a short sequence would probably lead to higher false positives
when evaluated in a larger testing dataset. Additionally to the VMSP maximal sequential
pattern mining algorithm, we use the CM-ClaSP algorithm to discover closed sequential
patterns [41]. Closed sequential pattern mining produces the largest subsequences that
are common sets of sequences. So in practice, the resulted number of maximal patterns
are less than closed patterns (or all patterns). Following the same signature generation
methodology, combining the two frequent pattern mining algorithms, we obtain the fol-
lowing signatures for the intrusion attempt event illustrated in Figure 2.8 (selected set of

sequences):

608, 80, 155, 155, 152, 152
608, 80, 155, 155, 152, 158
608, 80, 155, 156, 153, 152
608, 80, 155, 156, 153, 158

Signatures that occur from this optimization are more difficult to match an irrelevant

network flow that will lead to false positives. For instance, a network flow with the packet
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payload size sequence “608, 80, 155, 156, 90, 32, 60” (this sequence of packet payload sizes
does not refer to a malicious event) would have matched against the short signature that
was generated by our initial methodology (i.e., “608, 80, 155, 156”). However, if we com-
bine the results of the two frequent pattern mining algorithms we will have a longer, more
expressive signature set, which eventually will result to less false positives. Indeed, we

noticed that this approach reduces some false positives from those of the initial method-

ology.

Early Intrusion Detection When it comes to intrusion detection, early reporting of an
event is crucial. Figure 2.10 illustrates different packet payload size sequences within a
network traffic capture of a login attempt to the web server using the “hydra” tool. We
can observe that some packets from the same network flow are received within a negligi-
ble inter-arrival time (e.g., sometimes more than 3 seconds). Taking into account packet
inter-arrival times, we can generate signatures with sequences of packet payload sizes
that are received within a certain time-window. Aiming to keep the signature language
as simple as it is at its current form, we add the extra parameter of time in the signature
generation methodology. So, instead of having a packet payload size sequence will take
almost 8 seconds to match against the network traffic, we settle to a shorter sequence
that will report the intrusion event sooner. Using as example the packet capture of Fig-
ure 2.10, to quickly detect the intrusion event, we should replace the signature’s sequence
“517, 80, 104, 285, 229” produced by our methodology with the sequence “517, 80, 104, 285"
In this way, our intrusion detection system will report the event after the first 4 seconds,

instead of 7 seconds. This optimization offers a detection speedup of x1.75.
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Characterization of Malicious Servers

on the Internet

In a TLS handshake, the first packets sent remain unencrypted and offer valuable infor-
mation to traffic analysis tools, enabling fingerprinting of devices, operating systems and
applications [96, 101]. While most of the works that perform TLS fingerprinting focus on
passive methods, in this work we generate TLS fingerprints using JARM [194], an open-
source tool for active server probing, with ultimate goal the effective identification of ma-

licious command and control servers in the wild.

3.1 Background

Transport Layer Security (TLS) is an encryption protocol that is widely used to ensure the
security and privacy of user communications online [184]. Specifically, TLS is used to
encrypt and authenticate the communication channel between two endpoints, and it is
widely adopted among others in browsing, messaging, voice over IP (VoIP) calls, emails.
TLS allows endpoints to securely communicate over the Internet, hindering any possible
malicious actions like eavesdropping, tampering and forgery.

A communication session between two endpoints starts with the TLS handshake. The
TLS handshake mainly kicks-off the decision-making procedure between the two end-
points, about which TLS versions, encryption ciphers and extensions they will actually
use during their communication. After this handshake, the two endpoints are able to

share data, which is encrypted with the arranged TLS configurations between the two

43
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endpoints. The only part of a TLS communication that is plain in sight, is the contents
of the TLS handshake packets exchanged. Aiming to clearly explain how the TLS hand-
shake works, we provide Figure 3.1. As shown in the figure, the endpoint that wishes to
initiate a communication session with another endpoint sends a ¢ ‘TLS Client Hello’’
packet. In the  ‘TLS Client Hello’’, the endpoint includes the TLS version that it sup-
ports, the encryption cipher suites and a string of random bytes. Then, the other endpoint
responds with a ‘ ‘TLS Server Hello’’ packet. The ‘ ‘TLS Server Hello’’ packet con-
tains the server’s SSL certificate, the encryption cipher suit that the server wishes to use
and a newly created string of random bytes. After the entity, which acts as client, receives
the ‘ ‘TLS Server Hello’’ packet, it verifies the legitimacy of the server’s SSL certificate
with the authority that issued it. After the verification of the server’s SSL certificate, the

communication between the two endpoints starts’.

client server

TLS Client Hello
TLS versions, cipher suites

TLS Server Hello
TLS version, cipher suite

Client Key,
cipher re-negotiation

Client FIN

Server
cipher re-negotiation

Server FIN ‘

DATA
(encrypted)

Figure 3.1: The TLS handshake steps.

In encrypted communications, extracting meaningful information about the contents

of this communication is difficult. When it comes to preventing user data tampering and

In this work, we utilize the information exchanged between the two endpoints that are present in the
“‘TLS Client Hello’’ and ‘‘TLS Server Hello’’ packets. More information about the TLS handshake can
be found in [184]
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forgery by malicious entities, network encryption is of paramount importance. On the
other hand, adversaries exploit the characteristics of widely used encryption protocols to
hide their activities, making it impossible for security applications like network intrusion
detection systems to completely block adversaries’ actions. Aiming to stay effective in
the current situation of the wide adoption of TLS and encryption protocols in general,
the research community investigates new workarounds to deal with the rising problem of
adversaries using network encryption to camouflage their existence and actions over the

network.

3.2 Data Collection and Preliminary Analysis

As already mentioned, we make use of the JARM tool [194], which is an active TLS server
fingerprinting tool. Based on the handshake properties of TLS, JARM actively sends 10 con-
sequent “TLS Client Hello” packets to a server and collects the “TLS Server Hello” packets
that come as responses. The 10 consequent “TLS Client Hello” packets that are sent to
the target server are specifically generated to force TLS servers to response with unique
responses. To be precise, JARM sends “TLS Client Hello” packets with different TLS ver-
sions, ciphers and extensions. The “TLS Server Hello” packets, then, contain information
with the server’s attribute combination of TLS versions, ciphers and extensions. Hashing
these 10 server’s responses, we receive a JARM fingerprint. The fingerprint is calculated

for a single server and it is comprised of 62 Bytes in total.

On October 2021, we started collecting publicly available IP addresses from several
blacklists. More specifically, we retrieve IP addresses from the Feodo Tracker Botnet C2
IP Blocklist [214] (CC1), the MalSilo IPv4 feed [216] (CC2), the CINS Score CI-Badguys
list [213] (BL1) and the blocklists.de list [206] (BL2). The blacklists with identifiers CC1
and CC2 contain IP addresses, port numbers and activity/botnet name. The remaining
blacklists with identifiers BL1 and BL2 only contain IP addresses. Thus, we produce fin-
gerprints for every IP address encountered. Since the botnet lists (CC1 and CC2) contain
more information, we classify the botnets based on the produced fingerprints. Then, we
search these fingerprints against the blocklists BL1 and BL2. Figures 3.2(a), 3.2(b), 3.3(a)
and 3.3(b) show the evolution of the IP addresses and fingerprints that we collect during

this study. In the following paragraphs, we set the scene with a preliminary analysis based
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on the data that we collect and calculate. As occurres, the different command and control
servers that exist in the botnet lists that we download and parse, include the activity of
the following botnets: (i) Dridex, (ii) Qakbot, (iii) Trickbot, (iv) Emotet and (v) Downloader.
How the number of unique command and control server IP addresses evolve during our
study is illustrated in Figure 3.2(a). Everyday, we download the fresh command and con-
trol server IP addresses from the botnet lists and we calculate the server fingerprints that
are produced by JARM. The number of unique fingerprints per botnet is shown in Fig-
ure 3.2(b).

The number of unique Dridex command and control server IP addresses reach up to
186, while the fingerprints that are produced by actively probing those servers are maxi-
mum 8. This means that the majority of the Dridex command and control servers mostly
have same TLS configurations. Likewise, the number of unique QakBot command and
control server IP addresses reach up to 421, while the fingerprints that are produced by ac-
tively probing those servers are maximum 9. These number show that the fingerprints pro-
duced by the servers of this botnet are significantly uniform. For TrickBot, we encounter a
maximum of 195 distinct IP addresses in a single day, resulting to 20 fingerprints. For the
Emotet botnet, we encounter a maximum of 107 unique IP addresses in a single day, re-
sulting to 4 fingerprints. The highest fingerprint diversity is introduced by the Downloader
botnet, where for only 15 distinct IP addresses we get 6 fingerprints. Finally, our findings
make us confident that maintaining a database with these fingerprints can eventually help
mitigate cyber attacks related to the examined botnets 5.

Concerning the blocklists that we download and parse, we retrieve around 31K unique
IP addresses from BL1 and 15K unique IP addresses from BL2 with only a small number of
those IP addresses existing in both lists (Figure 3.3(a)). However, as shown in the following
paragraphs 3.2.1, a large number of these IP addresses refused the TLS connections that
we initiated using JARM. Yet, the number of the IP addresses that respond is still important

and, thus, we continue our analysis for these IP addresses.

In Figure 3.3(b), we can see that the IP addresses that are contained in BL1 produce
up to 759 unique fingerprints (out of 31K unique IP addresses), while the IP addresses
of BL2 produce up to 413 unique fingerprints (out of 15K unique IP addresses). At this
point, we have to stress that we do not have any prior knowledge related to the activities

of each IP address that is included in the two blocklists BL1 and BL2. In addition, the
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Figure 3.2: (a) The unique IP addresses contained in the list with the botnet com-
mand and control servers and (b) the unique fingerprints hashed out of
the 10 TLS Server Hello responses, when contacting the IP addresses con-
tained in the botnet command and control server lists that we parse (i.e.,
CC1, CC2).

two blocklists do not contain any port numbers, so we are just contacting IP addresses
using the default port 443. Based on the fact that the servers of each botnet seem to be
configured similarly (similar server TLS fingerprints between a large number of different
IP addresses), we speculate that the two blocklists may contain IP addresses that serve
numerous and different botnets, much more than the five botnets that we examine in

Figures 3.2(a) and 3.2(b).

3.2.1 Refused TLS connections

Refused TLS connections from servers are expected. Figures 3.4(a) and 3.4(b) show the
number of servers that refused all TLS connections that we started by not responding
to the “TLS Client Hello” packets that we sent. From the two figures, we see that there

are times that contacted servers refuse an incoming TLS connection. Specifically, in Fig-
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Figure 3.3: (a) The unique IP addresses contained in the blocklists and (b) the unique
fingerprints hashed out of the 10 TLS Server Hello responses, when con-
tacting the IP addresses contained in the blocklists that we parse (i.e., BL1,
BL2).

ure 3.4(a) we plot the number of the refused TLS connections from known command and
control servers (found in CC1, CC2). Servers from the Qakbot and Trickbot botnets mostly
accept our connections and respond to the “TLS Client Hello” packets that we send them.
Downloader servers also respond with a high ratio. Dridex and Emotet are the botnets that
refuse incoming connections more frequently, but not always. For instance, Emotet does
not refuse any of our connection during the period 23/01/22-27/01/2022. In Figure 3.4(b),
we plot the ratio of the the server IP addresses that refuse incoming TLS connection from
us and exist in BL1 and BL2. We can see that the TLS refusal ratio is higher and some days
it can reach up to 60% of the total IP addresses from lists BL1 and BL2. Yet, taking into
consideration that the total unique IP addresses in the two lists can reach up to 31K (BL1)
plus 15K (BL2), the number of the fingerprints that is extracted and used for our analysis
is more than considerable. When it comes to command and control servers, successful
TLS connections are expected, since they are prepared for new connections coming from

infected devices that act as bots. Thus, low TLS connection refusals are not a surprise. On
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Figure 3.4: The number of refused TLS connections from IP addresses contained in
the (a) botnet command and control server lists (i.e., CC1, CC2) and (b)
blocklists (i.e., BL1, BL2).

the other hand, we do not have any activity insights regarding the IP addresses that are
contained in blocklists BL1 and BL2. We speculate that servers from the blocklists that
accept new TLS connections (through port 443) act as command and control servers. In
addition, TLS connection refusals could be related to the lack of dedicated port numbers
in the respecting lists. Specifically, our default port to probe is 443 and we do not perform
any port scanning, since we want to stay as stealth as possible. As a result, in cases that a
server responds only to connections that arrive through a dedicated port (other than 443),

we get a refusal for initializing a TLS connection.

3.2.2 Fingerprints of benign servers

Our methodology of probing known suspicious IP addresses to produce TLS server finger-
prints using the JARM tool would not be either effective or successful, if the fingerprints
often overlapped with TLS server fingerprints of known legitimate servers from popular

domains. We actively contacted the top-10K benign servers from the The Majestic Million
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list [215] one day in October 2021 and one day in October 2022. Figure 3.5 presents the
daily overlaps of the contacted server IP addresses retrieved from botnet server lists (i.e.,

CC1, CC2) and blocklists (i.e., BL1, BL2).

Results presented in Figure 3.5(a) show the daily overlaps of the malicious/suspicious
servers with the benign servers of the top-10K from the Majestic list [215]2, with finger-
prints calculated in October 2021. Figure 3.5(a) shows that for the server IP addresses that
exist in the blocklists, we find some overlapping TLS server fingerprints to legitimate TLS
server fingerprints, that could result to 5.3% false positives at maximum. The TLS server
fingerprints that are produced using the IP addresses found in the botnet lists result to less

than 1% overlapping fingerprints.

One year later, Figure 3.5(b) presents the daily overlaps of the same malicious/suspi-
cious servers with the benign servers of the top-10K from the Majestic list [215]3, with
fingerprints calculated in October 2022. Interestingly enough, we observe a rise in the
overlaps. For server IP addresses that exist in the blocklists, we find overlaps of TLS server
fingerprints with legitimate TLS server fingerprints, that result to 21% false positives at
certain days. The overlaps of botnet server are significantly lower (still less than 5%), but

higher when compared to the overlaps from Figure 3.5(a).

Based on our measurements the unique fingerprints of servers that exist in all lists
examined (i.e., CC1, CC2, BL1, BL2) during the 7-month period are 3242. The unique fin-
gerprints of the legitimate servers (top-10K Majestic) are 2915 in 2021, while in 2022 the
unique fingerprints of the legitimate servers (top-10K Majestic) are 1311. The overlaps of
malicious server fingerprints with legitimate server fingerprints are 371 in 2021 ( 13%) and
534 in 2022 ( 40%). Based on our measurements, we can see that in a year, the variation
in TLS configurations of legitimate servers is reduced (i.e., less unique fingerprints). Fur-
thermore, based on Figure 3.5, it is clear that as time passes, the calculated fingerprints of

malicious servers are becoming less effective, when not updated.

2The list of domains is downloaded in October 2021.
3The list of domains is downloaded in October 2022.
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Figure 3.5: TLS server fingerprints (from servers found in CC1, CC2, BL1, BL2) that
overlap with servers found in the top 10K domains ( [215]).

3.3 Analysis

In this section, we analyse our findings based on IP addresses that we have been contact-
ing for 7 months, and share our insights. On a daily basis we contact more than 30K dis-

tinct IP addresses, retrieved from numerous blacklists.

3.3.1 Botnet ports

For each established connection, the port number used can sometimes signify the under-
lying activity. Aiming to shed some light in the port selection by known botnets, Table 3.1
contains the top-5 ports that we encounter in the blocklists together with the IP addresses?.
It is really interesting to notice that except for the well known ports (e.g., 443, 8080), the
different botnets operate using a diverse list of port numbers. Such ports, along with the

fingerprints produced, can offer better accuracy results in the performance of a network

*We wish to share the complete list of these port numbers with security researchers and students, upon
request.
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monitoring tool.

Table 3.1: Most popular port numbers per botnet (top-5 in CC1, CC2).
Botnet name Popular ports (descending order) Total ports

Dridex 443,7443, 4664,10172, 6225 45
QakBot 443,995, 2222,993, 1194 26
TrickBot 443, 447, 449 3
Emotet 8080, 443, 80,7080, 4001 10
Downloader 6602, 1973, 13786, 29795, 46187 11

3.3.2 TLS Server Configurations

Each fingerprint that is calculated by the JARM tool for a single server is comprised of 62
Bytes in total. The first 30 Bytes present information about the configurations (i.e., TLS
version and ciphers) of the server contacted and the remaining 32 Bytes contain informa-
tion about the extensions. This means that for two different fingerprints that share the
same first 30 Bytes, they also share the same configuration of TLS versions and supported
ciphers. We believe that it would be very interesting and insightful to examine if there
are trends between the servers that participate in the same botnet activity. Then, study-
ing if these trends are distinct between different botnets, we might be able not only to
tell if a server looks malicious, but to also indicate the botnet that the server is part of.
Figure 3.6(a) shows that concerning the different botnets that we study, the TLS configu-
rations of the servers are always less than the actual server fingerprints. This means that
the servers that we probed in order to calculate their fingerprints based on the TLS Server
Hello packets sent, share very similar TLS configurations. Examining the fingerprints pro-
duced by the IP addresses contained in the two blocklists, we see that the number of
servers that share the same TLS configuration is significant. For instance on 23/11/2021,
the servers with IP addresses contained in Blocklist.de produced 419 unique fingerprints
of 62Bytes, with 206 unique fingerprints of 30Bytes. Similarly, the servers with IP addresses
contained in the CI-Badguys blocklist produced 333 unique fingerprints of 62Bytes, with
165 unique fingerprints of 30Bytes. Figure 3.6(b) illustrates these variations.

Aiming to explore the uniqueness of the fingerprints produced, we check for overlap-
ping fingerprints (length of 30Bytes) between the different servers that act as part of a

certain botnet family. Table 3.2 shows the fingerprints that are common among the differ-
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Figure 3.6: The number of unique TLS server configurations from IP addresses con-
tained in the (a) botnet command and control server lists (i.e., CC1, CC2)
and (b) blocklists (i.e., BL1, BL2).

ent botnets. Fingerprint 2ad2ad0002ad2ad®002ad2ad2ad2ad is the most common and is
produced by servers that are known to participate in Dridex, TrickBot and Emotet botnets.
This fingerprint is also found in both blocklists that we parse, i.e. BL1, BL2. QakBot, Trick-
Bot and Downloader share fingerprint 20d08b20d21d20d20c42d08b20b4 1d, while it also ap-
pears in the two bloclists. The total number of unique fingerprints that overlap between
different botnets are only 4. Removing the 4 most common fingerprints that represent the
most common TLS configurations among servers, significantly decreases the number of
fingerprint overlaps with benign servers that are included in the Majestic Million domains
(causing a 20% decrease in numbers of overlaps shown in Fig. 3.5). This could mean that
the malicious servers with the specific fingerprint imitate a popular TLS configuration pro-
file used by normal and benign TLS servers (a technique that censorship circumvention

tools also follow [43]).

Altogether, we can find many fingerprints that are calculated from the IP addresses
that exist in the botnets’ lists into the lists of fingerprints from IP addresses found in the

two blocklists (i.e., BL1, BL2). The aggregated numbers of those fingerprints are shown
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Table 3.2: Overlapping fingerprints (length of 30Bytes) between different botnets.

Botnet name Botnet name Fingerprint

Dridex TrickBot 2ad2ad0002ad2ad®002ad2ad2ad2ad
Dridex Emotet 2ad2ad0002ad2ad®0®02ad2ad2ad2ad
QakBot TrickBot 20d08b20d21d20d20c42d08b20b41d
QakBot TrickBot 2ad2adl6d2ad2ad22c2ad2ad2ad2ad
QakBot Downloader 04d02d00004d04d04c04d02d04d04d
QakBot Downloader 20d08b20d21d20d20c42d08b20b41d
TrickBot Emotet 2ad2ad0002ad2ad®002ad2ad2ad2ad

Table 3.3: Botnet fingerprints found in blocklists CI-Badguys (BL1) and Blocklist.de

(BL2).

Botnet Fingerprints In CI-Badguys In Blocklist.de
Dridex 9 9 8
QakBot 36 22 25
TrickBot 47 14 14
Emotet 7 7 7
Downloader 7 6 7

in Table 3.3. This makes us confident that it is possible to distinguish servers of differ-
ent botnets in a vast list of IP addresses without any prior knowledge, based only on the
fingerprints calculated by JARM.

Indeed, the presence of the fingerprints that are calculated by the servers that partic-
ipate in each botnet exists in the list of fingerprints that are produced by servers in the
two blocklists. Figure 3.7 illustrates the ratio (values: 0 — 1) of fingerprints extracted from
IP addresses that are contained in the botnet command and control server lists that were
found between the fingerprints extracted from IP addresses contained in the blocklists. In
Figure 3.7, we search the botnet fingerprints of full length against the fingerprints of the
blocklists. For instance, on the 11th of November 2021 we extracted 372 fingerprints from
servers found in Blocklist.de and 348 fingerprints from servers found in CI-Badguys list.
Out of the total Blocklist.de fingerprints, 3 of them matched those of Dridex, 2 of them
matched those of QakBot, 7 of them matched those of TrickBot, 1 of them matched those
of Emotet and 3 of them matched those of Downloader. Out of the total CI-Badguys finger-
prints, 4 of them matched those of Dridex, 2 of them matched those of QakBot, 5 of them
matched those of TrickBot, 1 of them matched those of Emotet and 4 of them matched
those of Downloader. The peaks observed in Fig. 3.7 (BL2) on the 9th, 14th and 27th of
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Figure 3.7: The ratio of botnet fingerprints found into the list of fingerprints calcu-
lated from IP addresses contained in the two blocklists (i.e., BL1, BL2).

March 2022, derive from a drop of the IP addresses contained in BL2. On those days, the

unique IP addresses are almost 8K, while usually they are more than 23K.

In Figure 3.8, we search only the first 30 bytes of each fingerprint. As already men-
tioned, the first 30 bytes of each fingerprint calculated by JARM provides information
about the TLS versions and ciphers that a server supports. Servers that share the same
30 first bytes in their fingerprints, also share the same TLS configuration (i.e., TLS ver-
sions and ciphers). As expected, searching for the 30 first bytes of the initial fingerprints
results to higher number of botnet occurrences into the blocklists. Furthermore, exten-
sions shared via the TLS Server Hello packet could add turbulence in fingerprints, since
the application of popular fingerprinting circumvention techniques, like extension ran-
domization, are common from servers with malicious activities (or censorship circumven-
tion tools [43]). The existence of malicious servers that are similarly configured is highly
expected. Thus, searching for these configurations could assist in their identification in
encrypted communications. As shown in Figure 3.8, on the 11th of November 2021 we

extracted 372 fingerprints from servers found in Blocklist.de and 348 fingerprints from
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Figure 3.8: The ratio of short botnet fingerprints (30 first bytes representing the TLS
version and cipher suites) found into the list of fingerprints calculated
from IP addresses contained in the two blocklists (i.e., BL1, BL2).

servers found in CI-Badguys list. Out of the total Blocklist.de fingerprints, 14 of them
matched those of Dridex, 3 of them matched those of QakBot, 45 of them matched those of
TrickBot, 1 of them matched those of Emotet and 4 of them matched those of Downloader.
Out of the total CI-Badguys fingerprints, 17 of them matched those of Dridex, 6 of them
matched those of QakBot, 32 of them matched those of TrickBot, 1 of them matched those
of Emotet and 9 of them matched those of Downloader. These numbers show a significant
rise when we study the coverage of the examined botnets into the two blocklists, a trend
that remains during the whole period of our analysis, with a peak of 30% total coverage on

the 13th of December 2021 in both blocklists.

3.3.3 Randomization of Cipher Suite Vectors

As expected, malicious servers can take advantage of known TLS fingerprinting circum-
vention techniques like randomization of offered TLS cipher suites and extensions. Pre-

vious work though, has shown that this could be difficult in practice [54], while authors
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in [8] show that it is possible to identify parts of those fingerprints. Another technique is
to mimic popular TLS profiles — something that as we speculate, could explain the finger-

print overlapping that cause the false positives (as shown in Figure 3.5).

3.3.4 Configurations of Cipher Suites per Botnet

Diving into more depth, we further analyzed the data collected during the 7-month period.
More specifically, for each IP address that we contact, we process the server responses to
each TLS Client Hello that is sent. Table 3.4 presents the TLS versions that were selected
by the botnet C&C servers across the 10 consequent TLS handshakes. While the majority
of botnet families selected TLS 1.2 and 1.3, we see that Downloader also accepts commu-

nication using TLS 1.1.

Table 3.4: TLS versions used per botnet (CC1, CC2).
Botnetname Selected TLS versions

Dridex TLS 1.2, TLS 1.3
QakBot TLS 1.2, TLS 1.3
TrickBot TLS 1.2, TLS 1.3
Emotet TLS 1.2, TLS 1.3

Downloader TLS1.1,TLS1.2, TLS1.3

Besides the TLS version chosen by the botnet servers, we also analyzed their preferred
cipher suite. Table 3.5 presents the codes of the cipher suites that each botnet selects in
most cases. In Table 3.6 we present a dictionary for these codes, along with their ranking
by ciphersuite.info [218]. Weak ciphers are considered old and they should be avoided,
while insecure ciphers can be broken with minimum effort. Dridex and QakBot select ci-
pher suites marked as weak. In some cases, QakBot selects also an insecure cipher suite.

TrickBot, Emotet and Downloader select a combination of weak and secure ciphers.

Table 3.5: Most selected cipher suites per botnet (CC1, CC2).
Botnet name Cipher suites (codes)

Dridex c013, 00c0, 0016, 0084, c012

QakBot 000a, 0005, c012, 006b

TrickBot c030, c014

Emotet c030, c012, cca8, 009e, 0016, 1302, c02f

Downloader ¢012, c013, 0035, 1302
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Table 3.6: Cipher suites dictionary and characterization by ciphersuite.info [218].

Code Cipher suite name Marked as
c013 TLS ECDHE RSA WITH AES 128 CBC SHA Weak
00c0 TLS RSA WITH CAMELLIA 256 CBC SHA256 Weak
0016 TLS DHE RSA WITH 3DES EDE CBC SHA Weak
0084 TLS RSA WITH CAMELLIA 256 CBC SHA Weak
c012 TLS ECDHE RSA WITH 3DES EDE CBC SHA Weak
000a TLS RSA WITH 3DES EDE CBC SHA Weak
0005 TLS RSA WITH RC4 128 MD5 Insecure
006b TLS DHE RSA WITH AES 256 CBC SHA256 Weak
c030 TLS ECDHE RSA WITH AES 256 GCM SHA384 Secure
c014 TLS ECDHE RSA WITH AES 256 CBC SHA Weak
cca8 ECDHE RSA WITH CHACHA20 POLY1305 SHA256 Secure
009e TLS DHE RSA WITH AES 128 GCM SHA256 Secure
1302 TLS AES 256 GCM SHA384 Secure
c02f TLS ECDHE RSA WITH AES 128 GCM SHA256 Secure
0035 TLS RSA WITH AES 256 CBC SHA Weak

3.3.5 Advantages of Active versus Passive TLS Fingerprinting

Working with TLS fingerprints that are collected actively on a daily basis, offers the con-
fidence of fingerprint persistence. Indeed, if we limit the fingerprint length down to 30
bytes, which shows the server’s preferred configurations of TLS version and cipher suites
(leaving the offered extensions out), we see that we are able to re-identify many servers
operating at the same botnet in different blocklists (BL1, BL2).

In addition, since each fingerprint produced by JARM occurs after 10 consequent TLS
handshakes with a single server, the resulted fingerprint is more rich in information when
compared to simpler fingerprints (e.g., JA3) that are calculated by a single TLS handshake
processed passively via sniffing a packet capture file. Also, since each fingerprint produced
by JARM represents a server’s response to a series of 10 different ‘ ‘TLS Client Hello’’
packets with diverse configurations of TLS versions and ciphers, each fingerprint is unique

and difficult to replicate (even after the application of randomization techniques).



Chapter 4
State-of-the-Art

In this chapter, we present the works that we find in the literature that are able to perform
traffic processing and inspection even when the network is encrypted. We examine the
use cases of these works (e.g., network analytics) and how authors achieve to implement
such systems. Having no visibility over the packet payload contents introduces major chal-
lenges. Thus, goal of this literature examination is to identify the means to achieve en-
crypted network traffic analysis and inspection effectively. This study will help the reader
of this dissertation to (i) understand the challenges of traffic inspection when the network
traffic is encrypted or tunnelled, (ii) discover the uses cases and applications of encrypted
traffic analysis, (iii) acquire knowledge on the methods that are used to achieve encrypted
traffic analysis, (iv) deduce which techniques are appropriate respecting the objectives of
a system, (v) recognize the constraints each method presents, and finally, (vi) come across

with the publicly available datasets that are appropriate for use.

Figure 4.1 displays the taxonomy that we propose for the related works of this disser-
tation. First, works are divided based on their use case and application goal. More specif-
ically, we divide the works into four application domains: (i) the network analytics do-
main, (ii) the network security domain, (iii) the user privacy domain and (iv) the domain
of network functions in middleboxes. Each work can be then characterized by the tech-
nique that is used (i.e., manipulation of traffic metadata & characteristics, interception of
encrypted traffic, and utilization of cryptographic functions) and its main objectives (i.e.,

functionality, programmability and deployment).

In Section 4.1 we discuss about the works that target the network analytics domain.

We divide the works into more detailed categories and we dedicate one subsection to one

59
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sub-category (e.g., in § 4.1 we present works that focus on application and protocol clas-
sification, in § 4.1 we discuss works that identify application usage actions, etc.). Then,
in § 4.1.1 we discuss about the algorithms and techniques used, in § 4.1.1 we present the
publicly available datasets used and in § 4.1.2 we examine the objectives and limitations
of the works reviewed in the section. We follow the same paragraph organization format

for each one of the Sections 4.2—4.4.
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Figure 4.1: A taxonomy for encrypted network traffic inspection works categorized by
use case, technique and objective.

4.1 Analytics after Network Encryption

In this section, we discuss the literature for network analytics in encrypted communica-
tions. More specifically, we present works that focus on protocol and application classifi-
cation, application usage identification, as well as the investigation of quality and experi-
ence in encrypted networks. The works that are presented in this section are summarized
in Table 4.1.
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Table 4.1: Works in the analytics domain, sorted by category and publication year.

Traffic Analysis Domain | Work Category Goal Year of Publication

Karagiannis et al. [58] Network traffic classification us- 2005
ing traffic behavioral patterns

Bernaille et al. [11] Application detection in SSL en- 2007
crypted network connections

Schatzmann et al. [109] Webmail traffic classification 2010

Wang et al. [134] Protocol/Application i0S application classification 2015

Alan et al. [5] Identification Android application classifica- 2016
tion

Taylor et al. [126] Android application classifica- 2016
tion

Lopezet al. [73] ToT traffic classification 2017

Taylor et al. [127] Android application classifica- 2018
tion

Aceto et al. [1] Mobile application classifica- 2018

Network Analytics tion

Aceto et al. [2] Mobile application classifica- 2019
tion

Ajolli et al. [4] Identification of user activities 2019
on smartphone-based Bitcoin
wallet apps

Yao et al. [146] ToT traffic classification 2019

Ede et al. [130] Mobile application classifica- 2020
tion

Xu et al. [143] Mobile application classifica- 2022
tion

Coull et al. [27] Identification of user actions in 2014
iMessage

Conti et al. [22,23] Identification of user actions on 2016

- Android devices
Saltaformaggio et al. [108] Apphf:auop Usage Identification of user actions on 2016
Identification . .

mobile devices

Fu et al. [45] Identification of user actions on 2016
mobile messaging applications

Liuetal. [72] Identification of user actions on 2017
mobile messaging applications

Papadogiannaki et al. [90] Identification of user actions on 2018
mobile Over-The-Top applica-
tions

Wang et al. [137] Identification of user actions on 2019
mobile payment applications

Jiang et al. [55] Identification of user actions in 2019
remote desktop traffic

Feng et al. [40] Identification of user actions in 2022
online social networks

Wright et al. [140] VoIP conversation decoding 2008

Schuster et al. [110] Stream Decoding Video stream decoding 2017

Bjorklund et al. [13] Video stream decoding 2023

Dimopoulos et al. [31] Detection of QoE degradation 2016

Orsolic et al. [86] Estimation of QoE in YouTube 2016

Mazhar et al. [77] QoS/QoE Investigation of video QoS in 2018

Investigation HTTPS and QUIC protocols

Khokhar et al. [59] Estimation of QoE in YouTube 2019

Xu et al. [144] Investigation of mobile ABR 2020
video adaptation behavior un-
der HTTPS and QUIC

Wu et al. [142] Resolution identification of en- 2023
crypted video streaming under
HTTP/2

Protocol/Application Identification There is a large number of works that examine the
feasibility of traffic classification even when the communications are encrypted. The ma-
jority of such works focus on classifying the traffic’s nature (e.g. video streaming, p2p traf-

fic) and automating the classification procedure.

BLINC [58] was one of the pioneer papers that aimed to classify the network traffic
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in the dark, having no access to packet payloads, no knowledge of port numbers; only
information that flow collectors provide, solely based on the host behavioural patterns.
Bernaille et al. [11] propose a method to detect different applications even in encrypted
communication channels, by observing the first packets of an SSL connection and their
sizes. This enables them to recognise the application soon enough, achieving an 85%
accuracy and early classification. Schatzmann et al. [109] perform flow-based classifica-
tion in order to identify webmail traffic. Authors focus on the inspection of network-level
data and leverage correlations across protocols and time for HTTPS webmail classification.
Wang et al. [134], taking advantage of the fact that mobile applications produce more iden-
tifiable traffic patterns, perform a packet-level analysis to determine what applications a
single individual is using, exploiting side-channel information (e.g. traffic bursts) that is
exposed inside the network traffic that is generated by mobile devices. To perform mo-
bile app classification, the authors use random forests for 13 selected iOS applications
achieving a classification accuracy of more than 68.59% with selected features and more
than 87.23% with complete features. Alan et al. [5] investigate whether Android applica-
tions can be identified through their network traffic launch-time using only the contents
of TCP/IP headers. The experiments were conducted using 1595 applications on 4 dis-
tinct Android devices. The authors made use of supervised learning methods to identify
the apps that generated the traffic. Their approach is based on packet sizes, observed
within the launch time traffic, since they are expected to yield good feature sets for appli-
cation identification. AppScanner [126] automatically fingerprints Android applications
even in encrypted traffic. For the generation of the fingerprints, authors collect network
traffic traces on the mobile device while running the corresponding applications. The
application classification is conducted using a supervised learning algorithm that is fed
with features that are exported through the collection of network traces. This scalable
framework implementation is able to identify the profiled applications (110 most popu-
lar applications in Google Play Store) with more than 99% accuracy. Stringoid [100] is a
static analysis tool that estimates constructed URL strings using string concatenations in
Android applications. The purpose of this work is to analyse web requests that originate
from Android mobile applications. The authors use a dataset of 20 randomly selected An-
droid applications, and with the Stringoid tool, they extract URLs from 30,000 Android

applications. Lopez-Martin et al. [73] propose using a recurrent neural network (RNN)
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combined with a convolutional neural network (CNN) for IoT traffic classification. The
advantage of this work is that it outperforms alternative algorithms for traffic classifica-
tion, while it does not require any feature engineering when applying new models. In a
succeeding work, Taylor et al. [127] show that a passive eavesdropper is able to identify mo-
bile applications by fingerprinting the network traffic that they send, despite encryption.
Again, using AppScanner and machine learning techniques they exploit the information
that lays in network traffic, such as packet size and direction. In addition they investi-
gate how application fingerprints change over parameters like time, diversity of devices
and versions. Aceto et al. [1] aim to improve the classification performance of mobile ap-
plications by proposing a Multi-Classification system, which combines specific decisions
from base classifiers explicitly devised for mobile and encrypted traffic classification. The
dataset that the authors used for testing, was collected by a mobile solutions provider. In a
succeeding work, Aceto et al. [2] perform mobile traffic classification in encrypted network
flow using deep learning techniques. Shen et al. [114] perform encrypted traffic classifica-
tion of decentralized applications on Ethereum using a feature selection of packet lengths,
bursts and time series. Aiolli et al. [4] identify user activities on Bitcoin wallet applications
in mobile devices and are commonly used for sending, receiving, and trading Bitcoin. Yao
et al. [146] perform IoT traffic classification for smart cities using a method that relies on
a deep learning aided capsule network for efficient classification. Their proposed work
eliminates the process of manually selecting traffic features. FLOWPRINT [130] offers mo-
bile application identification by analysing the network traffic. It introduces an approach
for application fingerprinting by combining destination-based clustering, browser isola-
tion and pattern recognition (in a semi-supervised manner). It is able to construct mobile
application fingerprints for not known applications. Authors evaluate FLOWPRINT and
they find that it is able to perform an accuracy of 89.2%. Even after application updates or
newly encountered applications, FLOWPRINT has a precision of 93.5%. As ground-truth,
authors use publicly available datasets. As features, authors extract all header values con-
trolled by the communicating app as well as the sizes and inter-arrival times of packets.
In addition, for the size and time related features authors compute statistical properties,

such as the maximum, standard deviation, mean absolute deviation values.
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Application Usage Identification The works presented in this section offer fine-grained
application event identification over encrypted traffic, often with the use of machine learn-

ing techniques.

Coull et al. [27] propose a method for traffic analysis of encrypted messaging services.
More specifically, authors aim to show that an eavesdropper would be able to retrieve fine-
grained information by the communication channel, such as specific user actions, the size
of messages that are exchanged, or even the language that is being used for the commu-
nication. Their results demonstrate the feasibility of gaining information by observing
packet lengths, but their analysis is limited to Apple’s iMessage application and is an of-
fline study. Conti et al. [22, 23] propose a system to analyse encrypted network traffic to
identify user actions on Android devices, such as email exchange, interactions over so-
cial network, etc. Their framework uses TCP/IP packet fields, like IP addresses and ports,
among with other features, like packet size, direction and timing. They analyse numerous
Android applications with diverse functionalities, such as Gmail, Facebook, Twitter, Tum-
blr and Dropbox. Using machine learning, they achieve high accuracy and precision for
the identification of different user actions in each tested Android application (e.g., mail
exchange, posting a photo online or publishing a tweet). NetScope [108] is a work that
performs robust inference of users’ activities, for both Android and iOS devices, based on
inspecting IP headers. This work demonstrates how a passive eavesdropper is capable
of identifying fine-grained user activities within a network (even over encrypted commu-
nication channels) generated by the applications used. Based on the intuition that the
implementation of each individual mobile application leaves a fingerprint on its traffic
behaviour, such as transfer rates and packet exchanges, NetScope learns the subtle traf-
fic behavioural differences between user activities becoming able to distinguish them. Fu
et al. [45] propose an approach to classify usage in mobile messaging applications. Their
system, namely CUMMA, classifies the usage in mobile messaging applications by taking
into account user behavioural patterns, network traffic characteristics and temporal de-
pendencies. More specifically, they show that the observation of packet lengths and time
delays, can allow the classification of WhatsApp and WeChat traffic and identify the cor-
responding usage types (e.g. photo sharing). With this framework, the authors achieve
96% and 97% accuracy in WeChat and WhatsApp, respectively. Liu et al. [72] develop an

analyser to classify encrypted mobile traffic to application usage activity. Using similarity
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measurements, authors select discriminative features from traffic packet sequences. For
their online analyzer, authors represent a traffic flow with a series of time windows. For
their experiments, they analyse WeChat, WhatsApp and Facebook applications. Wang et
al. [137] identify financial transactions at the trading stage via analyzing the encrypted net-
work traffic, by identifying the mobile payment app from traffic data, classifying specific
actions on the mobile payment app, and finally, detecting the detailed steps within the
action. Jiang et al. [55] investigate if remote desktop traffic, even if encrypted, can reveal
usage information. Indeed, their results show the feasibility of this, taking advantage of

side-channel information leakage.

VoIP Conversation and Video Stream Decoding There are also works that use traffic
analysis to extract voice information from encrypted VoIP conversations or identify en-
crypted video streams.

For example, Wright et al. [140] show that when the transmitted audio is encoded us-
ing variable bit rate codecs, the length of VoIP packets can be used to recognize words or
phrases within a standard speech corpus. This means that a passive observer can identify
phrases even in encrypted calls with an average accuracy of 50%. Schuster et al. [110]
explain the root causes of burst patterns in encrypted video streams, show how to ex-
ploit these patterns for video identification, develop and evaluate a noise-tolerant iden-
tification methodology based on deep learning and, finally, they demonstrate how an
attacker without direct observations of the network can identify videos being streamed.
The features that authors use are flow attributes, such as down/up/all bytes per second,
down/up/all packet per second, and down/up/all average packetlength. The applications
that authors examine are Netflix, Youtube, Amazon and Vimeo. Bjorklund et al. [13] iden-
tify SVT Play streams against HTTPS traffic. Authors build a k-d tree over sliding windows
of packet statistics, while they use nearest-neighbour (NN) searches combined with Pear-

son’s correlation coefficient to identify the videos.

Quality of Service/Experience investigation Streaming video content on mobile devices
is a trend that is continually growing among users. This causes a tremendous demand for
higher bandwidth and better provisioning throughout the network infrastructure. End-

to-end encryption, though, leaves providers with limited indicators for identifying QoE
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issues. Thus, the works presented in this section aim to measure QoS and QoE from the
perspective of a telecommunication service provider that has only visibility on the network

traffic that is often encrypted.

Dimopoulos et al. [31] propose models able to detect different levels of QoE degrada-
tion that is caused by stalling, average video quality and quality variations. The predictive
models that authors develop are evaluated on the production network of a large scale mo-
bile operator, where authors show that their system is able to accurately detect QoE prob-
lems with up to 92% accuracy. The significant features that authors extract are RTT-related,
bytes transmitted, packet loss percentage and other network-related features. Orsolic et
al. [86] use machine learning for the estimation of YouTube Quality of Experience. To test
their approach, authors collect more than 1k different YouTube video traces under differ-
ent bandwidth scenarios. Mazhar et al. [77] investigate the Quality of Service of video in
HTTPS and QUIC protocols. The set of features that expose usable information is based
on (i) network and transport layer header information for TCP flows, and (ii) network layer
features (based on inter-arrival time, packet sizes, packet/byte counts, throughput) for
QUIC flows. Khokhar et al. [59] put YouTube under experimentation and perform network
traffic measurements for QoE estimation using network related features, as well. CSI [144]
infers mobile ABR video adaptation behavior under HTTPS and QUIC using packet size
and timing information. H2CI [142] monitors the resolution of encrypted video traffic un-

der HTTP/2, based on fingerprints constructed by the sizes of mixed audio-video chunks.

4.1.1 Techniques

The majority of the works discussed in this section, employ machine learning techniques
to investigate the feasibility of traffic analysis and usage classification even when the com-
munications are encrypted. In this section, we present the techniques and algorithms
that are more popular among the works of this category. A detailed overview of the tech-
niques used for classification can be found in Table 4.2. As illustrated in Table 4.2, ma-
chine and deep learning techniques are very popular in the domain of network analyt-
ics. More specifically, it seems that supervised or semi-supervised algorithms are mostly
used for traffic classification and network analytics. These algorithms perform well with

labelled and big datasets, while they require training. For instance, for mobile application
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Table 4.2: Techniques, algorithms and evaluation metrics used in the analytics domain.

Work

Category

Algorithm/Technique

Performance Evaluation Metrics

Karagiannis et al. [58]

Bernaille et al. [11]

Schatzmann et al. [109]

Wang et al. [134]

Protocol and

Graphs, Statistics

Completeness, Accuracy

Clustering with Gaussian Mixture Model

True/False Positive Rates

Classification with Support Vector Machine
(SVM)

Accuracy

Classification with Random Forests (RF)

Estimated accuracy, Overall accuracy,
True Positive Rate

Papadogiannaki et al. [90]

Wang et al. [137]

Jiang et al. [55]

Feng et al. [40]

Clustering with recursive Constrained

KMeans

Alan et al. [5] ﬁfp ll'cauop Classification with Jaccard’s coefficient, | Accuracy
entification . . B .

Gaussian Naive Bayes and Multinomial
Naive Bayes

Taylor et al. [126] Classification with Multi-class Support Vec- | Speed of training, Size of classifier, Con-
tor Machine (SVM), Multi-class RE Binary | fidence per classification, True Negatives,
SVM and Binary RF Robustness

Lopez et al. [73] Classification with Recurrent Neural Net- | Accuracy, F1-score, Precision, Recall
work combined with a Convolutional Neural
Network (CNN)

Taylor et al. [127] Classification with Multi-class Support Vec- | Precision, Recall, F1-score, Accuracy
tor Machine (SVM), Multi-class RE Binary
SVM and Binary RF

Aceto et al. [1] Classification with Naive Bayes, Multinomial | Accuracy, Precision, Recall, F-measure
Naive Bayes, Random Forests, Support Vec-
tor, Decision Trees

Aceto et al. 2] Classification with Convolutional Neural | Accuracy, F-measure, Run Time Per-
Network Epoch (RTPE)

Aiolli et al. [4] Classification with Random Forests and Sup- | Precision, Recall, F1-score
port Vector Machine

Yao et al. [146] CNN, Convolutional Capsule Network, Fully- | Accuracy, F1-score, precision, recall
connected Capsule Network, Long Short-
Term Memory (LSTM)

Ede et al. [130] Semi-supervised fingerprinting with Cluster- | F1-score, Precision, Recall, Accuracy, Ro-
ing and cluster correlation bustness

Xu et al. [143] Classification using Graph Convolutional | Accuracy, precision, recall, F1-score
Neural network (GCN)

Coull et al. [27] Classification with Binomial Naive Bayes Accuracy

Conti et al. [22,23] Classification with Random Forests (RF) F-measure, Accuracy, Precission, Recall

Saltaformaggio et al. [108] Classification with SVM and Clustering with | Detection time and True Positives, Mis-

Application K-means classifications, False Negatives, False Pos-
Usage itives, Precision, Recall

Fu et al. [45] Identification Classification with Gradient Boosted Trees, | Accuracy, Precision, Recall, F-measure
Support Vector Machine, Naive Bayes,
KNeighbors

Liuetal. [72] Classification with Random Forests and | Accuracy, Precision, Recall, F-measure,

Processing Throughput (pps)

Frequent Pattern Mining for Signature Gen-
eration

True Positives, False Positives and Perfor-
mance Throughput

Classification with Random Forests, Ada
Boost and Gradient Boosting Decision Tree
(GBDT)

Accuracy, Recall, Precision, F1-score

Classification with Logistic Regression (LR),
SVM, GBDT and RF

TPR, FPR and F1-score

Classification of traffic bursts using a LSTM
model

FPR, recall, precision, processing delay

Wright et al. [140]

Schuster et al. [110]

Bjorklund et al. [13]

Stream Decoding

Hidden Markov Models (HMM)

Recall, Precision

Gaussian distribution for Maximum Likeli-
hood Estimator and Convolutional Neural
Network (CNN)

Precision, Recall, Delay

Classification with k-d tree over statistics
and NN with Pearson’s correlation

Accuracy, Tree building time, Training
time, Identification time

Dimopoulos et al. [31]

Orsolic et al. [86]

Mazhar et al. [77]

Khokhar et al. [59]

Xu et al. [144]

Wu et al. [142]

QoS/QoE
Investigation

Classification with Random Forests

True Positives, False Positives, Precision,
Recall

Classification with Random Forest, Naive
Bayes, SVM, Decision Trees

Accuracy

Classification with Decision Trees

Precision, Recall

Classification with RE Linear Regression and
RF Regression

Precision, Recall, Fl-score, Accuracy,
Root Mean Square Error (RMSE)

Fingerprint construction from chunk sizes

Accuracy

Fingerprint construction from sizes of mixed
audio/video chunks

Accuracy, Processing time

classification, authors choose Multinomial Naive Bayes (e.g., [1]), Support Vector Machine

(e.g., [126]) and Hidden Markov Models (e.g., [140]) algorithms as well as other classifiers,

such as Random Forest, Decision Trees, Gaussian Naive Bayes [5] and the k-Nearest Neigh-
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bors algorithm for pattern recognition [33]. For a more detailed classification (i.e, the iden-
tification of user actions and events inside mobile applications), authors choose hierarchi-
cal clustering techniques [23,45].

Besides machine learning, it seems that recently, researchers have turned to neural
networks since they perform better than single machine learning algorithms. A neural
network combines different machine learning algorithms for modelling data using graphs
of neurons, while it is able to make accurate decisions and learn from it own errors. This
makes a neural network work independently without requiring any human intervention.

Being encrypted, network packet payloads do not offer significant information. Thus,
most techniques discussed in this section take advantage of data that are available in
packet headers. The majority of these techniques use information like network packet
sizes, directions and time-related data, which are treated as features to train the corre-
sponding machine learning models. More specifically, many works use as features the
packet size and the packet direction [5, 16,23,27,51]. Herrman et al. also use the IP packet
length distribution [51]. Selecting a subset of packets in a single network flow is also com-
mon. For instance, Lu et al. do not consider incoming MTU packets [75], while Bernaille
et al. keep only the first packets [12].

In Table 4.2, we also display the metrics used for the evaluation of each technique.
Since the majority of these works are based on machine learning, they mostly measure
their technique’s (i) accuracy, (ii) precision, (iii) recall, (iv) true and (v) false positive rates.
However, even though the majority of the works discussed in this section use similar eval-
uation metrics, we would not be able to properly compare their effectiveness since they
use different datasets to train their systems. Finally, we notice that only few works present
processing evaluation metrics, such as memory consumption, training time or through-
put. In the next section (§ 4.1.1), we discuss about the datasets used for the works of traffic

classification for network analytics.

Datasets Table 4.3 presents the public datasets that were used in the domain of network
analytics. In the category of application identification and classification, Yao et al. [146]
used the USTC-TFC2016 dataset [161] that among others contains network traffic from Bit-
Torrent, Facetime, Gmail and Skype. Ede et al. [130] used the Recon dataset [164], which
consists of labeled network traces of 512 Android apps from the Google Play Store, includ-
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ing multiple versions for over a period of eight years.

We notice that the vast majority of the works in this section do not use public datasets
to train their models. The proprietary datasets used come either by real or emulated us-
age representing network usage with applications of interest, either in mobile of fixed net-
works. The absence of public datasets that contain network traffic that is both encrypted

and labeled is apparent. Thus, authors are producing their own datasets.

Table 4.3: Datasets used in the network analytics domain.

Work Category Dataset Availability Dataset details

Yao et al. [146] | Protocol/Application | Public USTC-TFC2016 Dataset [161]

Edeetal. [130] | Identification Public Recon Dataset [164]

Xu et al. [143] Available upon request | MAppGraph [166]
Application

Feng et al. [40] | Usage Identification | Public USTC-TFC2016 Dataset [161]

4.1.2 Objectives and Limitations

The majority of the works in the category of network analytics focus on the functionality
of their approaches. More specifically, authors focus on the thorough examination of the
traffic analysis feasibility when the network traffic is encrypted. Indeed, they show that itis
possible to detect the nature of the traffic in a fine-grained manner. For instance, Conti et
al. [22] are able to identify different actions (e.g., post a tweet or send a message) in mobile
applications (such as Twitter and Facebook) accurately even when the network traffic is
encrypted. Yet, there are works that except for functionality, they aim for programmability
and deployment as well [72,90]. OTTer achieves a detailed characterization of usage (i.e.,
video call, voice call, chat) in different Over-The-Top applications like Skype and What-
sApp [90]. It is also integrated into a DPI engine that is deployed in a live traffic test-bed
with an average of 109 Gbps.

All the works that use machine learning algorithms for the classification of network
traffic need to be retrained in order to remain robust across new and diverse data. In ad-
dition, the majority of such works choose a subset of applications or protocols in order to
examine the feasibility of classification. This makes such solutions mostly effective only
for applications and protocols used for training, something that introduces potential scal-
ability and adaptability issues. Even while scoring high performance (with metrics like ac-

curacy, precision and recall) in close-world scenarios (i.e., under a specific ground-truth
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dataset), these systems will certainly produce high rates of false positives when tested
against real-world datasets of traffic traces. Furthermore, numerous countermeasures
exist that can perform against traffic analysis techniques (such countermeasures are dis-
cussed in Section 5), making many of the works discussed in this section unable to bypass

them.

4.1.3 Relation to this Dissertation

Most relevant to our work in the domain of network analytics (§ 2.1) is the literature on
fine-grained application event identification over encrypted traffic, reviewed in this sec-
tion (§4.1). While our work is based on the same grounds (i.e., the feasibility of user activity
identification over encrypted network traffic based on packet trains), we advance the state-
of-the-art by (i) proposing a novel expressive pattern language specification, (ii) building
a scalable and optimized implementation, which was integrated to our proprietary DPI
engine and tested and evaluated on real-world traffic volumes, (iii) showing that the rule

extraction is amenable to data mining techniques.

4.2 Security after Network Encryption

In this section, we present the state-of-the-art on encrypted network traffic analysis for

network security. The works that are presented in this section are summarized in Table 4.4.

Intrusion Detection Some techniques focus on identifying malicious behavior in the
network, examining the characteristics of the underlying traffic, using exclusively machine
learning approaches.

Taleb et al. [38, 123] propose an approach that identifies misuses in encrypted proto-
cols with network packet inspection that focuses on processing of packet header informa-
tion. Amoli et al. present a real-time unsupervised NIDS, able to detect new and complex
attacks within encrypted and plaintext communications [6]. Anderson et al. [7] compare
the properties of six different machine learning algorithms for encrypted malware traffic
classification. Shone et al. [116] propose a system that combines deep learning techniques
for network intrusion detection. For the evaluation of their system, authors use the KDD

Cup '99 and NSL-KDD datasets with high accuracy (almost 90%). Kitsune [78] is a NIDS,
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Table 4.4: Works in the security domain, sorted by category and publication year.

Traffic Analysis Domain | Work Category Goal Year of publication
Amoli et al. [6] Real-time network intrusion de- 2016
tection within encrypted com-
Network Intrusion munications
Anderson et al. [7] Detection Encrypted malware traffic clas- 2017
sification
Shone et al. [116] Network intrusion detection us- 2018
ing a combination of DL tech-
niques
Mirsky et al. [78] Neural-network based network 2018
. intrusion detection system
Network Security Papadogiannaki et al. [89, 91, 95] Intrusion detection with signa- 2020-2023
tures from packet metadata se-
quences
Fu et al. [44] Malicious traffic detection via 2023
flow interaction graph analysis
Tang et al. [125] Network Intrusion Flow-based anomaly detection 2016
Niyaz et al. [85] Detection (SDN) DDoS attack identification 2016
Shabtai et al. [111] Malware detection on Android 2012
mobile devices
Shabtai et al. [112] Malware Detection on Identification of malicious 2014
Mobile Devices attacks or masquerading/in-
jected mobile applications
Wang et al. [135] Detection of mobile malware 2016
behavior using network traffic
Lashkari et al. [65] Detection of malicious or mas- 2017
querading mobile applications
Razaghpanah et al. [101] TLS usage examination in An- 2017
droid devices
Anderson et al. [8] Server TLS fingerprinting for malware 2019
Characterisation identification
Kotzias et al. [61] TLS deployment examination 2018
Paracha et al. [96] TLS usage examination in con- 2021
sumer loT devices
Lietal. [69] TLS fingerprinting for bot classi- 2021
fication
Sosnowski et al. [121,122] TLS fingerprinting for CnC 2022 -2023
server classification

based on neural networks, and designed for the detection of abnormal patterns in network
traffic. It monitors the statistical patterns of recent network traffic and detects anomalous
patterns. Tang et al. [125] present a deep learning approach for flow-based anomaly de-
tection in SDN environments. Authors build a Deep Neural Network (DNN) model for an
intrusion detection system and train it with the NSL-KDD dataset, using six basic features
of the NSL-KDD dataset. Niyaz et al. [85] utilize deep learning in order to detect DDoS at-
tacks in SDN environments. The proposed system identifies individual DDoS attacks with
an accuracy of almost 96% and classifies the traffic into benign or attack traffic, with an
accuracy of 99.82% with low false-positives. In [44], authors propose HyperVision, a sys-
tem that is able to perform anomaly detection against encrypted network traffic using an
unsupervised graph learning method. HyperVision achieves 0.92 AUC and 0.86 F1, with
80.6 Gb/s detection throughput and average detection latency of 0.83s.

Intrusion and Malware Detection in Mobile Devices While the ever increasing adoption

of traffic encryption has significantly improved the user privacy and security, traditional



72 Chapter 4. State-of-the-Art

intrusion detection systems based on inspecting unencrypted traffic, are becoming obso-
lete. Thus, there is a number of works that aim to detect malicious bahavior on mobile
devices, mainly relying on machine learning approaches.

Andromaly [111] is a framework for malware detection on Android mobile devices. The
host-based malware detection system monitors features and events that are retrieved from
mobile devices and applies anomaly detection for the classification of the collected data.
Shabtai et al. [112] propose a system that identifies (i) attacks or masquerading applica-
tions installed on a mobile device and (ii) injected applications with malicious code. In
TrafficAV [135], the mobile network traffic is mirrored from the wireless access point to the
server for data analysis. The data analysis and malware detection are performed on the
server side. TrafficAV performs network traffic analysis in multiple levels. The proposed
method combines network traffic analysis with a machine learning algorithm (i.e., C4.5
decision tree) and is able to identify malware in Android devices with good accuracy re-
sults. In an evaluation with 8,312 benign apps and 5,560 malware samples, the TCP flow
detection model and the HTTP detection model achieve detection rates of up to 98% and
99.65%, respectively. Lashkari et al. [65] detect malicious and masquerading applications
on mobile devices. Their proposed method shows a good average accuracy (91.41%) and
precision (91.24%) with a low false positive rate. Authors use five different classifiers: Ran-
dom Forest (RF), K-Nearest Neighbor (KNN), Decision Tree (DT), Random Tree (RT) and
Regression (R). Authors have published a labeled dataset of mobile malware traffic that
contains benign Android applications or injected applications (e.g., with adware or other

types of malware).

Characterization of Identity In [8], authors publish a knowledge database consisting of
TLS fingerprints (passively constructed) from enterprise deployments and malware traf-
fic, together with an analysis of trends concerning the utilization of TLS by applications
and malware. TLS fingerprinting is a common technique that assists in the extraction
of meaningful observations from TLS handshake packets, since limited content can be
revealed from encrypted data packets. TLS fingerprinting has been used for studying the
TLS deployment [61] and the TLS usage in consumer IoT devices [96] and Android applica-
tions [101]. TLS fingerprinting has been also used in identifying known censorship circum-

vention tools, like Tor [43]. JA3 is a method that enables TLS fingerprinting and TLS client
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profiling, while JA3S enables server side TLS fingerprinting [183]. Another library that en-
ables TLS handshake fingerprinting is fingeprinTLS [181]. In a nutshell, the produced fin-
gerprints are a combination of TLS version, accepted ciphers, extensions, elliptic curves
and elliptic curve formats. Since JA3 and JA3S hashes (or JA3/JA3S fingerprints) can be
easily distributed, they promote the easy cyberthreat intelligence exchange. In fact, sup-
port to JA3S has been added in platforms like MISP [209] and intrusion detection systems
like Suricata [202]. In [8], for instance, authors produce fingerprints for the identification
of malicious servers. Li et al. produce fingeprinTLS to distinguish malicious bots from be-
nign [69]. Besides these two passive techniques for TLS fingerprinting (i.e., fingeprinTLS
and JA3S), there is JARM [194]. JARM enables active TLS server fingerprinting. In an arti-
cle posted online on October 2020 [192], JARM creators explain how it works and how it
can be used to identify malicious servers. In the article, creators made public 1 fingerprint
per botnet. The botnets that were examined are TrickBot, AsyncRAT, Metasploit, Cobalt
Strike and Merlin C2 and as authors state, they contact IP addresses on port 443. Recently,
Sosnowski et al. proposed a new TLS fingerprinting technique [122]. Authors use a binary
classifier to investigate if a server is a command and control server, with better precision
and recall results when compared to JARM. In addition, authors study weekly snapshots
in a period of 7 months. In DissecTLS [121], authors follow a more exhaustive fingerprint-
ing approach to calculate more effective fingerprints, which outperform five popular TLS
scanners (including JARM). They perform a measurement study using the same public
datasets that we use, and they repeat the measurements nine times in a period of nine

weeks.

4.2.1 Techniques

In this section, we present the techniques and algorithms that are more popular among
the works of this category. Table 4.5 displays works that perform intrusion detection even
in encrypted networks. The majority of these works utilize machine learning algorithms

for intrusion detection and classification.

Besides machine learning, researchers make use of neural networks and deep learn-
ing techniques. For intrusion detection, Shone et al. [116] propose a deep learning clas-

sification model constructed using stacked non-symmetric deep autoencoders (NDAEs).
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Table 4.5: Techniques, algorithms and evaluation metrics used in the security domain.

Work

Category

Algorithm/Techni

Performance Evaluation Metrics

Amoli et al. [6]

Anderson et al. [7]

Shone et al. [116]

Mirsky et al. [78]

Papadogiannaki et al. [89, 91, 95]

Fu et al. [44]

Network Intrusion
Detection

DBSCAN-based ou‘tlier detection, K-means-

based outlier detection

FPR, TPR, Accuracy, Precision, Recall

Classification with Linear Regression, Logis-
tic Regression, Decision Tree, Random For-
est, Support Vector Machine, Multi-layer Per-

ceptron

Accuracy, Classification Time

Auto-encoder Deep Neural Network

Accuracy, Precision, Recall, F-measure,
False alarm, Training/testing Time

Isolation Forests (IF) and Gaussian Mixture

Models and Deep Neural Network Auto-

encoders with Ensemble Layer and Output
Layer

TPR, FNR & Processing Throughput

Signature generation for Intrusion Detection
using packet metadata sequences

True Positives, False Positives and Perfor-
mance Throughput

Graph learning module based on DBSCAN
and K-means for clustering and Z3 SMT
Solver to identify critical vertices

AUC, F1-score, Precision, Recall, F2, ACC,
FPR, EER & Throughput, Latency, Re-
source Consumption

Tang et al. [125]

Niyaz et al. [85]

Network Intrusion
Detection (SDN)

Deep Neural Network with an input layer,
three hidden layers and an output layer

Accuracy, Precision, Recall and F-

measure

Stacked Autoencoder Deep Neural Network

Precision, Recall, F-measure

Shabtai et al. [111,112]

Wang et al. [135]

Lashkari et al. [65]

Malware Detection on
Mobile Devices

Linear Regression, Decision Table, Support
Vector Machine for Regression, Gaussian

Processes for Regression, Isotonic Regres-

sion, Decision/Regression tree (REPTree)

TPR, Detection time, FPR, False Alerts,
Memory & CPU consumption

Classification with C4.5 Decision Tree

TPR, FPR

Classification with Random Forest, K-

Nearest Neighbor, Decision Tree, Random
Tree, Regression.

Accuracy, Precision, FPR

Razaghpanah et al. [101]

Kotzias et al. [61]

Anderson et al. [8]

Paracha et al. [96]

Server
Characterisation

Fingerprinting using passive analysis

N/A (measurement study)

Fingerprinting using passive analysis

N/A (measurement study)

Fingerprinting using passive analysis

N/A (measurement study)

Fingerprinting using passive analysis

N/A (measurement study)

Liet al. [69]
Sosnowski et al. [121,122]

Fingerprinting using passive analysis

Active probing for TLS fingerprinting, Multi-
label classifier for CDN server classification,
Binary classifier for CnC server detection

N/A (measurement study)
Precision, Recall

Tang et al. [125] present a deep learning approach for flow-based anomaly detection in
SDN environments. Authors build a Deep Neural Network (DNN) model for intrusion de-
tection and train it with the NSL-KDD dataset, using basic features found in the dataset.
Niyaz et al. [85] utilize deep learning in order to detect DDoS attacks in SDN environments.
Kitsune [78] is a NIDS, based on neural networks, and designed for the detection of ab-
normal patterns in network traffic. It monitors the statistical patterns of recent network
traffic and detects anomalous patterns. Again, the majority of these techniques take ad-
vantage of data that are available in packet headers like network packet sizes, directions
and time-related data. More sophisticated techniques make use of additional, more ad-
vanced features, like the TLS handshake information [7, 43]. HyperVision [44] does not
require a labeled dataset of know attacks, since it detects abnormal interaction patterns
by analyzing connectivity, sparsity and statistical features of the graph.

In Table 4.5, we also display the metrics used for the evaluation of each technique. Sim-
ilarly to Section 4.1, the most common evaluation metrics are (i) accuracy, (ii) precision,
(iii) recall, (iv) true and (v) false positive rates, while few of the works report classification

time and processing throughput.
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Datasets Table 4.6 presents the public datasets that were used for intrusion detection.
The DARPA dataset [151] is one of the most popular datasets to train and evaluate intru-
sion detection systems. The ISCX-IDS-2012 intrusion detection dataset [172] consists of
7 days of benign and malicious network activity. The KDD Cup 99 dataset [152] includes
a wide variety of intrusions simulated in a military network environment. The NSL-KDD
dataset [156] is suggested to solve some of the inherent problems of the KDD’99 dataset.
Finally, Moustafa et al. [80] build and make publicly available a handy dataset for network
intrusion detection systems, namely UNSW-NB15 [150]. This dataset is used for evalua-
tionin [89,91]. The IoT-23 [171] is alabeled dataset with malicious and benign IoT network
traffic and it is used in [95]. The dataset used in [44] is the MAWI Internet traffic dataset.
To avoid any bias, authors also use the Kitsune dataset [78], as well as the CIC-DD0S2019
and CIC-IDS2017 datasets [162, 165].

As Anderson et al. [7] correctly points out, finding the most proper features for classifi-
cation with high accuracy, recall and precision, is not a trivial procedure, while it is highly
dependable on the ground-truth dataset collection that is available each time. However,
user privacy related regulations make data sharing a very challenging practice for organi-
zations and data holders. In Table 4.6, we can notice that the NSL-KDD dataset [156] is
the most popular dataset that is publicly available. Yet, we observe that the majority of the
datasets that are used for intrusion detection are not very recent. For instance, Amoli et
al. [6] and Shone et al. [116] use the DARPA [151] and KDD Cup '99 [152] datasets respec-

tively, both of which were more than 15 years old at the time the papers were published.

Table 4.6: Datasets used in the network security domain.

Work Category Dataset Availability | Dataset details

Amoli et al. [6] Public DARPA [151], ISCX-IDS-2012 [172]

Shone et al. [116] Public KDD Cup "99 [152], NSL-KDD [156]

Papadogiannaki et al. [89,91] | Network Intrusion | Public UNSW-NBI15 [150]

Papadogiannaki et al. [95] Detection Public T0T-23 [171]

Tang et al. [125] Public NSL-KDD [156]

Fu et al. [44] Public MAWI Internet traffic dataset [169],
CIC-DD0S2019 [165], CIC-
IDS2017 [162]

Kotzias et al. [61] Server Public ICSI SSL Notary [157], finger-

Characterisation prinTLS [159]
Anderson et al. [8] Public Mercury [167]
Lietal. [69] Public Upon request
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4.2.2 Objectives and Limitations

As most works that perform encrypted network traffic inspection for intrusion detection
use machine learning techniques to examine the feasibility of attack classification, the
primary objective is functionality. They train their models offline providing poor support
for online intrusion detection when it comes to encrypted communications. The works
that also aim for programmability, except for functionality, are [78,89,91,111,112]. In Sec-
tion 4.4, we discuss about middleboxes that can be deployed for online traffic inspection.
Some of the network functions of these middleboxes can be used for intrusion detection
and firewall applications.

The majority of the works discussed in this section can be bypassed by traffic analysis
resistant techniques. Anderson et al. [7] examine and present mistakes and limitations in
the network traffic analysis literature, such as the utilization of old and unreliable ground-
truth datasets. Indeed, if we examine the datasets that are used as ground-truth for train-

ing most of the machine learning models in this section, are not very recent.

4.2.3 Relation to this Dissertation

Most relevant to our work in the domain of network security (§ 2.2) is the literature on
intrusion detection over encrypted traffic, surveyed in this section (§4.2). The majority of
works that inspect encrypted network traffic turn to machine learning algorithms since
it is possible to examine the feasibility of the identification of the traffic nature and the
underlying activities for numerous use-cases (e.g., network security). Other works per-
form anomaly detection to identify malicious network traffic with abnormal traffic pat-
terns, without the requirement of labeled ground-truth datasets. Such works, though, do
not indicate the specific malicious activity in a fine-grained manner, just the abnormal-
ity. Our work builds on the results of those works (i.e., intrusion detection over encrypted
traffic), but our main concern is to establish a procedure to effectively generate intrusion
detection signatures in an automated manner and integrate them in a real-world traffic
monitoring system. In our work (§ 2.2), we propose a signature mining method for in-
trusion detection in encrypted network traffic. Also, we develop a network intrusion de-
tection system that achieves high processing throughput. Specifically, we aim to advance

the state-of-the-art offering an intrusion detection implementation that combines the fol-
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lowing: (i) we generate signatures from packet metadata, found exclusively in network
packet headers, (ii) we implement a signature-based intrusion detection engine using an
extended version of the Aho-Corasick algorithm to support integers, (iii) we enhance our
system’s performance using accelerators.

Besides our approach proposed for intrusion detection (employing passive network
traffic analysis), we also engage in the characterization of malicious servers using active
probing. The literature that examines the fingerprintability of malicious entities/servers
(reviewed in § 4.2) is the most related to our work presented in Chapter 3. The goal of our
work is to study the evolution of known command and control servers obtained by public
blocklists with TLS fingerprinting. When compared to other measurement studies that
perform TLS fingerprinting, our work produces a significantly larger dataset (fingerprints

are constructed on a daily basis for a period of 7 months).

4.3 User Privacy after Network Encryption

Besides network analytics and security, traffic analysis has been also used to monitor and
profile the characteristics of mobile applications. This kind of tools empower the user to
gain (i) insight regarding the applications used and (ii) control over personally identifiable
information (PII) handling. Furthermore, in this section we discuss about works that are
able to fingerprint websites and applications even when anonymity tools like TOR [205]
are used to hide the activity’s nature, the user’s identity or the user’s location. Finally, we
present works that enable OS and device identification even in encrypted networks. The

works that are presented in this section are summarized in Table 4.7.

Endpoint Device Tools and PII Leakage Detection ProfileDroid [138] is a monitoring
and profiling system that can characterise the behaviour of Android applications at the
static, user, OS and network layers. The authors evaluate multiple Android applications,
which present privacy and security, operational and performance issues. Authors evaluate
the proposed tool using free and paid Android applications, observing (i) discrepancies be-
tween the app specification and app execution, (ii) higher costs resulted from free versions
of apps, due to an order of magnitude increase in traffic, (iii) a great amount in network

traffic that is not encrypted, (iv) excess communication with more than expected sources,
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Table 4.7: Works in the user privacy domain, sorted by category and publication year.

Traffic Analysis Domain | Work Category Goal Year of publication
Herrmann et al. [51] Webpage identification 2009
through  OpenSSH, Open-
VPN, CiscoVPN, Stunnel, TOR,
JonDonym
Luetal. [75] Webpage Webpage identification 2010
Identification through SSH and SSL tunnels
User Privacy Panchenko et al. [87, 88] Webpage identification 2011
through TOR
Cai et al. [16] Webpage identification 2012
through TOR and HTTPOS
Kwon et al. [62] Webpage identification 2015
through TOR hidden services
Draper-Gil et al. [33] Detection and characterization 2016
of VPN traffic
Cruz et al. [28] Identification of BitTorrent traf- 2017
fic in SSH tunnels
Lotfollahi et al. [74] Application identification in 2017
VPN traffic
Shahbar et al. [113] Identification of anonymity net- 2017
works
Montieri et al. [79] Traffic classification of 2019
anonymity tools
Jorgensen et al. [56] Application identification in 2023
VPN traffic
Chen et al. [21] OS identification, NAT and teth- 2014
Device/OS ering detection
Sivanathan et al. [117] Identification ToT device identification using 2018
traffic features
Skowron et al. [118] Investigation of fingerprinting 2020
attacks targeting IoT devices
Lastovicka et al. [66] OS identification using TLS fin- 2020
gerprints
Ateniese et al. [10] Location Position extrapolation through 2015
Estimation location-based encrypted traf-
fic
Razaghpanah et al. [102] Detection of personal informa- 2015
tion leakage in Android applica-
tions
Song et al. [120] PDH Lea.kage Detection of information leak- 2015
etection - . o
age in Android applications
Leetal. [67] Traffic collection and analysis 2015
to enable users have control
over their data
Ren et al. [103] Cross-platform PII leaks iden- 2016
tification giving users control
over them
Continella et al. [24] PII leakage detection, resilient 2017
to obfuscation techniques
Rosner et al. [106] Information leaks in TLS- 2019
encrypted network traffic

and finally (v) the communication of the majority of the examined apps with Google. Taint-
Droid [37] identifies privacy leaks of Android applications with dynamic information-flow
tracking. More specifically, the authors monitored the behavior of popular third-party
Android applications and discovered potential misuse cases of user private information
across applications. TaintDroid provides users with information regarding third-party ap-
plications. Haystack [102] is a mobile application distributed via popular app stores that
can correlate contextual information (such as application identifiers and radio state) with

specific traffic flows (encrypted or not) destined to remote services. To handle encrypted



4.3. User Privacy after Network Encryption 79

traffic, haystack employs a transparent man-in-the-middle (MITM) proxy for TLS traffic.
PrivacyGuard [120] is an open-source platform that intercepts the network traffic that is
generated by mobile applications (through VPN) in order to detect sensitive information
leakage. PrivacyGuard can is able to effectively detect information leakage in the major-
ity of the applications under examination and it is shown that it outperforms TaintDroid.
AntMonitor [67] is a system that passively monitors and collects packet-level measure-
ments from Android devices in order to provide a fine-grained analysis. AntMonitor pro-
vides users with control over their personal data and supports client-side traffic collection
and analysis. Authors examine PlI-related features, such as (i) the IMEI, which uniquely
identifies a device within a mobile network, and Android Device ID, which is an identifi-
cation code associated with a device, and (ii) the phone number, email address and loca-
tion, which can be uniquely associated with users. ReCon [103] is a cross-platform system
that reveals personally identifiable information leakages and gives users the control over
leaked information without requiring any special privileges or custom OSes. ReCon uses
machine learning to identify and reveal possible PII leakage by inspecting the network
traffic, while it provides a visualization tool that empowers users to control how their in-
formation is being handled by blocking or substituting it. Continella et al. [24] propose a
system that detects leakages of PII and is resilient to obfuscation methods and techniques
(e.g., encoding, formatting), encryption, or any other kind of transformation performed on
private information before it is leaked. Moreover, Rosner et al. [106] present a black-box
approach for detecting and quantifying side-channel information leaks in TLS-encrypted

network traffic.

Fingerprinting In this section, we present works in the field of webpage and applica-
tion fingerprinting, even while covered by privacy enhancing technologies. In addition,
we study the state-of-the-art in the device/OS identification and location estimation from
network traffic inspection. The works that are presented in this section are also summa-
rized in Table 4.7.

Traffic analysis has been used to identify fine-grained information, like webpages and
websites, even while transferred over encrypted tunnels established by technologies such
as OpenVPN [200] or TOR [205]. Herrmann et al. [51] present a classifier that identifies up

to 97% of web requests from packet traces. Lu et al. [75] identify dynamic websites that
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are transferred over SSH and SSL tunnels. Panchenko et al. [87, 88] show how website fin-
gerprinting in onion routing based anonymization networks, such as TOR, is still possible
using information like packet sizes, total transmitted bytes, percentage of incoming pack-
ets and others. Cai et al. [16] present a webpage fingerprinting attack that is resilient to
recent traffic analysis countermeasures’ methods, such as application-level defenses like
HTTPOS [76] and randomized pipelining over TOR [97]. Kwon et al. [62] perform a passive
attack against hidden services and their users called circuit fingerprinting attack. Using
the attack, an attacker can identify the presence of hidden service activity in the network
with high accuracy. Draper-Gil et al. [33] study flow-based and time-related features that
can be analyzed to detect VPN traffic and to classify encrypted traffic according to the type
of traffic (e.g., browsing or streaming) using two machine learning techniques to test the
accuracy of the features. They show that time-related features, when properly handled can
reveal enough information for encrypted traffic characterization. Cruz et al. [28] present a
deep learning method that takes advantage of a feature set that is based on the statistical
behavior of TCP tunnels proxying BitTorrent traffic. The next steps is the transformation
of this feature set into multiple timestep sequences and the training of a recurrent neural
network. The results of this work show that it is possible to identify the existence of BitTor-
rent traffic in SSH tunnels. Lotfollahi et al. [74] present a system that is able to handle both
traffic characterization and application identification by analysing encrypted traffic with
deep learning. The proposed scheme can characterize between VPN and non-VPN traffic,
protocols (e.g., FTP or P2P) and end-user applications (e.g., Skype or BitTorrent). Shahbar
et al. [113] identify multilayer-encryption anonymity networks and the obfuscations tech-
niques they use with a small number of features and a small number of packets. Montieri

et al. [79] perform hierarchical traffic classification of anonymity tools, like TOR.

Device/OS Identification There are many works that focus on extracting TCP or IP packet
metadata, in order to investigate if the behavior of specific packet contents can be corre-
lated with OSes, device types and other characteristics.

Chen et al. [21] are able to perform OS identification, NAT and tethering detection by
examining multiple features in the TCP/IP packet headers. The authors use real network
traffic traces to evaluate the accuracy of fingerprinting and show that several techniques

that can successfully fingerprint desktop OSes are not similarly effective for fingerprint-
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ing mobile devices. For OS fingerprinting, authors use the following packet header values:
the IP TTL value, the IP ID monotonicity, the TCP timestamp option, the TCP window
size scale option and the clock frequency. Features like the TCP timestamp monotonicity,
clock frequency and boot time can be used for tethering detection. Ruffing et al. [107] aim
for OS identification of mobile devices even in encrypted traffic. Authors propose a traf-
fic content agnostic algorithm that implements spectral analysis of the encrypted traffic
and they show that even a network traffic input of 30 seconds can be enough for high accu-
racy results. Sivanathan et al. [117] classify IoT devices using network traffic features. More
specifically, authors instrument an ecosystem of different IoT devices (e.g., cameras, plugs
and motion sensors) and examine traffic characteristics, such as port numbers, signalling
patterns, and cipher suites that are used. Lastovicka et al. [66] examine traffic patterns of
the TLS protocol and train a machine learning model using features from the TLS hand-
shake in order to identify the operating system of a device. They focus their research on

mobile devices connected in a wireless network.

Location Estimation The position of a mobile device can be calculated and estimated by
collecting and monitoring the network traffic that is produced by applications that contain
location-based services, even when the communication channels are encrypted. For ex-
ample, Ateniese et al. [10] show that an adversary could estimate the position of a mobile
device by analysing the timing and sizes of encrypted network packets that are exchanged
between the user’s mobile device and any location-based service provider that communi-

cates with the device.

4.3.1 Techniques

In this section, we present the techniques and algorithms that are more popular among
the works of this category. Table 4.8 briefs the techniques and evaluation metrics used.
The majority of works in the category of website or device/OS fingerprinting domain
use machine learning techniques, while it is also common to build fingerprints for a web-
page and then compare its similarity for classification. Works that detect PII leakages ei-
ther work offline (e.g., [67, 106]) or online (e.g., [24, 102]). Offline works use similar ma-
chine learning techniques as previously discussed works, while online tools intercept the

encrypted network traffic before processing it.
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For instance, between works that examine tunnelled network traffic (e.g., over VPN or
SSH protocols) for website classification and fingerprinting, the most popular algorithms
are Multinomial Naive Bayes [51], Support Vector Machine [88] and Hidden Markov Mod-
els [16]. In addition, Levenshtein distance and the Jaccard classifier are used in a number
of works to examine similarities between website fingerprints and properly classify them

into categories [16,71,75].

In addition, more recent works like [28, 74] use neural networks. Lotfollahi et al. [74]
present a system that is able to handle both traffic characterization and application iden-
tification by analysing encrypted traffic with deep learning, embedding stacked autoen-
coder and convolution neural network (CNN) to classify network traffic. Cruz et al. [28]
identify tunnelled BitTorrent traffic with a deep learning implementation. Their approach
examines features that are related to the statistical behaviour of TCP tunnels proxying Bit-
Torrent traffic. Then, authors transform the features into multiple time sequences and
train a recurrent neural network. Profit combines techniques like network trace align-
ment, phase detection, feature selection, feature probability distribution estimation and
entropy computation to quantify the amount of information leakage that is revealed via
the network traffic. Rosner et al. [106] present in “Profit” a dynamic technique to detect
information leakages in applications that support encryption and communicate via TLS.
Profit receives a “user-supplied profiling-input suite” where application data is annotated
as secret or sensitive. Profit runs the application over the user-supplied input and cap-
tures a set of variable-length network packet traces. The traces include information like
packet sizes and timestamps along with their aggregations (e.g., total time and median
size). Again, authors agree that finding the features that leak the most information is
challenging. To another end, device and OS identification techniques use network packet
header contents, such as IP TTL value, the IP ID monotonicity, the TCP timestamp option,
the TCP window size scale option, and the clock frequency. For the detection of tethering,
similar approaches take into consideration the monotonicity of the TCP timestamp, the

timestamp clock frequency and the booting time [21].

Works that investigate PII leakage from mobile applications are also presented in Ta-
bles 4.7 and 4.8. In this category, works tend to perform network traffic interception to
be able to process the encrypted traffic and follow the information flow that is exposed by

mobile applications. After the traffic interception, authors are able to extract information
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by inspecting plaintext packet contents.

Table 4.8: Techniques, algorithms and evaluation metrics used in the privacy domain.

Work Category Algorithm/Technique Performance Evaluation Met-
rics
Herrmann et al. [51] Classification with Multinomial Naive | Accuracy, Training/testing
Bayes (MNB) Time
Lu et al. [75] Fingerprint similarity with Levenstein | Accuracy, Effect of time on ac-
distance curacy
Panchenko et al. [87,88] | Webpage Classification with SVM, Fingerprint | Accuracy, FPR, TPR, Runtime,
Identification | similarity Recall, Precision
Cai et al. [16] Classification with SVM and Fin- | Success rate, Likelihood, TPR
gerprint similarity with Damerau-
Levenshtein distance
Kwon et al. [62] Classification with C4.5 Decision | Accuracy, TPR, FPR
Trees and Fingerprint similarity with
Edit Distance
Draper-Gil et al. [33] Classification with C4.5 and KNN Precision, Recall, Accuracy
Cruz et al. [28] LSTM and BLSTM Deep Neural Net- | Precision, Recall, Accuracy, F1-
works score
Lotfollahi et al. [74] Deep Neural Network Stacked Autoen- | F1-score, TPR, FPR
coder (SAE) and Convolution Neural
network (CNN)
Shahbar et al. [113] Classification with C4.5 Decision | Accuracy, Time
Trees, Random Forests, Naive Bayes,
Bayesian Network (BN)
Montieri et al. [79] Classification with C4.5, RE NB, BN Accuracy, F-measure, G-mean
Jorgensen et al. [56] Classification with a NN and out-of- | Accuracy, F1-score
distribution (ODD) scores
Chen et al. [21] Classification with Naive Bayes Accuracy, Precision, Recall, F-
Device/OS measure
Sivanathan et al. [117] Identification | Classification with Naive Bayes Multi- | Accuracy, Root Relative
nomial classifier, Random Forest, Squared Error (RRSE)
Skowron et al. [118] Classification with k-NN, Decision | Accuracy, Fl-score, Precision,
Trees and Random Forests Recall
Lastovicka et al. [66] Classification with Decision trees Accuracy, Precision, Recall, F-
measure
Ateniese et al. [10] Location Interception of encrypted traffic and | Accuracy and Granularity of the
Estimation payload inspection monitor area
Razaghpanah et al. [102] Interception of encrypted traffic and | CPU and Power Overhead, La-
payload inspection tency, Throughput, TLS over-
head
Song et al. [120] PDIeItIéi?il;ange Interception of encrypted traffic and | Throughput, Delay, Battery
payload inspection Consumption
Le et al. [67] Interception of encrypted traffic and | Precision, Fl-score, CPU and
payload inspection, Classification | Battery cost
with SVM
Ren et al. [103] Interception of encrypted traffic and | Accuracy, Classification time
payload inspection and Runtime
Continella et al. [24] Interception of encrypted traffic and | False positives, Execution time
payload inspection
Rosner et al. [106] Trace Alignment, Phase Detection, | Information Leakage measure
Leakage Quantification with Shannon
entropy

Datasets Table 4.9 contains the public datasets that were used by each work. Lastovicka
et al. [66] produced a dataset that was made public after the publication of their work. The
dataset contains TLS fingerprints collected. The VPN-nonVPN dataset (ISCXVPN2016)
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dataset [160] contains traffic from user sessions in applications of browsing, email, chat,
streaming and others. The traffic is either regular or transferred over VPN. The LBNL/ICSI
dataset [153] contains packet traces that span more than 100 hours of activity from a to-
tal of several thousand internal hosts. The Anonl7 dataset [163]contains network traf-
fic traces from TOR, JonDonym and I2P anonymity tools. The CRAWDAD SIGCOMM'08
dataset [155] contains traces of wireless network activity from the SIGCOMM 2008 con-
ference. Similarly, the CRAWDAD OSDI'06 dataset [154] contains network activity from
the OSDI 2006 conference. Finally, the goal of the DARPA Space/Time Analysis for Cyber-
security program [158], among others, is to enable researchers to identify vulnerabilities

related to the space and time resource usage behavior of algorithms.

Table 4.9: Datasets used in the user privacy domain.

Work Category Dataset Availability Dataset details
Lotfollahi et al. [74] Webpage Public UNB ISCX VPN-nonVPN [160]
Shahbar et al. [113] Identification Public LBNL/ICSI [153]
Montieri et al. [79] Public Anonl7 [163]
Jorgensen et al. [56] Public VPN/NONVPN Network Ap-
plication Traffic Dataset
(VNAT) [170]
Chen et al. [21] Device/OS Public CRAWDAD SIGCOMM’08 [155],
Identification CRAWDAD OSDI'06 [154]
Lastovicka et al. [66] Proprietary dataset that was made | TLS fingerprints for OS identifi-
public cation [168]
Rosner et al. [106] PII Leakage Public DARPA Space/Time Analysis for
Detection Cybersecurity program [158]

4.3.2 Objectives and Limitations

In the categories of website, location and device/OS identification, the major goal is to
produce an effective methodology for accurate fingerprinting. Thus, all the works that we
study in these categories have one primary target; functionality. On the other hand, works
in the domain of PII leakage Detection focus on the programmability and deployability.

Hence, we encounter performance-driven solutions.

The limitation of high false positive rates is major in any domain of traffic analysis. Un-
fortunately, it appears to be very difficult to produce a universal solution that will be able
to cover a whole domain, due to the vast diversity and heterogeneity that has introduced
during the recent years in every single aspect of Internet. In addition, as Juarez et al. [57]

argue regarding fingerprinting, accuracy scores reduce over time.
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In addition, in the category of PII leakage detection, it is common to use proxy servers
or VPN in order to redirect the traffic to a controlled environment for interception and
decryption of encrypted traffic. Even if we neglect the latency that is added, this tech-
nique could eventually raise privacy-related concerns if users are not properly informed
about the procedure of the processing and manipulation (e.g., storage) of their traffic and
personal data. In Section 4.4, we discuss about middleboxes that address this issue by pro-

cessing sensitive information using hardware-assisted technologies for trusted execution.

4.3.3 Relation to this Dissertation

Although the works presented in this section (§ 4.3) are not rigidly related to the work
realized during this dissertation, we include them for completeness, since they lie into the

domain of encrypted traffic analysis, as well.

4.4 Network Functions in Middleboxes after Network Encryption

Quoting from RFC 3234, “a middlebox is defined as any intermediary device performing
functions other than the normal, standard functions of an IP router on the datagram path
between a source host and destination host” [18]. The typical use of a middlebox is to offer
security (e.g., firewall, intrusion detection) or performance (e.g., caching, protocol acceler-
ator), while other common uses are network address translation and protocol conversion.
One challenge that occurred after the rapid growth of network encryption is that in order
to process and operate on TLS traffic the middlebox must perform a man-in-the-middle
in a connection. Of course, this raises major concerns on user privacy preservation. Net-
work middleboxes that aim to inspect encrypted traffic operate by acting as proxies. They
terminate and decrypt the client-initiated TLS session, they analyze the HTTP plaintext
content, and then they initiate a brand new TLS connection to the destination. TLS makes
interception difficult by encrypting data and defending against attacks (like man-in-the-
middle) via the certificate validation. During the validation process, the client is responsi-
ble to authenticate the identity of the destination server, rejecting impostors. To circum-
vent this validation process, a self-signed CA certificate is injected into the client browser’s

root store at the time of installation. For network middleboxes, administrators deploy the
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middlebox certificate to the corresponding devices (e.g., of the organization) in a similar
manner. Then, when the proxy intercepts a connection, it will dynamically generate a cer-
tificate for a website’s domain name that is signed with its CA certificate. The proxy will
deliver this certificate chain to the browser [35]. Some works that allow TLS interception
to inspect encrypted network traffic have already been presented in Section 4.3. In this
section, we discuss about the works that enable secure processing of encrypted traffic by

middleboxes. Tables 4.10-4.11 present details about these works.

Table 4.10: Works that implement network functions in midlleboxes, sorted by publi-

cation year.
Traffic Analysis Domain | Work Goal Year of publication
Sherry et al. [115] DPI on the encrypted traffic us- 2015
ing encrypted rules
Naylor et al. [82] Extend the TLS protocol to sup- 2015
port middleboxes
Asghar et al. [9] Trusted execution for Network 2016
Functions (NF) in the cloud
Network Functions in Canard et al. [17] Ellg’le(;r; rt}l}lstggill‘ﬂgzed traffic us- 2017
Middleboxes Lan et al. [64] Trusted execution for Network 2016
Functions (NF) in the cloud
Yuan et al. [148] DPI on the encrypted traffic us- 2016
ing encrypted rules
Fan et al. [39] DPI on the encrypted traffic us- 2017
ing encrypted rules
Naylor et al. [81] Secure outsourcing of middle- 2017
box NF in untrusted infrastruc-
tures
Han et al. [50] Secure outsourcing of middle- 2017
box NF in untrusted infrastruc-
tures
Coughlin et al. [26] Secure outsourcing of middle- 2017
box NFV in untrusted infras-
tructures
Poddar et al. [98] Secure outsourcing of middle- 2018
box NFV in untrusted infras-
tructures
Trach et al. [128] Secure outsourcing of middle- 2018
box NF in untrusted infrastruc-
tures
Goltzsche et al. [46] Secure virtual private network 2018
(VPN) with middlebox NF
Duan et al. [34] Secure outsourcing of middle- 2019
box NF in untrusted infrastruc-
tures
Ning et al. [83] DPI on the encrypted traffic us- 2019
ing encrypted rules
Guo et al. [48] Privacy preserving packet 2020
header processing for middle-
boxes in the cloud




4.4. Network Functions in Middleboxes after Network Encryption 87

Network Functions in Middleboxes BlindBox [115] performs deep-packet inspection di-
rectly on the encrypted traffic, utilizing a new protocol and new encryption schemes. Specif-
ically, the functionality of BlindBox is provided through (i) a searchable encryption scheme
[119] that enables the inspection of encrypted traffic for certain keywords, (ii) a technique
to allow the middlebox to obtain encrypted rules (i.e., based on the rules from the middle-
box and the private key of the endpoints), and (iii) a mechanism to allow flow decryption
when a suspicious keyword is observed in the flow. mcTLS extends the traditional TLS
protocol to support middleboxes by allowing endpoints and content providers to explic-
itly introduce middleboxes in secure end-to-end sessions while controlling which parts of
the data they can read or write [82]. Asghar et al. [9] propose SplitBox, in which a cloud
service provider privately computes network functions on behalf of the client. More specif-
ically, SplitBox provides security guarantees in the honest-but-curious model and works
based on cryptographic secret sharing. As proof-of-concept, authors implemented a fire-
wall and measured the bandwidth and latency achieved. Embark [64] enables a cloud
provider to support middlebox outsourcing respecting user privacy. Embark encrypts the
traffic that is transmitted to the cloud and enables the cloud to process the encrypted
traffic without having to decrypt it. Yuan et al. [148] propose a system architecture for
outsourced middleboxes to perform DPI over encrypted traffic, without revealing either
packet payloads or inspection rules. SPABox [39] is a middlebox-based system that sup-
ports keyword-based and data analysis-based DPI functions over encrypted traffic with-
out having to decrypt it. Canard et al. [17] present BlindIDS, which is able to perform deep
packet inspection directly on encrypted network packets for intrusion detection. BlindIDS
does not assume knowledge over the traffic content or the patterns of detection signatures.
Authors evaluate the performance of BlindIDS by presenting the overhead on sender and
receiver sides (i.e., connection setup time, data encryption time) and the overhead on the
service provider (i.e., detection time, memory usage). Ning et al. [83] propose PrivDPI,
a tool that addresses the performance limitations of BlindBox [115]. Guo et al. [48] pro-
pose a privacy preserving packet header processing approach for middleboxes that are
outsourced to cloud infrastructures. Authors perform a security analysis and identify in-
formation leakages, while they evaluate the performance of the prototype (i.e., initializa-
tion time, memory cost, latency, throughput and overhead). To overcome the limitation

of privacy violation when the network traffic is intercepted for further processing, there
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are works that propose hardware-assisted solutions that enable trusted execution. These
works enable the secure processing of sensitive information, such as the network traffic, in-
side encrypted memory regions provided by Trusted Execution Environments (TEEs). One
example of TEE is the Intel SGX technology, that is supported by Intel Skylake processors
(and successors). TEEs offer secure processing when the execution environment could
not be trusted (e.g., a cloud infrastructure). Naylor et al. [81] propose mbTLS, a protocol
that enables secure outsourcing middlebox functionality to untrusted infrastructure using
the Intel SGX technology [179]. Han et al. [50] present SGX-Box, a secure middlebox sys-
tem implementation that offers visibility in encrypted network traffic, taking advantage of
the Intel’s SGX technology [179]. SGX-Box ensures that the sensitive information, such as
decrypted payloads and session keys, is securely protected within the protected memory
enclave. Coughlin et al. [26] propose the Intel SGX technology to overcome security issues
of Network Function Virtualization (NFV) applications in cloud environments. Poddar
et al. [98] present SafeBricks that also proposes the utilization of Intel SGX to shield the
execution of NFV functions in untrusted environments like the cloud infrastructure. Sim-
ilarly, Trach et al. [128] present ShieldBox, a middlebox framework for deploying network
functions over untrusted commodity servers. ShieldBox takes advantage of the Intel SGX
technology and authors deploy two use cases: (i) a multiport IP router and (ii) an intru-
sion detection system. Goltzsche et al. [46] propose EndBox. EndBox executes middlebox
functions on client machines at a network edge and combines a virtual private network
(VPN) with middlebox functions that are protected in Intel SGX hardware enclaves. Duan
et al. [34] present LightBox, which offers efficient and protected middlebox functionality
using the Intel SGX technology.

4.4.1 Techniques

Works in this category either process the encrypted network traffic using software based
cryptographic techniques, such as searchable encryption, or process the network traffic in-
side encrypted memory regions in order to ensure the preservation of privacy. With search-
able encryption, tools are able to search directly on encrypted data without decrypting it,
and thus, without leaking information in plaitext (e.g., for privacy preserving malware de-

tection [29]). This is achieved by encrypting the rules to be searched against the already
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Table 4.11: Techniques, algorithms and evaluation metrics used by network functions
in midlleboxes.

Work
Sherry et al. [115]
Naylor et al. [82]

Performance Evaluation Metrics

Overhead in Load Time & Bandwidth
Handshake, File Transfer, Page Load Times,
Data Volume, CPU and Deployment Over-
heads

Throughput and Delay

Connection Setup, Data Encryption and De-
tection Times, Memory Usage

Performance Overhead in Throughput, Page
Load Time, Time per-request

TPR and Initialization Time, Inspection
Throughput, Token Overhead, Latency
End-to-end Delay, Throughput, CPU Utiliza-
tion, Connection Setup Overhead & Malware
Detection Accuracy

Algorithm/Technique
DPI with Searchable Encryption
DPI with Searchable Encryption

Asghar et al. [9]
Canard et al. [17]

DPI with Searchable Encryption
DPI with Searchable Encryption

Lan et al. [64] DPI with Searchable Encryption

Yuan et al. [148] DPI with Searchable Encryption

Fan et al. [39] DPI with Searchable Encryption

Naylor et al. [81]

Secure hardware-assisted DPI (TEE: Intel
SGX)

CPU Overhead, Handshake Latency, SGX
1/0 Throughput Overhead

Han et al. [50]

Secure hardware-assisted DPI (TEE: Intel
SGX)

Performance Overhead in Throughput

Coughlin et al. [26]

Secure hardware-assisted DPI (TEE: Intel
SGX)

Processing Throughput

Poddar et al. [98]

Secure hardware-assisted NFV (TEE: In-
tel SGX)

1/0 Throughput and Memory Usage Over-
head

Trach et al. [128]

Secure hardware-assisted DPI (TEE: Intel
SGX)

Throughput, Latency, Scalability

Goltzsche et al. [46]

Secure hardware-assisted DPI (TEE: Intel
SGX)

Round Trip Time, Throughput, Latency, CPU
usage Overheads

Duan et al. [34]

Secure hardware-assisted DPI (TEE: Intel
SGX)

Throughput, CPU usage, Packet Delay

Ning et al. [83] DPI with Searchable Encryption Latency, Bandwidth, Token Encryption
Time, Round Trip Total Time
Guo et al. [48] DPI with Searchable Encryption Initialization Time, Memory Cost, Process-

ing Latency, Throughput, Token Overhead

encrypted traffic (e.g., [17]). Trusted Execution Environments (TEEs) enable the secure
code execution and information processing commonly using hardware-assisted features
like memory enclaves. Intel SGX [179] is one of the most popular hardware-assisted TEEs
and is frequently used to provide confidentiality and integrity guarantees to applications
in environments where the OS could eventually become untrusted, like a cloud infrastruc-

ture (e.g., trusted antivirus in the cloud [30]).

In [9, 17,39, 48, 64, 82, 83, 115, 148], authors perform network middlebox applications
with core functionality the deep packet inspection using searchable encryption. In [26,34,
46, 50, 81, 98, 128] authors shield the network traffic processing using hardware enclaves
that the Intel SGX technology provides. Table 4.11 displays the most common techniques

used for network functions in middleboxes. Also, we present the metrics that each work
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used for evaluation.

Datasets The datasets used to evaluate the works of this section are not other than the
ones used by traditional works in network traffic processing inside middleboxes. Depend-
ing on the application goal (e.g., intrusion detection or firewall), authors utilize the rele-
vant rules (e.g., Snort rules [203] in [17, 39, 83, 148]) and traffic traces (e.g., DARPA [151]
in [148]). In this section, we do not include a table, since the datasets used by works in this
category do not provide labeled and encrypted network traffic to be used as ground-truth

data for encrypted network traffic analysis.

4.4.2 Objectives and Limitations

While the main objective of the majority of the works presented in this survey is to ensure
the functionality of their systems by providing knowledge on how to properly analyze en-
crypted network traffic in order to extract information about its nature, the works in this
category focus also on the programmability and deployment of their systems. Thus, au-
thors provide evaluation results not only for the effectiveness of their solution but also for
the processing performance and the overhead that is introduced using either a software-
centric solution like the searchable encryption or a hardware-assisted technology like TEEs.
Although cryptographic tools like the searchable encryption are very effective and sig-
nificantly preserve user privacy when it comes to network functions in middleboxes, the
individual functions that are performed (e.g., rule encryption and connection setup) add
an essential overhead to the end-to-end performance. Similarly, TEEs also increase the
processing overhead. For instance, with Intel SGX, substantial overhead can be presented
when the computations are I/0 bound [19]. Even though both techniques are effective,

they introduce the trade-off of user privacy versus performance.

4.4.3 Relation to this Dissertation

Although the works presented in this section (§ 4.4) are not closely related to the work
presented in this dissertation, we include them for completeness, since they also advocate

the need for encrypted traffic processing.
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Discussion

5.1 Encrypted Traffic Analysis Countermeasures

Even though encrypted traffic analysis techniques can be used by different actors (such
as ISPs/CSPs, etc.) to benignly extract information about network usage, encrypted traffic
analysis techniques can be also used by malicious actors (such as governments that cen-
sor websites or prohibit Internet usage) in order to harm the privacy that network encryp-
tion offers to Internet users. Some of the most popular solutions propose randomizing
network packet sizes, padding bytes to packets for a fixed size and time tuning for inter-
packet transmission. More sophisticated solutions are explicitly discussed in the following
paragraphs. In this chapter, we discuss about the (i) techniques that can be used against

encrypted network traffic analysis and (ii) systems that exist and aim to defend against it.

Anonymity Tools and Tunnelling Protocols Onion Routing serves as an overlay network
designed to anonymize communications and applications (e.g., web browsing and instant
messaging). TOR is one good example of onion routing. Among others, it uses fixed-size
cells that are the unit of communication in TOR [205]. As we have already discussed in
Section 4.3 though, anonymity tools are not enough to prevent website and hidden ser-
vices identification [104], since the existence of anonymity tools can be identified using
numerous encrypted traffic analysis techniques (§ 4.3.1). Also, in [145] authors show that

the utilization of OpenVPN is also detectable.

Traffic Shaping As already discussed, features and characteristics of network traffic that

present patterns after encryption (e.g., packet sizes and timing), can reveal surprising in-
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formation about the traffic’s nature and contents. Even though encrypted traffic analy-
sis can be legitimate, these techniques raise important concerns about privacy related
issues. An approach that typically mitigates such threats is the padding of packets sizes
or the transmission of packets at fixed timing intervals; obfuscating the behaviour of a
communication mean. However, this method can become inefficient because it results
to time overheads. Wright et al. propose a method for hindering statistical traffic anal-
ysis algorithms. Their approach proposes the modification of a certain network traffic
“class” to look like another. Authors show how to modify packets’ characteristics in real-
time with low overhead in order to reduce the accuracy measurements of traffic classi-
fiers. The morphed data is then sent to the network stack encrypted and then sent to the
destination [141]. AnonRep [149] builds on top of anonymity and privacy guarantees for
the case of reputation and voting systems. TARN [147] randomises IP addresses, while
TARANET [20] employs packet mixing and splitting to achieve constant-rate transmission,
providing anonymity at the network layer. Luo et al. [76] design the HTTPOS fingerprinting
defense at the application layer. HTTPOS acts as a proxy that receives HTTP requests and
obfuscates them before allowing transmission. Specifically, it modifies network-related
features, such as the total packet size, the packet timestamp and the payload size. In ad-
dition, it uses HTTP pipelining to obfuscate the number of the transmitted packets. Au-
thors show that HTTPOS was successful in defending against a number of traffic classifiers.
Dyer et al. [36] create a defense, namely BuFLO that combines previously proposed coun-
termeasures, such as fixed packet sizes and constant rate traffic. Authors improve other
related defenses at the expense of a high bandwidth overhead. Cai et al. [15] make mod-
ifications to the BUFLO defense proposing the rate adaptation technique. Yet, this adds
a bandwidth overhead. Nithyanand et al. [84] propose Glove, that groups website traffic
into clusters. This provides privacy guarantees and reduces the bandwidth overhead by
grouping web traffic into similar sets. Panchenko et al. [88] propose “website camouflage”,
which is actually an obfuscation technique that randomly requests a second website, si-
multaneously with the actually requested one. Frolov et al. [43] propose uTLS that enables
tool maintainers to automatically mimic other popular TLS implementations to prevent
censorship. Walkie-Talkie is a website fingerprinting defense approach that modifies the
browser to communicate in half-duplex mode, since it produces burst sequences that leak

less information to the adversary. This makes sensitive and non-sensitive pages look the
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same [136].

Traffic Analysis Resistant IoT Devices Hafeez et al. [49] demonstrate that an adversary,
with access to the network traffic of a “smart” home network, can lead to the identification
of the device types and some user interactions with IoT devices. In order to defend against
traffic analysis attacks, authors propose a “traffic morphing” technique that shapes net-
work traffic in ways that make it more difficult to achieve an attack that identifies devices
and activities. In order to mask the background traffic, authors send traffic on an upstream
link at a constant rate, irrespective of real background traffic rate of an IoT device. Mean-
while, when an IoT device is inactive, authors send dummy traffic representing device
activity to upstream link, so that an adversary can not identify real activity of the IoT de-
vice. While this approach is not very sophisticated, it points to the direction of defending
against traffic analysis on IoT devices. In [133], authors propose IoTReguard, a system that
aims to explore network traffic features that reveal the most relevant ones and hide them

to protect users’ privacy.

Traffic Analysis Resistant Messaging Applications There have been efforts to create mes-
saging protocols that provide anonymity and privacy guarantees in the face of traffic analy-
sis. Dissent [139] and Riposte [25] are systems that provide strong user privacy guarantees.
They protect packet metadata, but they suffer from scalability issues. Herd [68] is another
system that tackles the case of anonymity for VoIP calls, by addressing, like the former pro-
posals, some of the limitations of the more general-purpose Tor anonymity network [32].
Vuvuzela [129] and Atom [63] are more scalable systems (thousands of messages for mil-

lions of users) that employ differential privacy to inject noise into observable metadata.

5.2 Quality and Quantity of Data

Approaches like our work presented in Sections 2.1 and 2.2 depend exclusively on the
ground truth. Therefore, data must not be characterized by low quality or insufficient
quantity. Unfortunately, only a small amount of recent public datasets, properly labelled
(presented in § 4.1.1, § 4.2.1, § 4.3.1 and § 4.4.1) exist. In our work presented in Chapter 2,

to evaluate our methodology we use a combination of public datasets (i.e., [150,171,208])
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and ground-truth data that we collect in our own environments. In this way, we have
the flexibility to deploy different OS/application versions and examine the diversity in the
network traffic. This enables us to ensure that our methodology is resilient to different
network stack implementations. Overall, poor ground truth information can undermine
the effectiveness of passive network traffic analysis, highlighting the need for accurate and

reliable data to support network monitoring, management and security.

For the characterization of malicious servers, we collect IP addresses posted on public
lists. For instance, the Feodo Tracker Botnet C2 IP Blocklist mentions in its description
that it “only contains active botnet C&C servers or such that have been active in the past
hours”. Probing IP addresses retrieved from lists that are getting updated frequently keeps

the possibility of false positives low.

5.3 Validation and False Positives

When network traffic is encrypted, achieving result validation in a real-world deployment,
at the ISP/CSP level, is challenging. Encryption is used to protect sensitive information
from unauthorized access or interception, which can make it difficult to monitor or an-
alyze network traffic. In use cases that are related to network analytics (discussed in Sec-
tion 2.1), result validation requires a combination of encryption and decryption techniques,
network tunneling solutions, behavioural analytics and machine learning techniques. When
the use case is related to network security (discussed in Section 2.2), result validation re-
quires a combination of endpoint detection, network-based analysis and security event

management strategies.

5.4 Passive Monitoring versus Active Scanning

In Chapter 2 we follow a passive network monitoring and analysis approach . Passive net-
work traffic monitoring has several advantages, including the ability to detect anomalies
and security threats without disrupting the normal flow of network traffic. Passive network
traffic analysis can be performed on a wide range of network types and protocols, making
it a versatile tool for network administrators and security professionals. However, passive

network traffic analysis also has some limitations, since it requires specialized tools and
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expertise to capture and analyze network traffic, which can be time-consuming. Also, it
might not provide a complete picture of network activity, as we capture packets that are
transmitted over a specific and dedicated network setup. In addition, passive network
traffic analysis can be subject to privacy violations, as it may capture sensitive data that is
transmitted over the network, and thus sharing data can be challenging.

Active network scanning is the method of monitoring network traffic by actively send-
ing packets into the network and analyzing the responses received. As discussed in Chap-
ter 3, active network traffic enables us a granular and targeted analysis of network activity,
focused on botnet configurations. Of course, active network traffic scanning must be care-
fully controlled and monitored to ensure that it does not inadvertently (i) create security
vulnerabilities, (ii) provide attackers with useful information about the network [99], or

(iii) cause network congestion affecting the overall network performance.

5.5 TLS 1.3 and Beyond

Expecting the vast adoption of TLS 1.3, we do not perform TLS certificate fingerprinting,
like other relevant solutions [189]. The TLS 1.3 handshake is quite different from earlier
versions of TLS, with a large portion of it getting encrypted [61]. The TLS 1.3 protocol
ensures the privacy and security of the certificate exchange through the use of digital sig-
natures and cryptographic mechanisms. Thus, the introduction of TLS 1.3 encourages
our proposed methodology, in which we propose the inspection of sequences of packet
metadata, like the packet payload size.

Our methodology for the identification of events on encrypted network traffic (§ 2.1,
§ 2.2) is not affected by the TLS 1.3 ClientHello Padding Extension [180] that enables padding
in the TLS ClientHello messages to a desired size, since we do not process such packets.
Likewise, the characterization of malicious servers technique is not affected by the TLS
1.3, since the certificate data that is present in the “TLS Server Hello” packet is ignored

and not used for the fingerprint construction.
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Conclusion

6.1 Synopsis of Contributions

In this work, we discussed the fine-grained identification of events over encrypted network
traffic focusing on scalability and maintainability. For the application event detection use
case, we demonstrated that (i) a simple regex-inspired language is expressive enough to
achieve a minimum hit rate of 84%, (ii) the proprietary DPI engine processed an average
of 109 Gbps with no packet loss, and (iii) the rule extraction is amenable to data mining
techniques. Similarly, for the use case of malicious activity detection, we demonstrate a
methodology to mine signatures for intrusion detection in encrypted networks. We show
that a simple signature language can be expressive and effective enough also for intrusion
detection in encrypted networks, while it can achieve a processing throughput of up to
85Gbps (the implementation details of this proof-of-concept DPI engine is presented in
§ 2.2.3). The work focuses on a real-world implementation because we believe that just
like substring pattern matching is a requirement in a state-of-the-art network monitoring
system, so is packet metadata sequence matching, even if techniques such as encryption

and traffic analysis resistance exist to evade them.

We also explore how botnets evolve in time and the fingerprint overlapping with legiti-
mate servers. By actively contacting IP addresses of known command and control servers,

we create a database of TLS server fingerprints grouped by botnet. We show that an out-
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dated list of fingerprints can cause false positives. We narrow down the size of the finger-
print to avoid analysis circumvention techniques applied by malicious servers. Investigat-
ing the existence of those fingerprints into blocklists of maliciously acting IP addresses,
we are able to (re-)identify the same TLS server configurations that could indicate specific
botnet activity, based on our knowledge base.

The key takeaways of this dissertation are the following:

Encrypted traffic inspection is feasible using patterns of packet metadata sequences

¢ Packet metadata sequences can be described using a simple yet expressive language

that also enables automated mining

e With the integration of the pattern language into two different DPI engines (one pro-
prietary and one proof-of-concept), we demonstrate that it can achieve high process-

ing throughput for real-time processing

¢ Although botnets operate using encrypted traffic nowadays, we can still determine a

server’s activity from a TLS fingerprint

¢ As time passes, we observe higher fingerprint overlapping between malicious and
legitimate servers that causes accuracy degradation; this implies the need to update

the fingerprint database frequently

6.2 Directions for Future Work and Research

There are several aspects that are worth further work and research. Specifically, we plan to
generate signatures and evaluate our methodology using more traffic captures from other
popular malware families. Also, we aim to examine (i) how we can approach traffic inspec-
tion for encrypted protocols that multiplex network flows (e.g., VPN) and (ii) how sensitive

our patterns are to more network stack implementations of endpoints. Of course, we plan
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to enhance and fine-tune our proof-of-concept DPI engine (described in Section 2.2.3) to
achieve the optimal end-to-end processing performance.

As future work for the characterization of malicious servers on the Internet, we aim to
enrich our TLS fingerprints database with more and different botnets, explore approaches
that could help us recognize the randomization of cipher suite vectors and measure how
common this randomization is and in which botnet families. We will perform a more in
depth analysis of those server TLS responses specifically to uncommon “TLS Client Hello”
configurations. Finally, we plan to further verify our findings by monitoring and analyzing

each malware by installing it in a virtual environment.
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Publications

A considerable part of this work (Section 2.2 and Chapter 4) was implemented in the con-
text of the CyberSANE project funded by the European Commission under Horizon 2020".
More specifically, FORTH participated in and led Task 3.3 “Encrypted Network Traffic Anal-
ysis” and contributed to the deliverable D3.2 “Encrypted Network Traffic Analysis, Trans-
formation and Normalization Techniques” [207], where I had the opportunity to describe
the motivation for my work, develop a system, test and demonstrate it?> via one use case
defined in the energy pilot (Lightsource Labs?). The pilot demonstrated, tested and vali-
dated the CyberSANE System, by showcasing a variety of potential cyber-attack scenarios
within the Solar Energy management platform, used for a number of digital services such
as helping secure the electrical grid and reducing the cost of electricity. Our work in the
context of CyberSANE produced four publications [89, 91, 92, 95]. In addition, our work
in Task 3.3 was selected by the European Commission’s Innovation Radar in the domain
of secure networks and computing. Section 2.1 describes the work conducted during my
6-month internship in Niometrics*, back in 2018. There, I had the opportunity to identify
the need to build a system able to inspect encrypted network traffic in real-time, solely
by monitoring network packet metadata. After the end of the internship, we published a
paper describing our work in mobile application analytics against encrypted network traf-

fic [90]. In addition, I was honoured to participate in a report published by ENISA in 2019

Thttps://www.cybersane-project.eu
Zhttps://www.cybersane-project.eu/cybersane-pilot-case-study-2/
Shttps://www.lightsourcelabs.com/

‘http://niometrics.com
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demonstrating the state-of-the-art in the domain of encrypted traffic analysis [186], while
our extensive literature review was published in [92]. Finally, part of Chapter 3 is presented

in [93].

Publications (peer-reviewed)

The research activity related to this thesis has so far produced the following publications

(ordered by publication date):

1. Pump Up the JARM: Studying the Evolution of Botnets Using Active TLS Fingerprint-
ing. Eva Papadogiannaki, Sotiris Ioannidis. 2023 IEEE Symposium on Computers

and Communications (ISCC). [93]

2. Network Intrusion Detection in Encrypted Traffic. Eva Papadogiannaki, Giorgos Tsir-
antonakis, Sotiris loannidis. 2022 IEEE Conference on Dependable and Secure Com-

puting (DSC). [95]

3. A survey on encrypted network traffic analysis applications, techniques, and coun-
termeasures. Eva Papadogiannaki, Sotiris Ioannidis. 2021 ACM Computing Surveys

(CSUR). [92]

4. Acceleration of intrusion detection in encrypted network traffic using heterogeneous

hardware. Eva Papadogiannaki, Sotiris loannidis. 2021 Sensors. [91]

5. Head (er) Hunter: fast intrusion detection using packet metadata signatures. Eva Pa-
padogiannaki, Dimitris Deyannis, Sotiris Ioannidis. 2020 IEEE 25th International
Workshop on Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD). [89]

6. Otter: A scalable high-resolution encrypted traffic identification engine. Eva Papado-
giannaki, Constantinos Halevidis, Periklis Akritidis, Lazaros Koromilas. 2018 Inter-

national Symposium on Research in Attacks, Intrusions, and Defenses (RAID). [90]
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Publications (deliverables/reports)

1. Encrypted Network Traffic Analysis, Transformation and Normalization Techniques.
Sergio Zamarripa Lopez, Spyros Papastergiou, Nicola Tamburini, Andrea Pruccoli,
Eva Papadogiannaki, Manos Athanatos, Konstantinos Kontakis, Sofia Spanoudaki,
Georgia Koutsouri, Marianna Manou Kaklamani, Saoulidis Harris. Deliverable 3.2

CyberSANE. August 2021. [207]

2. Encrypted Traffic Analysis: Use Cases & Security Challenges. Paraskevi Dimou, Jan Fa-
jfer, Nicolas Muller, Eva Papadogiannaki, Evangelos Rekleitis, Frantisek Strasak. Eu-

ropean Union Agency for Cybersecurity (ENISA). November 2019. [186]

Posters (peer-reviewed)

1. GPU-accelerated encrypted network traffic inspection. Eva Papadogiannaki, Sotiris
Ioannidis. 6th ACM-W Europe Celebration of Women in Computing (womENcour-

age, 2019).

2. High performance encrypted network traffic inspection using hardware accelerators.
Eva Papadogiannaki, Giorgos Vasiliadis, Sotiris Ioannidis. Presented in the 14th Inter-
national Conference on emerging Networking EXperiments and Technologies (CoONEXT,
December 2018) and in the 1st Summit on Gender Equality in Computing (GEC,
2019).

Highlights

1. Detection signatures for encrypted traffic. Innovation selected by the European Com-
mission’s Innovation Radar in the context of the CyberSANE project funded by the

European Commission under Horizon 2020 (www.innoradar.eu/innovation/40424).






