
UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Identification of Events on Encrypted
Network Traffic and Characterization of

Malicious Servers on the Internet
by

Eva Papadogiannaki

PhD Dissertation

Presented

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, July 2023

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

Identification of Events on Encrypted Network Traffic and Characterization of

Malicious Servers on the Internet

PhD Dissertation Presented

by Eva Papadogiannaki

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY :

Author: Eva Papadogiannaki

Supervisor: Sotiris Ioannidis, Associate Professor at Technical University of Crete

Committee Member: Xenofontas Dimitropoulos, Associate Professor at University of Crete

Committee Member: Polyvios Pratikakis, Assistant Professor at University of Crete

Committee Member: Maria Papadopouli, Professor at University of Crete

Committee Member: Panagiota Fatourou, Professor at University of Crete

Committee Member: Elias Athanasopoulos, Associate Professor at University of Cyprus

Committee Member: Michalis Polychronakis, Associate Professor at Stony Brook University

Department Chairman: Antonis Argyros, Professor at University of Crete

Heraklion, July 2023

To my grandma and all the girls that are banned from their right to education

Acknowledgments

I would like to dedicate some lines to acknowledge the people that contributed in this long

and challenging doctoral journey.

First and foremost, I would like to express my deepest gratitude to my advisor Prof.

Sotiris Ioannidis for his continuous guidance, encouragement and support. Over the years,

he helped me accumulate a wealth of knowledge and experience. I am deeply thankful to

the members of my PhD advisory committee, Prof. Xenofontas Dimitropoulos and Prof.

Polyvios Pratikakis, for their invaluable insights and critical feedback. Also, I would like

to extend my sincere appreciation to the examination committee members, Prof. Maria

Papadopouli, Prof. Panagiota Fatourou, Prof. Elias Athanasopoulos and Prof. Michalis

Polychronakis, for their thoughtful comments and rigorous examination of this thesis.

In addition, I would like to thank the Niometrics team and especially Dr. Periklis Akri-

tidis, Dr. Konstantinos Chalevidis and Lazaros Koromilas, for our influential collaboration

during my internships. I would like to express my sincere gratitude to all my present and

former colleagues, the Parasecurity team members, and especially, Christos Papachristos,

Manos Athanatos, Despina Kopanaki and Maria Mastoraki. Special thanks to Dimitris

Deyannis, George Christou, Kostas Solomos and Dimitris Karnikis. I should not omit to

extend my appreciation to the MSc students I have had the privilege of co-supervising,

Giannis Giakoumakis and Andreas Theofanous.

Finally, I would like to acknowledge all the people that helped me preserve my mental

equilibrium. I am deeply thankful to my family Michalis, Alexia and Sifis, for their un-

wavering pride and support. I feel indebted to my grandmother Anthoula that always

provided me with ταπεράκια (phonetically taperákia, lunchbox). I would like to extend a

special thank you to my loyal companions, Rocky and Jela, who served as a reminder to

take breaks and appreciate the simple pleasures in life. I am deeply grateful for the un-

vii

wavering support and friendship of Georgianna, Eirini, Xenia, Maria, Ioanna, Elina and

Rafaella. Last but not least, I want to thank Antonis, for his unwavering belief in me that

was a constant source of strength, throughout the ups and downs of my academic pursuit.

As a final remark, I want to acknowledge that this work has been performed at the

Computer Science Department at University of Crete, the Foundation for Research and

Technology - Hellas (FORTH), the Technical University of Crete (TUC), and Niometrics.

The work was supported by the projects AI4HealthSec, CyberSANE, CyberSURE, I-BIDAAS,

Ideal-Cities, and SENTINEL, funded by the European Commission under Grant Agree-

ments No. 883273, No. 833683, No. 734815 , No. 780787, No. 778229 , and No. 101021659,

respectively.

Abstract

The growing adoption of network encryption protocols, like TLS, has altered the scene of

network traffic monitoring. With the advent and rapid increase in network encryption

mechanisms, typical deep packet inspection systems that monitor network packet pay-

load contents are gradually becoming obsolete, while in the meantime, adversaries abuse

the utilization of the TLS protocol to bypass them.

In this work, we propose a pattern language to describe packet sequences for the pur-

pose of fine-grained identification of events even in encrypted network traffic. The first

use case for our pattern language is the identification of application-level events in en-

crypted network traffic. We demonstrate its expressiveness with case studies for distin-

guishing messaging, voice, and video events in Facebook, Skype, Viber, and WhatsApp

network traffic. The second use case for our pattern language is the identification of in-

trusions and suspicious events in encrypted network traffic. Similarly, we investigate its

expressiveness with case studies for distinguishing events originating from penetration

tools, such as password cracking, or botnet communications. We provide an efficient im-

plementation for the proposed pattern language, which we integrate into two different

DPI systems. We evaluate the proposed pattern language with respect to the level of ex-

pressiveness and the processing performance. Finally, we demonstrate that the proposed

language can be mined from traffic samples automatically, minimizing the otherwise high

ruleset maintenance burden.

Except for our passive analysis approach, we actively contact IP addresses known to

participate in malicious activities, since we aim to understand the botnet ecosystem in the

wild. We utilize an open-source tool for active probing and TLS fingerprint construction.

Based on packets acquired from TLS handshakes, server fingerprints are constructed dur-

ix

ing a time period of 7 months. The fingerprints express servers’ responses to a sequence

of several ‘‘TLS Client Hello’’ packets with different TLS attributes and we investigate

if it is feasible to detect suspicious servers and re-identify other similar within blocklists

with no prior knowledge of their activities. Based on our findings, we can see that fin-

gerprints originating from suspicious servers are repetitive among similarly configured

servers, while it is rare to overlap with fingerprints that correspond to legitimate domains.

The findings of our measurement study encourage the utilization of actively generated

TLS fingerprints for detecting malicious command and control servers in the wild.

Subsequently, we present the literature that manages to perform network traffic anal-

ysis and inspection after the ascent of encryption. We observe that the research commu-

nity has already started proposing solutions on how to perform inspection even when the

network traffic is encrypted and we review these works. We present the techniques and

methods that these works use and their limitations.

Lastly, we do not omit to examine the countermeasures that have been proposed to

circumvent traffic analysis and we discuss about our system’s limitations related to traffic

analysis resistance.

Keywords: Encrypted traffic analysis, Network monitoring, Packet metadata, Passive traf-

fic inspection, Mobile applications, Intrusion detection, Active probing, TLS fingerprint-

ing, CnC server characterization, Traffic analysis resistance

Supervisor:

Sotiris Ioannidis

Associate Professor

School of Electrical and Computer Engineering

Technical University of Crete

Περίληψη (Abstract in Greek)

Η συνεχώς αναπτυσσόμενη καθιέρωση των πρωτοκόλλων για την κρυπτογράφηση
της κίνησης του δικτύου (όπως το TLS πρωτόκολλο), έχει αλλάξει τα δεδομένα στην
εποπτεία του δικτύου. Με τη ραγδαία αύξηση των μηχανισμών κρυπτογράφησης, τα
παραδοσιακά συστήματα για επιθεώρηση της κίνησης του δικτύου που στηρίζονται
στην επεξεργασία των περιεχομένων των πακέτων, σταδιακά χάνουν την αποτελε-
σματικότητα τους, καθώς παράλληλα, κακόβουλοι χρήστες του δικτύου εκμεταλλεύο-
νται την κρυπτογράφηση για να κρύψουν τις δραστηριότητες τους και να αποφύγουν
την ανεύρεση της παρουσίας τους.

Σε αυτήν την εργασία, προτείνουμε μία γλώσσα προτύπων για να περιγράψουμε
τα μοτίβα που υπάρχουν στις ακολουθίες πακέτων δικτύου, με σκοπό τη λεπτομε-
ρή ανίχνευση συμβάντων ακόμα και σε κίνηση δικτύου που έχει κρυπτογραφηθεί.
Η πρώτη περίπτωση χρήσης που εξετάζουμε είναι η λεπτομερής ανίχνευση δραστη-
ριότητας εφαρμογών δικτύωσης χρηστών και επικοινωνίας. ∆είχνουμε πως είναι
δυνατή η δημιουργία μίας τέτοιας γλώσσας που να περιγράφει με εκφραστικότη-
τα ενέργειες όπως την ανταλλαγή μηνυμάτων και την επικοινωνία μέσω κλήσης ή
βιντεοκλήσης χρησιμοποιώντας τις διαδεδομένες εφαρμογές Facebook, Skype, Viber,
WhatsApp. Μία δεύτερη περίπτωση χρήσης για τη γλώσσα προτύπων που προτε-
ίνουμε είναι η ανίχνευση περιστατικών εισβολών σε συστήματα εποπτεύοντας κίνηση
δικτύου που είναι κρυπτογραφημένη. ´Οπως και στην προηγούμενη περίπτωση, εξε-
τάζουμε αν είναι εφικτό, και αν ναι σε τι λεπτομέρεια, να αναγνωρίσουμε τη δρα-
στηριότητα που προέρχεται από εργαλεία διείσδυσης (penetration tools) ή επικοινω-
νία δικτύων προγραμμάτων ρομπότ (botnets). Παρέχουμε μία αποδοτική υλοποίηση
για αυτήν την γλώσσα προτύπων, την οποία ενσωματώνουμε σε δύο διαφορετικά
συστήματα επιθεώρησης κίνησης του δικτύου. Αξιολογούμε την υλοποίηση μας χρη-

xi

σιμοποιώντας τα κριτήρια της απόδοσης τόσο σε επίπεδο ορθότητας και ακρίβειας,
όσο και σε επίπεδο επιδόσεων. Τέλος, δείχνουμε πως η γλώσσα που προτείνουμε
μπορεί να ‘εξορυχθεί’ (data mining) αυτόματα, περιορίζοντας το φόρτο εργασίας για
τη διαμόρφωση και συντήρηση ενός μεγάλου συνόλου από πρότυπα.

Η διαδικασία που αναφέραμε στην παραπάνω παράγραφο, περιγράφεται από
μία παθητικού τύπου εποπτεία και ανάλυση των πακέτων δικτύου. Επιπρόσθετα,
χρησιμοποιήσαμε μία πιο παρεμβατική μέθοδο, έτσι ώστε να επικοινωνήσουμε με ε-
ξυπηρετητές μέσω διευθύνσεων IP που βρίσκονται διαθέσιμες σε δημόσιες λίστες με
πληροφορίες για κακόβουλες δραστηριότητες. Ο σκοπός μας είναι να καταλάβουμε
το οικοσύστημα των δικτύων προγραμμάτων ρομπότ (botnets). Συγκεκριμένα, χρη-
σιμοποιούμε ένα εργαλείο ανοικτού κώδικα για να παράξουμε αποτυπώματα TLS
για κάθε ένα από τους εξυπηρετητές που επικοινωνούμε. Στην έρευνα μας κατα-
φέραμε να συλλέξουμε πληροφορίες σε ένα διάστημα 7 μηνών. Τα αποτυπώματα
αυτά εκφράζουν τις απαντήσεις των εξυπηρετητών σε μία αλληλουχία από 10 ‘‘TLS
Client Hello’’μηνύματα με διαφορετικά χαρακτηριστικά (π.χ. έκδοση TLS , επι-
λεγμένος αλγόριθμος κρυπτογράφησης κ.τ.λ.). Αυτό που ϑέλουμε να εξετάσουμε
είναι η δυνατότητα να αναγνωρίσουμε την ιδιότητα και δραστηριότητα αυτών των
εξυπηρετητών χρησιμοποιώντας μόνο αυτά τα αποτυπώματα, μέσα σε λίστες από α-
ποτυπώματα για τα οποία δεν έχουμε πρωτύτερη γνώση. Μέσω των αποτελεσμάτων
μας, βλέπουμε πως τα αποτυπώματα που υπολογίζονται, επαναλαμβάνονται με-
ταξύ εξυπηρετητών που συμμετέχουν στην ίδια οικογένεια δικτύων προγραμμάτων
ρομπότ (botnets). Επίσης βλέπουμε πως σπάνια αλληλοεπικαλύπτονται με αποτυ-
πώματα από εξυπηρετητές για τους οποίους είναι γνωστή η ορθή χρήση τους. Τα
ευρήματα αυτά μας παροτρύνουν να χρησιμοποιήσουμε αυτή τη μεθοδολογία για να
αναγνωρίζουμε και να ταυτοποιούμε εξυπηρετητές που εμπλέκονται σε κακόβουλες
δραστηριότητες.

Στη συνέχεια, παρουσιάζουμε μία εκτενή βιβλιογραφική μελέτη σχετικά με τα ερ-
γαλεία για την εποπτεία του δικτύου μετά την καθιέρωση των πρωτοκόλλων κρυπτο-
γράφησης. Αυτό που παρατηρούμε είναι πως παρόλο που η επιστημονική κοινότητα
έχει προτείνει μία πληθώρα τεχνικών για το σκοπό αυτό, υπάρχουν ακόμα ελλείψεις

και μειονεκτήματα.
Τέλος, δεν παραλείπουμε να εξετάσουμε τις τεχνικές που υπάρχουν για την απο-

τροπή της ανάλυσης των κρυπτογραφημένων επικοινωνιών σε περιπτώσεις κακόβου-
λης χρήσης και λογοκρισίας. Συζητάμε αν το σύστημα μας μπορεί να ανταπεξέλθει
σε τέτοιες περιπτώσεις.

Λέξεις Κλειδιά: Κρυπτογραφημένη κίνηση δικτύου, Εποπτεία δικτύου, Μεταπλη-
ροφορίες πακέτων δικτύου, Επισκόπηση δικτύου με παθητικές τεχνικές, Εφαρμογές
κινητών συσκευών, Εντοπισμός εισβολών, Παρεμβατική διερεύνηση δικτύου, Απο-
τύπωμα TLS πρωτοκόλλου, Περιγραφή εξυπηρετητών CnC , Συστήματα που αντι-
στέκονται στην ανάλυση κίνησης δικτύου

Επόπτης:
Σωτήρης Ιωαννίδης

Αναπληρωτής Καθηγητής
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πολυτεχνείο Κρήτης

Contents

Acknowledgments . vii

Abstract . ix

Περίληψη (Abstract in Greek) . xi

Table of Contents . xv

List of Figures . xvii

List of Tables . xix

1 Introduction . 1

1.1 Objectives and Thesis Statement . 3

1.2 Contributions of this Dissertation . 4

1.3 Outline of Dissertation . 5

2 Identification of Events on Encrypted Network Traffic 7

2.1 Use Case: Application Usage Analytics . 7

2.1.1 Pattern Language . 8

2.1.2 Effectiveness Evaluation . 9

2.1.3 Implementation and Performance . 14

2.1.4 Pattern Mining . 19

2.2 Use Case: Network Intrusion Detection . 23

2.2.1 Signatures . 24

2.2.2 Effectiveness Evaluation . 26

2.2.3 Implementation and Performance . 32

2.2.4 Signature Mining . 38

3 Characterization of Malicious Servers on the Internet 43

3.1 Background . 43

3.2 Data Collection and Preliminary Analysis . 45

3.2.1 Refused TLS connections . 47

3.2.2 Fingerprints of benign servers . 49

3.3 Analysis . 51

3.3.1 Botnet ports . 51

3.3.2 TLS Server Configurations . 52

3.3.3 Randomization of Cipher Suite Vectors 56

3.3.4 Configurations of Cipher Suites per Botnet 57

3.3.5 Advantages of Active versus Passive TLS Fingerprinting 58

4 State-of-the-Art . 59

xv

4.1 Analytics after Network Encryption . 60

4.1.1 Techniques . 66

4.1.2 Objectives and Limitations . 69

4.1.3 Relation to this Dissertation . 70

4.2 Security after Network Encryption . 70

4.2.1 Techniques . 73

4.2.2 Objectives and Limitations . 76

4.2.3 Relation to this Dissertation . 76

4.3 User Privacy after Network Encryption . 77

4.3.1 Techniques . 81

4.3.2 Objectives and Limitations . 84

4.3.3 Relation to this Dissertation . 85

4.4 Network Functions in Middleboxes after Network Encryption 85

4.4.1 Techniques . 88

4.4.2 Objectives and Limitations . 90

4.4.3 Relation to this Dissertation . 90

5 Discussion . 91

5.1 Encrypted Traffic Analysis Countermeasures 91

5.2 Quality and Quantity of Data . 93

5.3 Validation and False Positives . 94

5.4 Passive Monitoring versus Active Scanning 94

5.5 TLS 1.3 and Beyond . 95

6 Conclusion . 97

6.1 Synopsis of Contributions . 97

6.2 Directions for Future Work and Research . 98

Bibliography . 101

Appendices
A Publications . 119

List of Figures

2.1 High-level overview: Traffic samples are collected offline and then signa-

tures are created either manually or using data mining. The signatures are

fed to our DPI engine and compiled into an automaton for execution on live

traffic keeping only usage statistics. 8

2.2 Illustration of the complete expansion of rule 152-156{1,5},150-600 into

a set of simple sequences of non-overlapping ranges. An alphabet of size

three is used, each character corresponding to the range 150–151, 152–156,

or 157–600. 16

2.3 Example of rule. The underlying data representation language used is YAML. 17

2.4 Example of rule with a disjunction of patterns handled internally by the

packet train extension. 17

2.5 Packet capture of WhatsApp messaging activity. The vertical lines depict

the actual outgoing chat messages, while Main and FPM points show the

detected events. 22

2.6 Packet capture of Skype messaging activity. 22

2.7 A high-level design overview of this work. 23

2.8 Illustration of packet payload size sequences within a network traffic cap-

ture of (a) file scanning attempt using the “dirbuster” tool, during the first

1.7 seconds of the active network flows. Each bullet color represents a single

network flow. 24

2.9 Illustration of packet payload size sequences within a network traffic cap-

ture of a ssh password cracking attempt using the “hydra” tool, during the

first 1.7 seconds of the active network flows. Each bullet color represents a

single network flow. 25

2.10 Illustration of packet payload size sequences within a network traffic cap-

ture of a login attempt to the web server using the “hydra” tool, during the

first 1.7 seconds of the active network flows. Each bullet color represents a

single network flow. 25

2.11 Illustration of our testbed setup for traffic collection. 28

2.12 Automaton size. 34

2.13 Automaton compilation time. 35

2.14 Overview of the proposed packet processing architecture. 35

xvii

2.15 Throughput of our pattern matching implementation for different number

of flows and varying pattern sizes. 37

2.16 Latency of our pattern matching implementation for different number of

flows and varying pattern sizes. 37

2.17 Illustration of our methodology workflow. First, we collect a set of ground-

truth packet captures from intrusion attempts. Then, we process these cap-

tures and keep only the network packets that are related to the malicious

activity. We use the tool joy [182] to extract sequences of packet payload

sizes per flow and with a frequent sequential pattern mining algorithm, we

generate signatures with sequences of packet payload sizes. 39

3.1 The TLS handshake steps. 44

3.2 (a) The unique IP addresses contained in the list with the botnet command

and control servers and (b) the unique fingerprints hashed out of the 10 TLS

Server Hello responses, when contacting the IP addresses contained in the

botnet command and control server lists that we parse (i.e., CC1, CC2). . . . 47

3.3 (a) The unique IP addresses contained in the blocklists and (b) the unique

fingerprints hashed out of the 10 TLS Server Hello responses, when contact-

ing the IP addresses contained in the blocklists that we parse (i.e., BL1, BL2). 48

3.4 The number of refused TLS connections from IP addresses contained in the

(a) botnet command and control server lists (i.e., CC1, CC2) and (b) block-

lists (i.e., BL1, BL2). 49

3.5 TLS server fingerprints (from servers found in CC1, CC2, BL1, BL2) that over-

lap with servers found in the top 10K domains ([215]). 51

3.6 The number of unique TLS server configurations from IP addresses con-

tained in the (a) botnet command and control server lists (i.e., CC1, CC2)

and (b) blocklists (i.e., BL1, BL2). 53

3.7 The ratio of botnet fingerprints found into the list of fingerprints calculated

from IP addresses contained in the two blocklists (i.e., BL1, BL2). 55

3.8 The ratio of short botnet fingerprints (30 first bytes representing the TLS

version and cipher suites) found into the list of fingerprints calculated from

IP addresses contained in the two blocklists (i.e., BL1, BL2). 56

4.1 A taxonomy for encrypted network traffic inspection works categorized by

use case, technique and objective. 60

List of Tables

2.1 Examples of application event rules. 9

2.2 The characteristics of the mobile devices that we used to collect our dataset. 11

2.3 The Android OTT applications’ versions for each one of the devices that we

used. 12

2.4 TP rates of our methodology. The percentages presented are extracted through

the comparison of the results of our methodology to the actual ground-truth

dataset. 13

2.5 This table presents the false discovery rates of our methodology. The “Mes-

saging FDR” column shows the percentages of erroneous messaging report-

ing in voice or video samples. Respectively, “Voice / video FDR” column

shows the percentages of erroneous voice/video reporting in messaging sam-

ples. 14

2.6 TP rates of the automated FPM methodology. The difference to the main

implementation is given inside the parentheses. 21

2.7 False discovery rates of the automated FPM methodology. The “Messaging

FDR” column shows the percentages of erroneous messaging reporting in

voice or video samples. Respectively, “Voice / video FDR” column shows

the percentages of erroneous voice/video reporting in messaging samples.

The difference to the main implementation is given inside the parentheses. 21

2.8 Signature examples. Each signature corresponds to a sequence of packet

payload sizes that must be matched against a network flow to report an in-

trusion attempt event. 26

2.9 Activities performed as intrusion attempts to the vulnerable web server. . . 28

2.10 Malicious activity as retrieved from the IoT-23 dataset [171]. 29

2.11 Resulting True Positive Rates (TPR), True Negative Rates (TNR) and False

Discovery Rates (FDR) by the signatures examined. 31

2.12 Comparison of the effectiveness of the rules that are generated by our method-

ology to the effectiveness of the corresponding rules that are used by Snort. 32

2.13 Resulted true positive rates (TPR) of varying signatures between event cate-

gory and size. 40

2.14 Resulted false discovery rates (FDR) of varying signatures between event cat-

egory and size. 41

xix

3.1 Most popular port numbers per botnet (top-5 in CC1, CC2). 52

3.2 Overlapping fingerprints (length of 30Bytes) between different botnets. . . . 54

3.3 Botnet fingerprints found in blocklists CI-Badguys (BL1) and Blocklist.de

(BL2). 54

3.4 TLS versions used per botnet (CC1, CC2). 57

3.5 Most selected cipher suites per botnet (CC1, CC2). 57

3.6 Cipher suites dictionary and characterization by ciphersuite.info [218]. . . . 58

4.1 Works in the analytics domain, sorted by category and publication year. . . 61

4.2 Techniques, algorithms and evaluation metrics used in the analytics domain.

67

4.3 Datasets used in the network analytics domain. 69

4.4 Works in the security domain, sorted by category and publication year. . . . 71

4.5 Techniques, algorithms and evaluation metrics used in the security domain. 74

4.6 Datasets used in the network security domain. 75

4.7 Works in the user privacy domain, sorted by category and publication year. . 78

4.8 Techniques, algorithms and evaluation metrics used in the privacy domain. 83

4.9 Datasets used in the user privacy domain. 84

4.10 Works that implement network functions in midlleboxes, sorted by publica-

tion year. 86

4.11 Techniques, algorithms and evaluation metrics used by network functions

in midlleboxes. 89

Chapter 1

Introduction

The adoption of network encryption is rapidly growing. The 2019 Annual Report of Let’s

Encrypt [195] states that in just four years, global HTTPS page loads have increased from

39% to more than 80% [185]. In 2019, one year after TLS 1.3 been published as an RFC [184],

IETF reports that its adoption is rapidly growing with a 30% of Chrome’s Internet connec-

tions to negotiate TLS 1.3 [187]. Even though network encryption is crucial for the protec-

tion of users and their privacy, it naturally introduces challenges for tools and mechanisms

that perform deep packet inspection and rely heavily on the processing of packet payloads.

Typical applications of deep packet inspection are packet forwarding and l7 filtering [105,

174], while it is a vital operation in intrusion detection and prevention systems [202–204].

In addition, the majority of content and service providers perform network analytics using

deep packet inspection (DPI) to improve network performance and provide good quality

of service and experience to their users. However, with the widespread adoption of net-

work encryption protocols, solutions that rely on retrieving meaningful information from

packet payload contents are becoming less and less effective and new mechanisms must

be employed to keep up with network encryption.

In the meantime, network encryption continues to be abused by malicious actors. Again

in the 2021 TLS Telemetry Report [212], we can see that the proportion of phishing sites

using HTTPS and valid certificates has risen to 83%. The ThreatLabz State of Encrypted

Attacks Report estimates that more than 85% of attacks were encrypted in 2022 [217].

Moreover, although DNS over HTTPS (DoH) and DNS over TLS (DoT) have been proposed

to promote user privacy [52], they have been exploited by Command and Control (CnC)

servers that hide their communications [211]. Malware continues to be a crucial problem

1

2 Chapter 1. Introduction

in the Internet [60] and network encryption makes it more difficult for malware detection

systems to identify them. Typical network intrusion detection systems (NIDS), such as

Snort, inspect packet headers and payloads to report malicious or abnormal traffic behav-

ior. In encrypted packets1 though, the only information that makes sense is (i) TLS hand-

shake packets and (ii) TCP/IP packet headers (the data transmitted in packet payloads is

encrypted). So, even popular intrusion detection systems seem to inadequately inspect

encrypted connections. The SSL Readme page of Snort, for instance, reports that when

inspecting port 443, “only the SSL handshake of each connection will be inspected” [201].

Recently, machine learning techniques are widely used for traffic classification, net-

work analytics and malware detection [7, 53, 70, 74, 106, 124]. The majority of these works

show that despite having encrypted payloads in network packets, we are still able to clas-

sify network traffic even in a fine-grained manner [14,23,90]. Packet headers contain infor-

mation like IP addresses, port numbers and packet data sizes. Flow duration and packet

inter-arrival times are time-related features that are relevant in encrypted traffic analysis

and can be easily computed. When properly combined, packet metadata can offer valu-

able traffic insights [7].

In this work, we thoroughly examine the state-of-the-art in network traffic analysis

and inspection after the vast adoption of encryption and we identify the limitations of the

proposed solutions. The vision of this work is to address the shortcomings that exist in the

literature and propose approaches for practical and effective traffic analysis in the era of

fully encrypted communications. In this dissertation, we employ passive and active traffic

scanning techniques to investigate network characteristics after encryption. The main

goal for our work in Chapter 2 is to enable practical network inspection for encrypted

network packets (using passive network analysis), while the goal for our work in Chapter 3

is to collect valuable information and gain insights related to the activity of C&C servers

(using active network scanning).

In Section 2.1, we focus on analysing encrypted traffic generated by Over-The-Top

(OTT) mobile applications. Traditional DPI implementations can only extract very coarse-

grained information for the majority of such traffic. Its analysis, however, is an integral

operation for many network systems and needs to be improved to offer detailed traffic

metrics for OTT applications. We implement a system that is able to extract essential in-

1With encrypted packets, we refer to TCP packets that are secured using the TLS protocol.

1.1. Objectives and Thesis Statement 3

formation from encrypted traffic generated by mobile applications. Packets contain meta-

data usable even with encrypted traffic, such as packet sizes—information that can be

extracted from the packet headers.

In Section 2.2, we focus on the identification of intrusion attempts on encrypted net-

work traffic using packet metadata patterns. We examine the automatic generation of ex-

pressive signatures, which are compiled into an Aho-Corasick automaton that enables si-

multaneous multi-pattern matching. We evaluate the effectiveness of the signatures and

we integrate them into an intrusion detection engine.

In Chapter 3, we generate TLS fingerprints using JARM [194], an open-source tool for

active server probing. JARM fingerprints are used by popular Internet scanners, such as

shodan [219] and censys [220]. Our goal is to provide a long-term measurement study of

botnets, using C&C server information that is available in public datasets [214, 216].

In Chapter 4, we present the works that we find in the literature that are able to perform

traffic processing and inspection even when the network is encrypted. We examine the

use cases of these works (e.g., network analytics) and how authors achieve to implement

such systems. Having no visibility over the packet payload contents introduces major chal-

lenges. Thus, goal of this literature examination is to identify the means to achieve en-

crypted network traffic analysis and inspection effectively. This study will help the reader

of this dissertation to (i) understand the challenges of traffic inspection when the network

traffic is encrypted or tunnelled, (ii) discover the uses cases and applications of encrypted

traffic analysis, (iii) acquire knowledge on the methods that are used to achieve encrypted

traffic analysis, (iv) deduce which techniques are appropriate respecting the objectives of

a system, (v) recognize the constraints each method presents, and finally, (vi) come across

with the publicly available datasets.

1.1 Objectives and Thesis Statement

Since this work is divided into passive and active network monitoring and analysis, we

partition this section into two pieces.

First, the objectives of our work on passive traffic analysis are the following: (i) process

encrypted network packets, (ii) identify the underlying activity in a fine-grained manner

with high accuracy, (iii) maintain an expressive yet simple enough language to facilitate

4 Chapter 1. Introduction

automated mining, and (iv) take advantage of modern hardware architectures to enable

real-time processing. In this part of the dissertation, we aim to provide valuable insights

on the network traffic shape after the growth of network encryption. We have examined

the literature and we have identified that there is a gap in practical solutions that can pro-

cess network traffic and report events in real-time using simple and straightforward tech-

niques. Thus, in this dissertation, we propose a methodology that enables fine-grained

inspection of encrypted network traffic by monitoring packet metadata patterns to indi-

cate specific events or activity. We show that our methodology can be applied in different

use cases and applications, from application analytics to intrusion detection. We inte-

grate the patterns and signatures produced into two high performance DPI systems and

we evaluate the methodology effectiveness and the processing performance.

Second, the objectives of our work on active network scanning and analysis are the

following: (i) contact servers characterized by malicious activity, (ii) collect the packets

exchanged during this communication and construct a fingerprint that corresponds to a

specific server, (iii) export communication patterns between servers of the same botnet

family, (iv) re-identify servers of specific botnet families, (v) study the evolution of such

servers in time. In this part of the dissertation, we aim to build a database with TLS char-

acteristics and configurations of malicious servers on the Internet with ultimate goal to

re-identify them without prior knowledge on the fly. Also, we examine the evolution of

such servers to evaluate this approach.

Thesis Statement In this dissertation, we demonstrate that traffic inspection is still pos-

sible, even after the vast adoption of network encryption, simply by monitoring the se-

quences of packet payload sizes. We show that integrating this functionality into a DPI en-

gine enables real-time processing, which is applicable in diverse test cases, such as usage

analytics and intrusion detection. Finally, we take advantage of the fact that TLS finger-

prints can reveal the identity and activity of CnC servers to perform a measurement study

of botnet configurations based on those fingerprints.

1.2 Contributions of this Dissertation

The key contributions of this dissertation are the following:

1.3. Outline of Dissertation 5

• We present a practical methodology to collect, label, and analyse encrypted traffic

generated by popular mobile applications and vulnerability scanners to identify us-

age events and intrusion attempts (Chapter 2).

• We propose an expressive pattern language to describe packet metadata sequences

that signify such events and we confirm its effectiveness experimentally. We demon-

strate that our pattern language is amenable to automated mining (Chapter 2).

• We integrate our pattern language with two DPI engine implementations to evaluate

its performance against real, high-volume network traffic (Chapter 2).

• We probe malicious servers and we construct a database of fingerprints based on the

exchanged client-server TLS handshake packets. Fingerprints are actively produced

on a daily basis for 7 months (Chapter 3).

• We present the evolution of IP addresses that participate in botnets and the TLS fin-

gerprints constructed during a 7-month period (Chapter 3).

• We classify unknown TLS fingerprints from suspicious server IP addresses found in

two blocklists (with no prior knowledge of activity), based on our botnet fingerprint

database (Chapter 3).

• We compare the constructed fingerprints from malicious servers against the finger-

prints of legitimate servers. We show that the effectiveness of threat hunting with

outdated fingerprints can be reduced. (Chapter 3).

• We present an extensive literature examination and propose a taxonomy for the state-

of-the-art on encrypted traffic analysis (Chapter 4).

1.3 Outline of Dissertation

In Chapter 2 we present our work with respect to encrypted traffic inspection using packet

metadata patterns. Specifically, we evaluate our approach using two different use cases:

(i) network analytics in Section 2.1 and (ii) network security in Section 2.2. Then, in Chap-

ter 3, we perform active probing for C&C server characterization. In Chapter 4, we review

6 Chapter 1. Introduction

the state-of-the-art in encrypted traffic analysis. Finally, in Chapter 5 we discuss several

aspects of this work and its limitations.

Chapter 2

Identification of Events on Encrypted

Network Traffic

In this section, we examine the analysis of encrypted traffic generated by diverse applica-

tions to demonstrate that it is still possible to inspect network traffic, even after the vast

adoption of network encryption. Specifically, we focus on two different use cases: (i) mo-

bile application usage analytics and (ii) network intrusion detection. Traditional DPI im-

plementations can only extract very coarse-grained information for the majority of such

traffic. Its analysis, however, is an integral operation for many network systems and needs

to be improved to offer (i) detailed traffic metrics for mobile applications and (ii) effec-

tive intrusion detection. Network packets contain metadata usable even with encrypted

traffic, such as packet timestamps and sizes—information that can be extracted from the

packet headers or timed. To this end, we perform DPI over encrypted traffic generated by

mobile applications, vulnerability scanners and botnets by inspecting patterns in network

packet metadata.

2.1 Use Case: Application Usage Analytics

First, we focus on using patterns of packet size trains to identify OTT application events

such as messaging, voice and video calls over encrypted traffic (Section 2.1.1). We evalu-

ate the effectiveness of our approach in Section 2.1.2. We provide a full implementation

as part of a DPI engine supporting rulesets with packet train patterns—matched using an

automaton consuming packet sizes—on top of traditional substring and port number pat-

7

8 Chapter 2. Identification of Events on Encrypted Network Traffic

terns, to efficiently match and report events in encrypted network traffic (Section 2.1.3).

Finally in Section 2.1.4, we discuss about the automation of the pattern generation. Fig-

ure 2.1 shows a high-level overview of the approach that we follow.

Network Flow
Generation

 
- Packet filtering 

- Flow-to-Process
matching

- Traffic trace

- Netstat log

Signatures

Application
Event

Reporting

Automaton

DPI Engine

Figure 2.1: High-level overview: Traffic samples are collected offline and then signa-
tures are created either manually or using data mining. The signatures are
fed to our DPI engine and compiled into an automaton for execution on
live traffic keeping only usage statistics.

2.1.1 Pattern Language

During our analyses, we observed that specific sequences of packet payload sizes reliably

signify discrete events inside an application. In this subsection we describe our proposed

pattern language to express such patterns in network traffic.

Design Goals

We aim for an expressive yet simple enough language to facilitate the automated mining

of rules. While offline mining techniques can be involved during the construction of the

rules, we need to support very efficient and low-latency evaluation of the rules at runtime

on live traffic for use in a production quality DPI system. Another consideration for a prac-

tical system is to minimize the amount of state information that a DPI engine needs to

maintain per flow in order to evaluate patterns across packets of the same flow. These

requirements led us to a simple regex-inspired formulation applied on trains of observed

packet sizes. The advantage of our approach is that it can be implemented with an automa-

ton without the need to retain previously observed packet sizes to support backtracking,

and that it is expressive enough to capture the traffic features of interest.

2.1. Use Case: Application Usage Analytics 9

Table 2.1: Examples of application event rules.

Application Event Rule
WhatsApp Voice call 3{1,3}, 56-60{1,3}, 400-800
WhatsApp Video call 3{1,3}, 56-60{1,3}, 3{1,3}, 117 OR

3{1,3}, 56-60{1,3}, 3{1,3}, 144
WhatsApp Chat message 3{1,3}, 52

Pattern Language Specification

Table 2.1 displays some examples of rules that we extracted during our analysis phase.

The proposed pattern language uses a regex-inspired syntax, and is easy to follow, since it

resembles standard regular expressions. When a network flow contains such sequences of

these pre-defined payload packet sizes, expressed through a rule and in conjunction with

any other traffic characteristics such as port numbers or substrings, then the application

event is reported. For instance, when a captured network flow contains a series of two

packets with payload sizes 3 bytes and 52 bytes respectively, then our system reports the

existence of an outgoing chat message.

In order to deal with retransmitted TCP packets we could either (i) normalize traffic be-

fore applying the rule by discarding such packets or (ii) form the expression to handle the

retransmitted packets, accordingly (like the rules in Table 2.1). The displayed expressions

are able to handle retransmitted packets having a repeat range {1,3}, where 3 is the upper

bound (the maximum number of retransmissions). However, handling retransmissions

through the expression might be risky. Having retransmitted packets is an unpredictable

network behaviour, so we might lose an application event reporting solely due to a not

properly defined upper bound in the repeat range of an expression. Thus, we choose to

handle retransmitted TCP packets by discarding them in a packet filtering phase.

2.1.2 Effectiveness Evaluation

In this subsection we demonstrate the expressiveness of the proposed pattern language by

manually generating pattern signatures for a set of application events and evaluating their

accuracy. We used 25% (randomly chosen) of the ground truth samples as a reference for

the human analyst, and the remaining 75% for the accuracy evaluation (§2.1.2).

10 Chapter 2. Identification of Events on Encrypted Network Traffic

Flow Sample Collection Mechanism

We divide the mobile application network traffic into flows. A network flow is represented

by the standard 5-tuple containing (i) the source IP address, (ii) the source port number,

(iii) the destination IP address, (iv) the destination port number and (v) the protocol. A

network flow then, consists of the packets matching a certain 5-tuple. To categorise the

flows generated by different mobile applications, we need further information. This infor-

mation should include either the domain, the process name or the process id that relates

to the specific network connection. There are multiple ways to achieve this. For instance,

other approaches, like [23], do domain filtering, leveraging the WHOIS protocol. We chose

to employ the process id in order to obtain the required information about each network

flow. In the following subsection we present how we implemented the network flow filter-

ing.

Flow-to-Process Matching Netstat [176] is a command-line network utility that can dis-

play among others, information about network connections. Having superuser privileges,

someone can use netstat to determine the process id (PID) and process name of the pro-

cess that owns the connection socket. In Android devices, netstat is available via the

BusyBox application [175].

To collect all necessary information about each connection established during the net-

work traffic trace collection, we continually invoke netstat and store the output to a file

that will be later used for the flow-to-process characterisation phase (flow/process corre-

lation), during which flows are assigned to their process and (and the corresponding PID),

generating a 7-tuple, with the following format: {process name, process id, source IP ad-

dress, source port number, destination IP address, destination port number, protocol}.

Packet Filtering In order for the TCP protocol to deliver data reliably, it offers many

mechanisms to detect and avoid unpredictable network behaviour, like packet loss, dupli-

cation or reordering. In the proposed methodology, we choose to discard packets that do

not offer substantial information to the flow (e.g. retransmitted packets). In our proposed

method, we focus entirely on handling and processing packet metadata. This means that

we do not take into consideration the packet payload, since we assume that it is encrypted.

The information that we handle lays solely on packet metadata, such as the packet direc-

2.1. Use Case: Application Usage Analytics 11

Table 2.2: The characteristics of the mobile devices that we used to collect our dataset.

Device Model Android Version Kernel Version
Sony Xperia D5503 Android v.5.1.1 3.4.0-gd26777b
Xiaomi Redmi 3s Android v.6.0.1 3.18.20-g76f906f
Xiaomi MI Note LTE Android v.6.0.1 3.4.0-gf4b741d
Xiaomi Redmi Note 3 Pro Android v.6.0.1 3.10.84-gda78349

tion and payload size. Thus, packets lacking payload do not provide any valuable informa-

tion to our method. To this end, we filter out ACK-flagged packets1.

Sample Traffic Generation

To avoid extracting overly specific application event patterns, we analysed traffic traces

generated during realistic usage of such applications. In addition, we used devices on

both fixed and mobile networks.

Device Variations To ensure variation, we make use of different devices, vendors, An-

droid and kernel versions, as shown in Table 2.2. We used four different Android mobile

devices, a Sony Xperia D5503 (Android v.5.1.1, kernel v.3.4.0-gd26777b), a Xiaomi Redmi 3s

(Android v.6.0.1, kernel v.3.18.20-g76f906f), a Xiaomi MI Note LTE (Android v.6.0.1, kernel

v.3.4.0-gf4b741d), and finally a Xiaomi Redmi Note 3 Pro (Android v.6.0.1, kernel v.3.10.84-

gda78349). In order to obtain full functionality and privileges, we used exclusively rooted

Android devices, with developer options enabled. Thus, we were able to install the BusyBox

application from Google Play store and take advantage of Unix utilities provided through a

single executable [175], as well as the Android tcpdump tool to locally capture network traf-

fic on the device [173]. In addition, we used Android Debug Bridge (ADB) version 1.0.39

and Wireshark 2.4.2. Due to toolset limitations, we did not include Apple devices in our

study.

OTT Application Events We chose four of the most widely used OTT Android applica-

tions to evaluate our methodology: (i) WhatsApp, (ii) Skype, (iii) Facebook Messenger and

(iv) Viber2. The applications’ versions are presented in Table 2.3. Since these applications

1We discard the TCP packets with only the ACK flag set. PUSH/ACK packets are kept.
2Through the dataset collection we make use of different application versions per application. This allows

us to verify the generalisation ability and scalability of our methodology.

12 Chapter 2. Identification of Events on Encrypted Network Traffic

Table 2.3: The Android OTT applications’ versions for each one of the devices that
we used.

Device Model Facebook Messenger Skype WhatsApp Viber
Sony Xperia D5503 146.0.0.33.136 7.46.0.596 2.17.427 7.9.4
Xiaomi Redmi 3s 155.0.0.14.93 8.16.0.6 2.18.65 8.4.0.4
Xiaomi MI Note LTE 155.0.0.14.93 8.16.0.6 2.18.65 8.4.0.4
Xiaomi Redmi Note 3 Pro 155.0.0.14.93 8.16.0.6 2.18.65 8.4.0.4

are mainly used for communication purposes, we focused on identifying (i) outgoing chat

messages, (ii) voice and (iii) video calls through the encrypted network traffic. Of course,

our work can be extended to support other OTT application events, such as media ex-

change (e.g. photo sharing), as well as iOS devices.

Overall, we collected a set of over 350 samples3. Each individual sample simulates ei-

ther an exchange of an arbitrary number of outgoing messages (messaging), or a single

voice or video call using one of the aforementioned OTT applications. Then, for each sam-

ple we collected (i) a network packet trace, (ii) a file with the information of every TCP

socket that was open during the traffic capture and the process information that created

it, (iii) a screen recording and (iv) a file with the device’s system logs reported by the An-

droid ADB tool, named logcat. Each sample contains only a single application event type

(e.g. sample0: Skype/messaging).

To validate, we compare the detected application events to the device’s system logs

that are included in the logcat output and screen recordings. Using the logcat file and

the screen recording we are able to cross-check the reported events with the actual ones.

Logcat is a command-line tool that dumps a log of the device’s system messages. We

extracted information such as audio hardware on/off, camera on/off and incoming chat

messages. Unfortunately, we were not able to identify a system event that matches an out-

going chat message. Thus, we had to use the screen recordings to inspect the actual time

of an outgoing chat message departure, as well as the quantity of the outgoing messages.

Accuracy Evaluation

Hit Rate Table 2.4 shows the resulting true positive (TP) rates. Each sample contains

only a single within-application event type (e.g. sample0: Skype/messaging, sample1:

3These samples were generated using dummy accounts and non-personal mobile devices.

2.1. Use Case: Application Usage Analytics 13

Table 2.4: TP rates of our methodology. The percentages presented are extracted
through the comparison of the results of our methodology to the actual
ground-truth dataset.

Application Messaging Voice Video
Facebook Messenger 83% 96% 96%
Skype 88% 100% 75%
Viber 100% 54% 88%
WhatsApp 100% 92% 75%

WhatsApp/voice). When a signature reports a within-application event (messaging: 0 or

1, voice: 0 or 1, video: 0 or 1), then we compare it to the actual event of the application.

If the event is correctly reported, then the TP counter is increased. Otherwise, we have a

false positive (FP).

The TP rate of our methodology individually for each event is (i) 93% for outgoing chat

message, (ii) 86% for voice and (iii) 84% for video calls. The slightly lower TP rate for voice

and video calls, is due to a trade-off with FPs4. We discovered that, for all applications

under investigation except Viber, video-related flows included voice-related flows as well,

and, thus, a video event includes also a voice event. On the other hand, our signatures for

Viber voice and video events do not follow this trend as they are not complementary to

each other. Thus, we can reach the interesting conclusion, that the core implementation

of the Viber application is different from all the other applications under investigation.

False Discovery Rate In addition to true positives, another metric necessary for the eval-

uation of our methodology is the false positive rate for each application event. Reporting

mobile application events using only encrypted network traffic can be considered risky

since no easy cross-validation can be made. It is not only significant to correctly report the

existence of events, but also to not mistakenly report absent events as existent. Table 2.5

shows the false discovery rates of event reporting using our signatures5. False discovery

rates are always below 8%.

The choice of signature can significantly affect the trade-off between true positive and

false discovery rates. Having a relaxed signature definition leads to almost intact TP rates,

4In the following subsection, we discuss about how the signature formation affects the balance between
TP and FP rates.

5False discovery rate can be calculated as FDR = FP/ (TP+ FP)

14 Chapter 2. Identification of Events on Encrypted Network Traffic

Table 2.5: This table presents the false discovery rates of our methodology. The “Mes-
saging FDR” column shows the percentages of erroneous messaging re-
porting in voice or video samples. Respectively, “Voice / video FDR” col-
umn shows the percentages of erroneous voice/video reporting in messag-
ing samples.

Application Chat FDR Voice/Video FDR
Facebook Messenger 0% 1%
Skype 5.5% 4.2%
Viber 1% 2%
WhatsApp 8% 0.6%

with the cost of high false positives. Similarly, a more strict signature definition gives sat-

isfactory TP rates, keeping the false positives low. We settled on signature definitions that

result in hit rates over 84% and false discovery rates below 8%.

Granularity of Messaging Event Reporting Using our signatures for messaging report-

ing we achieve a total hit rate of 93%—again, compared to our ground truth data collec-

tion. This rate covers the correct identification of the existence of messaging events (i.e.

outgoing text messages) within a mobile OTT application. Moving to a more fine-grained

granularity, we are able not only to show that there is messaging activity within a network

traffic trace, but also to accurately report when an outgoing text message is sent, and count

the number of text messages sent during a messaging session, something we demonstrate

in Section 2.1.4.

2.1.3 Implementation and Performance

In this subsection, we discuss and evaluate an implementation of our proposed pattern

language.

Efficient Automaton

We implemented a data structure to efficiently match packet trains in a streaming fash-

ion against sets of patterns. It is inspired by string searching algorithms such as Aho-

Corasick [3] but instead of characters, it operates on packet sizes represented as 16-bit

integers.

2.1. Use Case: Application Usage Analytics 15

The Aho-Corasick algorithm is a string searching algorithm that locates elements of a

finite set of strings within an input text. It matches all strings simultaneously, so its com-

plexity does not depend on the size of the searched set. It works by constructing an au-

tomaton executing transitions for each character of the input text. To adapt the algorithm

for matching packet trains, we replaced the 8-bit characters with 16-bit packet sizes.

The algorithm constructs a finite state machine that resembles a trie with additional

“failure” links between the internal nodes. These failure links are followed when there is

no other matching transition and allow for fast transitions to other branches of the trie

that share a common prefix, without the need for backtracking using earlier inputs. This

allows for interleaving a large number of concurrent searches, such as in the case of net-

work connections, because the state of the matcher can be preserved across input data

observed at different points in time by storing a pointer to the current state of the automa-

ton with the state maintained for each connection. Otherwise, backtracking would require

us to maintain expensive per-flow state for previously-seen packet sizes.

For additional performance, a Deterministic Finite Automaton (DFA) can be built by

unrolling the failure links in advance and adding appropriate transitions to map each

failure directly to an appropriate node without the need to follow multiple failure links

at runtime. Expanding the automaton in this way did not provide an advantage in our

case where the automaton is executed for each packet size as opposed to each byte when

searching for substrings, and where the length and number of patterns is much less than

typical substring-based rulesets, so we opted for the more compact data structure where

the failure links are followed at runtime. For a very large number of patterns, however, this

optimization may be worthwhile.

We implemented packet-size repetitions with a range m − n as required by our pat-

tern language by expanding them to n − m + 1 separate patterns. To implement packet

ranges, we attempted at first to expand them into multiple individual 16-bit characters,

leading to excessively large automata in the presence of wide packet size ranges, such

as 100-200{3} which would expand to 1003 distinct sequences. To avoid this we use

ranges instead of individual 16-bit characters for the arcs of the automaton. To simplify

the implementation, we preprocess the expressions to collect possibly overlapping ranges

used in them and extract a set of non-overlapping ranges that we use as the alphabet for

the automaton constructed. For example, rule 152-156{1,5},150-600 contains two over-

16 Chapter 2. Identification of Events on Encrypted Network Traffic

lapping ranges, 152–156 and 150–600, which are expanded to an alphabet of three non-

overlapping ranges: 150–151, 152–156, and 157–600. Subsequently, the repetitions in this

example are expanded as shown in Figure 2.2.

152-156,150-151

152-156,152-156

152-156,157-600

152-156,152-156,150-151

152-156,152-156,152-156

152-156,152-156,157-600

152-156,152-156,152-156,150-151

152-156,152-156,152-156,152-156

152-156,152-156,152-156,157-600

152-156,152-156,152-156,152-156,150-151

152-156,152-156,152-156,152-156,152-156

152-156,152-156,152-156,152-156,157-600

152-156,152-156,152-156,152-156,152-156,150-151

152-156,152-156,152-156,152-156,152-156,152-156

152-156,152-156,152-156,152-156,152-156,157-600

Figure 2.2: Illustration of the complete expansion of rule 152-156{1,5},150-600 into
a set of simple sequences of non-overlapping ranges. An alphabet of size
three is used, each character corresponding to the range 150–151, 152–156,
or 157–600.

DPI Engine Integration

We integrated the pattern matching data structure with our proprietary DPI engine that

uses an extensible signature language by implementing a plugin to add a new condition,

that we called packet train. The signature language uses an event-condition-action model.

The DPI engine raises different events to which sets of conditions and actions can be as-

sociated with. The conditions and actions are implemented as plugins, and are free to

interpret their arguments and construct the necessary state objects that are evaluated on

each event. The rule engine itself handles the logic of the ruleset as a whole, and the plu-

gins are consulted for individual conditions. Each condition plugin declares the pieces of

information that it requires (such as payload or flow-tuple information) and the rule en-

gine ensures that the respective conditions are only used in combination with events that

provide the required information. One such event is the packet event, which contains

2.1. Use Case: Application Usage Analytics 17

information about packet payload and therefore packet size, that we make use of in our

extension. Other events include connection, which is raised by the connection tracker.

Information can be communicated across events by means of tags stored in the connec-

tion state, assigned by an action called tag and checked by a condition also called tag.

These can be used to chain together rules triggered on distinct events, for example a rule

could match a substring in a certificate to detect the application and tag the connection,

while later the tag can be used in the rule that uses the packet train condition to avoid

evaluating flows from irrelevant applications.

Figure 2.3 illustrates a rule example. The conditions are evaluated as a conjunction.

Disjunctions can be expressed using multiple rules, or (if the condition itself supports it,

such as ours), with a list of arguments (Figure 2.4). The extension API provides hooks for

populating individual condition arguments into a shared object that is consulted once per

event and communicates back to the rule engine any matching rules. This facilitates con-

ditions performing simultanous matching such as those based on Aho-Corasick or hash-

tables.

facebook_video:

event: packet

conditions:

- port: 443

- packet_train: ’399{1,2}, 51{1,2}, 1000-1260{1,2}, 38’

actions:

...

Figure 2.3: Example of rule. The underlying data representation language used is YAML.

whatsapp_video:

event: packet

conditions:

- packet_train:

- ’3{1,3}, 48-60{1,3}, 3{1,3}, 117’

- ’3{1,3}, 48-60{1,3}, 3{1,3}, 144’

- ’3{1,3}, 48-60{1,3}, 3{1,3}, 102’

Figure 2.4: Example of rule with a disjunction of patterns handled internally by the
packet train extension.

18 Chapter 2. Identification of Events on Encrypted Network Traffic

Performance Evaluation

We evaluated the performance of the entire system experimentally using our proprietary

DPI engine in a live traffic test-bed. We used an HPE Proliant DL380 Gen9 server with two

Intel® Xeon® E5-2699 v4 CPUs at 2.20 GHz with hyper-threading enabled, providing us

with 88 logical cores (lcores), and configured with 1TB of RAM. The system has 4x40 Gbps

NICs, two on each CPU socket. CentOS Linux release 7.4.1708 with kernel RPM version

3.10.0-693.11.6.el7.x86 64 was used.

The DPI engine is configured to use 8 lcores for processing the traffic from the four

ports (two lcores per port). These lcores perform just sufficient packet decoding in order

to load balance the traffic internally to 58 lcores configured to perform traffic inspection.

These are the lcores running our implementation. The rest of the lcores in the system are

dedicated to other tasks such as logging and shell access.

The traffic load consisted of real mobile user traffic that varies throughout the day be-

tween 52-153 Gbps with an average of 109 Gbps, 20-25 Gpps and between 67-230K new

connections per second with an average of 161K/s. Throughout the experiments we con-

firmed that the system does not exhibit packet loss.

First we measured the baseline CPU utilization of the traffic inspection lcores using

mpstat over 1 minute intervals. For a traffic of about 130 Gbps at 1pm local time, we mea-

sured a CPU utilization of 34.2%. After enabling our DPI engine extension, and making

sure it is invoked for all packets, we measured 37.6%, an increase of about 10%. We also

took a closer look using the perf tool, to narrow down on the specific function perform-

ing our checks, called extension_packet_train_multiset_match. We measured it at 3%,

even without any actual patterns loaded. This number is an upper bound. If the automa-

ton is fed only packets for pre-screened traffic that belongs only to the application (using

appropriate signatures), the performance impact of our extension is expected to be less.

Subsequently, we loaded packet train signatures, increasing the number of signatures

in each experiment to measure the impact of the number of signatures on the CPU utiliza-

tion. We tried 1-5,10,15 and 20 signatures. The results were within the 2.7-3% range, with

significant variance and without any observable trend. This observation shows that the

bulk of the cost comes from the mere interposition of our extension into the DPI engine’s

pipeline and does not depend on the number of patterns, at least up to a number of 20

2.1. Use Case: Application Usage Analytics 19

patterns.

2.1.4 Pattern Mining

Rule Mining Methodology

In order to illustrate the robustness of our event signature approach as well as to permit

fast signature extraction for numerous application - event combinations, we automated

the process. The application event rules were extracted from the packet traces by using

frequent pattern mining (FPM) to detect frequent packet sequences and then correlat-

ing these patterns to the ground-truth events. This approach avoids the dependence on

packet statistical measures commonly employed by other studies [1, 72, 127]. In order to

extract the rules, the following steps are taken on the training dataset:

1. Pre-processing : All packets with a different process id than that of the application

under examination are filtered out. Similarly, as mentioned in the above, TCP re-

transmissions are filtered out. Finally, all local and remote IPs are considered as a

single local and a single remote IP, respectively.

2. Packet statistics: Afterwards, the absolute frequency of all pre-processed packet (source,

destination, payload length) is calculated, and packet tuples whose frequency is greater

than a predetermined percentile are mapped to unique identifiers (called items in

the following). All other packet tuples are grouped according to their source and

destination, as previously, but with the payload length segmented in 4 equally sized

buckets, and similarly mapped to identifiers. This step was taken so as to limit the ef-

fect of variable payload length on the pattern mining (e.g., a long chat message may

have a greater payload length than a shorter one).

3. Trace splitting : The packet traces were split to bursts (or sequences) of traffic (i.e.,

traffic with interpacket temporal distance less than a threshold, in this case set to

1 second) [1, 127]. It should be noted that as one of the type of events investigated

is outgoing chat messages, a larger temporal threshold could potentially result in

multiple chat messages included in one burst (chat messages sent in quick succes-

sion). Furthermore, bursts not containing any of the events under investigation are

filtered out. This step is taken in order to divide the traffic to temporally correlated

20 Chapter 2. Identification of Events on Encrypted Network Traffic

sequences, which, in turn, will be used as an input to the frequent pattern mining

algorithm.

4. Frequent Pattern Mining : Frequent pattern mining techniques are used to discern

the correct packet patterns corresponding to the events among potential noise. The

present methodology utilises closed sequential patterns (i.e., a pattern not strictly in-

cluded in another pattern of the same support) as potential application event rules

in order to avoid loss of information. The patterns are mined using the ClaSP algo-

rithm [47].

5. Rule Generation: Finally, the rules are generated by identifying which closed sequen-

tial patterns match well with the ground truth events (i.e., the pattern timestamp is

within a margin of the ground truth event timestamp).

In order to reduce the number of possible generated rules, the supersets of the above

matching patterns are used, and evaluated using the F1 measure (i.e., placing equal em-

phasis to both precision and recall). Finally, the generated rule is used to detect applica-

tion events on the test dataset. The training dataset consists of 25% of the samples (the

same samples as those used for training in the main implementation as mentioned in

2.1.2).

It should be noted that the rules generated by the above mining approach differ to

those of the main implementation in that they take into account the direction of packet.

This can be easily included in the DFA engine by encoding outgoing packets with a preced-

ing minus sign to the payload size.

Rule Mining Evaluation

Table 2.6 shows the true positive rates achieved by the automated FPM methodology as

well as the difference to the main implementation results. It can be seen that the FPM

methodology outperforms the main implementation in all cases except Facebook where

it underperforms. Furthermore, from Table 2.7, it can be seen that the performance of the

two approaches on the false discovery rate metric is similar.

The FPM methodology is able to achieve accurate detection of distinct outgoing chat

messages with a true positive rate and false discovery rate (FDR) of 98.55% and 3.54%, re-

spectively, across all applications under investigation. Figures 2.5 and 2.6 show randomly

2.1. Use Case: Application Usage Analytics 21

Table 2.6: TP rates of the automated FPM methodology. The difference to the main
implementation is given inside the parentheses.

Application Chat Voice Video
Facebook Messenger 42% (-41) 54% (-42) 83% (-13)
Skype 100% (+12) 96% (-4) 100% (+25)
Viber 100% (0) 96% (+42) 100% (+12)
WhatsApp 100% (0) 100% (+8) 100% (+25)

Table 2.7: False discovery rates of the automated FPM methodology. The “Messag-
ing FDR” column shows the percentages of erroneous messaging report-
ing in voice or video samples. Respectively, “Voice / video FDR” column
shows the percentages of erroneous voice/video reporting in messaging
samples. The difference to the main implementation is given inside the
parentheses.

Application Chat FDR Voice/Video FDR
Facebook Messenger 0% (0) 3% (+2)
Skype 2% (-3.5) 8.4% (+4.2)
Viber 3% (+1) 2% (0)
WhatsApp 2% (-6) 3.3% (+2.7)

chosen packet captures from WhatsApp and Skype messaging activity. We choose not

to include the equivalent graphs for the remaining applications due to space constraints.

The vertical lines depict the logged timestamp of the outgoing chat messages, while Main

and FPM points show the detected events using the two proposed methodologies. The

slight temporal deviation of the detected events from the ground truth timestamp can be

explained from the fact that the outgoing message is not truly instantaneous, but rather

spans from the transmission to the delivery acknowledgement.

Figure 2.5 shows a case where both our rule generation methods were able to perfectly

detect the actual events, as opposed to the case shown in Fig. 2.6 where both false posi-

tives and false negatives are present. An interesting observation that can be derived is the

increased Skype traffic during the time window 10:39:06 - 10:39:15. During this time, the

user attempted to choose emoticons which were not pre-loaded.

22 Chapter 2. Identification of Events on Encrypted Network Traffic

14:47:00 14:47:20 14:47:40 14:48:00 14:48:20
Wall-clock

0

50

100

150

200

250

Pa
ck

et
 p

ay
lo

ad
 (B

) FPM
FPM

FPM
FPM

FPM
FPM

FPM
FPM

Main
Main

Main
Main

Main
Main

Main
Main

Chat Chat Chat ChatChat Chat Chat Chat
Outbound packets
Inbound packets

Figure 2.5: Packet capture of WhatsApp messaging activity. The vertical lines depict
the actual outgoing chat messages, while Main and FPM points show the
detected events.

10:38:40 10:39:00 10:39:20 10:39:40 10:40:00
Wall-clock

0

250

500

750

1000

1250

1500

1750

Pa
ck

et
 p

ay
lo

ad
 (B

)

FPM
FPM

FPM
FPM

FPM
FPM

FPM
FPM

FPM
FPM

FPM
FPM

Main
Main

Main
Main

Main

Chat
Chat

Chat
Chat

Chat
Chat

Chat
Chat

Figure 2.6: Packet capture of Skype messaging activity.

2.2. Use Case: Network Intrusion Detection 23

2.2 Use Case: Network Intrusion Detection

In this section, we focus on the identification of intrusion attempts on encrypted net-

work traffic. We examine the automatic generation of expressive and fine-grained sig-

natures. The signatures are tailored for intrusion detection in encrypted networks and

are constructed using sequences of packet payload sizes (Sections 2.2.1 and 2.2.4). We

evaluate the effectiveness of the signatures and we present the results in Section 2.2.2. In

Section 2.2.3 we show how we modify a high-performance intrusion detection engine to

support the matching of packet metadata sequences. For the evaluation, we use two dif-

ferent datasets: (i) a dataset with packet captures from several penetration tools that we

collected in a controlled environment and (ii) a dataset of packet captures from IoT mal-

ware that is publicly available. A high-level overview of this work is presented in Figure 2.7.

In the offline phase, we (i) process the ground-truth dataset retrieved from [171] and the

pentool-dataset that we collected (§ 2.2.2), (ii) we generate signatures and (iii) we build the

automaton. In the online phase, we process the input traffic using our intrusion detection

engine that reports any suspicious activity identified by our signatures.

Offline phase

Online phase

Ground-truth traffic
samples collection Signatures generation

Incoming traffic
collection Traffic inspection Intrusion detection

reporting

Automaton compilation

Figure 2.7: A high-level design overview of this work.

24 Chapter 2. Identification of Events on Encrypted Network Traffic

2.2.1 Signatures

A thorough examination of the literature and our own analysis, led us to conclude that

the inspection of sequences of incoming packet payload sizes can point to discrete events

that possibly signify an intrusion attempt within a network [90–92]. Figures 2.8, 2.9 and

2.10 show examples of how discrete events in network traffic can be revealed only by ob-

serving their patters of sequences of packet payload sizes. With signatures, we refer to se-

quences of packet payload sizes within a network flow. A network flow is characterized by

the typical 5-tuple {source IP address, destination IP address, source port, destination port,

protocol}. This mean that a signature is unidirectional. Signatures are matched against

incoming traffic anywhere in the network flow.

0 250 500 750 1000 1250 1500
Packet arrival time (ms)

0

200

400

600

800

1000

Pa
ck

et
 p

ay
lo

ad
 si

ze
 (b

yt
es

)

Figure 2.8: Illustration of packet payload size sequences within a network traffic cap-
ture of (a) file scanning attempt using the “dirbuster” tool, during the first
1.7 seconds of the active network flows. Each bullet color represents a sin-
gle network flow.

In this section, we describe the signature language that expresses such network traffic

patterns. Our goal is to develop a simple signature language that is expressive enough and

enables automated mining, similarly to Section 2.1. Table 2.8 illustrates some signature

examples that we construct during our analysis. The proposed format is easy to follow.

An intrusion attempt event is reported, right after a network flow matches one or more

signatures. For instance, when different network flows contain a sequence of 4 packets

with payload sizes “22,976,48, 16” bytes respectively then our intrusion detection engine

2.2. Use Case: Network Intrusion Detection 25

0 250 500 750 1000 1250 1500
Packet arrival time (ms)

0

200

400

600

800

1000

Pa
ck

et
 p

ay
lo

ad
 si

ze
 (b

yt
es

)

Figure 2.9: Illustration of packet payload size sequences within a network traffic cap-
ture of a ssh password cracking attempt using the “hydra” tool, during the
first 1.7 seconds of the active network flows. Each bullet color represents
a single network flow.

0 250 500 750 1000 1250 1500
Packet arrival time (ms)

0

200

400

600

800

1000

Pa
ck

et
 p

ay
lo

ad
 si

ze
 (b

yt
es

)

Figure 2.10: Illustration of packet payload size sequences within a network traffic cap-
ture of a login attempt to the web server using the “hydra” tool, during the
first 1.7 seconds of the active network flows. Each bullet color represents
a single network flow.

reports a password cracking attempt originating from the Hydra tool [193].

The proposed signature language can be extended by adding regular expression sup-

port for additional expressiveness. Yet, we decide to keep the signature language complex-

26 Chapter 2. Identification of Events on Encrypted Network Traffic

Table 2.8: Signature examples. Each signature corresponds to a sequence of packet
payload sizes that must be matched against a network flow to report an
intrusion attempt event.

Tool/Malware Activity Signature
Hydra SSH Password cracking 22, 976, 48, 16
Dirbuster File/directory scanning 608, 80, 155, 156
IRCbot Communication with C&C server 16, 23, 19, 13
Muhstik Communication with C&C server 78, 15, 31, 47

ity to a minimum in order to facilitate the automatic signature mining procedure. Simi-

larly to 2.1.1, we normalize the network traffic by discarding retransmitted TCP packets in

a filtering phase, before traffic inspection.

2.2.2 Effectiveness Evaluation

In this section, we evaluate the effectiveness of the proposed signature language. The in-

trusion events that we examine come from activity originated by (i) penetration tools (i.e.,

pentool-dataset) and (ii) IoT malware (i.e., iot-malware-dataset). The traffic that charac-

terises the network activity of penetration tools is collected by us in a controlled environ-

ment and the traffic that characterises the network activity of IoT malware is retrieved

by a public repository [171]. For the pentool-dataset, we used 30% (randomly chosen) of

the packet captures for the signature generation, and the remaining 70% for the evalua-

tion. For the iot-malware-dataset, a big majority of the malware families that exist in the

dataset are contained in a single packet capture file. Thus, we split the network flows

into separate packet captures into (i) signature generation captures and (ii) evaluation

captures. The process is straightforward, since there are files that contain the necessary

information (e.g., which network flows contain a certain malware activity). Just like in the

pentool-dataset, we use the 30% of the total packet captures for signature generation and

the remaining 70% for the signature evaluation 6.

6While in machine learning approaches, it is common to use 70% of the dataset for training and 30% for
testing, we do the reverse to stress the effectiveness of our approach in cases of limited data.

2.2. Use Case: Network Intrusion Detection 27

Traffic Processing and Filtering

We divide the network traffic collected during the attacks into network flows. As previously

stated, a network flow is characterized by the standard 5-tuple {source IP address, destina-

tion IP address, source port, destination port, protocol}. Since the network traffic from the

pentool-dataset is generated within a controlled and isolated environment and the IP ad-

dress of both machines is known, we can presume that the resulted flows in a packet cap-

ture indicate the traffic generated by the malicious machine during each corresponding

attack. Regarding the iot-malware-dataset, we use the available logs that describe each

attack and are available in the repository [171]. The iot-malware-dataset contains unen-

crypted network traffic, containing protocols like HTTP. Even though in HTTP traffic the

payloads are not encrypted, we follow the same methodology to produce the intrusion de-

tection signatures using packet metadata. The labels are produced after an analysis using

the Zeek network security monitor [204].

In our methodology we discard retransmitted TCP packets, since such packets do not

offer additional information to the flow. In addition, we assume that packet payloads are

encrypted and thus, our approach proposes processing only packet metadata (e.g., packet

payload size, packet direction). Packets that do not contain payload are also not processed

(TCP ACK packets), since they do not provide any valuable information for our methodol-

ogy.

Sample Traffic Generation

For the collection of the penetration tools dataset (i.e., pentool-dataset), we setup an envi-

ronment with two virtual machines. The first machine runs Kali Linux and the second ma-

chine runs a vulnerable Ubuntu distribution with DVWA [190] installed using a self-signed

certificate to enable HTTPS connections. The two machines are isolated from the network

to ensure that no other machine is affected and a safe intercommunication between the

two machines is established. The Kali Linux machine (IP address: 192.168.56.101) serves

as the malicious entity that communicates with the vulnerable Ubuntu machine (IP ad-

dress: 192.168.56.103) in order to perform various malicious activities (e.g., port scanning,

file/directory scanning, password cracking, sql injection). The tshark tool is installed on

the vulnerable machine and captures the incoming network traffic during the intrusion

28 Chapter 2. Identification of Events on Encrypted Network Traffic

Attacker
machine

Victim
machine

192.168.56.101 192.168.56.103

Web server
(DVWA,
self-signed
certificate)

Tshark for
network packet
capture

Kali linux:
Dirb, nikto,
sqlmap, hydra,
nmap, msfconsole

Logs intrusion
event start time
and end time

Figure 2.11: Illustration of our testbed setup for traffic collection.

attempts performed by the malicious machine. Figure 2.11 illustrates the testbed setup.

Table 2.9: Activities performed as intrusion attempts to the vulnerable web server.
Tool Activity
1 Dirbuster Web content scanning in victim machine
2 Nikto Web server scanning in victim machine
3 Hydra Admin login attempt to web server in victim machine
4 Hydra Root login attempt to web server in victim machine
5 Metasploit Directory scanning to web server in victim machine
6 Metasploit File scanning to web server in victim machine
7 Sqlmap SQL injection to web server in victim machine
8 Nmap Detection of remote services version numbers
9 Nmap OS detection, version detection, script scanning, traceroute

We choose some popular vulnerability scanners to evaluate our methodology. Some of

the tools used for the intrusion events generation are DIRB [191], NIKTO [197], SQLMAP [188],

HYDRA [193], NMAP [198], and METASPLOIT [196]. We perform numerous instances of

attacks for different times and days within a one-month period. DIRB is a web content

scanner. NIKTO examines a web server to find potential problems and security vulnerabil-

ities. SQLMAP is a penetration test tool that enables SQL injection exploitations. HYDRA is

used for login cracking. NMAP is a utility that enables network security auditing. METAS-

PLOIT is a penetration testing software (we use the msfconsole, which is the metasploit

framework console). Table 2.9 presents the events generated. Overall, we collected a set

2.2. Use Case: Network Intrusion Detection 29

of over 120 packet captures (half of these packet captures were generated using a different

Kali Linux distribution, to ensure that the signatures are resilient across OS/application

updates). Each individual packet capture simulates an intrusion attempt as described in

Table 2.9. For each packet capture, we log the start time and end time of each intrusion

attempt event.

We do not discuss in detail the testbed setup of the IoT malware dataset (i.e., iot-malware-

dataset) in this section, since a thorough description of the dataset is provided in the pub-

lic repository [171] by the creators. The events that we examine are presented in Table 2.10.

Table 2.10: Malicious activity as retrieved from the IoT-23 dataset [171].
Malware Activity
10 Mirai Connection of an infected device and a CC server
11 IRCbot Connection of an infected device and a CC server
12 IRCbot Attack from infected device to a host
13 Muhstik Connection of an infected device and a CC server
14 Muhstik Attack from infected device to a host

Signature Effectiveness

In this section, we evaluate the effectiveness of the signatures that are generated by our

methodology. For the evaluation, we use 70% of the total packet traces that contain a

single intrusion event (the remaining 30% packet captures were previously used for the

signature generation).

Each packet capture in the dataset contains only a single intrusion event type (as de-

fined in Tables 2.9 and 2.10). When a signature reports an intrusion event, we compare it

to the actual event. For instance, when a signature reports that “web content scanning”

probably occurs in a specific packet capture, we manually investigate the actual event. If

the intrusion attempt event that happens in the specific packet capture is the same as the

event that was reported, then we mark this report as correct. When an event is correctly

reported, we increase the true positive counter. If the report is incorrect, we increase the

false positive counter for the signature. The true positive rate (TPR) for each malicious

activity is presented in Table 2.11. For the pentool-dataset, the TPR of our signature gen-

eration methodology is 100% individually for each event. This means that the signatures

that are generated to report a specific intrusion attempt event can correctly identify the

30 Chapter 2. Identification of Events on Encrypted Network Traffic

existence of this specific event. For instance, the signature that is generated for the iden-

tification of event no.1 “web content scanning in victim machine” using the dirbuster

tool, correctly reports the existence of such event in every packet trace that indeed con-

tains such event (signature TPR for event no.1: 100%). For the iot-malware-dataset, the

TPR fluctuates between 62% and 100%. Mostly, the signatures that cause a low TPR are ex-

ported by packet captures with limited network flows to contain a malicious activity. For

instance, the IRCbot network flows that contain a communication with a CC server are

1530 (event no.11 TPR: 100%) while the IRCbot network flows that contain an attack are

677 (event no.12 TPR: 62%).

Besides the true positive rate, we measure the resulting true negative rates (TNR) and

false discovery rates (FDR) for each intrusion attempt event. The validation of results

is challenging in encrypted network traffic. A network intrusion detection system must

be able to report any traffic behavior that is suspicious, while it is equally important to

not falsely report events that are not existent in the network. The false discovery rate of

our methodology is reported in Table 2.11. False discovery rate is calculated as FDR =
FP/ (TP + FP). In detail, events no.1, no.2, no.7 and events no.10–no.14 are expressed by

signatures that perform very effectively, having high true positive rates and no false pos-

itives. Each signature that is generated by our methodology to identify each one of the

three intrusion events (events no.1, no.2 and no.7) contains no less than two sequences

of packet payload sizes. Thus, to report an event, a network flow must match each one

of the sequences that are contained within the signature. This makes the three signatures

(events no.1, no.2 and no.7) stronger than the remaining signatures that raise a number

of false positives. For each one of the remaining tools (i.e., hydra, metasploit, nmap), our

signature mining methodology produces a single signature. Each signature contains only

a single sequence of packet payload sizes, which makes it easier for the signature to be

matched against a network flow; something that could eventually present false positives.

Moreover, we observed that the signatures that were generated by our methodology for

two events of the same tool were identical. For instance, event no.3 and event no.4 (i.e.,

hydra tool) are described by the same sequence of packet payload sizes. Similarly, event

no.5 and event no.6 (i.e., metasploit tool) share the same signature as well as event no.8

and event no.9 (i.e., nmap tool). As a result, different events of the same tool are reported

simultaneously. For example, the false discovery rate is 11% for the signature of the event

2.2. Use Case: Network Intrusion Detection 31

Table 2.11: Resulting True Positive Rates (TPR), True Negative Rates (TNR) and False
Discovery Rates (FDR) by the signatures examined.

(Tool) TPR (in-dataset) TNR (normal) FDR (in-dataset) FDR (normal)
1 (Dirbuster) 100% 100% 0% 0%
2 (Nikto) 100% 100% 0% 0%
3 (Hydra) 100% 100% 11% 0%
4 (Hydra) 100% 100% 11% 0%
5 (Metasploit) 100% 100% 11% 0%
6 (Metasploit) 100% 100% 11% 0%
7 (Sqlmap) 100% 100% 0% 0%
8 (Nmap) 100% 100% 11% 0%
9 (Nmap) 100% 100% 11% 0%
10 (Mirai) 100% 100% 0% 0%
11 (IRCbot) 100% 100% 0% 0%
12 (IRCbot) 62% 100% 0% 0%
13 (Muhstik) 100% 100% 0% 0%
14 (Muhstik) 100% 100% 0% 0%

no.3, since the network traffic that is produced during an event no.3 is falsely reported

as event no.4, as well. Still, it is correctly reported as an event no.3. Minimizing the false

positives that an intrusion detection system presents is very important. At this point, we

highlight that the false discovery rate that is presented by some events (e.g., event no.3,

event no.5) is negligible, if we consider that these signatures correctly report the existence

of the tool and the traffic that it generates. Even thought the granularity of the event is

not fine-grained (the generated signature for the hydra tool can not distinguish between

events no.3 and 4), the signature is still able to correctly identify the existence of the traffic

that the tool generates in a network. In addition, we use normal HTTPS traffic samples to

measure the FDR for the signatures generated. These results are presented in Table 2.11

under the column FDR (normal). The samples that we used for this experiment are pub-

licly available [208] (packet captures used: CTU-Normal-20 – CTU-Normal-32). Correctly,

our signatures do not report any intrusion event in the normal traffic dataset, leading to

100% TNR and 0% FDR. .

Comparison to Snort rules As an additional evaluation step, we compare the signatures

generated by our methodology to the most relevant Snort signatures. We download the

latest version of the community Snort rules [210] and we extract the rules that match the

32 Chapter 2. Identification of Events on Encrypted Network Traffic

Table 2.12: Comparison of the effectiveness of the rules that are generated by our
methodology to the effectiveness of the corresponding rules that are used
by Snort.

(Tool) Our TPR Snort’s TPR
1 (Dirbuster) 100% 0%
2 (Nikto) 100% 0%
3 (Hydra) 100% –
4 (Hydra) 100% –
5 (Metasploit) 100% 0%
6 (Metasploit) 100% 0%
7 (Sqlmap) 100% 0%
8 (Nmap) 100% 0%
9 (Nmap) 100% 80%

same tools. More specifically, we have identified 101 metasploit rules, six nmap rules, one

dirbuster and one sqlmap rule. For hydra, we identified eight Snort rules, which seem to

target the Hydra malware and not the hydra tool – thus, we choose to exclude them from

the evaluation. Finally, since there was no rule for nikto, we used one rule that was present

in an older version of community snort rules. We executed Snort using the equivalent

Snort rules against the same network packet captures that we used for the evaluation in Ta-

ble 2.11. As presented in Table 2.12, only the nmap rule that corresponds to the event no.9

reported positively. Thus, it is apparent that Snort is not effective when performing against

encrypted network traffic, in contrast to our methodology that matches packet metadata

sequences and not packet contents. We do not execute Snort for the iot-malware-dataset,

since it contains network packets that are not encrypted.

2.2.3 Implementation and Performance

A very efficient algorithm that popular signature-based intrusion detection systems use for

pattern matching is the Aho-Corasick algorithm. Pattern matching is the core operation

of any deep packet inspection system, such as a network intrusion detection system. A

deep packet inspection system dives into the network packet payloads in order to extract

sequences of characters, namely strings. These strings are compared against well known

patterns that describe, for instance, the communication between a known botmaster with

its bots.

2.2. Use Case: Network Intrusion Detection 33

In our approach, we assume that the network traffic that should be inspected by our

intrusion detection system contains encrypted payloads. Thus, we do not extract any pay-

loads and we only process packet metadata. These packet metadata can be derived from

the contents of network packet headers. For example, even in a TLS protected connection,

the packet headers are not encrypted. As we have already mentioned, our methodology

uses packet metadata like the packet payload sizes (i.e., data transmitted in the packet)

and packet directions in order to generate signatures. We express the packet direction im-

plicitly, since a signature will match against one-directional network flows. A signature

that we produce contains sequences of packet payload sizes. These sequences of packet

payload sizes must be matched against the incoming network traffic in order to report an

intrusion attempt event that is described by the corresponding signature. Yet, packet pay-

load sizes are integers and can not be expressed as strings. Thus, integrating signatures of

packet metadata into a typical signature-based intrusion detection system that performs

deep packet inspection in packet payloads, is not trivial. In the following paragraphs, we

describe the implementation of our system.

Simultaneous Multi-Pattern Matching and Efficient Automaton

The choice of the pattern matching algorithm is crucial for efficiently matching large data

streams against multiple patterns. Inspired by the Aho-Corasick string matching algo-

rithm [3], we implement a finite state machine to efficiently match a set of patterns (i.e.,

signatures) against streams of network packets. We extend the Aho-Corasick algorithm to

enable integer matching, instead of strings, similar to [89–91].

The Aho-Corasick algorithm is a very efficient string searching algorithm that matches

the items of a finite set of strings against an input stream. It is able to match a large volume

of patterns simultaneously, so its complexity does not depend on the size of the pattern

set. It constructs an automaton that performs transitions for each 8-bit ASCII character of

the input text. For our approach, we replace the 8-bit characters with 16-bit values that

represent the packet sizes. The algorithm builds a finite state machine, resembling a trie

with added “failure” links between the trie nodes. When there is no remaining matching

transition, we move through the state machine following the failure links, performing fast

transitions to other branches of the trie that share a common prefix. In this way, we avoid

the expensive backtracking operation, so the algorithm allows the interleaving of a large

34 Chapter 2. Identification of Events on Encrypted Network Traffic

 0.01

 0.1

 1

 10

500 1k 5k 10k 50k

A
u
to

m
a
to

n
 s

iz
e
 (

G
B

)

Number of signatures

Sequence length
6 packets
8 packets

10 packets
12 packets

Figure 2.12: Automaton size.

number of concurrent searches, such as in the case of network connections, because the

state can be preserved across input data that are observed at different points in time by

storing a pointer to the current state of the automaton, with the state maintained for each

connection. Backtracking is an operation very expensive since it requires the maintenance

of per-flow state for previously-seen packet payload sizes. In order to boost the resulted

performance, we build a Deterministic Finite Automaton (DFA) by unrolling the failure

links in advance, adding them as additional transitions directly to the appropriate node.

To present our automaton’s characteristics, i.e. the automaton size and the compila-

tion time, we generate signature sets out of varying packet sequences, each time increas-

ing the number of signatures and the packet sequence length. Figure 2.12 presents the

size of the automaton in regard to different signature sets. More specifically, we present

the size of our automaton, using 500, 1K, 5K, 10K and 50k randomly generated patterns

of sequence length 6, 8, 10 and 12 packets; for example, the automaton that is generated

using 10,000 signatures, where each signature resembles a sequence of 10 packet sizes, is

around 1.5 GB. Figure 2.13 presents the compilation time of the automaton based on the

same signature sets. The compilation time of the automaton does not affect the end-to-

end performance negatively, since the compilation happens offline and only once.

Packet Processing Parallelization

For the implementation of the pattern matching of our intrusion detection system, we

use the OpenCL framework (Intel OpenCL 2.1 SDK for Intel CPUs) [177, 199]. The overall

architecture of our intrusion detection system is presented in Figure 2.14.

The system utilizes one or several CPU worker threads, assigned to a singe input source

2.2. Use Case: Network Intrusion Detection 35

 0.01

 0.1

 1

 10

 100

500 1k 5k 10k 50k

C
o
m

p
ila

ti
o
n
 t

im
e
 (

m
s)

Number of signatures

Sequence length
6 packets
8 packets

10 packets
12 packets

Figure 2.13: Automaton compilation time.

CPU

W W W

Execution buffer

Input data Input data Input data

Device
T0: Flow0

T1: Flow1

T2: Flow2

T3: Flow3 T6: Flow6

T4: Flow4

T5: Flow5

T7: Flow7

Tx: FlowX

RX buffer

RX buffer

Pkt0 (F0), Pkt1 (F10), Pkt2 (F5), Pkt3 (F5),
Pkt4 (F1), Pkt5 (F2), Pkt6 (F0), Pkt7 (F2),
Pkt8 (F5), Pkt9 (F10), Pkt10 (F6), Pkt11 (F6),
Pkt12 (F6), Pkt13 (F2)

Execution buffer

Flow0: Pkt0, Pkt6 
Flow1: Pkt4
Flow2: Pkt5, Pkt7, Pkt13  
Flow5: Pkt2, Pkt3, Pkt8

Flow6: Pkt10, Pkt11, Pkt12

Flow10: Pkt1, Pkt9

Figure 2.14: Overview of the proposed packet processing architecture.

(NIC or .pcap file). Once a CPU worker thread receives a network packet, it forwards it to a

receive buffer. This buffer is responsible for the traffic processing and filtering, discussed

in § 2.2.2. At this point, the receive buffer is filled with packets that belong to different

network flows. When the buffer is full, our system generates execution batches with the

traffic contained in the receive buffer. The execution batches contain the packet payload

sizes of the received network packets, divided and ordered by network flows. In this way,

we transform the input traffic to sequences of packet payloads. Each sequence refers to a

single flow and is ready to be processed by the pattern matching engine. In the meantime,

the receive buffer is accepting new incoming packets. Maintaining different buffers for

receiving packets and for preparing packets to be processed enables us to avoid packet

36 Chapter 2. Identification of Events on Encrypted Network Traffic

losses. We implement the pattern matching engine of our system as an OpenCL compute

kernel.

In OpenCL, an instance of a compute kernel is called a work-item; multiple work-items

are grouped together and form work-groups. A data buffer required for the execution of

a computing kernel has to be created and associated to a specific context. Unlike other

relevant works that follow a packet-per-thread processing approach (e.g., [94, 131, 132]),

we follow a flow-per-thread approach. This means that each thread reads at least one

network flow from the execution batch and then performs the processing. Whenever a

batch of packets is received and forwarded for flow ordering and processing by the device,

new packets are copied to another batch in a pipeline fashion.

Moreover, in order to fully utilize the SIMD capabilities of the hardware, we represent

the packet payload sizes in the execution buffer as unsigned short integers. In this way,

we are able to access the data using the ushort16 vector data type in a row-major order.

This enables us to fetch information for 16 packets at once [178]. During processing, the

pattern matching kernel uses one ushort value as input, representing one payload size, at

each step in order to traverse the automaton, as described in Section 2.2.3. If a signature

is identified, the engine reports the suspicious flow identifier, packed with the packets

that matched the signature (using the first and the last packet contained in the signature,

together with the signature identifier).

Performance Evaluation

For the performance evaluation of our implementation we use a commodity high-end ma-

chine. The hardware setup of our machine includes an Intel i7-8700K processor with 6

cores that operate at 3.7 GHz with hyper-threading enabled, providing us with 12 logi-

cal cores, configured with 32 GB RAM. The main processor is packed with an Intel UHD

Graphics 630 integrated GPU. In our setup, we use Arch Linux with kernel version 4.19.34-

1-lts. We perform offline traffic processing, meaning that the application reads the traffic

from memory, thus, for the performance evaluation we focus on micro-benchmarks in

order to present the throughput and latency of the engine’s execution.

The performance results that are presented in Figures 2.15 and 2.16 display the median

values occurring after 30 runs per configuration.

Figure 2.15 presents the processing throughput achieved by our pattern matching en-

2.2. Use Case: Network Intrusion Detection 37

Figure 2.15: Throughput of our pattern matching implementation for different num-
ber of flows and varying pattern sizes.

Figure 2.16: Latency of our pattern matching implementation for different number of
flows and varying pattern sizes.

gine using an Intel i7-8700K CPU. In Figure 2.15, the color-filled bars indicate the through-

put achieved by the pattern matching engine when the selection of signatures and input

results to a computationally loaded condition (i.e., the 100% of the traffic reports signature

matches). White-filled bars with borders indicate the throughput achieved in a computa-

tionally relaxed condition (i.e., less than 10% infected traffic), which is the most realis-

tic scenario. We present the throughput using different packet batch sizes. The pattern

matching engine is executed with one automaton of 1000 signatures of varying lengths

(i.e., 6-12 packets). The main processor performs better for smaller batch sizes, resulting

to 85Gbps processing throughput (i.e., 32k network flows per batch) for the realistic sce-

nario and 69 Gbps processing throughput for the worst-case scenario.

In Figure 2.16, the color-filled bars indicate the performance achieved by the pattern

matching engine when the selection of signatures and input, results to a computation-

38 Chapter 2. Identification of Events on Encrypted Network Traffic

ally relaxed condition. Again, in the figure, we present the most realistic scenario, where

we have less than 10% malicious traffic. White-filled bars with borders indicate the per-

formance achieved in a computationally loaded condition (i.e., 100% malicious traffic),

which is the worst-case scenario. We present the latency using different packet batch

sizes. Executing on the main processor adds very low latency, making it ideal for real-

time, latency-intolerant environments. For instance, a batch of 16k network flows results

up to 2ms processing latency, while processing larger batches takes up to 2.5ms. We use

the same automaton as the one used in Fig. 2.15.

2.2.4 Signature Mining

To enable fast signature generation for detecting different intrusion attempts, we aim for

automating the procedure. We extract the intrusion signatures from network packet traces

using frequent sequential pattern mining. More specifically, from our ground-truth sam-

ple collection, we detect frequent packet payload size sequences that correspond to spe-

cific intrusion attempts. Unlike other works, our approach does not depend on network

statistical measures for the encrypted traffic inspection [7, 22]. Figure 2.17 illustrates the

workflow of our methodology.

First, we process the traffic captures so as to keep only the network packets that are

related to the malicious activity. All the remaining packets other than the malicious activ-

ity under examination are discarded. Similarly, as already discussed in §2.2.1, we discard

retransmitted TCP packets, as well. Then, we use the joy tool [182] to extract per network

flow data that are used for signature generation. More specifically, joy receives as input

a packet capture that contains an intrusion event (§ 2.2.2). Joy returns a JSON file with

network flow related information, such as the sequence of packet sizes and arrival times,

DNS names, HTTP header fields and others. For each network flow originated from the

intrusion event under examination, we retrieve the sequence of non-zero packet payload

sizes and the packet arrival times. This sequence of non-zero packet payload sizes is later

used by the signature mining procedure.

For the signature mining procedure we choose to utilize a frequent sequential pattern

mining technique. Such algorithms discover frequent sequential patterns that occur in

sequence databases. Benefiting from such techniques, in our proposed methodology we

2.2. Use Case: Network Intrusion Detection 39

Intrusion events
traffic collection

Traffic processing
and filtering

Per flow data
extraction

Signature mining
Joy VMSP

Figure 2.17: Illustration of our methodology workflow. First, we collect a set of ground-
truth packet captures from intrusion attempts. Then, we process these
captures and keep only the network packets that are related to the mali-
cious activity. We use the tool joy [182] to extract sequences of packet
payload sizes per flow and with a frequent sequential pattern mining algo-
rithm, we generate signatures with sequences of packet payload sizes.

choose to utilize a maximal sequential pattern mining algorithm. Maximal sequential pat-

tern mining is used to extract the frequent longest common sequences of network packet

payload sizes contained in traffic. Our methodology uses the resulting sequences as poten-

tial signatures that can indicate an intrusion attempt. The resulting signatures are mined

using the VMSP algorithm [42], with minimum support 50%. Finally, we select the max-

imal sequences that match to the ground truth information that we have. For instance,

if the time window of the intrusion attempt is close (in time) to the sequence’s first oc-

currence inside the network traffic. The generated signatures, then, are used to report

intrusion attempts on a test dataset. The training dataset is the traffic traces that we used

to export the frequent longest common sequences and generate the signatures. This train-

ing dataset consists of the 30% of the total traffic traces that we collected, infected with

different intrusion attempt events (e.g., password cracking). For the generation of the sig-

natures we take into account the direction of the packets (i.e., incoming packets).

How Signature Length Affects Effectiveness One of our design goals is to generate ex-

pressive signatures that will be able to detect intrusion attempt events in a fine-grained

manner. After a manual examination of the signatures generated by the automatic method-

ology that we followed (§ 2.2.4), we found out that the majority of resulted signatures

consisted of short sequences of packet payload sizes (e.g., median sequence length was

3 packet payload sizes). Having signatures with short sequences of packet payload sizes

40 Chapter 2. Identification of Events on Encrypted Network Traffic

results to a more compact automaton (i.e., less memory requirements). Yet, a short se-

quence can eventually result to high false positive rates, as well. A signature construction

decision can significantly disturb the resulting rates of true positives and false positives. A

short signature can lead to high true positive rates– yet, there is the cost of a high false pos-

itive rate. A large signature, with a more strict definition, can give satisfactory true positive

rates and reduce false positives.

To prove our statements we perform an experiment. We use a publicly available dataset

that contains network packet traces with several network intrusion events [80]. The events

are classified into three categories: “Exploits”, “Reconnaissance” and “DoS”. For signature

generation, we use 40% randomly chosen flows from the ground-truth dataset and the re-

maining 60% for the evaluation. Table 2.13 shows the resulting true positive rates (TPR)

for different attack types found into the ground-truth dataset. Each traffic trace in the test

dataset contains a combination of malicious and benign traffic (labeled). When a signa-

ture reports malicious activity we compare it with the actual category of the flow. If the

activity is correctly reported as malicious, then the TP counter is increased. Otherwise,

we have a false positive (FP). The true positive rates, as presented in Table 2.13 show the

effectiveness of each signature according to the signature’s length. For instance, short sig-

natures result to higher TPR. In some cases, however, a short signature that results to a

high TPR is possible to introduce the trade-off of resulting to a high FDR, as well. The

false discovery rate7, as presented in Table 2.14, presents the percentage of signatures that

falsely reported malicious activity. Thus, as occurs from Tables 2.13 and 2.14, the signature

length can significantly affect the signature effectiveness.

Table 2.13: Resulted true positive rates (TPR) of varying signatures between event cat-
egory and size.

Packet Sequence Length
Direction 4 6 8 10 12
Signatures for “Expoits” events 100% 93% 69% 63% 54%
Signatures for “Reconnaissance” events 100% 89% 89% 89% 87%
Signatures for “DoS” events 100% 61% 49% 44% 10%

7False discovery rate can be calculated as FDR = FP/(TP+FP)

2.2. Use Case: Network Intrusion Detection 41

Table 2.14: Resulted false discovery rates (FDR) of varying signatures between event
category and size.

Packet Sequence Length
Direction 4 6 8 10 12
Signatures for “Expoits” events 0.8% 0.7% 0.6% 0.2% 0.1%
Signatures for “Reconnaissance” events 62% 0.9% 0.7% 0.3% 0%
Signatures for “DoS” events 62% 43% 30% 21% 18%

Minimizing False Discovery Rates Figure 2.8 illustrates the sequences of packet payload

sizes that appear within a network packet capture during a scanning attempt with the

“dirbuster” tool. Examining the respective signature from the automatically generated sig-

nature set, we observe that the packet sequence that is depicted by the corresponding

figure is the “608,80, 155, 156”. This packet payload size sequence is the longest com-

mon sequence in the dataset that was used for the signature generation (§ 2.2.4). Yet, we

speculate that having such a short sequence would probably lead to higher false positives

when evaluated in a larger testing dataset. Additionally to the VMSP maximal sequential

pattern mining algorithm, we use the CM-ClaSP algorithm to discover closed sequential

patterns [41]. Closed sequential pattern mining produces the largest subsequences that

are common sets of sequences. So in practice, the resulted number of maximal patterns

are less than closed patterns (or all patterns). Following the same signature generation

methodology, combining the two frequent pattern mining algorithms, we obtain the fol-

lowing signatures for the intrusion attempt event illustrated in Figure 2.8 (selected set of

sequences):

608, 80, 155, 155, 152, 152

...

608, 80, 155, 155, 152, 158

...

608, 80, 155, 156, 153, 152

...

608, 80, 155, 156, 153, 158

...

Signatures that occur from this optimization are more difficult to match an irrelevant

network flow that will lead to false positives. For instance, a network flow with the packet

42 Chapter 2. Identification of Events on Encrypted Network Traffic

payload size sequence “608, 80, 155, 156, 90, 32, 60” (this sequence of packet payload sizes

does not refer to a malicious event) would have matched against the short signature that

was generated by our initial methodology (i.e., “608,80, 155, 156”). However, if we com-

bine the results of the two frequent pattern mining algorithms we will have a longer, more

expressive signature set, which eventually will result to less false positives. Indeed, we

noticed that this approach reduces some false positives from those of the initial method-

ology.

Early Intrusion Detection When it comes to intrusion detection, early reporting of an

event is crucial. Figure 2.10 illustrates different packet payload size sequences within a

network traffic capture of a login attempt to the web server using the “hydra” tool. We

can observe that some packets from the same network flow are received within a negligi-

ble inter-arrival time (e.g., sometimes more than 3 seconds). Taking into account packet

inter-arrival times, we can generate signatures with sequences of packet payload sizes

that are received within a certain time-window. Aiming to keep the signature language

as simple as it is at its current form, we add the extra parameter of time in the signature

generation methodology. So, instead of having a packet payload size sequence will take

almost 8 seconds to match against the network traffic, we settle to a shorter sequence

that will report the intrusion event sooner. Using as example the packet capture of Fig-

ure 2.10, to quickly detect the intrusion event, we should replace the signature’s sequence

“517,80, 104,285,229” produced by our methodology with the sequence “517,80, 104,285”.

In this way, our intrusion detection system will report the event after the first 4 seconds,

instead of 7 seconds. This optimization offers a detection speedup of x1.75.

Chapter 3

Characterization of Malicious Servers

on the Internet

In a TLS handshake, the first packets sent remain unencrypted and offer valuable infor-

mation to traffic analysis tools, enabling fingerprinting of devices, operating systems and

applications [96, 101]. While most of the works that perform TLS fingerprinting focus on

passive methods, in this work we generate TLS fingerprints using JARM [194], an open-

source tool for active server probing, with ultimate goal the effective identification of ma-

licious command and control servers in the wild.

3.1 Background

Transport Layer Security (TLS) is an encryption protocol that is widely used to ensure the

security and privacy of user communications online [184]. Specifically, TLS is used to

encrypt and authenticate the communication channel between two endpoints, and it is

widely adopted among others in browsing, messaging, voice over IP (VoIP) calls, emails.

TLS allows endpoints to securely communicate over the Internet, hindering any possible

malicious actions like eavesdropping, tampering and forgery.

A communication session between two endpoints starts with the TLS handshake. The

TLS handshake mainly kicks-off the decision-making procedure between the two end-

points, about which TLS versions, encryption ciphers and extensions they will actually

use during their communication. After this handshake, the two endpoints are able to

share data, which is encrypted with the arranged TLS configurations between the two

43

44 Chapter 3. Characterization of Malicious Servers on the Internet

endpoints. The only part of a TLS communication that is plain in sight, is the contents

of the TLS handshake packets exchanged. Aiming to clearly explain how the TLS hand-

shake works, we provide Figure 3.1. As shown in the figure, the endpoint that wishes to

initiate a communication session with another endpoint sends a ‘‘TLS Client Hello’’

packet. In the ‘‘TLS Client Hello’’, the endpoint includes the TLS version that it sup-

ports, the encryption cipher suites and a string of random bytes. Then, the other endpoint

responds with a ‘‘TLS Server Hello’’ packet. The ‘‘TLS Server Hello’’ packet con-

tains the server’s SSL certificate, the encryption cipher suit that the server wishes to use

and a newly created string of random bytes. After the entity, which acts as client, receives

the ‘‘TLS Server Hello’’ packet, it verifies the legitimacy of the server’s SSL certificate

with the authority that issued it. After the verification of the server’s SSL certificate, the

communication between the two endpoints starts1.

client server

TLS Client Hello
TLS versions, cipher suites

TLS Server Hello
TLS version, cipher suite

Client Key,
cipher re-negotiation

Client FIN

Server
cipher re-negotiation

Server FIN

DATA
(encrypted)

Figure 3.1: The TLS handshake steps.

In encrypted communications, extracting meaningful information about the contents

of this communication is difficult. When it comes to preventing user data tampering and

1In this work, we utilize the information exchanged between the two endpoints that are present in the
‘‘TLS Client Hello’’ and ‘‘TLS Server Hello’’ packets. More information about the TLS handshake can
be found in [184]

3.2. Data Collection and Preliminary Analysis 45

forgery by malicious entities, network encryption is of paramount importance. On the

other hand, adversaries exploit the characteristics of widely used encryption protocols to

hide their activities, making it impossible for security applications like network intrusion

detection systems to completely block adversaries’ actions. Aiming to stay effective in

the current situation of the wide adoption of TLS and encryption protocols in general,

the research community investigates new workarounds to deal with the rising problem of

adversaries using network encryption to camouflage their existence and actions over the

network.

3.2 Data Collection and Preliminary Analysis

As already mentioned, we make use of the JARM tool [194], which is an active TLS server

fingerprinting tool. Based on the handshake properties of TLS, JARM actively sends 10 con-

sequent “TLS Client Hello” packets to a server and collects the “TLS Server Hello” packets

that come as responses. The 10 consequent “TLS Client Hello” packets that are sent to

the target server are specifically generated to force TLS servers to response with unique

responses. To be precise, JARM sends “TLS Client Hello” packets with different TLS ver-

sions, ciphers and extensions. The “TLS Server Hello” packets, then, contain information

with the server’s attribute combination of TLS versions, ciphers and extensions. Hashing

these 10 server’s responses, we receive a JARM fingerprint. The fingerprint is calculated

for a single server and it is comprised of 62 Bytes in total.

On October 2021, we started collecting publicly available IP addresses from several

blacklists. More specifically, we retrieve IP addresses from the Feodo Tracker Botnet C2

IP Blocklist [214] (CC1), the MalSilo IPv4 feed [216] (CC2), the CINS Score CI-Badguys

list [213] (BL1) and the blocklists.de list [206] (BL2). The blacklists with identifiers CC1

and CC2 contain IP addresses, port numbers and activity/botnet name. The remaining

blacklists with identifiers BL1 and BL2 only contain IP addresses. Thus, we produce fin-

gerprints for every IP address encountered. Since the botnet lists (CC1 and CC2) contain

more information, we classify the botnets based on the produced fingerprints. Then, we

search these fingerprints against the blocklists BL1 and BL2. Figures 3.2(a), 3.2(b), 3.3(a)

and 3.3(b) show the evolution of the IP addresses and fingerprints that we collect during

this study. In the following paragraphs, we set the scene with a preliminary analysis based

46 Chapter 3. Characterization of Malicious Servers on the Internet

on the data that we collect and calculate. As occurres, the different command and control

servers that exist in the botnet lists that we download and parse, include the activity of

the following botnets: (i) Dridex, (ii) Qakbot, (iii) Trickbot, (iv) Emotet and (v) Downloader.

How the number of unique command and control server IP addresses evolve during our

study is illustrated in Figure 3.2(a). Everyday, we download the fresh command and con-

trol server IP addresses from the botnet lists and we calculate the server fingerprints that

are produced by JARM. The number of unique fingerprints per botnet is shown in Fig-

ure 3.2(b).

The number of unique Dridex command and control server IP addresses reach up to

186, while the fingerprints that are produced by actively probing those servers are maxi-

mum 8. This means that the majority of the Dridex command and control servers mostly

have same TLS configurations. Likewise, the number of unique QakBot command and

control server IP addresses reach up to 421, while the fingerprints that are produced by ac-

tively probing those servers are maximum 9. These number show that the fingerprints pro-

duced by the servers of this botnet are significantly uniform. For TrickBot, we encounter a

maximum of 195 distinct IP addresses in a single day, resulting to 20 fingerprints. For the

Emotet botnet, we encounter a maximum of 107 unique IP addresses in a single day, re-

sulting to 4 fingerprints. The highest fingerprint diversity is introduced by the Downloader

botnet, where for only 15 distinct IP addresses we get 6 fingerprints. Finally, our findings

make us confident that maintaining a database with these fingerprints can eventually help

mitigate cyber attacks related to the examined botnets 5.

Concerning the blocklists that we download and parse, we retrieve around 31K unique

IP addresses from BL1 and 15K unique IP addresses from BL2 with only a small number of

those IP addresses existing in both lists (Figure 3.3(a)). However, as shown in the following

paragraphs 3.2.1, a large number of these IP addresses refused the TLS connections that

we initiated using JARM. Yet, the number of the IP addresses that respond is still important

and, thus, we continue our analysis for these IP addresses.

In Figure 3.3(b), we can see that the IP addresses that are contained in BL1 produce

up to 759 unique fingerprints (out of 31K unique IP addresses), while the IP addresses

of BL2 produce up to 413 unique fingerprints (out of 15K unique IP addresses). At this

point, we have to stress that we do not have any prior knowledge related to the activities

of each IP address that is included in the two blocklists BL1 and BL2. In addition, the

3.2. Data Collection and Preliminary Analysis 47

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0
IP

 a
dd

re
ss

es
 p

er
 b

ot
ne

t
Dridex
Qakbot
Trickbot
Emotet
Downloader

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0

Fin
ge

rp
rin

ts
 p

er
 b

ot
ne

t

Dridex
Qakbot
Trickbot
Emotet
Downloader

Figure 3.2: (a) The unique IP addresses contained in the list with the botnet com-
mand and control servers and (b) the unique fingerprints hashed out of
the 10 TLS Server Hello responses, when contacting the IP addresses con-
tained in the botnet command and control server lists that we parse (i.e.,
CC1, CC2).

two blocklists do not contain any port numbers, so we are just contacting IP addresses

using the default port 443. Based on the fact that the servers of each botnet seem to be

configured similarly (similar server TLS fingerprints between a large number of different

IP addresses), we speculate that the two blocklists may contain IP addresses that serve

numerous and different botnets, much more than the five botnets that we examine in

Figures 3.2(a) and 3.2(b).

3.2.1 Refused TLS connections

Refused TLS connections from servers are expected. Figures 3.4(a) and 3.4(b) show the

number of servers that refused all TLS connections that we started by not responding

to the “TLS Client Hello” packets that we sent. From the two figures, we see that there

are times that contacted servers refuse an incoming TLS connection. Specifically, in Fig-

48 Chapter 3. Characterization of Malicious Servers on the Internet

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

13
/03

/20
22

07
/04

/20
22

02
/05

/20
22

27
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0

IP
 a

dd
re

ss
es

 p
er

 b
lo

ck
lis

t

BlocklistDe
CiBadguys
Overlapped

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

13
/03

/20
22

07
/04

/20
22

02
/05

/20
22

27
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f f
in

ge
rp

rin
ts

 p
er

 b
lo

ck
lis

t

BlocklistDe
CiBadguys
Overlapped

Figure 3.3: (a) The unique IP addresses contained in the blocklists and (b) the unique
fingerprints hashed out of the 10 TLS Server Hello responses, when con-
tacting the IP addresses contained in the blocklists that we parse (i.e., BL1,
BL2).

ure 3.4(a) we plot the number of the refused TLS connections from known command and

control servers (found in CC1, CC2). Servers from the Qakbot and Trickbot botnets mostly

accept our connections and respond to the “TLS Client Hello” packets that we send them.

Downloader servers also respond with a high ratio. Dridex and Emotet are the botnets that

refuse incoming connections more frequently, but not always. For instance, Emotet does

not refuse any of our connection during the period 23/01/22 – 27/01/2022. In Figure 3.4(b),

we plot the ratio of the the server IP addresses that refuse incoming TLS connection from

us and exist in BL1 and BL2. We can see that the TLS refusal ratio is higher and some days

it can reach up to 60% of the total IP addresses from lists BL1 and BL2. Yet, taking into

consideration that the total unique IP addresses in the two lists can reach up to 31K (BL1)

plus 15K (BL2), the number of the fingerprints that is extracted and used for our analysis

is more than considerable. When it comes to command and control servers, successful

TLS connections are expected, since they are prepared for new connections coming from

infected devices that act as bots. Thus, low TLS connection refusals are not a surprise. On

3.2. Data Collection and Preliminary Analysis 49

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0
Re

fu
se

d
TL

S
co

nn
ec

tio
ns

Dridex
Qakbot
Trickbot
Emotet
Downloader

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

13
/03

/20
22

07
/04

/20
22

02
/05

/20
22

27
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0

Re
fu

se
d

TL
S

co
nn

ec
tio

ns

BlocklistDe
CiBadguys

Figure 3.4: The number of refused TLS connections from IP addresses contained in
the (a) botnet command and control server lists (i.e., CC1, CC2) and (b)
blocklists (i.e., BL1, BL2).

the other hand, we do not have any activity insights regarding the IP addresses that are

contained in blocklists BL1 and BL2. We speculate that servers from the blocklists that

accept new TLS connections (through port 443) act as command and control servers. In

addition, TLS connection refusals could be related to the lack of dedicated port numbers

in the respecting lists. Specifically, our default port to probe is 443 and we do not perform

any port scanning, since we want to stay as stealth as possible. As a result, in cases that a

server responds only to connections that arrive through a dedicated port (other than 443),

we get a refusal for initializing a TLS connection.

3.2.2 Fingerprints of benign servers

Our methodology of probing known suspicious IP addresses to produce TLS server finger-

prints using the JARM tool would not be either effective or successful, if the fingerprints

often overlapped with TLS server fingerprints of known legitimate servers from popular

domains. We actively contacted the top-10K benign servers from the The Majestic Million

50 Chapter 3. Characterization of Malicious Servers on the Internet

list [215] one day in October 2021 and one day in October 2022. Figure 3.5 presents the

daily overlaps of the contacted server IP addresses retrieved from botnet server lists (i.e.,

CC1, CC2) and blocklists (i.e., BL1, BL2).

Results presented in Figure 3.5(a) show the daily overlaps of the malicious/suspicious

servers with the benign servers of the top-10K from the Majestic list [215]2, with finger-

prints calculated in October 2021. Figure 3.5(a) shows that for the server IP addresses that

exist in the blocklists, we find some overlapping TLS server fingerprints to legitimate TLS

server fingerprints, that could result to 5.3% false positives at maximum. The TLS server

fingerprints that are produced using the IP addresses found in the botnet lists result to less

than 1% overlapping fingerprints.

One year later, Figure 3.5(b) presents the daily overlaps of the same malicious/suspi-

cious servers with the benign servers of the top-10K from the Majestic list [215]3, with

fingerprints calculated in October 2022. Interestingly enough, we observe a rise in the

overlaps. For server IP addresses that exist in the blocklists, we find overlaps of TLS server

fingerprints with legitimate TLS server fingerprints, that result to 21% false positives at

certain days. The overlaps of botnet server are significantly lower (still less than 5%), but

higher when compared to the overlaps from Figure 3.5(a).

Based on our measurements the unique fingerprints of servers that exist in all lists

examined (i.e., CC1, CC2, BL1, BL2) during the 7-month period are 3242. The unique fin-

gerprints of the legitimate servers (top-10K Majestic) are 2915 in 2021, while in 2022 the

unique fingerprints of the legitimate servers (top-10K Majestic) are 1311. The overlaps of

malicious server fingerprints with legitimate server fingerprints are 371 in 2021 (13%) and

534 in 2022 (40%). Based on our measurements, we can see that in a year, the variation

in TLS configurations of legitimate servers is reduced (i.e., less unique fingerprints). Fur-

thermore, based on Figure 3.5, it is clear that as time passes, the calculated fingerprints of

malicious servers are becoming less effective, when not updated.

2The list of domains is downloaded in October 2021.
3The list of domains is downloaded in October 2022.

3.3. Analysis 51

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
le

 Fa
lse

 P
os

iti
ve

s

Botnet fingerprints
Blocklist fingerprints

27
/10

/20
21

29
/11

/20
21

13
/01

/20
22

12
/02

/20
22

09
/03

/20
22

03
/04

/20
22

28
/04

/20
22

23
/05

/20
22

Dates

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
le

 Fa
lse

 P
os

iti
ve

s

Botnet fingerprints
Blocklist fingerprints

Figure 3.5: TLS server fingerprints (from servers found in CC1, CC2, BL1, BL2) that
overlap with servers found in the top 10K domains ([215]).

3.3 Analysis

In this section, we analyse our findings based on IP addresses that we have been contact-

ing for 7 months, and share our insights. On a daily basis we contact more than 30K dis-

tinct IP addresses, retrieved from numerous blacklists.

3.3.1 Botnet ports

For each established connection, the port number used can sometimes signify the under-

lying activity. Aiming to shed some light in the port selection by known botnets, Table 3.1

contains the top-5 ports that we encounter in the blocklists together with the IP addresses4.

It is really interesting to notice that except for the well known ports (e.g., 443, 8080), the

different botnets operate using a diverse list of port numbers. Such ports, along with the

fingerprints produced, can offer better accuracy results in the performance of a network

4We wish to share the complete list of these port numbers with security researchers and students, upon
request.

52 Chapter 3. Characterization of Malicious Servers on the Internet

monitoring tool.

Table 3.1: Most popular port numbers per botnet (top-5 in CC1, CC2).
Botnet name Popular ports (descending order) Total ports
Dridex 443, 7443,4664, 10172,6225 45
QakBot 443,995,2222,993, 1194 26
TrickBot 443,447,449 3
Emotet 8080,443,80, 7080,4001 10
Downloader 6602, 1973, 13786,29795,46187 11

3.3.2 TLS Server Configurations

Each fingerprint that is calculated by the JARM tool for a single server is comprised of 62

Bytes in total. The first 30 Bytes present information about the configurations (i.e., TLS

version and ciphers) of the server contacted and the remaining 32 Bytes contain informa-

tion about the extensions. This means that for two different fingerprints that share the

same first 30 Bytes, they also share the same configuration of TLS versions and supported

ciphers. We believe that it would be very interesting and insightful to examine if there

are trends between the servers that participate in the same botnet activity. Then, study-

ing if these trends are distinct between different botnets, we might be able not only to

tell if a server looks malicious, but to also indicate the botnet that the server is part of.

Figure 3.6(a) shows that concerning the different botnets that we study, the TLS configu-

rations of the servers are always less than the actual server fingerprints. This means that

the servers that we probed in order to calculate their fingerprints based on the TLS Server

Hello packets sent, share very similar TLS configurations. Examining the fingerprints pro-

duced by the IP addresses contained in the two blocklists, we see that the number of

servers that share the same TLS configuration is significant. For instance on 23/11/2021,

the servers with IP addresses contained in Blocklist.de produced 419 unique fingerprints

of 62Bytes, with 206 unique fingerprints of 30Bytes. Similarly, the servers with IP addresses

contained in the CI-Badguys blocklist produced 333 unique fingerprints of 62Bytes, with

165 unique fingerprints of 30Bytes. Figure 3.6(b) illustrates these variations.

Aiming to explore the uniqueness of the fingerprints produced, we check for overlap-

ping fingerprints (length of 30Bytes) between the different servers that act as part of a

certain botnet family. Table 3.2 shows the fingerprints that are common among the differ-

3.3. Analysis 53

30
/10

/20
21

03
/12

/20
21

14
/01

/20
22

13
/02

/20
22

10
/03

/20
22

04
/04

/20
22

29
/04

/20
22

24
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0
TL

S
se

rv
er

 c
on

fig
ur

at
io

ns
 p

er
 b

ot
ne

t
Dridex
Qakbot
Trickbot
Emotet
Downloader

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

13
/03

/20
22

07
/04

/20
22

02
/05

/20
22

27
/05

/20
22

Dates

0.0

0.2

0.4

0.6

0.8

1.0

TL
S

se
rv

er
 c

on
fig

ur
at

io
ns

 p
er

 b
lo

ck
lis

t

BlocklistDe
CiBadguys

Figure 3.6: The number of unique TLS server configurations from IP addresses con-
tained in the (a) botnet command and control server lists (i.e., CC1, CC2)
and (b) blocklists (i.e., BL1, BL2).

ent botnets. Fingerprint 2ad2ad0002ad2ad0002ad2ad2ad2ad is the most common and is

produced by servers that are known to participate in Dridex, TrickBot and Emotet botnets.

This fingerprint is also found in both blocklists that we parse, i.e. BL1, BL2. QakBot, Trick-

Bot and Downloader share fingerprint 20d08b20d21d20d20c42d08b20b41d, while it also ap-

pears in the two bloclists. The total number of unique fingerprints that overlap between

different botnets are only 4. Removing the 4 most common fingerprints that represent the

most common TLS configurations among servers, significantly decreases the number of

fingerprint overlaps with benign servers that are included in the Majestic Million domains

(causing a 20% decrease in numbers of overlaps shown in Fig. 3.5). This could mean that

the malicious servers with the specific fingerprint imitate a popular TLS configuration pro-

file used by normal and benign TLS servers (a technique that censorship circumvention

tools also follow [43]).

Altogether, we can find many fingerprints that are calculated from the IP addresses

that exist in the botnets’ lists into the lists of fingerprints from IP addresses found in the

two blocklists (i.e., BL1, BL2). The aggregated numbers of those fingerprints are shown

54 Chapter 3. Characterization of Malicious Servers on the Internet

Table 3.2: Overlapping fingerprints (length of 30Bytes) between different botnets.
Botnet name Botnet name Fingerprint
Dridex TrickBot 2ad2ad0002ad2ad0002ad2ad2ad2ad

Dridex Emotet 2ad2ad0002ad2ad0002ad2ad2ad2ad

QakBot TrickBot 20d08b20d21d20d20c42d08b20b41d

QakBot TrickBot 2ad2ad16d2ad2ad22c2ad2ad2ad2ad

QakBot Downloader 04d02d00004d04d04c04d02d04d04d

QakBot Downloader 20d08b20d21d20d20c42d08b20b41d

TrickBot Emotet 2ad2ad0002ad2ad0002ad2ad2ad2ad

Table 3.3: Botnet fingerprints found in blocklists CI-Badguys (BL1) and Blocklist.de
(BL2).

Botnet Fingerprints In CI-Badguys In Blocklist.de
Dridex 9 9 8
QakBot 36 22 25
TrickBot 47 14 14
Emotet 7 7 7
Downloader 7 6 7

in Table 3.3. This makes us confident that it is possible to distinguish servers of differ-

ent botnets in a vast list of IP addresses without any prior knowledge, based only on the

fingerprints calculated by JARM.

Indeed, the presence of the fingerprints that are calculated by the servers that partic-

ipate in each botnet exists in the list of fingerprints that are produced by servers in the

two blocklists. Figure 3.7 illustrates the ratio (values: 0 – 1) of fingerprints extracted from

IP addresses that are contained in the botnet command and control server lists that were

found between the fingerprints extracted from IP addresses contained in the blocklists. In

Figure 3.7, we search the botnet fingerprints of full length against the fingerprints of the

blocklists. For instance, on the 11th of November 2021 we extracted 372 fingerprints from

servers found in Blocklist.de and 348 fingerprints from servers found in CI-Badguys list.

Out of the total Blocklist.de fingerprints, 3 of them matched those of Dridex, 2 of them

matched those of QakBot, 7 of them matched those of TrickBot, 1 of them matched those

of Emotet and 3 of them matched those of Downloader. Out of the total CI-Badguys finger-

prints, 4 of them matched those of Dridex, 2 of them matched those of QakBot, 5 of them

matched those of TrickBot, 1 of them matched those of Emotet and 4 of them matched

those of Downloader. The peaks observed in Fig. 3.7 (BL2) on the 9th, 14th and 27th of

3.3. Analysis 55

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.00

0.05

0.10

0.15

0.20

0.25

Bo
tn

et
 fi

ng
er

pr
in

ts
 fo

un
d

Dridex
QakBot
TrickBot
Emotet
Downloader
Total

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.00

0.05

0.10

0.15

0.20

0.25

Bo
tn

et
 fi

ng
er

pr
in

ts
 fo

un
d

Dridex
QakBot
TrickBot
Emotet
Downloader
Total

Figure 3.7: The ratio of botnet fingerprints found into the list of fingerprints calcu-
lated from IP addresses contained in the two blocklists (i.e., BL1, BL2).

March 2022, derive from a drop of the IP addresses contained in BL2. On those days, the

unique IP addresses are almost 8K, while usually they are more than 23K.

In Figure 3.8, we search only the first 30 bytes of each fingerprint. As already men-

tioned, the first 30 bytes of each fingerprint calculated by JARM provides information

about the TLS versions and ciphers that a server supports. Servers that share the same

30 first bytes in their fingerprints, also share the same TLS configuration (i.e., TLS ver-

sions and ciphers). As expected, searching for the 30 first bytes of the initial fingerprints

results to higher number of botnet occurrences into the blocklists. Furthermore, exten-

sions shared via the TLS Server Hello packet could add turbulence in fingerprints, since

the application of popular fingerprinting circumvention techniques, like extension ran-

domization, are common from servers with malicious activities (or censorship circumven-

tion tools [43]). The existence of malicious servers that are similarly configured is highly

expected. Thus, searching for these configurations could assist in their identification in

encrypted communications. As shown in Figure 3.8, on the 11th of November 2021 we

extracted 372 fingerprints from servers found in Blocklist.de and 348 fingerprints from

56 Chapter 3. Characterization of Malicious Servers on the Internet

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Bo
tn

et
 fi

ng
er

pr
in

ts
 fo

un
d

Dridex
QakBot
TrickBot
Emotet
Downloader
Total

30
/10

/20
21

03
/12

/20
21

16
/01

/20
22

14
/02

/20
22

11
/03

/20
22

05
/04

/20
22

30
/04

/20
22

25
/05

/20
22

Dates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Bo
tn

et
 fi

ng
er

pr
in

ts
 fo

un
d

Dridex
QakBot
TrickBot
Emotet
Downloader
Total

Figure 3.8: The ratio of short botnet fingerprints (30 first bytes representing the TLS
version and cipher suites) found into the list of fingerprints calculated
from IP addresses contained in the two blocklists (i.e., BL1, BL2).

servers found in CI-Badguys list. Out of the total Blocklist.de fingerprints, 14 of them

matched those of Dridex, 3 of them matched those of QakBot, 45 of them matched those of

TrickBot, 1 of them matched those of Emotet and 4 of them matched those of Downloader.

Out of the total CI-Badguys fingerprints, 17 of them matched those of Dridex, 6 of them

matched those of QakBot, 32 of them matched those of TrickBot, 1 of them matched those

of Emotet and 9 of them matched those of Downloader. These numbers show a significant

rise when we study the coverage of the examined botnets into the two blocklists, a trend

that remains during the whole period of our analysis, with a peak of 30% total coverage on

the 13th of December 2021 in both blocklists.

3.3.3 Randomization of Cipher Suite Vectors

As expected, malicious servers can take advantage of known TLS fingerprinting circum-

vention techniques like randomization of offered TLS cipher suites and extensions. Pre-

vious work though, has shown that this could be difficult in practice [54], while authors

3.3. Analysis 57

in [8] show that it is possible to identify parts of those fingerprints. Another technique is

to mimic popular TLS profiles – something that as we speculate, could explain the finger-

print overlapping that cause the false positives (as shown in Figure 3.5).

3.3.4 Configurations of Cipher Suites per Botnet

Diving into more depth, we further analyzed the data collected during the 7-month period.

More specifically, for each IP address that we contact, we process the server responses to

each TLS Client Hello that is sent. Table 3.4 presents the TLS versions that were selected

by the botnet C&C servers across the 10 consequent TLS handshakes. While the majority

of botnet families selected TLS 1.2 and 1.3, we see that Downloader also accepts commu-

nication using TLS 1.1.

Table 3.4: TLS versions used per botnet (CC1, CC2).
Botnet name Selected TLS versions
Dridex TLS 1.2, TLS 1.3
QakBot TLS 1.2, TLS 1.3
TrickBot TLS 1.2, TLS 1.3
Emotet TLS 1.2, TLS 1.3
Downloader TLS 1.1, TLS 1.2, TLS 1.3

Besides the TLS version chosen by the botnet servers, we also analyzed their preferred

cipher suite. Table 3.5 presents the codes of the cipher suites that each botnet selects in

most cases. In Table 3.6 we present a dictionary for these codes, along with their ranking

by ciphersuite.info [218]. Weak ciphers are considered old and they should be avoided,

while insecure ciphers can be broken with minimum effort. Dridex and QakBot select ci-

pher suites marked as weak. In some cases, QakBot selects also an insecure cipher suite.

TrickBot, Emotet and Downloader select a combination of weak and secure ciphers.

Table 3.5: Most selected cipher suites per botnet (CC1, CC2).
Botnet name Cipher suites (codes)
Dridex c013, 00c0, 0016, 0084, c012
QakBot 000a, 0005, c012, 006b
TrickBot c030, c014
Emotet c030, c012, cca8, 009e, 0016, 1302, c02f
Downloader c012, c013, 0035, 1302

58 Chapter 3. Characterization of Malicious Servers on the Internet

Table 3.6: Cipher suites dictionary and characterization by ciphersuite.info [218].
Code Cipher suite name Marked as
c013 TLS ECDHE RSA WITH AES 128 CBC SHA Weak
00c0 TLS RSA WITH CAMELLIA 256 CBC SHA256 Weak
0016 TLS DHE RSA WITH 3DES EDE CBC SHA Weak
0084 TLS RSA WITH CAMELLIA 256 CBC SHA Weak
c012 TLS ECDHE RSA WITH 3DES EDE CBC SHA Weak
000a TLS RSA WITH 3DES EDE CBC SHA Weak
0005 TLS RSA WITH RC4 128 MD5 Insecure
006b TLS DHE RSA WITH AES 256 CBC SHA256 Weak
c030 TLS ECDHE RSA WITH AES 256 GCM SHA384 Secure
c014 TLS ECDHE RSA WITH AES 256 CBC SHA Weak
cca8 ECDHE RSA WITH CHACHA20 POLY1305 SHA256 Secure
009e TLS DHE RSA WITH AES 128 GCM SHA256 Secure
1302 TLS AES 256 GCM SHA384 Secure
c02f TLS ECDHE RSA WITH AES 128 GCM SHA256 Secure
0035 TLS RSA WITH AES 256 CBC SHA Weak

3.3.5 Advantages of Active versus Passive TLS Fingerprinting

Working with TLS fingerprints that are collected actively on a daily basis, offers the con-

fidence of fingerprint persistence. Indeed, if we limit the fingerprint length down to 30

bytes, which shows the server’s preferred configurations of TLS version and cipher suites

(leaving the offered extensions out), we see that we are able to re-identify many servers

operating at the same botnet in different blocklists (BL1, BL2).

In addition, since each fingerprint produced by JARM occurs after 10 consequent TLS

handshakes with a single server, the resulted fingerprint is more rich in information when

compared to simpler fingerprints (e.g., JA3) that are calculated by a single TLS handshake

processed passively via sniffing a packet capture file. Also, since each fingerprint produced

by JARM represents a server’s response to a series of 10 different ‘‘TLS Client Hello’’

packets with diverse configurations of TLS versions and ciphers, each fingerprint is unique

and difficult to replicate (even after the application of randomization techniques).

Chapter 4

State-of-the-Art

In this chapter, we present the works that we find in the literature that are able to perform

traffic processing and inspection even when the network is encrypted. We examine the

use cases of these works (e.g., network analytics) and how authors achieve to implement

such systems. Having no visibility over the packet payload contents introduces major chal-

lenges. Thus, goal of this literature examination is to identify the means to achieve en-

crypted network traffic analysis and inspection effectively. This study will help the reader

of this dissertation to (i) understand the challenges of traffic inspection when the network

traffic is encrypted or tunnelled, (ii) discover the uses cases and applications of encrypted

traffic analysis, (iii) acquire knowledge on the methods that are used to achieve encrypted

traffic analysis, (iv) deduce which techniques are appropriate respecting the objectives of

a system, (v) recognize the constraints each method presents, and finally, (vi) come across

with the publicly available datasets that are appropriate for use.

Figure 4.1 displays the taxonomy that we propose for the related works of this disser-

tation. First, works are divided based on their use case and application goal. More specif-

ically, we divide the works into four application domains: (i) the network analytics do-

main, (ii) the network security domain, (iii) the user privacy domain and (iv) the domain

of network functions in middleboxes. Each work can be then characterized by the tech-

nique that is used (i.e., manipulation of traffic metadata & characteristics, interception of

encrypted traffic, and utilization of cryptographic functions) and its main objectives (i.e.,

functionality, programmability and deployment).

In Section 4.1 we discuss about the works that target the network analytics domain.

We divide the works into more detailed categories and we dedicate one subsection to one

59

60 Chapter 4. State-of-the-Art

sub-category (e.g., in § 4.1 we present works that focus on application and protocol clas-

sification, in § 4.1 we discuss works that identify application usage actions, etc.). Then,

in § 4.1.1 we discuss about the algorithms and techniques used, in § 4.1.1 we present the

publicly available datasets used and in § 4.1.2 we examine the objectives and limitations

of the works reviewed in the section. We follow the same paragraph organization format

for each one of the Sections 4.2–4.4.

!"#$%&'()*+$,--.#*/",0%1.1*,")*2"1&(#'.3"

!"#$%&"#"

!""#$%&'$()*

+,-)'$.$%&'$()

!""#$%&'$()*

/0&1-*

+,-)'$.$%&'$()

2(342(5*

+)6-0'$1&'$()

7-'8(9:*

+)'9;0$()*

<-'-%'$()

=&9-*

<-'-%'$()*$)*

=(>$#-0

?++*@-&:&1-*

<-'-%'$()

A->"&1-*

B$)1-9"9$)'$)1*

C&)()D*'((#0E

<-6$%-4F3*

+,-)'$.$%&'$()

@(%&'$()*

50'$G&'$()

7-'8(9:*

B;)%'$()

=&)$";#&'$()*(.*H9&..$%*

=-'&,&'&*I*

JK&9&%'-9$0'$%0

+)'-9%-"'$()*(.*

5)%9L"'-,*H9&..$%

/'$#$M&'$()*(.*

J9L"'(19&"K$%*B;)%'$()0

'#%()*+!#"

B;)%'$()&#$'L ?9(19&GG&>$#$'L <-"#(LG-)'

,-.#%'*/#"

!"#$%&'() *+(,-'&% .)+-/0-'1#(% 2'33$+456+)

Figure 4.1: A taxonomy for encrypted network traffic inspection works categorized by
use case, technique and objective.

4.1 Analytics after Network Encryption

In this section, we discuss the literature for network analytics in encrypted communica-

tions. More specifically, we present works that focus on protocol and application classifi-

cation, application usage identification, as well as the investigation of quality and experi-

ence in encrypted networks. The works that are presented in this section are summarized

in Table 4.1.

4.1. Analytics after Network Encryption 61

Table 4.1: Works in the analytics domain, sorted by category and publication year.
Traffic Analysis Domain Work Category Goal Year of Publication

Network Analytics

Karagiannis et al. [58]

Protocol/Application
Identification

Network traffic classification us-
ing traffic behavioral patterns

2005

Bernaille et al. [11] Application detection in SSL en-
crypted network connections

2007

Schatzmann et al. [109] Webmail traffic classification 2010
Wang et al. [134] iOS application classification 2015
Alan et al. [5] Android application classifica-

tion
2016

Taylor et al. [126] Android application classifica-
tion

2016

Lopez et al. [73] IoT traffic classification 2017
Taylor et al. [127] Android application classifica-

tion
2018

Aceto et al. [1] Mobile application classifica-
tion

2018

Aceto et al. [2] Mobile application classifica-
tion

2019

Aiolli et al. [4] Identification of user activities
on smartphone-based Bitcoin
wallet apps

2019

Yao et al. [146] IoT traffic classification 2019
Ede et al. [130] Mobile application classifica-

tion
2020

Xu et al. [143] Mobile application classifica-
tion

2022

Coull et al. [27]

Application Usage
Identification

Identification of user actions in
iMessage

2014

Conti et al. [22, 23] Identification of user actions on
Android devices

2016

Saltaformaggio et al. [108] Identification of user actions on
mobile devices

2016

Fu et al. [45] Identification of user actions on
mobile messaging applications

2016

Liu et al. [72] Identification of user actions on
mobile messaging applications

2017

Papadogiannaki et al. [90] Identification of user actions on
mobile Over-The-Top applica-
tions

2018

Wang et al. [137] Identification of user actions on
mobile payment applications

2019

Jiang et al. [55] Identification of user actions in
remote desktop traffic

2019

Feng et al. [40] Identification of user actions in
online social networks

2022

Wright et al. [140]
Stream Decoding

VoIP conversation decoding 2008
Schuster et al. [110] Video stream decoding 2017
Björklund et al. [13] Video stream decoding 2023
Dimopoulos et al. [31]

QoS/QoE
Investigation

Detection of QoE degradation 2016
Orsolic et al. [86] Estimation of QoE in YouTube 2016
Mazhar et al. [77] Investigation of video QoS in

HTTPS and QUIC protocols
2018

Khokhar et al. [59] Estimation of QoE in YouTube 2019
Xu et al. [144] Investigation of mobile ABR

video adaptation behavior un-
der HTTPS and QUIC

2020

Wu et al. [142] Resolution identification of en-
crypted video streaming under
HTTP/2

2023

Protocol/Application Identification There is a large number of works that examine the

feasibility of traffic classification even when the communications are encrypted. The ma-

jority of such works focus on classifying the traffic’s nature (e.g. video streaming, p2p traf-

fic) and automating the classification procedure.

BLINC [58] was one of the pioneer papers that aimed to classify the network traffic

62 Chapter 4. State-of-the-Art

in the dark, having no access to packet payloads, no knowledge of port numbers; only

information that flow collectors provide, solely based on the host behavioural patterns.

Bernaille et al. [11] propose a method to detect different applications even in encrypted

communication channels, by observing the first packets of an SSL connection and their

sizes. This enables them to recognise the application soon enough, achieving an 85%

accuracy and early classification. Schatzmann et al. [109] perform flow-based classifica-

tion in order to identify webmail traffic. Authors focus on the inspection of network-level

data and leverage correlations across protocols and time for HTTPS webmail classification.

Wang et al. [134], taking advantage of the fact that mobile applications produce more iden-

tifiable traffic patterns, perform a packet-level analysis to determine what applications a

single individual is using, exploiting side-channel information (e.g. traffic bursts) that is

exposed inside the network traffic that is generated by mobile devices. To perform mo-

bile app classification, the authors use random forests for 13 selected iOS applications

achieving a classification accuracy of more than 68.59% with selected features and more

than 87.23% with complete features. Alan et al. [5] investigate whether Android applica-

tions can be identified through their network traffic launch-time using only the contents

of TCP/IP headers. The experiments were conducted using 1595 applications on 4 dis-

tinct Android devices. The authors made use of supervised learning methods to identify

the apps that generated the traffic. Their approach is based on packet sizes, observed

within the launch time traffic, since they are expected to yield good feature sets for appli-

cation identification. AppScanner [126] automatically fingerprints Android applications

even in encrypted traffic. For the generation of the fingerprints, authors collect network

traffic traces on the mobile device while running the corresponding applications. The

application classification is conducted using a supervised learning algorithm that is fed

with features that are exported through the collection of network traces. This scalable

framework implementation is able to identify the profiled applications (110 most popu-

lar applications in Google Play Store) with more than 99% accuracy. Stringoid [100] is a

static analysis tool that estimates constructed URL strings using string concatenations in

Android applications. The purpose of this work is to analyse web requests that originate

from Android mobile applications. The authors use a dataset of 20 randomly selected An-

droid applications, and with the Stringoid tool, they extract URLs from 30,000 Android

applications. Lopez-Martin et al. [73] propose using a recurrent neural network (RNN)

4.1. Analytics after Network Encryption 63

combined with a convolutional neural network (CNN) for IoT traffic classification. The

advantage of this work is that it outperforms alternative algorithms for traffic classifica-

tion, while it does not require any feature engineering when applying new models. In a

succeeding work, Taylor et al. [127] show that a passive eavesdropper is able to identify mo-

bile applications by fingerprinting the network traffic that they send, despite encryption.

Again, using AppScanner and machine learning techniques they exploit the information

that lays in network traffic, such as packet size and direction. In addition they investi-

gate how application fingerprints change over parameters like time, diversity of devices

and versions. Aceto et al. [1] aim to improve the classification performance of mobile ap-

plications by proposing a Multi-Classification system, which combines specific decisions

from base classifiers explicitly devised for mobile and encrypted traffic classification. The

dataset that the authors used for testing, was collected by a mobile solutions provider. In a

succeeding work, Aceto et al. [2] perform mobile traffic classification in encrypted network

flow using deep learning techniques. Shen et al. [114] perform encrypted traffic classifica-

tion of decentralized applications on Ethereum using a feature selection of packet lengths,

bursts and time series. Aiolli et al. [4] identify user activities on Bitcoin wallet applications

in mobile devices and are commonly used for sending, receiving, and trading Bitcoin. Yao

et al. [146] perform IoT traffic classification for smart cities using a method that relies on

a deep learning aided capsule network for efficient classification. Their proposed work

eliminates the process of manually selecting traffic features. FLOWPRINT [130] offers mo-

bile application identification by analysing the network traffic. It introduces an approach

for application fingerprinting by combining destination-based clustering, browser isola-

tion and pattern recognition (in a semi-supervised manner). It is able to construct mobile

application fingerprints for not known applications. Authors evaluate FLOWPRINT and

they find that it is able to perform an accuracy of 89.2%. Even after application updates or

newly encountered applications, FLOWPRINT has a precision of 93.5%. As ground-truth,

authors use publicly available datasets. As features, authors extract all header values con-

trolled by the communicating app as well as the sizes and inter-arrival times of packets.

In addition, for the size and time related features authors compute statistical properties,

such as the maximum, standard deviation, mean absolute deviation values.

64 Chapter 4. State-of-the-Art

Application Usage Identification The works presented in this section offer fine-grained

application event identification over encrypted traffic, often with the use of machine learn-

ing techniques.

Coull et al. [27] propose a method for traffic analysis of encrypted messaging services.

More specifically, authors aim to show that an eavesdropper would be able to retrieve fine-

grained information by the communication channel, such as specific user actions, the size

of messages that are exchanged, or even the language that is being used for the commu-

nication. Their results demonstrate the feasibility of gaining information by observing

packet lengths, but their analysis is limited to Apple’s iMessage application and is an of-

fline study. Conti et al. [22, 23] propose a system to analyse encrypted network traffic to

identify user actions on Android devices, such as email exchange, interactions over so-

cial network, etc. Their framework uses TCP/IP packet fields, like IP addresses and ports,

among with other features, like packet size, direction and timing. They analyse numerous

Android applications with diverse functionalities, such as Gmail, Facebook, Twitter, Tum-

blr and Dropbox. Using machine learning, they achieve high accuracy and precision for

the identification of different user actions in each tested Android application (e.g., mail

exchange, posting a photo online or publishing a tweet). NetScope [108] is a work that

performs robust inference of users’ activities, for both Android and iOS devices, based on

inspecting IP headers. This work demonstrates how a passive eavesdropper is capable

of identifying fine-grained user activities within a network (even over encrypted commu-

nication channels) generated by the applications used. Based on the intuition that the

implementation of each individual mobile application leaves a fingerprint on its traffic

behaviour, such as transfer rates and packet exchanges, NetScope learns the subtle traf-

fic behavioural differences between user activities becoming able to distinguish them. Fu

et al. [45] propose an approach to classify usage in mobile messaging applications. Their

system, namely CUMMA, classifies the usage in mobile messaging applications by taking

into account user behavioural patterns, network traffic characteristics and temporal de-

pendencies. More specifically, they show that the observation of packet lengths and time

delays, can allow the classification of WhatsApp and WeChat traffic and identify the cor-

responding usage types (e.g. photo sharing). With this framework, the authors achieve

96% and 97% accuracy in WeChat and WhatsApp, respectively. Liu et al. [72] develop an

analyser to classify encrypted mobile traffic to application usage activity. Using similarity

4.1. Analytics after Network Encryption 65

measurements, authors select discriminative features from traffic packet sequences. For

their online analyzer, authors represent a traffic flow with a series of time windows. For

their experiments, they analyse WeChat, WhatsApp and Facebook applications. Wang et

al. [137] identify financial transactions at the trading stage via analyzing the encrypted net-

work traffic, by identifying the mobile payment app from traffic data, classifying specific

actions on the mobile payment app, and finally, detecting the detailed steps within the

action. Jiang et al. [55] investigate if remote desktop traffic, even if encrypted, can reveal

usage information. Indeed, their results show the feasibility of this, taking advantage of

side-channel information leakage.

VoIP Conversation and Video Stream Decoding There are also works that use traffic

analysis to extract voice information from encrypted VoIP conversations or identify en-

crypted video streams.

For example, Wright et al. [140] show that when the transmitted audio is encoded us-

ing variable bit rate codecs, the length of VoIP packets can be used to recognize words or

phrases within a standard speech corpus. This means that a passive observer can identify

phrases even in encrypted calls with an average accuracy of 50%. Schuster et al. [110]

explain the root causes of burst patterns in encrypted video streams, show how to ex-

ploit these patterns for video identification, develop and evaluate a noise-tolerant iden-

tification methodology based on deep learning and, finally, they demonstrate how an

attacker without direct observations of the network can identify videos being streamed.

The features that authors use are flow attributes, such as down/up/all bytes per second,

down/up/all packet per second, and down/up/all average packet length. The applications

that authors examine are Netflix, Youtube, Amazon and Vimeo. Björklund et al. [13] iden-

tify SVT Play streams against HTTPS traffic. Authors build a k-d tree over sliding windows

of packet statistics, while they use nearest-neighbour (NN) searches combined with Pear-

son’s correlation coefficient to identify the videos.

Quality of Service/Experience investigation Streaming video content on mobile devices

is a trend that is continually growing among users. This causes a tremendous demand for

higher bandwidth and better provisioning throughout the network infrastructure. End-

to-end encryption, though, leaves providers with limited indicators for identifying QoE

66 Chapter 4. State-of-the-Art

issues. Thus, the works presented in this section aim to measure QoS and QoE from the

perspective of a telecommunication service provider that has only visibility on the network

traffic that is often encrypted.

Dimopoulos et al. [31] propose models able to detect different levels of QoE degrada-

tion that is caused by stalling, average video quality and quality variations. The predictive

models that authors develop are evaluated on the production network of a large scale mo-

bile operator, where authors show that their system is able to accurately detect QoE prob-

lems with up to 92% accuracy. The significant features that authors extract are RTT-related,

bytes transmitted, packet loss percentage and other network-related features. Orsolic et

al. [86] use machine learning for the estimation of YouTube Quality of Experience. To test

their approach, authors collect more than 1k different YouTube video traces under differ-

ent bandwidth scenarios. Mazhar et al. [77] investigate the Quality of Service of video in

HTTPS and QUIC protocols. The set of features that expose usable information is based

on (i) network and transport layer header information for TCP flows, and (ii) network layer

features (based on inter-arrival time, packet sizes, packet/byte counts, throughput) for

QUIC flows. Khokhar et al. [59] put YouTube under experimentation and perform network

traffic measurements for QoE estimation using network related features, as well. CSI [144]

infers mobile ABR video adaptation behavior under HTTPS and QUIC using packet size

and timing information. H2CI [142] monitors the resolution of encrypted video traffic un-

der HTTP/2, based on fingerprints constructed by the sizes of mixed audio-video chunks.

4.1.1 Techniques

The majority of the works discussed in this section, employ machine learning techniques

to investigate the feasibility of traffic analysis and usage classification even when the com-

munications are encrypted. In this section, we present the techniques and algorithms

that are more popular among the works of this category. A detailed overview of the tech-

niques used for classification can be found in Table 4.2. As illustrated in Table 4.2, ma-

chine and deep learning techniques are very popular in the domain of network analyt-

ics. More specifically, it seems that supervised or semi-supervised algorithms are mostly

used for traffic classification and network analytics. These algorithms perform well with

labelled and big datasets, while they require training. For instance, for mobile application

4.1. Analytics after Network Encryption 67

Table 4.2: Techniques, algorithms and evaluation metrics used in the analytics domain.
Work Category Algorithm/Technique Performance Evaluation Metrics
Karagiannis et al. [58]

Protocol and
Application
Identification

Graphs, Statistics Completeness, Accuracy
Bernaille et al. [11] Clustering with Gaussian Mixture Model True/False Positive Rates
Schatzmann et al. [109] Classification with Support Vector Machine

(SVM)
Accuracy

Wang et al. [134] Classification with Random Forests (RF) Estimated accuracy, Overall accuracy,
True Positive Rate

Alan et al. [5] Classification with Jaccard’s coefficient,
Gaussian Naive Bayes and Multinomial
Naive Bayes

Accuracy

Taylor et al. [126] Classification with Multi-class Support Vec-
tor Machine (SVM), Multi-class RF, Binary
SVM and Binary RF

Speed of training, Size of classifier, Con-
fidence per classification, True Negatives,
Robustness

Lopez et al. [73] Classification with Recurrent Neural Net-
work combined with a Convolutional Neural
Network (CNN)

Accuracy, F1-score, Precision, Recall

Taylor et al. [127] Classification with Multi-class Support Vec-
tor Machine (SVM), Multi-class RF, Binary
SVM and Binary RF

Precision, Recall, F1-score, Accuracy

Aceto et al. [1] Classification with Naive Bayes, Multinomial
Naive Bayes, Random Forests, Support Vec-
tor, Decision Trees

Accuracy, Precision, Recall, F-measure

Aceto et al. [2] Classification with Convolutional Neural
Network

Accuracy, F-measure, Run Time Per-
Epoch (RTPE)

Aiolli et al. [4] Classification with Random Forests and Sup-
port Vector Machine

Precision, Recall, F1-score

Yao et al. [146] CNN, Convolutional Capsule Network, Fully-
connected Capsule Network, Long Short-
Term Memory (LSTM)

Accuracy, F1-score, precision, recall

Ede et al. [130] Semi-supervised fingerprinting with Cluster-
ing and cluster correlation

F1-score, Precision, Recall, Accuracy, Ro-
bustness

Xu et al. [143] Classification using Graph Convolutional
Neural network (GCN)

Accuracy, precision, recall, F1-score

Coull et al. [27]

Application
Usage
Identification

Classification with Binomial Naive Bayes Accuracy
Conti et al. [22, 23] Classification with Random Forests (RF) F-measure, Accuracy, Precission, Recall
Saltaformaggio et al. [108] Classification with SVM and Clustering with

K-means
Detection time and True Positives, Mis-
classifications, False Negatives, False Pos-
itives, Precision, Recall

Fu et al. [45] Classification with Gradient Boosted Trees,
Support Vector Machine, Naive Bayes,
KNeighbors

Accuracy, Precision, Recall, F-measure

Liu et al. [72] Classification with Random Forests and
Clustering with recursive Constrained
KMeans

Accuracy, Precision, Recall, F-measure,
Processing Throughput (pps)

Papadogiannaki et al. [90] Frequent Pattern Mining for Signature Gen-
eration

True Positives, False Positives and Perfor-
mance Throughput

Wang et al. [137] Classification with Random Forests, Ada
Boost and Gradient Boosting Decision Tree
(GBDT)

Accuracy, Recall, Precision, F1-score

Jiang et al. [55] Classification with Logistic Regression (LR),
SVM, GBDT and RF

TPR, FPR and F1-score

Feng et al. [40] Classification of traffic bursts using a LSTM
model

FPR, recall, precision, processing delay

Wright et al. [140]
Stream Decoding

Hidden Markov Models (HMM) Recall, Precision
Schuster et al. [110] Gaussian distribution for Maximum Likeli-

hood Estimator and Convolutional Neural
Network (CNN)

Precision, Recall, Delay

Björklund et al. [13] Classification with k-d tree over statistics
and NN with Pearson’s correlation

Accuracy, Tree building time, Training
time, Identification time

Dimopoulos et al. [31]

QoS/QoE
Investigation

Classification with Random Forests True Positives, False Positives, Precision,
Recall

Orsolic et al. [86] Classification with Random Forest, Naive
Bayes, SVM, Decision Trees

Accuracy

Mazhar et al. [77] Classification with Decision Trees Precision, Recall
Khokhar et al. [59] Classification with RF, Linear Regression and

RF Regression
Precision, Recall, F1-score, Accuracy,
Root Mean Square Error (RMSE)

Xu et al. [144] Fingerprint construction from chunk sizes Accuracy
Wu et al. [142] Fingerprint construction from sizes of mixed

audio/video chunks
Accuracy, Processing time

classification, authors choose Multinomial Naive Bayes (e.g., [1]), Support Vector Machine

(e.g., [126]) and Hidden Markov Models (e.g., [140]) algorithms as well as other classifiers,

such as Random Forest, Decision Trees, Gaussian Naive Bayes [5] and the k-Nearest Neigh-

68 Chapter 4. State-of-the-Art

bors algorithm for pattern recognition [33]. For a more detailed classification (i.e, the iden-

tification of user actions and events inside mobile applications), authors choose hierarchi-

cal clustering techniques [23, 45].

Besides machine learning, it seems that recently, researchers have turned to neural

networks since they perform better than single machine learning algorithms. A neural

network combines different machine learning algorithms for modelling data using graphs

of neurons, while it is able to make accurate decisions and learn from it own errors. This

makes a neural network work independently without requiring any human intervention.

Being encrypted, network packet payloads do not offer significant information. Thus,

most techniques discussed in this section take advantage of data that are available in

packet headers. The majority of these techniques use information like network packet

sizes, directions and time-related data, which are treated as features to train the corre-

sponding machine learning models. More specifically, many works use as features the

packet size and the packet direction [5,16,23,27,51]. Herrman et al. also use the IP packet

length distribution [51]. Selecting a subset of packets in a single network flow is also com-

mon. For instance, Lu et al. do not consider incoming MTU packets [75], while Bernaille

et al. keep only the first packets [12].

In Table 4.2, we also display the metrics used for the evaluation of each technique.

Since the majority of these works are based on machine learning, they mostly measure

their technique’s (i) accuracy, (ii) precision, (iii) recall, (iv) true and (v) false positive rates.

However, even though the majority of the works discussed in this section use similar eval-

uation metrics, we would not be able to properly compare their effectiveness since they

use different datasets to train their systems. Finally, we notice that only few works present

processing evaluation metrics, such as memory consumption, training time or through-

put. In the next section (§ 4.1.1), we discuss about the datasets used for the works of traffic

classification for network analytics.

Datasets Table 4.3 presents the public datasets that were used in the domain of network

analytics. In the category of application identification and classification, Yao et al. [146]

used the USTC-TFC2016 dataset [161] that among others contains network traffic from Bit-

Torrent, Facetime, Gmail and Skype. Ede et al. [130] used the Recon dataset [164], which

consists of labeled network traces of 512 Android apps from the Google Play Store, includ-

4.1. Analytics after Network Encryption 69

ing multiple versions for over a period of eight years.

We notice that the vast majority of the works in this section do not use public datasets

to train their models. The proprietary datasets used come either by real or emulated us-

age representing network usage with applications of interest, either in mobile of fixed net-

works. The absence of public datasets that contain network traffic that is both encrypted

and labeled is apparent. Thus, authors are producing their own datasets.

Table 4.3: Datasets used in the network analytics domain.
Work Category Dataset Availability Dataset details
Yao et al. [146] Protocol/Application

Identification
Public USTC-TFC2016 Dataset [161]

Ede et al. [130] Public Recon Dataset [164]
Xu et al. [143] Available upon request MAppGraph [166]

Feng et al. [40]
Application
Usage Identification Public USTC-TFC2016 Dataset [161]

4.1.2 Objectives and Limitations

The majority of the works in the category of network analytics focus on the functionality

of their approaches. More specifically, authors focus on the thorough examination of the

traffic analysis feasibility when the network traffic is encrypted. Indeed, they show that it is

possible to detect the nature of the traffic in a fine-grained manner. For instance, Conti et

al. [22] are able to identify different actions (e.g., post a tweet or send a message) in mobile

applications (such as Twitter and Facebook) accurately even when the network traffic is

encrypted. Yet, there are works that except for functionality, they aim for programmability

and deployment as well [72, 90]. OTTer achieves a detailed characterization of usage (i.e.,

video call, voice call, chat) in different Over-The-Top applications like Skype and What-

sApp [90]. It is also integrated into a DPI engine that is deployed in a live traffic test-bed

with an average of 109 Gbps.

All the works that use machine learning algorithms for the classification of network

traffic need to be retrained in order to remain robust across new and diverse data. In ad-

dition, the majority of such works choose a subset of applications or protocols in order to

examine the feasibility of classification. This makes such solutions mostly effective only

for applications and protocols used for training, something that introduces potential scal-

ability and adaptability issues. Even while scoring high performance (with metrics like ac-

curacy, precision and recall) in close-world scenarios (i.e., under a specific ground-truth

70 Chapter 4. State-of-the-Art

dataset), these systems will certainly produce high rates of false positives when tested

against real-world datasets of traffic traces. Furthermore, numerous countermeasures

exist that can perform against traffic analysis techniques (such countermeasures are dis-

cussed in Section 5), making many of the works discussed in this section unable to bypass

them.

4.1.3 Relation to this Dissertation

Most relevant to our work in the domain of network analytics (§ 2.1) is the literature on

fine-grained application event identification over encrypted traffic, reviewed in this sec-

tion (§4.1). While our work is based on the same grounds (i.e., the feasibility of user activity

identification over encrypted network traffic based on packet trains), we advance the state-

of-the-art by (i) proposing a novel expressive pattern language specification, (ii) building

a scalable and optimized implementation, which was integrated to our proprietary DPI

engine and tested and evaluated on real-world traffic volumes, (iii) showing that the rule

extraction is amenable to data mining techniques.

4.2 Security after Network Encryption

In this section, we present the state-of-the-art on encrypted network traffic analysis for

network security. The works that are presented in this section are summarized in Table 4.4.

Intrusion Detection Some techniques focus on identifying malicious behavior in the

network, examining the characteristics of the underlying traffic, using exclusively machine

learning approaches.

Taleb et al. [38, 123] propose an approach that identifies misuses in encrypted proto-

cols with network packet inspection that focuses on processing of packet header informa-

tion. Amoli et al. present a real-time unsupervised NIDS, able to detect new and complex

attacks within encrypted and plaintext communications [6]. Anderson et al. [7] compare

the properties of six different machine learning algorithms for encrypted malware traffic

classification. Shone et al. [116] propose a system that combines deep learning techniques

for network intrusion detection. For the evaluation of their system, authors use the KDD

Cup ’99 and NSL-KDD datasets with high accuracy (almost 90%). Kitsune [78] is a NIDS,

4.2. Security after Network Encryption 71

Table 4.4: Works in the security domain, sorted by category and publication year.
Traffic Analysis Domain Work Category Goal Year of publication

Network Security

Amoli et al. [6]

Network Intrusion
Detection

Real-time network intrusion de-
tection within encrypted com-
munications

2016

Anderson et al. [7] Encrypted malware traffic clas-
sification

2017

Shone et al. [116] Network intrusion detection us-
ing a combination of DL tech-
niques

2018

Mirsky et al. [78] Neural-network based network
intrusion detection system

2018

Papadogiannaki et al. [89, 91, 95] Intrusion detection with signa-
tures from packet metadata se-
quences

2020–2023

Fu et al. [44] Malicious traffic detection via
flow interaction graph analysis

2023

Tang et al. [125] Network Intrusion
Detection (SDN)

Flow-based anomaly detection 2016
Niyaz et al. [85] DDoS attack identification 2016
Shabtai et al. [111]

Malware Detection on
Mobile Devices

Malware detection on Android
mobile devices

2012

Shabtai et al. [112] Identification of malicious
attacks or masquerading/in-
jected mobile applications

2014

Wang et al. [135] Detection of mobile malware
behavior using network traffic

2016

Lashkari et al. [65] Detection of malicious or mas-
querading mobile applications

2017

Razaghpanah et al. [101]

Server
Characterisation

TLS usage examination in An-
droid devices

2017

Anderson et al. [8] TLS fingerprinting for malware
identification

2019

Kotzias et al. [61] TLS deployment examination 2018
Paracha et al. [96] TLS usage examination in con-

sumer IoT devices
2021

Li et al. [69] TLS fingerprinting for bot classi-
fication

2021

Sosnowski et al. [121, 122] TLS fingerprinting for CnC
server classification

2022 – 2023

based on neural networks, and designed for the detection of abnormal patterns in network

traffic. It monitors the statistical patterns of recent network traffic and detects anomalous

patterns. Tang et al. [125] present a deep learning approach for flow-based anomaly de-

tection in SDN environments. Authors build a Deep Neural Network (DNN) model for an

intrusion detection system and train it with the NSL-KDD dataset, using six basic features

of the NSL-KDD dataset. Niyaz et al. [85] utilize deep learning in order to detect DDoS at-

tacks in SDN environments. The proposed system identifies individual DDoS attacks with

an accuracy of almost 96% and classifies the traffic into benign or attack traffic, with an

accuracy of 99.82% with low false-positives. In [44], authors propose HyperVision, a sys-

tem that is able to perform anomaly detection against encrypted network traffic using an

unsupervised graph learning method. HyperVision achieves 0.92 AUC and 0.86 F1, with

80.6 Gb/s detection throughput and average detection latency of 0.83s.

Intrusion and Malware Detection in Mobile Devices While the ever increasing adoption

of traffic encryption has significantly improved the user privacy and security, traditional

72 Chapter 4. State-of-the-Art

intrusion detection systems based on inspecting unencrypted traffic, are becoming obso-

lete. Thus, there is a number of works that aim to detect malicious bahavior on mobile

devices, mainly relying on machine learning approaches.

Andromaly [111] is a framework for malware detection on Android mobile devices. The

host-based malware detection system monitors features and events that are retrieved from

mobile devices and applies anomaly detection for the classification of the collected data.

Shabtai et al. [112] propose a system that identifies (i) attacks or masquerading applica-

tions installed on a mobile device and (ii) injected applications with malicious code. In

TrafficAV [135], the mobile network traffic is mirrored from the wireless access point to the

server for data analysis. The data analysis and malware detection are performed on the

server side. TrafficAV performs network traffic analysis in multiple levels. The proposed

method combines network traffic analysis with a machine learning algorithm (i.e., C4.5

decision tree) and is able to identify malware in Android devices with good accuracy re-

sults. In an evaluation with 8,312 benign apps and 5,560 malware samples, the TCP flow

detection model and the HTTP detection model achieve detection rates of up to 98% and

99.65%, respectively. Lashkari et al. [65] detect malicious and masquerading applications

on mobile devices. Their proposed method shows a good average accuracy (91.41%) and

precision (91.24%) with a low false positive rate. Authors use five different classifiers: Ran-

dom Forest (RF), K-Nearest Neighbor (KNN), Decision Tree (DT), Random Tree (RT) and

Regression (R). Authors have published a labeled dataset of mobile malware traffic that

contains benign Android applications or injected applications (e.g., with adware or other

types of malware).

Characterization of Identity In [8], authors publish a knowledge database consisting of

TLS fingerprints (passively constructed) from enterprise deployments and malware traf-

fic, together with an analysis of trends concerning the utilization of TLS by applications

and malware. TLS fingerprinting is a common technique that assists in the extraction

of meaningful observations from TLS handshake packets, since limited content can be

revealed from encrypted data packets. TLS fingerprinting has been used for studying the

TLS deployment [61] and the TLS usage in consumer IoT devices [96] and Android applica-

tions [101]. TLS fingerprinting has been also used in identifying known censorship circum-

vention tools, like Tor [43]. JA3 is a method that enables TLS fingerprinting and TLS client

4.2. Security after Network Encryption 73

profiling, while JA3S enables server side TLS fingerprinting [183]. Another library that en-

ables TLS handshake fingerprinting is fingeprinTLS [181]. In a nutshell, the produced fin-

gerprints are a combination of TLS version, accepted ciphers, extensions, elliptic curves

and elliptic curve formats. Since JA3 and JA3S hashes (or JA3/JA3S fingerprints) can be

easily distributed, they promote the easy cyberthreat intelligence exchange. In fact, sup-

port to JA3S has been added in platforms like MISP [209] and intrusion detection systems

like Suricata [202]. In [8], for instance, authors produce fingerprints for the identification

of malicious servers. Li et al. produce fingeprinTLS to distinguish malicious bots from be-

nign [69]. Besides these two passive techniques for TLS fingerprinting (i.e., fingeprinTLS

and JA3S), there is JARM [194]. JARM enables active TLS server fingerprinting. In an arti-

cle posted online on October 2020 [192], JARM creators explain how it works and how it

can be used to identify malicious servers. In the article, creators made public 1 fingerprint

per botnet. The botnets that were examined are TrickBot, AsyncRAT, Metasploit, Cobalt

Strike and Merlin C2 and as authors state, they contact IP addresses on port 443. Recently,

Sosnowski et al. proposed a new TLS fingerprinting technique [122]. Authors use a binary

classifier to investigate if a server is a command and control server, with better precision

and recall results when compared to JARM. In addition, authors study weekly snapshots

in a period of 7 months. In DissecTLS [121], authors follow a more exhaustive fingerprint-

ing approach to calculate more effective fingerprints, which outperform five popular TLS

scanners (including JARM). They perform a measurement study using the same public

datasets that we use, and they repeat the measurements nine times in a period of nine

weeks.

4.2.1 Techniques

In this section, we present the techniques and algorithms that are more popular among

the works of this category. Table 4.5 displays works that perform intrusion detection even

in encrypted networks. The majority of these works utilize machine learning algorithms

for intrusion detection and classification.

Besides machine learning, researchers make use of neural networks and deep learn-

ing techniques. For intrusion detection, Shone et al. [116] propose a deep learning clas-

sification model constructed using stacked non-symmetric deep autoencoders (NDAEs).

74 Chapter 4. State-of-the-Art

Table 4.5: Techniques, algorithms and evaluation metrics used in the security domain.
Work Category Algorithm/Technique Performance Evaluation Metrics
Amoli et al. [6]

Network Intrusion
Detection

DBSCAN-based outlier detection, K-means-
based outlier detection

FPR, TPR, Accuracy, Precision, Recall

Anderson et al. [7] Classification with Linear Regression, Logis-
tic Regression, Decision Tree, Random For-
est, Support Vector Machine, Multi-layer Per-
ceptron

Accuracy, Classification Time

Shone et al. [116] Auto-encoder Deep Neural Network Accuracy, Precision, Recall, F-measure,
False alarm, Training/testing Time

Mirsky et al. [78] Isolation Forests (IF) and Gaussian Mixture
Models and Deep Neural Network Auto-
encoders with Ensemble Layer and Output
Layer

TPR, FNR & Processing Throughput

Papadogiannaki et al. [89, 91, 95] Signature generation for Intrusion Detection
using packet metadata sequences

True Positives, False Positives and Perfor-
mance Throughput

Fu et al. [44] Graph learning module based on DBSCAN
and K-means for clustering and Z3 SMT
Solver to identify critical vertices

AUC, F1-score, Precision, Recall, F2, ACC,
FPR, EER & Throughput, Latency, Re-
source Consumption

Tang et al. [125] Network Intrusion
Detection (SDN)

Deep Neural Network with an input layer,
three hidden layers and an output layer

Accuracy, Precision, Recall and F-
measure

Niyaz et al. [85] Stacked Autoencoder Deep Neural Network Precision, Recall, F-measure
Shabtai et al. [111, 112]

Malware Detection on
Mobile Devices

Linear Regression, Decision Table, Support
Vector Machine for Regression, Gaussian
Processes for Regression, Isotonic Regres-
sion, Decision/Regression tree (REPTree)

TPR, Detection time, FPR, False Alerts,
Memory & CPU consumption

Wang et al. [135] Classification with C4.5 Decision Tree TPR, FPR
Lashkari et al. [65] Classification with Random Forest, K-

Nearest Neighbor, Decision Tree, Random
Tree, Regression.

Accuracy, Precision, FPR

Razaghpanah et al. [101]

Server
Characterisation

Fingerprinting using passive analysis N/A (measurement study)
Kotzias et al. [61] Fingerprinting using passive analysis N/A (measurement study)
Anderson et al. [8] Fingerprinting using passive analysis N/A (measurement study)
Paracha et al. [96] Fingerprinting using passive analysis N/A (measurement study)
Li et al. [69] Fingerprinting using passive analysis N/A (measurement study)
Sosnowski et al. [121, 122] Active probing for TLS fingerprinting, Multi-

label classifier for CDN server classification,
Binary classifier for CnC server detection

Precision, Recall

Tang et al. [125] present a deep learning approach for flow-based anomaly detection in

SDN environments. Authors build a Deep Neural Network (DNN) model for intrusion de-

tection and train it with the NSL-KDD dataset, using basic features found in the dataset.

Niyaz et al. [85] utilize deep learning in order to detect DDoS attacks in SDN environments.

Kitsune [78] is a NIDS, based on neural networks, and designed for the detection of ab-

normal patterns in network traffic. It monitors the statistical patterns of recent network

traffic and detects anomalous patterns. Again, the majority of these techniques take ad-

vantage of data that are available in packet headers like network packet sizes, directions

and time-related data. More sophisticated techniques make use of additional, more ad-

vanced features, like the TLS handshake information [7, 43]. HyperVision [44] does not

require a labeled dataset of know attacks, since it detects abnormal interaction patterns

by analyzing connectivity, sparsity and statistical features of the graph.

In Table 4.5, we also display the metrics used for the evaluation of each technique. Sim-

ilarly to Section 4.1, the most common evaluation metrics are (i) accuracy, (ii) precision,

(iii) recall, (iv) true and (v) false positive rates, while few of the works report classification

time and processing throughput.

4.2. Security after Network Encryption 75

Datasets Table 4.6 presents the public datasets that were used for intrusion detection.

The DARPA dataset [151] is one of the most popular datasets to train and evaluate intru-

sion detection systems. The ISCX-IDS-2012 intrusion detection dataset [172] consists of

7 days of benign and malicious network activity. The KDD Cup ’99 dataset [152] includes

a wide variety of intrusions simulated in a military network environment. The NSL-KDD

dataset [156] is suggested to solve some of the inherent problems of the KDD’99 dataset.

Finally, Moustafa et al. [80] build and make publicly available a handy dataset for network

intrusion detection systems, namely UNSW-NB15 [150]. This dataset is used for evalua-

tion in [89,91]. The IoT-23 [171] is a labeled dataset with malicious and benign IoT network

traffic and it is used in [95]. The dataset used in [44] is the MAWI Internet traffic dataset.

To avoid any bias, authors also use the Kitsune dataset [78], as well as the CIC-DDoS2019

and CIC-IDS2017 datasets [162, 165].

As Anderson et al. [7] correctly points out, finding the most proper features for classifi-

cation with high accuracy, recall and precision, is not a trivial procedure, while it is highly

dependable on the ground-truth dataset collection that is available each time. However,

user privacy related regulations make data sharing a very challenging practice for organi-

zations and data holders. In Table 4.6, we can notice that the NSL-KDD dataset [156] is

the most popular dataset that is publicly available. Yet, we observe that the majority of the

datasets that are used for intrusion detection are not very recent. For instance, Amoli et

al. [6] and Shone et al. [116] use the DARPA [151] and KDD Cup ’99 [152] datasets respec-

tively, both of which were more than 15 years old at the time the papers were published.

Table 4.6: Datasets used in the network security domain.
Work Category Dataset Availability Dataset details
Amoli et al. [6]

Network Intrusion
Detection

Public DARPA [151], ISCX-IDS-2012 [172]
Shone et al. [116] Public KDD Cup ’99 [152], NSL-KDD [156]
Papadogiannaki et al. [89, 91] Public UNSW-NB15 [150]
Papadogiannaki et al. [95] Public IoT-23 [171]
Tang et al. [125] Public NSL-KDD [156]
Fu et al. [44] Public MAWI Internet traffic dataset [169],

CIC-DDoS2019 [165], CIC-
IDS2017 [162]

Kotzias et al. [61] Server
Characterisation

Public ICSI SSL Notary [157], finger-
prinTLS [159]

Anderson et al. [8] Public Mercury [167]
Li et al. [69] Public Upon request

76 Chapter 4. State-of-the-Art

4.2.2 Objectives and Limitations

As most works that perform encrypted network traffic inspection for intrusion detection

use machine learning techniques to examine the feasibility of attack classification, the

primary objective is functionality. They train their models offline providing poor support

for online intrusion detection when it comes to encrypted communications. The works

that also aim for programmability, except for functionality, are [78, 89, 91, 111, 112]. In Sec-

tion 4.4, we discuss about middleboxes that can be deployed for online traffic inspection.

Some of the network functions of these middleboxes can be used for intrusion detection

and firewall applications.

The majority of the works discussed in this section can be bypassed by traffic analysis

resistant techniques. Anderson et al. [7] examine and present mistakes and limitations in

the network traffic analysis literature, such as the utilization of old and unreliable ground-

truth datasets. Indeed, if we examine the datasets that are used as ground-truth for train-

ing most of the machine learning models in this section, are not very recent.

4.2.3 Relation to this Dissertation

Most relevant to our work in the domain of network security (§ 2.2) is the literature on

intrusion detection over encrypted traffic, surveyed in this section (§4.2). The majority of

works that inspect encrypted network traffic turn to machine learning algorithms since

it is possible to examine the feasibility of the identification of the traffic nature and the

underlying activities for numerous use-cases (e.g., network security). Other works per-

form anomaly detection to identify malicious network traffic with abnormal traffic pat-

terns, without the requirement of labeled ground-truth datasets. Such works, though, do

not indicate the specific malicious activity in a fine-grained manner, just the abnormal-

ity. Our work builds on the results of those works (i.e., intrusion detection over encrypted

traffic), but our main concern is to establish a procedure to effectively generate intrusion

detection signatures in an automated manner and integrate them in a real-world traffic

monitoring system. In our work (§ 2.2), we propose a signature mining method for in-

trusion detection in encrypted network traffic. Also, we develop a network intrusion de-

tection system that achieves high processing throughput. Specifically, we aim to advance

the state-of-the-art offering an intrusion detection implementation that combines the fol-

4.3. User Privacy after Network Encryption 77

lowing: (i) we generate signatures from packet metadata, found exclusively in network

packet headers, (ii) we implement a signature-based intrusion detection engine using an

extended version of the Aho-Corasick algorithm to support integers, (iii) we enhance our

system’s performance using accelerators.

Besides our approach proposed for intrusion detection (employing passive network

traffic analysis), we also engage in the characterization of malicious servers using active

probing. The literature that examines the fingerprintability of malicious entities/servers

(reviewed in § 4.2) is the most related to our work presented in Chapter 3. The goal of our

work is to study the evolution of known command and control servers obtained by public

blocklists with TLS fingerprinting. When compared to other measurement studies that

perform TLS fingerprinting, our work produces a significantly larger dataset (fingerprints

are constructed on a daily basis for a period of 7 months).

4.3 User Privacy after Network Encryption

Besides network analytics and security, traffic analysis has been also used to monitor and

profile the characteristics of mobile applications. This kind of tools empower the user to

gain (i) insight regarding the applications used and (ii) control over personally identifiable

information (PII) handling. Furthermore, in this section we discuss about works that are

able to fingerprint websites and applications even when anonymity tools like TOR [205]

are used to hide the activity’s nature, the user’s identity or the user’s location. Finally, we

present works that enable OS and device identification even in encrypted networks. The

works that are presented in this section are summarized in Table 4.7.

Endpoint Device Tools and PII Leakage Detection ProfileDroid [138] is a monitoring

and profiling system that can characterise the behaviour of Android applications at the

static, user, OS and network layers. The authors evaluate multiple Android applications,

which present privacy and security, operational and performance issues. Authors evaluate

the proposed tool using free and paid Android applications, observing (i) discrepancies be-

tween the app specification and app execution, (ii) higher costs resulted from free versions

of apps, due to an order of magnitude increase in traffic, (iii) a great amount in network

traffic that is not encrypted, (iv) excess communication with more than expected sources,

78 Chapter 4. State-of-the-Art

Table 4.7: Works in the user privacy domain, sorted by category and publication year.
Traffic Analysis Domain Work Category Goal Year of publication

User Privacy

Herrmann et al. [51]

Webpage
Identification

Webpage identification
through OpenSSH, Open-
VPN, CiscoVPN, Stunnel, TOR,
JonDonym

2009

Lu et al. [75] Webpage identification
through SSH and SSL tunnels

2010

Panchenko et al. [87, 88] Webpage identification
through TOR

2011

Cai et al. [16] Webpage identification
through TOR and HTTPOS

2012

Kwon et al. [62] Webpage identification
through TOR hidden services

2015

Draper-Gil et al. [33] Detection and characterization
of VPN traffic

2016

Cruz et al. [28] Identification of BitTorrent traf-
fic in SSH tunnels

2017

Lotfollahi et al. [74] Application identification in
VPN traffic

2017

Shahbar et al. [113] Identification of anonymity net-
works

2017

Montieri et al. [79] Traffic classification of
anonymity tools

2019

Jorgensen et al. [56] Application identification in
VPN traffic

2023

Chen et al. [21]
Device/OS
Identification

OS identification, NAT and teth-
ering detection

2014

Sivanathan et al. [117] IoT device identification using
traffic features

2018

Skowron et al. [118] Investigation of fingerprinting
attacks targeting IoT devices

2020

Lastovicka et al. [66] OS identification using TLS fin-
gerprints

2020

Ateniese et al. [10] Location
Estimation

Position extrapolation through
location-based encrypted traf-
fic

2015

Razaghpanah et al. [102]

PII Leakage
Detection

Detection of personal informa-
tion leakage in Android applica-
tions

2015

Song et al. [120] Detection of information leak-
age in Android applications

2015

Le et al. [67] Traffic collection and analysis
to enable users have control
over their data

2015

Ren et al. [103] Cross-platform PII leaks iden-
tification giving users control
over them

2016

Continella et al. [24] PII leakage detection, resilient
to obfuscation techniques

2017

Rosner et al. [106] Information leaks in TLS-
encrypted network traffic

2019

and finally (v) the communication of the majority of the examined apps with Google. Taint-

Droid [37] identifies privacy leaks of Android applications with dynamic information-flow

tracking. More specifically, the authors monitored the behavior of popular third-party

Android applications and discovered potential misuse cases of user private information

across applications. TaintDroid provides users with information regarding third-party ap-

plications. Haystack [102] is a mobile application distributed via popular app stores that

can correlate contextual information (such as application identifiers and radio state) with

specific traffic flows (encrypted or not) destined to remote services. To handle encrypted

4.3. User Privacy after Network Encryption 79

traffic, haystack employs a transparent man-in-the-middle (MITM) proxy for TLS traffic.

PrivacyGuard [120] is an open-source platform that intercepts the network traffic that is

generated by mobile applications (through VPN) in order to detect sensitive information

leakage. PrivacyGuard can is able to effectively detect information leakage in the major-

ity of the applications under examination and it is shown that it outperforms TaintDroid.

AntMonitor [67] is a system that passively monitors and collects packet-level measure-

ments from Android devices in order to provide a fine-grained analysis. AntMonitor pro-

vides users with control over their personal data and supports client-side traffic collection

and analysis. Authors examine PII-related features, such as (i) the IMEI, which uniquely

identifies a device within a mobile network, and Android Device ID, which is an identifi-

cation code associated with a device, and (ii) the phone number, email address and loca-

tion, which can be uniquely associated with users. ReCon [103] is a cross-platform system

that reveals personally identifiable information leakages and gives users the control over

leaked information without requiring any special privileges or custom OSes. ReCon uses

machine learning to identify and reveal possible PII leakage by inspecting the network

traffic, while it provides a visualization tool that empowers users to control how their in-

formation is being handled by blocking or substituting it. Continella et al. [24] propose a

system that detects leakages of PII and is resilient to obfuscation methods and techniques

(e.g., encoding, formatting), encryption, or any other kind of transformation performed on

private information before it is leaked. Moreover, Rosner et al. [106] present a black-box

approach for detecting and quantifying side-channel information leaks in TLS-encrypted

network traffic.

Fingerprinting In this section, we present works in the field of webpage and applica-

tion fingerprinting, even while covered by privacy enhancing technologies. In addition,

we study the state-of-the-art in the device/OS identification and location estimation from

network traffic inspection. The works that are presented in this section are also summa-

rized in Table 4.7.

Traffic analysis has been used to identify fine-grained information, like webpages and

websites, even while transferred over encrypted tunnels established by technologies such

as OpenVPN [200] or TOR [205]. Herrmann et al. [51] present a classifier that identifies up

to 97% of web requests from packet traces. Lu et al. [75] identify dynamic websites that

80 Chapter 4. State-of-the-Art

are transferred over SSH and SSL tunnels. Panchenko et al. [87, 88] show how website fin-

gerprinting in onion routing based anonymization networks, such as TOR, is still possible

using information like packet sizes, total transmitted bytes, percentage of incoming pack-

ets and others. Cai et al. [16] present a webpage fingerprinting attack that is resilient to

recent traffic analysis countermeasures’ methods, such as application-level defenses like

HTTPOS [76] and randomized pipelining over TOR [97]. Kwon et al. [62] perform a passive

attack against hidden services and their users called circuit fingerprinting attack. Using

the attack, an attacker can identify the presence of hidden service activity in the network

with high accuracy. Draper-Gil et al. [33] study flow-based and time-related features that

can be analyzed to detect VPN traffic and to classify encrypted traffic according to the type

of traffic (e.g., browsing or streaming) using two machine learning techniques to test the

accuracy of the features. They show that time-related features, when properly handled can

reveal enough information for encrypted traffic characterization. Cruz et al. [28] present a

deep learning method that takes advantage of a feature set that is based on the statistical

behavior of TCP tunnels proxying BitTorrent traffic. The next steps is the transformation

of this feature set into multiple timestep sequences and the training of a recurrent neural

network. The results of this work show that it is possible to identify the existence of BitTor-

rent traffic in SSH tunnels. Lotfollahi et al. [74] present a system that is able to handle both

traffic characterization and application identification by analysing encrypted traffic with

deep learning. The proposed scheme can characterize between VPN and non-VPN traffic,

protocols (e.g., FTP or P2P) and end-user applications (e.g., Skype or BitTorrent). Shahbar

et al. [113] identify multilayer-encryption anonymity networks and the obfuscations tech-

niques they use with a small number of features and a small number of packets. Montieri

et al. [79] perform hierarchical traffic classification of anonymity tools, like TOR.

Device/OS Identification There are many works that focus on extracting TCP or IP packet

metadata, in order to investigate if the behavior of specific packet contents can be corre-

lated with OSes, device types and other characteristics.

Chen et al. [21] are able to perform OS identification, NAT and tethering detection by

examining multiple features in the TCP/IP packet headers. The authors use real network

traffic traces to evaluate the accuracy of fingerprinting and show that several techniques

that can successfully fingerprint desktop OSes are not similarly effective for fingerprint-

4.3. User Privacy after Network Encryption 81

ing mobile devices. For OS fingerprinting, authors use the following packet header values:

the IP TTL value, the IP ID monotonicity, the TCP timestamp option, the TCP window

size scale option and the clock frequency. Features like the TCP timestamp monotonicity,

clock frequency and boot time can be used for tethering detection. Ruffing et al. [107] aim

for OS identification of mobile devices even in encrypted traffic. Authors propose a traf-

fic content agnostic algorithm that implements spectral analysis of the encrypted traffic

and they show that even a network traffic input of 30 seconds can be enough for high accu-

racy results. Sivanathan et al. [117] classify IoT devices using network traffic features. More

specifically, authors instrument an ecosystem of different IoT devices (e.g., cameras, plugs

and motion sensors) and examine traffic characteristics, such as port numbers, signalling

patterns, and cipher suites that are used. Lastovicka et al. [66] examine traffic patterns of

the TLS protocol and train a machine learning model using features from the TLS hand-

shake in order to identify the operating system of a device. They focus their research on

mobile devices connected in a wireless network.

Location Estimation The position of a mobile device can be calculated and estimated by

collecting and monitoring the network traffic that is produced by applications that contain

location-based services, even when the communication channels are encrypted. For ex-

ample, Ateniese et al. [10] show that an adversary could estimate the position of a mobile

device by analysing the timing and sizes of encrypted network packets that are exchanged

between the user’s mobile device and any location-based service provider that communi-

cates with the device.

4.3.1 Techniques

In this section, we present the techniques and algorithms that are more popular among

the works of this category. Table 4.8 briefs the techniques and evaluation metrics used.

The majority of works in the category of website or device/OS fingerprinting domain

use machine learning techniques, while it is also common to build fingerprints for a web-

page and then compare its similarity for classification. Works that detect PII leakages ei-

ther work offline (e.g., [67, 106]) or online (e.g., [24, 102]). Offline works use similar ma-

chine learning techniques as previously discussed works, while online tools intercept the

encrypted network traffic before processing it.

82 Chapter 4. State-of-the-Art

For instance, between works that examine tunnelled network traffic (e.g., over VPN or

SSH protocols) for website classification and fingerprinting, the most popular algorithms

are Multinomial Naive Bayes [51], Support Vector Machine [88] and Hidden Markov Mod-

els [16]. In addition, Levenshtein distance and the Jaccard classifier are used in a number

of works to examine similarities between website fingerprints and properly classify them

into categories [16, 71, 75].

In addition, more recent works like [28, 74] use neural networks. Lotfollahi et al. [74]

present a system that is able to handle both traffic characterization and application iden-

tification by analysing encrypted traffic with deep learning, embedding stacked autoen-

coder and convolution neural network (CNN) to classify network traffic. Cruz et al. [28]

identify tunnelled BitTorrent traffic with a deep learning implementation. Their approach

examines features that are related to the statistical behaviour of TCP tunnels proxying Bit-

Torrent traffic. Then, authors transform the features into multiple time sequences and

train a recurrent neural network. Profit combines techniques like network trace align-

ment, phase detection, feature selection, feature probability distribution estimation and

entropy computation to quantify the amount of information leakage that is revealed via

the network traffic. Rosner et al. [106] present in “Profit” a dynamic technique to detect

information leakages in applications that support encryption and communicate via TLS.

Profit receives a “user-supplied profiling-input suite” where application data is annotated

as secret or sensitive. Profit runs the application over the user-supplied input and cap-

tures a set of variable-length network packet traces. The traces include information like

packet sizes and timestamps along with their aggregations (e.g., total time and median

size). Again, authors agree that finding the features that leak the most information is

challenging. To another end, device and OS identification techniques use network packet

header contents, such as IP TTL value, the IP ID monotonicity, the TCP timestamp option,

the TCP window size scale option, and the clock frequency. For the detection of tethering,

similar approaches take into consideration the monotonicity of the TCP timestamp, the

timestamp clock frequency and the booting time [21].

Works that investigate PII leakage from mobile applications are also presented in Ta-

bles 4.7 and 4.8. In this category, works tend to perform network traffic interception to

be able to process the encrypted traffic and follow the information flow that is exposed by

mobile applications. After the traffic interception, authors are able to extract information

4.3. User Privacy after Network Encryption 83

by inspecting plaintext packet contents.

Table 4.8: Techniques, algorithms and evaluation metrics used in the privacy domain.
Work Category Algorithm/Technique Performance Evaluation Met-

rics
Herrmann et al. [51]

Webpage
Identification

Classification with Multinomial Naive
Bayes (MNB)

Accuracy, Training/testing
Time

Lu et al. [75] Fingerprint similarity with Levenstein
distance

Accuracy, Effect of time on ac-
curacy

Panchenko et al. [87, 88] Classification with SVM, Fingerprint
similarity

Accuracy, FPR, TPR, Runtime,
Recall, Precision

Cai et al. [16] Classification with SVM and Fin-
gerprint similarity with Damerau-
Levenshtein distance

Success rate, Likelihood, TPR

Kwon et al. [62] Classification with C4.5 Decision
Trees and Fingerprint similarity with
Edit Distance

Accuracy, TPR, FPR

Draper-Gil et al. [33] Classification with C4.5 and KNN Precision, Recall, Accuracy
Cruz et al. [28] LSTM and BLSTM Deep Neural Net-

works
Precision, Recall, Accuracy, F1-
score

Lotfollahi et al. [74] Deep Neural Network Stacked Autoen-
coder (SAE) and Convolution Neural
network (CNN)

F1-score, TPR, FPR

Shahbar et al. [113] Classification with C4.5 Decision
Trees, Random Forests, Naive Bayes,
Bayesian Network (BN)

Accuracy, Time

Montieri et al. [79] Classification with C4.5, RF, NB, BN Accuracy, F-measure, G-mean
Jorgensen et al. [56] Classification with a NN and out-of-

distribution (ODD) scores
Accuracy, F1-score

Chen et al. [21]
Device/OS
Identification

Classification with Naive Bayes Accuracy, Precision, Recall, F-
measure

Sivanathan et al. [117] Classification with Naive Bayes Multi-
nomial classifier, Random Forest,

Accuracy, Root Relative
Squared Error (RRSE)

Skowron et al. [118] Classification with k-NN, Decision
Trees and Random Forests

Accuracy, F1-score, Precision,
Recall

Lastovicka et al. [66] Classification with Decision trees Accuracy, Precision, Recall, F-
measure

Ateniese et al. [10] Location
Estimation

Interception of encrypted traffic and
payload inspection

Accuracy and Granularity of the
monitor area

Razaghpanah et al. [102]

PII Leakage
Detection

Interception of encrypted traffic and
payload inspection

CPU and Power Overhead, La-
tency, Throughput, TLS over-
head

Song et al. [120] Interception of encrypted traffic and
payload inspection

Throughput, Delay, Battery
Consumption

Le et al. [67] Interception of encrypted traffic and
payload inspection, Classification
with SVM

Precision, F1-score, CPU and
Battery cost

Ren et al. [103] Interception of encrypted traffic and
payload inspection

Accuracy, Classification time
and Runtime

Continella et al. [24] Interception of encrypted traffic and
payload inspection

False positives, Execution time

Rosner et al. [106] Trace Alignment, Phase Detection,
Leakage Quantification with Shannon
entropy

Information Leakage measure

Datasets Table 4.9 contains the public datasets that were used by each work. Lastovicka

et al. [66] produced a dataset that was made public after the publication of their work. The

dataset contains TLS fingerprints collected. The VPN-nonVPN dataset (ISCXVPN2016)

84 Chapter 4. State-of-the-Art

dataset [160] contains traffic from user sessions in applications of browsing, email, chat,

streaming and others. The traffic is either regular or transferred over VPN. The LBNL/ICSI

dataset [153] contains packet traces that span more than 100 hours of activity from a to-

tal of several thousand internal hosts. The Anon17 dataset [163]contains network traf-

fic traces from TOR, JonDonym and I2P anonymity tools. The CRAWDAD SIGCOMM’08

dataset [155] contains traces of wireless network activity from the SIGCOMM 2008 con-

ference. Similarly, the CRAWDAD OSDI’06 dataset [154] contains network activity from

the OSDI 2006 conference. Finally, the goal of the DARPA Space/Time Analysis for Cyber-

security program [158], among others, is to enable researchers to identify vulnerabilities

related to the space and time resource usage behavior of algorithms.

Table 4.9: Datasets used in the user privacy domain.
Work Category Dataset Availability Dataset details
Lotfollahi et al. [74] Webpage

Identification

Public UNB ISCX VPN-nonVPN [160]
Shahbar et al. [113] Public LBNL/ICSI [153]
Montieri et al. [79] Public Anon17 [163]
Jorgensen et al. [56] Public VPN/NONVPN Network Ap-

plication Traffic Dataset
(VNAT) [170]

Chen et al. [21] Device/OS
Identification

Public CRAWDAD SIGCOMM’08 [155],
CRAWDAD OSDI’06 [154]

Lastovicka et al. [66] Proprietary dataset that was made
public

TLS fingerprints for OS identifi-
cation [168]

Rosner et al. [106] PII Leakage
Detection

Public DARPA Space/Time Analysis for
Cybersecurity program [158]

4.3.2 Objectives and Limitations

In the categories of website, location and device/OS identification, the major goal is to

produce an effective methodology for accurate fingerprinting. Thus, all the works that we

study in these categories have one primary target; functionality. On the other hand, works

in the domain of PII leakage Detection focus on the programmability and deployability.

Hence, we encounter performance-driven solutions.

The limitation of high false positive rates is major in any domain of traffic analysis. Un-

fortunately, it appears to be very difficult to produce a universal solution that will be able

to cover a whole domain, due to the vast diversity and heterogeneity that has introduced

during the recent years in every single aspect of Internet. In addition, as Juarez et al. [57]

argue regarding fingerprinting, accuracy scores reduce over time.

4.4. Network Functions in Middleboxes after Network Encryption 85

In addition, in the category of PII leakage detection, it is common to use proxy servers

or VPN in order to redirect the traffic to a controlled environment for interception and

decryption of encrypted traffic. Even if we neglect the latency that is added, this tech-

nique could eventually raise privacy-related concerns if users are not properly informed

about the procedure of the processing and manipulation (e.g., storage) of their traffic and

personal data. In Section 4.4, we discuss about middleboxes that address this issue by pro-

cessing sensitive information using hardware-assisted technologies for trusted execution.

4.3.3 Relation to this Dissertation

Although the works presented in this section (§ 4.3) are not rigidly related to the work

realized during this dissertation, we include them for completeness, since they lie into the

domain of encrypted traffic analysis, as well.

4.4 Network Functions in Middleboxes after Network Encryption

Quoting from RFC 3234, “a middlebox is defined as any intermediary device performing

functions other than the normal, standard functions of an IP router on the datagram path

between a source host and destination host” [18]. The typical use of a middlebox is to offer

security (e.g., firewall, intrusion detection) or performance (e.g., caching, protocol acceler-

ator), while other common uses are network address translation and protocol conversion.

One challenge that occurred after the rapid growth of network encryption is that in order

to process and operate on TLS traffic the middlebox must perform a man-in-the-middle

in a connection. Of course, this raises major concerns on user privacy preservation. Net-

work middleboxes that aim to inspect encrypted traffic operate by acting as proxies. They

terminate and decrypt the client-initiated TLS session, they analyze the HTTP plaintext

content, and then they initiate a brand new TLS connection to the destination. TLS makes

interception difficult by encrypting data and defending against attacks (like man-in-the-

middle) via the certificate validation. During the validation process, the client is responsi-

ble to authenticate the identity of the destination server, rejecting impostors. To circum-

vent this validation process, a self-signed CA certificate is injected into the client browser’s

root store at the time of installation. For network middleboxes, administrators deploy the

86 Chapter 4. State-of-the-Art

middlebox certificate to the corresponding devices (e.g., of the organization) in a similar

manner. Then, when the proxy intercepts a connection, it will dynamically generate a cer-

tificate for a website’s domain name that is signed with its CA certificate. The proxy will

deliver this certificate chain to the browser [35]. Some works that allow TLS interception

to inspect encrypted network traffic have already been presented in Section 4.3. In this

section, we discuss about the works that enable secure processing of encrypted traffic by

middleboxes. Tables 4.10–4.11 present details about these works.

Table 4.10: Works that implement network functions in midlleboxes, sorted by publi-
cation year.

Traffic Analysis Domain Work Goal Year of publication

Network Functions in
Middleboxes

Sherry et al. [115] DPI on the encrypted traffic us-
ing encrypted rules

2015

Naylor et al. [82] Extend the TLS protocol to sup-
port middleboxes

2015

Asghar et al. [9] Trusted execution for Network
Functions (NF) in the cloud

2016

Canard et al. [17] DPI on the encrypted traffic us-
ing encrypted rules

2017

Lan et al. [64] Trusted execution for Network
Functions (NF) in the cloud

2016

Yuan et al. [148] DPI on the encrypted traffic us-
ing encrypted rules

2016

Fan et al. [39] DPI on the encrypted traffic us-
ing encrypted rules

2017

Naylor et al. [81] Secure outsourcing of middle-
box NF in untrusted infrastruc-
tures

2017

Han et al. [50] Secure outsourcing of middle-
box NF in untrusted infrastruc-
tures

2017

Coughlin et al. [26] Secure outsourcing of middle-
box NFV in untrusted infras-
tructures

2017

Poddar et al. [98] Secure outsourcing of middle-
box NFV in untrusted infras-
tructures

2018

Trach et al. [128] Secure outsourcing of middle-
box NF in untrusted infrastruc-
tures

2018

Goltzsche et al. [46] Secure virtual private network
(VPN) with middlebox NF

2018

Duan et al. [34] Secure outsourcing of middle-
box NF in untrusted infrastruc-
tures

2019

Ning et al. [83] DPI on the encrypted traffic us-
ing encrypted rules

2019

Guo et al. [48] Privacy preserving packet
header processing for middle-
boxes in the cloud

2020

4.4. Network Functions in Middleboxes after Network Encryption 87

Network Functions in Middleboxes BlindBox [115] performs deep-packet inspection di-

rectly on the encrypted traffic, utilizing a new protocol and new encryption schemes. Specif-

ically, the functionality of BlindBox is provided through (i) a searchable encryption scheme

[119] that enables the inspection of encrypted traffic for certain keywords, (ii) a technique

to allow the middlebox to obtain encrypted rules (i.e., based on the rules from the middle-

box and the private key of the endpoints), and (iii) a mechanism to allow flow decryption

when a suspicious keyword is observed in the flow. mcTLS extends the traditional TLS

protocol to support middleboxes by allowing endpoints and content providers to explic-

itly introduce middleboxes in secure end-to-end sessions while controlling which parts of

the data they can read or write [82]. Asghar et al. [9] propose SplitBox, in which a cloud

service provider privately computes network functions on behalf of the client. More specif-

ically, SplitBox provides security guarantees in the honest-but-curious model and works

based on cryptographic secret sharing. As proof-of-concept, authors implemented a fire-

wall and measured the bandwidth and latency achieved. Embark [64] enables a cloud

provider to support middlebox outsourcing respecting user privacy. Embark encrypts the

traffic that is transmitted to the cloud and enables the cloud to process the encrypted

traffic without having to decrypt it. Yuan et al. [148] propose a system architecture for

outsourced middleboxes to perform DPI over encrypted traffic, without revealing either

packet payloads or inspection rules. SPABox [39] is a middlebox-based system that sup-

ports keyword-based and data analysis-based DPI functions over encrypted traffic with-

out having to decrypt it. Canard et al. [17] present BlindIDS, which is able to perform deep

packet inspection directly on encrypted network packets for intrusion detection. BlindIDS

does not assume knowledge over the traffic content or the patterns of detection signatures.

Authors evaluate the performance of BlindIDS by presenting the overhead on sender and

receiver sides (i.e., connection setup time, data encryption time) and the overhead on the

service provider (i.e., detection time, memory usage). Ning et al. [83] propose PrivDPI,

a tool that addresses the performance limitations of BlindBox [115]. Guo et al. [48] pro-

pose a privacy preserving packet header processing approach for middleboxes that are

outsourced to cloud infrastructures. Authors perform a security analysis and identify in-

formation leakages, while they evaluate the performance of the prototype (i.e., initializa-

tion time, memory cost, latency, throughput and overhead). To overcome the limitation

of privacy violation when the network traffic is intercepted for further processing, there

88 Chapter 4. State-of-the-Art

are works that propose hardware-assisted solutions that enable trusted execution. These

works enable the secure processing of sensitive information, such as the network traffic, in-

side encrypted memory regions provided by Trusted Execution Environments (TEEs). One

example of TEE is the Intel SGX technology, that is supported by Intel Skylake processors

(and successors). TEEs offer secure processing when the execution environment could

not be trusted (e.g., a cloud infrastructure). Naylor et al. [81] propose mbTLS, a protocol

that enables secure outsourcing middlebox functionality to untrusted infrastructure using

the Intel SGX technology [179]. Han et al. [50] present SGX-Box, a secure middlebox sys-

tem implementation that offers visibility in encrypted network traffic, taking advantage of

the Intel’s SGX technology [179]. SGX-Box ensures that the sensitive information, such as

decrypted payloads and session keys, is securely protected within the protected memory

enclave. Coughlin et al. [26] propose the Intel SGX technology to overcome security issues

of Network Function Virtualization (NFV) applications in cloud environments. Poddar

et al. [98] present SafeBricks that also proposes the utilization of Intel SGX to shield the

execution of NFV functions in untrusted environments like the cloud infrastructure. Sim-

ilarly, Trach et al. [128] present ShieldBox, a middlebox framework for deploying network

functions over untrusted commodity servers. ShieldBox takes advantage of the Intel SGX

technology and authors deploy two use cases: (i) a multiport IP router and (ii) an intru-

sion detection system. Goltzsche et al. [46] propose EndBox. EndBox executes middlebox

functions on client machines at a network edge and combines a virtual private network

(VPN) with middlebox functions that are protected in Intel SGX hardware enclaves. Duan

et al. [34] present LightBox, which offers efficient and protected middlebox functionality

using the Intel SGX technology.

4.4.1 Techniques

Works in this category either process the encrypted network traffic using software based

cryptographic techniques, such as searchable encryption, or process the network traffic in-

side encrypted memory regions in order to ensure the preservation of privacy. With search-

able encryption, tools are able to search directly on encrypted data without decrypting it,

and thus, without leaking information in plaitext (e.g., for privacy preserving malware de-

tection [29]). This is achieved by encrypting the rules to be searched against the already

4.4. Network Functions in Middleboxes after Network Encryption 89

Table 4.11: Techniques, algorithms and evaluation metrics used by network functions
in midlleboxes.

Work Algorithm/Technique Performance Evaluation Metrics
Sherry et al. [115] DPI with Searchable Encryption Overhead in Load Time & Bandwidth
Naylor et al. [82] DPI with Searchable Encryption Handshake, File Transfer, Page Load Times,

Data Volume, CPU and Deployment Over-
heads

Asghar et al. [9] DPI with Searchable Encryption Throughput and Delay
Canard et al. [17] DPI with Searchable Encryption Connection Setup, Data Encryption and De-

tection Times, Memory Usage
Lan et al. [64] DPI with Searchable Encryption Performance Overhead in Throughput, Page

Load Time, Time per-request
Yuan et al. [148] DPI with Searchable Encryption TPR and Initialization Time, Inspection

Throughput, Token Overhead, Latency
Fan et al. [39] DPI with Searchable Encryption End-to-end Delay, Throughput, CPU Utiliza-

tion, Connection Setup Overhead & Malware
Detection Accuracy

Naylor et al. [81] Secure hardware-assisted DPI (TEE: Intel
SGX)

CPU Overhead, Handshake Latency, SGX
I/O Throughput Overhead

Han et al. [50] Secure hardware-assisted DPI (TEE: Intel
SGX)

Performance Overhead in Throughput

Coughlin et al. [26] Secure hardware-assisted DPI (TEE: Intel
SGX)

Processing Throughput

Poddar et al. [98] Secure hardware-assisted NFV (TEE: In-
tel SGX)

I/O Throughput and Memory Usage Over-
head

Trach et al. [128] Secure hardware-assisted DPI (TEE: Intel
SGX)

Throughput, Latency, Scalability

Goltzsche et al. [46] Secure hardware-assisted DPI (TEE: Intel
SGX)

Round Trip Time, Throughput, Latency, CPU
usage Overheads

Duan et al. [34] Secure hardware-assisted DPI (TEE: Intel
SGX)

Throughput, CPU usage, Packet Delay

Ning et al. [83] DPI with Searchable Encryption Latency, Bandwidth, Token Encryption
Time, Round Trip Total Time

Guo et al. [48] DPI with Searchable Encryption Initialization Time, Memory Cost, Process-
ing Latency, Throughput, Token Overhead

encrypted traffic (e.g., [17]). Trusted Execution Environments (TEEs) enable the secure

code execution and information processing commonly using hardware-assisted features

like memory enclaves. Intel SGX [179] is one of the most popular hardware-assisted TEEs

and is frequently used to provide confidentiality and integrity guarantees to applications

in environments where the OS could eventually become untrusted, like a cloud infrastruc-

ture (e.g., trusted antivirus in the cloud [30]).

In [9, 17, 39, 48, 64, 82, 83, 115, 148], authors perform network middlebox applications

with core functionality the deep packet inspection using searchable encryption. In [26, 34,

46, 50, 81, 98, 128] authors shield the network traffic processing using hardware enclaves

that the Intel SGX technology provides. Table 4.11 displays the most common techniques

used for network functions in middleboxes. Also, we present the metrics that each work

90 Chapter 4. State-of-the-Art

used for evaluation.

Datasets The datasets used to evaluate the works of this section are not other than the

ones used by traditional works in network traffic processing inside middleboxes. Depend-

ing on the application goal (e.g., intrusion detection or firewall), authors utilize the rele-

vant rules (e.g., Snort rules [203] in [17, 39, 83, 148]) and traffic traces (e.g., DARPA [151]

in [148]). In this section, we do not include a table, since the datasets used by works in this

category do not provide labeled and encrypted network traffic to be used as ground-truth

data for encrypted network traffic analysis.

4.4.2 Objectives and Limitations

While the main objective of the majority of the works presented in this survey is to ensure

the functionality of their systems by providing knowledge on how to properly analyze en-

crypted network traffic in order to extract information about its nature, the works in this

category focus also on the programmability and deployment of their systems. Thus, au-

thors provide evaluation results not only for the effectiveness of their solution but also for

the processing performance and the overhead that is introduced using either a software-

centric solution like the searchable encryption or a hardware-assisted technology like TEEs.

Although cryptographic tools like the searchable encryption are very effective and sig-

nificantly preserve user privacy when it comes to network functions in middleboxes, the

individual functions that are performed (e.g., rule encryption and connection setup) add

an essential overhead to the end-to-end performance. Similarly, TEEs also increase the

processing overhead. For instance, with Intel SGX, substantial overhead can be presented

when the computations are I/O bound [19]. Even though both techniques are effective,

they introduce the trade-off of user privacy versus performance.

4.4.3 Relation to this Dissertation

Although the works presented in this section (§ 4.4) are not closely related to the work

presented in this dissertation, we include them for completeness, since they also advocate

the need for encrypted traffic processing.

Chapter 5

Discussion

5.1 Encrypted Traffic Analysis Countermeasures

Even though encrypted traffic analysis techniques can be used by different actors (such

as ISPs/CSPs, etc.) to benignly extract information about network usage, encrypted traffic

analysis techniques can be also used by malicious actors (such as governments that cen-

sor websites or prohibit Internet usage) in order to harm the privacy that network encryp-

tion offers to Internet users. Some of the most popular solutions propose randomizing

network packet sizes, padding bytes to packets for a fixed size and time tuning for inter-

packet transmission. More sophisticated solutions are explicitly discussed in the following

paragraphs. In this chapter, we discuss about the (i) techniques that can be used against

encrypted network traffic analysis and (ii) systems that exist and aim to defend against it.

Anonymity Tools and Tunnelling Protocols Onion Routing serves as an overlay network

designed to anonymize communications and applications (e.g., web browsing and instant

messaging). TOR is one good example of onion routing. Among others, it uses fixed-size

cells that are the unit of communication in TOR [205]. As we have already discussed in

Section 4.3 though, anonymity tools are not enough to prevent website and hidden ser-

vices identification [104], since the existence of anonymity tools can be identified using

numerous encrypted traffic analysis techniques (§ 4.3.1). Also, in [145] authors show that

the utilization of OpenVPN is also detectable.

Traffic Shaping As already discussed, features and characteristics of network traffic that

present patterns after encryption (e.g., packet sizes and timing), can reveal surprising in-

91

92 Chapter 5. Discussion

formation about the traffic’s nature and contents. Even though encrypted traffic analy-

sis can be legitimate, these techniques raise important concerns about privacy related

issues. An approach that typically mitigates such threats is the padding of packets sizes

or the transmission of packets at fixed timing intervals; obfuscating the behaviour of a

communication mean. However, this method can become inefficient because it results

to time overheads. Wright et al. propose a method for hindering statistical traffic anal-

ysis algorithms. Their approach proposes the modification of a certain network traffic

“class” to look like another. Authors show how to modify packets’ characteristics in real-

time with low overhead in order to reduce the accuracy measurements of traffic classi-

fiers. The morphed data is then sent to the network stack encrypted and then sent to the

destination [141]. AnonRep [149] builds on top of anonymity and privacy guarantees for

the case of reputation and voting systems. TARN [147] randomises IP addresses, while

TARANET [20] employs packet mixing and splitting to achieve constant-rate transmission,

providing anonymity at the network layer. Luo et al. [76] design the HTTPOS fingerprinting

defense at the application layer. HTTPOS acts as a proxy that receives HTTP requests and

obfuscates them before allowing transmission. Specifically, it modifies network-related

features, such as the total packet size, the packet timestamp and the payload size. In ad-

dition, it uses HTTP pipelining to obfuscate the number of the transmitted packets. Au-

thors show that HTTPOS was successful in defending against a number of traffic classifiers.

Dyer et al. [36] create a defense, namely BuFLO that combines previously proposed coun-

termeasures, such as fixed packet sizes and constant rate traffic. Authors improve other

related defenses at the expense of a high bandwidth overhead. Cai et al. [15] make mod-

ifications to the BuFLO defense proposing the rate adaptation technique. Yet, this adds

a bandwidth overhead. Nithyanand et al. [84] propose Glove, that groups website traffic

into clusters. This provides privacy guarantees and reduces the bandwidth overhead by

grouping web traffic into similar sets. Panchenko et al. [88] propose “website camouflage”,

which is actually an obfuscation technique that randomly requests a second website, si-

multaneously with the actually requested one. Frolov et al. [43] propose uTLS that enables

tool maintainers to automatically mimic other popular TLS implementations to prevent

censorship. Walkie-Talkie is a website fingerprinting defense approach that modifies the

browser to communicate in half-duplex mode, since it produces burst sequences that leak

less information to the adversary. This makes sensitive and non-sensitive pages look the

5.2. Quality and Quantity of Data 93

same [136].

Traffic Analysis Resistant IoT Devices Hafeez et al. [49] demonstrate that an adversary,

with access to the network traffic of a “smart” home network, can lead to the identification

of the device types and some user interactions with IoT devices. In order to defend against

traffic analysis attacks, authors propose a “traffic morphing” technique that shapes net-

work traffic in ways that make it more difficult to achieve an attack that identifies devices

and activities. In order to mask the background traffic, authors send traffic on an upstream

link at a constant rate, irrespective of real background traffic rate of an IoT device. Mean-

while, when an IoT device is inactive, authors send dummy traffic representing device

activity to upstream link, so that an adversary can not identify real activity of the IoT de-

vice. While this approach is not very sophisticated, it points to the direction of defending

against traffic analysis on IoT devices. In [133], authors propose IoTReguard, a system that

aims to explore network traffic features that reveal the most relevant ones and hide them

to protect users’ privacy.

Traffic Analysis Resistant Messaging Applications There have been efforts to create mes-

saging protocols that provide anonymity and privacy guarantees in the face of traffic analy-

sis. Dissent [139] and Riposte [25] are systems that provide strong user privacy guarantees.

They protect packet metadata, but they suffer from scalability issues. Herd [68] is another

system that tackles the case of anonymity for VoIP calls, by addressing, like the former pro-

posals, some of the limitations of the more general-purpose Tor anonymity network [32].

Vuvuzela [129] and Atom [63] are more scalable systems (thousands of messages for mil-

lions of users) that employ differential privacy to inject noise into observable metadata.

5.2 Quality and Quantity of Data

Approaches like our work presented in Sections 2.1 and 2.2 depend exclusively on the

ground truth. Therefore, data must not be characterized by low quality or insufficient

quantity. Unfortunately, only a small amount of recent public datasets, properly labelled

(presented in § 4.1.1, § 4.2.1, § 4.3.1 and § 4.4.1) exist. In our work presented in Chapter 2,

to evaluate our methodology we use a combination of public datasets (i.e., [150, 171, 208])

94 Chapter 5. Discussion

and ground-truth data that we collect in our own environments. In this way, we have

the flexibility to deploy different OS/application versions and examine the diversity in the

network traffic. This enables us to ensure that our methodology is resilient to different

network stack implementations. Overall, poor ground truth information can undermine

the effectiveness of passive network traffic analysis, highlighting the need for accurate and

reliable data to support network monitoring, management and security.

For the characterization of malicious servers, we collect IP addresses posted on public

lists. For instance, the Feodo Tracker Botnet C2 IP Blocklist mentions in its description

that it “only contains active botnet C&C servers or such that have been active in the past

hours”. Probing IP addresses retrieved from lists that are getting updated frequently keeps

the possibility of false positives low.

5.3 Validation and False Positives

When network traffic is encrypted, achieving result validation in a real-world deployment,

at the ISP/CSP level, is challenging. Encryption is used to protect sensitive information

from unauthorized access or interception, which can make it difficult to monitor or an-

alyze network traffic. In use cases that are related to network analytics (discussed in Sec-

tion 2.1), result validation requires a combination of encryption and decryption techniques,

network tunneling solutions, behavioural analytics and machine learning techniques. When

the use case is related to network security (discussed in Section 2.2), result validation re-

quires a combination of endpoint detection, network-based analysis and security event

management strategies.

5.4 Passive Monitoring versus Active Scanning

In Chapter 2 we follow a passive network monitoring and analysis approach . Passive net-

work traffic monitoring has several advantages, including the ability to detect anomalies

and security threats without disrupting the normal flow of network traffic. Passive network

traffic analysis can be performed on a wide range of network types and protocols, making

it a versatile tool for network administrators and security professionals. However, passive

network traffic analysis also has some limitations, since it requires specialized tools and

5.5. TLS 1.3 and Beyond 95

expertise to capture and analyze network traffic, which can be time-consuming. Also, it

might not provide a complete picture of network activity, as we capture packets that are

transmitted over a specific and dedicated network setup. In addition, passive network

traffic analysis can be subject to privacy violations, as it may capture sensitive data that is

transmitted over the network, and thus sharing data can be challenging.

Active network scanning is the method of monitoring network traffic by actively send-

ing packets into the network and analyzing the responses received. As discussed in Chap-

ter 3, active network traffic enables us a granular and targeted analysis of network activity,

focused on botnet configurations. Of course, active network traffic scanning must be care-

fully controlled and monitored to ensure that it does not inadvertently (i) create security

vulnerabilities, (ii) provide attackers with useful information about the network [99], or

(iii) cause network congestion affecting the overall network performance.

5.5 TLS 1.3 and Beyond

Expecting the vast adoption of TLS 1.3, we do not perform TLS certificate fingerprinting,

like other relevant solutions [189]. The TLS 1.3 handshake is quite different from earlier

versions of TLS, with a large portion of it getting encrypted [61]. The TLS 1.3 protocol

ensures the privacy and security of the certificate exchange through the use of digital sig-

natures and cryptographic mechanisms. Thus, the introduction of TLS 1.3 encourages

our proposed methodology, in which we propose the inspection of sequences of packet

metadata, like the packet payload size.

Our methodology for the identification of events on encrypted network traffic (§ 2.1,

§ 2.2) is not affected by the TLS 1.3 ClientHello Padding Extension [180] that enables padding

in the TLS ClientHello messages to a desired size, since we do not process such packets.

Likewise, the characterization of malicious servers technique is not affected by the TLS

1.3, since the certificate data that is present in the “TLS Server Hello” packet is ignored

and not used for the fingerprint construction.

96

Chapter 6

Conclusion

6.1 Synopsis of Contributions

In this work, we discussed the fine-grained identification of events over encrypted network

traffic focusing on scalability and maintainability. For the application event detection use

case, we demonstrated that (i) a simple regex-inspired language is expressive enough to

achieve a minimum hit rate of 84%, (ii) the proprietary DPI engine processed an average

of 109 Gbps with no packet loss, and (iii) the rule extraction is amenable to data mining

techniques. Similarly, for the use case of malicious activity detection, we demonstrate a

methodology to mine signatures for intrusion detection in encrypted networks. We show

that a simple signature language can be expressive and effective enough also for intrusion

detection in encrypted networks, while it can achieve a processing throughput of up to

85Gbps (the implementation details of this proof-of-concept DPI engine is presented in

§ 2.2.3). The work focuses on a real-world implementation because we believe that just

like substring pattern matching is a requirement in a state-of-the-art network monitoring

system, so is packet metadata sequence matching, even if techniques such as encryption

and traffic analysis resistance exist to evade them.

We also explore how botnets evolve in time and the fingerprint overlapping with legiti-

mate servers. By actively contacting IP addresses of known command and control servers,

we create a database of TLS server fingerprints grouped by botnet. We show that an out-

97

98 Chapter 6. Conclusion

dated list of fingerprints can cause false positives. We narrow down the size of the finger-

print to avoid analysis circumvention techniques applied by malicious servers. Investigat-

ing the existence of those fingerprints into blocklists of maliciously acting IP addresses,

we are able to (re-)identify the same TLS server configurations that could indicate specific

botnet activity, based on our knowledge base.

The key takeaways of this dissertation are the following:

• Encrypted traffic inspection is feasible using patterns of packet metadata sequences

• Packet metadata sequences can be described using a simple yet expressive language

that also enables automated mining

• With the integration of the pattern language into two different DPI engines (one pro-

prietary and one proof-of-concept), we demonstrate that it can achieve high process-

ing throughput for real-time processing

• Although botnets operate using encrypted traffic nowadays, we can still determine a

server’s activity from a TLS fingerprint

• As time passes, we observe higher fingerprint overlapping between malicious and

legitimate servers that causes accuracy degradation; this implies the need to update

the fingerprint database frequently

6.2 Directions for Future Work and Research

There are several aspects that are worth further work and research. Specifically, we plan to

generate signatures and evaluate our methodology using more traffic captures from other

popular malware families. Also, we aim to examine (i) how we can approach traffic inspec-

tion for encrypted protocols that multiplex network flows (e.g., VPN) and (ii) how sensitive

our patterns are to more network stack implementations of endpoints. Of course, we plan

6.2. Directions for Future Work and Research 99

to enhance and fine-tune our proof-of-concept DPI engine (described in Section 2.2.3) to

achieve the optimal end-to-end processing performance.

As future work for the characterization of malicious servers on the Internet, we aim to

enrich our TLS fingerprints database with more and different botnets, explore approaches

that could help us recognize the randomization of cipher suite vectors and measure how

common this randomization is and in which botnet families. We will perform a more in

depth analysis of those server TLS responses specifically to uncommon “TLS Client Hello”

configurations. Finally, we plan to further verify our findings by monitoring and analyzing

each malware by installing it in a virtual environment.

100

Bibliography

[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé. Multi-
classification approaches for classifying mobile app traffic. Journal of Network and
Computer Applications, 103:131–145, 2018.

[2] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapè.
Mimetic: Mobile encrypted traffic classification using multimodal deep learning.
Computer Networks, 165:106944, 2019.

[3] Alfred V Aho and Margaret J Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975.

[4] Fabio Aiolli, Mauro Conti, Ankit Gangwal, and Mirko Polato. Mind your wallet’s
privacy: identifying bitcoin wallet apps and user’s actions through network traffic
analysis. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
pages 1484–1491. ACM, 2019.

[5] Hasan Faik Alan and Jasleen Kaur. Can Android applications be identified using
only TCP/IP headers of their launch time traffic? In Proceedings of the 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, pages 61–66. ACM,
2016.

[6] Payam Vahdani Amoli, Timo Hamalainen, Gil David, Mikhail Zolotukhin, and
Mahsa Mirzamohammad. Unsupervised network intrusion detection systems for
zero-day fast-spreading attacks and botnets. JDCTA (International Journal of Digi-
tal Content Technology and its Applications, 10(2):1–13, 2016.

[7] Blake Anderson and David McGrew. Machine learning for encrypted malware traffic
classification: accounting for noisy labels and non-stationarity. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1723–1732. ACM, 2017.

[8] Blake Anderson and David McGrew. Tls beyond the browser: Combining end host
and network data to understand application behavior. In Proceedings of the Internet
Measurement Conference, pages 379–392, 2019.

[9] Hassan Jameel Asghar, Luca Melis, Cyril Soldani, Emiliano De Cristofaro, Mo-
hamed Ali Kaafar, and Laurent Mathy. Splitbox: Toward efficient private network
function virtualization. In Proceedings of the 2016 workshop on Hot topics in Middle-
boxes and Network Function Virtualization, pages 7–13, 2016.

101

102 Bibliography

[10] Giuseppe Ateniese, Briland Hitaj, Luigi Vincenzo Mancini, Nino Vincenzo Verde,
and Antonio Villani. No place to hide that bytes won’t reveal: Sniffing location-based
encrypted traffic to track a user’s position. In International Conference on Network
and System Security, pages 46–59. Springer, 2015.

[11] Laurent Bernaille and Renata Teixeira. Early recognition of encrypted applications.
In International Conference on Passive and Active Network Measurement, pages 165–
175. Springer, 2007.

[12] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave
Salamatian. Traffic classification on the fly. ACM SIGCOMM Computer Commu-
nication Review, 36(2):23–26, 2006.

[13] Martin Björklund, Marcus Julin, Philip Antonsson, Andreas Stenwreth, Malte Åkvist,
Tobias Hjalmarsson, and Romaric Duvignau. I see what you’re watching on your
streaming service: Fast identification of dash encrypted network traces. In 2023
IEEE 20th Consumer Communications & Networking Conference (CCNC), pages
1116–1122. IEEE, 2023.

[14] Jonas Bushart and Christian Rossow. Padding ain’t enough: Assessing the privacy
guarantees of encrypted {DNS}. In 10th {USENIX}Workshop on Free and Open Com-
munications on the Internet ({FOCI} 20), 2020.

[15] Xiang Cai, Rishab Nithyanand, and Rob Johnson. Cs-buflo: A congestion sensitive
website fingerprinting defense. In Proceedings of the 13th Workshop on Privacy in
the Electronic Society, pages 121–130. ACM, 2014.

[16] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a dis-
tance: Website fingerprinting attacks and defenses. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 605–616. ACM, 2012.

[17] Sébastien Canard, Aı̈da Diop, Nizar Kheir, Marie Paindavoine, and Mohamed Sabt.
Blindids: Market-compliant and privacy-friendly intrusion detection system over
encrypted traffic. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 561–574, 2017.

[18] Brian Carpenter and Scott Brim. Middleboxes: Taxonomy and issues. Technical
report, RFC 3234, February, 2002.

[19] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and David G
Andersen. Splitscreen: Enabling efficient, distributed malware detection. Journal of
Communications and Networks, 13(2):187–200, 2011.

[20] Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George Danezis, and
Carmela Troncoso. Taranet: Traffic-analysis resistant anonymity at the network
layer. arXiv preprint arXiv:1802.08415, 2018.

Bibliography 103

[21] Yi-Chao Chen, Yong Liao, Mario Baldi, Sung-Ju Lee, and Lili Qiu. Os fingerprinting
and tethering detection in mobile networks. In Proceedings of the 2014 Conference
on Internet Measurement Conference, pages 173–180. ACM, 2014.

[22] Mauro Conti, Luigi V Mancini, Riccardo Spolaor, and Nino Vincenzo Verde. Can’t
you hear me knocking: Identification of user actions on android apps via traffic anal-
ysis. In Proceedings of the 5th ACM Conference on Data and Application Security and
Privacy, pages 297–304. ACM, 2015.

[23] Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo Verde.
Analyzing android encrypted network traffic to identify user actions. IEEE Transac-
tions on Information Forensics and Security, 11(1):114–125, 2016.

[24] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti, Ali
Zand, Christopher Kruegel, and Giovanni Vigna. Obfuscation-resilient privacy leak
detection for mobile apps through differential analysis. In Proceedings of the ISOC
Network and Distributed System Security Symposium (NDSS), pages 1–16, 2017.

[25] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous
messaging system handling millions of users. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 321–338. IEEE, 2015.

[26] Michael Coughlin, Eric Keller, and Eric Wustrow. Trusted click: Overcoming security
issues of nfv in the cloud. In Proceedings of the ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization, pages 31–
36, 2017.

[27] Scott E Coull and Kevin P Dyer. Traffic analysis of encrypted messaging services:
Apple imessage and beyond. ACM SIGCOMM Computer Communication Review,
44(5):5–11, 2014.

[28] Michelangelo Cruz, Roel Ocampo, Isabel Montes, and Rowel Atienza. Fingerprinting
bittorrent traffic in encrypted tunnels using recurrent deep learning. In 2017 Fifth
International Symposium on Computing and Networking (CANDAR), pages 434–438.
IEEE, 2017.

[29] Helei Cui, Yajin Zhou, Cong Wang, Qi Li, and Kui Ren. Towards privacy-preserving
malware detection systems for android. In 2018 IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS), pages 545–552. IEEE, 2018.

[30] Dimitris Deyannis, Eva Papadogiannaki, Giorgos Kalivianakis, Giorgos Vasiliadis,
and Sotiris Ioannidis. Trustav: Practical and privacy preserving malware analysis
in the cloud. In Proceedings of the Tenth ACM Conference on Data and Application
Security and Privacy, pages 39–48, 2020.

[31] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, and Konstantina Papagian-
naki. Measuring video qoe from encrypted traffic. In Proceedings of the 2016 Internet
Measurement Conference, pages 513–526, 2016.

104 Bibliography

[32] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. Technical report, Naval Research Lab Washington DC, 2004.

[33] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A Ghorbani. Characterization of encrypted and vpn traffic using time-related. In
Proceedings of the 2nd international conference on information systems security and
privacy (ICISSP), pages 407–414, 2016.

[34] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui Ren.
Lightbox: Full-stack protected stateful middlebox at lightning speed. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 2351–2367, 2019.

[35] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J Alex Halderman, and Vern Paxson. The security impact
of https interception. In NDSS, 2017.

[36] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-
boo, i still see you: Why efficient traffic analysis countermeasures fail. In 2012 IEEE
symposium on security and privacy, pages 332–346. IEEE, 2012.

[37] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[38] Zubair Md Fadlullah, Tarik Taleb, Nirwan Ansari, Kazuo Hashimoto, Yutaka Miyake,
Yoshiaki Nemoto, and Nei Kato. Combating against attacks on encrypted protocols.
In 2007 IEEE International Conference on Communications, pages 1211–1216. IEEE,
2007.

[39] Jingyuan Fan, Chaowen Guan, Kui Ren, Yong Cui, and Chunming Qiao. Spabox: Safe-
guarding privacy during deep packet inspection at a middlebox. IEEE/ACM Transac-
tions on Networking (TON), 25(6):3753–3766, 2017.

[40] Yebo Feng, Jianzhen Luo, Chengyan Ma, Teng Li, and Liang Hui. I can still observe
you: Flow-level behavior fingerprinting for online social network. In GLOBECOM
2022-2022 IEEE Global Communications Conference, pages 6427–6432. IEEE, 2022.

[41] Philippe Fournier-Viger, Antonio Gomariz, Manuel Campos, and Rincy Thomas.
Fast vertical mining of sequential patterns using co-occurrence information. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 40–52.
Springer, 2014.

[42] Philippe Fournier-Viger, Cheng-Wei Wu, Antonio Gomariz, and Vincent S Tseng.
Vmsp: Efficient vertical mining of maximal sequential patterns. In Canadian confer-
ence on artificial intelligence, pages 83–94. Springer, 2014.

Bibliography 105

[43] Sergey Frolov and Eric Wustrow. The use of tls in censorship circumvention. In
NDSS, 2019.

[44] Chuanpu Fu, Qi Li, and Ke Xu. Detecting unknown encrypted malicious traffic in
real time via flow interaction graph analysis. arXiv preprint arXiv:2301.13686, 2023.

[45] Yanjie Fu, Hui Xiong, Xinjiang Lu, Jin Yang, and Can Chen. Service usage classifica-
tion with encrypted internet traffic in mobile messaging apps. IEEE Transactions on
Mobile Computing, 15(11):2851–2864, 2016.

[46] David Goltzsche, Signe Rüsch, Manuel Nieke, Sébastien Vaucher, Nico Weichbrodt,
Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa, Christof Fetzer, Pascal Felber,
et al. Endbox: Scalable middlebox functions using client-side trusted execution.
In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 386–397. IEEE, 2018.

[47] Antonio Gomariz, Manuel Campos, Roque Marin, and Bart Goethals. Clasp: An effi-
cient algorithm for mining frequent closed sequences. In Jian Pei, Vincent S. Tseng,
Longbing Cao, Hiroshi Motoda, and Guandong Xu, editors, Advances in Knowledge
Discovery and Data Mining, pages 50–61, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[48] Yu Guo, Mingyue Wang, Cong Wang, Xingliang Yuan, and Xiaohua Jia. Privacy-
preserving packet header checking over in-the-cloud middleboxes. IEEE Internet
of Things Journal, 2020.

[49] Ibbad Hafeez, Markku Antikainen, and Sasu Tarkoma. Protecting iot-environments
against traffic analysis attacks with traffic morphing. In 2019 IEEE International Con-
ference on Pervasive Computing and Communications Workshops (PerCom Work-
shops), pages 196–201. IEEE, 2019.

[50] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han. Sgx-box: Enabling
visibility on encrypted traffic using a secure middlebox module. In Proceedings of
the First Asia-Pacific Workshop on Networking, pages 99–105. ACM, 2017.

[51] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprint-
ing: Attacking popular privacy enhancing technologies with the multinomial naı̈ve-
bayes classifier. In Proceedings of the 2009 ACM Workshop on Cloud Computing Se-
curity, CCSW ’09, pages 31–42, New York, NY, USA, 2009. ACM.

[52] Nguyen Phong Hoang, Michalis Polychronakis, and Phillipa Gill. Measuring the ac-
cessibility of domain name encryption and its impact on internet filtering. In In-
ternational Conference on Passive and Active Network Measurement, pages 518–536.
Springer, 2022.

[53] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. New directions in
automated traffic analysis. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 3366–3383, 2021.

106 Bibliography

[54] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The parrot is dead: Ob-
serving unobservable network communications. In 2013 IEEE Symposium on Secu-
rity and Privacy, pages 65–79. IEEE, 2013.

[55] Minghao Jiang, Gaopeng Gou, Junzheng Shi, and Gang Xiong. I know what you are
doing with remote desktop. In 2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC), pages 1–7. IEEE, 2019.

[56] Steven Jorgensen, John Holodnak, Jensen Dempsey, Karla de Souza, Ananditha
Raghunath, Vernon Rivet, Noah DeMoes, Andrés Alejos, and Allan Wollaber. Exten-
sible machine learning for encrypted network traffic application labeling via uncer-
tainty quantification. IEEE Transactions on Artificial Intelligence, 2023.

[57] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A critical
evaluation of website fingerprinting attacks. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 263–274. ACM, 2014.

[58] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. Blinc:
multilevel traffic classification in the dark. In ACM SIGCOMM Computer Commu-
nication Review, volume 35, pages 229–240. ACM, 2005.

[59] Muhammad Jawad Khokhar, Thibaut Ehlinger, and Chadi Barakat. From network
traffic measurements to qoe for internet video. In 2019 IFIP Networking Conference
(IFIP Networking), pages 1–9. IEEE, 2019.

[60] Platon Kotzias, Leyla Bilge, Pierre-Antoine Vervier, and Juan Caballero. Mind your
own business: A longitudinal study of threats and vulnerabilities in enterprises. In
NDSS, 2019.

[61] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G Paterson, Narseo
Vallina-Rodriguez, and Juan Caballero. Coming of age: A longitudinal study of tls
deployment. In Proceedings of the Internet Measurement Conference 2018, pages
415–428, 2018.

[62] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas. Cir-
cuit fingerprinting attacks: Passive deanonymization of tor hidden services. In 24th
{USENIX} Security Symposium ({USENIX} Security 15), pages 287–302, 2015.

[63] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. Atom: Hori-
zontally scaling strong anonymity. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles, pages 406–422. ACM, 2017.

[64] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi Liu. Embark:
Securely outsourcing middleboxes to the cloud. In 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), pages 255–273, 2016.

[65] Arash Habibi Lashkari, Andi Fitriah A Kadir, Hugo Gonzalez, Kenneth Fon Mbah,
and Ali A Ghorbani. Towards a network-based framework for android malware de-
tection and characterization. In 2017 15th Annual Conference on Privacy, Security
and Trust (PST), pages 233–23309. IEEE, 2017.

Bibliography 107

[66] Martin Lavstovivcka, Stanislav Spavcek, Petr Velan, and Pavel Celeda. Dataset: Us-
ing tls fingerprints for os identification in encrypted traffic. In NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium, pages 1–6. IEEE, 2020.

[67] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas Gjoka, and
Athina Markopoulou. Antmonitor: A system for monitoring from mobile devices.
In Proceedings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing and Crowd-
sharing of Big (Internet) Data, pages 15–20. ACM, 2015.

[68] Stevens Le Blond, David Choffnes, William Caldwell, Peter Druschel, and Nicholas
Merritt. Herd: A scalable, traffic analysis resistant anonymity network for voip sys-
tems. In ACM SIGCOMM Computer Communication Review, volume 45, pages 639–
652. ACM, 2015.

[69] Xigao Li, Babak Amin Azad, Amir Rahmati, and Nick Nikiforakis. Good bot, bad bot:
Characterizing automated browsing activity. In 2021 IEEE symposium on security
and privacy (sp), page 17, 2021.

[70] Junjie Liang, Wenbo Guo, Tongbo Luo, Honavar Vasant, Gang Wang, and Xinyu Xing.
Fare: Enabling fine-grained attack categorization under low-quality labeled data.
In Proceedings of The Network and Distributed System Security Symposium (NDSS),
2021.

[71] Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted http con-
nections. In Proceedings of the 13th ACM conference on Computer and communica-
tions security, pages 255–263. ACM, 2006.

[72] Junming Liu, Yanjie Fu, Jingci Ming, Yong Ren, Leilei Sun, and Hui Xiong. Effective
and real-time in-app activity analysis in encrypted internet traffic streams. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 335–344. ACM, 2017.

[73] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime Lloret.
Network traffic classifier with convolutional and recurrent neural networks for inter-
net of things. IEEE Access, 5:18042–18050, 2017.

[74] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Computing, pages 1–14, 2017.

[75] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. Website fingerprinting and
identification using ordered feature sequences. In European Symposium on Re-
search in Computer Security, pages 199–214. Springer, 2010.

[76] Xiapu Luo, Peng Zhou, Edmond WW Chan, Wenke Lee, Rocky KC Chang, and
Roberto Perdisci. Httpos: Sealing information leaks with browser-side obfuscation
of encrypted flows. In NDSS, volume 11. Citeseer, 2011.

108 Bibliography

[77] M Hammad Mazhar and Zubair Shafiq. Real-time video quality of experience mon-
itoring for https and quic. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 1331–1339. IEEE, 2018.

[78] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an
ensemble of autoencoders for online network intrusion detection. arXiv preprint
arXiv:1802.09089, 2018.

[79] Antonio Montieri, Domenico Ciuonzo, Giampaolo Bovenzi, Valerio Persico, and
Antonio Pescapé. A dive into the dark web: Hierarchical traffic classification of
anonymity tools. IEEE Transactions on Network Science and Engineering, 2019.

[80] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network in-
trusion detection systems (unsw-nb15 network data set). In 2015 military commu-
nications and information systems conference (MilCIS), pages 1–6. IEEE, 2015.

[81] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Peter
Steenkiste. And then there were more: Secure communication for more than two
parties. In Proceedings of the 13th International Conference on emerging Networking
EXperiments and Technologies, pages 88–100. ACM, 2017.

[82] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter
Steenkiste. Multi-context tls (mctls): Enabling secure in-network functionality in tls.
ACM SIGCOMM Computer Communication Review, 45(4):199–212, 2015.

[83] Jianting Ning, Geong Sen Poh, Jia-Ch’ng Loh, Jason Chia, and Ee-Chien Chang.
Privdpi: Privacy-preserving encrypted traffic inspection with reusable obfuscated
rules. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1657–1670, 2019.

[84] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove: A bespoke website finger-
printing defense. In Proceedings of the 13th Workshop on Privacy in the Electronic
Society, pages 131–134. ACM, 2014.

[85] Quamar Niyaz, Weiqing Sun, and Ahmad Y Javaid. A deep learning based ddos detec-
tion system in software-defined networking (sdn). arXiv preprint arXiv:1611.07400,
2016.

[86] Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov. Youtube qoe es-
timation based on the analysis of encrypted network traffic using machine learning.
In 2016 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2016.

[87] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zinnen,
Martin Henze, and Klaus Wehrle. Website fingerprinting at internet scale. In NDSS,
2016.

Bibliography 109

[88] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website
fingerprinting in onion routing based anonymization networks. In Proceedings of
the 10th annual ACM workshop on Privacy in the electronic society, pages 103–114.
ACM, 2011.

[89] Eva Papadogiannaki, Dimitris Deyannis, and Sotiris Ioannidis. Head (er) hunter:
Fast intrusion detection using packet metadata signatures. In 2020 IEEE 25th In-
ternational Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), pages 1–6. IEEE, 2020.

[90] Eva Papadogiannaki, Constantinos Halevidis, Periklis Akritidis, and Lazaros Koromi-
las. Otter: A scalable high-resolution encrypted traffic identification engine. In Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses, pages 315–334.
Springer, 2018.

[91] Eva Papadogiannaki and Sotiris Ioannidis. Acceleration of intrusion detection in
encrypted network traffic using heterogeneous hardware. Sensors, 21(4):1140, 2021.

[92] Eva Papadogiannaki and Sotiris Ioannidis. A survey on encrypted network traffic
analysis applications, techniques, and countermeasures. ACM Computing Surveys
(CSUR), 54(6):1–35, 2021.

[93] Eva Papadogiannaki and Sotiris Ioannidis. Pump up the jarm: Studying the evolu-
tion of botnets using active tls fingerprinting. In 2023 IEEE Symposium on Comput-
ers and Communications (ISCC), pages 764–770. IEEE, 2023.

[94] Eva Papadogiannaki, Lazaros Koromilas, Giorgos Vasiliadis, and Sotiris Ioannidis.
Efficient software packet processing on heterogeneous and asymmetric hardware
architectures. IEEE/ACM Transactions on Networking, 25(3):1593–1606, 2017.

[95] Eva Papadogiannaki, Giorgos Tsirantonakis, and Sotiris Ioannidis. Network intru-
sion detection in encrypted traffic. In 2022 IEEE Conference on Dependable and
Secure Computing (DSC), pages 1–8. IEEE, 2022.

[96] Muhammad Talha Paracha, Daniel J Dubois, Narseo Vallina-Rodriguez, and David
Choffnes. Iotls: understanding tls usage in consumer iot devices. In Proceedings of
the 21st ACM Internet Measurement Conference, pages 165–178, 2021.

[97] Mike Perry. Experimental defense for website traffic fingerprinting. Tor project blog,
2011.

[98] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Safebricks:
Shielding network functions in the cloud. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 18), pages 201–216, 2018.

[99] Elias Raftopoulos, Eduard Glatz, Xenofontas Dimitropoulos, and Alberto Dainotti.
How dangerous is internet scanning? a measurement study of the aftermath of

110 Bibliography

an internet-wide scan. In Traffic Monitoring and Analysis: 7th International Work-
shop, TMA 2015, Barcelona, Spain, April 21-24, 2015. Proceedings 7, pages 158–172.
Springer, 2015.

[100] Marianna Rapoport, Philippe Suter, Erik Wittern, Ondrej Lhótak, and Julian Dolby.
Who you gonna call? analyzing web requests in android applications. In Mining Soft-
ware Repositories (MSR), 2017 IEEE/ACM 14th International Conference on, pages
80–90. IEEE, 2017.

[101] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth Sun-
daresan, Johanna Amann, and Phillipa Gill. Studying tls usage in android apps. In
Proceedings of the 13th International Conference on emerging Networking EXperi-
ments and Technologies, pages 350–362, 2017.

[102] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian
Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson. Haystack: In situ mobile
traffic analysis in user space. ArXiv e-prints, 2015.

[103] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
Recon: Revealing and controlling pii leaks in mobile network traffic. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services, pages 361–374. ACM, 2016.

[104] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. Automated website fingerprinting through deep learning. arXiv preprint
arXiv:1708.06376, 2017.

[105] Luigi Rizzo, Marta Carbone, and Gaetano Catalli. Transparent acceleration of soft-
ware packet forwarding using netmap. In INFOCOM, 2012 Proceedings IEEE, pages
2471–2479. IEEE, 2012.

[106] Nicolás Rosner, Ismet Burak Kadron, Lucas Bang, and Tevfik Bultan. Profit: Detect-
ing and quantifying side channels in networked applications. In NDSS, 2019.

[107] Nicholas Ruffing, Ye Zhu, Rudy Libertini, Yong Guan, and Riccardo Bettati. Smart-
phone reconnaissance: operating system identification. In Consumer Communica-
tions & Networking Conference (CCNC), 2016 13th IEEE Annual, pages 1086–1091.
IEEE, 2016.

[108] Brendan Saltaformaggio, Hongjun Choi, Kristen Johnson, Yonghwi Kwon, Qi Zhang,
Xiangyu Zhang, Dongyan Xu, and John Qian. Eavesdropping on fine-grained user
activities within smartphone apps over encrypted network traffic. In WOOT, 2016.

[109] Dominik Schatzmann, Wolfgang Mühlbauer, Thrasyvoulos Spyropoulos, and Xeno-
fontas Dimitropoulos. Digging into https: flow-based classification of webmail traf-
fic. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement,
pages 322–327, 2010.

Bibliography 111

[110] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the burst: Remote
identification of encrypted video streams. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pages 1357–1374, 2017.

[111] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. Andro-
maly: a behavioral malware detection framework for android devices. Journal of
Intelligent Information Systems, 38(1):161–190, 2012.

[112] Asaf Shabtai, Lena Tenenboim-Chekina, Dudu Mimran, Lior Rokach, Bracha
Shapira, and Yuval Elovici. Mobile malware detection through analysis of deviations
in application network behavior. Computers & Security, 43:1–18, 2014.

[113] Khalid Shahbar and A Nur Zincir-Heywood. Packet momentum for identification of
anonymity networks. Journal of Cyber Security and Mobility, 6(1):27–56, 2017.

[114] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, Xiaojiang Du, and Yiting Liu. En-
crypted traffic classification of decentralized applications on ethereum using fea-
ture fusion. In Proceedings of the International Symposium on Quality of Service,
page 18. ACM, 2019.

[115] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox: Deep
packet inspection over encrypted traffic. ACM SIGCOMM Computer communication
review, 45(4):213–226, 2015.

[116] Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. A deep learning ap-
proach to network intrusion detection. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2(1):41–50, 2018.

[117] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. Classifying iot de-
vices in smart environments using network traffic characteristics. IEEE Transactions
on Mobile Computing, 18(8):1745–1759, 2018.

[118] Monika Skowron, Artur Janicki, and Wojciech Mazurczyk. Traffic fingerprinting at-
tacks on internet of things using machine learning. IEEE Access, 8:20386–20400,
2020.

[119] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security and
Privacy. S&P 2000, pages 44–55. IEEE, 2000.

[120] Yihang Song and Urs Hengartner. Privacyguard: A vpn-based platform to detect
information leakage on android devices. In Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices, pages 15–26.
ACM, 2015.

[121] Markus Sosnowski, Johannes Zirngibl, Patrick Sattler, and Georg Carle. Dissectls: A
scalable active scanner for tls server configurations, capabilities, and tls fingerprint-
ing. In Passive and Active Measurement: 24th International Conference, PAM 2023,
Virtual Event, March 21–23, 2023, Proceedings, pages 110–126. Springer, 2023.

112 Bibliography

[122] Markus Sosnowski, Johannes Zirngibl, Patrick Sattler, Georg Carle, Claas Grohnfeldt,
Michele Russo, and Daniele Sgandurra. Active tls stack fingerprinting: Characteriz-
ing tls server deployments at scale. arXiv preprint arXiv:2206.13230, 2022.

[123] Tarik Taleb, Zubair Md Fadlullah, Kazuo Hashimoto, Yoshiaki Nemoto, and Nei Kato.
Tracing back attacks against encrypted protocols. In Proceedings of the 2007 inter-
national conference on Wireless communications and mobile computing, pages 121–
126. ACM, 2007.

[124] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. Copper-
droid: automatic reconstruction of android malware behaviors. In Ndss, 2015.

[125] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir Ghogho.
Deep learning approach for network intrusion detection in software defined net-
working. In 2016 International Conference on Wireless Networks and Mobile Com-
munications (WINCOM), pages 258–263. IEEE, 2016.

[126] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network traffic. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P), pages 439–454.
IEEE, 2016.

[127] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. Robust smart-
phone app identification via encrypted network traffic analysis. IEEE Transactions
on Information Forensics and Security, 13(1):63–78, 2018.

[128] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. Shieldbox: Secure middleboxes using shielded execution. In
Proceedings of the Symposium on SDN Research, pages 1–14, 2018.

[129] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:
Scalable private messaging resistant to traffic analysis. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages 137–152. ACM, 2015.

[130] Thijs Van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J
Dubois, Martina Lindorfer, David Choffnes, Maarten van Steen, and Andreas Pe-
ter. Flowprint: Semi-supervised mobile-app fingerprinting on encrypted network
traffic. In Network and Distributed System Security Symposium (NDSS), volume 27,
2020.

[131] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P. Markatos,
and Sotiris Ioannidis. Gnort: High Performance Network Intrusion Detection Using
Graphics Processors. In Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection, 2008.

[132] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. MIDeA: A Multi-
Parallel Intrusion Detection Architecture. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, 2011.

Bibliography 113

[133] Andressa Vergütz, Bruna V dos Santos, Burak Kantarci, and Michele Nogueira. Data
instrumentation from iot network traffic as support for security management. IEEE
Transactions on Network and Service Management, 2023.

[134] Qinglong Wang, Amir Yahyavi, Bettina Kemme, and Wenbo He. I know what you did
on your smartphone: Inferring app usage over encrypted data traffic. In Communi-
cations and Network Security (CNS), 2015 IEEE Conference on, pages 433–441. IEEE,
2015.

[135] Shanshan Wang, Zhenxiang Chen, Lei Zhang, Qiben Yan, Bo Yang, Lizhi Peng, and
Zhongtian Jia. Trafficav: An effective and explainable detection of mobile malware
behavior using network traffic. In Quality of Service (IWQoS), 2016 IEEE/ACM 24th
International Symposium on, pages 1–6. IEEE, 2016.

[136] Tao Wang and Ian Goldberg. Walkie-talkie: An efficient defense against passive web-
site fingerprinting attacks. In 26th {USENIX} Security Symposium ({USENIX} Security
17), pages 1375–1390, 2017.

[137] Yaru Wang, Ning Zheng, Ming Xu, Tong Qiao, Qiang Zhang, Feipeng Yan, and Jian
Xu. Hierarchical identifier: Application to user privacy eavesdropping on mobile
payment app. Sensors, 19(14):3052, 2019.

[138] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. ProfileDroid:
multi-layer profiling of android applications. In Proceedings of the 18th annual in-
ternational conference on Mobile computing and networking, pages 137–148. ACM,
2012.

[139] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dis-
sent in numbers: Making strong anonymity scale. In OSDI, pages 179–182, 2012.

[140] Charles V Wright, Lucas Ballard, Scott E Coull, Fabian Monrose, and Gerald M Mas-
son. Spot me if you can: Uncovering spoken phrases in encrypted voip conversa-
tions. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages 35–49. IEEE,
2008.

[141] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing: An efficient
defense against statistical traffic analysis. In NDSS, volume 9. Citeseer, 2009.

[142] Hua Wu, Xin Li, Gang Wang, Guang Cheng, and Xiaoyan Hu. Resolution identifica-
tion of encrypted video streaming based on http/2 features. ACM Transactions on
Multimedia Computing, Communications and Applications, 19(2):1–23, 2023.

[143] Hongbo Xu, Shuhao Li, Zhenyu Cheng, Rui Qin, Jiang Xie, and Peishuai Sun. Traf-
ficgcn: Mobile application encrypted traffic classification based on gcn. In GLOBE-
COM 2022-2022 IEEE Global Communications Conference, pages 891–896. IEEE,
2022.

114 Bibliography

[144] Shichang Xu, Subhabrata Sen, and Z Morley Mao. Csi: inferring mobile abr video
adaptation behavior under https and quic. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[145] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J Alex Halderman, Je-
didiah R Crandall, and Roya Ensafi. {OpenVPN} is open to {VPN} fingerprinting. In
31st USENIX Security Symposium (USENIX Security 22), pages 483–500, 2022.

[146] Haipeng Yao, Pengcheng Gao, Jingjing Wang, Peiying Zhang, Chunxiao Jiang, and
Zhu Han. Capsule network assisted iot traffic classification mechanism for smart
cities. IEEE Internet of Things Journal, 6(5):7515–7525, 2019.

[147] Lu Yu, Qing Wang, Geddings Barrineau, Jon Oakley, Richard R Brooks, and Kuang-
Ching Wang. TARN: A SDN-based traffic analysis resistant network architecture.
arXiv preprint arXiv:1709.00782, 2017.

[148] Xingliang Yuan, Xinyu Wang, Jianxiong Lin, and Cong Wang. Privacy-preserving
deep packet inspection in outsourced middleboxes. In IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communications, pages
1–9. IEEE, 2016.

[149] Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa Syta, Chao Teng, and Bryan
Ford. AnonRep: Towards tracking-resistant anonymous reputation. In NSDI, pages
583–596, 2016.

[150] Dataset: The UNSW-NB15 Dataset. https://www.unsw.adfa.edu.au/

unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/. Accessed: 2020-05-
05.

[151] Dataset: The DARPA’99 Dataset. https://www.ll.mit.edu/r-d/datasets/

1999-darpa-intrusion-detection-evaluation-dataset, 1999. Accessed: 2021-02-
01.

[152] Dataset: The KDD Cup 1999 Dataset. http://kdd.ics.uci.edu/databases/

kddcup99/kddcup99.html, 1999. Accessed: 2021-02-01.

[153] Dataset: The LBNL/ICSI Dataset. https://www.icir.org/enterprise-tracing/
download.html, 2005. Accessed: 2021-02-01.

[154] Dataset: A detailed traceset of network activity at OSDI 2006. https://

ieee-dataport.org/open-access/crawdad-microsoftosdi2006, 2007. Accessed:
2021-02-01.

[155] Dataset: Wireless network measurement in the SIGCOMM 2008 conference. https:
//ieee-dataport.org/open-access/crawdad-umdsigcomm2008, 2008. Accessed:
2023-02-01.

[156] Dataset: The NSL-KDD Dataset. https://www.unb.ca/cic/datasets/nsl.html,
2009. Accessed: 2021-02-01.

Bibliography 115

[157] Dataset: Near Real Time SSL Notary Service. https://www.icsi.berkeley.edu/
icsi/node/5065, 2012. Accessed: 2023-05-01.

[158] Dataset: Space/Time Analysis for Cybersecurity (STAC) . https://www.darpa.mil/
program/space-time-analysis-for-cybersecurity, 2015. Accessed: 2021-02-01.

[159] Dataset: FingerprinTLS. https://github.com/synackpse/tls-fingerprinting,
2016. Accessed: 2023-05-01.

[160] Dataset: The UNB ISCX VPN-nonVPN Dataset. https://www.unb.ca/cic/

datasets/vpn.html, 2016. Accessed: 2021-02-01.

[161] Dataset: The USTC-TFC2016 Dataset. https://github.com/yungshenglu/

USTC-TFC2016, 2016. Accessed: 2021-02-01.

[162] Dataset: Intrusion Detection Evaluation Datasets (CIC-IDS2017). https://www.unb.
ca/cic/datasets/ids-2017.html, 2017. Accessed: 2023-5-13.

[163] Dataset: The Anon17 Dataset. https://projects.cs.dal.ca/projectx/Download.
html, 2017. Accessed: 2023-02-01.

[164] Dataset: The Recon Dataset. https://recon.meddle.mobi/appversions/, 2018. Ac-
cessed: 2021-02-01.

[165] Dataset: DDoS Evaluation (CIC-DDoS2019). https://www.unb.ca/cic/datasets/
ddos-2019.html, 2019. Accessed: 2023-5-13.

[166] Dataset: Encrypted Network Traffic Classification using Deep Learning. https://
soeai.github.io/MAppGraph/, 2019. Accessed: 2023-04-01.

[167] Dataset: Mercury network metadata capture and analysis. https://github.com/
cisco/mercury, 2019. Accessed: 2023-05-01.

[168] Dataset: TLS Fingerprints for OS Identification in Encrypted Traffic. https://

zenodo.org/record/3461771, 2019. Accessed: 2021-02-01.

[169] Dataset: MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/,
2020. Accessed: 2023-05-01.

[170] Dataset: VPN/NONVPN Network Application Traffic
Dataset (VNAT). https://www.ll.mit.edu/r-d/datasets/

vpnnonvpn-network-application-traffic-dataset-vnat, 2020. Accessed:
2023-04-01.

[171] Dataset: IoT-23 dataset. A labeled dataset with malicious and benign IoT network
traffic. https://www.stratosphereips.org/datasets-iot23, 2021. Accessed: 2021-
7-13.

[172] Dataset: The ISCX Dataset. https://www.unb.ca/cic/datasets/ids.html, 2021.
Accessed: 2021-02-01.

116 Bibliography

[173] Webpage: Android tcpdump. https://www.androidtcpdump.com. Accessed: 2018-
03-09.

[174] Webpage: Application Layer Packet Classifier for Linux. Available: http://
l7-filter.sourceforge.net/. Accessed: 2020-05-05.

[175] Webpage: Busybox (android application). https://play.google.com/store/apps/
details?id=stericson.busybox&hl=en. Accessed: 2018-03-09.

[176] Webpage: netstat(8) - linux man page. https://linux.die.net/man/8/netstat. Ac-
cessed: 2020-05-05.

[177] Webpage: OpenCL. Available: http://www.khronos.org/opencl/. Accessed: 2020-
05-05.

[178] Webpage: OpenCL Vector Data Types. https://www.khronos.org/registry/

OpenCL/sdk/1.0/docs/man/xhtml/vectorDataTypes.html. Accessed: 2019-07-11.

[179] Webpage: Intel Software Guard Extensions. https://software.intel.com/

content/www/us/en/develop/topics/software-guard-extensions.html, 2014.
Accessed: 2020-07-05.

[180] Webpage: A Transport Layer Security (TLS) ClientHello Padding Extension. https:
//datatracker.ietf.org/doc/html/rfc7685, 2015. Accessed: 2020-7-17.

[181] Webpage: FingerPrinTLS. https://github.com/LeeBrotherston/

tls-fingerprinting/tree/master/fingerprintls, 2016. Accessed: 2022-1-23.

[182] Webpage: Joy: A package for capturing and analyzing network flow data and in-
traflow data, for network research, forensics, and security monitoring. http://www.
dvwa.co.uk, 2017. Accessed: 2020-10-11.

[183] Webpage: JA3: A method for profiling SSL/TLS Clients. https://github.com/

salesforce/ja3, 2018. Accessed: 2022-1-23.

[184] Webpage: The Transport Layer Security (TLS) Protocol Version 1.3. https://tools.
ietf.org/html/rfc8446, 2018. Accessed: 2020-10-29.

[185] Webpage: A nonprofit Certificate Authority providing TLS certificates to 225 mil-
lion websites.: 2019 Annual Report. https://abetterinternet.org/documents/
2019-ISRG-Annual-Report-Desktop.pdf, 2019. Accessed: 2020-10-29.

[186] Webpage: Encrypted Traffic Analysis. https://www.enisa.europa.eu/

publications/encrypted-traffic-analysis, 2019. Accessed: 2023-05-05.

[187] Webpage: TLS 1.3: One Year Later. https://www.ietf.org/blog/tls13-adoption/,
2019. Accessed: 2020-10-29.

[188] Webpage: Automatic SQL injection and database takeover tool. http://sqlmap.org,
2020. Accessed: 2020-25-11.

Bibliography 117

[189] Webpage: Cisco Encrypted Traffic Analytics. https://www.cisco.com/c/en/

us/solutions/enterprise-networks/enterprise-network-security/eta.html,
2020. Accessed: 2020-05-05.

[190] Webpage: Damn Vulnerable Web Application (DVWA). https://github.com/

cisco/joy, 2020. Accessed: 2020-10-11.

[191] Webpage: Dirbuster. https://tools.kali.org/web-applications/dirbuster,
2020. Accessed: 2020-25-11.

[192] Webpage: Easily Identify Malicious Servers on the Inter-
net with JARM. https://engineering.salesforce.com/

easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a/,
2020. Accessed: 2022-7-10.

[193] Webpage: Hydra Package Description. https://tools.kali.org/

password-attacks/hydra, 2020. Accessed: 2020-25-11.

[194] Webpage: JARM: An active Transport Layer Security (TLS) server fingerprinting tool.
https://github.com/salesforce/jarm, 2020. Accessed: 2022-1-23.

[195] Webpage: Let’s Encrypt. https://letsencrypt.org, 2020. Accessed: 2020-10-29.

[196] Webpage: Metasploit: The world’s most used penetration testing framework. https:
//www.metasploit.com, 2020. Accessed: 2020-25-11.

[197] Webpage: Nikto. https://tools.kali.org/information-gathering/nikto, 2020.
Accessed: 2020-25-11.

[198] Webpage: Nmap Security Scanner. https://nmap.org, 2020. Accessed: 2020-25-11.

[199] Webpage: OpenCL runtimes: Obtain runtimes to execute or develop OpenCL
applications on Intel Processors. https://www.intel.com/content/www/us/en/

developer/articles/tool/opencl-drivers.html#proc-graph-section, 2020. Ac-
cessed: 2023-03-03.

[200] Webpage: Openvpn. https://openvpn.net, 2020. Accessed: 2020-05-05.

[201] Webpage: Snort: README.ssl. Available: https://www.snort.org/faq/readme-ssl,
2020. Accessed on Oct. 28, 2020.

[202] Webpage: Suricata Open Source IDS / IPS / NSM engine . Available: https://www.
suricata-ids.org/, 2020. Accessed: 2020-05-05.

[203] Webpage: The Snort IDS/IPS. Available: https://www.snort.org/, 2020. Accessed:
2020-05-05.

[204] Webpage: The Zeek Network Security Monitor. Available: https://www.zeek.org/,
2020. Accessed: 2020-05-05.

118 Bibliography

[205] Webpage: Tor project. https://www.torproject.org, 2020. Accessed: 2020-05-05.

[206] Webpage: blocklist.de. https://lists.blocklist.de/lists/, 2021. Accessed:
2022-1-03.

[207] Webpage: Encrypted Network Traffic Analysis, Transformation and Normalization
Techniques. https://www.cybersane-project.eu/files/2023/01/CyberSANE_

Deliverable_3.2_Encrypted_Network_Traffic_Analysis_Transformation_and_

Normalization_Techniques_v2.pdf, 2021. Accessed: 2023-05-05.

[208] Webpage: Malware Capture Facility Project. Normal Datasets. https://www.

stratosphereips.org/datasets-normal, 2021. Accessed: 2021-2-25.

[209] Webpage: MISP - Open Source Threat Intelligence Platform & Open Standards
For Threat Information Sharing. https://www.misp-project.org, 2021. Accessed:
2022-1-03.

[210] Webpage: Snort Community rules 3100. https://www.snort.org/downloads/

community/snort3-community-rules.tar.gz, 2021. Accessed: 2021-2-25.

[211] Webpage: Spamhaus Botnet Threat Update: Q4-2021. https://www.spamhaus.org/
news/article/817/spamhaus-botnet-threat-update-q4-2021, 2021. Accessed:
2022-07-15.

[212] Webpage: The 2021 TLS Telemetry Report. https://www.f5.com/labs/articles/
threat-intelligence/the-2021-tls-telemetry-report, 2021. Accessed: 2022-07-
15.

[213] Webpage: The CINS Score CI-Badguys list . https://cinsscore.com/list/

ci-badguys.txt, 2021. Accessed: 2022-1-03.

[214] Webpage: The Feodo Tracker Botnet C2 IP Blocklist. https://feodotracker.abuse.
ch/downloads/ipblocklist.csv, 2021. Accessed: 2022-1-03.

[215] Webpage: The Majestic Million. https://downloads.majestic.com/majestic_

million.csv, 2021. Accessed: 2022-1-03.

[216] Webpage: The MalSilo IPv4 feed. https://malsilo.gitlab.io/feeds/dumps/ip_
list.txt, 2021. Accessed: 2022-1-03.

[217] Webpage: ThreatLabz State of Encrypted Attacks 2022 Report. https://www.

zscaler.com/blogs/security-research/2022-encrypted-attacks-report, 2022.
Accessed: 2023-06-04.

[218] Webpage: TLS Ciphersuite Search. https://ciphersuite.info, 2022. Accessed:
2022-10-31.

[219] Webpage: Search Engine for the Internet of Everything. https://www.shodan.io,
2023. Accessed: 2023-02-13.

[220] Webpage: The Censys Platform. https://censys.io, 2023. Accessed: 2023-06-04.

Appendix A
Publications

A considerable part of this work (Section 2.2 and Chapter 4) was implemented in the con-

text of the CyberSANE project funded by the European Commission under Horizon 20201.

More specifically, FORTH participated in and led Task 3.3 “Encrypted Network Traffic Anal-

ysis” and contributed to the deliverable D3.2 “Encrypted Network Traffic Analysis, Trans-

formation and Normalization Techniques” [207], where I had the opportunity to describe

the motivation for my work, develop a system, test and demonstrate it2 via one use case

defined in the energy pilot (Lightsource Labs3). The pilot demonstrated, tested and vali-

dated the CyberSANE System, by showcasing a variety of potential cyber-attack scenarios

within the Solar Energy management platform, used for a number of digital services such

as helping secure the electrical grid and reducing the cost of electricity. Our work in the

context of CyberSANE produced four publications [89, 91, 92, 95]. In addition, our work

in Task 3.3 was selected by the European Commission’s Innovation Radar in the domain

of secure networks and computing. Section 2.1 describes the work conducted during my

6-month internship in Niometrics4, back in 2018. There, I had the opportunity to identify

the need to build a system able to inspect encrypted network traffic in real-time, solely

by monitoring network packet metadata. After the end of the internship, we published a

paper describing our work in mobile application analytics against encrypted network traf-

fic [90]. In addition, I was honoured to participate in a report published by ENISA in 2019

1https://www.cybersane-project.eu
2https://www.cybersane-project.eu/cybersane-pilot-case-study-2/
3https://www.lightsourcelabs.com/
4http://niometrics.com

119

120 Appendix A. Publications

demonstrating the state-of-the-art in the domain of encrypted traffic analysis [186], while

our extensive literature review was published in [92]. Finally, part of Chapter 3 is presented

in [93].

Publications (peer-reviewed)

The research activity related to this thesis has so far produced the following publications

(ordered by publication date):

1. Pump Up the JARM: Studying the Evolution of Botnets Using Active TLS Fingerprint-

ing. Eva Papadogiannaki, Sotiris Ioannidis. 2023 IEEE Symposium on Computers

and Communications (ISCC). [93]

2. Network Intrusion Detection in Encrypted Traffic. Eva Papadogiannaki, Giorgos Tsir-

antonakis, Sotiris Ioannidis. 2022 IEEE Conference on Dependable and Secure Com-

puting (DSC). [95]

3. A survey on encrypted network traffic analysis applications, techniques, and coun-

termeasures. Eva Papadogiannaki, Sotiris Ioannidis. 2021 ACM Computing Surveys

(CSUR). [92]

4. Acceleration of intrusion detection in encrypted network traffic using heterogeneous

hardware. Eva Papadogiannaki, Sotiris Ioannidis. 2021 Sensors. [91]

5. Head (er) Hunter: fast intrusion detection using packet metadata signatures. Eva Pa-

padogiannaki, Dimitris Deyannis, Sotiris Ioannidis. 2020 IEEE 25th International

Workshop on Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD). [89]

6. Otter: A scalable high-resolution encrypted traffic identification engine. Eva Papado-

giannaki, Constantinos Halevidis, Periklis Akritidis, Lazaros Koromilas. 2018 Inter-

national Symposium on Research in Attacks, Intrusions, and Defenses (RAID). [90]

121

Publications (deliverables/reports)

1. Encrypted Network Traffic Analysis, Transformation and Normalization Techniques.

Sergio Zamarripa Lopez, Spyros Papastergiou, Nicola Tamburini, Andrea Pruccoli,

Eva Papadogiannaki, Manos Athanatos, Konstantinos Kontakis, Sofia Spanoudaki,

Georgia Koutsouri, Marianna Manou Kaklamani, Saoulidis Harris. Deliverable 3.2

CyberSANE. August 2021. [207]

2. Encrypted Traffic Analysis: Use Cases & Security Challenges. Paraskevi Dimou, Jan Fa-

jfer, Nicolas Muller, Eva Papadogiannaki, Evangelos Rekleitis, Frantisek Strasak. Eu-

ropean Union Agency for Cybersecurity (ENISA). November 2019. [186]

Posters (peer-reviewed)

1. GPU-accelerated encrypted network traffic inspection. Eva Papadogiannaki, Sotiris

Ioannidis. 6th ACM-W Europe Celebration of Women in Computing (womENcour-

age, 2019).

2. High performance encrypted network traffic inspection using hardware accelerators.

Eva Papadogiannaki, Giorgos Vasiliadis, Sotiris Ioannidis. Presented in the 14th Inter-

national Conference on emerging Networking EXperiments and Technologies (CoNEXT,

December 2018) and in the 1st Summit on Gender Equality in Computing (GEC,

2019).

Highlights

1. Detection signatures for encrypted traffic. Innovation selected by the European Com-

mission’s Innovation Radar in the context of the CyberSANE project funded by the

European Commission under Horizon 2020 (www.innoradar.eu/innovation/40424).

