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Autonomous Fire Front Detection in Satellite Images
with Deep Reinforcement Learning

Abstract

An enduring concern that has troubled humanity for generations is the out-
break of wildfires in both forests and areas where communities thrive. This phe-
nomenon has catastrophic implications for the ecosystems and wildlife in the im-
pacted regions, as well as for human lives and properties that are lost in the wake
of these fire events. Earth observation satellites play a vital role in the surveil-
lance of land areas, primarily for fire detection. The spatial resolution of these
observations is a matter of great importance for the agencies responsible for gath-
ering and processing space-based data. Obtaining high-resolution geographical
data systematically from private use satellites is a costly endeavor. In contrast,
publicly accessible satellites offer global coverage at considerably lower spatial res-
olution. Furthermore, there is a trade-off in temporal resolution analysis; public
satellites revisit the same geographical position after intervals of days or even
weeks to capture updates, while private satellites schedule targeted observations
based on the specific requirements of different users, thus not ensuring a system-
atic monitoring. Despite the potential benefits of satellite-based remote sensing,
current solutions are unable to provide both high spatial and temporal resolution
simultaneously. This presents an opportunity for research aimed at developing
a system that combines lower-resolution observation with the advanced capabil-
ities of private satellites equipped with high-resolution cameras. Such a system
could enable more effective observation of specific areas of interest in the images.
Within a dual-satellite system featuring high and low-resolution cameras respec-
tively, the challenge at hand is the prompt and accurate detection of fire fronts.
The proposed solution involves the utilization of a Deep Reinforcement Learning
framework to train an AI agent. The objective of this agent is to pinpoint the
location of the fire front within the low-resolution image by delineating a discrete
area of interest. This is achieved through the optimization of the agent’s predictive
model using Policy Gradient methods. Guided by the model’s predictions given
the low-resolution observations, the high-resolution camera captures observations
of the selected areas, i.e. those with a higher likelihood of fire. This thesis involves
conducting experiments to assess the algorithm’s performance and the influence of
its hyperparameters. We also investigate how the algorithm behaves across var-
ious dataset sizes. Furthermore, we delve into the dataset itself by performing
exploratory analysis to unearth patterns that could improve its handling during
the training process. Based on the insights gained from the data, we refine the
algorithm. Our analysis demonstrates that the proposed method exhibits better
generalization compared to alternative approaches and displays a greater capabil-
ity to identify the fire front, even in its initial stages.





Αυτόνομη Ανίχνευση Πύρινων Μετώπων σε

Δορυφορικές Εικόνες με χρήση Βαθιάς

Ενισχυτικής Μάθησης

Περίληψη

΄Ενα διαρκές πρόβλημα που απασχολεί την ανθρωπότητα εδώ και γενιές είναι το

ξέσπασμα πυρκαγιών τόσο σε δασικές εκτάσεις όσο και σε περιοχές όπου αναπτύσ-

σονται πολιτισμοί. Το φαινόμενο αυτό έχει καταστροφικές συνέπειες για τα οικοσυ-

στήματα και την άγρια ζωή στις πληγείσες περιοχές, καθώς και για τις ανθρώπινες

ζωές και τις περιουσίες που χάνονται λόγω των πυρκαγιών. Οι δορυφόροι παρακο-

λούθησης της Γης, διαδραματίζουν ένα ζωτικό ρόλο στην επιτήρηση των χερσαίων

περιοχών με στόχο τον εντοπισμό πυρκαγιών. Η χωρική ανάλυση αυτών των παρα-

τηρήσεων αφορά άμεσα τις υπηρεσίες που συλλέγουν και επεξεργάζονται δεδομένα

διαστήματος, καθώς η συστηματική αποτύπωσή τους σε υψηλή ανάλυση από ιδιωτικο-

ύς δορυφόρους είναι μια δαπανηρή επιχείρηση. Αντιθέτως, οι δημοσίως προσβάσιμοι

δορυφόροι προσφέρουν παρατηρήσεις με πολύ χαμηλότερη χωρική ανάλυση. Επιπλέον,

υπάρχει και ο συμβιβασμός στη διάσταση της χρονικής ανάλυσης, καθώς οι δημόσιοι

δορυφόροι επισκέπτονται ξανά την ίδια τοποθεσία μετά από διαστήματα ημερών ή α-

κόμα και εβδομάδων για να καταγράψουν ενημερώσεις, με αποτέλεσμα να μην υπάρχει

συστηματική παρακολούθηση, ενώ οι ιδιωτικοί δορυφόροι προγραμματίζουν τις παρα-

τηρήσεις τους στοχευμένα, βάσει συγκεκριμένων αναγκών των χρηστών. Παρά τα

οφέλη της δορυφορικής τηλεπισκόπησης, οι υφιστάμενες λύσεις δεν παρέχουν ταυ-

τόχρονα υψηλή χωρική και χρονική ανάλυση. Αυτό δημιουργεί έδαφος για έρευνα με

στόχο την ανάπτυξη ενός συστήματος που συνδυάζει την αξιοποίηση των εικόνων

χαμηλότερης ανάλυσης με τις δυνατότητες ιδιωτικών δορυφόρων, εξοπλισμένων με

κάμερες υψηλής ανάλυσης. ΄Ενα τέτοιο σύστημα θα μπορούσε να επιτρέψει την αποτε-

λεσματικότερη παρακολούθηση συγκεκριμένων περιοχών ενδιαφέροντος στις εικόνες.

Προτείνουμε ένα σύστημα δύο δορυφόρων, που διαθέτει κάμερες υψηλής και χαμηλής

ανάλυσης αντίστοιχα, για την άμεση και ακριβή ανίχνευση των μετώπων πυρκαγιάς.

Η προτεινόμενη λύση περιλαμβάνει τη χρησιμοποίηση ενός πλαισίου Βαθιάς Ενισχυ-

τικής Μάθησης για την εκπαίδευση ενός πράκτορα τεχνητής νοημοσύνης. Στόχος

αυτού του πράκτορα είναι να εντοπίσει τις θέσεις του μετώπου πυρκαγιάς στην ει-

κόνα χαμηλής ανάλυσης, σηματοδοτώντας διακριτές περιοχές ενδιαφέροντος. Αυτό

επιτυγχάνεται μέσω της βελτιστοποίησης του προβλεπτικού μοντέλου του πράκτορα

με χρήση μεθόδων Policy Gradient, μιας προσέγγισης ενισχυτικής μάθησης που δεν
εξαρτάται από κάποια συνάρτηση απόδοσης, αλλά από την πολιτική του πλαισίου εκ-

παίδευσης. Στη συνέχεια, η κάμερα υψηλής ανάλυσης καταγράφει παρατηρήσεις των

επιλεγμένων περιοχών, δηλαδή αυτών με την υψηλότερη πιθανότητα πυρκαγιάς, βάσει

των εκτιμήσεων του μοντέλου. Στην παρούσα εργασία, εκτελούμε πειράματα που ε-

ξετάζουν την απόδοση του αλγορίθμου και την επίδραση των υπερπαραμέτρων του.

Ερευνούμε επίσης πώς συμπεριφέρεται ο αλγόριθμος σε διάφορα μεγέθη συνόλων δε-

δομένων. ΄Επειτα, προβαίνουμε σε εξερεύνηση των δεδομένων ώστε να ανακαλύψουμε



μοτίβα που μπορούν να βελτιώσουν τη χειρισμό τους κατά τη διάρκεια της διαδικα-

σίας εκπαίδευσης και επανεξετάζουμε τον αλγόριθμο με την αποκτημένη γνώση πάνω

στα δεδομένα. Από την ανάλυση προκύπτει ότι η προτεινόμενη μέθοδος έχει καλύτε-

ρη γενίκευση σε σύγκριση με εναλλακτικές προσεγγίσεις και μεγαλύτερη ικανότητα

ανίχνευσης του πύρινου μετώπου ακόμα και σε πολύ αρχικά στάδια.
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Chapter 1

Introduction

1.1 Problem and Motivation

The outbreak and spread of fire in open geographical territories is a crucial is-
sue, that occupies many countries internationally for centuries. Several studies
have been carried out on fire spread conditions and causes that bring forward the
problems that are still lurking [5, 59, 1]. Since this phenomenon has devastating
consequences for the environment and the human safety, it is imperatively urgent
to take some countermeasures to address the problem by taking advantage of the
modern technology.

In an era where the fire fronts are a large scale problem, space agencies seek
to provide solutions with satellite surveillance. Earth observation satellites which
are available for public use (institutional satellites) capture broad geographical ar-
eas periodically in moderate spatial resolution, whereas private satellites (tasked)
capture high resolution images on demand, based on the needs of different users.
The spatial resolution of satellite images is a real-world challenge, as the institu-
tional satellite observations are characterized by lack of it, due to ground sam-
pling distance, whereas private satellite observations are costly and do not ensure
systematic monitoring. Also, the issue of temporal resolution in satellite surveil-
lance cannot be overlooked; public satellites sample an observation and return to
re-sample this same geographical area after a significant time interval, whereas
private satellite observations are more adaptable.

Various fire detection and localization methods utilizing satellite images have
been proposed [17, 21, 54, 27, 46, 9, 11] which provide useful insights for the use
case of the current thesis. However, none of them investigates the aforementioned
issues and therefore, ground arises for relevant research in the field. In this study,
we address the problem of fire localization in low-resolution image sub-areas and
propose a system that can be used for real-time supervision on the Earth’s surface
in order to prevent fire spread. Such a detector plays a crucial role in wildfire
monitoring, environmental research, and disaster management. It provides valu-
able information for decision-makers to respond effectively to ongoing fire incidents

1



2 CHAPTER 1. INTRODUCTION

and mitigate their impact on communities and ecosystems.

1.2 Proposed solution: AI-based decision making sys-
tem for fire front detection

Figure 1.1: The autonomous surveillance system consists of two artificial satellites:
The first satellite captures low resolution images periodically (left). The embedded
system informs the second satellite to capture targeted areas in high resolution
(right).

We address the challenge described above with an embedded system that com-
bines the revisit frequency of low-resolution (LR) imaging satellite, with the ca-
pabilities of tasked satellites equipped with high-resolution (HR) cameras. Figure
1.1 illustrates the system of the two-satellite supervision in a high-level diagram.
The institutional satellite captures images periodically, that are processed by an
AI agent, trained to localize Areas of Interest (AoI) which, in this case, are the
fire fronts. After marking those areas, the private satellite is notified with a signal
in order to sample targeted observations in high resolution.

The control system of the agent mainly comprises of a neural network, called
policy network, that inputs LR images and outputs a patch-level decision indicat-
ing presence of fire or not. To train this network to produce accurate predictions,
we are following a Reinforcement Learning scheme involving a second neural net-
work, that performs segmentation on the input image. Throughout the process,
the LR image sub-areas are mapped to their high resolution correspondences; those
constitute the input of the segmentation network. The latter one is providing feed-
back to the policy network so that it can ”learn” the patterns of the fire-present
input images in a self-supervised manner.
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1.3 Contribution

In this master thesis we propose an Autonomous Fire Front Detection frame-
work. The contribution lies in the following aspects:

• Propose a feasible and effective solution to counterpoise spatial and temporal
resolution limitations in remote sensing data. This is achieved by embedding
to tasked satellites an on-board AI system, trained to detect fire fronts with
a data-driven approach.

• Exhibit the capabilities of a Reinforcement Learning algorithm to localize
Areas of Interest (AoI) in satellite images based on their semantic segmen-
tation. The current thesis analyses the RL design in technical depth and
delves into the explanation of our AI agent’s behavior performance-wise.

• Take profit of the relevant literature to incorporate a U-Net architecture
for Semantic Image Segmentation to an RL framework, in order to achieve
pixel-level localization of the target.

• Delve into model-free Reinforcement Learning concepts and, specifically, Pol-
icy Gradient Optimization that is used to solve the AoI detection task.

• Give insights into a well-known remote sensing dataset regarding fire-presence
and form, based on the acquired knowledge, individual sets of different sam-
ple sizes to train and evaluate our algorithm.

• Develop baseline methods to propose alternative solutions to the fire front
detection problem, that are less time and memory consuming; we compare
these methods with the deep RL method and show by inference that the
latter one achieves better generalization.

• Finally, design a novel method to model random paths in the context of
Markov Decision Processes; select relevant image patches in multiple steps
via Monte Carlo sampling.

1.4 Organization

The rest of this thesis is organized as follows: In Chapter 2 we present the im-
portant concepts that constitute the theoretical cornerstone of the current work.
Chapter 3 includes an overview of relevant studies in the field of active fire detec-
tion and localization of AoI in images. Chapter 4 comprises our approach to the
problem with the description of the overall framework and the technical details of
the design and training. In Chapter 5 we present the experiments and results that
support this work and finally, in Chapter 6 we state some conclusions and visions
for future investigation.
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Chapter 2

Theoretical Background

2.1 Deep Neural Networks

Deep neural networks (DNNs) [61, 43, 44] are a class of machine learning models
designed to emulate human brain functions in processing and learning from data.
They consist of interconnected layers of artificial neurons, where information flows
through these layers to perform complicated tasks, such as image classification,
regression and more [23, 30, 49]. Fully connected layers [31] connect all neurons
from adjacent layers, allowing intricate relationships to be learned. Convolutional
neural networks (CNNs) [25, 23] specialize in processing grid-like data, like images,
by utilizing convolutional layers that apply filters to capture spatial hierarchies.
Residual neural networks (ResNets) [15], a subset of CNNs, combat vanishing gra-
dient issues by introducing skip connections. These connections allow the network
to learn residual mappings, making it easier to train significantly deep architec-
tures. The innovation of these network types has propelled advancements across
various domains, achieving state-of-the-art results in tasks requiring intricate pat-
tern recognition and data transformation [15, 16]. The contribution of CNNs and
ResNets is decisive in the current thesis, as they constitute the backbone of our
machine learning training pipeline.

2.2 Towards Unsupervised Learning

The quest for developing machines with human-like cognitive abilities has driven
significant research towards the paradigm of unsupervised learning. Unlike su-
pervised learning, which relies on labeled data, unsupervised learning seeks to
enable machines to extract meaningful patterns, representations, and structures
from unlabeled data. This paradigm shift holds the promise of unlocking the po-
tential to discover hierarchical dependencies and intrinsic characteristics within
complex datasets. Therefore, as data acquisition continues to outpace labeling
efforts, the exploration of unsupervised learning becomes increasingly pertinent.

Significant works that have contributed to the development and understanding

5
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of deep unsupervised learning are Boltzmann Machines [2], autoencoders and deep
belief networks [4], as well as energy-based models [26]. This concept is decisive
in the field of Reinforcement Learning, where agents learn to make sequential
decisions through trial and error. Their goal instead is not to find hidden structure
in unlabeled data, but to maximize a reward signal while the agent interacts with
its environment [52].

Traditional learning algorithms often require extensive labeled data or expert
demonstrations, making them unsuitable for many real-world applications. How-
ever, recent advancements in reinforcement learning techniques [34, 48, 28, 47],
have shown promising results in enabling agents to learn complex tasks without
the need for explicit supervision. By leveraging unsupervised learning paradigms,
these methods highlight the agents’ ability to explore diverse environments and
generalize knowledge efficiently. This special kind of learning is examined thor-
oughly in the next section.

2.3 Key Concepts in Reinforcement Learning

Reinforcement Learning (RL) is a subfield of Machine Learning that focuses on
training agents to make sequences of decisions in order to maximize a cumulative
reward signal and thus, find an optimal way to take actions in an environment.
This section encapsulates all the important information on Markov Decision Pro-
cesses and Reinforcement Learning methods that are useful to understand the
concepts used in the current thesis. Specifically, some key concepts are listed
below.

• An agent is an entity that learns to make decisions and take actions within
an environment. In RL, the agents are learning by trial and error.

• The environment is an external system or context in which the agent oper-
ates. The environment provides feedback to the agent in the form of rewards
and states, as shown in figure 2.1.

• The state (S) is a representation of the environment at a given time. It
encapsulates all relevant information about the current position/situation of
the agent.

• As actions (A) we define the set of all possible transitions or decisions the
agent can take in the environment in order to move from one state to another.
Actions are chosen by the agent based on its policy.

• The policy (π) is a function that maps states to actions. In practice, it is
a probability distribution assigned to the set of actions that determines the
agent’s behavior in the RL framework.

• The reward (R) is a scalar signal from the environment that provides the
agent immediate feedback about the current policy after it takes an action
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from a particular state. The agent’s goal is to maximize the cumulative
reward over time, called return.

• As trajectory or episode (τ) we define a sequence of states, actions and
rewards that the agent experiences while interacting with the environment.
These are forming the path the agent follows until it reaches the goal or
comes across some stopping condition.

• Exploration vs. Exploitation: this encapsulates the trade-off in RL between
exploring new actions and exploiting known pathways with high expected
rewards. Striking the right balance is crucial for effective learning.

Agent Environment

Action at

State st
Reward rt

Figure 2.1: Agent - environment interaction loop; the agent takes an action at
time-step t, then the environment sends back a reward signal and the new state.

2.3.1 Markov Decision Processes

Markov Decision Processes (MDPs) are a fundamental framework in the field of
Reinforcement Learning (RL). An MDP (S, A, π, R, γ) is a process that obeys
the Markov Property 1. Its aforementioned components are: the state space S,
the action space A, the state transition probabilities π i.e. the policy, the reward
function R, and the discount factor γ ∈ [0, 1].

In figure 2.2 one can see a complete trajectory τ of a Markov Decision Process
in a flow diagram. The trajectory example, in a world with these four states, is:

τ = {(s0, a0), (s1, a1), (s2, a2), (s1, a1), (s2, a3)} (2.1)

where each action ai, with i ∈ {0, 1, 2, 3}, is accompanied by the respective Reward,
Ri. The very first state of the world, s0, is randomly sampled from a start-state

1transitions only depend on the most recent state-action and no prior history
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s0 s2s1 sGa0 a1 a3

a2

Figure 2.2: Example of a MDP with four states

distribution, denoted as ρ0. State transitions, are governed by the natural laws of
the environment (edges), and depend only on the most recent action:

Pss′ = P(st+1 = s′|st = s, at = a) (2.2)

where P is the state transition probability, s the current state, and s′ the next
state. Finally, the agent is located at the goal state sG where the process ends.

Action Spaces and Stochastic Policies

Action spaces can vary depending on the environment; in discrete action spaces,
only a finite number of moves are available to the agent, whereas in continuous
action spaces, actions are real-valued vectors. Policies determine what actions
the agent takes, and those can be deterministic or stochastic. Also, deep RL
problems are formulated with policies whose outputs are computable functions
that depend on a set of parameters. Actions are estimated by the policy given the
current state as follows:

at ∼ πθ(.|st) (2.3)

where πθ is the parameterized stochastic policy. Parameters are usually adjusted
via some optimization algorithm in order to change the agent’s behavior in future
episodes.

For training stochastic policies, two are the main computations; the first one,
is sampling actions from policy distributions, while the second one, is computing
the log-likelihoods of particular actions:

log πθ(a|s) = logPθ(s)|a (2.4)

where Pθ(s) denotes the vector of probabilities with as many entries as there are ac-
tions. In this scenario, the parameterized policy is proportional to the probability
distribution that determines action-state transitions over trajectories.

Rewards and Value Functions

The reward function R has a critical role in the Reinforcement Learning loop. Its
output depends on the current state, the current action and the next state of the
environment:

rt = R(st, at, st+1) (2.5)
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The agent’s goal is to maximize some notion of the cumulative reward over a
trajectory τ . Averaging the rewards of a trajectory, we get the Expected Utility
i.e. the Value or simply the return of a path. When the number of time-steps is
known and finite, we define the finite-horizon undiscounted return as the sum of
rewards in T steps:

R(τ) =
T∑
t=0

rt (2.6)

Otherwise, the discount factor γ is multiplied with the individual rewards, which
sum up to give the infinite-horizon return.

Regarding the evaluation of complete paths, an MDP may compute different
Value Functions depending on the agent’s behavior upon the policy. The on-
policy Action-Value Function, or Q-function, which is primarily used in many RL
methods, is defined as:

Qπ(s, a) = Eτ∼π[R(τ)|st = s, at = a] (2.7)

The above formula gives the expected return starting from state s, taking an arbi-
trary action a, and then acting according to policy π until the end of the episode.
The optimal Action-Value Function, gives the maximum possible expected return
of an MDP starting in state s, taking action a, then until the end acting according
to the optimal policy:

Q∗(s, a) = max
π

Qπ(s, a) (2.8)

This gives the maximum action-value function over all policies, which solves the
primary MDP problem.

Finally, it is worth mentioning the concept of the advantage function. This
function represents the relative advantage of taking a specific action a in a given
state s, over the expected value of actions under a certain policy. It measures how
much better (or worse) the randomly selected action (according to policy π) is
compared to the average or expected action in the given state. The formula for
the advantage function is typically defined as follows:

A(s, a) = Qπ(s, a)− Vπ(s), (2.9)

where Vπ(s) = Eτ∼π[R(τ)|st = s], the on-policy Value Function.

2.3.2 The RL Objective

Reinforcement Learning, regardless of the choice of Reward and Value functions,
seeks to optimize an agent’s behavior by finding an optimal policy that maps states
to actions, maximizing the cumulative reward of a Markov Decision Process. This
behavior can be approached by modeling probability distributions over trajectories:

P (τ |π) = ρ0(s0)

T−1∏
t=0

P (st+1|st, at)π(at|st) (2.10)
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The above distribution is considering a stochastic policy and a T-step trajectory.
The first state of the world is determined by the start-state distribution. There-
after, states occur based on the actions taken according to policy. Each stochastic
policy can produce multiple trajectories. Each trajectory comes with an average
reward R(τ). Integrating over all possible trajectories of a policy, altogether with
their rewards, we conclude in the general formulation of the objective:

J(π) =

∫
τ
P (τ |π)R(τ) = Eτ∼π[R(τ)], (2.11)

which is simply the expectation of Values of all possible paths. Maximizing this
average solves for the central optimization problem of RL:

π∗ = arg max
π

J(π), (2.12)

with π∗ being the optimal policy. Intuitively, this means that we aim to find the
policy that leads the agent to make on average the best possible decisions.

2.3.3 Reinforcement Learning Methods

In a reinforcement learning problem, the transition probability distribution and
the reward function of a Markov Decision Process are considered as the ”model”
of the environment. Model-free and model-based RL are two broad categories of
RL algorithms (see figure 2.3) which differ in whether the agent has access to (or
learns) the model. Their major differences are presented below along with exam-
ples of relevant works.

In model-based RL, the model parameters are known from the beginning - so
the agent can use them to plan and make decisions - however, they might keep get-
ting updated throughout the interaction of the agent with the environment. This
can be advantageous for sample-efficient learning but requires accurate modeling.
A family of model-based approaches are those that are doing pure planning, like
Model Predictive Control (MPC) [19, 36], where the agent computes a plan that is
optimal in relation to the model each time it observes the environment. The plan
outlines all the actions to be taken across a predefined temporal window. Another
family of model-based approaches is leveraging data augmentation for model-free
methods; MBVE [10] is using a model-free algorithm to augment real experiences
with fictitious ones, whereas Recurrent World Models [14] are using purely ficti-
tious experience to update the agent. Lastly, a straightforward follow-on to pure
planning is Expert Iteration (Exit) [3], which involves using and learning an ex-
plicit representation of the policy πθ(a|s) by leveraging Monte Carlo Tree Search.
AlphaZero [50] is another popular example of the last approach. It involves train-
ing a DNN to evaluate board positions and learn a policy for selecting moves,
enabling it to play complex games such as chess, shogi, and Go at an incredibly
high level.
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Figure 2.3: A taxonomy of RL algorithms

In model-free RL, the agent directly learns from interactions with the envi-
ronment without building an explicit model of the environment’s dynamics. It
focuses on estimating the Value or Action-Value functions to make decisions based
on past experiences, often employing techniques like Q-learning or policy gradi-
ents. Model-free RL is often preferred when the environment is complex and
modeling is challenging. A brief survey of the most predominant relevant research
in model-free RL, from classic methods to more contemporary, is following in the
next paragraphs.

Q-Learning methods try to learn an approximator Qθ(s, a) for the optimal
Action-Value function Q∗(s, a), and use an objective function based on the Bell-
man equation2. Unlike policy gradients, optimization here is performed off-policy,
meaning that policy updates are decoupled from data collection; the agents can
learn from data generated by any policy, not just the current one (the one being
optimized). The actions taken by the Q-learning agent are given by:

at ← arg max
a

Qθ(s, a) (2.13)

Learning from Delayed Rewards [58] is the original Q-learning algorithm that uses
a tabular approach to estimate Q-values and iteratively updates them based on
the Bellman equation. Deep Q-Network (DQN) [33] extends Q-learning to handle
high-dimensional state spaces by using deep neural networks to approximate the
Q-function. This classic example substantially launched the field of deep RL.

Policy gradient methods optimize the parameters θ of the model either by

2The Bellman equation expresses the Value (or Action-Value) Function as the maximum ex-
pected reward achievable by making a current decision and then optimally solving the remaining
subproblem.
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gradient ascent on the performance objective J(πθ) or by maximizing local ap-
proximations of J(πθ). Pertinent examples are REINFORCE (Monte Carlo Pol-
icy Gradient) [60] and Actor-Critic [22]. The REINFORCE algorithm estimates
gradients after performing Monte Carlo sampling on the policy distributions and
updates the policy parameters to maximize expected rewards. Actor-Critic meth-
ods combine the advantages of both policy-based (actor) and value-based (critic)
methods; the actor learns the policy, while the critic estimates the value func-
tion and provides feedback to the actor. Some more contemporary research has
been done on Asynchronous Advantage Actor-Critic (A2C/A3C) [32], which is a
distributed RL method that combines the actor-critic architecture with paralleliza-
tion, allowing multiple agents to interact with their own environments and share
information. Proximal Policy Optimization (PPO) [48], on the other side, is max-
imizing the agent’s performance by using a clipped surrogate objective function
which gives a conservative estimate of how much J(πθ) will change as a result of
the update. The aforementioned works are some of the most prevalent examples
of policy gradient methods, however the relevant research on them is even more
broad.

2.3.4 Policy Optimization

Policy optimization is a pivotal aspect in the field of Reinforcement Learning,
and particularly in the context of this thesis. It represents the core methodology
for training intelligent agents to make sequential decisions in complex, uncertain
environments. By delving into the theoretical foundations of policy optimization,
we aim to establish a robust understanding of the techniques and algorithms that
form the backbone of modern intelligent systems, like the one developed in the
present work.

Theoretical foundation of policy gradient

As policy in the context of policy optimization, we define a probability distribution
the agent uses to make actions. In deep reinforcement learning, policies are often
approximated using neural networks with parameters θ, whose output represents
the probabilities of taking different actions given a particular state. The policy
function, in this case, is a mapping from states to action probabilities, and it is
defined by the output of the neural network, hereinafter referred to as fθ.

πθ(at|st) =
efθ(at,st)∑
i e

fθ(ai,st)
(2.14)

In the above equation, the output of the parameterized policy network fθ, gives
the raw score (logit) for action a in state s. A softmax activation function is gen-
erally applied in the output layer to ensure that the output is a valid (categorical)
probability distribution over all possible actions.
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In the previous sections, we defined the policy performance objective J(πθ)
(formula 2.11), the undiscounted return R(τ) (formula 2.6) and the probability
of a trajectory P (τ |πθ) (formula 2.10). The derivation of the analytical gradient
of policy performance (policy gradient) relies on these terms and makes use of
the log-derivative trick to form the final expression, which takes into account the
gradient log-prob:

∇θJ(πθ) = ∇θ

∫
τ
P (τ |πθ)R(τ)

=

∫
τ
∇θP (τ |πθ)R(τ)

=

∫
τ
P (τ |πθ)R(τ)∇θ logP (τ |πθ)

= Eτ∼π[R(τ)∇θ logP (τ |πθ)]

(2.15)

We shall start by substituting formula 2.11, we then bring the gradient under the
integral and apply the log-derivative trick. We then return to the expectation
form and derive to the final expression of the parameterized policy gradient by
substituting with the log-probability of a trajectory (2.10). To note that, the
environment has no dependence on θ, so gradients of ρ0(s0), P (st+1|st, at) and
R(τ) are zero.

Since we also know that the probability of a trajectory given the policy is equal
to the probability of each action given the current state and the policy parameters:

P (τ |πθ) =
T∏
t=0

P (at|st; θ) (2.16)

where T is the last trajectory index, we can conclude in the final expression for
the gradient of the objective by taking into account the formula 2.4 and expanding
the product under the logarithm:

∇θJ(πθ) = Eτ∼π

[
R(τ)

T∑
t=0

∇θ log πθ(at|st)

]
(2.17)

In order to maximize the performance objective, the parameter updates follow
the gradient ascent rule:

θt+1 = θt + α∇θJ(πθt) (2.18)

where the term α above denotes the learning rate.

In conclusion, assuming that we represent our policy in a way that allows to
calculate ∇θ log πθ(a|s), and that we are able to run the policy in the environment
to collect the trajectory data, we can compute the policy gradient and take an
update step towards the direction of policy optimization.
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About the Loss Function To make a disclaimer regarding the objective func-
tion, even though we describe this as a negative loss function, it is not really a
loss function, in the sense that it is used in supervised learning. This “loss” is
only useful to us because, when evaluated at the current parameters, it has the
negative gradient of performance. Therefore, minimizing this “loss” function, for
a given batch of data, does not signify any improvement on the expected return.

The REINFORCE algorithm

REINFORCE [60] is a Monte-Carlo variant of policy gradients, used for optimizing
the parameters of a stochastic policy πθ. It works by adjusting the probabilities
of actions in proportion to the observed rewards, encouraging highly rewarded
actions to be taken more frequently. The pseudocode for REINFORCE is given in
Algorithm 1.

Algorithm 1 REINFORCE, A Monte-Carlo Policy Gradient Method

Input: a differentiable policy parameterization πθ.
Initialize θ arbitrarily, start with state s0.
for each episode τ = {(s0, a0, r1), ..., (sT−1, aT−1, rT )} do

R(τ) = 0
for each time step t = {0, ..., T − 1} do

at ∼ πθ(.|st)
rt+1 ← evaluate reward for at
R(τ) += rt+1

end for
θk+1 ← θk + αE[R(τ)∇θ log πθ(at|st)]

end for

Assuming a neural network to be trained within an episodic process, where
each episode consists of T time steps, we initialize randomly its parameters θ and
perform a trajectory roll-out using the current policy πθ. The algorithm stores
log probabilities of policy and reward values at each step; then it calculates the
cumulative reward. At the end of an episode, it computes the policy gradient
and updates the policy parameters θ by gradient ascent. This process repeats
until we reach the maximum number of episodes. Despite its apparent simplicity,
REINFORCE serves as a foundational concept in policy gradient methods and has
paved the way for more advanced algorithms in the field of RL.
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2.4 Semantic Image Segmentation

An important part of our RL framework is the network that performs semantic
segmentation on input images. Thus, we dedicate a special section that explains
the concept of Semantic Image Segmentation and its advancements with the use
of deep neural networks.

The goal of this task is to produce a pixel-wise segmentation map of an
image, where each pixel is assigned to a specific class or object. Unlike object
detection, where bounding boxes are used to outline objects, semantic segmenta-
tion provides a fine-grained understanding of the visual scene by assigning each
pixel a specific class label, thereby enabling machines to comprehend images with
human-like precision.

Traditionally, semantic segmentation methods heavily relied on handcrafted
features and shallow machine learning algorithms [24, 45, 35]. However, the ad-
vent of deep learning, particularly Convolutional Neural Networks (CNNs) [25, 23],
revolutionized this field. Deep learning models, especially Fully Convolutional Net-
works (FCNs) [29], U-Net [42], and DeepLab [6], have exhibited unprecedented
performance in semantic segmentation tasks. These models leverage hierarchi-
cal feature representations to capture contextual information, enabling them to
delineate intricate object boundaries with great precision.

2.4.1 U-Net

Among various architectures developed to solve the task of semantic image seg-
mentation, U-Net stands out as a seminal model renowned for its effectiveness and
versatility. Proposed by Ronneberger et al. in 2015 [42], U-Net introduced a novel
and intuitive architecture characterized by a U-shaped network structure, with a
contracting path to capture context and a symmetric expanding path to achieve
precise localization. A U-Net architecture, built to perform segmentation on the
Landsat-8 dataset images, is depicted in figure 2.4.

U-Net is an extension of FCN that can result in accurate segmentations - even
with a relatively small dataset. A Fully Connected Network (FCN) [29] is basically
a CNN whose fully-connected layers are replaced with a convolutional layer with
large receptive field (known as the kernel size) in order to output high resolution
images. A U-Net, however, consists of two FCNs; an encoder and a decoder
networks with a bottleneck in between. The horizontal arrows in the figure above
correspond to the skip connections that allow concatenation of each encoder
block output to the corresponding stage of the decoder. Subsequently follows an
explanation of the U-Net building blocks.

Encoder

The encoder of U-Net performs the downsampling of the image - it is the con-
tracting path in the example of fig. 2.4. It consists of repeating blocks containing
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Figure 2.4: The U-Net architecture proposed by de Almeida Pereira et al. [9] to
perform image segmentation on Landsat-8 dataset.

convolutional layers (blue) activated by a ReLU function, followed by a max pool-
ing and a dropout layer (green). The number of filters increases at each contraction
stage and, because of the pooling layer, the feature dimensionality gradually de-
creases.

Bottleneck

The bottleneck follows the encoder block and is used to extract more features. It is
in the middle of the two (contracting and expanding) paths, where the input tensor
has been flattened. This stage does not have a pooling layer, so the dimensionality
remains the same.

Decoder

This is the last part of U-Net before acquiring the final segmentation mask. The
decoder upsamples the features back to the original image size i.e. in the opposite
direction of the encoder. At each upsampling level (red), it takes the output of
the corresponding encoder block and concatenates it with the intermediate tensor
(white) to feed it to the next decoder block.



2.4. SEMANTIC IMAGE SEGMENTATION 17

U-Net has been proved efficient for both binary and multiple class problems. The
features extracted at different levels of the contracting path are combined with the
feature maps in the expansion path, bearing this way more features that contribute
to a more accurate segmentation. The significant impact and the desired proper-
ties of U-Net and its variants in the field of image processing, led to the decision
to use this model as a part of the Reward Evaluation of our RL framework.

2.4.2 Evaluation Metrics

Evaluating the performance of an image segmentation algorithm is a critical aspect
in computer vision and differs from the way we evaluate classification or regres-
sion algorithms. Choosing the appropriate evaluation metrics assumes grasping
the nature of the problem and it is essential to understanding the strengths and
limitations of the segmentation model. Prevalent performance metrics for image
segmentation are listed below.

Pixel Accuracy calculates simply the percentage of pixels in the image that are
classified correctly. Although intuitive and easy to compute, it can be misleading
in the presence of class imbalance.

Intersection over Union (IoU) is the area of overlap between the predicted
segmentation and the ground truth over their union:

IoU =
Area of overlap

Area of union
(2.19)

This metric ranges from 0 to 1, meaning zero overlap and perfectly overlapping
segmentation respectively. It takes into account both the false positives and the
false negatives all along with the true positive classifications. This metric is also
known as Jaccard index.

Dice Coefficient (F1-dice) measures the spatial overlap between the predicted
and true segmentations, providing a more fine-grained evaluation of segmentation
accuracy. It is twice the overlap of the two images over the total number of pixels
in both images:

F1 =
2 ∗Overlap

Total number of pixels
(2.20)

IoU and F1-dice are positively correlated, which means that if the one says that
model A is better than model B for semantic image segmentation, the other will
say the same.
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The above metrics evaluate pixel-level accuracy; there are also other metrics
that focus on region-level accuracy like precision and recall, as well as class spe-
cific metrics, which are practically projections of the existing metrics tailored to
individual classes. The choice of evaluation metric actually depends on the specific
segmentation task and the characteristics of the dataset.



Chapter 3

Related Work

3.1 Zooming into Image Sub-spaces with Deep Learn-
ing

Attention Networks. In order to localize semantically important parts of im-
ages, the relevant literature has proposed various Attention Mechanisms [55].
Saliency-based Sampling [39] involves training an extra layer in convolutional net-
works dedicated for selecting specific features in an image based on their visual
saliency. Utilizing computational models, saliency maps that are generated for in-
put images, highlight regions that are visually conspicuous, capturing features such
as edges, colors, or textures that draw human attention. Residual Attention Net-
works [56], is another type of neural networks that integrate attention mechanisms
in the residual connections [15]. By doing so, they enable the network to focus
on important features for classification, while maintaining the benefits of learning
identity mapping. This has been demonstrated by improving the classification
accuracy on various benchmark datasets while focusing only on the target-specific
pixels.

Region Proposal Networks. RPNs [40] are a critical component of modern
object detection systems. They generate a set of candidate bounding box pro-
posals that are likely to contain objects in the input image. In subsequent stages
of the pipeline, they utilize these predictions to attain the final object classifica-
tion and localization. Thus, by focusing computational resources on regions of
interest, they significantly improve the efficiency and accuracy of object detec-
tion. Faster R-CNN (Region-based Convolutional Neural Networks) [40] combines
RPN and Fast R-CNN [13] into a single unified model. RPN generates region pro-
posals directly from the convolutional feature maps, which are then used by the
Fast R-CNN detector for final object classification and bounding box regression.
By sharing convolutional features between RPN and Fast R-CNN, Faster R-CNN
avoids redundant computations, making the entire object detection process faster.

19
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Nevertheless, the last approaches still operate a costly per-region subnetwork hun-
dreds of times to achieve object detection. R-FCN [8] is a fully convolutional
alternative proposed to defeat the latter drawback of Region-based CNNs for even
more efficient object detection.

Deep Reinforcement Learning. This section cites relevant works that combine
the benefits of both the aforementioned categories with Reinforcement Learning
methods. drl-RPN [38] is a deep RL-based visual recognition model, consisting of
a sequential Region Proposal Network (RPN) and an object detector. Replacing
the greedy RoI selection process of RPN with a sequential attention mechanism,
drl-RPN is trained via deep reinforcement learning to optimize an objective closer
to the final detection task. The aforementioned method conditions the attention
modules on high-resolution images. Dynamic Zoom-in Network [12], on the other
hand, is pursuing fast object detection from the down-sampled versions of large
images. It consists of a coarse detection network (R-net) that outputs the accu-
racy gain for the classification of high-resolution image regions, and a Q-function
network (Q-net) that sequentially selects regions that are worth zooming in. This
approach exhibits qualitative improvements compared to other object detection
algorithms and speeds-up the process of object detection without manipulating
the underlying detector’s structure. A final work by which the current thesis is
radically inspired is [53]; PatchDrop is a patch sampling system that conditions
on low-resolution images and learns based on classification signals, similarly to
[12]. The authors present a general framework for zooming in the image space
that consists of a Residual Network and a two-stream classifier, both built upon
convolutional layers. They model the RL episodes with a two-step Markov Deci-
sion Process and hence, define two different policies and the corresponding action
spaces. The networks interact incorporating Policy Gradients to optimize the ob-
jective. The Residual Network is forming the RL policy based on which are inferred
the semantically important parts of the image. The classifier outputs a prediction
that determines the RL reward; this signal determines the training upon the policy
parameters. Both the Residual Network and the two-stream classifiers are trained
independently and fine-tuned jointly to achieve an optimal policy. The results
are noticeable in all the datasets on which they evaluated the model, including
CIFAR-10, CIFAR-100, ImageNet and fMoW.

3.2 Active Fire Detection in Landsat-8

Various algorithms are employed to detect active fires in Landsat-8/OLI data.
One common approach is to use the Shortwave Infrared (SWIR) and Thermal
Infrared (TIR) bands to identify hotspots [7, 20]. Active fires emit energy in these
bands, allowing algorithms to distinguish them from the surrounding environment.
Thresholding techniques or machine learning algorithms can be applied to identify
pixels or areas with temperatures indicative of active fires. [45], [24] and [35] are
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prevalent examples of algorithms that rely on comparisons to fixed threshold in
certain bands and statistics from their surrounding region. Active fire detection
using Landsat-8/OLI (Operational Land Imager) data [46] involves utilizing the
relevant satellite imagery to identify and monitor active fires on the Earth’s surface
with a handcrafted algorithm expanded with the use of multi-temporal analysis to
improve pixel classification.

A recent study that is closely related to this thesis is [9]. The authors process
the Landsat-8 imagery and form the dataset we describe in section 5.1. This work
involves the utilization of a U-Net model [42] trained with targets produced by
the three sets of thresholding conditions mentioned above, their intersection, the
voting scheme (intersection of at least two of them) and a manually annotated
dataset. They propose three different convolutional neural network architectures
to approximate these handcrafted algorithms: a U-Net-10c, a U-Net-3c and a U-
Net-Light-3c. The first and second architectures are tailored to 10-channel and
3-channel inputs respectively. The third one is a variant of U-Net-3c, but with
significantly less training parameters, hence a ”lightweight” version. The authors
investigate the potential improvement of the networks’ performance with numerous
benchmarks. Finally, they achieve high-quality segmentation masks that delineate
fire fronts in Landsat-8 imagery and present the comparative evaluation among
the different labeling schemes and the architectures they use.
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Chapter 4

Methodology

In this chapter, we present the proposed solution for the problem of fire front
detection in low spatial resolution (LR) images. The computational sensing of fires
with Deep Reinforcement Learning (deep RL) is a domain-specific contribution
relying in prior works on active fire detection with semantic segmentation and
image patch sampling with deep RL [9, 53]. It is designed to serve the use case of
fire patch detection in multi-spectral satellite images. We define a Reinforcement
Learning setting for each of the two methods we propose, and explain subsequently
the training pipeline over the fire-present data of Landsat-8. Finally, we discuss
some implementation details of the model architectures we use to compose the
overall framework.

4.1 A Reinforcement Learning setting

In a setting where we theoretically possess only LR images, we want to find a mech-
anism that distinguishes areas of interest while dropping the non-relevant areas in
the image. We design an RL setting in two different scenarios: as a single-step
and as a multi-step episodic Markov Decision Process (MDP). In both cases, we
start with a dataset of images D. The RL environment is formed by the images
space, where each image is divided into a grid of K square sub-areas of equal size
(x1h, x

2
h, ..., x

K
h ). Those areas are observed by the RL agent, to take actions, switch

states, compute rewards, and finally form an optimal policy deriving by its inter-
action with the environment. These scenarios can be perceived as two different
pathways for a RL agent to achieve its goal: learn the optimal policy that
solves for a specific task. Our approach involves a high resolution input network
(U-Net) pretrained, and a low resolution input network (LR-ResNet) that interact
within the RL loop. In the next sections, we develop the problem statements and
solutions for both scenarios by following the formalism below:

xl: the low resolution (LR) image
xh: the high resolution (HR) image

23
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xmh : the masked high resolution image
ȳ: target segmentation mask
y: predicted segmentation mask
fp: the policy network (input xl)
fq: the segmentation network (input xmh )

To note that, the agent does not observe HR images at all, but their projections
in the spatial dimensions of the LR image instead, which means that xh, in this
problem, is latent. Also, the agent does not have immediate access to any ground
truth. A U-Net network is responsible to provide reward signals to the agent so
that it forms its policy throughout the RL episodes.

4.1.1 Modeling a single-step episodic MDP

This scenario involves single state-action pairs in each episode, and thus the defi-
nition of states is simply the initial image xh and the produced masked image xmh .
Since we have a discrete action space, we formalize patch sampling actions with a
square action matrix Ap, whose cells correspond to image patches. Action cells
can take binary values indicating presence of fire (1) or not (0). Although this
is the theoretical ground truth, the agent is not provided any, as already men-
tioned. Using this action matrix, the agent passes from start state s0 to final state
s1. A state-transition example is illustrated in figure 4.1. The positions of the ac-
tion array are K patch-specific independent random variables following a Bernoulli
distribution:

P (Ai
p) =

{
pi if Ai

p = 1

1− pi if Ai
p = 0

(4.1)

for i ∈ [0,K−1]. Our policy, which defines the state transitions, is parameterized
by θ as:

πθ(Ap|xl) = P (Ap|xl; θ) (4.2)

where πθ(Ap|xl) is a function mapping the observed LR image to a probability
distribution over the patch sampling action Ap. This function outcome should be
equal to the probability of an action given the LR image and the policy parameters.
Thus, the policy can be described by the following joint distribution as a function
of Ap:

πθ(Ap|xl) =

K∏
i=1

p
Ai

p

i (1− pi)
(1−Ai

p) (4.3)

where p is a vector of K positions indicating the probability of each patch to be
sampled. These distributions are estimated by the policy network fp given the
LR image and the policy parameters:

p = sigmoid(fp(xl; θ)) (4.4)
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Figure 4.1: State transition for action a0 after Monte Carlo sampling given the
policy π. In the new state s1 all patches are dropped except patches with indexes
7, 8 and 11.

In order to convert output logits to probabilistic values we use the sigmoid function.
The agent’s reward R depends on the action matrix and the prediction of fq;
actions determine the quantification of the performance and the sparsity of selected
patches. Hence, the reward of a path can be evaluated as a function of the L1-
norm of matrix Ap and the dice coefficient metric (2.20) between the fq output
prediction and the ground truth ȳ:

R(τ) = dice(fq(x
m
h ), ȳ)−

(
|Ap|1
K

)2

(4.5)

Finally, the overall objective J can be defined as maximizing the expected return
of all the episodes our agent is going through:

max
θ

J(πθ) = max
θ

E[R(τ)] (4.6)

4.1.2 Modeling a multi-step episodic MDP

In contrast with the previous method, this one involves multiple state transitions
over the process. At each step, the agent observes the current state, samples an
action from a categorical distribution over patch indexes, and computes a cost-
aware reward for the specific action. The policy, in this case, is a function of
the trajectory state-action pairs, based on which the agent shall gather a minimal
subset of image patches so that it maximizes the long-term expected return.

Action. In correspondence with the single-step case, the action representation
is encapsulated in a square binary matrix Ap whose cells correspond to the K image
patches, with consecutive indexing, called the action matrix. Ap is initially all
zeros, indicating that none of the HR image patches is sampled. In every step of
the process the agent samples exactly one patch until some condition is satisfied;
thus it ends up with ones in the positions of selected HR patches. Figure 4.2
illustrates the evolution of an action matrix, projected in the original HR image
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dimensions and applied in the image to change state, over a three-step episode.
The state matrix is reset in the beginning of a new episode.

State. The definition of state is totally different in each episode, since we
examine a different image. States can be perceived as xmh with all the possible
combinations of patch samplings. However, the possible states where an agent can
transition at a given time are exactly K− i, with i ∈ {0, ...,K}, if we consider that
it explores a full path of transitions.

Policy. Given the low resolution image xl, the agent must be able to produce
the state-transition probabilities according to which it will perform the single patch
selection. In the first step of the example 4.2, the agent has K possible moves,
though in every next state those moves decrease by 1. Hence, we must reformulate
the policy distribution by assigning zero probability to the action that is excluded
from the next steps. Patch selection action is a single categorical variable of
K − i possible outcomes, with i ∈ {0, ...,K}, in contrast with the single-step case
where it is a vector of K Bernoulli variables. The parameterized policy πθ can be
then expressed by the conditional probability distribution of state transitions as a
function of the action matrix Ap:

πθ(Ap|S, xl) = P (Ap|S, xl; θ) = P (a0|S0)·P (a1|S1)·...·P (aT−1|ST−1) =
T−1∏
t=0

P (at|St)

(4.7)
where St is the state occurring by the union of all the previous actions, at the
action in time-step t and T denotes the total number of time-steps. We conclude
in a final expression for the policy as a joint distribution of categorical variables:

πθ(Ap|S, xl) =
T−1∏
t=0

K∏
i=1

p
Ai

p

i (4.8)

where p is a vector of K positions indicating the probability of each patch to
be sampled. In this case, each category in {1, ...,K} is mutually exclusive and
sampling shall be performed without replacement in each trial. We approximate
this distribution with a policy network fp whose output logits are converted to
probabilities with the softmax function:

p = softmax(fp(xl; θ)) (4.9)

Reward. The formula of the individual rewards Rt is 4.5. Nevertheless, at the
end of an episode we must compute the expected utility of a trajectory E[R(τ)]
for t ∈ {0, ..., T − 1}, in order to update the policy. To note that, each time the
agent visits a state, can choose among a different set of actions. Each action leads
to radically different future returns. However, the agent discards prior knowledge
that comes from the returns of previous episodes, whereas it learns from them
and starts exploring the environment from scratch. The objective J , similarly to
before, will follow the equation 4.6.
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Figure 4.2: State transitions for a complete MDP with three steps. The agent is
sampling one patch per step and the probability distribution is reformulated until
some stopping condition is satisfied. On the bottom right one can see the selected
(white) and the dropped (red) patches of xmh .

We conclude the formulation of the proposed framework by considering the
Markov Property. In each step, we compute the probability of an action given the
current state. Thus, the agent is not conditioning on previous actions, but only
on their impact on the current state.

4.2 Training pipeline of the deep RL system

After defining the Markov Decision Processes, we detail the training pipeline of
the RL system. The agent’s goal is to learn the optimal parameters θ of the policy
network fp. To reach this goal we employ model-free reinforcement learning and
specifically policy gradient [52]. In order to train the agent, we implement fp
with an architecture based on convolutional layers, and set the number of patches
to K = 16. For the policy evaluation step, we make use of a pre-trained U-Net
model [9] to produce a segmentation mask y of the original image. These two
networks interact in an actor-critic way [22, 51]; the first one is learning based on
the Rewards calculated upon the output of the second one. The training pipeline
described below is illustrated in summary in figure 4.3.

4.2.1 Single-step episodes

In the beginning of an episode, the LR image xl is observed by the agent to
estimates state-transition probabilities for all actions at once, as shown in figure
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Figure 4.3: A flow diagram of training our computational sensing system with an
agent interacting with an image segmentation mechanism. Network (a) is responsi-
ble for outputting probability distributions over patches in order to perform Monte
Carlo sampling. Network (b) outputs the predicted segmentation mask that will
be used to evaluate the reward and update the policy parameters in every itera-
tion.

4.1. We introduce here the exploration-exploitation parameter ϵ ∈ [0, 1] with
temperature scaling:

p = ϵ · p + (1− ϵ) · (1− p) (4.10)

to encourage the agent to explore rather than clinging to the policy. Next, a
sampling action is performed to get an outcome from each probability distribution
pi

1:

Ap ∼ p(sG|xl; θ) (4.11)

where sG is the goal state. The masked HR image is then obtained by an element-
wise multiplication with the action array as xmh = xh⊙Ap. This is also depicted in
fig. 4.4. The resulting image is then introduced to the U-Net model, which outputs
the predicted segmentation mask. We binarize this mask by applying a threshold2

to its pixel values and compare it with the ground truth ȳ by calculating the dice
coefficient metric (2.20) between the two masks. The reward of the path can be
then evaluated using the equation 2.6. The utility of this reward is two fold; it
considers the segmentation error between y and ȳ while also penalizing the agent
for selecting a large number of HR patches at the same time.

The possible transitioning states are in the order to 2K which is a relatively
large number to perform optimization with Q-learning [57]. Therefore we optimize
by policy gradients with REINFORCE [52], and hence, the gradient of the objective
is the following:

∇θJ(πθ) = E[R(τ)∇θ log πθ(Ap|xl)] (4.12)

1When specific actions have lower probability, it doesn’t mean they won’t be picked at all, but
that they are less likely to be picked.

2pixel values of the segmentation mask above 0.25 are marked as fire-present
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Figure 4.4: Visualization of the AoI mapping in the HR image and the correspond-
ing segmentation mask of xmh altogether with the ground truth

where R(τ) = R(Ap, y) the reward for taking actions Ap and predicting y in a
single-step trajectory. Averaging across a mini-batch via Monte-Carlo sampling
produces an unbiased estimate of the expected value, but with potentially large
variance. We have seen in practice that this can lead to an unstable training
process, so we introduce a baseline action Āp and replace R(τ) with an advantage
function [52] to reduce the variance:

A = R(Ap, y)−R(Āp, y) (4.13)

where Āp represents the baseline action matrix. To form it, we select the most
likely patches i.e. the ones with predicted probability pi > 0.5. This way we are
following a self-critical baseline [41]. So the gradient now becomes:

∇θJ(πθ) = E[A
K∑
i=1

∇θ

(
Ai

p log pi + (1−Ai
p) log(1− pi)

)
] (4.14)

after substituting with the log-policy formula 4.3:

log πθ(Ap|xl) = log(p
A1

p

1 (1− p1)
(1−A1

p) · ... · pA
K
p

K (1− pK)(1−AK
p ))

= log(p
A1

p

1 (1− p1)
(1−A1

p) + ... + log(p
AK

p

K (1− pK)(1−AK
p ))

=
K∑
i=1

log p
Ai

p

i + log(1− pi)
1−Ai

p

=

K∑
i=1

Ai
p log pi + (1−Ai

p) log(1− pi)

(4.15)

Algorithm 2 condenses the whole training pipeline. The procedure is repeated
until the agent explores all the available dataset for a number of training epochs.
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Algorithm 2 Training the policy network with single step episodes

Input: xl = {x1l , x2l , ..., xNl }, the policy parameters θ.
for each episode τ do

p← fp(xl; θ)
p← ϵp + (1− ϵ)(1− p)
Ap ∼ πθ(.|p)
xmh = xh ⊙Ap

y = fq(x
m
h )

R(τ)← −error(y, ȳ)−
(
|Ap|1
K

)2

θk+1 ← θk + αE[R(τ)∇θ log πθ(Ap|xl)]
end for

4.2.2 Multi-step episodes

To train the agent with multi-step episodes, we follow the model of 4.1.2 and
propose the Algorithm 3. The difference from the previous training procedure lies
in the formulation of the Markov Decision Process. Each episode composes of T
time-steps so the policy network fp does not output the probability of each patch
at once but a probability distribution over all the K patches summing up to 1. The
agent is then selecting one patch by Monte Carlo sampling and stores the action on
the action matrix Ap. For every next move it samples from a new distribution pt,
appends the action to Ap and computes the individual reward Rt for being in the
current state xmh . Likewise, in the end of an episode, the expected reward E[Rt]
is evaluated and an update step is performed, considering the log-probability of
the initial output distribution of fp. In case we are assuming batches of data for
training, the update rule will consider the expectation of R(τi) which is the utility
of M trajectories, for i ∈ 1, ...,M .

4.3 Choice of Neural Network Architectures

Depending on our dataset size, we are using a Convolutional Neural Network
(CNN) [23] or a Residual Neural Network (ResNet) [15] to model the policy net-
work. The CNN architecture consists of three convolutional layers followed by a
ReLU function [37]. The first one outputs 16 channels, the second one 32 and the
third one 64. A max pooling layer in applied to the input tensor after each con-
volutional layer. Lastly, a fully connected layer flattens the final feature map and
outputs K scores. If needed, we apply a sigmoid or a softmax function to obtain
probabilistic values on the last layer. The total number of trainable parameters is
28,096.

For the ResNet we are using two variants; a ResNet18 (18 layers overall) and
a smaller ResNet with two convolutional layers in each block (12 layers overall).
Both models consist of four residual blocks whose convolutional layers are followed
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Algorithm 3 Training the policy network with multiple step episodes

Input: xl = {x1l , x2l , ..., xNl }, the policy parameters θ.
for each episode τ do

Start with state s0.
p← fp(xl; θ)
p← ϵp + (1− ϵ)(1− p)
for each time step t = {0, ..., T − 1} do

at ∼ πθ(.|pt)
At

p = At
p + at

xmh = xh ⊙At
p

yt = fq(x
m
h )

Rt ← −error(yt, ȳt)−
(
|At

p|1
K

)2

end for
θk+1 ← θk + αE[Rt∇θ log πθ(Ap|xl)]

end for

by a Batch Normalization layer [18] and a ReLU. After the global average pooling,
the feature map is finally flattened by a fully connected layer to produce the final
scores. The first model (ResNet18) has 11,184,720 trainable parameters while the
second one has 4,914,000 trainable parameters.

Regarding the U-Net architecture, we are using the lightweight version of U-
Net proposed in [9] with 3-channel input (U-Net-Light-3c) and 16 filters in the first
layer. In the process of selecting the model, we noted that, with less parameters
and reduced number of input channels the model performs similarly or even better
in our dataset. This can be confirmed by the benchmarks of the relevant work.
We implement the model structure in PyTorch and adapt the pre-trained weights
to this architecture. Those weights, were estimated after training with target
masks obtained by the combination of three handcrafted algorithms discussed in
the relevant paper.



32 CHAPTER 4. METHODOLOGY



Chapter 5

Experimental Evaluation

5.1 Dataset

Landsat-8 is an American Earth observation satellite launched in 2013 as a
product of cooperation between NASA and the United States Geological Survey
(USGS). The objective of the Landsat Data Continuity Mission (LDCM) launched
by the aforementioned organizations is to collect and archive medium resolution
multispectral image data affording seasonal coverage of the global landmasses. The
captured images are segmented into scenes with 185 × 180 km, defined according
to the second World-wide Reference System (WRS) in a 16-day revisit period. The
Landsat-8 dataset that we use to train and evaluate our system, consists of real
time images available for August 2020 around the globe.

Specifically, each data point contains eleven spectral bands c1, c2, ..., c11 among
which we stand out three c7, c6, c2 (RGB) for the purpose of image segmentation.
The spatial resolution of the original images is 7,600 × 7,600, albeit they were
split to 256 x 256 sized HR patches by de Almeida Pereira et al. [9] for the
purposes of the relevant work, forming a manually annotated dataset of images
and segmentation masks. The images are captured from different geographical
areas, categorized into 6 continents: Africa, Asia, Europe, North America, South
America and Oceania. For the current thesis, we made use of the Europe dataset
and performed data preparation and preprocessing to result in the final image and
target sets. Finally, we performed exploratory analysis to handle and manipulate
the data optimally in all phases of the experimental evaluation.

5.1.1 Data Preparation

The Europe dataset consists of 46,659 items overall (images and masks). 14,110
of them are 11-band images, among which we separated 6,179 that correspond to
masks obtained by the voting scheme. The latter one is a setting, according to
which the target masks are the intersection of at least 2 of the handcrafted sets
of conditions proposed by Kumar and Roy (2018) [24], Murphy et al. (2016) [35],
and Schroeder et al. (2014) [45].

33
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Altogether with the big datasets of HR patches, a smaller one of 100 samples
is given by the authors of [9]. From the dataset of 6,179 we randomly sample 256,
512 and 1024 images with their corresponding mask targets for the realization of
separate experiments. The choice of sizes of the data subsets was made with a
view to optimizing GPU capacity in every training iteration.

5.1.2 Preprocessing

As a preprocessing step, we first extract the channels 7, 6 and 2 of the multi-
spectral image, we perform normalization based on the max pixel value and lastly,
we sub-sample the image to 32x32 (or 64x64) which corresponds to 8 (or 4 respec-
tively) times smaller spatial dimensions. This last step is made in order to feed
the images to the deep neural network which forms our agent’s policy. For the
second neural network (U-Net) the HR images are used as is by projecting the
action array to the actual HR dimensions resulting in the final masked image.

5.2 Agent Performance on Landsat-8

We train our RL agent with the framework proposed in 4.2.1 and delve into the
explanation of key metrics obtained during the training process. The system was
designed with a focus in the Reward, which is a means of maximization in RL
environments. Also, we assess the evolution of dice coefficient throughout the
process, as this is the most suitable metric to quantify the error between image
segmentation masks. Figures 5.1, 5.2, 5.3 and 5.4 illustrate the evolution of reward,
dice coefficient and sparsity during training on 100, 256, 512 and 1024 samples
respectively.

Dice coefficient (middle plot) measures the similarity of U-Net prediction
with the target mask and takes values in the range [0, 1]. Thus, we should see the
value of this metric increase in order to verify that the algorithm works correctly.
Sparsity (right plot) measures the average number of sampled patches in the
images; in our problem it takes values from 0 to 16. Thus, we should see its value

Figure 5.1: Training the Agent with 100 samples: the average return is a function
of dice coefficient and sparsity
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Figure 5.2: Training the Agent with 256 samples: the average return is a function
of dice coefficient and sparsity

Figure 5.3: Training the Agent with 512 samples: the average return is a function
of dice coefficient and sparsity

Figure 5.4: Training the Agent with 1024 samples: the average return is a function
of dice coefficient and sparsity
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decrease over epochs. A rational behavior for the agent is to start with selecting a
lot of patches and gradually learn to select less while maintaining its dice coefficient
score.

The Reward is a function of dice coefficient and sparsity (2.6). With an
increasing F1-dice and decreasing sparsity, the reward tends to increase, and this is
a desired behaviour; by maximizing the expected return, we maximize the Agent’s
objective 2.11. However, each time the agent visits a state, can choose different
actions which leads to radically different future returns. The reason for this lies in
two folds; (1) the agent performs Bernoulli random sampling after observing the
policy and (2) we introduce the exploration-exploitation parameter ϵ. Both the
aforementioned factors introduce stochasticity in the process and hence, force
the agent to try different actions. This way, it explores its environment while it
avoids getting stuck in a local optimum.

By plotting the return for every epoch gives us the average reward over all the
episodes1. We observe that this line is not monotonically increasing, instead it
shows a lot of noise. In fact, training via Policy Gradients exhibits this behavior
due to the reasons we mention above; so we should get the sense of an increasing
trend by fitting a moving average line. Apart from optimizing with the Expec-
tation of Rewards over a batch of trajectories, introducing a baseline (4.13) also
helps decrease the variance between iterations.

Figures 5.1-5.4 demonstrate that increasing the number of sample size, we need
more epochs to converge, which confirms our intuition. Specifically, training with
100 samples reaches an average of 60% for the return. F1-dice score converges
over 72% and the average number of sampled patches starts from 8 (half of the
image patches) and decreases to 5. Similar behavior we observe for the 256 and
512 sample sizes, but with a slight increase in performance. Despite the fact that
the smaller datasets follow the same trends at training, for the dataset of 1024
samples we observe a continuous improvement until epoch 3000, which testifies
that -although the improvement is slower- with more epochs we can achieve even
better scores.

5.2.1 Data Exploration

In this section, we discuss the exploratory analysis we performed on the data, in
order to detect specific features and proceed to a correct data split for training
and testing. This way we shall unearth patterns that will aid towards improving
the performance of our algorithm.

As a first step, we need to create custom labels for the images, indicating
which patches include fire pixels and which do not. This is represented with a
binary vector of K positions. To infer a label, we apply thresholding on the
percentage of fire pixels in the patch. By applying a very small threshold (1%) we
discriminate the fire-present images from those who do not contain any fire patch

1until the goal state, which is the end of the dataset
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and proceed with processing the fire-present ones.

(a) 100-sample dataset (b) 256-sample dataset

Figure 5.5: The distribution of fire patches in the dataset of 100 samples (a) and
the dataset of 256 samples (b).

An interesting finding here, is that both the datasets of 100 and 6,179 samples
contain only fire-present images. Figures 5.5 and 5.6 illustrate the fire-patch
distribution over the different datasets. The dataset of 256 samples is a superset
of the 100-sample dataset, occurring after randomly adding observations from the
(independent) dataset of 6179 samples. The datasets of 512 and 1024 samples are
random subsets of the 6179-sample dataset.

We observe that all datasets seem to follow a geometric distribution with
the majority of samples clustering on the value 1. The frequency of fire-patch
representation decreases exponentially. Moreover, the dataset of 6179 contains
extremely few images with 4, 5 and 6 fire-patches. Similarly, the 100-sample
dataset contains just 4 images of 4 fire-patches and 2 images of 7 fire-patches.
Certainly, we would not wish those samples to be attributed to the test set; with
a random split, however, we cannot control this outcome.

After this exploratory step, it is a natural sequent to perform stratification on
the dataset. We customize this procedure by crafting the splits as shown in figure
5.7, which demonstrates the splitting of the 100-sample dataset. We conclude
in M sets of image-target splits, where M is the number of different fire patch
counts in the images of the dataset. Then we concatenate them and perform
randomization to form the final train-test splits. We end up with a robust
dataset, ensuring that the distribution of fire patches in the images is the same in
both training and testing phases.

The importance of this kind of splitting for training a RL algorithm lies in the
fact that the agent should explore as many states of its environment as there are
possible during training, and then being able to recognize the patterns in unseen
data based on the obtained knowledge. This cannot be achieved if the training
set is missing a representative sample, i.e. images with at least the plenity of
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(a) 512-sample dataset

(b) 1024-sample dataset

(c) 6179-sample dataset

Figure 5.6: The distribution of fire patches in the full dataset of 6179 samples (c)
and its subsets of 512 (a) and 1024 samples (b).
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fire-presence in the test set.

Figure 5.7: Data split of the 100-sample dataset based on the number of fire-
present patches

5.2.2 Choice of hyperparameters

The configurations of figures 5.1, 5.2, 5.3 and 5.4 were trained with a batch size
of 32, 64, 128 and 256 respectively. We increase the batch size as the dataset
size increases because with more data we have a more versatile environment and
thus, the agent should be able to explore more states in every iteration. Figure
5.8 highlights the impact of the batch size in the reward, dice coefficient and
sparsity level. We tune this hyperparameter for the dataset of 256 samples, as
it contains few enough samples to save training time but, at the same time, the
desired versatility to exhibit the pattern. However this behavior has been observed
regardless of the dataset size; the higher the batch size, the quicker the convergence
rate and the smaller the variance of the performance metrics. Lastly, one can
reduce the noise further, by running much more episodes. Hence, with a higher
batch size not only we have a faster convergence, but also a more stable training
process.

The rest of the hyperparameters are the learning rate (α), the epsilon
greedy parameter ϵ, the sub-sampling ratio and the number of epochs. At
training time, we are using Adam optimizer and set α = 0.001. ϵ is used to balance
exploration and exploitation trade-off; the relevant literature [53] is tuning ϵ to 0.8,
so we employ this value too. We sub-sample the original images so they have 8
times smaller spatial dimensions, hence the low-resolution image size is 32 x 32.
In this setting, and depending on the dataset, the performance of the algorithm
converges to an optimum within 2000 epochs or more.

Although we do not perform model selection, we conclude that the datasets of
256 and 512 samples exhibit their best performance with a ResNet of 12 layers.
The dataset of 100 samples is learnt by a CNN and the one of 1024 samples by a
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(a) Dice Coefficient (b) Sparsity level

(c) Average Return

Figure 5.8: Training the Agent with different batch sizes; we observe faster con-
vergence and better performance overall as the batch size increases.

ResNet18. With an increasing dataset size, we need more complex models, albeit
complex models have difficulty to learn the patterns of smaller datasets. Finally, it
is worth mentioning that the agent’s penalty for bad segmentation is not a static
parameter; instead, it stems from dice coefficient and patch use.

5.2.3 Improving performance with stratification

Training with a data split described in 5.2.1 and computing the moving average
lines of rewards and metrics, exhibits the results of figures 5.9, 5.10 and 5.11. Re-
gardless of the dataset size, the improvement in performance is noticeable after de-
ducting fairly the data split, in context of fire presence. The red line represents the
training with stratified datasets, whereas the black, training with non-stratified,
ignoring the fire-patch distributions. The improvement is especially highlighted in
the dataset of 1024 samples (5.11), where the model achieves a reward 0.48 after
3000 epochs when training with randomly attributed training set, whereas 0.55
with the stratified.

In this case, it is worth considering the test performance of the algorithm which
is depicted in table 5.1.
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Figure 5.9: Training with stratified vs. non-stratified 256 samples

Figure 5.10: Training with stratified vs. non-stratified 512 samples

Figure 5.11: Training with stratified vs. non-stratified 1024 samples
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Samples 256 512 1024

stratified 0.533 0.515 0.488
non-stratified 0.485 0.453 0.424

Table 5.1: Rewards obtained after testing with stratified vs. non-stratified datasets
under the same hyperparameter sets. The first category hits higher scores in unseed
data.

5.3 Baseline Methods

In order to evaluate our system, we design simpler, alternative methods to detect
fire indexes from low resolution image inputs. These methods are evaluated on
the stratified test sets and compared successively in section 5.4 with our deep RL
model.

5.3.1 No patch sampling

In this approach, we simply observe the LR images and up-sample them to HR
dimensions in order to feed-forward them to U-Net. This approach involves an
up-sampling error stemming from the interpolation and assumes that we must
capture the full image area if needed, via remote sensing.

5.3.2 Random sampling from a statistical distribution of fire-present
areas

This approach performs stochastic patch sampling; we model the distribution of
fire patches and proceed in randomly sampling a number of patches k to draw. We
then uniformly sample k indexes from the image. In contrast with the previous
method, we do not up-sample the LR image, instead we apply the mask grid
immediately to the HR image excluding the non-selected patch indexes. Although
in this case we escape the spatial resolution drawback, there is no guarantee of
improvement in segmentation.

5.3.3 Exploring fire threshold with multi-label classification

This approach requires the custom labeling described in the Data Exploration
section. To evaluate on this approach:

• We create five different datasets for labels produced by the thresholds {0.01, 0.02, 0.03, 0.04, 0.05}.
In order to do so we split the image in individual patches and apply the
thresholding on the fire-pixel ratio to label each patch.

• We train a multi-label ResNet classifier with binary cross-entropy with logits
error function and Adam optimizer; we then test it on LR images.
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• We are using F-score to quantify the training performance as other metrics
like accuracy do not consider the class imbalance; in this case the black pixels
of the mask outweigh significantly the white.

• Based on the ResNet predictions we obtain masked images conditioning on
the maximum likelihood criterion. These models will be compared with the
RL approach in regard to the predicted segmentation mask of U-Net, given
the masked image. Thus, we feed masked images to U-Net and compute the
F1-dice and IoU scores between prediction and target of the corresponding
threshold.

The results are shown in figure 5.12. We see that the loss converges quickly to
zero and the F-score to one after 20 epochs. However, the question that arises is
whether this model has good performance on data that has not been trained. This
is depicted in table 5.2 where the dice coefficient and IoU scores are indicated for
the different dataset sizes on test set.

Figure 5.12: The classifier trained with custom labels maximizes quickly its train-
ing performance. This is an indicative example of training with 1% fire threshold
on custom labels.

To note that, for testing we hold-out the 15% of each dataset, so the scores
are obtained from these data subsets. Holding out such a small amount out of
100 samples, it is expected for the model to struggle at recognizing the patterns
of the test set, even with stratified splits. Moreover, as the sample size increases,
we observe a general increase in performance which is also an expected behavior.
However, the overall test performance shows that the system overfits the data.

The cells in bold represent the best configuration based on the F1-dice (they all
occur for the smallest threshold value) and we rely on these to compare with the
other approaches. Nevertheless, setting a fixed threshold to the pixel values is not
an optimal solution as, apart from the difficulty in generalization, we cannot rely
on custom labeling due to (1) inability to examine the full range of real numbers to
obtain an optimal threshold and (2) the selection of a very small threshold might
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threshold 0.01 0.02 0.03 0.04 0.05
F1-dice 0.348 0.301 0.268 0.268 0.268100 samples
IoU 0.067 0.033 0.0 0.0 0.0

256 samples F1-dice 0.303 0.296 0.294 0.294 0.294
IoU 0.030 0.013 0.011 0.003 0.0

512 samples F1-dice 0.312 0.279 0.275 0.241 0.242
IoU 0.020 0.0 0.0 0.0 0.0

1024 samples F1-dice 0.372 0.354 0.346 0.338 0.338
IoU 0.021 0.014 0.009 0.0 0.0

Table 5.2: Inference scores of the multi-label classifier for the different sample
sizes.

be sensitive to potential U-Net prediction error. In conclusion, setting a threshold
in fire pixels percentage to obtain the labels might work in practice, but the choice
is arbitrary and impossible to be explored exhaustively.

5.4 Comparative Evaluation

In this section we discuss the performance of our algorithm compared to the pro-
posed baseline methods. Tables 5.3 to 5.6 present the inference scores stemming
from the best model of each approach.

100 samples Up-sampling Stochastic sampling Multilabel RL Agent

F1-dice 0.252 0.352 0.348 0.483

IoU 0.009 0.086 0.067 0.147

Table 5.3: Testing IoU and F1-dice for 100 samples

256 samples Up-sampling Stochastic sampling Multilabel RL Agent

F1-dice 0.268 0.336 0.303 0.528

IoU 0.005 0.054 0.030 0.168

Table 5.4: Testing IoU and F1-dice for 256 samples

We observe that stochastic sampling exhibits better scores than the up-sampling
method; at some cases it performs even better than the multi-label framework
(testing for 100, 256 and 1024 samples). However, for 512 samples it shows lower
scores, and this is due to lack of diversity in the patch outcomes, as testified in the
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512 samples Up-sampling Stochastic sampling Multilabel RL Agent

F1-dice 0.259 0.292 0.312 0.544

IoU 0.005 0.029 0.020 0.173

Table 5.5: Testing IoU and F1-dice for 512 samples

1024 samples Up-sampling Stochastic sampling Multilabel RL Agent

F1-dice 0.302 0.381 0.372 0.505

IoU 0.019 0.103 0.021 0.190

Table 5.6: Testing IoU and F1-dice for 1024 samples

distribution of figure 5.6 (b) during the exploratory analysis. The best segmenta-
tion scores are achieved by the RL Agent; the latter one is using the maximum
likelihood criterion on the given policy conditioning on the LR images of the test
set, and then inputs the masked HR images to U-Net to obtain the prediction. The
results indicate that our self-supervised model outperforms the alternative prob-
abilistic and supervised models, when trained and tested for a small amount of
data, as we examine in our use case. The multi-label classifier overfits the training
data, while the other two methods do not have enough expressivity to highlight
the patterns.

5.5 Qualitative results

In this section we visualize how the learnt policies of the agent produce actions
upon the image grid and discuss the agent’s behavior at inference time. The
figures 5.13 to 5.16 depict several cases of fire front detection from low-resolution
(LR) image input. We visualize the extracted bands of the original image in high-
resolution (HR), the produced masked HR image and the target segmentation
mask to evaluate and explain visually both the successful cases and the possible
limitations or errors.

Figure 5.13 demonstrates indicative cases where the model selects all the correct
patches. Some of them show that the fire was detected although it occupied a small
part of the image, meaning that the fire was either in an initial stage, or partially
covered by clouds, or simply indiscernible due to the relative sampling distance.
Figure 5.15 demonstrates cases where the correct patches were detected altogether
with redundant patches. We observe that this is the most common behavior, as
the agent rarely selects exactly the areas where fire front occurs; it usually samples
1 or 2 additional patches. Even in this case, the fire issue is addressed, but with
some penalty of sampling extra areas. Figure 5.16, on the other side, shows the
cases where the model did not detect the fire fronts at all, instead it signaled
false positives. This occasional behavior comes with the cost of capturing only
redundant areas in high resolution.
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Figure 5.13: Policies learnt from LR images of Landsat-8 - cases of correct pre-
diction: The original HR image (left), the masked HR image (middle) and the
target segmentation mask (right)
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Figure 5.15: Policies learnt from LR images of Landsat-8 (cases of partially
correct prediction): The original HR image (left), the masked HR image (middle)
and the target segmentation mask (right)

In contrast with classification problems, the AoI does not occupy necessarily
the center of the image, or the biggest part of it. Instead, the agent shall be able
to detect the front even if it appears at an extreme corner or it is not distinct by
the human eye. Furthermore, the front might appear in discontinuous areas, thus
the detection should not focus on specific area of pixels.

In contrast with object detection, we do not aim at drawing bounding boxes
around distinct objects and assign them a label. We simply aim at delineate
discrete areas where we would wish to zoom-in; that will help us address the
desired mapping of the AoI to spatial dimensions via pixel-level classification.
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Figure 5.16: Policies learnt from LR images of Landsat-8 (cases of incorrect
prediction): The original HR image (left), the masked HR image (middle) and the
target segmentation mask (right)
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Chapter 6

Conclusions

6.1 Discussion

Active fire detection from images is a demanding challenge that has been addressed
by numerous studies in the field of Signal Processing. In this thesis, we examine
the problem of fire front localization in discrete image sub-areas, opting to balance
the trade-off between spatial and temporal resolution of satellite observations. We
propose a Machine Learning pipeline whose predictive model operates leveraging
Reinforcement Learning (RL) principles. Throughout the training process, our RL
agent learns to recognize patterns that lead to better future decisions regarding
the selection of AoI in fire-present images.

We conduct experiments that highlight the properties of our learning method;
Policy Gradient methods exhibit smoothly evolving action choices towards the
direction of the objective, and hence result in a long-term increasing Reward.
With the right choice of hyperparameters, considering a specific environment, the
algorithm can have good convergence properties. On the other hand, due to various
limitations, it can be very slow or even inefficient in learning the desired patterns.

Our agent is designed to operate in a model-free RL scheme; it does not focus
on the overall dynamics of the environment, on the contrary it only solves for the
policy parameters. Additionally, RL methods often involve exploration, where the
agent pursues different actions to gather information about the environment and
learn an optimal policy. This exploration can lead to fluctuations in the rewards
as the agent explores different actions and learns from the outcomes. Our agent is
also considering a baseline policy, and thus avoids static selection of actions with
maximum probability; this leads to a more stable training process.

We found out that balancing the observations in the train and test sets con-
sidering the fire presence, improves significantly the detection performance. Also,
the hyperparameters to which the model is more sensitive are the batch size and
number of epochs. Therefore, we opt for increasing their values to the extent that
our resources allow it. We train and test our system for various data sizes and
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develop baseline methods to comparatively evaluate its performance. The promis-
ing supervised approach we proposed with custom labeling, although it exhibited
fast convergence at training, it underperformed on the test sets. We infer that the
RL system outperforms the developed baseline methods in terms of dice coefficient
and IoU metrics for small sample sizes at test time.

Finally, we seek to explain the agent actions via their visualization upon the
latent image. Guided by the policy, the agent drops the larger amount of the
image, which contains non-relevant information with respect to fire presence. It
has been observed that, in the majority of cases, the agent samples the correct
patches altogether with 1 or 2 redundant patches on average. The latter ones,
however, undermine the evaluation performance of the agent as they dynamically
penalize it with increased patch use.

6.2 Future work

Considering the limitations but also the potential of this work, we propose the
following future steps:

• Increasing the size of the dataset; this can provide the agent more diverse
experiences and potentially improve its learning and convergence properties
and speed. This endeavor requires extremely powerful resources.

• Finetuning the multi-label classification framework with the proposed RL
scheme; this approach would consider the prior multi-label classifier as the
policy network and optimize its parameters w.r.t the RL objective. We
expect to combine the speed of training of the first approach with the good
generalization of the second.

• Further investigating the impact of the hyperparameters epsilon greedy and
subsampling ratio to the system performance.

• Showcase the proposed multi-step MDP to model the agent trajectories. The
reason why we believe in the prosperity of this approach, is that the model
shall produce a series of state-action pairs altogether with the respective
rewards. Thus, at inference time we will be able to pick out the series of
actions that give the highest reward. In practice, this might be preferred
than statically apply the policy to all patches at once.

In conclusion, this work has been fulfilled with a view to limit the outbreak of
fires in land areas with the involvement of satellite surveillance. We studied the
problem from various aspects and proposed valid points for future investigation,
that hold the potential to face the initial real-world problem with greater efficiency
and timely action.
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