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Abstract

Due to the advent of digital TV and the availability of large video databases the task

of automatic video classification has received a great research interest. The objective

of video classification is to label a video sequence with its corresponding class, among

a predefined set of classes. Typically, full resolution video data is required for the

extraction of appropriate features. However, under the case of limited-resource sensing

systems, which happens in applications like video surveillance and remote sensing such

processing can be computationally and power demanding placing significant burden

on the encoder’s side. Additionally, a large bandwidth is required to transmit full-

resolution data at a base station for further processing.

In this thesis we address the aforementioned problems by exploiting the framework

of compressive sensing. Compressive sensing acting simultaneously as a sampling and

compression protocol enables the efficient representation and reconstruction of a sparse

signal from a set of non-adaptive linear incoherent measurements much fewer than

what is described by the Nyquist theorem. Here, we exploit the properties of linear

random projections for addressing the problem of video classification without handling

the original high-resolution data. In particular, we introduce two compressive video

classification systems that work directly in the compressed domain. We assume the

scenario of a video classification system equipped with a single-pixel camera that can

directly acquire compressive samples in the optical domain.

In the first system the compressively sampled frames are directly used as features

along with an appropriate decision rule to classify a query sequence. In the second

system a block-based compressive acquisition model is used together with dictionary

learning, and a support vector machine (SVM) with a spatio-temporal pyramid match-

ing kernel for the classification phase. The proposed methods are evaluated using a

subset of the UCF50 activity recognition dataset. The results verify the efficiency of

the proposed video classification systems and illustrate that features based on com-

pressive measurements, in conjunction with an appropriate decision rule, results in an

iii



effective video classification scheme, which meets the constraints of systems with limited

resources. In addition, the comparison with a conventional video classification scheme

that exploits the full-resolution video data illustrates that, although only a small per-

centage of the original data is used in the compressive video classification systems, no

significant degradation in performance is observed.
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PerÐlhyh

ExaitÐac thc èleushc thc yhfiak c thleìrashc kai thc diajesimìthtac meg�lwn b�sewn

dedomènwn bÐnteo h autìmath kathgoriopoÐhsh bÐnteo èqei gÐnei antikeÐmeno ereunhtik c

melèthc. O stìqoc thc kathgoriopoÐhshc bÐnteo eÐnai h antistoÐqhsh mÐac akoloujÐac se

mÐa kl�sh an�mesa se èna prokajorismèno sÔnolo kl�sewn. Sun jwc dedomèna pl rouc

an�lushc apaitoÔntai gia thn exagwg  twn kat�llhlwn qarakthristik¸n. Par' ìla aut�,

sthn perÐptwsh susthm�twn periorismènwn pìrwn, ìpwc aut� se efarmogèc binteopa-

rakoloÔjhshc   thlepiskìphshc aut  h epexergasÐa mporeÐ na apodeiqjeÐ upologistik�

kai energeiak� apaitik  epibarÔnontac idiaÐtera thn pleur� tou kwdikopoiht . Epiplèon,

meg�lo eÔroc z¸nhc apaiteÐtai gia thn apostol  twn dedomènwn pl rouc an�lushc se èna

stajmì b�shc gia epiplèon epexergasÐa.

Sthn paroÔsa ergasÐa antimetwpÐzoume ta proanaferjènta probl mata entìc tou

plaisÐou thc sumpiestik c deigmatolhyÐac. H sumpiestik  deigmatolhyÐa leitourg¸ntac

tautìqrona wc prwtìkollo deigmatolhyÐac kai sumpÐeshc epitrèpei thn apodotik  ana-

par�stash kai anakataskeu  enìc araioÔ s matoc apì èna sÔnolo mh-prosarmosmènwn

grammik¸n metr sewn polÔ ligìterwn apì autèc pou problèpei to je¸rhma tou Nyquist.

Sth sugkekrimènh perÐptwsh axiopoioÔme tic idiìthtec twn grammik¸n tuqaÐwn probol¸n

sto prìblhma thc kathgoriopoÐhshc bÐnteo qwrÐc th diaqeÐrish twn arqik¸n dedomènwn

uyhl c an�lushc. Sugkekrimèna parousi�zoume dÔo sust mata sumpiestik c kathgo-

riopoÐhshc bÐnteo ta opoÐa douleÔoun ap' eujeÐac sta sumpiesmèna dedomèna. JewroÔme

thn perÐptwsh enìc sust matoc pou diajètei mÐa k�mera enìc pixel h opoÐa mporeÐ na

katagr�yei sumpiestik� deÐgmata sto optikì pedÐo.

Sto pr¸to sÔsthma ta sumpiestik� deigmatolhpthmèna karè qrhsimopoioÔntai kat'

eujeÐan wc qarakthristik� se sunduasmì me ènan kat�llhlo kanìna apìfashc gia thn

kathgoriopoÐhsh miac �gnwsthc akoloujÐac. Sto deÔtero sÔsthma qrhsimopoieÐtai èna

montèlo sumpiestik c deigmatolhyÐac se mplok tou karè mazÐ me ekm�jhsh lexikoÔ kai

ènan taxinomht  Mhqan c EdraÐwn Dianusm�twn (SVM) me sun�rthsh pur na qwroqro-

nik c puramÐdac gia th f�sh thc taxinìmhshc. Oi proteinìmenec mèjodoi axiologoÔntai
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qrhsimopoi¸ntac èna uposÔnolo thc b�shc anagn¸rishc drasthriìthtac UCF50. Ta

apotelèsmata epibebai¸noun thn apodotikìthta twn susthm�twn kai deÐqnoun ìti qara-

kthristik� pou basÐzontai stic sumpiestikèc metr seic se sunduasmì me kat�llhlouc

kanìnec apìfashc odhgoÔn se apodotikì sq ma kathgoriopoÐhshc, to opoÐo plhroÐ touc

periorismoÔc twn susthm�twn periorismènwn pìrwn. Epiplèon, apì th sÔgkrish me èna

sumbatikì sÔsthma kathgoriopoÐhshc bÐnteo pou axiopoieÐ ta dedomèna pl rouc an�lu-

shc faÐnetai ìti par� th qr sh enìc mikroÔ mìno posostoÔ twn arqik¸n dedomènwn sta

sust mata sumpiestik c kathgoriopoÐhshc autì den prokaleÐ shmantik  meÐwsh sthn

apìdosh.
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Chapter 1

Introduction

Modern high-resolution sensing devices, with signal processing and communication ca-

pabilities largely based on the seminal Shannon and Nyquist studies, have enabled the

acquisition, storage, and transmission of ever increasing amounts of data. Apart from

reconstructing the original signal, several tasks such as detection and classification are

also of paramount importance in signal processing applications. Focusing on the clas-

sification task, the problem consists in finding the correct class of the sensed signal

among a set of candidate classes.

An area which could benefit significantly by the introduction of efficient computa-

tional models is video classification. With the advent of digital TV and the availability

of large digital video databases, it is desirable to classify and retrieve high-resolution

video content automatically. Moreover, in a remote sensing application, the potentially

limited power, storage, and bandwidth resources require the efficient representation of

the video content in a precise and compact way for further decision making. A char-

acteristic example in the later case is the design of unmanned aerial vehicles (UAVs)

and terrestrial sensor networks, which have been increasingly used in surveillance and

reconnaissance applications, where the captured video is exploited to classify a target

of interest.

Consequently, a lot of research effort has been put on the development of automatic

video classification algorithms. As any other classification task, the effectiveness of a

video classification system is determined by two main factors, namely, i) the quality

of extracted features that comprise the video sequence signature and ii) the selected

classifier that is used for the final label assignment to a query video sequence.

Features used for the purpose of video classification generally are drawn from three

modalities, namely text, audio and visual. However, based on the fact that humans
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receive most information through their sense of vision, the majority of the approaches

rely on visual elements, that are commonly drawn from keyframes representing a shot

[1]. These include color-based features like color histograms or color correlograms

that can capture the global and/or local distribution of colors in a video frame [2, 3],

motion-based features which include computation of optical flow in global or local

histograms or direct use of motion vectors in case of MPEG videos [4, 5, 6] as well as

gradient-based features that provide appearance, shape and object information of video

sequences [2, 7, 8]. As regards classification techniques, several are also employed in

conjunction with the appropriate features, including support vector machines (SVM),

hidden Markov models (HMM) and Bayesian methods based on maximum a posteriori

(MAP) estimation.

However, the aforementioned procedures require the full resolution video data for

the generation of the descriptors, which is highly inefficient for the case of limited-

resource sensing systems. In particular, the onboard processing of a high-resolution

video for the generation of the associated features may be computationally and power

demanding placing significant burden on the encoder’s hardware, while on the other

hand, a large bandwidth is required to transmit full-resolution data at a base station

for further processing and classification.

In this thesis we address the above drawbacks by exploiting the framework of com-

pressive sensing (CS), which is acting simultaneously as a sensing and compression pro-

tocol and is based on non-adaptive linear incoherent projections for the representation

and reconstruction of sparse signals [9]. We introduce two CS-based video classification

approaches that are directly applied in the compressed domain without any need for

signal reconstruction. More specifically, we consider the scenario of a sensing system

equipped with a single pixel camera [10] having the ability to estimate the correct class

without demanding the acquisition of the video data at full resolution. Instead, suitable

feature vectors associated with the captured video sequence, along with the appropriate

decision rule, are expressed in terms of the compressed measurements.

The remainder of the text is organised as follows. In Chapter 2 background theory

and related work in automatic video classification and compressive sensing are summa-

rized. In Chapter 3 a frame-based compressive video classification system is described

that uses directly the compressed measurements of the video frames for the classifica-

tion task. A block-based compressive video classification system using sparse coding

and spatio-temporal pyramid matching is introduced in Chapter 4, while the proposed

systems are evaluated in terms of classification accuracy in Chapter 5. Finally, in

Chapter 6 we conclude and investigate possible future extensions.
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Chapter 2

Background theory and related

work

2.1 Automatic video classification

Automatic video classification (AVC) is defined as the task of assigning a meaning-

ful label to video sequences according to a set of predefined labeled classes. As any

other classification task, the effectiveness of an AVC system is determined by two main

factors, namely, i) the quality of extracted features that comprise the video sequence

signature and ii) the selected classifier that is used for the final label assignment to a

query video sequence. In this section, commonly used features and classification rules

are summarized.

2.1.1 AVC features

Video sequences generally include information from three modalities, that is text, au-

dio and visual and as a result, features extracted can come from any combination of

them. However, in the following, only the visual modality is explored, assuming that

in the video sequences under consideration no audio channel is available and no textual

information exists.

Color-based features: Each video frame is composed of a number of pixels whose

color is described by a set of values from a color-space, e.g. RGB, HSV. One of the

simplest features that can be extracted from color information is the color histogram

that is the number of pixels in the frame at each value of the used color space. Thus, a

color histogram represents the distribution of colors in a specific frame and is invariant
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to translation and rotation of image content. Nevertheless, its simplicity comes not

for free, since it exhibits two main drawbacks. Firstly, as a global frame feature it

discards spatial information of the distribution and, secondly, it is highly sensitive to

illumination changes.

Regarding the first drawback, one approach adopted is to first divide the frame into

a dense grid of uniformly distributed pixel regions, compute the histogram of intensities

over each cell, and then concatenate all the histograms into one large feature vector. A

second solution for taking into account the local color spatial correlation as well as the

global distribution of this spatial correlation is the color correlogram. In fact, a color

correlogram of a frame forms a table of statistics for color value pairs, where the k-th

entry for pair (i, j) specifies the probability of finding a pixel of value j from a pixel of

value i at a distance k in the frame.

The second drawback can be alleviated by a normalization of each color channel in

`-1 or `-2 norm, since during illumination change color values for pixels approximately

undergo independent multiplicative changes in each color channel R, G and B.

Motion-based features: Motion in a video sequence can be generally due to both

object movement and camera action. The features extracted to describe these patterns

depend largely on the calculation of optical flow. In optical flow approaches dominating

motion patterns are approximated by analysing pixel intensities across consecutive

frames.

Under the two assumptions (constraints) of 1) brightness consistency assumption

(BCA), namely color or intensity values of corresponding pixels in frame t and frame

t+1 are constant and 2) smoothness of velocity, where motion of pixels in a small region

is small and uniform, the optical flow vector field can be computed by discretizing the

following equation:

E(u, v) =

∫∫
Ω

((Exu+ Eyv + Et)
2 + α2(|∇u|2 + |∇v|2))dxdy (2.1)

where, E stands for image intensity, Ex, Ey and Et are the partial derivatives along x,

y and t axis respectively, u and v is the velocity along x and y direction respectively,

Ω is a small region of interest and α2 is a regularization parameter.

The final features used for the modeling of motion patterns are optical flow his-

tograms or optical flow differential histograms computed in a global or local manner.

An approach used commonly for the task of action/activity recognition for the descrip-

tion of localized motion is the histogram of optical flow (HOF). First, optical flow is
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computed. Then, differentials of optical flow are calculated in order to compensate

for camera motion. Finally, the sequence of differential optical flow images is split in

overlapping subvolumes that are further divided in small space-time cuboids. Optical

flow is accumulated in a 1D-histogram per cuboid and the histograms of all cuboids in

the subvolume are concatenated, resulting in a feature vector per subvolume.

Gradient-based features: Intensity gradient is known to provide appearance and

shape information in videos, since dominant gradient magnitudes correspond to image

edges. A popular approach for the computation of localized gradient features is the

histogram of oriented gradients (HOG), where image gradients are used to calculate

feature descriptors based on histogram of dominant orientations within dense and over-

lapping space-time regions. Initially, the gradient is computed by applying appropriate

filter kernels on the horizontal and vertical directions of the image (e.g. [1, 0,−1] and

[1, 0,−1]T ) and next the same philosophy as in calculation of HOF is followed: the

gradient images are split in overlapping subvolumes, consisting of space-time cuboids,

and 1D-histograms of gradient orientation are computed per cuboid. Finally, the his-

tograms in each subvolume are concatenated to form the final subvolume feature vector.

2.1.2 AVC classifiers

After the signatures are extracted from the video sequences, they are used (with their

corresponding labels) as input to a classification algorithm. Thus, a training model

is firstly built which is then utilized for the classification of an unlabeled observed se-

quence.

k-Nearest Neighbors k-Nearest Neighbors (kNN) is one of the simplest machine

learning algorithms used for classification. It is of the type of ”lazy” learning schemes

in the sense that no training model is built before classification. Given a query sequence,

the distance between its signature and each of the training signatures is firstly com-

puted. The commonest label among the k closest training signatures is then assigned

to the unlabeled sequence. The main advantage of kNN algorithm is its simplicity that

facilitates implementation. However, when the training set is large the algorithm faces

speed and memory issues while the prediction accuracy can quickly degrade when the

dimensionality of the feature vector grows.
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Support Vector Machines: Support vector machines (SVM) belong to the category

of binary discriminative classifiers, since they focus on separating two or more classes

rather than modeling them. After mapping training signatures in a high dimensional

space using the kernel trick in order to achieve linear separability, they learn the hy-

perplane that maximizes the geometrical margin between the two classes by solving

a convex quadratic programming problem. This hyperplane is expressed through a

weighted combination of a small (ideally) number of training samples, named the sup-

port vectors. A query sequence is assigned a label according to the side of the feature

space it resides with reference to the separating hyperplane. Although SVM were ini-

tially introduced as a binary classifier, extensions for the multiclass case exist, either

by finding one hyperplane for each pair of classes (one-against-one strategy) or by find-

ing one hyperplane that optimally separates each class from the rest (one-against-all

strategy).

Hidden Markov Models: Hidden Markov model (HMM) is a probabilistic technique

used to model the temporal structure of the features extracted from a video sequence,

which can indeed be a discriminative cue for the classification task. The HMM assumes

that the system being modeled is a Markov process with a finite number of unobserved

(hidden) states, following a prior distribution π. In each time instance the system enters

one state according to a probability distribution A depending only on the previous state.

After the state transition, an observable symbol (a feature vector in AVC framework)

is generated based on a probability distribution B depending on the current state. The

training set is used to learn the model λ = (A,B, π) so that the probability p(O|λ)

is maximized, where O is a sequence of observations. Most times a number of HMMs

are learned for each class (each one describing the temporal evolution of one feature

type). A query sequence is labeled with the label of the class whose model maximizes

the posterior probability p(λ|O) (or the sum of posterior probabilities if more than one

HMMs/class are trained).

2.2 Compressive sensing

According to the well-known Shannon/Nyquist theorem, which is dominating the pro-

cedure of signal acquisition, a signal’s sampling rate must be at least twice its maximum

bandwidth for loss of information to be avoided. However, as it is proven by the tra-

ditional scheme of transform coding, this is a highly redundant sampling procedure for

most natural signals, such as images, which follow a sparse model. Compressing sens-

6



ing (CS) addresses this issue by acting as a simultaneous sampling and compressing

protocol, enabling the effective sensing of a signal using a relatively small set of linear

non-adaptive incoherent measurements [11].

To put it more formally, consider the signal x, a N × 1 column vector in RN , and a

N ×N basis matrix Ψ = [ψ1,ψ2, · · · ,ψN ]. Such a signal, that can be represented as

x = Ψs, is said to be K-sparse in the basis Ψ if the vector s ∈ RN has only K � N

non-zero entries.

Under the CS paradigm the signal is directly acquired in a compressed form using

the following measurement model,

y = Φx = ΦΨs (2.2)

where Φ is an M ×N random measurement matrix with M < N and y is the M × 1

resulting vector of compressed measurements. The above sampling procedure is char-

acterized as incoherent if the largest correlation between the rows of the measurement

matrix Φ and the columns of the basis matrix Ψ,

µ(Φ,Ψ) = max
k,j
| < φk,ψj > | (2.3)

is sufficiently small so that the rows of Φ cannot sparsely represent the columns of Ψ

(and vice versa).

Common choices for Φ are random matrices with independent and identically dis-

tributed (i.i.d.) Gaussian or Bernoulli entries, with columns normalized to unit `2

norm. Such matrices are proven to exhibit a very low coherence with any fixed basis

Ψ, building up the universality of the sampling scheme.

2.2.0.1 Single-pixel camera architecture

The single-pixel camera (SPC) is one of the hardware applications proposed for the

direct application of CS in the optical domain. As it is revealed by its name this

imaging device has a single photon detector in contrast to a conventional camera which

incorporates a vast array of photon detectors, one for each pixel.

As shown in Fig. 2.1 the light-field is focused by Lens 1 onto a digital micromir-

ror device (DMD), a type of reflective spatial light modulator (SLM) that selectively

redirects parts of the light beam. The DMD consists of an array of micro-mirrors each

of which is suspended above an individual static random access memory (SRAM) cell.

Any mirror rotates about a hinge and can be positioned in one of two states (±10
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Figure 2.1: Single-pixel camera architecture

degrees from horizontal) according to which bit is loaded into the SRAM cell. As a

result, light falling on the DMD can be reflected in two directions depending on the

orientation of the mirrors.

Assume a measurement matrix Φ = [φ1 · · ·φj · · ·φM ]T ∈ RM×N and an image

x ∈ RN . During the acquisition of j-th compressive measurement, each element of the

SLM corresponds to a particular element of φj . The corresponding element of the SLM

can be oriented either towards (for 1 in SRAM cell) or away from (for 0 in SRAM cell)

Lens 2. Lens 2 collects the reflected light and focuses it onto a single photon detector

that integrates the product of x and φj to compute the measurement yj = φj
Tx as

its output voltage. This voltage is then digitized by an A/D converter and sent to

the decoder for further processing. It is noted that since the DMD is programmable,

arbitrary measurement matrices can be applied, for instance by dithering the mirrors

back and forth during the photon detector integration time.

Two issues arise in the above setting. Firstly, since the acquisition of compressed

samples is realized in a sequential manner, the scene captured is assumed to be static

or at least slowly changing. When it comes to a video sequence, it is assumed that the

scene remains unchanged during the sampling of each frame. Secondly, storing large

measurement matrices in a SPC system is impractical, thus instead of a purely random

Φ a more appropriate choice is a structurally random matrix [12], such as Block Walsh-

Hadamard operator (BWHT) that admits a fast transform-based and memory efficient

implementation.

2.2.0.2 CS signal reconstruction

Under the assumptions of signal sparsity and incoherent sampling and if additionally

M = O(K log(N/K)) it is possible with high probability to reconstruct the initial signal
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by solving the following `1-norm minimization problem

ŝ = argmin
s
‖s‖1, s.t. y = ΦΨs (2.4)

When noise is present a perfect reconstruction may not be possible, so a relaxed

version of the above formulation is considered:

ŝ = argmin
s
‖s‖1, s.t. ‖y −ΦΨs‖2 ≤ ε (2.5)

where ε bounds the signal noise.

Several algorithms have been proposed to solve the optimization problems of (2.4)

and (2.5) after appropriate reformulations. These include linear programming methods

([9], [13]) as well as greedy methods from the class of matching pursuit algorithms ([14],

[15]).

2.2.0.3 Classification in the compressed domain

Precise signal reconstruction is not always the goal in a signal acquisition application.

Since the meaningful information of the signal is preserved through CS measurement

process the compressed samples acquired can be directly exploited for the task of signal

classification/detection as well. The far less aggressive goal of classification compared

to reconstruction is proven to be accomplished with much fewer compressive samples

([16], [17]).

It is noted, that under a machine learning framework the CS measurement procedure

can be seen as a non-adaptive dimensionality reduction technique, known as random

projections (RPs). RPs are known to generate a low-dimensional representation of

the initial signal that encodes its salient information content, in a simple linear and

data-independent universal way.

2.2.1 Sparse coding and dictionary learning

According to the linear generative model a signal x ∈ RM can be expressed as a linear

combination of several basis items coming from a dictionary D ∈ RM×N, that is

x = Da (2.6)

where a ∈ RN is the representation vector.

In case where an orthonormal basis set, like DCT or wavelets, constitutes D it is
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straight-forward to compute a by solving the above system of linear equations. However,

if D is overcomplete, that is, M < N , the system above is underdetermined and further

assumptions on the signal properties have to be made to solve (2.6).

Sparse coding tackles this problem by representing the signal under consideration

as a weighted linear combination of only a small number of items coming from D.

Sparsity assumption has been validated for several natural signals, like images, and has

been successfully applied in a number of computer vision related tasks, such as image

denoising, impainting and classification.

Formally, the sparse coding problem can be formulated as the following `1 mini-

mization problem:

â = argmin
a
‖a‖1, s.t. x = Da (2.7)

If signal noise exists the problem is reformulated as follows:

â = argmin
a
‖a‖1, s.t. ‖x−Da‖2 ≤ ε (2.8)

As it can be seen, equation (2.8) describes exactly the same problem as equation

(2.5) and as a result the same algorithms can be applied.

A second issue that arises in the framework of sparse coding is the nature of dic-

tionary D. Although preconstructed fixed dictionaries are always a choice, they are

typically limited to their ability to sparsify the signals they are designed to handle.

In order to overcome this limitation the dictionary D can be built through a learning

process using a training database of signal instances.

Concretely, the problem of sparse dictionary learning can be formulated as follows:

min
D,{ai}Mi=1

1

M

M∑
i=1

1

2
‖xi −Dai‖22 + λ‖ai‖1 (2.9)

where λ is a regularization parameter.

The above problem is normally solved through an alternating iterative process. At

each stage of one iteration, firstly the sparse codes ai are updated as in (2.8), while D

is kept constant. Next, D is updated by keeping ai fixed.

Common learning algorithms process the training database in batch-mode ([18],

[19], [20]), accessing the whole dataset at each iteration. Although effective in case of

moderate-sized training sets, these algorithms are inappropriate for larger databases,

a typical scenario in computer vision tasks (e.g. learning a dictionary on millions of

small image patches). This issue is addressed by a recent online dictionary learning
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approach proposed in [21]. The algorithm, which is processing the training samples one

at a time (a mini-batch extension also exists), is based on stochastic approximation for

the dictionary update step and is outlined below.

Algorithm 1 Online dictionary learning [21]

1: A0 ← 0, B0 ← 0
2: for t = 1 to M do
3: Draw xt

4: Sparse coding:

at = argmin
a

1

2
‖xt −Dt−1a‖22 + λ‖a‖1

5: At ← At−1 + ata
T
t

6: Bt ← Bt−1 + xta
T
t

7: Dictionary update:
repeat

for j = 1 to N do

uj ←
1

Ajj
(bj −Daj) + dj

dj ←
1

max(‖uj‖2, 1)
uj

end for
until convergence

8: end for
9: return DM

2.3 Related work

A lot of research effort has been put on the application of CS theory in the field of image

and video processing, both for the tasks of reconstruction and classification/detection.

Based on our assumption for a system equipped with single-pixel cameras only, in the

following, we focus on recent works concerning on the use of the CS theory for video

classification.

In [22] a compressive classification framework that operates directly on the com-

pressive measurements without a reconstruction step is proposed. Building on the fact

that, under the condition that sufficient number of measurements is acquired, the ran-

dom measurement procedure preserves the essential structure of a smooth manifold
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and by extending the generalized maximum likelihood classification (GMLC) notion to

the compressed domain, the authors propose the smashed filter classifier a compres-

sive version of the traditional matched filter detector. Evaluation of the scheme was

realized under a controlled experiment of target classification, using a dataset of im-

ages depicting rotated around vertical axis versions of three vehicles. The single-scaled

smashed filter was later extended to a multiscale version in [23], where random samples

of regularized versions of each image were taken in various scales, in order to obtain

differentiable image appearance manifolds at this set of scales.

Classification of texture images under unknown viewpoint and illumination using

compressive sensing is presented in [24]. Each texture image is initially split in a number

of non-overlapping patches, named textons which are projected to a low-dimensional

space through the CS measurement model. The compressed textons extracted from the

training set are used to learn a codebook of K words with k-means clustering and each

texture image is assigned a signature based on a bag-of-words model: the compressed

textons are quantized using the learned codebook and a histogram of word relative

frequencies is computed for each image, forming its signature. A signature is formed

likewise for a query image which is finally classified using a nearest neighbor rule in the

χ2 distance meaning.

In [25] the use of classical dimensionality reduction embeddings in the compressed

domain is explored. The authors assume a network of vision sensors that capture

multiple compressed measurements of visual signals. The random measurements are

then projected onto a subspace defined by the embedding of a linear classification

subspace (learned on the training set through, PCA or LDA) in the compressed domain.

The new projections form the feature vectors used for the classification task performed

by a NN classifier.

Video sequences have been successfully modeled as linear dynamical systems (LDS).

In [26] the CS and LDS frameworks are unified by proposing a novel compressive mea-

surement strategy named CSLDS. Only the low-dimensional dynamic parameters form-

ing the state sequence are measured and after measurements are accumulated over time

at the decoder the static parameters (the observation matrix) are estimated. Among

other applications including dynamical texture reconstruction and hyper-spectral imag-

ing, the CSLDS framework is also applied to video classification of traffic density and

human activity sequences. The classification is performed directly on the estimated

LDS parameters, without any reconstruction of initial frames, using a NN classifier

and the Procrustes distance as distance metric.

Human activity video classification results are further improved by describing hu-
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man activities as a non-linear dynamical system in [27]. Distance matrices of differences

between successive frames are computed and interpreted as intensity texture images.

Thus, the problem of activity classification is translated to at texture recognition prob-

lem and the extraction of features is accomplished by a texture classification method

named local binary patterns (LBP). A simple NN classifier is again used as the decision

rule.

Discriminative nature of sparse representation is commonly exploited for the classifi-

cation task in computer vision problems. In the seminal work of [28] the face recognition

problem is reformulated as a sparse vector reconstruction problem. More specifically,

features extracted from a training set of face images of several subjects under various

illumination scenarios form a training dictionary. During runtime phase the feature of

a query image is expressed as a sparse linear combination of the training dictionary

entries by solving an `-1 minimization problem. Ideally the large non-zero coefficients

of the recovered sparse vector should correspond to dictionary entries belonging to a

specific class, which is the one assigned to the query image.

Sparse representations are used in the problem of patch-based texture classification

via texton learning in [29]. Initially, a sparse coding formulation is used to learn one

dictionary for each texture class and an overall texton dictionary D is formed by uniting

all class-specific dictionaries. For computational efficiency sparse codes are evaluated

over a small subset of elements of D, the closest to the patch to be encoded and an

image signature is formed by summing sparse representations of all patches belonging

to the same image. Classification is performed by an χ2-NN classifier.

An image categorization approach via sparse coding is explored in [30], based on

SIFT sparse codes and a linear spatial pyramid matching (SPM) kernel. SIFT appear-

ance descriptors computed are sparsely coded on a learned dictionary, that is calculated

using the feature-sign search algorithm of [20]. The final image representation is com-

puted by max pooling of the SIFT sparse codes across different locations and over

different spatial scales, following a spatial pyramid structure. Spatial pyramid is pre-

ferred to a simple bag-of-features (BoF) approach since the first can better model the

spatial layout of descriptors in the image. The classification is accomplished by a train-

ing an SVM with a simple linear SPM kernel instead of the standard non-linear kernels,

like intersection or χ2 kernel, used in the majority of state-of-the-art approaches, thus

enabling better scalabitily of the proposed system.

The authors of [31] propose an algorithm for online unusual event detection in

videos. Based on the intuition that usual events are more likely to be reconstructible

from an event dictionary while unusual are not, sparse reconstruction codes and dic-
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tionary are inferred jointly, by minimizing an objective function measuring the abnor-

mality of events. The algorithm is completely unsupervised and dictionary is updated

in an online fashion, in order to cope with concept drift. Events having an abnormality

value higher than a predefined user threshold are considered unusual.
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Chapter 3

Frame-based compressive video

classification

Conventional approaches for video classification build on the availability of full resolu-

tion video data in order to extract meaningful features and form a suitable sequence

signature. However, under a typical resource-constraint sensing system scenario, such

systems are highly inefficient since strict power, processing, memory and bandwidth

limitations exist. In this chapter we introduce a simple compressive video classifica-

tion (CVC) architecture that works directly in the compressed domain. We consider

the futuristic scenario of a sensing system whose encoder is equipped with a single

pixel camera, as it is described in Section 2.2.0.1, that is able to estimate the correct

class without demanding the acquisition of video data in full resolution. Equally im-

portantly no reconstruction of the uncompressed video sequence is necessary, reducing

both the processing burden at the decoder and the required sampling rate and thus

saving transmission bandwidth.

3.1 CS-based video acquisition model

Let V = {x1, . . . ,xR} be a video sequence consisting of R frames xj , j = 1, . . . , R,

where each frame is represented by its luminance component. For convenience, in the

following we consider that each frame is expressed as a column vector, xj ∈ RN . Then,

a vector of compressed measurements gj , j = 1, . . . , R is generated for each frame

using a suitable measurement matrix Φ (for simplicity we use the same matrix for each

frame) as follows,

gj = Φxj , (3.1)
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where Φ ∈ RM×N is a random measurement matrix with M < N .

Common choices for Φ are random matrices with independent and identically dis-

tributed (i.i.d.) Gaussian or Bernoulli entries, whose columns are normalized to unit

`2-norm. In a decision system with limited resources, some additional requirements

should be posed on the choice of the desired matrix Φ, such as the use of minimal

number of compressed measurements, and the fast and memory efficient computation

along with a “hardware-friendly” implementation. A class of matrices satisfying these

requirements, the so-called structurally random matrices, was introduced recently [12].

The block Walsh-Hadamard (BWHT) operator is a typical member of this family and

is used subsequently.

Notice that with the use of a single-pixel camera the generation of CS measurements

does not require the acquisition of frames at full resolution, thus reducing significantly

the processing and storage expenses of the sensing device.

In the framework of compressive video classification (CVC), we consider that the

given video sequence belongs to the class c, where c ∈ {1, . . . , C}. Following a su-

pervised learning approach, a set of training video samples is obtained for each class,

Tc = {Vc
1, . . . ,V

c
Q}. For simplicity, we consider that the number of training samples Q

is equal for all the classes. Let also T = {T1, . . . ,TC} denote the overall set of training

samples. The CVC problem is stated as follows: Given a low-dimensional signature

of the acquired video sequence, a training dictionary D, and a measurement matrix Φ,

estimate the correct class c ∈ {1, . . . , C}.

3.2 Proposed CVC system

A typical classification system consists of two main phases, namely, a feature extraction

phase, where a more compact representation of the original information is generated

in a low-dimensional space, with the goal of preserving a high discriminative power,

and a classification phase, where the extracted feature vector of the given signal is

compared with the corresponding features of the training samples by means of a suitable

similarity criterion resulting in the estimated class. In the following sections, the main

characteristics of the two phases are introduced in detail for the proposed CVC system,

which is depicted in Fig. 3.1

3.2.1 Feature extraction

During the feature extraction phase, a set of CS measurements is generated for the

frames of each video sequence. More specifically, let us denote by xc
j,q ∈ RN the j-
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Figure 3.1: Proposed frame-based CVC architecture.

th frame of the q-th sequence belonging to class c. Then a low-dimensional (feature)

measurement vector gcj,q ∈ RM is assigned to xc
j,q as given in (3.1). The overall signature

of the q-th sequence in class c is given by,

Vc
q 7−→ Fc

q = {gc1,q, . . . , gcR,q}, (3.2)

and by augmenting all the training signatures we get the overall signature for the

training set, F =
∀q,c

⋃
Fc
q and, finally, the following M ×RQC overall training dictionary

D,

D = [g1
1,1, . . . , g

c
j,q, . . . , g

C
R,Q]. (3.3)

3.2.2 Classification phase

Following the feature extraction step, the classification phase is performed by means of

an appropriate decision rule. In the following, three decision criteria are employed: the

first two exploit directly the CS measurements forming the signature of the sequence,

while the third one is based on the solution of a convex optimization problem for the

recovery of a sparse class-indicator vector. It is noted that in the proposed scheme

each projected frame is classified separately and the estimated class is the one with

the highest frequency of appearance among the separately classified projected frames

of each sequence.

Nearest-Neighbor

The simplest decision rule for estimating the optimal class of compressed video frame
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gquery is given by the nearest-neighbor (NN) criterion defined by

c∗ = argmin
c∈{1,...,C}, ∀ j,q,c

‖gquery − gcj,q‖22 . (3.4)

In other words, the query measurement vector is assigned the class label of the closest

training measurement vector in a euclidean distance sense.

Support Vector Machine

Support vector machine (SVM) is a discriminative classifier, originally designed for

binary classification. It determines the hyperplane that linearly separates the training

data with the maximum possible margin. Given input training vectors gi ∈ RM , i =

1, . . . , L and their associated labels yi ∈ {−1, 1} the optimal hyperplane is found by

solving the following quadratic maximization problem:

max
a

L∑
i=1

ai −
1

2

L∑
i,1=1

yiaiyjajK(gi, gj) (3.5)

s.t.
∑
i

aiyi = 0, 0 ≤ ai ≤ C, i = 1, . . . , L

where K(gi, gj) = φ(gi)
Tφ(gj) an appropriate kernel function, with φ(gi) a function

that maps gi into a high dimensional space. The training samples associated to the

non-zero Lagrange multipliers ai, i = 1, . . . , L are the support vectors and are the ones

falling on the margin.

A query video frame gquery is classified according to the discriminant function given

by

d(gquery) = wTφ(gquery) + b =
L∑
i=1

aiyiK(gi, gquery) + b. (3.6)

Various kernel functions K(gi, gj) have been used in order to estimate high dimen-

sional inner products. In our case, a simple linear kernel, defined as K(gi, gj) = gTi gj ,

is chosen. Additionally, the multi-class SVM version is used. More specifically, let

D = {gcj,q}, j = 1, . . . , R, q = 1, . . . , Q, c = 1, . . . , C denote the labeled training data.

A way to solve the problem of multi-class classification is to follow a one-against-one

approach, where an SVM is constructed for every pair of classes by training it to

discriminate them. The number of SVMs to be trained in this approach is equal to

C(C − 1)/2. Let also (k, l) be a pair of classes and dk,l(·) the associated discriminant
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function (cf. (3.6)). Then, given the query feature vector gquery, if dk,l(gquery) > 0

a vote is assigned to the k-th class, otherwise the vote is given to the l-th class. The

process is repeated for each pair of classes and finally, the class with the maximum

number of votes is assigned to the query gquery.

Sparse Representation Classification

Regarding the later category of classification methods, an alternative way to estimate

the class of the query video frame is obtained by reformulating the classification problem

as a problem of recovering an appropriate sparse vector. More specifically, a class-

indicator vector α is introduced, where

α = [α1
1, . . . , α

1
Q, . . . , α

i
1, . . . , α

i
Q, . . . , α

C
1 , . . . , α

C
Q] ∈ RCQ .

If the query video frame belongs to the i-th class, in the ideal case we expect that its

measurement vector gquery will be similar to the corresponding training data of the i-th

class, or equivalently to the corresponding columns of the training dictionary D (cf.

(3.3)). Accordingly, the class-indicator vector has the following Q-sparse structure

α = [0, . . . , 0, αi
1, . . . , α

i
Q, 0, . . . , 0] , (3.7)

with the non-zero components corresponding to the Q indices of the i-th class. Thus,

the CVC problem is reduced to a problem of recovering the sparse support of α, which

is expressed as the solution of a convex optimization problem as follows,

α∗ = argmin
α∈RCQ

‖α‖1 , s.t.‖gquery −Dα‖2 < ε . (3.8)

Numerous algorithms have been proposed to solve the optimization problems of (3.8)

after appropriate reformulations. These include linear programming methods ([9], [13])

as well as greedy methods from the class of matching pursuit algorithms ([14], [15]).

Motivated by its simple and fast implementation, the orthogonal matching pursuit

(OMP) algorithm is used in our case.

Notice that in practice, especially in noisy conditions, the recovered class-indicator

vector is not exactly Q-sparse. In this case, an additional step is applied to obtain the

final class estimate by enforcing the Q-sparsity of α∗ as follows,

c∗ = argmin
c=1,...,C

‖gquery −Dδc(α
∗)‖2 , (3.9)
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where δc(α) denotes the block-Kronecker operator, which sets to zero all the compo-

nents of α except for these corresponding to the Q indices of the c-th class.
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Chapter 4

Block-based compressive video

classification using dictionary

learning and spatio-temporal

pyramid matching

In this chapter a more sophisticated compressive video classification system is intro-

duced that takes into consideration the limitations of a resource-constraint sensing

system scenario and is directly applied in the compressed domain. Under the assump-

tion of a video classification system equipped with a single-pixel camera, each video

frame is acquired compressively in a block-basis. An appropriate signature is computed

through sparse coding of compressively sampled blocks on a trained dictionary, in con-

junction with a pooling function applied in spatio-temporal video cubes. The system

is able to estimate the correct class demanding neither the acquisition of full resolution

video data nor the reconstruction of the uncompressed video sequences, reducing both

the processing burden at the decoder and the required sampling rate and thus saving

transmission bandwidth.

4.1 Block-based CS video acquisition model

Block-based image/video processing is a commonly adopted philosophy alleviating large

computational and memory burdens imposed on an imaging system in case of processing

the image/frame in its entirety. Under the single-pixel camera scenario, sampling in

blocks enables substantial reduction to the memory requirements for storing the random

21



measurement operator.

A key parameter in block-based classification tasks is the size of the block. Blocks of

too small size cannot capture the large-scale structures that may be dominant features

of video appearance and are highly sensitive to noise, while blocks of large dimen-

sionality lead to the presence of irrelevant and noisy features that can deteriorate the

performance of the classifier.

Let V = {x1, . . . ,xR} be a video sequence consisting of R frames, where each

frame is represented by its luminance component. Each frame is divided into B non-

overlapping blocks of size
√
NB×

√
NB pixels and acquired using an appropriately sized

measurement matrix. Suppose that xi
j ∈ RNB is a vector representing, in raster-scan

fashion, the i-th block of j-th input frame. A vector of random measurements gij ∈ RMB

is then generated for each block xi
j using an appropriate measurement matrix ΦB (the

same for each block for simplicity reasons) according to the following block compressive

sensing (BCS) model,

gij = ΦBx
i
j . (4.1)

where ΦB is a MB×NB random measurement matrix with MB < NB. It is straightfor-

ward to see that (4.1) applied block-by-block to a frame is equivalent to a block-diagonal

total frame measurement matrix Φ,

Φ =


ΦB 0 · · · 0

0 ΦB · · · 0
...

. . .
...

0 0 · · · ΦB

 (4.2)

resulting in a total of M = BMB measurements per frame and a total sampling rate

of M
N = BMB

BNB
= MB

NB
. We note that a single-pixel camera system can easily accommo-

date BCS acquisition by simply driving the micro-mirror array with the block-diagonal

matrix Φ.

4.2 Proposed CVC system

Typically, a classification system is implemented in two distinct phases, namely the

training phase where an appropriate signature is computed for each video sequence

of the training set with the goal of preserving high discriminative power and a run-

time/classification phase where the extracted feature vector of a query sequence is

compared to the corresponding features extracted from the training set by means of an
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appropriate similarity criterion resulting in the estimated class. In the following, the

aforementioned phases for the proposed CVC system are described in detail.

4.2.1 Feature extraction phase

Feature extraction phase consists of three distinct steps: i) acquisition of random mea-

surements of training sequences according to the BCS sampling model, ii) dictionary

learning and sparse coding (SC) of the compressively sampled blocks and iii) video

signature computation by pooling block sparse codes across different spatio-temporal

locations and over different scales, following a spatio-temporal pyramid video decom-

position.

4.2.1.1 Random BCS measurements

During the training phase a set of CS measurements is generated for each video sequence

following the BCS acquisition model described in the previous section. More specifically,

let us denote by xc
j,q ∈ RNB the rasterized j-th block with size

√
NB ×

√
NB pixels of

the q-th sequence belonging to class c. Then a low-dimensional vector gcj,q ∈ RMB×1 is

assigned to xc
j,q as given by (4.1). As a result the q-th sequence of class c is mapped to

a set of measurement vectors as follows

Vc
q 7−→ Scq = {gc1,q, . . . , gcBR,q} (4.3)

By augmenting the measurement vectors of all training sequences, we get the following

overall set of compressed frame blocks

S = {Scq}
c=1,...,C
q=1,...,Q. (4.4)

4.2.1.2 Block-based dictionary learning and sparse coding

Research in image statistics clearly reveals that image/video blocks (also found in bib-

liography as patches) are sparse signals. Apart from that, sparsity in general allows the

representation to be specialized and capture salient properties of image/video blocks,

in others words be of discriminative nature. During the second step of the training

phase a sparse vector is assigned to each compressed training block by solving a joint

dictionary leaning and sparse coding problem.

Let us denote by S = [s1, . . . , sL] a matrix with all the L elements of S as its
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columns. Then the problem of sparse coding is formulated as follows:

min
D,{ai}Li=1

1

L

L∑
i=1

1

2
‖si −Dai‖22 + λ‖ai‖1 (4.5)

where D is an overcomplete dictionary of size MB ×K (with MB < K), λ is a regular-

ization parameter and ai ∈ RK , i = 1, . . . , L the assigned sparse codes.

The above problem is normally solved through an alternating iterative process. At

each stage of one iteration, firstly the sparse codes ai are updated by solving an `-1

minimization problem, while D is kept constant. Next, D is updated by keeping ai

fixed.

Common learning algorithms process the training database in batch-mode, access-

ing the whole dataset at each iteration. Although effective in case of moderate-sized

training sets, these algorithms are inappropriate for larger databases, a typical scenario

in the case of a large number of compressed patches. This issue is addressed by a recent

online dictionary learning approach proposed in [21], which is processing the training

samples one at a time and uses a stochastic approximation for the dictionary update

step.

Since a sparse code is retained for each compressed block, at the end of this step

each video sequence is assigned a set of sparse codes Ac
q = [ac1,q, . . . ,a

c
BR,q].

4.2.1.3 Spatio-temporal pyramid representation

For each training video sequence described by a set of compressed blocks, it is possible to

compute a single feature vector based on some statistics of the sparse codes computed

in the previous step. This is commonly accomplished by the use of an appropriate

pooling function. Pooling is used to achieve invariance to image transformations, more

compact representations and better robustness to noise.

Assuming a set of descriptors U = [u1, . . . ,uM], common choices for a pooling

function z = F(U) are:

• average pooling

z =
1

M

M∑
i=1

ui (4.6)
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• max absolute pooling

zj = max{|u1,j |, . . . , |uM,j |}, (4.7)

where zj is the j-th element of z and ui,j is the j-th element of the i-th descriptor.

In our case, since the descriptors to be pooled are sparse, the max pooling function

is preferred. This is well established by biophysical evidence in the visual cortex [32]

and is verified both theoretically [33] and empirically [30].

Pooling can be accomplished according to the simple bag-of-features (BoF) approach

where all local descriptors are pooled in an unordered fashion. However, in this way the

spatio-temporal order of the descriptors is discarded, which limits the discriminative

power of the representation. In order to overcome this problem a spatio-temporal

pyramid representation is used in the following. Informally, the sequence’s spatio-

temporal layout of compressed blocks is kept by applying a pooling function in various

partitions of different levels of the video sequence and concatenating the results in a

single vector.

More specifically, assume the q-th video sequence of class c partitioned into sub-

volumes in spatial and temporal space over L different levels. At each level l (l ∈
[0, . . . , L− 1]) there exist 2l subvolumes in each dimension. Block sparse codes of each

subvolume (x, y, t), 0 ≤ x, y, t ≤ 2l−1 are pooled in a vector zc,lq (x, y, t) and the results

across all spatio-temporal locations and over all scales are concatenated into a single

vector zcq that is normalized, forming the final video sequence signature. The procedure

is illustrated in Fig. 4.1.

4.2.2 Classification phase

A query sequence Vquery that is given as input to the proposed CVC system, due to

the assumption that it is acquired directly by a single-pixel camera following the BCS

acquisition model, is described initially by a set of BR random block-based compressive

measurements, where B is the number of blocks per frame and R the number of frames

per sequence, according to the following mapping

Vquery 7−→ Squery = {g1,query, . . . , gBR,query} (4.8)

Then, the sparse code of each compressed block gi,query in Squery is computed on
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Figure 4.1: Spatio-temporal Pyramid Representation for L = 3 levels

the trained dictionary D by solving the following `-1 minimization problem

aquery = argmin
a
‖a‖1 s.t. ‖gi,query −Da‖ ≤ ε (4.9)

resulting in a set of sparse codes Aquery = [a1,query, . . . ,aBR,query] for the query video.

Then, the sparse codes are pooled according to the spatio-temporal pyramid repre-

sentation described in the previous section and the classification of the query sequence

is done by means of an appropriate decision rule. In our case a support vector ma-

chine (SVM) classifier is used to discriminate between the classes of the classification

problem.

Assuming that the training set is described by {(zi, yi)}Li=1, where zi, i = 1, . . . , L

are the training signatures and yi the corresponding labels, for a binary classification

problem (where yi ∈ {−1,+1}), an SVM aims to learn the optimal hyperplane sepa-

rating the data of the two classes by solving the following maximization problem

max
a

L∑
i=1

ai −
1

2

L∑
i,1=1

yiaiyjajK(zi, zj) (4.10)

s.t.
∑
i

aiyi = 0, 0 ≤ ai ≤ C, i = 1, . . . , L

The kernel K(zi, zj) can be in general any valid Mercer kernel function. Here, we
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Figure 4.2: Proposed block-based CVC.

use a simple linear spatio-temporal pyramid matching kernel

K(zi, zj) = zTj zi =
L−1∑
l=0

2l−1∑
x=0

2l−1∑
y=0

2l−1∑
t=0

〈zli(x, y, t)zlj(x, y, t)〉, (4.11)

where 〈zi, zj〉 = zTi zj and zli(x, y, t) is the vector of pooled sparse codes in the (x, y, t)-

th subvolume of the sequence at scale l. Although linear, this kernel has been shown

to achieve high classification accuracy when applied directly to sparse representations,

by maintaining a low training and testing cost [30].

Since the video sequences in general come from C > 2 classes, a multi-class SVM

classification problem should be solved. The approach used is the one-against-one

strategy, where an SVM is constructed for every pair of classes. The number of SVMs

to be trained in this approach is equal to C(C−1)/2. Let also (k, l) be a pair of classes

and dk,l(·) the associated discriminant function. Then, given the query signature zquery,

if dk,l(zquery) > 0 a vote is assigned to the k-th class, otherwise the vote is given to the

l-th class. The process is repeated for each pair of classes and finally, the class with

the maximum number of votes is assigned to the query zquery.

The proposed system is summarized in the block diagram of Fig. 4.2.
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Chapter 5

Experimental evaluation

In this chapter the proposed compressive video classification systems are evaluated in

terms of classification accuracy. In particular, our database consists of 8 classes from the

UCF50 dataset, namely “Baseball Pitch”, “Bench Press”, “Biking”, “Breast Stroke”,

“Clean and Jerk”, “Diving”, “Drumming” and “Fencing”. This dataset includes videos

categorized in classes corresponding to different actions and is particularly challenging

due to large variations in camera motion, object appearance and pose, as well as the

illumination conditions. Each class consists of 50 video sequences with 100 frames per

sequence. A preprocessing step is applied on each frame, by converting into grayscale

and downsampling at 128×128 pixels. The classification accuracy is expressed in terms

of the average success rate, which is defined by

success rate =
number of correctly classified sequences

total number of query sequences
. (5.1)

5.1 Frame-based CVC performance

In the case of the frame-based CVC presented in Chapter 2, a distinct block Walsh-

Hadamard measurement matrix Φ is used in each run while the sampling ratio M/N

varies in [0.001, 0.10]. For each class we execute 20 Monte-Carlo runs, where in each

run a different separation of the 50 videos in T training and 50− T testing samples is

generated, with T ∈ {10, 25, 40}. The overall success rate averaged over the 20 Monte-

Carlo runs and the 8 classes, as a function of the sampling ratio M/N is depicted in

Fig. 5.1. Moreover, three classification methods are compared, namely the NN, the

multi-class SVM and the SRC using the OMP.
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Figure 5.1: Total mean success rate as a function of the sampling rate, for 8 classes

and three methods (NN,SVM,SRC) using CS features.
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As it is expected, the classification accuracy increases as the sampling ratio M/N

and the number of training samples increases. In addition, we observe that the perfor-

mance of the pairwise voting approach employed by the multi-class SVM is superior

to the other two classification methods, followed by the SRC approach while the NN

classifier that applies the most simplistic decision metric appears to be the most prone

to misclassification errors. More specifically, for the case of 40 training samples the

maximum accuracy for M/N = 10% is around 63% for the NN classifier and 69% and

74% for the case of the SRC and SVM respectively.

Furthermore, the confusion matrices between the 8 classes by fixing M/N = 10%

for the case of linear SVM, SRC and NN are shown in Table 5.1, Table 5.2 and Table 5.3

respectively.

Table 5.1: Confusion matrix for the SVM method with M/N = 10% and 40 training

samples.
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Baseball pitch 0.75 0 0.12 0.04 0.06 0.02 0.01 0

Bench press 0 0.79 0.08 0.04 0.03 0.04 0 0.02

Biking 0.09 0 0.75 0.07 0.06 0 0.03 0.01

Breast stroke 0 0.08 0.06 0.76 0.06 0.04 0 0

Clean and jerk 0.02 0.03 0.04 0.09 0.78 0 0.04 0

Diving 0 0.02 0.14 0.02 0.08 0.73 0 0.01

Drumming 0.01 0.01 0 0.09 0.03 0.01 0.76 0.06

Fencing 0.05 0.05 0.12 0.04 0.08 0.01 0.02 0.63
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Table 5.2: Confusion matrix for the SRC method with M/N = 10% and 40 training

samples.

B
as

eb
al

l
pi

tc
h

B
en

ch
pr

es
s

B
ik

in
g

B
re

as
t

st
ro

ke
C

le
an

an
d

je
rk

D
iv

in
g

D
ru

m
m

in
g

Fe
nc

in
g

Baseball pitch 0.67 0 0.15 0.08 0.06 0.01 0.03 0

Bench press 0 0.75 0.09 0.04 0.03 0.04 0 0.05

Biking 0.07 0.01 0.69 0.08 0.08 0 0.07 0

Breast stroke 0 0.09 0.12 0.71 0.05 0.02 0 0.01

Clean and jerk 0.05 0.04 0.05 0.08 0.72 0 0.06 0

Diving 0.03 0 0.14 0.08 0.03 0.66 0.02 0.04

Drumming 0.02 0.04 0 0.10 0.05 0.01 0.69 0.09

Fencing 0.08 0.05 0.12 0.05 0.07 0 0.02 0.61

Table 5.3: Confusion matrix for the NN method with M/N = 10% and 40 training

samples.
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Baseball pitch 0.66 0.02 0.15 0.04 0.06 0.02 0.04 0.01

Bench press 0.01 0.64 0.09 0.07 0.09 0.05 0 0.05

Biking 0.08 0 0.66 0.08 0.10 0.02 0.06 0

Breast stroke 0.05 0.10 0.06 0.65 0.08 0.02 0 0.04

Clean and jerk 0 0.06 0.15 0.05 0.69 0 0.04 0.01

Diving 0.03 0.05 0.10 0.07 0.08 0.62 0.02 0.03

Drumming 0.05 0.08 0 0.12 0.03 0.05 0.60 0.07

Fencing 0.01 0.02 0.12 0.10 0.07 0.05 0.05 0.58
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5.2 Block-based CVC performance

In the following the proposed block-based CVC presented in Chapter 3 is evaluated. A

distinct block Walsh-Hadamard measurement matrix Φ is used in each run while the

sampling ratio MB/NB varies in [0.008, 0.10] and accordingly the total measurement

rate M/N varies in the same interval. For each class we execute 20 Monte-Carlo runs,

where in each run a different separation of the 50 videos in T training and 50−T testing

samples is generated, with T ∈ {25, 40}. More specifically, we investigate the effect of

four parameters on the success rate, namely: i) the number K of dictionary atoms, ii)

the size NB of the block, iii) the number L of the levels of the spatiotemporal pyramid

and iv) the pooling function. During the sparse coding phase of the dictionary learning

step the OMP algorithm is used. The sparsity level (number of non-zero coefficients)

is fixed to 20 which yields empirically good results.
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Figure 5.2: Total mean success rate as a function of the sampling rate, for 8 classes,

block size 16 × 16 pixels, L = 2 spatiotemporal pyramid levels, max absolute pooling

and 3 different sizes of dictionary K = {250, 500, 1000}.

In Fig. 5.2 is depicted the overall success rate averaged over 20 Monte-Carlo runs

for the 8 classes as a function of the sampling ratio M/N for a block size of 16 × 16

pixels, L = 2 spatiotemporal pyramid levels, max absolute pooling and 3 different sizes

of dictionary K = {250, 500, 1000}. As it is expected the success rate increases as

the sampling rate M/N and the number of training samples increases. As regards the

dictionary size we observe that the discriminant power of the algorithm increases with

the increase of the number of atoms. Specifically, for a dictionary with K = 1000 atoms

the success rate is 72% for 25 training samples and 81.2% for 40 training samples.
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Table 5.4: Total mean success rate for different block sizes and different number of

atoms K for L = 2 pyramid levels, sampling rate M/N = 0.1 for (a) 25 and (b) 40

training samples

(a)

Block size

K 16× 16 32× 32

250 68.4% 62.4%

500 71.0% 64.3%

1000 72.0% 65.9%

(b)

Block size

K 16× 16 32× 32

250 76.1% 61.2%

500 78.4% 66.5%

1000 81.2% 70.4%

In Table 5.4 the total mean success rate for 2 different block sizes, namely 16× 16

and 32×32 pixels and 3 dictionary sizes K = {250, 500, 1000} is illustrated. We observe

that for a smaller block size a higher success rate is achieved for all dictionary sizes

compared to a larger one. A smaller size of block can therefore omit irrelevant and

noisy information.

Table 5.5: Total mean success rate for different pyramid levels and different number of

atoms K for block size 16×16, sampling rate M/N = 0.1 for (a) 25 and (b) 40 training

samples

(a)

Pyramid levels

K L = 1 L = 2

250 57.7% 68.4%

500 62.1% 71.0%

1000 65.5% 72.0%

(b)

Pyramid levels

K L = 1 L = 2

250 62.3% 76.1%

500 70.3% 78.4%

1000 72.3% 81.2%

In Table 5.5 the effect of pyramid levels L is investigated. It is shown that the in-

crease in pyramid levels of the spatio-temporal pyramid representation better preserves

the layout of the descriptors, increasing the accuracy of the system.

In Table 5.6 the use of average and max absolute pooling is compared. It is obvious

that max pooling produces better performance in all cases. Specifically, there is a dif-

ference of about 3-4% between the two pooling approaches. The increased performance

of max pooling can be attributed to its robustness to local spatio-temporal variations

and is consistent with the results in [30].
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Table 5.6: Total mean success rate using different pooling methods for block size 16×16
and sampling rate M/N = 0.1.

K 25 training samples 40 training samples

250 68.4% 76.1%

Max Pooling 500 71.0% 78.4%

1000 72.0% 81.2%

250 64.2% 72.3%

Avg. Pooling 500 66.3% 75.2%

1000 68.1% 76.4%

5.3 Comparative evaluation

In this section we intend to compare the proposed methods with the method in [27] by

means of total mean success rate. The non-thresholded recurrence textures computed

from the first derivative of frame measurements are fed to the local binary patterns

(LBP) algorithm. Several configurations were tested by varying the number of binary

patterns, showing that a normalized histogram of 38 binary patterns was sufficient to

represent each sequence (as in [27]). In order to improve the performance of the original

scheme we use an SVM classifier with a χ2 kernel,

K(xi, xj) = 1−
N∑
k=1

(xi(k)− xj(k))2

1
2(xi(k) + xj(k))

(5.2)

which is commonly prefered in case of histogram matching, instead of the simple

nearest-neighbor used in the original study in [27].

The performance of both proposed systems is superior to that of [27] across all

sampling rates as it is shown in Fig. 5.3, noted as “recurrence textures” in the figure

legend. The performance is degraded because of the fact that the method in [27]

assumes a static background for the video sequences, so that the features are mainly

sensitive to the movement of the scene. However, in the dataset used the background

includes useful information that can be of discriminative value for the classification

procedure.

As a second comparative evaluation we are interested in comparison with a video

classification method exploiting the full resolution video data, in order to illustrate

the efficiency of the proposed method. For this, we extract the histogram of oriented

gradients (HOG) and histogram of optical flow (HOF) accumulated in space-time neigh-

borhoods of interest points as described in [8]. In particular, we use dense sampling to
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Figure 5.3: Total mean success rate as a function of the sampling rate, for 8 classes,
and different compressive approaches for (a) 25 training and (b) 40 training samples.

extract video blocks in regular positions and scales in space and time, so there are five

dimensions to sample from: (x, y, t, σ, τ), where σ and τ are the spatial and temporal

scale, respectively. The minimum size of a 3D block is 18 × 18 and there is a 50%

overlap in spatial and temporal sampling, as proposed in [34]. Each video block is

subdivided into an nx × ny × nt grid of cells. For each cell, a 4-bin HOG and a 5-bin

HOF are computed and the results are concatenated in a single feature vector. We use

the original grid parameters nx = ny = 3 and nt = 2 and the implementation available

online 1.

Then, we use a bag of local spatio-temporal features to represent each sequence.

k-means clustering is used for creating a visual vocabulary that is used for quantizing

the features. At the end, each sequence is represented by a frequency histogram over

the visual words. We choose to train a vocabulary of K = 1000 visual words using only

a subset of 100, 000 randomly selected training features in order to reduce complexity.

The features are assigned to the closest in the Euclidean distance sense visual word

and, finally, a non-linear SVM with χ2-kernel is used for the classification phase.

1http://lear.inrialpes.fr/software
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Table 5.7: Total mean success rate for different methods and different number of

training samples. For the case of compressive video classification the sampling rate

is M/N = 0.1, the block size is 16× 16 and the size of the dictionary is K = 1000.

25 training samples 40 training samples

Frame-based 62.3% 73.8%

Block-based 72.0% 81.2%

HOG/HOF 77.2% 84.9%

In Table 5.7 the performance of the compressive video classification systems and the

classification based on HOG/HOF descriptors is illustrated. The total mean success

rate for the HOG/HOF features that are extracted from the full-resolution data are

able to better represent the video sequences, so the mean success rate in this case

is increased by around 4-5%. However, the slight degradation in performance of the

compressive classification schemes is acceptable based on the fact that only the 10% of

the initial data size is used, proving their efficiency.
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Chapter 6

Conclusions and Future work

In this thesis, two compressive video classification methods were introduced. More

specifically, the design of both proposed CVC systems is primarily based on the as-

sumption of limited resources, where the video data are captured directly in the CS

domain using a single pixel camera.

In the first system a supervised learning approach is followed, where each column

of the training dictionary is formed by the CS measurement vectors over all the frames

of a given training video sequence. Finally, the estimated class is obtained by means

of typical classification methods, namely, the NN and the multi-class SVM. An alter-

native way is also tested, where the classification problem is reduced to a problem of

reconstructing a sparse class-indicator vector as the solution of a convex optimization

problem.

In the second system a spatio-temporal pyramid matching approach is proposed.

The frames of the sequence are initially sampled according to the block-based compres-

sive sampling scheme and their sparse codes are computed following an unsupervised

dictionary learning approach. The estimated class is obtained by means of a multi-class

SVM with a spatio-temporal pyramid kernel.

The experimental results revealed that the classification performance is robust to

the number of samples captured, even at very low sampling rates at the order of 2%,

significantly smaller than the rates required for solving the problem of sparse recon-

struction. Apart from that, the block-based approach showed an increased performance

compared to the simple frame-based for the expense of increased complexity, mainly

due to the dictionary learning step.

As future work, it would be useful to incorporate the color information in the

generation of the CS features that could increase the classification margin. Under a
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single-pixel camera (SPC) assumption this could be possible by adding a color-rotating

filter in the typical SPC architecture, as described in [35]. Additionally, the use of a

classification-oriented dictionary should be investigated in the case of the block-based

CVC, by either enforcing directly the dictionary to be discriminative, or by making the

sparse coefficients discriminative. Recent works [36, 37] reveal that the incorporation

of class label information in the dictionary training phase can offer a boost to the

performance of the classification scheme compared to a simple representative dictionary.
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