

University of Crete

School of Sciences and Engineering

Computer Science Department

ONTOLOGY EVOLUTION

IN

DATA INTEGRATION

Haridimos G.Kondylakis

Doctoral Dissertation

Heraklion, October 2010

Copyright © by Haridimos Kondylakis, 2010

All Rights Reserved

University of Crete

Computer Science Department

ONTOLOGY EVOLUTION IN DATA INTEGRATION

Dissertation submitted by

Haridimos G. Kondylakis

in partial fulfillment of the requirements for the

PhD degree in Computer Science

Author:

Supervisory Committee:

Dimitris Plexousakis, Professor, Supervisor

Grigoris Antoniou, Professor, Member

Yannis Tzitzikas, Assistant Professor, Member

Vassilis Christophides, Professor, Member

Anastasia Analyti, Principal Researcher, Member

Yannis Ioannidis, Professor, Member

Manolis Koubarakis, Associate Professor, Member

Approved by:

Panos Trahanias, Professor

Chairman of the Graduate Studies Committee

Heraklion, October 2010

Abstract

 Due to the rapid scientific development, ontologies and schemata need to

change. When ontologies evolve, the changes should somehow be rendered and used

by the pre-existing data integration systems. In most of these systems, when

ontologies change their relations with the data sources i.e. the mappings, are recreated

manually, a process which is known to be error-prone and time-consuming.

 In this dissertation, we provide a solution that allows query answering under

evolving ontologies without mapping redefinition. This is achieved by exploiting

query rewriting. We elegantly separate the semantics of query rewriting for different

ontology versions and for the sources and we present a module that enables ontology

evolution over traditional ontology-based data integration systems. That module gets

as input the different ontology versions and the user query, and rewrites the query

over data integration systems that use different ontology versions. This is performed

by the automatic identification of changes among the ontology versions using a high-

level language of changes, which are then interpreted as GAV mappings to enable

query rewriting among ontology versions.

 Although query rewriting always succeeds, several problems may occur due to

non information preserving changes among the ontology versions. We identify the

problems in such a setting and we provide efficient, intuitive solutions, either by

explaining the reasons for the failure or by producing the best “over-approximations”.

 We prove that our approach imposes only a small overhead over traditional

query rewriting algorithms and it is modular and scalable. Finally, we show that it can

greatly reduce human effort spent since continuous mapping redefinition on evolving

ontologies is no longer necessary.

 Supervisor: Dimitris Plexousakis,

 Professor

ΠΕΡΙΛΗΨΗ:

 Λόγσ ηεο ηαρείαο επηζηεκνληθήο αλάπηπμεο, νη νληνινγίεο θαη ηα ζρήκαηα πνπ

ρξεζηκνπνηνύληαη γηα λα κνληεινπνηήζνπλ ηελ επηζηεκνληθή γλώζε πξέπεη λα

αιιάδνπλ. Όηαλ νη νληνινγίεο εμειίζζνληαη, νη αιιαγέο ζα πξέπεη κε θάπνην ηξόπν

λα ελζσκαησζνύλ θαη λα ρξεζηκνπνηεζνύλ από ηα πξν-ππάξρνληα ζπζηήκαηα

νινθιήξσζεο πιεξνθνξηώλ. Σηα πεξηζζόηεξα από ηα ζπζηήκαηα απηά, όηαλ νη

νληνινγίεο αιιάδνπλ, νη ζπζρεηίζεηο ηνπο κε ηηο πεγέο ησλ δεδνκέλσλ

δεκηνπξγνύληαη από ην κεδέλ ρεηξνλαθηηθά, κηα δηαδηθαζία ε νπνία είλαη γλσζηό όηη

είλαη επηξξεπήο ζε ιάζε θαη ρξνλνβόξα.

 Σηελ εξγαζία απηή, πξνηείλνπκε κηα ιύζε πνπ επηηξέπεη ηελ απάληεζε

επεξσηήζεσλ ρξεζηκνπνηώληαο νληνινγίεο πνπ εμειίζζνληαη ρσξίο

επαλαπξνζδηνξηζκό ησλ ζπζρεηίζεσλ ηνπο κε ηηο πεγέο. Απηό επηηπγράλεηαη κε ηελ

κεηεγγξαθή ησλ επεξσηήζεσλ από ηελ κία έθδνζε ζηελ άιιε. Έηζη, μερσξίδνπκε ηελ

ζεκαζηνινγία ηεο κεηεγγξαθήο επεξσηήζεσλ γηα δηαθνξεηηθέο εθδόζεηο κηαο

νληνινγίαο θαη γηα ηηο πεγέο θαη παξνπζηάδνπκε έλα ζύζηεκα πνπ επηηξέπεη ηελ

εμέιημε ησλ νληνινγηώλ πάλσ από παξαδνζηαθά ζπζηήκαηα νινθιήξσζεο

πιεξνθνξηώλ. Τν ζύζηεκά καο δέρεηαη ζαλ είζνδν ηελ επεξώηεζε ηνπ ρξήζηε θαη ηηο

δηαθνξεηηθέο εθδόζεηο κηαο νληνινγίαο δίλεη απαληήζεηο από ζπζηήκαηα

νινθιήξσζεο πιεξνθνξηώλ πνπ ρξεζηκνπνηνύλ δηαθνξεηηθέο εθδόζεηο ηεο

ζπγθεθξηκέλεο νληνινγίαο. Απηό πξαγκαηνπνηείηαη κε ηελ απηόκαηε αλαγλώξηζε ησλ

αιιαγώλ αλάκεζα ζηηο δηαθνξηθέο εθδόζεηο ηεο νληνινγίαο, πνπ κνληεινπνηνύληαη

ρξεζηκνπνηώληαο κηα γιώζζα αιιαγώλ πςεινύ επηπέδνπ. Οη αιιαγέο απηέο

εξκελεύνληαη ζαλ ζπζρεηίζεηο «θαζνιηθνύ ζρήκαηνο ζαλ όςε» θαη επηηξέπνπλ ηελ

κεηεγγξαθή ησλ επεξσηήζεσλ από ηελ κία έθδνζε ζηελ άιιε.

 Αλ θαη ε κεηεγγξαθή επεξσηήζεσλ επηηπγράλεη πάληα, πξνβιήκαηα κπνξνύλ

λα πξνθύςνπλ εμ‟ αηηίαο αιιαγώλ ζηελ νληνινγία πνπ δελ δηαηεξνύλ ηελ ίδηα

πιεξνθνξία από ηελ κηα έθδνζε ζηελ άιιε. Έηζη πξνρσξνύκε ζηνλ εληνπηζκό ησλ

πξνβιεκάησλ ζε έλα ηέηνην πεξηβάιινλ, θαη παξέρνπκε απνηειεζκαηηθέο,

δηαηζζεηηθέο ιύζεηο είηε δίλνληαο εμεγήζεηο γηα ηηο αιιαγέο απηέο, είηε πξνηείλνληαο

ελαιιαθηηθέο εξσηήζεηο πνπ πξνζεγγίδνπλ ηελ δεηνύκελε απάληεζε.

 Απνδεηθλύνπκε όηη ε πξνζέγγηζε καο επηβαξύλεη ειάρηζηα ηνπο παξαδνζηαθνύο

αιγνξίζκνπο γηα επαλεγγξαθή επεξσηήζεσλ, είλαη επεθηάζηκε θαη θιηκαθνύκελε.

Τέινο δείρλνπκε όηη κεηώλεη ζεκαληηθά ηελ αλζξώπηλε πξνζπάζεηα πνπ δαπαλάηαη

κηα θαη ν ζπλερήο επαλαπξνζδηνξηζκόο ησλ ζπζρεηίζεσλ δελ είλαη πιένλ

απαξαίηεηνο.

 Δπόπηεο: Γεκήηξεο Πιεμνπζάθεο

 Καζεγεηήο

PREFACE XI

Εσταριζηίες

 Αξρηθά, ζα ήζεια λα επραξηζηήζσ ην Τκήκα Δπηζηήκεο Υπνινγηζηώλ ηνπ

Παλεπηζηεκίνπ Κξήηεο γηα όια όζα κνπ πξνζέθεξε απηά ηα ρξόληα θαη γηα ηηο

γλώζεηο πνπ απέθηεζα θαηά ηηο ζπνπδέο κνπ.

 Δπηπιένλ έλα κεγάιν επραξηζηώ αλήθεη θαη ζην Ιλζηηηνύηνπ Πιεξνθνξηθήο ηνπ

Ιδξύκαηνο Τερλνινγίαο θαη Έξεπλαο κηα θαη ρξεκαηνδόηεζε ελ‟ κέξεη ηελ εξγαζία

κνπ κέζα από ηα Δπξσπατθά έξγα “ACGT” (FP6-IST-026996), “LOCCANDIA”

(FP6-IST-2005-2.5.2)) θαη “plugIT” (FP7-3ICT-231413)). Πεξηζζόηεξν, ζα ήζεια λα

επραξηζηήζσ νιόθιεξε ηελ νκάδα Πιεξνθνξηαθώλ Σπζηεκάησλ γηα ηελ άςνγε

ζπλεξγαζία καο, θαη ην δεζηό νκαδηθό θιίκα. Δίλαη κεηά από ηόζα ρξόληα θάηη ζαλ

νηθνγέλεηα γηα κέλα (κε ηε Μαξία ηε Μνπηζάθε ζην ξόιν ηεο κακάο).

 Αθόκα, ζα ήζεια λα επραξηζηήζσ όινπο ηνπο αλζξώπνπο πνπ πίζηεςαλ ζε

κέλα θαη κε βνήζεζαλ λα αλαθαιύςσ ηελ επηζηεκνληθή κνπ ηαπηόηεηα. Ιδηαίηεξεο

επραξηζηίεο αμίδνπλ ζηνλ επόπηε κνπ θ. Γεκήηξε Πιεμνπζάθε πνπ ζηάζεθε γηα κέλα

δάζθαινο, παηέξαο, θίινο. Η ειεπζεξία ηεο επηινγήο πνπ πάληα κνπ έδηλε κε έκαζε

λα ζηέθνκαη επηζηεκνληθά ζηα πόδηα κνπ θαη λα δπγίδσ ηελ θάζε κνπ απόθαζε.

Φσξίο ηελ νπζηαζηηθή ηνπ θαζνδήγεζε, ηηο επηζεκάλζεηο ηνπ, ηηο επθαηξίεο πνπ κνπ

έδσζε ζα ήηαλ αδύλαην λα θηάζσ εδώ πνπ είκαη ζήκεξα.

 Θα ήζεια αθόκα λα επραξηζηήζσ ηνλ θ. Γηάλλε Τδίηδηθα γηαηί ήηαλ πάληα

πξόζπκνο λα κε βνεζήζεη νπνηεδήπνηε δήηεζα ηελ βνήζεηα ηνπ. Τνλ επραξηζηώ

ηδηαίηεξα γηα ηηο ππνδείμεηο ηνπ θαζώο θαη γηα ην θξηηηθό πλεύκα πνπ κνπ εκθύζεζε.

Θα ήζεια επίζεο λα επραξηζηήζσ ηελ θ. Αλαζηαζία Αλαιπηή γηα ηηο πνιύηηκεο θαη

θαίξηεο δηνξζώζεηο πάλσ ζην θείκελν ηεο εξγαζίαο κνπ.

 Αθόκα ζα ήζεια λα επραξηζηήζσ ηνλ θ. Γξεγόξε Αλησλίνπ γηα ηελ

δηαθνξεηηθή καηηά πάλσ ζηελ δνπιεηά κνπ πνπ κνπ πξνζέθεξε θαη ηνλ θ. Βαζίιε

Φξηζηνθίδε γηα ηελ πξνζπκία ηνπ λα ζπκκεηάζρεη ζηελ επηηξνπή γηα ηελ αμηνιόγεζε

ηεο εξγαζίαο απηήο θαζώο θαη γηα ηηο πνιύ ρξήζηκεο επηζεκάλζεηο ηνπ. Τέινο

PREFACE XII

επραξηζηώ ηνλ θ. Γηάλλε Ισαλλίδε θαη ηνλ θ. Μαλόιε Κνπκπαξάθε γηα ηελ

ζπκκεηνρή ηνπο ζηελ εμεηαζηηθή επηηξνπή ηεο εξγαζίαο κνπ θαη γηα ηα πνιύ

επνηθνδνκεηηθά ηνπο ζρόιηα.

 Τειεπηαίν αιιά κεγαιύηεξν επραξηζηώ αλήθεη όκσο ζηελ νηθνγέλεηά κνπ θαη

πην ζπγθξηκέλα ζηνπο γνλείο κνπ Γηώξγν θαη Μαξία, ζηελ αδεξθή κνπ Φαξά θαη

θαζώο θαη ζηελ θνπέια κνπ Μαξία, πνπ ήηαλ πάληα δίπια κνπ λα κε ζηεξίδνπλ

ππνκνλεηηθά ζε όιεο ηηο δπζθνιίεο. Γηα ην ιόγν απηή ε εξγαζία απηή είλαη

αθηεξσκέλε ζ‟ απηνύο θαη ειπίδσ λα απνηειέζεη κηα κηθξή αληακνηβή γηα ηηο ζπζίεο

θαη ηηο πξνζπάζεηέο ηνπο όινλ απηό ηνλ θαηξό.

PREFACE XIII

Table of Contents

1 INTRODUCTION 1

1.1 MOTIVATION ... 1

1.2 CONTRIBUTIONS ... 3

1.2.1 Assessment ... 4

1.2.1 Exploiting Ontology Evolution .. 4

1.2.2 Using high-level changes in data integration .. 5

1.2.3 Implementation & Evaluation ... 6

1.3 OUTLINE OF THIS DISSERTATION ... 6

2 PRELIMINARIES 7

2.1 DATA INTEGRATION .. 8

2.1.1 Formal Preliminaries .. 10

2.1.2 Classification according to the approach for managing sources 13

2.1.3 Classification according to the approach for modelling sources 20

2.2 ONTOLOGY BASED DATA INTEGRATION .. 39

2.2.1 What is an ontology? ... 39

2.3.1 Ontologies as Enterprise Models .. 41

2.3.2 Single, Multiple & Hybrid Ontology Approaches ... 43

2.3.3 Representative Ontology based Data Integration Systems .. 45

3 ONTOLOGY CHANGE IN DATA INTEGRATION 49

3.1 WHY ONTOLOGIES CHANGE? ... 50

3.1.1 Ontology Change Subfields ... 53

3.2 A REVIEW OF THE STATE OF THE ART ... 56

3.2.1 Earlier Works .. 56

3.2.2 Approaches for similar problems .. 57

3.2.3 Mapping Composition ... 57

3.2.3 Mapping Adaptation .. 63

3.2.5 Floating Model .. 66

3.3 WHY TRADITIONAL TECHNIQUES ARE NOT ENOUGH? ... 67

4 MODELLING ONTOLOGY CHANGE 71

PREFACE XIV

4.1 MOTIVATING EXAMPLE .. 72

4.1 USING HIGH-LEVEL CHANGES TO MODEL EVOLUTION .. 73

4.2 CONSTRUCTING ONTOLOGY VERSIONS FROM LOGS .. 78

4.3 DEBUGGING ONTOLOGY EVOLUTION WITH CHANGE TREES ... 79

5 ENABLING ONTOLOGY EVOLUTION IN DI 85

5.1 MOTIVATING EXAMPLE .. 87

5.2 EVOLVING DATA INTEGRATION ... 88

5.2.1 Global & Local Schemata ... 88

5.2.2 Semantics of an EDI .. 89

5.2.3 Query Processing .. 91

5.3 DISCUSSION ... 101

5.3.1 Exploiting Composition. .. 101

5.3.2 Exploiting Inversion .. 102

5.3.3 Non-information preserving changes. ... 102

5.4 A REAL EXAMPLE FROM CIDOC-CRM ... 114

5.5 CONCLUSIONS ... 116

5.5.1 Language of changes independent approach .. 116

5.5.2 More generic than mapping composition. ... 117

6 IMPLEMENTATION & EVALUATION 119

6.1 IMPLEMENTATION ... 120

6.1.1 Setting the parameters ... 122

6.1.2 Visualizing Ontologies .. 124

6.1.3 Querying Ontologies & Evolution ... 125

6.1.2 Querying data sources .. 128

6.2 EVALUATION ... 133

6.2.1 Computing Change Paths .. 133

6.2.2 Query Rewriting .. 137

7 CONCLUSIONS & FUTURE WORK 147

BIBLIOGRAPHY 151

APPENDIX 163

A. CHANGE OPERATIONS .. 163

Basic changes ... 163

Composite changes ... 163

Heuristics ... 170

PREFACE XV

List of Figures

FIG. 1. THE PROBLEM WITH THE MAPPINGS WHEN ONTOLOGIES EVOLVE... 3

FIG. 2. A DATA INTEGRATION SYSTEM ... 10

FIG. 3. THE ARCHITECTURE OF A FEDERATED DATABASE ... 14

FIG. 4. THE ARCHITECTURE OF A MEDIATED INTEGRATION SYSTEM ... 15

FIG. 5. THE ARCHITECTURE OF A DATA WAREHOUSE ... 17

FIG. 6. P2P DATA INTEGRATION ... 18

FIG. 7. LOCAL AS VIEW APPROACH .. 20

FIG. 9. EXAMPLE 2.3 .. 23

FIG. 8. RUNNING EXAMPLE SCHEMATA .. 23

FIG. 10. COMPLEXITY OF VIEW BASED QUERY ANSWERING ... 25

FIG. 11. THE GLOBAL CENTRIC APPROACH .. 29

FIG. 12. QUERY UNFOLDING .. 31

FIG. 13. GAV EXAMPLE ... 33

FIG. 14. GLAV APPROACH .. 35

FIG. 15. GLAV EXAMPLE ... 36

FIG. 16. ARCHITECTURE FOR DATA INTEGRATION .. 42

FIG. 17. DATA INTEGRATION THOUGH AN ONTOLOGY ... 42

FIG. 18. QUERY ANSWERING .. 43

FIG. 19. THE D2R MAPPING PROCESS .. 46

FIG. 20 KAON SERVER ARCHITECTURE .. 47

FIG. 21. COMPOSING SCHEMA MAPPINGS .. 58

FIG. 22. THE EXAMPLE SCHEMATA .. 58

FIG. 23. ADAPTING SCHEMA MAPPINGS .. 63

FIG. 24. IDENTIFYING MAPPING ADAPTATION PROBLEMS. .. 64

FIG. 25. AN IDEAL SOLUTION ... 69

FIG. 26. EXAMPLE ONTOLOGY EVOLUTION .. 73

FIG. 27. THE DEFINITION OF SOME CHANGE OPERATIONS .. 75

FIG. 28. UCOMP (O1) = U2(U1(O1)) = U1(U2(O1)) .. 76

FIG. 29. INV(U)(U(O)) = O ... 77

FIG. 30.THE CHANGE TREE FOR THE TRIPLE DOMAIN(CONT.POINT, ADDRESS) .. 79

file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535229
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535241
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535242
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535243
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535244
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535245

PREFACE XVI

FIG. 31. AN ALGORITHM FOR COMPUTING THE CHANGE PATH FOR A GIVEN TRIPLE ... 80

FIG. 32. AN ALGORITHM FOR COMPUTING THE CHANGE PATH FOR A GIVEN RESOURCE .. 82

FIG. 33. THE MOTIVATING EXAMPLE OF AN EVOLVING ONTOLOGY. .. 87

FIG. 34. THE SEMANTICS OF AN EDI.. 89

FIG. 35. QUERY PROCESSING ... 94

FIG. 36. EXPLOITING COMPOSITION & INVERSION .. 101

FIG. 37. THE ALGORITHM FOR IDENTIFYING AFFECTING CHANGE OPERATIONS FOR A QUERY Q 105

FIG. 38. MINIMALLY-CONTAINING REWRITING VS. MAXIMALLY-CONTAINED REWRITING ... 106

FIG. 39. AN ALTERNATIVE ALGORITHM FOR COMPUTING MINIMALLY-CONTAINING REWRITINGS 108

FIG. 40. THE ALGORITHM FOR IDENTIFYING A MINIMALLY-GENERALIZED QUERY ... 110

FIG. 41. THE ALGORITHM FOR IDENTIFYING ALL MINIMALLY-GENERALIZED QUERY .. 112

FIG. 42. SYSTEM ARCHITECTURE .. 120

FIG. 43. THE INITIAL SCREEN OF OUR PLATFORM .. 121

FIG. 44. DEFINING THE SETTINGS OF OUR PLATFORM .. 122

FIG. 45. VISUALIZATION USING JOWL API ... 123

FIG. 46. USING OWLSIGHT PLUG-IN FOR ONTOLOGY VISUALIZATION ... 124

FIG. 47. THE INTERFACE OF THE STARLION SYSTEM. ... 125

FIG. 48. QUERYING THE ONTOLOGY .. 126

FIG. 49. EXAMPLE QUERY ABOUT THE EVOLUTION OF THE ONTOLOGY .. 126

FIG. 50. THE CHANGE PATH IN DETAIL ... 127

FIG. 51. QUERYING THE SOURCES ... 128

FIG. 52. SELECTING ONTOLOGY VERSIONS AND THE RUNNING OPTIONS .. 129

FIG. 53. VISUAL QUERY BUILDER.. 130

FIG. 54. THE QUERY CONVERTED TO DATALOG .. 130

FIG. 55. THE CHANGE LOG OF OUR ONTOLOGY .. 131

FIG. 56. THE ONTOLOGY REWRITTEN QUERIES ... 132

FIG. 57. THE RESULTS TAB ... 132

FIG. 58. THE GRAPH FOR VISUALIZING THE CHANGE PATH SIZE RELATED TO THE AVERAGE TIME SPENT FOR IDENTIFYING IT

USING GO .. 134

FIG. 59. THE GRAPH FOR VISUALIZING THE CHANGE PATH SIZE RELATED TO THE AVERAGE TIME SPENT FOR IDENTIFYING IT

USING CIDOC ... 135

FIG. 60. THE NUMBER OF CHANGES THAT SHOULD BE PROCESSED AND THE AVERAGE RUNNING TIME FOR CIDOC-CRM

ONTOLOGY ... 136

FIG. 61. THE NUMBER OF CHANGES THAT SHOULD BE PROCESSED AND THE AVERAGE RUNNING TIME FOR GENE ONTOLOGY

 .. 136

FIG. 62. QUERY REWRITING FOR QUERIES WITH 1 TRIPLE PATTERN .. 137

FIG. 63. QUERY REWRITING FOR QUERIES WITH 20 TRIPLE PATTERNS... 138

FIG. 64. EXECUTION TIME AS THE TRIPLE PATTERNS IN THE QUERY INCREASE (711 CHANGE OPERATIONS) 139

file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535251
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535252
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535254
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535257
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535259
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535260
file:///G:/My%20Maths/Conferences/Phd/Phd_Thesis_8.8.docx%23_Toc275535261

PREFACE XVII

FIG. 65. EXECUTION TIME AS THE TRIPLE PATTERNS IN THE QUERY INCREASE (309 CHANGE OPERATIONS) 139

FIG. 66. REWRITING QUERIES WITH 20 TRIPLE PATTERNS .. 140

FIG. 67. REWRITING QUERIES WITH 1 TRIPLE PATTERN .. 141

FIG. 68. QUERY REWRITING USING 711 CHANGE OPERATIONS ... 142

FIG. 69. QUERY REWRITING USING 309 CHANGE OPERATIONS ... 142

FIG. 70. AVERAGE EXECUTION TIME FOR CIDOC-CRM QUERIES .. 143

FIG. 71. AVERAGE EXECUTION TIME FOR GO QUERIES .. 144

FIG. 72. QUERY REWRITING FOR REAL CIDOC-CRM QUERIES ... 144

FIG. 73. QUERY REWRITING FOR GO MOST POPULAR QUERIES ... 145

FIG. 74. THE TOTAL INFORMATION CHANGE FOR CIDOC-CRM AND GO ... 145

PREFACE XVIII

PREFACE XIX

List of Tables

TABLE 1 ONTOLOGY CHANGE SUBFIELDS .. 55

TABLE 2 . THE CORRELATION BETWEEN THE SIZE OF THE CHANGE PATH AND THE AVERAGE TIME SPENT FOR IDENTIFYING IT

USING GO .. 134

TABLE 3 THE CORRELATION BETWEEN THE SIZE OF THE CHANGE PATH AND THE AVERAGE TIME SPENT FOR IDENTIFYING IT

USING CIDOC ... 135

PREFACE XX

CHAPTER 1 INTRODUCTION 1

HARIDIMOS KONDYLAKIS

Chapter 1

1Introduction

“Everything should be as simple as it is, but not simpler”

- Albert Einstein

Contents

1.1 MOTIVATION .. 1

1.2 CONTRIBUTIONS .. 3

1.2.1 Assessment ... 4

1.2.1 Exploiting Ontology Evolution .. 4

1.2.2 Using high-level changes in data integration.. 5

1.2.3 Implementation & Evaluation .. 6

1.3 OUTLINE OF THIS DISSERTATION .. 6

1.1 Motivation

 The development of new scientific techniques and the emergence of new high

throughput tools have led to a new information revolution. The nature and the amount

2 CHAPTER 1 INTRODUCTION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

of information now available open directions of research that were once in the realm

of science fiction. During this information revolution the data gathering capabilities

have greatly surpassed the data analysis techniques, making the task to fully analyze

the data at the speed at which it is collected a challenge. The amount, diversity, and

heterogeneity of that information have led to the adoption of data integration systems

in order to manage it and further process it.

 The traditional view of database integration is that we have one or more source

databases Si and one wants to issue queries on them as if the queries were issued in a

new database T which represents the combined information in Si. The end user

typically knows almost nothing about the source databases and he only sees the global

schema which he is using in order to formulate queries. The integration of these data

sources is a complex problem and raises several semantic heterogeneity problems.

 By accepting an ontology as a point of common reference, naming conflicts are

eliminated and semantic conflicts are reduced. Ontologies are used to identify and

resolve heterogeneity problems, at schema and data level, as a means for establishing

explicit formal vocabulary to share. During the last years, ontologies have been used

in database integration (Calvanese, 2009),(Heymans, 2008), obtaining promising

results, for example in the fields of biomedicine and bioinformatics (Martin, 2008),

(Hartung, 2008).

 When using ontologies to integrate data, one is required to produce mappings,

to link similar concepts or relationships from the ontology/ies to the sources (or other

ontologies) by way of an equivalence, according to some metric. This is the mapping

definition process (Klein, 2001) and the output of this task is the mapping, i.e., a

collection of mappings rules. In practice, this process is done manually with the help

of graphical user interfaces and it is a time-consuming, labour-intensive and error-

prone activity. Defining the mappings between schemata/ontologies is not a goal in

itself. The resulting mappings are used for various integration tasks such as data

transformation and query answering.

 Despite the great amount of work done in ontology-based data integration, an

important problem that most of the systems tend to ignore is that ontologies are living

artifacts and subject to change (Flouris, 2008). Due to the rapid development of

research, ontologies are frequently changed to depict the new knowledge that is

acquired. The problem that occurs is the following: when ontologies change, the

CHAPTER 1 INTRODUCTION 3

HARIDIMOS KONDYLAKIS

mappings may become invalid and should somehow be updated or adapted. This is

depicted in the following figure.

Fig. 1. The problem with the mappings when ontologies evolve

 In this document, we address the problem of data integration for evolving

RDF/S ontologies. We argue that ontology change should be considered when

designing ontology-based data integration systems. A typical solution would be to

regenerate the mappings and then regenerate the depending artifacts each time the

ontology evolves. However, as ontologies may change too often, the overhead of

redefining the mappings each time is significant. The approach to recreate mappings

from scratch each time the ontology evolves is recognized to be problematic

(Velegrakis, 2004), and instead previously captured information should be reused.

However, all current approaches that try to do that suffer from several drawbacks and

are inefficient in handling ontology evolution in a state of the art ontology-based data

integration system.

1.2 Contributions

 The lack of an ideal approach leads us to propose a new mechanism that builds

on the latest theoretical advances on the areas of ontology change (Papavassiliou,

2009) and query rewriting (Cali, 2009), (Poggi, 2008) and incorporates and handles

ontology evolution efficiently and effectively.

4 CHAPTER 1 INTRODUCTION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

1.2.1 Assessment

 To begin with, a comprehensive overview of the works on the area is presented

which provides the necessary insights for the practical understanding of the issues

involved. The lack of an ideal approach to handle ontology evolution in data

integration leads us to establish the requirements for an ideal approach. We highlight

what is missing from the current state of the art and outline the requirements for an

ideal data integration system that will incorporate and handle ontology evolution

efficiently and effectively.

1.2.1 Exploiting Ontology Evolution

 To achieve this goal, we firstly capture ontology evolution using high-level

changes. As we shall see, a high-level language is beneficial for our problem for two

reasons: First, and most important because such a language yields logs that contain a

smaller number of individual low-level deletions (which are non-information

preserving) and this affects the effectiveness of our rewriting and second because the

produced change log has a smaller size.

 More specifically we adopt the change operations and the corresponding

detection algorithm from (Papavassiliou, 2009) and we show that the proposed

language possesses salient properties such as uniqueness, inversibility and

composability. We show that the specific language is closed under composition and

we show how to compute the composition of a sequence of changes. Moreover, we

define the inverse of a change operation and we show how to compute the inverse of a

sequence of changes.

 Then we show how to answer queries concerning the evolution of the ontology.

In order to do that, we define the concept of a change tree that we use to drive a user‟s

understanding for the evolution of a specific triple and we describe an algorithm for

constructing all change trees. Besides computing the change trees for a specific triple

we show how to extend the previous algorithm in order to compute the change tree for

a specific class/property.

CHAPTER 1 INTRODUCTION 5

HARIDIMOS KONDYLAKIS

1.2.2 Using high-level changes in data integration

 We present the architecture of a data integration system, named Evolving Data

Integration (EDI) system, that allows the evolution of the ontology used as global

schema.

 We define the exact semantics of our system and we elegantly separate the

semantics of query rewriting for different ontology versions and for the sources. Since

query rewriting for the sources has been extensively studied (Cali, 2009), (Poggi,

2008), (Deutsch, 2006) we focus on a layer above and deal only with the query

rewriting between ontology versions.

 More specifically, we present a module that receives a user query specified

under the latest ontology version and produces rewritings that will be answered by the

underlying data integration systems - that might use different ontology versions. The

query processing in this module consists of two steps: a) query expansion that

considers constraints coming from the ontology, and b) valid query rewriting that uses

the changes between two ontology versions to produce rewritings among them.

 The sequence of changes between the latest and the other ontology versions is

produced automatically at setup time and then each one of the change operations

identified is translated into a logical GAV mapping. This translation enables query

rewriting by unfolding. Then, the inversibility is exploited to rewrite queries from

past ontology versions to the current, and vice versa, and composability to avoid the

reconstruction of all sequences of changes among the latest and all previous ontology

versions.

 Despite the fact that query rewriting always terminates, the queries issued to

other ontology versions might fail. We show that this problem is not inhibiting in our

algorithms but a consequence of information unavailability among ontology versions.

For example, no equivalent rewriting will be able to query a deleted class. To tackle

this problem, we propose three solutions: either to provide best “over-

approximations”, namely minimally-containing and minimally-generalized queries, or

to provide insights for the failure, thus driving query redefinition only for a specific

portion of the affected query. We prove that our method is sound and complete with

low complexity.

6 CHAPTER 1 INTRODUCTION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

1.2.3 Implementation & Evaluation

 All algorithms were implemented on a novel framework called Exelixis which

will soon be available to the web. Using our framework we present our experimental

analysis based on two real world ontologies. One medium-size ontology (CIDOC-

CRM (Doerr, 2007)) from the cultural domain which is rarely changed and one large-

size ontology (Gene Ontology (Gene Ontology Consortium, 2004)) from the

bioinformatics domain which is heavily updated daily. Using CIDOC-CRM we

produced a synthetic set of queries, which we used to evaluate the impact and the

scalability of our approach and then we extended our experimentation with real world

queries from both CIDOC-CRM and Gene Ontology. The experimentation shows the

practical value and the potential impact of our approach.

1.3 Outline of this Dissertation

 This thesis is structured as follows. Chapter 2 is an overview of query

processing approaches and techniques used to query multi-database systems. Then

Chapter 3 reviews existing approaches for handling ontology evolution in data

integration and establish the requirements for an idea approach. In Chapter 4

ontology evolution is modelled and algorithms for explaining ontology evolution are

presented. Then, in Chapter 5 is shown how to use those changes to rewrite queries

among ontology versions. The implementation and the design choices we made are

placed in Chapter 6, where also resides our evaluation. Finally, Chapter 7 concludes

this dissertation and draws directions for further research work.

 A part of Chapter 3 has been published in (Flouris, 2008), while the main part of

that chapter was published in (Kondylakis, 2009). Moreover, the techniques for query

rewriting based on Chapters 4 and 5 were initially presented in (Kondylakis, 2010a)

and (Kondylakis, 2010b) followed by (Kondylakis, 2010c), (Kondylakis, 2010d) and

latest submitted to (Kondylakis, 2011a). Moreover, techniques for the detection of

invalid queries, constructing the change paths and for identifying the minimal

generalized queries presented on Chapter 4 have been submitted to (Kondylakis,

2011b). Finally, a report on these topics will be included in (Zablith, 2011) and our

implementation will be submitted in (Kondylakis, 2011c) in the demo session.

CHAPTER 2 PRELIMINARIES 7

HARIDIMOS KONDYLAKIS

Chapter 2

2Preliminaries

 “Imagination is more important than knowledge.”

-Albert Einstein

Contents

2.1 DATA INTEGRATION... 8

2.1.1 Formal Preliminaries ... 10

2.1.2 Classification according to the approach for managing sources 13

2.1.3 Classification according to the approach for modelling sources 20

2.2 ONTOLOGY BASED DATA INTEGRATION ... 39

2.2.1 What is an ontology? .. 39

2.3.1 Ontologies as Enterprise Models .. 41

2.3.2 Single, Multiple & Hybrid Ontology Approaches .. 43

2.3.3 Representative Ontology based Data Integration Systems 45

8 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2.1 Data integration

 Information integration systems aim to provide a uniform query interface to

multiple heterogeneous sources. One and useful way of viewing these systems, first

proposed in the Information Manifold project (Levy et al. 1996) is to postulate a

global schema that provides a unifying data model for all the information sources. A

query processor is in charge of accepting queries written in terms of this global

schema, translating them to queries on the appropriate sources, and assembling the

answers into a global answer.

 A question of semantics now arises: what is the meaning of a query? Since a

query is expressed in terms of the global schema and the sources implicitly represent

an instance of this global schema, it would be natural – at least conceptually – to

reconstruct the global database represented by the views and apply the query to this

global database. There are at least two issues that must be resolved for this to work.

 First the database represented by a set of sources may not be unique; in fact, it

may not even exist. Consider the two trivial examples: first suppose we have a single

information source, which is defined as the projection on attribute A of the global

binary relation R (A, B). For any given set of tuples stored at the source, there are

many (perhaps an infinite number) of possible global databases. Second, suppose we

have not one, but two sources, both storing the projection on A as before; one contains

the single tuple <a1>, and the other the single tuple <a2>; then there is no global

database whose projection equal this sources. In sum the first issue is: what database

or databases are represented by a given set of sources.

 Second, suppose we have identified the set of databases that are represented by

a given set of sources. Applying the query to each database and producing each

possible answer may be impossible (e.g if there is an infinite number of such answers)

or undesirable. The second issue is: how to produce a single compact representation

of these multiple answers, or an approximation to them if we so desire? Consider for

example a schema storing information about the first round of the World Cup Soccer

Tournament. Suppose a global relation Team (Country, Group) that represents a list of

all teams giving the name of the country and the group to which the country has been

assigned for first round play.

CHAPTER 2 PRELIMINARIES 9

HARIDIMOS KONDYLAKIS

 Suppose first that the only source, STeam, stores a unary relation listing all the

countries that are participating in the first round. The corresponding view mapping is

given by the conjunctive query:

STeam (x)  Team (x,y)

 What global databases are represented by STeam? They are all the relations Team

such that the view mapping applied to Team produces exactly the given instance of

STeam, that is:

STeam (x)  πcountry (Team)

 In this case, we say that the view is both sound and complete. On the other hand

suppose the only source SQual, which contains the list of all teams that participated in

the qualifying round. This is a strict superset of the teams that will actually be playing

in the tournament. Since the global schema says nothing about the qualifying round,

the only reasonable view mapping is still

SQual (x)  Team (x,y)

 However, now we understand that this is just an approximation, and that the

actual database could be any relation whose projection on Country produces a subset

of the source SQual that is:

SQual (x)  πcountry (Team)

 In this case we say the view is complete since it lists every possible team but not

sound since it lists teams that are not in the first round. Finally suppose that the only

source is STube , listing those teams whose games will be televised. Again, the best

way to represent the view mapping since there is no information about television in

the global schema is by

 STube (x)  Team (x, y)

 In this case, every team listed in STube, corresponds to some tuple in the ideal

Team relation, but there are tuples in this ideal relation not represented in STube .Thus

we take as the set of represented databases all the relations Team that satisfy:

 STube (x)  πcountry (Team)

 In this case, we say the view is sound but not complete.

10 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2.1.1 Formal Preliminaries

 Before going into the classification we have to formally describe what

constitutes a data integration system (Lembo et al. 2002).

Definition 2.1 (Data Integration System): A data integration system I is a triple <G,

S, M> where

 G is the global schema expressed in the global language Lg over alphabet Ag.

The language Lg determines the expressiveness allowed for specifying the

global schema, i.e., the set of constraints that can be defined over it.

 S is the set of the local schemas. It is modelled in the source language Ls over

the alphabet As. As in the case of global schema is the language that

determines the set of constraints that can be defined over it. Moreover, As is

disjoint from Ag.

 M is the mapping between G and S.

Fig. 2. A Data Integration System

 The above definition of data integration system is general enough to capture

virtually all approaches in the literature. Obviously, the nature of a specific approach

depends on the characteristics of the mapping, and on the expressive power of the

various schema and query languages. For example, the language Lg may be very

simple, basically allowing the definition of a set of relations, or may allow for various

End Users


Applications

Data
Source

Data
Source

Global
Schema

Local
Schema

Local
Schema

Data
Source

Local
Schema

Schema
Mappings
Schema
Mappings
Schema
Mappings

CHAPTER 2 PRELIMINARIES 11

HARIDIMOS KONDYLAKIS

forms of integrity constraints to be expressed over the symbols of Ag. Analogously,

the type (e.g relational, semi-structured etc.) and the expressive power of Ls vary from

one approach to another.

 In order to specify the semantics of a data integration system, we start with a set

of data at the sources and specify which data satisfies the global schema. We start by

considering a source database for I, i.e., a database D that conforms to the source

schema S and satisfies all constraints in S. Based on D, we now specify which is the

information content of the global schema G. We call global database for I any

database for G.

Definition 2.2 (Legal global database) A global database B for I is said to be legal

with respect to D, if:

 B is coherent with G, i.e., every constraint in schema G is satisfied by B.

 B satisfies the mapping with respect to D, which is its tuples respect the

relationships defined between the global and the source schema.

 The notion of B satisfying the mapping M with respect to D depends on how to

interpret the assertions in the mapping. Here we simply note that no matter which is

the interpretation of the mapping, in general, several global databases exist that are

legal for I with respect to D. This observation motivates the relationship between data

integration and databases with incomplete information.

 Next, we specify the semantics of queries posed to a data integration system. As

we said before, such queries are expressed in terms of the symbols in the global

schema of I. In general, if q is a query of arity n and DB is a database we denote q
DB

the set of tuples (of arity n) in DB that satisfy q.

Definition 2.3 (Semantics of a data integration system I): Given a source database D

for I, the semantics of I with respect to D, denoted sem(I, D), is defined as:

sem(I, D) = { B | B is a legal global database for I w.r.t D }

 In order to define the semantics of a query q over the global schema G, we have

to take into account all the legal global databases for I with respect to D.

12 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Definition 2.4 (Certain Answers): We call certain answers of a query q of arity n with

respect to I and D, the set q
I .D

 of n-tuples t such that t  q
DB

 for every database DB

sem(I, D). Certain answers is what we call, answers to a user query.

 The definition above states that the “right” answers are the answers that occur in

the intersection of all queries as queries vary over all “possible” databases. Note that

from the point of view of logic, finding certain answers is a logical implication of the

problem: check whether it logically follows from the information on the sources that t

satisfies the query. The dual problem is also of interest: find the so-called possible

answers to q, i.e checking whether t q
B
 for some global database B that is legal for I

with respect to D. Finding possible answers is a consistency problem: check whether

assuming that t is in the answer set of q does not contradict the information on the

sources.

 Given the above formal definitions, the mapping M between the global schema

and the sources is provided in terms of a set of assertions of the form <R, V>, where

R is a view over the global schema G and V is the view over the source schema S.

Associated to each mapping assertion <R, V > we have a specification as(V) of which

assumption to adopt for the view V, i.e., given a source database D, how to interpret

R
D
 with respect to the set of tuples in the answer to V over a global database B, i.e.,

V
B
.

Definition 2.5 (Assumption adopted for a view): The assumption we adopt for a view

V, called as (V), to each mapping assertion < R, V > is defined as follows:

 When as(V) = sound, the extension of the associated global view R provides any

superset of the tuples satisfying V. In other words, from the fact that a tuple is

in V
D
 one can conclude that it satisfies the corresponding global relation R,

while from the fact that a tuple is not in V
D
 one cannot conclude that it does

not satisfy R. Formally a global database B satisfies the sound view V if V
D
 

µ R
B

 When as(V) = complete, the extension of the associated global view R provides

any subset of the tuples satisfying V. In other words, from the fact that a tuple

is in V
D
 one cannot conclude that such a tuple satisfies R. On the other hand,

from the fact that a tuple is not in V
D
 one can conclude that such a tuple does

CHAPTER 2 PRELIMINARIES 13

HARIDIMOS KONDYLAKIS

not satisfy R. Formally, a global database B satisfies the complete view V , if

V
D

 R
B
.

 When a (V) = exact, the extension of the associated global relation R is exactly

the set of tuples satisfying V . Formally, a global database B satisfies the exact

view V, if V
D
 = R

B
.

 Closely related to the query semantic is the global retrieved database.

Definition 2.6 (Retrieved Global Database): Given a source database C, we call

retrieved global database, denoted M(C), the global database obtained by “applying”

the queries in the mapping, and “transferring” to the elements of G the

corresponding retrieved tuples

 Data integration systems can be classified according to their approach for

managing sources, or according to their approach for modelling those.

2.1.2 Classification according to the approach for managing sources

 One of the possible classifications may be the one based on whether the queries

to the integration system are sent directly to the data sources or whether there are

results of the queries that are pre-stored. The virtual view approach corresponds to the

former technique, while the materialized view approach uses pre-stored results.

2.1.2.1 Virtual View approach

 In the virtual view approach, the data are accessed from the sources on-demand

when a user submits a query to the data integration system. The two representative

architectures of this approach are federated database systems (FDBS), and mediated

systems. Despite of the fact that mediated systems have many similarities with the

federated databases, there are some basic differences:

 In mediated systems data sources are not necessarily databases.

 Sources in a mediated system can be added or removed easily.

 Usually, unlike the FDBSs (where access is read/write), in a mediated system

access in the sources is read only. This is due to the fact that sources in

mediator-based systems are more autonomous.

14 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2.1.2.2 Federated Database Systems

 A federated database system (FDBS) consists of some semi-autonomous

components that participate in federation to partially share data with each other. Each

federated source can also operate independently from the others. These components

are not fully autonomous in the sense that they are modified by adding an interface

that allows communication with all other databases in the federation. Each component

of the federation is either a centralized DBMS, a distributed DBMS or another

federated database management system. There are two basic types of FDBS: tightly

coupled FDBSs and loosely coupled FDBSs.

Fig. 3. The architecture of a federated database

 A ttightly coupled FDBS has one or more unified schemas which can be

produced automatically or manually (by a user). In this type of FDBS, domain experts

should undertake the arduous task of integrating all schemas of the federation into a

global one. These FDBSs are static and it is very difficult to add or remove

components from the integration system.

 A loosely coupled FDBS does not have a unified schema, but it provides some

unified language for querying sources. In this approach database components are

more autonomous and they can decide how they will view all the accessible data in

the federation. As there is no global schema, each source can create its own

CHAPTER 2 PRELIMINARIES 15

HARIDIMOS KONDYLAKIS

``federated schema'' for its needs. Like the tightly coupled approach, logical

heterogeneity should be resolved by domain experts.

 The architecture of a federated database system is depicted on Fig. 3. Federated

databases is an approach appropriate to use when there is a small number of

autonomous sources, and we want to retain their ``independence'', allowing user to

query them separately and let them collaborate with each other to answer a query.

2.1.2.2 Mediated Systems

 Mediated systems are an alternative architecture of data integration systems.

They integrate data sources by providing a global virtual view. This global view is

called mediated or global schema, and it is employed by the users in order to

formulate their queries. The architecture of a mediated system is shown in following

Fig. 4.

Fig. 4. The architecture of a mediated integration system

 There are two basic software components of a mediated system: the mediator

and one wrapper per data source. The former offers a common interface to a set of

autonomous, independent and possibly heterogeneous data sources. The mediator

(a.k.a. integrator) performs the following actions: Firstly it receives a query

formulated in terms of the unified schema and decomposes these queries into sub-

queries. These queries are addressed to specific data sources. This decomposition is

based on source descriptions, which play an important role in sub-queries' execution

plan optimization. Finally, the sub-queries are sent to the wrappers of the individual

sources, which transform them into queries over the sources. The results of these sub-

16 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

queries are sent back to the mediator. At this point the answers are merged into one

and returned to the user. Besides the possibility of asking queries, the mediator has no

control over the individual sources.

 The latter component (wrapper) is responsible for wrapping a data source in

such a way that the source can interact with the rest of the integration system. It

provides the mediator with data from the source that it is in charge of, as requested by

the query execution engine. In consequence, it presents a data source as a convenient

database, with the right schema and data, appropriate for being understood and used

by the mediator. This presentation schema may be different from the real one, i.e., the

internal to the data source. A wrapper hides low-level (protocol) and data model

details of the data source from the mediator. It is an important component of both a

mediator based architecture and a data warehouse.

 A key element in the mediator architecture is the set of source descriptions, i.e.,

the descriptions of the available sources and their contents, which is achieved by

establishing the relationships (mappings) between the global schema and the local

schemas. These descriptions can be represented by a set of logical formulas, similar to

the way in which views are defined in terms of base tables in the relational data

model. The language usually chosen for expressing these mappings is Datalog. There

are several fragments of Datalog that are used, based on the existence of recursion,

negation and arithmetic comparisons. The most common framework is the one of

conjunctive queries (Datalog with relational predicates) with neither recursion nor

negation, and arithmetic comparisons limited to equalities. There are different

approaches with respect to how mappings are defined, and will be discussed

thoroughly later.

2.1.2.2 Materialized View or Data Exchange Approach

 In the materialized view approach (a.k.a data warehousing, data exchange)

(Fagin et al. 2005a), (Kolaitis et al. 2005) some filtered information from data sources

are pre-stored (materialized) in a repository and can be queried later. The single

repository in which data are stored is called data warehouse.

There are some important issues that should be taken into account for designing and

maintaining a data warehouse. Firstly (designing phase) we need to decide what

information from each source is going to be used, what views over these sources is

CHAPTER 2 PRELIMINARIES 17

HARIDIMOS KONDYLAKIS

going to be materialized and what global schema will be employed by the warehouse.

Next (maintenance phase) we have to deal with how the warehouse is initially

populated by the source data and how it is refreshed when the data in the sources are

updated. Finally, there are some query processing, storage and indexing issues that

should be taken into consideration. The architecture of the materialized view approach

is depicted on Fig. 5.

Fig. 5. The architecture of a data warehouse

2.1.2.3 P2P data Integration

 Intuitively, data management and data integration tools should be well-suited

for exchanging information in a semantically meaningful way. Unfortunately, they

suffer from two significant problems: they typically require a comprehensive schema

design before they can be used to store or share information, and they are difficult to

extend because schema evolution is heavyweight and may break backwards

compatibility. As a result, many small-scale data sharing tasks are more easily

facilitated by non-database-oriented tools that have little support for semantics.

 The goal of the peer data management system (PDMS) is to address this need:

So, it is proposed the use of a decentralized, easily extensible data management

architecture in which any user can contribute new data, schema information, or even

18 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

mappings between other peers‟ schemas. PDMSs represent a natural step beyond data

integration systems, replacing their single logical schema with an interlinked

collection of semantic mappings between peers‟ individual schemas.

Fig. 6. P2P data integration

 Peer data management systems (PDMS), formalized and studied by Halevy et

al. (Halevy et al. 2003), constitute a decentralized, extensible architecture in which

peers interact with each other in sharing and exchanging data.

 According to Halevy, a PDMS N with peers P1, . . . , Pn has the following

characteristics.

 Each peer Pi has its own schema which is disjoint from those of the other peers, but

visible to all other peers.

 The schema of each peer can be a mediated global schema over a set of local

sources that are accessible only by that peer (thus each peer can be a data

integration system). The relationship between the peer and its local sources is

specified using storage descriptions that are containment descriptions R ⊆ Q or

equality descriptions R = Q, where R is one of the relations in the schema of the

peer and Q is a query over the local sources of the peer.

 The relationship between peers is specified using three types of peer mappings:

inclusion mappings, equality mappings, and definitional mappings, where

CHAPTER 2 PRELIMINARIES 19

HARIDIMOS KONDYLAKIS

1. Each inclusion mapping is a containment Q1(A1) ⊆ Q2(A2) between

conjunctive queries Q1(A1) and Q2(A2), where A1 andA2 are subsets of

the set of all relations in the schemas of the peers.

2. Each equality mapping is an equality Q1(A1) = Q2(A2) between

conjunctive queries Q1(A1) and Q2(A2) as above.

3. Each definitional mapping is a Datalog program with rules having

single relations from the schemas of the peers in both the head and the

body of each rule.

 In the terminology of (Halevy et al. 2003), a data instance D of a PDMS N is an

assignment of values to both the local sources of each peer and to the relations of the

schema of each peer. A data instance G is consistent with N and D if G and D satisfy

all the specifications given by the storage descriptions and the peer mappings of N.

This concept captures what it means for a data instance G to be a solution for a given

data instance D in the PDMS N.

 In (Fuxman et al. 2005) the authors introduce and study a framework, called

peer data exchange, for sharing and exchanging data between peers. This framework

is a special case of a full-fledged peer data management system and a generalization

of data exchange between a source schema and a target schema. The motivation

behind peer data exchange is to model authority relationships between peers, where a

source peer may contribute data to a target peer, specified using source-to-target

constraints, and a target peer may use target-to-source constraints to restrict the data it

is willing to receive, but cannot modify the data of the source peer.

 A fundamental algorithmic problem in this framework is that of deciding the

existence of a solution: given a source instance and a target instance for a fixed peer

data exchange setting, can the target instance be augmented in such a way that the

source instance and the augmented target instance satisfy all constraints of the setting?

They investigate the computational complexity of the problem for peer data exchange

settings in which the constraints are given by tuple generating dependencies. They

show that this problem is always in NP, and that it can be NP-complete even for

“acyclic” peer data exchange settings. They also show that the data complexity of the

certain answers of target conjunctive queries is in coNP, and that it can be coNP-

complete even for “acyclic” peer data exchange settings.

20 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 After this, they explore the boundary between tractability and intractability for

the problem of deciding the existence of a solution. To this effect, they identify broad

syntactic conditions on the constraints between the peers under which testing for a

solution is solvable in polynomial time. These syntactic conditions include the

important special case of peer data exchange in which the source-to-target constraints

are arbitrary tuple generating dependencies, but the target-to-source constraints are

local-as-view dependencies. Finally, they show that the syntactic conditions they

identified are tight in the sense that minimal relaxations of them lead to intractability.

2.1.3 Classification according to the approach for modelling sources

 Data integration system can be classified according to the way that the

mappings M are specified between G and S. There are two main approaches: the

Global-As-View approach (GAV) and the Local-As-View approach (LAV).

Furthermore, hybrid approaches based on both GAV and BAV have been recently

proposed.

2.1.3.1 Local Centric Approach

Fig. 7. Local as View approach

 In the Local-As-View approach (LAV) (Levy et al. 1995) the global schema is

defined independently of the local sources schemas. Each source is described in terms

of the global schema relations. That is, the sources are described as materialized view

of the global schema. In other words, the query language LM,S,, allows only

CHAPTER 2 PRELIMINARIES 21

HARIDIMOS KONDYLAKIS

expressions constituted by one symbol of the alphabet AS. An overview of the LAV

approach can be seen on Fig. 7 where S1 can be seen as a view over concepts G1 and

G2, while S2 can be seen as a view over G2. An example then is presented below.

Definition 2.7 (LAV mapping): A LAV mapping is a set of assertions, one for each

element s of S of the form:

s  qG

 From the modelling point of view, the LAV approach is based on the idea that

the content of each source s should be characterized in terms of a view qG over the

global schema. A notable case of this type is when the data integration is based on an

ontology which will study in the next chapter.

 To better characterize each source with respect to the global schema, several

authors have proposed more sophisticated assertions (Abiteboul et al. 1998), (Grahne

et al. 1999) in the LAV mapping, in particular with the goal of establishing the

assumption holding for the various source extensions. Formally, this means that in the

LAV mapping, a new specification denoted as(s), is associated to each source element

s. The specification as(s) determines how accurate is the knowledge on the data

satisfying the sources, i.e how accurate is the source with respect to the associated

view qG. Three possibilities have been considered.

Sound views: When a source s is sound (denoted with as(s)=sound), its extension

provides any subset of the tuples satisfying the corresponding view qG. In other words

given a source database D, from the fact that a tuple is in s
D
 one can conclude that it

satisfies the associated view over the global schema, while from the fact that a tuple is

not in s
D
 one cannot conclude that it does not satisfy the corresponding view.

Formally, when as(s)=sound, a database B satisfies the assertion s  qG with respect

to D if:

s
D 

B

Gq

 Note that, from a logical point of view, a sound source s with arity n is modelled

through the first order assertion

 x s(x)  qG(x)

 Where x denotes variables x1, …, xn.

22 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Complete views: When a source s is complete (denoted with as(s)=complete), its

extension provides any superset of the tuples satisfying the corresponding view. In

other words, from the fact that a tuple is in s
D
 one cannot conclude that such a tuple

satisfies the corresponding view. On the other hand, from the fact that a tuple is not in

s
D
 one can conclude that such a tuple does not satisfy the view. Formally when

as(s)=complete, a database B satisfies the assertion s  qG with respect to D if:

s
D 

B

Gq

Note that, from a logical point of view, a complete source s with arity n is

modelled through the first order assertion

 x qG(x)  s(x)

 Where x denotes variables x1, …, xn.

Exact views: When a source s is exact (denoted with as(s)=exact), its extension is

exactly the set of tuples satisfying the corresponding view. Formally when

as(s)=exact, a database B satisfies the assertion s  qG with respect to D if:

s
D

=
B

Gq

 Note that, from a logical point of view, a complete source s with arity n is

modelled through the first order assertion

 x s(x)qG(x)

 Where x denotes variables x1, …, xn.

 Typically, in the literature, when the specification of as(s) is missing, source s is

considered sound. This is also the assumption we make in this document.

 Due to the fact that the source relations are expressed as views over the global

schema, each modification/addition/deletion of sources is costless since the local

sources' schemas are the only things that should change. However, query rewriting in

this approach is quite complex. The user of the data integration system poses a query

in terms of the global schema and this query should be translated in terms of the local

ones. An example is shown on Fig. 8 and Fig. 9.

CHAPTER 2 PRELIMINARIES 23

HARIDIMOS KONDYLAKIS

Fig. 9. Example 2.3

2.1.3.1.1 Query answering in LAV

Global Schema:

 movie (Title, Year, Director)

 european (Director)

 review (Title, Critique)

Here associated to source relations we have views over the global schema

r1 (T,Y,D)  { (T,Y,D) | movie (T, Y, D)  european (D)  Y>1960 }

r2 (T,R)  { (T,R) | movie (T, Y, D)  review (T,R)  Y>1990 }

The query {(T,R) | movie (T, 1998, D)  review(T, R) } is processed by means of

an inference mechanism that aims at re-expressing the atoms of the global schema

in terms of atoms at the sources. In this case

{(T,R) | r2 (T, R)  r1 (T, 1998, D) }

Supposing that we are interested in the movies domain, we can imagine as a

running example the following schemata.

Global Schema:

 movie (Title, Year, Director)

 european (Director)

 review (Title, Critique)

Source 1:

 r1 (Title, Year, Director) since 1960, European directors

 r2 (Title, Critique) since 1990

Query:

 Title and critique of movies in 1998

 D. movie (T, 1998, D)  review (T, R)

 {(T,R) | movie (T, 1998, D)  review (T, R) }

Fig. 8. Running example schemata

24 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 When we answer a query over the global schema on the basis of a LAV

mapping, we know only the extensions of the views associated to the sources, and this

provides us with only partial information on the global database. As we already

observed, in general, there are several possible global databases that are legal for the

data integration system with respect to a given source database. This observation

holds even for a setting where only sound views are allowed in the mapping. The

problem is even more complicated when sources can be modelled as complete or

exact views. In particular, dealing with exact sources essentially means applying the

closed world assumption on the corresponding views.

 Since in LAV, sources are modelled as views over the global schema, the

problem of processing a query is traditionally called view-based query processing.

Generally speaking, the problem is to compute the answer to a query based on a set of

views, rather than on the raw data in the database.

 There are two approaches to view-based query processing, called view-based

query rewriting and view-based query answering, respectively.

View-based query processing: In the former approach, we are given a query q and a

set of view definitions, and the goal is to reformulate the query into an expression of a

fixed language LR that refers only to the views and provides the answer to q. The

crucial point is that the language in which we want the rewriting is fixed, and in

general coincides with the language used for expressing the original query. In a LAV

data integration setting, query rewriting aims at re-formulating, in a way that is

independent from the current source database, the original query in terms of a query to

the sources. Obviously, it may happen that no rewriting in the target language LR

exists that is equivalent to the original query. In this case, we are interested in

computing also-called maximally contained rewriting, i.e., an expression that captures

the original query in the best way.

View-based query answering: In view-based query answering, besides the query q

and the view definitions, we are also given the extensions of the views. The goal is to

compute the set of tuples t such that the knowledge on the view extensions logically

implies that t is an answer to q, i.e., t is in the answer to q in all the databases that are

consistent with the views. It is easy to see that, in a LAV data integration framework,

CHAPTER 2 PRELIMINARIES 25

HARIDIMOS KONDYLAKIS

this is exactly the problem of computing the certain answers to q with respect to a

source database.

 Notice the difference between the two approaches. In query rewriting, query

processing is divided in two steps, where the first one re-expresses the query in terms

of a given query language over the alphabet of the view names, and the second one

evaluates the rewriting over the view extensions. In query answering, we do not pose

any limitations on how queries are processed, and the only goal is to exploit all

possible information, in particular the view extensions, to compute the answer to the

query.

 A large number of results have been reported for both approaches. We first

focus on view-based query answering. Query answering has been extensively

investigated in the last years (Abiteboul et al. 1998). A comprehensive framework for

view-based query answering, as well as several interesting results, is presented in

(Grahne et al. 1999). The framework considers various assumptions for interpreting

the view extensions with respect to the corresponding definitions (closed, open, and

exact view assumptions).

Sound CQ CQ
≠
 PQ Datalog FOL

CQ PTIME coNP PTIME PTIME undec

CQ
≠
 PTIME coNP PTIME PTIME undec

PQ coNP coNP coNP coNP undec

Datalog coNP undec coNP undec undec

FOL undec. undec undec undec undec

Exact CQ CQ
≠
 PQ Datalog FOL

CQ coNP coNP coNP coNP undec

CQ
≠
 coNP coNP coNP coNP undec

PQ coNP coNP coNP coNP undec

Datalog undec undec undec undec undec

FOL undec undec undec undec undec

Fig. 10. Complexity of view based query answering

 In (Abiteboul et a. 1998) , an analysis of the complexity of the problem under

the different assumptions is carried out for the case where the views and the queries

are expressed in terms of various languages (conjunctive queries without and with

26 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

inequalities, positive queries, Datalog, and first-order queries). The complexity is

measured with respect to the size of the view extensions (data complexity). Fig. 10

summarizes the results presented in (Abiteboul et a. 1998). Note that, for the query

languages considered in that paper, the exact view assumption complicates the

problem. For example, the data complexity of query answering for the case of

conjunctive queries is PTIME under the sound view assumption, and coNP-complete

for exact views. This can be explained by noticing that the exact view assumption

introduces a form of negation, and therefore it may force to reason by cases on the

objects stored in the views.

 Considering view-based query rewriting, several papers investigate the

rewriting question for different classes of queries. The problem is investigated for the

case of conjunctive queries (with or without arithmetic comparisons) in (Levy et al.

1995), for disjunctive views in (Afrati et al. 1999), for queries with aggregates in

(Cohen et al. 1999), (Grumback et al. 1999), for recursive queries and non-recursive

views in (Duschka et al. 1997b), for queries expressed in Description Logics in (Beeri

et al. 1997), for regular-path queries and their extensions in (Calvanese et al. 1998),

(Calvanese et al. 2000e), (Calvanese et al. 2000f) and in the presence of integrity

constraints in (Duschka et al. 1997b).

 We already noted that view-based query rewriting and view-based query

answering are different problems. Unfortunately, their similarity sometimes gives

raise to a sort of confusion between the two notions. Part of the problem comes from

the fact that when the query and the views are conjunctive queries, the best possible

rewriting is expressible as union of conjunctive queries, which is basically the same

language as the one of the original query and views. However, for other query

languages this is not the case. Abstracting from the language used to express the

rewriting, we can define a rewriting of a query with respect to a set of views as a

function that, given the extensions of the views, returns a set of tuples that is

contained in the answer set of the query in every database consistent with the views.

We call the rewriting that returns precisely such set the perfect rewriting of the query

with respect to the views. Observe that, by evaluating the perfect rewriting over given

view extensions, one obtains the same set of tuples provided by view-based query

answering. i.e., in data integration terminology, the set of certain answers to the query

with respect to the view extension. Hence, the perfect rewriting is the best rewriting

CHAPTER 2 PRELIMINARIES 27

HARIDIMOS KONDYLAKIS

one can obtain, given the available information on both the definitions and the

extensions of the views.

 An immediate consequence of the relationship between perfect rewriting and

query answering is that the data complexity of evaluating the perfect rewriting over

the view extensions is the same as the data complexity of answering queries using

views. Typically, one is interested in queries that can be evaluated in PTIME (i.e., are

PTIME functions in data complexity), and hence we would like rewritings to be

PTIME as well. For queries and views that are conjunctive queries (without union),

the perfect rewriting is a union of conjunctive queries and hence is PTIME. However,

already for very simple query languages containing union the perfect rewriting is not

PTIME in general. Hence, for such languages it would be interesting to characterize

which instances of query rewriting admit a perfect rewriting that is PTIME. By

establishing a tight connection between view-based query answering and constraint-

satisfaction problems, it is argued in (Calvanese et al. 2000e) that this is a difficult

task.

2.1.3.1.2 Query containment in LAV

 Recent work addresses the problem of reasoning on queries in data integration

systems. The basic form of reasoning on queries is checking containment, i.e.,

verifying whether one query returns a subset of the result computed by the other query

in all databases.

Definition 2.8 (Query containment): A query Q1 is said to be contained in a query Q2,

denoted by Q1Q2, if for all database instances D, the set of tuples computed for Q1

is a subset of those computed for Q2. The two queries are said to be equivalent if Q1

Q2 and Q2Q1.

 Besides the usual notion of containment, several other notions have been

introduced related to the idea of comparing queries in a data integration setting,

especially in the context of the LAV approach.

 In (Millstein et al. 2000), a query is said to be contained in another query

relative to a set of sources modelled as views, if, for each extension of the views, the

certain answers to the former query are a subset of the certain answers to the latter.

Note that this reasoning problem is different from the usual containment checking:

28 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

here we are comparing the two queries with respect to the certain answers computable

on the basis of the views available. The difference becomes evident if one considers a

counterexample to relative containment: Q1 is not contained in Q2 relative to views V

if there is a tuple t and an extension E of V, such that for each database DB consistent

with E (i.e., a database DB such that, the result V
DB

 of evaluating the views over DB is

exactly E), t is an answer of Q1 to DB, but there is a database DB’ consistent with E

such that t is not an answer of Q2 to DB’. In other words, Q1 is not contained in Q2

relative to views V if there are two databases DB and DB’ such that V
DB

 = V
DB’

 and

Q1
DB

 = Q2
DB’

 In (Millstein et al. 2000) it is shown that the problem of checking relative

containment is Π2
P
 -complete in the case of conjunctive queries and views. In (Li et

al. 2001), the authors introduce the notion of “p-containment”, where p stands for

power.

Definition 2.9 (p-containment): A view set V is said to be p-contained in another view

set W, i.e W has at least the answering power of V, if W can answer all queries that

can be answered using V.

 One of the ideas underlying the above mentioned papers is the one of

losslessness: a set of views is lossless with respect to a query, if, no matter what the

database is, we can answer the query by solely relying on the content of the views.

This question is relevant for example in mobile computing, where we may be

interested in checking whether a set of cached data allows us to derive the requested

information without accessing the network, or in data warehouse design, in particular

for the view selection problem, where we have to measure the quality of the choice of

the views to materialize in the data warehouse. In data integration, losslessness may

help in the design of the data integration system, in particular, by selecting a minimal

subset of sources to access without losing query-answering power. The definition of

losslessness relies on that of certain answers:

Definition 2.10 (Lossless views): A set of views is lossless with respect to a query, if

for every database, we can answer the query over that database by computing the

certain answers based on the view extensions.

CHAPTER 2 PRELIMINARIES 29

HARIDIMOS KONDYLAKIS

 It follows that there are at least two versions of losslessness, namely,

losslessness under the sound view assumption, and losslessness under the exact view

assumption. The first version is obviously weaker than the second one. If views V are

lossless with respect to a query Q under the sound view assumption, then we know

that, from the intensional point of views, V contain enough information to completely

answer Q, even though the possible incompleteness of the view extensions may

prevent us from obtaining all the answers that Q would get from the database. On the

other hand, if V are lossless with respect to a query Q under the exact view

assumption, then we know that they contain enough information to completely answer

Q, both from the intensional and from the extensional point of view.

2.1.3.2 Global Centric Approach

Fig. 11. The global centric approach

 In the Global-As-View approach (GAV) (Ullman et al 2000), the global schema

is expressed in terms of the local data sources. That is, the global schema is defined as

a view over the local sources' schemas. An overview of the approach is illustrated in

Fig. 11, where concept G1 of the global schema is expressed in terms of the relations

S1 and S2 of the local database sources. If both these schemas are relational, then one

can write a rule-based conjunctive query over the source relations. This query

specifies how to obtain the tuples for the global schema relations. Each query

specifies that in order to compute the tuples in the relation in the head of the rule, one

has to go to the body of the rule and compute whatever is specified there. The

attributes appearing in the head indicate that they are the attributes of interest, thus the

others (in the body) can be projected out at the end.

30 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 In the GAV approach, the mapping M associates to each element g in G a query

qS over S. In other words, the query language LM,G allows only expressions constituted

by one symbol of the alphabet AG. Therefore, a GAV mapping is a set of assertions,

one for each element g of G, of the form:

g  qS

 From the modelling point of view, the GAV approach is based on the idea that

the content of each element g of the global schema should be characterized in terms of

a view qS over the sources. In some sense, the mapping explicitly tells the system how

to retrieve the data when one wants to evaluate the various elements of the global

schema. This idea is effective whenever the data integration system is based on a set

of sources that is stable. Note that, in principle, the GAV approach favours the system

in carrying out query processing, because it tells the system how to use the sources to

retrieve data. However, extending the system with a new source is now a problem: the

new source may indeed have an impact on the definition of various elements of the

global schema, whose associated views need to be redefined.

 To better characterize each element of the global schema with respect to the

sources, more sophisticated assertions in the GAV mapping can be used, in the same

spirit as we saw for LAV. Formally, this means that in the GAV mapping, a new

specification, denoted as(g) (either sound, complete, or exact) is associated to each

element g of the global schema. When as(g) = sound (resp., complete, exact), a

database B satisfies the assertion g  qS with respect to a source database D if:

D

Sq 
g

B
 (resp.

D

Sq 
g

B
,

D

Sq
=

g

B
)

 The logical characterization of sound views and complete views in GAV is

therefore through the first order assertions:

 x qS(x)  gS(x)

 respectively.

 It is interesting to observe that the implicit assumption in many GAV proposals

is the one of exact views. Indeed, in a setting where all the views are exact, there are

no constraints in the global schema, and a first order query language is used as LM,S, a

GAV data integration system enjoys what we can call the “single database property”,

i.e., it is characterized by a single database, namely the global database that is

obtained by associating to each element the set of tuples computed by the

CHAPTER 2 PRELIMINARIES 31

HARIDIMOS KONDYLAKIS

corresponding view over the sources. This motivates the widely shared intuition that

query processing in GAV is easier than in LAV. However, it should be pointed out

that the single database property only holds in such a restricted setting.

 In particular, the possibility of specifying constraints in G greatly enhances the

modelling power of GAV systems, especially in those situations where the global

schema is intended to be expressed in terms of a conceptual data model, or in terms of

an ontology. In these cases, the language LG is in fact sufficiently powerful to allow

for specifying, either implicitly or explicitly, various forms of integrity constraints on

the global database.

 In general, the views associated to the elements of the global schema are

considered sound, i.e. all the data provided by a view satisfies the corresponding

element of the global schema, but there may be additional data satisfying the element

not provided by the view.

 It is an implicit assumption (Lenzerini et al. 2002), in many GAV proposals,

that the assertions above are exact. This assumption is true when in the global schema

there are no additional constraints. Under these circumstances, the query rewriting in

GAV approach is quite easy (it is illustrated in the Fig. 12). However, the possibility

of specifying constraints in the global schema enhances the expressing power of GAV

systems.

Fig. 12. Query Unfolding

 As depicted in Fig. 12 the Global-As-View approach has the advantage of

simple query rewriting. Due to the fact that the global schema is expressed in terms of

the local schemas query rewriting consists of replacing each atom of the query with its

definition. In this way the query is finally expressed in terms of the local sources. This

substitution is called query unfolding.

32 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2.1.3.2.1 Query answering in GAV

 Most GAV data integration systems do not allow integrity constraints in the

global schema, and assume that views are exact. It is easy to see that, under these

assumptions, query processing can be based on a simple unfolding strategy. When we

have a query q over the alphabet AG of the global schema, every element of AG is

substituted with the corresponding query over the sources, and the resulting query is

then evaluated at the sources. As we said before, such a strategy suffices mainly

because the data integration system enjoys the single database property. Notably, the

same strategy applies also in the case of sound views.

 However, when the language LG used for expressing the global schema allows

for integrity constraints, and the views are sound, then query processing in GAV

systems becomes more complex. Indeed, in this case, integrity constraints can in

principle be used in order to overcome incompleteness of data at the sources.

 The assumption of sound views asserts that the tuples retrieved for a relation r

are a subset of the tuples that the system assigns to r; therefore, we may think of

completing the retrieved global database by suitably adding tuples in order to satisfy

foreign key constraints, while still conforming to the mapping. When a foreign key

constraint is violated, there are several ways of adding tuples to the retrieved global

database to satisfy such a constraint. In other words, in the presence of foreign key

constraints in the global schema, the semantics of a data integration system must be

formulated in terms of a set of databases, instead of a single one. Since we are

interested in the certain answers q
I;D

 to a query q, i.e., the tuples that satisfy q in all

global databases that are legal for I with respect to D, the existence of several such

databases complicates the task of query answering. In (Cali et al. 2002), a system

called IBIS is presented, that takes into account key and foreign key constraints over

the global relational schema. The system uses the foreign key constraints in order to

retrieve data that could not be obtained in traditional data integration systems. The

language for expressing both the user query and the queries in the mapping is the one

of union of conjunctive queries. To process a query q, IBIS expands q by taking into

account the foreign key constraints on the global relations appearing in the atoms.

Such an expansion is performed by viewing each foreign key constraint r1[X] 

r2[Y], where X and Y are sets of h attributes and Y is a key for r2, as a logic

programming rule

CHAPTER 2 PRELIMINARIES 33

HARIDIMOS KONDYLAKIS

'

2r (X


, fh+1(X


), . . ., fn(X


)) 
'

1r (X


, Xh+1. . ., Xm)

where each fi is a Skolem function, X


 is a vector of h variables, and we have

assumed for simplicity that the attributes involved in the foreign key are the first h

ones.

Fig. 13. GAV example

Global Schema:

 movie (Title, Year, Director)

 european (Director)

 review (Title, Critique)

Here associated to relations in the global schema we have views over the sources

movie (T,Y,D)  { (T,Y,D) | r1 (T,Y,D) }

european (D)  { (D) | r1 (T,Y,D)}

review (T,R)  { (T,R) | r2(T,R)}

Global schema containing constraints:

 movie (Title, Year, Director)

 european (Director)

 review (Title, Critique)

 european_movie_60s (Title, Year, Director)

  T,Y,D. european_movies_60s (T,Y,D)  movie (T,Y,D)

 T, Y, D. european_movies_60s (T,Y,D)  European (D)

GAV mappings :

european_movies_60s (T,Y,D)  { (T,Y,D) | r1 (T,Y,D)}

european (D)  { (D) | r1(T,Y,D)}

review(T,R)  { (T,R) | r2 (T,R)}

Query processing :

The query {(T,R) | movie (T, 1998, D)  review (T, R) } is processed by means of

unfolding. In this case it becomes: r1(T,1998,D)  r2(T,R)

34 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Each
'

ir is a predicate, corresponding to the global relation ri, defined by the

above rules for foreign key constraints, together with the rule

'

ir (X1, . . ., Xn)  ri (X1, . . ., Xn)

 An example is shown on Fig. 13, where the global and the local schemata are

shown and an example of query unfolding as well.

 Once such a logic program ΠG has been defined, it can be used to generate the

expanded query expand(q) associated to the original query q. This is done by

performing a partial evaluation with respect to ΠG of the body of qꞌ, which is the query

obtained by substituting in q each predicate ri with riꞌ. In the partial evaluation tree, a

node is not expanded anymore either when no atom in the node unifies with a head of

a rule, or when the node is subsumed by (i.e., is more specific than) one of its

predecessors. In the latter case, the node gets an empty node as a child; intuitively this

is because such a node cannot provide any answer that is not already provided by its

more general predecessor.

 These conditions guarantee that the construction of the partial evaluation tree

for a query always terminates. Then, the expansion expand(q) of q is a union of

conjunctive queries whose body is constituted by the disjunction of all nonempty

leaves of the partial evaluation tree. It is possible to show that, by unfolding

expand(q) according to the mapping, and evaluating the resulting query over the

sources, one obtains exactly the set of certain answers of q to I with respect to D.

 The major drawback of this approach is its lack of flexibility with respect to the

addition/deletion of the sources to the data integration system, or the modification of

the sources schemas. This is due to the fact that each modification of a local source

schema results in modification of global schema.

2.1.3.3 Combining Global and Local Approach

 As discussed earlier, both GAV and LAV have some drawbacks that should be

overcome. Thus, an approach has been proposed that combines global and local

approach. It is called GLAV (Friedman et al.1999). In this approach we are able to

express a local source in terms of the global schema (LAV), a global source in terms

of the local sources (GAV) and additionally a whole view (``part'') of the global

schema in terms of the local sources. An overview of this approach can be seen in Fig.

CHAPTER 2 PRELIMINARIES 35

HARIDIMOS KONDYLAKIS

14 above where the whole ``relation'' of G1 and G2 is described by the local sources

relations, S1 and S2.

Fig. 14. GLAV approach

Definition 2.11 (A GLAV mapping): The mappings M, in GLAV approach, are in the

form:

G1(X1, Z1), G2(X2, Z2), . . ., Gj(Xj, Zj)  V(X, Y)

where X =  i Xi, ( i Zi) Y =0 , Gi are global relations and V(X, Y) is a

conjunction of source relations.

 An example scenario is shown in Fig. 15 where obviously the mappings

combine a query over the sources on the left-hand side, with a query over the global

schema on the right-hand side.

Definition 2.12: The mapping M between the global schema and the sources,

constitutes of the following assertions:

R
B V

D
 (sound source)

or

R
B
  V

D
 (complete source)

or

R
B

  V
D

 (exact source)

where R is a view (query) of the global schema, and V is a view (query) over the local

sources.

36 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Fig. 15. GLAV example

 The GLAV approach combines the expressive power of GAV and LAV.

Additionally, it reaches the limits of the expressive power of a data source description

language. This is because slight additions to the expressive power of GLAV would

make query answering co-NP-hard in the size of the data in the sources. Query

rewriting in this approach is shown to be no harder than it is for the LAV approach. It

should be noted that GLAV is also of interest for data integration independent of data

sources, because of the flexibility it provides in integrating heterogeneous sources.

2.1.3.4 Another hybrid approach:BAV

 BAV is another data integration approach. BAV transformation sequences are

partially derived from LAV or GAV view definitions. BAV is a rich integration

framework, which is based on the use of reversible sequences of primitive schema

transformations, called transformation pathways. It is an expressive data integration

language, since it allows the expression of mappings in both directions. Another

major advantage of using the BAV approach is that it supports the evolution of both

Global Schema:

 works (Person, Project)

 area (Project, Field)

Source 1:

 hasJob (Person, Field)

Source 2:

 teach (Professor, Course)

 in (Course, Field)

Source 3:

 get (Researcher, Grant)

 for (Grant, Project)

GLAV mapping:

{ (r,f) | hasJob(r,f)}  { (r,f) | works(r,p) area(p,f)}

{ (r,f) | teach(r,c)  in(c,f)}  { (r,f) | works(r,p) area(p,f)}

{ (r,p) | get(r,g)  for(g,p)}  { (r,p)| works(r,p)}

CHAPTER 2 PRELIMINARIES 37

HARIDIMOS KONDYLAKIS

global and local schemas, in contrast to taking either a GAV or LAV approach. With

the BAV approach it becomes possible to extract a definition of the global schema as

a view over the local schemas and vice versa. BAV combines the benefits of LAV and

GAV in the sense that any reasoning or processing which is possible with the view

definitions of GAV or LAV will also be possible with the BAV definition. However,

BAV is likely to be more costly to reason with and process than the corresponding

LAV, GAV or GLAV view definitions would be. The most representative system that

implements this approach is AutoMed (Boyd et al. 2004)

2.1.3.5 Comparison of the approaches

 In conclusion, there are some interesting facts that should be noted about the

approaches above. It is true that both LAV and GAV, which are the first approaches

proposed, have advantages and disadvantages. LAV is really flexible in

addition/deletion of the local sources that participate in the integration system; this is

the main drawback of the GAV approach, since every addition/deletion leads to a new

rewriting of the global schema description. Exactly the same occurs when it is

necessary to add some more complicated constraints on sources, since LAV demands

only the addition of the necessary changes to the source, while GAV demands the

rewriting of the global schema description. These constraints usually concern the

availability of the data during querying the sources. However, query answering is

quite simple in GAV, whereas it is harder in LAV. In the GAV approach, query

rewriting can be achieved by unfolding the source descriptions of the global ``parts''

of the query. In the LAV approach, this is not feasible since such descriptions are not

available.

 A first attempt to analyze the similarities and differences between GAV and

LAV approach can be found in (Cali et al. 2001), (Cali et al. 2002), where the authors

address the problem of checking whether a LAV system can be transformed into a

GAV one, and vice-versa. They deal with transformations that are equivalent with

respect to query answering, i.e., that enjoy the property that queries posed to the

original system have the same answers when posed to the target system. Results on

query reducibility from LAV to GAV systems may be useful, for example, to derive a

procedural specification from a declarative one. Conversely, results on query

reducibility from GAV to LAV may be useful to derive a declarative characterization

38 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

of the content of the sources starting from a procedural specification. We briefly

discuss the notions of query-preserving transformation, and of query-reducibility

between classes of data integration systems.

Definition 2.13 (query preserving data integration system): Given two integration

systems I = < G, S, M> and I’ = < G’, S, M’> over the same source schema S and

such that all elements of G are also elements of G’, I’ is said to be query-preserving

with respect to I, if for every query q to I and for every source database D, we have

that:

q
I,D

 = q
I’,D

In other words, I’ is query-preserving with respect to I if, for each query over the

global schema of I and each source database, the certain answers to the query with

respect to the source database that we get from the two integration systems are

identical.

Definition 2.14: A class C1 of integration systems is query-reducible to a class C2 of

integration systems if there exist a function f : C1  C2 such that, for each I1  C1 we

have that f(I1) is query-preserving with respect to I1.

 With the two notions in place, the question of query reducibility between LAV

and GAV is studied in (Cali et al. 2002) within a setting where views are considered

sound, the global schema is expressed in the relational model, and the queries used in

the integration systems (both the queries on the global schema, and the queries in the

mapping) are expressed in the language of conjunctive queries. The results show that

in such a setting none of the two transformations is possible. On the contrary, if one

extends the framework, allowing for integrity constraints in the global schema, then

reducibility holds in both directions. In particular, inclusion dependencies and a

simple form of equality-generating dependencies suffice for a query-preserving

transformation from a LAV system into a GAV one, whereas single head full

dependencies are sufficient for the other direction. Both transformations result in a

query-preserving system whose size is linearly related to the size of the original one.

 In the GLAV approach, the source evolution and addition/removal is easier,

since, in fact, both directions are implemented (LAV and GAV) and in this case it is

CHAPTER 2 PRELIMINARIES 39

HARIDIMOS KONDYLAKIS

appropriate to use the LAV approach. Additionally, query answering is not harder

than in LAV. However, GLAV gives the ability of more expressive mappings.

 An interesting observation, as stated in (Cali et al. 2002b), is that, under certain

circumstances, the existence of constraints (e.g., keys or foreign keys) in the global

schema can turn the GLAV mappings into GAV ones, and thus take benefit of the

query reformulation algorithm proposed for the GAV approach. Unfortunately,

despite their expressiveness, GLAV mappings introduce new challenges. Further,

works (Madhavan et al. 2003) has shown that the composition of GLAV mappings

may be undecidable in certain cases (e.g., the composition of GLAV rules, which map

non CQk (CQk queries is the class of conjunctive queries in which every nested

expression has at most k variables) queries over a source schema to non-CQk queries

over a target schema, may result in an infinite set of mappings). Additionally, as

illustrated in (Fagin et al. 2005b) the composition of two GLAV rules does not always

imply a new GLAV rule that maps a conjunctive query to another conjunctive query.

There are cases (e.g., when we compose two finite sets of non full1 source-to-target

dependencies used for the interpretation of the mappings) where the composition is

definable only with the use of existential second-order formulas. In these formulas,

new function symbols that guarantee the presence of the existentially quantified

variables appearing in the dependencies, are introduced.

 BAV on the other hand, combines the benefits of LAV and GAV in the sense

that any reasoning or processing which is possible with the view definitions of GAV

or LAV will also be possible with the BAV definition. However, BAV is likely to be

more costly to reason with and process than the corresponding LAV, GAV or GLAV

view definitions would be.

2.2 Ontology based Data Integration

2.2.1 What is an ontology?

 Ontologies can play a key role in the task of knowledge exchange acting as

Enterprise models. Originally introduced by Aristotle, ontologies are formal models

1 A dependency is full if no existentially quantified variables occur in it.

40 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

about how we perceive a domain of interest and provide a precise, logical account of

the intended meaning of terms, data structures and other elements modelling the real

world. As such, they are often viewed as the key means through which the

SemanticWeb vision (Berners-Lee et al. 2001) can be realized and have already found

several applications in the area of Knowledge Representation (KR) and in the

Semantic Web. Ontologies are so important in the Semantic Web because they

provide a means to formally define the basic terms and relations that comprise the

vocabulary of a certain domain of interest (Lambrix & Edberg 2003), enabling

machines to process information provided by human agents. As a result, ontologies

can help in the representation of the content of a web page in a formal manner, so as

to be suitable for use by an automated computer agent, crawler, search engine or other

web service. The importance of ontologies in current Artificial Intelligence (AI)

research is also emphasized by the interest shown by both the research and the

enterprise community to various problems related to ontologies and ontology

manipulation (McGuiness et al. 2000).

 The term ontology has come to refer to a wide range of formal representations,

including taxonomies, hierarchical terminology vocabularies or detailed logical

theories describing a domain (Noy & Klein 2004). For this reason, a precise definition

of the term is rather difficult and different definitions have appeared in the literature

(see, for example, (Gruber 1993a), (Guarino 1998)). One commonly used definition is

based on the original use of the term in philosophy, where an ontology is a systematic

account of Existence. For AI systems, what “exists” is that which can be represented

(Gruber 1993b); therefore, an ontology in the AI context is a structure that specifies a

conceptualization, or, more accurately, a formal specification of a shared

conceptualization of a domain (Gruber 1993a).

 A more formal, algebraic, approach, identifies an ontology as a pair < S, A >,

where S is the vocabulary (or signature) of the ontology (being modelled by some

mathematical structure, such as a poset, a lattice or an unstructured set) and A is the

set of ontological axioms, which specify the intended interpretation of the vocabulary

in a given domain of discourse (Kalfoglou & Schorlemmer 2003). A similar definition

is given in (De Bruijn et al. 2004), where the signature S is broken down in three (not

necessarily disjoint) sets, the set of concepts (C), the set of relations (R) and the set of

instances (I); thus, an ontology is defined as a 4-tuple < C, R, I, A >.

CHAPTER 2 PRELIMINARIES 41

HARIDIMOS KONDYLAKIS

 Ontologies are best used in applications where the core problem is the use and

management of common representations. Many applications have been developed for

instance in bio-informatics, or for knowledge management purposes inside

organizations. Local data models (a.k.a contexts (Bouquet et al. 2004)), instead, are

best used in those applications where the problem is the use and management of local

and autonomous representations with a need for a limited and controlled form of

globalization (or, using the terminology used in the context literature, maintaining

locality still guaranteeing semantic compatibility among representations). Contexts

and ontologies have both strengths and weaknesses. It can be argued that the strengths

of the ontologies are the weaknesses of contexts and vice versa. On the one hand, the

use of ontologies enables the parties to communicate and exchange information.

Shared ontologies define a common understanding of specific terms, and thus make it

possible to communicate between systems on a semantic level. On the weak side,

ontologies can be used only as long as consensus about their contents is reached.

Furthermore, building and maintaining them may become arbitrary hard, in particular

in a very dynamic, open and distributed domain like the web. On the other hand,

contexts encode not shared interpretation schemas of individuals or groups of

individuals. Contexts are easier to define and to maintain. They can be constructed

with no consensus with the other parties, or only with the limited consensus which

makes it possible to achieve the desired level of communication and only with the

relevant parties. On the weak side, since contexts are local to parties, communication

can be achieved only by constructing explicit mapping among the elements of the

contexts of the involved parties; and extending the communication to new topics

and/or new parties requires the explicit definition of new mappings.

2.3.1 Ontologies as Enterprise Models

As Calvanese et al. (Calvanese et al. 1998b) propose (see Fig. 16), in the conceptual

layer of an information integration problem we distinguish the Enterprise or Target

Model and multiple Source Models. The Enterprise or Target Model is a conceptual

representation of the global concepts and relationships that are of interest to the

application. The Source Model of an information source is a conceptual representation

of the data residing in underlying information sources, or at least of the portion of data

currently taken into account.

42 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Fig. 16. Architecture for Data Integration

 In order to achieve logical transparency using this model the global schema

should provide a conceptual view, as shown on Fig. 17, that is independent from the

sources, that is described with a semantically rich formalism. In this context, the need

for explicit models of semantic information in order to support information exchange

has been widely acknowledged by the research community.

Fig. 17. Data Integration though an ontology

 Now a data integration system Ι is a triple (G, S, M) where

Enterprise
Model

Source
Model1

Source
Modeln

conceptual level logical level

Materialized View
Schema

Source
Schema1

Source
Scheman

…

Materialized View Store

Mediator

Wrapper1
Wrappern

Source Data
Store1

Source Data
Storen

plysical level

…

…

conceptual link
conceptual/logical mapping
physical/logical mapping
data flow

CHAPTER 2 PRELIMINARIES 43

HARIDIMOS KONDYLAKIS

 G is the global schema – now is an ontology. The global schema is a logical theory

over an alphabet Ag.

 S is the source schema. The source schema is constituted simply by an alphabet As

disjoint from Ag.

 M is the mapping between S and G.

 The proposed language for expressing ontologies is OWL, which is also

advocated by the Semantic Web community. Description Logic languages such as the

OWL are considered the fundamental formal tool for expressing ontologies. Typical

reasoning tasks in DLs are classification, subsumption, instance checking, all based

on logical inference.

 Now the question is whether view based query answering (of conjunctive

queries) is decidable or not if we use an expressive description logics such OWL to

express the ontology. The answer is that this can be done in 2EXPTIME in combined

complexity.

 We consider query answering in the following setting:

 Data (i.e ABox A) are incomplete and assumed to be large (their size dominates the

size of schema)

 Schema (i.e TBox T) constraints the possible models

 Query q is a complex expression (conjunctive query)

 Here the task is to compute cert(q, T, A) = { c | T A |= q(c)|} as shown also

on Fig. 18

Fig. 18. Query answering

2.3.2 Single, Multiple & Hybrid Ontology Approaches

 Ontologies can be used as the global schema and it seems that database

integration is currently evolving towards this direction. By accepting an ontology as a

44 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

point of common reference, naming conflicts are eliminated and semantic conflicts

are reduced. Below, we review a few recent ontology-based integration projects.

 However, there are different ways of how to employ the ontologies. In general,

three different directions can be identified: single ontology approaches, multiple

ontology approaches and hybrid approaches.

 The integration based on a single ontology seems to be the simplest approach

because it can be simulated by the other approaches. Single ontology approaches use

one global ontology providing a shared vocabulary for the specification of semantics

and all information sources are related to that ontology. Single ontology approaches

can be applied to integration problems where all information sources to be integrated

provide nearly the same view on a domain. But if one information source has a

different view on the domain, e.g. by providing another level of granularity, finding

the minimal ontology commitment (Gruber, 1993b) becomes a difficult task. Also

single ontology approaches are susceptible to changes in the information sources

which can affect the conceptualization of the domain represented in the ontology.

Depending on the nature of the changes in one information source it can imply

changes in the global ontology and in the mappings to other information sources.

These disadvantages led to the development of multiple ontology approaches.

 In multiple ontology approaches, each information source is described by its

own ontology. In principle, the “source ontology” can be a combination of several

other ontologies but it cannot be assumed that the different “source ontologies” share

the same vocabulary. At first, the advantage of multiple ontology approaches seems to

be that no common and minimal ontology commitment about the global ontology is

needed. Each source ontology could be developed without respect to other sources or

their ontologies – no common ontology with the agreement of all sources are needed.

This ontology architecture can simplify the change, i.e modifications in one

information source or the addition/removal of sources. However, in reality the lack of

a common vocabulary makes it extremely difficult to compare different source

ontologies. To overcome this problem, an additional representation formalism

defining the inter-ontology mapping should be provided. The inter-ontology mapping

identifies semantically corresponding terms of different source ontologies. However,

the mapping also has to consider different views on a domain, e.g. different

CHAPTER 2 PRELIMINARIES 45

HARIDIMOS KONDYLAKIS

aggregation and granularity on the ontology concepts and it is really difficult to be

defined in practice.

 To overcome the drawbacks of both single and multiple ontology approaches,

hybrid approaches were developed. Similar to multiple ontology approaches the

semantics of each source is described by its own ontology. But in order to make the

source ontologies comparable to each other they are built upon one global shared

vocabulary. The shared vocabulary contains basic terms of a domain and in order to

build complex terms of a source ontology, the primitives are combined by some

operators. Since each term of a source ontology is based on the primitives, the terms

become easier to compare than in multiple ontology approaches. Usually, the shared

vocabulary is also an ontology. The advantage of a hybrid approach is that new

sources can be easily added without the need of modification in the mappings or the

shared vocabulary. It also supports the acquisition and evolution of ontologies. The

use of a shared vocabulary makes the source ontologies comparable and avoids the

disadvantages of multiple ontology approaches. However, existing ontologies cannot

be reused easily, but have to be re-developed from scratch. Representative system of

this category is MECOTA (Wache et al. 1999).

2.3.3 Representative Ontology based Data Integration Systems

 In BACIIS (Ben Miled et al. 2005) and TAMBIS (Stevens et al 2000) , a single

conceptualization is provided trying to capture the information from the system data

sources. User queries are built and results are returned in terms of this global

conceptual schema. However, any change in the sources may require the modification

of the global domain conceptualization. Specifically, in TAMBIS, the integration

process is restricted to combine data from sources that contain different types of

information for the same semantic entity, since it does not take into account the

potential overlapping aspect of sources or the probable incompleteness of some of

them. Moreover, BACIIS only integrates Web Databases and the mappings are based

on text parsing from web pages.

2.3.3.1 D2R Map

 DR2 Map (Bizer, 2003) is a declarative and XML-based language. It allows

describing mappings between relational database schemata and OWL/RDFS

46 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

ontologies. With DR2, users can create flexible mappings of complex relational

structures without having to change the existing database schema, which is achieved

by applying SQL statements directly on the mapping rules. The DR2 processor is

responsible for the mapping process, which is performed in four logical steps:

 A record set is selected from the database, based on class similarity.

 The record set is grouped according to the groupBy columns.

 Class instances are created.

 The record set data is mapped to instance properties.

 DR2 MAP is kept as simple as possible, expressing mappings with just three

elements. Fig. 19 shows the mapping process used in DR2 MAP.

Fig. 19. The D2R Mapping Process

2.3.3.2 KAON

 KAON (Volz, 2003) is an open source Tool suite that provides a multitude of

software modules specially designed for the semantic web. It includes a persistent

RDF store, an ontology store, ontology editors, etc. It has been developed as a result

of a joint effort by the institute AIFB (University of Karlsruhe) and the Research

Center of Information Technologies (FZI).

 KAON offers an ontology management infrastructure, mainly targeted at

business applications. It allows creating and managing ontologies easily and provides

a framework aimed at building ontology-based applications.

 KAON Reverse tool offers the possibility of mapping relational databases to

ontologies, enabling two tasks: updating databases contents and performing queries

CHAPTER 2 PRELIMINARIES 47

HARIDIMOS KONDYLAKIS

through the conceptualization of a database. One drawback of this tool is that changes

cannot be applied to the structure of the database with respect to the ontology, since

the whole process should be repeated. This work is not reusable.

 The kernel of this suite is the KAON SERVER, which brings all the software

modules together. KAON SERVER is implemented with the Java programming

language. The Java Management Extensions (JMX) are used to manage and monitor

all the resources KAON handles. Fig. 20 shows KAON architecture.

Fig. 20 Kaon server architecture

2.3.3.3 Ontofusion & similar projects

 In ONTOFUSION (Perez-Rey et al. 2006), separate conceptual schemas are

used to describe the semantics of each data source. Every concept in a physical

database is mapped to a virtual schema. Virtual schemas are ontologies representing

the structure of the database at a conceptual level. Then, the various virtual schemas

corresponding to the distinct databases are merged into new, unified virtual schemas

that can be accessed by the users in order to form their queries. This approach adds

more complexity to the whole task, but is otherwise promising. Similar projects are

PICSEL (Goasdoui et al. 2000), MECOTA (Wache et al. 1999), and SEMEDA

(Kohler et al. 2003).

48 CHAPTER 2 PRELIMINARIES

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

.3.3.4 MASTRO-I

 A latest attempt worth mentioning is the MASTRO-I system (Calvanese, 2008).

The global schema in this system is specified in terms of an ontology, specifically in

terms of a TBOX expressed in a tractable Description Logics, namely DL-LiteA. So,

their approach conforms to the view that the global schema of a data integration

system can be profitably represented by an ontology, so the clients can rely on a

shared conceptualization when accessing the services provided by the system.

Moreover, the source schema is the schema of a relational database. Such a schema

may result from the federation of a set of heterogeneous, possibly non-relational data

sources. This can be realized by means of a data federation tool, which presents

without materializing them, physical data sources to MASTRO-I as they were a single

relational database, obtained by simple transforming each source into a set of virtual

relational views and taking their union. The mapping language they use allows for

expressing GAV sound mappings between the sources and the global schema. A GAV

sound mapping specifies that the extension of a source view provides a subset of the

tuples satisfying the corresponding element of the global schema. Moreover, the

mapping language has specific mechanisms for addressing the so-called impedance

mismatch problem. The problem arises from the fact that, while data sources store

values, the instances of concepts in the ontology are objects, each one denoted by an

identifier not to be confused with any data item. The system is able to answer union of

conjunctive queries posed to the global schema according to a method which is sound

and complete with respect to the semantics of ontology. The careful design of various

languages used in the system, result in a very efficient technique (LOGSPACE w.r.t.

Data complexity), which reduces query answering to standard SQL query evaluation

over the sources.

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 49

HARIDIMOS KONDYLAKIS

Chapter 3

3Ontology change in Data Integration

 “An expert is a man who has made all the mistakes which can

be made, in a narrow field.”

 - Niels Borh

Contents

3.1 WHY ONTOLOGIES CHANGE? ... 50

3.1.1 Ontology Change Subfields .. 53

3.2 A REVIEW OF THE STATE OF THE ART .. 56

3.2.1 Earlier Works .. 56

3.2.2 Approaches for similar problems .. 57

3.2.3 Mapping Composition .. 57

3.2.3 Mapping Adaptation ... 63

3.2.5 Floating Model ... 66

3.3 WHY TRADITIONAL TECHNIQUES ARE NOT ENOUGH?.. 67

50 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 In this Chapter, we identify solutions proposed in the state of the art that try to

tackle the problem of ontology evolution in data integration. Most specifically we

focus on the approaches which try to reuse previously captured information. Since

most of the approaches today concern database schema evolution, we examine them

first and check if they can be applied in an ontology-based data integration scenario.

We classify them into two general categories. Those that try to compose successive

schema mappings (mapping composition) and those that try to evolve the mappings

each time a primitive change operation occurs (mapping adaptation). Although, those

approaches deal with closely related issues, their applicability in a dynamic ontology

has not yet been examined. We demonstrate some drawbacks of both approaches by

means of simple examples and prove that they are inefficient in a state of the art

ontology-based data integration setting. This belief is further enhanced by showing

that changes in database schemata differ greatly from changes in ontologies.

 The lack of an ideal approach to handle ontology evolution in data integration

leads us to propose requirements for a new approach. We highlight what is missing

from the current state of the art and outline the requirements for an ideal data

integration system that will incorporate and handle ontology evolution efficiently and

effectively.

 The overall goal of this Chapter is not only to give readers a comprehensive

overview of the works in the area, but also to provide necessary insights for the

practical understanding of the issues involved.

3.1 Why ontologies change?

 Ontology change refers to the generic process of changing an ontology in

response to a certain need. Several reasons for changing an ontology have been

identified in the literature. An ontology, just like any structure holding information

regarding a domain of interest, may need to change simply because the domain of

interest has changed (Stojanovic et al. 2003); but even if we assume a static world

(domain), which is a rather unrealistic assumption for most applications, we may

need to change the perspective under which the domain is viewed (Noy & Klein

2004), or we may discover a design flaw in the original conceptualization of the

domain (Plessers & de Troyer 2005); we may also wish to incorporate additional

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 51

HARIDIMOS KONDYLAKIS

functionality, according to a change in users‟ needs (Haase & Stojanovic 2005).

Furthermore, new information, which was previously unknown, classified or

otherwise unavailable may become available or different features of the domain may

become known and/or important (Heflin et al. 1999). Moreover, ontology

development is becoming more and more a collaborative and parallelized process,

whose sub-products (parts of the ontology) need to be combined to produce the final

ontology (Klein & Noy 2003), (Noy et al. 2006); this process would require changes

in each sub-ontology to reach a consistent final state; but even then, the so-called final

state is rarely final, as ontology development is usually an ongoing process (Heflin et

al. 1999).

 There are also reasons related to the distributed nature of the Semantic Web:

ontologies are usually depending on other ontologies, over which the knowledge

engineer may have no control; if the remote ontology is changed for any of the above

reasons, the dependent ontology might also need to be modified to reflect possible

changes in terminology or representation (Heflin et al. 1999). In other cases, a certain

agent, service or application may need to use an ontology whose terminology or

representation is different from the one it can understand (Euzenat et al. 2004); in

such cases, some kind of translation (change) needs to be performed in the imported

ontology to be of use. Last but not least, we may need to combine information from

two or more ontologies in order to produce a more appropriate one for a certain

application (Pinto et al. 1999).

 The problem of ontology change is far from trivial. Several philosophical issues

related to the general problem of adaptation of knowledge to new information have

been identified in the research area of belief change, also known as belief revision

(Gardenfors 1992a), (Gardenfors 1992b), (Katsuno & Mendelzon 1990); most of them

are also applicable to knowledge represented in ontologies (Flouris & Plexousakis

2005), (Flouris & Plexousakis 2006). The large size of modern day ontologies

complicates this problem even further (McGuiness et al. 2000). But it‟s not just that:

the Semantic Web is characterized by decentralization, heterogeneity and lack of

central control or authority. This is both a blessing and a curse; these features have

greatly contributed to the success of the WWW (and constitute key features of the

Semantic Web) but they have also introduced several new, challenging and interesting

problems, which don‟t exist in traditional AI.

52 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 As far as ontology change is concerned, one such problem is the lack of control

on who uses a certain ontology once it has been published. Subtle changes in an

ontology may have unforeseeable effects in dependent applications, services, data and

ontologies (Stojanovic et al. 2002); ontology designers cannot know who uses which

part of their ontology and for what purpose, so they cannot predict the effects that a

given change on their ontology would have upon dependent elements. The same holds

in the opposite direction: if an ontology is depending on other ontologies, there is no

way for the ontology designer to control when and how these ontologies will change.

These facts raise the need to support and maintain different interoperable versions of

the same ontology (Heflin et al. 1999), (Huang & Stuckenschmidt 2005), (Klein et al.

2002), a problem greatly interwoven with ontology change (Klein & Fensel 2001). On

the other hand, heterogeneity leads to the absence of a standard terminology for any

given domain which may cause problems when an agent, service or application uses

information from two different ontologies (Euzenat et al. 2004). As ontologies often

cover overlapping domains from different viewpoints and with different terminology,

some kind of translation may be necessary in many practical applications.

 All these arguments indicate the importance of the problem of ontology change

and motivate us to use the term in order to cover all aspects of ontology dynamics, as

well as the problems that are indirectly related to the change operation such as the

maintenance of different versions of an ontology or the translation of ontological

information in a common terminology. More specifically, we will use the term

ontology change to refer to the problem of deciding the modifications to perform upon

an ontology in response to a certain need for change as well as the implementation of

these modifications and the management of their effects in depending data, services,

applications, agents or other elements.

 Notice that the decision on the modifications to perform may be made

automatically, semi-automatically or manually; the implementation of the chosen

modifications may (but need not) involve keeping a copy of the original ontology

(versioning). The need to change the ontology may take several different forms,

including, but not limited to, the discovery of new information (which could be some

instance data, another ontology, a new observation or other), a change in the focus or

the viewpoint of the conceptualization, information received by some external source,

a change in the domain (i.e., a dynamic change in the modeled world), communication

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 53

HARIDIMOS KONDYLAKIS

needs between heterogeneous sources of information, the fusion of information from

different ontologies and so on.

3.1.1 Ontology Change Subfields

 Our definition of ontology change covers several related research fields which

are studied separately in the literature. These fields are greatly interlinked and several

papers and systems deal with more than one of these. In other cases, the same term is

used in different papers to describe different research areas. This situation can easily

lead to misunderstandings, confusion and unnecessary waste of effort, especially for a

newcomer. In the remainder of this Section we will attempt to precisely define the

boundaries of each ontology change subarea and uncover their relations and

differences. This attempt will hopefully draw a fine line between these areas, allowing

the clarification of the meaning of each term and making the differences and

similarities between them explicit. The provided definitions will not be arbitrary, but

will be based on the most common uses of each term in the literature and on similar

previous attempts, like (Kalfoglou & Schorlemmer 2003), (Pinto et al. 1999), (Flouris

et al. 2008).

 In particular, we will identify nine subfields of ontology change, namely

ontology mapping, morphism, matching, articulation, translation, evolution,

versioning, integration and merging; in addition, we will clarify the meaning of the

term ontology alignment, which is closely related to ontology matching. Each of these

areas deals with a certain facet of the problem of change from a different view or

perspective, covering different application needs, change scenarios or “needs for

change”. In this subsection, we provide a very short description of each of these

fields; for more details, the reader is referred to the (Flouris et al. 2008), where the

properties of each field are discussed in detail.

 The first five fields in the above list (ontology mapping, morphism, matching,

articulation and translation), as well as ontology alignment deal with heterogeneity

resolution, i.e., how to resolve differences in terminology, language or syntax between

ontologies. We have to note that the terms are closely related, so mapping for example

produces declarative relations (functions) whereas the matching is more liberal and

only identifies binary links between the two ontologies. Usually, this problem is

solved by providing a set of “translation rules” that identify similar ontology

54 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

elements. The distinguishing difference between these fields is the methodology

followed and the expected type of output (translation rules). These fields may look

unrelated to ontology change, as there is no obvious “change” performed in the

involved ontologies; translation rules do not seem to constitute change themselves.

However, heterogeneity resolution falls under the definition of ontology change, in

the wide sense of the term that we use in this paper.

 Indeed, consider two agents with heterogeneous ontologies that need to

communicate and a set of translation rules that allows this communication. In this

particular example, the driving force (need) behind the process is the need for

communication. The translation rules produced do not directly modify any ontology;

however, they allow each agent to change the other agent‟s ontology locally to fit his

own terminology, language and syntax. So the change in this case is made on-the-fly

by each agent during each message exchange and it is trivial, given the translation

rules. In this sense, heterogeneity resolution can be considered a type of ontology

change that provides us with a method to change an ontology (but does not perform

the change directly).

 Furthermore, it is important to note that heterogeneity resolution constitutes a

prerequisite for any type of successful ontology change, as it makes no sense to try to

change an ontology in response to new information unless both the ontology and the

new information are formulated using the same terminology, language and syntax. So,

it makes practical sense to study these fields along with the problem of ontology

change; this is also apparent in the relevant literature, where many research efforts,

systems or algorithms that deal with some specific aspect (subfield) of ontology

change also deal with the problem of heterogeneity resolution (e.g., (De Bruijn et al.

2004b), (Chalupsky 2000), (McGuiness et al. 2000), (Noy & Musen 1999a), (Noy &

Musen 1999b), (Noy & Musen 2000)).

 Ontology evolution and versioning are often used in confusing ways in the

literature. Ontology evolution deals with the problem of incorporating new

information in an existing ontology, so it deals with the changes themselves. Ontology

versioning manages different versions of a changing ontology, trying to minimize any

adverse effects that a change could have upon related (dependent) ontologies, agents,

applications or other elements.

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 55

HARIDIMOS KONDYLAKIS

 This is done by providing transparent access to either the current or some older

version of the ontology, depending on the accessing element. This ability allows the

accessing (dependent) elements, to upgrade to the new version at their own pace (if at

all), which is considered a very useful feature, given the distributed and decentralized

nature of the Semantic Web (Heflin et al. 1999), (Heflin & Pan 2004).

Table 1 Ontology change subfields

 Ontology integration and merging both deal with the fusion of knowledge from

two or more source ontologies. There is a subtle difference between them, related to

the domain covered by the source ontologies.

56 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Table 1 provides a compact description of the ontology change subfields. In

Table 1, we summarize the need for change that motivates each field (purpose), the

expected input of an algorithm that deals with the problem (input), its expected output

(output), as well as certain comments on its desired properties (properties).

3.2 A review of the State of the Art

 So far, we described the reasons that lead to ontology evolution and we„ve made

a list with the subfields of ontology change. Trying to tackle the problem of ontology

change in data integration systems, a typical solution would be to regenerate the

mappings and then the dependent artifacts. This method is called the “blank-sheet

approach” (Yu, 2005). However, even with the help of mapping generation tools, this

process can be costly in terms of human effort and expertise since it still requires

extensive input from human experts. As large, complicated schemata become more

prevalent, and as data is reused in more applications, manually maintaining mappings

is becoming impractical. Moreover, there is no guarantee that the regenerated

mappings preserve the semantics of the original mappings since they are not

considered during the regeneration. We believe that the effort required to recreate

mappings from scratch as the ontology evolves is problematic and costly (Velegrakis,

2004), and instead previously captured information should be reused. It is really

important that domain experts specify the necessary mappings only once and then

they can retrieve data disregarding the changes in the ontology. The rest of this

section aims to provide a comprehensive overview of the approaches that try to reuse

previously captured information in order to cope with schema/ontology evolution.

3.2.1 Earlier Works

 Work in the area of database schema evolution started to emerge in the early

90‟s where mappings were considered as view definitions. Gupta et al. (Gupta, 1996)

and Mohania and Dong (Mohania, 1996) addressed the problem of maintaining a

materialized view after user redefinition, while (Ra, 1997) explored how to use view

technology to handle schema changes transparently.

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 57

HARIDIMOS KONDYLAKIS

 Lee et al. (Lee, 2002) were the first to address the problem of defining view

definitions when the schemata of base relations change. They identified the view

adaptation problem for view evolution in the context of information systems schema

changes, which they called view synchronization. They proposed E-SQL, an extended

version of SQL for defining views that incorporated user preferences in order to

change the semantics of the view and with which the view definer could direct the

view evolution process. They proposed a view rewriting process that finds a view

redefinition that meets all view preservation constraints specified by the E-SQL view

definition. Such a solution prevented manual interaction. However, the supported

changes were limited and evolution could only appear at the source side.

3.2.2 Approaches for similar problems

 Besides those earlier approaches, several others have been proposed so far to

tackle similar problems. For example, for XML databases there have been several

approaches that try to preserve mapping information under changes (Barbosa, 2005)

or propose guidelines for XML schema evolution in order to maintain the mapping

information (Moro, 2007). Moreover, augmented schemata were introduced in (Rizzi,

2007) to enable query answering over multiple schemata in a data warehouse, whereas

other approaches change the underlying database systems to store versioning and

temporal information such as (Bounif, 2006), (Edelweiss, 2005), (Moon, 2010).

Moreover, MORE (Huang, 2005) proposed a framework for reasoning with multi-

version ontology, using temporal logic in order to detect ontology changes and their

consequences.

 However, our goals differ from all the above approaches and the most relevant

approaches that could be employed for resolving the problem of data integration with

evolving ontologies is mapping composition and mapping adaptation.

3.2.3 Mapping Composition

 Despite the fact that mapping composition is not primarily focused on ontology

evolution it could be employed in order to handle ontology evolution. The approach

would be to describe ontology evolution itself as mappings and to employ mapping

composition to derive the adapted mappings. Madhavan and Halevy (Madhavan,

58 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2003) in 2003 were the first to address the problem of composing semantic mappings.

Specifically, given mappings between data sources S and T and between T and T΄, is it

possible to generate a direct mapping M΄ between S and T΄ that is equivalent to the

original mappings (see Fig. 21). Equivalence means that for any query in a given class

of queries Q, and for any instance of the data sources, using the direct mapping yields

exactly the same answer that would be obtained by the two original mappings.

The semantics of the composition operator proposed by Madhavan and Halevy

was a significant first step, but it suffered from certain drawbacks caused by the fact

that this semantics was given relative to a class of queries. The set of formulas

specifying a composition M΄ of M and E relative to a class Q of queries need not be

unique up to logical equivalence, even when the class Q of queries is fixed. Moreover,

this semantics is rather fragile because a schema mapping M΄ may be a composition

of M and E when Q is the class of conjunctive queries (the class Q that Madhavan and

Halevy focused on), but fail to be a composition of these two schema mappings when

Q is the class of conjunctive queries with inequalities. In addition, they showed that

the result of composition may be an infinite set of formulas even when the query

language is that of conjunctive queries.

Consider for example the three schemata S, T and T΄ shown in Fig. 22. We use a

trivial example just to show our key points. Schema S consists of a single binary

Fig. 22. The example schemata

M΄=M E

E
M

S T

T‟

Fig. 21. Composing Schema Mappings

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 59

HARIDIMOS KONDYLAKIS

relation symbol Samples that associates patient names with their medical samples.

Schema T consists of a similar relation PSamples that is intended to provide a copy of

Samples, and provides an additional relation Patients, that associates each patient

name with a patient id. Schema T΄ consists of the relation MedicalData that associates

patiend ids with their samples.

 Consider now the schema mappings Σ12 between S and T and Σ23 between T

and T΄ where:

 Σ12= { n  s ((Samples (n, s) PSamples (n, s)),

  n  s ((Samples (n, s)  i Patients (i, n))}

 Σ23= { n  i s (Patients (n, i)  PSamples (n, s) MedicalData (i, s))}

 The three formulas in Σ12 and Σ23 are source-to-target tuple generating

dependencies (s-t tgds) that have been extensively used to formalize data exchange

(Fagin, 2005). A s-t tgd has the form  xφ(x) yψ(x, y), where φ(x) is a

conjunction of atomic formulae over S and ψ(x, y) is a conjunction of atomic formulae

over T. A tuple-generating dependency specifies an inclusion of two conjunctive

queries, Q1 ⊆ Q2. It is called source-to-target when Q1 refers only to symbols from

the source schema and Q2 refers only to symbols from the target schema. The first

mapping requires that “copies” of the tuples in Samples must exist in PSamples

relation and moreover, that each patient name n must be associated with some patient

id i in Patients. The second mapping requires that pairs of patient id and sample must

exist in the relation MedicalData, provided that they are associated with the same

patient name.

 Moreover, let Samples={(Nikos, Sample1), (Nikos, Sample2)} be instances I1 of

S, PSamples=Samples and Patients={(1234, Nikos)} the instances I2 of T, and

MedicalData={(1234, Sample1), (1234, Sample2)} the instances I3 of T΄. It is easy to

verify that the instances satisfy the mappings Σ12 and Σ23 that is {I1, I2} Inst(Μ) and {

I2, I3} Inst(Ε). Now we are looking for a composition of M and E such that an

instance {I1, I3} is in Inst(M) Inst(E) if and only if it satisfies Σ13. A first guess for Σ13

could be:

Σ13= { n  s (Samples (n, s)   i MedicalData (i, s))}

60 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 However, here the patient id i depends on both the patient name n and the

sample id s. So (i, s) must be a tuple in the MedicalData relation for every sample s

where (n, s) is in the Samples relation. This is clearly incorrect. Consider, for each

k≥1, the following source-to-target tgd:

φκ = { n  s1… sk (Samples (n,s1)  …  Samples (n, sk)

  i MedicalData (i, s1)  …  MedicalData (i, sk))}

 It is easy to verify that the composition Σ13 is the infinite set { φ1,…, φκ, ... } of

source to target tgds. Fagin et al. (Fagin, 2005) identified that problem and showed

that the compositions of certain kinds of first-order mappings may not be expressible

in any first-order language, even by an infinite set of constraints. That is, that

language is not closed under composition. In order to face that problem they

introduced second-order s-t tgds, a mapping language that is closed under

composition. Using second-order tgds, the composition of the previous example

becomes:

Σ13= { n  i s (Samples (n,s) MedicalData (i,s)),

  f ( n s (Samples (n,s)) MedicalData (f(n),s)))}

 Where f is a function symbol that associates each patient name n with a patient

id f(n). The second-order language they propose uses existentially quantified function

symbols, which essentially can be thought of as Skolem functions. Fagin et al.

presented a composition algorithm for this language and showed that it can have

practical value for some data management problems, such as data exchange.

 Yu and Popa (Yu, 2005) considered mapping composition for second order

source-to-target constraints over nested relational schemata in support of schema

evolution. Despite the close relation, all the previous approaches did not specifically

consider schema evolution. They presented a composition algorithm similar to the one

in (Fagin, 2005), with extensions to handle nesting and with significant attention to

minimizing the size of the result. They reported a set of experiments using mappings

on both synthetic and real-life schemata, to demonstrate that their algorithm is fast

and is effective at minimizing the size of the result.

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 61

HARIDIMOS KONDYLAKIS

 Nash et al. (Nash, 2007) tried to extend the work of Fagin et al. They studied

constraints that need not be source-to-target and they concentrated on obtaining first-

order embedded dependencies. They considered dependencies that could express key

constraints and inclusions of conjunctive queries Q1 ⊆ Q2, where Q1 and Q2 may

reference symbols from both the source and target schema. They do not allow

existential quantifiers over function symbols. The closure of composition of

constraints in this language does not hold and determining whether a composition

result exists is undecidable. One important contribution of this article is an algorithm

for composing the mappings given by embedded dependencies. Upon a successful

execution, the algorithm produces a mapping that is also given by embedded

dependencies. The algorithm however, has some inherent limitations since it may fail

to produce a result, even if a set of embedded dependencies that expresses the

composition mapping exists. Moreover, it may generate a set of dependencies that is

exponentially larger than the input. They show that these difficulties are intrinsic and

not an artifact of the algorithm. They address them in part by providing sufficient

conditions on the input mappings which guarantee that the algorithm will succeed.

Furthermore, they devote significant attention to the novel and most challenging

component of their algorithm, which performs “de-Skolemization” to obtain first-

order constraints from second-order constraints. Very roughly speaking, the main two

challenges that they face are involved recursion and de-Skolemization.

 The latest work on mapping composition is that of Bernstein et al. (Bernstein,

2008) in 2008 that propose a new composition algorithm that targets practical

applications. Like (Nash, 2007), they explore the mapping composition problem for

constraints that are not restricted to being source-to-target. If the input is a set of

source-to-target embedded dependencies their algorithm behaves similarly to that of

(Fagin, 2005), except that as in (Nash, 2007), they also attempt to express the results

as embedded dependencies through a de-Skolemization step. Their algorithm for

composing these types of algebraic mappings gives a partial solution when it is unable

to find a complete one. The heart of their algorithm is a procedure to eliminate

relation symbols from the intermediate signature. Such elimination can be done one

symbol at a time. It makes a best effort to eliminate as many relation symbols from

the intermediate schema as possible, even if it cannot eliminate all of them.

62 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Despite the great work that has been done in mapping composition we are not

aware of an attempt trying to implement it in the context of ontology evolution. All

the approaches deal with relational or nested relational schemata and usually have to

do with some particular classes of mappings under consideration each time. Hence,

mapping composition does not always address the problem in a satisfactory manner.

 This belief is further enhanced by the fact that first-order mappings are not

closed under composition and second-order ones are too difficult to handle using

current DBMS. We doubt that second-order constraints will be supported by the

DBMS in the near future as well. Moreover, given a source and a target database,

deciding whether they satisfy a mapping given by second-order tgds may in general

require exponential time in the size of input databases as proved in (Fagin, 2005).

 Furthermore, in mapping composition someone has to produce several sets of

mappings (between S and T and between T and T΄). This would impose a large

overhead whenever a new version of the ontology is produced -which can be quite

often for dynamic ontologies. Schema evolution is rarely represented as mapping in

practice (Yu, 2005). Instead, it is either represented as a list of changes or, more often,

implicitly embedded in the new version of the schema.

 Moreover, each constraint should be created or at least confirmed by a domain

expert. A database system may be implemented by an IT expert but only the

appropriate domain expert can understand the specific semantics of the system and

s/he is the only one who can ultimately verify the results of the whole mapping

process. We argue that second-order constraints are too difficult for domain experts to

grasp and understand.

 Finally, mapping composition poses increased scalability challenges when

compared to usual query rewriting approaches. This is due to the fact that mappings

between schemata must often cover the entire schema, while queries usually access

only parts of a schema and typically produce simple output.

 PRISM (Curino, 2009) is one of the latest approaches that try to build on

mapping composition and inversibility. PRISM seeks to develop the methods and

tools that turn the difficult schema evolution process into one that is controllable,

predictable and avoids down-time. To do so, they try to predict the effect of schema

changes on current applications and to translate old queries to work on the new

schema version. However, it requires the repeated manual mapping among the schema

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 63

HARIDIMOS KONDYLAKIS

versions and different mapping sets may have the same result. So disambiguation is

usually needed in several places without offering strong guarantees. Finally, the

authors do not consider the constraints coming from the schemata used.

3.2.3 Mapping Adaptation

 In parallel with the previous approaches that considered mapping composition,

Velegrakis et al. (Velegrakis, 2005) focused on incrementally adapting mappings on

schema change.

 Their approach is to use a mapping adaptation tool in which a designer can

change and evolve schemata. The tool detects mappings that are made inconsistent by

a schema change and incrementally modifies the mappings in response. The term

incrementally means that only the mappings and, more specifically, the parts of the

mappings that are affected by a schema change, are modified while the rest remain

unchanged. This approach has the advantage that it can track the semantic decisions

made by a designer either in creating the mapping or in earlier modification decisions.

These semantic decisions are needed because schemata are often ambiguous (or

semantically impoverished) and may not contain sufficient information to make all

mapping choices. Those decisions can be reused when appropriate.

Add

element

Move

element

Delete

element

M2

M1

M

S
T1

T2

T3

Fig. 23. Adapting Schema Mappings

64 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Consider for example the schemata T and T΄ shown in Fig. 24. Schema T

describes patients and the medicines they are administered, along with the suppliers of

those medicines. Schema T΄ provides statistical data for the patients that use

medicines of a specific company. The mapping between T and T΄ is:

ΣTT΄= { p  m c (Prescriptions (p, m)  Suppliers (m, c)  MedData (p, c))}

 Assume now that raw data arrive from a new source in the form of tuples (n, p,

m, c) relating a name and an id of a patient to a medicine and the supplier of that

medicine. Rather than splitting and inserting the data into the two relations

Prescriptions and Suppliers, a decision is made by the application to store the

incoming tuples as they are in the PatientStore relation which becomes the new

schema S. The mapping ΣTT΄ that depends on the schema T and T΄ must now be

changed.

 So the following operations are issued in T in order to become the S and

according to the mapping adaptation policy the mapping will be updated as well.

 Move Suppliers/Company to Prescriptions/ Company. After this operation the

mapping will be updated as well to become:

 Σ΄= { p  m c (Prescriptions (p, m, c)  Suppliers (m)  MedData (p, c))}

Fig. 24. Identifying mapping adaptation problems.

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 65

HARIDIMOS KONDYLAKIS

 Delete Suppliers/Medicine and then Delete the relation Suppliers. The mapping

now becomes:

 Σ΄΄= { p  m c (Prescriptions (p, m, c)  MedData (p, c))}

 Rename Prescriptions relation to PatientStore and Add the field Name. The

new mapping now becomes

 Σ΄΄΄= { n  p  m c (PatientStore (n, p, m, c)  MedData (p, c))}

 Their approach considers not only local changes to schema, but also changes

that may affect and transform many components of a schema. They consider a

comprehensive class of mappings for relational and XML schemata with choice types

and constraints that may or may not be nested. Their algorithm detects mappings

affected by a structural or constraint change and generates all the rewritings that are

consistent with the semantics of the mapped schemata. Their approach explicitly

models mapping choices made by a user and maintains these choices, whenever

possible, as the schemata and mappings evolve.

 The main idea here is that schemata often evolve in small, primitive steps; after

each step the schema mapping can be incrementally adapted by applying local

modifications. Despite the fact that the specific implementation is system dependent,

the idea to incrementally change the mappings each time a primitive change occurs in

the source or target schemata has more drawbacks.

 When drastic schema evolution occurs (significant restructuring in one of the

original schemata) and the new schema version is directly given, it is unclear how

feasible it is to extract the list of primitive changes that can describe the evolution.

Such scenarios often occur in practice, especially in scientific fields (HL72, mzXML3

standards etc.). The list of changes may not be given and may need to be discovered

(Zeginis, 2007), but even then there may be multiple lists of changes with the same

effect of evolving the old schema into a new one and we have to be sure that the

2 http://www.hl7.org/

3 http://sashimi.sourceforge.net/software_glossolalia.html

66 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

resulting mapping is independent of which list of changes is considered. Moreover,

the set of primitive changes is not expressive enough to capture complex evolution.

Furthermore, even when such a list of changes can be obtained, applying the

incremental algorithm for each change in this potentially very long list will be highly

inefficient. There is also, no guarantee that after repeatedly applying the algorithm,

the semantics of the resulting mappings will be the desired ones.

 In order to prove that, consider the example we just discussed. Surprisingly, the

semantics of the above mapping may not be the expected one. The instance under S

consists of two patients that are prescribed with one medicine which is consistent with

T΄. The relation MedData(1) under T includes all pairs of Pid and Company that the

original mapping requires to exist in MedData, based on T data. In contrast, the

relation MedData(2) contains the pairs that the incrementally adapted mapping Σ΄΄΄

requires to exist in MedData, based on S data. Notably, the Σ΄΄΄ loses the fact that the

patient with id 1234 is also related with Bayer.

 Thus, Σ΄΄΄ does not quite capture the intention of the original mapping, given

the new format of the incoming data. Part of the reason this happens is that the new

source data does not necessarily satisfy a join dependency that is explicitly encoded in

the original mapping ΣTT΄. There are other examples where the incremental approach

falls short in terms of preserving the semantics. Furthermore, the same goes for the

blank-sheet approach. Indeed, on the previous example, if we just match the common

attributes of S and T΄, and regenerate the mapping based on this matching, we would

obtain the same mapping M΄ as in the incremental approach. A systematic approach,

with stronger semantic guarantees, is clearly needed.

3.2.5 Floating Model

Xuan et al. (Xuan, 2006) propose an approach and a model to deal with the

asynchronous versioning problem in the context of a materialized integration system.

 Their system is based on the following assumptions: a) each data source

participating in the integration process has its own ontology; b) each local source

references a shared ontology by subsumption relationships “as much as possible”

(each local class must reference its smallest subsuming class in the shared ontology);

and c) a local ontology may restrict and extend the shared ontology as much as

needed.

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 67

HARIDIMOS KONDYLAKIS

 However, the authors of (Xuan, 2006) are focused mostly on instances and they

add semantics on them using implicit storage. So, they add semantic keys on

instances, they use universal identifiers for properties and consider a validation period

for each instance.

 To support ontology changes they propose the principle of ontology continuity

which supposes that an evolution of an ontology should not falsify axioms that were

previously true. This principle allows the management of each old instance using the

new version of the ontology. With this assumption, they propose an approach which

they call the floating version model in order to fully automate the whole integration

process. This paper deals more with temporal databases than ontology evolution and

they support only “ontology deeping” as they named it. That is, they only allow

addition of information and not deletion, since they rely on the persistence of classes,

properties and subsumption relationships (principle of ontology continuity). Despite

the simplicity of the approach, in practice the deletion of a class/property is a common

operation in ontology evolution (Hartung, 2008). Therefore, we argue that this

approach is not useful in real-world scenarios and does not adequately reflect reality.

Furthermore the paper only describes abstractly the ideas without formal definitions

and algorithms.

3.3 Why Traditional Techniques are not Enough?

 As shown in the previous sections the solutions proposed so far have several

drawbacks and cannot constitute a generic solution. Almost all the approaches deal

with relational or nested relational schemata and the single approach we have seen

considering ontology change is too simple and is not useful in real-world scenarios.

Schema composition is too difficult and mapping adaptation lacks a precise criterion

under which the adapted mapping is indeed the “right” result. But even if we tried to

neglect those problems we have to face the fact that data integration in ontologies is a

problem that is inherently different from the data integration problem for databases

(Noy, 2004). We argue that this is true due to the different nature of the two

formalisms, and essentially boils down to a number of differences, discussed below.

 The first, very important difference is related to the semantics of databases as

opposed to the semantics of logical formalisms that are used in ontologies. Ontology

68 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

representation formalisms involve the notion of validity, meaning that certain

combinations of ontology axioms are not valid. This is not true for databases, in

which any set of tuples that corresponds to the schema is valid (barring the use of

integrity constraints, which are, in essence, logical formulas). The notion of validity

also affects the change process, forcing us to introduce adequate side-effects in each

change operation, in a way that would allow us to maintain validity in the face of such

changes (see, e.g., (Konstantinidis, 2007), (Magiridou, 2005)). Therefore, maintaining

the correct mappings is more difficult in ontologies (where side-effects must also be

considered) than in databases.

 For similar reasons, the notion of inference, which exists in ontological

formalisms but not in relational databases, affects the process of maintaining the

mappings. This issue has two facets: one is related to the different semantics

(foundational or coherence (Flouris, 2008)) that could be employed during change and

its effects on the update results, and, consequently, on the mappings; the second is

related to the fact that inferred knowledge could also give rise to inferred mappings,

which should similarly be maintained.

 One could claim that relational approaches to maintaining the mappings could

be used because of the fact that many ontology manipulation systems use a relational

database as a backend for storing the information (Theoharis, 2005). This claim

however is problematic because the transformation of ontological knowledge into a

relational schema is often a complicated process. In (Theoharis, 2005), several

different approaches are considered and compared. Under the simplest ones, a single

change in an ontological axiom corresponds to a single change in one tuple in the

underlying representation; this is not true in the more sophisticated methods (which

are also the most efficient, according to (Theoharis, 2005)), where a single change

may correspond to a complicated set of changes in various tuples of the database.

Therefore, the corresponding mapping changes may be difficult to figure out,

especially given the fact that it is difficult to understand the semantics of an ontology

change by just looking at the changed tuples.

 As a result, we need to consider the changes directly on the ontology level,

rather than the database level, which is the first requirement for an ideal ontology-

based data integration system. Using such an approach, we could also exploit the fact

CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION 69

HARIDIMOS KONDYLAKIS

that schema/ontology evolution is rarely represented as mappings and is usually

presented as a list of changes (Yu, 2005).

 The second requirement is to be able to query information concerning not only

source data but ontology evolution as well. Efficient version management and queries

concerning evolution are useful in order to understand how our knowledge advances

over time since ontologies depict how we perceive a domain of interest. Moreover, we

would like to know the modeling choices we have made in the past. On the other

hand, the mapping definition process remains a very difficult problem. In practice, it

is done manually with the help of graphical user interfaces and it is a labor-intensive

and error prone activity for humans. So in an ideal system the domain expert should

be able to provide, or at least verify, the mapping between the ontologies and the data

sources. The domain experts need a simple mapping language, yet expressive enough

to handle the heterogeneity between the ontology and the DBMS. Moreover, the

whole mapping process should be performed only once, and the generated mappings

should not be changed or translated in order to be verified and refined whenever

requested in the future.

 Finally we need precise criteria under which the answer produced is the right

one. It is obvious that an answer to a question may not be possible or meaningful, and

we need to know under which conditions we can actually retrieve such an answer.

Fig. 25. An ideal solution

70 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 In an ideal system, several databases would be mapped to the ontology as the

ontology evolves. For example, as shown in Fig. 25, DB1 is mapped using ontology

version 0, then the ontology evolves through time, and a second database is mapped

when the ontology has reached version 2. Having all those databases mapped using

different ontology versions, we would like to answer queries formulated under any

ontology version. We would like to support queries that have been formulated using

even version 0 since in many systems queries are stored and we wouldn‟t like to

change them every time the ontology changes.

 To conclude, an ideal solution should try to exploit the initial mappings, the

changes of the ontology and the query expressed using a specific version of the

ontology to try to get answers from all databases mapped.

CHAPTER 4 MODELLING ONTOLOGY CHANGE 71

HARIDIMOS KONDYLAKIS

Chapter 4

“Everything that exists, it is only change.”

-Heraclitus 535 BCE

4Modelling Ontology Change

Contents

4.1 MOTIVATING EXAMPLE ... 72

4.1 USING HIGH-LEVEL CHANGES TO MODEL EVOLUTION .. 73

4.2 CONSTRUCTING ONTOLOGY VERSIONS FROM LOGS ... 78

4.3 DEBUGGING ONTOLOGY EVOLUTION WITH CHANGE TREES.................................. 79

 In this Chapter we will focus on RDF/S ontologies (Bouquet, 2004). This is

because most of the Semantic Web Schemas (85,45%) are expressed in RDF/S

(Theoharis, 2007). For those ontologies we will show how to model ontology

evolution using a language of high-level changes and how to provide to the users

more specific information for a specific changed part of the ontology.

72 CHAPTER 4 MODELLING ONTOLOGY CHANGE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 The representation of knowledge in RDF (Bouquet, 2004) is based on triples of

the form predicate (subject, object). Assuming two disjoint and infinite sets U, L,

denoting the URIs and literals respectively, T = U U  (U  L) is the set of all

triples. An RDF Graph V is defined as a set of triples, i.e., VT. RDFS (Brickley,

2004) introduces some built-in classes (class, property) which are used to determine

the type of each resource. The typing mechanism allows us to concentrate on nodes of

RDF graphs, rather than triples, which is closer to ontology curators‟ perception and

useful for defining intuitive high-level changes. RDFS provides also inference

semantics, which is of two types, namely structural inference (provided mainly by the

transitivity of subsumption relations) and type inference (provided by the typing

system, e.g., if p is a property, the triple (p, type, property) can be inferred).

 Moreover, we assume that the ontology versions we consider are valid. The

notion of validity has been described in various fragments of the RDFS language. The

validity constraints that we consider in this work concern the type uniqueness, i.e.,

that each resource has a unique type, the acyclicity of the subClassOf and

subPropertyOf relations and that the subject and object of the instance of some

property should be correctly classified under the domain and range of the property,

respectively. For a full list of the validity constraints see (Serfiotis, 2005). Those

(strict) constraints on the ontology are enforced in order to be enable unique and non-

ambiguous detection of the changes among the ontology versions.

 A valid RDF Graph containing all triples that are either explicit or can be

inferred from explicit triples in an RDF Graph V (using both types of inference), is

called the closure4 of V and is denoted by Cl(V). An RDF/S Knowledge Base (RDF/S

KB) B is an RDF Graph which is closed with respect to type inference, i.e., it contains

all the triples that can be inferred from B using type inference.

4.1 Motivating Example

 Assume for example the ontology version O0 shown on the left of Fig. 26

describing persons and their contact points. At some point in time, the ontology

evolves and we get O1 by adding the class “Cont.Point” (contact point) and the

4 http://www.w3.org/TR/rdf-mt/

http://www.w3.org/TR/rdf-mt/

CHAPTER 4 MODELLING ONTOLOGY CHANGE 73

HARIDIMOS KONDYLAKIS

property “has_cont_point” between the class “Actor” and the class “Cont.Point”.

Moreover, literal “town” is renamed to the literal “city”, and then the domain of the

literals “street” and ”city” is changed to the class “Cont.Point”.

Fig. 26. Example ontology evolution

 Then, the ontology designer decides to move the domain of the

“has_cont_point” property from the class “Actor” to the class “Person”, and to delete

the literal “gender”. Moreover, the “street” and the “city” properties are merged to the

“address” property. The resulted ontology O2 can be seen on the right of Fig. 26.

 Now, we would like to be able to express exactly how the ontology has been

evolved using a language of changes.

4.1 Using High-level Changes to Model Evolution

 For modelling ontology evolution we use a language of changes that describes

how an ontology version was derived from another ontology version. In its simplest

form, a language of changes consists of only two low-level operations, Add(x) and

Delete(x), which determine individual constructs (e.g., triples) that were added or

deleted (Volkel, 2005), (Zeginis, 2007). However, a significant number of recent

works (Noy, 2006), (Plessers, 2005), (Rogozan, 2005), (Zeginis, 2007),

(Papavassiliou, 2009) imply that high-level change operations should be employed

instead, which describe more complex updates, as for instance the insertion of an

entire subsumption hierarchy. A high-level language is preferable than a low-level

one, as it is more intuitive, concise, closer to the intentions of the ontology editors and

captures more accurately the semantics of change (Stojanovic, 2004). As we shall see

later on, a high-level language is beneficial for our problem for three reasons: First,

because the produced change log has a smaller size, second because the explanations

for the ontology change are more concise and more importantly because such a

74 CHAPTER 4 MODELLING ONTOLOGY CHANGE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

language yields logs that contain a smaller number of individual low-level deletions

(which are non-information preserving as we shall see next) and this affects the

effectiveness of our rewriting as we shall see at the next chapter. Moreover properties

like composability and inversibility can be exploited for improving efficiency as we

shall see on the sequel. In our work, a change operation is defined as follows:

Definition 4.1 (Change Operation). A change operation u over O, is any tuple (δα, δd)

where δa O = ø and δd ⊆ O. A change operation u from O1 to O2 is a change

operation over O1 such that δa

⊆ O2\O1 and δd ⊆ O1\O2.

 Obviously, δα and δd are sets of triples end especially the triples in δd are triples

coming from the ontology O (also interpreted as a set of triples as already mentioned).

For simplicity, we will denote δa(u) (δd(u)) the added (deleted) triples of a change u.

From the definition, it follows that δa(u) δd(u)= ø since δa

⊆ O2\O1 and δd ⊆ O1\O2 if

O1≠O2 and we are interested for and δa(u) δd(u)≠ø, i.e. that they either insert or

delete something from the ontology.

 For the language L of change operations proposed in (Papavassiliou, 2009) and

the corresponding detection algorithm, it has been proved that the sequence of

changes between two ontology versions is unique. Moreover, it is shown that for any

two changes u1, u2 in such a sequence it holds that δa(u1) δa(u2)= ø and δd(u1)

δd(u2)= ø. The language L is proved to satisfy several intuitive properties such as

completeness, non-ambiguity and reversibility. Moreover, the detection algorithm was

shown to be quite efficient (quadratic worst-case complexity, linear average-case

complexity). These are the reasons that led us to adopt that specific language for

describing changes among ontologies. Note, that the existence of other languages

satisfying these properties is not ruled out. In fact the result of query rewriting

described in the next chapter is irrelevant of the specific language used as long as the

properties of completeness, non-ambiguity and uniqueness are preserved.

 Hereafter, whenever we refer to a change operation, we mean a change

operation from those proposed in (Papavassiliou, 2009). Using such high-level change

operations we need to define their application semantics.

Definition 4.2 (Application semantics of a high-level change). The application of a

change u over an ontology version O, denoted by u(O), is defined as

CHAPTER 4 MODELLING ONTOLOGY CHANGE 75

HARIDIMOS KONDYLAKIS

u(O) = (O δa(u)) \ δd(u).

 In this point we have two key observations to make: The first is that the

application of out change operations is not conditioned by the current state of the

ontology (similarly with the approach followed on STRIPS (Russell, 2003) and the

second is that we don‟t handle inconsistency, i.e., (O δa(u)) \ δd(u) is always

assumed to be valid. Moreover, our approach cannot be directly used with OWL or

DL-Lite ontologies.

 In our example the change log between O2 and O1, denoted by the ,

consists of the following change operations:

 u1:Rename_Property(fullname, name)

 u2:Split_Property(address, {street, city})

 u3:Specialize_Domain(has_cont_point, Person, Actor)

 u4:Add_Property(gender, ø, ø ,ø ,ø, Person, xsd:String, ø, ø)

 Moreover, the change log between O1 and O0, denoted by the , consists of

the following change operations:

 u5: Rename_Property(city, town)

 u6: Change_Domain(town, Cont.Poing, Person)

 u7: Change_Domain(street, Cont.Poing, Person)

 u8: Delete_Property(has_cont_point, ø, ø ,ø ,ø, Actor, Cont.Point, ø, ø)

 u9: Delete_Class(Cont.Point, ø, ø, ø, ø, ø,)

 The definition of some change operations that are used in this chapter can be

seen on Fig. 27, whereas the full list of the considered change operations can be found

on the Appendix. It is obvious, that applying those change operations on O2, results

Change Generalize_Domain

(a,b,c)

Rename_Property(a,

b)

Split_Property(a,B)

Intuition Change the domain

of property a from b

to a superclass c

Rename property a to

b

Split property a into properties

contained in B

δa [(a, domain, c)] [(b, type, property)] bi B : [(bi, type, property)]

(1≤ i ≤ n)

δd [(a, domain, y)] [(a, type, property)] [(a, type, property)]

Fig. 27. The definition of some change operations

76 CHAPTER 4 MODELLING ONTOLOGY CHANGE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

O0. Now it is time to define the composition of the change operations. By proving

that the change operations are composable, we will be able to use the intermediate

evolution logs between ontology versions instead of constructing all change logs

between the latest ontology version and all past ontology versions.

Definition 4.3 (Composition of change operations). A change operation ucomp is the

composition of u1 and u2 (computed over O1 and O2), if the result of applying ucomp on

O1 is the same with the result of applying u1 and then u2 in any order on O1.

ucomp (O1) = u2(u1(O1)) = u1(u2(O1))

 Now we will show that the change operations as detected in (Papavassiliou,

2009) compose indeed.

Proposition 1: Let u1, u2 two change operations from O1 to O2. Then ucomp = (δa(u1)

 δa(u2), δd(u1) δd(u2)).

Proof: First we have to show that ucomp is a change operation from O1 to O2, i.e. that

δa(ucomp) O2\O1 and that δd (ucomp)O2\O1 . Indeed δa(ucomp) = (δa(u1) δa(u2)) 

O2\O1 and δd (ucomp)= δd(u1) δd(u2)  O2\O1. Now we will show that ucomp (O1) =

u2(u1(O1)) = u1(u2(O1)) which is also sketched in Fig. 28.

Fig. 28. ucomp (O1) = u2(u1(O1)) = u1(u2(O1))

 Indeed ucomp (O1) = (O1 δa(ucomp)) \ δd(ucomp) = (O1 δa(u1) δa(u2)) \ (δd(u1)

 δd(u2)) = ((O1 δa(u1)) \ δd(u1) δa(u2)) \ δd(u2) = u2 ((O1 δa(u1)) \ δd(u1) =

u2(u1(O1)) and ucomp (O1) = (O1 δa(ucomp)) \ δd(ucomp) = (O1 δa(u1) δa(u2)) \

CHAPTER 4 MODELLING ONTOLOGY CHANGE 77

HARIDIMOS KONDYLAKIS

(δd(u1) δd(u2)) = u1 ((O1 δa(u2)) \ δd(u2) = u1(u2(O1)) since δa(u1) δa(u2) = ø and

that δd(u1) δd(u2) = ø▪

 Finally, since a change operation is actually a mapping function that maps one

ontology version O1 to another ontology version O2, a question is whether there exists

the inverse function, the inverse change operation that maps the O2 ontology version

to the O1 ontology version. By automatically constructing the inverse of a sequence of

change operations (from O1 to O2), we will be able to rewrite queries expressed using

O2 to O1 and vice versa.

Definition 4.4 (Inverse of a change operation). Let u be a change operation from O1

to O2. A change operation uinv from O2 to O1 is the inverse of u if:

uinv(u(O1)) O1

Now we will show how to compute the inverse of a change operation. The inverses of

the change operations used in this paper can be found on the Appendix as well.

Proposition 2: The inverse of a change operation u (denoted by inv(u)) from O1 to O2

is:

inv(u)=(δd(u), δa(u))

Proof: First we have to show that inv(u) is a change operation, defined over O2, O1 i.e.

δa(inv(u))  O1\O2 and that δd(inv(u))O2\O1. Indeed δa(inv(u))=δd(u) O1\O2 and

δd(inv(u))= δa(u) O2\O1.

Fig. 29. inv(u)(u(O)) = O

 Now we have to prove that inv(u)(u(O)) = O which is also sketched in Fig. 29.

Remember that from Definition 4.2. u(O)=(O δa(u)) \ δd(u). From the definition,

inv(u)(u(O)) = inv(u)((O δa(u)) \ δd(u)) = (((O δa(u)) \ δd(u)) δa(inv(u))) \

δd(inv(u)) = (((O δa(u)) \ δd(u)) δd(u)) \ δa(u) = O since δa(u) δd(u)≠ø and

δa(u) δd(u)= ø ▪

78 CHAPTER 4 MODELLING ONTOLOGY CHANGE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Based on Propositions 1 and 2 we can conclude that

Corollary 1: The inverse of a sequence of change operations = [u1, …, un]

constructed from O1 to O2, is
 =[inv(un), ..., inv(u1)].

Proof: We must show that
 ((O1)) O1. Indeed

 ((O1))=

 [un(un-1(...(u1(O1))))] = inv(un)(...inv(u1)([un(un-1(...(u1(O1))))]))) = inv(un) (un

(...(inv(u1) (u1(O1)))))=O1 since is has already been proved that they can be

composed▪

 The inverse of the sequence of change operations (i.e the) for our

running example is:

inv(u9): Add_Class(Cont.Point, ø, ø, ø, ø, ø,)

inv(u8): Add_Property(has_cont_point, ø, ø ,ø ,ø, Actor, Cont.Point, ø, ø)

inv(u7): Change_Domain(town, Person, Cont.Point))

inv(u6): Change_Domain(street, Person, Cont.Point)

inv(u5): Rename_Property(town, city)

inv(u4):Delete_Property(gender, ø, ø ,ø ,ø, Person, xsd:String, ø, ø)

inv(u3):Generalize_Domain(has_cont_point, Actor, Person)

inv(u2):Merge_Properties({street, city},address)

inv(u1):Rename_Property(name, fullname)

4.2 Constructing Ontology Versions from Logs

 An important question is whether from the sequence of change operations we

can compute the current (or a past) version of the ontology efficiently. The cost of

constructing an ontology version Oi when operation ui was issued (1≤ i ≤ n), is O(i),

so for constructing the latest version of the ontology the cost is O(n). Clearly, if Oi is

already constructed and j>i, then the cost for constructing Oj is O(j-i).

CHAPTER 4 MODELLING ONTOLOGY CHANGE 79

HARIDIMOS KONDYLAKIS

 Moreover, it is also obvious that having only the latest ontology version and the

evolution log we can trivially produce an older version using Corollary 1. The cost for

constructing an ontology version Oi when operation ui was issued (1≤ i ≤ n) is O(n-i),

since we have to apply the change operations [inv(un),..., inv(ui)].

4.3 Debugging Ontology Evolution with Change Trees

 It is clear, that in order to understand the impact of ontology evolution, we

should provide to the users an overview of the changes applied to a particular

ontology (Plessers, 2007). The simplest way to achieve this is by providing a list of all

change operations that were explicitly used by an ontology engineer to change the

ontology. However, this approach has a number of serious drawbacks which relate to

the different level of granularity for the different change operations, the different

viewpoints and implications of those changes. Recent research results have

demonstrated that only providing a list of change operations between two ontologies

is not sufficient (Plessers, 2007) and new mechanisms need to be provided. So,

instead of providing the whole list of changes that have taken place, our idea is to

present the history of the creation of individual triples.

 .

Fig. 30.The change tree for the triple domain(Cont.Point, address)

 Imagine for example, that we have reached ontology version O2 and we would

like to know how a specific triple has been produced, and what modelling choices

have been made to the past concerning that triple. Having only the ontology O2 is

impossible to answer such a question. However, if the change log is available we can

Merge_Properties({street, city},address)

Change_Domain(street, Person, Cont.Point)) Change_Domain(town, Person, Cont.Point))

Rename_Property(town, city)

80 CHAPTER 4 MODELLING ONTOLOGY CHANGE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

easily answer such a query. For example, consider that we would like to retrieve the

past modelling choices for the triple “address(Cont.Point, xsd:String)”. By checking

the entire change log presented at the end of Section 4.1, we can identify that is

has been produced by executing the changes shown on Fig. 30. We can observe that

the tree shown describes exactly the part of the ontology that evolved each time and

finally produced the requested triple. Moreover, if even one of those change

operations was missing then the triple “address(Cont.Point, xsd:String)” would not be

able to be inserted and there is not another sequence of change operations producing

the specific triple

 Such a tree is produced from changes that appear in . We name such a

tree a change tree. Such a tree is only used for visualization purposes and can be

easily produced from a change path uspath.

Definition 4.5 (Change path for a triple t). Let be the sequence of change

operations from O1 to O2. A change path uspath 
 for the triple tO2 is the

minimal sequence of change operations such that uspath(O1)  O1ꞌ, tO1ꞌ.

 O1ꞌ is actually an intermediate ontology version between O1 and O2. A change

path is minimal in the sense that one cannot remove any of the change operations and

still be able to produce t. For example, the change path for the triple

t=address(Cont.Point, xsd:String) that corresponds to the change tree of Fig. 30 is

uspath = [inv(u7), inv(u6), inv(u5), inv(u2)] and obviously uspath(O0)  O0ꞌ, and tO0ꞌ.

Algorithm 4.1: ComputeChangePathTriple(, tinput)

Input: A sequence = [u1, …,un] and one triple tinput

Output: a sequence of change operations usꞌ

 1. usꞌ :=

 2. For i=n to 1

 3. If tinput  δa(ui)

 4. usꞌ := usꞌ ui

 5. else if  t δa(ui) such that t δd (usꞌ)

 6. usꞌ := usꞌ ui

 7. Return usꞌ

 Fig. 31. An algorithm for computing the change path for a given triple

CHAPTER 4 MODELLING ONTOLOGY CHANGE 81

HARIDIMOS KONDYLAKIS

Proposition 3 (Uniqueness): The change path uspath(t) over for the triple t is

unique.

Proof: Assume uspath(t) is not unique. This would mean that we have two change

paths uspath1 and uspath2. Since they are both change paths it should hold that

size(uspath1)=size(uspath2) since they both have to be minimal. Now let uspath1 = [uk1,

…, ukn] and uspath1 = [um1, …, umn]. Since by using both ukn ,umn we can reach triple t

and by the fact that for two change operation u1, u2 over it holds that δa(u1)

δa(u2)= ø and δd(u1) δd(u2)= ø it means that ukn = umn. So, in order for uspath1≠ uspath2

to hold there should be an i such that uki≠ umi and δa(uki) δa(umi) ≠ ø (they should add

the same triple but they should be different change operations) which is impossible

since δa(u1) δa(u2)= ø for our change operations▪

 Now we will present an algorithm that, given a change log, produces the change

path for a triple tinput. The algorithm is shown in Fig. 31. The idea is the following:

initially the algorithm searches for the change operation that adds the triple tinput

possibly by deleting other triples. Then we search for the changes that led to those

other triples and so on. After the execution of the algorithm the change path for tinput

will be stored in usꞌ.

Theorem 4.1: The algorithm ComputeChangePathTriple computes the change path

for a given triple tinput using a change log

Proof: In order to prove that ComputeChangePathTriple computes the change path for

triple t using a change log we have to prove that (a) tinputO1ꞌ where usꞌ (O1) 

O1ꞌ and that (b) usꞌ is minimal for the usꞌ that is produced using Algorithm 4.1.

(a) Let usꞌ = [uk1, uk2, …, ukm.]. Since ukm usꞌ that means that tinput δa(ukm) (lines 2-

3 of the algorithm) which means that indeed tinput is added to the ontology version

resulting after applying ukm.

(b) Now we prove minimality. Let‟s assume that usꞌ is not minimal. Then we can

assume that there is uspath with size(uspath)< size(usꞌ). This would mean that there exist

ui usꞌ such that ui  uspath. Of course this would mean from lines 5 and 6 that there

exist ti such that ti δa(ui) such that ti δd (usꞌ). This means that we can reach tinput

82 CHAPTER 4 MODELLING ONTOLOGY CHANGE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

through ti. However, since δa(u1) δa(u2)= ø and δd(u1) δd(u2)= ø for two change

operation u1, u2, the only way to get tinput is by using ti, so ti should be contained in

uspath, which contradicts our initial statement. So usꞌ is minimal as well▪

 The time complexity of the algorithm is O(N*M*S), where N is the number of

change operations, M the maximum size of triples in a change operation u (δa(u)

δd(u)) and S is the number of triples in δd(usꞌ). However, as we will see later on

Section 6, in our experiments the number of triples in a change operation typically

does not exceed 5 and typically a change path consists of at most 7 change operations.

So the time complexity mainly depends mostly on the number of change operations in

the evolution log.

 Moreover, it is easy to change Algorithm 4.1 in order to retrieve the change

path for a given resource (class or property).

Definition 4.8 (Change path for a resource r). A change path uspath over for the

resource rO2 is uspath(r)  uspath(t), r t.

 The idea is that we would like to retrieve all triples that are changed and contain

the resource r. So, we need to search all triples in order to identify if they contain r

and then we should construct the change path for each one of them. The

corresponding algorithm is shown in Fig. 32.

Theorem 4.2: The algorithm ComputeChangePathResource computes the change

path for a given resource r over

Algorithm 4.1: ComputeChangePathResource(, r)

Input: A sequence = [u1, …,un] and one resource r

Output: a sequence of change operations usꞌ

 1. usꞌ :=

 2. For i=n to 1

 3. If t δa(ui) such that r t

 4 usꞌ := usꞌ ComputeChangePathTriple(us, t)

 5. Return usꞌ

 Fig. 32. An algorithm for computing the change path for a given resource

CHAPTER 4 MODELLING ONTOLOGY CHANGE 83

HARIDIMOS KONDYLAKIS

Proof: In order to prove that ComputeChangePathResource computes the change path

for a resource r using a change log we have to prove that uspath(r)  uspath(ti),

r ti. From lines 3-4, uspath(r) = uspath(ti), r ti. By construction, this proves the

claim▪

 Since for each ti such that r ti we need to construct the corresponding change

path, the time complexity of the algorithm is O(T*N*M*S), where T is the number of

triples ti for which r ti, N is the number of change operations, M is the maximum

size of triples in a change operation u, i.e. in δa(u) δd(u), and S the number of triples

in δd (usꞌ). Again, typically in our experiments we have at most three triples for which

r ti and the time for the execution of the algorithm mainly depends on the size of the

change log.

 We have to note that our algorithms are not sensitive to the particular language

of changes used, as long as the language maintains the completeness, non-ambiguity

and uniqueness properties. Since each triple is inserted or deleted by only one change

operation per log we can always identify a change path which is unique.

84 CHAPTER 4 MODELLING ONTOLOGY CHANGE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 85

HARIDIMOS KONDYLAKIS

Chapter 5

5Enabling Ontology Evolution in DI

 “I only ask for Information”

-Charles Dickens

Contents

5.1 MOTIVATING EXAMPLE ... 87

5.2 EVOLVING DATA INTEGRATION .. 88

5.2.1 Global & Local Schemata ... 88

5.2.2 Semantics of an EDI .. 89

5.2.3 Query Processing ... 91

5.3 DISCUSSION .. 101

5.3.1 Exploiting Composition. .. 101

5.3.2 Exploiting Inversion .. 102

5.3.3 Non-information preserving changes. ... 102

5.4 A REAL EXAMPLE FROM CIDOC-CRM ... 114

5.5 CONCLUSIONS .. 116

5.5.1 Language of changes independent approach .. 116

5.5.2 More generic than mapping composition. .. 117

86 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 In this Chapter, we address the problem of data integration for evolving

ontologies. The lack of an ideal approach, shown on Chapter 2, leads us to propose a

new mechanism that builds on the latest theoretical advances on the areas of ontology

change (Papavassiliou, 2009) and query rewriting (Cali, 2009), (Poggi, 2008) and

incorporates and handles ontology evolution efficiently and effectively.

More specifically:

 We present the architecture of a data integration system, named Evolving Data

Integration (EDI) system, that allows the evolution of the ontology used as

global schema.

 We define the exact semantics of our system and we elegantly separate the

semantics of query rewriting for different ontology versions and for the

sources. Since query rewriting for the sources has been extensively studied

(Cali, 2009), (Poggi, 2008), (Lenzerini, 2002), (Cali, 2003), (Deutsch, 2006),

we focus on a layer above and deal only with the query rewriting between

ontology versions.

 More specifically, we present a module that receives a user query specified

under the latest ontology version and produces rewritings that will be

answered by the underlying data integration systems - that might use different

ontology versions. The query processing in this module consists of two steps:

a) query expansion that considers constraints coming from the ontology, and

b) valid query rewriting that uses the changes between two ontology versions

to produce rewritings among them.

 In order to identify the changes between the ontology versions we adopt the

high-level language of changes described on Chapter 4. The sequence of

changes between the latest and the other ontology versions is produced

automatically at setup time and then each one of the change operations

identified is translated into a logical GAV mapping. This translation enables

query rewriting by unfolding. Then, the inversibility is exploited to rewrite

queries from past ontology versions to the current, and vice versa, and

composability to avoid the reconstruction of all sequences of changes among

the latest and all previous ontology versions.

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 87

HARIDIMOS KONDYLAKIS

 Despite the fact that query rewriting always terminates in our case, the queries

issued to the past ontology versions might fail. We show that this problem is

not inhibiting in our algorithms but a consequence of information

unavailability among ontology versions. To tackle this problem, we propose

three solutions. The first solution is to provide insights for the failure, thus

driving query redefinition only for a specific portion of the affected query.

Besides driving query redefinition we can provide answers to minimally-

containing or minimally-generalized queries instead that are the best over-

approximations of input queries.

 Finally we prove that our method is sound and complete with low complexity.

 Such a mechanism, that provides rewritings among data integration systems that

use different ontology versions, is flexible, modular and scalable. It can be used

on top of any data integration system – independently of the family of the

mappings they use (GAV, LAV, GLAV, etc. (Lenzerini, 2002)). New mappings or

ontology versions can be easily and independently introduced without affecting

other mappings or other ontology versions. Our engine takes the responsibility of

assembling a coherent view of the world out of each specific setting.

5.1 Motivating Example

Fig. 33. The motivating example of an evolving ontology.

 Consider a part of the example ontology described at Chapter 4 shown also at

the left of Fig. 33. This ontology is used as a point of common reference, describing

Person

Literal

Actor

Literal

Cont.
Point

Literal

Literal

name

ssn

gender has_cont_point

street

city

: subClass of : property domain/range

Person

Literal

Actor

Literal

Cont.
Point

Literal
fullname

ssn
has_cont_point

address

Ontology Version 1 Ontology Version 2

DB1 DB2 DB3

Literal

88 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

persons and their contact points. We also have two relational databases DB1 and DB2

mapped to that version of the ontology. Assume now that the ontology designer

decides to move the domain of the “has_cont_point” property from the class “Actor”

to the class “Person”, and to delete the literal “gender”. Moreover, the “street” and

the “city” properties are merged to the “address” property as shown at the right of Fig.

33. Then, one new database DB3 is mapped to the new version of the ontology

leading to two data integration systems that work independently. In such a setting we

would like to issue queries formulated using any ontology version available.

Moreover, we would like to retrieve answers from all underlying databases.

5.2 Evolving Data Integration

 We conceive an Evolving Data Integration (EDI) system as a collection of data

integration systems, each using a different ontology version as global schema.

Therefore, we extend the traditional formalism from (Lembo, 2002) and define an

EDI as:

Definition 5.1 (Evolving Data Integration System). An EDI system I is a tuple of the

form ((O1, S1, M1), ..., (Om, Sm, Mm)) where

 Oi is a version of the ontology (1 i m).

 Si is a set of local sources (1 i m).

 Mi is the mapping between Si and Oi (1 i m).

 Next we discuss how the specific components are specialized in the context of

an EDI.

5.2.1 Global & Local Schemata

 Considering Oi we restrict ourselves to valid RDF/S knowledge bases as already

described at Chapter 4. This is due to the fact that most of the Semantic Web Schemas

(85,45%) are expressed in RDF/S (Theoharis, 2007).

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 89

HARIDIMOS KONDYLAKIS

 Moreover, we consider relational databases as source schemata. We choose to

use relational databases since the majority of information currently available is still

stored on relational databases (Cali, 2010).

5.2.2 Semantics of an EDI

 Now we will define semantics for an EDI system I. Fig. 34 sketches the

proposed approach.

 We start by considering a local database for each (Oi, Si, Mi), i.e., a database Di

that conforms to the local sources of Si. Based on Di, we shall specify which is the

information content of the global schema Oi (recall that a global database is any

database for Oi from Chapter 2).

Definition 5.2 (Legal global database): A global database Gi for (Oi, Si, Mi) is said

to be legal with respect to Di, if

 Gi is legal with respect to Oi, i.e., Gi satisfies all the constraints of Oi.

 Gi satisfies the mapping Mi with respect to Di.

 The notion of Gi satisfying the mapping Mi, with respect to Di, is defined as it

is commonly done in traditional data integration systems (see (Lenzerini, 2002) for

more details). It depends on the different assumptions that can be adopted for

…

… …

Gm

…

Mm
M1

Global database

Local database

Total database

Sm2

T

Gm

E

Mi

Fig. 34. The semantics of an EDI

Gi

G1

Sm1

Si1

S11

S12

S13

90 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

interpreting the tuples that D assigns to relations in local sources with respect to tuples

that actually satisfy (Oi, Si, Mi). Since such systems have been extensively studied in

the literature we abstract from the internal details and focus on the fact that for each

(Oi, Si, Mi) of our system we can obtain a global database Gi.

 Now, we can repeat the same process, i.e., to consider the global databases as

sources and a database D which we will simply call the global database, the database

that conforms to them. Now we can define the legal total database. Obviously a total

database is a database for the latest ontology version Om. We use the term “total” only

to differentiate it from a global database, since we will extensively use it from now

on.

Definition 5.3 (Legal total database): A total database T for EDI I is said to be legal

with respect to D, if

 T is legal with respect to Om, i.e., T satisfies all the constraints of the latest

ontology version Om.

 T satisfies E with respect to D where E=
 .

 The constraints of an RDF/S ontology concern the transitivity of the subClass

and subProperty relations. Moreover, we have to note that the different ontology

versions are considered to be valid. Now we specify the notion of T satisfying E

(E=
) with respect to D. In order to exploit the strength of the logical

languages towards query reformulation, we convert our change operations to GAV

mappings. So when we refer to the notion of T satisfying E, we mean T satisfying the

GAV mappings produced from E. The GAV mappings for all change operations used

in this paper can be found on the Appendix. A GAV mapping associates to each

element g in T a query qG over G1, ..., Gm.

g qG

Definition 5.4 A database T satisfies the mappings g qG with respect to D if

 g
T⊇ qG D

where qG D is the result of evaluating the query qG over D.

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 91

HARIDIMOS KONDYLAKIS

 For example, the sequence of the GAV mappings that corresponds to our

sequence of changes is:

 mu1: x, y, fullname(x, y) name(x , y)

mu2: x, y, address(x,y) a, b, street(x, a) city(x, b)  concat(y, a, b)

mu3: x, has_cont_point(Person,x) has_cont_point(Actor, x)

 Recall that = [u1, u2, u3, u4] from Chapter 4 where :

 u1:Rename_Property(fullname, name)

 u2:Split_Property(address, {street, city})

 u3:Specialize_Domain(has_cont_point, Person, Actor)

 u4:Delete_Property(gender, ø, ø ,ø ,ø, Person, xsd:String, ø, ø)

 Notice that for u4 there is no GAV mapping constructed since we do not know

where to map the deleted element. Now it becomes obvious that the lower the level of

the language of changes used the more change operations won‟t have corresponding

GAV mappings (since more low-level individual additions and deletions will appear).

Moreover, note the function “concat” in mu2 which will latter require specific

heuristics on the query answering phase, since the u3 change operations has been

constructed using various heuristic-based techniques for identifying elements with

different names that correspond to the same real world entity.

 By the careful separation between the legal total database T and the legal

global databases Gi we have achieved the modular design of our EDI system and the

separation between the traditional data integration semantics and the additions we

have imposed in order to enable ontology evolution. Thus, our approach can be

applied on top of any existing data integration system to enable ontology evolution.

5.2.3 Query Processing

 Queries to I are posed in terms of the global schema Om. For querying, we adopt

the language SPARQL (Prud'hommeaux, 2008). We chose SPARQL since it is

currently the standard query language for the semantic web and has become an

official W3C recommendation. Essentially, SPARQL is a graph-matching language.

92 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Given a data source, a query consists of a pattern which is matched against, and the

values obtained from this matching are processed to give the answer. A SPARQL

query consists of three parts. The pattern matching part, which includes several

features of pattern matching of graphs, like optional parts, union of patterns, nesting,

filtering (or restricting) values of possible matchings. The solution modifiers, which

once the output of the pattern has been computed (in the form of a table of values of

variables), allows to modify these values applying classical operators like projection,

distinct, order, limit, and offset. Finally, the output of a SPARQL query can be of

different types: yes/no answers, selections of values of the variables which match the

patterns, construction of new triples from these values, and descriptions of resources.

In order to avoid ambiguities in parsing, we present the syntax of SPARQL graph

patterns in a more traditional algebraic way, using the binary operators UNION AND

and OPT, and FILTER according to (Perez, 2009). Assuming the existence of an

infinite set of variables Var disjoint from U, L, a SPARQL graph pattern expression is

defined recursively as follows:

 A tuple from (U L Var)  (L Var)  (U L Var) is a graph pattern (a

triple pattern).

 If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2) and

(P1 UNION P2) are graph patterns.

 If P is a graph pattern and R is a SPARQL built-in condition, then the

expression (P FILTER R) is a graph pattern.

 A SPARQL built-in condition is constructed using elements of the set (U

 L Var) and constants, logical connectives, inequality symbols, the equality symbol

etc. (see (Prud'hommeaux, 2008) for a complete list). In this paper, we do not consider

OPT and FILTER operators since we leave it for future work. The remaining

SPARQL fragment we consider here corresponds to union of conjunctive queries

(Perez, 2009). Moreover, the application of the solution modifiers and the output is

done after the evaluation of the query, and is not of interest.

 Continuing our example, assume that we would like to know the “ssn” and

“fullname” of all persons stored on our DBs and their corresponding address. The

SPARQL query, formulated using the latest version of our example ontology is:

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 93

HARIDIMOS KONDYLAKIS

q1: select ?SSN ?NAME ?ADDRESS where {

?X type Person.

?X ssn ?SSN.

?X fullname ?NAME.

?X has_cont_point ?Y.

?Y type Cont.Point.

?Y address ?ADDRESS}

 Using the semantics from (Perez, 2009) the algebraic representation of q1 is

equivalent to:

q1: π?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

 Now we define what constitutes an answer to a query over Om. We will adopt

the notion of certain answers (Lenzerini, 2002), (Cali, 2009).

Definition 5.5 (Certain answers): Given a global database D for I, the answer qI,D to

a query q with respect to I and D, is the set of tuples t such that t q
T

for every total

database T that is legal for I with respect to D, i.e. such that t is an answer to q over

every database T that is legal for I with respect to D. The set qI,D is called the set of

certain answers to q with respect to I and D.

 Note that, from a logical point of view, finding certain answers is a logical

implication problem: check whether it logically follows from the information in the

global databases Gi that t satisfies the query.

 It has been shown (Calì, 2006), (Cali, 2010) that computing certain answers to

union of conjunctive queries over a total database with constraints, corresponds to

94 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

evaluating the query over a special database called canonical which represents all

possible total databases legal for the data integration system and which may be

infinite in general. However, instead of trying to construct the canonical database and

then evaluate the query, another approach is to transform the original query q into a

new query
(q) over the Om, (which is called the expansion of q w.r.t. Om) such

that the answer to
(q) over the retrieved total database is equal to the answer to

q over the canonical database (Calì, 2006).

Definition 5.6 (Retrieved total database): If D is a global database for the EDI-system

I, then the retrieved total database ret(I, D) is the total database obtained by

computing and evaluating, for every element of Om the query associated to it by our

GAV mappings over the global database D.

Definition 5.7 (Canonical total database): If D is a global database for the EDI-

system I, then the canonical total database can(I, D) is the retrieved total databases

ret(I, D) that do not violate any constraint in Om.

 Recall that since we have GAV mappings, for each element in Om, we have a

query over the global database D. This is a common approach in data integration

under constraints, and we also adopt it here.

Fig. 35. Query processing

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 95

HARIDIMOS KONDYLAKIS

 This step is performed by the “Parser/Expander” component shown on Fig. 35.

Now, in order to avoid building the retrieved total database we do not evaluate

(q) on the retrieved total database. Instead, we transform

(q) to a new

query validE(
(q)) over the global relations on the basis of E and we use that

query to access the underlying data integration systems. This is performed by the

“Valid Rewriter” component which is also shown on Fig. 35. Below we describe the

implementation of the aforementioned steps.

5.2.3.1 Query expansion.

 In this step, the query is expanded to take into account the constraints coming

from the ontology. Query expansion amounts to rewriting the query q posed to the

ontology version Om into a new query qʹ, so that all the knowledge about the

constraints in ontology has been “compiled” into qꞌ. Recall that we consider an

ontology as a schema with constraints. This is performed by constructing the perfect

rewriting of q.

Definition 5.8 (Perfect rewriting): Let I an EDI system and let q be a query over Om.

Then qp is called a perfect rewriting of q w.r.t. I if, for every global database D, qI,D

= qp
 ret(I,D).

 Algorithms for computing the perfect rewriting of a query q w.r.t to a schema,

have been presented in (Cali, 2010), (Cali, 2009), (Cali, 2003), (Poggi, 2008) and

mainly use chase/backchase algorithms (Deutsch, 2006). In our work, we use the

QuOnto system (Poggi, 2008) in order to produce the perfect rewriting of our initial

query. Perfect rewriting is in our case PTIME in the size of ontology and NP in the

size of query. For more general classes of logic it is complete for PSPACE and

2EXPTIME as proved in (Cali, 2009).

 Continuing our example if we expand q1 we get q2:

q2: π?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_cont_point, ?Y) AND

96 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

UNION

π?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

 This is produced by considering the transitive constraint of the subClass relation

among the classes “Person” and “Actor”.

5.2.3.2 Computing Valid Rewritings

 Now instead of evaluating
(q) on the retrieved total database, we

transform it to a new query called valid rewriting, i.e. validE(
(q)). This is done

as already discussed in order to avoid the construction of the retrieved total database.

Definition 5.9 (Valid Rewriting): Let I an EDI system and let q be a query over ret(I,

D) . Then validE(q) is called a valid rewriting of q w.r.t. ret(I,
 D) if, for every global

database D, qret(I,D)=[validE(q)] D.

 When the retrieved total database is produced by GAV mappings as in our case,

query rewriting is simply performed using unfolding (Poggi, 2008). This is a standard

step in data integration (Lenzerini, 2002) which trivially terminates and it is proved

that it preserves soundness and completeness (Cali, 2006).

Theorem 5.1 (Soundness and Completeness of unfolding (Cali, 2003)): Let I be an

EDI system, q a query posed to I, D a global database for I such that I is consistent

w.r.t. D, and t a tuple of constants of the same arity as q. Then t q
ret(I,D) if and only

if t [validE(q)]D.

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 97

HARIDIMOS KONDYLAKIS

 Moreover, due to the disjointness of the input and the output alphabet assumed,

each GAV mapping acts in isolation on its input to produce its output. So we only

need to scan the GAV mappings once in order to unfold the query and the time

complexity of this step O(N*M) where N is the number of change operations in the

evolution log and M is the number of sub-goals in the query.

 Now, we can state the main result of this section.

Theorem 5.2 (Soundness and Completeness): Let I be an EDI system, q a query

posed to I, D a global database for I such that I is consistent w.r.t. D, and t a tuple of

constants of the same arity as q. Then t qI,D if and only if t [validE(exp(q))]D.

Proof: By soundness and completeness of unfolding t [validE(exp(q))]D if and only

if t
 ret(I,D). Now by the soundness of the perfect rewriting step we have

that t
 ret(I,D) if and only if t qcan(I,D). By the canonical database t

qcan(I,D)
if and only t qI,D. This proves the claim▪

 Continuing our example we will show how the valid rewriting of q2 is

constructed using unfolding steps. Each one of those steps uses one GAV mapping to

replace a subgoal in the query with its definition in the mapping. So, initially the

mapping mu1 is used. Recall that mu1 is produced from the u1 change operation

(Rename_Property(fullname, name)) that replaces the property “fullname” with the

property “name”. So, the following query is produced by renaming also the

“fullname” property on the query with the “name” property.

q3:π?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point,?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

UNION

π?SSN,?NAME,?ADDRESS (

98 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

 Then the mappings mu2 is used for replacing the “address” property with the

“city” and the “street” literals. So, the following query is produced.

q4: π?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, ?ADDRESS2) AND

 concat(?ADDRESS, ?ADDRESS1, ?ADDRESS2))

UNION

π?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

 (?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, ?ADDRESS2)

 concat(?ADDRESS, ?ADDRESS1, ?ADDRESS2))

 Then mu3 is used. Recall that this is produced from the u3 change operation

(Specialize_Domain(has_cont_point, Person, Actor)) that specializes the domain of

the “has_cont_point” property to the class “Actor”. So, the query q5 is generated.

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 99

HARIDIMOS KONDYLAKIS

 q5: π?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

 (?Y, city, ?ADDRESS2)

 concat(?ADDRESS, ?ADDRESS1, ?ADDRESS2))

UNION

π?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, ?ADDRESS2)

concat(?ADDRESS, ?ADDRESS1, ?ADDRESS2))

 Since this is actually the union of a query with itself, the query that will be

generated for O1 is q6.

q6: π?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

 (?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, ?ADDRESS2)

concat(?ADDRESS, ?ADDRESS1, ?ADDRESS2))

100 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Finally our initial query will be rewritten to the union of q6 (issued to the data

integration system that uses O1) and q2 (issued to the data integration system that uses

O2).

 Note however, that q6 sent to the data integration system that uses O1 has

encoded a function (concat) to concatenate the two literals “streets” and “city” to the

literal “address”. This function should be executed in order to be able to unify the

returned results with the results from q2. However, this query cannot be sent as is to

the data integration system that uses O1 since SPARQL cannot handle functions and

we don‟t know how the SPARQL query is executed by the underlying data integration

system. That is why q6 is rewritten to q7 before it is sent to the data integration system

that uses O1.

q7: π?SSN,?NAME,?ADDRESS1, ?ADDRESS2 (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

 (?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, ?ADDRESS2))

 When the results are returned, the concatenation function is executed in our

system and the final results are unified. Similar strategy is followed for all GAV

mappings that encode a function and is the result of encoding heuristics when

detecting the change operations among ontology versions.

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 101

HARIDIMOS KONDYLAKIS

5.3 Discussion

Fig. 36. Exploiting composition & inversion

5.3.1 Exploiting Composition.

 So far we have described the scenario where we construct the change logs

 between Om and all Oi (1≤i<m) using the algorithm from (Papavassiliou,

2009). Then, we formulate a query q using the ontology version Om, and we use the

corresponding GAV mappings to produce and evaluate validE(
(q)).

 However, based on the composition property (Proposition 1), we could avoid

the computation of all those change logs from scratch each time. Instead, of

constructing , for all i (1≤i<m), we could only construct all

 between the subsequent ontology versions as shown in Fig. 36, thus minimizing

the total construction cost5 - since the compared ontologies now have more common

elements. However, we have to keep in mind that the time of constructing a sequence

of changes is spent only once during system setup.

Corollary 2:
 =

 .

Proof: The proof directly follows from the fact that the change operations we consider

compose (Proposition 1) ▪

5 The complexity of the algorithm for input O1, O2 is O(max(N1, N2, N
2
)) (Papavassiliou,

2009) where Ni is the size in triples of Oi, and N is the size of their set difference between O1

and O2.

102 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Moreover, whenever a new ontology version occurs, we can construct the

change log between the new ontology version and the previous ontology version - and

not all change logs from scratch. Of course, this will lead to larger sequences of

change logs, but will allow the uninterrupted introduction of new ontology versions to

the system.

5.3.2 Exploiting Inversion

 Ideally, we would also like to accept queries formulated using ontology version

O1 and to rewrite it to the newer ontology versions. This would be really useful since

in many systems queries might be stored and we wouldn‟t like to change them every

time the ontology evolves. However, in order to achieve this we would have to use the

inverse GAV mappings for query rewritings which are not always possible to

produce. Our approach deals with the inversibility on the level of change operations

and not at the logical level of the produced GAV mappings. So, instead of trying to

produce the inverse of the initial GAV mappings, we invert the sequence of changes

(which is always possible according to Corollary 1) and then use the inverted

sequence of changes to produce the GAV mappings that will be used for query

rewriting to the current ontology version. This is also shown in Fig. 36 and enhances

the impact of our approach.

 Actually, it now becomes obvious that it is straight forward to accept a query

formulated in any ontology version Oi (1≤i≤m) and to get the rewritings for all

ontology versions using the inverted list of changes for the Oj that j>i.

5.3.3 Non-information preserving changes.

 Although in its basic form our query rewriting strategy produces equivalent

rewritings, it turns out that problems may occur due to non-information changes

between ontology versions. Consider as an example the query q8 that asks for the

“gender” and the “name” of an “Actor” using ontology version O1.

 q8: π ?NAME,?GENDER (

(?X, type, Actor) AND

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 103

HARIDIMOS KONDYLAKIS

(?X, name, ?NAME) AND

(?X, gender, ?GENDER))

 Trying to rewrite the query q8 to the ontology version O2 our system will first

expand it. Then it will consider the GAV mappings produced from the inverted

sequence of changes (as they have been presented at the end of the sub-section 4.1).

So, the following query will be produced by unfolding using the mapping x, y,

name(x, y) fullname(x , y) - produced from inv(u1).

 π ?NAME,?GENDER (

 (?X, type, Actor) AND

 (?X, fullname, ?NAME) AND

 (?X, gender, ?GENDER))

 However, it is obvious that the query produced will not provide any answers

when issued to the data integration system that uses O2, since the “gender” literal no

longer exists in O2. This happens because the inv(u4) change operation is not an

information preserving change among the ontology versions. It deletes information

from the ontology version O1 without providing the knowledge that this information is

transferred on another part of the ontology. This is also the reason that low-level

change operations (simple triple addition or deletion) are not enough to dictate query

rewriting and a high-level language of changes is preferable.

 Although, this might be considered as a problem, actually it is not, since if we

miss the literal “gender” in version O2, this would mean that we have no data in the

underlying local databases for that literal. However the query still will fail and we

need a mechanism to a) notify the user for the failure and b) provide best

approximations.

 A question that arises is whether we could identify failures on the issued queries

before the expansion phase. This would allow us to identify really fast the impact that

the evolution has on the aforementioned queries. Although, we would identify the

direct failures, the indirect ones (coming from the expansion of the queries) would not

be identified. The case that such a mechanism would be useful would be when

104 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

mappings are considered to be exact between the ontology versions, or when

ontologies are interpreted as global schemata without constraints.

 Another question that arises is what happens if cycles occur on class/property

hierarchies between the ontology versions. For example, imagine the scenario where

we formulate a query asking the instances of a class A using ontology version 1. In

that ontology version for class A has as a subclass the class B. However, after some

changes we reach ontology version 2 where now the class A is a subclass of B. This is

not a problem since the cycles affect only the algorithm for detecting the changes

between ontology versions and the expansion phase. However, in both phases we

enforce no cycles due to validity constraints, and our approach is not affected by

cycles occurring between ontology versions.

5.3.3.1 Reasoning on queries.

 The first option is to notify the user that some underlying data integration

systems were not able to answer their queries and present the reasons for that. For our

example, our system will report that the data integration system that uses O2 was not

able to answer the initial query since the literal “gender” does not exist in that

ontology version. To identify the change operations that lead to such a result we

define the notion of affecting change operations.

Definition 5.10 (Affecting change operation): A change operation u affects

the query q expressed using terms from O1, denoted by u ◊ q, iff

I. δa(u)=ø

II. there exists triple pattern t q that can be unified with a triple of δd(u).

 The first condition ensures that the operation deletes information from the

ontology without replacing it with other information, thus the specific change

operation is not information preserving. However, we are not interested in general for

the change operations that are not information preserving. We specifically target those

change operations that change the ontology part which corresponds to our query

(condition II).

 Unification is a standard operation in logic programming. For more information

see (Lloyd, 1987). The algorithm for identifying affecting change operations is shown

in Fig. 37 and checks directly the change operations for the conditions described

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 105

HARIDIMOS KONDYLAKIS

above. The time complexity of the algorithm is O(N*M*T), where N is the number of

change operations in M is the number of triple patterns in q and T is the

maximum number of triples in the δd(u) that u .

Proposition 4 (Correctness): The algorithm IdentifyAffectingOperations identifies the

affecting change operations for a given query q, over .

Proof: In line 2 the algorithm searches all change operations. For each one of those

change operations, the algorithm checks the conditions in line 3. This immediately

proves the claim▪

 Having defined the notion of affecting change operation we will prove the

following:

Proposition 5: Let q=

 . If for all qi, there exists u such that u ◊ qi, then

validE(q) returns no answers.

Proof: The proof follows from the fact that if for a conjunctive query q, there exists u

 such that u ◊ q then according to the Definition 5.9 the change operation will

delete a part from the next version of the ontology that q still queries. Since the part of

the schema that q will query would not be available in O2, this means that the query

will not return any answers. And since for all qi, there exists u such that u ◊ qi

this means that no subquery will return any answer▪

Algorithm 5.1: IdentifyAffectingOperations(q,)

Input: The query q formulated using ontology version O1 and the the evolution

log .

Output: The set of affecting change operations

1. S:= ø

2. For each u

3. if δa(u)= ø and  t q, tꞌ δd(u) such that t unifies tꞌ

4. S:= S u

5. Return S

Fig. 37. The algorithm for identifying affecting change operations for a query q

106 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Users then can use this knowledge a-priori in order to re-specify their queries if

desired.

5.3.3.2 Minimally-containing rewriting

 The first approximation that we propose to the user is the minimally-containing

rewriting (Halevy, 2001). A containing rewriting of q is a conjunctive query against

the views which contain q. A minimally-containing rewriting is a containing rewriting

which is contained in any other containing rewriting of q. It is thus the best “over-

approximation” of q and it is dual to the “maximally-contained rewriting” which is the

best “under-approximation of q as shown on Fig. 38.

Fig. 38. Minimally-containing rewriting vs. Maximally-contained rewriting

Definition 5.11 (Minimally-Containing Rewriting (Afrati, 2005)): A query qʹ is a

minimally-containing rewriting of a conjunctive query q using a set of mappings

(views) M if and only if (1) qʹ is a containing rewriting of q (q qʹ) and (1) there

exists no containing rewriting qʹʹ of q using M, such that the expansion of qʹʹ properly

contains the expansion of qʹ.

 Now we will present an algorithm shown on Fig. 39 and we will prove that the

query qʹ that is computed by Algorithm 5.2 is indeed a minimally-containing rewriting

of q, and thus it can be used in order to compute the minimally-containing rewriting

of exp(q).

Theorem 5.3 (Correctness): MinimallyContainingRewriting(q, E) is a minimally-

containing rewriting of a conjunctive query q using E.

Answers to q

Minimally-containing rewriting

Maximally-contained rewriting

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 107

HARIDIMOS KONDYLAKIS

Proof: In order to prove that MinimallyContainingRewriting(q, E) is a minimally-

containing rewriting of q we will show that the Algorithm 5.2 is equivalent to the

simplified version of the Chase/Backchase algorithm that has been proved (Deutsch,

2006) to output such a rewriting. Recall that the simplified version of

Chase/Backchase for a query q is the following:

1. Chase q and obtain the universal plan U.

2. Restrict the body of U only to the vocabulary of views obtaining a query M.

3. If M is safe (i.e. head variables appear in the body) output M, otherwise output

“no containing rewriting of q exists”.

 The first step of the algorithm consists of a number of chase steps. In each chase

step a constraint is applied to the query. Each chase step is actually one unfolding step

with the difference that the head of one constraint is not replaced by the body, but it is

added to the query as well. Then in the second step, according to the simplified

version of Chase/Backchase, the body of U is restricted to the vocabulary of views

obtaining a query M. This step is actually the same as replacing the head of the

mappings with their body. So the first two steps of the simplified chase algorithm

behave exactly like the unfolding steps in our algorithm. The only difference is that in

our case, several conjuncts might not be deleted in the unfolding step. However,

according to the Definition 5.9 and Proposition 4, those conjuncts are discovered

using the algorithm for identifying the affected change operations and the deletion of

these conjuncts is actually performed on line 4 of our algorithm. Finally, the third step

of the algorithm is the same in our case as well. So our algorithm is equivalent to the

simplified chase/backchase and returns the minimally-containing rewriting of the

initial query with respect to E▪

 A query is safe if all variables in the head of the query appear in the body as

well. Concerning the time complexity, the algorithm first needs to unfold the query

(O(N*M) where N is the number of change operations in the evolution log and M is

the number of sub-goals in the query) according to line 1 and then to detect the

affecting change operations for the unfolded query (O(N*UM*T) where UM is the

number of sub-goals for the unfolded query and T is the maximum number of triples

in the δd(u) that u). Finally the algorithms should search all subgoals of the

unfolded query to identify the triples that unify with the affected changes and to delete

108 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

them (O(UM*T*A) where A is the number of the affected change operations). So the

total time complexity is O(N*M)+ O(N*UM*T)+ O(UM*T*A)≤ O(N*M)+

O(N*UM*T)+ O(UM*T*N) ≤ O(N*M)+2 O(N*M*T*T) ≤ O(N*M)+ O(N*M*T
2
) ≤

O(N*M*T
2
).

Obviously, the algorithm can be generalized for union of conjunctive queries.

 For example consider an alternative of the q8 query, asking for the name of the

male actors:

 π ?NAME (

(?X, type, Actor) AND

(?X, name, ?NAME) AND (?X, gender, “Male”))

 Obviously, the expander phase will not produce a new query and the valid

rewriter will return the following query after considering the mapping x, y, name(x,

y) fullname(x , y).

 π ?NAME (

(?X, type, Actor) AND

(?X, fullname, ?NAME) AND

Fig. 39. An alternative algorithm for computing minimally-containing rewritings

Algorithm 5.2: MinimallyContainingRewriting(q,)

Input: The conjunctive query query q formulated using ontology version O1 and

 the sequence of change operation from O1 to O2.

Output: The minimally-containing rewriting of q or false

1. qꞌ:= validE(q)

2. A:=IdentifyAffectingOperations(qꞌ,)

3. For each a A

4. Let t q, tꞌ δd(a) such that t unifies tꞌ

5. qꞌ:= qꞌ - {t}

6. A:=A –{a}

7. If qꞌ is safe

8. Return qꞌ

9. else

10. Return false

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 109

HARIDIMOS KONDYLAKIS

(?X, gender, “Male”))

 However, the previous query will not return any answers when issued to the

data integration system using O2 since the property “gender” no longer exists. So, we

have to search for minimally-containing rewritings, which will be produced by

removing the conjuct asking for that property. So, the minimally-containing query that

will be produced is:

 π ?NAME (

(?X, type, Actor) AND (?X, fullname, ?NAME))

 And although, the minimally-containing rewriting is always unique (as proved

in (Deutsch, 2007)), it is now always possible to produce it (when the query safety is

not maintained). That‟s why we produce minimally-generalized queries, as well,

presented bellow.

5.3.3.4 Generalized Queries

 Besides providing an explanation for the failure of a sub-query, we can also

produce more general answers for the data integration sub-systems that cannot answer

input queries. Our solution here is that when a change operation affects a query

rewriting, we can check if there is another triple tꞌ (in the previous ontology version)

which is the “parent” of the deleted triple t. The “parent” means that domain(t) is

subclass of domain(tꞌ), that range(t) is subclass of range(tꞌ) and that property t is

subproperty of tꞌ. If such a triple exists in the next ontology version we can ask for

that triple instead, thus providing a generalized query.

Definition 5.12 (Generalized query): Let q a conjunctive query expressed using O1.

We call qGEN a generalized query of q over iff:

I. q is contained in qGEN (q  qGEN)

II. It does not exist u such that u ◊ qGEN.

 Now we will define the notion of minimally-generalized query.

Definition 5.13 (Minimally-Generalized query): A generalized query qGEN of q over

 is called minimal if there is not qGENꞌ such that q  qGENꞌ and qGENꞌ  qGEN.

110 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 The idea of minimally-generalized query is that it is a query that can be

answered on the evolved ontology version after applying the minimum number of

“repairs” on the query in order to achieve that. The algorithm for producing a

minimally-generalized query over for a given query q is shown in Fig. 40.

 The algorithm getParent is implemented by just querying a reasoner (Pellet6 for

example) and returns the first direct “parent” triple of tꞌ if many exists (in

lexicographic order). Moreover, it always terminates since the affecting change

operations are finite. Our algorithm runs in O(A*N*M*T), where A is the maximum

number of affecting change operations, N is the number of change operations in

 M is the number of triple patterns in q and T is the maximum number of triples

in the δd(u) that u . Now we will prove the correctness of our algorithm.

6 http://clarkparsia.com/pellet/

Algorithm 5.3: MinimallyGeneralizedQuery(q, O1,)

Input: The query q formulated using ontology version O1 and the sequence

of change operations from O1 to O2.

Output: A minimally-generalized query of q or false

1. qꞌ:=q

2. A:=IdentifyAffectingOperations(qꞌ,)

3. While(A≠ ø)

4. Let a A

5. Let t δa(a) δd(a) such that t unifies with tꞌ qꞌ

6. parent:= getParent(t)

7. If parent ≠ ø then

8. Replace tꞌ with parent in qꞌ

9. else

10. qꞌ:= false

11. break

12. A:=IdentifyAffectingOperations(qꞌ,)

13. Return qꞌ

Fig. 40. The algorithm for identifying a minimally-generalized query

http://clarkparsia.com/pellet/

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 111

HARIDIMOS KONDYLAKIS

Theorem 5.2: The algorithm MinimallyGeneralizedQuery produces a minimally-

generalized query of q over .

Proof: First we have to show that (a) the query produced is actually a generalized

query and then that (b) the generalized query produced is minimal. Before proceeding

in the proof recall that if q and qꞌ are two queries (of the same arity) for a schema S,

we say that q in contained in qꞌ with respect to S, denoted by q  qꞌ, if q
MO qꞌ

MO
 ,

i.e. the result of evaluating q is a subset of the results of qꞌ evaluation for every model

MO of S.

 (a) Now in order to show that qꞌ produced from Algorithm 5.3 is a generalized query

we have to show that i) u such that u ◊ qꞌ and ii) that q  qꞌ. Indeed from

line (line 3) we remove each time one affecting change operation until A= ø. So if the

algorithm finishes (and qꞌ≠false) there would not be any change operations affecting

qꞌ. Moreover, since in one iteration a triple pattern tꞌ q1ꞌ is replaced with its parent to

produce q2ꞌ the answers to q1ꞌ would be contained in the answers to q2ꞌ, thus qꞌ qꞌꞌ.

By repeating the same operation q1ꞌ q2ꞌ,..., qmꞌ qm+1', and thus q1ꞌ qm+1'= qꞌ by

transitivity.

(b) Now we have to show that the generalized query produced qꞌ is minimal. Let‟s

suppose that it is not minimal. This would allow the existence of a minimal

generalized qmin such that q  qmin and qmin  qꞌ. By qmin  qꞌ this would mean that

 tꞌ qꞌ such that tꞌ is parent of t qmin. But in order to construct qꞌ we only use a

parent triple pattern if a change operation affects that triple. This means that t is

affected by a triple patter. Thus, qmin is not a generalized query which is not true▪

 Although, the generalized query produced from the previous algorithm is

always minimal, however, it might not be unique. It might be the case that several

other minimally-generalized rewritings may exist as well, since we might have

multiple super-properties of a deleted property, and all might be minimal wrt. the

initial query, since they add different set of answers to the answer of q. An algorithm

that identifies all minimally-generalized rewritings for a query q, is shown on Fig. 41.

The algorithm behaves exactly like the algorithm for identifying a minimally-

generalized rewriting but instead of limiting the options for replacing a deleted triple

with the “parent” triple it considers all different combinations. The complexity of the

112 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

algorithm obviously is O(S
M

*N*T*M
2
) where S is the maximum number of super-

properties of a property, N is the number of change operations in M is the

number of triple patterns in q and T is the maximum number of triples in the δd(u) that

u .

Theorem 5.3: The algorithm MinimallyGeneralizedQueries produces all minimally-

generalized query of q over .

Proof: First we have to show that (a) the query produced is actually a generalized

query and then that (b) the generalized query produced is minimal. Before proceeding

Algorithm 5.4: MinimallyGeneralizedQueries(q, O1,)

Input: The query q formulated using ontology version O1 and the sequence

of change operation from O1 to O2.

Output: The set of minimally-generalized rewritings of q

1. queries:={q}

2. For each query queries

3. A:=IdentifyAffectingOperations(query,)

4. While(A≠ ø)

5. Let a A

6. Let t a such that t unifies with tꞌ query

7. parents:= getParents(t)

8. tempquery:= query

9. For i=1 to size(parents)

10. If i=0 then

11. query:=Replace tꞌ with parents[i] in query

12. Else

13. queries:= queries Replace tꞌ with parents[i] in tempquery

14. if size(parents)=0 then

15. queries:= queries - query

16. break

17. A:=IdentifyAffectingOperations(qꞌ,)

18. Return queries

Fig. 41. The algorithm for identifying all minimally-generalized query

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 113

HARIDIMOS KONDYLAKIS

in the proof recall that if q and qꞌ are two queries (of the same arity) for a schema S,

we say that q in contained in qꞌ with respect to S, denoted by q  qꞌ, if q
MO qꞌ

MO
 ,

i.e. the result of evaluating q is a subset of the results of qꞌ evaluation for every model

MO of S.

(a) Now in order to show that qꞌ produced from Algorithm 5.4 is a generalized query

we have to show that i) u such that u ◊ qꞌ and ii) that q  qꞌ. Indeed from

line (line 4) we remove each time one affecting change operation until A= ø. So if the

algorithm finishes (and queries≠ø) there would not be any change operations affecting

qꞌ. Moreover, since in one iteration a triple pattern tꞌ q1ꞌ is replaced with its parent to

produce q2ꞌ the answers to q1ꞌ would be contained in the answers to q2ꞌ, thus qꞌ qꞌꞌ.

By repeating the same operation q1ꞌ q2ꞌ,..., qmꞌ qm+1', and thus q1ꞌ qm+1'= qꞌ by

transitivity for each one of the subqueries in queries.

 (b) Now we have to show that each the generalized query produced qꞌ is minimal.

Let‟s suppose that it is not minimal. This would allow the existence of a minimal

generalized qmin such that q  qmin and qmin  qꞌ. By qmin  qꞌ this would mean that

 tꞌ qꞌ such that tꞌ is parent of t qmin. But in order to construct qꞌ we only use a

parent triple pattern if a change operation affects that triple. This means that t is

affected by a triple patter. Thus, qmin is not a generalized query which is not true▪

 Assume for example, an alternative ontology version O1, where the

“personal_info” property is a super-property of the “gender” property. Assume also

the same sequence of changes from O1 to O2 (the list of inverted changes presented in

Chapter 4). Then, if query q7 previously described is issued, we will be able to

identify that the triple “Actor, gender, xsd:String” has been deleted and to look for a

more general query. The query that our system produces, and that provides a more

general answer to user query is:

 q8: π ?NAME,?GENDER (

(?X, type, Actor) AND

 (?X, fullname, ?NAME) AND

 (?X, personal_info, ?GENDER)

114 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

5.4 A real example from CIDOC-CRM

 Now we will present a real example from the CIDOC-CRM using a simple

template query from (Theodoridou, 2010). Assume for example that the user would

like to get all objects used to capture an image. The corresponding SPARQL query

formulated using the CIDOC-CRM version 4.2 is:

 SELECT $x WHERE {

$a rdf:type "E38.Image";

 :P108B.was_produced_by $y.

 $y rdf:type "E5.Creation ";

 :P8F.took_place_on_or_within $x.

$x rdf:type "E22.Man-Made_Object".

 }

 The query is issued to the system and initially it is expanded using the QuOnto

engine. The engine will identify the subclasses and the sub-properties of the used

classes/properties and it will produce the following query:

π?x((?a, type, E38.Image) AND

(?a, P108B.was_produced_by, ?y) AND

(?y, type, E65.Creation) AND

(?y, P8F.took_place_on_or_within, ?x) AND

(?x, type, E22.Man-Made_Object))

 UNION

 ...

 UNION

π?x((?a, type, E38.Image) AND

(?a, P108B.was_produced_by, ?y) AND

(?y, type, E65.Creation) AND

(?y, P8F.took_place_on_or_within, ?x) AND

(?x, type, E84.Information_Carrier))

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 115

HARIDIMOS KONDYLAKIS

 Assuming that we have databases mapped to the ontology version 3.2.1, the

“Valid Rewriter” will check the constructed evolution log and will identify the

mappings that should be used for unfolding. The only mappings that will be used are

the ones occurring from the following change operation:

 Rename_Class(E65.Creation, E65.Creation_event)

 So, the query that it is issued on the data integration system that uses the version

3.2.1 is:

π?x((?a, type, E38.Image) AND

(?a, P108B.was_produced_by, ?y) AND

(?y, type, E65.Creation_event) AND

(?y, P8F.took_place_on_or_within, ?x) AND

(?x, type, E22.Man-Made_Object))

 UNION

 ...

 UNION

π?x((?a, type, E38.Image) AND

(?a, P108B.was_produced_by, ?y) AND

(?y, type, E65.Creation_event) AND

(?y, P8F.took_place_on_or_within, ?x) AND

(?x, type, E84.Information_Carrier))

 However, the class “E84.Information_Carrier” is not available to the ontology

version 3.2.1 since it was added later to the ontology. So, no equivalent rewriting can

be produced and we have to go for minimally-containing rewritings. So the following

query is produced which is a minimally-containing rewriting of the initial query.

π?x((?a, type, E38.Image) AND

(?a, P108B.was_produced_by, ?y) AND

(?y, type, E65.Creation_event) AND

(?y, P8F.took_place_on_or_within, ?x) AND

(?x, type, E22.Man-Made_Object))

 UNION

116 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 ...

 UNION

π?x((?a, type, E38.Image) AND

(?a, P108B.was_produced_by, ?y) AND

(?y, type, E65.Creation_event) AND

(?y, P8F.took_place_on_or_within, ?x)

 This example, is minimalistic and its purpose is only to show how our approach

is applied on the evaluation scenarios.

5.5 Conclusions

5.5.1 Language of changes independent approach

The first question that naturally arises from our approach is whether the language of

changes we adopt is the only language that could be used. The answer to that question

obviously is no. In fact, any high-level language that guarantees uniqueness, non-

ambiguity and completeness could be used as well. However, our choice among the

possible languages would have to be based on the following properties:

a) Individual add/del: First and most important a high-level language of changes is

better than another if the sequence of changes among two ontology versions

yields a smaller number of change operations u such that δa(u)=ø or δd(u)=ø.

b) Now if we assume that the languages of changes under consideration return the

same number of individual add/del a language of changes is better than

another the more fine-grained change operations it has. The more fine-grained

are the change operations, the better the specification of logical mappings

among the ontology versions. This is due to the fact that we have to resort to

heuristics as the change operations become more coarse-grained.

c) Finally, desirable but not required properties would be composition and

inversion, in order to be able to compose and invert the sequence of changes

instead of trying to compute them each time.

 However, is we assume that the heuristic change operations of a specific

language can be correctly translated to a number of fine-grained change operations

CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 117

HARIDIMOS KONDYLAKIS

without affecting the number of individual add/deletes, then our approach becomes

independent of the language of changes used. In fact, we could even allow the

experienced users to specify manually the logical mappings they desire among the

ontology versions and our results will be exactly the same.

5.5.2 More generic than mapping composition.

 Another question that arises is how our approach can be compared with

mapping rewriting/composition. In fact since the change operations are interpreted as

GAV mappings, they can always be composed with the initial mappings of the data

sources as shown in (Fagin, 2011). (Of course this would require SO dependencies

that would complicate the mappings making them difficult to understand for the

domain experts). This would lead to a setting where the users can issue queries

formulated using the past ontology version and retrieve information from data sources

mapped with the current ontology version as well (and all intermediate versions).

However in order to use the current ontology version to formulate queries that will be

answered by the past ontology versions difficulties can occur, due to the requirement

of the inversion of schema mappings. Although partial solutions exist, such as quasi-

inverse (Fagin, 2008), chase-inverse (Fagin, 2011) and maximum-recoveries (Arenas,

2008) it still remains a difficult and open problem.

 In our approach however, we have not such limitations and as a result the

approach to rewrite the mappings can be seen as a specific use case of our solution.

We provide a more general solution, allowing the users to formulate queries using all

ontology versions. This is due to the fact that we consider inversion (composition) on

a layer on top where always can find the inverse (composition) of any sequence of

changes efficiently.

118 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

CHAPTER 6 IMPLEMENTATION & EVALUATION 119

HARIDIMOS KONDYLAKIS

Chapter 6

6Implementation & Evaluation

 “Not everything that counts can be counted and not

everything that can be counted counts.”

- Albert Einstein

Contents

6.1 IMPLEMENTATION .. 120

6.1.1 Setting the parameters .. 122

6.1.2 Visualizing Ontologies ... 124

6.1.3 Querying Ontologies & Evolution .. 125

6.1.2 Querying data sources ... 128

6.2 EVALUATION .. 133

6.2.1 Computing Change Paths .. 133

6.2.2 Query Rewriting ... 137

120 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

6.1 Implementation

 In order to show the feasibility of our approach we implemented the “exelixis”

platform. It is a web-based application that is developed in a three-tier architecture.

HTML and JQuery are used for the presentation layer, the business logic is

implemented on an Apache Tomcat7 server using Java, and PostgreSQL8 stores the

parameters of our system. Moreover, our system uses the Pellet9 reasoner for

producing minimally-generalized queries and the QuOnto reasoner for expansion, and

interacts with underlying data integration systems in order to enable query answering.

The platform can be accessed online and the architecture of the system is shown on

Fig. 42.

Fig. 42. System Architecture

 The initial page that appears when visiting our home page is shown on Fig. 43.

The user is able to see the ontology currently in use and to formulate queries for either

the ontology or the underlying data sources by selecting the appropriate button from

7 http://tomcat.apache.org/

8 http://www.postgresql.org/

9 http://clarkparsia.com/pellet/

Reasoners

Ontology Viewers

O
D

B
A

QuOnto

Pellet

Visual SPARQL generator

N
ig

h
tl
ig

h
t

J
O

w
l

O
w

lS
ig

h
t

S
ta

rL
io

n

Rewriter

Expander

Mastro Mastro

Change

Path

Generator

Protovis

http://tomcat.apache.org/
http://www.postgresql.org/
http://clarkparsia.com/pellet/

CHAPTER 6 IMPLEMENTATION & EVALUATION 121

HARIDIMOS KONDYLAKIS

the menu placed on the top of the page. Moreover, the user can select the parameters

button in order to define the parameters of our system. The four options appearing on

the top menu shown on Fig. 43 are:

Fig. 43. The initial screen of our platform

1. Ontology: By selecting this option the user is able to visualize and query a

selected ontology.

2. Sources: By selecting this option the user can issue SPARQL queries and get

the rewriting among ontology versions. The queries are forwarded to the

underlying data integration systems to be answered.

122 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

3. Settings: By selecting this option the user is able to define the parameters of our

system.

4. About: By selecting this option, information about the system and the

corresponding publications and terms of use appear.

The different functionalities will be described in detail in the following sub-chapters.

6.1.1 Setting the parameters

 Before using the system, the user has to set the parameters for our system. This

is performed by selecting the “settings” button on the initial web page. Then, the web

page shown on Fig. 44 is presented to the user where he is able define the ontologies,

the change logs, and the data integration systems that will be used.

Fig. 44. Defining the settings of our platform

CHAPTER 6 IMPLEMENTATION & EVALUATION 123

HARIDIMOS KONDYLAKIS

 On the top of the page are presented the ontologies and their different versions.

The user is able to download, delete or visualize the selected ontology by selecting the

corresponding link. Moreover, the user can upload a new ontology file by defining

also the name and the version of the uploaded ontology.

Fig. 45. Visualization using jOWL Api

 Having defined the ontology versions in use, the system also presents the

change logs between the different ontology versions. The user is able to delete,

download and visualize the change log of two selected ontologies. Moreover, the user

is able to visualize the inverse of a change log and to compose two or more change

logs. Additionally, the user is able to upload a new change log by selecting the

appropriate ontology versions.

124 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Finally, the user is able to specify the url of the underlying data integration

systems in use, and to select the ontology and the versions that each specific data

integration system uses.

6.1.2 Visualizing Ontologies

 In order to issue queries using an ontology, the first task is to present it to the

user. The user is able to select the ontology and the version he wishes, which is

subsequently visualized. Three options are provided for visualizing an ontology.

 The first one is by embedding the ontology terms/properties directly on our web

page. This is achieved using the jOWL10 API and it is shown on Fig. 45. That specific

API provides functions for querying the ontology, as well, which we also use to

provide answers for queries on the ontology level. So, the user is able to search for a

class or a property, to visualize the corresponding description and to explore the

hierarchy either as a tree or as a navigation bar.

 The second visualization option we provide for our users is to use the

OWLSight11 plug-in offered by the Pellet reasoner. By selecting this option the user is

able to see the interface shown on Fig. 46. The interface is closest to the current state-

of-the-art ontology editors and it is more intuitive than the jOWL approach. However,

it cannot be embedded on our web page (it opens in another web-page), and is not

managed by us.

Fig. 46. Using OwlSight plug-in for ontology visualization

10 http://jowl.ontologyonline.org/

11 http://pellet.owldl.com/ontology-browser/

http://jowl.ontologyonline.org/
http://pellet.owldl.com/ontology-browser/

CHAPTER 6 IMPLEMENTATION & EVALUATION 125

HARIDIMOS KONDYLAKIS

 The last visualization option we provide to the users is the StarLion

(Zampetakis, 2010) tool as shown on Fig. 47. It can be loaded using Java Web Start

directly from our homepage and it loads ontologies expressed in .rdfs files. Its

distinctive characteristics are:

1. provision of Top-k diagrams for aiding the process of understanding

large in size ontologies,

2. configurable force-directed layout algorithms (appropriate for semantic

networks)

3. support of a semi-automatic layout process (where the user can change

node positions, nail down nodes, apply layout algorithms, etc),

4. star graph-based (with variable radius) exploration mode.

Fig. 47. The interface of the StarLion system.

 Those three options provide a complete solution for the visualization of the

ontologies used.

6.1.3 Querying Ontologies & Evolution

126 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Fig. 48. Querying the Ontology

Fig. 49. Example query about the evolution of the ontology

 After visualizing the corresponding ontology, the user is able to issue queries

concerning either the ontology or the evolution of the corresponding ontology. This is

performed by entering an appropriate query and pressing the corresponding button.

All queries should be placed in the textbox in the middle of the page as shown on Fig.

48.

CHAPTER 6 IMPLEMENTATION & EVALUATION 127

HARIDIMOS KONDYLAKIS

 The syntax and example queries are shown below the text-area and appear after

selecting the corresponding links. The user is able to query about classes, properties,

subproperties or change paths in ontology evolution. Moreover, the user is able to

select how many times the same query will be executed (for testing purposes) and if

he would like debugging messages to be presented as well. Those options can be

found at the right of the page.

Fig. 50. The change path in detail

 By entering a query and pressing the appropriate button the results are shown to

the user. For example in Fig. 49 the results of the query “how(E11.Modification,,)”

are shown. The query asks for the evolution of ontology concerning the class

“E11.Modification”. Our algorithm is executed and it reports that the previous name

of the class was “E11.Modification_Event” and that before that the class was also

name “E11.Modification”. This simple example shows the great value of change

paths for describing evolution and can be used from ontology developers to identify

the modelling choices of the past. Besides the graph of the change path, the users are

128 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

able to check the comments added as well to the ontology concerning those changes.

This is shown in Fig. 50.

6.1.2 Querying data sources

 If the user chooses to query the underlying data sources and to rewrite queries

among ontology versions, the following page is presented.

Fig. 51. Querying the sources

 The user interface consists of 3 main areas as shown on Fig. 51. In the centre of

the web page the user can formulate the SPARQL query that will be submit to the

system.

 On the right of the text area for the query formulation there are several running

options. Initially the user can choose the ontology versions that will be used as shown

CHAPTER 6 IMPLEMENTATION & EVALUATION 129

HARIDIMOS KONDYLAKIS

on Fig. 52. Then, he can choose the running options that concern the performance of

the system. If we choose the “Optimized Run” option the user will be able to see only

the answers produced at the end of the whole process. However, if the user chooses

the “Debug Run” he is able to check all the steps performed in order to produce the

final results, but with degraded performance. Moreover, the user can select the

number of runs for each experiment.

Fig. 52. Selecting ontology versions and the running options

 Besides changing the different parameters of our system the user is also able to

graphically formulate the SPARQL query using a modified version of the NiteLight

(Russel, 2008) plug-in. NITELIGHT uses a Visual Query Language (VQL), called

vSPARQL, which provides graphical formalisms for SPARQL query specification.

NITELIGHT is a highly reusable Web-based component, and that is embedded in our

platform. This is shown on Fig. 53.

 The users can drag-n-drop variables, classes and properties from the selected

ontology and to graphically design the graph pattern of the corresponding SPARQL

query. The SPARQL query is generated on-the-fly and presented at the bottom of the

web page.

130 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Fig. 53. Visual Query Builder

 Having selected all running options and by pressing the “Submit” button the

query is issued to the system. After a while at the bottom of the page, we can see 4

more tabs with the results of the execution of our algorithms.

Fig. 54. The query converted to Datalog

CHAPTER 6 IMPLEMENTATION & EVALUATION 131

HARIDIMOS KONDYLAKIS

 On the first tab we can see the expanded query produced from the QuOnto

reasoner as shown on Fig. 54. At the bottom of each tab, we can see the time spent of

the specific part of our algorithm execution.

Fig. 55. The change log of our ontology

 Going on the second tab, our system is able to identify the underlying data

integration systems that use the same ontology and to search for the corresponding

change logs. If the “Debug Mode” is selected, we are able to see the change

operations that change the expanded query and that are used in order to produce the

valid rewriting of the expanded query. Those change operations are colored in green

132 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

whereas if there are change operations that affect the expanded query they are colored

in orange. This is show on Fig. 55.

 On the third tab, the user can check the valid rewritings of the expanded query

to the other ontology versions. This is shown on Fig. 56 where we can identify in our

example the query that is going to be forwarded to our underlying data integration

system.

Fig. 56. The ontology rewritten queries

Fig. 57. The results tab

CHAPTER 6 IMPLEMENTATION & EVALUATION 133

HARIDIMOS KONDYLAKIS

 Finally on the last tab we are to see the answers from the underlying data

integration systems, as shown on Fig. 57.

6.2 Evaluation

 In order to evaluate our system we used a machine running Windows 7 with an

Intel Core 2 Duo processor at 3.0Ghz, and 3GB memory. Moreover, to test our system

we used two ontologies. One medium-sized ontology (CIDOC-CRM (Martin, 2007))

from the cultural domain which is rarely changed and one large-sized ontology (Gene

Ontology (Gene Ontology Consortium, 2004)) from the bioinformatics domain which

is heavily updated daily.

 CIDOC-CRM is an ISO standard which consists of nearly 80 classes and 250

properties, but no instances. For our experiments we used versions dated from

02.2002 (v3.2.1) to 06.2005 (v4.2) encoded in RDF/S. The detected change log that

was produced identified 711 total changes.

 Gene Ontology (GO) (Gene Ontology Consortium, 2004) on the other hand, is

composed of about 28000 classes and 1350 property instances. We have to note that

the file containing the Gene ontology is over 100MB and most of the ontology editors

fail to load the entire file. GO is updated on a daily basis and for our experiments we

used the change log from 16.12.08 to 26.05.09. The change log that was produced

contained 3482 changes.

6.2.1 Computing Change Paths

In order to check the running time of our system we exhaustively queried for the

change tree for all classes and properties appearing in a change operation in those two

ontologies. In our first experiment we allowed all 3482 changes from GO and 711

changes from CIDOC to be processed in order to identify the correlation between the

size of the change path identified and the time to identify it.

134 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

GO v.26.05.09-v.16.12.08 (3482 changes)

Change Path Size No of such paths Avg. Time (msec)

0 750 0,2921

1 1910 0,2922

2 456 0,2927

3 151 0,2930

4 95 0,2952

5 42 0,2992

6 26 0,2998

7 8 0,3020

8 14 0,3329

Table 2 . The correlation between the size of the change path and the average time spent for identifying

it using GO

Fig. 58. The graph for visualizing the change path size related to the average time spent for identifying

it using GO

 Our experiments concerning GO are shown on Fig. 58 and Table 2. We can see

that the maximum change path has only 8 nodes, which can be easily processed by

humans. Moreover, we can see that even for computing a change path with 8 nodes

over 3482 changes we need only 0,3329 msec. Finally, we can see that the time spent

becomes larger, the more nodes in a change path we have to compute which is

reasonable since we have to search the remaining change log for the new nodes that

are added to the change path as well. The same experiments for CIDOC-CRM showed

the following statistics shown on Table 3 and Fig. 59.

0,2900

0,3000

0,3100

0,3200

0,3300

0,3400

0 1 2 3 4 5 6 7 8

R
u

n
n

in
g

Ti
m

e
 (

m
se

c)

Change path nodes

CHAPTER 6 IMPLEMENTATION & EVALUATION 135

HARIDIMOS KONDYLAKIS

CIDOC v4.2-v.3.2.1 (711 changes)

Change Path Size No of such paths Avg. Time (msec)

0 79 0,0163

1 49 0,0164

2 218 0,0177

3 74 0,0182

4 20 0,0188

5 2 0,0193

Table 3 The correlation between the size of the change path and the average time spent for identifying

it using CIDOC

Fig. 59. The graph for visualizing the change path size related to the average time spent for identifying

it using CIDOC

 We can see that the maximum change path for CIDOC-CRM has only 5 nodes

since the ontology is smaller and more stable than GO. This is obvious from the

number of change operations as well – 711 for CIDOC vs. 3482 for GO. That‟s why

the average time for identifying such change paths is smaller (0,02 msec for

computing a change path with 5 nodes). Moreover, the graph shows that the time

spent becomes larger, the more change paths we have to compute here as well (almost

linear).

 Then we tried to identify how the time for computing the change path is affected

by the size of the change log. From the diagrams in Fig. 60 and Fig. 61 below we can

0,0160

0,0165

0,0170

0,0175

0,0180

0,0185

0,0190

0,0195

0 1 2 3 4 5 6

R
u

n
n

in
g

Ti
m

e
 (

m
se

c)

Change Paths Size

136 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

see that the more changes are there to process of, the more time is spent on processing

those, and in fact their relationship is linear.

Fig. 60. The number of changes that should be processed and the average running time for CIDOC-

CRM Ontology

Fig. 61. The number of changes that should be processed and the average running time for Gene

Ontology

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

309 368 711

A
ve

ra
ge

 T
im

e
(M

se
c)

Changes

0

0,05

0,1

0,15

0,2

0,25

0,3

726 1530 3482

A
ve

ra
ge

 T
im

e
(M

se
c)

Changes

CHAPTER 6 IMPLEMENTATION & EVALUATION 137

HARIDIMOS KONDYLAKIS

6.2.2 Query Rewriting

 To illustrate the scalability and the impact of our system we performed an

extensive evaluation based on two scenarios. One scenario with synthetic queries and

one scenario with real queries captured from related projects.

6.2.2.1 Synthetic Evaluation

 In the synthetic scenario we automatically generated random queries using

CIDOC-CRM v.4.2. We created 20 queries for each one of the following categories:

queries with 1, 3, 7 and 20 triple patterns. The synthetic evaluation was performed

only for queries formulated using CIDOC-CRM ontology since the queries used for

the GO ontology ask for instances of only one GO-term (GO ontology is mostly a

taxonomy) and rich queries including several properties cannot be produced.

Scalability

 Since query rewriting is depending on the query size and the number of changes

among ontology versions (assuming fixed number of ontological constraints which is

usually the case in bibliography) at first we fix the query size and we present the time

for query expansion and valid rewriting as the number of changes increases. The

results are shown on Fig. 62 for queries with 1 triple pattern and in Fig. 63 for queries

with 20 triple patterns.

Fig. 62. Query rewriting for queries with 1 triple pattern

0

2

4

6

8

10

12

14

16

18

309 368 711

1,5 1,5 1,5

5,875 7

14,6875

m
se

c

Changes

Valid rwt.

Expand

138 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 Obviously, in both cases, the total execution time increases as the number of

change operations increase as well. This is not however, due to the expansion phase

since the expansion time is only affected by the number of dependencies which is

fixed. We can see that in both cases when the size of the change log doubles it

happens the same for the time required for valid rewriting.

Fig. 63. Query rewriting for queries with 20 triple patterns

 Then, we fix the number of change operations and we present the total

execution time as the triple pattern‟s of the queries increase. The results are shown on

Fig. 64 and Fig. 65. On Fig. 64 we have all 711 change operations whereas on Fig. 65

we only have 309 change operations. Obviously, the total execution time becomes

bigger as the number of triple patterns in the queries increase. Moreover, the size of

the query affects both the expansion phase and the valid rewriting phase as well.

 Finally, we can identify that for smaller number of changes the dominant time is

the time required for expansion whereas for more changes the time for valid rewriting

increases as well. Those experiments confirm the theoretical expectations of our query

rewriting algorithm.

0

10

20

30

40

50

60

70

80

309 368 711

29 29 29

3

19

47

Se
c

Changes

Valid rwt.

Expand

CHAPTER 6 IMPLEMENTATION & EVALUATION 139

HARIDIMOS KONDYLAKIS

Fig. 64. Execution time as the triple patterns in the query increase (711 change operations)

Fig. 65. Execution time as the triple patterns in the query increase (309 change operations)

Impact

 In this subsection we will present experiments for identifying the impact of our

approach. Initially, we fix the number of the triple patterns of the queries and we

present the percentage of equivalent, minimally-containing and minimally-generalized

rewritings that we were able to produce. Moreover, we present the percentage of the

queries that could be answered “as-is” without any changes when they were issued to

the data integration systems that used previous ontology versions.

0

10

20

30

40

50

60

70

80

1 3 7 20

15,4195
29,0059

0,0146875 0,127625

4,2211875

47,018
se

c

Query size

Valid rwt.

Expand

0

5

10

15

20

25

30

35

1 3 7 20

15,4195

29,0059

0,005875 0,0544375

1,2775

3,6806

se
c

Query size

Valid rwt.

Expand

140 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 The results are shown on Fig. 66 and Fig. 67. In each case the first bar shows

the percentage of equivalent and the minimally-containing queries, the second bar the

percentage of equivalent and the minimally-generalized queries, and the third bar the

queries that could be answered “as-is”. From the charts we can see that the number of

queries that can be answered “as-is” from the previous ontology versions decreases as

the number of change operations increases. Moreover, the bigger the size of the query,

the bigger is the probability not to be able to answer the query “as-is” to a past

ontology version.

 For example, looking at Fig. 66, using queries with 20 triple patterns after 343

change operations the queries that could be answered “as-is” were only the 40% of the

total queries, whereas we could produce the equivalent rewritings to the past ontology

version for all of them. Moreover, we can see that as the number of change operations

increase the number of equivalent rewritings drops and we have to go for minimally-

containing or minimally-generalized rewritings. Even after 711 change operations,

none of them could be answered “as-is” using the past ontology version. However,

our system, even then, could produce the minimally-containing rewritings for the 40%

of input queries.

Fig. 66. Rewriting queries with 20 triple patterns

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

309 368 711

AS_IS

Min.-Gen.

Equivalent

Min.-Cont.

CHAPTER 6 IMPLEMENTATION & EVALUATION 141

HARIDIMOS KONDYLAKIS

Fig. 67. Rewriting queries with 1 triple pattern

 On the other hand, looking at Fig. 67, we can identify that we can produce more

equivalent rewritings at all cases. However, we can notice that after 368 or 711

change operations the percentage of equivalent rewritings that we could produce was

smaller than the number of queries that could be answered “as-is”. This is because

changes occurred on the subclasses that those queries asked for and our equivalent

rewritings had to consider those changes as well (in contrast to “as-is” queries which

ignore changes below the class hierarchy they query). Moreover, on all cases we

could not produce a minimally-containing rewriting since when a class was deleted

the resulted query was not safe anymore. However, on those cases we could produce

minimally-generalized queries since in most of the cases the deleted classes had a

parent class that we could query instead.

 Then, we fixed the number of change operations and we present the results of

query rewriting as the number of triple patterns increases. The results are shown on

Fig. 68 and Fig. 69. We can observe that with 711 change operations we could not

produce an equivalent rewriting and we had to go for minimally-containing

rewritings. With 711 change operations the number of the queries that could be

answered “as-is” decreased as well as the number of triple patterns in the queries

increase.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

343 368 711

AS_IS

Generalized

Equivalent

Minimal

142 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Fig. 68. Query rewriting using 711 change operations

 Finally, with only 309 change operations we could get equivalent rewritings for

most of queries whereas we could not get always answers to the queries “as-is”.

Moreover, on most of the cases with 309 change operations we could not produce

generalized answers because properties or classes that were deleted they had no a

superproperty or a superclass.

Fig. 69. Query rewriting using 309 change operations

 6.2.2.2 Pragmatic Evaluation

 To check the effectiveness of our system on real cases we used two sets of

queries: 21 template queries for CIDOC-CRM coming from hundreds of user queries

(9 query templates from (Theodoridou, 2010) and 12 query templates from project 3d-

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 3 7 20

AS_IS

Generalized

Equivalent

Minimal

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 7 20

AS_IS

Generalized

Equivalent

Minimal

CHAPTER 6 IMPLEMENTATION & EVALUATION 143

HARIDIMOS KONDYLAKIS

COFORM12) and the 38 most popular queries as they have been identified and

provided from the AmiGO13 search engine.

Scalability

 Firstly, we tried to identify the average execution time for rewriting the

evaluation queries using CIDOC-CRM. The results are shown on Fig. 70. Obviously

the average time to produce a rewriting even after 711 change operations is less than

5sec which shows the scalability of our approach. Notice that the time for performing

query expansion is greater than the time to perform v also, and when the number of

change operations doubles the same happens to the time for valid rewriting according

to the complexity of our algorithm.

 The results for queries formulated using GO are presented on Fig. 71. The

average execution time for GO is 16sec and is justified from the large size of the

ontology. Most of the time is spent calculating the expansion of the queries since our

system has to consider the inclusion dependencies of 28000 classes and only 2,16sec

is spent (at the worst case) for valid rewriting.

Fig. 70. Average Execution time for CIDOC-CRM queries

12 http://www.3d-coform.eu/

13 http://amigo.geneontology.org/cgi-bin/amigo/go.cgi

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

309 368 711

2,780251563 2,780251563 2,780251563

0,5045625 0,610125
1,2350625

se
c

Changes

Valid rwt.

Expand

http://www.3d-coform.eu/
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi

144 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Fig. 71. Average Execution time for GO queries

Impact

 To illustrate the impact of our approach we present the percentage of equivalent,

minimally-containing and generalized queries that our system could produce for the

two set of queries. The results are shown on Fig. 72 and Fig. 73.

Fig. 72. Query rewriting for real CIDOC-CRM queries

0

2

4

6

8

10

12

14

16

18

726 1530 3482

14,35403226 14,35403226 14,35403226

1,435387097 1,325935484 2,168903226

Valid rwt.

Expand

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

309 368 711

AS_IS

Min.-Gen.

Equivalent

Min.-Cont.

CHAPTER 6 IMPLEMENTATION & EVALUATION 145

HARIDIMOS KONDYLAKIS

Fig. 73. Query rewriting for GO most popular queries

 For CIDOC-CRM we observe that as the number of changes increase, the

percentage of the queries that can be answered “as-is” drops to 33% whereas in GO as

the number of changes increases the percentage of queries that can be answered as is

remains the same 94%. This may seem peculiar because of the higher number of

change operations that we have in the case of the Gene Ontology. However, if we

carefully examine the corresponding change operations in each case we can easily

identify that they change only a small percentage of the GO ontology (10% of the

entire ontology was changed by the 3482 changes), whereas for the CIDOC-CRM the

711 change operations changed 54% of the entire ontology. This is shown on Fig. 74.

Fig. 74. The total information change for CIDOC-CRM and GO

 Moreover, we can identify that the number of equivalent rewritings we can

produce drops as the number of changes increases in both cases. However, in GO we

can produce a smaller percentage of equivalent rewritings compared to the CIDOC-

CRM ontology. This is due to the fact that the GO ontology usually evolves by adding

GO terms (which are translated in delete change operations when trying to produce

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

726 1530 3482

Min.-Gen.

AS_IS

Equivalent

Min.-Cont.

146 CHAPTER 6 IMPLEMENTATION & EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

rewritings to the previous ontology versions). And since the queries using GO

ontology involve only one GO term, when this term is deleted we cannot produce

minimally-containing rewritings since the query produced is not safe any more.

However, in most of the cases the deleted term had a superclass that could be queried

instead. That‟s why we could get minimally-generalized queries instead.

 These two test cases show the flexibility of our solution in different kind of

ontologies, and the great practical value of our approach.

Conclusions on Pragmatic Scenario and Further Analysis

 For the queries using CIDOC-CRM we have to mention that they had in average

10 triple patterns, whereas the queries involved in average 3,7 different classes and

3,5 different properties.

 Moreover, if we carefully try to identify the different types of the queries

according to (Schmidt, 2008) where queries are distinguished as Long Path Chain

queries (nodes linked to each other via a long path) and Bushy patterns queries (single

nodes linked to several other nodes) we will notice that we can find equivalent

rewritings for all Bushy patterns queries. So, our approach has better results for bushy

pattern queries (which can be seen as star queries).

 Moreover, another conclusion is that the higher the level in the hierarchy of the

queries classes and properties, the more probable is not to be able to produce an

equivalent rewriting, since the expansion of the query will use more terms of the

ontology.

CHAPTER 7 CONCLUSIONS & FUTURE WORK 147

HARIDIMOS KONDYLAKIS

Chapter 7

7Conclusions & Future Work

“Give me a place to stand on, and I will move the Earth”

- Archimedes 212BC

 In this thesis we argue that ontology evolution is reality and data integration

systems should be aware and ready to deal with that. To that direction, we presented a

novel approach that allows query answering under evolving ontologies without

mapping redefinition.

 Our architecture is based on a module that can be placed on top of any

traditional ontology-based data integration system, enabling ontology evolution. It

does so by using high-level changes to model ontology evolution, which are then

interpreted as GAV mappings. Those GAV mappings are then used in order to rewrite

not the mappings but the query itself among ontology versions.

 The process of query rewriting proceeds in two steps, namely query expansion

and valid rewriting. Query expansion is used in order to consider constraints coming

from the ontology and then valid rewriting is used in order to produce query

rewritings among ontology versions using the GAV mappings produced form the

high-level sequence of changes among ontology versions. The query rewriting

approach we use is proved to be effective, scalable and efficient.

 Even for the cases where no equivalent rewriting can be produced we offer three

alternatives: a) we offer assistance to the users to redefine the affected queries, b) we

provide minimally-containing and c) minimally-generalized rewritings for the cases

148 CHAPTER 7 CONCLUSIONS & FUTURE WORK

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

that equivalent rewritings cannot be produced that offer two best over-

approximations.

 The potential impact of our approach is witnessed by being able to successfully

provide rewritings on the worst case for the 88% of the CIDOC-CRM queries (after

711 change operations) and for the 97% of the GO queries (after 3482 change

operations) among ontology versions. On the other hand if our system were not used,

only a small percentage of the initial queries would be successful. For most of the

queries, query rewriting is achieved within 5sec using a simple workstation, which

also shows the usability and the scalability of our approach.

 The great benefit of our approach is that its simplicity, modularity and the short

deployment time it requires. It is only a matter of providing a new ontology version to

our system to be able to use it to formulate queries that will be answered by data

integration systems independent of the ontology version used.

 To the best of our knowledge, no other system today is capable of automatically

answering queries over multiple ontology versions.

7.1 Future Work

 As future work, several challenging issues need to be further investigated which

we will describe in order of importance and difficulty.

 At first, a really interesting topic would be to extend our approach to OWL

ontologies or to consider that ontologies used as schema are not consistent. Both cases

would require handling inconsistencies among ontology versions which complicates

even more the problem. At first, another mechanism would be required to describe

changes among ontologies. To that direction (Plessers, 2007) could be used as starting

point, and techniques for repairing inconsistent databases should be also used (Afrati,

2009). However, it still remains a really interesting open problem.

 Another direction would be to extend our approach to handle the full

expressiveness of SPARQL language. Full-SPARQL queries, no longer correspond to

union of conjunctive queries, and the traditional algorithms for expanding those

queries (perfect reformulation and chase) cannot directly be applied. Query processing

would require more sophisticated techniques, with bad complexity (Schmidt, 2010)

and heuristic solutions would have to be adopted.

CHAPTER 7 CONCLUSIONS & FUTURE WORK 149

HARIDIMOS KONDYLAKIS

 Another direction for future work would be also to apply our solution in

traditional schema evolution, and to consider the evolution of data sources as well.

Another language would be required in that case to describe changes among schemata

and new algorithms for query rewriting would be required as well. This is mainly due

to the richer constraints we can have in such a setting. The first step towards that

direction can be found on (Curino, 2008) and (Fagin, 2011).

 Finally, our system could be easily extended to become a fully fledged peer-to-

peer system that is based on different versions of ontologies that are evolved

independently. This could be achieved by integrating a layer that would handle peer

discovery, registration and negotiation (probably a DHT).

 It becomes obvious that ontology evolution in data integration is an important

topic and several challenging issues remain to be investigated in near future.

150 CHAPTER 7 CONCLUSIONS & FUTURE WORK

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

BIBLIOGRAPHY 151

HARIDIMOS KONDYLAKIS

Bibliography

[1] Abiteboul, S. Duschka, O.: Complexity of Answering Queries Using

Materialized Views. PODS, 1998: 254-263.

[2] Afrati, F., Chandrachud, M.: Information about queries Obtained by a set of

views, TR-2005-14.

[3] Afrati, F., Gergatsoulis, M., Kavalieros, T.: Answering queries using

materialized views with disjunction. ICDT, 1999: 435–452.

[4] Afrati, F., Kolaitis, P.: Repair checking in inconsistent databases: algorithms

and complexity. ICDT, 2009:31-41.

[5] Arenas, M., Perez, J., Riveros, C.: The Recovery of a Schema Mapping:

Bringing Exhcanged Data Back, PODS, 2008:13-22

[6] Barbosa, D., Freire, J. and Mendelzon, A. O.: Designing information-preserving

mapping schemes for XML. VLDB, 2005.

[7] Beeri, C., Levy, A., Rousset, M.: Rewriting Queries Using Views in Description

Logics. PODS, 1997: 99-108.

[8] Ben Miled, Z., Li, N., and Bukhres, O.: BACIIS: Biological and Chemical

Information Integration Systems. Journal of Database Management, 16(3),

2005: 73-85.

[9] Berners-Lee, T., Hendler, J. & Lassila, O.: The Semantic Web, Scientific

American, 284 (5), 2001:34-43.

[10] Bernstein, P. A., Green, T. J., Melnik, S. and Nash, A.: Implementing mapping

composition. The VLDB Journal, 17, 2 2008:333-353.

[11] Bizer, C.: D2R MAP - A Database to RDF Mapping Language. WWW (Posters)

2003.

[12] Bouquet, P., Giunchiglia, F., Harmelen, F., Serafini, L., Stuckenschmidt, H.:

Contextualizing Ontologies, Journal of Semantics, 2004:325-343.

[13] Bounif, H. Schema Repository for Database Schema Evolution. DEXA, 2006.

152 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

[14] Boyd, M., Lazanitis, C., Kittivoraviktul, S., Mc Brien, P., Rizopoulos, N.: An

Overview of The AutoMed Repository. Technical report, Department of

Computing, Imperial College, London SW7 2AZ, 2004.

[15] Brickley, D., Guha, R.: {RDF Vocabulary Description Language 1.0: RDF

Schema}. W3C Recommendation, 2004.

[16] de Bruijn, J., Polleres, A.: Towards an ontology mapping specification language

for the semantic web. Technical Report DERI-2004-06-30, DERI, 2004.

[17] de Bruijn, J., Martin-Recuerda, F., Manov, D., Ehrig, M.: D4.2.1: State of the

Art Survey on Ontology Merging and Aligning, available on the Web, SEKT

project deliverable, 2004b.

[18] Calì, A., Calvanese, D., Giacomo, G. D. and Lenzerini, M.: Data Integration

under Integrity Constraints. CAiSE, 2006.

[19] Calı, A., Calvanese, D., Giacomo, G. Lenzerini, M.: On the expressive power of

data integration systems. ER, 2002: 338-350.

[20] Cali, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data Integration under

Integrity Constraints. CAiSE, 2002b.

[21] Cali, A., Gottlob, G. and Pieris, A. Advanced Processing for Ontological

Queries. PVLDB, 3(1), 2010:554-565.

[22] Cali, A., Gottlob, G. and Lukasiewicz, T. Datalog+-: a unified approach to

ontologies and integrity constraints. ICDT, 2009.

[23] Calı, A., Giacomo, G., Lenzerini, M.: Models of information integration:

Turning local-as-view into global-as-view. In Foundations of Models for

Information Integration. On-line proceedings, http://www.fmldo.org/FMII-

2001, 2001.

[24] Cali, A., Lembo, D. and Rosati, R.: On the decidability and complexity of query

answering over inconsistent and incomplete databases. PODS (San Diego,

California), 2003.

[25] Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A.,

Rodriguez-Muro, M., Rosati, R.: Ontologies and Databases: The DL-Lite

Approach. Reasoning Web, 2009:255-356.

[26] Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.,

Ruzzi, M.: Data Integration through DL-Lite Ontologies. SDKB, 2008:26-47.

BIBLIOGRAPHY 153

HARIDIMOS KONDYLAKIS

[27] Cali, A. and Martinenghi, D.: Querying the deep web. EDBT (Lausanne,

Switzerland), 2010.

[28] Calvanese, D., Giacomo, G., Lenzerini, M.: On the Decidability of Query

Containment under Constraints, PODS, 1998:149-158.

[29] Calvanese, D., Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description

Logic Framework for Information Integration. KR, 1998b:2-13

[30] Calvanese, D., Giacomo, G., Lenzerini, M., Vardi, M.: Containment of

conjunctive regular path queries with inverse. KR, 2000e:176–185.

[31] Calvanese, D., Giacomo, G., Lenzerini, M., Vardi, M.: Query processing using

views for regular path queries with inverse. PODS, 2000f:58–66.

[32] Chalupsky, H.: OntoMorph: A Translation System for Symbolic Knowledge,

KR, 2000.

[33] Cohen, S.,Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views.

PODS, 1999:155–166.

[34] Curino, C. A., Moon, H. J., Ham, M. and Zaniolo, C.: The PRISM Workwench:

Database Schema Evolution without Tears. ICDE, 2009.

[35] Deutsch, A., Ludascher, B., Nash, A.: Rewriting queries using views with

access patterns under integrity constraints, Theoretical Computer Science, Vol

371(3), Database Theory, 1 March 2007:200-226.

[36] Deutsch, A., Popa, L. and Tannen, V.: Query reformulation with constraints.

SIGMOD Rec., 35, 1 , 2006:65-73.

[37] Doerr, M., Ore, C.-E., Stead, S.: The CIDOC conceptual reference model: a new

standard for knowledge sharing. Tutorials, posters, panels and industrial

contributions at ER, 2007:51-56.

[38] Duschka, O, Levy, A.: Recursive plans for information gathering. IJCAI,

1997b:778–784.

[39] Edelweiss, N. and Moreira, A. F.: Temporal and versioning model for schema

evolution in object-oriented databases. Data Knowl. Eng., 53, 2 2005:99-128.

[40] Euzenat, J., Le Bach, T., Barrasa, J., Bouquet, P., de Bo, J., Dieng, R., Ehrig,

M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou, G.,

Stuckeschmidt, H., Shvaiko, P., Tessaris, S., van Acker, S., Zaihrayeu, I:

D2.2.3: State of the Art on Ontology Alignment, KWEB project deliverable,

2004.

154 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

[41] Fagin, R., Kolaitis, P., Popa, L., Tan, W. C.: Schema mapping evolution

through Composition and Inversion. Schema Matching and Mapping,

Springer, 2011

[42] Fagin, R., Kolaitis, P., Popa, L., Tan, W. C.: Quasi-Inverses of Schema

Mappings. ACM Transactions on Database Systems (TODS), 33(2), 2008.

[43] Fagin, R., Kolaitis, P., Popa, L.: Data exchange: getting to the core. ACM Trans.

Database Syst. 30(1), 2005a:174-210.

[44] Fagin, R., Kolaitis, P., Popa, L., Chiew Tan, W.: Composing schema mappings:

Second-order dependencies to the rescue. ACM Trans. Database Syst, 30(4),

2005b: 994-1055.

[45] Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.:

Ontology change: Classification and survey. Knowl. Eng. Rev. 23, 2008:117-

152.

[46] Flouris, G., Plexousakis, D.: Handling Ontology Change: Survey and Proposal

for a Future Research Direction, Technical Report FORTH-ICS/TR-362, 2005.

[47] Flouris, G., Plexousakis, D.: Bridging Ontology Evolution and Belief Change.

SETN, 2006.

[48] Friedman, M., Levy, A., Millstein, T.: Navigational Plans for Data Integration.

AAAI/IAAI 1999:67-73, 1999:67-73.

[49] Fuxman, A. Kolaitis, P., Miller, R., Chiew Tan, W.: Peer data exchange. ACM

Trans. Database Syst. 31(4), 2006:1454-1498.

[50] Gardenfors, P.: Belief Revision: An Introduction, Cambridge University Press.

1992a:1-20.

[51] Gardenfors, P.: The Dynamics of Belief Systems: Foundations Versus

Coherence Theories. Revue Internationale de Philosophie, 44, 1992b:24-46.

[52] Gene Ontology Consortium: The Gene Ontology (GO) database and informatics

resource. Nucl. Acids Res. 32 (2004) D258-261.

[53] Goasdoui, F., Lattes, V., and Rousset, M. C.: The use of CARIN language and

algorithms for information integration: the PICSEL project. International

Journal of Cooperative Information Systems. 9(4), 2000:383-401.

[54] Grahne, G., Mendelzon, A., O.: Tableau Techniques for Querying Information

Sources through Global Schemas. ICDT, 1999: 332-347.

BIBLIOGRAPHY 155

HARIDIMOS KONDYLAKIS

[55] Spezzano, F., Greco, S.: Chase Termination: A Constraints Rewriting

Approach. PVLDB, 3(1), 2010:93-104.

[56] Gruber, T.R..: A Translation Approach to Portable Ontology Specifications,

Knowledge Acquisition, 5 (2), 1993a:199-220.

[57] Gruber, T.R.: Toward Principles for the Design of Ontologies Used for

Knowledge Sharing, Formal Ontology in Conceptual Analysis and Knowledge

Representation, also available as Technical Report KSL-93-04, Knowledge

Systems Laboratory, Stanford University, 1993b.

[58] Grumbach, S., Rafanelli, M., Tininini, L.: Querying aggregate data. PODS,

1999:174–184.

[59] Guarino, N.: Formal Ontology and Information Systems, FOIS, 1998:3-15.

[60] Gupta, A., Jagadish, H. V. and Mumick, I. S. Data Integration using Self-

Maintainable Views. EDBT, 1996.

[61] Halevy, A.: Answering queries using views: A survey. VLDB J. 10(4),

2001:270-294.

[62] Halevy, A., Ives, Z., Suciu, D. Tatarinov, I.: Schema Mediation in Peer Data

Management Systems. ICDE, 2003: 505.

[63] Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies. ESWC,

2005.

[64] Hartung, M., Kirsten, T., Rahm, E.: Analyzing the Evolution of Life Science

Ontologies and Mappings. DILS, 2008:11-27.

[65] Heflin, J., Hendler, J., Luke, S.: Coping with Changing Ontologies in a

Distributed Environment. AAAI, WS-99-13, AAAI Press, 1999:74-79.

[66] Heflin, J. & Pan, Z.: A Model Theoretic Semantics for Ontology Versioning,

ISWC, LNCS 3298 Springer, 2004:62-76.

[67] Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J.,

Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K.,

Feier, C., Hench, G., Wetzstein, B., Keller, U.: Ontology Reasoning with

Large Data Repositories. Ontology Management. 2008:89-128.

[68] Huang, Z., Stuckenschmidt, H.: Reasoning with Multi-version Ontologies: A

Temporal Logic Approach, ISWC, 2005:398-412.

[69] Kalfoglou, Y., Schorlemmer, M.:Ontology Mapping: the State of the Art,

Knowledge Engineering Review, 18 (1), 2003:1-31.

156 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

[70] Katsuno, H., Mendelzon, A. O.: On the Difference Between Updating a

Knowledge Base and Revising It. Technical Report on Knowledge

Representation and Reasoning, University of Toronto, Canada, KRR-TR-90-

6, 1990.

[71] Klein, M.: Combining and relating ontologies: an analysis of problems and

solutions. Workshop on Ontologies and Information Sharing, IJCAI, 2001.

[72] Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology Versioning and

Change Detection on the Web, EKAW, 2002.

[73] Klein, M., Fensel, D.: Ontology Versioning on the SemanticWeb, SWWS,

2001:75-91.

[74] Klein, M., Noy, N.: A Component-Based Framework for Ontology Evolution,

IJCAI Workshop on Ontologies and Distributed Systems, CEUR-WS, vol. 71.,

2003.

[75] Koffina, I., Serfiotis, G., Christophides, V., Tannen, V.: Mediating RDF/S

Queries to Relational and XML Sources, International Journal on semantic

Web & Information System, 2(4), 1006:68-91.

[76] Kohler, J., Philippi, S., and Lange, M.: SEMEDA: ontology based semantic

integration of biological databases. Bioinformatics 19(18), 2003:2420–2427.

[77] Kolaitis, P.: Schema mappings, data exchange, and metadata management.

PODS, 2005: 61-75.

[78] Kondylakis, H., Flouris, G., Plexousakis, D.: Ontology and Schema Evolution

in Data Integration: Review and Assessment, OTM Conferences

(CoopIS/DOA/IS/ODBASE), 2009.

[79] Kondylakis, H., Plexousakis, D.: Enabling ontology evolution in data

integration, EDBT/ICDT Workshops, 2010a.

[80] Kondylakis, H., Plexousakis D., Tzitzikas, Y.: Ontology Evolution in Data

Integration, In Poster session of ESWC, 2010b.

[81] Kondylakis, H., Plexousakis D., Tzitzikas, Y.: Ontology Evolution in Data

Integration, HDMS, 2010c.

[82] Kondylakis, H., Plexousakis D., Tzitzikas, Y.: Enabling Ontology Evolution in

Data Integration, IWOD, 2010d.

[83] Kondylakis, H., Plexousakis D., Tzitzikas, Y.: Enabling Ontology Evolution in

Data Integration, ICDE, 2011a (submitted).

BIBLIOGRAPHY 157

HARIDIMOS KONDYLAKIS

[84] Kondylakis, H., Plexousakis D.: Ontology Evolution without Tears,

EDBT/ICDT, 2011b (submitted).

[85] Kondylakis, H., Plexousakis D.: Exelixis: An Evolving Ontology-based Data

Integration System, Demo Session of SIGMOD, 2011(to be submitted).

[86] Konstantinidis, G., Flouris, G., Antoniou, G. and Christophides, V. Ontology

Evolution: A Framework and its Application to RDF. ODBIS & SWDB

Workshop on Semantic Web, Ontologies, Databases (SWDB-ODBIS-07),

2007.

[87] Lambrix, P. & Edberg, A.: Evaluation of Ontology Merging Tools in

Bioinformatics, Pacific Symposium on Biocomputing, 2003:589-600.

[88] Lee, A. J., Nica, A. and Rundensteiner, E. A. The EVE Approach: View

Synchronization in Dynamic Distributed Environments. IEEE Trans. on

Knowl. and Data Eng., 14, 5, 2002:931-954.

[89] Lembo, D., Lenzerini, M., Rosati, R.: Source inconsistency and incompleteness

in data integration. KRDB, 2002.

[90] Levy, A., Mendelzon, A., Sagiv, Y., Srivastava, D.: Answering Queries Using

Views. PODS, 1995: 95-104.

[91] Levy, A, Rajaraman, A., Ordille, J.: Querying Heterogeneous Information

Sources Using Source Descriptions. VLDB 1996: 251-262.

[92] Lenzerini M.: Data Integration: A Theoretical Perspective. PODS, Madison,

Wisconsin, USA, 3-6 June, 2002.

[93] Li, C., Bawa, M., Ullman, J.: Minimizing view sets without loosing query-

answering power. ICDT,, 2001:99–103.

[94] Lloyd, J. W.: Foundations of logic programming; (2nd extended ed.). Springer-

Verlag New York, Inc., 1987.

[95] Martin, L., Anguita, A., Maojo, V., Bonsma, E., Bucur, A.I.D., Vrijnsen, J.,

Brochhausen, M., Cocos, C., Stenzhorn, H., Tsiknakis, M., Doerr, M.,

Kondylakis, H.: Ontology Based Integration of Distributed and Heterogeneous

Data Sources in ACGT. HEALTHINF, Funchal, Madeira, Portugal, 2008:301-

306.

[96] Madhavan, J.,Halevy, A.: Composing Mappings Among Data Sources. VLDB

2003: 572-583.

158 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

[97] Magiridou, M., Sahtouris, S., Christophides, V. and Koubarakis, M. RUL: A

Declarative Update Language for RDF. ISWC, 2005.

[98] McGuiness, D., Fikes, R., Rice, J. & Wilder, S.:An Environment for Merging

and Testing Large Ontologies, KR, also available as Technical Report KSL-

00-16, Knowledge Systems Laboratory, Stanford University, 2000.

[99] Millstein, T., Levy, A.,Friedman, M.: Query containment for data integration

systems. PODS, 2000:67–75.

[100] Mohania, M. and Dong, G.: Algorithms for Adapting Materialised Views in

Data Warehouses. CODAS, 1996.

[101] Moon, H. J., Curino, C. A. and Zaniolo, C.: Scalable architecture and query

optimization for transaction-time DBs with evolving schemas. SIGMOD,

Indianapolis, Indiana, USA, 2010.

[102] Moro, M. M., Malaika, S. and Lim, L.: Preserving XML queries during schema

evolution. WWW, Banff, Alberta, Canada, 2007.

[103] Nash, A., Bernstein, P. A. and Melnik, S.: Composition of mappings given by

embedded dependencies. ACM Trans. Database Syst., 32, 1, 2007, 4.

[104] Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A Framework for Ontology

Evolution in Collaborative Environments, ISWC, 2006:544-558.

[105] Noy, N., Klein, M.: Ontology Evolution: Not the Same as Schema Evolution.

KAIS, 6(4), Available as SMI technical report SMI-2002-0926, 2004:428-440.

[106] Noy, N. & Musen, M.: An Algorithm for Merging and Aligning Ontologies:

Automation and Tool Support, Workshop on Ontology Management at AAAI,

also available as SMI technical report SMI-1999-0799, 1999a.

[107] Noy, N. & Musen, M.. : SMART: Automated Support for Ontology Merging

and Alignment, Workshop on Knowledge Acquisition, Modelling and

Management, also available as SMI technical report SMI-1999-0813, 1999b.

[108] Noy, N. & Musen, M.: Algorithm and Tool for Automated Ontology Merging

and Alignment, AAAI, also available as SMI technical report SMI-2000-0831.

2000.

[109] Noy, N.F., Musen, M. A.: Promptdiff: a fixed-point algorithm for comparing

ontology versions. AAAI, Edmonton, Alberta, Canada, 2002.

BIBLIOGRAPHY 159

HARIDIMOS KONDYLAKIS

[110] Oliver, D.E., Shahar, Y., Shortliffe, E.H., Musen, M. A.: Representation of

change in controlled medical terminologies. Artificial Intelligence in

Medicine, 15, 1999:53-76.

[111] Ognyanov, D., Kiryakov, A.: Tracking Changes in RDF(S) Repositories.

EKAW, 2002:373-378.

[112] Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.:

On Detecting High-Level Changes in RDF/S KBs. ISWC, 2009:473 – 488.

[113] Papavassiliou, V. : Detecting Deterministically High-level Changes for RDF/S

Knowledge Bases, Master’s Thesis, University of Crete, Computer Science

Department, 2010.

[114] Perez-Rey, D., Maojo, V., Garcia-Remesal, M., Alonso-Calvo, R., Billhardt, H.,

Martin-Sanchez, F., and Sousa, A.: ONTOFUSION: Ontology-based

integration of genomic and clinical databases. Computers in Biology and

Medicine, 36(7-8), pp. 712-730, 2006.

[115] Perez, J., Arenas, M. and Gutierrez, C. Semantics and complexity of SPARQL.

ACM Trans. Database Syst., 34, 3 2009:1-45.

[116] Pinto, S. H., Gomez-Perez, A. and Martins, J. P. Some Issues on Ontology

Integration. IJCAI Workshop on Ontologies and Problem Solving Methods:

Lessons Learned and Future Trends. Stockholm, Sweden, 1999.

[117] Plessers, P., Troyer, O.D.: Ontology Change Detection Using a Version Log.

ISWC, 2005:578-592.

[118] Plessers, P., Troyer, O. D. and Casteleyn, S.: Understanding ontology evolution:

A change detection approach. Web Semantics: Science, Services and Agents

on the World Wide Web, 5, 1 2007:39-49.

[119] Poggi, A., Lembo, D., Calvanese, D., Giacomo, G. D., Lenzerini, M. and

Rosati, R. Linking data to ontologies. Journal on data semantics X, 2008:133-

173.

[120] Pottinger, R., Halevy, A.: MiniCon: A scalable algorithm for answering queries

using views. The VLDB Journal, 10, 2001:182-198.

[121] Prud'hommeaux, E., Seaborne, A.: (2008, SPARQL Query Language for RDF.

Available: http://www.w3.org/TR/rdf-sparql-query/.

160 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

[122] Ra, Y.-G., Rundensteiner, E. A.: A Transparent Schema-Evolution System

Based on Object-Oriented View Technology. Trans. on Knowl. and Data

Eng., 9, 4 1997:600-624.

[123] Rizzi, S. and Golfarelli, M.: X-Time: Schema Versioning and Cross-Version

Querying in Data Warehouses. ICDE, 2007:15-20.

[124] Rogozan, D., Paquette, G.: Managing Ontology Changes on the Semantic Web.

Web Intelligence. IEEE Computer Society, 2005:430-433.

[125] Russell, A. and Smart, P.: NITELIGHT: A Graphical Editor for SPARQL

Queries. ISWC, 2008.

[126] Russel, S., Norvig, P.: Artificial Intelligence a modern approach. Prentice Hall,

2003.

[127] Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL

Performance Benchmark. ICDE, 2009:222-233.

[128] Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and

Minimization of RDF/S Query Patterns. ISWC, 2005:607-623.

[129] Stevens, R., Baker, P., G., Bechhofer, S., Ng, G., Jacoby, A., Paton, N., W.,

Goble, C., A., Brass, A.: TAMBIS: Transparent Access to Multiple

Bioinformatics Information Sources. Bioinformatics, 16(2), 2000:184-186.

[130] Stojanovic, L., Maedche, A., Motik, B. and Stojanovic, N.: User-Driven

Ontology Evolution Management, EKAW, 2002.

[131] Stojanovic, L.: Methods and Tools for Ontology Evolution. Vol. Phd. Univ. of

Karlsruhe, 2004.

[132] Stojanovic, L., Maedche, A., Stojanovic, N. and Studer, R.: Ontology evolution

as reconfiguration-design problem solving. K-CAP, Sanibel Island, FL, USA,

2003.

[133] Theodoridou, M., Tzitzikas, Y., Doerr, M., Marketakis, Y. and Melessanakis,

V.: Modeling and querying provenance by extending CIDOC CRM. Distrib.

Parallel Databases, 27, 2 2010:169-210.

[134] Theoharis, Y., Christophides, V. and Karvounarakis, G.: Benchmarking

Database Representations of RDF/S Stores. ISWC, 2005.

[135] Theoharis, Y.: On Graph Features of Semantic Web Schemas. IEEE

Transactions on Knowledge and Data Engineering, 2007:692-702.

BIBLIOGRAPHY 161

HARIDIMOS KONDYLAKIS

[136] Ullman, J.: Information Integration Using Logical Views. Theoretical Computer

Science, 239(2), 2000:189-210.

[137] Velegrakis, Y., Miller, J., Popa, L.: Preserving mapping consistency under

schema changes. The VLDB Journal, 13, 2004:274-293.

[138] Velegrakis, Y., Miller, R. J. and Mylopoulos, J. Representing and Querying

Data Transformations. ICDE, 2005.

[139] Volkel, M., Winkler, W., Sure, Y., Kruk, S.R., Synak, M.: Semversion: A

versioning system for rdf and ontologies. ESWC, 2005.

[140] Volz, R., Oberle, D., Staab, S., Motik, B.: KAON SERVER - A Semantic Web

Management System. WWW (Alternate Paper Tracks), 2003.

[141] Wache, H., Scholz, T., Stieghanh, H., and Konig-Ries, B.: An integration

method for the specification of rule-oriented mediators. DANTE, 1999:109-

112.

[142] Xuan, D. N., Bellatreche, L. and Pierra, G.: A Versioning Management Model

for Ontology-Based Data Warehouses. DaWaK, Krakow, Poland, 2006.

[143] Yu, C. and Popa, L.: Semantic adaptation of schema mappings when schemas

evolve. VLDB, 2005.

[144] Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query

optimization. ICDT, 2010:4-33.

[145] Stamatis Zampetakis, Yannis Tzitzikas, Asterios Leonidis, Dimitris Kotzinos

StarLion: Auto-Configurable Layouts for Exploring Ontologies, ESWC (Demo

Track), Heraklion, Greece, June 2010.

[146] Zablith, F.,Antoniou, G., d‟Aquin, M., Aussenac-Gilles, N., Flouris, G.,

Kondylakis, H., Laublet, P., Motta, E., Pan, J., Plexousakis, D., Sabou, M.:

Ontology Evolution: A process Centric Survey, Semantic Web Journal, IOS

Press (to be submitted).

[147] Zeginis, D., Tzitzikas, Y., Christophides, V.: On the Foundations of Computing

Deltas Between RDF Models. ISWC/ASWC, 2007:637-651.

162 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

APPENDIX 163

HARIDIMOS KONDYLAKIS

Appendix

A. Change Operations

 The language of changes we consider, the inverse of each change operation and

the corresponding GAV mapping are presented bellow.

Basic changes

 The basic changes we adopt here are extensively presented and defined in

(Papavassiliou, 2010) and consider the individual addition and the deletion of classes,

properties, metaproperties, metaclasses, individuals. For those change operations

cannot be produced GAV mappings.

Composite changes

 We have to note that the change operations reclassifying classes and properties

do not have a GAV mapping since the reclassifications are handled on the ontology

expansion level.

164 APPENDIX

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Change Add_Class(a,P1,P2,P3,P4,P5,P6) Delete_Class(a,P1,P2,P3,P4,P5,P6)

Intuition Add class a with its neighborhood links Delete class a with its neighborhood links

Arguments P1 = set of new parent classes of a,

P2 = set of classes that have as parent a,

P3 = set of new metaclasses of a,

P4 = set of new individuals that are type

of a,

P5 = set of new comments of a,

P6 = set of new labels of a

P1 = set of old parent classes of a,

P2 = set of classes that had as parent a,

P3 = set of old metaclasses of a,

P4 = set of individuals that were type of a,

P5 = set of old comments of a,

P6 = set of old labels of a

δa p P1 : (a, subClassOf , p),

 p P2 : (p, subClassOf , a),

 p P3 : (a, type, p),

 p P4 : (a, type, p),

 p P5 : (a, comment, p),

 p P6 : (a, label, p),

(a, type, class),

(a, subClassOf , resource)

ø

δd ø p P1 : (a, subClassOf , p),

 p P2 : (p, subClassOf , a),

 p P3 : (a, type, p),

 p P4 : (a, type, p),

 p P5 : (a, comment, p),

 p P6 : (a, label, p),

(a, type, class),

(a, subClassOf , resource)

Inverse Delete_Class(a,P1,P2,P3,P4,P5,P6) Add_Class(a,P1,P2,P3,P4,P5,P6)

GAV

Mappings

- -

 The changes Add_Metaclass and Add_Metaproperty are defined similarly with

the exception of (a, subClassOf , class) and (a, subClassOf , property) being in δa

respectively instead of (a, subClassOf , resource). The changes Delete_Metaclass and

Delete_Metaproperty are defined similarly with the exception of (a, subClassOf ,

class) and (a, subClassOf , property) being in δd respectively instead of (a,

subClassOf , resource).

Change Group_Classes(A,b) Ungroup_Classes(A,b)

Intuition Group classes in A under b Ungroup classes in A

Arguments A = set of classes that have as new

parent b,

b = new parent class b

A = set of classes that had as parent b,

b = old parent class b

δa a A : (a, subClassOf , b) ø

δd ø a A : Delete_Superclass(a,b)

Inverse Ungroup_Classes(A,b) Group_Classes(A,b)

GAV

Mappings

- -

APPENDIX 165

HARIDIMOS KONDYLAKIS

 The changes Group_Metalasses and Group_Metaproperties are defined

similarly. We have to note that the change operations reclassifying classes and

properties do not have a GAV mapping since the reclassifications are handled on the

ontology expansion level.

Change Pull_up_Class(a,B,C) Pull_down_Class(a,B,C)

Intuition Move class a to a higher position in the

subsumption hierarchy

Move a class to a lower position in the

subsumption hierarchy

Arguments B = set of old parents of a,

C = set of new parents of a

B = set of old parents of a,

C = set of new parents of a

δa ci C : (a, subClassOf , ci) (1≤i≤n) ci C : (a, subClassOf , ci) (1≤i≤n)

δd bi B : (a, subClassOf , bi) (1≤i≤n) bi B : (a, subClassOf , bi) (1≤i≤n)

Inverse Pull_down_Class(a,C,B) Pull_up_Class(a,C,B)

GAV

Mappings

-

-

 The changes Pull_up_Metaclass and Pull_up_Metaproperty are defined

similarly and the changes Pull_down_Metaclass and Pull_down_Metaproperty are

defined similarly as well.

Change Move_Class(a,B,C) Change_Superclasses(a,B,C)

Intuition Move a class to a different subsumption

hierarchy

Change the parents of class a

Arguments B = set of old parents of a,

C = set of new parents of a

B = set of old parents of a,

C = set of new parents of a

δa ci C : (a, subClassOf , ci) (1≤i≤n) ci C : (a, subClassOf , ci) (1≤i≤n)

δd bi B : (a, subClassOf , bi) (1≤i≤n) bi B : (a, subClassOf , bi) (1≤i≤n)

Inverse Move_Class(a,C,B) Change_Superclasses(a,C,B)

GAV

Mappings

Change Reclassify_Class_Higher(a,B,C) Reclassify_Class_lower(a,B,C)

Intuition Move a class to a higher position in the

subsumption hierarchy

Reclassify a class to a lower position in the

subsumption hierarchy

Arguments B = set of old types of a,

C = set of new types of a

B = set of old types of a,

C = set of new types of a

δa c C : (a, type, c) c C : (a, type, c)

δd b B : (a, type, b) b B : (a, type, b)

Inverse Reclassify_Class_lower(a,C,B) Reclassify_Class_higher(a,C,B)

GAV

Mappings

166 APPENDIX

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

 The changes Reclassify_Metaclass_Higher and

Reclassify_Metaproperty_Higher are defined similarly. The changes

Reclassify_Metaclass_Lower and Reclassify_Metaproperty_Lower are defined

similarly as well.

Change Add_Property(a,P1,P2,P3,P4,p5,p6,P7,P8

)

Delete_Property(a,P1,P2,P3,P4,p5,p6,P7,

P8)

Intuition Add property a with its neighborhood links Delete property a with its neighborhood

links

Argument

s

P1 = set of new parent properties of a,

P2 = set of properties that have as parent a,

P3 = set of new metaproperties of a,

P4 = set of new property instances of a,

p5 = the new domain of a,

p6 = the new range of a,

P7 = set of new comments of a,

P8 = set of new labels of a

P1 = set of old parent properties of a,

P2 = set of properties that had as parent a,

P3 = set of old metaproperties of a,

P4 = set of old property instances of a,

p5 = the old domain of a,

p6 = the old range of a,

P7 = set of old comments of a,

P8 = set of old labels of a

δa p P1 : (a, subPropertyOf , p),

 p P2 : (p, subPropertyOf , a),

 p P3 : (a, type, p),

 p1, p2 P4 : (p1, a, p2),

(a, domain, p5),

(a, range, p6),

 p P7 : (a, comment, p),

 p P8 : (a, label, p),

(a, type, property)

ø

δd ø p P1 : (a, subPropertyOf , p),

 p P2 : (p, subPropertyOf , a),

 p P3 : (a, type, p),

 p1, p2 P4 : (p1, a, p2),

(a, domain, p5),

(a, range, p6),

 p P7 : (a, comment, p),

 p P8 : (a, label, p),

(a, type, property)

Inverse Delete_Property(a,P1,P2,P3,P4,p5,p6,P7,

P8)

Add_Property(a,P1,P2,P3,P4,p5,p6,P7,P8

)

GAV

Mappings

- -

APPENDIX 167

HARIDIMOS KONDYLAKIS

Change Reclassify_Class(a,B,C)

Intuition Reclassify a class

Arguments B = set of old types of of a, C = set of new types of of a

δa c C : (a, type, c)

δd b B : (a, type, b)

Inverse Reclassify_Class(a,C,B)

GAV

Mappings

 The changes Reclassify_Metaclass and Reclassify_Metaproperty are defined

similarly.

Change Ungroup_Properties_Under(A,b) Ungroup_Properties_Under(A,b)

Intuition Group properties in A under b Ungroup properties in A under b

Arguments A = set of properties that have as new

parent b,

b = new parent property b

A = set of properties that had as parent b,

b = the old parent property b

δa a A : (a, subPropertyOf , b) ø

δd ø a A : (a, subPropertyOf , b)

Inverse Ungroup_Properties_Under(A,b) Group_Properties_UnderA,b)

GAV

Mappings

- -

Change Pull_up_Property(a,B,C) Pull_down_Property(a,B,C)

Intuition Move property a to a higher position in the

subsumption hierarchy

Move property a to a lower position in

the subsumption hierarchy

Arguments B = set of old parents of a,

C = set of new parents of a

B = set of old parents of a,

C = set of new parents of a

δa c C : (a, subPropertyOf , c) c C : (a, subPropertyOf , c)

δd b B : (a, subPropertyOf , b) b B : (a, subPropertyOf , b)

Inverse Pull_down_Property(a,C,B) Pull_up_Property(a,C,B)

GAV

Mappings

168 APPENDIX

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Change Move_Property(a,B,C) Change_Superproperties(a,B,C)

Intuition Move property a to a different

subsumption hierarchy

Change the parents of property a

Arguments B = set of old parents of a,

C = set of new parents of a

B = set of old parents of a,

C = set of new parents of a

δa c C : (a, subClassOf , c) c C : (a, subClassOf , c)

δd b B : (a, subClassOf , b) b B : (a, subClassOf , b)

Inverse Move_Property(a,C,B) Change_Superproperties(a,C,B)

GAV

Mappings

Change Reclassify_Property_higher(a,B,C) Reclassify_Property_lower(a,B,C)

Intuition Reclassify property a to a higher position

in the subsumption hierarchy

Reclassify property a to a lower position

in the subsumption hierarchy

Arguments B = set of old types of a,

C = set of new types of a

B = set of old types of a,

C = set of new types of a

δa c C : (a, type, c) c C : (a, type, c)

δd b B : (a, type, b) b B : (a, type, b)

Inverse Reclassify_Property_lower(a,C,B) Reclassify_Property_higher(a,C,B)

GAV

Mappings

Change Reclassify_Property(a,B,C)

Intuition Reclassify property a

Arguments B = set of old types of a, C = set of new types of of a

δa c C : (a, type, c)

δd b B : (a, type, b)

Inverse Reclassify_Property(a,C,B)

GAV

Mappings

Change Change_To_Datatype_Property(a,b,c) Change_To_Object_Property(a,b,c)

Intuition Change the range of property a to a

datatype

Change the range of property a to an

object

Arguments b = old range of a,

c = new range of a

b = old range of a,

c = new range of a

δa c C : (a, range, c) c C : (a, range, c)

δd b B : (a, range, b) b B : (a, range, b)

Inverse Change_To_Object_Property(a,c,b) Change_To_Datatype_Property(a,c,b)

GAV

Mappings

range(a, b) range(a, c) (high-level)

 x, a(x, b) a(x, c) (low-level)

range(a, b) range(a, c) (high-level)

 x, a(x, b) a(x, c) (low-level)

APPENDIX 169

HARIDIMOS KONDYLAKIS

Change Specialize_Range(a,b,c) Generalize_Range(a,b,c)

Intuition Change the range of property a to a

subclass of it

Change the range of property a to a

superClass of it

Arguments b = old range of a,

c = new range of a

b = old range of a,

c = new range of a

δa c C : (a, range, c) c C : (a, range, c)

δd b B : (a, range, b) b B : (a, range, b)

Inverse Generalize_Range(a,c,b) Specialize_Range(a,c,b)

GAV

Mappings

range(a, b) range(a, c) (high-level)

 x, a(x, b) a(x, c) (low-level)

range(a, b) range(a, c) (high-level)

 x, a(x, b) a(x, c) (low-level)

Change Change_Range(a,b,c)

Intuition Change the range of property a.

Arguments b = old range of a, c = new range of a

δa c C : (a, range, c)

δd b B : (a, range, b)

Inverse Change_Range(a,c,b)

GAV

Mappings

range(a, b) range(a, c) (high-level)

 x, a(x, b) a(x, c) (low-level)

Change Specialize_Domain(a,b,c) Generalize_Domain(a,b,c)

Intuition Change the domain of property a to a

subClass of it

Change the domain of property a to a super-

Class of it

Arguments b = old domain of a,

c = new domain of a

b = old domain of a,

c = new domain of a

δa c C : (a, domain, c) c C : (a, domain, c)

δd b B : (a, domain, b) b B : (a, domain, b)

Inverse Generalize_Range(a,c,b) Generalize_Domain(a,c,b)

GAV

Mappings

domain(a, b) domain(a, c)(high-level)

 x, a(b, x) a(c, x) (low-level)

domain(a, b) domain (a, c) (high-level)

 x, a(b, x) a(c, x) (low-level)

Change Change_Domain(a,b,c)

Intuition Change the domain of property a.

Arguments b = old domain of a,

c = new domain of a

δa c C : (a, domain, c)

δd b B : (a, domain, b)

Inverse Change Domain(a,c,b)

GAV

Mappings

domain(a, b) domain (a, c) (high-level)

 x, a(b, x) a(c, x) (low-level)

170 APPENDIX

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Heuristics

Change Rename_Class(a,b)

Intuition Rename class a to b

Arguments a = the old name of the class, b = the new name of the class

δa (b, type, class), (b, subClassOf , resource)

δd (a, type, class), (a, subClassOf , resource)

Inverse Rename_Class(b,a)

GAV

Mappings

type(b, class) type(b, class) (high-level)

 x, a(x)  b(x) (low-level)

 The change Rename_Metaclass is defined similarly with the exception of (a,

subClassOf, class) being in δa and δd respectively instead of (a, subClassOf ,

resource).

Change Merge_Classes(A,b) Split_Class(a,B)

Intuition Merge classes contained in A into b Split class a into classes contained in

B

Arguments A = the set of old names of the classes,

b = the new name of the class

a = the old name of the class,

B = the set of new names of the classes

δa (b, type, class),

(b, subClassOf , resource)
 bi B : (b, type, class), (1≤i≤n)

(b, subClassOf , resource)

δd ai A : (a, type, class), (1≤i≤n)

(a, subClassOf , resource)

(a, type, class),

(a, subClassOf , resource)

Inverse Split_Class(b,A) Merge_Classes(A,b)

GAV

Mappings

(high-level)

type(a1, class) type(b, class) 

split(a1, b, A)

...
type(an, class) type(b, class) 

split(an, b, A)

(low-level)

 a1(x) 1, b(x1)  split(x, x1, A)

…

 an(x) n, b(xn)  split(x, xn, A)

(high-level)

type(a, class) type(b1, class)  ... type(bn,

class)  concat(a, {b1,...,bn})

(low-level)

 x, a(x) x1, …, xn, b1(x1)…  bn(xn) 

concat(x, {x1,…,xn})

 The changes Merge_Metaclasses, Merge_Metaproperties and Split_Metaclass,

Split_Metaproperty are defined similarly with the exception of (a, subClassOf , class)

APPENDIX 171

HARIDIMOS KONDYLAKIS

and (a, subClassOf , property) being in δa and δd respectively instead of (a,

subClassOf , resource).

Change Merge_Classes_Into_Existing(A,b) Split_Class_Into_Existing(a,B)

Intuition Merge classes contained in A into b Split class a into classes contained in

B

Arguments A = the set of old names of the classes,

b = the new name of the class

a = the old name of the class,

B = the set of new names of the classes

δa - bi B \ {a} : (bi, type, class), (1≤i≤n)

(bi, subClassOf , resource)

δd ai A \ {b} : (ai, type, class), (1≤i≤n)

(ai, subClassOf , resource)

-

Inverse Split_Class_Into_Existing(b,A) Merge_Classes_Into_Existing(A,b)

GAV

Mappings

(high-level)

type(a1, class) type(b, class) 

split(a1, b, A)

...
type(an, class) type(b, class) 

split(an, b, A)

(low-level)

 a1(x) 1, b(x1)  split(x, x1, A)

…

 an(x) n, b(xn)  split(x, xn, A)

(high-level)

type(a, class) type(b1, class)  ... type(bn,

class)  concat(a, {b1,...,bn})

(low-level)

 x, a(x) x1, …, xn, b1(x1)…  bn(xn) 

concat(x, {x1,…,xn})

 The changes Merge_Metaclasses_Into_Existing, and

Split_Metaclass_Into_Existing are defined similarly with the exception of (a,

subClassOf, class) being in δa and δd respectively instead of (a, subClassOf,

resource).

Change Rename_Property(a,b)

Intuition Rename property a to b

Arguments a = the old name of the property, b = the new name of the property

δa (b, type, property)

δd (a, type, property)

Inverse Rename_Property(b,a)

GAV

Mappings

type(a, property) type(b, property) (high-level)

 x,y, a (x, y) b (x, y) (low-level)

 The change Rename_Metaproperty is defined similarly with the exception of (a,

subClassOf, property) being in δa (δd) instead of (a, subClassOf , resource).

172 APPENDIX

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Change Merge_Properties(A,b) Split_Property(a,B)

Intuition Merge properties contained in A into b Split property a into properties contained

in B

Arguments A = the set of old names of the

properties,

b = the new name of the property

a = the old name of the property,

B = the set of new names of the properties

δa (b, type, property) bi B : (b, type, property) (1≤i≤n)

δd ai A : (a, type, property) (1≤i≤n) (a, type, property)

Inverse Split_Property(b,A) Merge_Properties(A,b)

GAV

Mappings

(high-level)

type(a1, property) type(b, property) 

split(a1, b, A)

...
type(an, property) type(b, property) 

split(an, b, A)

(low-level)

 y, a1(x , y) y1, b(x , y1) 

split(y, y1, A)

…

 x, y, an(x , y) yn, b(x , y1) 

split(y, yn, A)

(high-level)

type(a, property) type(b1, property)  ...

type(bn, property)  concat(a, {b1,...,bn})

(low-level)

 x,y, a(x , y) x1, …, xn, b1(x , x1)… 

bn(x, xn)  concat(y, {x1,…,xn})

 The changes Merge_Metaproperties_Into_Existing and

Split_Metaproperty_Into_Existing are defined similarly with the exception of (a,

subClassOf, property) being in δa and δd respectively instead of (a, subClassOf,

resource).

APPENDIX 173

HARIDIMOS KONDYLAKIS

Change Merge_Properties_Into_Existing(A,b) Split_Property_Into_Existing(a,B)

Intuition Merge properties contained in A into b Split property a into properties contained

in B

Arguments A = the set of old names of the

properties,

b = the new name of the property

a = the old name of the property,

B = the set of new names of the properties

δa - bi B \ {a} : (b, type, property) (1≤i≤n)

δd ai A\{b} : (a, type, property) (1≤i≤n) -

Inverse Split_Property_Into_Existing(b,A) Merge_Properties_Into_Existing(A,b)

GAV

Mappings

(high-level)

type(a1, property) type(b, property) 

split(a1, b, A)

...
type(an, property) type(b, property) 

split(an, b, A)

(low-level)

 y, a1(x , y) y1, b(x , y1) 

split(y, y1, A)

…

 x, y, an(x , y) yn, b(x , y1) 

split(y, yn, A)

(high-level)

type(a, property) type(b1, property)  ...

type(bn, property)  concat(a, {b1,...,bn})

(low-level)

 x,y, a(x , y) x1, …, xn, b1(x , x1)… 

bn(x, xn)  concat(y, {x1,…,xn})

Change Change_Comment(u,a,b) Change_Label(a,b)

Intuition Change comment of resource u from a

to b

Change label of resource u from a to b

Arguments a = the old comment,

b = the new comment

a = the old label,

B = the new label

δa (u, comment, b) (u, label, b)

δd (u, comment, a) (u, label, a)

Inverse Change_Comment(u,b,a) Change_Label(u,b,a)

GAV

Mappings

 u, rdfs:comment (u, a) rdfs:comment

(u, b)

 u, rdfs:label (u, a) rdfs:label (u, b)

