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Abstract

Due to the rapid scientific development, ontologies and schemata need to
change. When ontologies evolve, the changes should somehow be rendered and used
by the pre-existing data integration systems. In most of these systems, when
ontologies change their relations with the data sources i.e. the mappings, are recreated
manually, a process which is known to be error-prone and time-consuming.

In this dissertation, we provide a solution that allows query answering under
evolving ontologies without mapping redefinition. This is achieved by exploiting
query rewriting. We elegantly separate the semantics of query rewriting for different
ontology versions and for the sources and we present a module that enables ontology
evolution over traditional ontology-based data integration systems. That module gets
as input the different ontology versions and the user query, and rewrites the query
over data integration systems that use different ontology versions. This is performed
by the automatic identification of changes among the ontology versions using a high-
level language of changes, which are then interpreted as GAV mappings to enable
query rewriting among ontology versions.

Although query rewriting always succeeds, several problems may occur due to
non information preserving changes among the ontology versions. We identify the
problems in such a setting and we provide efficient, intuitive solutions, either by
explaining the reasons for the failure or by producing the best “over-approximations”.

We prove that our approach imposes only a small overhead over traditional
query rewriting algorithms and it is modular and scalable. Finally, we show that it can
greatly reduce human effort spent since continuous mapping redefinition on evolving

ontologies is no longer necessary.

Supervisor:  Dimitris Plexousakis,

Professor






IIEPIAHYH:

Adym g Tayeiog EMOTNUOVIKNAG avATTLENG, 01 OVIOAOYIEC KO TOL GYTLLOTO TTOV
YPNOUOTOIOVVTOL YLl VO HOVIEAOTOMNGOVY TNV EMICTNUOVIKY] YVAOON TPEMEL VL
aArdlovv. Otav ot oviohoyieg e&ehMoocovtal, ot aAlayég o mpémetl pe Kamolo tpdmo
va evoopot®wfovv kot vo ypnoioromBovv amnd To TPO-LIEAPYOVIH GLCTNLOTO
OAOKANPMOGNG TANPOPOPUDV. XTO, TEPICCOTEPO OMO TO GLOTNHUATA OVTE, OTAV Ol
ovtoloyiec OAAGLOLV, Ol OULGYETICES TOLG WHE TIG TNYEG TOV  OEOOUEVOV
OMNUIOVPYOVVTOL OO TO UNOEV XEPOVOKTIKE, pio dtadtkacio 1 ool eivol yvmoeto Ot
elvar emppenng o AGO ko ypovoPopa.

Xmv gpyacio ovtr, mpoteivovpe Hoe ADCN TOV EMTPEMEL TNV OTAVTNOT|
EMEPMTNCEDV  YPNOLOTOUDVTOS  OVIOAOYieG — Tov egeMocoviar  yopig
EMOVOATPOGOIOPIGUO TV GLGYETICEMV TOVG HE TIG TNYES. AVTO EMTLYYAVETOL LE TNV
LETEYYPOAPT TOV EMEPOTNCEMV 0 TNV pia Ekdoon otnv dAAn. ‘Etot, Eexywpilovpe v
ONUAGIOAOYIOL TNG UETEYYPOPNS EMEPMTNCEMV YO,  OLOPOPETIKEG EKOOGELS LILOG
OVTOAOYIOG KOt Yyl TS TNYEG Kol Topovotdlovpe €vo. GUGTNUO TTOL EMITPEMEL TV
e€EMEN TtV ovIOAOYIOV TAV® amd  TOPAOOGLOKA GUOTHHOTO  OAOKANPOGNG
mAnpogopldv. To choTUd pag dExeTon GOV €GOS0 TNV EXEPDOTNOT TOL YPNOTY KO TIG
OlLPOPETIKEG  €KOOCELG MG  ovroloyiog Olvel  omavinoelg omd  GLGTHUOTO
OAOKANPOONG  TANPOPOPIDV  TOV  YPNCLOTOOVV  SLOPOPETIKEG  EKOOGEIS  TNG
GLYKEKPLUEVNG OVTOAOYIOG. AVTO TPUYUOTOTOIEITOL LE TNV OQVTOUATI CVOYVAOPLGT] TOV
OAAOYDV OVALECO OTIG OLOPOPIKES EKOOGEIS TNG OVTOAOYIOG, TOL HOVTEAOTOLOVVTOL
YPNOOTOIOVTOS o YADooo oAAoy®V vynmAov emmédov. Ot ahlayéc ovTég
EPUNVEDOVTOL GOV GLGYETIOELS «KOOOAMKOD GYNUOTOC ooV OYN» Kol EMTPENTOVLY TNV
LETEYYPOPT TOV EXEPOTNOE®V OO TNV Uict £KO0CN GTNV GAAY).

AV Kol M HETEYYPOPT EMEPOTNCE®V EMTLYYAVEL TAVTA, TPOPANUATO UTOPOHV
va. tpokOyouvv €€’ autiog aAlaydv TNV OvIoAoyio mov dgv Olatnpovv TV oo
mnpoeopia and v o £kdoon oy GAAN. 'Etol mpoywpole otov gvitomiopd tv

npofAnudtwv oe €va Té€tol0 mEPPAAAOV, KOl TOPEYOVUE OMOTEAEGUOTIKEG,



dtucOnTikég Aoelg eite divovtog eENYNOELS Y TIG AAAAYEG QVTEG, €lTE TPOTEIVOVTOG
EVOAOKTIKEG EPMTNGELS TOL TTPpoceYYilovv v {nTovueEVT amdvinon.

Amodeikvhoupe OTL 1] TPOGEYYIOT HOG EMPAPVUVEL ELAYIOTO TOVG TOPAUIOGLOKOVS
aAyopiOovg Yoo ETOVEYYPOPT EMEPOTACE®V, €IVOL EMEKTAGIUN KOl KALLOKOVUEVT).
Télog delyvoupe OTL HEWOVEL GNUOVTIKA TNV avOp®OTIvN TpootdOeia Tov domavdTot
QWL KOl O OLVEYNG EMOVOTPOGOIOPICUOS TMV GLOYETIcE®MY Ogv  elval TAEoV

amopaitnTog.

Enontng: Anpntpng [TieEovodxng
Kabnmmg



PREFACE XI

Evyaprotieg

Apywcd, 0o Beha va gvyaplotiom 1o Tunuoe Emotiung Ymoloyiotdv Tov
[Mavemompuiov Kprtng yio 6Aa 0ca pov Tpocepepe ovTd Ta YpOVIOL KOL Yol TIG
YVOOELG TOV OMEKTNGO KATA TIG GTOVOES LLOV.

EmimAéov éva peyddo evyopiotd aviket kot 6to Ivatitovtov [TAnpogopikng tov
[opoparog Texyvoroyiog kot Epguvag o kot xpnuotododtnoe v’ pépet v epyacio
pov péoa and ta Evpomaixd épya “ACGT” (FP6-1ST-026996), “LOCCANDIA”
(FP6-1ST-2005-2.5.2)) xou “pluglT” (FP7-31CT-231413)). [Ieprocdtepo, Bo nOera va
EVYOPIETNCW OAOKANPM TV opdda [IAnpopoplokdv Zvomnudtov yio v Gyoyn
cuvepyacia pag, kKot 1o {eotd opadwd kiipa. Elvar petd and td6ca xpoévia kdtt cov
owoyévela yio péva (pe t Mapia t Movtodkn 6to poro g Lopdg).

Axopa, 8o nBeha va vyaploTo® OAOVG TOVS AVOpPOTOVE TOV TCTEYAV OE
péva kol pe fondncov va avaKoAOY® TNV ETICTNUOVIKY HoL Tavtdtnta. [ownitepeg
evyopiotieg a&iCovv otov endmn pov k. Anuntpn I[MieEovodkn mov otdbnke yo péva
ddaokarog, matépac, eilog. H ehevbepio g emAoyng mov mavta pov £0ve pe Epabde
VO OTEKOUOL EMGTNHOVIKA oTo oo pov Kot va {uyilo v kédbe pov amdeaon.
Xopig v ovclaoeTIKY TOV KOB0OYNoN, TIG EMGNUAVGELS TOV, TIS EVKOIPIES TOV OV
£€0wae Ba MTav adHvaTo Vo TACH €M TOV EifLO OT)UEPTL.

®a Ndero akdpo va guyapiotiow tov K. [dvvn TCitCka yati ntav mavia
npdOvpoc va pe Pondnoel omotednmote {tnoa v Pondewa tov. Tov guyoplotd
woitepa Yo T1G VITOOEIEELS TOV KOOGS Kot Y10 TO KPITIKO TVELILA TTOV LoV EUPVONCE.
®a 1Bl emiong va vyaploTo® TV K. Avactacioo AvaAvTh Yo TIg TOAVTIUES Kot
Kaipleg d10pODCELG TAV® GTO KEIIEVO TNG EPYAGiag Lov.

Axopa 0o Mbeha va evyopiommom tov k. [pnydpn Avioviov yoo v
OLOLPOPETIKN HATIA TAVE GTNV SOLAELA OV TTOV OV TPOGEPEPE Kot ToV K. Baoiin
Xp1otoeion yio TV mTpobupio TOL VO GUUUETAGYEL GTNV EMTPOTMN Yol TNV 0E0AOYNON

™G epyociog avtng KoBMG Kol Yo TG TOAD ypNolues emonudveelg tov. Télog
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guyopotd® tov k. [dvvn loovvidn ko tov k. Moavodn Kovumapdkn yuo v
CLUUETOYN TOVG OTNV €EETOOTIKN EMITPOMN TNG EPYOCIOG MOV KOU Yo TO TTOAD
EMOIKOOOUNTIKE TOVG OYOALL.

Televtaio aAAd LEYOAVTEPO EVYOPIOTM GVIKEL OUMG GTNV OIKOYEVELDL OV KOt
O GLYKPEVO 0TOVG Yyovelg pov Topyo ko Mopia, omnv adepen pov Xapd Kot
KaBd¢ kol oty Koméia pov Mapia, mov Ntav whvto dimia pov vo pe otnpilovv
VTOUOVETIKA € OAeg TIG OvokoAiec. ' 10 Adyo avut m gpyacio ovtny &ivor
APLEPOUEVT G’ OTOVG KO EATIL® VO QmOTEAEGEL 1oL PKpn avtapolPn yia tig Bvoieg

Kol TIG TPOoTAOELEg ToVg OAOV VT TOV KapO.
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Chapter 1

Introduction

“Everything should be as simple as it is, but not simpler”
- Albert Einstein

Contents
1.1 IMIOTIVATION ettt ee s s 888 s bbb 1
1.2 CONTRIBUTIONS ....ooitierimeeseeseseesesseesessassseesasssessessssssessasssessessessasssssessasssessasssessasssssssssens 3
1.2.7 ASSESSIMENT ...ttt 4
1.2.1 Exploiting ONntology EVOIULION .........cccovviiiriseseee e 4
1.2.2 Using high-level changes in data integration............ccccccoeoveinsineineineinnien. 5
1.2.3 Implementation & EValUation ..o 6
1.3 OUTLINE OF THIS DISSERTATION......ouiuiitititiiiiessessessessessessessessessessessessessessessessessessessses 6

1.1 Motivation

The development of new scientific techniques and the emergence of new high

throughput tools have led to a new information revolution. The nature and the amount
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2 CHAPTER 1 INTRODUCTION

of information now available open directions of research that were once in the realm
of science fiction. During this information revolution the data gathering capabilities
have greatly surpassed the data analysis techniques, making the task to fully analyze
the data at the speed at which it is collected a challenge. The amount, diversity, and
heterogeneity of that information have led to the adoption of data integration systems
in order to manage it and further process it.

The traditional view of database integration is that we have one or more source
databases S; and one wants to issue queries on them as if the queries were issued in a
new database T which represents the combined information in S; The end user
typically knows almost nothing about the source databases and he only sees the global
schema which he is using in order to formulate queries. The integration of these data
sources is a complex problem and raises several semantic heterogeneity problems.

By accepting an ontology as a point of common reference, naming conflicts are
eliminated and semantic conflicts are reduced. Ontologies are used to identify and
resolve heterogeneity problems, at schema and data level, as a means for establishing
explicit formal vocabulary to share. During the last years, ontologies have been used
in database integration (Calvanese, 2009),(Heymans, 2008), obtaining promising
results, for example in the fields of biomedicine and bioinformatics (Martin, 2008),
(Hartung, 2008).

When using ontologies to integrate data, one is required to produce mappings,
to link similar concepts or relationships from the ontology/ies to the sources (or other
ontologies) by way of an equivalence, according to some metric. This is the mapping
definition process (Klein, 2001) and the output of this task is the mapping, i.e., a
collection of mappings rules. In practice, this process is done manually with the help
of graphical user interfaces and it is a time-consuming, labour-intensive and error-
prone activity. Defining the mappings between schemata/ontologies is not a goal in
itself. The resulting mappings are used for various integration tasks such as data
transformation and query answering.

Despite the great amount of work done in ontology-based data integration, an
important problem that most of the systems tend to ignore is that ontologies are living
artifacts and subject to change (Flouris, 2008). Due to the rapid development of
research, ontologies are frequently changed to depict the new knowledge that is

acquired. The problem that occurs is the following: when ontologies change, the
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CHAPTER 1 INTRODUCTION 3

mappings may become invalid and should somehow be updated or adapted. This is
depicted in the following figure.

Ontology Ontology
Version 1 Version 2
aPPN
DB DB DB

Fig. 1. The problem with the mappings when ontologies evolve

In this document, we address the problem of data integration for evolving
RDF/S ontologies. We argue that ontology change should be considered when
designing ontology-based data integration systems. A typical solution would be to
regenerate the mappings and then regenerate the depending artifacts each time the
ontology evolves. However, as ontologies may change too often, the overhead of
redefining the mappings each time is significant. The approach to recreate mappings
from scratch each time the ontology evolves is recognized to be problematic
(Velegrakis, 2004), and instead previously captured information should be reused.
However, all current approaches that try to do that suffer from several drawbacks and
are inefficient in handling ontology evolution in a state of the art ontology-based data

integration system.

1.2 Contributions

The lack of an ideal approach leads us to propose a new mechanism that builds
on the latest theoretical advances on the areas of ontology change (Papavassiliou,
2009) and query rewriting (Cali, 2009), (Poggi, 2008) and incorporates and handles

ontology evolution efficiently and effectively.
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1.2.1 Assessment

To begin with, a comprehensive overview of the works on the area is presented
which provides the necessary insights for the practical understanding of the issues
involved. The lack of an ideal approach to handle ontology evolution in data
integration leads us to establish the requirements for an ideal approach. We highlight
what is missing from the current state of the art and outline the requirements for an
ideal data integration system that will incorporate and handle ontology evolution

efficiently and effectively.

1.2.1 Exploiting Ontology Evolution

To achieve this goal, we firstly capture ontology evolution using high-level
changes. As we shall see, a high-level language is beneficial for our problem for two
reasons: First, and most important because such a language yields logs that contain a
smaller number of individual low-level deletions (which are non-information
preserving) and this affects the effectiveness of our rewriting and second because the
produced change log has a smaller size.

More specifically we adopt the change operations and the corresponding
detection algorithm from (Papavassiliou, 2009) and we show that the proposed
language possesses salient properties such as uniqueness, inversibility and
composability. We show that the specific language is closed under composition and
we show how to compute the composition of a sequence of changes. Moreover, we
define the inverse of a change operation and we show how to compute the inverse of a
sequence of changes.

Then we show how to answer queries concerning the evolution of the ontology.
In order to do that, we define the concept of a change tree that we use to drive a user’s
understanding for the evolution of a specific triple and we describe an algorithm for
constructing all change trees. Besides computing the change trees for a specific triple
we show how to extend the previous algorithm in order to compute the change tree for

a specific class/property.
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1.2.2 Using high-level changes in data integration

We present the architecture of a data integration system, named Evolving Data
Integration (EDI) system, that allows the evolution of the ontology used as global
schema.

We define the exact semantics of our system and we elegantly separate the
semantics of query rewriting for different ontology versions and for the sources. Since
query rewriting for the sources has been extensively studied (Cali, 2009), (Poggi,
2008), (Deutsch, 2006) we focus on a layer above and deal only with the query
rewriting between ontology versions.

More specifically, we present a module that receives a user query specified
under the latest ontology version and produces rewritings that will be answered by the
underlying data integration systems - that might use different ontology versions. The
query processing in this module consists of two steps: a) query expansion that
considers constraints coming from the ontology, and b) valid query rewriting that uses
the changes between two ontology versions to produce rewritings among them.

The sequence of changes between the latest and the other ontology versions is
produced automatically at setup time and then each one of the change operations
identified is translated into a logical GAV mapping. This translation enables query
rewriting by unfolding. Then, the inversibility is exploited to rewrite queries from
past ontology versions to the current, and vice versa, and composability to avoid the
reconstruction of all sequences of changes among the latest and all previous ontology
versions.

Despite the fact that query rewriting always terminates, the queries issued to
other ontology versions might fail. We show that this problem is not inhibiting in our
algorithms but a consequence of information unavailability among ontology versions.
For example, no equivalent rewriting will be able to query a deleted class. To tackle
this problem, we propose three solutions: either to provide best “over-
approximations”, namely minimally-containing and minimally-generalized queries, or
to provide insights for the failure, thus driving query redefinition only for a specific
portion of the affected query. We prove that our method is sound and complete with

low complexity.
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1.2.3 Implementation & Evaluation

All algorithms were implemented on a novel framework called Exelixis which
will soon be available to the web. Using our framework we present our experimental
analysis based on two real world ontologies. One medium-size ontology (CIDOC-
CRM (Doerr, 2007) ) from the cultural domain which is rarely changed and one large-
size ontology (Gene Ontology (Gene Ontology Consortium, 2004)) from the
bioinformatics domain which is heavily updated daily. Using CIDOC-CRM we
produced a synthetic set of queries, which we used to evaluate the impact and the
scalability of our approach and then we extended our experimentation with real world
queries from both CIDOC-CRM and Gene Ontology. The experimentation shows the

practical value and the potential impact of our approach.

1.3 Outline of this Dissertation

This thesis is structured as follows. Chapter 2 is an overview of query
processing approaches and techniques used to query multi-database systems. Then
Chapter 3 reviews existing approaches for handling ontology evolution in data
integration and establish the requirements for an idea approach. In Chapter 4
ontology evolution is modelled and algorithms for explaining ontology evolution are
presented. Then, in Chapter 5 is shown how to use those changes to rewrite queries
among ontology versions. The implementation and the design choices we made are
placed in Chapter 6, where also resides our evaluation. Finally, Chapter 7 concludes
this dissertation and draws directions for further research work.

A part of Chapter 3 has been published in (Flouris, 2008), while the main part of
that chapter was published in (Kondylakis, 2009). Moreover, the techniques for query
rewriting based on Chapters 4 and 5 were initially presented in (Kondylakis, 2010a)
and (Kondylakis, 2010b) followed by (Kondylakis, 2010c), (Kondylakis, 2010d) and
latest submitted to (Kondylakis, 2011a). Moreover, techniques for the detection of
invalid queries, constructing the change paths and for identifying the minimal
generalized queries presented on Chapter 4 have been submitted to (Kondylakis,
2011b). Finally, a report on these topics will be included in (Zablith, 2011) and our
implementation will be submitted in (Kondylakis, 2011c) in the demo session.
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Chapter 2

Preliminaries

“Imagination is more important than knowledge. ”
-Albert Einstein

Contents
2.1 DATA INTEGRATION. .. .ccuiiiteiteieeisetseise st ssesse sttt sse sttt 8
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2.1 Data integration

Information integration systems aim to provide a uniform query interface to
multiple heterogeneous sources. One and useful way of viewing these systems, first
proposed in the Information Manifold project (Levy et al. 1996) is to postulate a
global schema that provides a unifying data model for all the information sources. A
query processor is in charge of accepting queries written in terms of this global
schema, translating them to queries on the appropriate sources, and assembling the
answers into a global answer.

A question of semantics now arises: what is the meaning of a query? Since a
query is expressed in terms of the global schema and the sources implicitly represent
an instance of this global schema, it would be natural — at least conceptually — to
reconstruct the global database represented by the views and apply the query to this
global database. There are at least two issues that must be resolved for this to work.

First the database represented by a set of sources may not be unique; in fact, it
may not even exist. Consider the two trivial examples: first suppose we have a single
information source, which is defined as the projection on attribute A of the global
binary relation R (A, B). For any given set of tuples stored at the source, there are
many (perhaps an infinite number) of possible global databases. Second, suppose we
have not one, but two sources, both storing the projection on A as before; one contains
the single tuple <al>, and the other the single tuple <a2>; then there is no global
database whose projection equal this sources. In sum the first issue is: what database
or databases are represented by a given set of sources.

Second, suppose we have identified the set of databases that are represented by
a given set of sources. Applying the query to each database and producing each
possible answer may be impossible (e.g if there is an infinite number of such answers)
or undesirable. The second issue is: how to produce a single compact representation
of these multiple answers, or an approximation to them if we so desire? Consider for
example a schema storing information about the first round of the World Cup Soccer
Tournament. Suppose a global relation Team (Country, Group) that represents a list of
all teams giving the name of the country and the group to which the country has been

assigned for first round play.
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Suppose first that the only source, Steam, Stores a unary relation listing all the
countries that are participating in the first round. The corresponding view mapping is
given by the conjunctive query:

Steam (X) € Team (x,y)

What global databases are represented by Steam? They are all the relations Team
such that the view mapping applied to Team produces exactly the given instance of
Steam, that is:

Steam (X) € Teountry (TeAM)

In this case, we say that the view is both sound and complete.On the other hand
suppose the only source Squai, Which contains the list of all teams that participated in
the qualifying round. This is a strict superset of the teams that will actually be playing
in the tournament. Since the global schema says nothing about the qualifying round,
the only reasonable view mapping is still

Squal (X) € Team (X,y)

However, now we understand that this is just an approximation, and that the
actual database could be any relation whose projection on Country produces a subset
of the source Squal that is:

Squal (X) 2 Tcountry (Team)

In this case we say the view is complete since it lists every possible team but not
sound since it lists teams that are not in the first round. Finally suppose that the only
source is Stype , listing those teams whose games will be televised. Again, the best
way to represent the view mapping since there is no information about television in
the global schema is by

Stupe (X) € Team (x, y)

In this case, every team listed in STube, corresponds to some tuple in the ideal
Team relation, but there are tuples in this ideal relation not represented in Sty . Thus
we take as the set of represented databases all the relations Team that satisfy:

Stube (X) < Teountry (Team)

In this case, we say the view is sound but not complete.
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2.1.1 Formal Preliminaries

Before going into the classification we have to formally describe what
constitutes a data integration system (Lembo et al. 2002).

Definition 2.1 (Data Integration System): A data integration system 1 is a triple <G,
S, M> where

e G is the global schema expressed in the global language L4 over alphabet A,.
The language Ly determines the expressiveness allowed for specifying the
global schema, i.e., the set of constraints that can be defined over it.

e S is the set of the local schemas. It is modelled in the source language Ls over
the alphabet As. As in the case of global schema is the language that
determines the set of constraints that can be defined over it. Moreover, A is
disjoint from A,.

e M is the mapping between G and S.

=

End Users Applications

Global

Schema
4

Schema
Mappings

A4

Local Local Local
Data Data Data
Source Schema’ Source Schema, Source Schema’

Fig. 2. A Data Integration System

The above definition of data integration system is general enough to capture
virtually all approaches in the literature. Obviously, the nature of a specific approach
depends on the characteristics of the mapping, and on the expressive power of the
various schema and query languages. For example, the language Ly may be very
simple, basically allowing the definition of a set of relations, or may allow for various
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forms of integrity constraints to be expressed over the symbols of Ayg. Analogously,
the type (e.g relational, semi-structured etc.) and the expressive power of Lg vary from
one approach to another.

In order to specify the semantics of a data integration system, we start with a set
of data at the sources and specify which data satisfies the global schema. We start by
considering a source database for I, i.e., a database D that conforms to the source
schema S and satisfies all constraints in S. Based on D, we now specify which is the
information content of the global schema G. We call global database for I any

database for G.

Definition 2.2 (Legal global database) A global database B for | is said to be legal
with respect to D, if:

e B is coherent with G, i.e., every constraint in schema G is satisfied by B.

e B satisfies the mapping with respect to D, which is its tuples respect the

relationships defined between the global and the source schema.

The notion of B satisfying the mapping M with respect to D depends on how to
interpret the assertions in the mapping. Here we simply note that no matter which is
the interpretation of the mapping, in general, several global databases exist that are
legal for I with respect to D. This observation motivates the relationship between data
integration and databases with incomplete information.

Next, we specify the semantics of queries posed to a data integration system. As
we said before, such queries are expressed in terms of the symbols in the global
schema of 1. In general, if q is a query of arity n and DB is a database we denote q°°
the set of tuples (of arity n) in DB that satisfy g.

Definition 2.3 (Semantics of a data integration system 1): Given a source database D
for 1, the semantics of | with respect to D, denoted sem(l, D), is defined as:

sem(l, D) ={ B | B is a legal global database for | w.r.t D }

In order to define the semantics of a query g over the global schema G, we have

to take into account all the legal global databases for I with respect to D.
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Definition 2.4 (Certain Answers): We call certain answers of a query q of arity n with
respect to | and D, the set g' ° of n-tuples t such that t « q°® for every database DB«

sem(l, D). Certain answers is what we call, answers to a user query.

The definition above states that the “right” answers are the answers that occur in
the intersection of all queries as queries vary over all “possible” databases. Note that
from the point of view of logic, finding certain answers is a logical implication of the
problem: check whether it logically follows from the information on the sources that t
satisfies the query. The dual problem is also of interest: find the so-called possible
answers to g, i.e checking whether te g° for some global database B that is legal for |
with respect to D. Finding possible answers is a consistency problem: check whether
assuming that t is in the answer set of q does not contradict the information on the
sources.

Given the above formal definitions, the mapping M between the global schema
and the sources is provided in terms of a set of assertions of the form <R, V>, where
R is a view over the global schema G and V is the view over the source schema S.
Associated to each mapping assertion <R, V > we have a specification as(V) of which
assumption to adopt for the view V, i.e., given a source database D, how to interpret
R® with respect to the set of tuples in the answer to V over a global database B, i.e.,
Ve,

Definition 2.5 (Assumption adopted for a view): The assumption we adopt for a view
V, called as (V), to each mapping assertion <R, V > is defined as follows:
e When as(V) = sound, the extension of the associated global view R provides any
superset of the tuples satisfying V. In other words, from the fact that a tuple is
in VP one can conclude that it satisfies the corresponding global relation R,
while from the fact that a tuple is not in V° one cannot conclude that it does
not satisfy R. Formally a global database B satisfies the sound view V if VP <
uR°
e When as(V) = complete, the extension of the associated global view R provides
any subset of the tuples satisfying V. In other words, from the fact that a tuple
is in V° one cannot conclude that such a tuple satisfies R. On the other hand,

from the fact that a tuple is not in VV° one can conclude that such a tuple does
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not satisfy R. Formally, a global database B satisfies the complete view V , if
VP = RE

e When a (V) = exact, the extension of the associated global relation R is exactly
the set of tuples satisfying V . Formally, a global database B satisfies the exact
view V, if VP = R,

Closely related to the query semantic is the global retrieved database.

Definition 2.6 (Retrieved Global Database): Given a source database C, we call
retrieved global database, denoted M(C), the global database obtained by “applying”
the queries in the mapping, and “transferring” to the elements of G the

corresponding retrieved tuples

Data integration systems can be classified according to their approach for
managing sources, or according to their approach for modelling those.

2.1.2 Classification according to the approach for managing sources

One of the possible classifications may be the one based on whether the queries
to the integration system are sent directly to the data sources or whether there are
results of the queries that are pre-stored. The virtual view approach corresponds to the

former technique, while the materialized view approach uses pre-stored results.

2.1.2.1 Virtual View approach

In the virtual view approach, the data are accessed from the sources on-demand
when a user submits a query to the data integration system. The two representative
architectures of this approach are federated database systems (FDBS), and mediated
systems. Despite of the fact that mediated systems have many similarities with the
federated databases, there are some basic differences:

¢ In mediated systems data sources are not necessarily databases.

e Sources in a mediated system can be added or removed easily.

e Usually, unlike the FDBSs (where access is read/write), in a mediated system
access in the sources is read only. This is due to the fact that sources in

mediator-based systems are more autonomous.
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2.1.2.2 Federated Database Systems

A federated database system (FDBS) consists of some semi-autonomous
components that participate in federation to partially share data with each other. Each
federated source can also operate independently from the others. These components
are not fully autonomous in the sense that they are modified by adding an interface
that allows communication with all other databases in the federation. Each component
of the federation is either a centralized DBMS, a distributed DBMS or another
federated database management system. There are two basic types of FDBS: tightly

coupled FDBSs and loosely coupled FDBSs.

User applications

|

Federation Layer

i i Wrapper Layer

Local .
-~ —_—

Applications — | i

Foundation Layer

Fig. 3. The architecture of a federated database

A ttightly coupled FDBS has one or more unified schemas which can be
produced automatically or manually (by a user). In this type of FDBS, domain experts
should undertake the arduous task of integrating all schemas of the federation into a
global one. These FDBSs are static and it is very difficult to add or remove
components from the integration system.

A loosely coupled FDBS does not have a unified schema, but it provides some
unified language for querying sources. In this approach database components are
more autonomous and they can decide how they will view all the accessible data in

the federation. As there is no global schema, each source can create its own
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““federated schema" for its needs. Like the tightly coupled approach, logical
heterogeneity should be resolved by domain experts.

The architecture of a federated database system is depicted on Fig. 3. Federated
databases is an approach appropriate to use when there is a small number of
autonomous sources, and we want to retain their ““independence”, allowing user to

query them separately and let them collaborate with each other to answer a query.

2.1.2.2 Mediated Systems

Mediated systems are an alternative architecture of data integration systems.
They integrate data sources by providing a global virtual view. This global view is
called mediated or global schema, and it is employed by the users in order to
formulate their queries. The architecture of a mediated system is shown in following
Fig. 4.

Answer| ‘12 ) T e et Quef}.‘

Sources

Fig. 4. The architecture of a mediated integration system

There are two basic software components of a mediated system: the mediator
and one wrapper per data source. The former offers a common interface to a set of
autonomous, independent and possibly heterogeneous data sources. The mediator
(a.k.a. integrator) performs the following actions: Firstly it receives a query
formulated in terms of the unified schema and decomposes these queries into sub-
queries. These queries are addressed to specific data sources. This decomposition is
based on source descriptions, which play an important role in sub-queries' execution
plan optimization. Finally, the sub-queries are sent to the wrappers of the individual

sources, which transform them into queries over the sources. The results of these sub-
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queries are sent back to the mediator. At this point the answers are merged into one
and returned to the user. Besides the possibility of asking queries, the mediator has no
control over the individual sources.

The latter component (wrapper) is responsible for wrapping a data source in
such a way that the source can interact with the rest of the integration system. It
provides the mediator with data from the source that it is in charge of, as requested by
the query execution engine. In consequence, it presents a data source as a convenient
database, with the right schema and data, appropriate for being understood and used
by the mediator. This presentation schema may be different from the real one, i.e., the
internal to the data source. A wrapper hides low-level (protocol) and data model
details of the data source from the mediator. It is an important component of both a
mediator based architecture and a data warehouse.

A key element in the mediator architecture is the set of source descriptions, i.e.,
the descriptions of the available sources and their contents, which is achieved by
establishing the relationships (mappings) between the global schema and the local
schemas. These descriptions can be represented by a set of logical formulas, similar to
the way in which views are defined in terms of base tables in the relational data
model. The language usually chosen for expressing these mappings is Datalog. There
are several fragments of Datalog that are used, based on the existence of recursion,
negation and arithmetic comparisons. The most common framework is the one of
conjunctive queries (Datalog with relational predicates) with neither recursion nor
negation, and arithmetic comparisons limited to equalities. There are different
approaches with respect to how mappings are defined, and will be discussed
thoroughly later.

2.1.2.2 Materialized View or Data Exchange Approach

In the materialized view approach (a.k.a data warehousing, data exchange)
(Fagin et al. 2005a), (Kolaitis et al. 2005) some filtered information from data sources
are pre-stored (materialized) in a repository and can be queried later. The single
repository in which data are stored is called data warehouse.

There are some important issues that should be taken into account for designing and
maintaining a data warehouse. Firstly (designing phase) we need to decide what

information from each source is going to be used, what views over these sources is
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going to be materialized and what global schema will be employed by the warehouse.
Next (maintenance phase) we have to deal with how the warehouse is initially
populated by the source data and how it is refreshed when the data in the sources are
updated. Finally, there are some query processing, storage and indexing issues that
should be taken into consideration. The architecture of the materialized view approach

is depicted on Fig. 5.

Operational Extraction, Transformation, Loading Data
SOUTCES , , i warehouse

Extraction Integration Aggrezation

S Schema extraction Schema matcling Schema
and translation and imtegration mplementation

| T f _
O D D @ & Data
{ - T warehouse
b | )
stagmg

area

Instance extraction Instance matching Filtening,

and transformation and imfegration aggrezation

Schedulmg, logging, monitoring, recovery, backup
Legends: " nfatadats flow (1) (3) Instance characrenstcs () Mappings between source and target
(raal metadsea) schema
. e
Data flow 'xf} Traaslation rules @ Filtering and aggregation niles

Fig. 5. The architecture of a data warehouse

2.1.2.3 P2P data Integration

Intuitively, data management and data integration tools should be well-suited
for exchanging information in a semantically meaningful way. Unfortunately, they
suffer from two significant problems: they typically require a comprehensive schema
design before they can be used to store or share information, and they are difficult to
extend because schema evolution is heavyweight and may break backwards
compatibility. As a result, many small-scale data sharing tasks are more easily
facilitated by non-database-oriented tools that have little support for semantics.

The goal of the peer data management system (PDMS) is to address this need:
So, it is proposed the use of a decentralized, easily extensible data management

architecture in which any user can contribute new data, schema information, or even
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mappings between other peers’ schemas. PDMSs represent a natural step beyond data
integration systems, replacing their single logical schema with an interlinked

collection of semantic mappings between peers’ individual schemas.

-

zj ﬁ i- ,-i & i:
TAhn
"i ';5 Ei IRt

gt
- External source = =  P2P mapping

Operations: - Answer(Q, F;) — Materialize( ;)

Fig. 6. P2P data integration

Peer data management systems (PDMS), formalized and studied by Halevy et
al. (Halevy et al. 2003), constitute a decentralized, extensible architecture in which

peers interact with each other in sharing and exchanging data.

According to Halevy, a PDMS N with peers P1, . . ., Pn has the following
characteristics.

e Each peer Pi has its own schema which is disjoint from those of the other peers, but
visible to all other peers.

e The schema of each peer can be a mediated global schema over a set of local
sources that are accessible only by that peer (thus each peer can be a data
integration system). The relationship between the peer and its local sources is
specified using storage descriptions that are containment descriptions R € Q or
equality descriptions R = Q, where R is one of the relations in the schema of the
peer and Q is a query over the local sources of the peer.

e The relationship between peers is specified using three types of peer mappings:

inclusion mappings, equality mappings, and definitional mappings, where
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1. Each inclusion mapping is a containment Qi1(A;) € Q2(A2) between
conjunctive queries Q1(A1) and Q2(Az), where A; andA; are subsets of
the set of all relations in the schemas of the peers.

2. Each equality mapping is an equality Qi(A;) = Q2(Az) between
conjunctive queries Q1(A1) and Q»(A,) as above.

3. Each definitional mapping is a Datalog program with rules having
single relations from the schemas of the peers in both the head and the
body of each rule.

In the terminology of (Halevy et al. 2003), a data instance D of a PDMS N is an
assignment of values to both the local sources of each peer and to the relations of the
schema of each peer. A data instance G is consistent with N and D if G and D satisfy
all the specifications given by the storage descriptions and the peer mappings of N.
This concept captures what it means for a data instance G to be a solution for a given
data instance D in the PDMS N.

In (Fuxman et al. 2005) the authors introduce and study a framework, called
peer data exchange, for sharing and exchanging data between peers. This framework
is a special case of a full-fledged peer data management system and a generalization
of data exchange between a source schema and a target schema. The motivation
behind peer data exchange is to model authority relationships between peers, where a
source peer may contribute data to a target peer, specified using source-to-target
constraints, and a target peer may use target-to-source constraints to restrict the data it
is willing to receive, but cannot modify the data of the source peer.

A fundamental algorithmic problem in this framework is that of deciding the
existence of a solution: given a source instance and a target instance for a fixed peer
data exchange setting, can the target instance be augmented in such a way that the
source instance and the augmented target instance satisfy all constraints of the setting?
They investigate the computational complexity of the problem for peer data exchange
settings in which the constraints are given by tuple generating dependencies. They
show that this problem is always in NP, and that it can be NP-complete even for
“acyclic” peer data exchange settings. They also show that the data complexity of the
certain answers of target conjunctive queries is in coNP, and that it can be coNP-

complete even for “acyclic” peer data exchange settings.
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After this, they explore the boundary between tractability and intractability for
the problem of deciding the existence of a solution. To this effect, they identify broad
syntactic conditions on the constraints between the peers under which testing for a
solution is solvable in polynomial time. These syntactic conditions include the
important special case of peer data exchange in which the source-to-target constraints
are arbitrary tuple generating dependencies, but the target-to-source constraints are
local-as-view dependencies. Finally, they show that the syntactic conditions they
identified are tight in the sense that minimal relaxations of them lead to intractability.

2.1.3 Classification according to the approach for modelling sources

Data integration system can be classified according to the way that the
mappings M are specified between G and S. There are two main approaches: the
Global-As-View approach (GAV) and the Local-As-View approach (LAV).
Furthermore, hybrid approaches based on both GAV and BAV have been recently

proposed.

2.1.3.1 Local Centric Approach

Global Schema

Fig. 7. Local as View approach

In the Local-As-View approach (LAV) (Levy et al. 1995) the global schema is
defined independently of the local sources schemas. Each source is described in terms
of the global schema relations. That is, the sources are described as materialized view

of the global schema. In other words, the query language Lys, allows only
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expressions constituted by one symbol of the alphabet As. An overview of the LAV
approach can be seen on Fig. 7 where S; can be seen as a view over concepts G; and

G2, while S; can be seen as a view over G,. An example then is presented below.

Definition 2.7 (LAV mapping): A LAV mapping is a set of assertions, one for each

element s of S of the form:

S 2 (e

From the modelling point of view, the LAV approach is based on the idea that
the content of each source s should be characterized in terms of a view gg over the
global schema. A notable case of this type is when the data integration is based on an
ontology which will study in the next chapter.

To better characterize each source with respect to the global schema, several
authors have proposed more sophisticated assertions (Abiteboul et al. 1998), (Grahne
et al. 1999) in the LAV mapping, in particular with the goal of establishing the
assumption holding for the various source extensions. Formally, this means that in the
LAV mapping, a new specification denoted as(s), is associated to each source element
s. The specification as(s) determines how accurate is the knowledge on the data
satisfying the sources, i.e how accurate is the source with respect to the associated

view . Three possibilities have been considered.

Sound views: When a source s is sound (denoted with as(s)=sound), its extension
provides any subset of the tuples satisfying the corresponding view gg. In other words
given a source database D, from the fact that a tuple is in s° one can conclude that it
satisfies the associated view over the global schema, while from the fact that a tuple is
not in s one cannot conclude that it does not satisfy the corresponding view.
Formally, when as(s)=sound, a database B satisfies the assertion s = qg with respect
toDif:

B
SDg qG

Note that, from a logical point of view, a sound source s with arity n is modelled

through the first order assertion
V xs(x) 2 qo(X)

Where x denotes variables x, ..., Xn.
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Complete views: When a source s is complete (denoted with as(s)=complete), its
extension provides any superset of the tuples satisfying the corresponding view. In
other words, from the fact that a tuple is in s° one cannot conclude that such a tuple
satisfies the corresponding view. On the other hand, from the fact that a tuple is not in
s® one can conclude that such a tuple does not satisfy the view. Formally when
as(s)=complete, a database B satisfies the assertion s = gg with respect to D if:

B
SD;) QG

Note that, from a logical point of view, a complete source s with arity n is
modelled through the first order assertion
V x gs(X) 2 s(X)

Where x denotes variables x, ..., Xn.

Exact views: When a source s is exact (denoted with as(s)=exact), its extension is
exactly the set of tuples satisfying the corresponding view. Formally when
as(s)=exact, a database B satisfies the assertion s = g¢ with respect to D if:

B
SD:qG

Note that, from a logical point of view, a complete source s with arity n is

modelled through the first order assertion
V' X 5(X) <> 0a(X)

Where x denotes variables Xy, ..., Xn.

Typically, in the literature, when the specification of as(s) is missing, source s is
considered sound. This is also the assumption we make in this document.

Due to the fact that the source relations are expressed as views over the global
schema, each modification/addition/deletion of sources is costless since the local
sources' schemas are the only things that should change. However, query rewriting in
this approach is quite complex. The user of the data integration system poses a query
in terms of the global schema and this query should be translated in terms of the local

ones. An example is shown on Fig. 8 and Fig. 9.
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Supposing that we are interested in the movies domain, we can imagine as a

running example the following schemata.

Global Schema:
movie (Title, Year, Director)
european (Director)

review (Title, Critique)

Source 1:
rl (Title, Year, Director) since 1960, European directors
r2 (Title, Critique) since 1990

Query:

Title and critique of movies in 1998
iD. movie (T, 1998, D) areview (T, R)
{(T,R) | movie (T, 1998, D) areview (T, R) }

Fig. 8. Running example schemata

Global Schema:
movie (Title, Year, Director)
european (Director)

review (Title, Critique)

Here associated to source relations we have views over the global schema

rl (T,Y,D) - {(T,Y,D) | movie (T, Y, D) A european (D) A~ Y>1960 }
r2 (T,R) - {(T,R) | movie (T, Y, D) A review (T,R) A Y>1990 }

The query {(T,R) | movie (T, 1998, D) ~review( T, R) } is processed by means of
an inference mechanism that aims at re-expressing the atoms of the global schema
in terms of atoms at the sources. In this case

{(TR)|r2(T,R) arl(T,1998, D)}

Fig. 9. Example 2.3

2.1.3.1.1 Query answering in LAV
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When we answer a query over the global schema on the basis of a LAV
mapping, we know only the extensions of the views associated to the sources, and this
provides us with only partial information on the global database. As we already
observed, in general, there are several possible global databases that are legal for the
data integration system with respect to a given source database. This observation
holds even for a setting where only sound views are allowed in the mapping. The
problem is even more complicated when sources can be modelled as complete or
exact views. In particular, dealing with exact sources essentially means applying the
closed world assumption on the corresponding views.

Since in LAV, sources are modelled as views over the global schema, the
problem of processing a query is traditionally called view-based query processing.
Generally speaking, the problem is to compute the answer to a query based on a set of
views, rather than on the raw data in the database.

There are two approaches to view-based query processing, called view-based

query rewriting and view-based query answering, respectively.

View-based query processing: In the former approach, we are given a query q and a
set of view definitions, and the goal is to reformulate the query into an expression of a
fixed language Lg that refers only to the views and provides the answer to q. The
crucial point is that the language in which we want the rewriting is fixed, and in
general coincides with the language used for expressing the original query. In a LAV
data integration setting, query rewriting aims at re-formulating, in a way that is
independent from the current source database, the original query in terms of a query to
the sources. Obviously, it may happen that no rewriting in the target language Lg
exists that is equivalent to the original query. In this case, we are interested in
computing also-called maximally contained rewriting, i.e., an expression that captures

the original query in the best way.

View-based query answering: In view-based query answering, besides the query g
and the view definitions, we are also given the extensions of the views. The goal is to
compute the set of tuples t such that the knowledge on the view extensions logically
implies that t is an answer to g, i.e., tis in the answer to q in all the databases that are

consistent with the views. It is easy to see that, in a LAV data integration framework,
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this is exactly the problem of computing the certain answers to g with respect to a
source database.

Notice the difference between the two approaches. In query rewriting, query
processing is divided in two steps, where the first one re-expresses the query in terms
of a given query language over the alphabet of the view names, and the second one
evaluates the rewriting over the view extensions. In query answering, we do not pose
any limitations on how queries are processed, and the only goal is to exploit all
possible information, in particular the view extensions, to compute the answer to the
query.

A large number of results have been reported for both approaches. We first
focus on view-based query answering. Query answering has been extensively
investigated in the last years (Abiteboul et al. 1998). A comprehensive framework for
view-based query answering, as well as several interesting results, is presented in
(Grahne et al. 1999). The framework considers various assumptions for interpreting
the view extensions with respect to the corresponding definitions (closed, open, and

exact view assumptions).

Sound CcQ cQ” PQ Datalog FOL

CQ PTIME coNP PTIME PTIME undec
CQ*E PTIME coNP PTIME PTIME undec
PQ coNP coNP coNP coNP undec
Datalog CcoONP undec CONP undec undec
FOL undec. undec undec undec undec
Exact CcQ cQ” PQ Datalog FOL

CQ coNP coNP coNP coNP undec
cQ” coNP coNP coNP coNP undec
PQ coNP coNP coNP coNP undec
Datalog undec undec undec undec undec
FOL undec undec undec undec undec

Fig. 10. Complexity of view based query answering

In (Abiteboul et a. 1998) , an analysis of the complexity of the problem under
the different assumptions is carried out for the case where the views and the queries

are expressed in terms of various languages (conjunctive queries without and with
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inequalities, positive queries, Datalog, and first-order queries). The complexity is
measured with respect to the size of the view extensions (data complexity). Fig. 10
summarizes the results presented in (Abiteboul et a. 1998). Note that, for the query
languages considered in that paper, the exact view assumption complicates the
problem. For example, the data complexity of query answering for the case of
conjunctive queries is PTIME under the sound view assumption, and coNP-complete
for exact views. This can be explained by noticing that the exact view assumption
introduces a form of negation, and therefore it may force to reason by cases on the
objects stored in the views.

Considering view-based query rewriting, several papers investigate the
rewriting question for different classes of queries. The problem is investigated for the
case of conjunctive queries (with or without arithmetic comparisons) in (Levy et al.
1995), for disjunctive views in (Afrati et al. 1999), for queries with aggregates in
(Cohen et al. 1999), (Grumback et al. 1999), for recursive queries and non-recursive
views in (Duschka et al. 1997b), for queries expressed in Description Logics in (Beeri
et al. 1997), for regular-path queries and their extensions in (Calvanese et al. 1998),
(Calvanese et al. 2000e), (Calvanese et al. 2000f) and in the presence of integrity
constraints in (Duschka et al. 1997b).

We already noted that view-based query rewriting and view-based query
answering are different problems. Unfortunately, their similarity sometimes gives
raise to a sort of confusion between the two notions. Part of the problem comes from
the fact that when the query and the views are conjunctive queries, the best possible
rewriting is expressible as union of conjunctive queries, which is basically the same
language as the one of the original query and views. However, for other query
languages this is not the case. Abstracting from the language used to express the
rewriting, we can define a rewriting of a query with respect to a set of views as a
function that, given the extensions of the views, returns a set of tuples that is
contained in the answer set of the query in every database consistent with the views.
We call the rewriting that returns precisely such set the perfect rewriting of the query
with respect to the views. Observe that, by evaluating the perfect rewriting over given
view extensions, one obtains the same set of tuples provided by view-based query
answering. i.e., in data integration terminology, the set of certain answers to the query

with respect to the view extension. Hence, the perfect rewriting is the best rewriting
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one can obtain, given the available information on both the definitions and the
extensions of the views.

An immediate consequence of the relationship between perfect rewriting and
query answering is that the data complexity of evaluating the perfect rewriting over
the view extensions is the same as the data complexity of answering queries using
views. Typically, one is interested in queries that can be evaluated in PTIME (i.e., are
PTIME functions in data complexity), and hence we would like rewritings to be
PTIME as well. For queries and views that are conjunctive queries (without union),
the perfect rewriting is a union of conjunctive queries and hence is PTIME. However,
already for very simple query languages containing union the perfect rewriting is not
PTIME in general. Hence, for such languages it would be interesting to characterize
which instances of query rewriting admit a perfect rewriting that is PTIME. By
establishing a tight connection between view-based query answering and constraint-
satisfaction problems, it is argued in (Calvanese et al. 2000e) that this is a difficult
task.

2.1.3.1.2 Query containment in LAV

Recent work addresses the problem of reasoning on queries in data integration
systems. The basic form of reasoning on queries is checking containment, i.e.,
verifying whether one query returns a subset of the result computed by the other query

in all databases.

Definition 2.8 (Query containment): A query Q1 is said to be contained in a query Qo,
denoted by Q1 C Qq, if for all database instances D, the set of tuples computed for Q;
is a subset of those computed for Q,. The two queries are said to be equivalent if Q,
CQzand Q<= Qs.

Besides the usual notion of containment, several other notions have been
introduced related to the idea of comparing queries in a data integration setting,
especially in the context of the LAV approach.

In (Millistein et al. 2000), a query is said to be contained in another query
relative to a set of sources modelled as views, if, for each extension of the views, the
certain answers to the former query are a subset of the certain answers to the latter.

Note that this reasoning problem is different from the usual containment checking:
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here we are comparing the two queries with respect to the certain answers computable
on the basis of the views available. The difference becomes evident if one considers a
counterexample to relative containment: Q; is not contained in Q, relative to views V
if there is a tuple t and an extension E of V, such that for each database DB consistent
with E (i.e., a database DB such that, the result V°? of evaluating the views over DB is
exactly E), t is an answer of Q; to DB, but there is a database DB’ consistent with E
such that t is not an answer of Q; to DB’. In other words, Q; is not contained in Q;
relative to views V if there are two databases DB and DB’ such that V°® = V?# and
QP =Q”

In (Millstein et al. 2000) it is shown that the problem of checking relative
containment is II," -complete in the case of conjunctive queries and views. In (Li et
al. 2001), the authors introduce the notion of “p-containment”, where p stands for

power.

Definition 2.9 (p-containment): A view set V is said to be p-contained in another view
set W, i.e W has at least the answering power of V, if W can answer all queries that

can be answered using V.

One of the ideas underlying the above mentioned papers is the one of
losslessness: a set of views is lossless with respect to a query, if, no matter what the
database is, we can answer the query by solely relying on the content of the views.
This question is relevant for example in mobile computing, where we may be
interested in checking whether a set of cached data allows us to derive the requested
information without accessing the network, or in data warehouse design, in particular
for the view selection problem, where we have to measure the quality of the choice of
the views to materialize in the data warehouse. In data integration, losslessness may
help in the design of the data integration system, in particular, by selecting a minimal
subset of sources to access without losing query-answering power. The definition of

losslessness relies on that of certain answers:

Definition 2.10 (Lossless views): A set of views is lossless with respect to a query, if
for every database, we can answer the query over that database by computing the

certain answers based on the view extensions.
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It follows that there are at least two versions of losslessness, namely,
losslessness under the sound view assumption, and losslessness under the exact view
assumption. The first version is obviously weaker than the second one. If views V are
lossless with respect to a query Q under the sound view assumption, then we know
that, from the intensional point of views, V contain enough information to completely
answer Q, even though the possible incompleteness of the view extensions may
prevent us from obtaining all the answers that Q would get from the database. On the
other hand, if V are lossless with respect to a query Q under the exact view
assumption, then we know that they contain enough information to completely answer

Q, both from the intensional and from the extensional point of view.

2.1.3.2 Global Centric Approach

Global Schema

Fig. 11. The global centric approach

In the Global-As-View approach (GAV) (Ullman et al 2000), the global schema
is expressed in terms of the local data sources. That is, the global schema is defined as
a view over the local sources' schemas. An overview of the approach is illustrated in
Fig. 11, where concept G; of the global schema is expressed in terms of the relations
S; and S; of the local database sources. If both these schemas are relational, then one
can write a rule-based conjunctive query over the source relations. This query
specifies how to obtain the tuples for the global schema relations. Each query
specifies that in order to compute the tuples in the relation in the head of the rule, one
has to go to the body of the rule and compute whatever is specified there. The
attributes appearing in the head indicate that they are the attributes of interest, thus the

others (in the body) can be projected out at the end.
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In the GAV approach, the mapping M associates to each element g in G a query
gs over S. In other words, the query language Ly ¢ allows only expressions constituted
by one symbol of the alphabet Ag. Therefore, a GAV mapping is a set of assertions,
one for each element g of G, of the form:

g—>0s

From the modelling point of view, the GAV approach is based on the idea that
the content of each element g of the global schema should be characterized in terms of
a view (s over the sources. In some sense, the mapping explicitly tells the system how
to retrieve the data when one wants to evaluate the various elements of the global
schema. This idea is effective whenever the data integration system is based on a set
of sources that is stable. Note that, in principle, the GAV approach favours the system
in carrying out query processing, because it tells the system how to use the sources to
retrieve data. However, extending the system with a new source is now a problem: the
new source may indeed have an impact on the definition of various elements of the
global schema, whose associated views need to be redefined.

To better characterize each element of the global schema with respect to the
sources, more sophisticated assertions in the GAV mapping can be used, in the same
spirit as we saw for LAV. Formally, this means that in the GAV mapping, a new
specification, denoted as(g) (either sound, complete, or exact) is associated to each
element g of the global schema. When as(g) = sound (resp., complete, exact), a
database B satisfies the assertion g = qs with respect to a source database D if:

UGS (resp. I 2P Us=gf)

The logical characterization of sound views and complete views in GAV is
therefore through the first order assertions:

V' x gs(x) > 9s(x)
respectively.

It is interesting to observe that the implicit assumption in many GAV proposals
is the one of exact views. Indeed, in a setting where all the views are exact, there are
no constraints in the global schema, and a first order query language is used as Ly s, a
GAV data integration system enjoys what we can call the “single database property”,
i.e., it is characterized by a single database, namely the global database that is

obtained by associating to each element the set of tuples computed by the
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corresponding view over the sources. This motivates the widely shared intuition that
query processing in GAV is easier than in LAV. However, it should be pointed out
that the single database property only holds in such a restricted setting.

In particular, the possibility of specifying constraints in G greatly enhances the
modelling power of GAV systems, especially in those situations where the global
schema is intended to be expressed in terms of a conceptual data model, or in terms of
an ontology. In these cases, the language L is in fact sufficiently powerful to allow
for specifying, either implicitly or explicitly, various forms of integrity constraints on
the global database.

In general, the views associated to the elements of the global schema are
considered sound, i.e. all the data provided by a view satisfies the corresponding
element of the global schema, but there may be additional data satisfying the element
not provided by the view.

It is an implicit assumption (Lenzerini et al. 2002), in many GAV proposals,
that the assertions above are exact. This assumption is true when in the global schema
there are no additional constraints. Under these circumstances, the query rewriting in
GAV approach is quite easy (it is illustrated in the Fig. 12). However, the possibility

of specifying constraints in the global schema enhances the expressing power of GAV

systems.
answer().— p i O~ . . A p; 0 Query Q
n
) answer():— u 7 On . . LA er() Solution S
answer() i~ p ; O~ AP 0n AP j, 10~ AP () Expansion E

Fig. 12. Query Unfolding

As depicted in Fig. 12 the Global-As-View approach has the advantage of
simple query rewriting. Due to the fact that the global schema is expressed in terms of
the local schemas query rewriting consists of replacing each atom of the query with its
definition. In this way the query is finally expressed in terms of the local sources. This

substitution is called query unfolding.
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2.1.3.2.1 Query answering in GAV

Most GAV data integration systems do not allow integrity constraints in the
global schema, and assume that views are exact. It is easy to see that, under these
assumptions, query processing can be based on a simple unfolding strategy. When we
have a query g over the alphabet Ag of the global schema, every element of Ag is
substituted with the corresponding query over the sources, and the resulting query is
then evaluated at the sources. As we said before, such a strategy suffices mainly
because the data integration system enjoys the single database property. Notably, the
same strategy applies also in the case of sound views.

However, when the language L used for expressing the global schema allows
for integrity constraints, and the views are sound, then query processing in GAV
systems becomes more complex. Indeed, in this case, integrity constraints can in
principle be used in order to overcome incompleteness of data at the sources.

The assumption of sound views asserts that the tuples retrieved for a relation r
are a subset of the tuples that the system assigns to r; therefore, we may think of
completing the retrieved global database by suitably adding tuples in order to satisfy
foreign key constraints, while still conforming to the mapping. When a foreign key
constraint is violated, there are several ways of adding tuples to the retrieved global
database to satisfy such a constraint. In other words, in the presence of foreign key
constraints in the global schema, the semantics of a data integration system must be
formulated in terms of a set of databases, instead of a single one. Since we are
interested in the certain answers q"° to a query g, i.e., the tuples that satisfy g in all
global databases that are legal for I with respect to D, the existence of several such
databases complicates the task of query answering. In (Cali et al. 2002), a system
called IBIS is presented, that takes into account key and foreign key constraints over
the global relational schema. The system uses the foreign key constraints in order to
retrieve data that could not be obtained in traditional data integration systems. The
language for expressing both the user query and the queries in the mapping is the one
of union of conjunctive queries. To process a query g, IBIS expands g by taking into
account the foreign key constraints on the global relations appearing in the atoms.
Such an expansion is performed by viewing each foreign key constraint r1[X] <
r2[Y], where X and Y are sets of h attributes and Y is a key for r,, as a logic

programming rule
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BCX fren(X ), oo (X)) < 1 (X, Xt + o Xim)

where each f; is a Skolem function, X is a vector of h variables, and we have
assumed for simplicity that the attributes involved in the foreign key are the first h

ones.

Global Schema:
movie (Title, Year, Director)
european (Director)

review (Title, Critique)

Here associated to relations in the global schema we have views over the sources
movie (T,Y,D) = {(T,Y,D) | r1(T,Y,D)}

european (D) 2 {(D)|rl(T,Y,D)}

review (T,R) =2{(T,R) | r2(T,R)}

Global schema containing constraints:
movie (Title, Year, Director)
european (Director)
review (Title, Critique)
european_movie_60s (Title, Year, Director)
V T,Y,D. european_movies_60s (T,Y,D) = movie (T,Y,D)
1T, Y, D. european_movies_60s (T,Y,D) = European (D)

GAV mappings :

european_movies_60s (T,Y,D) > {(T,Y,D)|r1(T,Y,D)}
european (D) > {(D) | ri(T)Y,D)}
review(T,R) 2 {(TR)[r2(TR)}

Query processing :
The query {(T,R) | movie (T, 1998, D) areview ( T, R) } is processed by means of
unfolding. In this case it becomes: r1(T,1998,D) ~r2(T,R)

Fig. 13. GAV example
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Each ris a predicate, corresponding to the global relation r;, defined by the
above rules for foreign key constraints, together with the rule
E(Xg o0 Xn) 1 (Xg, e Xp)

An example is shown on Fig. 13, where the global and the local schemata are
shown and an example of query unfolding as well.

Once such a logic program 71 has been defined, it can be used to generate the
expanded query expand(q) associated to the original query g. This is done by
performing a partial evaluation with respect to 77 of the body of g, which is the query
obtained by substituting in q each predicate r; with r;’. In the partial evaluation tree, a
node is not expanded anymore either when no atom in the node unifies with a head of
a rule, or when the node is subsumed by (i.e., is more specific than) one of its
predecessors. In the latter case, the node gets an empty node as a child; intuitively this
Is because such a node cannot provide any answer that is not already provided by its
more general predecessor.

These conditions guarantee that the construction of the partial evaluation tree
for a query always terminates. Then, the expansion expand(q) of q is a union of
conjunctive queries whose body is constituted by the disjunction of all nonempty
leaves of the partial evaluation tree. It is possible to show that, by unfolding
expand(q) according to the mapping, and evaluating the resulting query over the
sources, one obtains exactly the set of certain answers of g to | with respect to D.

The major drawback of this approach is its lack of flexibility with respect to the
addition/deletion of the sources to the data integration system, or the modification of
the sources schemas. This is due to the fact that each modification of a local source

schema results in modification of global schema.

2.1.3.3 Combining Global and Local Approach

As discussed earlier, both GAV and LAV have some drawbacks that should be
overcome. Thus, an approach has been proposed that combines global and local
approach. It is called GLAV (Friedman et al.1999). In this approach we are able to
express a local source in terms of the global schema (LAV), a global source in terms
of the local sources (GAV) and additionally a whole view (" "part”) of the global

schema in terms of the local sources. An overview of this approach can be seen in Fig.
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14 above where the whole “relation” of G; and G, is described by the local sources

relations, S; and S,.

Global Schema

G2 Gs3

\ GLAV

Fig. 14. GLAV approach

Definition 2.11 (A GLAV mapping): The mappings M, in GLAV approach, are in the
form:
G1(X1, Z1), G2(X2, Z2), . . ., Gi(Xj, Zj) «— V(X,Y)

where X = U; Xi, (Ui Z)NY =0, Giare global relations and V(X, Y ) is a

conjunction of source relations.

An example scenario is shown in Fig. 15 where obviously the mappings
combine a query over the sources on the left-hand side, with a query over the global

schema on the right-hand side.

Definition 2.12: The mapping M between the global schema and the sources,
constitutes of the following assertions:
R®> VP (sound source)
or
R® < VP (complete source)
or
R® = VP (exact source)
where R is a view (query) of the global schema, and V is a view (query) over the local

sources.
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Global Schema:

works (Person, Project)

area (Project, Field)
Source 1:

hasJob (Person, Field)
Source 2:

teach  (Professor, Course)

in (Course, Field)
Source 3:
get (Researcher, Grant)

for (Grant, Project)
GLAV mapping:
{ (r,f) | hasJob(r,f)} > { (r,f) | works(r,p) ~area(p,f)}
{ (r,f) | teach(r,c) Ain(c,§)}  2>{(r,f) | works(r,p) ~rarea(p,)}
{ (r.p) | get(r,g) Afor(g,p)}  =>{(r.,p)| works(r,p)}

Fig. 15. GLAV example

The GLAV approach combines the expressive power of GAV and LAV.
Additionally, it reaches the limits of the expressive power of a data source description
language. This is because slight additions to the expressive power of GLAV would
make query answering co-NP-hard in the size of the data in the sources. Query
rewriting in this approach is shown to be no harder than it is for the LAV approach. It
should be noted that GLAV is also of interest for data integration independent of data

sources, because of the flexibility it provides in integrating heterogeneous sources.

2.1.3.4 Another hybrid approach:BAV

BAV is another data integration approach. BAV transformation sequences are
partially derived from LAV or GAV view definitions. BAV is a rich integration
framework, which is based on the use of reversible sequences of primitive schema
transformations, called transformation pathways. It is an expressive data integration
language, since it allows the expression of mappings in both directions. Another

major advantage of using the BAV approach is that it supports the evolution of both
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global and local schemas, in contrast to taking either a GAV or LAV approach. With
the BAV approach it becomes possible to extract a definition of the global schema as
a view over the local schemas and vice versa. BAV combines the benefits of LAV and
GAV in the sense that any reasoning or processing which is possible with the view
definitions of GAV or LAV will also be possible with the BAV definition. However,
BAYV is likely to be more costly to reason with and process than the corresponding
LAV, GAV or GLAV view definitions would be. The most representative system that
implements this approach is AutoMed (Boyd et al. 2004)

2.1.3.5 Comparison of the approaches

In conclusion, there are some interesting facts that should be noted about the
approaches above. It is true that both LAV and GAV, which are the first approaches
proposed, have advantages and disadvantages. LAV is really flexible in
addition/deletion of the local sources that participate in the integration system; this is
the main drawback of the GAV approach, since every addition/deletion leads to a new
rewriting of the global schema description. Exactly the same occurs when it is
necessary to add some more complicated constraints on sources, since LAV demands
only the addition of the necessary changes to the source, while GAV demands the
rewriting of the global schema description. These constraints usually concern the
availability of the data during querying the sources. However, query answering is
quite simple in GAV, whereas it is harder in LAV. In the GAV approach, query
rewriting can be achieved by unfolding the source descriptions of the global "parts"
of the query. In the LAV approach, this is not feasible since such descriptions are not
available.

A first attempt to analyze the similarities and differences between GAV and
LAYV approach can be found in (Cali et al. 2001), (Cali et al. 2002), where the authors
address the problem of checking whether a LAV system can be transformed into a
GAYV one, and vice-versa. They deal with transformations that are equivalent with
respect to query answering, i.e., that enjoy the property that queries posed to the
original system have the same answers when posed to the target system. Results on
query reducibility from LAV to GAV systems may be useful, for example, to derive a
procedural specification from a declarative one. Conversely, results on query

reducibility from GAV to LAV may be useful to derive a declarative characterization

HARIDIMOS KONDYLAKIS



38 CHAPTER 2 PRELIMINARIES

of the content of the sources starting from a procedural specification. We briefly
discuss the notions of query-preserving transformation, and of query-reducibility

between classes of data integration systems.

Definition 2.13 (query preserving data integration system): Given two integration
systems | =< G, S, M>and I’ = < G’, S, M’> over the same source schema S and
such that all elements of G are also elements of G’, I’ is said to be query-preserving
with respect to I, if for every query g to | and for every source database D, we have
that:

In other words, 7’ is query-preserving with respect to | if, for each query over the
global schema of | and each source database, the certain answers to the query with
respect to the source database that we get from the two integration systems are

identical.

Definition 2.14: A class C; of integration systems is query-reducible to a class C, of
integration systems if there exist a function f : C; = C; such that, for each I, ¢ C; we

have that f(l;) is query-preserving with respect to I;.

With the two notions in place, the question of query reducibility between LAV
and GAV is studied in (Cali et al. 2002) within a setting where views are considered
sound, the global schema is expressed in the relational model, and the queries used in
the integration systems (both the queries on the global schema, and the queries in the
mapping) are expressed in the language of conjunctive queries. The results show that
in such a setting none of the two transformations is possible. On the contrary, if one
extends the framework, allowing for integrity constraints in the global schema, then
reducibility holds in both directions. In particular, inclusion dependencies and a
simple form of equality-generating dependencies suffice for a query-preserving
transformation from a LAV system into a GAV one, whereas single head full
dependencies are sufficient for the other direction. Both transformations result in a
query-preserving system whose size is linearly related to the size of the original one.

In the GLAV approach, the source evolution and addition/removal is easier,

since, in fact, both directions are implemented (LAV and GAV) and in this case it is
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appropriate to use the LAV approach. Additionally, query answering is not harder
than in LAV. However, GLAV gives the ability of more expressive mappings.

An interesting observation, as stated in (Cali et al. 2002b), is that, under certain
circumstances, the existence of constraints (e.g., keys or foreign keys) in the global
schema can turn the GLAV mappings into GAV ones, and thus take benefit of the
query reformulation algorithm proposed for the GAV approach. Unfortunately,
despite their expressiveness, GLAV mappings introduce new challenges. Further,
works (Madhavan et al. 2003) has shown that the composition of GLAV mappings
may be undecidable in certain cases (e.g., the composition of GLAV rules, which map
non CQx (CQx queries is the class of conjunctive queries in which every nested
expression has at most k variables) queries over a source schema to non-CQy queries
over a target schema, may result in an infinite set of mappings). Additionally, as
illustrated in (Fagin et al. 2005b) the composition of two GLAV rules does not always
imply a new GLAYV rule that maps a conjunctive query to another conjunctive query.
There are cases (e.g., when we compose two finite sets of non full* source-to-target
dependencies used for the interpretation of the mappings) where the composition is
definable only with the use of existential second-order formulas. In these formulas,
new function symbols that guarantee the presence of the existentially quantified
variables appearing in the dependencies, are introduced.

BAV on the other hand, combines the benefits of LAV and GAV in the sense
that any reasoning or processing which is possible with the view definitions of GAV
or LAV will also be possible with the BAV definition. However, BAYV is likely to be
more costly to reason with and process than the corresponding LAV, GAV or GLAV

view definitions would be.

2.2 Ontology based Data Integration

2.2.1 What is an ontology?

Ontologies can play a key role in the task of knowledge exchange acting as
Enterprise models. Originally introduced by Aristotle, ontologies are formal models

! A dependency is full if no existentially quantified variables occur in it.
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about how we perceive a domain of interest and provide a precise, logical account of
the intended meaning of terms, data structures and other elements modelling the real
world. As such, they are often viewed as the key means through which the
SemanticWeb vision (Berners-Lee et al. 2001) can be realized and have already found
several applications in the area of Knowledge Representation (KR) and in the
Semantic Web. Ontologies are so important in the Semantic Web because they
provide a means to formally define the basic terms and relations that comprise the
vocabulary of a certain domain of interest (Lambrix & Edberg 2003), enabling
machines to process information provided by human agents. As a result, ontologies
can help in the representation of the content of a web page in a formal manner, so as
to be suitable for use by an automated computer agent, crawler, search engine or other
web service. The importance of ontologies in current Artificial Intelligence (Al)
research is also emphasized by the interest shown by both the research and the
enterprise community to various problems related to ontologies and ontology
manipulation (McGuiness et al. 2000).

The term ontology has come to refer to a wide range of formal representations,
including taxonomies, hierarchical terminology vocabularies or detailed logical
theories describing a domain (Noy & Klein 2004). For this reason, a precise definition
of the term is rather difficult and different definitions have appeared in the literature
(see, for example, (Gruber 1993a), (Guarino 1998)). One commonly used definition is
based on the original use of the term in philosophy, where an ontology is a systematic
account of Existence. For Al systems, what “exists” is that which can be represented
(Gruber 1993b); therefore, an ontology in the Al context is a structure that specifies a
conceptualization, or, more accurately, a formal specification of a shared
conceptualization of a domain (Gruber 1993a).

A more formal, algebraic, approach, identifies an ontology as a pair < S, A >,
where S is the vocabulary (or signature) of the ontology (being modelled by some
mathematical structure, such as a poset, a lattice or an unstructured set) and A is the
set of ontological axioms, which specify the intended interpretation of the vocabulary
in a given domain of discourse (Kalfoglou & Schorlemmer 2003). A similar definition
is given in (De Bruijn et al. 2004), where the signature S is broken down in three (not
necessarily disjoint) sets, the set of concepts (C), the set of relations (R) and the set of

instances (1); thus, an ontology is defined as a 4-tuple <C, R, I, A >,
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Ontologies are best used in applications where the core problem is the use and
management of common representations. Many applications have been developed for
instance in bio-informatics, or for knowledge management purposes inside
organizations. Local data models (a.k.a contexts (Bouquet et al. 2004)), instead, are
best used in those applications where the problem is the use and management of local
and autonomous representations with a need for a limited and controlled form of
globalization ( or, using the terminology used in the context literature, maintaining
locality still guaranteeing semantic compatibility among representations). Contexts
and ontologies have both strengths and weaknesses. It can be argued that the strengths
of the ontologies are the weaknesses of contexts and vice versa. On the one hand, the
use of ontologies enables the parties to communicate and exchange information.
Shared ontologies define a common understanding of specific terms, and thus make it
possible to communicate between systems on a semantic level. On the weak side,
ontologies can be used only as long as consensus about their contents is reached.
Furthermore, building and maintaining them may become arbitrary hard, in particular
in a very dynamic, open and distributed domain like the web. On the other hand,
contexts encode not shared interpretation schemas of individuals or groups of
individuals. Contexts are easier to define and to maintain. They can be constructed
with no consensus with the other parties, or only with the limited consensus which
makes it possible to achieve the desired level of communication and only with the
relevant parties. On the weak side, since contexts are local to parties, communication
can be achieved only by constructing explicit mapping among the elements of the
contexts of the involved parties; and extending the communication to new topics

and/or new parties requires the explicit definition of new mappings.

2.3.1 Ontologies as Enterprise Models

As Calvanese et al. (Calvanese et al. 1998b) propose (see Fig. 16), in the conceptual
layer of an information integration problem we distinguish the Enterprise or Target
Model and multiple Source Models. The Enterprise or Target Model is a conceptual
representation of the global concepts and relationships that are of interest to the
application. The Source Model of an information source is a conceptual representation
of the data residing in underlying information sources, or at least of the portion of data

currently taken into account.
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Fig. 16. Architecture for Data Integration

In order to achieve logical transparency using this model the global schema
should provide a conceptual view, as shown on Fig. 17, that is independent from the
sources, that is described with a semantically rich formalism. In this context, the need
for explicit models of semantic information in order to support information exchange

has been widely acknowledged by the research community.

Answer(Q) *+ = = Cuery over the conceptual laver

Conceptaal layer

= = Ontology

= = Sources

Fig. 17. Data Integration though an ontology

Now a data integration system / is a triple (G, S, M) where
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e G is the global schema — now is an ontology. The global schema is a logical theory
over an alphabet Ay,

e S is the source schema. The source schema is constituted simply by an alphabet A
disjoint from A,

e M is the mapping between S and G.

The proposed language for expressing ontologies is OWL, which is also
advocated by the Semantic Web community. Description Logic languages such as the
OWL are considered the fundamental formal tool for expressing ontologies. Typical
reasoning tasks in DLs are classification, subsumption, instance checking, all based
on logical inference.

Now the question is whether view based query answering (of conjunctive
queries) is decidable or not if we use an expressive description logics such OWL to
express the ontology. The answer is that this can be done in 2EXPTIME in combined
complexity.

We consider query answering in the following setting:

e Data (i.e ABox A) are incomplete and assumed to be large (their size dominates the
size of schema)
e Schema (i.e TBox T) constraints the possible models

e Query g is a complex expression (conjunctive query)

Here the task is to compute cert(q, T, A) ={c| Tu A |=q(c)|} as shown also
on Fig. 18

Logical inference

A - —= cert(q.T..A)

Fig. 18. Query answering

2.3.2 Single, Multiple & Hybrid Ontology Approaches

Ontologies can be used as the global schema and it seems that database

integration is currently evolving towards this direction. By accepting an ontology as a
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point of common reference, naming conflicts are eliminated and semantic conflicts
are reduced. Below, we review a few recent ontology-based integration projects.

However, there are different ways of how to employ the ontologies. In general,
three different directions can be identified: single ontology approaches, multiple
ontology approaches and hybrid approaches.

The integration based on a single ontology seems to be the simplest approach
because it can be simulated by the other approaches. Single ontology approaches use
one global ontology providing a shared vocabulary for the specification of semantics
and all information sources are related to that ontology. Single ontology approaches
can be applied to integration problems where all information sources to be integrated
provide nearly the same view on a domain. But if one information source has a
different view on the domain, e.g. by providing another level of granularity, finding
the minimal ontology commitment (Gruber, 1993b) becomes a difficult task. Also
single ontology approaches are susceptible to changes in the information sources
which can affect the conceptualization of the domain represented in the ontology.
Depending on the nature of the changes in one information source it can imply
changes in the global ontology and in the mappings to other information sources.
These disadvantages led to the development of multiple ontology approaches.

In multiple ontology approaches, each information source is described by its
own ontology. In principle, the “source ontology” can be a combination of several
other ontologies but it cannot be assumed that the different “source ontologies” share
the same vocabulary. At first, the advantage of multiple ontology approaches seems to
be that no common and minimal ontology commitment about the global ontology is
needed. Each source ontology could be developed without respect to other sources or
their ontologies — no common ontology with the agreement of all sources are needed.
This ontology architecture can simplify the change, i.e modifications in one
information source or the addition/removal of sources. However, in reality the lack of
a common vocabulary makes it extremely difficult to compare different source
ontologies. To overcome this problem, an additional representation formalism
defining the inter-ontology mapping should be provided. The inter-ontology mapping
identifies semantically corresponding terms of different source ontologies. However,

the mapping also has to consider different views on a domain, e.g. different
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aggregation and granularity on the ontology concepts and it is really difficult to be
defined in practice.

To overcome the drawbacks of both single and multiple ontology approaches,
hybrid approaches were developed. Similar to multiple ontology approaches the
semantics of each source is described by its own ontology. But in order to make the
source ontologies comparable to each other they are built upon one global shared
vocabulary. The shared vocabulary contains basic terms of a domain and in order to
build complex terms of a source ontology, the primitives are combined by some
operators. Since each term of a source ontology is based on the primitives, the terms
become easier to compare than in multiple ontology approaches. Usually, the shared
vocabulary is also an ontology. The advantage of a hybrid approach is that new
sources can be easily added without the need of modification in the mappings or the
shared vocabulary. It also supports the acquisition and evolution of ontologies. The
use of a shared vocabulary makes the source ontologies comparable and avoids the
disadvantages of multiple ontology approaches. However, existing ontologies cannot
be reused easily, but have to be re-developed from scratch. Representative system of
this category is MECOTA (Wache et al. 1999).

2.3.3 Representative Ontology based Data Integration Systems

In BACIIS (Ben Miled et al. 2005) and TAMBIS (Stevens et al 2000) , a single
conceptualization is provided trying to capture the information from the system data
sources. User queries are built and results are returned in terms of this global
conceptual schema. However, any change in the sources may require the modification
of the global domain conceptualization. Specifically, in TAMBIS, the integration
process is restricted to combine data from sources that contain different types of
information for the same semantic entity, since it does not take into account the
potential overlapping aspect of sources or the probable incompleteness of some of
them. Moreover, BACIIS only integrates Web Databases and the mappings are based

on text parsing from web pages.

2.3.3.1 D2R Map
DR2 Map (Bizer, 2003) is a declarative and XML-based language. It allows

describing mappings between relational database schemata and OWL/RDFS
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ontologies. With DR2, users can create flexible mappings of complex relational
structures without having to change the existing database schema, which is achieved
by applying SQL statements directly on the mapping rules. The DR2 processor is
responsible for the mapping process, which is performed in four logical steps:

e A record set is selected from the database, based on class similarity.

e The record set is grouped according to the groupBy columns.

e Class instances are created.

e The record set data is mapped to instance properties.

DR2 MAP is kept as simple as possible, expressing mappings with just three

elements. Fig. 19 shows the mapping process used in DR2 MAP.

Record set Grouped record set
Table
L‘—-|‘
Instance Instance
|| Property +— Instance
| Property Instance
L Property Instance

Fig. 19. The D2R Mapping Process

2.3.3.2 KAON
KAON (Volz, 2003) is an open source Tool suite that provides a multitude of

software modules specially designed for the semantic web. It includes a persistent
RDF store, an ontology store, ontology editors, etc. It has been developed as a result
of a joint effort by the institute AIFB (University of Karlsruhe) and the Research
Center of Information Technologies (FZI).

KAON offers an ontology management infrastructure, mainly targeted at
business applications. It allows creating and managing ontologies easily and provides
a framework aimed at building ontology-based applications.

KAON Reverse tool offers the possibility of mapping relational databases to
ontologies, enabling two tasks: updating databases contents and performing queries
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through the conceptualization of a database. One drawback of this tool is that changes
cannot be applied to the structure of the database with respect to the ontology, since
the whole process should be repeated. This work is not reusable.

The kernel of this suite is the KAON SERVER, which brings all the software
modules together. KAON SERVER is implemented with the Java programming
language. The Java Management Extensions (JMX) are used to manage and monitor

all the resources KAON handles. Fig. 20 shows KAON architecture.
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Fig. 20 Kaon server architecture

2.3.3.3 Ontofusion & similar projects

In ONTOFUSION (Perez-Rey et al. 2006), separate conceptual schemas are
used to describe the semantics of each data source. Every concept in a physical
database is mapped to a virtual schema. Virtual schemas are ontologies representing
the structure of the database at a conceptual level. Then, the various virtual schemas
corresponding to the distinct databases are merged into new, unified virtual schemas
that can be accessed by the users in order to form their queries. This approach adds
more complexity to the whole task, but is otherwise promising. Similar projects are
PICSEL (Goasdoui et al. 2000), MECOTA (Wache et al. 1999), and SEMEDA
(Kohler et al. 2003).
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.3.3.4 MASTRO-I

A latest attempt worth mentioning is the MASTRO-I system (Calvanese, 2008).

The global schema in this system is specified in terms of an ontology, specifically in
terms of a TBOX expressed in a tractable Description Logics, namely DL-Litea. So,
their approach conforms to the view that the global schema of a data integration
system can be profitably represented by an ontology, so the clients can rely on a
shared conceptualization when accessing the services provided by the system.
Moreover, the source schema is the schema of a relational database. Such a schema
may result from the federation of a set of heterogeneous, possibly non-relational data
sources. This can be realized by means of a data federation tool, which presents
without materializing them, physical data sources to MASTRO-I as they were a single
relational database, obtained by simple transforming each source into a set of virtual
relational views and taking their union. The mapping language they use allows for
expressing GAV sound mappings between the sources and the global schema. A GAV
sound mapping specifies that the extension of a source view provides a subset of the
tuples satisfying the corresponding element of the global schema. Moreover, the
mapping language has specific mechanisms for addressing the so-called impedance
mismatch problem. The problem arises from the fact that, while data sources store
values, the instances of concepts in the ontology are objects, each one denoted by an
identifier not to be confused with any data item. The system is able to answer union of
conjunctive queries posed to the global schema according to a method which is sound
and complete with respect to the semantics of ontology. The careful design of various
languages used in the system, result in a very efficient technique (LOGSPACE w.r.t.
Data complexity), which reduces query answering to standard SQL query evaluation

over the sources.
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Chapter 3

Ontology change in Data Integration

“An expert is a man who has made all the mistakes which can
be made, in a narrow field. ”
- Niels Borh
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In this Chapter, we identify solutions proposed in the state of the art that try to
tackle the problem of ontology evolution in data integration. Most specifically we
focus on the approaches which try to reuse previously captured information. Since
most of the approaches today concern database schema evolution, we examine them
first and check if they can be applied in an ontology-based data integration scenario.
We classify them into two general categories. Those that try to compose successive
schema mappings (mapping composition) and those that try to evolve the mappings
each time a primitive change operation occurs (mapping adaptation). Although, those
approaches deal with closely related issues, their applicability in a dynamic ontology
has not yet been examined. We demonstrate some drawbacks of both approaches by
means of simple examples and prove that they are inefficient in a state of the art
ontology-based data integration setting. This belief is further enhanced by showing
that changes in database schemata differ greatly from changes in ontologies.

The lack of an ideal approach to handle ontology evolution in data integration
leads us to propose requirements for a new approach. We highlight what is missing
from the current state of the art and outline the requirements for an ideal data
integration system that will incorporate and handle ontology evolution efficiently and
effectively.

The overall goal of this Chapter is not only to give readers a comprehensive
overview of the works in the area, but also to provide necessary insights for the

practical understanding of the issues involved.

3.1 Why ontologies change?

Ontology change refers to the generic process of changing an ontology in
response to a certain need. Several reasons for changing an ontology have been
identified in the literature. An ontology, just like any structure holding information
regarding a domain of interest, may need to change simply because the domain of
interest has changed (Stojanovic et al. 2003); but even if we assume a static world
(domain), which is a rather unrealistic assumption for most applications, we may
need to change the perspective under which the domain is viewed (Noy & Klein
2004), or we may discover a design flaw in the original conceptualization of the

domain (Plessers & de Troyer 2005); we may also wish to incorporate additional
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functionality, according to a change in users’ needs (Haase & Stojanovic 2005).
Furthermore, new information, which was previously unknown, classified or
otherwise unavailable may become available or different features of the domain may
become known and/or important (Heflin et al. 1999). Moreover, ontology
development is becoming more and more a collaborative and parallelized process,
whose sub-products (parts of the ontology) need to be combined to produce the final
ontology (Klein & Noy 2003), (Noy et al. 2006); this process would require changes
in each sub-ontology to reach a consistent final state; but even then, the so-called final
state is rarely final, as ontology development is usually an ongoing process (Heflin et
al. 1999).

There are also reasons related to the distributed nature of the Semantic Web:
ontologies are usually depending on other ontologies, over which the knowledge
engineer may have no control; if the remote ontology is changed for any of the above
reasons, the dependent ontology might also need to be modified to reflect possible
changes in terminology or representation (Heflin et al. 1999). In other cases, a certain
agent, service or application may need to use an ontology whose terminology or
representation is different from the one it can understand (Euzenat et al. 2004); in
such cases, some kind of translation (change) needs to be performed in the imported
ontology to be of use. Last but not least, we may need to combine information from
two or more ontologies in order to produce a more appropriate one for a certain
application (Pinto et al. 1999).

The problem of ontology change is far from trivial. Several philosophical issues
related to the general problem of adaptation of knowledge to new information have
been identified in the research area of belief change, also known as belief revision
(Gardenfors 1992a), (Gardenfors 1992b), (Katsuno & Mendelzon 1990); most of them
are also applicable to knowledge represented in ontologies (Flouris & Plexousakis
2005), (Flouris & Plexousakis 2006). The large size of modern day ontologies
complicates this problem even further (McGuiness et al. 2000). But it’s not just that:
the Semantic Web is characterized by decentralization, heterogeneity and lack of
central control or authority. This is both a blessing and a curse; these features have
greatly contributed to the success of the WWW (and constitute key features of the
Semantic Web) but they have also introduced several new, challenging and interesting

problems, which don’t exist in traditional Al

HARIDIMOS KONDYLAKIS



52 CHAPTER 3 ONTOLOGY CHANGE IN DATA INTEGRATION

As far as ontology change is concerned, one such problem is the lack of control
on who uses a certain ontology once it has been published. Subtle changes in an
ontology may have unforeseeable effects in dependent applications, services, data and
ontologies (Stojanovic et al. 2002); ontology designers cannot know who uses which
part of their ontology and for what purpose, so they cannot predict the effects that a
given change on their ontology would have upon dependent elements. The same holds
in the opposite direction: if an ontology is depending on other ontologies, there is no
way for the ontology designer to control when and how these ontologies will change.
These facts raise the need to support and maintain different interoperable versions of
the same ontology (Heflin et al. 1999), (Huang & Stuckenschmidt 2005), (Klein et al.
2002), a problem greatly interwoven with ontology change (Klein & Fensel 2001). On
the other hand, heterogeneity leads to the absence of a standard terminology for any
given domain which may cause problems when an agent, service or application uses
information from two different ontologies (Euzenat et al. 2004). As ontologies often
cover overlapping domains from different viewpoints and with different terminology,
some kind of translation may be necessary in many practical applications.

All these arguments indicate the importance of the problem of ontology change
and motivate us to use the term in order to cover all aspects of ontology dynamics, as
well as the problems that are indirectly related to the change operation such as the
maintenance of different versions of an ontology or the translation of ontological
information in a common terminology. More specifically, we will use the term
ontology change to refer to the problem of deciding the modifications to perform upon
an ontology in response to a certain need for change as well as the implementation of
these modifications and the management of their effects in depending data, services,
applications, agents or other elements.

Notice that the decision on the modifications to perform may be made
automatically, semi-automatically or manually; the implementation of the chosen
modifications may (but need not) involve keeping a copy of the original ontology
(versioning). The need to change the ontology may take several different forms,
including, but not limited to, the discovery of new information (which could be some
instance data, another ontology, a new observation or other), a change in the focus or
the viewpoint of the conceptualization, information received by some external source,

a change in the domain (i.e., a dynamic change in the modeled world), communication
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needs between heterogeneous sources of information, the fusion of information from

different ontologies and so on.

3.1.1 Ontology Change Subfields

Our definition of ontology change covers several related research fields which
are studied separately in the literature. These fields are greatly interlinked and several
papers and systems deal with more than one of these. In other cases, the same term is
used in different papers to describe different research areas. This situation can easily
lead to misunderstandings, confusion and unnecessary waste of effort, especially for a
newcomer. In the remainder of this Section we will attempt to precisely define the
boundaries of each ontology change subarea and uncover their relations and
differences. This attempt will hopefully draw a fine line between these areas, allowing
the clarification of the meaning of each term and making the differences and
similarities between them explicit. The provided definitions will not be arbitrary, but
will be based on the most common uses of each term in the literature and on similar
previous attempts, like (Kalfoglou & Schorlemmer 2003), (Pinto et al. 1999), (Flouris
et al. 2008).

In particular, we will identify nine subfields of ontology change, namely
ontology mapping, morphism, matching, articulation, translation, evolution,
versioning, integration and merging; in addition, we will clarify the meaning of the
term ontology alignment, which is closely related to ontology matching. Each of these
areas deals with a certain facet of the problem of change from a different view or
perspective, covering different application needs, change scenarios or “needs for
change”. In this subsection, we provide a very short description of each of these
fields; for more details, the reader is referred to the (Flouris et al. 2008), where the
properties of each field are discussed in detail.

The first five fields in the above list (ontology mapping, morphism, matching,
articulation and translation), as well as ontology alignment deal with heterogeneity
resolution, i.e., how to resolve differences in terminology, language or syntax between
ontologies. We have to note that the terms are closely related, so mapping for example
produces declarative relations (functions) whereas the matching is more liberal and
only identifies binary links between the two ontologies. Usually, this problem is

solved by providing a set of “translation rules” that identify similar ontology
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elements. The distinguishing difference between these fields is the methodology
followed and the expected type of output (translation rules). These fields may look
unrelated to ontology change, as there is no obvious “change” performed in the
involved ontologies; translation rules do not seem to constitute change themselves.
However, heterogeneity resolution falls under the definition of ontology change, in
the wide sense of the term that we use in this paper.

Indeed, consider two agents with heterogeneous ontologies that need to
communicate and a set of translation rules that allows this communication. In this
particular example, the driving force (need) behind the process is the need for
communication. The translation rules produced do not directly modify any ontology;
however, they allow each agent to change the other agent’s ontology locally to fit his
own terminology, language and syntax. So the change in this case is made on-the-fly
by each agent during each message exchange and it is trivial, given the translation
rules. In this sense, heterogeneity resolution can be considered a type of ontology
change that provides us with a method to change an ontology (but does not perform
the change directly).

Furthermore, it is important to note that heterogeneity resolution constitutes a
prerequisite for any type of successful ontology change, as it makes no sense to try to
change an ontology in response to new information unless both the ontology and the
new information are formulated using the same terminology, language and syntax. So,
it makes practical sense to study these fields along with the problem of ontology
change; this is also apparent in the relevant literature, where many research efforts,
systems or algorithms that deal with some specific aspect (subfield) of ontology
change also deal with the problem of heterogeneity resolution (e.g., (De Bruijn et al.
2004b), (Chalupsky 2000), (McGuiness et al. 2000), (Noy & Musen 1999a), (Noy &
Musen 1999b), (Noy & Musen 2000)).

Ontology evolution and versioning are often used in confusing ways in the
literature. Ontology evolution deals with the problem of incorporating new
information in an existing ontology, so it deals with the changes themselves. Ontology
versioning manages different versions of a changing ontology, trying to minimize any
adverse effects that a change could have upon related (dependent) ontologies, agents,
applications or other elements.
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This is done by providing transparent access to either the current or some older
version of the ontology, depending on the accessing element. This ability allows the
accessing (dependent) elements, to upgrade to the new version at their own pace (if at
all), which is considered a very useful feature, given the distributed and decentralized
nature of the Semantic Web (Heflin et al. 1999), (Heflin & Pan 2004).

Ontology Mapping Purpose: Heterogeneity resolution, interoperability of ontologies
Input: Two (heterogeneous) ontologies
Qutput: A mapping between the ontologies’ vocabularies
Properties: The output identifies related vocabulary entities
Ontology Morphism Purpose: Heterogeneity resolution, interoperability of ontologies
Input: Two (heterogeneous) ontologies
Output: Mappings between the ontologies” vocabularies and axioms
Properties: The output identifies related vocabulary entities and axioms
Ontology Matching Purpose: Heterogeneity resolution, interoperability of ontologies
(its output is called | Input: Two (heterogeneous) ontologies
Ontology Alignment) Qutput: A relation between the ontologies’ vocabularies
Properties: The output identifies related vocabulary entities
Ontology Articulation Purpose: Heterogeneity resolution, interoperability of ontologies
Input: Two (heterogeneous) ontologies
Output: An intermediate ontology and mappings between the vocabular-
ies of the intermediate ontology and each source
Properties: The output is equivalent to a relation and identifies related
vocabulary entities (like ontology matching)
Ontology Translation Purpose: Translation to a different ontology representation language
(first reading) Input: An ontology and a target ontology representation language
Qutput: An ontology expressed in the target language
Properties: Should produce an equivalent ontology, if possible
Ontology Translation Purpose: Imple mentation of a vocabulary mapping
(second reading) Input: An ontology and a mapping
Output: An ontology
Properties: Implements the vocabulary change to the source ontology as
specified by the input mapping
Ontology Evolution Purpose: Respond to a change in the domain or its conceptualization
Input: An ontology and a (set of) change operation(s)
Qutput: An ontology
Properties: Implements a (set of) change(s) to the source ontology
Ontology Versioning Purpose: Transparent access to different versions of an ontology
Input: Different versions of an ontology
Qutput: A versioning system
Properties: Uses version ids to identify versions; provides transparent access
to the correct version; determines compatibility
Ontology Integration Purpose: Fuse knowledge from ontologies covering similar domains
Input: Two ontologies (covering similar domains)
Qutput: An ontology
Properties: Fuses knowledge to cover a broader domain
Ontology Merging Purpose: Fuse knowledge from ontologies covering identical domains
Input: Two ontologies (covering identical domains)
Qutput: An ontology
Properties: Fuses knowledge to describe the domain more accurately

Table 1 Ontology change subfields

Ontology integration and merging both deal with the fusion of knowledge from
two or more source ontologies. There is a subtle difference between them, related to

the domain covered by the source ontologies.
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Table 1 provides a compact description of the ontology change subfields. In
Table 1, we summarize the need for change that motivates each field (purpose), the
expected input of an algorithm that deals with the problem (input), its expected output
(output), as well as certain comments on its desired properties (properties).

3.2 A review of the State of the Art

So far, we described the reasons that lead to ontology evolution and we‘ve made
a list with the subfields of ontology change. Trying to tackle the problem of ontology
change in data integration systems, a typical solution would be to regenerate the
mappings and then the dependent artifacts. This method is called the “blank-sheet
approach” (Yu, 2005). However, even with the help of mapping generation tools, this
process can be costly in terms of human effort and expertise since it still requires
extensive input from human experts. As large, complicated schemata become more
prevalent, and as data is reused in more applications, manually maintaining mappings
IS becoming impractical. Moreover, there is no guarantee that the regenerated
mappings preserve the semantics of the original mappings since they are not
considered during the regeneration. We believe that the effort required to recreate
mappings from scratch as the ontology evolves is problematic and costly (Velegrakis,
2004), and instead previously captured information should be reused. It is really
important that domain experts specify the necessary mappings only once and then
they can retrieve data disregarding the changes in the ontology. The rest of this
section aims to provide a comprehensive overview of the approaches that try to reuse
previously captured information in order to cope with schema/ontology evolution.

3.2.1 Earlier Works

Work in the area of database schema evolution started to emerge in the early
90’s where mappings were considered as view definitions. Gupta et al. (Gupta, 1996)
and Mohania and Dong (Mohania, 1996) addressed the problem of maintaining a
materialized view after user redefinition, while (Ra, 1997) explored how to use view

technology to handle schema changes transparently.
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Lee et al. (Lee, 2002) were the first to address the problem of defining view
definitions when the schemata of base relations change. They identified the view
adaptation problem for view evolution in the context of information systems schema
changes, which they called view synchronization. They proposed E-SQL, an extended
version of SQL for defining views that incorporated user preferences in order to
change the semantics of the view and with which the view definer could direct the
view evolution process. They proposed a view rewriting process that finds a view
redefinition that meets all view preservation constraints specified by the E-SQL view
definition. Such a solution prevented manual interaction. However, the supported

changes were limited and evolution could only appear at the source side.

3.2.2 Approaches for similar problems

Besides those earlier approaches, several others have been proposed so far to
tackle similar problems. For example, for XML databases there have been several
approaches that try to preserve mapping information under changes (Barbosa, 2005)
or propose guidelines for XML schema evolution in order to maintain the mapping
information (Moro, 2007). Moreover, augmented schemata were introduced in (Rizzi,
2007) to enable query answering over multiple schemata in a data warehouse, whereas
other approaches change the underlying database systems to store versioning and
temporal information such as (Bounif, 2006), (Edelweiss, 2005), (Moon, 2010).
Moreover, MORE (Huang, 2005) proposed a framework for reasoning with multi-
version ontology, using temporal logic in order to detect ontology changes and their
consequences.

However, our goals differ from all the above approaches and the most relevant
approaches that could be employed for resolving the problem of data integration with

evolving ontologies is mapping composition and mapping adaptation.

3.2.3 Mapping Composition

Despite the fact that mapping composition is not primarily focused on ontology
evolution it could be employed in order to handle ontology evolution. The approach
would be to describe ontology evolution itself as mappings and to employ mapping

composition to derive the adapted mappings. Madhavan and Halevy (Madhavan,
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2003) in 2003 were the first to address the problem of composing semantic mappings.
Specifically, given mappings between data sources S and T and between T and 77, is it
possible to generate a direct mapping M’ between S and 7 that is equivalent to the
original mappings (see Fig. 21). Equivalence means that for any query in a given class
of queries Q, and for any instance of the data sources, using the direct mapping yields

exactly the same answer that would be obtained by the two original mappings.

Fig. 21. Composing Schema Mappings
The semantics of the composition operator proposed by Madhavan and Halevy

was a significant first step, but it suffered from certain drawbacks caused by the fact
that this semantics was given relative to a class of queries. The set of formulas
specifying a composition M of M and E relative to a class Q of queries need not be
unique up to logical equivalence, even when the class Q of queries is fixed. Moreover,
this semantics is rather fragile because a schema mapping A" may be a composition
of M and E when Q is the class of conjunctive queries (the class Q that Madhavan and
Halevy focused on), but fail to be a composition of these two schema mappings when
Q is the class of conjunctive queries with inequalities. In addition, they showed that
the result of composition may be an infinite set of formulas even when the query

language is that of conjunctive queries.
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Fig. 22. The example schemata

Consider for example the three schemata S, T and 7" shown in Fig. 22. We use a

trivial example just to show our key points. Schema S consists of a single binary
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relation symbol Samples that associates patient names with their medical samples.
Schema T consists of a similar relation PSamples that is intended to provide a copy of
Samples, and provides an additional relation Patients, that associates each patient
name with a patient id. Schema 7" consists of the relation MedicalData that associates
patiend ids with their samples.

Consider now the schema mappings 21, between S and T and X3 between T

and 7~ where:

Z={V n Vs ((Samples (n, s) = PSamples (n, s)),
V'n Vs ((Samples (n, s)=> i Patients (i, n))}

2s={V n ViV s (Patients (n, i) ~ PSamples (n, s) = MedicalData (i, s))}

The three formulas in X}, and 253 are source-to-target tuple generating
dependencies (s-t tgds) that have been extensively used to formalize data exchange
(Fagin, 2005). A s-t tgd has the form YV xp(x) 23yw(, y), where o(x) is a
conjunction of atomic formulae over S and w(x, y) is a conjunction of atomic formulae
over T. A tuple-generating dependency specifies an inclusion of two conjunctive
queries, Q1 < Q2. It is called source-to-target when Q1 refers only to symbols from
the source schema and Q2 refers only to symbols from the target schema. The first
mapping requires that “copies” of the tuples in Samples must exist in PSamples
relation and moreover, that each patient name n must be associated with some patient
id i in Patients. The second mapping requires that pairs of patient id and sample must
exist in the relation MedicalData, provided that they are associated with the same
patient name.

Moreover, let Samples={(Nikos, Samplel), (Nikos, Sample2)} be instances I, of
S, PSamples=Samples and Patients={(1234, Nikos)} the instances I, of T, and
MedicalData={(1234, Samplel), (1234, Sample2)} the instances I3 of 7. It is easy to
verify that the instances satisfy the mappings 21, and 23 that is {l1, 12} < Inst(M) and {
I2, Is}eInst(E). Now we are looking for a composition of M and E such that an
instance {1, I3} is in Inst(M) . Inst(E) if and only if it satisfies 213. A first guess for 213

could be:

Z13={V n Vs (Samples (n, s) = 3i MedicalData (i, s))}
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However, here the patient id i depends on both the patient name n and the
sample id s. So (i, s) must be a tuple in the MedicalData relation for every sample s
where (n, s) is in the Samples relation. This is clearly incorrect. Consider, for each
k>1, the following source-to-target tgd:

ok={Yn Vsi. Vsk(Samples (nsl) ~ .. ~ Samples (n, sk) >
3i MedicalData (i, s1) ~ ... ~ MedicalData (i, sk))}

It is easy to verify that the composition X3 is the infinite set { ¢; .. ¢ ... } of
source to target tgds. Fagin et al. (Fagin, 2005) identified that problem and showed
that the compositions of certain kinds of first-order mappings may not be expressible
in any first-order language, even by an infinite set of constraints. That is, that
language is not closed under composition. In order to face that problem they
introduced second-order s-t tgds, a mapping language that is closed under
composition. Using second-order tgds, the composition of the previous example

becomes:

Z15={ Y n 3i ¥ s (Samples (n,s) = MedicalData (i,s)),
3f (V' n ¥ s (Samples (n,s) ) 2 MedicalData (f(n),s)))}

Where f is a function symbol that associates each patient name n with a patient
id f(n). The second-order language they propose uses existentially quantified function
symbols, which essentially can be thought of as Skolem functions. Fagin et al.
presented a composition algorithm for this language and showed that it can have
practical value for some data management problems, such as data exchange.

Yu and Popa (Yu, 2005) considered mapping composition for second order
source-to-target constraints over nested relational schemata in support of schema
evolution. Despite the close relation, all the previous approaches did not specifically
consider schema evolution. They presented a composition algorithm similar to the one
in (Fagin, 2005), with extensions to handle nesting and with significant attention to
minimizing the size of the result. They reported a set of experiments using mappings
on both synthetic and real-life schemata, to demonstrate that their algorithm is fast

and is effective at minimizing the size of the result.
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Nash et al. (Nash, 2007) tried to extend the work of Fagin et al. They studied
constraints that need not be source-to-target and they concentrated on obtaining first-
order embedded dependencies. They considered dependencies that could express key
constraints and inclusions of conjunctive queries Q1 € Q2, where Q1 and Q2 may
reference symbols from both the source and target schema. They do not allow
existential quantifiers over function symbols. The closure of composition of
constraints in this language does not hold and determining whether a composition
result exists is undecidable. One important contribution of this article is an algorithm
for composing the mappings given by embedded dependencies. Upon a successful
execution, the algorithm produces a mapping that is also given by embedded
dependencies. The algorithm however, has some inherent limitations since it may fail
to produce a result, even if a set of embedded dependencies that expresses the
composition mapping exists. Moreover, it may generate a set of dependencies that is
exponentially larger than the input. They show that these difficulties are intrinsic and
not an artifact of the algorithm. They address them in part by providing sufficient
conditions on the input mappings which guarantee that the algorithm will succeed.
Furthermore, they devote significant attention to the novel and most challenging
component of their algorithm, which performs “de-Skolemization” to obtain first-
order constraints from second-order constraints. Very roughly speaking, the main two
challenges that they face are involved recursion and de-Skolemization.

The latest work on mapping composition is that of Bernstein et al. (Bernstein,
2008) in 2008 that propose a new composition algorithm that targets practical
applications. Like (Nash, 2007), they explore the mapping composition problem for
constraints that are not restricted to being source-to-target. If the input is a set of
source-to-target embedded dependencies their algorithm behaves similarly to that of
(Fagin, 2005), except that as in (Nash, 2007), they also attempt to express the results
as embedded dependencies through a de-Skolemization step. Their algorithm for
composing these types of algebraic mappings gives a partial solution when it is unable
to find a complete one. The heart of their algorithm is a procedure to eliminate
relation symbols from the intermediate signature. Such elimination can be done one
symbol at a time. It makes a best effort to eliminate as many relation symbols from

the intermediate schema as possible, even if it cannot eliminate all of them.
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Despite the great work that has been done in mapping composition we are not
aware of an attempt trying to implement it in the context of ontology evolution. All
the approaches deal with relational or nested relational schemata and usually have to
do with some particular classes of mappings under consideration each time. Hence,
mapping composition does not always address the problem in a satisfactory manner.

This belief is further enhanced by the fact that first-order mappings are not
closed under composition and second-order ones are too difficult to handle using
current DBMS. We doubt that second-order constraints will be supported by the
DBMS in the near future as well. Moreover, given a source and a target database,
deciding whether they satisfy a mapping given by second-order tgds may in general
require exponential time in the size of input databases as proved in (Fagin, 2005).

Furthermore, in mapping composition someone has to produce several sets of
mappings (between S and T and between T and T°). This would impose a large
overhead whenever a new version of the ontology is produced -which can be quite
often for dynamic ontologies. Schema evolution is rarely represented as mapping in
practice (Yu, 2005). Instead, it is either represented as a list of changes or, more often,
implicitly embedded in the new version of the schema.

Moreover, each constraint should be created or at least confirmed by a domain
expert. A database system may be implemented by an IT expert but only the
appropriate domain expert can understand the specific semantics of the system and
s/he is the only one who can ultimately verify the results of the whole mapping
process. We argue that second-order constraints are too difficult for domain experts to
grasp and understand.

Finally, mapping composition poses increased scalability challenges when
compared to usual query rewriting approaches. This is due to the fact that mappings
between schemata must often cover the entire schema, while queries usually access
only parts of a schema and typically produce simple output.

PRISM (Curino, 2009) is one of the latest approaches that try to build on
mapping composition and inversibility. PRISM seeks to develop the methods and
tools that turn the difficult schema evolution process into one that is controllable,
predictable and avoids down-time. To do so, they try to predict the effect of schema
changes on current applications and to translate old queries to work on the new

schema version. However, it requires the repeated manual mapping among the schema
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versions and different mapping sets may have the same result. So disambiguation is
usually needed in several places without offering strong guarantees. Finally, the

authors do not consider the constraints coming from the schemata used.

3.2.3 Mapping Adaptation

In parallel with the previous approaches that considered mapping composition,
Velegrakis et al. (Velegrakis, 2005) focused on incrementally adapting mappings on

schema change.

b T1
: \Add
% T,
\ Move

\ Ts

\ Delete

Fig. 23. Adapting Schema Mappings

Their approach is to use a mapping adaptation tool in which a designer can
change and evolve schemata. The tool detects mappings that are made inconsistent by
a schema change and incrementally modifies the mappings in response. The term
incrementally means that only the mappings and, more specifically, the parts of the
mappings that are affected by a schema change, are modified while the rest remain
unchanged. This approach has the advantage that it can track the semantic decisions
made by a designer either in creating the mapping or in earlier modification decisions.
These semantic decisions are needed because schemata are often ambiguous (or
semantically impoverished) and may not contain sufficient information to make all

mapping choices. Those decisions can be reused when appropriate.
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S T T

PatientStore Prescriptions MedData (1)

Name PId Medicine Company PId Medicine PId Company

Nikos 1234 Quunapril Pfizer 1234 Quinapril 1234 Pfizer

Tasos 5678 Quunapril Bayer 5678 Quuinapril 1234 Bayer
5678 Pfizer

5678 Bayer

Suppliers MedData (2)
Medicine Company PId Company
Quinapril Pfizer 1234 Pfizer
Quinapril Bayer 5678 Bayer

Fig. 24. Identifying mapping adaptation problems.
Consider for example the schemata T and T° shown in Fig. 24. Schema T
describes patients and the medicines they are administered, along with the suppliers of
those medicines. Schema T’ provides statistical data for the patients that use

medicines of a specific company. The mapping between T and T " is:

Zrr={ ¥ p Y mV c(Prescriptions (p, m) ~ Suppliers (m, ¢) = MedData (p, c))}

Assume now that raw data arrive from a new source in the form of tuples (n, p,
m, c¢) relating a name and an id of a patient to a medicine and the supplier of that
medicine. Rather than splitting and inserting the data into the two relations
Prescriptions and Suppliers, a decision is made by the application to store the
incoming tuples as they are in the PatientStore relation which becomes the new
schema S. The mapping 2t that depends on the schema T and T' must now be
changed.

So the following operations are issued in T in order to become the S and

according to the mapping adaptation policy the mapping will be updated as well.

e Move Suppliers/Company to Prescriptions/ Company. After this operation the
mapping will be updated as well to become:

2'=¢Vp V'mVY ¢ (Prescriptions (p, m, c) ~ Suppliers (m) = MedData (p, c))}
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e Delete Suppliers/Medicine and then Delete the relation Suppliers. The mapping

now becomes:

X= {Y'p V'mV ¢ (Prescriptions (p, m, ¢) = MedData (p, c))}

e Rename Prescriptions relation to PatientStore and Add the field Name. The

new mapping now becomes

2= {¥Yn Vp VmVc (PatientStore (n, p, m, ¢) = MedData (p, c))}

Their approach considers not only local changes to schema, but also changes
that may affect and transform many components of a schema. They consider a
comprehensive class of mappings for relational and XML schemata with choice types
and constraints that may or may not be nested. Their algorithm detects mappings
affected by a structural or constraint change and generates all the rewritings that are
consistent with the semantics of the mapped schemata. Their approach explicitly
models mapping choices made by a user and maintains these choices, whenever
possible, as the schemata and mappings evolve.

The main idea here is that schemata often evolve in small, primitive steps; after
each step the schema mapping can be incrementally adapted by applying local
modifications. Despite the fact that the specific implementation is system dependent,
the idea to incrementally change the mappings each time a primitive change occurs in
the source or target schemata has more drawbacks.

When drastic schema evolution occurs (significant restructuring in one of the
original schemata) and the new schema version is directly given, it is unclear how
feasible it is to extract the list of primitive changes that can describe the evolution.
Such scenarios often occur in practice, especially in scientific fields (HL72, mzXML?
standards etc.). The list of changes may not be given and may need to be discovered
(Zeginis, 2007), but even then there may be multiple lists of changes with the same

effect of evolving the old schema into a new one and we have to be sure that the

2 http://www.hl7.org/

% http://sashimi.sourceforge.net/software_glossolalia.html
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resulting mapping is independent of which list of changes is considered. Moreover,
the set of primitive changes is not expressive enough to capture complex evolution.
Furthermore, even when such a list of changes can be obtained, applying the
incremental algorithm for each change in this potentially very long list will be highly
inefficient. There is also, no guarantee that after repeatedly applying the algorithm,
the semantics of the resulting mappings will be the desired ones.

In order to prove that, consider the example we just discussed. Surprisingly, the
semantics of the above mapping may not be the expected one. The instance under S
consists of two patients that are prescribed with one medicine which is consistent with
T'. The relation MedData(1) under T includes all pairs of Pid and Company that the
original mapping requires to exist in MedData, based on T data. In contrast, the
relation MedData(2) contains the pairs that the incrementally adapted mapping 2"
requires to exist in MedData, based on S data. Notably, the 2" loses the fact that the
patient with id 1234 is also related with Bayer.

Thus, 2" does not quite capture the intention of the original mapping, given
the new format of the incoming data. Part of the reason this happens is that the new
source data does not necessarily satisfy a join dependency that is explicitly encoded in
the original mapping 277~ There are other examples where the incremental approach
falls short in terms of preserving the semantics. Furthermore, the same goes for the
blank-sheet approach. Indeed, on the previous example, if we just match the common
attributes of S and T', and regenerate the mapping based on this matching, we would
obtain the same mapping M as in the incremental approach. A systematic approach,

with stronger semantic guarantees, is clearly needed.

3.2.5 Floating Model

Xuan et al. (Xuan, 2006) propose an approach and a model to deal with the
asynchronous versioning problem in the context of a materialized integration system.
Their system is based on the following assumptions: a) each data source
participating in the integration process has its own ontology; b) each local source
references a shared ontology by subsumption relationships “as much as possible”
(each local class must reference its smallest subsuming class in the shared ontology);
and c) a local ontology may restrict and extend the shared ontology as much as

needed.
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However, the authors of (Xuan, 2006) are focused mostly on instances and they
add semantics on them using implicit storage. So, they add semantic keys on
instances, they use universal identifiers for properties and consider a validation period
for each instance.

To support ontology changes they propose the principle of ontology continuity
which supposes that an evolution of an ontology should not falsify axioms that were
previously true. This principle allows the management of each old instance using the
new version of the ontology. With this assumption, they propose an approach which
they call the floating version model in order to fully automate the whole integration
process. This paper deals more with temporal databases than ontology evolution and
they support only “ontology deeping” as they named it. That is, they only allow
addition of information and not deletion, since they rely on the persistence of classes,
properties and subsumption relationships (principle of ontology continuity). Despite
the simplicity of the approach, in practice the deletion of a class/property is a common
operation in ontology evolution (Hartung, 2008). Therefore, we argue that this
approach is not useful in real-world scenarios and does not adequately reflect reality.
Furthermore the paper only describes abstractly the ideas without formal definitions

and algorithms.

3.3 Why Traditional Techniques are not Enough?

As shown in the previous sections the solutions proposed so far have several
drawbacks and cannot constitute a generic solution. Almost all the approaches deal
with relational or nested relational schemata and the single approach we have seen
considering ontology change is too simple and is not useful in real-world scenarios.
Schema composition is too difficult and mapping adaptation lacks a precise criterion
under which the adapted mapping is indeed the “right” result. But even if we tried to
neglect those problems we have to face the fact that data integration in ontologies is a
problem that is inherently different from the data integration problem for databases
(Noy, 2004). We argue that this is true due to the different nature of the two
formalisms, and essentially boils down to a number of differences, discussed below.

The first, very important difference is related to the semantics of databases as

opposed to the semantics of logical formalisms that are used in ontologies. Ontology
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representation formalisms involve the notion of validity, meaning that certain
combinations of ontology axioms are not valid. This is not true for databases, in
which any set of tuples that corresponds to the schema is valid (barring the use of
integrity constraints, which are, in essence, logical formulas). The notion of validity
also affects the change process, forcing us to introduce adequate side-effects in each
change operation, in a way that would allow us to maintain validity in the face of such
changes (see, e.g., (Konstantinidis, 2007), (Magiridou, 2005)). Therefore, maintaining
the correct mappings is more difficult in ontologies (where side-effects must also be
considered) than in databases.

For similar reasons, the notion of inference, which exists in ontological
formalisms but not in relational databases, affects the process of maintaining the
mappings. This issue has two facets: one is related to the different semantics
(foundational or coherence (Flouris, 2008)) that could be employed during change and
its effects on the update results, and, consequently, on the mappings; the second is
related to the fact that inferred knowledge could also give rise to inferred mappings,
which should similarly be maintained.

One could claim that relational approaches to maintaining the mappings could
be used because of the fact that many ontology manipulation systems use a relational
database as a backend for storing the information (Theoharis, 2005). This claim
however is problematic because the transformation of ontological knowledge into a
relational schema is often a complicated process. In (Theoharis, 2005), several
different approaches are considered and compared. Under the simplest ones, a single
change in an ontological axiom corresponds to a single change in one tuple in the
underlying representation; this is not true in the more sophisticated methods (which
are also the most efficient, according to (Theoharis, 2005)), where a single change
may correspond to a complicated set of changes in various tuples of the database.
Therefore, the corresponding mapping changes may be difficult to figure out,
especially given the fact that it is difficult to understand the semantics of an ontology
change by just looking at the changed tuples.

As a result, we need to consider the changes directly on the ontology level,
rather than the database level, which is the first requirement for an ideal ontology-

based data integration system. Using such an approach, we could also exploit the fact
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that schema/ontology evolution is rarely represented as mappings and is usually
presented as a list of changes (Yu, 2005).

The second requirement is to be able to query information concerning not only
source data but ontology evolution as well. Efficient version management and queries
concerning evolution are useful in order to understand how our knowledge advances
over time since ontologies depict how we perceive a domain of interest. Moreover, we
would like to know the modeling choices we have made in the past. On the other
hand, the mapping definition process remains a very difficult problem. In practice, it
is done manually with the help of graphical user interfaces and it is a labor-intensive
and error prone activity for humans. So in an ideal system the domain expert should
be able to provide, or at least verify, the mapping between the ontologies and the data
sources. The domain experts need a simple mapping language, yet expressive enough
to handle the heterogeneity between the ontology and the DBMS. Moreover, the
whole mapping process should be performed only once, and the generated mappings
should not be changed or translated in order to be verified and refined whenever
requested in the future.

Finally we need precise criteria under which the answer produced is the right
one. It is obvious that an answer to a question may not be possible or meaningful, and

we need to know under which conditions we can actually retrieve such an answer.
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Fig. 25. An ideal solution
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In an ideal system, several databases would be mapped to the ontology as the
ontology evolves. For example, as shown in Fig. 25, DB1 is mapped using ontology
version 0, then the ontology evolves through time, and a second database is mapped
when the ontology has reached version 2. Having all those databases mapped using
different ontology versions, we would like to answer queries formulated under any
ontology version. We would like to support queries that have been formulated using
even version 0 since in many systems queries are stored and we wouldn’t like to
change them every time the ontology changes.

To conclude, an ideal solution should try to exploit the initial mappings, the
changes of the ontology and the query expressed using a specific version of the

ontology to try to get answers from all databases mapped.
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Chapter 4

“Everything that exists, it is only change.”

-Heraclitus 535 BCE

Modelling Ontology Change

Contents
A1 MOTIVATING EXAMPLE ..o oottt ettt ettt ettt ettt eee et eeeeaenes 72
4.1 USING HIGH-LEVEL CHANGES TO MODEL EVOLUTION ....c.oov oo, 73
4.2 CONSTRUCTING ONTOLOGY VERSIONS FROM LOGS ....ovoveeieeeeeeeeeeeeeeeeeeeeeee 78
4.3 DEBUGGING ONTOLOGY EVOLUTION WITH CHANGE TREES.......ccooveeeeeeeeeeeeenn. 79

In this Chapter we will focus on RDF/S ontologies (Bouquet, 2004). This is
because most of the Semantic Web Schemas (85,45%) are expressed in RDF/S
(Theoharis, 2007). For those ontologies we will show how to model ontology
evolution using a language of high-level changes and how to provide to the users

more specific information for a specific changed part of the ontology.
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The representation of knowledge in RDF (Bouquet, 2004) is based on triples of
the form predicate (subject, object). Assuming two disjoint and infinite sets U, L,
denoting the URIs and literals respectively, T = Ux U x (U L) is the set of all
triples. An RDF Graph V is defined as a set of triples, i.e., V_T. RDFS (Brickley,
2004) introduces some built-in classes (class, property) which are used to determine
the type of each resource. The typing mechanism allows us to concentrate on nodes of
RDF graphs, rather than triples, which is closer to ontology curators’ perception and
useful for defining intuitive high-level changes. RDFS provides also inference
semantics, which is of two types, namely structural inference (provided mainly by the
transitivity of subsumption relations) and type inference (provided by the typing
system, e.g., if p is a property, the triple (p, type, property) can be inferred).

Moreover, we assume that the ontology versions we consider are valid. The
notion of validity has been described in various fragments of the RDFS language. The
validity constraints that we consider in this work concern the type unigqueness, i.e.,
that each resource has a unique type, the acyclicity of the subClassOf and
subPropertyOf relations and that the subject and object of the instance of some
property should be correctly classified under the domain and range of the property,
respectively. For a full list of the validity constraints see (Serfiotis, 2005). Those
(strict) constraints on the ontology are enforced in order to be enable unique and non-
ambiguous detection of the changes among the ontology versions.

A valid RDF Graph containing all triples that are either explicit or can be
inferred from explicit triples in an RDF Graph V (using both types of inference), is
called the closure* of V and is denoted by CI(V). An RDF/S Knowledge Base (RDF/S
KB) B is an RDF Graph which is closed with respect to type inference, i.e., it contains
all the triples that can be inferred from B using type inference.

4.1 Motivating Example

Assume for example the ontology version Og shown on the left of Fig. 26
describing persons and their contact points. At some point in time, the ontology

evolves and we get O; by adding the class “Cont.Point” (contact point) and the

4 http://www.w3.org/TR/rdf-mt/

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT


http://www.w3.org/TR/rdf-mt/

CHAPTER 4 MODELLING ONTOLOGY CHANGE 73

property “has_cont_point” between the class “Actor” and the class “Cont.Point”.
Moreover, literal “town” is renamed to the literal “city”, and then the domain of the

literals “street” and ’city” is changed to the class “Cont.Point”.

@ :subClass of ——3> :property domain/range

Ontology Version O Ontology Version Oy Ontology Version O,

Fig. 26. Example ontology evolution

Then, the ontology designer decides to move the domain of the
“has_cont_point” property from the class “Actor” to the class “Person”, and to delete
the literal “gender”. Moreover, the “street” and the “city” properties are merged to the
“address” property. The resulted ontology O, can be seen on the right of Fig. 26.

Now, we would like to be able to express exactly how the ontology has been

evolved using a language of changes.

4.1 Using High-level Changes to Model Evolution

For modelling ontology evolution we use a language of changes that describes
how an ontology version was derived from another ontology version. In its simplest
form, a language of changes consists of only two low-level operations, Add(x) and
Delete(x), which determine individual constructs (e.g., triples) that were added or
deleted (Volkel, 2005), (Zeginis, 2007). However, a significant number of recent
works (Noy, 2006), (Plessers, 2005), (Rogozan, 2005), (Zeginis, 2007),
(Papavassiliou, 2009) imply that high-level change operations should be employed
instead, which describe more complex updates, as for instance the insertion of an
entire subsumption hierarchy. A high-level language is preferable than a low-level
one, as it is more intuitive, concise, closer to the intentions of the ontology editors and
captures more accurately the semantics of change (Stojanovic, 2004). As we shall see
later on, a high-level language is beneficial for our problem for three reasons: First,
because the produced change log has a smaller size, second because the explanations

for the ontology change are more concise and more importantly because such a
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language yields logs that contain a smaller number of individual low-level deletions
(which are non-information preserving as we shall see next) and this affects the
effectiveness of our rewriting as we shall see at the next chapter. Moreover properties
like composability and inversibility can be exploited for improving efficiency as we

shall see on the sequel. In our work, a change operation is defined as follows:

Definition 4.1 (Change Operation). A change operation u over O, is any tuple (J4, dq)
where 0, N O = o and 64 S O. A change operation u from O; to O, is a change

operation over O; such that d, € 0,\0; and d4 € O;\0;,

Obviously, ¢, and dq are sets of triples end especially the triples in dgq are triples
coming from the ontology O (also interpreted as a set of triples as already mentioned).
For simplicity, we will denote d,(u) (d4(u)) the added (deleted) triples of a change u.
From the definition, it follows that da(u) N d4(1)= o Since d, € O,\01 and dg € 01\O; if
0:#0, and we are interested for and J,(u) U d¢(u)#0, i.€. that they either insert or
delete something from the ontology.

For the language .£of change operations proposed in (Papavassiliou, 2009) and
the corresponding detection algorithm, it has been proved that the sequence of
changes between two ontology versions is unique. Moreover, it is shown that for any
two changes uj, Uy in such a sequence it holds that da(u1) N da(Uz)= o and dg(ui) N
04(U2)= o. The language .£is proved to satisfy several intuitive properties such as
completeness, non-ambiguity and reversibility. Moreover, the detection algorithm was
shown to be quite efficient (quadratic worst-case complexity, linear average-case
complexity). These are the reasons that led us to adopt that specific language for
describing changes among ontologies. Note, that the existence of other languages
satisfying these properties is not ruled out. In fact the result of query rewriting
described in the next chapter is irrelevant of the specific language used as long as the
properties of completeness, non-ambiguity and uniqueness are preserved.

Hereafter, whenever we refer to a change operation, we mean a change
operation from those proposed in (Papavassiliou, 2009). Using such high-level change

operations we need to define their application semantics.

Definition 4.2 (Application semantics of a high-level change). The application of a

change u over an ontology version O, denoted by u(O), is defined as
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u(0) = (O U da(u)) \ da(u).

In this point we have two key observations to make: The first is that the
application of out change operations is not conditioned by the current state of the
ontology (similarly with the approach followed on STRIPS (Russell, 2003) and the
second is that we don’t handle inconsistency, i.e., (O U da(u)) \ dqg(u) is always
assumed to be valid. Moreover, our approach cannot be directly used with OWL or
DL-Lite ontologies.

In our example the change log between O, and O;, denoted by the E9201

consists of the following change operations:

ui:Rename_Property(fullname, name)
u,:Split_Property(address, {street, city})
us:Specialize_Domain(has_cont_point, Person, Actor)

Us:Add_Property(gender, o, o ,0 ,0, Person, xsd:String, o, o)

Moreover, the change log between O; and O, denoted by the E°1:% | consists of

the following change operations:

us: Rename_Property(city, town)

us: Change_Domain( town, Cont.Poing, Person)

u7: Change_Domain( street, Cont.Poing, Person)

ug: Delete_Property(has_cont _point, o, o ,0 ,0, Actor, Cont.Point, o, o)

Ug: Delete Class(Cont.Point, o, 0, 0, 0, 9,)

Change Generalize_Domain Rename_Property(a, |Split_Property(a,B)
(a,b,c) D)
Intuition Change the domain Rename property a to [Split property a into properties
of property a from b p L
contained in B
to a superclass c
Ja [(a, domain, c)] [(b, type, property)]  |vhi € B : [(b;, type, property)]
(I<i<n)
4 [(a, domain, y)] [(a, type, property)]  |[(a, type, property)]

Fig. 27. The definition of some change operations

The definition of some change operations that are used in this chapter can be
seen on Fig. 27, whereas the full list of the considered change operations can be found

on the Appendix. It is obvious, that applying those change operations on O, results
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Oo. Now it is time to define the composition of the change operations. By proving
that the change operations are composable, we will be able to use the intermediate
evolution logs between ontology versions instead of constructing all change logs
between the latest ontology version and all past ontology versions.

Definition 4.3 (Composition of change operations). A change operation Ucomp IS the
composition of u; and u, (computed over Oy and Oy), if the result of applying Ucomp ON
O is the same with the result of applying u; and then u in any order on O;.

Ucomp (O1) = U2(u1(O1)) = uz(u2(0y))

Now we will show that the change operations as detected in (Papavassiliou,

2009) compose indeed.

Proposition 1: Let uy, u, two change operations from Oz to O,. Then Ucomp = ( da(U1)
U Ja(Uz), d4(U1) U da(up)).

Proof: First we have to show that ucmp is a change operation from O1 to Oy, i.e. that
Ja(Ucomp) = O2\01 and that g (Ucomp) < 02\O1 . Indeed da(Ucomp) = (Fa(U1) U da(U2)) <
0,\O1  and g (Ucomp)= da(U1) U dg(u2) < O2\O1. Now we will show that Ucomp (O1) =
U2(u1(01)) = u1(u2(01)) which is also sketched in Fig. 28.

&4(uy) I 8fuy) I |6d(ul)| Sgluy) |
0,

0, uy(0y) 0, u,(uy(04))
6d(uz}l 5,(u,) |
1.(04) fuy) | 5.lu) ]
0, N 0, w(wo) [ o

84(u,) 5,(u;) | - 54(uy) ] 5(u;) |

ucurm:o(ol:l |6d(u1)| éu(ul] |
0,
! > 6d(u2}| 84(u;) I

O,

Fig. 28. Ucomp (O1) = U2(u1(01)) = U1 (u2(01))
Indeed Ugomp (O1) = (O1 U Sa(Ucome)) \ a(Ucomp) = (O1 U da(Uis) U a(u2)) \ (Su(un)
U da(U2)) = ((O1 U 6a(u)) \ 64(U1) U da(uz)) \ da(Uz) = Uz ((O1 U da(u1)) \ da(us) =
U2(U1(0D) and Ucomp (O1) = (O1 U Sa(Ucomp)) \ Su(Uoomp) = (O1 U Sa(Us) U Sa(U2)) \
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(d4(u1) U a(u2)) = U1 ((O1 U 6a(U2)) \ d¢(U2) = ua(u2(O1)) since da(us) N Ja(U2) = o and
that 5d(U1) N 5d(U2) =g"

Finally, since a change operation is actually a mapping function that maps one
ontology version O; to another ontology version O, a question is whether there exists
the inverse function, the inverse change operation that maps the O, ontology version
to the O, ontology version. By automatically constructing the inverse of a sequence of
change operations (from O3 to O,), we will be able to rewrite queries expressed using

O, to O4 and vice versa.

Definition 4.4 (Inverse of a change operation). Let u be a change operation from O
to O,. A change operation uj,, from O,to Oy is the inverse of u if:
Uinv(u(ol))E Ol

Now we will show how to compute the inverse of a change operation. The inverses of

the change operations used in this paper can be found on the Appendix as well.

Proposition 2: The inverse of a change operation u (denoted by inv(u)) from O;to O,
Is:
inv(u)=(da(u), da(u))

Proof: First we have to show that inv(u) is a change operation, defined over O, O; i.e.
da(inv(u) )< O7\0; and that dg(inv(u)) c O2\O;. Indeed d,(inv(u))=dq(u) <0;\0, and
o4(inv(u))= da(u) c0,\Oy.

o) [ S ) (o)
0, u,(0; 0, in\I/:u5 u,(0; 0,

=

Fig. 29. inv(u)(u(0)) =0
Now we have to prove that inv(u)(u(O)) = O which is also sketched in Fig. 29.
Remember that from Definition 4.2. u(O)=(0 Uda(u)) \ d4(u). From the definition,
inv(u)(u(0)) = inv(u)((O Uda(u)) \ d4(u)) = (((O U da(u)) \ da(u)) U da(inv(u))) \
dg(inv(u)) = (((O Uda(u)) \ da(u)) U d4(u)) \ da(u) = O since da(U) U d(u)#0 and
da(U) N da(u)= o =
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Based on Propositions 1 and 2 we can conclude that

ceey

constructed from O to O, is E22%2 =[ inv(uy), ..., inv(uy)].

v

Proof: We must show that Eov% (E0v02 (Oy))= Oy. Indeed Epv% (E0+02 (Oy))=

Ept??[ Un(Una(...u2(0n))))] = inv(un)(...inv(un)([ tn( tna(-..C us(O)))1))) = inv(un) (us
(.. inv(u1) (u1(01)))))=0; since is has already been proved that they can be

composed=

The inverse of the sequence of change operations ( i.e the E%9z) for our

running example is:

inv(ug): Add_Class(Cont.Point, o, o, 0, 0, 0,)

inv(ug): Add_Property(has_cont point, o, 0 ,0 ,0, Actor, Cont.Point, o, o)
inv(u7): Change_Domain( town, Person, Cont.Point))

inv(ug): Change_Domain( street, Person, Cont.Point)

inv(us): Rename_Property(town, city)

inv(us):Delete_Property(gender, o, 0,0 ,0, Person, xsd:String, o, o)
inv(us):Generalize_Domain(has_cont_point, Actor, Person)
inv(uz):Merge_Properties({street, city},address)

inv(u;):Rename_Property(name, fullname)

4.2 Constructing Ontology Versions from Logs

An important question is whether from the sequence of change operations we
can compute the current (or a past) version of the ontology efficiently. The cost of
constructing an ontology version O; when operation u; was issued (1< i < n), is O(i),
so for constructing the latest version of the ontology the cost is O(n). Clearly, if O;is

already constructed and j>i, then the cost for constructing O; is O(j-i).
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Moreover, it is also obvious that having only the latest ontology version and the
evolution log we can trivially produce an older version using Corollary 1. The cost for
constructing an ontology version O; when operation u; was issued (1<1i < n) is O(n-i),

since we have to apply the change operations [inv(up),..., iInv(u;)].

4.3 Debugging Ontology Evolution with Change Trees

It is clear, that in order to understand the impact of ontology evolution, we
should provide to the users an overview of the changes applied to a particular
ontology (Plessers, 2007). The simplest way to achieve this is by providing a list of all
change operations that were explicitly used by an ontology engineer to change the
ontology. However, this approach has a number of serious drawbacks which relate to
the different level of granularity for the different change operations, the different
viewpoints and implications of those changes. Recent research results have
demonstrated that only providing a list of change operations between two ontologies
is not sufficient (Plessers, 2007) and new mechanisms need to be provided. So,
instead of providing the whole list of changes that have taken place, our idea is to

present the history of the creation of individual triples.

[ Merge_Properties({street, city},address) ]

[ Rename_Property(town, city) ]

[ Change_Domain( street, Person, Cont.Point)) ] [ Change_Domain( town, Person, Cont.Point)) ]

Fig. 30.The change tree for the triple domain(Cont.Point, address)
Imagine for example, that we have reached ontology version O, and we would
like to know how a specific triple has been produced, and what modelling choices
have been made to the past concerning that triple. Having only the ontology O is

impossible to answer such a question. However, if the change log is available we can
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easily answer such a query. For example, consider that we would like to retrieve the
past modelling choices for the triple “address(Cont.Point, xsd:String)”. By checking
the entire change log E°° presented at the end of Section 4.1, we can identify that is
has been produced by executing the changes shown on Fig. 30. We can observe that
the tree shown describes exactly the part of the ontology that evolved each time and
finally produced the requested triple. Moreover, if even one of those change
operations was missing then the triple “address(Cont.Point, xsd:String)”” would not be
able to be inserted and there is not another sequence of change operations producing
the specific triple

Such a tree is produced from changes that appear in E% 92 We name such a
tree a change tree. Such a tree is only used for visualization purposes and can be

easily produced from a change path uSpath.

Definition 4.5 (Change path for a triple t). Let E°+%2 be the sequence of change
operations from O; to Oy. A change path uspan & E%92 for the triple te O, is the

minimal sequence of change operations such that uspan(O1) = O1', te O1'.

O,' is actually an intermediate ontology version between O; and O, A change
path is minimal in the sense that one cannot remove any of the change operations and
still be able to produce t. For example, the change path for the triple
t=address(Cont.Point, xsd:String) that corresponds to the change tree of Fig. 30 is

USpath = [inv(u7), inv(ue), inv(us), inv(uz)] and obviously uspain(Oo) = Op’, and te Oo".

Algorithm 4.1: ComputeChangePathTriple(E %192 , tinpu)
Input: A sequence E°+9%2 = [u, ...,u,] and one triple tinput
Output: a sequence of change operations us’

1. us":=9

2. Fori=nto1l

3 If tinput € Ja(ui)

4. us’:=us’U u;

5 else if 3t € d4(u;) such that t € 4 (us”)

6 us’:=us'uU u;

7. Return us’

Fig. 31. An algorithm for computing the change path for a given triple

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT



CHAPTER 4 MODELLING ONTOLOGY CHANGE 81

Proposition 3 (Uniqueness): The change path uspan(t) over E%192 for the triple t is

unique.

Proof: Assume uspan(t) is not unique. This would mean that we have two change
paths USpa1 and Uspamz. Since they are both change paths it should hold that
Size(USpath1)=Size(USpath2) Since they both have to be minimal. Now let uUSpath1 = [Uk1,
<eey Ukn ] @NA USpath1 = [Ums, ..., umn ]. Since by using both uk, ,umn We can reach triple t
and by the fact that for two change operation ul, u2 over E9v% it holds that 4(u;) N
0a(Uz)= o and dq(u1) N du(Uz)= o it means that Uy = Umn, SO, in order for USpati# USpath2
to hold there should be an i such that uxi# umi and da(uki) N da(umi) # & (they should add
the same triple but they should be different change operations) which is impossible

since da(ul) N da(u2)= o for our change operations=

Now we will present an algorithm that, given a change log, produces the change
path for a triple tiy,e. The algorithm is shown in Fig. 31. The idea is the following:
initially the algorithm searches for the change operation that adds the triple tinput
possibly by deleting other triples. Then we search for the changes that led to those
other triples and so on. After the execution of the algorithm the change path for tinpu

will be stored in us’.

Theorem 4.1: The algorithm ComputeChangePathTriple computes the change path

for a given triple tinp,t Using a change log E91:02 ,

Proof: In order to prove that ComputeChangePathTriple computes the change path for
triple t using a change log E°+92 we have to prove that (a) tinpute O1' Where us’ (Oy) =
O;' and that (b) us’is minimal for the us’that is produced using Algorithm 4.1.

(a) Let us' = [Uk1, Uk, ..., ukm]. Since uym € us'that means that tinput € da(Ukm) (lines 2-
3 of the algorithm) which means that indeed tiy, IS added to the ontology version
resulting after applying uxm.

(b) Now we prove minimality. Let’s assume that us'is not minimal. Then we can
assume that there is USpath With size(USpa)< size(us’). This would mean that there exist
Ui eus’such that u; ¢ uspan. OF course this would mean from lines 5 and 6 that there

exist t; such that tj € da(u;) such that tj € dq (us’). This means that we can reach tinput
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through t;. However, since da(u1) N da(uz)= o and dq(u1) N d4(u2)= o for two change
operation uz, Uy, the only way to get tinput iS by using t, so ti should be contained in

USpath, Which contradicts our initial statement. So us'’is minimal as well=

The time complexity of the algorithm is O(N*M*S), where N is the number of
change operations, M the maximum size of triples in a change operation u (da(u) U
04¢(u)) and S is the number of triples in dq4(us’). However, as we will see later on
Section 6, in our experiments the number of triples in a change operation typically
does not exceed 5 and typically a change path consists of at most 7 change operations.
So the time complexity mainly depends mostly on the number of change operations in
the evolution log.

Moreover, it is easy to change Algorithm 4.1 in order to retrieve the change

path for a given resource (class or property).

Definition 4.8 (Change path for a resource r). A change path uspam over E1:92 for the

resource reO;iS USpatn(r) = U USparn(t), I et.

The idea is that we would like to retrieve all triples that are changed and contain
the resource r. So, we need to search all triples in order to identify if they contain r
and then we should construct the change path for each one of them. The

corresponding algorithm is shown in Fig. 32.

Algorithm 4.1: ComputeChangePathResource(E°+°2 | r)

Input: A sequence E%192 = [uy, ...,u,] and one resource r
Output: a sequence of change operations us’

1. us':=0

2. Fori=ntol

3. If 3t € J,(u;) such that ret

4 us’ :=us’ U ComputeChangePathTriple(us, t)
5

. Return us’

Fig. 32. An algorithm for computing the change path for a given resource

Theorem 4.2: The algorithm ComputeChangePathResource computes the change

path for a given resource r over E91:9z
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Proof: In order to prove that ComputeChangePathResource computes the change path
for a resource r using a change log E %1%z we have to prove that Uspan(r) = UUSpatn(ti),
Ir eti. From lines 3-4, uspam(r) = Uuspan(ti), I eti. By construction, this proves the

claims=

Since for each t; such that r t; we need to construct the corresponding change
path, the time complexity of the algorithm is O(T*N*M*S), where T is the number of
triples t; for which r et; N is the number of change operations, M is the maximum
size of triples in a change operation u, i.e. in da(u) U dq4(u), and S the number of triples
in o4 (us’). Again, typically in our experiments we have at most three triples for which
r etjand the time for the execution of the algorithm mainly depends on the size of the
change log.

We have to note that our algorithms are not sensitive to the particular language
of changes used, as long as the language maintains the completeness, non-ambiguity
and uniqueness properties. Since each triple is inserted or deleted by only one change

operation per log we can always identify a change path which is unique.
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Chapter 5

Enabling Ontology Evolution in DI

“I only ask for Information”

-Charles Dickens

Contents
5.1 MOTIVATING EXAMPLE ..ottt 87
5.2 EVOLVING DATA INTEGRATION ....cootiuiiiiiiiieieriieieiseiesse et ssessessessens 88
5.2.1 Global & Local SCeMALA............cccovvveiriiiieceee e 88
5.2.2 Semantics Of @n ED ..o 89
5.2.3 QUEIY PrOCESSING. ......ouieriiriiriieiiseiesesssssssssssssssse st ssnnes 91
5.3 DISCUSSION ....ouivieiiitirisiieisesie sttt 101
5.3.1 Exploiting COMPOSITION. .......ocvriviereisiieieiecieiesesse s 101
5.3.2 EXPIOItING INVEISION ...ttt 102
5.3.3 Non-information preserving Changes. ..., 102
5.4 AREAL EXAMPLE FROM CIDOC-CRM ......coooiiiiiiinreeeee e 114
5.5 CONCLUSIONS ...ttt 116
5.5.1 Language of changes independent approach ...........cccoocovevvnenineneinene. 116
5.5.2 More generic than mapping COMPOSITION. ..., 117

HARIDIMOS KONDYLAKIS



86 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

In this Chapter, we address the problem of data integration for evolving
ontologies. The lack of an ideal approach, shown on Chapter 2, leads us to propose a
new mechanism that builds on the latest theoretical advances on the areas of ontology
change (Papavassiliou, 2009) and query rewriting (Cali, 2009), (Poggi, 2008) and
incorporates and handles ontology evolution efficiently and effectively.

More specifically:

e We present the architecture of a data integration system, named Evolving Data
Integration (EDI) system, that allows the evolution of the ontology used as
global schema.

e We define the exact semantics of our system and we elegantly separate the
semantics of query rewriting for different ontology versions and for the
sources. Since query rewriting for the sources has been extensively studied
(Cali, 2009), (Poggi, 2008), (Lenzerini, 2002), (Cali, 2003), (Deutsch, 2006),
we focus on a layer above and deal only with the query rewriting between
ontology versions.

e More specifically, we present a module that receives a user query specified
under the latest ontology version and produces rewritings that will be
answered by the underlying data integration systems - that might use different
ontology versions. The query processing in this module consists of two steps:
a) query expansion that considers constraints coming from the ontology, and
b) valid query rewriting that uses the changes between two ontology versions
to produce rewritings among them.

e In order to identify the changes between the ontology versions we adopt the
high-level language of changes described on Chapter 4. The sequence of
changes between the latest and the other ontology versions is produced
automatically at setup time and then each one of the change operations
identified is translated into a logical GAV mapping. This translation enables
query rewriting by unfolding. Then, the inversibility is exploited to rewrite
queries from past ontology versions to the current, and vice versa, and
composability to avoid the reconstruction of all sequences of changes among

the latest and all previous ontology versions.
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e Despite the fact that query rewriting always terminates in our case, the queries
issued to the past ontology versions might fail. We show that this problem is
not inhibiting in our algorithms but a consequence of information
unavailability among ontology versions. To tackle this problem, we propose
three solutions. The first solution is to provide insights for the failure, thus
driving query redefinition only for a specific portion of the affected query.
Besides driving query redefinition we can provide answers to minimally-
containing or minimally-generalized queries instead that are the best over-
approximations of input queries.

¢ Finally we prove that our method is sound and complete with low complexity.

Such a mechanism, that provides rewritings among data integration systems that
use different ontology versions, is flexible, modular and scalable. It can be used
on top of any data integration system — independently of the family of the
mappings they use (GAV, LAV, GLAYV, etc. (Lenzerini, 2002)). New mappings or
ontology versions can be easily and independently introduced without affecting
other mappings or other ontology versions. Our engine takes the responsibility of

assembling a coherent view of the world out of each specific setting.

5.1 Motivating Example

|:> : subClass of —> :property domain/range

street
ﬂhas_co nt_point

Ontology Version 1 Ontology Version 2

6 & &

Fig. 33. The motivating example of an evolving ontology.

Consider a part of the example ontology described at Chapter 4 shown also at

the left of Fig. 33. This ontology is used as a point of common reference, describing
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persons and their contact points. We also have two relational databases DB1 and DB2
mapped to that version of the ontology. Assume now that the ontology designer
decides to move the domain of the “has_cont_point” property from the class “Actor”
to the class “Person”, and to delete the literal “gender”. Moreover, the “street” and
the “city” properties are merged to the “address” property as shown at the right of Fig.
33. Then, one new database DB3 is mapped to the new version of the ontology
leading to two data integration systems that work independently. In such a setting we
would like to issue queries formulated using any ontology version available.

Moreover, we would like to retrieve answers from all underlying databases.

5.2 Evolving Data Integration

We conceive an Evolving Data Integration (EDI) system as a collection of data
integration systems, each using a different ontology version as global schema.
Therefore, we extend the traditional formalism from (Lembo, 2002) and define an
EDI as:

Definition 5.1 (Evolving Data Integration System). An EDI system I is a tuple of the
form ((O1, S1, M1), ..., (Om, Sm, M) Where

e O; is a version of the ontology (1<i<m).

e S; is aset of local sources (1<i<m).

e M; is the mapping between S; and O; (1<i<m).

Next we discuss how the specific components are specialized in the context of
an EDI.

5.2.1 Global & Local Schemata

Considering O; we restrict ourselves to valid RDF/S knowledge bases as already
described at Chapter 4. This is due to the fact that most of the Semantic Web Schemas
(85,45%) are expressed in RDF/S (Theoharis, 2007).
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Moreover, we consider relational databases as source schemata. We choose to
use relational databases since the majority of information currently available is still

stored on relational databases (Cali, 2010).

5.2.2 Semantics of an EDI

Now we will define semantics for an EDI system I. Fig. 34 sketches the
proposed approach.

We start by considering a local database for each (O;, Si, M), i.e., a database D;
that conforms to the local sources of S;. Based on D;, we shall specify which is the
information content of the global schema O; (recall that a global database is any
database for O; from Chapter 2).

Definition 5.2 (Legal global database): A global database G; for (O;, Si, M;) is said
to be legal with respect to D;, if
e G; is legal with respect to O;, i.e., G; satisfies all the constraints of O;

e G; satisfies the mapping M; with respect to D;.

Total database

Global database

Fig. 34. The semantics of an EDI

The notion of G;j satisfying the mapping M;, with respect to D;, is defined as it
is commonly done in traditional data integration systems (see (Lenzerini, 2002) for
more details). It depends on the different assumptions that can be adopted for
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interpreting the tuples that D assigns to relations in local sources with respect to tuples
that actually satisfy (O;, Si, M;). Since such systems have been extensively studied in
the literature we abstract from the internal details and focus on the fact that for each
(O, Si, M) of our system we can obtain a global database G;.

Now, we can repeat the same process, i.e., to consider the global databases as
sources and a database 9 which we will simply call the global database, the database
that conforms to them. Now we can define the legal total database. Obviously a total
database is a database for the latest ontology version Op,. We use the term “total” only
to differentiate it from a global database, since we will extensively use it from now

on.

Definition 5.3 (Legal total database): A total database T for EDI I is said to be legal
with respect to 9, if
e T is legal with respect to O, i.e., T satisfies all the constraints of the latest
ontology version Op,

e T satisfies E with respect to D where E=UJ*1 EOm i |

The constraints of an RDF/S ontology concern the transitivity of the subClass
and subProperty relations. Moreover, we have to note that the different ontology
versions are considered to be valid. Now we specify the notion of T satisfying E
(E=UP~1 E9m 0i) with respect to D. In order to exploit the strength of the logical
languages towards query reformulation, we convert our change operations to GAV
mappings. So when we refer to the notion of T satisfying E, we mean T satisfying the
GAV mappings produced from E. The GAV mappings for all change operations used
in this paper can be found on the Appendix. A GAV mapping associates to each

element g in T a query gg over Gy, . G,

g—0c

Definition 5.4 A database T satisfies the mappings g — qg with respect to 9 if
g'2dc?

where qg 2 is the result of evaluating the query qg over D.
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For example, the sequence of the GAV mappings that corresponds to our

sequence of changes is:

muy: VX, y, fullname(x, y) = name(x , y)
muy:VX, Yy, address(x,y)— 3 a, b, street(x, a) » city(x, b) A concat(y, a, b)

mus:VX, has_cont_point(Person,x) — has_cont_point(Actor, X)

Recall that E9291 = [uy uy, us U4] from Chapter 4 where :

ui:Rename_Property(fullname, name)
u,:Split_Property(address, {street, city})
us:Specialize_Domain(has_cont_point, Person, Actor)

Ua:Delete_Property(gender, o, 0 ,0 ,0, Person, xsd:String, o, o)

Notice that for u, there is no GAV mapping constructed since we do not know
where to map the deleted element. Now it becomes obvious that the lower the level of
the language of changes used the more change operations won’t have corresponding
GAV mappings (since more low-level individual additions and deletions will appear).
Moreover, note the function “concat” in mu, which will latter require specific
heuristics on the query answering phase, since the us change operations has been
constructed using various heuristic-based techniques for identifying elements with
different names that correspond to the same real world entity.

By the careful separation between the legal total database T and the legal
global databases G; we have achieved the modular design of our EDI system and the
separation between the traditional data integration semantics and the additions we
have imposed in order to enable ontology evolution. Thus, our approach can be

applied on top of any existing data integration system to enable ontology evolution.

5.2.3 Query Processing

Queries to | are posed in terms of the global schema On,. For querying, we adopt
the language SPARQL (Prud’hommeaux, 2008). We chose SPARQL since it is
currently the standard query language for the semantic web and has become an

official W3C recommendation. Essentially, SPARQL is a graph-matching language.
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Given a data source, a query consists of a pattern which is matched against, and the
values obtained from this matching are processed to give the answer. A SPARQL
query consists of three parts. The pattern matching part, which includes several
features of pattern matching of graphs, like optional parts, union of patterns, nesting,
filtering (or restricting) values of possible matchings. The solution modifiers, which
once the output of the pattern has been computed (in the form of a table of values of
variables), allows to modify these values applying classical operators like projection,
distinct, order, limit, and offset. Finally, the output of a SPARQL query can be of
different types: yes/no answers, selections of values of the variables which match the
patterns, construction of new triples from these values, and descriptions of resources.

In order to avoid ambiguities in parsing, we present the syntax of SPARQL graph
patterns in a more traditional algebraic way, using the binary operators UNION AND
and OPT, and FILTER according to (Perez, 2009). Assuming the existence of an
infinite set of variables Var disjoint from U, L, a SPARQL graph pattern expression is

defined recursively as follows:

e A tuple from (UU LU Var) x(LUVar) x(UUL UVar) is a graph pattern (a
triple pattern).

e If P, and P, are graph patterns, then expressions (P; AND P,), (P; OPT P;) and
(P1 UNION P,) are graph patterns.

o If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern.

A SPARQL built-in condition is constructed using elements of the set (U U
L uVar) and constants, logical connectives, inequality symbols, the equality symbol
etc. (see (Prud’hommeaux, 2008) for a complete list). In this paper, we do not consider
OPT and FILTER operators since we leave it for future work. The remaining
SPARQL fragment we consider here corresponds to union of conjunctive queries
(Perez, 2009). Moreover, the application of the solution modifiers and the output is
done after the evaluation of the query, and is not of interest.

Continuing our example, assume that we would like to know the ‘“ssn” and
“fullname” of all persons stored on our DBs and their corresponding address. The

SPARQL query, formulated using the latest version of our example ontology is:
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g1 select ?SSN ?NAME ?ADDRESS where {
?X type Person.
?X ssn ?SSN.
?X fullname ?NAME.
?X has_cont_point ?Y.
?Y type Cont.Point.
?Y address ?ADDRESS}

Using the semantics from (Perez, 2009) the algebraic representation of g is

equivalent to:

01 725N, ?NAME, 2ADDRESS (
(?X, type, Person) AND
(?X, ssn, ?SSN) AND
(?X, fullname, ?NAME) AND
(?X, has_cont_point, ?Y) AND
(?Y, type, Cont.Point) AND
(?Y, address, 7ADDRESS))

Now we define what constitutes an answer to a query over On. We will adopt

the notion of certain answers (Lenzerini, 2002), (Cali, 2009).

Definition 5.5 (Certain answers): Given a global database 2 for I, the answer g’-2 to
a query g with respect to | and .2, is the set of tuples t such that t € q' for every total
database T that is legal for I with respect to 2, i.e. such that t is an answer to q over
every database T that is legal for | with respect to 2. The set q/-? is called the set of

certain answers to q with respect to | and 2.

Note that, from a logical point of view, finding certain answers is a logical
implication problem: check whether it logically follows from the information in the
global databases G; that t satisfies the query.

It has been shown (Cali, 2006), (Cali, 2010) that computing certain answers to

union of conjunctive queries over a total database with constraints, corresponds to
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evaluating the query over a special database called canonical which represents all
possible total databases legal for the data integration system and which may be
infinite in general. However, instead of trying to construct the canonical database and
then evaluate the query, another approach is to transform the original query q into a
new query expo, (q) over the O, (which is called the expansion of g w.r.t. Op) such
that the answer to exp,, (q) over the retrieved total database is equal to the answer to

g over the canonical database (Cali, 2006).

Definition 5.6 (Retrieved total database): If 2is a global database for the EDI-system
I, then the retrieved total database ret(l, 2) is the total database obtained by
computing and evaluating, for every element of Op, the query associated to it by our

GAV mappings over the global database 2.

Definition 5.7 (Canonical total database): If 2 is a global database for the EDI-
system 1, then the canonical total database can(l, 9) is the retrieved total databases

ret(l, 2) that do not violate any constraint in Op,

Recall that since we have GAV mappings, for each element in O, we have a
query over the global database 2. This is a common approach in data integration

under constraints, and we also adopt it here.

Latest Ontology Version

=== SpaRQL query q @

EVOLUTION

[ \ MODULE
i can(l, D) | Parser/Expander

= exp(q) @
P

L oret(l, D) 1T Valid Rewriter - EVOL'U“OH
[} 1 Dg

________ 7!\________

£ AL valid(exp(q)) {1
R } _//”’
R ?\________1 Traditional DI system Traditional DI system
L Gl (o) (o]
,,,,,,;'l 777777 N~ —
5 : e e R e Latest Ontology Version

_____________

Fig. 35. Query processing
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This step is performed by the “Parser/Expander” component shown on Fig. 35.
Now, in order to avoid building the retrieved total database we do not evaluate
expo, (q) on the retrieved total database. Instead, we transform exp,_(q) to a new
query valide(expo, (q)) over the global relations on the basis of E and we use that
query to access the underlying data integration systems. This is performed by the
“Valid Rewriter” component which is also shown on Fig. 35. Below we describe the

implementation of the aforementioned steps.

5.2.3.1 Query expansion.
In this step, the query is expanded to take into account the constraints coming

from the ontology. Query expansion amounts to rewriting the query q posed to the
ontology version Oy into a new query q', so that all the knowledge about the
constraints in ontology has been “compiled” into q'. Recall that we consider an
ontology as a schema with constraints. This is performed by constructing the perfect

rewriting of q.

Definition 5.8 (Perfect rewriting): Let | an EDI system and let q be a query over Op,.
Then qp, is called a perfect rewriting of q w.r.t. I if, for every global database D, q’-?

= qp ref(1.D)

Algorithms for computing the perfect rewriting of a query g w.r.t to a schema,
have been presented in (Cali, 2010), (Cali, 2009), (Cali, 2003), (Poggi, 2008) and
mainly use chase/backchase algorithms (Deutsch, 2006). In our work, we use the
QuOnto system (Poggi, 2008) in order to produce the perfect rewriting of our initial
query. Perfect rewriting is in our case PTIME in the size of ontology and NP in the
size of query. For more general classes of logic it is complete for PSPACE and
2EXPTIME as proved in (Cali, 2009).

Continuing our example if we expand q; we get gz:

02 725N, ?NAME, 2ADDRESS (
(?X, type, Person) AND
(?X, ssn, ?2SSN) AND
(?X, fullname, ?NAME) AND
(?X, has_cont_point, ?Y) AND

HARIDIMOS KONDYLAKIS



96 CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI

(?Y, type, Cont.Point) AND
(?Y, address, 7ADDRESS))
UNION

T72SSN,?NAME,?ADDRESS (
(?X, type, Actor) AND
(?X, ssn, ?2SSN) AND
(?X, fullname, ?NAME) AND
(?X, has_cont_point, ?Y) AND
(?Y, type, Cont.Point) AND
(?Y, address, ?7ADDRESS))

This is produced by considering the transitive constraint of the subClass relation

among the classes “Person” and “Actor”.

5.2.3.2 Computing Valid Rewritings
Now instead of evaluating expo (q) on the retrieved total database, we

transform it to a new query called valid rewriting, i.e. valide(expo,, (d)). This is done

as already discussed in order to avoid the construction of the retrieved total database.

Definition 5.9 (Valid Rewriting): Let | an EDI system and let g be a query over ret(l,
2) . Then validg(q) is called a valid rewriting of q w.r.t. ret(l, @) if, for every global
database 2, qr(I-2)=[ validg(q)] 2.

When the retrieved total database is produced by GAV mappings as in our case,
query rewriting is simply performed using unfolding (Poggi, 2008). This is a standard
step in data integration (Lenzerini, 2002) which trivially terminates and it is proved

that it preserves soundness and completeness (Cali, 2006).

Theorem 5.1 (Soundness and Completeness of unfolding (Cali, 2003)): Let | be an
EDI system, g a query posed to I, 2 a global database for I such that I is consistent
w.r.t. 2, and t a tuple of constants of the same arity as g. Then t € g"(’-2) if and only
if t € [valide(q)]2.
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Moreover, due to the disjointness of the input and the output alphabet assumed,
each GAV mapping acts in isolation on its input to produce its output. So we only
need to scan the GAV mappings once in order to unfold the query and the time
complexity of this step O(N*M) where N is the number of change operations in the
evolution log and M is the number of sub-goals in the query.

Now, we can state the main result of this section.

Theorem 5.2 (Soundness and Completeness): Let | be an EDI system, g a query
posed to I, 2 a global database for I such that I is consistent w.r.t. 2, and t a tuple of

constants of the same arity as g. Then t € q/-2if and only if t € [valide(exp(q))]Z.

Proof: By soundness and completeness of unfolding t € [valide(exp(q))]2 if and only
if t € expo, (q) *(1-?). Now by the soundness of the perfect rewriting step we have
that t € exp,,,(q) (2 if and only if te qwn(12), By the canonical database t€

geen(L-2) if and only t € g/-2. This proves the claim=

Continuing our example we will show how the valid rewriting of q; is
constructed using unfolding steps. Each one of those steps uses one GAV mapping to
replace a subgoal in the query with its definition in the mapping. So, initially the
mapping mu; is used. Recall that mu; is produced from the u; change operation
(Rename_Property(fullname, name)) that replaces the property “fullname” with the
property “name”. So, the following query is produced by renaming also the

“fullname ” property on the query with the “name” property.

q3:77:?SSN,?NAME,?ADDRESS (
(?X, type, Person) AND
(?X, ssn, ?SSN) AND
(?X, name, ?NAME) AND
(?X, has_cont_point,?Y) AND
(?Y, type, Cont.Point) AND
(?Y, address, 7ADDRESS))
UNION

7T9SSN,?NAME,?ADDRESS (
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(?X, type, Actor) AND

(?X, ssn, ?2SSN) AND

(?X, name, ?NAME) AND
(?X, has_cont_point, ?Y) AND
(?Y, type, Cont.Point) AND
(?Y, address, 7ADDRESS))

Then the mappings mu; is used for replacing the “address” property with the

“city” and the “street” literals. So, the following query is produced.

Q4: 2SN, ?NAME, 2ADDRESS (

UNION

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, PADDRESS2) AND
concat(?ADDRESS, ?ADDRESS1, 7ADDRESS2))

TT23SN,2NAME,2ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, ?ADDRESS?2)

concat(?ADDRESS, ?ADDRESS1, ?ADDRESS?2))

Then mug is used. Recall that this is produced from the us change operation

(Specialize_Domain(has_cont_point, Person, Actor) ) that specializes the domain of

the “has_cont_point” property to the class “Actor”. So, the query Qs is generated.
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q5: TT72SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, 7ADDRESS2)

concat(?ADDRESS, ?ADDRESS1, 7ADDRESS2))
UNION
775N, 2NAME, 2ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?2SSN) AND

(?X, name, 2NAME) AND

(?X, has_cont_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, street, ?ADDRESS1) AND

(?Y, city, PADDRESS2)

concat(?ADDRESS, ?ADDRESS1, ?ADDRESS?2))

Since this is actually the union of a query with itself, the query that will be

generated for Oy iS Qs.

q6: T7SSN,?NAME,?ADDRESS (
(?X, type, Actor) AND
(?X, ssn, ?SSN) AND
(?X, name, ?NAME) AND
(?X, has_cont_point, ?Y) AND
(?Y, type, Cont.Point) AND
(?Y, street, ’ADDRESS1) AND
(?Y, city, 7ADDRESS?2)
concat(?ADDRESS, ?ADDRESS1, ?ADDRESS?2))
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Finally our initial query will be rewritten to the union of g (issued to the data
integration system that uses O;) and g (issued to the data integration system that uses
0y).

Note however, that gs sent to the data integration system that uses O; has
encoded a function (concat) to concatenate the two literals “streets” and “city” to the
literal “address”. This function should be executed in order to be able to unify the
returned results with the results from g, However, this query cannot be sent as is to
the data integration system that uses O; since SPARQL cannot handle functions and
we don’t know how the SPARQL query is executed by the underlying data integration
system. That is why qg is rewritten to g; before it is sent to the data integration system

that uses O

Q7: T17SSN,?NAME,?ADDRESS1, 2ADDRESS2 (
(?X, type, Actor) AND
(?X, ssn, ?SSN) AND
(?X, name, ?NAME) AND
(?X, has_cont_point, ?Y) AND
(?Y, type, Cont.Point) AND
(?Y, street, ?ADDRESS1) AND
(?Y, city, ?ADDRESS2))

When the results are returned, the concatenation function is executed in our
system and the final results are unified. Similar strategy is followed for all GAV
mappings that encode a function and is the result of encoding heuristics when

detecting the change operations among ontology versions.
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5.3 Discussion
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Fig. 36. Exploiting composition & inversion

5.3.1 Exploiting Composition.

So far we have described the scenario where we construct the change logs
EOm Oipetween Oy and all O; (1<i<m) using the algorithm from (Papavassiliou,
2009). Then, we formulate a query q using the ontology version Op, and we use the
corresponding GAV mappings to produce and evaluate valide(expo, (0)).

However, based on the composition property (Proposition 1), we could avoid
the computation of all those change logs from scratch each time. Instead, of
constructing E% 9 for all i (1<i<m), we could only construct all E%-%-1 (2 <j <
m) between the subsequent ontology versions as shown in Fig. 36, thus minimizing
the total construction cost® - since the compared ontologies now have more common
elements. However, we have to keep in mind that the time of constructing a sequence

of changes is spent only once during system setup.

Corollary 2: EOm 01 = Y™~ gOj+1.0}

Proof: The proof directly follows from the fact that the change operations we consider
compose (Proposition 1) =

5 The complexity of the algorithm for input Oy, O, is O(max(Ny, N,, N?) (Papavassiliou,
2009) where N; is the size in triples of O;, and N is the size of their set difference between O;
and O,
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Moreover, whenever a new ontology version occurs, we can construct the
change log between the new ontology version and the previous ontology version - and
not all change logs from scratch. Of course, this will lead to larger sequences of
change logs, but will allow the uninterrupted introduction of new ontology versions to

the system.

5.3.2 Exploiting Inversion

Ideally, we would also like to accept queries formulated using ontology version
O; and to rewrite it to the newer ontology versions. This would be really useful since
in many systems queries might be stored and we wouldn’t like to change them every
time the ontology evolves. However, in order to achieve this we would have to use the
inverse GAV mappings for query rewritings which are not always possible to
produce. Our approach deals with the inversibility on the level of change operations
and not at the logical level of the produced GAV mappings. So, instead of trying to
produce the inverse of the initial GAV mappings, we invert the sequence of changes
(which is always possible according to Corollary 1) and then use the inverted
sequence of changes to produce the GAV mappings that will be used for query
rewriting to the current ontology version. This is also shown in Fig. 36 and enhances
the impact of our approach.

Actually, it now becomes obvious that it is straight forward to accept a query
formulated in any ontology version O; (1<i<m) and to get the rewritings for all

ontology versions using the inverted list of changes for the O; that j>i.

5.3.3 Non-information preserving changes.

Although in its basic form our query rewriting strategy produces equivalent
rewritings, it turns out that problems may occur due to non-information changes
between ontology versions. Consider as an example the query gs that asks for the

“gender” and the “name” of an “Actor” using ontology version O;.

q8: TT 92NAME,?GENDER (
(?X, type, Actor) AND
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(?X, name, ?NAME) AND
(?X, gender, ?GENDER))

Trying to rewrite the query Qs to the ontology version O, our system will first
expand it. Then it will consider the GAV mappings produced from the inverted
sequence of changes (as they have been presented at the end of the sub-section 4.1).
So, the following query will be produced by unfolding using the mapping VX, v,

name(X, y) — fullname(x , y) - produced from inv(u).

T ?NAME,?GENDER(
(?X, type, Actor) AND
(?X, fullname, ?NAME) AND
(?X, gender, ?GENDER))

However, it is obvious that the query produced will not provide any answers
when issued to the data integration system that uses O, since the “gender” literal no
longer exists in O, This happens because the inv(us) change operation is not an
information preserving change among the ontology versions. It deletes information
from the ontology version O; without providing the knowledge that this information is
transferred on another part of the ontology. This is also the reason that low-level
change operations (simple triple addition or deletion) are not enough to dictate query
rewriting and a high-level language of changes is preferable.

Although, this might be considered as a problem, actually it is not, since if we
miss the literal “gender” in version Oy, this would mean that we have no data in the
underlying local databases for that literal. However the query still will fail and we
need a mechanism to a) notify the user for the failure and b) provide best
approximations.

A question that arises is whether we could identify failures on the issued queries
before the expansion phase. This would allow us to identify really fast the impact that
the evolution has on the aforementioned queries. Although, we would identify the
direct failures, the indirect ones (coming from the expansion of the queries) would not

be identified. The case that such a mechanism would be useful would be when
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mappings are considered to be exact between the ontology versions, or when
ontologies are interpreted as global schemata without constraints.

Another question that arises is what happens if cycles occur on class/property
hierarchies between the ontology versions. For example, imagine the scenario where
we formulate a query asking the instances of a class A using ontology version 1. In
that ontology version for class A has as a subclass the class B. However, after some
changes we reach ontology version 2 where now the class A is a subclass of B. This is
not a problem since the cycles affect only the algorithm for detecting the changes
between ontology versions and the expansion phase. However, in both phases we
enforce no cycles due to validity constraints, and our approach is not affected by

cycles occurring between ontology versions.

5.3.3.1 Reasoning on queries.

The first option is to notify the user that some underlying data integration
systems were not able to answer their queries and present the reasons for that. For our
example, our system will report that the data integration system that uses O, was not
able to answer the initial query since the literal “gender” does not exist in that
ontology version. To identify the change operations that lead to such a result we

define the notion of affecting change operations.

Definition 5.10 (Affecting change operation): A change operation u € E°+9 affects
the query q expressed using terms from O, denoted by u ¢ g, iff

l.  dau)=o

Il.  there exists triple pattern teq that can be unified with a triple of d4(u).

The first condition ensures that the operation deletes information from the
ontology without replacing it with other information, thus the specific change
operation is not information preserving. However, we are not interested in general for
the change operations that are not information preserving. We specifically target those
change operations that change the ontology part which corresponds to our query
(condition 1I).

Unification is a standard operation in logic programming. For more information
see (Lloyd, 1987). The algorithm for identifying affecting change operations is shown

in Fig. 37 and checks directly the change operations for the conditions described
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above. The time complexity of the algorithm is O(N*M*T), where N is the number of
change operations in E%92 M is the number of triple patterns in g and T is the

maximum number of triples in the 54(u) that u € E°1:92

Algorithm 5.1: IdentifyAffectingOperations(q, £°192 )

Input: The query g formulated using ontology version O; and the the evolution
log E9192

Output: The set of affecting change operations

1.S=p

2. For each u € E9102

3. if da(u)=wand 3t € g, t'€ Jd4(u) such that t unifies ¢/

4, S:=SuUu

5. Return S

Fig. 37. The algorithm for identifying affecting change operations for a query g

Proposition 4 (Correctness): The algorithm IdentifyAffectingOperations identifies the

affecting change operations for a given query q, over E%0z

Proof: In line 2 the algorithm searches all change operations. For each one of those
change operations, the algorithm checks the conditions in line 3. This immediately

proves the claims=

Having defined the notion of affecting change operation we will prove the

following:

Proposition 5: Let g=UT* g;. If for all g, there exists u € E%92 such that u ¢ g, then

validg(q) returns no answers.

Proof: The proof follows from the fact that if for a conjunctive query q, there exists u
€ E%192 gych that u ¢ ¢ then according to the Definition 5.9 the change operation will
delete a part from the next version of the ontology that g still queries. Since the part of
the schema that g will query would not be available in O, this means that the query
will not return any answers. And since for all g;, there exists u € E°+% such that u ¢ g;

this means that no subquery will return any answer=
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Users then can use this knowledge a-priori in order to re-specify their queries if

desired.

5.3.3.2 Minimally-containing rewriting

The first approximation that we propose to the user is the minimally-containing
rewriting (Halevy, 2001). A containing rewriting of g is a conjunctive query against
the views which contain g. A minimally-containing rewriting is a containing rewriting
which is contained in any other containing rewriting of g. It is thus the best “over-
approximation” of ¢ and it is dual to the “maximally-contained rewriting” which is the

best “under-approximation of g as shown on Fig. 38.

Answers to g

Fig. 38. Minimally-containing rewriting vs. Maximally-contained rewriting
Definition 5.11 (Minimally-Containing Rewriting (Afrati, 2005)): 4 query q' is a
minimally-containing rewriting of a conjunctive query q using a set of mappings
(views) M if and only if (1) q' is a containing rewriting of q (¢ < q') and (1) there
exists no containing rewriting q" of q using M, such that the expansion of q'' properly

contains the expansion of q'.

Now we will present an algorithm shown on Fig. 39 and we will prove that the
query q' that is computed by Algorithm 5.2 is indeed a minimally-containing rewriting

of g, and thus it can be used in order to compute the minimally-containing rewriting

of exp(q).

Theorem 5.3 (Correctness): MinimallyContainingRewriting(g, E) is a minimally-

containing rewriting of a conjunctive query g using E.
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Proof: In order to prove that MinimallyContainingRewriting(g, E) is a minimally-
containing rewriting of g we will show that the Algorithm 5.2 is equivalent to the
simplified version of the Chase/Backchase algorithm that has been proved (Deutsch,
2006) to output such a rewriting. Recall that the simplified version of
Chase/Backchase for a query g is the following:

1.Chase g and obtain the universal plan U.

2.Restrict the body of U only to the vocabulary of views obtaining a query M.

3.1f M is safe (i.e. head variables appear in the body) output M, otherwise output

“no containing rewriting of ¢ exists”.

The first step of the algorithm consists of a number of chase steps. In each chase
step a constraint is applied to the query. Each chase step is actually one unfolding step
with the difference that the head of one constraint is not replaced by the body, but it is
added to the query as well. Then in the second step, according to the simplified
version of Chase/Backchase, the body of U is restricted to the vocabulary of views
obtaining a query M. This step is actually the same as replacing the head of the
mappings with their body. So the first two steps of the simplified chase algorithm
behave exactly like the unfolding steps in our algorithm. The only difference is that in
our case, several conjuncts might not be deleted in the unfolding step. However,
according to the Definition 5.9 and Proposition 4, those conjuncts are discovered
using the algorithm for identifying the affected change operations and the deletion of
these conjuncts is actually performed on line 4 of our algorithm. Finally, the third step
of the algorithm is the same in our case as well. So our algorithm is equivalent to the
simplified chase/backchase and returns the minimally-containing rewriting of the
initial query with respect to E=

A query is safe if all variables in the head of the query appear in the body as
well. Concerning the time complexity, the algorithm first needs to unfold the query
(O(N*M) where N is the number of change operations in the evolution log and M is
the number of sub-goals in the query) according to line 1 and then to detect the
affecting change operations for the unfolded query (O(N*UM*T) where UM is the
number of sub-goals for the unfolded query and T is the maximum number of triples
in the dg(u) that u € E9192), Finally the algorithms should search all subgoals of the

unfolded query to identify the triples that unify with the affected changes and to delete
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them (O(UM*T*A) where A is the number of the affected change operations). So the
total time complexity is O(N*M)+ O(N*UM*T)+ O(UM*T*A)< O(N*M)+
O(N*UM*T)+ O(UM*T*N) < O(N*M)+2 O(N*M*T*T) < O(N*M)+ O(N*M*T?) <
O(N*M*T?).

Algorithm 5.2: MinimallyContainingRewriting(q, E°+9%2)

Input: The conjunctive query query g formulated using ontology version O; and
E 9192 the sequence of change operation from Oy to O,.
Output: The minimally-containing rewriting of q or false
q"=validg(q)
A:=IdentifyAffectingOperations(q', E91:92 )
Foreacha€e A
Lett € g, t' € d4(a) such that t unifies ¢’
q"=q'-{t}
A=A —{a}
If ¢'is safe

Return ¢’

© o N o g B~ w D P

else
10. Return false

Fig. 39. An alternative algorithm for computing minimally-containing rewritings

For example consider an alternative of the ggs query, asking for the name of the

male actors:

T I2NAME (
(?X, type, Actor) AND
(?X, name, ?NAME) AND (?X, gender, “Male”))

Obviously, the expander phase will not produce a new query and the valid
rewriter will return the following query after considering the mapping VX, y, name(x,

y) — fullname(x , y).

T ?NAME(
(?X, type, Actor) AND
(?X, fullname, ?NAME) AND
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(?X, gender, “Male™))

However, the previous query will not return any answers when issued to the
data integration system using O, since the property “gender” no longer exists. So, we
have to search for minimally-containing rewritings, which will be produced by
removing the conjuct asking for that property. So, the minimally-containing query that

will be produced is:

T ’?NAME(

(?X, type, Actor) AND (?X, fullname, ?NAME))
And although, the minimally-containing rewriting is always unique (as proved
in (Deutsch, 2007)), it is now always possible to produce it (when the query safety is
not maintained). That’s why we produce minimally-generalized queries, as well,

presented bellow.

5.3.3.4 Generalized Queries
Besides providing an explanation for the failure of a sub-query, we can also

produce more general answers for the data integration sub-systems that cannot answer
input queries. Our solution here is that when a change operation affects a query
rewriting, we can check if there is another triple t’ (in the previous ontology version)
which is the “parent” of the deleted triple t. The “parent” means that domain(t) is
subclass of domain(t’), that range(t) is subclass of range(t’) and that property t is
subproperty of t”. If such a triple exists in the next ontology version we can ask for
that triple instead, thus providing a generalized query.

Definition 5.12 (Generalized query): Let g a conjunctive query expressed using Oj.
We call qeen a generalized query of q over E919z ff:
I. qiscontained in geen (g = Qcen)

1. 1t does not exist ue E91-92 such that u ¢ geen.

Now we will define the notion of minimally-generalized query.

Definition 5.13 (Minimally-Generalized query): A generalized query geen Of g over

E©192 js called minimal if there is not Qeen’ such that ¢ < Qeen’and geen’ < Qen.
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The idea of minimally-generalized query is that it is a query that can be
answered on the evolved ontology version after applying the minimum number of
“repairs” on the query in order to achieve that. The algorithm for producing a
minimally-generalized query over E°+%2 for a given query q is shown in Fig. 40.

The algorithm getParent is implemented by just querying a reasoner (Pellet® for
example) and returns the first direct “parent” triple of ¢ if many exists (in
lexicographic order). Moreover, it always terminates since the affecting change
operations are finite. Our algorithm runs in O(A*N*M*T), where A is the maximum
number of affecting change operations, N is the number of change operations in
E©%1%2 M is the number of triple patterns in g and T is the maximum number of triples

in the d4(u) that u € E%192 . Now we will prove the correctness of our algorithm.

Algorithm 5.3: MinimallyGeneralizedQuery(g, O;, E°1:92)
Input: The query q formulated using ontology version O; and E°2 the sequence
of change operations from O; to O,.

Output: A minimally-generalized query of q or false

1. g"=q

2. A:=ldentifyAffectingOperations(q’, E°+2 )

3. While(A+ o)

4. Leta€eA

5. Lett € da(a)U d¢(a) such that t unifies with ¢' € ¢’
6. parent:= getParent(t)

7. If parent # o then

8. Replace t' with parent in ¢’

9. else

10. q"-= false

11. break

12. A:=IdentifyAffectingOperations(q’, %102 )

13. Return g’

Fig. 40. The algorithm for identifying a minimally-generalized query

¢ http://clarkparsia.com/pellet/
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Theorem 5.2: The algorithm MinimallyGeneralizedQuery produces a minimally-

generalized query of q over E%10z

Proof: First we have to show that (a) the query produced is actually a generalized
query and then that (b) the generalized query produced is minimal. Before proceeding
in the proof recall that if g and ¢’ are two queries (of the same arity) for a schema S,
we say that q in contained in ¢’ with respect to S, denoted by q < ¢/, if V9 < ¢™°,
i.e. the result of evaluating q is a subset of the results of ¢’ evaluation for every model
MO of S.

(@) Now in order to show that g’ produced from Algorithm 5.3 is a generalized query
we have to show that i) Aue E®%2 such that u ¢ q'and ii) that ¢ < q". Indeed from
line (line 3) we remove each time one affecting change operation until A= @. So if the
algorithm finishes ( and ¢'#false) there would not be any change operations affecting
g'. Moreover, since in one iteration a triple pattern ¢’ € g1’ is replaced with its parent to
produce gy’ the answers to g;’ would be contained in the answers to qy’, thus ¢'C ¢".
By repeating the same operation g:'C 0z/,..., m'< Qgm+1', and thus g1’ gm+1'= g’ by
transitivity.

(b) Now we have to show that the generalized query produced ¢’ is minimal. Let’s
suppose that it is not minimal. This would allow the existence of a minimal
generalized Qmin such that ¢ < Qmin @and gmin < ¢'. By gmin < ¢’ this would mean that
3¢’ € ¢’ such that ¢' is parent of t € Qmin, But in order to construct ¢’ we only use a
parent triple pattern if a change operation affects that triple. This means that t is

affected by a triple patter. Thus, gmin is N0t a generalized query which is not true=

Although, the generalized query produced from the previous algorithm is
always minimal, however, it might not be unique. It might be the case that several
other minimally-generalized rewritings may exist as well, since we might have
multiple super-properties of a deleted property, and all might be minimal wrt. the
initial query, since they add different set of answers to the answer of . An algorithm
that identifies all minimally-generalized rewritings for a query g, is shown on Fig. 41.
The algorithm behaves exactly like the algorithm for identifying a minimally-
generalized rewriting but instead of limiting the options for replacing a deleted triple

with the “parent” triple it considers all different combinations. The complexity of the
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algorithm obviously is O(SM*N*T*M?) where S is the maximum number of super-
properties of a property, N is the number of change operations in E°192, M is the
number of triple patterns in g and T is the maximum number of triples in the d4(u) that

ue€ E%0z,

Algorithm 5.4: MinimallyGeneralizedQueries(q, O;, E%1-92)

Input: The query g formulated using ontology version O; and E %192 the sequence
of change operation from O; to O..

Output: The set of minimally-generalized rewritings of g

1. queries:={q}

2. Foreach query € queries

3 A:=ldentifyAffectingOperations(query, E%192 )

4 While(A+ o)

5. Leta €A

6 Let t € a such that t unifies with ¢ € query

7 parents:= getParents(t)

8 tempquery:= query

9 For i=1 to size(parents)

10. If i=0 then

11. query:=Replace t' with parents[i] in query
12. Else

13. queries:= queries U Replace t' with parents[i] in tempquery
14, if size(parents)=0 then

15. queries:= queries - query

16. break

17. A:=ldentifyAffectingOperations(q’, E°192 )

18. Return queries

Fig. 41. The algorithm for identifying all minimally-generalized query
Theorem 5.3: The algorithm MinimallyGeneralizedQueries produces all minimally-

generalized query of q over E%02

Proof: First we have to show that (a) the query produced is actually a generalized

query and then that (b) the generalized query produced is minimal. Before proceeding
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in the proof recall that if g and ¢’ are two queries (of the same arity) for a schema S,
we say that q in contained in ¢’ with respect to S, denoted by q < ¢/, if V9 < ¢™°,
I.e. the result of evaluating q is a subset of the results of ¢’ evaluation for every model
MO of S.

(@) Now in order to show that g’ produced from Algorithm 5.4 is a generalized query
we have to show that i) Zue E%1%2 such that u ¢ q'and ii) that @ < q". Indeed from
line (line 4) we remove each time one affecting change operation until A= @. So if the
algorithm finishes (and queries#o) there would not be any change operations affecting
g'. Moreover, since in one iteration a triple pattern ¢’ € g1’ is replaced with its parent to
produce g’ the answers to g;’ would be contained in the answers to qy’, thus ¢’ ¢".
By repeating the same operation ;' Q2',..., dn'< Qm+1', and thus g1’ m+1'= ¢’ by
transitivity for each one of the subqueries in queries.

(b) Now we have to show that each the generalized query produced ¢’ is minimal.
Let’s suppose that it is not minimal. This would allow the existence of a minimal
generalized Qmin such that ¢ Z Qmin @and gmin < ¢'. By qmin < ¢’ this would mean that
3¢' € ¢’ such that ¢' is parent of t € gmin, But in order to construct ¢’ we only use a
parent triple pattern if a change operation affects that triple. This means that t is

affected by a triple patter. Thus, gmin is N0t a generalized query which is not true=

Assume for example, an alternative ontology version O;, where the
“personal_info” property is a super-property of the “gender” property. Assume also
the same sequence of changes from O; to O, (the list of inverted changes presented in
Chapter 4). Then, if query g; previously described is issued, we will be able to
identify that the triple “Actor, gender, xsd:String” has been deleted and to look for a
more general query. The query that our system produces, and that provides a more

general answer to user query is:

Os: 7T 2NAME, ?GENDER (
(?X, type, Actor) AND
(?X, fullname, ?2NAME) AND
(?X, personal_info, ?GENDER)
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5.4 A real example from CIDOC-CRM

Now we will present a real example from the CIDOC-CRM using a simple
template query from (Theodoridou, 2010). Assume for example that the user would
like to get all objects used to capture an image. The corresponding SPARQL query
formulated using the CIDOC-CRM version 4.2 is:

SELECT $x WHERE {

$a rdf:type "E38.Image";

:P108B.was_produced by $y.
$y rdf:type "E5.Creation ";
:P8F.took_place_on_or_within $x.
$x rdf:type "E22.Man-Made_Object".

}

The query is issued to the system and initially it is expanded using the QuOnto
engine. The engine will identify the subclasses and the sub-properties of the used

classes/properties and it will produce the following query:

mx((?a, type, E38.Image) AND
(?a, P108B.was_produced_by, ?y) AND
(?y, type, E65.Creation) AND
(?y, P8F.took _place_on_or_within, ?x) AND
(?x, type, E22.Man-Made_Obiject))

UNION

UNION
mx((?a, type, E38.Image) AND
(?a, P108B.was_produced_by, ?y) AND
(?y, type, E65.Creation) AND
(?y, P8F.took_place_on_or_within, ?x) AND

(?x, type, E84.Information_Carrier))
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Assuming that we have databases mapped to the ontology version 3.2.1, the
“Valid Rewriter” will check the constructed evolution log and will identify the
mappings that should be used for unfolding. The only mappings that will be used are

the ones occurring from the following change operation:

Rename_Class(E65.Creation, E65.Creation_event)

So, the query that it is issued on the data integration system that uses the version
3.2.1is:
mx((?a, type, E38.Image) AND
(?a, P108B.was_produced_by, ?y) AND
(?y, type, E65.Creation_event) AND
(?y, P8F.took _place_on_or_within, ?x) AND
(?x, type, E22.Man-Made_Obiject))
UNION

UNION
mx((?a, type, E38.Image) AND
(?a, P108B.was_produced_by, ?y) AND
(?y, type, E65.Creation_event) AND
(?y, P8F.took _place_on_or_within, ?x) AND
(?x, type, E84.Information_Carrier))

However, the class “E84.Information_Carrier” is not available to the ontology
version 3.2.1 since it was added later to the ontology. So, no equivalent rewriting can
be produced and we have to go for minimally-containing rewritings. So the following

query is produced which is a minimally-containing rewriting of the initial query.

mox((?a, type, E38.Image) AND
(?a, P108B.was_produced_by, ?y) AND
(?y, type, E65.Creation_event) AND
(?y, P8F.took_place_on_or_within, ?x) AND
(?x, type, E22.Man-Made_Object))
UNION
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UNION

mox((?a, type, E38.Image) AND
(?a, P108B.was_produced_by, ?y) AND
(?y, type, E65.Creation_event) AND

(?y, P8F.took _place_on_or_within, ?x)

This example, is minimalistic and its purpose is only to show how our approach

is applied on the evaluation scenarios.

5.5 Conclusions

5.5.1 Language of changes independent approach

The first question that naturally arises from our approach is whether the language of
changes we adopt is the only language that could be used. The answer to that question
obviously is no. In fact, any high-level language that guarantees uniqueness, non-
ambiguity and completeness could be used as well. However, our choice among the
possible languages would have to be based on the following properties:

a) Individual add/del: First and most important a high-level language of changes is
better than another if the sequence of changes among two ontology versions
yields a smaller number of change operations u such that d,(u)=e or d4(u)=0.

b) Now if we assume that the languages of changes under consideration return the
same number of individual add/del a language of changes is better than
another the more fine-grained change operations it has. The more fine-grained
are the change operations, the better the specification of logical mappings
among the ontology versions. This is due to the fact that we have to resort to
heuristics as the change operations become more coarse-grained.

c)Finally, desirable but not required properties would be composition and
inversion, in order to be able to compose and invert the sequence of changes
instead of trying to compute them each time.

However, is we assume that the heuristic change operations of a specific

language can be correctly translated to a number of fine-grained change operations

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT



CHAPTER 5 ENABLING ONTOLOGY EVOLUTION IN DI 117

without affecting the number of individual add/deletes, then our approach becomes
independent of the language of changes used. In fact, we could even allow the
experienced users to specify manually the logical mappings they desire among the

ontology versions and our results will be exactly the same.

5.5.2 More generic than mapping composition.

Another question that arises is how our approach can be compared with
mapping rewriting/composition. In fact since the change operations are interpreted as
GAV mappings, they can always be composed with the initial mappings of the data
sources as shown in (Fagin, 2011). (Of course this would require SO dependencies
that would complicate the mappings making them difficult to understand for the
domain experts). This would lead to a setting where the users can issue queries
formulated using the past ontology version and retrieve information from data sources
mapped with the current ontology version as well (and all intermediate versions).
However in order to use the current ontology version to formulate queries that will be
answered by the past ontology versions difficulties can occur, due to the requirement
of the inversion of schema mappings. Although partial solutions exist, such as quasi-
inverse (Fagin, 2008), chase-inverse (Fagin, 2011) and maximum-recoveries (Arenas,
2008) it still remains a difficult and open problem.

In our approach however, we have not such limitations and as a result the
approach to rewrite the mappings can be seen as a specific use case of our solution.
We provide a more general solution, allowing the users to formulate queries using all
ontology versions. This is due to the fact that we consider inversion (composition) on
a layer on top where always can find the inverse (composition) of any sequence of

changes efficiently.
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Chapter 6

Implementation & Evaluation

“Not everything that counts can be counted and not
everything that can be counted counts.”

- Albert Einstein
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6.1 Implementation

In order to show the feasibility of our approach we implemented the “exelixis”
platform. It is a web-based application that is developed in a three-tier architecture.
HTML and JQuery are used for the presentation layer, the business logic is
implemented on an Apache Tomcat’ server using Java, and PostgreSQL?® stores the
parameters of our system. Moreover, our system uses the Pellet® reasoner for
producing minimally-generalized queries and the QuOnto reasoner for expansion, and
interacts with underlying data integration systems in order to enable query answering.
The platform can be accessed online and the architecture of the system is shown on
Fig. 42.

|

Apache
Tomcat

Fig. 42. System Architecture
The initial page that appears when visiting our home page is shown on Fig. 43.
The user is able to see the ontology currently in use and to formulate queries for either

the ontology or the underlying data sources by selecting the appropriate button from

7 http://tomcat.apache.org/

8 http://www.postgresql.ora/

° http://clarkparsia.com/pellet/
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the menu placed on the top of the page. Moreover, the user can select the parameters

button in order to define the parameters of our system. The four options appearing on

the top menu shown on Fig. 43 are:

search site

Il querying the ontology —

Using this f

ontology versions

Cidoc Version:3.2.1 E

options

I cidoc v.4.2

Classes | Properties

Treeview: @ Navigation Bar: ©)

Treeview
E1.CRM Entity
E2.Temporal Entity
£52.Time-Span
E53.Flace
E54.Dimension

E77.Persistent Item

Description of E1.CRM Entity

This class comprises all things in the universe of discourse of the CIDOC Conceptual
Reference Model. It is an abstract concept providing for three general properties: 1.
Identification by name or appellation 2. Classification by type, allowing further
refinement of the specific subclass an instance belongs to 3. Attachment of free text
for the expression of anything not captured by formal properties With the exception
of E59 Primitive Value, all other classes within the CRM are directly or indirectly
specialisations of E1 CRM Entity.

Terms: E1.CRM Entity

Fig. 43. The initial screen of our platform

1.0Ontology: By selecting this option the user is able to visualize and query a
selected ontology.

2.Sources: By selecting this option the user can issue SPARQL queries and get
the rewriting among ontology versions. The queries are forwarded to the

underlying data integration systems to be answered.

HARIDIMOS KONDYLAKIS



122 CHAPTER 6 IMPLEMENTATION & EVALUATION

3.Settings: By selecting this option the user is able to define the parameters of our
system.

4.About: By selecting this option, information about the system and the
corresponding publications and terms of use appear.

The different functionalities will be described in detail in the following sub-chapters.

6.1.1 Setting the parameters

Before using the system, the user has to set the parameters for our system. This
is performed by selecting the “settings” button on the initial web page. Then, the web
page shown on Fig. 44 is presented to the user where he is able define the ontologies,
the change logs, and the data integration systems that will be used.

exelixis

] ontologies

Fig. 44. Defining the settings of our platform
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On the top of the page are presented the ontologies and their different versions.
The user is able to download, delete or visualize the selected ontology by selecting the
corresponding link. Moreover, the user can upload a new ontology file by defining
also the name and the version of the uploaded ontology.

[ Classes Properties ]

Treeview: 0 MNavigation Bar:

Treeview
E1.CRM Entity

= E77.Persistent Item

E70.Thing

7 E7 1.Man-Made Thing

EZ28.Conceptual Object

E73.Information Object
T E23.Linguistic Object

E34.Inscription

E36.Visual Item
=" E37.Mark

E34.Inscription

=" E7 2.Legal Object
=" E72.Information Object
7 E22.Linguistic Object

E34.Inscription

E26.Visual Item
=" E37.Mark

E34.Inscription

Description of E34.Inscription

This class comprises recognisable, short texts attached to instances of E24
Physical Man-Made Thing. The transcription of the text can be documented in =
note by P2 has note: EGZ String. The alphabet used can be documented by P2
has type: ESS Type. This class does not intend to describe the idiosyncratic
characteristics of an individual physical embodiment of an inscription, but the
underlying prototype. The physical embodiment is modelled in the CRM as E24
Physical Man-Made Thing. The relationship of a physical copy of a book to the
text it contains is modelled using E84 Information Carrier. P128 carries (is
carried by): E22 Linguistic Object.

Terms: E34.Inscription

Fig. 45. Visualization using JOWL Api
Having defined the ontology versions in use, the system also presents the
change logs between the different ontology versions. The user is able to delete,
download and visualize the change log of two selected ontologies. Moreover, the user
is able to visualize the inverse of a change log and to compose two or more change

logs. Additionally, the user is able to upload a new change log by selecting the
appropriate ontology versions.
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Finally, the user is able to specify the url of the underlying data integration
systems in use, and to select the ontology and the versions that each specific data

integration system uses.

6.1.2 Visualizing Ontologies

In order to issue queries using an ontology, the first task is to present it to the
user. The user is able to select the ontology and the version he wishes, which is
subsequently visualized. Three options are provided for visualizing an ontology.

The first one is by embedding the ontology terms/properties directly on our web
page. This is achieved using the JOWL®™ API and it is shown on Fig. 45. That specific
API provides functions for querying the ontology, as well, which we also use to
provide answers for queries on the ontology level. So, the user is able to search for a
class or a property, to visualize the corresponding description and to explore the
hierarchy either as a tree or as a navigation bar.

The second visualization option we provide for our users is to use the
OWLSight* plug-in offered by the Pellet reasoner. By selecting this option the user is
able to see the interface shown on Fig. 46. The interface is closest to the current state-
of-the-art ontology editors and it is more intuitive than the JOWL approach. However,
it cannot be embedded on our web page (it opens in another web-page), and is not

managed by us.

Class Tree || Property Tree Individuals * @ http:/ /cidoc.ics.forth.gr/rdfs/cidoc_v4.2.rdfs#E1.CRM_Entity
=4 Thing — -
=1<» E1.CRM_Entity Annotations =
e @ E2Temporal_Entity comment This dass comprises all things in the universe of discourse of the CIDOC Conceptual
<) E52 Time-Span Reference Model. Itis an abstract concept providing for three general properties: 1.
@ a Identification by name or appellation 2. Classification by type, allowing further refinement of
ES3.Place the spedific subdass an instance belongs to 3. Attachment of free text for the expression of
@ E54.Dimension anything not captured by formal properties With the exception of E59 Primitive Value, all
] @ E77 Persistent ftem other dasses within the CRM are directly or indirectly spedialisations of E1 CRM Entity.
=<) ESO.Primitive_Value
<) E60.Number ~ Asserted Subclasses -
<) E61Time_Primitive )
X E2.Temporal Entity
< Ee25tring E52.Tme-5pan
& Literal ES3.Place

ES54.Dimension
E77.Persistent Item

Fig. 46. Using OwlSight plug-in for ontology visualization

0 hitp://jowl.ontologyonline.org/

11 hitp://pellet.owldl.com/ontology-browser/
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The last visualization option we provide to the users is the StarLion
(Zampetakis, 2010) tool as shown on Fig. 47. It can be loaded using Java Web Start
directly from our homepage and it loads ontologies expressed in .rdfs files. Its
distinctive characteristics are:

1. provision of Top-k diagrams for aiding the process of understanding
large in size ontologies,

2. configurable force-directed layout algorithms (appropriate for semantic
networks)

3. support of a semi-automatic layout process (where the user can change

node positions, nail down nodes, apply layout algorithms, etc),

4. star graph-based (with variable radius) exploration mode.

S Projects 4
b ] /SampleRD
[ frameo | -
+ ] /SampleRD)
[} frameo
E4.Period

+ 4 -

: SubClassOf Verticality Node Re[
<] v

Fig. 47. The interface of the StarLion system.

Those three options provide a complete solution for the visualization of the

ontologies used.

6.1.3 Querying Ontologies & Evolution
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search site

] querying the ontology

Using this fc you can query the ontology:
ontology versions
CIDOC - PB2F.at_some_time_within

: e Cidoc Version:3.2.1 |Z|
how(PB2F.at_some_time_within,,)

options

Optimized Run

Fig. 48. Querying the Ontology

[ Change Graph Change Path J

RENAME_CLASS(E11 .MD(.7_Event, E11.Modification)

RENAME_CLASS(E11 Moqm E11.Modification_Event)

@

Fig. 49. Example query about the evolution of the ontology

After visualizing the corresponding ontology, the user is able to issue queries
concerning either the ontology or the evolution of the corresponding ontology. This is
performed by entering an appropriate query and pressing the corresponding button.
All queries should be placed in the textbox in the middle of the page as shown on Fig.
48.
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The syntax and example queries are shown below the text-area and appear after
selecting the corresponding links. The user is able to query about classes, properties,
subproperties or change paths in ontology evolution. Moreover, the user is able to
select how many times the same query will be executed (for testing purposes) and if
he would like debugging messages to be presented as well. Those options can be

found at the right of the page.

| Change Graph Change Path

Fig. 50. The change path in detail

By entering a query and pressing the appropriate button the results are shown to
the user. For example in Fig. 49 the results of the query “how(E11.Modification,,)”
are shown. The query asks for the evolution of ontology concerning the class
“E11.Modification”. Our algorithm is executed and it reports that the previous name
of the class was “E11.Modification_Event” and that before that the class was also
name “Ell.Modification”. This simple example shows the great value of change
paths for describing evolution and can be used from ontology developers to identify
the modelling choices of the past. Besides the graph of the change path, the users are
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able to check the comments added as well to the ontology concerning those changes.

This is shown in Fig. 50.

6.1.2 Querying data sources

If the user chooses to query the underlying data sources and to rewrite queries

among ontology versions, the following page is presented.

search

ing th
] querying the sources —

ontology versions

Cidoc Version:3.2.1 IZ|

SELECT %x WHERE {
Sa rdf:type "E38.Image";
:P108B.was_produced_by 5y. options
Sy rdf:type "E5.Event’;

:P8F. took_place_on_or_within 5x.
Sx rdfitype "E22.Man-Made_Object”.
e J

[ Expanded Query Change log Valid Rewritings Answers

Input Query:

SELECT $x WHERE { %a rdf:type "E38.Image"; :P108B.was_produced_by $v. 3y rdf:type
"E5.Event”; :P&F.took_place_on_or_within $x. $x rdf:type "E22.Man-Made_Object”. }

Expanded Query: (4 queries)

q(x) :- E38.Image(a), P108B.was_produced_by(a,y), P8F.took_place_on_or_within(y,x),
E22.Man-Made_0Object(x).

q(x) :- E38.Image(a), P108B.was_produced_by(a,y), P8F.took_place_on_or_within(y,x),
P19B.was_made_for(x,_).

q(x) :- E38.Image(a), P108B.was_produced_by(a,y), P8F.took_place_on_or_within(y,x),
E23.Iconographic_Object(x).

q(x) :- E38.Image(a), P108B.was_produced_by(a,y), P8F.took_place_on_or_within{yx),
P19F.was_intended_use_of(_,x).

Execution Time: start: 1285334147012 end: 1285334147070 Duration:58msec

Fig. 51. Querying the sources

The user interface consists of 3 main areas as shown on Fig. 51. In the centre of
the web page the user can formulate the SPARQL query that will be submit to the
system.

On the right of the text area for the query formulation there are several running
options. Initially the user can choose the ontology versions that will be used as shown
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on Fig. 52. Then, he can choose the running options that concern the performance of
the system. If we choose the “Optimized Run” option the user will be able to see only
the answers produced at the end of the whole process. However, if the user chooses
the “Debug Run” he is able to check all the steps performed in order to produce the
final results, but with degraded performance. Moreover, the user can select the

number of runs for each experiment.

N search

I ontology versions

Cidoc Version:3.2.1 :

Cidoc Version:3.2.1
Cidoc Version:3.3.2
Cidoc Version:3.4.9
Cidoc Version:4.2
G0 Version:1

G0 Version:2

Optimized Run

Fig. 52. Selecting ontology versions and the running options

Besides changing the different parameters of our system the user is also able to
graphically formulate the SPARQL query using a modified version of the NiteLight
(Russel, 2008) plug-in. NITELIGHT uses a Visual Query Language (VQL), called
VSPARQL, which provides graphical formalisms for SPARQL query specification.
NITELIGHT is a highly reusable Web-based component, and that is embedded in our
platform. This is shown on Fig. 53.

The users can drag-n-drop variables, classes and properties from the selected
ontology and to graphically design the graph pattern of the corresponding SPARQL
query. The SPARQL query is generated on-the-fly and presented at the bottom of the
web page.
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Ontologies V3.2 sses|  E1.CRM_Entity Sub Classes

¥ E2 Temporal Entity

?houndVariablel

SELECT QUERY

<http://elrond.ics.forth.gr/exelixis/Storage/cidoc_v3.2.1.owl#P4F.has_time-span=

1.owl#E2.Temporal_Entity=

Fig. 53. Visual Query Builder

Having selected all running options and by pressing the “Submit” button the
query is issued to the system. After a while at the bottom of the page, we can see 4

more tabs with the results of the execution of our algorithms.

[ Expanded Query Change log Valid Rewritings Answers ]

Input Query:

SELECT %x WHERE { %a rdfitype "E38.Image”; :P108B.was_produced_by $y. 3y rdf:type
"E5.Event”; :P8F.took_place_on_or_within $x. $x rdf:type "E22.Man-Made_0Object”. }

Expanded Query: (4 queries)

qix) :- E38.Image(a), P108B.was_produced_by(a,y), PBF.took_place_on_or_within{y,x),
E22.Man-Made_Object(x).

q(x) :- E38.Image(a), P108B.was_produced_by(a,y), PBF.took_place_on_or_within(y,x),
P19B.was_made_for(x,_).

qlx) :- E38.Image(a), P108B.was_produced_by(a,y), PBF.took_place_on_or_within{y,x),
E23.Iconographic_0Object(x).

qix) :- E38.Image(a), P108B.was_produced_by(a,y), PBF.took_place_on_or_within{y,x),
P19F.was_intended_use_of(_,x).

Execution Time: start: 1280916826359 end: 1280916826958 Duration:399msec

Fig. 54. The query converted to Datalog
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On the first tab we can see the expanded query produced from the QuOnto

reasoner as shown on Fig. 54. At the bottom of each tab, we can see the time spent of

the specific part of our algorithm execution.

search

| querying the sources

Using this for

ontology versions

Cidoc Version:3.2.1 |Z|

SELECT 5%x WHERE {
Sa rdf:type "E38.Image”;
:P108B.was_produced_by Sy. options

Sy rdf:type "E5.Event’;
:P8F. took_place_on_or_within $x.

Sx rdf:type "E22.Man-Made_Object’.
H

[ Expanded Query Change log Valid Rewritings Answers

Searching for Data Integration Systems

localhost [Cidoc:3.3.2 |

Direct change log foundcidoc_v3.2.1-cidoc_v3.3.2_Composite

"This is the abstract concept of
the entities of our universe of

discourse. It carries the rule that
zll entities can be classified by 2
ltype, which further refines the
l=pecific subclass an instance
belongs to, and a free text field

DELETE_COMMENT E1.CRM_Entity

L N AT
the places and times there
DELETE_COMMENT FPSF.consists_of lthings really happened, used if
time spans are different for
different places .better name
'composed of"2."@en
E11.Modification_Event
E1Z.Production_Event
El6.Measurement _Event

R.ENAME_CLASS
R.EMAME_CLASS
R.ENAME_CLASS
RENAME_CLASS
Fin A 1 oace E=1 Facback Paind

DELETE_PROPERTY FP18F.motivated_the_creation_of

E11.Modification
E1Z.Production
El6.Measurement

CE28.Concaptual Object}
[E7 . Activity}
EZZ.Man-Made_Object, E71.Man-

IGENERALIZE_DOMAIN F19B.was_made_for Made Stuff
IGENERALIZE_RANGE F19F.was_intended_use_of R E7L

Made Stuff
RENAME PROPERTY P21F.had_as general purpose |P21F.had general purpose

E13.Physical_Object,
F1R.Phusiral Stuff

Fig. 55. The change log of our ontology

GENERALIZE_DOMAIN P24B.changed_swnership_by

Going on the second tab, our system is able to identify the underlying data
integration systems that use the same ontology and to search for the corresponding
change logs. If the “Debug Mode” is selected, we are able to see the change
operations that change the expanded query and that are used in order to produce the
valid rewriting of the expanded query. Those change operations are colored in green
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whereas if there are change operations that affect the expanded query they are colored
in orange. This is show on Fig. 55.

On the third tab, the user can check the valid rewritings of the expanded query
to the other ontology versions. This is shown on Fig. 56 where we can identify in our
example the query that is going to be forwarded to our underlying data integration

system.

[ Expanded Query Change log Valid Rewritings Answers ]

qlx) :- E38.Image(a), P108B.was_produced_bv(a,y), PBF.took_place_on_or_within(y,x),
E22.Man-Made_0Object(x).

qlx) :- E38.Image(a), P108B.was_produced_bvy(a,y), PBF.took_place_on_or_within(y,x),
P18B.was_made_for(x,_).

qlx) :- E38.Image(a), P108B.was_produced_bv(a,y), PBF.took_place_on_or_within(y,x),
E23.Information_Carrier (x).

qlx) :- E38.Image(a), P108B.was_produced_bv(a,y), PEF.took_place_on_or_within(y,x),
P19F.was_intended_use_of(_,x).

Fig. 56. The ontology rewritten queries

[ Expanded Query Change log Valid Rewritings Answers

Data Integration System 1: (using Cidoc:4.2)

appellation{A) Scudiere)

person(23)

appellation{Anne Rainey)

personi(25)

appellation{Barbara Delinsky)

person(27)

appellation{Chas Wienke)

personi34)

appellation(D.C. Ford)

personi(43)

appellation(D. E. Knobbe)

personi(45)

appellation{David Cogswell)

personid7)

appellation{Douglas Clegg)

person(7a)

appellation(Iris Johanesen)

personi78)

appellation(lan Groft)

person(98)

appellation(Jeff Havens)

person(101)

appellation(Kate Pearce)

person(102)

appellation(L.C. Higgs)

person(123)

appellation(Melissa Mayhue)

person(127)

appellation(Mike Green)

person(134)

appellation(5. C. Carr)

person(145)

appellation(Shirley Tallman)

person(156)

appellation(Stacy Choen)

person(167)

appellation(Susan Lyons)

person(178

appellation(Tim Dawvys)

personi189

appellation(Tracy Richardson)

appellation(William Boyd)

(178)
(189)
person(234)
person(245)

Data Integration System 2: (using Cidoc:3.4.9)

[No results returned
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Finally on the last tab we are to see the answers from the underlying data

integration systems, as shown on Fig. 57.

6.2 Evaluation

In order to evaluate our system we used a machine running Windows 7 with an
Intel Core 2 Duo processor at 3.0Ghz, and 3GB memory. Moreover, to test our system
we used two ontologies. One medium-sized ontology (CIDOC-CRM (Martin, 2007))
from the cultural domain which is rarely changed and one large-sized ontology (Gene
Ontology (Gene Ontology Consortium, 2004)) from the bioinformatics domain which
is heavily updated daily.

CIDOC-CRM is an ISO standard which consists of nearly 80 classes and 250
properties, but no instances. For our experiments we used versions dated from
02.2002 (v3.2.1) to 06.2005 (v4.2) encoded in RDF/S. The detected change log that
was produced identified 711 total changes.

Gene Ontology (GO) (Gene Ontology Consortium, 2004) on the other hand, is
composed of about 28000 classes and 1350 property instances. We have to note that
the file containing the Gene ontology is over 100MB and most of the ontology editors
fail to load the entire file. GO is updated on a daily basis and for our experiments we
used the change log from 16.12.08 to 26.05.09. The change log that was produced

contained 3482 changes.

6.2.1 Computing Change Paths

In order to check the running time of our system we exhaustively queried for the
change tree for all classes and properties appearing in a change operation in those two
ontologies. In our first experiment we allowed all 3482 changes from GO and 711
changes from CIDOC to be processed in order to identify the correlation between the

size of the change path identified and the time to identify it.
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GO v.26.05.09-v.16.12.08 (3482 changes)

Change Path Size No of such paths Avg. Time (msec)
0 750 0,2921
1 1910 0,2922
2 456 0,2927
3 151 0,2930
4 95 0,2952
5 42 0,2992
6 26 0,2998
7 8 0,3020
8 14 0,3329
Table 2 . The correlation between the size of the change path and the average time spent for identifying
it using GO
_ 0,3400
g 4
g 0,3300 /
g 0,3200 /
iu:n 0,3100
£ /
€ 10,3000 B s
o
0,2900
0 1 2 3 4 5 6 7 8
Change path nodes

Fig. 58. The graph for visualizing the change path size related to the average time spent for identifying
it using GO

Our experiments concerning GO are shown on Fig. 58 and Table 2. We can see
that the maximum change path has only 8 nodes, which can be easily processed by
humans. Moreover, we can see that even for computing a change path with 8 nodes
over 3482 changes we need only 0,3329 msec. Finally, we can see that the time spent
becomes larger, the more nodes in a change path we have to compute which is
reasonable since we have to search the remaining change log for the new nodes that
are added to the change path as well. The same experiments for CIDOC-CRM showed

the following statistics shown on Table 3 and Fig. 59.
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CIDOC v4.2-v.3.2.1 (711 changes)

Change Path Size No of such paths Avg. Time (msec)
0 79 0,0163
1 49 0,0164
2 218 0,0177
3 74 0,0182
4 20 0,0188
5 2 0,0193

Table 3 The correlation between the size of the change path and the average time spent for identifying

it using CIDOC

0,0195
0,0190
0,0185
0,0180

0,0175

Running Time (msec)

0,0170
0,0165

0,0160

A

1 2 3

Change Paths Size

Fig. 59. The graph for visualizing the change path size related to the average time spent for identifying

it using CIDOC

We can see that the maximum change path for CIDOC-CRM has only 5 nodes

since the ontology is smaller and more stable than GO. This is obvious from the

number of change operations as well — 711 for CIDOC vs. 3482 for GO. That’s why

the average time for identifying such change paths is smaller (0,02 msec for

computing a change path with 5 nodes). Moreover, the graph shows that the time

spent becomes larger, the more change paths we have to compute here as well (almost

linear).

Then we tried to identify how the time for computing the change path is affected

by the size of the change log. From the diagrams in Fig. 60 and Fig. 61 below we can
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see that the more changes are there to process of, the more time is spent on processing
those, and in fact their relationship is linear.

0,018 -
0,016 -
0,014 -
0,012 -
0,01
0,008
0,006 -
0,004 -
0,002 -

0

Average Time(Msec)

309 368 711

Changes

Fig. 60. The number of changes that should be processed and the average running time for CIDOC-
CRM Ontology

0,25 -

o
N
!

0,15

Average Time(Msec)
o
=

0,05 -

726 1530 3482

Changes

Fig. 61. The number of changes that should be processed and the average running time for Gene
Ontology
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6.2.2 Query Rewriting

To illustrate the scalability and the impact of our system we performed an
extensive evaluation based on two scenarios. One scenario with synthetic queries and

one scenario with real queries captured from related projects.

6.2.2.1 Synthetic Evaluation
In the synthetic scenario we automatically generated random queries using

CIDOC-CRM v.4.2. We created 20 queries for each one of the following categories:
queries with 1, 3, 7 and 20 triple patterns. The synthetic evaluation was performed
only for queries formulated using CIDOC-CRM ontology since the queries used for
the GO ontology ask for instances of only one GO-term (GO ontology is mostly a

taxonomy) and rich queries including several properties cannot be produced.

Scalability

Since query rewriting is depending on the query size and the number of changes
among ontology versions (assuming fixed number of ontological constraints which is
usually the case in bibliography) at first we fix the query size and we present the time
for query expansion and valid rewriting as the number of changes increases. The
results are shown on Fig. 62 for queries with 1 triple pattern and in Fig. 63 for queries

with 20 triple patterns.

18 ~
16 -
14 A
12 A
(8] .
é 1(8) | e Valid rwt.
6 _/ 7 B Expand
4 5,875
2 .
0
309 368 711
Changes

Fig. 62. Query rewriting for queries with 1 triple pattern
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Obviously, in both cases, the total execution time increases as the number of
change operations increase as well. This is not however, due to the expansion phase
since the expansion time is only affected by the number of dependencies which is
fixed. We can see that in both cases when the size of the change log doubles it

happens the same for the time required for valid rewriting.

80 -
70 A
60 -
50 A

47

Sec

40 - 19 Valid rwt.
30 -
20 -

M Expand

309 368 711

Changes

Fig. 63. Query rewriting for queries with 20 triple patterns

Then, we fix the number of change operations and we present the total
execution time as the triple pattern’s of the queries increase. The results are shown on
Fig. 64 and Fig. 65. On Fig. 64 we have all 711 change operations whereas on Fig. 65
we only have 309 change operations. Obviously, the total execution time becomes
bigger as the number of triple patterns in the queries increase. Moreover, the size of
the query affects both the expansion phase and the valid rewriting phase as well.

Finally, we can identify that for smaller number of changes the dominant time is
the time required for expansion whereas for more changes the time for valid rewriting
increases as well. Those experiments confirm the theoretical expectations of our query

rewriting algorithm.
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80
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60
50
40
30
20
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sec

Valid rwt.

M Expand

Y

1

3

7 20

Query size

Fig. 64. Execution time as the triple patterns in the query increase (711 change operations)

35
30
25
20

sec

15
10

Valid rwt.

M Expand

0005875 0,0544375

1

3

7 20

Query size

Fig. 65. Execution time as the triple patterns in the query increase (309 change operations)

Impact

139

In this subsection we will present experiments for identifying the impact of our

approach. Initially, we fix the number of the triple patterns of the queries and we

present the percentage of equivalent, minimally-containing and minimally-generalized

rewritings that we were able to produce. Moreover, we present the percentage of the

queries that could be answered “as-is” without any changes when they were issued to

the data integration systems that used previous ontology versions.
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The results are shown on Fig. 66 and Fig. 67. In each case the first bar shows
the percentage of equivalent and the minimally-containing queries, the second bar the
percentage of equivalent and the minimally-generalized queries, and the third bar the
queries that could be answered “as-is”. From the charts we can see that the number of
queries that can be answered “as-is” from the previous ontology versions decreases as
the number of change operations increases. Moreover, the bigger the size of the query,
the bigger is the probability not to be able to answer the query “as-is” to a past
ontology version.

For example, looking at Fig. 66, using queries with 20 triple patterns after 343
change operations the queries that could be answered “as-is” were only the 40% of the
total queries, whereas we could produce the equivalent rewritings to the past ontology
version for all of them. Moreover, we can see that as the number of change operations
increase the number of equivalent rewritings drops and we have to go for minimally-
containing or minimally-generalized rewritings. Even after 711 change operations,
none of them could be answered “as-is” using the past ontology version. However,
our system, even then, could produce the minimally-containing rewritings for the 40%

of input queries.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

AS_IS

H Min.-Gen.

@ Equivalent

Min.-Cont.

309 368 711

Fig. 66. Rewriting queries with 20 triple patterns
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100% -
90%
80% -
70% ~
60% -
50%
40% -
30%
20%
10% -

0% -

AS_IS
M Generalized
@ Equivalent

Minimal

343 368 711

Fig. 67. Rewriting queries with 1 triple pattern

On the other hand, looking at Fig. 67, we can identify that we can produce more
equivalent rewritings at all cases. However, we can notice that after 368 or 711
change operations the percentage of equivalent rewritings that we could produce was
smaller than the number of queries that could be answered “as-is”. This is because
changes occurred on the subclasses that those queries asked for and our equivalent
rewritings had to consider those changes as well (in contrast to “as-is” queries which
ignore changes below the class hierarchy they query). Moreover, on all cases we
could not produce a minimally-containing rewriting since when a class was deleted
the resulted query was not safe anymore. However, on those cases we could produce
minimally-generalized queries since in most of the cases the deleted classes had a
parent class that we could query instead.

Then, we fixed the number of change operations and we present the results of
query rewriting as the number of triple patterns increases. The results are shown on
Fig. 68 and Fig. 69. We can observe that with 711 change operations we could not
produce an equivalent rewriting and we had to go for minimally-containing
rewritings. With 711 change operations the number of the queries that could be
answered “as-is” decreased as well as the number of triple patterns in the queries

increase.
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80% -

70%

60%

50% mAS_IS

40% B Generalized

30% @ Equivalent

Minimal

20%

10%

0%
1 3 7 20

Fig. 68. Query rewriting using 711 change operations
Finally, with only 309 change operations we could get equivalent rewritings for
most of queries whereas we could not get always answers to the queries “as-is”.
Moreover, on most of the cases with 309 change operations we could not produce
generalized answers because properties or classes that were deleted they had no a

superproperty or a superclass.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

mAS_IS
M Generalized
B Equivalent

Minimal

Fig. 69. Query rewriting using 309 change operations

6.2.2.2 Pragmatic Evaluation

To check the effectiveness of our system on real cases we used two sets of
queries: 21 template queries for CIDOC-CRM coming from hundreds of user queries
(9 query templates from (Theodoridou, 2010) and 12 query templates from project 3d-
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COFORM®) and the 38 most popular queries as they have been identified and

provided from the AmiGO* search engine.

Scalability

Firstly, we tried to identify the average execution time for rewriting the
evaluation queries using CIDOC-CRM. The results are shown on Fig. 70. Obviously
the average time to produce a rewriting even after 711 change operations is less than
5sec which shows the scalability of our approach. Notice that the time for performing
query expansion is greater than the time to perform v also, and when the number of
change operations doubles the same happens to the time for valid rewriting according
to the complexity of our algorithm.

The results for queries formulated using GO are presented on Fig. 71. The
average execution time for GO is 16sec and is justified from the large size of the
ontology. Most of the time is spent calculating the expansion of the queries since our
system has to consider the inclusion dependencies of 28000 classes and only 2,16sec

is spent (at the worst case) for valid rewriting.

3,5 1 ,235062
3 _/0,504562 0,610125

2,5 1

sec

Valid rwt.

1,5 A r > M Expand

0,5 A

309 368 711

Changes

Fig. 70. Average Execution time for CIDOC-CRM queries

2 hitp://www.3d-coform.eu/

3 http://amigo.geneontoloqy.org/cgi-bin/amigo/go.cdi
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18 -
16 - /r,Z35387 1,325935 2
14 -
12 -
10 ~ Valid rwt.
8 - q 14 14 M Expand
6 -
4 -
2 -
0 : : .
726 1530 3482

Fig. 71. Average Execution time for GO queries

Impact

To illustrate the impact of our approach we present the percentage of equivalent,
minimally-containing and generalized queries that our system could produce for the

two set of queries. The results are shown on Fig. 72 and Fig. 73.

100%
90%
80%
70%
60%
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40%
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Fig. 72. Query rewriting for real CIDOC-CRM queries
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Fig. 73. Query rewriting for GO most popular queries

For CIDOC-CRM we observe that as the number of changes increase, the
percentage of the queries that can be answered “as-is” drops to 33% whereas in GO as
the number of changes increases the percentage of queries that can be answered as is
remains the same 94%. This may seem peculiar because of the higher number of
change operations that we have in the case of the Gene Ontology. However, if we
carefully examine the corresponding change operations in each case we can easily
identify that they change only a small percentage of the GO ontology (10% of the
entire ontology was changed by the 3482 changes), whereas for the CIDOC-CRM the
711 change operations changed 54% of the entire ontology. This is shown on Fig. 74.

Information Change v.4.2 -v.3.2.1 GO v.26.05.09 - 25.11.08

1%

5%
4%

M Deletions
W Additions

m Restructure

m Unchanged

90%

Fig. 74. The total information change for CIDOC-CRM and GO

Moreover, we can identify that the number of equivalent rewritings we can
produce drops as the number of changes increases in both cases. However, in GO we
can produce a smaller percentage of equivalent rewritings compared to the CIDOC-
CRM ontology. This is due to the fact that the GO ontology usually evolves by adding
GO terms (which are translated in delete change operations when trying to produce
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rewritings to the previous ontology versions). And since the queries using GO
ontology involve only one GO term, when this term is deleted we cannot produce
minimally-containing rewritings since the query produced is not safe any more.
However, in most of the cases the deleted term had a superclass that could be queried
instead. That’s why we could get minimally-generalized queries instead.

These two test cases show the flexibility of our solution in different kind of

ontologies, and the great practical value of our approach.

Conclusions on Pragmatic Scenario and Further Analysis

For the queries using CIDOC-CRM we have to mention that they had in average
10 triple patterns, whereas the queries involved in average 3,7 different classes and
3,5 different properties.

Moreover, if we carefully try to identify the different types of the queries
according to (Schmidt, 2008) where queries are distinguished as Long Path Chain
queries (nodes linked to each other via a long path) and Bushy patterns queries (single
nodes linked to several other nodes) we will notice that we can find equivalent
rewritings for all Bushy patterns queries. So, our approach has better results for bushy
pattern queries (which can be seen as star queries).

Moreover, another conclusion is that the higher the level in the hierarchy of the
queries classes and properties, the more probable is not to be able to produce an
equivalent rewriting, since the expansion of the query will use more terms of the

ontology.
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Chapter 7

Conclusions & Future Work

“Give me a place to stand on, and | will move the Earth”
- Archimedes 212BC

In this thesis we argue that ontology evolution is reality and data integration
systems should be aware and ready to deal with that. To that direction, we presented a
novel approach that allows query answering under evolving ontologies without
mapping redefinition.

Our architecture is based on a module that can be placed on top of any
traditional ontology-based data integration system, enabling ontology evolution. It
does so by using high-level changes to model ontology evolution, which are then
interpreted as GAV mappings. Those GAV mappings are then used in order to rewrite
not the mappings but the query itself among ontology versions.

The process of query rewriting proceeds in two steps, namely query expansion
and valid rewriting. Query expansion is used in order to consider constraints coming
from the ontology and then valid rewriting is used in order to produce query
rewritings among ontology versions using the GAV mappings produced form the
high-level sequence of changes among ontology versions. The query rewriting
approach we use is proved to be effective, scalable and efficient.

Even for the cases where no equivalent rewriting can be produced we offer three
alternatives: a) we offer assistance to the users to redefine the affected queries, b) we

provide minimally-containing and c¢) minimally-generalized rewritings for the cases
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that equivalent rewritings cannot be produced that offer two best over-
approximations.

The potential impact of our approach is witnessed by being able to successfully
provide rewritings on the worst case for the 88% of the CIDOC-CRM queries (after
711 change operations) and for the 97% of the GO queries (after 3482 change
operations) among ontology versions. On the other hand if our system were not used,
only a small percentage of the initial queries would be successful. For most of the
queries, query rewriting is achieved within 5sec using a simple workstation, which
also shows the usability and the scalability of our approach.

The great benefit of our approach is that its simplicity, modularity and the short
deployment time it requires. It is only a matter of providing a new ontology version to
our system to be able to use it to formulate queries that will be answered by data
integration systems independent of the ontology version used.

To the best of our knowledge, no other system today is capable of automatically

answering queries over multiple ontology versions.

7.1 Future Work

As future work, several challenging issues need to be further investigated which
we will describe in order of importance and difficulty.

At first, a really interesting topic would be to extend our approach to OWL
ontologies or to consider that ontologies used as schema are not consistent. Both cases
would require handling inconsistencies among ontology versions which complicates
even more the problem. At first, another mechanism would be required to describe
changes among ontologies. To that direction (Plessers, 2007) could be used as starting
point, and techniques for repairing inconsistent databases should be also used (Afrati,
2009). However, it still remains a really interesting open problem.

Another direction would be to extend our approach to handle the full
expressiveness of SPARQL language. Full-SPARQL queries, no longer correspond to
union of conjunctive queries, and the traditional algorithms for expanding those
queries (perfect reformulation and chase) cannot directly be applied. Query processing
would require more sophisticated techniques, with bad complexity (Schmidt, 2010)
and heuristic solutions would have to be adopted.
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Another direction for future work would be also to apply our solution in
traditional schema evolution, and to consider the evolution of data sources as well.
Another language would be required in that case to describe changes among schemata
and new algorithms for query rewriting would be required as well. This is mainly due
to the richer constraints we can have in such a setting. The first step towards that
direction can be found on (Curino, 2008) and (Fagin, 2011).

Finally, our system could be easily extended to become a fully fledged peer-to-
peer system that is based on different versions of ontologies that are evolved
independently. This could be achieved by integrating a layer that would handle peer
discovery, registration and negotiation (probably a DHT).

It becomes obvious that ontology evolution in data integration is an important

topic and several challenging issues remain to be investigated in near future.
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Appendix

A. Change Operations

The language of changes we consider, the inverse of each change operation and

the corresponding GAV mapping are presented bellow.

Basic changes

The basic changes we adopt here are extensively presented and defined in
(Papavassiliou, 2010) and consider the individual addition and the deletion of classes,
properties, metaproperties, metaclasses, individuals. For those change operations

cannot be produced GAV mappings.

Composite changes

We have to note that the change operations reclassifying classes and properties
do not have a GAV mapping since the reclassifications are handled on the ontology

expansion level.
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Change Add_Class(a,P1,P2,P3,P4,P5,P6) Delete_Class(a,P1,P2,P3,P4,P5,P6)
Intuition Add class a with its neighborhood links | Delete class a with its neighborhood links
Arguments | P1 = set of new parent classes of a, P1 = set of old parent classes of a,

P2 = set of classes that have as parent a, | P2 = set of classes that had as parent a,

P3 = set of new metaclasses of a, P3 = set of old metaclasses of a,

P4 = set of new individuals that are type | P4 = set of individuals that were type of a,

of a, P5 = set of old comments of a,

P5 = set of new comments of a, P6 = set of old labels of a

P6 = set of new labels of a

b, ¥p €P1: (a, subClassOf , p), [o]
¥p €P2 : (p, subClassOf , a),
vp €P3: (a, type, p),

vp €P4: (a, type, p),

¥p €P5 : (a, comment, p),
Vp €P6 : (a, label, p),

(a, type, class),

(a, subClassOf , resource)

O o ¥p €P1: (a, subClassOf , p),
¥p €P2: (p, subClassOf , a),
¥p €P3: (a, type, p),

Vp €P4: (a, type, p),

¥p €P5 : (a, comment, p),
¥p €P6 : (a, label, p),

(a, type, class),

(a, subClassOf , resource)

Inverse Delete_Class(a,P1,P2,P3,P4,P5,P6) Add_Class(a,P1,P2,P3,P4,P5,P6)

GAV - -
Mappings

The changes Add_Metaclass and Add_Metaproperty are defined similarly with
the exception of (a, subClassOf , class) and (a, subClassOf , property) being in da
respectively instead of (a, subClassOf , resource). The changes Delete_Metaclass and
Delete_Metaproperty are defined similarly with the exception of (a, subClassOf ,
class) and (a, subClassOf , property) being in oJq respectively instead of (a,

subClassOf , resource).

Change Group_Classes(A,b) Ungroup_Classes(A,b)

Intuition Group classes in A under b Ungroup classes in A

Arguments | A = set of classes that have as new A = set of classes that had as parent b,
parent b, b = old parent class b
b = new parent class b

0, va €A : (a, subClassOf , b) 2]

oy o va € A : Delete_Superclass(a,b)

Inverse Ungroup_Classes(A,b) Group_Classes(A,b)

GAV - -

Mappings
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The changes Group_Metalasses and Group_Metaproperties are defined

similarly. We have to note that the change operations reclassifying classes and

properties do not have a GAV mapping since the reclassifications are handled on the

ontology expansion level.

Change Pull_up_Class(a,B,C) Pull_down_Class(a,B,C)
Intuition Move class a to a higher position in the | Move a class to a lower position in the
subsumption hierarchy subsumption hierarchy
Arguments | B = set of old parents of a, B = set of old parents of a,
C = set of new parents of a C = set of new parents of a
5, ¥c; € C : (a, subClassOf , ¢;) (1<i<n) vc; €C : (a, subClassOf , ¢;) (I<i<n)
By vh; €B : (a, subClassOf , by) (1<i<n) b €B : (a, subClassOf , b;) (1<i<n)
Inverse Pull_down_Class(a,C,B) Pull_up_Class(a,C,B)
GAV - -
Mappings

The changes Pull_up_Metaclass and Pull_up_Metaproperty are defined

similarly and the changes Pull_down_Metaclass and Pull_down_Metaproperty are

defined similarly as well.

Change Move_Class(a,B,C) Change_Superclasses(a,B,C)
Intuition Move a class to a different subsumption | Change the parents of class a
hierarchy
Arguments | B = set of old parents of a, B = set of old parents of a,
C = set of new parents of a C = set of new parents of a
0, vc; €C : (a, subClassOf, ¢y (1<i<n) c; €C : (a, subClassOf, ¢ (1<i<n)
dg vb; €B : (a, subClassOf , by (1<i<n) vb; €B : (a, subClassOf , by (1<i<n)
Inverse Move_Class(a,C,B) Change_Superclasses(a,C,B)
GAV - -
Mappings
Change Reclassify _Class_Higher(a,B,C) Reclassify_Class_lower(a,B,C)
Intuition Move a class to a higher position in the | Reclassify a class to a lower position in the
subsumption hierarchy ST (FIEEE
Arguments | B =set of old types of a, B = set of old types of a,
C = set of new types of a C = set of new types of a
8, c €C : (a, type, c) ’c €C : (a, type, C)
O b €B : (a, type, b) ¥b €B : (a, type, b)
Inverse Reclassify_Class_lower(a,C,B) Reclassify_Class_higher(a,C,B)
GAV - -
Mappings
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changes

are

similarly as well.

Change

Intuition

Argument

S

0,

dq

Inverse

GAV
Mappings

Add_Property(a,P1,P2,P3,P4,p5,p6,P7,P8
)
Add property a with its neighborhood links

P1 = set of new parent properties of a,

P2 = set of properties that have as parent a,
P3 = set of new metaproperties of a,

P4 = set of new property instances of a,

p5 = the new domain of a,

p6 = the new range of a,

P7 = set of new comments of a,

P8 = set of new labels of a

¥p €P1: (a, subPropertyOf, p),
¥p €P2 : (p, subPropertyOf, a),
¥p €P3: (a, type, p),

vpl, p2 €P4: (pl, a, p2),

(a, domain, p5),

(a, range, p6),

¥p €P7 : (a, comment, p),

¥p €P8: (a, label, p),

(a, type, property)

(%]

Delete_Property(a,P1,P2,P3,P4,p5,p6,P7,
P8)

and Reclassify_Metaproperty_Lower

APPENDIX

Reclassify Metaclass_Higher and
defined  similarly.  The  changes
are defined

Delete_Property(a,P1,P2,P3,P4,p5,p6,P7,
P8)
Delete property a with its neighborhood
links

P1 = set of old parent properties of a,

P2 = set of properties that had as parent a,
P3 = set of old metaproperties of a,

P4 = set of old property instances of a,

p5 = the old domain of a,

p6 = the old range of a,

P7 = set of old comments of a,

P8 = set of old labels of a

[}

¥p €P1: (a, subPropertyOf, p),
¥p €P2: (p, subPropertyOf , a),
¥p €P3: (a, type, p),

¥pl, p2 €P4: (pl, a, p2),

(a, domain, p5),

(a, range, p6),

Vp €P7 : (a, comment, p),

¥p €P8: (a, label, p),

(a, type, property)

Add_Property(a,P1,P2,P3,P4,p5,p6,P7,P8
)
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Change Reclassify_Class(a,B,C)

Intuition Reclassify a class

Arguments | B = set of old types of of a, C = set of new types of of a
8, c €C : (a, type, c)

By b €B : (a, type, b)

Inverse Reclassify_Class(a,C,B)

GAV

Mappings

The changes Reclassify_Metaclass and Reclassify_Metaproperty are defined

similarly.
Change Ungroup_Properties_Under(A,b) Ungroup_Properties_Under(A,b)
Intuition Group properties in A under b Ungroup properties in A under b
Arguments | A = set of properties that have as new A = set of properties that had as parent b,
parent b, b = the old parent property b
b = new parent property b
8, a €A : (a, subPropertyOf, b) 2]
by o a €A : (a, subPropertyOf , b)
Inverse Ungroup_Properties_Under(A,b) Group_Properties_UnderA,b)
GAV - -
Mappings
Change Pull_up_Property(a,B,C) Pull_down_Property(a,B,C)
Intuition Move property a to a higher position in the | Move property a to a lower position in
subsumption hierarchy the subsumption hierarchy
Arguments | B =set of old parents of a, B = set of old parents of a,
C = set of new parents of a C = set of new parents of a
8, c €C : (a, subPropertyOf , c) c €C : (a, subPropertyOf , c)
O b €B : (a, subPropertyOf , b) b €B : (a, subPropertyOf , b)
Inverse Pull_down_Property(a,C,B) Pull_up_Property(a,C,B)
GAV - -
Mappings
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Change Move_Property(a,B,C) Change_Superproperties(a,B,C)
Intuition Move property a to a different Change the parents of property a
subsumption hierarchy
Arguments | B = set of old parents of a, B = set of old parents of a,
C = set of new parents of a C = set of new parents of a
8, c €C : (a, subClassOf , c) c €C : (a, subClassOf , ¢)
By b €B : (a, subClassOf , b) b €B : (a, subClassOf , b)
Inverse Move_Property(a,C,B) Change_Superproperties(a,C,B)
GAV - -
Mappings
Change Reclassify_Property_higher(a,B,C) Reclassify_Property_lower(a,B,C)
Intuition Reclassify property a to a higher position Reclassify property a to a lower position
in the subsumption hierarchy in the subsumption hierarchy
Arguments | B =set of old types of a, B = set of old types of a,
C = set of new types of a C = set of new types of a
8, c €C : (a, type, ) c €C: (a, type, €)
by b € B : (a, type, b) b € B : (a, type, b)
Inverse Reclassify_Property_lower(a,C,B) Reclassify_Property_higher(a,C,B)
GAV - -
Mappings
Change Reclassify_Property(a,B,C)
Intuition Reclassify property a
Arguments | B =set of old types of a, C = set of new types of of a
0, c €C : (a, type, C)
By b € B : (a, type, b)
Inverse Reclassify_Property(a,C,B)
GAV
Mappings
Change Change_To_Datatype Property(a,b,c) Change_To_Object_Property(a,b,c)
Intuition Change the range of property a to a Change the range of property a to an
datatype object
Arguments | b = old range of a, b = old range of a,
¢ = new range of a ¢ = new range of a
8, c €C : (a, range, c) c €C : (a, range, c)
By b € B : (a, range, b) b € B : (a, range, b)
Inverse Change_To_Object_Property(a,c,b) Change_To_Datatype Property(a,c,b)
GAV range(a, b) - range(a, ¢) (high-level) | range(a, b) - range(a,c) (high-level)
Mappings vx, a(x, b) = a(x, c) (low-level) | v, a(x, b) = a(x, ¢) (low-level)
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Change Specialize_Range(a,b,c) Generalize_Range(a,b,c)
Intuition Change the range of property ato a Change the range of property a to a
subclass of it superClass of it
Arguments | b = old range of a, b = old range of a,
¢ = new range of a ¢ = new range of a
b, c €C : (a, range, c) c €C : (a, range, c)
dq ¥b € B : (a, range, b) b € B : (a, range, b)
Inverse Generalize_Range(a,c,b) Specialize_Range(a,c,b)
GAV range(a, b) » range(a, c) (high-level) | range(a, b) » range(a, c) (high-level)
Mappings vx, a(x, b) = a(x, c) (low-level) | %, a(x, b) = a(x, ¢) (low-level)
Change Change_Range(a,b,c)
Intuition Change the range of property a.
Arguments | b =old range of a, ¢ = new range of a
b, 7c €C : (a, range, c)
by b € B : (a, range, b)
Inverse Change_Range(a,c,b)
GAV range(a, b) » range(a,c)  (high-level)
Mappings | V%, a(x, b) - a(x, ¢) (low-level)
Change Specialize_Domain(a,b,c) Generalize_Domain(a,b,c)
Intuition Change the domain of property a to a Change the domain of property a to a super-
subClass of it Class of it
Arguments | b = old domain of a, b = old domain of a,
¢ = new domain of a ¢ = new domain of a
0, c €C : (a, domain, c) c €C : (a, domain, c)
o4 b € B : (a, domain, b) b € B : (a, domain, b)
Inverse Generalize_Range(a,c,b) Generalize_Domain(a,c,b)
GAV domain(a, b)—~domain(a, c)(high-level) | domain(a, b) —» domain (a, c) (high-level)
Mappings vx, a(b, x) = a(c, X) (low-level) | %, a(b, x) — a(c, x) (low-level)
Change Change_Domain(a,b,c)
Intuition Change the domain of property a.
Arguments | b = old domain of a,
¢ = new domain of a
8, c €C : (a, domain, c)
By b € B : (a, domain, b)
Inverse Change Domain(a,c,b)
GAV domain(a, b) = domain (a, c) (high-level)
Mappings | V%, a(b, X) — a(c, x) (low-level)
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Heuristics

Change Rename_Class(a,b)

Intuition Rename classato b

Arguments | a = the old name of the class, b = the new name of the class
b, (b, type, class), (b, subClassOf , resource)

By (a, type, class), (a, subClassOf , resource)

Inverse Rename_Class(b,a)

GAV type(b, class) >type(b, class) (high-level)

Mappings | VX, a(x) = b(x) (low-level)

The change Rename_Metaclass is defined similarly with the exception of (a,

subClassOf, class) being in 6, and d4 respectively instead of (a, subClassOf |,
resource).
Change Merge_Classes(A,b) Split_Class(a,B)
Intuition Merge classes contained in A into b Split class a into classes contained in
B
Arguments | A = the set of old names of the classes, a = the old name of the class,
b = the new name of the class B = the set of new names of the classes
0, (b, type, class), Vb € B : (b, type, class), (1<i<n)
(b, subClassOf , resource) (b, subClassOf , resource)
dq Va; €A (a, type, class), (1<i<n) (a, type, class),
(a, subClassOf , resource) (a, subClassOf , resource)
Inverse Split_Class(b,A) Merge_Classes(A,b)
GAV (high-level) (high-level)
Mappings | type(a;, class) —»type(b, class) A | type(a, class) — type(by, class) A...Atype(bn,
split(ay, b, A) class) A concat(a, {by,...,.bn})
(low-level)

type(a,, class) - mtype(b, class) A
split(an, b, A)

(low-level)

VX, a(X)— 3Xy, ..., xp, D1(X) A .. Abp(xy) A

concat(x, {Xs,....xn})

Vx, a1(x) = 3 x1, b(Xg) A split(x, X3, A)

Vx, an(X) = 3 xp, b(Xn) A split(x, X, A)

The changes Merge_Metaclasses, Merge_Metaproperties and Split_Metaclass,

Split_Metaproperty are defined similarly with the exception of (a, subClassOf , class)
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and (a, subClassOf , property) being in 6, and d4 respectively instead of (a,

subClassOf , resource).

Change Merge_Classes_Into_Existing(A,b) Split_Class_Into_Existing(a,B)
Intuition Merge classes contained in A into b gplit class a into classes contained in
Arguments | A = the set of old names of the classes, a = the old name of the class,
b = the new name of the class B = the set of new names of the classes
8, - vb; eB\{a} : (b;, type, class), (1<i<n)
(b;, subClassOf , resource)
8y va; e A\{b}: (a, type, class), (I<i<n) | -
(&, subClassOf , resource)
Inverse Split_Class_Into_Existing(b,A) Merge_Classes_Into_Existing(A,b)
GAV (high-level) (high-level)
Mappings | type(a;, class) —»type(b, class) A | type(a, class) — type(by, class) A...Atype(bn,
split(a;, b, A) class) A~ concat(a, {by,...,b.})
(low-level)

type(a,, class) - mtype(b, class) ~
split(a,, b, A)
(low-level)

VX, a(X)= 3Xy, ..., Xn, D1(X)A .. Aby(x,) A

concat(X, {Xs,...,xn})

Vx, a1(x) = 3 xq, b(xg) A split(x, X1, A)

Vx, ay(X) = 3 x,, b(Xy) A split(x, X, A)

The changes Merge_Metaclasses_Into_Existing, and
Split_Metaclass_Into_Existing are defined similarly with the exception of (a,

subClassOf, class) being in 6, and &4 respectively instead of (a, subClassOf,

resource).
Change Rename_Property(a,b)
Intuition Rename property ato b

Arguments | a = the old name of the property, b = the new name of the property

0, (b, type, property)

dq (a, type, property)

Inverse Rename_Property(b,a)

GAV type(a, property) — type(b, property) (high-level)
Mappings Xy, a X y)—= b(xy) (low-level)

The change Rename_Metaproperty is defined similarly with the exception of (a,

subClassOf, property) being in d, (d4) instead of (a, subClassOf , resource).
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Change Merge_Properties(A,b) Split_Property(a,B)
Intuition Merge properties contained in A into b _Spgt property a into properties contained
in
Arguments | A = the set of old names of the a = the old name of the property,
properties, B = the set of new names of the properties
b = the new name of the property
8, (b, type, property) v b; €B : (b, type, property) (1<i<n)
oy Va; €A : (a, type, property) (1<i<n) (a, type, property)
Inverse Split_Property(b,A) Merge_Properties(A,b)
GAV (high-level) (high-level)
Mappings | type(a;, property) —type(b, property) A | type(a, property) — type(b;, property) A...A
split(a;, b, A) type(b,, property) A concat(a, {by,...,b.})
(low-level)
type(ay, property) — type(b, property) VXY, a(X , )= 3Xg, .., Xp, bi(X, XA LA
split(ay, b, A) bn(X, Xn) A concat(y, {X, ...,xn})
(low-level)
vx,y, aX , y)—> 3y, bx , yi) A
split(y, y1, A)
VX, Y, @n(X, Y) = 3 yn, b(X, Y1) A
split(y, yn, A)
The changes Merge_Metaproperties_Into_Existing and

Split_Metaproperty_Into_Existing are defined similarly with the exception of (a,

subClassOf, property) being in 8, and &y respectively instead of (a, subClassOf,

resource).
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Change Merge_Properties_Into_Existing(A,b) | Split_Property_Into_Existing(a,B)
Intuition Merge properties contained in A into b _SpEt property a into properties contained
in
Arguments | A = the set of old names of the a = the old name of the property,
properties, B = the set of new names of the properties
b = the new name of the property
8, - v b B\ {a} : (b, type, property) (I1<i<n)
by a;eA\{b} : (a, type, property) (I<i<n) | -
Inverse Split_Property_Into_Existing(b,A) Merge_Properties_Into_Existing(A,b)
GAV (high-level) (high-level)
Mappings | type(a;, property) —type(b, property) A | type(a, property) — type(bl, property) A...A
split(ay, b, A) type(bn, property) A concat(a, {b1,...,bn})
(low-level)
type(a"’ property) - type(b, property) A vx,y, a(x,y)— 3xI, ..., xn, bl(x, x)N... A
split(an, b, A) bn(x, xn) A concat(y, {x1,...,.xn})
(low-level)
vx,y, ai(x , y)—> 3y, bx , y) A
split(y, y1, A)
VX, Y, @n(X 5 ) = 3 yn, bX, Y1) A
split(y, yn, A)
Change Change_Comment(u,a,b) Change_Label(a,b)
Intuition Chgnge comment of resource u from a Change label of resource u from a to b
to
Arguments | a =the old comment, a = the old label,
b = the new comment B = the new label
0, (u, comment, b) (u, label, b)
Oy (u, comment, a) (u, label, a)
Inverse Change_Comment(u,b,a) Change_Label(u,b,a)
GAV vu, rdfs:comment (u, a) — rdfs:comment | Vu, rdfs:label (u, a) - rdfs:label (u, b)
Mappings | (u, b)
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