
BPHS: A BGP Prefix Hijacking Simulation
Tool Supporting RPKI filtering

Georgios Eptaminitakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Xenofontas Dimitropoulos

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

BPHS: A BGP Prefix Hijacking Simulation Tool Supporting RPKI
filtering

Thesis submitted by
Georgios Eptaminitakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Georgios Eptaminitakis

Committee approvals:
Xenofontas Dimitropoulos
Associate Professor, Thesis Supervisor

Evangelos Markatos
Professor, Committee Member

Kostas Magoutis
Associate Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, March 2022

BPHS: A BGP Prefix Hijacking Simulation Tool
Supporting RPKI filtering

Abstract

The Border Gateway Protocol (BGP) is used by the Autonomous Systems
(e.g., Comcast, AT&T, COSMOTE) to advertise AS paths for the corresponding
routed IP address space (i.e., IPv4/IPv6 network prefixes) and establish inter/intra-
domain routes in the Internet. Despite its scalability and capabilities of expressing
complex routing policies, BGP lacks many security features by design, like the
authentication of the advertised routes. Thus, an Autonomous System (AS) is
able to advertise illegitimate routes for IP prefixes that it does not own. These
advertisements propagate and “pollute” many ASes, or even the entire Internet,
affecting service availability, integrity, and confidentiality of communications. This
phenomenon is called BGP prefix hijacking and can be caused by either router
misconfigurations or malicious attacks.

The Resource Public Key Infrastructure (RPKI) is a hierarchical certification
system that aims to protect the Internet against these BGP prefix hijacking attacks,
introducing IP prefix ownership authentication. Despite its crucial role in Internet
security, RPKI deployment is slow (i.e., around 20% of the total ASes on the
Internet) due to its limited adoption from most ASes (i.e., it protects an AS only
if a large number of other ASes already use it) and due to its complex mechanisms
resulting in human errors.

Several research works have tried to measure the impact of the BGP prefix
hijacking attacks and the benefits of the RPKI adoption in the Internet through
BGP simulation algorithms that model the Internet graph and the BGP protocol.
However, there is not any related work proposing a BGP simulator enabling net-
work operators to quickly and easily assess the vulnerability of their Autonomous
Systems to BGP prefix hijacking attacks and conduct their study through a user-
friendly and plug&play BGP simulation tool or service.

In this thesis, we introduce BPHS, the first BGP Prefix Hijacking Simulation
tool that enables network operators to quickly and easily (a) assess the vulnerability
of their Autonomous Systems to BGP prefix hijacks and (b) measure the benefits
of the RPKI’s adoption in the Internet, through a user-friendly web application.

We evaluate BPHS by replaying real historical hijacks detected in the Internet
and reveal the benefits of the RPKI adoption by conducting a comparative study
(using BPHS) showing the attacker’s success rate for different RPKI filtering sce-
narios. In addition, we extract two rankings lists showing the most vulnerable
ASes and countries to BGP prefix hijacking attacks, including the most vulnerable
Greek ASes. The evaluation results show that BPHS estimates the impact of a
hijack with high accuracy and that the RPKI filtering in the Internet backbone
significantly reduces the BGP attacks.

BPHS: ΄Ενα εργαλείο προσομοίωσης επιθέσεων
προθέματος BGP που υποστηρίζει φιλτράρισμα

RPKI

Περίληψη

Το πρωτόκολλο BGP (Border Gateway Protocol) χρησιμοποιείτε από τα Αυ-
τόνομα Συστήματα (όπως, Comcast, AT&T, COSMOTE) ώστε να διαφημίζουν στο
Internet μονοπάτια δρομολόγησης για το σύνολο του χώρου IP διευθύνσεων (δηλαδή,
IPv4/IPv6 προθέματα δικτύου) και να εγκαθιδρύουν inter/intra-domain διαδρομές
στο Internet. Παρά την επεκτασιμότητα και την δυνατότητα να εκφράζει πολύπλοκες
πολιτικές δρομολόγησης, το BGP (απο το σχεδιασμό του) δεν διαθέτει κανένα μη-
χανισμό ασφάλειας, όπως είναι η πιστοποίηση των διαφημιζόμενων διαδρομών. ΄Ετσι,

ένα Αυτόνομο Σύστημα έχει την δυνατότητα να διαφημίζει παράνομες διαδρομές για

προθέματα IP που δεν κατέχει. Αυτές οι παράνομες ανακοινώσεις διαδίδονται και μο-
λύνουν πολλά Αυτόνομα Συστήματα ή και ακόμα ολόκληρο το Internet, με αποτέλεσμα
να επηρεάζουν τη διαθεσιμότητα, την ακεραιότητα και το απόρρητο των επικοινωνιών.

Το φαινόμενο αυτό ονομάζεται πειρατεία προθέματος BGP (ή BGP prefix hijacking)
και μπορεί να προκληθεί είτε απο λάθος παραμετροποιήσεις δρομολογητών, είτε από

κακόβουλες επιθέσεις.

Το RPKI (Resource Public Key Infrastructure) είναι ένα ιεραρχικό σύστημα πι-
στοποίησης που στοχεύει στην προστασία του Internet από αυτές τις επιθέσεις πειρα-
τείας προθέματος BGP, εισάγοντας την πιστοποίηση ιδιοκτησίας προθέματος IP. Παρά
τον σημαντικό του ρόλο στην ασφάλεια του Internet, η ανάπτυξη του RPKI είναι αρ-
γή (χρησιμοποιείτε περίπου απο το 20% των Αυτόνομων Συστημάτων στο Internet)
λόγω της περιορισμένης υϊοθέτησης του απο τα περισσότερα Αυτόνομα Συστήματα

(δηλαδη, προστατεύει ένα Αυτόνομο Σύστημα μόνο όταν ένας μεγάλος αριθμός απο

Αυτόνομα Σύστηματα το χρησιμοποιεί ήδη) και λόγω των πολύπλοκων μηχανισμών

του που οδηγούν σε ανθρώπινα λάθη.

Αρκετές ερευνητικές εργασίες έχουν προσπαθήσει να εκτιμήσουν τον αντίκτυπο

των επιθέσεων πειρατείας προθέματος BGP και τα οφέλη της υιοθέτησης του RPKI
στο Internet μέσω αλγορίθμων προσομοίωσης που μοντελοποιούν το γράφημα του
Internet και το πρωτόκολλο BGP. Ωστόσο, δεν υπάρχει καμία σχετική εργασία που
να προτείνει έναν προσομοιωτή BGP ο οποίος να επιτρέπει στους διαχειριστές δικτύων
να αξιολογούν γρήγορα και εύκολα την ευπάθεια των Αυτόνομων Συστημάτων τους

σε επιθέσεις πειρατείας προθέματος BGP και να διεξάγουν την έρευνα τους μέσω ενός
φιλικού προς τον χρήστη εργαλείου (ή υπηρεσίας) προσομοίωσης BGP.
Σε αυτή την εργασία, εισάγουμε το BPHS , το πρώτο εργαλείο προσομοίωσης επι-

θέσεων πειρατείας προθέματος BGP που επιτρέπει στους διαχειριστές δικτύων (α) να
αξιολογούν την ευπάθεια των Αυτόνομων Συστημάτων τους σε επιθέσεις προθέματος

BGP και (β) να μετρούν τα οφέλη της υιοθέτησης του RPKI στο Internet, γρήγορα
και εύκολα, μέσω μιας φιλικής προς τον χρήστη web εφαρμογής.

Αξιολογούμε το BPHS αναπαράγοντας πραγματικές ιστορικές επιθέσεις προθέμα-
τος BGP που εντοπίστηκαν στο Διαδίκτυο και αποκαλύπτουμε τα οφέλη της υιοθέτη-
σης του RPKI πραγματοποιώντας μια συγκριτική μελέτη (χρησιμοποιώντας το BPHS)
που δείχνει το ποσοστό επιτυχίας των επιθέσεων για διαφορετικά σενάρια φιλτραρίσμα-

τος RPKI. Επιπλέον, εξάγουμε δύο λίστες κατάταξης που δείχνουν τα πιο ευάλωτα
Αυτόνομα Συστήματα και τις πιο ευάλωτες χώρες σε επιθέσεις πειρατείας προθέματος

BGP, συμπεριλαμβανομένων των πιο ευάλωτων Ελληνικών Αυτόνομων Συστήματων.
Τα αποτελέσματα της αξιολόγησης δείχνουν ότι το BPHS εκτιμά τον αντίκτυπο των
επιθέσεων με υψηλή ακρίβεια και ότι το φιλτράρισμα RPKI στην ραχοκοκαλία του
Internet μειώνει σημαντικά τις επιθέσεις προθέματος BGP.

Ευχαριστίες

Μέσα απο την εκπόνηση της συγκεκριμένης εργασίας συνειδητοποίησα πόσο ση-

μαντικό είναι να έχεις δίπλα σου ανθρώπους που μπορούν να σε στηρίζουν σε κάθε

σου βήμα. Οπότε θα ήθελα να ευχαριστήσω απο καρδιάς:

• Τον επόπτη καθηγητή μου, κύριο Ξενοφώντα Δημητρόπουλο, για την εμπι-
στοσύνη που μου έδειξε καθ΄ όλη την διάρκεια της εργασίας αλλά και για την

δυνατότητα που μου έδωσε να γίνω μέλος του INSPIRE Group.

• Τον Γιώργο Νομικό, ερευνητής στο INSPIRE Group ειδικός σε θέματα με-
τρήσεων διαδικτύου, ο οποίος με βοήθησε καθοριστικά σε θέματα οργάνωσης

και τεχνικής συγγραφής της εργασίας.

• Τον Αλέξανδρο Μηλολιδάκη, διδακτορικός φοιτητής στο ΚΤΗ, ο οποίος με
εισήγαγε ερευνητικά στο θέμα της εργασιας και μου έδωσε το έναυσμα να κα-

τανοήσω τις σχετικές προκλήσεις της.

• ΄Ολα τα μέλη, και ειδικότερα για εμένα φίλους - Αντώνη Χατζηβασιλείου, Βασίλη
Πετρόπουλο, Μανώλη Λακιωτάκη, Αντρέα Σίσκο, Κώστα Αρακαδάκη - , του

INSPIRE Group, για την άψογη συνεργασία μας και το υγειές εργασιακό κλίμα.

• Την οικογένειά μου, η οποία με εμψυχώνει πάντα στις δύσκολες στιγμές και με
υποστηρίζει σε ότι και αν κάνω σ΄ αυτή τη ζωή.

Τέλος, θα ήθελα να ευχαριστήσω τον κύριο Βαγγέλη Μαρκάτο και τον κύριο

Κώστα Μαγκούτη, καθηγητές στο Τμήμα Επιστήμης Υπολογιστών του Πανεπιστη-

μίου Κρήτης, οι οποίοι δέχθηκαν με μεγάλη χαρά να είναι μέλη της επιτροπής εξέτασης

της εργασίας μου.

Στην οικογένειά μου

Table of contents

Table of contents i

List of Tables iii

List of Figures v

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Overview . 3

2 Background 5
2.1 Internet Routing . 5
2.2 Border Gateway Protocol (BGP) 6

2.2.1 BGP Selection Algorithm 7
2.2.2 Local Preference Attribute 7
2.2.3 Shortest AS PATH . 8
2.2.4 Longest Prefix Match in routing 9
2.2.5 AS Relationships . 10
2.2.6 Gao-Rexford Rules . 11
2.2.7 Prefix Hijacking . 11

2.3 Resource Public Key Infrastructure (RPKI) 14
2.3.1 Certification - Authorization Process 14
2.3.2 Route Origin Validation Process (ROV) 15
2.3.3 RPKI Relying Parties (RPs) 16

2.3.3.1 Routinator . 16
2.3.4 RPKI Adoption Challenges 18

2.4 Center for Applied Internet Data Analysis (CAIDA) 18
2.4.1 AS Relationships dataset 19
2.4.2 ASRank . 20
2.4.3 BGP Hijacks Observatory 22

2.5 Basic concepts in Network Simulation 23
2.5.1 Simulation . 23
2.5.2 Why Network Simulation? 23

i

2.5.3 Types of Network Simulators 24
2.5.4 Advantages and Drawbacks 24
2.5.5 Network Simulation versus Emulation 25

2.6 Full Stack Web Application Development 26
2.6.1 Model-View-Controller (MVC) Pattern 27
2.6.2 RESTful API . 28
2.6.3 HTTP Protocol . 28
2.6.4 The Flask Web Framework 29
2.6.5 ReactJS . 31
2.6.6 PostgreSQL . 31

3 Related Work 33
3.1 Internet/BGP Simulators: A brief review 33
3.2 Any Web-based BGP hijacking Simulator? 36

4 BPHS 37
4.1 The Goal . 37
4.2 Supported Features . 37
4.3 Architecture . 42

4.3.1 Backend . 44
4.3.2 Database . 48
4.3.3 Frontend . 51

4.4 Challenges . 56

5 Evaluation 59
5.1 Replaying Real Hijacks . 59

5.1.1 Methodology . 59
5.1.2 Results . 61

5.2 RPKI Adoption Benefits . 62
5.2.1 First Experiment: Methodology 62
5.2.2 First Experiment: Results 62
5.2.3 Second Experiment: Methodology 63
5.2.4 Second Experiment: Results 64

5.3 Simulations Insights . 64
5.3.1 AS/Country Vulnerability Ranking: Methodology 64
5.3.2 AS/Country Vulnerability Ranking: Results 65

5.4 Execution time and memory consumption 68

6 Conclusions & Future Work 69
6.1 Conclusions . 69
6.2 Future Work . 69

Bibliography 73

ii

List of Tables

4.1 Impact estimation of a hijack: computation formula. 42
4.2 AS vulnerability score: computation formula. 42
4.3 Country vulnerability score: computation formula. 42

5.1 Total AS vulnerability ranking score: computation formula. 65
5.2 Total Country vulnerability ranking score: computation formula. . 65
5.3 Top 7 vulnerable ASes in Greece. 67
5.4 Simulation execution time (5 Workers). 68
5.5 Simulation memory requirements (5 Workers). 68

iii

iv

List of Figures

2.1 BGP-Background . 6
2.2 BGP Local Preference example . 8
2.3 BGP Shortest AS PATH example 9
2.4 Longest Prefix Match . 9
2.5 Gao-Rexford rules . 10
2.6 Sub-prefix hijacking . 12
2.7 Same-prefix hijacking . 13
2.8 AS_PATH forgery attack . 13
2.9 RPKI certification process . 15
2.10 RPKI Certification and Validation Process 16
2.11 Rootinator RPKI Relaying Party 17
2.12 ASRank, customer cone size . 21
2.13 Correlation between customer cone size and AS Relationships . . . 21
2.14 CAIDA Hijacks Observatory architecture 22
2.15 Graphical Network Simulator 3 (GNS3) example topology 25
2.16 Full Stack Web Development . 26
2.17 Model-View-Controller Design . 27
2.18 A basic Flask application . 30

4.1 BPHS Overview . 38
4.2 BPHS Architecture . 43
4.3 The simulation pipeline of BPHS 44
4.4 The structure of bgp_hijacking_simulations table 48
4.5 Simulation data, JSON structure example 49
4.6 Simulation results, JSON structure example 49
4.7 The structure of asn_to_org table 50
4.8 ASN_to_Org_data field, JSON structure example 50
4.9 Web App (BPHS GUI) Architecture 51
4.10 The Home page of BPHS . 52
4.11 The New Simulation page of BPHS 52
4.12 The Custom Simulation page of BPHS 53
4.13 The Random Simulation page of BPHS 53
4.14 The Simulation Events page of BPHS 54

v

4.15 The Simulation Details page of BPHS 54
4.16 Detailed results per simulation (pop-up sample) 55

5.1 CAIDA Observatory, Historical hijacking data sample 60
5.2 Replaying real hijacks: Level of Agreement (LoA) 61
5.3 Replaying real hijacks: LoA results 61
5.4 RPKI adoption benefits: enforcing ROV only at top 100 ISPs . . . 63
5.5 RPKI adoption benefits: today status vs enforcement on Internet’s

backbone . 64
5.6 Top 20 Vulnerable ASes . 66
5.7 Top 100 Vulnerable ASes . 66
5.8 Country vulnerability Geo-chart . 67

vi

Chapter 1

Introduction

1.1 Motivation

The Internet, is a network of networks, which are connected with each other at
various locations around the world for exchanging traffic and delivering services
to other networks or end-users. Each one of these networks constitutes an Au-
tonomous System (AS). The BGP protocol [115], enables ASes to send and receive
reachability information (i.e., BGP routes) related to their IP prefixes (i.e., groups
of IP addresses) and the paths leading to them.

Despite its scalability and capabilities of expressing complex routing policies,
BGP lacking authentication of routes. As a result, an AS is able to advertise
illegitimate routes for IP prefixes it does not own. These illegitimate advertisements
propagate and “pollute” many ASes, or even the entire Internet, affecting service
availability, integrity, and confidentiality of communications. This phenomenon,
called BGP prefix hijacking, can be caused by router misconfiguration [67], [16] or
malicious attacks [28], [114], [125].

To protect against prefix hijacks, the Internet Engineering Task Force (IETF)
[63] promotes/suggests the deployment of the Resource Public Key Infrastructure
(RPKI), which binds IP address blocks to “owner” ASes via cryptographic signa-
tures [103]. RPKI enables ASes to validate that an AS advertising IP addresses in
BGP is authorized to do so and thus to detect and discard prefix hijacks.

Despite its crucial role in Internet security, there are obstacles to RPKI’s ubiq-
uitous adoption: (a) certifying ownership of IP address blocks in RPKI is a manual
and hierarchical process that requires coordination between ASes (i.e., an AS issues
RPKI certificates for its customer ASes), (b) human error is common (e.g., invalid
RPKI certificates for the 10% of the prefixes advertised in BGP), resulting a very
slow RPKI adoption (i.e., around 20% of the total ASes on the Internet) [71].

The increase of BGP attacks in today’s Internet, the unawareness of network
operators about the vulnerability of their networks to BGP attacks, and the slow
RPKI adoption have led the research community to develop simulation algorithms,
that try to evaluate and mitigate these problems. Simulations are preferred over

1

2 CHAPTER 1. INTRODUCTION

real attacks on the Internet, because we properly design and orchestrate a number
of artificial BGP attacks in a secure environment extracting useful research insights
that are impossible to be inferred through real experiments on the Internet due to
infrastructure limitations and reachability concerns from the network operators
(i.e., AS disconnection from the Internet). There are plenty of research works that
tried to answer research questions about BGP and RPKI through BGP simulations
[72], [86], [82], [118], but none of them have proposed a BGP simulator that enables
network operators or naive users without programming skills to conduct their study
through a user-friendly and plug&play BGP simulation tool or service.

In this work, we introduce BPHS, the first BGP Prefix Hijacking Simulation
tool that enables network operators to quickly and easily (a) assess the vulnerability
of their Autonomous Systems to BGP prefix hijacks and (b) measure the benefits
of the RPKI’s adoption on the Internet, through a user-friendly web application.
With BPHS, the network operators can simulate different types of BGP hijacking
attacks and obtain the simulation results through an automated and well-designed
Graphical User Interface.

1.2 Contributions

The first contribution of this thesis is a BGP Prefix Hijacking Simulation Tool,
called BPHS. BPHS is the first BGP simulator that developed as a full stack web
application. It supports (a) user-friendly GUI for easy interaction from desktop and
mobile web-browsers, (b) multi-threading execution enabling end-users to retrieve
quicker results per simulation, (c) REST API [107] to allow other applications to
communicate with the simulator and (d) realtime RPKI filtering using the most up-
to-date data from the RPKI databases, for more realistic simulation results. BPHS,
models the Internet graph through the well-known AS relationship datasets from
CAIDA [14], applies the user preferences on the generated graph (e.g., random
or custom simulation, hijack type, RPKI filtering mode) and finally simulates the
BGP protocol along with different types of prefix hijacks.

The second contribution of this work is an experimental study showing the
ability of BPHS to detect the hijacked ASes as they identified in real historical
datasets of BGP hijacking events that happened on the Internet. The evaluation
results showed a 70% success rate for prefix hijacking events and 87% for sub-prefix
hijacking events on average.

The third contribution of the thesis is a comparative study showing the RPKI
adoption benefits on the Internet’s backbone. In our evaluation experiments, we
measured the hijacker’s success rate (i.e., the impact of the attack) for different
RPKI adoption rates and use cases (e.g., RPKI filtering only from the top 100 ASes
[6] or according to RPKI adoption status on today’s Internet). The evaluation
results showed a significant reduction in the attacker’s success rate (30% for the
prefix hijacks and 40% for the subprefix hijacks) when only a few ASes on the
Internet backbone (e.g., the top 100 ASes) perform RPKI filtering.

1.3. OVERVIEW 3

The fourth contribution of this work is the ability to compute an AS - Coun-
try vulnerability ranking for each BGP hijacking simulation initiated by the user.
During our experimental evaluation, we conducted thousands of successful simula-
tions. Thus, we decided to compute an overall AS - Country vulnerability ranking
list from all the simulations. BPHS ranked an AS belonging to the most popular
streaming provider as the 3rd most vulnerable AS on the Internet and two Greek
ASes in the top 600 of the list. Finally, our algorithm ranked the United States as
the most vulnerable country and surprisingly Greece ranked eleventh in the list.

1.3 Overview

First, in Section 2 (Background), we describe core topics related to the Internet
routing and the BGP protocol; we further present in detail the BGP prefix hijacking
problem and the main functionalities of the RPKI framework; also we present
the Cooperative Association for Internet Data Analysis (CAIDA) which provides
research datasets that helped us in simulator’s development and evaluation.

In the 3rd section, we discuss the related research work on BGP hijacking sim-
ulation mechanisms, and in chapter 4, we analytically present the BPHS tool by
describing the tool’s architecture and the technologies that are used to support the
BPHS’s main components. Then, we present the main features of the simulator
and finally we list the challenges of the BPHS’s development.

In chapter 5, we present the evaluation studies that we conduct to (a) measure
the ability of the BPHS to extract realistic simulation results, (b) show the RPKI
adoption benefits on the Internet’s backbone and (c) extract useful insights from a
wide range of simulation events. Finally, in chapter 6 we conclude our thesis and
we elaborate on directions for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Internet Routing

The Internet is the global system of interconnected computer networks that use the
Internet protocol suite (TCP/IP) [78] to link devices worldwide. It is a network
of networks in which users at any one computer which has an IP address can, if
they have permission, to get information from any other computer which has an
IP address. An IP address is a numerical label that is assigned to network devices
that communicate in the Internet through the IP protocol, and is used to identify
the device and address the location. An IP address might be PUBLIC where it is
reachable from the whole Internet, or PRIVATE where it is only routable inside a
private network.

An Autonomous System includes a collection of networking devices (e.g., routers,
middleboxes, etc.) along with network resources (e.g., IP network prefixes) within
the Internet. An IP prefix is an aggregation of IP addresses that is often written
in Classless Inter-Domain Routing (CIDR) notation. In CIDR format we write
first, the address of a network, followed by a slash character (/), and ending with
the bit-length of the prefix (e.g., 130.10.0.0/21 for IPv4, ::ffff:820a:0/21 for IPv6).
Network prefixes can be advertised by Autonomous Systems to the Internet or not.

To identify the Autonomous Systems, the Internet Assigned Numbers Authority
(IANA) [30] allocates unique AS Numbers (ASN) to Regional Internet Registries
(RIRs) [56] for each AS (e.g. Google [AS 15169], Comcast [AS 7922]). The unique
AS number/identifier allows an AS to communicate with other ASes on the Inter-
net. An AS can have a private ASN and a public ASN. A private ASN is a unique
identifier that is used by ASes for private communication with a neighboring AS
(e.g., an upstream Internet provider) via BGP. On the other hand, a public ASN
is a unique identifier that is used by an AS to advertise its existence to the public
Internet and is needed to exchange information over the Internet.

Autonomous Systems are interconnected and communicate with each other with
two basic protocols: the Interior Gateway Protocol (IGP) and the Exterior Gate-
way Protocol (EGP). The Interior Gateway Protocol (e.g, OSPF [111], RIP [106],

5

6 CHAPTER 2. BACKGROUND

EIGRP [60]) is used for exchanging routing information within an autonomous
system (i.e., intra-domain traffic), whereas the Exterior Gateway Protocol (BGP)
is used to exchange routing information between autonomous systems (i.e., inter-
domain traffic) and relies on IGPs to resolve routes within an autonomous system
(see Figure 2.1).

2.2 Border Gateway Protocol (BGP)

The Border Gateway Protocol version 4 [91] (BGPv4) is a standardized External
Gateway Protocol designed to exchange routing information between ASes in order
to handle intra-domain and inter-domain traffic. It selects the most preferable
path the data will go through. BGP uses the information in BGP routing tables to
determine the next AS hop, which, viewed in the context of a chain of ASes between
the source and destination of data, determines the route to its destination. By
default, BGP will send traffic to the path with the shortest logical distance (fewest
number of AS hops). This process is called BGP best path selection or AS path
selection.

Figure 2.1: Internet Topology with Internal and External Gateway Protocols.
AS101 announces prefix 130.10.0.0/21 to their BGP neighbors, AS102 announces
prefix 20.10.0.0/16 to their BGP neighbors and Upstream AS103 announces prefix
10.10.0.0/18 to their BGP neighbors. Note that while all three ASes speak different
IGPs internally, all of them use BGP for route exchanging.

2.2. BORDER GATEWAY PROTOCOL (BGP) 7

2.2.1 BGP Selection Algorithm

Border Gateway Protocol routers typically receive multiple paths to the same des-
tination. The BGP best path algorithm decides which is the best path to install in
the IP routing table and to use for traffic forwarding. A list of best path selection
criteria is listed below, sorted in order of preference [8]:

1. Weight

2. Local Preference

3. Network or Aggregate

4. Shortest AS PATH

5. Lowest origin type

6. Lowest multi-exit discriminator (MED)

7. eBGP over iBGP

8. Lowest IGP metric

9. Multiple paths

10. External paths

11. Lowest router ID

12. Minimum cluster list

13. Lowest neighbor address

From the above selection metrics, we focus on Local Preference and shortest
AS PATH, because these two rules are used for the thesis needs.

2.2.2 Local Preference Attribute

Local Preference (aka LOCAL_PREF) is a BGP well-known attribute that is
used when there are multiple exit paths out from a single AS. Whereas the MED
is used by routers to determine the optimal route when traffic enters an AS, the
LOCAL_PREF helps routers to determine the optimal route when traffic leaves
an AS. The basic/core characteristics of the LOCAL_PREF BGP attribute are
listed below:

1. Well-known and discretionary BGP attribute.

2. The path with the highest local preference is preferred.

3. Used for outbound traffic filtering.

8 CHAPTER 2. BACKGROUND

4. Not exchanged between external BGP routers.

5. Sent to all internal BGP routers in the AS.

6. Default value is 100.

Suppose a router has three BGP sessions (e.g., see Figure 2.2), and receives a
route towards a given destination over each session, where one route has a local
preference of 200, one has a local preference of 150 and one has a local preference
of 75. “Prefer the path with the highest local preference” means the route with
a LOCAL_PREF of 200 is used, which means that it is installed in the main
routing table and propagated to BGP neighbors whether allowed by the specified
policies/filters. The other two routes with LOCAL_PREFs of 150 and 75 are kept
in the BGP table, and also not propagated to BGP neighbors.

Figure 2.2: AS 1 send all outbound traffic towards AS 2 due to higher Local
Preference on routes learned by router R2 [9].

.

2.2.3 Shortest AS PATH

When the BGP routing mechanism is not possible to select a route based on weight,
local preference and the route does not originate from a local or aggregated network
[36], then BGP decides for the best route based on the lowest AS hops towards the
destination IP prefix. For example, if a BGP speaker receives multiple routes for
an IP prefix, (a) AS1,AS2,AS3 and (b) AS1,AS4,AS2,AS3 and they do not have
any other higher criterion to discriminate, then route (a) will always be preferred
over the route (b) due to lowest AS hops.

2.2. BORDER GATEWAY PROTOCOL (BGP) 9

Figure 2.3: Shortest AS PATH example [7].

In Figure 2.3, the route received by router R1 from router R11 has the AS_PATH :
[11 111] and the route received from router R12 has the AS_PATH : [12 22 111].
Because a shorter AS_PATH is preferred than a longer AS_PATH, if all the pre-
vious steps of the algorithm could not select the best route, the route with the
shortest AS_PATH is selected as the best one.

2.2.4 Longest Prefix Match in routing

In order to determine the packet’s next-hop interface, routers use the Longest
Match Routing Rule (most specific routing table entry [17]), sometimes referred
to as the longest prefix match or maximum prefix length match. The Longest
Match Routing Rule is an algorithm used by routers to select an entry from a
routing table. The router uses the longest (prefix) match to determine the egress
(outbound) interface and the address of the next device to which to send a packet.

Figure 2.4: Longest Prefix Match wins in routing decision.

10 CHAPTER 2. BACKGROUND

When the router receives a packet, processes its header and compares the des-
tination IP address, with the entries in the routing table. The entry that has the
longest number of network bits that match the IP destination address is always
the best match (or best path).

For example, in Figure 2.4, we see the routing table entries of a random router in
a network topology. This router receives a packet with a destination IP address of
172.16.0.10 . Router (a) compares the destination IP address with the routing table
entries, (b) identifies the longest match on prefix 172.16.0.0/26, and (c) forwards
the packet to the interface towards "Route 3".

2.2.5 AS Relationships

Interdomain traffic engineering requirements are diverse and often motivated by
the need to balance the traffic on links with other ASes and to reduce the cost of
carrying traffic on these links. These requirements depend on the connectivity of
an AS with others, but also on the type of business handled by this AS.

Connectivity between ASes is mainly composed of two types of relationships.
The most frequent relationship between ASes is the customer-to-provider rela-
tionship, where a customer AS pays to use a link connected to its provider. This is
this the most costly relationship of a customer AS (in terms of money per traffic).
A stub AS (i.e., an AS without customers) usually tries to maintain at least two of
these links for performance and redundancy reasons [124]. In addition, larger ASes
typically try to obtain peer-to-peer relationships with other ASes and then share
the cost of the link with the other AS. Negotiating the establishment of those peer-
to-peer relationships is often a complicated process since technical and economical
factors, as exposed in [62], need to be taken into account.

Figure 2.5: According to Gao-Rexford rules, AS D can not forward traffic towards
AS F through AS_PATH : [A B C F]. AS E is allowed to send traffic towards AS
F through AS_PATH : [B C F]

2.2. BORDER GATEWAY PROTOCOL (BGP) 11

2.2.6 Gao-Rexford Rules

BGP is an interdomain routing protocol that allows ASes to apply local policies
for selecting routes and propagating routing information, without revealing their
policies or internal topology to other ASes. However, a collection of ASes may
have conflicting BGP policies that lead to route divergence [112], [89]. Route
divergence can result in route oscillation, which can significantly degrade the end-
to-end performance of the Internet. Avoiding these conflicting BGP policies is
crucial for the stability of the Internet routing infrastructure.

In [80], they propose, a set of guidelines(known as Gao-Rexford rules) that each
AS should follow to set its routing policies without requiring coordination with
other ASes. Gao-Rexford guidelines ensure, BGP convergence and also, stability
on the Internet routing. The rules are listed below:

• Exporting to a provider: Exchanging routing information with a provider,
an AS can export its routes and the routes of its customers, but can not export
routes learned from other providers or peers. That is, an AS does not provide
transit services for its provider.

• Exporting to a customer: Exchanging routing information with a cus-
tomer, an AS can export its routes, as well as routes learned from its providers
and peers. In that case, an AS provides transit services for its customers.

• Exporting to a peer: Exchanging routing information with a peer, an AS
can export its routes and the routes of its customers, but can not export the
routes learned from other providers or peers. This means that, an AS does
not provide transit services for its peers.

• For a destination p, prefer routes coming from customers over peers and
peers over providers.

2.2.7 Prefix Hijacking

BGP Prefix Hijacking, also called route hijacking or IP hijacking, is the illegitimate
takeover of groups of IP addresses by corrupting Internet routing tables maintained
using the Border Gateway Protocol (BGP). This phenomenon can be caused by
router misconfiguration (e.g., from network operators) or malicious attacks (e.g.,
traffic redirection, DDoS). There are three basic prefix hijacking techniques.

The first technique is the announcement of a more specific prefix than the
announced prefix of a Legitimate AS from a Hijacker AS. This is commonly called
Sub-prefix Hijacking or "sub-MOAS(i.e., sub multi origin AS)" attack .
In that case, all the traffic for that (specific) prefix is redirected to Hijacker AS,
because always in routing the longest prefix match is preferred (see section 2.2.4).

The second technique is the announcement of exactly the same prefix (called
as Prefix Hijacking or "MOAS hijack") as the announced prefix of Legitimate
AS from Hijacker AS, but now the number of AS hops between Hijacker AS and

12 CHAPTER 2. BACKGROUND

AS which produces the traffic for this prefix is less than the Legitimate AS. In
that case, Hijacker AS is preferred due to shortest AS PATH. However, in reality,
routing policies that prevail over path lengths may come into play, making the
situation reached after an exact-prefix hijacking attempt more complex to assess.

The third technique called AS_PATH forgery or Man in the Middle at-
tack . In this attack, the hijacker may arbitrarily tamper with the AS path in BGP
update messages [10]. Instead of forging the origin AS, he modifies the AS path
to avoid a MOAS conflict and causes one-hop (Type-1) or N-hop (Type N) prefix
hijack (i.e., the hijacker AS is N hops away from the victim AS in the manipulated
AS_PATH). For this reason, the attacker announces the manipulated AS_PATH
to its neighboring ASes. Another version of this attack is the modification of the
AS_PATH and the advertisement of more attractive (e.g., shorter) routes at the
control plane [20], but still the usage of another sequence of ASes at the data plane
[24] from the hijacker AS to forward the traffic. This attack is known as traffic
attraction attack and is usually performed due to economic incentives.

Figure 2.6: Sub-prefix hijacking example. AS 20 steals all the traffic destined to
AS 10, due to more specific announcement.

In Figure 2.6, we see a Sub-prefix Hijacking example. Legitimate AS 10 an-
nounces the prefix 130.10.0.0/21 via BGP which is used by an email server. A
client into AS 40 produces traffic to AS 10 in order to access the email server. At
this point all the produced traffic from the client goes to AS 10. Malicious AS 20
decides to hijack all this traffic between AS 10 and AS 40 and announces two /22
sub-prefixes 130.10.0.0/22 and 130.10.4.0/22. From that moment on all the traffic
is redirected to hijacker AS, because in routing the longest prefix match wins.

2.2. BORDER GATEWAY PROTOCOL (BGP) 13

Figure 2.7: Same-prefix hijacking example. AS 20 steals all the traffic destined to
AS 10, due to shortest AS_PATH.

In Figure 2.7, we see a Same-prefix Hijacking example. Legitimate AS 10
announces prefix 130.10.0.0/21 via BGP which is used by a web server. A client is
located in AS 50 and produces traffic to AS 10 in order to access the web server.
At this point all the produced traffic from the client goes to AS 10. Similar to
the above example malicious AS 20 decides to hijack all this traffic between AS 10
and AS 50. For this reason it announces the prefix 130.10.0.0/21. As we can see
the number of AS hops between AS 50 and AS 20 (2 hops away) is less than the
number of AS hops between AS 50 and AS 10 (3 hops away). Also, we have an
announcement of the same prefix by two different ASes. So in that case BGP takes
into account the shortest policy compliant AS_PATH for routing.

Figure 2.8: One hop prefix hijack (Type-1) [110]. The attacker (AS 3) announces
a fake link between his AS and the victim AS to its neighbor (AS 1).

14 CHAPTER 2. BACKGROUND

In figure 2.8, we see an AS_PATH forgery attack. AS 4 (victim) announces the
prefix 123.145.0.0/16 in the Internet, so all the ASes in the topology have a valid
AS_PATH towards AS 4. The AS 3 (attacker) decides to advertise to AS 1, a
BGP route including the fake AS_PATH : [3 4] for the prefix 123.145.0.0/16 . This
announcement constitutes a Type-1 hijack which infects only the AS 1, because
AS 1 prefers the shortest route, in terms of number of AS hops ([2 5 4] > [3 4]), to
forward the traffic destined to AS 4.

2.3 Resource Public Key Infrastructure (RPKI)

The Resource Public Key Infrastructure (RPKI) is a hierarchical certification sys-
tem that associates public keys [51] with network resources such as IP prefixes [103].
After certifying their IP prefixes, owners can use their private keys to authorize spe-
cific AS numbers to advertise these prefixes. Authorizations are cryptographically
signed and published in public repositories, which enables other ASes to verify the
authorization and filter routes with invalid origins to protect against prefix hijacks.
The RPKI certification and validation system consists of:

• Resource Certificates (RC): certificates for ownership of IP prefixes (and
ASNs) mapping owner public keys to IP prefixes (and ASNs).

• Route Origin Authorizations (ROAs): signed statements using the cer-
tified private key of the owner of an IP prefix to specify an AS number to be
authorized to originate this prefix in BGP. The ROA might also permit the
AS to advertise sub-prefixes, up to a specified maximum prefix length.

• Route Origin Validation (ROV): filtering rules to be applied by BGP
routers to discard or depreference a BGP advertisement whose origin AS
does not match with the information in the prefix’s ROA.

2.3.1 Certification - Authorization Process

RPKI Resource Certification (RCs) is a hierarchical process with predefined steps
that must be followed by the involved entities. At the top of the hierarchy we
have the five Regional Internet Registries (RIRs) [56]: ARIN, APNIC, AFRINIC,
LACNIC, and RIPE. Each RIR holds a root (self-signed) RC covering all the IP
addresses in its geographical region. When an IP prefix is directly allocated to an
organization by a RIR it can request from the RIR to issue an RC, validating its
ownership of the IP prefix.

For example, OTEGlobe in Figure 2.9 was certified by RIPE for its address
space 62.75.1.0/24 and is enabled to use its RC to issue a ROA protecting its IP
prefix against hijacking. In case that the ownership of an IP prefix is later delegated,
that is, if an organization A further allocated a subprefix to organization B, then
A is responsible for certifying B as the owner for that subprefix. To accomplish
this, A must itself possess an RC for its assigned IP addresses.

2.3. RESOURCE PUBLIC KEY INFRASTRUCTURE (RPKI) 15

Figure 2.9: OTEGlobe received an RC from RIPE and issued a ROA to protect
its IP-prefix (advertised through BGP)

2.3.2 Route Origin Validation Process (ROV)

Route Origin Validation (ROV), defined in RFC 6483 [95], allows BGP routers
to prevent prefix hijacking by detecting that an incoming BGP advertisement is
inconsistent with ROAs in RPKI. Large vendors support ROV in their BGP routers
with negligible computational overhead [19], [35].

The first step of the ROV process (see Figure 2.10), is the periodically synchro-
nization of the ROV enabled router with the cached RPKI databases of the five
RIRs, to retrieve the updated ROAs. Upon receiving a BGP route-advertisement,
the BGP router checks whether the advertised destination IP prefix p is “covered”
by a ROA, that is, whether there exists a ROA for a superprefix P ⊇ p. The
route-advertisement is then assigned by one of the following three states:

• Not-Found: p is not covered by any ROA.

• Valid: p is covered by a ROA, the origin AS number matches the AS num-
ber specified in the ROA and p is not more specific than is allowed by the
maximum length specified in the ROA (e.g., see OTEGlobe’s advertisement
in Figure 2.9).

• Invalid: Otherwise (p is covered, but not “valid”).

Routers use those three states to perform route-filtering policies. The default
action for most of the routers is to discard invalid routes (see [19], [35]) and this
is also considered as the best practice (according to RFC7454, routers SHOULD
discard invalid routes). However, a ROV-enforcing AS may instead choose to con-
figure its router to prefer invalid routes over other routes. However, as observed in
[74], [92], preferring invalid routes leaves the AS completely vulnerable to subprefix
hijacking. We mention that the certification and validation process in RPKI may
slightly differ from AS to AS and RIR to RIR, but the main idea is the same as
described in this section and section 2.3.1 .

16 CHAPTER 2. BACKGROUND

Figure 2.10: RPKI Certification and Validation Process step by step.

2.3.3 RPKI Relying Parties (RPs)

All RPKI objects (e.g., route origin authorization (ROA)) are disseminated as files
in a distributed repository of publication point (PP) servers. Analogous to a DNS
authoritative server and DNS resolvers, a PP makes RPKI data available to relying
parties (RPs). In contrast to DNS resolvers, which fetch data on demand and have
a partial view of the DNS, these RPs must periodically fetch all authoritative data
and maintain a complete view. RPs use rsync [52] or RRDP [66] for data retrieval,
then cryptographically validate received RPKI objects, cache the results, and relay
data such as valid prefix-to-origin AS bindings to BGP routers for use in the route
decision-making process (see Figure 1 in [101]). In the next subsection, we present
one of the most commonly used RPKI Relying Parties, called "Routinator".

2.3.3.1 Routinator

Routinator 3000 [49], is a free open-source RPKI Relying Party software written
by NLnet Labs in the Rust programming language. The application is designed
to be secure and has great portability. It is a lightweight implementation that can
run effortlessly on almost any operating system using minimalist hardware.

Routinator connects to the Trust Anchors of the five Regional Internet Reg-
istries (RIRs) — APNIC, AFRINIC, ARIN, LACNIC and RIPE NCC — downloads
all of the certificates and ROAs in the various repositories, verifies the signatures
and makes the result available for use in the BGP workflow.

It is a full featured software package that can perform RPKI validation as a
one-time operation and store the result on disk in formats such as CSV and JSON,
or run as a service that periodically downloads and verifies RPKI data. Routers
can connect to Routinator to fetch verified data via the RPKI-RTR protocol [53].
The built-in HTTP server offers a user interface and endpoints for the various file

2.3. RESOURCE PUBLIC KEY INFRASTRUCTURE (RPKI) 17

formats, as well as logging, status and Prometheus monitoring.

Figure 2.11: Routinator RPKI RP Graphical User Interface.

Also, Routinator offers a user friendly GUI (see Figure 2.11) allowing users
to validate prefixes against ASNs found in BGP announcements. Next to that it
allows users to lookup related prefixes for the prefix they’re searching for. These
related prefixes can be more- or less-specific prefixes, routed in BGP or prefixes
that are allocated by one of the five Regional Internet Registries.

For larger networks, the Routinator’s developers offer an extra service, named
"RTRTR" [54], as a companion to Routinator. This makes it possible to centralize
validation performed by Routinator and have RTRTR running in various locations
around the world to which routers can connect.

18 CHAPTER 2. BACKGROUND

2.3.4 RPKI Adoption Challenges

Despite the importance of RPKI for Internet security and the extensive efforts to
push its deployment forward, RPKI adoption is very slow (i.e., around 20% of
the total ASes on the Internet) [71]. The majority of prefixes advertised in BGP are
still not in the system [40] (including most IP addresses for popular web-services
[126]), and few ASes filter BGP advertisements based on the information recorded
in RPKI [73], [94], [116], although there is significant progress in both these fronts
[70], [71]. Next, we present the basic obstacles to RPKI’s ubiquitous adoption
according to the literature [96], [84], [73], [93]:

• Certification is not easy: RPKI’s certification process is manual and hi-
erarchical. Network operators first need to request their provider, the entity
that allocated the IP address space to them, to issue them a resource certifi-
cate. Since many organizations do not yet have resource certificates for their
IP address blocks, in many cases this requires providers to first be certified
themselves before they can issue certificates for their customers [83].

• Human error is common: Issuing ROAs requires network operators to
manually authorize origin ASes and to specify the maximum permissible
length for advertised subprefixes. However, an operator might inadvertently
not authorize all origins, or restrict the maximum length to be too short,
and so advertise BGP prefixes that violate their ROAs. About 10% of the
BGP announcements that are covered by ROAs are invalid [71], with the
vast majority of these attributed to human error. ASes that perform ROV
would unwittingly discard legitimate BGP advertisements for those prefixes,
and thus disconnect from legitimate destinations. This is the most common
reason that many ISP’s not filtering invalid routes.

• Circular dependency: ASes do not gain sufficient security benefits from
ROV because (a) many IP prefixes advertised in BGP are not certified
through RPKI, and (b) few ASes perform ROV resulting in little incentive
to certify ownership over an IP prefix (issue a ROA).

2.4 Center for Applied Internet Data Analysis (CAIDA)

The Center for Applied Internet Data Analysis (CAIDA) [14], conducts network
research and builds research infrastructure to support large-scale data collection,
curation, and data distribution to the scientific research community. The group,
located at the federally funded San Diego Supercomputer Center located at the Uni-
versity of California, San Diego, designs, deploys and maintains a growing number
of computational, data analysis and visualization services. The group also ships
and maintains small form factor measurement instrumentation to networks around
the world, extending its Archipelago (Ark) Internet measurement platform [4] for

2.4. CENTER FOR APPLIED INTERNET DATA ANALYSIS (CAIDA) 19

use by the network and cybersecurity research community. CAIDA researchers
develop novel techniques to collect, analyze, query and visualize the resulting data.

The CAIDA’s mission is to investigate practical and theoretical aspects of the
Internet, focusing on activities that:

• provide insight into the macroscopic function of Internet infrastructure, be-
havior, usage and evolution.

• foster a collaborative environment in which data can be acquired, analyzed,
and (as appropriate) shared.

• improve the integrity of the field of Internet science.

• inform science, technology and communications public policies.

2.4.1 AS Relationships dataset

CAIDA collects several types of data, and makes this data available to the re-
search community while preserving the privacy of individuals and organizations
who donate data or network access.

One of the most useful datasets that CAIDA offers is the "Inferred AS Relation-
ships Dataset", which split-ted into 2 directories, called "serial-1" and "serial-2".
The "serial-1" directory contains AS relationships inferred from BGP using the
method described in "AS Relationships, Customer Cones, and Validation" [105].
Serial-2 adds links inferred from BGP communities [18] using the method described
in "Inferring Multilateral Peering" [87] and traceroute.

Serial-1

Serial-1 data is available from 2004 to present, with one file created per week
in 2006 and one per month in prior years. Each file contains a full AS graph de-
rived from RouteViews [48] BGP table snapshots taken at 8-hour intervals over a
5-day period. The AS relationships available are customer-provider (and provider-
customer in the opposite direction), peer-to-peer, and sibling-to-sibling. The gen-
eral serial-1 procedure for creating a file is as follows:

1. Extract all AS links from RouteViews [48] snapshots.

2. Infer customer-provider relationships, and annotate AS links.

3. Infer peer-to-peer relationships, and annotate AS links, possibly overriding
customer-provider relationships inferred in step 2.

4. Heuristically fix suspicious looking inferred relationships (e.g., a low-degree
AS acting as provider to a high-degree AS).

20 CHAPTER 2. BACKGROUND

5. Infer sibling ASes (that is, ASes belonging to the same organization) from
WHOIS [59], and annotate AS links, possibly overriding previous relationship
annotations.

Serial-2

Serial-2 data is available from October 2015 to the present, with one file created
per week. In addition to the links from the serial-1 graph, there are AS links inferred
from BGP communities [18] collected from IX looking glass servers [31] collected
in a single day and tracerouter data collected on the same day from CAIDA’s ark
monitors. We mention that our BGP simulator uses the serial-2 dataset to model
the Internet graph (i.e., is the core component that enabled us to develop
BPHS).The general serial-2 procedure for creating a file is as follows:

1. Collect BGP communities from IX looking glass servers.

2. Infer peering links between pairs of AS which accept routes from each other.

3. Collect archived BGP data from Routeviews and RIPE Routing Information
Service (RIS) [47].

4. Infer peering links at points in the observed AS paths that cross an known
Internet Exchange Point [26] .

5. Collect traceroutes from ark monitors.

6. Convert the IP path to AS path using inferred ownership and keep the first
AS link in the path.

7. Merge all newly inferred links to the serial-1 graph as peering links.

2.4.2 ASRank

ASRank is CAIDA’s ranking of Autonomous Systems (AS) (which approximately
map to Internet Service Providers) and organizations (Orgs) (which are a collection
of one or more ASes). This ranking is derived from topological data collected by
CAIDA’s Archipelago Measurement Infrastructure and Border Gateway Protocol
(BGP) routing data collected by the Route Views Project and RIPE NCC. ASes
and Orgs are ranked by their "customer cone size" (i.e., the number of their di-
rect and indirect customers), which in turn is inferred from BGP paths by CAIDA’s
AS relationships inference algorithm that mentioned in the previous section.

AS customer cone

Looking specifically at the AS customer cone, we define an AS-A’s AS customer
cone as the AS-A itself plus all the ASes that can be reached from A following only
peer-to-customer links in BGP paths we observed. In other words, A’s customer

2.4. CENTER FOR APPLIED INTERNET DATA ANALYSIS (CAIDA) 21

cone contains A, plus A’s customers, plus its customers’ customers, and so on. The
size of the customer cone of an AS reflects the number of other elements (ASes,
IPv4 prefixes, or IPv4 addresses) found in it’s set. An AS in the customer cone is
assumed to pay, directly or indirectly, for transit, and provides a coarse metric of
the size or influence of an AS in the routing system.

Figure 2.12: The customer cone size of each AS depicted with a unique color [11].

Figure 2.13: The effect on customer cones of changing the relationship of A to B
from its current one to a peering relationship [11].

For example, Figure 2.12 depicts several AS customer cones, ASes D, E, F ,
and I all sit at the bottom of the hierarchy and so only have a single AS in their
cone. H ranks a little bit higher with 2 ASes. Both C and B tie with 3 ASes. Note
that B and C both have E in their respective cones. A is ranked at the top of the
hierarchy with 6 ASes in its customer cone.

In Figure 2.13, we see an example illustrating how different relationships affect
the customer cone sizes of AS A and B. If the original graph had B as a customer
of A then A’s cone contains 7 ASes: {A,B,C,D,E,F,G}. B’s cone contains three
ASes: {B,F,G}. If the link between A and B is changed to a peering link, A
loses customers B and G, which it had access to exclusively through its customer
relationship with B. A’s cone does not lose F, since it can still reach it through its
customer relationship with C. A’s cone size thus shrinks to 4 ASes: {A,C,D,F}.
Since AS B did not previously reach any customers through A, its customer cone
is unaffected by this change.

22 CHAPTER 2. BACKGROUND

2.4.3 BGP Hijacks Observatory

The BGP Hijacks Observatory is a CAIDA project to detect and characterize BGP
hijacking attacks, including stealthy man-in-the-middle (MiTM) Internet traffic in-
terception attacks. Observatory uses the HI3 PaaS [12] to power its data collection
and analytics platform, and provides event data to HI3 to allow correlation with
other types of Internet security data. The Observatory serves multiple purposes:

• A platform for operators to troubleshoot anomalous events and enable situ-
ational awareness.

• Research on Hijacks and BGP anomalies.

• A Testbed to realistically experiment with detection techniques applied to
Internet routing data in the wild.

• A Testbed for developing new inference methods.

Figure 2.14: CAIDA Hijacks Observatory, architecture [13].

The Hijacking Observatory (see Figure 2.14), monitors (24/7) the state of BGP
routing using RIPE and RouteViews data to detect anomalies that may be events
of BGP hijacking. For each suspicious event, the system augments control-plane
(BGP) data with data-plane measurements (traceroutes) executed from a set of
RIPE Atlas probes [46], on-the-fly. Events are enriched with descriptive tags based
on various database lookups (e.g., AS relationships, AS Customer Cone, IXP pre-
fixes) and heuristics (e.g., potential “fat finger” misconfiguration) and presented to
users through a Web interface that facilitates inspection of events.

2.5. BASIC CONCEPTS IN NETWORK SIMULATION 23

2.5 Basic concepts in Network Simulation

In this section, we introduce some basic concepts in the area of network simulation.
We firstly introduce the basic idea of "network simulation" in computer science
then the different types of network simulators that exist and finally, we discuss the
difference between simulation and emulation.

2.5.1 Simulation

The imitation of the real-world’s conditions and processes in the course of time is
known as simulation. By simulation, the system behavior can be characterized
and analyzed, what-if questions can be raised, and systems with close similarity to
real conditions can be designed. Significant information regarding the feasibility,
productivity, and efficiency of a system can be assessed by simulation prior to real
deployment of actual implementation [61].

Three types of simulation have been mentioned in computer science literature
[121], a) Monte Carlo simulation, b) Trace-driven simulation, and c) Discrete-event
simulation:

• Monte Carlo simulation, is a static simulation or one without a time
axis. It is used for modeling probabilistic events whose characteristics do
not vary over time. Also, Monte Carlo simulation is utilized to appraise
non-probabilistic expressions by making use of probabilistic approaches.

• Trace-driven simulation, uses a trace as an input in the process of simu-
lation. A trace is defined as a time-ordered history of phenomena in a real
system. In general, Trace-driven simulation is used in analyzing or tuning
resource management algorithms.

• Discrete-event simulation, in contrast to continuous-event simulation,
uses a discrete-state model of the system for simulation and is used due to
the variable system state which is described by the number of jobs at various
devices. Time in discrete-event simulation can be discrete or continuous [97].

2.5.2 Why Network Simulation?

Network simulation, is a technique of implementing a network on a virtual
environment (e.g., a computer). Through this, the behavior of the network is
calculated either by network entities interconnection using mathematical formulas
or by capturing and replaying observations from a production network [123].

In the network research area, it is very costly (in terms of computation re-
sources) to deploy a complete testbed containing multiple networked computers,
routers and data links (e.g., the Internet graph) to validate and verify a certain
network protocol or a specific network algorithm. The network simulators in these
circumstances save a lot of money and time in accomplishing this task. Network

24 CHAPTER 2. BACKGROUND

simulators are also particularly useful in allowing the network designers to test
new networking protocols or to change the existing protocols in a controlled and
reproducible manner. One can design different network topologies using various
types of nodes (e.g., hosts, hubs, bridges, routers and mobile units). Afterwards,
the routing behavior can be easily studied in different topologies, given the fact
that the network topology is merely a set of simulation parameters.

2.5.3 Types of Network Simulators

Currently there is a large variety of network simulators, ranging from the simple
ones to the complex ones. Minimally, a network simulator should enable users to
represent a network topology, defining the scenarios, specifying the nodes on the
network, the links between those nodes and the traffic between the nodes. More
complicated systems may allow the user to specify everything about the protocols
used to process network traffic.

There are different types of network simulators which can be classified into
three basic categories (according to [90]):

• Graphical Simulators: allow users to easily visualize the workings of their
simulated environment (see Figure 2.15).

• Text-based Simulators: provide a less visual or intuitive interface, but
may allow more advanced forms of customization.

• Programming-Oriented Simulators: provide a programming framework
that allows users to customize an application that simulates the networking
environment for testing.

2.5.4 Advantages and Drawbacks

Below we list the main advantages and drawbacks of simulation tools and tech-
niques, according to [90]:

Advantages

• Sometimes cheaper than real testbeds.

• Find bugs (in design) in advance.

• Generality: over analytic/numerical techniques.

• Detail: can simulate system details at an arbitrary level.

Drawbacks

• Caution: does the simulation model reflects reality?

2.5. BASIC CONCEPTS IN NETWORK SIMULATION 25

• Large scale systems: lots of resources to simulate (especially accurately sim-
ulate).

• May be slow (computationally expensive – 1 min real time could be hours of
simulated time).

• Art: determining the right level of model complexity.

• Statistical uncertainty in results.

Figure 2.15: GNS3 virtual lab environment. The network topology consists of 3
routers, 2 Ethernet switches, 3 VPCS and a Cloud node for internet access.

2.5.5 Network Simulation versus Emulation

Network simulation, is a useful technique since the behavior of a network can be
modeled by calculating the interaction between the different network components
(they can be end-host or network entities such as routers, physical links or packets)
using mathematical formulas. They can also be modeled by actually or virtually
capturing and playing back experimental observations from a real production net-
works. After we get the observation data from simulation experiments, the behavior
of the network and protocols supported can then be observed and analyzed in a
series of offline test experiments. All kinds of environmental attributes can also be
modified in a controlled way to assess how the network can behave under different
parameter combinations or different configuration conditions. Another character-
istic of network simulation that is worth noticing is that the simulation program
can be used together with different applications and services in order to observe
end-to-end or other point-to-point performance in the networks.

26 CHAPTER 2. BACKGROUND

Network emulation, however, means that the network is simulated in order
to assess its performance or to predict the impact of possible changes, or optimiza-
tions. The major differences between them is that a network emulator means that
end-systems such as computers can be attached to the emulator and will act ex-
actly as they are attached to a real network. The major point is that the network
emulator’s job is to emulate the network which connects end-hosts, but not the
end-hosts themselves.

Typical network emulation tools include Graphical Network Simulator 3 (GNS3)
[27], which is a popular network emulator that can also be used as a simulator.
Specifically, GNS3 (see Figure 2.15), is a network software emulator that allows the
combination of virtual and real devices, used to emulate complex networks. GNS3
is open-source and supports many networking vendors like Cisco, Juniper, Arista
and others. GNS3 also allows us to add virtual machines of almost any type in
our GNS3 topologies. GNS3 is used by many large companies around the world
for testing networks before they are put into production. In contrast, Network
Simulator 3 (NS3) [38] is a typical discrete-event network simulator for Internet
systems, targeted primarily for research and educational use.

2.6 Full Stack Web Application Development

A web application (or web app) is an application software that runs on a web
server, unlike computer-based software programs that run locally in the operating
system (OS) of the device. Web applications are accessed by the user through
a web browser with an active network connection. These applications have been
programmed using a client–server modeled structure — the user ("client") is served
services through an off-site server that is hosted by a third-party.

Figure 2.16: Full Stack Web Development [104].

Web application development normally involves both client-side and server-
side programs, which is often referred to as full-stack web development. Among
them, client-side is also called front-end and server-side is called back-end. As
shown in Figure 2.16, the front-end program, most of times, is written in HTM-
L/CSS/Javascript, and in the last few years Angular, Vue and React have emerged
as front runner frameworks. For back-end development, it can be programmed
with Java, Python, C#, node.js and PHP, and data server can either be SQL based
such as MySQL, PostgreSQL or NoSQL based [122] such as MongoDB.

2.6. FULL STACK WEB APPLICATION DEVELOPMENT 27

2.6.1 Model-View-Controller (MVC) Pattern

Model–view–controller (MVC) is a software design pattern commonly used for de-
veloping user interfaces that divide the related program logic into three intercon-
nected elements. This is done to separate internal representations of information
from the ways information is presented to and accepted from the user. Tradition-
ally used for desktop graphical user interfaces (GUIs), this pattern became popular
for designing web applications. Popular programming languages have MVC frame-
works that facilitate implementation of the pattern.

Figure 2.17: Model-View-Controller Design [104].

As shown in figure 2.17, there are three components in MVC, namely model,
view and controller:

• Model: The central component of the pattern. It is the application’s dy-
namic data structure, independent of the user interface. It directly manages
the data, logic and rules of the web application.

• View: Any representation of information such as a chart, diagram or ta-
ble. It defines the user interface such as web layout and doesn’t know the
application’s Model neither directly interacts with it.

• Controller: serves a bridge between model and view, it processes application
requests from view and then forwards them to model and also carries updates
from model to view.

In MVC each component can maintain its independence, which offers flexibil-
ities for the developer to select the most suitable frameworks/programming lan-
guages for the front-end and the back-end. For example, one of the popular picks
in industry is Angular or ReactJS front-end plus ASP.NET core framework using
C# programming language for back-end.

28 CHAPTER 2. BACKGROUND

2.6.2 RESTful API

API stands for application programming interface; it is an interface for the website
or mobile application to communicate with the backend logic. For example in
Figure 2.17 View communicates with Controller through a common API, to request
or send the appropriate data. In other words it is like a messenger that takes a
request from users and sends it to the backend system. Once the backend system
responds, it will then pass that response to the users. The most common API in
the Web programming is called "REST".

REST stands for Representational State Transfer. It is considered the bible in
the web domain, however, it is not a standard or protocol; it is more like a software
architectural style. Many engineers follow this architectural style to build their
application, such as eBay, Facebook, and Google Maps. These web applications
serve huge amounts of traffic every second, so we can infer that REST is a scalable
architectural style. There are five important constraints/principles for the REST
architecture style [68]:

• Client-Server: There is an interface between the client and server. The
client and server communicate through this interface and are independent of
each other. Either side can be replaced as long as the interface stays the
same. Requests always come from the client-side.

• Stateless: There is no state for the request. Every request is considered
independent and complete. There is no dependence on the previous request
nor dependence on a session to maintain the connection status.

• Cacheable: Things are cacheable on the server or client-side to improve
performance.

• Layered system: There can be multiple layers in the system, and the goal
here is to hide the actual logic/resources. These layers can perform different
functions, such as caching and encryption.

• Uniform interface: The interface stays the same. This helps to decouple
the client and server logic.

2.6.3 HTTP Protocol

HTTP stands for HyperText Transfer Protocol; and it is an implementation of the
REST architecture style that we described in the previous section. HTTP is the
standard protocol used on the World Wide Web (WWW). We use it every day to
browse different websites.

In the HTTP protocol, there are different types of service request methods.
Each service request method has a special definition that is specific to it. When
the frontend interface interacts with the backend API through a URL, it also needs
to define the HTTP method for this request. For example, reading and creating

2.6. FULL STACK WEB APPLICATION DEVELOPMENT 29

data are completely different services, so they should be handled by different HTTP
methods. There are five basic HTTP methods:

• GET: For reading data.

• POST: For creating data.

• PUT: For updating data by completely replacing data with new content.

• PATCH: For updating data, but by partially modifying a few attributes.

• DELETE: For deleting data.

HTTP Status Codes

An HTTP status code is a code that is returned in the HTTP protocol. The
status code helps the frontend client understand the status of their request, that
is, whether it is success or failure. Next we list some of the most commonly used
status codes:

• 200 OK: the request was successful. The request could be a GET, PUT or
PATCH.

• 201 CREATED: the POST request was successful and a record has been
created.

• 204 NO CONTENT: the DELETE request was successful.

• 400 BAD REQUEST: the request is incorrect or corrupted and the server
couldn’t understand it.

• 401 UNAUTHORIZED: the client request is missing authentication de-
tails.

• 403 FORBIDDEN: the requested resource is forbidden.

• 404 NOT FOUND: the requested resource does not exist.

• 500 INTERNAL SERVER ERROR: indicates that the server encoun-
tered an unexpected condition that prevented it from fulfilling the request.

2.6.4 The Flask Web Framework

A web framework is an architecture containing tools, libraries, and functionalities
suitable to build and maintain massive web projects using a fast and efficient
approach. They are designed to streamline programs and promote code reuse. To
create the server-side of the web application, you need to use a server-side language.
Python is frequently used to such frameworks, famous among which are Django
and Flask.

30 CHAPTER 2. BACKGROUND

Python Flask Framework [23], is a lightweight micro-framework based on Jinja2
[34], Werkzeug (WSGI) [58]. It is called micro framework because it aims to keep
its core functionality small yet typically extensible to cover an array of small and
large applications. However, Flask supports extensions that can add application
features as if they were implemented in Flask itself. Extensions exist for object-
relational mappers, form validation, upload handling, various open authentication
technologies and several common framework related tools. Even though we have a
plethora of web apps at our disposal, Flask tends to be better suited due to:

• Built-in development server, fast debugger.

• Integrated support for unit testing.

• RESTful request dispatching.

• Jinja2 Templating.

• Support for secure cookies.

• Lightweight and modular design allows for a flexible framework.

Figure 2.18: A basic Flask application.

In Figure 2.18, we see an example of a basic Flask application that proves the
simplicity to instantiate a Flask app. Next, we describe the code snippet:

1. First we imported the "Flask" class. An instance of this class will be our
WSGI application.

2. Next we create an instance of this class. The first argument is the name of
the application’s module or package. __name__ is a convenient shortcut
for this that is appropriate for most cases. This is needed so that Flask knows
where to look for resources such as templates and static files.

3. We then use the route() decorator to tell Flask what URL should trigger our
function.

2.6. FULL STACK WEB APPLICATION DEVELOPMENT 31

4. The function returns the message we want to display in the user’s browser.
The default content type is HTML, so HTML in the string will be rendered
by the browser.

2.6.5 ReactJS

ReactJS [44], is a component based library which is deployed for the development
of interactive user interfaces. Currently it is one of the most popular front-end
JS library. It incorporates the view (V) layer in M-V-C (Model View Controller)
pattern. It is supported by Facebook, Instagram and a community of individual
developers and organizations. React basically enables development of large and
complex web based applications which can change its data without subsequent
page refreshes (S ingle Page Applications). It targets to provide better user ex-
periences and with blazing fast and robust web apps development. ReactJS can
also be integrated with other JavaScript libraries or frameworks in MVC, such as
AngularJS [2]. Next, we list the main features of the library:

• Highly efficient performance, due to the Virtual lightweight DOM (Doc-
ument Object Model) of the framework.

• Declarative, enabling users to easily create interactive UI.

• Component-Based, enabling users to write reusable code.

• Easy learning curve.

2.6.6 PostgreSQL

PostgreSQL [43], is an advanced, enterprise class open source relational database
that supports both SQL (relational) [55] and JSON (non-relational) [33] query-
ing. It is a highly stable database management system, backed by more than 20
years of community development which has contributed to its high levels of re-
silience, integrity, and correctness. PostgreSQL is used as the primary data store
or data warehouse for many web, mobile, geospatial, and analytics applications.
PostgreSQL has many advanced features that other enterprise-class database man-
agement systems offer, such as:

• User-defined types and table inheritance.

• Sophisticated locking mechanism.

• Views, rules, subquery.

• Nested transactions (savepoints).

• Multi-version concurrency control (MVCC).

• Asynchronous replication.

32 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

In the network research area, simulators help the network developers to evaluate
whether a network is able to work in the real world, to identify the security is-
sues of a networking protocol or to change the existing protocols in a controlled
and reproducible way. Simulation frameworks/systems are widely accepted by the
Internet-Measurements community, because commonly, the researchers want to
conduct large-scale evaluation experiments for a study that is difficult and risky
to be done on the real Internet (e.g., BGP prefix hijacking attacks that may affect
the normal routing of the Internet, ROV adoption benefits) [72], [85], [86], [102].

In order to model the Internet graph and the interdomain-routing in a virtual
environment, researchers need simulators that are highly scalable and efficient (i.e.,
to generate the complete AS graph [79] and simulate the interdomain-routing as
quickly as possible with the least possible CPU and memory resources). For exam-
ple, there are very advanced simulators like GNS3 [27] that can simulate networks
by fully emulating each router (see section 2.5.5). However, doing this for the whole
Internet with above 70K nodes is not practical, because this approach requires a
huge amount of computing resources.

In this section, we present a brief review of the existing BGP simulators that
have been developed by the network community trying to overcome the problems
presented above. We briefly list the capabilities and limitations of different BGP
simulators that have been used by several studies focusing on network reliability,
BGP convergence, and routing security. Also, we present custom BGP simulators
that have been developed by the research community to study the impact of BGP
prefix hijacking on the Internet and the contribution of the RPKI mechanism.

3.1 Internet/BGP Simulators: A brief review

There are a number of BGP simulators publicly available. Although the simulators
differ in certain points they show some significant resemblance: BGP is fully or
partially implemented. BGP simulators can be categorized into 2 main categories:
AS-level and packet-level simulators. AS-level simulators model the interdomain

33

34 CHAPTER 3. RELATED WORK

routing system as a graph G = (V, E) where the vertices are autonomous systems
(ASes), and edges indicate physical connections between ASes. Packet-level sim-
ulators aim to fully simulate the BGP protocol as detailed as possible (e.g., at a
very low level like TCP). Next, we present widely used AS-level and packet-level
simulators (according to our literature research).

BGP++ [76], is an event-driven, packet-level BGP simulator using the Zebra
bgpd daemon [25] on top of the ns-2 network simulator [57]. The BGP++ simulator
actually simulates the network itself (in ns-2) at a very low level. BGP is not
abstracted, but runs as a full-featured BGP implementation (i.e., same as it used
in the real world). BGP++ runs BGP without any abstraction and therefore is not
suitable for simulating large-scale topologies (i.e., the Internet), because of memory
and CPU requirements.

C-BGP [113], is a BGP simulator addressing routing policy evaluation. The
backbone network is not simulated in detail as in BGP++ (e.g., TCP level, con-
nection creation, keep-alive messages were ommited), but C-BGP still uses a full
BGP implementation. It is possible to see the exact state of each node (with all
BGP parameters) during the simulation and each BGP decision by evaluating all
policies, preferences, and tie-breaking rules. In addition, C-BGP can be used on
large topologies with sizes of the same order of magnitude as the Internet (e.g.,
bigger than 70K AS nodes).

Karlin et al. [100] and Wojciechowski et al [127], propose 2 AS-level simulators
that are more scalable than BGP++ and C-BGP but the computational overhead
of these simulators remains high because they use discrete event simulation (see
section 2.5.1).

Chaos [15], is an AS-level E-BGP, simulation framework with the capability to
take as input various topological, bandwidth, adversarial (i.e. botnet), and other
arbitrary models and drive experimentation with topologies in a scale of the modern
Internet. Additionally, Chaos can track generic units of "traffic" across AS-to-AS
links, which enables tracking congestion (useful for DDoS research). Chaos out-
performs the simulation environments of GNS3, OmniNet and BGP++ that fully
simulate BGP, since they suffer from lack of scalability or cost money (i.e., com-
putational resources). C-BGP comes closest to Chaos, even if it lacks an intuitive
binary interface, and is necessary to be configured via the command-line. While
Chaos is considerably more scalable than previous works, according to technical
specifications (that are presented in the officially repository of the framework),
if a user wants to simulate the full Internet topology, it must be deployed on a
supercomputer with 50+ cores and 200+ GB of RAM.

The researchers have tried to mitigate the scalability issues of the aforemen-
tioned AS-level simulators by scaling down the AS graph itself using AS-graph
generation tools like GT-ITM [128], BRITE [108], or Inet [98]. The problem with
these techniques is that they generate synthetic AS graphs. Synthetic topologies
are generated from modeling the network applying mathematical algorithms, how-
ever, non-synthetic topologies are generated from real measurements taken from the
network. The Internet’s structure change dynamically and quickly (e.g., new ISPs

3.1. INTERNET/BGP SIMULATORS: A BRIEF REVIEW 35

and links are added every month), so it is not effective (i.e., inaccurate simulation
results) to use synthetic topologies to simulate the Internet.

Gill et al. [86], was the first study that tried to avoid potential inaccuracies that
might result from scaling down the AS-level topology, by running simulations on
full empirical AS graphs [69], [75]. In this work, the researchers model the AS-level
topology of the Internet as graph G = (V, E) where vertices represent ASes and
edges represent connections between them allowing traffic exchange. Each edge is
annotated with the standard model for business relationships in the Internet (see
section 2.2.5): (a) customer-provider, where the customer pays the provider and
(b) peer-to-peer, where two ASes agree to transit each other’s traffic at no cost.
They assume that each AS-X computes paths to a given destination AS-Y based
on (i) a ranking on outgoing paths (i.e., Local Preference, Shortest Paths, Tie
Break), and (ii) an export policy specifying the set of neighbors to which a given
path should be announced (i.e., Gao-Rexford rules, see section 2.2.6). To support
running repeated simulations over the full AS graph, they parallelized them across
a compute cluster running DryadLINQ [77]. Their approach drastically reduces
the computational overhead due to (i) the algorithmically computed BGP paths,
(ii) the abstraction of the intradomain details, and (iii) the assumption that all
ASes use a common routing policies model.

Cohen et al. [72], introduces a similar simulation framework as in [86] (i.e.,
CAIDA AS-level graph, Gao-Rexford rules, BGP selection path algorithm) to eval-
uate their proposed modest extension to RPKI, called “path-end validation”, for
different attack strategies and quantify the attacker’s success by the fraction of
ASes that is able to attract. The only difference compared to [86], is the addition
of hidden peering links within IXPs, according to CAIDA Internet eXchange Points
Dataset [32] (based on research work by Giotsas et al. [88]).

Zeng et al. [129], compared with [72], use the CAIDA AS relationship dataset
along with the Problink dataset [99], which is mainly inferred from the BGP table
snapshots collected by public measurement points at Route Views and RIPE RIS
and reveals more complex relationships than the CAIDA Relationship dataset.

Hlavacek et al. [93], uses the same BGP route-computation framework as in
[72], with the difference that they extend the simulator to mark vantage points ASes
that are used by a novel system that automatically certifies de facto ownership of
IP addresses, populates public repositories, and generates filtering rules for RPKI
ROV, called "DISCO".

Kotronis et al. [120] and Sermpezis et al. [119], [118], use a similar simula-
tion framework as in [72] to evaluate the impact of different types of hijacks, the
performance of different monitoring services (i.e., AS nodes), and the efficiency of
various mitigation methods.

Milolidakis et al. [109], introduces an improved and more efficient implementa-
tion of the BGP simulator used in [118], to investigate the robustness of monitor-
based detection systems with respect to so-called “smart” attackers who engineer
their hijacks to evade detection. The basic/new features of this simulator is the
parallelization of the simulation repetitions for quicker simulation results (using a

36 CHAPTER 3. RELATED WORK

Python module called "mpipe" [37]) and the support of a new type of BGP attack
called "smart hijacking".

Brandt et al. [64], [65], introduce a novel BGP simulator for large scale eval-
uation of attacks against Internet networks and systems (i.e., BGP prefix hijack
attacks), that achieves much higher accuracy and better performance in contrast to
existing simulation platforms that presented above in this section (e.g., [72], [86],
[93]). The proposed simulator [42], similarly to previous works, uses the AS Re-
lationship dataset of CAIDA, but during the breadth-first-search on the AS-graph
takes into consideration also the AS relationships converting the AS-graph to a
directed graph. This technique provides a significant performance improvement,
because it omits impossible hops (i.e., avoids invalid paths according to routing
policies). Also, the simulator focuses on simulating only specific attacks on each
run and thus pre-allocates memory and structures used for the search. This ap-
proach avoids dynamic memory allocations during simulations, resulting in better
performance.

3.2 Any Web-based BGP hijacking Simulator?

Web-based BGP hijacking simulators, are easier to use compared to non-web simu-
lators as they don’t require prior installation and enable network operators or users
without programming skills to easily conduct their study through a user-friendly
Web Interface.

According to our extensive literature research, there is not any related work
proposing a Web-based, plug&play BGP hijacking simulation tool or service. All
the research works mentioned in the previous section are based on command-line
BGP simulators with non-trivial installation or usage.

In this work, we introduce BPHS, a new Web-based BGP prefix hijacking
simulation tool, that extends the simulator purposed in [119] to support (a) a
user-friendly GUI for easy interaction from all end-user types, (b) multi-threading
execution enabling end-users to retrieve quicker results per simulation (thanks to
Milolidakis et al. [109]), (c) a REST API [107] enabling other applications to
communicate with our simulator and (d) realtime RPKI filtering using the most
up-to-date data from the RPKI databases, for more realistic simulation results.

Chapter 4

BPHS

In chapter 3, we presented several BGP simulation frameworks that have been
developed by network researchers to evaluate their study (e.g., prefix hijacking at-
tacks, RPKI ROV adoption). In this chapter, we introduce our proposed BGP
prefix hijacking simulation tool, called BPHS. First, we briefly explain the con-
tributions of the tool and its main features. Next, we analyze the architecture
of the simulator and the function of its core components (i.e., frontend, backend
and database). Finally, we list the challenges that we faced during the BPHS
development.

4.1 The Goal

BPHS, is the first Web-based BGP Prefix Hijacking Simulation tool that enables
network operators to quickly and easily (a) assess the vulnerability of their Au-
tonomous Systems to BGP prefix hijacks and (b) to measure the benefits of the
RPKI’s adoption on the Internet, through a user-friendly web application. With
BPHS, the network operators can simulate all the different types of BGP hijack-
ing attacks and obtain the simulation results through an automated and graphical
way (i.e., well-designed Graphical User Interface). Also, BPHS can be offered as
a Web service to the end-users, meaning that, can be publicly deployed and easily
accessible by anyone in the Internet.

4.2 Supported Features

BPHS provides important features that enable end-users to fully experiment with
BGP hijacking simulations, in a realistic way, and obtain meaningful results from
each simulation run. Next, we list the main features of the BPHS:

• All BGP hijacking types: BPHS supports origin and Man in the Middle
attacks (see section 2.2.7) for prefix and sub-prefix hijack attempts. For
example, a user could launch the following hijacking combinations (one at a

37

38 CHAPTER 4. BPHS

time): prefix hijack - Type 1, subprefix hijack - Type 2, prefix hijack - Type
0, or subprefix hijack - Type 0.

Figure 4.1: BPHS Overview.

• CIDR IPv4, IPv6 prefixes: BPHS supports real prefixes for the hijacking
simulations. The user should submit the corresponding prefix in CIDR (IPv4
or IPv6) format, otherwise an error message is returned. The real prefixes
feature is mandatory, because, when we perform realistic RPKI ROV, we
check the ASN-prefix pair with the data of the real RPKI repositories of the
5 RIRs (ARIN, APNIC, AFRINIC, LACNIC, and RIPE).

• Custom simulation attacks: In this simulation type, the user before the
simulation’s launch should define his/her preferences for the ASN and CIDR
prefix of the victim, hijacker, helper AS(es), and also the number of simula-
tion’s repetitions. If one of the submitted ASNs is not included in simulation
topology (i.e., the loaded AS-graph of CAIDA) an error message is returned.
We mention that the helper ASes (or anycast ASes as they called) collaborate
with the victim AS and help it to mitigate the hijack by announcing a miti-
gation prefix which should be exact or more specific than hijackers to have a

4.2. SUPPORTED FEATURES 39

positive effect. In real hijacking scenarios, the traffic attracted by the helper
ASes, is redirected to legitimate AS, through a tunneling mechanism [29]. In
our simulator, we abstract this process, assuming that the traffic attracted
by the helper ASes "virtually" belongs to the victim AS.

• Random simulation attacks: In this simulation type, contrary to custom
simulations, BPHS is responsible to randomly pick the ASN of the victim,
hijacker, and helper AS(es) from the AS-graph. Similarly with custom sim-
ulations, the user is enabled to launch all the available BGP prefix hijacking
attacks. The simulator generates "virtually" prefixes for each attack type; for
example, if a user wants to simulate a random sub-prefix hijack then the sim-
ulator assumes the prefix "x.y.z.w/24" for the randomly selected victim, and
the "x.y.z.w/25" for the randomly selected attacker, helper ASes. In random
simulation scenarios, we assume that the victim and helper ASes announce
the longest prefix that could partially or fully mitigate the attack. We men-
tion that the random simulation attacks do not support realistic RPKI ROV,
due to the "virtually" prefixes that are picked by BPHS. The user is enabled
to select the number of random victim-hijacker-helper ASes pairs that BPHS
will pick randomly and the simulation repetitions of each selected pair.

• Real-time RPKI ROV: In this ROV type, when one node in the generated
AS-graph receives a BGP route from a neighboring AS and this node applies
RPKI filtering, then it performs realistic route origin validation using the
Rootinator tool (see section 2.3.3.1). If the ROV result returned by Rooti-
nator is "valid", then the node accepts the route, else if it is "invalid", then
discards it. In the case of an "unknown" result, the simulator accepts or dis-
cards the route with probability 0.5 . We remind that Routinator periodically
connects to the Trust Anchors of the five Regional Internet Registries (RIRs)
— APNIC, AFRINIC, ARIN, LACNIC and RIPE NCC — downloads all of
the certificates and ROAs in the various repositories, verifies the signatures
and makes the valid ROAs available for ROV.

• Static RPKI ROV: In this ROV type, contrary to Real-time, the ROV
enabled nodes of the generated AS-graph perform RPKI filtering using pre-
defined decisions of the simulator. Specifically:

– When an ROV enabled node receives a route including the selected
victim’s prefix and ASN as origin AS in AS_PATH, then the ROV
result is "valid" or "unknown" with probability 0.5.

– If the route includes the mitigation prefix and the victim’s or helper’s
ASN as origin AS in AS_PATH, then the ROV result is "valid" or
"unknown" with probability 0.5.

– In the case that route includes the hijacker’s prefix and the ASN as origin
AS in AS_PATH, then the ROV result is "invalid" or "unknown" with
probability 0.5.

40 CHAPTER 4. BPHS

• Different ROV modes: We define as ROV mode, the model that BPHS
follows to decide which nodes in the simulation AS-graph will perform RPKI
ROV. Currently, we support 4 basic ROV modes (and some "backdoor" modes
for our experiments that are not offered through the web interface) that are
described below:

– All: all the ASes in the simulation graph perform ROV.
– Random_20: BPHS selects randomly 20% of the total number of ASes

that will perform ROV.
– ROV deployment monitor: BPHS selects the ASes that will perform

ROV according to the publicly available dataset of the ROV deployment
monitor [50]. The dataset includes the % certainty that an AS performs
ROV, according to the results of the real passive measurements that
were conducted on the Internet (see methodology approach in Reuter et
al [116]). First, BPHS selects from the dataset only the ASes that have
certainty values greater than 0.5. Then, for each AS in the resulting
subset dataset, BPHS checks if it exists in simulation topology; if yes,
it is marked as ROV enabled AS.

– Active Measurements: BPHS selects the ASes that will perform ROV
according to research results of Rodday et al [117] which is the latest
work that (a) reviews all the previous works that try to identify the
ASes that deploy ROV using control plane as well as data plane mea-
surements in the Internet and (b) extends the current state-of-the-art
work focusing on controlled data plane measurements to identify the
ASes that use RPKI ROV. The publicly available dataset (see [45] 19-
07-2021), includes 206 unique ASes performing ROV of which 146 are
fully and 60 are partially filtering. For each available AS in the dataset,
BPHS checks if it exists in simulation topology; if yes, it is marked as
ROV enabled AS.

• Parallel Simulations: BPHS uses a very powerful python module, called
mpipe, enabling the execution of parallel, multi-stage pipeline algorithms.
The basic principle of mpipe is the "worker", which can be defined as a
separate process that runs an instance of our simulation algorithm. The
user, in the tool’s setup, can define the number of workers that BPHS will
use during the simulation process. The choice depends on the computational
power of the server (or desktop) that BPHS will be installed (e.g., more
workers on a powerful server). If BPHS has been configured to use 1 worker
and the user wants to launch a simulation that requires 4 repetitions, then
all repetitions will be executed in serial. In the scenario that BPHS uses 2
workers and the user wants to launch a simulation that requires 4 repetitions,
then the load of the first 2 repetitions will be shared between the 2 workers
(i.e., each worker will execute 1 repetition). When one of the 2 workers
completes its simulation, then asks for the next simulation, if it exists. In the

4.2. SUPPORTED FEATURES 41

last scenario, we obtain quicker simulation results, due to parallel execution
(assuming the same experimental test-bed).

• Useful simulation results: For each successful BGP hijacking simulation,
BPHS exports useful results that help the user to easily assess the impact of
a specific attack on the Internet (i.e., on each AS or Country). Below, we list
useful information that exported from each simulation:

– Infected ASes + paths: BPHS, identifies in the generated AS-graph
the infected ASes and the infected AS_PATH of each AS (a) before
hijacking attempt, (b) after hijacking attempt and (c) after hijacking
mitigation by helper and victim ASes. An AS is characterized as in-
fected before hijack (useful metric only for exact-prefix hijacks), if its
AS_PATH to the victim’s prefix includes the AS-number of the hijacker
AS. An AS is characterized as infected after hijack (useful metric for
both exact and sub-prefix hijacks), if its AS_PATH to the hijacker’s
prefix includes the AS-number of the hijacker AS. An AS is character-
ized as infected after mitigation, if its AS_PATH to the mitigation
prefix includes the AS-number of the hijacker AS. (assuming that the
mitigation prefix is equal with hijacker’s prefix).

– Impact Estimation: BPHS, estimates the impact of a hijack on the
simulation AS-graph (a) before/after the attack and (b) after the miti-
gation by helper and victim ASes. To measure the impact of a hijack,
BPHS marks a random portion of the ASes in the AS-graph as "mon-
itor" ASes and checks how many of them have an infected AS_PATH
before/after the attack and after the mitigation, using the information
that has been collected, accordingly (see the previous bullet). By de-
fault, BPHS mark as monitor ASes, the ASes of the graph that have an
AS_PATH to the victim’s prefix before hijack.

– AS Vulnerability Ranking: For each successful simulation, BPHS
computes a ranking with the top 1000 vulnerable ASes (after the hijack
attempts) for the attacking scenarios that were conducted. BPHS, ex-
tracts the ranking by creating an index that has as key the AS-number
of an infected AS and as value a floating number that shows the per-
centage of attacking scenarios in which this AS was identified as infected
(e.g., 10/20 of the attacking scenarios). We mention that the AS vulner-
ability ranking makes sense only if a simulation includes a big sample of
hijacking scenarios (e.g., we need a random simulation with more than
20 victim-hijacker pairs).

– Country Vulnerability Ranking: For each successful simulation,
BPHS computes a country vulnerability ranking (after the hijack at-
tempts) for the attacking scenarios that were conducted. BPHS, ex-
tracts the ranking using (a) the data of the AS vulnerability ranking
(see the previous bullet) and (b) the AS-info dataset provided by the

42 CHAPTER 4. BPHS

CAIDA [5] (shows the country that each AS belongs to). BPHS, creates
an index that has as key the vulnerable country and as value a float-
ing number that shows the average vulnerability percentage of the ASes
belonging to this country and were identified as infected. Similarly to
the AS vulnerability ranking, country vulnerability ranking makes sense
only if a simulation includes a big sample of hijacking scenarios.

• REST API: In addition to Web Interface, the user can interact with BPHS,
using directly the REST API that is provided. This feature is very useful
when a different application wants to integrate the functionality of BPHS in
its workflow (e.g., the raw results of a requested simulation).

impact_estimation =
#infected_monitors

#total_monitors

Table 4.1: Impact estimation of a hijack: computation formula.

AS_vulnerability_score =
#simulations_identified_infected

#total_simulations

Table 4.2: AS vulnerability score: computation formula.

Country_vulnerability_score =
1

n

n∑
i=1

si =
1

n
(s1 + · · ·+ sn)

where:
n = #infected ASes belonging to the country,

si = the vulnerability score of the i AS

Table 4.3: Country vulnerability score: computation formula.

4.3 Architecture

BPHS is a full-stack web application that inherits all the characteristics of the
MVC model (see section 2.6.1). BPHS has been designed in such a way to be
easily scalable and user-friendly. Each core component of BPHS (i.e., frontend,
backend, database) operates independently from the other components and thus
the debugging is easier. BPHS can be installed as a tool on a personal computer
or as a service in a publicly available server (the server should have a public IP
that is reachable by anyone on the Internet or it could be accessed, through a VPN
connection, in a Local Area Network). We have tested BPHS in Ubuntu 18.04 and
20.04 Operating System with no execution problems (or unexpected behaviors).

4.3. ARCHITECTURE 43

Figure 4.2: BPHS Architecture.

In Figure 4.2, we see the architecture of BPHS on an abstract level. The basic
components are depicted with a unique color: the GUI with green color, the Core
with red, and the Tables with yellow. Next, we describe each component:

• The GUI component provides a user-friendly interface that is responsible to
(a) handle the submitted simulation preferences of the user (e.g., a random
simulation with Active_Measurements as ROV mode, realistic RPKI filtering
and 20 random victim-hijacker repetitions), (b) send (through HTTP POST
request) the submitted simulation preferences to the backend (c) request and
fetch from the backend (i.e., REST API) the raw simulation results (JSON
format), and (d) render properly the raw simulation results using the ReactJS
library (see section 2.6.5).

• The Core component interconnects the frontend with the database compo-
nent and it has a crucial role in BPHS operation, since it executes the main
logic of the hijacking simulation. Also, the Core component generates the
simulation results and stores them as a unique record (unique key per simu-
lation) to the bgp_hijacking_simulations table in the database. The backend
provides a REST API that is responsible to (a) properly handle the submit-
ted simulation requests and trigger the simulation scenario, (b) fetch from
the database the requested simulation results (in raw format) and send them
to the frontend (in JSON format).

• The Tables component constitutes the database of BPHS that is based on
PostgreSQL (see section 2.6.6). To fetch and store information related to
launched/completed simulations, BPHS uses a postgres database called bgp_
simulator. The bgp_simulator database includes 2 basic tables: the bgp_
hijacking_simulations and asn_to_org table. The bgp_hijacking_ simula-
tions table stores the simulation data/results as a unique record (unique key
per simulation). The asn_to_org table stores, in tabular format, the data
provided by CAIDA’s AS to Organization mappings dataset [5]. Each row
includes information for a unique ASN (e.g., name, organization name, coun-
try, RIR) that is very useful in the rendering process of the simulation results
and the experimental evaluation that could be performed.

44 CHAPTER 4. BPHS

In the next subsections, we analyze the functionality of the frontend, backend, and
database components with more technical details. Also, we describe the hijacking
simulation process in detail and we present BPHS GUI.

4.3.1 Backend

Figure 4.3: The simulation pipeline of BPHS and the exported data of each stage.

In Figure 4.3, we can see the simulation pipeline (or workflow) of the backend
component. The pipeline has four stages (i) Request Handler, (ii) Constructor, (iii)
Worker, and (iv) Printer ; each stage is depicted with a unique color. Next, we
describe the function of each stage:

• The Request Handler , is responsible for (a) parsing and validating the
submitted simulation data, and (b) triggering the simulation. Specifically,
BPHS uses the "RequestParser" class of the Flask framework to parse the
JSON data of the HTTP request. "RequestParser" is configured to check the
type of the JSON fields and the required simulation fields; also it returns a
help message in case of an unexpected field or a type error. If the first vali-
dation process is successful, BPHS performs a second data validation. In the
second validation process, BPHS checks if the values of the JSON fields sat-
isfy the simulation requirements; for example, BPHS checks if the submitted
AS-numbers for the victim, hijacker, and helper ASes exist in the simulation
topology or if the submitted IP-prefixes are in CIDR format (required for
the real-time RPKI filtering). In case of an invalid value, an HTTP error
message (400 error code) is returned. After the successful validation process,
BPHS connects to the database to save the simulation data. In response to

4.3. ARCHITECTURE 45

the successfully created table entry for the simulation data, the database re-
turns to RequestHandler a unique UUID for the simulation. The simulation
UUID has a crucial role in the simulation process because, in the following
stages of the pipeline, this id is used for fetching or updating the simulation
statistics/results. The next task of RequestHandler is the initialization of a
"Stage" object of the mpipe Python module to define (a) the max number of
workers, (for enabling the parallel execution of simulation’s repetitions), and
(b) the Python class of the worker (i.e., the starting point of the worker - in
our case the Constructor stage). The last task of RequestHandler is to assign
each simulation repetition to an available/free worker (i.e., not executing any
simulation). If the user submitted a custom simulation type, then the same
simulation data would be shared across all the workers. If the user submitted
a random simulation type, then each worker would take different input sim-
ulation data, due to the random choice of victim, hijacker, and helper ASes
from the simulation topology. Finally, BPHS sends an HTTP message (200
code) to the user, informing of the successful simulation launch.

• The Constructor , is responsible to generate the simulation topology from
the CAIDA AS-Relationships and IXPs datasets. First, BPHS parses the
AS-Relationships dataset and for each line checks if the specific ASes exists
in the topology. If any of them do not exist in the graph, then adds the new
node(s); next adds a link between the nodes and marks their relationship.
The IXPs dataset adds more links in the AS-graph and thus the simulation
results are more realistic. We assume that the ASes being interconnected
through an IXP network have a peer-to-peer relationship. Moreover, we ig-
nore the ASes that appear only in the IXP dataset and have a peer-to-peer
link through an IXP with an AS that exists in AS-relationships. The second
task of the Constructor is to tag the ROV-enabled ASes in the generated
topology, according to the submitted user preferences. Each AS in the sim-
ulation topology is an instance of the "BGPnode" Python class. The object
instances of the BGPnode have an instance variable called "rov" (boolean),
which tags the specific node as ROV enabled (the default state is false, which
means that the ASes not supporting RPKI filtering). The third task of the
Constructor is the generation of the RPKI ROV table for the submitted sim-
ulation scenario and the assignment of that table to the ROV-enabled ASes
in the generated topology. With this approach, the validation time is reduced,
because we pre-compute the RPKI ROV table before the hijacking simulation
(useful especially on the real-time validation, due to Rootinator latency). The
last task is to initiate the Worker giving as input the simulation topology.

• The Worker , is the most important component of BPHS, because it executes
the hijacking scenarios and models the BGP protocol. The Worker executes
the hijacking scenario in three stages: (1) the legitimate announcement by

46 CHAPTER 4. BPHS

the victim AS, (2) the hijacker announcement, (3) the mitigation by the vic-
tim and helper ASes. For each stage, the worker computes and saves, into a
dictionary, (a) the number of the infected ASes, (b) a list with the infected
ASes, (c) the infected paths of the hijacked ASes and (d) the impact esti-
mation of the hijack. With the end of the final repetition of the simulation
scenario, all the collected simulation results are inserted into the database.
Next, we describe the propagation process of a BGP announcement, the im-
port/export policies that are used by the ASes and the best path selection
algorithm of BPHS:

BGP announcement propagation

Each BGP node in the simulation topology maintains 3 basic data structures,
providing information for:

– the neighboring ASes and the AS-relationships with them.

– the AS paths towards all the destination prefixes that was learned by the
neighboring ASes (known as Routing-Information-Base or RIB table).

– the best routing paths towards all the destination prefixes (known as
Forward-Information-Base table or FIB table).

The FIB table is generated from the RIB table using the best path selection
algorithm of the simulator.

When a BGPnode in the simulation topology wants to announce a prefix
(BGP route) to its neighbors, first, it searches in the "neighbors" dictionary
for the candidate neighbors by filtering them using the export policies algo-
rithm of our simulator. Second, it updates the AS_PATH of the BGP route
by adding its AS-number at the start of the AS-path list (e.g., [ASN, 3, 2, 1]).
Finally, the BGP node announces the BGP route by triggering the inbound
filtering mechanism of the candidate neighbor (i.e., to accept or discard the
route using the inbound policies).

Import Policies

A BGP node is allowed to receive a BGP route if:

1. the prefix does not belong to the node.

2. the prefix is not hijacked by the node.

3. the AS_PATH does not contain the node’s ASN (for loop avoidance).

4. the RPKI ROV result returns true.

4.3. ARCHITECTURE 47

otherwise, the received BGP route must be discarded.

Best path selection algorithm

A BGP node X selects a path to Y from the set of paths it learns from its
neighbors as follows:

1. Local Preference. Prefer outgoing paths where the next hop is a
customer over outgoing paths where the next hop is a peer over paths
where the next hop is a provider (Gao Rexford rules).

2. Shortest Paths. Among paths with the highest local preference, prefer
shortest paths (i.e., fewest AS hops).

3. Tie Break. If there are multiple such paths (i.e., with equal LO-
CAL_PREF and AS_PATH length), the node selects one at random.

Export Policies

The export policies of an AS are based on the Gao-Rexford rules (see section
2.2.6):

– Exporting to a provider: In exchanging routing information with a
provider, an AS can export its routes and the routes of its customers,
but it can not export routes learned from other providers or peers.

– Exporting to a customer: In exchanging routing information with a
customer, an AS can export its routes, as well as routes learned from
its providers and peers to its customers.

– Exporting to a peer: In exchanging routing information with a peer,
an AS can export its routes and the routes of its customers, but can not
export the routes learned from other providers or peers.

• The Printer is the last stage of the pipeline and it is responsible to save
important statistics for the simulation. The Printer is triggered at the end of
the Worker process by the Constructor and checks if the repetition that was
executed by the Worker was the last of the total repetitions, using three fields
of the bgp_hijacking_simulations table (a) num_of_finished_simulations,
(b) nb_of_sims, (c) nb_of_reps. If the num_of_finished_simulations =
nb_of_sims * nb_of_reps then the Printer:

1. updates in the database the simulation status to "Completed" and the
end time of the simulation.

2. exports the simulation results to a JSON file (not required).

48 CHAPTER 4. BPHS

4.3.2 Database

The first and most important step of BPHS installation is the generation of a Post-
gres database, called BGP_Simulator, including two tables: (a) bgp_hijacking_
simulations, and (b) asn_to_org table. We have automated the database genera-
tion by creating a python script called "create_db". Next we describe the structure
of the aforementioned tables:

BGP_HIJACKING_SIMULATIONS Table

Figure 4.4: The structure of bgp_hijacking_simulations table.

• simulation_id: the unique identifier of each submitted simulation; the
data type of this field is UUID (or Universal Unique Identifier) [1], which
is a 128-bit quantity generated by an algorithm that make it unique in the
known universe using the same algorithm (in our case the uuid_generate_v4
function, which generates a UUID value solely based on random numbers).

• simulation_status: indicates the simulation status; there are 3 possible
states (a) In-Progress, (b) Completed, (c) Failed ; the data type of this field
is VARCHAR with max 20 characters.

• simulation_data: indicates the submitted simulation data; the data type
of this field is JSON and in Figure 4.5 we show an example of the JSON’s
structure.

• simulation_results: indicates the simulation results; the data type of this
field is a JSON array and each JSON object in the array indicates the simu-
lation result of one repetition (see Figure 4.6).

• num_of_simulations: for a custom simulation type, indicates the number
of simulation repetitions of the submitted hijacking scenario; for a random
simulation type, indicates the total random hijacking scenarios (i.e., the dif-
ferent pairs of victim-hijacker); the data type of this field is Integer.

4.3. ARCHITECTURE 49

• num_of_repetitions: for a random simulation type, indicates the total
repetitions of each random hijacking scenario; for a custom simulation the
value should be equal to 1; the data type of this field is Integer.

• num_of_finished_simulations: indicates the count of the completed
simulations/repetitions; the data type of this field is Integer.

• sim_start_time: indicates the date-time that the simulation data inserted
in the table; the data type of this field is "timestamptz" (i.e., timestamp with
the time zone).

• sim_end_time: indicates the date-time that the simulation completed suc-
cessfully or failed; the data type of this field is "timestamptz" (i.e., timestamp
with the time zone).

Figure 4.5: Simulation data, JSON structure example.

Figure 4.6: Simulation results, JSON structure example.

50 CHAPTER 4. BPHS

ASN_TO_ORG Table

Figure 4.7: The structure of asn_to_org table.

• asn: is the primary key of the table and indicates a unique AS number
provided by CAIDA’s AS to Organization mappings dataset [5]; the data
type of this field is Integer.

• as_to_org_data: a JSON object including useful information for the ASN
(name, RIR) and the Organization (id, name, country, RIR) that the ASN
belongs to (provided by CAIDA’s AS to Organization mappings dataset [5]).
Figure 4.8 depicts an example of the query result on the as_to_org_data
field for the ASN 112.

Figure 4.8: ASN_to_Org_data field, JSON structure example.

4.3. ARCHITECTURE 51

4.3.3 Frontend

The Graphical User Interface of BPHS have been developed with ReactJS as a
Single Page Web Application (SPA) [81] that operates independently from the
backend component. The basic idea of a SPA is that we can have a full operative
application, in just one page, with only one call to the server, without changing
the URL, or at least without consuming a new Page. In our React App (as in
most of the React Apps), we have an index.js file, which is the starting point of
the App. The index.js is responsible to load all the components of our App in
the ReactDOM. The core component of our App is called Router. The Router
component decides which component should be rendered; in other words, it is the
navigator of our website that helps us to view the different web pages.

Figure 4.9: Web App (BPHS GUI) Architecture.

In Figure 4.9, we show the architecture of the Web App. The client sends an
HTTP GET request to the Web server to fetch the appropriate app files. The Web
server sends as reply only 2 files, the index.html, and the index.js which includes
all the app’s functionality. The client is not required to communicate again with
the server (except in the case of browser refresh). The Router component con-
tains eight sub-components that can be rendered. We depict with purple color the
components that are rendered statically in GUI and with green color the compo-
nents/pages that are rendered dynamically in GUI according to user preferences.
Next, we present each component/page showing screenshots from the BPHS GUI.

52 CHAPTER 4. BPHS

Home, Navbar, Footer

Navbar

Home

Footer

Figure 4.10: The Home page of BPHS.

In Figure 4.10, we see the Home page of BPHS, the Navbar and the Footer
component. The Navbar contains hyperlinks that redirect the user to Home, New
Simulation and Simulation Events page. Also it contains a link to BPHS github
repository. The Home page includes a simple button that redirects the user to the
New Simulation page. The Footer includes clickable images redirecting the user to
external pages (e.g., CSD department UoC, Linked In profile of BPHS developer).

New Simulation

Figure 4.11: The New Simulation page of BPHS.

In Figure 4.11, we see the New Simulations page, which contains 2 buttons that
redirect the user to Custom Simulation and Random Simulation page respectively.

4.3. ARCHITECTURE 53

Custom Simulation, Random Simulation

Figure 4.12: The Custom Simulation page of BPHS.

Figure 4.13: The Random Simulation page of BPHS.

In Figure 4.12 and 4.13, we see the Custom/Random Simulation pages, which
contain a form that helps users make their preferences and submit the simula-
tion data (see section 4.2 for understanding the form’s fields) using the Launch
Simulation button. In case of an unexpected field value or network error (e.g.,
unable to connect with the backend server), a help or error message is displayed.
In case of successful form submission, the user redirects to Simulation Events page.

54 CHAPTER 4. BPHS

Simulation Events, Simulation Details

Figure 4.14: The Simulation Events page of BPHS.

Figure 4.15: The Simulation Details page of BPHS.

4.3. ARCHITECTURE 55

In Figure 4.14, we see the Simulation Events page, which contains a table with
brief information for each submitted simulation. The table has 6 columns showing
information for the UUID (i.e, unique id) of the simulation, the simulation status,
the simulation type, the number of completed simulations and the start/end time of
the simulation. The user is enabled to click on each row for exploring the simulation
results (redirection to Simulation Details page) or to delete the simulation/row by
clicking the checkbox at the left corner and then the Delete button that appears
in the top corner of the table. The simulation events can be sorted according to a
specific column (e.g., start time) by clicking the specific column name.

In Figure 4.15, we see the structure of the Simulation Details page. This page
displays all the simulation results starting from the top corner with a table including
the simulation statistics/data. We mention that by clicking on the victim, hijacker,
or mitigation prefix, BPHS redirects us to the RIPEstat service showing more
information for the clicked prefix. Under the statistics table, we observe a button
called Raw JSON. This button enables us to get all the simulation results/data
in JSON format (in a new browser tab). The Results per Repetition enable us
to get the simulation results of each repetition. Specifically, each row shows the
selected legitimate, hijacker, helper ASes and the impact estimation value after
the hijacking attempt and after the mitigation attempt. We mention that the
Legitimate AS, Hijacker AS, Helper AS columns includes hoverable hyperlinks
as values, enabling (a) to get more information for the hovered AS (e.g., country,
name, organization name/id, RIR) and (b) redirection to AS-Rank service showing
more information for the clicked AS. By clicking the More Details button a pop-up
window is displayed in the foreground including the repetition results in detail.

Figure 4.16: Detailed results per simulation (pop-up sample).

56 CHAPTER 4. BPHS

In Figure 4.16, we see a sample of the pop-up information. The pop-up pro-
vides (a) the RPKI ROV table used by the ASes during the simulation, (b) a table
including the ASes applying RPKI filtering, (c) bar-plots showing useful statistic-
s/metrics, (d) two tables including the infected ASes and the infected AS_PATH
of each AS (displayed as interactive AS-graph) after hijack and after mitigation
respectively. We mention that all the tables provide a searching filter for easier
navigation.

Finally, the Simulation Details page displays in a Geo-Chart the Country Vul-
nerability Ranking using information from all the repetition results and also in a
separate table the top 1000 vulnerable ASes in descent order using information
from all the repetition results (see section 4.2 for more technical details on the
ranking approach).

4.4 Challenges

Next, we list the main challenges that we faced during BPHS development:

• Realtime ROV. In the first backend version of BPHS, if the selected RPKI
ROV type was "Realistic", each ROV enabled AS in the simulation topol-
ogy was performing an HTTP GET Request to Rootinator to validate each
incoming BGP route. This operation was extremely time-consuming, due to
the multiple HTTP requests that were handled concurrently by Rootinator
resulting in late replies (most requests were aborted by Rootinator). We
tackled this problem by pre-computing and assigning the RPKI ROV table
to the ROV-enabled ASes before the hijacking simulation. In the old version,
the same ROV operations were repeated from all BGPnodes, however, in the
updated version all the possible ROV operations are pre-computed only once.

• Hijacker has no path to Victim. In BPHS, by default, the Hijacker AS
is required to have an AS_PATH to Victim AS before the attack, because
in Type {1,..,N} attacks the malicious AS_PATH is constructed from the
Victim-Hijacker AS_PATH. In case the Hijacker has no path to Victim AS
the routing information on each BGP node is cleared and the simulation/rep-
etition is repeated again (BPHS terminates the simulation/repetition when
detects an infinitive loop).

• Mpipe memory leak. Each mpipe worker (Linux process) allocates the
needed memory space for simulation execution. At the end of the simulation
the worker should release the allocated memory. The problem with our first
implementation was that the worker was not releasing the allocated memory
at the end of the simulation but in Flask server termination. We tackled this
problem by adding a special termination signal provided by mpipe library
(i.e., pipe.put(None)).

4.4. CHALLENGES 57

• Cross-Origin Request Blocked. Cross-Origin Resource Sharing (CORS)
is a standard that allows a server to relax the same-origin policy [21]. This
is used to explicitly allow some cross-origin requests while rejecting others.
For example a Flask server could be configured to accept requests only from
a specific source IP address and port. To avoid CORS problems, we have
configured (a) the npm server [41] of BPHS GUI to redirect to Flask server
(port 5000) any request it receives on its port 3000 and destined to a different
domain (i.e., IP and port) and, (b) the backend Flask app to use the Flask-
CORS module extension making cross-origin AJAX possible.

58 CHAPTER 4. BPHS

Chapter 5

Evaluation

In this chapter, we evaluate BPHS applying a number of experimental scenarios.
First, we replay real historical hijacks that were detected on the Internet using
data from the hijacking observatory of CAIDA (see section 2.4.3) and we check the
BPHS ability to detect the same hijacked ASes as detected in CAIDA datasets.
Then, we show through a comparative study the RPKI adoption benefits on the
Internet’s backbone and we present useful insights extracted during the simula-
tion experiments (e.g., AS - Country vulnerability ranking list from a large set of
successful simulations). Finally, we measure the execution time and the memory
requirements of each simulation according to mpipe Workers.

5.1 Replaying Real Hijacks

The first question that we tried to answer is the following: Are the simulation results
realistic? (i.e., closer to the real Internet). The only way to measure the "realistic"
level of BPHS is to replay real Internet hijacking scenarios in the simulator. Next,
we present the methodology that we followed to answer the above question and the
experimental results.

5.1.1 Methodology

The only publicly available service ideal for the purposes of this experiment is the
CAIDA hijacks observatory, because it provides real data-plane information for
thousands of real hijacking attempts on the Internet that can be compared with the
BPHS simulation results. Specifically, for each suspicious event, the Observatory
augments control-plane (BGP) data with data-plane measurements (traceroutes)
executed from a set of RIPE Atlas probes [46], on-the-fly and save the results in
JSON format (i.e., the AS_PATH (benign or malicious) of each RIPE Atlas probe
(monitor AS) towards victim prefix after the attack). The JSON object includes
all the information to replay the hijack (i.e., victim, hijacker {ASN, prefix}). The
only problem that we faced during the experiment setup was the collection of the

59

60 CHAPTER 5. EVALUATION

hijacking data, due to the lack of an API to automatically fetch hijacking events
from CAIDA observatory. We tackled this problem by manually fetching 64 sus-
picious Type-0 events (detected in October 2021) using curl command. Next, we
list the experiment steps.

Figure 5.1: Historical hijacking data sample from CAIDA Observatory: the
AS_PATH (benign or malicious) of each RIPE Atlas probe towards victim prefix
after the attack.

For each historical hijack/dataset:

1. We replayed the attack in BPHS. The CAIDA datasets used for the
simulations were (a) the October 2021 AS-graph dataset, and (b) the July
2021 IXPs dataset. Furthermore, the RPKI ROV mode that was used was the
"rov_active_measurements" and the RPKI ROV type was "realtime" (see
section 4.2 for more information). We mention that some datasets include
more than 1 hijacker AS; in that case, we replayed the attack for all victim-
hijacker combinations.

2. We extracted the infected ASes detected by BPHS. For this task, we
queried the simulation results from the database as a JSON object, and we
used the field providing a list with the hijacked ASes after the attack.

3. We identified the infected ASes from the historical dataset. For
this task, we parsed the "aspaths" field (or the "sub_aspaths field for the
subprefix attacks") of the historical data. In Figure 5.1, we see the format of
the aforementioned fields. It is a string including the AS_PATHs (benign or
malicious) of all RIPE Atlas probes towards the victim prefix after the attack,
that are separated with the ":" character. A monitor AS (RIPE atlas probe)
was tagged as infected, if the last AS in AS_PATH was equal to hijacker AS.

5.1. REPLAYING REAL HIJACKS 61

4. We found the common infected ASes of the above 2 sets. In this task,
we measured the ability of BPHS to identify the infected ASes extracted from
the historical dataset. For that purpose, we introduced a metric called Level
of Agreement (LoA), defined as the number of common infected ASes from
the two sets divided by the number of the infected ASes from the historical
dataset (see Figure 5.2).

Figure 5.2: Replaying real hijacks: Level of Agreement (LoA).

5.1.2 Results

Figure 5.3: Replaying real hijacks: LoA results.

In Figure 5.3, we see the Level of Agreement of BPHS with each replayed
historical hijacking attempt and the average LoA score for both prefix and sub-
prefix hijacks. The mean LoA score of BPHS for the prefix hijacks is around 70%
and 87% for the sub-prefix hijacks. As we expected, the mean LoA score for the
sub-prefix events is higher than the prefix events, because in sub-prefix hijacks
the attacker’s success rate (i.e, the impact) is higher and the probability to hit a
common infected AS increasing (see figure 5.2).

62 CHAPTER 5. EVALUATION

5.2 RPKI Adoption Benefits

As we mentioned in section 2.3.4, the RPKI adoption is very slow (i.e., around 20%
of the total ASes on the Internet), especially on the Internet backbone (e.g., top 100
ASes according to AS-Rank). Thus, using BPHS, we tried to answer the following
research question: What are the benefits of RPKI ROV adoption on the Internet’s
backbone for reducing the Type-0 attacks? Next, we present the methodology that
we followed to answer the above question and the experimental results.

5.2.1 First Experiment: Methodology

1. The first step of the experiment was the collection of the top-500 ASes (i.e.,
customer cone, see section 2.4.2) using the API of the CAIDA AS-Rank
service. The API is enabled to extract, in descending order, the AS-number
of the top-X ASes, where X is the needed portion. The extracted list was used
for tagging the corresponding ASes in simulation topology as ROV-enabled
with probability p.

2. In the second step we defined the different simulation scenarios using the
following assumptions:

(a) Only the first X top 100 ASes perform ROV, with probability p.

(b) All the other ASes of the topology do not perform ROV.

Specifically, we considered different probabilities of adoption p (between 0.25
to 1), and different numbers of adopters X (between 0 to 100), chosen ran-
domly from the set of X

p top ISPs.

3. Finally, for each {adoption probability, adopters portion} combination we ex-
ecuted 20 random simulations from which we extracted the average attacker
success rate (i.e., the average impact estimation after hijack). In total, we ex-
ecuted 1760 random simulations (prefix + sub-prefix hijacks) using the static
ROV type of BPHS.

5.2.2 First Experiment: Results

In Figure 5.4, we see the experiment results for the different {adoption probability,
adopters portion} combinations. The X-axis depicts the adopter’s portion (be-
tween 0 to 100) and the Y-axis the attacker’s success rate for each adopter portion
- adoption probability pair (which is depicted with a unique color). We observe
that, when the adoption portion and adoption probability increases, the attacker’s
success rate decreases constantly. Also, we observe that when the adoption proba-
bility is low (i.e., 0.25, as it is today on Internet’s backbone) the attacker’s success
rate decreases slowly. We found that, when all the top 100 ASes apply ROV (prob-
ability 1.0), the attacker’s success rate decreases around 30% for the prefix hijacks
and around 40% for the sub-prefix hijacks.

5.2. RPKI ADOPTION BENEFITS 63

Figure 5.4: RPKI adoption benefits: Enforcing ROV only at top 100 ISPs reduces
significantly the attacker’s success rate.

5.2.3 Second Experiment: Methodology

1. The first step of the experiment was the collection of:

(a) the top-100 ASes using the API of the CAIDA AS-Rank service.

(b) the ASes that apply ROV according to the most up-to-date reported
dataset extracted from the research results of Rodday et al [117].

Specifically, we used the public available dataset of Rodday et al (see [45]
19-07-2021), including 206 unique ASes performing ROV in today’s Internet
of which 146 are fully and 60 are partially filtering (see section 4.2 Different
ROV modes for more information).

2. In the second step, using the aforementioned datasets, we defined a compar-
ative study including two simulation scenarios:

(a) In the 1st scenario, we assumed as ROV-enabled ASes the top-100 and
randomly selected ASes different from the top-100 with probability p.

(b) In the 2nd scenario, we assumed as ROV-enabled ASes those reported
in [45] and randomly selected ASes different from those in [45] with
probability p.

We clarify that the randomly selected BGP-nodes from the simulation topol-
ogy are chosen from the set totalNodes−X

p , where X = {top100, 206} and p
in {0.0, 0.1, ... ,1.0} (we ignored the ASes of X that did not exist in the
simulation topology).

3. Finally, for each probability p in {0.0, 0.1, ... ,1.0} we executed 20 random
simulations from which extracted the average attacker success rate (i.e., the
average impact estimation after hijack). In total, we executed 880 random
simulations (prefix + sub-prefix hijacks) using the static ROV type of BPHS.

64 CHAPTER 5. EVALUATION

5.2.4 Second Experiment: Results

Figure 5.5: Comparing the benefits of RPKI under (a) today’s ROV deployment,
and (b) when the top 100 ISPs perform ROV for prefix and sub-prefix hijacks.

In Figure 5.5, we see the experiment results of the 2 scenarios (red and green
line) for the different RPKI adoption probabilities p. The X-axis depicts the RPKI
adoption probability (between 0 to 1) of the ASes that are different from the top-100
or the 206 reported by Rodday et al [45]. The Y-axis depicts the attacker’s success
rate for each RPKI adoption probability. As we expected, the attacker’s success
rate reduces constantly when the adoption probability of the other-ASes increases
(for both scenarios). Also, we observe better results for each adoption probability
of the other-ASes, when we constantly perform ROV at the top-100 ISPs compared
with the today’s status (e.g., we see around 15% reduction for prefix hijacks and
40% reduction for sub-prefix hijacks with p=0).

5.3 Simulations Insights

In section 4.2, we presented two basic features of BPHS, which are the AS/Country
vulnerability ranking for each simulation. During the evaluation phase (see section
5.1, 5.2) we executed up to 3000 simulations of random type using different ROV
modes from which we extracted 2 ranking lists showing the most vulnerable AS-
es/Countries in descending order according to a ranking score. Next, we present
the AS/Country ranking methodology and the corresponding results - insights.

5.3.1 AS/Country Vulnerability Ranking: Methodology

For the total AS vulnerability ranking, we collected the top 1000 vulnerable ASes
of each executed simulation and we merged them in a dictionary having as keys the
unique AS-number of each vulnerable AS and as values a list including the average
vulnerability values of the AS (e.g., {"ASN": [0.5, 0.2, 0.8]} see section 4.2 for
more information). Then, for each ASN in the dictionary, we counted the elements

5.3. SIMULATIONS INSIGHTS 65

of the corresponding vulnerability list and we sorted the ASNs in descent order
according to the resulting count values of all entries divided by the number of the
executed simulations (e.g., for the above example the resulting value is {"ASN":
3

3000 }). In Table 5.1, we see the computation formula of the AS vulnerability score.

AS_vulnerability_score =
#AS_appeared_as_infected

#total_simulations

Table 5.1: Total AS vulnerability ranking score: computation formula.

For the total Country vulnerability ranking, we used the aforementioned AS
vulnerability dictionary and the data provided by ASN_TO_ORG table to identify
the country of each AS (see section 4.3.2). Specifically, we constructed a new
dictionary setting as keys the 2-letter ISO code of each country and as values a
list including the ranking score of the ASes belonging in this country. The ranking
score of each country resulting from the average ranking score of its ASes and the
number of its infected ASes in the total infected ASes. In Table 5.2, we see the
computation formula of the Country vulnerability score.

Country_vulnerability_score =
1

n

n∑
i=1

si +
n

t
=

1

n
(s1 + · · ·+ sn) +

n

t

where:
n = #infected ASes belonging to the country,

si = the vulnerability score of the i AS
t = #total ASes

Table 5.2: Total Country vulnerability ranking score: computation formula.

5.3.2 AS/Country Vulnerability Ranking: Results

In Figures 5.6 and 5.7, we see the ranking results of the top 20 and top 100 vul-
nerable ASes respectively. The most vulnerable AS according to our simulations is
called "ROOTSERV" (ASN: 112) which belongs to the DNS-OARC organization
and is registered in ARIN RIR. "ROOTSERV" is a stub AS (has no customers)
and has been ranked 47072 by CAIDA AS-Rank. The high vulnerability score of
"ROOTSERV" is due to the high connectivity with backbone ASes (Tier1, Tier2
ASes as providers or peers) and thus, the probability to be hijacked is bigger than
other ASes with fewer direct links to the backbone. In the second position, we
meet the ASN 2535 belonging to the well known "BP" company which produces
and retails oil and natural gas, and in the third position, we see the ASN 2906 be-
longing to the "Netflix" organization which is one of the most popular streaming
services provider.

Surprisingly, in the 93rd position, we see the Greek ASN 2546 ("ARIADNE-T")
which is a stub AS having only one upstream link to "GRNET". The "GRNET" is

66 CHAPTER 5. EVALUATION

Figure 5.6: Top 20 Vulnerable ASes.

Figure 5.7: Top 100 Vulnerable ASes.

5.3. SIMULATIONS INSIGHTS 67

the Pan-Hellenic infrastructure for research and technology including the universi-
ties and school networks. "GRNET" has 2 upstream links to GEANT Vereniging
(Tier2 AS), which is the European National Research and Education Networks
(NRENs), and 1 upstream link to "Cloudflare" (Tier2 AS). "NRENs" and "Cloud-
flare" have a lot of upstream links to the biggest Tier1 ASes on the Internet’s
backbone (e.g., Level3, Telia Company AB, Cogent Communications, Hurricane
Electric LLC, Internet2) and thus, it is more likely to propagate a malicious BGP
route to their customers (e.g., to GRNET and GRNET to ARIADNE-T). In Table
5.3, we highlight the 7 most vulnerable ASes in Greece, according to the results
of our simulations (we replaced "ARIADNE-T" with "GRNET" because when a
stub AS is infected, its provider is also infected).

AS name Ranking Position

GR-NET 93
FORTHNET-GR 526

HOL-GR 1366
HELEX-RP 2011

NATIONAL-BANK-OF-GREECE 2247
OTEGlobe 3573

SYNAPSECOM-AS 3633

Table 5.3: Top 7 vulnerable ASes in Greece.

Ranking Score

Figure 5.8: Country vulnerability Geo-chart.

68 CHAPTER 5. EVALUATION

In Figure 5.8, we see the Country vulnerability ranking results in a Geo-chart.
Each country is colored according to its ranking score; higher vulnerability gives
a color closer to red. As we expected, the most vulnerable country is the United
States of America, due to a large number of ASes belonging to it. Brazil ranked
in 3rd position and Russia ranked 7th. Surprisingly, Greece ranked 11th behind
Germany, due to its high connectivity with the Internet’s backbone.

5.4 Execution time and memory consumption

The execution time and the memory consumption of BPHS depend on the com-
putational resources and power of the server that it is installed on, and also the
number of Workers that have been defined by the administrator enabling the par-
allel execution of multiple simulations (see section 4.3 for more information). We
measured BPHS’s execution time and memory consumption on a desktop with In-
tel i7 4790 CPU, 32GB RAM, and 5 Workers. In Tables 5.4, 5.5, we present the
evaluation results.

Number of Simulations Time

1 21sec
20 7-8min

Table 5.4: Simulation execution time (5 Workers).

#Parallel Simulations RAM

1 2GB
5 9-10GB

Table 5.5: Simulation memory requirements (5 Workers).

Chapter 6

Conclusions & Future Work

6.1 Conclusions

In this thesis, we implemented BPHS, the first BGP Prefix Hijacking Simulation
tool that enables network operators to quickly and easily (a) assess the vulnerability
of their Autonomous Systems to BGP prefix hijacks and (b) measure the benefits
of the RPKI’s adoption on the Internet, through a user-friendly web application.
With BPHS, the network operators can simulate all the different types of BGP
hijacking attacks and obtain the simulation results through an automated and
graphical manner (i.e., well-designed Graphical User Interface).

The evaluation results showed that BPHS detects the real infected ASes of a
prefix hijack with 70% mean accuracy and with 87% mean accuracy the infected
ASes of a sub-prefix hijack. Also, using BPHS, we found that the RPKI filtering
on Internet’s backbone (top-100 ASes) reduces significantly the Type-0 attacks
(30% for the prefix hijacks and 40% for the sub-prefix hijacks) even if all the other
ASes in the Internet are not performing ROV. Finally, we showed that the most
vulnerable ASes are those which have multiple Tier1 and Tier2 ASes as upstream
providers (i.e., high connectivity in the Internet’s backbone).

6.2 Future Work

Next, we elaborate on directions for future work:

• Deployment on a public server. Our future goal is to deploy BPHS
on a public web server that will be accessible by anyone on the Internet,
making it a public web service rather than a simple tool. The main challenge
of this idea is to find the proper infrastructure to make the deployment.
Ideally, we need a powerful web server that can handle a huge number of
simulation requests and satisfy all the user’s requests. A second challenge
is the simulation limitations that should be addressed and the max users
that can access our service concurrently to ensure stability and availability.

69

70 CHAPTER 6. CONCLUSIONS & FUTURE WORK

These limitations are very important to be applied, due to the computational
resources limitations of the infrastructure in CPU and memory. A simple
policy is to allow a maximum set of 30 users to access concurrently our
server, a max of 10 simulation repetitions per submitted simulation, and in
total 20 active simulations. The third challenge of the public deployment
is the malicious attacks on the web app (e.g., DoS, DDoS attacks). The
security concerns can be tackled by deploying BPHS behind a secure and
up-to-date web server like NGINX [39] or APACHE [3]. We believe that the
public deployment of BPHS will give visibility to the simulator and will help
all user types to easily and quickly make their experiments.

• More filtering rules. BPHS applies the same inbound and outbound poli-
cies for all the BGP nodes in the simulation topology (see section 4.3.1 for
more information), because we want to ensure graph convergence and routing
stability. However, each Autonomous System on the Internet applies specific
inbound and outbound policies for each neighboring AS. A promising idea
would be to find the real inbound-outbound policies of each AS in the simu-
lation graph and make a table in our database that stores all the AS-policies
pairs. Then in the simulation topology initialization, we will load these poli-
cies in the AS-graph making BPHS a super-realistic BGP simulator. There
are 2 main challenges with this approach. The first challenge is the collection
of the real policies of an AS because most ASes do not make their policies
publicly available. The second challenge is to ensure graph convergence and
routing stability by applying the new policies on the AS-graph.

• Execution time reduction. In section 5.4, we showed that the execution
time of a hijacking simulation with one repetition is about 21 seconds. Two
good ideas could contribute to the execution time reduction. The first idea
is to omit invalid paths according to the routing policies, for the specific
hijacking scenario submitted by the user. Thus, we avoid needless memory
allocations resulting in better performance. The second idea is to subtract
the stub-ASes from the simulation AS-graph and infer if they are hijacked by
mapping the information of their providers or peers (e.g., if the provider is in-
fected the customer is also, because the malicious routes are always propagat-
ing to the customers). Thus, we avoid needless memory allocations resulting
in better performance.

• AS/Country Ranking Validation. In the evaluation section 5.3, we pre-
sented two rankings for the most vulnerable ASes and Countries based on
our simulation results. A very good idea would be to validate these rankings
using real historical data collected by ISPs or network research community.
We tried to find public datasets that could help us to validate our rankings
with no success. We believe that this is a very interesting research question
for future work that could be answered only with collaboration between ISPs
and network researchers.

6.2. FUTURE WORK 71

• Authentication/Authorization system. BPHS could be extended with
an integrated authentication, authorization system. The idea is to provide
a BPHS-account for each user. With this approach, each user can login to
his/her profile and fetch all the simulation events launched by his/her. To
support this idea we should create two new tables in our database. The first
table will store all (username, password) tuples, and the second table all the
authorized sessions that can access the pages and the database data. Also, we
need to add a new column on the bgp_hijacking_simulations table containing
the username that submits each simulation. The passwords should be stored
in the database using a cryptographic hash algorithm like MD5 or SHA-256
[22]. Finally, a new login and sign-up page should be added, and also some
modifications in the frontend and backend module should be done.

72 CHAPTER 6. CONCLUSIONS & FUTURE WORK

Bibliography

[1] A Universally Unique IDentifier (UUID) URN Namespace, 2005. https:
//datatracker.ietf.org/doc/html/rfc4122.

[2] Angular, Superheroic JavaScript MVW Framework, 2022. https://
angularjs.org/.

[3] Apache Web-Server, 2022. https://httpd.apache.org/.

[4] Archipelago (Ark) Measurement Infrastructure, 2021. https://www.caida.
org/projects/ark/.

[5] As to organizations mappings. https://publicdata.caida.org/datasets/
as-organizations/. Accessed: 2022-1-16.

[6] ASRank (CAIDA). https://asrank.caida.org/.

[7] BGP AS PATH. https://www.catchpoint.com/network-admin-guide/
bgp-attributes.

[8] BGP Best Path Selection Algorithm. https://www.cisco.com/c/en/us/
support/docs/ip/border-gateway-protocol-bgp/13753-25.html.

[9] BGP Local Preference Attribute. https://networklessons.com/bgp/
how-to-configure-bgp-local-preference-attribute.

[10] BGP Messages. https://www.networkurge.com/2020/09/bgp-messages.
html.

[11] CAIDA AS Relationship dataset, 2021. https://www.caida.org/catalog/
datasets/as-relationships/.

[12] CAIDA HI3 PaaS, 2021. https://dev.hicube.caida.org/feeds.

[13] Caida’s bgp (hijacking) observatory. https://catalog.caida.org/
details/media/2020_caidas_bgp_hijacking_observatory_kismet. Ac-
cessed: 2021-12-28.

[14] Center for Applied Internet Data Analysis (CAIDA). https://www.caida.
org/.

73

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://angularjs.org/
https://angularjs.org/
https://httpd.apache.org/
https://www.caida.org/projects/ark/
https://www.caida.org/projects/ark/
https://publicdata.caida.org/datasets/as-organizations/
https://publicdata.caida.org/datasets/as-organizations/
https://asrank.caida.org/
https://www.catchpoint.com/network-admin-guide/bgp-attributes
https://www.catchpoint.com/network-admin-guide/bgp-attributes
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://networklessons.com/bgp/how-to-configure-bgp-local-preference-attribute
https://networklessons.com/bgp/how-to-configure-bgp-local-preference-attribute
https://www.networkurge.com/2020/09/bgp-messages.html
https://www.networkurge.com/2020/09/bgp-messages.html
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/
https://dev.hicube.caida.org/feeds
https://catalog.caida.org/details/media/2020_caidas_bgp_hijacking_observatory_kismet
https://catalog.caida.org/details/media/2020_caidas_bgp_hijacking_observatory_kismet
https://www.caida.org/
https://www.caida.org/

74 BIBLIOGRAPHY

[15] Chaos - BGP and Traffic Simulation for Evaluation of Internet Resiliency
Systems, 2022. https://github.com/VolSec/chaos.

[16] Chinese ISP Hijacks the Internet. https://
www.techtarget.com/searchsecurity/news/252452732/
Google-BGP-route-leak-was-accidental-not-hijacking.

[17] Cisco Networking Academy’s Introduction to Routing Dynamically. https:
//www.ciscopress.com/articles/article.asp?p=2180210&seqNum=12.

[18] CISCO Press - BGP Fundamentals - BGP Communities, 2021. https://
www.ciscopress.com/articles/article.asp?p=2756480&seqNum=12.

[19] CISCO routers, BGP—Origin AS Validation. https://www.cisco.com/
c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/15-s/
irg-15-s-book/irg-origin-as.pdf.

[20] Control Plane in routing. https://en.wikipedia.org/wiki/Control_
plane.

[21] Cross-Origin Resource Sharing (CORS), Same-origin policy, 2022. https:
//developer.mozilla.org/en-US/docs/Web/Security/Same-origin_
policy.

[22] Cryptographic hash algorithms, 2022. https://en.wikipedia.org/wiki/
Cryptographic_hash_function#Cryptographic_hash_algorithms.

[23] Flask micro-framework. https://flask.palletsprojects.com/en/2.0.x/.

[24] Forward Plane in routing. https://en.wikipedia.org/wiki/Forwarding_
plane.

[25] GNU Zebra: Free routing software distributed under GNU General Public
License. http://www.zebra.org/.

[26] GR-IX Internet Exchange Point, 2021. https://www.gr-ix.gr/about/.

[27] Graphical Network Simulator 3 (GNS3), 2021. https://www.gns3.com/.

[28] Hacker Redirects Traffic From 19 Internet Providers to Steal Bitcoins. https:
//www.wired.com/2014/08/isp-bitcoin-theft/.

[29] Implementing Tunnels, Cisco, 2022. https://www.cisco.com/c/en/us/td/
docs/ios/12_4/interface/configuration/guide/inb_tun.html.

[30] Internet Assigned Numbers Authority (IANA). https://www.iana.org/.

[31] Internet Exchange Point Looking Glass, 2021. https://www.uae-ix.net/
en/resources/looking-glass.

https://github.com/VolSec/chaos
https://www.techtarget.com/searchsecurity/news/252452732/Google-BGP-route-leak-was-accidental-not-hijacking
https://www.techtarget.com/searchsecurity/news/252452732/Google-BGP-route-leak-was-accidental-not-hijacking
https://www.techtarget.com/searchsecurity/news/252452732/Google-BGP-route-leak-was-accidental-not-hijacking
https://www.ciscopress.com/articles/article.asp?p=2180210&seqNum=12
https://www.ciscopress.com/articles/article.asp?p=2180210&seqNum=12
https://www.ciscopress.com/articles/article.asp?p=2756480&seqNum=12
https://www.ciscopress.com/articles/article.asp?p=2756480&seqNum=12
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/15-s/irg-15-s-book/irg-origin-as.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/15-s/irg-15-s-book/irg-origin-as.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/15-s/irg-15-s-book/irg-origin-as.pdf
https://en.wikipedia.org/wiki/Control_plane
https://en.wikipedia.org/wiki/Control_plane
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
https://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
https://flask.palletsprojects.com/en/2.0.x/
https://en.wikipedia.org/wiki/Forwarding_plane
https://en.wikipedia.org/wiki/Forwarding_plane
http://www.zebra.org/
https://www.gr-ix.gr/about/
https://www.gns3.com/
https://www.wired.com/2014/08/isp-bitcoin-theft/
https://www.wired.com/2014/08/isp-bitcoin-theft/
https://www.cisco.com/c/en/us/td/docs/ios/12_4/interface/configuration/guide/inb_tun.html
https://www.cisco.com/c/en/us/td/docs/ios/12_4/interface/configuration/guide/inb_tun.html
https://www.iana.org/
https://www.uae-ix.net/en/resources/looking-glass
https://www.uae-ix.net/en/resources/looking-glass

BIBLIOGRAPHY 75

[32] Internet exchange points dataset. https://catalog.caida.org/details/
dataset/ixps. Accessed: 2022-1-8.

[33] JavaScript Object Notation (JSON), 2022. https://www.json.org/
json-en.html.

[34] Jinja Template. https://jinja2docs.readthedocs.io/en/stable/.

[35] JUNIPER routers, Configuring Origin Validation for BGP. https:
//www.juniper.net/documentation/en_US/junos/topics/topic-map/
bgp-origin-as-validation.html.

[36] Link aggregation, 2022. https://en.wikipedia.org/wiki/Link_
aggregation.

[37] MPipe, Multiprocess Pipeline Toolkit for Python, 2022. https://vmlaker.
github.io/mpipe/.

[38] Network Simulator 3 (GNS3), 2021. https://www.nsnam.org/.

[39] NGINX Web-Server, 2022. https://www.nginx.com/.

[40] NIST, “RPKI Monitor”, 2021. https://rpki-monitor.antd.nist.gov/.

[41] Node Package Manager, 2022. https://www.npmjs.com/.

[42] Optimized BGP simulator to find paths between ASNs, 2022. https://
github.com/Fraunhofer-SIT/bgpsim.

[43] PostgreSQL, The World’s Most Advanced Open Source Relational Database,
2022. https://www.postgresql.org/.

[44] React, A JavaScript library for building user interfaces, 2022. https://
reactjs.org/.

[45] Revisiting RPKI Route Origin Validation on the Data Plane: Datasets,
Github Repository, 2022. https://github.com/nrodday/TMA-21/tree/
main/data.

[46] RIPE Atlas Probes, 2022. https://atlas.ripe.net/about/probes/.

[47] RIPE Routing Information Service (RIS), 2021. https://www.ripe.net/
analyse/internet-measurements/routing-information-service-ris.

[48] RouteViews 6447, 2021. http://www.routeviews.org/routeviews/.

[49] Routinator, free open source RPKI Relying Party software, 2021. https:
//routinator.docs.nlnetlabs.nl/en/stable/.

[50] ROV Deployment Monitor, 2022. https://rov.rpki.net/.

https://catalog.caida.org/details/dataset/ixps
https://catalog.caida.org/details/dataset/ixps
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://jinja2docs.readthedocs.io/en/stable/
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/bgp-origin-as-validation.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/bgp-origin-as-validation.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/bgp-origin-as-validation.html
https://en.wikipedia.org/wiki/Link_aggregation
https://en.wikipedia.org/wiki/Link_aggregation
https://vmlaker.github.io/mpipe/
https://vmlaker.github.io/mpipe/
https://www.nsnam.org/
https://www.nginx.com/
https://rpki-monitor.antd.nist.gov/
https://www.npmjs.com/
https://github.com/Fraunhofer-SIT/bgpsim
https://github.com/Fraunhofer-SIT/bgpsim
https://www.postgresql.org/
https://reactjs.org/
https://reactjs.org/
https://github.com/nrodday/TMA-21/tree/main/data
https://github.com/nrodday/TMA-21/tree/main/data
https://atlas.ripe.net/about/probes/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
http://www.routeviews.org/routeviews/
https://routinator.docs.nlnetlabs.nl/en/stable/
https://routinator.docs.nlnetlabs.nl/en/stable/
https://rov.rpki.net/

76 BIBLIOGRAPHY

[51] RSA (cryptosystem), 2022. https://en.wikipedia.org/wiki/RSA_
(cryptosystem).

[52] Rsync, 2021. https://rsync.samba.org/.

[53] RTR protocol, 2021. https://blog.cloudflare.com/
rpki-and-the-rtr-protocol/.

[54] RTRTR, RPKI data proxy, 2021. https://www.nlnetlabs.nl/projects/
rpki/rtrtr/.

[55] Structured Query Language (SQL), 2022. https://en.wikipedia.org/
wiki/SQL.

[56] The Internet Registry System. https://www.ripe.net/participate/
internet-governance/internet-technical-community/the-rir-system.

[57] The Network Simulator NS-2, 2022. https://www.isi.edu/nsnam/ns/.

[58] Werkzeug (WSGI) web application library. https://werkzeug.
palletsprojects.com/en/2.0.x/.

[59] WHOIS protocol, 2021. https://en.wikipedia.org/wiki/WHOIS.

[60] Robert Albrightson, JJ Garcia-Luna-Aceves, and Joanne Boyle. Eigrp–a fast
routing protocol based on distance vectors. 1994.

[61] J Banks. Handbook of simulation: Wiley online library. 1998.

[62] S Bartholomew. The art of peering. BT Technology Journal, 18(3):33–39,
2000.

[63] Scott Bradner. The internet engineering task force (ietf). DiBona et al.[144],
pages 47–52, 1999.

[64] Markus Brandt and Haya Shulman. Optimized bgp simulator for evaluation
of internet hijacks. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 1–2. IEEE, 2021.

[65] Markus Brandt, Haya Shulman, and Michael Waidner. Evaluating resilience
of domains in pki. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2444–2446, 2021.

[66] Tim Bruijnzeels, Oleg Muravskiy, Bryan Weber, and Rob Austein. The rpki
repository delta protocol (rrdp). IETF, Fremont, CA, USA, RFC, 8182,
2017.

[67] RIPE Network Coordination Center. Youtube hijacking: A ripe ncc ris case
study. Amsterdam, The Netherlands (www. ripe. net/news/studyyoutube-
hijacking. html), 2008.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://rsync.samba.org/
https://blog.cloudflare.com/rpki-and-the-rtr-protocol/
https://blog.cloudflare.com/rpki-and-the-rtr-protocol/
https://www.nlnetlabs.nl/projects/rpki/rtrtr/
https://www.nlnetlabs.nl/projects/rpki/rtrtr/
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL
https://www.ripe.net/participate/internet-governance/internet-technical-community/the-rir-system
https://www.ripe.net/participate/internet-governance/internet-technical-community/the-rir-system
https://www.isi.edu/nsnam/ns/
https://werkzeug.palletsprojects.com/en/2.0.x/
https://werkzeug.palletsprojects.com/en/2.0.x/
https://en.wikipedia.org/wiki/WHOIS

BIBLIOGRAPHY 77

[68] Jack Chan, Ray Chung, and Jack Huang. Python API Development Funda-
mentals: Develop a full-stack web application with Python and Flask. Packt
Publishing Ltd, 2019.

[69] Ying-Ju Chi, Ricardo Oliveira, and Lixia Zhang. Cyclops: The internet
as-level observatory. ACM SIGCOMM Computer Communication Review,
38(5):5–16, 2008.

[70] Taejoong Chung, Emile Aben, Tim Bruijnzeels, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove,
Roland van Rijswijk-Deij, John Rula, et al. Rpki is coming of age: A longi-
tudinal study of rpki deployment and invalid route origins. In Proceedings of
the Internet Measurement Conference, pages 406–419, 2019.

[71] David Clark. To filter or not to filter: Measuring the benefits of registering in
the rpki today. In Passive and Active Measurement: 21st International Con-
ference, PAM 2020, Eugene, Oregon, USA, March 30-31, 2020, Proceedings,
volume 12048, page 71. Springer Nature, 2020.

[72] Avichai Cohen, Yossi Gilad, Amir Herzberg, and Michael Schapira. Jump-
starting bgp security with path-end validation. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 342–355, 2016.

[73] Avichai Cohen, Yossi Gilad, Amir Herzberg, Michael Schapira, and Haya
Shulman. Are we there yet? on rpki’s deployment and security. 2017.

[74] Danny Cooper, Ethan Heilman, Kyle Brogle, Leonid Reyzin, and Sharon
Goldberg. On the risk of misbehaving rpki authorities. In Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, pages 1–7, 2013.

[75] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina Fomenkov, Bradley
Huffaker, Young Hyun, KC Claffy, and George Riley. As relationships: In-
ference and validation. ACM SIGCOMM Computer Communication Review,
37(1):29–40, 2007.

[76] Xenofontas A Dimitropoulos and George F Riley. Efficient large-scale bgp
simulations. Computer Networks, 50(12):2013–2027, 2006.

[77] Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, and
Pradeep Kumar Gunda Jon Currey. Dryadlinq: A system for general-purpose
distributed data-parallel computing using a high-level language. Proc. LSDS-
IR, 8, 2009.

[78] Behrouz A Forouzan. TCP/IP protocol suite. McGraw-Hill Higher Education,
2002.

[79] Agostino Funel. The graph structure of the internet at the autonomous
systems level during ten years. arXiv preprint arXiv:1902.05029, 2019.

78 BIBLIOGRAPHY

[80] Lixin Gao and Jennifer Rexford. Stable internet routing without global co-
ordination. IEEE/ACM Transactions on networking, 9(6):681–692, 2001.

[81] Veronica Gavrilă, Lidia Băjenaru, and Ciprian Dobre. Modern single page
application architecture: a case study. Studies in Informatics and Control,
28(2):231–238, 2019.

[82] Tomas Hlavacek1 Italo Cunha23 Yossi Gilad and Amir Herzberg. Disco:
Sidestepping rpki’s deployment barriers.

[83] Yossi Gilad, Tomas Hlavacek, Amir Herzberg, Michael Schapira, and Haya
Shulman. Perfect is the enemy of good: Setting realistic goals for bgp security.
In Proceedings of the 17th ACM Workshop on Hot Topics in Networks, pages
57–63, 2018.

[84] Yossi Gilad, Omar Sagga, and Sharon Goldberg. Maxlength considered harm-
ful to the rpki. In Proceedings of the 13th International Conference on emerg-
ing Networking EXperiments and Technologies, pages 101–107, 2017.

[85] Phillipa Gill, Michael Schapira, and Sharon Goldberg. Let the market drive
deployment: A strategy for transitioning to bgp security. ACM SIGCOMM
computer communication review, 41(4):14–25, 2011.

[86] Phillipa Gill, Michael Schapira, and Sharon Goldberg. Modeling on quick-
sand: Dealing with the scarcity of ground truth in interdomain routing data.
ACM SIGCOMM Computer Communication Review, 42(1):40–46, 2012.

[87] V. Giotsas, S. Zhou, M. Luckie, and k. claffy. Inferring multilateral peering.
In ACM SIGCOMM Conference on emerging Networking EXperiments and
Technologies (CoNEXT), pages 247–258, 2013-12.

[88] Vasileios Giotsas, Shi Zhou, Matthew Luckie, and Kc Claffy. Inferring mul-
tilateral peering. In Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies, pages 247–258, 2013.

[89] Timothy G Griffin and Gordon Wilfong. An analysis of bgp convergence
properties. ACM SIGCOMM Computer Communication Review, 29(4):277–
288, 1999.

[90] Suraj G Gupta, Mangesh M Ghonge, Parag D Thakare, and PM Jawandhiya.
Open-source network simulation tools: An overview. International Journal
of Advanced Research in Computer Engineering & Technology (IJARCET),
2(4):1629–1635, 2013.

[91] Susan Hares, Yakov Rekhter, Tony Li, and E Addresses. A border gateway
protocol 4 (bgp-4). nd, http://tools. ietf. org/html/rfc4271, 2006.

BIBLIOGRAPHY 79

[92] Ethan Heilman, Danny Cooper, Leonid Reyzin, and Sharon Goldberg. From
the consent of the routed: Improving the transparency of the rpki. In Pro-
ceedings of the 2014 ACM conference on SIGCOMM, pages 51–62, 2014.

[93] Tomas Hlavacek, Italo Cunha, Yossi Gilad, Amir Herzberg, Ethan Katz-
Bassett, Michael Schapira, and Haya Shulman. Disco: Sidestepping rpki’s
deployment barriers. In Network and Distributed System Security Symposium
(NDSS), 2020.

[94] Tomas Hlavacek, Amir Herzberg, Haya Shulman, and Michael Waidner. Prac-
tical experience: Methodologies for measuring route origin validation. In 2018
48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 634–641. IEEE, 2018.

[95] Geoff Huston and George Michaelson. Validation of route origination us-
ing the resource certificate public key infrastructure (pki) and route origin
authorizations (roas), 2012.

[96] Daniele Iamartino, Cristel Pelsser, and Randy Bush. Measuring bgp route
origin registration and validation. In International Conference on Passive
and Active Network Measurement, pages 28–40. Springer, 2015.

[97] Raj Jain. The art of computer systems performance analysis. john wiley &
sons, 2008.

[98] Cheng Jin, Qian Chen, and Sugih Jamin. Inet: Internet topology generator.
2000.

[99] Yuchen Jin, Colin Scott, Amogh Dhamdhere, Vasileios Giotsas, Arvind Kr-
ishnamurthy, and Scott Shenker. Stable and practical {AS} relationship in-
ference with problink. In 16th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 19), pages 581–598, 2019.

[100] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. Autonomous security
for autonomous systems. Computer Networks, 52(15):2908–2923, 2008.

[101] John Kristoff, Randy Bush, Chris Kanich, George Michaelson, Amreesh Pho-
keer, Thomas C Schmidt, and Matthias Wählisch. On measuring rpki relying
parties. In Proceedings of the ACM Internet Measurement Conference, pages
484–491, 2020.

[102] Mohit Lad, Ricardo Oliveira, Beichuan Zhang, and Lixia Zhang. Under-
standing resiliency of internet topology against prefix hijack attacks. In
37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07), pages 368–377. IEEE, 2007.

[103] Matt Lepinski and Stephen Kent. An infrastructure to support secure inter-
net routing, 2012.

80 BIBLIOGRAPHY

[104] Ziping Liu and Bidyut Gupta. Study of secured full-stack web development.
In CATA, pages 317–324, 2019.

[105] M. Luckie, B. Huffaker, k. claffy, A. Dhamdhere, and V. Giotsas. As rela-
tionships, customer cones, and validation. In ACM Internet Measurement
Conference (IMC), pages 243–256, 2013-10.

[106] Gary Malkin. Rip version 2-carrying additional information. Technical re-
port, RFC 1388, Xylogics, Inc, 1993.

[107] Mark Masse. REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. " O’Reilly Media, Inc.", 2011.

[108] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite:
An approach to universal topology generation. In MASCOTS 2001, Proceed-
ings Ninth International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, pages 346–353. IEEE, 2001.

[109] Alexandros Milolidakis, Tobias Bühler, Marco Chiesa, Laurent Vanbever,
and Stefano Vissicchio. Poster: Smart bgp hijacks that evade public route
collectors.

[110] Asya Mitseva, Andriy Panchenko, and Thomas Engel. The state of affairs in
bgp security: A survey of attacks and defenses. Computer Communications,
124:45–60, 2018.

[111] John T Moy. OSPF: anatomy of an Internet routing protocol. Addison-Wesley
Professional, 1998.

[112] Ravi Musunuri and Jorge A Cobb. An overview of solutions to avoid persis-
tent bgp divergence. IEEE network, 19(6):28–34, 2005.

[113] Bruno Quoitin and Steve Uhlig. Modeling the routing of an autonomous
system with c-bgp. IEEE network, 19(6):12–19, 2005.

[114] Anirudh Ramachandran and Nick Feamster. Understanding the network-level
behavior of spammers. In Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications, pages
291–302, 2006.

[115] Yakov Rekhter and Tony Li. Rfc1771: A border gateway protocol 4 (bgp-4),
1995.

[116] Andreas Reuter, Randy Bush, Italo Cunha, Ethan Katz-Bassett, Thomas C
Schmidt, and Matthias Wählisch. Towards a rigorous methodology for mea-
suring adoption of rpki route validation and filtering. ACM SIGCOMM Com-
puter Communication Review, 48(1):19–27, 2018.

BIBLIOGRAPHY 81

[117] Nils Rodday, Ítalo Cunha, Randy Bush, Ethan Katz-Bassett, Gabi Dreo
Rodosek, Thomas C Schmidt, and Matthias Wählisch. Revisiting rpki route
origin validation on the data plane. In Proc. of Network Traffic Measurement
and Analysis Conference (TMA). IFIP. accepted for publication, 2021.

[118] Pavlos Sermpezis and Vasileios Kotronis. Inferring catchment in internet
routing. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 3(2):1–31, 2019.

[119] Pavlos Sermpezis, Vasileios Kotronis, Konstantinos Arakadakis, and Athena
Vakali. Estimating the impact of bgp prefix hijacking. arXiv preprint
arXiv:2105.02346, 2021.

[120] Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas Dimitropou-
los, Danilo Cicalese, Alistair King, and Alberto Dainotti. Artemis: Neutraliz-
ing bgp hijacking within a minute. IEEE/ACM Transactions on Networking,
26(6):2471–2486, 2018.

[121] Mohammad Sharif and Abolghasem Sadeghi-Niaraki. Ubiquitous sensor net-
work simulation and emulation environments: A survey. Journal of Network
and Computer Applications, 93:150–181, 2017.

[122] Vatika Sharma and Meenu Dave. Sql and nosql databases. International
Journal of Advanced Research in Computer Science and Software Engineer-
ing, 2(8), 2012.

[123] Saba Siraj, A Gupta, and Rinku Badgujar. Network simulation tools survey.
International Journal of Advanced Research in Computer and Communica-
tion Engineering, 1(4):199–206, 2012.

[124] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and
Randy H Katz. Characterizing the internet hierarchy from multiple van-
tage points. In Proceedings. Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 2, pages 618–627.
IEEE, 2002.

[125] Pierre-Antoine Vervier, Olivier Thonnard, and Marc Dacier. Mind your
blocks: On the stealthiness of malicious bgp hijacks. In NDSS, 2015.

[126] Matthias Wählisch, Robert Schmidt, Thomas C Schmidt, Olaf Maennel,
Steve Uhlig, and Gareth Tyson. Ripki: The tragic story of rpki deploy-
ment in the web ecosystem. In Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, pages 1–7, 2015.

[127] Maciej Wojciechowski, Benno Overeinder, Guillaume Pierre, Maarten
Van Steen, and Janina Mincer-daszkiewicz. Border gateway protocol model-
ing and simulation. 2008.

82 BIBLIOGRAPHY

[128] Ellen W Zegura, Kenneth L Calvert, and Samrat Bhattacharjee. How to
model an internetwork. In Proceedings of IEEE INFOCOM’96. Conference
on Computer Communications, volume 2, pages 594–602. IEEE, 1996.

[129] Man Zeng, Xiaohong Huang, Pei Zhang, and Dandan Li. Understanding
the impact of outsourcing mitigation against bgp prefix hijacking. Computer
Networks, 202:108650, 2022.

	Georgios Eptaminitakis 1176, Master Thesis CSD UoC, BPHS
	5f4ea0510cf6807ca757d1b29fc0c36b5e8cada0684cdb88bb38126be2c6992f.pdf
	Georgios Eptaminitakis 1176, Master Thesis CSD UoC, BPHS
	Table of contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Overview

	Background
	Internet Routing
	Border Gateway Protocol (BGP)
	BGP Selection Algorithm
	Local Preference Attribute
	Shortest AS PATH
	Longest Prefix Match in routing
	AS Relationships
	Gao-Rexford Rules
	Prefix Hijacking

	Resource Public Key Infrastructure (RPKI)
	Certification - Authorization Process
	Route Origin Validation Process (ROV)
	RPKI Relying Parties (RPs)
	Routinator

	RPKI Adoption Challenges

	Center for Applied Internet Data Analysis (CAIDA)
	AS Relationships dataset
	ASRank
	BGP Hijacks Observatory

	Basic concepts in Network Simulation
	Simulation
	Why Network Simulation?
	Types of Network Simulators
	Advantages and Drawbacks
	Network Simulation versus Emulation

	Full Stack Web Application Development
	Model-View-Controller (MVC) Pattern
	RESTful API
	HTTP Protocol
	The Flask Web Framework
	ReactJS
	PostgreSQL

	Related Work
	Internet/BGP Simulators: A brief review
	Any Web-based BGP hijacking Simulator?

	BPHS
	The Goal
	Supported Features
	Architecture
	Backend
	Database
	Frontend

	Challenges

	Evaluation
	Replaying Real Hijacks
	Methodology
	Results

	RPKI Adoption Benefits
	First Experiment: Methodology
	First Experiment: Results
	Second Experiment: Methodology
	Second Experiment: Results

	Simulations Insights
	AS/Country Vulnerability Ranking: Methodology
	AS/Country Vulnerability Ranking: Results

	Execution time and memory consumption

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

