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Developing Disentangled Speech Representation Algorithms
Using Information Theory with Application in Speech

Synthesis

Abstract

This thesis explores the development and evaluation of disentangled represen-
tation learning algorithms for speech signal representation and conditional speech
synthesis using tools from information theory. The primary objective is to en-
hance the ability to separate different attributes of speech, such as content, speaker
identity, and style, to improve the controllability and quality of speech synthesis
systems.

To achieve this, we extended the FastSpeech 2 [1] model, a state-of-the-art
text-to-speech synthesis model developed by researchers at Microsoft, incorporat-
ing advanced disentanglement techniques. The research utilizes the Expresso [2]
dataset, provided by Meta AI, which includes diverse speech samples essential for
training and evaluating the proposed methods.

We implemented several disentanglement methods, including a data-driven ap-
proach using a Gradient Reversal Layer [3] with dual classifiers for adversarial
training, and various mutual information estimators such as MINE [4], INFO NCE
[5], CLUB [6], as well as two novel estimators: Convex Conjugated Rényi Diver-
gence and Worst Case Regret Rényi Divergence [7]. These techniques were inte-
grated into the FastSpeech 2 model to enable the separation of content, speaker
identity, and style attributes in speech signals.

The models were trained and evaluated using a comprehensive set of metrics
to assess the quality of disentanglement and the naturalness of the synthesized
speech. These metrics include cosine similarity matrices and average inter-cluster
distances, which quantify the degree of separation between embeddings, offering
insight into how well the model disentangles speaker and style information. Fur-
thermore, we utilized dimensionality reduction techniques (PCA) to visualize the
embeddings in a lower-dimensional space, providing a clear visual representation
of the model’s ability to cluster different speaker and style attributes. For percep-
tual and intelligibility evaluation, PESQ (Perceptual Evaluation of Speech Qual-
ity) and STOI (Short-Time Objective Intelligibility) were employed. Additionally,
Word Error Rate (WER) was used to assess the accuracy of the generated speech
in terms of content. Among the methods evaluated, the Convex Conjugated Rényi
Divergence (CCR) and the combination of Convex Conjugated Rényi Divergence
combined with Gradient Reversal Layer (CCR & GRL) demonstrated the most
promising results in achieving effective disentanglement.

This research contributes to the field of speech processing by providing a frame-
work for disentangled representation learning, which can be applied to various ap-
plications, including personalized speech synthesis and speaker adaptation. Future
work will focus on further refining these techniques and exploring their applicabil-
ity to other domains of speech and audio processing.





Ανάπτυξη Αλγορίθμων Εκμάθησης Ανεξάρτητων

Αναπαραστάσεων Ομιλίας Χρησιμοποιώντας

Θεωρία Πληροφορίας με Εφαρμογή στη Σύνθεση

Ομιλίας

Περίληψη

Η παρούσα διπλωματική εργασία εξετάζει την ανάπτυξη και αξιολόγηση αλγορίθ-

μων εκμάθησης ανεξάρτητων αναπαραστάσεων για την αναπαράσταση σήματος ομιλίας

και τη συνθετική ομιλία, χρησιμοποιώντας εργαλεία από τη θεωρία πληροφορίας. Ο

πρωταρχικός στόχος είναι η ενίσχυση της ικανότητας διαχωρισμού διαφορετικών χαρα-

κτηριστικών της ομιλίας, όπως το περιεχόμενο, η ταυτότητα του ομιλητή και το στυλ,

προκειμένου να βελτιωθεί η ελεγχόμενη δυνατότητα και η ποιότητα των συστημάτων

σύνθεσης ομιλίας.

Για την επίτευξη αυτού του στόχου, επεκτείναμε το μοντέλο FastSpeech 2 [1],
ένα υπερσύγχρονο μοντέλο μετατροπής κειμένου σε ομιλία, το οποίο αναπτύχθηκε από

ερευνητές τηςMicrosoft, ενσωματώνοντας εξελιγμένες μεθόδους διαχωρισμού αναπα-
ραστάσεων. Το σύνολο δεδομένων που χρησιμοποιήθηκε για την εκπαίδευση είναι το

Expresso [2], το οποίο παρέχεται από τη Meta AI και περιλαμβάνει μεγάλο εύρος
δειγμάτων ομιλίας, απαραίτητα για την εκπαίδευση και αξιολόγηση των προτεινόμενων

μεθόδων.

Εφαρμόστηκαν διάφοροι μέθοδοι διαχωρισμού αναπαραστάσεων, συμπεριλαμβανο-

μένης μιας προσέγγισης με τη χρήση του Gradient Reversal Layer [3], σε συνδυασμό
με διπλούς ταξινομητές για ανταγωνιστική εκπαίδευση, και διάφορους εκτιμητές αμοι-

βαίας πληροφορίας όπως οιMINE [4], INFO NCE [5], CLUB [6], καθώς και δύο νέους
εκτιμητές: τη Convex Conjugated Rényi Divergence και τη Worst Case Regret
Rényi Divergence [7]. Αυτές οι τεχνικές ενσωματώθηκαν στο μοντέλο FastSpeech
2 για να επιτευχθεί ο διαχωρισμός των χαρακτηριστικών περιεχομένου, ταυτότητας
ομιλητή και στυλ σε σήματα ομιλίας.

Τα μοντέλα εκπαιδεύτηκαν και αξιολογήθηκαν χρησιμοποιώντας ένα ολοκληρω-

μένο σύνολο μετρικών για την αποτίμηση της ποιότητας του διαχωρισμού των ανα-

παραστάσεων και της φυσικότητας της παραγόμενης ομιλίας. Αυτές οι μετρικές περι-

λαμβάνουν πίνακες συσχέτισης συνημιτόνων και μέσες αποστάσεις μεταξύ συστάδων,

οι οποίες ποσοτικοποιούν το βαθμό διαχωρισμού μεταξύ των αναπαραστάσεων. Επι-

πλέον, χρησιμοποιήθηκαν τεχνικές μείωσης διαστάσεων (PCA) για την οπτικοποίηση
των αναπαραστάσεων σε χώρο χαμηλότερης διάστασης, παρέχοντας μια σαφή οπτική

αναπαράσταση της ικανότητας του μοντέλου να ομαδοποιεί τα χαρακτηριστικά ομιλη-

τή και στυλ. Για την αξιολόγηση της ποιότητας και της καταληπτότητας, χρησιμο-

ποιήθηκαν οι δείκτες PESQ (Perceptual Evaluation of Speech Quality) και STOI
(Short-Time Objective Intelligibility), ενώ για την ακρίβεια της παραγόμενης ομιλίας
σε σχέση με το περιεχόμενο χρησιμοποιήθηκε ο δείκτης Word Error Rate (WER).
Μεταξύ των μεθόδων που αξιολογήθηκαν, οι Convex Conjugated Rényi Divergence
(CCR) και ο συνδυασμός Convex Conjugated Rényi Divergence µE Gradient Rever-
sal Layer (CCR & GRL) απέδωσαν τα πιο ενθαρρυντικά αποτελέσματα στην επίτευξη



αποτελεσματικού διαχωρισμού.

Αυτή η έρευνα συνεισφέρει στον τομέα της επεξεργασίας ομιλίας, παρέχοντας

ένα πλαίσιο για την εκμάθηση διαχωρισμένων αναπαραστάσεων, το οποίο μπορεί να

εφαρμοστεί σε διάφορες εφαρμογές, όπως η εξατομικευμένη σύνθεση ομιλίας και η

προσαρμογή ομιλητή. Η μελλοντική εργασία θα εστιάσει στην περαιτέρω βελτίωση

αυτών των τεχνικών και στην εξερεύνηση της εφαρμοσιμότητάς τους σε άλλους τομείς

επεξεργασίας ομιλίας και ήχου.
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8.19 Word Error Rate - Convex Conjugate Rényi . . . . . . . . . . . . . 88
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Chapter 1

Introduction

1.1 Background

Speech signal representation and conditional speech synthesis are fundamental
areas within the field of speech processing, underlining numerous contemporary
applications such as virtual assistants, text-to-speech (TTS) and speech-to-text
(STT) systems, personalized voice synthesis, noise removal and various other in-
teractive technologies. These applications leverage advanced speech processing
techniques to enhance user interaction and improve accessibility. For instance,
virtual assistants like Siri [8] and Alexa [9] rely on accurate speech recognition and
synthesis to understand and respond to user commands effectively.

Speech signal representation pertains to the conversion of speech into a for-
mat that machines can efficiently analyze and process. This conversion often
utilizes features such as Mel-frequency cepstral coefficients (MFCCs) [10] and Mel
spectrograms [11], which are traditional methods based on signal processing, or
more advanced neural representations that capture the intricate nuances of hu-
man speech. Recent advancements have highlighted the critical importance of
high-quality speech signal representations in various applications. For instance,
the ICASSP 2024 Speech Signal Improvement Challenge [12] emphasized improve-
ments in speech signal quality and representations by addressing distortions such
as noise and reverberation, thus enhancing the overall intelligibility and quality of
communication systems. Another study explored the robustness of speaker em-
beddings for speaker identification, demonstrating superior performance compared
to traditional methods under challenging acoustic conditions [13].

Conditional speech synthesis, on the other hand, involves generating human-
like speech based on specific inputs or conditions, such as text, speaker iden-
tity, or emotional tone. The rise of deep learning has significantly advanced this
technology, enabling the production of high-quality, natural-sounding synthetic
voices. Notable models like Tacotron [14] and FastSpeech [15] have established
new benchmarks in this domain, thus enhancing the robustness and versatility of
text-to-speech systems.

1
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Disentangled representation learning is crucial for both speech signal represen-
tation and conditional speech synthesis. This learning approach involves isolating
different underlying factors of variation within the data, such as content, speaker
identity, and speaking style. Such disentanglement is vital for improving the flexi-
bility and interpretability of models. Extensive research highlights the advantages
of disentangled representations in TTS systems, enabling the modification of one
attribute (e.g., speaker identity) without affecting others (e.g., content or emotion).
This capability allows for more precise and personalized speech synthesis. Studies
such as ”Speech Resynthesis from Discrete Disentangled Self-Supervised Repre-
sentations” [16] showcases the benefits of separating low-bitrate representations
for different speech components, thus achieving better control over synthesized
speech. Similarly, the work ”Learning Disentangled Speech Representations” [17]
by Brima et al. on disentangled speech representations provides insights into the
strengths and weaknesses of current disentanglement methods, emphasizing the
need for improved techniques to achieve better modularity and compactness in
representations. These studies underscore the critical need for advancing disen-
tangled representation learning to address the persistent issues of content and style
leakage in speech synthesis models. The importance of disentangled representation
learning in speech processing is underscored by several key benefits:

• Enhanced Model Control: By isolating attributes like content, speaker
identity, and style, models can generate speech with specific desired charac-
teristics, thus enhancing user satisfaction and personalization.

• Improved Generalization: Disentangled representations aid models in
generalizing better to new, unseen data by independently capturing the es-
sential aspects of speech.

• Robustness to Noise: These representations enhance the robustness of
speech systems to variations and noise, as the model learns to segregate and
disregard irrelevant factors.

Overall, disentangled representation learning significantly advances the capabili-
ties and applications of speech processing technologies, paving the way for more
adaptive and intelligent systems.

1.2 Problem Statement

Despite significant advancements in speech signal representation and conditional
speech synthesis, several challenges remain in achieving highly controlable and in-
terpretable speech synthesis systems. Traditional methods often fail to separate
different attributes of speech, such as content, speaker identity, and style, which
limits the ability to control these attributes independently. This limitation affects
the quality and personalization of synthesized speech, particularly in applications
like text-to-speech systems where precise control over various speech attributes is
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crucial. Additionally, current models struggle with maintaining the integrity of
non-target attributes when modifying specific ones, leading to unnatural or in-
consistent speech outputs. A notable issue in this context is the phenomenon of
”content leakage”, where content information unintentionally influences style em-
beddings, and ”style leakage”, where speaker information permeates style embed-
dings. These problems compromise the effectiveness and clarity of the synthesized
speech, posing significant hurdles to achieving truly disentangled representations.

Language is a structured system used by humans for communication, compris-
ing spoken, written, and sign language forms. Speech is the vocalized form of
language, serving as a medium for expressing spoken language. Linguistics, the
scientific study of language, covers several branches: phonetics, phonology, mor-
phology, syntax, semantics, and pragmatics [18]. These branches deal with various
elements of linguistic systems, such as speech sounds, basic units like phonemes
and morphemes, sentence structures, meanings, and language usage. Disentangling
speaker identity from style is particularly challenging because both attributes ex-
ist within the same speech domain and are deeply correlated. Speaker identity
includes unique vocal characteristics such as tone, pitch, and rhythm, which are
easily conflated with stylistic elements. This overlap makes it difficult for models
to isolate one attribute without affecting the other. Consequently, speaker-specific
features may unintentionally leak into style embeddings and vice versa, compli-
cating the process of achieving effective disentanglement. The difficulty in dis-
entangling speaker identity, content, and style arises due to their interdependent
nature:

1. Speaker Identity and Style: Both involve vocal characteristics like pitch
and tone, which means changing one can inadvertently affect the other.

2. Content and Style: Content pertains to the meaning conveyed by the
speech, while style relates to how that content is expressed. Stylistic elements
like intonation and pacing can influence the perceived meaning of the content.

3. Speaker Identity and Content: Speaker-specific traits can influence how
content is delivered and perceived, further complicating the separation.

In the framework of linguistic structures Figure 1.1, various aspects of speech
are influenced by distinct attributes. At the core, phonetics focuses on speaker
identity, serving as the foundation for distinguishing individual voices. Phonology,
also emphasizes speaker identity, refining vocal characteristics. Morphology, the
third layer, represents the intersection between speaker identity and style, blending
these elements to shape speech patterns. Syntax, illustrates the overlap between
content and style, highlighting how sentence structure conveys nuances of meaning
and expression. Semantics, is dedicated to content, ensuring clear communication
of ideas. Finally, pragmatics, captures the essence of style, influencing how speech
is perceived.
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Figure 1.1: The five linguistics branches

Further complicating the problem, current evaluation metrics for disentangle-
ment are often inadequate, failing to fully capture the nuances of attribute sep-
aration and their impact on overall speech quality. Moreover, there is a lack of
comprehensive datasets that are specifically designed to test and benchmark disen-
tangled representation learning in speech synthesis, which hinders the development
and comparison of new methodologies. This inadequacy in existing evaluation met-
rics has led researchers to create novel frameworks for assessment. For instance,
the paper ”Theory and Evaluation Metrics for Learning Disentangled Representa-
tions” [19] provides a framework for evaluation metrics, emphasizing the need for
metrics that capture informativeness, separability, and interpretability.

Additionally, the computational complexity and resource requirements for train-
ing advanced models that can effectively disentangle attributes in speech synthesis
are substantial. This makes it challenging to implement these models in real-world
applications where computational resources may be limited. Ensuring that these
models are both efficient and scalable remains a critical challenge.

Addressing these challenges is crucial for advancing the field of speech pro-
cessing. Developing robust evaluation metrics and comprehensive datasets, along
with efficient and scalable models, is imperative for the future of speech synthesis
technology.

1.3 Objectives

The primary objectives of this research will be on achieving effective disentan-
glement using novel techniques and robust evaluation metrics. Specifically, the
objectives are:

1. Develop Advanced Disentanglement Methods
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Implement innovative disentanglement techniques to effectively decouple dif-
ferent speech attributes such as content, speaker identity, and style. Explore
and refine methods such as Gradient Reversal Layer (GRL) with dual classi-
fiers, and various mutual information estimators (MINE, INFO NCE, CLUB,
Convex Conjugated Rényi Divergence and Worst Case Regret Rényi Diver-
gence).

2. Integrate and Extend Existing Models

Extend the FastSpeech 2 model to incorporate disentanglement techniques,
enabling the separation of content, speaker identity, and style attributes in
speech signals.

3. Evaluate and Validate Disentanglement Techniques

Implement evaluation metrics that capture the nuances of attribute separa-
tion and their impact on overall speech quality. Utilize metrics to assess the
informativeness, separability, and interpretability of disentangled represen-
tations.

4. Achieve High-Quality, Personalized Speech Synthesis

Aim to produce high-quality, natural-sounding speech that closely matches
desired attributes such as speaker identity and emotional tone.

1.4 Scope of the Study

The scope of this study involves the development, implementation, and evalua-
tion of advanced disentangled representation learning techniques for speech signal
representation and conditional speech synthesis. The study aims to address the
challenges of achieving controllable and interpretable speech synthesis system by
focusing on several key areas:

Theoretical Foundations and Methodologies

• Exploration of Theoretical Foundations: This research will delve into the
theoretical underpinnings of disentangled representation learning, with an
emphasis on methods that can effectively isolate different speech attributes
such as content, speaker identity, and style. This includes a thorough exam-
ination of the mathematical and algorithmic principles that enable effective
disentanglement.

• Examination of State-of-the-Art Methods: The study will investigate state-
of-the-art techniques such as Gradient Reversal Layer (GRL) with dual classi-
fiers and various mutual information estimators, including MINE, INFO NCE,
CLUB, Convex Conjugated Rényi Divergence, and Worst Case Regret Rényi
Divergence. The goal is to refine and enhance these methods for improved
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performance in speech synthesis, ultimately aiming to achieve a low-variance
mutual information estimator. This improvement will contribute to better
disentanglement of speech attributes such as speaker identity and emotional
tone, leading to high-quality, natural-sounding speech synthesis.

Dataset Development and Preprocessing

• Utilization of the Expresso Dataset: Utilizing the Expresso dataset provided
by Meta AI, which includes diverse speech samples crucial for training and
evaluating the proposed methods. Comprehensive preprocessing steps will
be applied to the dataset for effective training and testing of the models.

Model Implementation and Extension

• Extension of FastSpeech 2 Model: FastSpeech 2 model will be extended
to incorporate advanced disentanglement techniques, focusing on separating
content, speaker identity, and style attributes in speech signals. This involves
modifying the model architecture to enhance its capability in handling mul-
tiple speech attributes independently.

Experimental Setup and Results Analysis

• Detailed Experimental Setup: The research will include a detailed experi-
mental setup, specifying hardware and software configurations, dataset split-
ting methods, and evaluation protocols. This ensures reproducibility and
transparency in the research methodology.

• Analysis and Interpretation of Results: The results of the experiments will
be analyzed to compare the performance of different disentanglement tech-
niques.

Limitations and Future Work

• Discussion of Limitations: The study will discuss the limitations encoun-
tered during the research, providing a critical analysis of the challenges and
potential areas for improvement.

• Suggestions for Future Work: Based on the findings, directions for future
research will be suggested, identifying areas that require further investigation
and development



Chapter 2

Literature Review

2.1 Overview of Speech Signal Representation

Speech signal representation is a fundamental concept in the field of speech pro-
cessing, playing a crucial role in various applications such as speech recognition,
speaker identification, and text-to-speech synthesis. This section will provide an
overview of key methodologies and advancements in speech signal representation,
emphasizing traditional techniques, recent developments, and their implications
for speech processing tasks.

2.1.1 Traditional Methods of Speech Signal Representation

Mel-Frequency Cepstral Coefficients (MFCCs) [10] have been a fundamen-
tal component in speech signal processing for several decades. They are derived
from the Fourier transform of the signal and provide a compact representation of
the speech spectrum. By modeling the human ear’s perception of sound frequen-
cies, MFCCs effectively capture the important features of speech signals. However,
they also have disadvantages, such as sensitivity to noise and a lack of robustness
to variations in speech conditions, which can affect their performance in real-world
applications.

Linear Predictive Coding (LPC) [20] analyzes the speech signal by estimat-
ing the formants and eliminating their effects from the speech waveform. Formant
estimation refers to determining formant parameters such as resonant frequency
and bandwidth. This method is based on the source-filter model of speech produc-
tion and provides a parametric representation of the spectral envelope of the speech
signal. However, LPC has disadvantages, such as sensitivity to pitch and errors in
formant estimation, which can lead to inaccuracies in the spectral representation,
especially in the presence of noise or rapid speech variations.

Mel spectrograms [11] are another traditional method used for representing
speech signals. They convert the speech signal into a time-frequency representa-
tion, where the frequency axis is scaled according to the Mel scale, which approx-
imates the human ear’s response to different frequencies. This method provides a

7
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more detailed and perceptually relevant visualization of the speech signal’s spec-
tral content, making it useful for various speech processing tasks. However, Mel
spectrograms also have drawbacks, including high computational complexity and
sensitivity to noise, which can impact their accuracy and efficiency in practical
applications.

Figure 2.1: An example of speech waveform and spectrogram. (a) Waveform (b)
Linear-spectrogram (c) Mel-spectrogram

2.1.2 Advanced Neural Representations

Deep Neural Networks (DNNs) have revolutionized speech signal representa-
tion by learning hierarchical features from raw audio data. These models, such as
convolutional neural networks (CNNs) [21] and recurrent neural networks (RNNs)
[22], can automatically extract complex patterns and representations that are
highly effective for various speech processing tasks [23].

WaveNet [24], developed by DeepMind, is a generative model for raw audio
waveforms that leverages deep learning to produce highly realistic speech signals.
It models the probability distribution of the waveform samples directly, capturing
intricate temporal dependencies in the data .

Transformers models [25], particularly those like SpeechBERT [26], have
shown significant promise in capturing long-range dependencies in speech signals.
By using self-attention mechanisms, transformers can learn robust representations
that improve performance in tasks such as speech recognition and synthesis [27].
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2.1.3 Hybrid Approaches

Combination of Traditional and Neural Methods Recent research [28] has
explored hybrid approaches that combine the strengths of traditional signal pro-
cessing techniques with advanced neural representations. For instance, features
like MFCCs are often used as inputs to DNNs to leverage their interpretability
alongside the powerful learning capabilities of deep network.

Self-Supervised Learning approaches [29, 30, 31], such as Contrastive Pre-
dictive Coding (CPC), leverage large amounts of unlabeled data to learn meaning-
ful representations. These methods have shown great potential in capturing useful
speech features without extensive labeled datasets.

2.1.4 Emerging Trends and Future Directions

Multimodal Speech Representations The integration of speech with other
modalities such as text, video, and sensor data is an emerging trend. Multimodal
approaches can provide richer and more contextually relevant representations, im-
proving the performance of speech processing systems [32].

2.2 Conditional Speech Synthesis

Conditional speech synthesis focuses on producing human-like speech driven by
specific inputs, such as text, speaker identity, or emotional tone. This field has
seen substantial progress with the advent of deep learning, resulting in models that
can generate high-quality, natural-sounding speech. In this section, we explore key
methods and models in the domain of conditional speech synthesis, highlighting
their impact and advancements.

2.2.1 Early Methods

Concatenative Synthesis was one of the earliest methods used in TTS sys-
tems. It involves piecing together segments of recorded speech to form complete
utterances. While it can produce natural-sounding speech, it is limited by the
variability and size of the speech database, making it less flexible and scalable.
Panda and Nayak [33] describe the integration of rule-based methods with wave-
form concatenation to improve the naturalness of synthesized speech, yet they
note limitations in flexibility due to database constraints. Additionally, a lot of
research has been done to propose improvements to the efficiency of concatenative
TTS systems. For instance, ”An efficient unit-selection method for concatenative
text-to-speech synthesis” [34] suggests enhancements to optimize the performance
of these systems.

Formant Synthesis generates speech by simulating the resonant frequencies
of the human vocal tract. This method allows for more control over speech param-
eters but often results in less natural-sounding speech compared to concatenative
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synthesis. Recent advancements in formant synthesis have focused on leveraging
deep learning techniques to improve the naturalness and flexibility of the gen-
erated speech. For instance, the study on ”Speaker-independent neural formant
synthesis” [35] discusses a deep learning approach that uses a small set of pho-
netically meaningful speech parameters to generate high-quality speech through
neural vocoders like WaveNet and HiFi-GAN [36].

Articulatory synthesis [37, 38] generates speech by mimicking the move-
ments of human speech organs such as the lips, tongue, glottis, and vocal tract. In
theory, this method could be the most effective approach to speech synthesis since
it replicates the natural process of human speech production. However, modeling
these articulatory behaviors accurately is extremely challenging. For instance, ac-
quiring the necessary data for simulating these articulatory movements is difficult.
Consequently, the speech quality produced by articulatory synthesis is generally
lower compared to later methods like formant synthesis and concatenative synthe-
sis.

2.2.2 Deep Learning-based Approaches

Deep learning-based approaches have revolutionized conditional speech synthesis
by leveraging neural networks to generate high-quality, natural-sounding speech.
These methods typically use models like neural vocoders, autoencoders, and gener-
ative adversarial networks (GANs) to synthesize speech conditioned on various in-
puts such as text, speaker identity, and emotional tone. Deep learning approaches
also enable fine-grained control over speech characteristics. For instance, models
can be conditioned on various attributes, such as speaker identity, to generate
speech in different voices, or on prosodic features to alter the rhythm and intona-
tion of speech. This makes them highly versatile for applications in text-to-speech
systems, voice cloning, and emotional speech synthesis.

WaveNet, developed by DeepMind, marked a significant breakthrough in
speech synthesis. It is a deep generative model that produces raw audio wave-
forms and is capable of generating highly realistic and natural-sounding speech.
WaveNet models the probability distribution of audio samples directly, capturing
intricate temporal dependencies

Tacotron is an end-to-end neural network architecture for TTS. It converts
text into mel spectrograms, which are then transformed into waveforms using a
vocoder. Tacotron and its successor, Tacotron 2 [39], have set new benchmarks in
the field by producing high-quality speech with natural prosody and intonation

FastSpeech addresses the speed and robustness limitations of previous models
like Tacotron. It is a non-autoregressive model that predicts mel spectrograms
from text in parallel, significantly reducing inference time while maintaining high
speech quality. FastSpeech 2 further improves the model by incorporating more
accurate duration predictions and additional conditioning information.

Glow-TTS [40] is a flow-based generative model for TTS that offers high-
quality speech synthesis with the advantage of being invertible and having a
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tractable likelihood. It uses normalizing flows to model the distribution of mel
spectrograms conditioned on text.

NaturalSpeech 3 [41] is another state-of-the-art TTS model that focuses on
enhancing the naturalness and expressiveness of synthesized speech. It leverages
advancements in neural network architectures and training techniques to produce
speech that closely mimics human-like prosody and intonation. The model in-
corporates sophisticated conditioning mechanisms and a high-fidelity vocoder to
generate clear and natural audio, setting new standards in the field of TTS.

2.2.3 Conditional Speech Synthesis Techniques

Conditional speech synthesis techniques are pivotal in creating advanced TTS
systems that can adapt to various linguistic and paralinguistic features. These
techniques enable the generation of more natural, expressive, and contextually
appropriate speech by conditioning the synthesis process on specific attributes or
conditions.

Speaker Adaptation and Transfer Learning Speaker adaptation [42] in-
volves fine-tuning a pre-trained TTS model on a small dataset of a target speaker’s
voice. This enables the model to synthesize speech in the target speaker’s voice
with high fidelity. Transfer learning techniques are often used to adapt the model
efficiently without requiring extensive data from the target speaker.

Prosody control techniques aim to manipulate aspects of speech such as
pitch, duration, and intensity to produce expressive and natural-sounding speech.
By conditioning the TTS model on prosodic features, it is possible to generate
speech that conveys different emotions and speaking styles [43].

Emotion and style transfer in speech synthesis involve conditioning the
model on attributes like emotional state or speaking style. This allows the TTS
system to produce speech that reflects specific emotions or mimics particular styles,
enhancing the expressiveness and versatility of synthesized speech [44, 45].

Multi-Speaker and Cross-Lingual Synthesis Multi-speaker TTS models
can synthesize speech in different voices by conditioning on speaker identity, while
cross-lingual synthesis enables TTS systems to generate speech in multiple lan-
guages [46]. These models use speaker embeddings or language embeddings to
condition the synthesis process, allowing for the generation of speech in various
voices and languages with a single model.

As research in this field continues to evolve, we can expect even greater inno-
vations that will push the boundaries of what is possible in speech synthesis.

2.3 Text-To-Speech (TTS) Systems

2.3.1 Text To Speech Systems in the Era of Deep Learning

With the advent of deep learning, neural network-based text-to-speech systems
have emerged, utilizing deep neural networks as the core technology for speech
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synthesis. A significant breakthrough came with the introduction of WaveNet,
which directly generates waveforms from linguistic features and is considered the
first modern neural TTS model.

Subsequently, models like DeepVoice 1 [47] and DeepVoice 2 [48] are structured
using three main components (text analysis, acoustic model and vocoder) with each
component being enhanced through neural network-based solutions. Moreover,
end-to-end models such as Char2Wav [49], Tacotron 1, Tacotron 2, Deep Voice
3 [50], FastSpeech 1 and FastSpeech 2 were developed. These models stream-
line the text analysis modules by directly using character or phoneme sequences
as input and simplifying acoustic feature generation with mel-spectrograms. More
recently, fully end-to-end TTS systems have been created that generate waveforms
directly from text input. Examples of these advanced models include ClariNet [51],
FastSpeech 2, EATS [52], and NaturalSpeech [53]. Compared to earlier TTS meth-
ods based on concatenative, formant synthesis and articulatory Synthesis, neural
network-based TTS offers significant advantages, including superior voice quality
in terms of intelligibility and naturalness, as well as reduced need for extensive
human preprocessing and feature engineering.

2.3.2 Components of TTS Systems

A neural TTS system is composed of three fundamental components: a text analy-
sis module, an acoustic model, and a vocoder. As depicted in Figure 2.2 , the text
analysis module translates a text sequence into linguistic features, the acoustic
model generates acoustic features from these linguistic features, and the vocoder
synthesizes the waveform from the acoustic features. Specifically, we begin by out-
lining the main taxonomy of the fundamental components of neural TTS, followed
by detailed discussions on text analysis, acoustic models, and vocoders.

Figure 2.2: Key Components of TTS

2.3.2.1 Text Analysis

The text analysis component is a critical part of a TTS system. It processes raw
text input to prepare it for further stages of speech synthesis. Text analysis involves
multiple steps to accurately convert text into speech. Among these steps, two
fundamental methods are grapheme-to-phoneme (G2P) conversion and prosodic
analysis.

Grapheme-to-Phoneme Conversion is the process of translating written
text (graphemes) into their corresponding pronunciations (phonemes). This step
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is crucial because it bridges the gap between text and its phonetic representation,
enabling the TTS system to know how words should be pronounced. For instance
the word ’phone’ is converted into ’f ow n’. A significant amount of research
has been conducted in this area, leading to the development of neural network
approaches for grapheme-to-phoneme conversion. These approaches leverage the
power of deep learning to handle the complexities and irregularities of non-phonetic
languages [54, 55, 56].

Prosodic Analysis examines the rhythmic and intonational aspects of speech,
which are crucial for constructing synthesized speech that sounds natural. This
involves analyzing prosodic elements such as rhythm, stress, and intonation, which
correspond to variations in phoneme duration, loudness, and pitch.

1. Pitch (Fundamental Frequency): Refers to the variations in the pitch of
the voice, which help in distinguishing between questions, statements, and
emotions.

2. Duration: The length of time each sound is held, which can emphasize
certain words or indicate natural pauses in speech.

3. Intensity (Loudness): The volume of speech, which can be used to stress
important words and convey emotions.

Prosodic features are extracted from text to guide the modulation of speech
synthesis, ensuring that the generated speech sounds natural and expressive.

Text Analysis in Neural TTS

In neural TTS systems, the advanced modeling capabilities of neural networks
allow character or phoneme sequences to be used directly as input for speech syn-
thesis. This method significantly reduces the complexity of the text analysis mod-
ule, compared with traditional TTS systems, where text analysis often involved
multiple intricate steps including part-of-speech tagging, syntactic parsing, and
extensive rule-based processing to handle various linguistic nuances. When char-
acters are utilized as input, only text normalization is required to transform raw
text into a standard word format. On the other hand, if phonemes are employed as
input, an additional grapheme-to-phoneme conversion step is necessary to derive
phonetic representations from the standardized word format. Text analysis has
been integrated into neural TTS systems in several ways:

• Neural Network-Based Text Analysis Modules: Char2Wav and Deep-
Voice 1 & 2 have implemented character-to-linguistic feature conversion di-
rectly into their pipelines using neural networks. Unified models by Pan et
al. [57] and Zhang et al. [58] have adopted a multi-task paradigm to cover
all text analysis tasks, achieving excellent results.
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• Prosody Prediction: Prosody is vital for the naturalness of synthesized
speech. Despite the simplification of text analysis in neural TTS, prosody
prediction features have been incorporated into the text encoder. These
include the prediction of pitch, duration, phrase breaks [59], breath or filled
pauses, and prosodic style features, enhancing the overall speech synthesis
quality.

• Reference Encoders: Some models utilize reference encoders to learn
prosody representations from reference speech [60, 61]. This approach helps
in capturing the nuances of natural speech prosody and integrating them
into synthesized speech.

• Text Pre-Training: Several works focus on learning robust text repre-
sentations with implicit prosody information through self-supervised pre-
training methods [62, 63, 64]. This method helps in capturing the subtleties
of prosody, contributing to more natural-sounding speech synthesis.

• Incorporating Syntax Information: Dedicated modeling methods, such
as graph networks [65], have been employed to incorporate syntax informa-
tion into neural TTS systems. This approach ensures that the syntactic
structure of the text is considered, enhancing the coherence and natural flow
of the generated speech.

2.3.2.2 Acoustic Modeling

Acoustic models are responsible for generating acoustic features from linquistic
inputs or directly from phonemes. Over the evolution of TTS systems, a variety of
acoustic models have been utilized, hidden Markov Models (HMMs) [66], Deep
Neural Networks (DNNs), sequence-to-sequence models based on the encoder-
attention-decoder framework, incorporating architectures like RNNs, CNNs, and
Transformers. More recent advancements include feed-forward networks, specif-
ically utilizing CNNs and Transformers [67], as well as cutting-edge generative
models such as GANs [68], VAEs [69], and Diffusion models [70]. Below, there is
a table that provides examples of generative models used for acoustic modeling in
TTS systems.

Model Type Models

GAN-Based Models GAN [71], TTS-Stylization [72], Multi-SpectroGAN [68]
Flow-Based Models Flowtron [73], Flow-TTS [74], Glow-TTS [40]
VAE-Based Models BVAE-TTS [75], VAE-TTS [76], Para. Tacotron 1 [77] & 2 [78]

Diffusion-Based Models Diff-TTS [79], Grad-TTS [80], PriorGrad [81]
Transformer-Based Models TransfomerTTS [82], FastSpeech [15], FastSpeech 2 [1]

Table 2.1: Acoustic Models
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In a later section, we will analyze in depth the acoustic model of FastSpeech
2, exploring its architecture and the innovations it brings to TTS systems.

2.3.2.3 Speech Synthesis - Vocoder

Vocoders are responsible for generating waveforms from acoustic features or di-
rectly from linguistic features. Vocoder technology has evolved significantly along-
side the development of TTS systems. Initially, various signal processing-based
vocoders were employed [83, 84]. However, advancements in neural networks have
led to the adoption of neural network-based vocoders [24, 85, 86, 87] which offer
enhanced performance and quality.

Vocoders in Neural TTS

Early neural vocoders, such as WaveNet, Parallel WaveNet [88, 85], and Wa-
veRNN , directly take linguistic features as input to generate waveforms. Later
models, such as WaveGlow, FloWaveNet, MelGan [89], use mel-spectrograms as
input for waveform generation. Given that speech waveforms are extensive, autore-
gressive waveform generation can be time-consuming. To address this, various deep
generative models have been employed for waveform generation, including Normal-
izing Flows such as NICE [90, 91] Generative Adversarial Networks [92], Varia-
tional Autoencoders [93], and Denoising Diffusion Probabilistic Models (DDPM)
[94]. Below is a table that provides examples of different vocoder implementations
in TTS systems.

Vocoder Type Models

Aurtoregressive WaveNet, SampleRNN [95], WaveRNN, LPCNet [96], FFTNet [97]
Flow-Based Par. WaveNet, WaveGlow, FloWaveNet , SqueezeWave [98]
GAN-Based WaveGAN [99], GAN-TTS [100], HiFi-GAN, VocGAN [101], GED [102]

Diffusion-Based WaveGrad [103], DiffWave , InferGrad [104]

Table 2.2: Vocoder Models

In a later section, we will analyze the HiFi-GAN vocoder that FastSpeech 2
uses.

2.4 Disentangled Representation Learning

Disentangled representation learning [105] aims to separate underlying factors of
variation in data into distinct and interpretable components. This approach is
crucial in fields like computer vision, natural language processing, and speech
synthesis, as it helps models understand and manipulate specific attributes without
interference from others.
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In the context of speech synthesis, this technique offers significant advantages.
For instance, in voice conversion, disentangling speaker identity from linguistic
content makes it possible to convert one person’s speech to sound like another’s
while maintaining the original content. Additionally, by disentangling prosody
(which includes intonation, stress, and rhythm), it becomes feasible to generate
speech with varying emotional tones and expressions, enhancing the expressiveness
and versatility of synthesized speech.

2.4.1 Techniques and Models in Disentangled Representation Learn-
ing

Various techniques and models have been developed to achieve disentanglement,
each leveraging different methodologies to address the challenges inherent in di-
verse application domains such as computer vision, natural language processing,
and speech synthesis. Below, we will discuss some of the prominent techniques
and models that have been developed to achieve disentanglement.

1. Variational Autoencoders (VAEs) are commonly used for disentangled
representation learning by forcing the latent space to adhere to a prede-
fined distribution, making it easier to separate different factors of variation.
Examples include β-VAE [106] and Factor-VAE [107], which introduce mod-
ifications to the standard VAE framework to encourage disentanglement.

2. Generative Adversarial Networks (GANs) can also be adapted for dis-
entangled representation learning. Models like InfoGAN [108] maximize the
mutual information between subsets of the latent variables and the observa-
tions to encourage disentanglement. StyleGAN [109] achieves disentangle-
ment through style transfer techniques in the generator network.

3. Self-Supervised Learning Techniques like contrastive learning have been
employed to achieve disentanglement without labeled data. Contrastive
Learning [110] is a deep learning technique for unsupervised representation
learning. The goal is to learn a representation of data such that similar
instances are close together in the representation space, while dissimilar in-
stances are far apart. By contrasting different views of the same data, models
learn to separate meaningful variations.

4. Mutual Information-Based Methods Methods based on mutual infor-
mation aim to maximize the mutual information between latent variables
and observed data, helping to ensure that each latent variable captures dis-
tinct and meaningful aspects of the data. Mutual information measures the
dependency between variables. In the context of disentangled representa-
tion learning, MI quantifies how much information a latent variable contains
about a specific aspect of the data. By maximizing MI between latent vari-
ables and observed data, these methods encourage each latent variable to
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capture distinct information, leading to more interpretable and useful repre-
sentations.

2.5 Information Theory in Machine Learning

This section will explore how information theory principles are applied in machine
learning, highlighting key concepts, applications, and significant research contri-
butions.

2.5.1 Key Concepts in Information Theory

Mutual information quantifies the amount of information gained about one ran-
dom variable through another, effectively measuring the reduction in uncertainty
of one variable given the knowledge of another. In machine learning, mutual in-
formation is instrumental for feature selection and clustering. It helps identify
features that contribute the most to the predictive power of a model by deter-
mining which features share the most information with the target variable. This
process aids in constructing simpler, more interpretable models without sacrificing
performance. Additionally, mutual information enhances clustering methods by
ensuring that the formed clusters are highly informative about the data’s inherent
structure. Consequently, mutual information-based disentangled representation
learning can create representations where different aspects of the data are clearly
separated, improving model performance and interpretability.

Kullback-Leibler Divergence (DKL) measures the difference between two
probability distributions, specifically quantifying the information lost when one
distribution approximates another. Additionally, DKL can be employed to esti-
mate mutual information for two random variables using neural estimators.

Neural Network Estimators for Mutual Information leverage the power
of neural networks to estimate mutual information by learning the dependencies
between high-dimensional continuous variables. Various techniques have been de-
veloped to approximate mutual information, utilizing the expressive capabilities
of neural networks to model complex relationships within the data. For example,
Belghazi et al. introduced a neural estimator for mutual information [4] that uses
neural networks to approximate the mutual information between high-dimensional
continuous variables. Similarly, Poole et al. [111] proposed techniques that employ
neural networks to estimate bounds on mutual information, thereby facilitating the
integration of information-theoretic objectives into the training of deep learning
models.
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2.6 Previous Work on Disentanglement in Speech Pro-
cessing

Two primary techniques in disentangled representation learning for speech pro-
cessing, are Disentangling with Adversarial Training and Disentangling with Semi-
Supervised Learning.

1. Disentangling with Adversarial Training

Various studies have explored this area using adversarial training techniques.
For instance, Ma et al. [72] enhanced content-style disentanglement ability
and controllability through adversarial and collaborative games. Hsu et al.
[112] leveraged the VAE framework with adversarial training to disentangle
noise from speaker information. Qian et al. [113] proposed SpeechFlow, a
method that disentangles rhythm, pitch, content, and timbre using three
bottleneck reconstructions. Zhang et al. [114] focused on disentangling noise
from speakers using frame-level noise modeling and adversarial training.

2. Disentangling with Semi-Supervised Learning

Controlling speech synthesis attributes such as pitch, duration, energy, prosody,
emotion, speaker, and noise can be easier when labels for each attribute are
available. However, the challenge arises when there are no tags or only partial
labels. When partial labels are available, [115] proposed a semi-supervised
learning method to learn the latent variables of the VAE model, enabling con-
trol over attributes like affect or speaking rate. In scenarios where no labels
are available, [69] introduced Gaussian mixture VAE models to disentangle
different attributes. Furthermore, adversarial training techniques have been
employed to handle noisy data; for instance, [116] and [117] utilized gradi-
ent reversal or adversarial training to disentangle speaker timbre from noise,
thereby facilitating the synthesis of clean speech for noisy speakers.

In this section we provide several notable studys that focus on disentanglement
representation learning on the domain of speech.

Below

1. Voice Conversion and Speaker Identity

Chou et al. [118] introduces a novel framework for voice conversion that
operates without the need for parallel data. Unlike traditional methods that
require individual models for each target speaker, this approach allows a
single model to convert voices to multiple different speakers. The key inno-
vation lies in disentangling speaker characteristics from the linguistic content
in speech signals. Additionally, Hsu et al. [119] presents a generative adver-
sarial network based approach to disentangle speaker identity from phonetic
content, enhancing voice conversion systems. These advancements signifi-
cantly improve the flexibility and efficiency of voice conversion technologies
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by enabling better separation of speech components, thereby enhancing the
quality and naturalness of the synthesized speech.

2. Prosody and Content Disentanglement

Research done by L. Qu et al. [120] addresses the challenging problem of
disentangling prosodic information from speech, which is intrinsically associ-
ated with other attributes like timbre and rhythm. The authors propose an
unsupervised approach to extract emotional prosody from speech through a
novel model called Prosody2Vec. This model integrates three key compo-
nents to effectively disentangle prosody from semantic content and speaker
identity. Skerry-Ryan et al. [39].

3. Speaker Adaptation and Emotional Tone

Akuzawa et al. [121] explores using Variational Autoencoders for expressive
speech synthesis, enabling the separation of speaker identity and emotional
tone.
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Chapter 3

Preliminary Work

In this chapter, we outline the methodology employed to conduct our research.
This includes a detailed description of the dataset utilized, the preprocessing steps
undertaken to prepare the data for analysis, an overview of the FastSpeech 2 model
and its components.

3.1 Dataset

3.1.1 Description of the Expresso Dataset

The Expresso Dataset [2] serves as the primary data source for our research.
It comprises a collection of high-quality (48kHz) expressive speech waveforms
(36GB), annotated audio recordings specifically designed for speech synthesis and
analysis tasks. The dataset includes a diverse range of speakers and multiple lin-
guistic contexts to ensure robustness and generalization of the models developed.

Key features of the Expresso Dataset The Expresso dataset includes a
collection of 40 hours of speech data from 4 speakers (2 males, 2 females), en-
compassing multiple speech styles. This dataset captures a wide range of speech
variations, including different speaking rates and emotional tones, ensuring diver-
sity. It includes speech recordings with various speaking styles such as confused,
default, enunciated, happy, laughing, sad, and whisper. The audio was recorded
in a professional recording studio with minimal background noise at 48kHz/24bit.
Additionally, transcriptions of the speech are provided. The Expresso dataset is
distributed under the CC BY-NC 4.0 license.

21
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3.1.2 Data Statistics

Below are the statistics of Expresso’s expressive styles:

Table 3.1: Speech Data by Style

Style Read (min) Improvised (min) Total (hrs)

angry - 82 1.4
animal - 27 0.4
animal directed - 32 0.5
awe - 92 1.5
bored - 92 1.5
calm - 93 1.6
child - 28 0.4
child directed - 38 0.6
confused 94 66 2.7
default 133 158 4.9
desire - 92 1.5
disgusted - 118 2.0
enunciated 116 62 3.0
fast - 98 1.6
fearful - 98 1.6
happy 74 92 2.8
laughing 94 103 3.3
narration 21 76 1.6
non verbal - 32 0.5
projected - 94 1.6
sad 81 101 3.0
sarcastic - 106 1.8
singing* - 4 0.07
sleepy - 93 1.5
sympathetic - 100 1.7
whisper 79 86 2.8

Total 11.5h 34.4h 45.9h

Read speech involves speakers reading pre-written text scripts and Impro-
vised speech includes spontaneous and unscripted dialogue or monologues.
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3.1.3 Directory Structure

The expresso dataset directory has the following structure:

expresso/

|-- README.txt

|-- LICENSE.txt

|-- read_transcriptions.txt

|-- VAD_segments.txt

|-- splits/

| |-- train.txt

| |-- dev.txt

| |-- test.txt

| |-- README

|-- audio_48khz/

|-- conversational/

| |-- ex04-ex01/

| | |-- laughing/ # both channels have the same style

| | | |-- ex04-ex01_laughing_001.wav

| | | |-- ex04-ex01_laughing_002.wav

| | | |-- ...

| | |-- ...

| |-- ...

|-- read/

|-- ex03/ # speaker

| |-- default/ # style

| | |-- longform/ # recorded in long format

| | | |-- ex03_default_longform_00001.wav

| | |-- base/ # recorded in short sentences

| | |-- ex03_default_00003.wav

| | |-- ex03_default_emphasis_00010.wav

| | |-- ex03_default_essentials_00005.wav

| | |-- ...

| |-- happy/

| | |-- base/

| | |-- ex04_happy_00085.wav

| | |-- ex04_happy_00091.wav

| | |-- ...

| |-- ...

|-- ...

The conversational audio directory has the following structure:

conversational/{speaker pair}/{styles}/{speaker pair}_{styles}_{id}.wav

The read audio directory has the following structure:

read/{speaker}/{style}/{corpus}/{speaker}_{style or substyle}_{id}.wav
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Table 3.2: Audio Samples for Different Style Categories

Sample Type Speaker ID Audio

Confused Speaker 1 Play
Default Speaker 3 Play

Enunciated Speaker 1 Play
Happy Speaker 4 Play

Laughing Speaker 4 Play
Sad Speaker 3 Play

Whisper Speaker 2 Play

3.1.4 Dataset Samples

In table 3.2 we provide some random samples for different style categories (Adobe
Acrobat Reader - Click on the ”Play” button to listen to the audio samples or
visit the Expresso website).

3.1.5 Preprocessing Steps

Before the main preprocessing module, we need to prepare the alignment of our
data. The alignment preparation process involves several key steps, as illustrated
in the Figure 3.1. Below is a detailed breakdown of each step:

Figure 3.1: Aligment Pipeline

1. Downsample Audio: The first step is to downsample the audio files to the
target sampling rate of 22kHz. This ensures that all audio data is consistent
and suitable for further processing.

2. Load Corresponding Text: For each audio file, we load the corresponding
text file. This text file contains the content of the audio file, and it is crucial
for aligning the audio with its transcription.

3. Clean Text: The loaded text undergoes a series of cleaning operations to
normalize and standardize it. Examples of text cleaning include:

• Converting all text to lowercase to maintain uniformity.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}


https://speechbot.github.io/expresso/
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• Removing any non-alphanumeric characters (except spaces) to focus on
the actual content.

• Replacing multiple spaces with a single space to avoid unnecessary gaps.

• Splitting the text into tokens (words or subwords) that can be processed
by the phoneme conversion tools.

4. Normalize Audio: The audio waveform is normalized to ensure consistent
amplitude levels across all files. This involves scaling the audio signal to a
standard range, typically using the maximum WAV value specified in the
configuration.

5. Save Clean Text and Normalized Audio: Finally, the cleaned text
and normalized audio are saved to the target directory. This organized and
standardized data is then ready for the main preprocessing module.

Creating TextGrids with Montreal Forced Aligner The next step in our
preprocessing pipeline is to create TextGrids for each audio file. TextGrids are
annotation files that contain time-aligned transcriptions of the audio data. To ob-
tain these alignments, we use the Montreal Forced Aligner (MFA) tool. Montreal
Forced Aligner [122] is a tool that provides accurate alignments between spoken
utterances and their corresponding phoneme sequences. It leverages acoustic mod-
els and pronunciation dictionaries to perform forced alignment, producing precise
timings for each phoneme in the utterance. The resulting TextGrids are crucial
for training models like FastSpeech 2, which require detailed phoneme-level align-
ments. An example of a TextGrid file created using MFA can be found in Appendix
8.1. The TextGrid file sample in the Appendix section, aligns the spoken sentence
”how about the age of innocence or vanity fair” with its corresponding phonemes.
The file contains two tiers: ”words” and ”phones,” each providing precise timing
intervals for words and phonemes respectively.

Figure 3.2: Montreal Forced Aligner

Preprocessing Main Pipeline The primary preprocessing pipeline comprises
three key modules: the process utterance module, the scaling and normalization
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module, and the metadata generation module. Each of these modules plays a
crucial role in preparing the data for subsequent stages. As illustrated in Figure
3.3, these components work together to ensure high-quality input for model train-
ing. In the following sections, we will analyze each module in detail, providing a
comprehensive understanding of their functions and implementations.

Figure 3.3: Preprocess Pipeline

The first module is the Process Utterance module Figure 3.4, where the fol-
lowing preprocessing steps occur:

Figure 3.4: Process Utterance Module

1. TextGrid Reading: The TextGrid file is read to obtain phone alignments
and durations.

2. Audio Loading and Trimming: The audio file is loaded and trimmed to
the relevant segment using the start and end times from the TextGrid.

3. Pitch Computation: The fundamental frequency (pitch) is computed us-
ing pyworld.

4. Mel-spectrogram and Energy Computation: The mel-spectrogram and
energy are computed using the short-time Fourier transform (STFT).

5. Phoneme-level Averaging: The pitch and energy values are averaged over
the duration of each phoneme.

6. Saving Features and Metadata Creation: The computed features (du-
ration, pitch, energy, mel-spectrogram) are saved as .npy files and metadata
for the utterance is collected and returned.
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The next module is called Scaling and Normalization Figure 3.5, where the
following steps occur:

Figure 3.5: Scaling and Nomalization Module

1. Pitch and Energy Scaling: The StandardScaler from sklearn is used to
compute mean and standard deviation for pitch and energy across all utter-
ances.

2. Normalization: Pitch and energy values are normalized by subtracting the
mean and dividing by the standard deviation.

3. Statistics Saving: The computed statistics (mean, std, min, max) for pitch
and energy are saved to a JSON file.

The last module is Metadata Generation Figure 3.6, where the following steps
occur:

Figure 3.6: Metadata Generation Module

1. Shuffling and Splitting: The collected metadata is shuffled and split into
training and validation sets based on the specified validation size.

2. Saving Metadata: The metadata for training and validation sets is saved
to text files (train.txt and val.txt).
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3.2 Models and Algorithms

In this section, we delve into the core methodologies and frameworks employed in
our study. We will begin by exploring the FastSpeech 2 model.

3.2.1 Overview of Fastspeech 2

FastSpeech 2 was introduced to improve upon its predecessor, FastSpeech, in two
major aspects. First, it uses ground-truth mel-spectrograms as training targets
instead of the distilled mel-spectrograms derived from an autoregressive teacher
model as in FastSpeech. This modification simplifies the two-stage teacher-student
distillation process of FastSpeech and prevents the information loss that can occur
during the distillation of target mel-spectrograms. Second, FastSpeech 2 integrates
additional variance information, including pitch, duration, and energy, into the
decoder input. This enhancement addresses the one-to-many mapping problem
in text-to-speech synthesis, as noted in previous studies. Overall, FastSpeech 2
provides better voice quality than FastSpeech while maintaining its advantages of
fast, robust, and controllable speech synthesis.

3.2.1.1 FastSpeech 2 Architecture

The Figure 3.7 illustrates the architecture of FastSpeech 2, which can be divided
into several key components:

Figure 3.7: FastSpeech 2 Architecture. LR in subfigure (b) denotes the length
regulator operation. LN in subfigure (c) denotes layer normalization. Variance
predictor represents duration/pitch/energy predictor.
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1. Phoneme Embedding and Positional Encoding: This component con-
verts the input phoneme sequence into embeddings. Positional encoding
is added to these embeddings to provide information about the position of
each phoneme in the sequence, which helps the model understand the order
of phonemes.

2. Encoder: The encoder processes the phoneme embeddings to generate hid-
den representations. This step involves capturing the relationships between
phonemes and transforming the input into a form that the subsequent layers
can use effectively.

3. Variance Adaptor: The variance adaptor includes predictors for duration,
pitch, and energy:

• Duration Predictor: Predicts the duration of each phoneme, which
helps in aligning the phoneme sequence with the time domain. For the
duration predictor, the output is the length of each phoneme in the
logarithmic domain.

• Pitch Predictor: Estimates the pitch contour, which is essential for
natural-sounding speech. For the pitch predictor, the output sequence
is the frame-level fundamental frequency sequence (F0).

• Energy Predictor: Determines the energy level for each phoneme,
contributing to the expressiveness of the generated speech. For the
energy predictor, the output is a sequence of the energy of each mel-
spectrogram frame.

• All predictors share the same model structure (variance pre-
dictor) but not model parameters.

4. Variance Predictor: It includes a linear layer followed by layer normaliza-
tion (LN) and dropout. Then, it uses a Conv1D layer with ReLU activation
and another set of layer normalization and dropout. This predictor ensures
the accurate prediction of variance information.

5. Mel-Spectrogram Decoder: This component generates the mel-spectrogram
from the adjusted hidden representations. The mel-spectrogram serves as an
intermediate representation of the audio signal.

6. Post-Net: is a convolutional neural network module, that serves as a post-
processing step to enhance the quality of the synthesized speech. After the
decoder generates the initial mel-spectrogram, it is passed through the Post-
Net to refine and smooth the spectrogram, reducing artifacts and improv-
ing the overall naturalness and intelligibility of the output speech. This
additional processing step ensures that the final synthesized speech closely
matches the desired audio quality.
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7. Vocoder: The vocoder is an essential component that converts the re-
fined mel-spectrogram into the final waveform. In our implementation of
FastSpeech 2, we utilize the HiFi-GAN vocoder for this task. HiFi-GAN
(High-Fidelity Generative Adversarial Network) is designed to produce high-
quality, natural-sounding speech waveforms.

Encdoer Architecture The core of the encoder consists of 4 Transformer layers.
Each Transformer layer includes:

• Multi-Head Attention: This mechanism allows the model to focus on dif-
ferent parts of the input sequence simultaneously, capturing various aspects
of the phoneme relationships.

• Feed-Forward Network (FFN): This component consists of two linear
transformations with a ReLU activation in between. It helps in further
transforming the representations.

• Layer Normalization and Dropout: To stabilize the training and prevent
overfitting, layer normalization and dropout are applied.

Parameter Value

Number of Layers 4 (encoder layer)

Number of Attention Heads 2 (encoder head)

Hidden Size 256 (encoder hidden)

Convolution Filter Size 1024 (conv filter size)

Convolution Kernel Size [9, 1] (conv kernel size)

Dropout Rate 0.2 (encoder dropout)

Table 3.3: Encoder Configuration for FastSpeech 2

3.2.1.2 FastSpeech 2 Vocoder

HiFi-GAN, known for its efficiency and high fidelity, is a generative adversarial
network-based vocoder that excels in producing realistic and clear speech. A GAN
comprises two main components: a generator, which is responsible for creating
data, and a discriminator, which assesses the authenticity of the generated data.
The optimization of a GAN involves an adversarial loss function, which can be
expressed as follows:

min
θ

max
ϕ

Ex∼pdata logD(x;ϕ) + Ex∼pz log(1−D(G(z; θ);ϕ)) (3.1)

where θ and ϕ denote the parameter of generator and discriminator respec-
tively, and pdata and pz denote the true data distribution and standard Gaussian
distribution.
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GAN Generator Discriminator Loss

HiFi-GAN [36] Multi-Receptive
Field Fusion

Multi-Period D, Multi-
Scale D

LS-GAN, STFT Loss,
Feature Matching Loss

Table 3.4: Components and Loss Functions of HiFi-GAN

HiFi-GAN processes various patterns of different lengths in parallel using a
multi-receptive field fusion module, allowing it to balance between synthesis effi-
ciency and sample quality. This module enhances flexibility, making it possible to
trade off between these factors. Additionally, HiFi-GAN incorporates multi-period
discriminators that use multiple discriminators to process equally spaced samples
of the input audio over different periods. Specifically, the 1D waveform sequence
of length T is reshaped into a 2D data array of dimensions [P,T/p], where p is
the period, and then processed by a 2D convolution. This approach enables the
model to capture various implicit structures by analyzing different parts of the
input audio at different periods.

These embedding layers function as lookup tables, where each entry corre-
sponds to a specific speaker or style. During the training process, the values in
these embedding layers are updated to minimize the loss and achieve the desired
synthesis outcomes. This means that the model learns to adjust the embeddings
to accurately represent the unique characteristics of each speaker and style.

3.2.1.3 FastSpeech 2 Loss Function

The FastSpeech 2 model employs a composite loss function designed to train the
neural network effectively. The loss function combines multiple components, each
targeting different aspects of the model’s output, to ensure the generated speech
matches the desired attributes and quality. Below we will analyze the components
of the Loss Function.

• Mean Squared Error (MSE) Loss: Used for predicting pitch, energy,
and duration. MSE measures the average squared difference between the
predicted and target values, which is suitable for continuous data.

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (3.2)

• Mean Absolute Error (MAE) Loss: Applied to mel-spectrogram predic-
tions. MAE calculates the average absolute differences between the predicted
and target values, providing a measure of the overall error magnitude.

MAE(x, y) =
1

n

n∑
i=1

|xi − yi| (3.3)
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Loss Calculation

• Mel Loss and Postnet Mel Loss: The loss between the predicted mel-
spectrogram and the target mel-spectrogram. This is calculated using MAE
loss for both the initial mel-spectrogram predictions and the refined postnet
mel-spectrogram predictions.

• Pitch Loss: The loss between the predicted and target pitch values. De-
pending on the feature level (phoneme or frame), the loss is calculated using
MSE on the masked sequences.

• Energy Loss: The loss between the predicted and target energy values.
Similar to pitch, it uses MSE loss and is applied to the masked sequences
based on the feature level.

• Duration Loss: The loss between the predicted and target log durations.
The logarithm of the durations is taken to stabilize training, and MSE loss
is used to measure the differences.

• Overall Loss: The total loss is the sum of all individual losses, ensuring
that the model learns to predict accurate mel-spectrograms, pitch, energy,
and duration. This composite loss function helps in training a robust and
high-quality TTS model.

Ltotal = Lmel + Lpostnetmel + Lpitch + Lenergy + Lduration (3.4)



Chapter 4

Disentanglement in Speech
Representation

4.1 Disentanglement Methods

This section delves into the primary techniques employed for disentanglement,
highlighting Gradient Reversal Layer and Dual Classifiers, as well as various Mu-
tual Information Estimators.

4.1.1 Gradient Reversal Layer and Dual Classifiers

Gradient Reversal Layer During forward propagation, the Gradient Reversal
Layer (GRL) (Appendix 8.2) functions as an identity transform. However, dur-
ing backpropagation, it behaves differently. The GRL takes the gradient from
the subsequent layer, multiplies it by −λ, and passes it to the preceding layers.
This reversal of the gradients during backpropagation forces the model to learn
representations that are invariant to certain attributes, effectively promoting the
disentanglement of these attributes.

Speaker and Style Classifiers We implemented two classifiers: one for speaker
identity (Appendix 8.3) and one for speaking style (Appendix 8.4). Both classifiers
are feed-forward neural networks with a single linear projection layer. The primary
difference between them lies in the output layer. The speaker classifier has an
output layer with four neurons, each corresponding to one of the four possible
speakers, while the style classifier has an output layer with seven neurons, each
representing one of the seven speaking styles. This design allows us to effectively
map the 256-dimensional embedding vectors to their respective speaker identities
and speaking styles by classifying them into the appropriate categories.

Additional Loss Term for Disentanglement We use cross-entropy loss for
both the speaker and style classifiers. The cross-entropy loss for a single example

33
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is given by:

CrossEntropyLoss(y, ŷ) = −
C∑
c=1

yc log(ŷc) (4.1)

where y is the true label, ŷ is the predicted probability, C is the number of
classes. For the speaker classifier, the cross-entropy loss, Lspeaker, is computed
between the predictions of the speaker classifier and the true speaker labels. Sim-
ilarly, for the style classifier, the cross-entropy loss, Lstyle, is computed between
the predictions of the style classifier and the true style labels.

To promote disentanglement between speaker identity and speaking style, we
introduce two classifiers: one for speaker identity and one for style, each trained
to minimize its own classification error through cross-entropy losses Lspeaker and
Lstyle. However, to ensure that the embeddings are disentangled, we employ an
adversarial training approach using a gradient reversal layer (GRL). In this setup.
the GRL is applied only to the embedding layer, such that when the gradients
from Lspeaker and Lstyle are backpropagated, they pass through the GRL. This ef-
fectively reverses the gradients’ directions before updating the embedding weights.
The overall adversarial term in the objective function becomes:

LGRL = λ(Lspeaker + Lstyle) (4.2)

where λ is a regularization coefficient that controls the influence of the re-
versed gradient contributions on the embeddings. The FastSpeech loss optimizes
the model’s performance for accurate speech synthesis, training it to match the
target outputs in terms of content, prosody, and naturalness. This loss encourages
the model to learn high-quality embeddings that can generate realistic speech.
In parallel, we have the adversarial loss from the GRL path. This component
includes the speaker and style classification losses Lspeaker and Lstyle which pass
through the GRL before reaching the embedding layer. By minimizing this ad-
versarial loss, the model is forced to produce embeddings that are uninformative
about speaker identity and style, promoting disentanglement of these attributes
in the learned representations. Thus, by jointly minimizing these two losses, we
encourage the model to learn representations that are invariant to variations in
both speaker identity and style, achieving robust and disentangled embeddings
suitable for generating high-quality speech while remaining flexible to speaker and
style changes.
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Figure 4.1: FastSpeech 2 Architecture with Gradient Reversal Layer and Dual
Classifiers for Speaker and Style Disentanglement

Training Procedure The Figure 4.2 illustrates the process of disentangling
speaker and style representations using a Gradient Reversal Layer with dual clas-
sifiers.

In the forward pass, the speaker and style embeddings are first passed through
the GRL. During this phase, the GRL acts as an identity unit, meaning it simply
passes the embeddings through without any changes.

Figure 4.2: Disentanglement Procedure

Following this, the speaker embedding, after passing through the GRL, is fed
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into the style classifier. This setup aims to predict the speaking style based on
the speaker embedding. Similarly, the style embedding, after passing through the
GRL, is fed into the speaker classifier. Here, the objective is to predict the speaker
identity from the style embedding.

Both the speaker prediction and the style prediction are then passed to the
Cross Entropy Loss function along with their corresponding true labels. This
loss function calculates the discrepancy between the predicted labels and the true
labels, which is used to update the network weights during back propagation.

In the backward pass, the Gradient Reversal Layer (GRL) modifies the gra-
dients flowing back through the network. Specifically, the GRL multiplies the
gradient by −λ (λ = 1) before passing it to the preceding layers. This operation
effectively reverses the gradient direction, which serves to penalize the network
during backpropagation. By doing so, the GRL encourages the model to learn
representations that are invariant to the attributes being disentangled. Essen-
tially, while the classifiers attempt to predict the speaker identity from the style
embedding and the style category from the speaker embedding, the reversed gra-
dients counteract this process. This penalization forces the model to reduce any
information about the speaker in the style embedding and vice versa, thus achiev-
ing better disentanglement.

4.1.2 Mutual Information Estimators

As we discussed in Section 2.5, mutual information (MI) is a measure of the mu-
tual dependence between two variables. It quantifies the amount of information
obtained about one variable through the other variable. In our approach, we uti-
lize deep neural networks to estimate the mutual information between two random
variables, specifically the speaker and style embeddings in our model.

To estimate MI, we construct two distributions: the joint distribution and
the product of marginals. The joint distribution is formed by concatenating the
speaker embedding and the style embedding Figure 4.3. The product of marginals
is constructed by concatenating the speaker embedding with a randomly permuted
style embedding, effectively breaking any inherent correlation between the two.
The joint distribution preserves the true correlation between speaker and style
embeddings, while the product of marginals, simulates the scenario where there is
no dependence between the two variables.

Since we do not have access to the true distributions and can only sample from
the training data, we approximate these distributions using the available samples.
By calculating the MI between these two distributions, we aim to enforce the
mutual information to approach zero during the whole training process, thereby
ensuring that the speaker and style embeddings occupy orthogonal spaces. When
the mutual information is zero, it indicates that there is no correlations between
the speaker and style embeddings, making them independent.

Now, we will analyze the different Mutual Information (MI) estimators that
we have implemented. This analysis will focus on understanding how each model
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Figure 4.3: Joint and Product of Marginals Distribution

computes the MI, whether as an upper or lower bound. Each of these models
approaches MI estimation differently, leveraging various techniques to approximate
the true mutual dependence between variables. One significant issue with MI
estimators is the high variance they exhibit. High variance in MI estimators means
that the estimated values can fluctuate widely depending on the specific sample or
batch of data used during training. This instability can make it difficult to obtain
reliable and consistent measurements of mutual information, leading to inaccurate
representations of the true dependency between variables. High variance can also
affect the convergence and performance of models that rely on these estimators,
resulting in slower training times and potentially less robust outcomes. Therefore,
managing and reducing this variance is crucial for improving the effectiveness and
reliability of MI-based disentanglement methods.

Figure 4.4: FastSpeech 2 Architecture with Mutual Information Estinmators for
Speaker and Style Disentanglement
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4.1.2.1 MINE

Mutual Information Neural Estimation (MINE) [4] is a method for estimating the
mutual information between two variables using neural networks. In our imple-
mentation, the MINE model is configured to handle the two distribution vectors
(joint and product of marginal distributions, as illustrated in Figure 4.3). The
MINE model uses a neural network (Appendix 8.5) to estimate MI by computing
the lower bound Figure 4.5 of the Kullback-Leibler (KL) divergence between these
distributions. The Kullback-Leibler divergence is given by

DKL(P ∥ Q) =
∑
x

P (x) log
P (x)

Q(x)
(4.3)

Figure 4.5: Mutual Information Estimation

where P and Q are the joint distribution and product of marginals distribu-
tion respectively. Our goal is to minimize the mutual information using the MINE
estimator, which provides a lower bound estimate of MI. When the MI is zero, it
indicates that there are no correlations between the speaker and style embeddings.
This independence means that the latent spaces for these embeddings are orthog-
onal, thereby achieving disentanglement. We add the MI loss term (λMI ∗ LMI)
to the overall loss function, which already includes other components such as mel-
spectrogram loss, duration loss, pitch loss, energy loss, and gradient penalty:

Ltotal = Lmel + Lpostnetmel + Lpitch + Lenergy + Lduration + λMI ∗ LMI

= LFS2 + λMI ∗ LMI
(4.4)

By adding the MI loss term to the total loss function, we enforce the model
to learn representations where speaker and style information are disentangled.
To enhance numerical stability, the maximum value of the product of marginals
vector is subtracted before applying the logarithm and exponential functions. This
technique, known as the ”log-sum-exp trick”, helps to avoid overflow and underflow
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issues during the computation of exponential functions, ensuring more stable and
reliable calculations. Again we use λmi as a regularization coefficient to scale the
mutual information (MI) loss, in the total loss function. The primary purpose of
this coefficient is to balance the contribution of the MI loss relative to other loss
components in the training objective.

4.1.2.2 INFO NCE

INFO NCE [5], is another technique to estimate a lower bound on mutual informa-
tion between two random variables. INFO NCE (Appendix 8.6) uses contrastive
learning to maximize the mutual information between two variables by contrasting
the true joint distribution against the product of marginals.

The goal of the InfoNCE method is to distinguish between true pairs of em-
beddings (positive pairs) and random pairs of embeddings (negative pairs).

Positive pairs are formed by directly concatenating the corresponding embed-
dings from X and Y. For negative pairs, we shuffle the Y embeddings and con-
catenate them with the X embeddings (all possible combinations of pairs). This
shuffling ensures that the correlation between X and Y is broken. Both the positive
pairs and the negative pairs are fed into the neural network (INFO NCE), which
processes these pairs and outputs a score.

The lower bound on mutual information is calculated using the scores from
positive and negative pairs.

MIlower bound =
1

N

N∑
i=1

T0i−

(
log

(
1

N

N∑
i=1

exp(T1i − T1max)

)
+ T1max − log(N)

)
(4.5)

Where T0i represents the score of the positive pair for sample i, T1i represents
the scores of the negative pairs for sample i, T1max is the maximum value in T1
for numerical stability, and N is the sample size.

4.1.2.3 CLUB

CLUB [6] aims to provide an upper bound 4.5 on the mutual information between
two random variables X and Y (speaker and style embeddings). The key idea is
to use a neural network to approximate the conditional distribution q(Y |X) and
then compute the log-likelihood of the data under this model to estimate the MI.

The CLUB model Appendix 8.7 consists of two main components: the mean
prediction network (pµ) and the log variance prediction network (plogvar). The
pµ network predicts the mean of the conditional distribution q(Y |X) , while the
plogvar network predicts the log variance of this distribution.

First, we take sample from X and feed them through these networks to obtain
the predicted mean (µ) and log variance (log σ2).
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Positive samples are pairs (X,Y ) drawn from the joint distribution, and their
log-likelihood is calculated using the predicted mean and variance.

positive = − (µ− Y )2

2σ2 + 1ϵ−6
(4.6)

Negative samples are created by permuting Y while keeping X the same, effec-
tively simulating the product of marginals distribution. This breaks any correlation
between X and Y.

negative = −
(Yshuffled − µ)2

2σ2 + 1ϵ−6
(4.7)

The mutual information estimation is obtained by subtracting the average log-
likelihood of the negative samples from the average log-likelihood of the positive
samples. This difference is averaged to provide the final MI estimate.

MI =
(
∑

i positivei −
∑

i negativei)

N
(4.8)

Same as before, we add the MI loss term (λMI ∗ LMI) to the overall loss
function.

4.2 Novel Disentanglement Methods

In this section, we introduce two novel approaches for disentangling speaker and
style embeddings using divergence-based methods: Convex Conjugate Rényi Di-
vergence and Worst-Case Regret Divergence. These methods aim to improve the
robustness of mutual information estimations by addressing key challenges, such
as high variance.

The Rényi divergence (Equation 4.9) is a generalization of the Kullback-
Leibler (KL) divergence, which provides a way to measure the difference be-
tween two probability distributions. It introduces an additional parameter α,
which controls the sensitivity of the divergence to different parts of the distri-
butions, such as their tails. When α = 1 the Rényi divergence simplifies to the
Kullback-Leibler (KL) divergence.

Rα(P ||Q) =
1

α− 1
log(

∫
p(x)αq(x)1−α dx) (4.9)

where P and Q are the two probability distributions, p(x) and q(x) are the
probability density functions (PDFs) of P and Q, respectively. The variable α is
the order of the Rényi divergence. By tuning the parameter α, we can adjust how
sensitive the divergence is to different regions of the probability distributions, such
as the tails or more central values. This flexibility makes Rényi divergence particu-
larly useful in disentanglement tasks, where we seek to decorrelate two embeddings,
such as speaker and style embeddings, by minimizing their mutual information.
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The parameter α allows us to fine-tune how we measure the overlap between these
distributions, providing more control over the disentanglement process.

The two novel methods we propose, Worst Case (WC) and Convex Conjugate
Rényi (CCR), are low-variance estimators due to their use of functions from a
Lipschitz-1 continuous space. Previous estimators are characterized by high vari-
ance, as they use functions from a test function space that permits step functions
4.6. As shown in the diagram, a step function has an abrupt change at point
0.5, resulting in a large derivative and high variance in the Mutual Information
(MI) estimates. In contrast, our proposed methods restrict the function gradients,
avoiding sharp changes in value. This Lipschitz continuity ensures more stable MI
estimates, with controlled slopes that prevent large fluctuations.

Figure 4.6: Step function (red line) versus Lipschitz continuous function (blue line),
illustrating the contrast between discontinuous and smoothly varying behaviors

4.2.0.1 Convex Conjugate Rényi

The Convex Conjugate Rényi Divergence provides a reformulation of the tradi-
tional Rényi divergence in a way that eliminates risk-sensitive terms. This is
particularly useful for our disentanglement problem, where high variance in MI
estimators can lead to unstable training. By leveraging this divergence, we can
obtain a more stable lower-bound estimator for the mutual information between
speaker and style embeddings.

The Convex Conjugate Rényi Formula is as follows
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RΓ
α(P ||Q) = sup

g∈Γ:g<0
{
∫

gdQ+
1

α− 1
log

∫
|g|

(α−1)
α dP}+ α−1(log a+ 1) (4.10)

Let g be a function from Γ = Lip1(Ω), indicating that g is defined on a space
of Lipschitz functions on Ω with Lipschitz constant 1. Function g is parameterized
by a neural network (Appendix 8.8) that serves as a test function and is learned
as part of the optimization process. In order to achieve low variance, we apply a
Lipschitz constraint to the neural network test function g, which ensures that the
function does not change too rapidly. This constraint is enforced via a gradient
penalty during training, which penalizes the model if the gradients of g exceed a
set threshold.

The distributions P and Q represent the product of marginals and the joint
distribution. Since we do not have access to the true distributions, we approximate
these distributions by sampling from the training data. The integral

∫
gdQ can be

approximated by a statistical average, specifically 1
n

∑n
i=1 g(xi), where xi ∼ Q.

• Q represents the joint distribution, which is constructed by concatenating
the speaker and style embeddings.

• P represents the product of marginals, which is obtained by concatenating
the speaker embedding with a randomly permuted style embedding, effec-
tively breaking any inherent correlation between the two variables.

As before, we compute the mutual information (MI) between the speaker and
style embeddings using the Convex Conjugate Rényi divergence. This computed
MI is then added as an additional regularization term to the overall loss function
of the Fastspeech2 model. To control the influence of this regularization, we in-
troduce a tuning parameter λ, which scales the contribution of the MI term. By
incorporating this extra term, we encourage the disentanglement of speaker and
style embeddings, ensuring that the model effectively reduces the mutual depen-
dence between these two factors during training.

4.2.0.2 Worst Case Regret

The Worst-Case Regret divergence is another approach we use to estimate mutual
information between the speaker and style embeddings. Unlike traditional diver-
gences, which may be sensitive to specific regions of the probability distributions,
the Worst-Case Regret focuses on the maximum possible divergence between two
distributions. This provides a more robust measure of divergence, especially in sce-
narios where we want to account for the worst-case mutual dependence between
the embeddings.

The formula for the Worst-Case Regret Divergence is given by:

D∞(P ||Q) = sup
g∈Γ:g<0

{
∫

gdQ+ log

∫
|g|dP}+ 1 (4.11)
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Here, g is again parameterized by a neural network (Appendix 8.9) that serves
as a test function to measure the maximum divergence between the joint and
marginal distributions. The neural network is learned as part of the optimization
process. To ensure stability and prevent overfitting to extreme outliers, we apply a
Lipschitz constraint to the neural network test function g. This constraint ensures
that the function does not change too abruptly by bounding the gradients. To
enforce the Lipschitz constraint, we apply a gradient penalty during training, which
penalizes the model if the gradients of g exceed a predefined threshold. This helps
to reduce variance and ensure more robust mutual information estimation during
the disentanglement process.

The distributions P and Q represent the joint distribution and the product of
marginals, respectively, as defined previously:

• Q represents the joint distribution, constructed by concatenating the speaker
and style embeddings.

• P represents the product of marginals, constructed by concatenating the
speaker embedding with a randomly permuted style embedding, breaking
any inherent correlation.

As before, the mutual information (MI) estimated through the Worst-Case Re-
gret divergence is added as an additional regularization term to the overall loss
function of the Fastspeech2 model. To further enhance control over the impact of
this regularization, we introduce a tuning parameter, λ, that scales the contribu-
tion of the MI term. This allows us to adjust the strength of the disentanglement
objective during training, ensuring that the model can balance the trade-off be-
tween speaker and style separation and the primary task performance.

4.2.0.3 Convex Conjugate Rényi & Gradient Reversal Layer (Hybrid
Method)

In our hybrid approach, we integrate both the convex conjugate Rényi diver-
gence and the gradient reversal layer (GRL) method to enhance disentanglement
of speaker identity and speaking style in the FastSpeech 2 model. The convex con-
jugate Rényi divergence term provides a measure for reducing mutual information
between speaker and style attributes, encouraging more independent representa-
tions. Simultaneously, the GRL applies adversarial training by reversing gradients
from speaker and style classifiers, discouraging the embedding layer from encoding
either attribute. This combined approach leverages the strengths of both meth-
ods, achieving a more robust disentanglement that improves model flexibility and
generalization across varied speaker identities and styles.
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Figure 4.7: Hybrid FastSpeech 2 Architecture Combining Convex Conjugate Rényi
Divergence and Gradient Reversal Layer for Enhanced Speaker and Style Disen-
tanglement



Chapter 5

Extending FastSpeech 2

An additional extension in our FastSpeech 2 implementation involves adding speaker
and style embeddings to the input. Our focus in disentanglement is to train these
embeddings effectively to decouple speaker identity and style.

5.1 Embedding Layers for Speaker Identity and Style

To enhance the FastSpeech 2 model for our specific application, we introduced
two additional embedding layers [123] to account for speaker identity and speech
style. An embedding layer in neural networks is a lookup table that maps indices
from a fixed vocabulary to dense vectors of fixed size. It is commonly used in
natural language processing and other tasks where categorical data needs to be
transformed into continuous vectors.

The speaker identity embedding layer is designed to support the four speakers
in our dataset. This layer has a dimension of 4×256 Figure 5.1, where the number
4 corresponds to the four different speakers, and 256 is the size of each embedding
vector. Each speaker is represented by a unique 256-dimensional vector, allowing
the model to effectively capture and utilize speaker-specific characteristics during
the speech synthesis process.

Similarly, the style embedding layer is configured to learn and represent seven
distinct speech styles. This layer has a dimension of 7 × 256 Figure 5.1, with
the number 7 corresponding to the seven different styles we aim to synthesize
(confused, default, enunciated, happy, laughing, sad and whisper). Each style is
represented by a 256-dimensional vector, enabling the model to generate speech
with the appropriate stylistic variations.

5.2 Integrating Disentanglement Methods

To enhance the FastSpeech 2 model with disentangled representations, we inte-
grated several advanced mutual information estimation techniques and adversarial

45
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Figure 5.1: Embedding Layers for Speaker and Style

training methods into its architecture. The methods implemented and integrated
include:

• MINE (Mutual Information Neural Estimation): We incorporated a
neural network-based MI estimator that leverages the joint distribution and
product of marginals to compute a lower bound on MI.

• INFO NCE (Information Noise Contrastive Estimation): This method
computes a lower bound on MI using a contrastive loss approach with posi-
tive and negative sample pairs.

• CLUB (Contrastive Learning Upper Bound): This model provides an
upper bound on MI by approximating the conditional distribution q(Y |X)
and computing the log-likelihood of the data under this model.

• GRL (Gradient Reversal Layer and Dual Classifiers): The GRL is
used in adversarial training to promote the disentanglement of speaker and
style embeddings. Dual classifiers are employed to predict speaker identity
and style category, with the GRL reversing the gradient to enforce invariance.

• CCR (Convex Conjugate Rényi Divergence: This novel method esti-
mates MI by leveraging convex conjugate properties to provide a more robust
estimation.

• WC (Worst Case Regret Rényi Divergence): Another novel approach,
this method estimates MI by considering the worst-case scenario in Rényi
divergence, ensuring a more conservative MI estimation.

• CCR & GRL (Hybrid Method): The hybrid approach combines Con-
vex Conjugate Rényi (CCR) divergence and Gradient Reversal Layer (GRL)
techniques.

We extended the loss function of FastSpeech 2 to incorporate the MI loss term
for each method, promoting the disentanglement of speaker and style embeddings.
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This adjustment ensures that the model learns representations where these at-
tributes occupy orthogonal latent spaces, leading to improved disentanglement
and more accurate speech synthesis.

5.3 Data Loader and Preprocessing for Expresso Dataset

To accommodate the unique structure of the Expresso dataset, we developed cus-
tom scripts for data loading, preprocessing, and corresponding utility functions.
The dataset consists of multi-modal data, including speech recordings with varying
attributes such as speaker identity and style. For effective training, we ensured
that the data pipeline correctly formats and prepares the input.

1. Data Preprocessing: We implemented preprocessing functions to han-
dle various forms of input data, including converting audio files into Mel-
spectrograms, text tokenization, and extracting speaker and style labels from
the metadata. The preprocessing also handles padding and normalization,
ensuring that input sequences are of consistent length and form, crucial for
batch training.

2. Custom DataLoader: Our DataLoader is built to efficiently handle large
datasets and batch processing. It integrates seamlessly with PyTorch’s Dat-
aLoader class, enabling random shuffling, batching, and loading of the pre-
processed data. Additionally, the loader can dynamically fetch speaker and
style embeddings based on the indices provided in the Expresso dataset,
ensuring that the model receives the correct input features during training.

By building a robust data pipeline, we ensured that the Expresso dataset is fully
compatible with the enhanced FastSpeech 2 model. This step was critical in fa-
cilitating the training of the model and achieving accurate predictions of speaker
identity and style during inference.
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Chapter 6

Experiments and Results

6.1 Experimental Setup

The hardware and software specifications are as follows:

Component Specification

Processor AMD Ryzen Threadripper 2950X 16-Core Processor

Processor Arch x86 64

Processor CPUs 32

RAM 125 GB DDR4

GPU (3x) NVIDIA GeForce RTX 2080 Ti with 11 GB GDDR6 memory

Storage 2.7T HDD

Table 6.1: Hardware Specifications

For more detailed information regarding the GPU specifications and configu-
ration, please refer to the Appendix section 8.12.

Component Specification

Operating System Ubuntu 18.04.5 LTS (GNU/Linux 4.15.0-213-generic x86 64)

Python Version Python 3.6.9 (default, Mar 10 2023, 16:46:00)

PyTorch Version PyTorch version: 1.10.1+cu102

CUDA Version Release 10.0, V10.0.130

Other Libraries Requirements 8.13

Table 6.2: Software Specifications

49
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6.2 Cosine Similarity & Average Inter Cluster Dis-
tances

After training, the learned embeddings for both speakers and styles were extracted
and saved. These embeddings represent the features that the model has identified
to differentiate between speakers and styles in the latent space. To assess the re-
lationships and similarities between these embeddings, a cosine similarity matrix
was computed for each model. The cosine similarity matrix provides a quanti-
tative measure of how similar or distinct the embeddings are. Additionally, the
embeddings were visualized in 2D spaces using dimensionality reduction techniques
such as PCA, offering further insights into the structure of the learned represen-
tations. Finally, to better understand the separability of different embeddings, we
computed the average inter-cluster distance based on the cosine similarity matrix.
This metric provides a summary of how distant the different clusters (speakers or
styles) are from each other on average, giving us a measure of the model’s ability
to disentangle these factors.

Cosine Similarity is a measure used to determine the similarity between two
non-zero vectors in a high-dimensional space, such as the learned embeddings
in our models. It is defined as the cosine of the angle between two vectors, with
values ranging from -1 (indicating complete dissimilarity) to 1 (indicating identical
vectors). Mathematically, the cosine similarity between two vectors u and v is
given by the formula:

Cosine Similarity(u, v) =
u ∗ v

||u||||v||
(6.1)

where u ∗ v is the dot product of the vectors u and v and ||u||, ||v|| are the Eu-
clidean norms of the vectors u and v respectively. The cosine similarity matrix is
constructed by computing the cosine similarity between every pair of embeddings.
This matrix allows us to compare how closely related the different embeddings
are, with higher values indicating higher similarity. Below, we present the cosine
similarity matrix for our best model, CCR & GRL. This matrix offers a visual
representation of the relationships between the learned embeddings for speakers
and styles. The cosine similarity matrices for the other models are provided in the
Appendix 8.10 for reference.
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Figure 6.1: Cosine Similarity Matrix for Speakers (left) and Styles (right) using
the Convex Conjugate Rényi with GRL model.

Average Inter-Cluster Distance is a metric used to quantify the overall separa-
bility between different clusters of embeddings (e.g., speakers or styles) based on
their cosine distances. The cosine distance is computed as:

Cosine Distance = 1 - Cosine Similarity (6.2)

To compute the average inter-cluster distance, we first convert the cosine simi-
larity matrix into a distance matrix by applying the above formula to every pair of
embeddings. We then consider only the distances between different clusters (i.e.,
inter-cluster distances) by taking the upper triangular part of the distance matrix,
excluding the diagonal (which represents self-distances). The average inter-cluster
distance is the mean of these inter-cluster distances, and it is given by:

Average Inter-Cluster Distance =
1

N

∑
i,j
i ̸=j

Cosine Distance(ui, uj) (6.3)

where N is the number of unique pairs where i ̸= j and ui, uj are embeddings.

6.3 Evaluation of Model Performance on Speaker and
Style Embeddings

The Tables 6.3 and 6.4 provides insights into the average inter-cluster distances for
both speaker and style embeddings across various models. This metric captures
the degree of separation between different clusters, which is key for assessing the
model’s ability to disentangle embeddings.
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Model Average Inter-Cluster Distance Speaker Embeddings

CCR & GRL 0.9002
CCR 0.8754
GRL 0.8749
WC 0.8484
CLUB 0.8444
MINE 0.7528
INFO 0.6576

Table 6.3: Average Inter-Cluster Distance for Speakers across Different Models

Model Average Inter-Cluster Distance Style Embeddings

CCR & GRL 0.7616
CCR 0.7566
GRL 0.7316
MINE 0.7200
WC 0.6950
CLUB 0.6911
INFO 0.6266

Table 6.4: Average Inter-Cluster Distance for Styles across Different Models

• Speakers vs. Styles: The average inter-cluster distances for speakers are
generally higher than for styles across all models. This suggests that the
models are able to learn more distinct, separable embeddings for different
speakers than for different styles. In other words, the speaker embeddings
are more spread out in the latent space compared to style embeddings.

• Model Performance on Speakers: The CCR & GRL model has the high-
est average inter-cluster distance for speakers (0.9002). This indicates that
the CCR& GRL model has learned the most distinguishable speaker embed-
dings, suggesting that it performs better at separating speaker identities in
the latent space.

• Model Performance on Styles: The CCR & GRL model has the highest
average inter-cluster distance for styles (0.7616), meaning it provides the
most separable style embeddings, indicating that it captures style variations
more distinctly than other models.
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6.4 Visualization and Analysis of Embeddings Using
Principal Component Analysis (PCA)

In this section, we visualize the style and speaker embeddings for all models using
Principal Component Analysis (PCA) to reduce the high-dimensional data into two
dimensions. These plots provide a clear illustration of how the different models
handle the separation and disentanglement of style and speaker information. Each
plot highlights how distinct clusters form for different speakers and styles, offering
valuable insights into the models’ ability to disentangle these two critical aspects
of speech synthesis.

The Figure 6.2 focuses on the style and speaker embeddings for our best-
performing model, CCR & GRL. As shown in the PCA plot, this model achieves a
remarkable degree of separation between different styles and speakers, with well-
defined clusters that emphasize its effectiveness in disentangling style and speaker
information. We also perform a comparative analysis by generating similar plots
for other models. This comparison enables us to evaluate the level of separation
and disentanglement achieved by each model. The plot for the CCR & GRL model
is shown in Figure 6.2, while the corresponding plots for the other models can be
found in the Appendix 8.11.

Figure 6.2: Speaker and Style Embeddings for CCR & GRL model.

As we can see from the plots, the CCR & GRL model demonstrates more
distinct and widely separated clusters for speakers and styles compared to the
other models.

6.5 Objective Speech Intelligibility Assessment Using
STOI

Short-Time Objective Intelligibility (STOI) is a widely-used metric for evaluating
the intelligibility of speech signals. It provides an objective assessment by compar-
ing a clean reference speech signal with a degraded version. The STOI score is a
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value between 0 and 1, where a higher score indicates better speech intelligibility.
To compute the STOI, we randomly selected 40 sentences from the training set
(detailed in the Appendix 8.15). For each of these sentences, we compared the
original WAV file with the corresponding generated version to calculate the STOI
score. The table 6.5 presents the results, while a full breakdown of the individual
STOI scores for all sentences can be found in the Appendix 8.16.

Model Mean Standard Deviation

CCR & GRL 0.3011 0.1202
CCR 0.2537 0.1771
WC 0.2379 0.1661
GRL 0.2272 0.0967
MINE 0.2163 0.1207
INFO 0.2147 0.1202
CLUB 0.1864 0.0924

Table 6.5: STOI Mean and Standard Deviation across Different Models

Among the evaluated models, CCR & GRL model consistently achieves the
highest STOI scores across all styles when compared to other models, indicating
better intelligibility and more natural voice generation.

An additional evaluation has been conducted, comparing the STOI scores of
various models on the sentence ”What room has no walls”. The models,
listed as V1/2000 V1/S, V1/2000 E/SE, BASE/2000 E/S, and BASE/500 LS/S,
are provided by META and pretrained on the Expresso dataset. These models are
based on a HuBERT encoder. Specifically V1 their best model, is trained on a
mixture of read and spontaneous speech corpora. The base model has been trained
on Librispeech. The HuBERT embeddings are extracted from layer 12 for V1 and
layer 9 for the base model. These embeddings are followed by k-means clustering,
with k = 2000 or k = 500, on either Expresso (E) or the same training set used for
the HuBERT model (V1 or LS, respectively). A HifiGAN vocoder, trained on the
Expresso, VCTK, and LJ Speech datasets, is used to convert these discrete units
back to speech. The vocoder is either conditioned on the speaker (S) or on both
the speaker and expression (S+E).

Our HiFiGAN vocoder, having been trained solely on the Expresso dataset,
results in lower STOI scores (CCR, WC, GRL, CCR & GRL cases). This is consis-
tent with the observed outcomes, as the vocoder has not been trained on external
datasets, which limits its ability to generalize to broader speech intelligibility sce-
narios.
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Model Confused Happy Sad
V1/2000 V1/S 0.5028 0.4443 0.5591
V1/2000 E/SE 0.6076 0.4753 0.5710
V1/2000 E/S 0.6038 0.4722 0.5638

BASE/2000 E/S 0.4711 0.4019 0.5469
BASE/500 LS/S 0.2094 0.4227 0.5751

CCR 0.2837 0.2365 0.2012
CCR & GRL 0.2921 0.2375 0.2212

WC 0.2437 0.2108 0.1771
GRL 0.1846 0.2794 0.1382

Table 6.6: STOI Results for Different Styles and Models

6.6 Objective Speech Quality Assessment Using PESQ

PESQ (Perceptual Evaluation of Speech Quality) offers an objective method for
measuring the perceived quality of speech signals. Instead of relying on subjective
human judgment, PESQ models human auditory perception to compare a clean
reference signal with a degraded one. This metric quantifies speech quality on a
scale ranging from 0 to 4.5 for wideband audio, where higher scores reflect better
quality. To compute the PESQ scores, we used the same 40 randomly selected
sentences from the training set (detailed in the Appendix 8.15). The Table 6.7
presents the aggregated results, while individual PESQ scores for all sentences can
be found in the Appendix 8.17 for further reference.

Model Mean Standard Deviation

CCR & GRL 1.1576 0.2748
CCR 1.1162 0.2117
CLUB 1.1114 0.2559
GRL 1.0907 0.2995
WC 1.0837 0.2009
INFO 1.0795 0.1870
MINE 1.0722 0.1905

Table 6.7: PESQ Mean and Standard Deviation across Different Models

From the results the CCR & GRL model consistently outperforms other mod-
els in terms of PESQ, achieving the highest mean score with the lowest variability.
This suggests that the combination of CCR and GRL provides better perceived
speech quality and more consistent performance across different conditions com-
pared to the other models.

As an additional evaluation, we also compared the PESQ scores across different
models for the sentence ”What room has no walls,” similar to the approach taken
for the STOI analysis. The results for this specific sentence, along with the model
comparisons, are presented below.
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Model Confused Happy Sad
V1/2000 V1/S 1.0322 1.0395 1.0496
V1/2000 E/SE 1.0460 1.0500 1.0458
V1/2000 E/S 1.0412 1.0451 1.0558

BASE/2000 E/S 1.0365 1.0396 1.0410
BASE/500 LS/S 1.0418 1.0317 1.0495

CCR 1.2650 1.1398 1.0322
CCR & GRL 1.2721 1.1402 1.0398

WC 1.1044 1.1312 1.1179
GRL 1.0674 1.0382 1.1078

Table 6.8: PESQ Scores for Different Models and Styles

The Table 6.8 shows the PESQ scores for different models across various speech
styles. From the results, it can be observed that the CCR & GRL model achieves
the highest score for the ”Confused” style (1.2721), indicating superior quality in
this case, while the v1/2000 e/se model consistently performs well across all styles.
PESQ is primarily concerned with speech quality, focusing on how natural or clean
the audio sounds to human listeners. STOI, on the other hand, is a measure of
speech intelligibility. It evaluates how understandable the speech is, particularly
in the presence of noise or other degradation. The CCR & GRL model likely
enhances the overall clarity and sound quality of the speech, reducing noise and
improving signal consistency, which results in higher PESQ scores. However, it
may not preserve the exact intelligibility of the words as effectively, leading to
lower STOI scores.

6.7 Word Error Rate Analysis for Speech Recognition
Accuracy

Word Error Rate (WER) is a standard metric for evaluating the accuracy of au-
tomatic speech recognition (ASR) systems. It measures the number of word-level
transcription errors substitutions, deletions, and insertions relative to the total
number of words in the reference transcription. A lower WER indicates higher
transcription accuracy. In this section, we present an analysis of the WER results
across various models, highlighting their effectiveness in transcribing the provided
speech data. To compute the WER, we generated 50 sentences (detailed in the
Appendix 8.14) that were not part of the training set. We used Google’s Speech
Recognition API to evaluate the WER. The process involved providing the gen-
erated wav files as input and comparing them to the original text that was used
to generate the speech. The overall results are presented in the Table 6.9, with
detailed WER results for each sentence available in the Appendix 8.18-8.24.

From the results, the CCR & GRL model exhibited the best performance, with
the lowest mean WER of 0.1250 and a standard deviation of 0.1630. This suggests
that the model achieved high accuracy while maintaining relatively low variability,
indicating more consistent performance across different speakers and sentences.
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Model Mean Standard Deviation

CCR & GRL 0.1250 0.1630
CCR 0.1909 0.1573
INFO 0.2361 0.2000
GRL 0.2500 0.2218
MINE 0.2613 0.1988
WC 0.2857 0.1806
CLUB 0.3333 0.2238

Table 6.9: WER Mean and Standard Deviation across Different Models

The CCR model also showed good performance, with a mean WER of 0.1909
and a standard deviation of 0.1573. This indicates slightly higher error rates
compared to the combined CCR & GRL model, but with lower variability, showing
that the model is still reliable across different conditions. Overall, the combination
of CCR & GRL provided the best balance between low error rates and performance
consistency, making it the most effective model in this evaluation.
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Chapter 7

Conclusion

7.1 Summary of Contributions

This work presents several key advancements in the field of speech synthesis, focus-
ing on disentangling speaker and style representations through innovative method-
ologies. Below, we summarize the main contributions of the research and highlight
their impact on improving model performance and practical applicability.

1. Development of Extended FastSpeech 2 Model: This master’s thesis presents
an enhanced version of the FastSpeech 2 model through the integration of
disentangled speaker and style embeddings. This enables the generation of
diverse and natural-sounding speech for multiple speakers and styles.

2. Integration of Mutual Information Estimators: We introduced advanced mu-
tual information estimation techniques such as MINE, INFO NCE, CLUB,
Convex Conjugate Rényi, Worst Case Regret and Gradient Reversal Layer to
ensure disentangled representations. These methods improved the separation
between speaker and style embeddings.

3. Comprehensive Evaluation: The work includes a thorough evaluation of the
learned embeddings using cosine similarity matrices, inter-cluster distances,
and dimensionality reduction techniques (PCA). Additionally, perceptual
and intelligibility metrics like STOI (Speech Intelligibility), PESQ (Percep-
tual Evaluation of Speech Quality), and WER (Word Error Rate) were used
to further assess the speech synthesis quality and intelligibility across dif-
ferent models. The results demonstrated that certain models, especially the
Convex Conjugate Rényi & Gradiant Reversal Layer model, provided more
distinct clusters for both speakers and styles, while also achieving notable
scores in perceptual and intelligibility metrics.

4. Practical Contribution: A flask-based application was developed to compare
the results of our models with baseline models from the Expresso dataset.
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This allowed for a more interactive demonstration of the model’s performance
(Appendix 8.25).

7.2 Challenges and Limitations

Despite the promising results achieved through our model adaptations and experi-
ments, several challenges and limitations were encountered throughout the process.
These challenges impact the effectiveness, generalizability, and computational ef-
ficiency of the models. Some of these challenges are listed below.

• Data Challenges One significant challenge in this work arises from limited
or imbalanced datasets. In speech synthesis tasks, it’s crucial to have a large,
diverse set of training samples to ensure that the model generalizes well
across different speakers and styles. However, for certain styles or speaker
identities, the dataset might have fewer examples, leading to biased learning.
This imbalance can make it difficult for the model to accurately learn the
distribution of features related to these underrepresented classes, resulting
in lower quality or less reliable synthesis for these categories.

• Disentangling Features Another challenge is disentangling different fea-
tures, such as speaker identity and style. However, this is often difficult
because the two factors may overlap in the latent space. For an easier exam-
ple of disentangling two features, consider a model tasked with distinguishing
between color and shape in object recognition. Separating a ”red circle” from
a ”blue square” is relatively straightforward for the model, as color and shape
are distinct features with minimal overlap.

• Generalization to Unseen Data The model’s ability to generalize to un-
seen speakers, styles, or languages is often constrained by the diversity of
the training data. If the model is only trained on a limited range of speakers
and styles, its ability to generate accurate and natural-sounding speech for
new, unseen combinations of speaker and style may be compromised.

• Vocoder Quality The vocoder (e.g., HiFi-GAN) that converts the model’s
intermediate outputs (such as mel-spectrograms) into audio is another source
of potential limitation. If the vocoder is not properly trained or fine-tuned
on the same dataset as the main model, it can degrade the quality of the
generated audio, producing unnatural or robotic-sounding speech.

7.3 Future Work

Future work can address the existing limitations and explore new methodologies to
improve performance, efficiency, and generalization. The following items outline
potential directions for continued development.
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• Fine-tuning Hyperparameters of FastSpeech2 and MI Estimators
Future work can explore optimizing several key hyperparameters to enhance
the performance and efficiency of the FastSpeech2 model and the Mutual In-
formation (MI) Estimators. In FastSpeech2, parameters such as the learning
rate, batch size, number of layers, and attention heads play critical roles in
determining how well the model learns the intricate patterns of speech. Fine-
tuning these values can help improve the quality of the synthesized speech
and allow for better generalization across diverse datasets. In MI Estima-
tors, parameters like the learning rate, the number and types of layers (e.g.,
fully connected, convolutional), and other architectural elements could also
be optimized to better disentangle speaker and style features.

• Optimizing Embedding Dimensions Determining the optimal size for
the speaker and style embeddings is a crucial aspect of improving model
performance. Future work can explore advanced techniques like bottleneck
layers, which force the model to represent information using a compressed
feature space, encouraging it to learn only the most relevant features. Other
dimensionality reduction techniques, such as Principal Component Analysis
(PCA) and autoencoders, could also be used to identify the optimal em-
bedding size. Additionally, leveraging state-of-the-art methods like Neural
Architecture Search (NAS) can automate the search for the best embedding
dimensions, striking a balance between model complexity and accuracy

• Training the Vocoder on More Diverse Datasets To enhance the natu-
ralness of synthesized speech, future work can focus on training the vocoder
on a more diverse range of datasets. A vocoder trained on a variety of
speaking styles, accents, and languages will be better equipped to capture
the intricacies of natural speech, resulting in more lifelike and expressive
voice outputs. By incorporating diverse datasets, the vocoder can learn a
broader range of acoustic patterns, improving its ability to generalize and
produce more natural-sounding speech across different speakers and styles.

• Scaling Up the Training Dataset Increasing the size and diversity of the
training dataset can significantly enhance the performance of the model. A
larger dataset allows the model to capture more variations in speaker char-
acteristics, styles, and acoustic environments, leading to improved general-
ization. By training on more data, the model can better handle edge cases
and produce higher-quality, more natural speech across a broader range of
scenarios. Additionally, incorporating datasets with diverse accents, lan-
guages, and speaking conditions could further refine the model’s robustness
and versatility.
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Chapter 8

Appendices

8.1 TextGrid File

1 File type = "ooTextFile"

2 Object class = "TextGrid"

3

4 xmin = 0

5 xmax = 3.830476

6 tiers? <exists>

7 size = 2

8 item []:

9 item [1]:

10 class = "IntervalTier"

11 name = "words"

12 xmin = 0

13 xmax = 3.830476

14 intervals: size = 13

15 intervals [1]:

16 xmin = 0.0

17 xmax = 0.12

18 text = ""

19 intervals [2]:

20 xmin = 0.12

21 xmax = 0.48

22 text = "how"

23 intervals [3]:

24 xmin = 0.48

25 xmax = 0.91

26 text = "about"

27 intervals [4]:

28 xmin = 0.91

29 xmax = 1.07

30 text = "the"

31 intervals [5]:
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32 xmin = 1.07

33 xmax = 1.1

34 text = ""

35 intervals [6]:

36 xmin = 1.1

37 xmax = 1.37

38 text = "age"

39 intervals [7]:

40 xmin = 1.37

41 xmax = 1.51

42 text = "of"

43 intervals [8]:

44 xmin = 1.51

45 xmax = 2.18

46 text = "innocence"

47 intervals [9]:

48 xmin = 2.18

49 xmax = 2.31

50 text = ""

51 intervals [10]:

52 xmin = 2.31

53 xmax = 2.67

54 text = "or"

55 intervals [11]:

56 xmin = 2.67

57 xmax = 3.13

58 text = "vanity"

59 intervals [12]:

60 xmin = 3.13

61 xmax = 3.68

62 text = "fair"

63 intervals [13]:

64 xmin = 3.68

65 xmax = 3.830476

66 text = ""

67 item [2]:

68 class = "IntervalTier"

69 name = "phones"

70 xmin = 0

71 xmax = 3.830476

72 intervals: size = 34

73 intervals [1]:

74 xmin = 0.0

75 xmax = 0.12

76 text = ""

77 intervals [2]:

78 xmin = 0.12

79 xmax = 0.24

80 text = "HH"
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81 intervals [3]:

82 xmin = 0.24

83 xmax = 0.48

84 text = "AW1"

85 intervals [4]:

86 xmin = 0.48

87 xmax = 0.52

88 text = "AH0"

89 intervals [5]:

90 xmin = 0.52

91 xmax = 0.61

92 text = "B"

93 intervals [6]:

94 xmin = 0.61

95 xmax = 0.81

96 text = "AW1"

97 intervals [7]:

98 xmin = 0.81

99 xmax = 0.91

100 text = "T"

101 intervals [8]:

102 xmin = 0.91

103 xmax = 0.96

104 text = "DH"

105 intervals [9]:

106 xmin = 0.96

107 xmax = 1.07

108 text = "IY0"

109 intervals [10]:

110 xmin = 1.07

111 xmax = 1.1

112 text = ""

113 intervals [11]:

114 xmin = 1.1

115 xmax = 1.29

116 text = "EY1"

117 intervals [12]:

118 xmin = 1.29

119 xmax = 1.37

120 text = "JH"

121 intervals [13]:

122 xmin = 1.37

123 xmax = 1.45

124 text = "AH0"

125 intervals [14]:

126 xmin = 1.45

127 xmax = 1.51

128 text = "V"

129 intervals [15]:
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130 xmin = 1.51

131 xmax = 1.59

132 text = "IH1"

133 intervals [16]:

134 xmin = 1.59

135 xmax = 1.64

136 text = "N"

137 intervals [17]:

138 xmin = 1.64

139 xmax = 1.71

140 text = "AH0"

141 intervals [18]:

142 xmin = 1.71

143 xmax = 1.84

144 text = "S"

145 intervals [19]:

146 xmin = 1.84

147 xmax = 1.94

148 text = "AH0"

149 intervals [20]:

150 xmin = 1.94

151 xmax = 2.02

152 text = "N"

153 intervals [21]:

154 xmin = 2.02

155 xmax = 2.18

156 text = "S"

157 intervals [22]:

158 xmin = 2.18

159 xmax = 2.31

160 text = ""

161 intervals [23]:

162 xmin = 2.31

163 xmax = 2.55

164 text = "AO1"

165 intervals [24]:

166 xmin = 2.55

167 xmax = 2.67

168 text = "R"

169 intervals [25]:

170 xmin = 2.67

171 xmax = 2.77

172 text = "V"

173 intervals [26]:

174 xmin = 2.77

175 xmax = 2.89

176 text = "AE1"

177 intervals [27]:

178 xmin = 2.89
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179 xmax = 2.94

180 text = "N"

181 intervals [28]:

182 xmin = 2.94

183 xmax = 3.0

184 text = "AH0"

185 intervals [29]:

186 xmin = 3.0

187 xmax = 3.06

188 text = "T"

189 intervals [30]:

190 xmin = 3.06

191 xmax = 3.13

192 text = "IY0"

193 intervals [31]:

194 xmin = 3.13

195 xmax = 3.26

196 text = "F"

197 intervals [32]:

198 xmin = 3.26

199 xmax = 3.43

200 text = "EH1"

201 intervals [33]:

202 xmin = 3.43

203 xmax = 3.68

204 text = "R"

205 intervals [34]:

206 xmin = 3.68

207 xmax = 3.830476

208 text = ""

8.2 Gradient Reversal Layer

1 class GradientReversalLayer(Function):

2 @staticmethod

3 def forward(ctx, x):

4 ctx.save_for_backward(x)

5 return x

6

7 @staticmethod

8 def backward(ctx, grad_output):

9 return -grad_output

8.3 Speaker Classifier
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1 class SpeakerClassifier(nn.Module):

2 def __init__(self, embedding_dim, num_speakers):

3 super(SpeakerClassifier, self).__init__()

4 # num_speakers = 4

5 self.fc = nn.Linear(embedding_dim, num_speakers)

6

7 def forward(self, x):

8 return self.fc(x)

8.4 Style Classifier

1 class StyleClassifier(nn.Module):

2 def __init__(self, embedding_dim, num_styles):

3 super(StyleClassifier, self).__init__()

4 # num_styles = 7

5 self.fc = nn.Linear(embedding_dim, num_styles)

6

7 def forward(self, x):

8 return self.fc(x)

8.5 MINE Model

1 class MINE(nn.Module):

2 def __init__(self, x_dim, y_dim, hidden_size):

3 super(MINE, self).__init__()

4 self.T_func = nn.Sequential(

5 nn.Linear(x_dim + y_dim, hidden_size),

6 nn.ReLU(),

7 nn.Linear(hidden_size, hidden_size),

8 nn.ReLU(),

9 nn.Linear(hidden_size, 1)

10 )

11

12 def mi_est(self, x_samples, y_samples):

13 return self.dkl(x_samples, y_samples)

14

15 def dkl(self, x_samples, y_samples):

16 sample_size = y_samples.shape[0]

17 random_index = torch.randperm(sample_size)

18 y_shuffle = y_samples[random_index]

19 T0 = self.T_func(torch.cat([x_samples, y_samples], dim=-1))

20 T1 = self.T_func(torch.cat([x_samples, y_shuffle], dim=-1))

21 T1_max = torch.max(T1)
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22 lower_bound = T0.mean()-(T1_max+torch.log(torch.mean(torch.exp(T1-T1_max))))

23 return lower_bound

8.6 INFO NCE Model

1 class InfoNCE(nn.Module):

2 def __init__(self, x_dim, y_dim, hidden_size):

3 super(InfoNCE, self).__init__()

4 self.F_func = nn.Sequential(

5 nn.Linear(x_dim + y_dim, hidden_size),

6 nn.ReLU(),

7 nn.Linear(hidden_size, hidden_size),

8 nn.ReLU(),

9 nn.Linear(hidden_size, 1),

10 nn.Softplus()

11 )

12

13 def mi_est(self, x_samples, y_samples):

14 sample_size = y_samples.shape[0]

15 x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1))

16 y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1))

17 T0 = self.F_func(torch.cat([x_samples,y_samples], dim = -1))

18 T1 = self.F_func(torch.cat([x_tile, y_tile], dim = -1))

19 lower_bound = T0.mean() - (T1.logsumexp(dim = 1).mean() - np.log(sample_size))

20 return lower_bound

8.7 CLUB Model

1 class CLUB(nn.Module):

2 def __init__(self, x_dim, y_dim, hidden_size):

3 super(CLUB, self).__init__()

4 # p_mu outputs mean of q(Y|X)

5 self.p_mu = nn.Sequential(

6 nn.Linear(x_dim, hidden_size // 2),

7 nn.ReLU(),

8 nn.Linear(hidden_size // 2, y_dim)

9 )

10 # p_logvar outputs log of variance of q(Y|X)

11 self.p_logvar = nn.Sequential(

12 nn.Linear(x_dim, hidden_size // 2),

13 nn.ReLU(),

14 nn.Linear(hidden_size // 2, y_dim),

15 nn.Tanh()

16 )
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17

18 def get_mu_logvar(self, x_samples):

19 mu = self.p_mu(x_samples)

20 logvar = self.p_logvar(x_samples)

21 return mu, logvar

22

23 def mi_est(self, x_samples, y_samples):

24 mu, logvar = self.get_mu_logvar(x_samples)

25

26 # log of conditional probability of positive sample pairs

27 positive = - (mu - y_samples)**2 / (2.0 * logvar.exp() + 1e-6)

28

29 prediction_1 = mu.unsqueeze(1)

30 y_samples_1 = y_samples.unsqueeze(0)

31

32 # log of conditional probability of negative sample pairs

33 negative = - ((y_samples_1 - prediction_1)**2).mean(dim=1) / (2.0 * logvar.exp() + 1e-6)

34

35

36 def loglikeli(self, x_samples, y_samples):

37 # unnormalized loglikelihood

38 mu, logvar = self.get_mu_logvar(x_samples)

39 return (-(mu - y_samples)**2 / (logvar.exp() + 1e-6) - logvar).sum(dim=1).mean(dim=0)

8.8 Convex Conjugate Rényi Model

1 class CCR(nn.Module):

2 def __init__(self, x_dim, y_dim, hidden_size):

3 super(CCR, self).__init__()

4 self.T_func = nn.Sequential(

5 nn.Linear(x_dim + y_dim, hidden_size),

6 nn.ReLU(),

7 nn.Linear(hidden_size, hidden_size),

8 nn.ReLU(),

9 nn.Linear(hidden_size, 1)

10 )

11

12 def mi_est(self, x_samples, y_samples):

13 return self.conjugate(x_samples, y_samples)

14

15 def conjugate(self, x_samples, y_samples):

16 sample_size = y_samples.shape[0]

17 random_index = torch.randperm(sample_size)

18 y_shuffle = y_samples[random_index]

19 T0 = self.T_func(torch.cat([x_samples, y_samples], dim=-1))

20 T1 = self.T_func(torch.cat([x_samples, y_shuffle], dim=-1))

21 T_max = torch.max(torch.max(T0), torch.max(T1)).to(x_samples.device)
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22 T0_shifted = T0 - T_max

23 T1_shifted = T1 - T_max

24 # Convex-Conjugate Renyi Variational Formula

25 alpha = torch.tensor(2.0, device=x_samples.device)

26 epsilon = torch.tensor(1e-8, device=x_samples.device)

27 term1 = T0_shifted.mean()

28 term2_intermediate = torch.pow(

29 torch.abs(T1_shifted)+ epsilon, (alpha - 1) / alpha

30 )

31 term2 = (1.0 / (alpha - 1.0))*torch.log(

32 torch.mean(term2_intermediate) + epsilon

33 )

34 term3 = torch.pow(alpha, -1) * (torch.log(alpha + epsilon) + 1)

35 cc_renyi_divergence = term1 + term2 + term3

36 return cc_renyi_divergence

8.9 Worst Case Regret Model

1 class WCR(nn.Module):

2 def __init__(self, x_dim, y_dim, hidden_size):

3 super(WCR, self).__init__()

4 self.T_func = nn.Sequential(

5 nn.Linear(x_dim + y_dim, hidden_size),

6 nn.ReLU(),

7 nn.Linear(hidden_size, hidden_size),

8 nn.ReLU(),

9 nn.Linear(hidden_size, 1)

10 )

11

12 def mi_est(self, x_samples, y_samples):

13 return self.worst_case(x_samples, y_samples)

14

15 def worst_case(self, x_samples, y_samples):

16 sample_size = y_samples.shape[0]

17 random_index = torch.randperm(sample_size)

18 y_shuffle = y_samples[random_index]

19 T0 = self.T_func(torch.cat([x_samples, y_samples], dim=-1))

20 T1 = self.T_func(torch.cat([x_samples, y_shuffle], dim=-1))

21 T_max = torch.max(torch.max(T0), torch.max(T1)).to(x_samples.device)

22 T0_shifted = T0 - T_max

23 T1_shifted = T1 - T_max

24 # Worst-case Regret Variational Formula

25 alpha = torch.tensor(2.0, device=x_samples.device)

26 term1 = T0.mean()

27 term1 = T0_shifted.mean()

28 term2 = torch.log(torch.mean(torch.abs(T1))) + 1
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29 worst_case_regret_div = term1 + term2

30 return worst_case_regret_div

8.10 Cosine Similarity Matrices

Figure 8.1: Cosine Similarity Matrix for Speakers (left) and Styles (right) using
the MINE model.

Figure 8.2: Cosine Similarity Matrix for Speakers (left) and Styles (right) using
the INFO NCE model.
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Figure 8.3: Cosine Similarity Matrix for Speakers (left) and Styles (right) using
the Gradient Reversal Layer model.

Figure 8.4: Cosine Similarity Matrix for Speakers (left) and Styles (right) using
the Worst Case Regret model.
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Figure 8.5: Cosine Similarity Matrix for Speakers (left) and Styles (right) using
the Convex Conjugate Rényi model.

Figure 8.6: Cosine Similarity Matrix for Speakers (left) and Styles (right) using
the CLUB model.
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8.11 PCA Plots for Style & Speaker Embeddings

Figure 8.7: Comparison of Speaker Embeddings Across Different Models Using
PCA.
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Figure 8.8: Comparison of Style Embeddings Across Different Models Using PCA.
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8.12 GPU Details

+-----------------------------------------------------------------------------+

| NVIDIA-SMI 450.119.03 Driver Version: 450.119.03 CUDA Version: 11.0 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 GeForce RTX 208... Off | 00000000:08:00.0 Off | N/A |

| 29% 42C P0 49W / 250W | 0MiB / 11019MiB | 1% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

| 1 GeForce RTX 208... Off | 00000000:41:00.0 Off | N/A |

| 35% 47C P0 56W / 250W | 0MiB / 11019MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

| 2 GeForce RTX 208... Off | 00000000:42:00.0 Off | N/A |

| 38% 50C P0 44W / 250W | 0MiB / 11019MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

8.13 requirements.txt

1 absl-py (1.4.0)

2 appdirs (1.4.4)

3 audioread (3.0.1)

4 cachetools (4.2.4)

5 certifi (2024.2.2)

6 cffi (1.15.1)

7 charset-normalizer (2.0.12)

8 click (8.0.4)

9 cycler (0.11.0)

10 Cython (3.0.10)

11 dataclasses (0.8)

12 decorator (5.1.1)

13 Distance (0.1.3)

14 future (1.0.0)

15 g2p-en (2.1.0)

16 google-auth (1.35.0)

17 google-auth-oauthlib (0.4.6)

18 grpcio (1.48.2)

19 idna (3.7)

20 importlib-metadata (4.8.3)

21 importlib-resources (5.4.0)

22 inflect (4.1.0)
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23 joblib (1.1.1)

24 kiwisolver (1.3.1)

25 librosa (0.7.2)

26 llvmlite (0.31.0)

27 Markdown (3.3.7)

28 matplotlib (3.2.2)

29 nltk (3.6.7)

30 numba (0.48.0)

31 numpy (1.19.5)

32 oauthlib (3.2.2)

33 packaging (21.3)

34 Pillow (8.3.2)

35 pip (9.0.1)

36 pkg-resources (0.0.0)

37 pooch (1.6.0)

38 protobuf (3.19.6)

39 pyasn1 (0.5.1)

40 pyasn1-modules (0.3.0)

41 pycparser (2.21)

42 pyparsing (3.1.2)

43 pypinyin (0.51.0)

44 python-dateutil (2.9.0.post0)

45 pyworld (0.3.4)

46 PyYAML (5.4.1)

47 regex (2023.8.8)

48 requests (2.27.1)

49 requests-oauthlib (2.0.0)

50 resampy (0.4.3)

51 rsa (4.9)

52 scikit-learn (0.23.2)

53 scipy (1.5.0)

54 setuptools (59.5.0)

55 six (1.16.0)

56 SoundFile (0.10.3.post1)

57 tensorboard (2.2.2)

58 tensorboard-data-server (0.6.1)

59 tensorboard-plugin-wit (1.8.1)

60 tgt (1.4.4)

61 threadpoolctl (3.1.0)

62 torch (1.10.1)

63 torchaudio (0.10.1)

64 tqdm (4.46.1)

65 typing-extensions (4.1.1)

66 Unidecode (1.1.1)

67 urllib3 (1.26.18)

68 Werkzeug (2.0.3)

69 wheel (0.37.1)

70 zipp (3.6.0)
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8.14 Sentence Examples for Word Error Rate (WER)
Evaluation

1. The sky turned pink as the sun set behind the mountains.

2. The dog bark at the mailman.

3. He placed the book gently on the dusty shelf.

4. The dog barked excitedly at the passing cars.

5. What goes up but never comes down?

6. The fish swam in the clear water.

7. The stormy sea roared against the rocky shore.

8. They cheered when the final whistle blew.

9. The stars twinkled in the clear night sky.

10. She whispered a secret into the dark night.

11. The wind howled through the trees all night long.

12. He read a book before going to bed.

13. They danced in the rain without a care.

14. The old man sighed and closed his eyes.

15. The clock ticked loudly in the silent room.

16. She painted the sky in shades of blue and purple.

17. What has keys but can’t open doors?

18. He ate an apple for his snack.

19. The cake was soft and sweet, melting in her mouth.

20. The baby giggled as the puppy chased its tail.

21. The sun peeked through the clouds after the rain.

22. She placed the last piece of the puzzle in place.

23. the cat jumped onto the couch.

24. The day ended as quietly as it had begun with a soft breeze.

25. The water in the lake was calm and still.

26. What gets wetter as it dries?

27. The leaves crunched under her boots as she walked.

28. The phone rang, but no one was on the other end.

29. The moonlight glowed softly on the forest floor.

30. She held the fragile flower in her hand.

31. The lion roared, shaking the ground beneath them.
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32. He scribbled a quick note before rushing out the door.

33. The stars fell like confetti from the sky.

34. The train whistled as it pulled into the station.

35. The air smelled of rain and fresh earth.

36. The kitten purred as it snuggled in her lap.

37. The river flowed gently through the valley.

38. The paper airplane soared across the classroom.

39. She carefully folded the letter and placed it in her pocket.

40. The old oak tree swayed gently in the evening breeze.

41. She glanced at her watch and hurried down the street.

42. A penny saved is a penny earned, they say.

43. The old swing creaked as it swayed in the breeze.

44. His fingers danced over the piano keys with ease.

45. The mountain loomed in the distance, tall and proud.

46. What has legs but cannot walk?

47. The candle flickered as the wind blew through the window.

48. The baby’s first steps were met with cheers and smiles.

49. The city lights twinkled like stars in the distance.

50. The sound of the ocean calmed her restless mind.

8.15 Sentence Examples for STOI & PESQ Evaluation

1. Monday, there’s gonna be haze.

2. Go to hell.

3. Nothing like a good laugh!

4. Why aren’t you up there objecting?

5. Hold the elevator, please!

6. Bring popcorn and a blanket!

7. Who am I to be modest?

8. So it’s like someone gives you a horse.

9. What’s the best time to prune azalea?

10. Yes, tomorrow in Gorges there should be a light drizzle.

11. That was an amazing book!

12. Who’s the wealthiest YouTuber?

13. Let her have her say.
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14. Happy reading!

15. The advances in technology.

16. Who sent the note?

17. Rough night at the casino tables?

18. She kept saying what?

19. So what’ll it be?

20. Why did the teddy bear not want dessert?

21. It’s already in Montreal, remember?

22. No, snow is not expected on Saturday.

23. There’s an alarm tomorrow at twelve fifteen AM.

24. In Rome this evening, it’s gonna be partly cloudy.

25. Remain on Alma street for three miles.

26. Setting seven timers, What timer duration do you want?

27. Comparing and contrasting the various offender types is illuminating.

28. Temperatures should go from thirteen to five degrees.

29. Your alarm is tomorrow at nine thirty PM.

30. There’s nothing to worry about.

31. The Flying Scotsman has Johnny Lee Miller in it and it’s about a bobsledding team.

32. Why should he go anywhere?

33. Set up and get the puck!

34. Did Tierra deserve her bad girl reputation?

35. Find it now, before it disappears and somebody accuses you of suppressing evidence.

36. Blimy are you threatening me?

37. She is well balanced.

38. Sorry, I still do not have that information.

39. So that’s it?

40. Yes, The King’s Speech is popular.
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Original Text CCR & GRL CCR WCR MINE INFO CLUB GRL

8.16 STOI Results Across Different Models

Original Text CCR & GRL CCR WCR MINE INFO CLUB GRL
Monday, there’s gonna be
haze.

0.3591 0.3351 0.2591 0.2131 0.1319 0.1650 0.2198

Go to hell. 0.1604 0.1434 0.1142 0.1006 0.1130 0.0764 0.1487
Nothing like a good laugh! 0.1982 0.1859 0.0691 0.1210 0.1037 0.1205 0.1839
Why aren’t you up there
objecting?

0.5105 0.4601 0.3179 0.4171 0.0635 0.3983 0.2716

Hold the elevator, please! 0.2189 0.1034 0.1358 0.1570 0.0153 0.0909 0.1726
Bring popcorn and a blan-
ket!

0.1067 1.0945 1.0908 0.0054 0.0074 0.0391 0.1054

Who am I to be modest? 0.3094 0.2100 0.3021 0.2187 0.1881 0.2659 0.3087
So it’s like someone gives
you a horse.

0.4156 0.3507 0.2614 0.3007 0.1953 0.1882 0.3738

What’s the best time to
prune azalea?

0.1403 0.1297 0.0845 0.0747 0.0947 0.1060 0.0560

Yes, tomorrow in Gorges
there should be a light
drizzle.

0.4329 0.3198 0.3088 0.2549 0.3413 0.3058 0.2500

That was an amazing
book!

0.2634 0.1442 0.1437 0.1141 0.0935 0.1128 0.1336

Who’s the wealthiest
YouTuber?

0.2077 0.1896 0.0789 0.1541 0.1743 0.1556 0.1293

Let her have her say. 0.2378 0.1220 0.1872 0.0697 0.2261 0.0729 0.1903
Happy reading! 0.2588 0.1104 0.0843 0.0788 0.1586 0.0431 0.0894
The advances in technol-
ogy.

0.1972 0.1884 0.1880 0.0358 0.0717 0.0655 0.0901

Who sent the note? 0.3971 0.0494 0.2217 0.2687 0.2877 0.0107 0.0983
Rough night at the casino
tables?

0.4134 0.3690 0.3636 0.4346 0.4733 0.2653 0.3678

She kept saying what? 0.6284 0.5350 0.4070 0.3007 0.3889 0.3761 0.2546
So what’ll it be? 0.3174 0.1653 0.2553 0.2961 0.2643 0.2621 0.2598
Why did the teddy bear
not want dessert?

0.4447 0.3691 0.4143 0.2569 0.4835 0.3291 0.4052

It’s already in Montreal,
remember?

0.2633 0.1798 0.1767 0.2705 0.2139 0.1926 0.1642

No, snow is not expected
on Saturday.

0.5465 0.4917 0.3142 0.5159 0.4637 0.2175 0.4720

There’s an alarm tomor-
row at twelve fifteen AM.

0.3093 0.2655 0.2442 0.1571 0.1621 0.2294 0.1999

In Rome this evening, it’s
gonna be partly cloudy.

0.3395 0.1799 0.1527 0.3643 0.2414 0.2318 0.3263

Remain on Alma street for
three miles.

0.2976 0.2227 0.2719 0.2435 0.2677 0.2527 0.2598
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Original Text CCR & GRL CCR WCR MINE INFO CLUB GRL
Setting seven timers,
What timer duration do
you want?

0.3076 0.4105 0.3752 0.2237 0.3915 0.1870 0.2919

Comparing and contrast-
ing the various offender
types is illuminating.

0.3443 0.2143 0.2448 0.4017 0.2143 0.1231 0.2054

Temperatures should go
from thirteen to five de-
grees.

0.3752 0.3246 0.3723 0.2311 0.3489 0.3346 0.3420

Your alarm is tomorrow at
nine thirty PM.

0.3318 0.1597 0.1310 0.4728 0.1547 0.2398 0.3953

There’s nothing to worry
about.

0.1075 0.1782 0.1903 0.1247 0.1397 0.1800 0.2113

The Flying Scotsman has
Johnny Lee Miller in it
and it’s about a bobsled-
ding team.

0.1731 0.1158 0.1061 0.2376 0.1512 0.1819 0.1678

Why should he go any-
where?

0.1430 0.1888 0.1515 0.1430 0.2812 0.1566 0.2506

Set up and get the puck! 0.2868 0.1215 0.2022 0.2171 0.2739 0.1922 0.2272
Did Tierra deserve her
bad girl reputation?

0.1195 0.1189 0.1633 0.1342 0.1641 0.1313 0.1506

Find it now, before it dis-
appears and somebody ac-
cuses you of suppressing
evidence.

0.2989 0.1695 0.1595 0.2266 0.1830 0.1501 0.2402

Blimy are you threatening
me?

0.3869 0.3771 0.2569 0.1224 0.2993 0.2106 0.1119

She is well balanced. 0.2539 0.2704 0.2476 0.2452 0.3039 0.2248 0.1950
Sorry, I still do not have
that information.

0.1819 0.1336 0.1471 0.1715 0.0952 0.1557 0.1692

So that’s it? 0.3390 0.2657 0.2503 0.2527 0.2670 0.3106 0.2761
Yes, The King’s Speech is
popular.

0.4201 0.1852 0.0721 0.0227 0.0613 0.1049 0.3214

Table 8.1: STOI Results Across Different Models for Each Sentence

8.17 PESQ Results Across Different Models

Original Text CCR & GRL CCR WCR MINE INFO CLUB GRL
Monday, there’s gonna be
haze.

1.2384 1.2056 0.1847 0.1685 0.1455 0.1974 0.1854

Go to hell. 1.3527 1.3169 1.2845 1.1995 1.2204 1.1603 1.3065
Nothing like a good laugh! 1.1931 1.1677 1.1369 1.1367 1.0922 1.1968 1.1209
Why aren’t you up there
objecting?

1.0637 1.0456 1.0583 1.0398 1.0397 1.0452 1.037
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Original Text CCR & GRL CCR WCR MINE INFO CLUB GRL
Hold the elevator, please! 1.1431 1.0496 1.1196 1.1099 1.0783 1.0788 1.0518
Bring popcorn and a blan-
ket!

1.1715 1.1387 1.1647 1.0910 1.1718 1.1262 1.1385

Who am I to be modest? 1.1235 1.1028 1.1402 1.0503 1.1264 1.1461 1.0891
So it’s like someone gives
you a horse.

1.1168 1.0833 1.0734 1.0719 1.0797 1.0742 1.0972

What’s the best time to
prune azalea?

1.2813 1.1349 1.1203 1.0890 1.1893 1.2448 1.1972

Yes, tomorrow in Gorges
there should be a light
drizzle.

1.0440 1.0349 1.0410 1.0400 1.0761 1.0362 1.0390

That was an amazing
book!

1.0749 1.0621 1.0592 1.0770 1.0426 1.0646 1.0681

Who’s the wealthiest
YouTuber?

1.0392 1.1222 1.0807 1.0441 1.0620 1.0567 1.0550

Let her have her say. 1.2430 1.1715 1.1524 1.1727 1.1805 1.1860 1.1356
Happy reading! 1.1992 1.1113 1.1129 1.1622 1.1478 1.1433 1.1281
The advances in technol-
ogy.

1.0416 1.0283 1.0267 1.0305 1.0327 1.0315 1.0402

Who sent the note? 1.0722 1.0762 1.0635 1.0724 1.0729 1.1376 1.0786
Rough night at the casino
tables?

1.0665 1.0604 1.0522 1.0450 1.0654 1.0829 1.0603

She kept saying what? 1.2687 1.0869 1.0822 1.2637 1.3134 1.2418 1.0629
So what’ll it be? 1.0533 1.0595 1.0393 1.0575 1.0332 1.0714 1.0592
Why did the teddy bear
not want dessert?

1.0686 1.0424 1.0475 1.0483 1.0524 1.0519 1.0373

It’s already in Montreal,
remember?

1.0863 1.0299 1.0484 1.0451 1.0347 1.0335 1.0289

No, snow is not expected
on Saturday.

1.0506 1.0390 1.0480 1.0370 1.0448 1.0585 1.0355

There’s an alarm tomor-
row at twelve fifteen AM.

1.3022 1.0417 1.0438 1.0417 1.0421 1.0424 1.0435

In Rome this evening, it’s
gonna be partly cloudy.

2.7599 2.3898 1.9109 1.8023 1.6980 2.1302 2.7171

Remain on Alma street for
three miles.

1.0267 1.0179 1.0219 1.0220 1.0250 1.0201 1.0177

Setting seven timers,
What timer duration do
you want?

1.0604 1.0307 1.0310 1.0711 1.0395 1.0428 1.0313

Comparing and contrast-
ing the various offender
types is illuminating.

1.0226 1.0262 1.0279 1.0203 1.0196 1.0098 1.0198

Temperatures should go
from thirteen to five de-
grees.

1.0403 1.0499 1.0354 1.0404 1.0591 1.0316 1.0399

Your alarm is tomorrow at
nine thirty PM.

1.0724 1.1152 1.0824 1.0789 1.1207 1.0857 1.0737
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Original Text CCR & GRL CCR WCR MINE INFO CLUB GRL
There’s nothing to worry
about.

1.0356 1.0524 1.0889 1.0365 1.1018 1.0777 1.0379

The Flying Scotsman has
Johnny Lee Miller in it
and it’s about a bobsled-
ding team.

1.0954 1.0810 1.2324 1.0595 1.0912 1.0591 1.0723

Why should he go any-
where?

1.0676 1.0521 1.0748 1.0547 1.0596 1.0914 1.0701

Set up and get the puck! 1.1147 1.1113 1.0679 1.1125 1.0665 1.0862 1.0684
Did Tierra deserve her
bad girl reputation?

1.0939 1.0679 1.1779 1.0754 1.0652 1.2490 1.0539

Find it now, before it dis-
appears and somebody ac-
cuses you of suppressing
evidence.

1.0859 1.0565 1.0864 1.0709 1.0725 1.0727 1.0812

Blimy are you threatening
me?

1.0469 1.0469 1.0529 1.0335 1.0497 1.0351 1.0466

She is well balanced. 1.1050 1.1101 1.0705 1.0986 1.0862 1.1275 1.0327
Sorry, I still do not have
that information.

1.0834 1.0942 1.0802 1.1122 1.1029 1.1130 1.0808

So that’s it? 1.0379 1.0559 1.0431 1.0319 1.0421 1.0455 1.0336
Yes, The King’s Speech is
popular.

1.0623 1.0790 1.0842 1.0727 1.1355 1.0761 1.0550

Table 8.2: Model PESQ scores across different models and sentences.

8.18 Word Error Rate - Convex Conjugate Rényi &
GRL

Original Transcribed WER
The sky turned pink as the sun
set behind the mountains.

the sky turn pink as the sun set
behind the mountain

0.1818

The dog bark at the mailman. the dog bark at the mailman 0.0000
He placed the book gently on the
dusty shelf.

he plays the book gently on the
dusty Shelf

0.1111

The dog barked excitedly at the
passing cars.

the dog barked excitedly at the
passing powers

0.1250

What goes up but never comes
down?

what goes up but never comes
down

0.0000

The fish swam in the clear water. the fish swim in the clear 0.2857
The stormy sea roared against
the rocky shore.

the stormy sea road against the
rock

0.2500

They cheered when the final
whistle blew.

they shared won the final whistle 0.4286
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The stars twinkled in the clear
night sky.

the stars twinkled in the clear
night

0.1250

She whispered a secret into the
dark night.

she whispered a secret into the
dark night

0.0000

The wind howled through the
trees all night long.

the wind howled through the
trees all night

0.1111

He read a book before going to
bed.

He read a book before going to
bed

0.0000

They danced in the rain without
a care.

the danced in the rain without a 0.2500

The old man sighed and closed
his eyes.

the old man’s side and closed his
eyes

0.2500

The clock ticked loudly in the
silent room.

the clock technology in the silent 0.3750

She painted the sky in shades of
blue and purple.

she painted the sky in shades of
blue and purple

0.0000

What has keys but can’t open
doors?

what has keys but can’t open
doors

0.0000

His footsteps echoed in the
empty corridor.

his footsteps settled in the empty 0.2857

The cake was soft and sweet,
melting in her mouth.

the cake was soft and sweet melt-
ing in her mouth

0.0000

The baby giggled as the puppy
chased its tail.

the baby giggled as the poppy
chased its

0.2222

The sun peeked through the
clouds after the rain.

the sun peek through the clouds
after the

0.2222

She placed the last piece of the
puzzle in place.

she placed the last piece of the
puzzle in place

0.0000

The cat jumped onto the couch. the cat jumped onto the couch 0.0000
The day ended as quietly as it
had begun with a soft breeze.

the day in the desert quietly as
it had bacon with a soft bre

0.3846

The water in the lake was calm
and still.

the water in the lake was calm
and still

0.0000

What gets wetter as it dries? what gets wetter as it dries 0.0000
The leaves crunched under her
boots as she walked.

the leaves crunched under her
boots as she walked

0.0000

The phone rang, but no one was
on the other end.

the phone rang but no one was
in the other

0.2727

The moonlight glowed softly on
the forest floor.

the Moonlight glowed Softly on
the forest floor

0.0000

She held the fragile flower in her
hand.

she held the fragile flower in her
hand

0.0000

The lion roared shaking the
ground beneath them.

the lion guard shaking the
ground beneath

0.2500

He scribbled a quick note before
rushing out the door.

he scribbled a quick note before
rushing out the door

0.0000
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The stars fell like confetti from
the sky.

the Stars felt like confetti from
the

0.2500

The train whistled as it pulled
into the station.

the train whistles as it pulled into
the station

0.1111

The air smelled of rain and fresh
earth.

bear smell the rain and fresh 0.6250

The kitten purred as it snuggled
in her lap.

the kitten purred as it snuggled
in her lap

0.0000

The river flowed gently through
the valley.

the river flow gently through the
valley

0.1429

The paper airplane soared across
the classroom.

the paper airplane sort across the
class

0.2827

She carefully folded the letter
and placed it in her pocket.

she carefully folded the letter and
placed it in her

0.0909

The treasure chest creaked open,
revealing gold coins.

the treasure chest creaked open
revealing gold coins

0.0000

She glanced at her watch and
hurried down the street.

she glanced at her watch and
hurried down the street

0.0000

A penny saved is a penny earned
they say.

a penny saved is a penny and
they say

0.1111

The old swing creaked as it
swayed in the breeze.

golf swing Creek as its weight in
the bre

0.6000

His fingers danced over the piano
keys with ease.

his fingers danced over the piano
keys with

0.0000

The mountain loomed in the dis-
tance tall and proud.

the mountain lived in the dis-
tance to all land

0.4444

What has legs but cannot walk? what has legs but can’t 0.3333
The candle flickered as the wind
blew through the window.

the candle flicker does the wine
blew through the window

0.3000

The baby’s first steps were met
with cheers and smiles.

the baby’s first steps were met
with chairs and smiles

0.2000

The city lights twinkled like stars
in the distance.

the city lights twinkle lights stars
in the distance

0.2222

The sound of the ocean calmed
her restless mind.

the sound of the ocean called her
Restless

0.2222

Table 8.3: WER CCR & GRL

8.19 Word Error Rate - Convex Conjugate Rényi

Original Text Transcribed Text WER

The sky turned pink as the sun
set behind the mountains.

the sky turn pink as the sun set
behind the mountain

0.1818

The dog bark at the mailman. the dog bark at the mail 0.1667
He placed the book gently on the
dusty shelf.

he plays the book gently on the
dusty Shelf

0.1111
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Original Text Transcribed Text WER
The dog barked excitedly at the
passing cars.

the dog barked excitedly at the
passing powers

0.1250

What goes up but never comes
down?

what does up but never comes 0.2857

The fish swam in the clear water. the fifth swam in the clear 0.2857
The stormy sea roared against
the rocky shore.

the stormy sea Road against the
Rocky

0.2500

They cheered when the final
whistle blew.

they shared won the final whistle 0.4286

The stars twinkled in the clear
night sky.

the stars twinkled in the clear
night

0.1250

She whispered a secret into the
dark night.

she whispered a secret into the
dark

0.1250

The wind howled through the
trees all night long.

the wine called through the trees
all night

0.3333

He read a book before going to
bed.

He read a book before going to
bed

0.0000

They danced in the rain without
a care.

the danced in the rain without a 0.2500

The old man sighed and closed
his eyes.

the old man’s side and closed his
eyes

0.2500

The clock ticked loudly in the
silent room.

the clock to cloudy in the silent 0.3750

She painted the sky in shades of
blue and purple.

she painted the sky in shades of
blue and purple

0.0000

What has keys but can’t open
doors?

what has keys but can’t open do 0.2857

His footsteps echoed in the
empty corridor.

his footsteps settled in the empty 0.2857

The cake was soft and sweet,
melting in her mouth.

the cake was soft and sweet melt-
ing in her mouth

0.0000

The baby giggled as the puppy
chased its tail.

the baby giggled as the poppy
chased its

0.2222

The sun peeked through the
clouds after the rain.

the sun peek through the clouds
after the

0.2222

She placed the last piece of the
puzzle in place.

she plays the last piece of the
puzzle in place

0.1000

The cat jumped onto the couch. the cat jumped onto the 0.1667
The day ended as quietly as it
had begun with a soft breeze.

The Day of the Dead quietly as
it had been in the soft bre

0.5385

The water in the lake was calm
and still.

the water in the lake was calm
and

0.1111

What gets wetter as it dries? what gets wetter as it dries 0.0000
The leaves crunched under her
boots as she walked.

the leaves crunched under her
boots as she walked

0.0000

The phone rang, but no one was
on the other end.

the phone rang but no one was
in the other

0.2727
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Original Text Transcribed Text WER
The moonlight glowed softly on
the forest floor.

the Moonlight Softly on the for-
est floor

0.1250

She held the fragile flower in her
hand.

she held the fragile flower in her 0.125

The lion roared shaking the
ground beneath them.

the lion guard shaking the
ground beneath

0.2500

He scribbled a quick note before
rushing out the door.

he scribbled a quick note before
rushing out the door

0.0000

The stars fell like confetti from
the sky.

the Stars felt like confetti from
the

0.2500

The train whistled as it pulled
into the station.

the train whistled as it pulled
into the station

0.1111

The air smelled of rain and fresh
earth.

they’re small the rain and fresh 0.6250

The kitten purred as it snuggled
in her lap.

the kitten purred as it snuggled
in her lap

0.0000

The river flowed gently through
the valley.

the river flow gently through the
valley

0.1429

The paper airplane soared across
the classroom.

the paper airplane sword across
the classroom

0.1429

She carefully folded the letter
and placed it in her pocket.

she carefully folded the letter and
placed it in her

0.0909

The treasure chest creaked open,
revealing gold coins.

the treasure chest creaked open
revealing gold coins

0.0000

She glanced at her watch and
hurried down the street.

she glanced at her watch and
hurry down the

0.2000

A penny saved is a penny earned
they say.

a penny saved is a penny and
they say

0.1111

The old swing creaked as it
swayed in the breeze.

adult Twin Creeks as its weight
in the breeze

0.6000

His fingers danced over the piano
keys with ease.

his fingers danced over the piano
keys with

0.1111

The mountain loomed in the dis-
tance tall and proud.

the Martin wound in the distance
to all and

0.5556

What has legs but cannot walk? what is likes but cannot 0.5000
The candle flickered as the wind
blew through the window.

the candle flicker does the wind
blew through the window

0.2000

The baby’s first steps were met
with cheers and smiles.

the baby’s first steps were met
with chairs and smiles

0.2000

The city lights twinkled like stars
in the distance.

the city lights twinkle lights stars
in the distance

0.2222

The sound of the ocean calmed
her restless mind.

the sound of the ocean called her
Restless

0.2222

Table 8.4: WER CCR
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8.20 Word Error Rate - Worst Case Regret

Original Text Transcribed Text WER
The sky turned pink as the sun set be-
hind the mountains.

the sky turned pink as the sun set be-
hind the mountain

0.3000

The dog bark at the mailman. the dog bark at the 0.3333
He placed the book gently on the dusty
shelf.

can you place the book gently on the
dusty Shelf

0.3333

The dog barked excitedly at the passing
cars.

the dog barked excitedly at the passing
cars

0.0000

What goes up but never comes down? what does up but never comes 0.2857
The fish swam in the clear water. the thing swam in the clear 0.2857
The stormy sea roared against the
rocky shore.

this to me see your word against the
rocky Shore

0.7500

They cheered when the final whistle
blew.

Richard won the final whistle 0.5714

The stars twinkled in the clear night
sky.

the star twinkle twinkle 0.8750

She whispered a secret into the dark
night.

cheap whisper to secret into the dark 0.5000

The wind howled through the trees all
night long.

the White House for the trees all night 0.4444

He read a book before going to bed. can you read a book before going to bed 0.2500
They danced in the rain without a care. they danced in the rain without 0.2500
The old man sighed and closed his eyes. old man’s side and closed his eyes 0.3750
The clock ticked loudly in the silent
room.

aquatic loudly in the silent 0.5000

She painted the sky in shades of blue
and purple.

she painted the sky in shades of blue
and purple

0.0000

What has keys but can’t open doors? what is keys but can’t open doors 0.2857
His footsteps echoed in the empty cor-
ridor.

his footsteps settled in the empty 0.2857

The cake was soft and sweet melting in
her mouth.

the cake was soft and sweet melting in
her mouth

0.0000

The baby giggled as the puppy chased
its tail.

the baby giggle does the puppy chase
this

0.5556

The sun peeked through the clouds af-
ter the rain.

the song peek through the clouds after
the rain

0.2222

She placed the last piece of the puzzle
in place.

she plays the last piece of the puzzle in
place

0.1000

The cat jumped onto the couch. the cat jumped on the 0.3333
The day ended as quietly as it had be-
gun with a soft breeze.

today and today is quietly as it had ba-
con with a soft bre

0.4615

The water in the lake was calm and still. the water in the lake was calm 0.2222
What gets wetter as it dries? what gets wetter as a 0.3333
The leaves crunched under her boots as
she walked.

the leaves crunched under her but says
she

0.3333
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Original Text Transcribed Text WER
The phone rang, but no one was on the
other end.

the phone ran but no one was another 0.5455

The moonlight glowed softly on the for-
est floor.

the Moonlight close Softly on the forest
floor

0.1250

She held the fragile flower in her hand. she held the fragile flower in her 0.1250
The lion roared shaking the ground be-
neath them.

the lion roar shaking the ground be-
neath

0.2500

He scribbled a quick note before rushing
out the door.

he’s crippled a quick note before rush-
ing at the

0.4000

The stars fell like confetti from the sky. the Stars felt like confetti from the 0.2500
The train whistled as it pulled into the
station.

the train whistle does it pulled into the
station

0.2222

The air smelled of rain and fresh earth. bear smell the rain and fresh 0.6250
The kitten purred as it snuggled in her
lap.

the kitten put as its snuggled in her 0.3333

The river flowed gently through the val-
ley.

the river flow gently through the 0.2857

The paper airplane soared across the
classroom.

the paper airplane sword across the
classroom

0.1429

She carefully folded the letter and
placed it in her pocket.

she carefully folded the letter and the
place that in her Pok

0.3636

The treasure chest creaked open, re-
vealing gold coins.

the treasure chest freaked open reveal-
ing gold card

0.2500

She glanced at her watch and hurried
down the street.

she glanced at her watch and hurry
down the street

0.1000

A penny saved is a penny earned they
say.

a penny saved is a penny and they say 0.1111

The old swing creaked as it swayed in
the breeze.

the old Twin Creek has its weight in the
breeze

0.5000

His fingers danced over the piano keys
with ease.

his fingers stand still over the piano
keys with

0.3333

The mountain loomed in the distance
tall and proud.

the mountain moved in the distance to
all and

0.4444

What has legs but cannot walk? what is legs but cannot walk 0.1667
The candle flickered as the wind blew
through the window.

the candle flickered as the wine blew
through the window

0.1000

The baby’s first steps were met with
cheers and smiles.

the baby’s first steps were met with
yours and smiles

0.2000

The city lights twinkled like stars in the
distance.

the city lights twinkle lights stars in the
distance

0.2222

The sound of the ocean calmed her rest-
less mind.

the sound of ocean calmed her Restless 0.2222

Table 8.5: WER WC
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Original Text Transcribed Text WER
The sky turned pink as the sun set be-
hind the mountains.

the sky turn pink has the sunset behind
the mountain

0.4545

The dog bark at the mailman. the dog bark at the mail 0.1667
He placed the book gently on the dusty
shelf.

he plays the buck gently on the dusty
Shelf

0.2222

The dog barked excitedly at the passing
cars.

the dog barked excitedly at the passing 0.1250

What goes up but never comes down? what does a banana comes down 0.5714
The fish swam in the clear water. the fifth swam in the clear 0.2857
The stormy sea roared against the
rocky shore.

the story against the Rocky 0.5000

They cheered when the final whistle
blew.

nature when the final whistle 0.4286

The stars twinkled in the clear night
sky.

the stars twinkle twinkle little star 0.7500

She whispered a secret into the dark
night.

sheath whispered a secret into the dark 0.2500

The wind howled through the trees all
night long.

the White House for the trees all night 0.4444

He read a book before going to bed. he read a book before going to 0.1250
They danced in the rain without a care. play dancing in the rain without 0.5000
The old man sighed and closed his eyes. the old man’s side and closest 0.6250
The clock ticked loudly in the silent
room.

aquatic flowey in the silent 0.6250

She painted the sky in shades of blue
and purple.

she painted the sky and shades of blue
and purple

0.1000

What has keys but can’t open doors? what is but can’t open 0.7143
His footsteps echoed in the empty cor-
ridor.

is but stop sicker than the empty 0.8571

The cake was soft and sweet melting in
her mouth.

the cake was soft and sweet melting in
her mouth

0.000

The baby giggled as the puppy chased
its tail.

the baby giggle does the poppy Taste of 0.6667

The sun peeked through the clouds af-
ter the rain.

the sun peeked through the clouds after
the

0.1111

She placed the last piece of the puzzle
in place.

she plays the last piece of the puzzle
and place

0.2000

The cat jumped onto the couch. the cat jumped onto the 0.1667
The day ended as quietly as it had be-
gun with a soft breeze.

with a soft Breeze 0.6923

The water in the lake was calm and still. the water in the lake was called man 0.3333
What gets wetter as it dries? what does Twitter as a 0.6667
The leaves crunched under her boots as
she walked.

delete scratched under her boots as she 0.4444

The phone rang, but no one was on the
other end.

the phone ring but no one was on 0.3636
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Original Text Transcribed Text WER
The moonlight glowed softly on the for-
est floor.

the Moonlight Softly on the forest floor 0.1250

She held the fragile flower in her hand. she held the fragile flower in her 0.1250
The lion roared shaking the ground be-
neath them.

the lion roars shaking the ground 0.3750

He scribbled a quick note before rushing
out the door.

before rushing out the door 0.5000

The stars fell like confetti from the sky. the Stars felt like confetti from the 0.2500
The train whistled as it pulled into the
station.

train whistled as it pulled into the sta-
tion

0.0000

The air smelled of rain and fresh earth. bear smell the rain and fresh 0.6250
The kitten purred as it snuggled in her
lap.

the kitten part as it snuggled in 0.3333

The river flowed gently through the val-
ley.

the river flow gently through the valley 0.1429

The paper airplane soared across the
classroom.

the paper airplanes would across the
class

0.4286

She carefully folded the letter and
placed it in her pocket.

she carefully folded the letter and
placed it in her

0.0909

The treasure chest creaked open, re-
vealing gold coins.

Patricia Chesapeake open reviewing
gold

0.7500

She glanced at her watch and hurried
down the street.

she glanced at her watch and hurried
down the street

0.0000

A penny saved is a penny earned they
say.

a penny saved is a penny and they 0.2222

The old swing creaked as it swayed in
the breeze.

adult Twin Creeks as its weight in the
breeze

0.6000

His fingers danced over the piano keys
with ease.

his fingers danced over the piano keys
with

0.1111

The mountain loomed in the distance
tall and proud.

the mountains in the distance doll and 0.4444

What has legs but cannot walk? what is legs but cannot 0.3333
The candle flickered as the wind blew
through the window.

the candle flicker does the wine blew
through the window

0.3000

The baby’s first steps were met with
cheers and smiles.

the baby’s first steps were met with
chairs and smile

0.3000

The city lights twinkled like stars in the
distance.

the city lights twinkle black stars in the
distance

0.2222

The sound of the ocean calmed her rest-
less mind.

the sound of the ocean called the Rest-
less

0.3333

Table 8.6: WER CLUB
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Original Text Transcribed Text WER
The sky turned pink as the sun set be-
hind the mountains.

the sky turn pink has the sunset behind
the

0.4545

The dog bark at the mailman. the dog bark at the 0.1667
He placed the book gently on the dusty
shelf.

he plays the book gently on the dusty 0.2222

The dog barked excitedly at the passing
cars.

he dog barked excitedly at the passing
car

0.1250

What goes up but never comes down? what does a but never comes down 0.2857
The fish swam in the clear water. the fish swim in the Clearwater 0.4286
The stormy sea roared against the
rocky shore.

Rocky Shore 0.7500

They cheered when the final whistle
blew.

Richard won the final whistle 0.5714

The stars twinkled in the clear night
sky.

the stars twinkled in the clear night 0.1250

She whispered a secret into the dark
night.

she whispered a secret into the dark 0.1250

The wind howled through the trees all
night long.

the wind held for the trees all night 0.3333

He read a book before going to bed. can you read a book before going 0.5000
They danced in the rain without a care. play dance in the rain without a 0.3750
The old man sighed and closed his eyes. the old man’s side and closed his eyes 0.2500
The clock ticked loudly in the silent
room.

the clock ticks loudly in the silent 0.2500

She painted the sky in shades of blue
and purple.

she painted the sky in shades of blue
and purple

0.0000

What has keys but can’t open doors? what is keys by Kent open do 0.5714
His footsteps echoed in the empty cor-
ridor.

his footstep second in the empty quar-
ter

0.4286

The cake was soft and sweet melting in
her mouth.

the cake was stuffed and sweet melting
in her mouth

0.1000

The baby giggled as the puppy chased
its tail.

the baby giggled as the puppy chased
its

0.1111

The sun peeked through the clouds af-
ter the rain.

the sun heat through the clouds after
the

0.2222

She placed the last piece of the puzzle
in place.

she plays the last piece of the puzzle in
place

0.1000

The cat jumped onto the couch. the cat jump on the 0.5000
The day ended as quietly as it had be-
gun with a soft breeze.

the day and the day is quietly as in a
bag in with a soft br

0.6923

The water in the lake was calm and still. the water in the lake was call and 0.2222
What gets wetter as it dries? what gets wetter as a price 0.3333
The leaves crunched under her boots as
she walked.

the leaves crunched under her boots as 0.2222

The phone rang, but no one was on the
other end.

the phone rang but no one was another 0.3636
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Original Text Transcribed Text WER
The moonlight glowed softly on the for-
est floor.

the Moonlight glowed Softly on the for-
est floor

0.0000

She held the fragile flower in her hand. she held the fragile flower in her hand 0
The lion roared shaking the ground be-
neath them.

the lion roar shaking the ground Ben 0.3750

He scribbled a quick note before rushing
out the door.

before running out the door 0.6000

The stars fell like confetti from the sky. the Stars fell like confetti from the sky 0.0000
The train whistled as it pulled into the
station.

the train whistled as it pulled into the
station

0.0000

The air smelled of rain and fresh earth. Bears smell of rain and fresh 0.5000
The kitten purred as it snuggled in her
lap.

the kitten part as it snuggled in her 0.2222

The river flowed gently through the val-
ley.

the river flow gently through the valley 0.1429

The paper airplane soared across the
classroom.

the paper airplane sword across the
classroom

0.1429

She carefully folded the letter and
placed it in her pocket.

she carefully folded the letter and
placed it in her

0.0909

The treasure chest creaked open, re-
vealing gold coins.

the treasure chest cracked open reveal-
ing gold Co

0.2500

She glanced at her watch and hurried
down the street.

she glanced at her watch and hurried
down the

0.1000

A penny saved is a penny earned they
say.

a penny saved is a penny earned a 0.2222

The old swing creaked as it swayed in
the breeze.

the old Twin Creek does its weight in
the bre

0.6000

His fingers danced over the piano keys
with ease.

his fingers danced over the piano keys
with e

0.1111

The mountain loomed in the distance
tall and proud.

the mountain moved in the distance to
all and

0.4444

What has legs but cannot walk? what is lags but can it 0.6667
The candle flickered as the wind blew
through the window.

the candle flicker does the wine Boo for
the window

0.5000

The baby’s first steps were met with
cheers and smiles.

the baby’s first steps were met with
chairs and smiles

0.2000

The city lights twinkled like stars in the
distance.

stars in the distance 0.5000

The sound of the ocean calmed her rest-
less mind.

the sound of the ocean called her Rest-
less

0.2222

Table 8.7: WER INFO NCE
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Original Text Transcribed Text WER
The sky turned pink as the sun set be-
hind the mountains.

behind the mountain 0.8182

The dog bark at the mailman. the dog bark at the 0.1667
He placed the book gently on the dusty
shelf.

can you place the book gently on the
dusty Shelf

0.3333

The dog barked excitedly at the passing
cars.

the dog barked excitedly at the passing
cars

0.0000

What goes up but never comes down? what does but never comes 0.4286
The fish swam in the clear water. the fish swim in a clear water 0.2857
The stormy sea roared against the
rocky shore.

the strongest Heroes against the Rocky 0.5000

They cheered when the final whistle
blew.

date sheet won the final whist 0.7130

The stars twinkled in the clear night
sky.

the stars twinkle in the clear night 0.2500

She whispered a secret into the dark
night.

she whispered a secret into the dark 0.1250

The wind howled through the trees all
night long.

the White House for the trees all night 0.4444

He read a book before going to bed. he read a book before going to 0.1250
They danced in the rain without a care. they danced in the rain without 0.25000
The old man sighed and closed his eyes. the old man sides and clothes his 0.3750
The clock ticked loudly in the silent
room.

the classic loudly in the silent 0.3750

She painted the sky in shades of blue
and purple.

she painted the stye and shades of blue
and purple

0.2000

What has keys but can’t open doors? what has keys but can’t open 0.2857
His footsteps echoed in the empty cor-
ridor.

his phone stopped settled in the empty
quart

0.5714

The cake was soft and sweet melting in
her mouth.

the cake was soft and sweet melting in
her mouth

0.0000

The baby giggled as the puppy chased
its tail.

the baby get old as the puppy Chase sit 0.5556

The sun peeked through the clouds af-
ter the rain.

the Sun Beat through the clouds after
the

0.2222

She placed the last piece of the puzzle
in place.

she plays the last piece of the puzzle in 0.2000

The cat jumped onto the couch. the cat jumped onto the couch 0.0000
The day ended as quietly as it had be-
gun with a soft breeze.

today in the dance quietly as it had ba-
con with a soft bre

0.4615

The water in the lake was calm and still. the water in the lake was calm and 0.1111
What gets wetter as it dries? what gets wetter as it 0.1667
The leaves crunched under her boots as
she walked.

the leaves crunched under her but says
she

0.3333

The phone rang, but no one was on the
other end.

the phone ran but no one was on the 0.2727
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Original Text Transcribed Text WER
The moonlight glowed softly on the for-
est floor.

the Moonlight glowed Softly on a forest 0.2500

She held the fragile flower in her hand. she held the fragile flower in her 0.125
The lion roared shaking the ground be-
neath them.

the lion Rod shaking the ground been 0.3750

He scribbled a quick note before rushing
out the door.

he’s crippled a quick note before rush-
ing out the

0.3000

The stars fell like confetti from the sky. the stars that like confetti from the sky 0.1250
The train whistled as it pulled into the
station.

the train whistled as it pulled into the
station

0.0000

The air smelled of rain and fresh earth. bear smell the rain and fresh 0.6250
The kitten purred as it snuggled in her
lap.

the kitten Prairie does it’s snuggled in
her lap

0.3333

The river flowed gently through the val-
ley.

the river flow gently through the valley 0.1429

The paper airplane soared across the
classroom.

the paper airplane sort of cross the
classroom

0.4286

She carefully folded the letter and
placed it in her pocket.

she got a folded the ladder and placed
it in her

0.3636

The treasure chest creaked open, re-
vealing gold coins.

the traffic just creaked open revealing
goal

0.5000

She glanced at her watch and hurried
down the street.

she glanced at her watch and hurried
down the street

0.0000

A penny saved is a penny earned they
say.

a penny saved is a penny earned 0.2222

The old swing creaked as it swayed in
the breeze.

those Twin Creeks has its weight in the
bre

0.8000

His fingers danced over the piano keys
with ease.

has fingers stand still over the piano
keys with the

0.4444

The mountain loomed in the distance
tall and proud.

the mountain lived in the distance
stolen

0.4444

What has legs but cannot walk? what is legs but cannot walk 0.1667
The candle flickered as the wind blew
through the window.

the candle flickered as the wine blew
through the window

0.1000

The baby’s first steps were met with
cheers and smiles.

the baby’s first steps were met with Jer-
sey and smiles

0.2000

The city lights twinkled like stars in the
distance.

the city lights wrinkled like stars in the
distance

0.1111

The sound of the ocean calmed her rest-
less mind.

the sound of the ocean called her Rest-
less

0.2222

Table 8.8: WER MINE
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Original Text Transcribed Text WER
The sky turned pink as the sun set be-
hind the mountains.

the sky turn pink as the sunset behind
the mountain

0.3636

The dog bark at the mailman. the dog bark at the mail 0.1667
He placed the book gently on the dusty
shelf.

he plays the book gently on the dusty
Shelf

0.1111

The dog barked excitedly at the passing
cars.

the dog barked excitedly at the passing 0.1250

What goes up but never comes down? what goes up but never comes 0.1429
The fish swam in the clear water. the fish swim in a clear water 0.2857
The stormy sea roared against the
rocky shore.

this time is your own against the Rocky 0.7500

They cheered when the final whistle
blew.

they shared from the final whistle 0.4286

The stars twinkled in the clear night
sky.

the stars twinkled in the clear night 0.1250

She whispered a secret into the dark
night.

she whispered a secret into the dark 0.1250

The wind howled through the trees all
night long.

the White House of the trees all night 0.4444

He read a book before going to bed. here at the book the photo on the 0.8750
They danced in the rain without a care. play dance in the rain without 0.5000
The old man sighed and closed his eyes. the old man’s side and closed his eyes 0.2500
The clock ticked loudly in the silent
room.

the classic lovely and the silent 0.6250

She painted the sky in shades of blue
and purple.

she painted the sky in shades of blue
and purple

0.0000

What has keys but can’t open doors? what is keys but can’t open doors 0.2857
His footsteps echoed in the empty cor-
ridor.

is food stop second in the MP 0.8571

The cake was soft and sweet melting in
her mouth.

the cake was soft and sweet melting in
her mouth

0.0000

The baby giggled as the puppy chased
its tail.

the baby Giggles as the puppy chased
it

0.3333

The sun peeked through the clouds af-
ter the rain.

the sun peeked through the clouds after
the

0.1111

She placed the last piece of the puzzle
in place.

she placed the last piece of the puzzle
in place

0.0000

The cat jumped onto the couch. the cat jump onto the couch 0.1667
The day ended as quietly as it had be-
gun with a soft breeze.

the day Ended as quietly as it had ba-
con with a soft Breeze

0.0769

The water in the lake was calm and still. the water in the lake was calm and 0.1111
What gets wetter as it dries? what gets wetter as a 0.3333
The leaves crunched under her boots as
she walked.

the leaves crunch on the habitat she 0.6667

The phone rang, but no one was on the
other end.

the phone ring but no one was on the
other

0.1818
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Original Text Transcribed Text WER
The moonlight glowed softly on the for-
est floor.

the moon light glowed Softly on the for-
est floor

0.2500

She held the fragile flower in her hand. she held a fragile flower in her 0.2500
The lion roared shaking the ground be-
neath them.

the lion or shaking the ground beneath 0.2500

He scribbled a quick note before rushing
out the door.

he scribbled a quick note before rushing
out the door

0.0000

The stars fell like confetti from the sky. the stars fall like confetti from the 0.2500
The train whistled as it pulled into the
station.

the train whistle desert pulled into the
station

0.3333

The air smelled of rain and fresh earth. bear smelled of rain and fresh 0.3750
The kitten purred as it snuggled in her
lap.

the Kitten Party has its nickels in her 0.5556

The river flowed gently through the val-
ley.

the river flow gently through the valley 0.1429

The paper airplane soared across the
classroom.

the paper airplane sword across the
class

0.2857

She carefully folded the letter and
placed it in her pocket.

be carefully folded the letter and placed
it in her Pok

0.1818

The treasure chest creaked open, re-
vealing gold coins.

the treasure chest Creek open reviewing
gold

0.3750

She glanced at her watch and hurried
down the street.

she glanced at her watch and hurried
down the street

0.0000

A penny saved is a penny earned they
say.

a penny saved is a penny earned 0.2222

The old swing creaked as it swayed in
the breeze.

Bill’s Twin Creek has its weight in the
breez

0.8000

His fingers danced over the piano keys
with ease.

his fingers Dan stove for the piano keys
with

0.4444

The mountain loomed in the distance
tall and proud.

the mountain loom in the distance salt
and

0.3333

What has legs but cannot walk? what has legs but cannot 0.1667
The candle flickered as the wind blew
through the window.

the candle flicker does the wine blew
through the window

0.3000

The baby’s first steps were met with
cheers and smiles.

the baby’s first steps were met with
chairs and smiles

0.2000

The city lights twinkled like stars in the
distance.

the city lights twinkled like stars in the
distance

0.0000

The sound of the ocean calmed her rest-
less mind.

the sound of the ocean called the Rest-
less

0.3333

Table 8.9: WER GRL
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Figure 8.9: Screenshot of Flask Application
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[100] Mikolaj Bińkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Nor-
man Casagrande, Luis C. Cobo, and Karen Simonyan. High Fidelity Speech Syn-
thesis with Adversarial Networks, September 2019. URL http://arxiv.org/abs/

1909.11646. arXiv:1909.11646 [cs, eess].

[101] Jinhyeok Yang, Junmo Lee, Youngik Kim, Hoonyoung Cho, and Injung Kim. Voc-
GAN: A High-Fidelity Real-time Vocoder with a Hierarchically-nested Adversarial

http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1606.04934
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2006.11239
http://arxiv.org/abs/1612.07837
http://arxiv.org/abs/1612.07837
http://arxiv.org/abs/1810.11846
http://arxiv.org/abs/1810.11846
https://collaborate.princeton.edu/en/publications/fftnet-a-real-time-speaker-dependent-neural-vocoder
https://collaborate.princeton.edu/en/publications/fftnet-a-real-time-speaker-dependent-neural-vocoder
http://arxiv.org/abs/2001.05685
http://arxiv.org/abs/2001.05685
http://arxiv.org/abs/1802.04208
http://arxiv.org/abs/1909.11646
http://arxiv.org/abs/1909.11646


BIBLIOGRAPHY 113

Network, July 2020. URL http://arxiv.org/abs/2007.15256. arXiv:2007.15256
[cs, eess].

[102] Alexey A. Gritsenko, Tim Salimans, Rianne van den Berg, Jasper Snoek, and Nal
Kalchbrenner. A Spectral Energy Distance for Parallel Speech Synthesis, October
2020. URL http://arxiv.org/abs/2008.01160. arXiv:2008.01160 [cs, eess, stat].

[103] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, andWilliam
Chan. WaveGrad: Estimating Gradients for Waveform Generation, October 2020.
URL http://arxiv.org/abs/2009.00713. arXiv:2009.00713 [cs, eess, stat].

[104] Zehua Chen, Xu Tan, Ke Wang, Shifeng Pan, Danilo Mandic, Lei He, and Sheng
Zhao. InferGrad: Improving Diffusion Models for Vocoder by Considering In-
ference in Training, February 2022. URL http://arxiv.org/abs/2202.03751.
arXiv:2202.03751 [cs, eess].

[105] Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled
Representation Learning, June 2024. URL http://arxiv.org/abs/2211.11695.
arXiv:2211.11695 [cs].

[106] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guil-
laume Desjardins, and Alexander Lerchner. Understanding disentangling in $\beta$-
VAE, April 2018. URL http://arxiv.org/abs/1804.03599. arXiv:1804.03599 [cs,
stat].

[107] Hyunjik Kim and Andriy Mnih. Disentangling by Factorising, July 2019. URL
http://arxiv.org/abs/1802.05983. arXiv:1802.05983 [cs, stat].

[108] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximiz-
ing Generative Adversarial Nets, June 2016. URL http://arxiv.org/abs/1606.

03657. arXiv:1606.03657 [cs, stat].

[109] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture
for Generative Adversarial Networks, March 2019. URL http://arxiv.org/abs/

1812.04948. arXiv:1812.04948 [cs, stat].

[110] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
Contrast for Unsupervised Visual Representation Learning, March 2020. URL http:

//arxiv.org/abs/1911.05722. arXiv:1911.05722 [cs].

[111] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and George
Tucker. On Variational Bounds of Mutual Information, May 2019. URL http:

//arxiv.org/abs/1905.06922. arXiv:1905.06922 [cs, stat].

[112] Wei-Ning Hsu, Yu Zhang, Ron J. Weiss, Yu-An Chung, Yuxuan Wang, Yonghui Wu,
and James Glass. Disentangling Correlated Speaker and Noise for Speech Synthesis
via Data Augmentation and Adversarial Factorization. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5901–5905, February 2019. doi: 10.1109/ICASSP.2019.8683561. URL https:

//ieeexplore.ieee.org/abstract/document/8683561. ISSN: 2379-190X.

http://arxiv.org/abs/2007.15256
http://arxiv.org/abs/2008.01160
http://arxiv.org/abs/2009.00713
http://arxiv.org/abs/2202.03751
http://arxiv.org/abs/2211.11695
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1802.05983
http://arxiv.org/abs/1606.03657
http://arxiv.org/abs/1606.03657
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1911.05722
http://arxiv.org/abs/1911.05722
http://arxiv.org/abs/1905.06922
http://arxiv.org/abs/1905.06922
https://ieeexplore.ieee.org/abstract/document/8683561
https://ieeexplore.ieee.org/abstract/document/8683561


114 BIBLIOGRAPHY

[113] Kaizhi Qian, Yang Zhang, Shiyu Chang, David Cox, and Mark Hasegawa-Johnson.
Unsupervised Speech Decomposition via Triple Information Bottleneck, March 2021.
URL http://arxiv.org/abs/2004.11284. arXiv:2004.11284 [cs, eess].

[114] Chen Zhang, Yi Ren, Xu Tan, Jinglin Liu, Kejun Zhang, Tao Qin, Sheng Zhao, and
Tie-Yan Liu. DenoiSpeech: Denoising Text to Speech with Frame-Level Noise Mod-
eling, December 2020. URL http://arxiv.org/abs/2012.09547. arXiv:2012.09547
[cs, eess].

[115] Raza Habib, Soroosh Mariooryad, Matt Shannon, Eric Battenberg, R. J. Skerry-
Ryan, Daisy Stanton, David Kao, and Tom Bagby. Semi-Supervised Generative
Modeling for Controllable Speech Synthesis, October 2019. URL http://arxiv.

org/abs/1910.01709. arXiv:1910.01709 [cs, eess].

[116] Seungwoo Choi, Seungju Han, Dongyoung Kim, and Sungjoo Ha. Attentron: Few-
Shot Text-to-Speech Utilizing Attention-Based Variable-Length Embedding, August
2020. URL http://arxiv.org/abs/2005.08484. arXiv:2005.08484 [cs, eess].

[117] Siddharth Gururani, Kilol Gupta, Dhaval Shah, Zahra Shakeri, and Jervis Pinto.
Prosody Transfer in Neural Text to Speech Using Global Pitch and Loudness Fea-
tures, May 2020. URL http://arxiv.org/abs/1911.09645. arXiv:1911.09645 [cs,
eess].

[118] Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee, and Lin-shan Lee. Multi-target
Voice Conversion without Parallel Data by Adversarially Learning Disentangled
Audio Representations, June 2018. URL http://arxiv.org/abs/1804.02812.
arXiv:1804.02812 [cs, eess].

[119] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and Hsin-Min Wang.
Voice Conversion from Unaligned Corpora using Variational Autoencoding Wasser-
stein Generative Adversarial Networks, June 2017. URL http://arxiv.org/abs/

1704.00849. arXiv:1704.00849 [cs].

[120] Leyuan Qu, Taihao Li, Cornelius Weber, Theresa Pekarek-Rosin, Fuji Ren,
and Stefan Wermter. Disentangling Prosody Representations with Unsupervised
Speech Reconstruction, September 2023. URL http://arxiv.org/abs/2212.

06972. arXiv:2212.06972 [cs, eess].

[121] Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo. Expressive Speech Synthesis
via Modeling Expressions with Variational Autoencoder, February 2019. URL http:

//arxiv.org/abs/1804.02135. arXiv:1804.02135 [cs, eess].

[122] Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan
Sonderegger. Montreal Forced Aligner: Trainable Text-Speech Alignment Using
Kaldi. pages 498–502, 2017. doi: 10.21437/Interspeech.2017-1386. URL https:

//www.isca-archive.org/interspeech_2017/mcauliffe17_interspeech.html.

[123] PyTorch Documentation. torch.nn.embedding, 2023. URL https://pytorch.org/

docs/stable/generated/torch.nn.Embedding.html.

http://arxiv.org/abs/2004.11284
http://arxiv.org/abs/2012.09547
http://arxiv.org/abs/1910.01709
http://arxiv.org/abs/1910.01709
http://arxiv.org/abs/2005.08484
http://arxiv.org/abs/1911.09645
http://arxiv.org/abs/1804.02812
http://arxiv.org/abs/1704.00849
http://arxiv.org/abs/1704.00849
http://arxiv.org/abs/2212.06972
http://arxiv.org/abs/2212.06972
http://arxiv.org/abs/1804.02135
http://arxiv.org/abs/1804.02135
https://www.isca-archive.org/interspeech_2017/mcauliffe17_interspeech.html
https://www.isca-archive.org/interspeech_2017/mcauliffe17_interspeech.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

	Introduction
	Background
	Problem Statement
	Objectives
	Scope of the Study

	Literature Review
	Overview of Speech Signal Representation
	Traditional Methods of Speech Signal Representation
	Advanced Neural Representations
	Hybrid Approaches
	Emerging Trends and Future Directions

	Conditional Speech Synthesis
	Early Methods
	Deep Learning-based Approaches
	Conditional Speech Synthesis Techniques

	Text-To-Speech (TTS) Systems
	Text To Speech Systems in the Era of Deep Learning 
	Components of TTS Systems
	Text Analysis
	Acoustic Modeling
	Speech Synthesis - Vocoder


	Disentangled Representation Learning
	Techniques and Models in Disentangled Representation Learning

	Information Theory in Machine Learning
	Key Concepts in Information Theory

	Previous Work on Disentanglement in Speech Processing

	Preliminary Work
	Dataset
	Description of the Expresso Dataset
	Data Statistics
	Directory Structure
	Dataset Samples
	Preprocessing Steps

	Models and Algorithms
	Overview of Fastspeech 2
	FastSpeech 2 Architecture
	FastSpeech 2 Vocoder
	FastSpeech 2 Loss Function



	Disentanglement in Speech Representation
	Disentanglement Methods
	Gradient Reversal Layer and Dual Classifiers
	Mutual Information Estimators
	MINE
	INFO_NCE
	CLUB


	Novel Disentanglement Methods
	Convex Conjugate Rényi
	Worst Case Regret
	Convex Conjugate Rényi & Gradient Reversal Layer (Hybrid Method)



	Extending FastSpeech 2
	Embedding Layers for Speaker Identity and Style
	Integrating Disentanglement Methods
	Data Loader and Preprocessing for Expresso Dataset

	Experiments and Results
	Experimental Setup
	Cosine Similarity & Average Inter Cluster Distances
	Evaluation of Model Performance on Speaker and Style Embeddings
	Visualization and Analysis of Embeddings Using Principal Component Analysis (PCA)
	Objective Speech Intelligibility Assessment Using STOI
	Objective Speech Quality Assessment Using PESQ
	Word Error Rate Analysis for Speech Recognition Accuracy

	Conclusion
	Summary of Contributions
	Challenges and Limitations
	Future Work

	Appendices
	TextGrid File
	Gradient Reversal Layer
	Speaker Classifier
	Style Classifier
	MINE Model
	INFO_NCE Model
	CLUB Model
	Convex Conjugate Rényi Model
	Worst Case Regret Model
	Cosine Similarity Matrices
	PCA Plots for Style & Speaker Embeddings
	GPU Details
	requirements.txt
	Sentence Examples for Word Error Rate (WER) Evaluation
	Sentence Examples for STOI & PESQ Evaluation
	STOI Results Across Different Models
	PESQ Results Across Different Models
	Word Error Rate - Convex Conjugate Rényi & GRL
	Word Error Rate - Convex Conjugate Rényi
	Word Error Rate - Worst Case Regret
	Word Error Rate - CLUB
	Word Error Rate - INFO_NCE
	Word Error Rate - MINE
	Word Error Rate - GRL
	Flask Application

	Bibliography

	fd@rm@6: 
	fd@rm@5: 
	fd@rm@4: 
	fd@rm@3: 
	fd@rm@2: 
	fd@rm@1: 
	fd@rm@0: 


