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1 Prologue

The purpose of this thesis is to analyze the behaviour of gravitational waves
generated around the last stage of the inflationary era in a purely gravita-
tional cosmological model. In Sections 2 and 3 we make a very brief review
of the gravitational and cosmological basics needed for our purpose. Sec-
tion 4 provides the physical motivation for considering such models; it also
describes the construction of a simple ”gravity-driven” cosmological model.
Section 5 is the main part of the thesis and examines the spectrum of the
gravitational waves produced.

I would like to thank my advisor, Prof. Nikolaos Tsamis, for suggesting
the problem and his guidance, Prof. Richard Woodard, and Prof. Georgios
Kofinas.
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2 The Background: Gravitation

Gravity is the dominant force on large scales and plays the dominant role
in shaping the large scale structure of the universe, although is by far the
weakest of all. The fundamental interactions are divided into four classes:
the strong and weak nuclear interactions, electromagnetism and gravity. Of
these, the strong and weak nuclear interactions have a very short range
∼ 10−13cm. Although electromagnetism is a long-range interaction and the
ratio of the gravitational to the electric force between two electrons is about
10−40, for macroscopic bodies the repulsion of like charges is very nearly
balanced by the attraction of opposite charges. On the other hand, gravity
appears to be always attractive. Thus, the gravitational field for sufficiently
large bodies dominates over all other forces, because it is a force which affects
every particle in the same way. Since Cosmology is the scientific study of the
large scale properties of the universe, gravity plays a very important role for
Cosmology.

• The General Theory of Relativity

In 1916 Einstein developed his General Theory of Relativity which he pro-
posed as a new theory of gravity. General Relativity generalizes Newton’s
theory of gravity, which is valid only for bodies at rest or moving very slow
compared to the speed of light. General Relativity, on the other hand, is
valid for bodies in motion as well as bodies at rest. The key idea of Ein-
stein’s theory is that gravity can be described by a field directly connected
with distortions of space and time itself. In one sentence, matter tells space
how to curve, and space tells matter how to move. The theory was able to
account, for instance, for peculiarities in the orbit of Mercury and the bend-
ing of light by the Sun, both unexplained by Newton’s theory of gravity.

• The Principle of Equivalence

The Principle of Equivalence of Gravitation and Inertia is based on the equal-
ity of gravitational and inertial mass and tell us how an arbitrary physical
system responds to an external gravitational field. Einstein in his classic ele-
vator thought experiment said that no external static, homogeneous gravita-
tional field could be detected in a freely falling elevator, because the observer
and the elevator itself would respond to the field with the same acceleration.
This cancellation of gravitational by inertial forces is obtained for all freely
falling systems.
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Therefore, the Equivalence Principle states that at every spacetime point
in an arbitrary gravitational field it is possible to choose a locally inertial
coordinate system such that the laws of nature take the same form as in
an unaccelerated Cartesian coordinate system in the absence of gravitation.
That is in a freely falling (non-rotating) system the laws of physics are those
of Special Relativity. Although in an inhomogeneous or time dependent grav-
itational field, inertial forces do not exactly cancel gravitational forces, we
can still expect an approximate cancellation if we restrict ourselves to such a
small region of space and time that the field changes very litle over the region.

• Dynamical Variables and Equations of Motion

The dynamical variable of gravity is the symmetric tensor field gµν(x) –
known as the metric – which describes the geometry of spacetime. It trans-
lates the coordinate labels of points xµ = (ct,x) into physical distances and
angles. For instance, the square of the distance between xµ and an infinites-
imally close point xµ + dxµ is given by the invariant interval ds2:

ds2 ≡ gµν(x) dxµ dxν . (1)

The equations of motion can be derived from the Lagrangian density of the
theory:

LGR =
1

16πG

(
−2Λ + R

) √−g , (2)

where Λ is the cosmological constant and R(x) the Ricci scalar. In general
the theory, besides the purely gravitational sector (2) will contain a matter
sector. In General Relativity, we describe the distribution of mass-energy in
a covariant way by specifying a symmetric rank-2 stress-energy tensor T µν ,
which acts as a source for the gravitational field. The stress-energy tensor
T µν has the units of energy per volume and the physical meaning of its com-
ponents is:

T 00 : energy density
T i0 : momentum density in the i-direction
T 0i : energy flux in the i-direction
T ij : rate of flow of the i-component of momentum flux in the j-direction

If Tµν(x) is the matter stress-energy tensor, the equations of motion take the
form:

Gµν ≡ Rµν − 1

2
gµν R = −Λ gµν + 8πG Tµν . (3)
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Here Gµν(x) is the Einstein tensor formed out of the Ricci tensor Rµν(x) and
Ricci scalar R(x). The stress-energy tensor is covariantly conserved:

Dµ T µν(x) = 0 . (4)

⊲ Notation: Hellenic indices take on spacetime values while Latin indices
take on space values. Our metric tensor has spacelike signature (− + + +)
and our curvature tensor equals Rα

βµν ≡ Γα
νβ,µ + Γα

µρ Γρ
νβ − (µ ↔ ν).
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3 The Background: Cosmology

Cosmology is the scientific study of the large-scale properties of the universe
as a whole. It strives to understand the origin, evolution and ultimate fate
of the entire universe. It involves the construction of theories about the uni-
verse which make specific predictions for phenomena that can be tested with
observations. Depending on the outcome of the observations the theories will
need to be abandoned, revised or extended to accomodate the data. Cos-
mology rests on two ideas: General Relativity, which was already discussed,
and the Cosmological Principle.

• The Cosmological Principle

The most important property of the universe is that it is homogeneous and
isotropic on large scales. This property is known as the Cosmological Princi-
ple; it ignores local features and assumes that the universe does not change
in moving between spatial points at the same time or by looking in any spe-
cial direction. The first property is known as homogeneity; the second as
isotropy.

The Cosmological Principle is the theoretical basis for Cosmology and
leads to very specific predictions for observable properties of the universe.
We can use it and General Relativity to obtain the corresponding distortion
of spacetime, due to gravitational effects of the matter. With a simplifying
assumption 1 the invariant interval of a homogenenous and isotropic universe
can be written as:

ds2 = −c2dt2 + a2(t) dx · dx . (5)

It is apparent from (5) that t measures physical time the same way as in the
Minkowski geometry. However, the spatial 3-vector x must be multiplied by
a(t) to give physical distances. For this reason a(t) is known as the scale
factor. A spacetime of this general form is called Friedmann-Robertson-

1We have regarded spatial curvature as a type of stress-energy as opposed to the proper
way of viewing spatial curvature which is as an additional parameter in the homogeneous
and isotropic metric (5). At any rate, the measured value of spatial curvature is consistent
with zero.
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Walker (FRW ) spacetime and its components are:

gµν(t,x) =




−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)




• Fundamental Cosmological Parameters

The time variation of the scale factor gives the instantaneous values of the
Hubble parameter H(t) – a measure of the cosmic expansion rate – and the
deceleration parameter q(t) – a measure of the cosmic acceleration:

H(t) ≡ ȧ(t)

a(t)
=

d

dt
ln a(t) , (6)

q(t) ≡ − ȧ(t) ä(t)

ȧ2(t)
= −1 − Ḣ(t)

H2(t)
≡ −1 + ǫ(t) . (7)

Various kinds of stress-energy comprise the content of the universe. For any
such kind we define its dimensionless contribution Ωany to the total content
as: 2

Ωany ≡ ρany

ρcr

∣∣∣
t=t0

, ρcr ≡ 3c2H2
0

8πG
. (8)

In (8) ρany is the energy density of the corresponding kind and ρcr is the
critical density.

Gravity makes tiny inhomogeneities grow. It is believed that even the
largest objects in today’s universe had their origin in tiny quantum fluctua-
tions of magnitude ∆ρ

ρ
≃ 10−5 which occured in the last stage of the infla-

tionary era in the very early universe. The imprint of these fluctuations in
the cosmic microwave background has been imaged with excellent accuracy
by the WMAP satellite. The basic quantities that characterize this imprint
are the dimensionless scalar power spectrum ∆2

R(k):

∆2
R(k) ≃ 1

π

GH2(tk)

1 + q(tk)
, (9)

and tensor power spectrum ∆2
h(k):

∆2
h(k) ≃ 16

π
GH2(tk) , (10)

2The subscript 0 in various parameters indicates their current values. Further details
concerning basic cosmological variables can be found in the Appendix.
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as well as the respective indices; the scalar spectral index ns:

∆2
R(k) ≡ ∆2

R(k0) ×
(

k

k0

)ns−1

, (11)

and the tensor scalar index nt:

∆2
h(k) ≡ ∆2

h(k0) ×
(

k

k0

)nt

. (12)

Here tk is the time at which first horizon crossing occured for the wavenum-
ber k. 3 The “reference” wavenumber k0 ≡ 0.002 (Mpc)−1 corresponds to a
wavelength of about half the size of the currently observed universe.

• Dynamical Variables and Equations of Motion

The homogeneity and isotropy restricted the metric tensor gµν(x) to only
one function of time, the scale factor a(t). Similarly, they restrict the matter
stress-energy tensor to only an energy density ρ(t) and a pressure p(t):

T00 = −ρ(t) g00 , T0i = 0 , Tij = p(t) gij . (13)

The dynamical variable is a(t). In this geometry the evolution equations
(3) take the form:

3H2 = 8πG c−2 ρ , (14)

−2Ḣ2 − 3H2 = 8πG c−2 p , (15)

The energy density and pressure are the sources; stress-energy conservation
(4) gives a relation among them:

ρ̇ = −3H (ρ + p) . (16)

• Cosmological Evolution Epochs

A constant equation of state p(t) ≡ w ρ(t) suffices to describe the actual
phases during the evolution of the universe. From the conservation equation
(16) we can express the energy density in terms of the scale factor:

ρ(t) = ρI

[
a(t)

aI

]−3(1+w)

, (17)

3When t = tk we have: k = H(t) a(t).
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for some initial values ρI and aI . We then substitute (17) in the equation of
motion (14) to obtain as its solution:

a(t) = aI

[
1 +

3

2
(1 + w) HI (t − tI)

] 2
3(1+w)

. (18)

The cosmologically relevant cases are:

Stress-Energy w Energy Density Scale Factor

Radiation w = 1
3

ρ ∝ a−4 a(t) ∝ (HIt)
1
2

Non-Relativistic Matter w = 0 ρ ∝ a−3 a(t) ∝ (HIt)
2
3

Spatial Curvature w = −1
3

ρ ∝ a−2 a(t) ∝ HIt

Vacuum Energy w = −1 ρ ∝ 1 a(t) ∝ eHI t

The actual universe seems to be composed of at least three of these types,
so the actual scale factor does not have a simple time dependence. However,
as long as each type is separately conserved, we can use (17) to conclude:

ρ(t) =
ρrad

a4(t)
+

ρmat

a3(t)
+

ρcur

a2(t)
+ ρvac . (19)

The cosmology in which a radiation dominated universe evolves to matter
domination is a feature of what is known as the Big Bang scenario. Although
strongly supported by observation, the composition of ρ at the start of radi-
ation domination (t = tr and a = ar) does not seem natural:

ρrad a−4
r ≫ ρvac ≫ ρcur a−2

r . (20)

The natural expectation would be for all three terms in (20) to be compara-
ble in which case the universe would become quickly dominated by vacuum
energy. There is no accepted explanation for the first inequality in (20).
However, the second inequality in (20) finds a natural explanation in the
context of inflation.

It was suggested that the Big Bang scenario was proceded by a period of
vacuum energy domination, or inflation, following which the vacuum energy
changed almost completely into radiation. If all types of stress-energy are
equally represented at some very early time, we see from (19) that the to-
tal energy density rapidly becomes dominated by vacuum energy, following
which the scale factor grows exponentially with a constant Hubble parameter
HI .
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The duration of inflation in units of H−1
I is known as the number of

inflationary e-foldings NI . Viable models must have NI ≥ 50 to address
issues of causality. Furthermore, if at start of inflation ρcur a−2

I ∼ ρvac ,
equation (19) shows that the curvature is negligible at the end of inflation:

ρcur a−2
r

ρvac

∼
(

aI

ar

)2

= e−2NI ≤ 10−44 . (21)

Inflation makes the other types of stress-energy even smaller and assumes
the existence of a natural mechanism through which vacuum energy can be
converted into radiation, a process known as reheating.
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4 The Background: “Gravity-Driven”

Cosmological Models

The standard inflationary cosmology is based on the assumption that the
dynamical degree of freedom responsible for driving the inflationary phase
is a scalar. Although this can be realized in a quite successful way it is by
no means the simplest nor the most natural way for reasons that will be
described later in this Section. In “gravity-driven” models of cosmological
evolution the inflationary phase is due to the graviton – the particle associ-
ated with the cosmologically dominant force – and the conditions that govern
evolution are far more natural than those of “scalar-driven” inflation. We
now turn to the main physical steps that lead to the construction of a simple
model with reasonable time evolution at least during the early part of the
history of the universe.

• Effective Field Theories Description

Consider the effective four-dimensional gravitational theory that emerges
from the full – and yet unknown – quantum gravitational theory when we re-
strict physical processes to scales well below the Planck scale. It is governed,
among other things, by general coordinate invariance and can be written as
a series of local terms of increasing dimensionality in the curvature. Of these
terms, only the lowest dimensionality ones are relevant in the range of scales
of interest: the cosmological constant and the Ricci scalar. On the quantum
level this effective theory is not renormalizable but, nonetheless, is BPHZ
renormalizable:

LQG =
1

16πG

(
−2Λ + R

) √−g + (counterterms) . (22)

Each of the BPHZ counterterms contains an infinite and a finite part. The
infinite parts are fixed by having to absorb the ultraviolet divergences that are
generated order by order. Of the finite parts, only the lowest dimensionality
ones are known and are fixed from the measured values of the expansion
rate for Λ and the Newtonian force for G. All the remaining finite parts are
unknown and can only be determined from the full theory. However, since
cosmology is determined by the infrared sector of the theory – where only
the lowest dimensionality finite parts dominate – it is insensitive to these
unknown parts.
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In the above gravitational effective theory and if Λ is assumed to be pos-
itive, the “no-hair” theorems imply that – classically – the local geometry
approaches the maximally symmetric solution at late times. This solution
is de Sitter spacetime and, thus, Λ-driven inflation is intrinsic to (2) and
commences naturally in a way that scalar-driven inflation cannot.

• De Sitter Inflation

A locally de Sitter geometry provides the simplest paradigm for inflation.
To see why, consider the general homogeneous, isotropic and spatially flat
geometry (5). The nonzero components of the Riemann tensor are:

R0
i0j = −qH2 gij , Ri

jkℓ = H2
(
δi

k gjℓ − δi
ℓ gjk

)
. (23)

Inflation is defined as positive expansion (H(t) > 0) with negative decelera-
tion (q(t) < 0). On the other hand, stability – in the form of the weak energy
condition – implies q(t) ≥ −1. At the limit of q = −1 we see from (23) that
the Riemann tensor assumes the locally de Sitter form:

lim
q=−1

Rρ
σµν = H2

(
δρ

µ gσν − δρ
ν gσµ

)
. (24)

It follows from (7) that the Hubble parameter is actually constant – which
we denote by HI and which satisfies 3H2

I = Λ – and that the zero of time
can be chosen to make the scale factor take the simple exponential form:

de Sitter Inflation =⇒ a(t) = eHI t . (25)

• Real Particle Production

The homogeneity of spacetime expansion in (5) does not change the fact

that particles have constant wave vectors ~k, but it does alter their physical
meaning. In particular, the energy of a particle with mass m and wave
number k becomes time dependent:

E(t, k) =

√√√√m2c4 +
c2k2

a2(t)
, k ≡ ‖~k‖ . (26)

This results in an interesting change in the energy-time uncertainty principle
which restricts how long a virtual pair of such particles with wave vectors
±~k can exist. If the pair was created at time t, it can last up to a time ∆t

provided that: ∫ t+∆t

t
dt′ E(t′, k) <∼ 1 . (27)
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Just as in flat space, particles with the smallest masses persist longest. For
the fully massless case and for de Sitter spacetime, the integral is simple to
evaluate: ∫ t+∆t

t
dt′ E(t′, k)

∣∣∣∣∣
m=0

=

[
1 − e−HI∆t

]
k

HI a(t)
. (28)

We, therefore, conclude that any massless virtual particle which happens to
emerge from the vacuum during inflation can persist forever provided: 4

Unbounded Lifetime =⇒ k ≤ HI a(t) . (29)

• Conformal Invariance Implications

Most massless particles possess conformal invariance. A simple change of
variables defines a conformal time η in terms of which the invariant element
(5) is just a conformal factor times that of flat space:

ds2 = −dt2 + a2(t) dx·dx = a2(η)
(
−dη2 + dx·dx

)
, dη ≡ dt

a(t)
. (30)

In the (η,x) coordinates, conformally invariant theories are locally identical
to their flat space counterparts. The rate at which virtual particles emerge
from the vacuum per unit conformal time must be the same constant – call
it Γ – as in flat space. Hence, the rate of emergence per unit physical time
is:

dN

dt
=

dN

dη

dη

dt
=

Γ

a(t)
. (31)

Consequently – although any sufficiently long wavelength, massless and con-
formally invariant particle emerging from the vacuum can persist forever
during inflation – very few such particles will actually emerge.

For particles which do not possess conformal invariance, the rates are
generically different in de Sitter than in flat spacetime.

• Quantum Enhancement

Gravitons and minimally coupled scalars are two kinds of massless particles
which do not possess conformal invariance. To see that – unlike massless
conformally invariant particles – the production of these two kinds of parti-
cles is not suppressed during inflation, note that each polarization and wave

4The inequality (27) is eventually violated as ∆t grows for the other three relevant
cosmological spacetimes: radiation, matter, spatial curvature.
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number behaves like a harmonic oscillator with time dependent mass and
frequency:

L =
1

2
mq̇2 − 1

2
mω2q2 , m(t) = a3(t) & ω(t) =

k

a(t)
. (32)

The Heisenberg equation of motion can be exactly solved:

q̈ + 3H q̇ +
k2

a2
q = 0 =⇒ q(t) = u(t, k) α + u∗(t, k) α† , (33)

where the mode functions u and the commutation relations obeyed by the
operators α and α† are given by:

u(t, k) =
HI√
2k3

[
1 − ik

HI a(t)

]
exp

(
ik

HI a(t)

)
, [ α , α† ] = 1 .

(34)
The co-moving energy operator for this system is:

E(t) =
1

2
m(t) q̇2(t) +

1

2
m(t) ω2(t) q2(t) . (35)

Owing to the time dependent mass and frequency, there are no stationary
states for this system. At any given time the minimum eigenstate of E(t)
has energy 1

2
ω(t), but which state this is changes for each value of time. The

state |Ω〉 which is annihilated by α has minimum energy in the distant past.
The expectation value of the energy operator in its presence is:

〈
Ω
∣∣∣E(t)

∣∣∣Ω
〉

=
1

2
a3(t) |u̇(t, k)|2 +

1

2
a(t) k2 |u(t, k)|2 =

k

2a
+

H2
I a

4k
. (36)

The first term is just the – properly redshifted – minimum energy; the second
term is the result of particle production. A typical mode begins at t = 0 with
the first term dominant. The second term becomes comparable at “horizon
crossing” and dominates thereafter. This is the source of inflationary particle
creation, and the onset of this enormous growth is what distinguishes infrared
and ultraviolet modes. Horizon crossing of a mode occurs when its physical
wave number equals the horizon:

Horizon Crossing =⇒ kphys = k a−1(t) = HI , (37)
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and provides the physical separation between infrared and ultraviolet modes:

Infrared =⇒ HI < k < HI eHI t , (38)

Ultraviolet =⇒ k > HI eHI t . (39)

If we think of each particle as having energy k a−1(t), it follows that the
number of particles N with any polarization and wave number k grows as
the square of the inflationary scale factor:

N(t, k) =

[
HI a(t)

2k

]2

. (40)

As expected, it is only infrared gravitons that are produced:

Infrared =⇒ NdS
IR (t,k) ∼

(
HI eHI t

2k

)2

≫ 1 , (41)

Ultraviolet =⇒ NdS
UV(t,k) ∼ 0 . (42)

To get a sense of the density of infrared gravitons present per causal
volume, we express the number of Hubble volumes in terms of the initial
condition H(0) = HI :

NH(t) =

[
H(t) a(t)

HI

]3

. (43)

For the inflationary geometry, we trivially get:

NdS
H (t) = e3HI t , (44)

so that – within one Hubble volume – the number of any infrared gravitons
at time t is given by:

NdS
IR (t) =

1

NdS
H (t)

× 1

2π2H3
I

∫ HIeHIt

HI

dk k2 × NdS
IR (t,k) =

1

8π2
. (45)

The presence of about one infrared graviton in each Hubble volume implies
that the initial vacuum choice and perturbation theory is an excellent ap-
proximation during the inflationary regime. Such a low density cannot by
itself drive a significant infrared screening effect; the coherent superposition
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from all infrared gravitons does.

• A Perturbative Result

Quantum field theoretic effects are driven by essentially classical physics op-
erating in response to the source of virtual particles implied by quantization.
On the basis of (40), one might expect inflation to dramatically enhance
quantum effects from massless, minimally coupled scalars and gravitons. This
has been confirmed explicitly and the oldest results are the cosmological per-
turbations induced by scalar inflatons and by gravitons. The more recent
result which motivated the present analysis is that the gravitational back-
reaction from the inflationary production of gravitons induces an ever greater
slowing in the expansion rate.

In the two-parameter effective gravitational theory (2), the corresponding
mass scales are:

M2
Pl ≡ 1

G
, M ≡

(
Λ

8πG

) 1
4

, (46)

and the dimensionless coupling constant of the theory is ε ≡ GΛ. Pertur-
bation theory is valid if and only if:

ε ≡ GΛ < 1 ⇔
(

M

MPl

)4

< 1 , (47)

and can accomodate a quite wide range of scales M .
The imprint of geometrically significant differences between classical and

quantum backgrounds can be attributed to a quantum-induced stress tensor
defined from the deficit by which the quantum background fails to obey the
classical equations of motion:

8πG Tµν [g] ≡ Rµν −
1

2
gµνR + gµνΛ . (48)

The first non-trivial results were obtained about a locally de Sitter back-
ground on the manifold T 3 × ℜ and in the presence of a state which is free
Bunch-Davies vacuum at t = 0. The quantum-induced energy density and
pressure, and the expansion rate – at late observation times – are:

ρdS[g](t) = −εH4
I [ # (HI t) + O(1) ] + O(ε2) , (49)
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Figure 1: Short wavelength – λphys < H−1 – graviton pairs (violet) recombine while
long wavelength – λphys > H−1 – ones (red) cannot.

pdS(t) = εH4
I [ # (HI t) + O(1) ] + O(ε2) , (50)

HdS(t) = HI

{
1 − ε2 [ #′ (HI t) + O(1) ] + O(ε3)

}
. (51)

It becomes apparent that the rate of expansion decreases by an amount
which becomes non-perturbatively large at late times. This occurs when the
effective dimensionless coupling constant becomes of order one and gives a
rough estimate of the number of inflationary e-foldings:

ε2 HI t1 ∼ 1 ⇒ N1 ≡ HI t1 ∼
(

MPl

M

)8

≫ 50 . (52)

The physical process responsible for the expansion diminishing quantum-
induced stress tensor, are the correlated interactions among inflationary par-
ticles produced throughout the past lightcone of the observer. At the onset
of inflation and in the vacuum state, all modes are virtual. As time evolves,
infrared graviton pairs continuously appear and – in contradistinction to ul-
traviolet pairs – cannot recombine to annihilate because they get pulled by
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the rapid expansion of spacetime (see Figure 1). While these long wavelength
gravitons get separated and become causally disconnected, their long-range
gravitational potentials persist since a potential exists everywhere in the for-
ward lightcone of its source. The addition of the potentials of each receding
infrared graviton pair is a secular effect and provides the negative gravita-
tional interaction energy responsible for the reduction of the expansion rate.

• The Newtonian Physical Picture

It is possible to construct a simple model which shows the above physical
mechanism within Newtonian gravity. There are three ingredients needed:

⊲ The classical background, which is taken to be de Sitter spacetime on
T 3 × ℜ.

⊲ The free infrared graviton kinematics, which are characterized by the po-
larization and the wavenumber k such that HI ≤ k ≤ HI exp(HI t).

⊲ The free infrared graviton dynamics, which are similar to those of a mass-
less minimally coupled scalar.

The physical energy of infrared mode k at time t is given by (35). From it,
we can determine the Newtonian energy density and potential of mode k at
time t:

ρk =
Ek − 1

2
k e−HI t

V3(t)
=

H4
I

4k
e−2HI t ⇒ ϕk = −π GH5

I

k3
. (53)

The total infrared newtonian energy density and potential at t are obtained
by integrating over all infrared modes:

ρIR =
1

π2H3
I

∫ HI exp[HI t]

HI

dk k2 ρk =
H4

I

8π2
, (54)

ϕIR =
1

π2H3
I

∫ HI exp[HI t]

HI

dk k2 ϕk = −GH2
I

π
HI t . (55)

Finally, the total infrared Newtonian interaction energy density at t is:

ρnewton = ρIR × ϕIR = −GH6
I

8π3
HI t , (56)

and is negative and ever-increasing. Although ρnewton starts much smaller
than ρIR, it eventually dominates:

ρnewton

ρIR

∼ GH2
I (HI t) , GH2

I ≤ 10−12 . (57)
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There is clear qualitative similarity with the quantum gravitational pertur-
bative result (51).

• Advantages of “Gravity-Driven” Cosmology

There are distinct advantages when the inflationary regime of cosmological
evolution is solely handled by the pure gravitational sector of the theory (the
graviton) as opposed to the scalar sector (the inflaton):

⊲ Initial Conditions
As long as the matter stress-energy is finite and obeys the weak energy con-
dition, pre-inflationary expansion redshifts the initial matter stress-energy
until it is dominated by the cosmological constant Λ > 0. By contrast,
scalar-driven inflation is triggered by a random field fluctuation which must
be homogeneous over more than a Hubble volume. This condition is so un-
likely that it has not happened even once in the observed history of the
universe.

⊲ Potential Issues
To achieve the desired phenomenology, the inflaton potential must be flat
over an extended interval, a requirement which places stringent and unnat-
ural constraints on the coupling constants of the potential. On the other
hand, the cosmological constant Λ is a constant and no such problem exists
for “gravity-driven” inflation.

Furthermore, the inflaton potential must be arranged to be very close to
zero at its minimum and this entails the severe fine-tunings associated with
the cosmological constant. In the gravity case, we have already seen how –
at least in perturbation theory – Λ can be screened.

Finally, the inflaton potential is arbitrary and no fundamental physical
principle restricts it. Again, this is not the case with gravity where the the-
ory at the infrared is well established.

⊲ Reheating Issues
The cold universe that the inflationary era created must be reheated so that
the currently observed structures are formed later in its evolution. In stan-
dard scalar-driven inflation, the inflaton transfers its energy to the matter
sector via its couplings to matter. However there are different couplings to
different matter fields and, more importantly, quantum matter corrections
generate effective inflaton potentials that must be added to the bare inflaton
potential and can either destabilize the theory or require further fine-tuning.
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The gravitational sector has a universal coupling to matter – which is an
advantage – but this coupling is extremely weak – which is a disadvantage –
and adequate reheating cannot be generated. There is an exception to this
if – besides the zero-mode – all infrared graviton modes participate in the
reheating. In this case, gravity can provide naturally potent reheating. The
simple model that follows has this property.

• Gravitationally Induced Stress-Energy

During the inflationary era infrared gravitons are produced out of the vac-
uum because of the accelerated expansion of spacetime. The interaction
stress among the gravitons produced – an inherently non-local effect – can
lead to a non-trivial quantum gravitational back-reaction on inflation. Non-
local models of cosmology have been much studied because they can avoid
the problem that de Sitter must be a solution for any local, stable theory,
and because non-local couplings between different times can “ease” fine tun-
ing problems. In this section we propose a phenomenological model which
can provide evolution beyond perturbation theory. We constructed an ef-
fective conserved stress-energy tensor Tµν [g] which modifies the gravitational
equations of motion:

Gµν ≡ Rµν − 1

2
gµν R = −Λ gµν + 8πG Tµν [g] . (58)

and which, we hope, contains the most cosmologically significant part of the
full effective quantum gravitational equations.

Our stress-energy tensor must be a non-local functional of the metric and
our physical ansatz consisted of parametrizing Tµν [g] as a “perfect fluid”:

Tµν [g] = (ρ + p) uµ uν + p gµν , (59)

In order to completely determine it we provide :
(i) the energy density ρ as a functional of the metric tensor ρ[g](x),
(ii) the pressure p as a functional of the metric tensor p[g](x),
(iii) the 4-velocity field uµ as a functional of the metric tensor uµ[g](x),
chosen to be timelike and normalized:

gµν uµuν = −1 =⇒ uµ uµ;ν = 0 . (60)

Because of the normalization (60), only three of the components of uµ are
algebraically independent. Thus, Tµν [g] contains five independent quantities
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in total. Stress-energy conservation:

Dµ Tµν = 0 , (61)

provides four equations and allows us to determine any four of these quan-
tities in terms of any one. It turns out to be more convenient to specify
the induced pressure functional p[g] and then use conservation to obtain the
form of the induced energy density ρ[g] and 4-velocity uµ[g] up to their initial
value data.

• Requirements on the Induced Pressure

⊲ The initial value requirement
Our gravitationally induced source should not disturb the basic nature of the
pure gravitational equations (58). The latter can be evolved from the initial
spacelike surface knowing only the metric and its first time derivative. This
property of gravity must be retained in the presence of the source and con-
strains both the local and non-local parts of its functional form; for instance,
any local parts in Tµν [g] can contain at most second time derivatives of the
metric.

⊲ The non-locality requirement
We argued that the physical effect responsible for gravitationally inducing
Tµν [g] is inherently non-local and, therefore, our source must be non-local. It
is important to mention that this conclusion can also be reached by noting
that no local modification of pure gravity can prevent de Sitter spacetime
from being a solution of the field equations eternally. Any local modifica-
tion simply changes the initial Hubble constant H0 and can be absorbed by
the cosmological constant counterterm δΛ to leave no change and de Sitter
spacetime as a solution for all time. Thus, the important part of the induced
stress-energy tensor must be non-local.

⊲ The simplicity requirement
A simple non-local operator at our disposal is the inverse of the scalar
d’Alembertian: 5

≡ 1√−g
∂µ

(
gµν

√
−g ∂ν

)
, (62)

and a simple scalar it can act on is the curvature scalar R. Hence, we shall

5Our scalar d’Alembertian is defined with retarded boundary conditions.
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explore ansatze in which the pressure is a function of the quantity X[g]:

X ≡ 1
R . (63)

⊲ The correspondence requirement
Our gravitationally induced source should reproduce the perturbative results
obtained in de Sitter spacetime.

• A Simple Model for Cosmological Evolution

The physical requirements and correspondence limits lead us to the following
ansatz for the gravitationally induced pressure p[g](x) in a general geometry:

p[g](x) = Λ2 f [−GΛX](x) , X ≡ 1
R , (64)

where the function f grows without bound and satisfies:

f [−GΛ X] = −GΛ X + O[GΛ)2] . (65)

The homogeneous and isotropic evolution of this model – using a com-
bination of numerical and analytical methods – revealed the following basic
features: 6

– After the onset and during the era of inflation, the source X(t) grows while
the curvature scalar R(t) and Hubble parameter H(t) decrease.

– Inflationary evolution dominates roughly until we reach a critical point Xcr

defined by:
1 − 8πGΛ f [−GΛ Xcr] ≡ 0 . (66)

– The epoch of inflation ends close to but before the universe evolves to the
critical time. This is most directly seen from the deceleration parameter since
initially q(t = 0) = −1 while at criticality q(t = tcr) = +1

2
.

– Oscillations in R(t) become significant as we approach the end of inflation;
they are centered around R = 0, their frequency equals:

ω = GΛH0

√
72π f ′

cr , (67)

and their envelope is linearly falling with time.

6The analytical results were obtained for any function f satisfying (65) and growing
without bound; the numerical results for the choice: f(x) = exp(x) − 1.
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– During the oscillations era, although there is net expansion, the oscillations
of H(t) take it to small negative values for short time intervals – a feature
conducive to rapid reheating; The oscillations of Ḣ(t) take it to positive
values for about half the time; and those of a(t) are centered around a linear
increase with time.

A novel feature of this class of models is the existence of an oscillatory
regime of short duration which commences towards the very end of the infla-
tionary era. During this period Ḣ(t) is positive about half the time, which
represents a violation of the weak energy condition. Such a violation cannot
occur in classical stable theories but it can be driven by quantum effects of
the type we seek to model without endangering stability. It is therefore a
very distinctive feature of this model. The purpose of this study is to deter-
mine whether this oscillatory regime leaves its signature on the observable
tensor power spectrum. We shall, therefore, obtain the amplitude and fre-
quency of two kinds of gravitational waves and examine their evolution under
the expansion history that this class of models predicts. The first kind of
waves is now of cosmological scale and originated during inflation while the
second kind was on the verge of experiencing first horizon crossing when the
epoch of oscillations began. Because we shall be relating scales from the very
early universe to current measurements, we first focus on presenting the basic
equations and relevant relations, and then we apply them for our purpose.
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5 Gravitational Waves in the Simple Model

The analysis of tensor perturbations in this class of models is much simpler
than that of scalar perturbations. The reason is that – unlike the case of
scalar perturbations – the non-local nature of the model does not alter the
basic equation which the tensor perturbations hTT

ij satisfy at linearized order:

hTT
ij (t,x) = 0 =⇒

[
∂2

∂t2
+ 3H(t)

∂

∂t
− ∇2

a2(t)

]
hTT

ij (t,x) = 0 . (68)

where the tensor perturbations hTT
ij are defined by:

hTT
ij (t,x) ≡

√
2
∫

d3k

(2π)3

∑

λ

{
u(t, k) eik·x ǫij(k, λ) α(k, λ)

+ u∗(t, k) e−ik·x ǫ∗ij(k, λ) α†(k, λ)
}

. (69)

In equation (69) u(t, k) are the mode functions, ǫij(k, λ) is the polarization
tensor and α(k, λ) the annihilation operator.

Therefore, up to sub-dominant corrections coming from the exact form
of the mode functions before and after first horizon crossing, the resulting
power spectrum ∆2

h will have the usual form (10):

∆2
h(k) ≃ 16

π
GH2(tk) , (70)

where the Hubble parameter H is evaluated at the time tk of first horizon
crossing of the mode with wavenumber k:

k = H(tk) a(tk) . (71)

Moreover, the tensor spectral index nT defined by (12) equals:

nT ≡ d

d ln k
ln[∆2

h(k)] . (72)

For the power spectrum (70) the index nT takes the form:

nT =
dk

d ln k

d

dk
ln[∆2

h(k)]

≃ dk

d ln k

dtk

dk

d

dtk

[
16

π
GH2(tk)

]

≃ k
dtk

dk

2 ˙H(tk)

H(tk)
. (73)
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From (71) we can evaluate the second term in (73):

1 =
d

dk
k =

d

dk

[
H(tk) a(tk)

]
=

dtk

dk

d

dtk

[
H(tk) a(tk)

]

=
dtk

dk
H2a

(
1 +

Ḣ

H2

) ∣∣∣∣∣
tk

=
dtk

dk
H2a (1 − ǫ)

∣∣∣
tk

, (74)

to obtain:

nT ≃ − 2ǫ(tk)

1 − ǫ(tk)
≃ −2ǫ(tk) , (75)

where the last step assumes that ǫ(tk) ≪ 1. It is apparent that knowledge of
the relevant scale factor a(t) suffices to compute the tensor power spectrum
and spectral index.

• Assumptions about the Expansion History

We divide cosmological history into three epochs:

– Primordial Inflation. The most convenient time parameter for the epoch
of primordial inflation is the number N of e-foldings before criticality:

a(t) ≡ acr e−N . (76)

The important cosmological parameters during this phase are:

H2(t) ≃ 1

9
ω2
(
4N +

4

3

)
, (77)

ǫ(t) ≃ 2

4N + 4
3

. (78)

At the end of inflation the scale factor is about acr and the Hubble parameter
is about ω.

– Oscillations. The distinctive feature of our model is the epoch of oscilla-
tions. The most convenient time parameter during this era is the co-moving
time after criticality:

∆t ≡ t − tcr . (79)

The important cosmological parameters during this phase are:

a(t) ≃ acr

[
ω ∆t + 1 +

√
2
(

cos(ω ∆t) − 1
) ]

, (80)
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H(t) ≃
ω
[
1 −

√
2 sin(ω ∆t)

]

ω ∆t + (1 −
√

2) +
√

2 cos(ω ∆t)
, (81)

ǫ(t) ≃
√

2
[
ω ∆t + (1 −

√
2)
]
cos(ω ∆t) + 3 − 2

√
2 sin(ω ∆t)

[
1 −

√
2 sin(ω ∆t)

]2 . (82)

The epoch of oscillations is terminated by the flow of energy density to the
matter sector from the vast reservoir of super-horizon scalar modes, all of
which begin to oscillate with frequency ω. We believe this should lead to
very rapid reheating. Let us call the number of oscillatory e-foldings ∆N .
Then, at the end of the oscillations era:

a ≃ acr e∆N , H ≃ ω e−∆N . (83)

– ΛCDM. The ΛCDM cosmology after the epoch of oscillations is stan-
dard, and we do not require explicit forms for the three geometrical param-
eters. To compare quantities from the first two eras with their redshifted
descendants at present time it is useful to express the energy density ρR at
the onset of the ΛCDM epoch in terms of the reheating temperature TR and
the number n ≈ 103 of relativistic species:

ρR ≃ 3c2ω2 e−2∆N

8πG
≃ n × π2

30

(kBTR)4

(h̄c)3
. (84)

The current energy density ρnow can be written in terms of its tiny radiation
fraction Ωr ≈ 8.5 × 10−4 and the corresponding temperature Tnow ≈ 2.726K
of that radiation:

ρnow =
3c2Hnow

8πG
≃ 2

Ωr

× π2

30

(kBTnow)4

(h̄c)3
. (85)

Dividing (85) by (84) gives a relation between current conditions and those
prevailing at the end of inflation:

(
Tnow

TR

)4

≃ n Ωr

2
e2∆N

(
Hnow

ω

)2

. (86)

We define Nnow as the number of e-foldings from criticality to the present
time. Using the relation (86) and:

Tnow

TR

≃ aR

anow
≃ acr e∆N

anow
, (87)
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we see that Nnow equals:

Nnow ≃ ∆N + ln
[

TR

Tnow

]
=

1

2
ln
[

ω

Hnow

]
+

1

2
∆N − 1

4
ln
[
2n Ωr

]
. (88)

We shall later show that the measured value of the scalar power spectrum
∆2

R , and the current limit on the tensor-to-scalar ratio r, together imply the
restriction ω <∼ 1055Hnow . Hence we conclude:

Nnow <∼ 63 +
1

2
∆N . (89)

There are two interesting problems concerning the relation between late
times and early times:

01. Given a physical wave number Know at the current time, find the e-folding
Nhor when it experienced first horizon crossing during inflation. To solve this
problem, we first use the horizon crossing condition (71) to express Know in
terms of Nhor :

Know =
k

anow

=
k

a(tk)
× a(tk)

acr

× acr

anow

(90)

≈ 1

3
ω

√

4N +
4

3
× e−Nhor × e−Nnow . (91)

Now invert (91) to solve for Nhor : 7

Nhor ≈ ln
[

ω

Know

]
− Nnow +

1

2
ln
[

4

9
N +

4

27

]
(92)

≈ 1

2
ln

[
ωHnow

c2K2
now

]
− 1

2
∆N +

1

4
ln
[
2n Ωr

]
+

1

2

[
2

9
ln
( ωHnow

c2K2
now

)]
(93)

For the ℓ-th partial wave contribution to the anisotropies of the cosmic ray
microwave background, the corresponding number Nℓ of e-foldings before the
end of inflation is:

Know ≈ ℓ

2
× Hnow

c
=⇒ (94)

Nℓ ≈ − ln
( ℓ

2

)
+

1

2
ln
( ω

Hnow

)
− 1

2
∆N +

1

4
ln
(
2n Ωr

)
+

1

2
ln
[

2

9
ln
( ω

Hnow

)]

7The inversion was done under the assumption that the Hubble parameter at the end
of inflation is much bigger than its present value: ω H−1

now ≫ 1.
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The restriction ω <∼ 1055Hnow then implies:

Nℓ <∼ 65 − 1

2
ln
( ℓ

2

)
− 1

2
∆N . (95)

We cannot hope to detect a signal outside the range 2 ≤ ℓ <∼ 100, so the
interesting values of Nℓ lie within a band of only four e-foldings.

The second general problem is in some ways the inverse of the first:

02. Given a physical wave number KN from the epoch of inflation, find its
physical wave number now. To achieve this, we express the current physical
wave number in terms of KN and N :

Know =
k

anow

=
k

a(t)
× a(t)

acr

× acr

anow

= KN × e−N × e−Nnow

≈
√

K2
N Hnow

ω

(
n Ωr

2

) 1
4

e−N− 1
2
∆N , (96)

where in the last step we used (88) for Nnow . An important special case is
the oscillation frequency fnow for the wave vector KN = ω

c
at N = 0 . In

this situation, (96) gives:

fnow ≡
(

ck

anow

)

K0=
ω

c

≈
√

ω Hnow e−
1
2
∆N . (97)

Imposing the restriction ω <∼ 1055Hnow and using the current value of Hnow ≈
71 km s−1(Mpc)−1 ≈ 3.2 × 10−18Hz, implies:

fnow <∼
(
1010 Hz

)
e−

1
2
∆N . (98)

Finally, we deduce the restriction on ω coming from the measured value
of the scalar power spectrum ∆2

R:

∆2
R(k0) ≈ 2.44 × 10−9 , k0 ≡ 0.0002 (Mpc)−1 , (99)

and the 95% confidence bound on the tensor-to-scalar ratio: r(k0) <∼ 0.22 .
Employing expressions (70) and (81) we get:

∆2
h(k0) = r(k0) ∆2

R(k0) ≃ 16

9π
Gω2

(
4N0 +

4

3

)
(100)

<∼
[
0.22

]
×
[
2.44 × 10−9

]
. (101)
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Now the wave number k0 and its associated number of e-foldings N0 cor-
respond to the ℓ = 2 partial wave so that – under the asumption that the
Hubble parameter at the end of inflation is much bigger than its present
value (ωH−1

now ≫ 1) and that the duration of the oscillations era is very short
(∆N < 10) – equation (94) implies: N0 = Nℓ=2 <∼ 60. Thus, expressions

(100-101) reduce to ω
√

G <∼ 2 × 10−6 and when we convert to Hz we get:

ω <∼ 2 × 10−6

√
c5

Gh̄
≈ 3.7 × 1037Hz =⇒ ω <∼ 1055 Hnow , (102)

where we used Hnow ≈ 3.2 × 10−18Hz for the current value of the Hubble
parameter.

• Overview of Gravitational Waves in the Oscillating Regime

In terms of the mode functions u(t, k) the basic equation (68) takes the form:

ü + 3H u̇ +
k2

a2
u = 0 . (103)

We do not possess exact forms for the two, linearly independent solutions dur-
ing the oscillatory regime. 8 Even if we had these solutions, we would not
know the linear combination of them that gives “the” mode function u(t, k),
which we define to be the coefficient of the annihilation operator in the free
field expansion of the graviton. It makes sense to first develop a reason-
able approximation for the linearly independent solutions and then consider
which combination of them occurs in the actual mode function u(t, k). In
approximating the solutions it also makes sense to first include the effect
of the overall linear expansion – for which exact solutions exist – and then
numerically superimpose the effect of the oscillations.

• The Case of Linear Expansion

During the oscillatory epoch the scale factor (80) consists of a linear ex-
pansion plus an oscillatory term which causes the Hubble parameter (81) to
become negative for brief periods. Because we wish to quantify the potential
enhancement from these periods of negative H(t), it is useful to factor out the
behaviour that would arise from the linear growth, without the oscillatory
term:

ā(t) = acr

[
1 + ω∆t

]
. (104)

8The exact solution u(t, k) includes the full evolution before tcr and the oscillations.
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Then, the Hubble parameter H̄ can be expressed in terms of the scale factor
ā as follows:

H̄(t) =
˙̄a

ā
=

ω

1 + ω∆t
=

ω acr

ā(t)
. (105)

The canonically normalized, Bunch-Davies mode function for the linear ex-
pansion is:

ū(t, k) =
1

√
2
√

c2k2 − ω2a2
cr

× 1

ā(t)
exp

(
− i

√√√√ c2k2

ω2a2
cr

− 1 ln
[ ā(t)

acr

])
(106)

and already indicates some (integrable) enchancement since ū(t, k) becomes
singular when c2k2 = ω2a2

cr. Since the product H̄(t)× ā(t) is constant, there
is no horizon crossing during linear expansion. Modes which are sub-horizon
at criticality (k > ωacr) remain sub-horizon, and modes which are super-
horizon at criticality (k < ωacr) also remain super-horizon.

⊲ Super-horizon mode functions
For super-horizon modes we have the condition:

c2k2

ω2a2
cr

≪ 1 , (107)

so that the exponential in (106) becomes:

exp

(
− i

√√√√ c2k2

ω2a2
cr

− 1 ln
[ ā(t)

acr

])
= exp

(
±
√√√√1 − c2k2

ω2a2
cr

ln
[ ā(t)

acr

])

= exp


ln

[ acr

ā(t)

]±
√(

1− c2k2

ω2a2
cr

)
 =

[
acr

ā(t)

]±
√(

1− c2k2

ω2a2
cr

)

, (108)

and the super-horizon mode functions fall off like :

ū(t, k) ≃ 1

ā(t)

[
acr

ā(t)

]±
√(

1− c2k2

ω2a2
cr

)

=

[
acr

ā(t)

]1±

√(
1− c2k2

ω2a2
cr

)

. (109)

To identify two linearly independent solutions that exhibit the two different
behaviours we define the convenient variable: 9

x ≡
√√√√
(

1 − c2k2

ω2a2
cr

)
ln
[ acr

ā(t)

]
, (110)

9For super-horizon modes, due to condition (107), we have: ex ∼ a.
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and re-organize the two linearly independent solutions:

ūrl(t, k) ≃ 1

ā(t)
cosh x ≃ 1

ā(t)

1

2
(ex + e−x) , (111)

ūim(t, k) ≃ 1

ā(t)
sinh x ≃ 1

ā(t)

1

2
(ex − e−x) , (112)

by forming their sum and difference:

ū+ = ūrl + ūim =
1

ā(t)
ex ≃ constant , (113)

ū− = ūrl − ūim =
1

ā(t)
e−x ≃ 1

ā2(t)
. (114)

It is clear from (113-114) that, given enough time evolution, the u+ solution
dominates. Note that this assumes a(t) increases – as it does for linear
expansion and for H > 0. But if a(t) starts decreasing – as it would for
H < 0 – the u− solution starts contributing. This is what happens when we
add the oscillatory term to the exactly soluble scale factor (104).

⊲ Sub-horizon mode functions
For sub-horizon modes we have the condition:

c2k2

ω2a2
cr

≫ 1 . (115)

A similar analysis is possible by defining a convenient variable:

x ≡
√√√√
(

c2k2

ω2a2
cr

− 1

)
ln
[ acr

ā(t)

]
, (116)

and noting that the two linearly independent solutions are:

ūrl(t, k) ≃ 1

ā(t)
cos x =

1

ā(t)

1

2
(eix + e−ix) , (117)

ūim(t, k) ≃ 1

ā(t)
sin x =

1

ā(t)

1

2
(eix − e−ix) . (118)

It is already evident from expression (106 that sub-horizon mode functions
oscillate and redshift, with the period of oscillations also redshifting.
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• Initial Conditions

We still have to include the effect of oscillations. That defines a mode function
ũ(t, k) which obeys equation (103) with the full oscillating geometry (80-81).
We construct these mode functions to agree initially with those of the phase
of linear expansion:

ũ(tcr, k) = ū(tcr, k) , ˙̃u(tcr, k) = ˙̄u(tcr, k) . (119)

The actual mode function u(t, k), by which we mean the coefficient of the
annihilation operator in the free field expansion, is neither ũ(t, k) nor ũ∗(t, k).
The general solution is the linear superposition of the two solutions:

u(t, k) = α ũ(t, k) + β ũ∗(t, k) . (120)

We can solve for the combination coefficients in terms of the values of u(t, k)
and u̇(t, k) at criticality. The Wronskian of the two linearly independent
solutions ũ(t, k) and ũ∗(t, k) is:

W (x) ≡ ũ ˙̃u
∗ − ˙̃u ũ∗ . (121)

Since the Wronskian is independent of time, we can evaluate it at criticality
where the mode functions are known from (119):

W ≡ ũ ˙̃u
∗ − ˙̃u ũ∗ = ū ˙̄u

∗ − ˙̄u ū∗ =
i

a3
cr

. (122)

Thus the combination coefficients are :

α = −i a3
cr

[
u(tcr, k) ˙̄u

∗
(tcr, k) − u̇(tcr, k) ū∗(tcr, k)

]
, (123)

β = −i a3
cr

[
u̇(tcr, k) ū(tcr, k) − u(tcr, k) ˙̄u(tcr, k)

]
. (124)

Although we do not know precisely what these values are, some reason-
able guesses can be made. For example, a far super-horizon mode, which
experienced first horizon crossing Nhor e-foldings before criticality, should
have:

u(tcr, k) ≈ HNhor√
2k3

, (125)

u̇(tcr, k) ≈ −H2
Nhor√
2k3

(
k

HNhor
acr

)2 [
1 +

ik

HNhor
acr

]
. (126)
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Recall that the potentially observable modes in the cosmic microwave back-
ground correspond to Nhor ≈ 60, which implies:

k

HNhor
acr

∼ 10−26 . (127)

There is absolutely no point in retaining such small numbers. So during
the oscillatory phase after criticality, the mode function of a cosmologically
observable wave number would be unchanged from (125), for all practical
purposes. That had to be true because, for far super-horizon wave numbers,
(103) simplifies to:

ü(t, k) + 3H(t) u̇(t, k) ≈ 0 . (128)

and u(t, k) = constant remains a solution – independent of a(t) – for as long
as it is valid to neglect the last term of (103).

• Gravitational Waves Enhancement

Now let us consider the effect of adding the oscillatory term to the scale
factor. It is obvious that one gets a significant response at resonance; then,
the natural time scale of the mode function is close to the inverse of the
oscillatory frequency ω. Whether or not this occurs depends upon two things:
the wave number k and the values of u(t, k) and u̇(t, k) at the start of the
oscillatory period. The reason the initial condition matters is that there are
always two, linearly independent solutions to the mode equation and they
can have vastly different natural time scales. Initial conditions define the
coefficients of the two linearly independent solutions, thus we can see which
of the two solution dominates. There are three interesting wave number
regimes:

∗ The Far Super-horizon, with c k ≪ ω acr.
From expression (109) it is evident that, without the oscillatory term, super-
horizon modes fall off with time scales:

T± ≃ ω−1

1 ±
√

1 − c2k2

ω2a2
cr

. (129)

For ck ≪ ωacr one of these is – within a factor of two – close to ω while the
other is vastly longer. Numerical analysis shows – see Figure 2 – that the
oscillations amplify the solution with the shorter time scale by about a factor
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of four. As might be expected, the solution with the longer time scale ex-
periences no significant amplification. Because the natural initial conditions
(125-126) imply the mode enters the oscillatory epoch almost entirely in the
long time scale solution, the effect is that far super-horizon modes experience
no significant enhancement from the oscillation.

∗ The Far Sub-horizon, with c k ≫ ω acr.
Far sub-horizon modes also receive no substantial enhancement, but for a
different reason. For far sub-horizon modes the natural frequencies of both
solutions are about ck a−1

cr which is much bigger than ω, so neither solution
experiences much enhancement and it does not matter much what the initial
condition is.

∗ The Near-horizon, with c k ≈ ω acr.
As one might expect, it is the near-horizon modes which experience the great-
est enhancement. Figures 3 and 4 present numerical simulations for the case
of ck = 11

10
ωacr , giving the ratios of the actual mode functions – evolved with

the oscillatory term – compared with the solution (106) which starts from
the same initial condition but is evolved without the oscillatory term. 10 In
the near-horizon regime one expects both solutions to be present with about
the same amplitude, so a reasonable estimate of the total enhancement is
by adding the two solutions in quadrature and taking the ratio with, and
without the oscillatory term:

Q ≡ | ũ(t, k) |
| ū(t, k) | =

√
(Reũ)2 + (Imũ)2

√
(Reū)2 + (Imū)2

. (130)

From Figure 5 one can see that the enhancement factor is about Q ≈ 10. By
comparison with the Hubble parameter – see Figure 6 – we see that almost
all the enhancement derives from the first oscillation. Figures 7 and 8 give
the total enhancement factor for the cases of ck = 2ωacr and ck = 5ωacr ,
respectively.
Modes which are slightly super-horizon are quite similar to those which are
slightly sub-horizon. Figure 9 gives the total enhancement factor for the case
of ck = 9

10
ωacr. However, decreasing the wave number much more rapidly

reaches the factor of four enhancement which is concentrated on the solution

10The enhancement factor Q1 is associated with the real part: Q1 ≡ Re[ũ(t, k)] ÷
Re[ū(t, k)] while Q2 with the imaginary part: Q2 ≡ Im[ũ(t, k)] ÷ Im[ū(t, k)].
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that is not likely to be present. Figures 10 and 11 give the behaviours for
ck = 1

2
ωacr and ck = 1

5
ωacr , respectively. Finally, Figures 12 and 13 display

the near-horizon enhancement by wave numbers very close on either side.

• Enhanced Waves Energy Density and Frequency

It remains to estimate the current energy density and frequency of gravitons
which are produced during the epoch of oscillations. Suppose we regard
the enhancement factor as Q = 10 for modes within the range 2

3
ωacr <

ck < 3
2
ωacr , and zero outside this band. This is superimposed on the mode

functions (106) of linear expansion. A reasonable estimate for the extra
energy – above the 0-point – in a single wave vector k within the band of
enhancement is:

E(tcr, k) ∼ h̄c2k2
∣∣∣Q ū(tcr, k)

∣∣∣
2

=
Q2 h̄c2k2

2
√
|c2k2 − ω2a2

cr|
. (131)

The associated energy density comes from integrating over all modes within
the band of enhancement:

ρ(tcr) ∼
∫

d3k

(2π)3
θ
( 3

2
ωacr − ck

)
θ
(
ck − 2

3
ωacr

)
E(tcr, k) , (132)

∼ Q2 h̄ω4a4
cr

4π2c3
. (133)

After the end of oscillations these gravitons are sub-horizon so their energy
density redshifts like radiation. Its current value is:

ρ(tnow) ∼ Q2 h̄ω4

4π2c3

(
acr

anow

)4

∼ Q2 h̄ω4

4π2c3
e−4Nnow , (134)

∼ 2Q2

3π
×
(

ω

Hnow

)2

× G h̄ω2

c5
× e−4Nnow ×

(
3c2H2

now

8πG

)
. (135)

Using the restrictions (89, 102) gives the following fraction of the current
total energy density:

ρ(tnow) <∼ 10−5 ×
(

3c2H2
now

8πG

)
. (136)

The predicted frequency is given by (98):

fnow <∼ 1010Hz . (137)
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It would be challenging – but perhaps not impossible – to detect gravitational
waves of such frequency. Note also that (136) is of about the right magnitude
to be regarded as another relativistic species, despite the fact that these
gravitons are far from thermal equilibrium.
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6 Epilogue

We considered a simple model within a class of cosmological models of purely
gravitational origin. These models have important advantages over conven-
tional inflationary paradigms since they do not contain, or need, scalar field
degrees of freedom. Their time evolution leads – after the end of inflation –
to a short oscillating period. Since all modes oscillate during that period it is
worthwhile to investigate whether there is any enhancement of gravitational
waves generated around that era. We showed that for near-horizon modes
there is such an enhancement by approximately an order of magnitude. It
remains to be seen whether such an enhancement can be measured by high
frequency gravitational wave detectors in the future.
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Figure 2: The enhancement factor Q versus co-moving time (in units of ω−1) for a
super-horizon mode with ck = 0.01 × ωacr.
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Figure 3: The enhancement factor Q1 versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 1.1 × ωacr.
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Figure 4: The enhancement factor Q2 versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 1.1 × ωacr.
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Figure 5: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 1.1 × ωacr.
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Figure 6: The Hubble paramemter H versus co-moving time (in units of ω). The first
period of H < 0 coincides with the largest growth in Q on Figure 5.
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Figure 7: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 2 × ωacr.
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Figure 8: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 5 × ωacr.
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Figure 9: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 0.9 × ωacr.
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Figure 10: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 0.5 × ωacr.
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Figure 11: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 0.2 × ωacr.
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Figure 12: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 0.99 × ωacr.
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Figure 13: The enhancement factor Q versus co-moving time (in units of ω−1) for a
near-horizon mode with ck = 1.01 × ωacr.
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