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The end of the processor performance race in the start of the current century signaled
the beginning of the multicore era. To harness the benefits of multiple CPU cores for a sin-
gle application, programmers must now use parallel programming models. Semiconductor
trends hint that processors within the next decade will manage to integrate hundreds of cores
on a single chip; the architecture will be heterogeneous, with few strong (and power-hungry)
cores and many weak (and power-efficient) ones; caches will be less or not at all coherent.
As the new manycore era approaches, finding a productive and efficient programming model
able to scale on such architectures is a major challenge.

Dependency-aware, task-based programming models have gained a significant follow-
ing. The programmer provides a serial program, split into small functions (tasks) that run
to completion, along with information about the data on which the tasks will operate. A
runtime system analyzes the dependencies and schedules and executes the tasks in paral-
lel. Despite their increasing popularity, these programming models are not ready to scale
to emerging manycore architectures, as they primarily target today’s homogeneous, cache-
coherent multicores. Their runtime implementations appear to be neither scalable, nor suit-
able for heterogeneous, less coherent architectures.

Our thesis delves into the parallel programming challenges that lie ahead in the coming
decade. We consider two major problems. First, how should a parallel runtime system be
designed, in order to be able to scale well on a manycore processor ten years from now?
And second, how can we implement and evaluate such runtime system designs, since such
manycore processors are not currently available?

Towards the first problem, we enhance an existing task-based model to support nested
parallelism and pointer-based, irregular data structures. We then design and implement Myr-
mics, a runtime system that implements this programming model. Myrmics is specifically
designed to run on future, heterogeneous, non-coherent processors and to scale well us-
ing novel, distributed algorithms and policies for hierarchical memory management, depen-
dency analysis and task scheduling. Our experimental results reveal that Myrmics scales
well compared to reference, hand-tuned MPI baselines, while automatic parallelization over-
heads remain modestly low (10–30%). We verify that many of our proposed algorithms and
policies are promising.

Towards the second problem, we create a heterogeneous 520-core FPGA prototype mod-
eled faithfully after current predictions for manycore processors. We use it to evaluate the
Myrmics runtime system. The FPGA prototype is based on Formic, a new printed circuit
board that we design specifically for scalable systems. We estimate that our prototype runs
code 50,000 faster than software simulators for similar core counts.
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Myrmics: Ένα Κλιμακώσιμο Σύστημα Χρόνου Εκτέλεσης
για Ενοποιημένα Συστήματα Διευθύνσεων

Σπύρος Λυμπέρης
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών, 2013

Επόπτες: Δημήτρης Σ. Νικολόπουλος και Άγγελος Μπίλας

Το τέλος του ανταγωνισμού ταχύτητας των επεξεργαστών στις αρχές του αιώνα σήμανε
την έναρξη της εποχής των πολυπύρηνων επεξεργαστών. Για να επωφεληθεί μια εφαρμογή
από τους πολλαπλούς πυρήνες, οι προγραμματιστές πρέπει πλέον να χρησιμοποιούν παράλ-
ληλα προγραμματιστικά μοντέλα. Οι τάσεις της βιομηχανίας ημιαγωγών δείχνουν ότι ένα
ολοκληρωμένο κύκλωμα σε μια δεκαετία θα μπορεί να ενσωματώσει εκατοντάδες πυρήνες·
η αρχιτεκτονική θα είναι ετερογενής, με λίγους δυνατούς (και ενεργοβόρους) και πολλούς
αδύνατους (και καλής ενεργειακής απόδοσης) πυρήνες· οι κρυφές μνήμες θα είναι λιγότερο
ή και καθόλου συνεπείς. Όσο πλησιάζει η νέα εποχή των υπερπολυπύρηνων επεξεργαστών,
αποτελεί τεράστια πρόκληση να βρεθεί ένα παραγωγικό, αποδοτικό και κλιμακώσιμο σε
τέτοιες αρχιτεκτονικές προγραμματιστικό μοντέλο.

Τα μοντέλα διεργασιών με εξαρτήσεις έχουν σημαντική απήχηση. Ο προγραμματιστής
παρέχει ένα σειριακό πρόγραμμα, αποτελούμενο από μικρές συναρτήσεις (διεργασίες) που
τρέχουν μέχρι τέλους, μαζί με πληροφορία σχετικά με το ποιά δεδομένα αυτές χρησιμο-
ποιούν. Ένα σύστημα χρόνου εκτέλεσης αναλύει τις εξαρτήσεις, δρομολογεί και εκτελεί
τις διεργασίες παράλληλα. Παρά την αυξανόμενη δημοφιλία τους, τα μοντέλα αυτά δεν εί-
ναι κλιμακώσιμα στις επερχόμενες υπερπολυπύρηνες αρχιτεκτονικές, αφού απευθύνονται
κυρίως σε σημερινούς ομογενείς επεξεργαστές με συνεκτικές κρυφές μνήμες. Οι υλοποιή-
σεις των συστημάτων χρόνου εκτέλεσης που τα συνοδεύουν φαίνονται να μην είναι ούτε
κλιμακώσιμες, ούτε κατάλληλες για ετερογενείς και λιγότερο συνεκτικές αρχιτεκτονικές.

Η εργασία μας εξερευνά τις προκλήσεις στον παράλληλο προγραμματισμό της επόμενης
δεκαετίας. Ασχολούμαστε με δύο προβλήματα. Πρώτον, πώς πρέπει ένα σύστημα χρόνου
εκτέλεσης να σχεδιαστεί, ώστε να κλιμακώνει σε υπερπολυπύρηνους επεξεργαστές που θα
είναι διαθέσιμοι σε δέκα χρόνια; Και δεύτερον, πώς μπορούμε να υλοποιήσουμε και να
αξιολογήσουμε τέτοια συστήματα, αφού σήμερα δε διαθέτουμε τέτοιους επεξεργαστές;

Σχετικά με το πρώτο πρόβλημα, επαυξάνουμε ένα υπάρχον μοντέλο με εξαρτήσεις ώστε
να υποστηρίζει εμφωλευμένο παραλληλισμό και ακανόνιστες δομές δεδομένων με δείκτες.
Στη συνέχεια σχεδιάζουμε και υλοποιούμε το Myrmics, ένα σύστημα χρόνου εκτέλεσης που
συνοδεύει το προγραμματιστικό αυτό μοντέλο. Το Myrmics είναι ειδικά σχεδιασμένο για
μελλοντικούς, ετερογενείς, μη συνεκτικούς επεξεργαστές και κλιμακώνει χρησιμοποιώντας
καινοτόμους, κατανεμημένους αλγόριθμους και πολιτικές για ιεραρχική διαχείρηση μνή-
μης, ανάλυση εξαρτήσεων και δρομολόγηση διεργασιών. Τα πειράματά μας αποκαλύπτουν
ότι η κλιμακωσιμότητα του Myrmics είναι συγκριτικά καλή σε σχέση με βελτιστοποιημέ-
νους κώδικες αναφοράς σε MPI, ενώ οι επιβαρύνσεις της αυτόματης παραλληλοποίησης
παραμένουν αρκετά χαμηλές (10–30%). Επιβεβαιώνουμε ότι πολλοί από τους αλγόριθμους
και πολιτικές που προτείνουμε είναι ελπιδοφόροι.

Σχετικά με το δεύτερο πρόβλημα, δημιουργούμε ένα ετερογενές πρωτότυπο σε FPGA
με 520 πυρήνες, που μοντελοποιεί πιστά υπερπολυπύρηνους επεξεργαστές σύμφωνα με τις
τρέχουσες προβλέψεις. Το χρησιμοποιούμε για να αξιολογήσουμε το Myrmics. Το πρωτό-
τυπο βασίζεται στο Formic, ένα νέο τυπωμένο κύκλωμα που σχεδιάζουμε ειδικά για μεγάλες
κατασκευές. Εκτιμούμε ότι το πρωτότυπό μας τρέχει κώδικα 50.000 φορές γρηγορότερα από
προσομοιωτές σε λογισμικό για παρόμοιο αριθμό πυρήνων.
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Chapter 1

Introduction

1.1 Background and State-of-the-Art

For the first decades of the semiconductor industry, processor chips had a single CPU core.
Processor architecture evolved gradually to include many features that extracted instruction-
level parallelism from serial programs. Both the micro-architectural feature addition and the
CPU performance scaling were feasible due to the technology scaling: each new technology
node offered more chip area and faster transistors for a reduced price. After the first years of
the 21st century, diminished returns of clock rate scaling and power challenges put an end to
the single-core performance race [65]. While technology nodes still scale by Moore’s law,
the industry now exploits the exponential increase of transistors to integrate multiple CPU
cores on a single processor, while the individual clock rates of each core remain constant at a
few (2–4) GHz. To harness the increased aggregate performance of the multicore processors
to run a single application faster, the programmer must use a parallel programming model
so that parts of the application run on multiple CPU cores.

Writing parallel applications efficiently is generally considered a very difficult prob-
lem [6]. The main challenges are that (i) the majority of software developers are experts on
sequential programming, and many of them are not able to grasp the details of concurrent
software and parallel hardware, (ii) compilers and operating system are large, unwieldy and
resistant to change and thus slow to adopt efficient parallel concepts, and (iii) the multitude
of new parallel programming languages makes it difficult to measure improvement, as re-
searchers are often the ones deciding what they think would be better and then building it
for others to try. To quote computing pioneer John Hennessy [51]:

“ When we start talking about parallelism and ease of use of truly parallel com-
puters, we’re talking about a problem that’s as hard as any that computer sci-
ence has faced. […] I would be panicked if I were in industry. ”

While the search for efficient and productive parallel programming models is ongoing,
processors continue to integrate more and more CPU cores. Figure 1.1 shows the Interna-
tional Technology Roadmap for Semiconductors (ITRS) projections for processor technol-
ogy generation trends [56]. The latest ITRS predictions reveal that the industry will reach
the 11 nm technology node by the year 2020 and the 8 nm node by 2023. Esmaeilzadeh
et al. [39] analyze and use the ITRS projections to predict, among others, the number of
CPU cores in future generations. Based on their assumptions, in 11 nm technology we can
expect 256 CPU cores on a single processor and in 8 nm 512 cores. They further argue [40]

1



2 Chapter 1. Introduction

Figure 1.1: ITRS Roadmap (2012 Update [56]), showing the MPU/High-performance ASIC Half
Pitch and Gate Length trends. It predicts that the industry will reach the 8 nm technology node by
the year 2023.

that major breakthroughs are needed to reach these core counts, to overcome both the archi-
tectural and software programming obstacles that will force most of the cores to be idle or
underutilized:

“ A key question for the computing community is whether scaling multicores will
provide the performance and value needed to scale down many more technol-
ogy generations. Are we in a long-term “multicore era”, or will it instead be
a “multicore decade” (2004–2014)? Will industry need to move in different,
perhaps radical, directions to justify the cost of scaling? ”

Recent research from EPFL, Carnegie Mellon and ARM [72] calls for new processor
designs to harness the performance density needed for datacenter-oriented applications. The
authors argue to abandon general-purpose cores and large shared caches, as they become
underutilized when running typical server workloads with vast data footprints. They propose
to scale future processors by abandoning inter-processor connectivity among large chip areas
altogether. Their design features a pod, which integrates a small number of in-order cores
tightly with a small cache. As technology scales, more pods can fit on a chip. Pods do not
share memory or any fast interconnect. Each pod can run a server in isolation and thus a
single chip can scale arbitrarily to accommodate multiple pods and datacenter servers.

Even more recently, Intel researchers proposed Runnemede [25], a processor architec-
ture for 2018–2020 era technologies that tries to address scalability concerns by embracing
tightly-coupled manycore designs, instead of segregating the chip area to many isolated
parts. Runnemede is specifically built from the ground up for energy efficiency, which is
one of the greatest challenges for scaling the hardware architecture. Figure 1.2 shows a block
diagram. Runnemede is a hierarchical, heterogeneous system. A building block consists of
a single fast core (Control Engine), which runs the operating system, and eight slow cores
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(a) Runnemede chip architecture

(b) Micro-architecture of a single Block

Figure 1.2: The Intel Runnemede manycore architecture [25] for the 2018–2020 era. The processor
is hierarchical, heterogeneous, based on an also hierarchical interconnect and features a combina-
tion of non-coherent local caches and scratchpad memories. The CPU has a total of 512 “small”
Execution Engine cores (XEs) optimized for energy-efficient data processing and 64 “big” Control
Engine cores (CEs) suitable for general-purpose OS/runtime code. There are three levels of hierar-
chy: a Block consists of 1 CE and 8 XEs; a Unit consists of 8 Blocks; the processor consists of 8
Units. Each hierarchical level adds a new interconnect layer and new memory.
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(Execution Engines), which run the application. Multiple building blocks are connected
by a hierarchical network-on-chip to form the processor. Runnemede proposes a combina-
tion of software-managed scratchpad memories and non-coherent caches to increase energy
efficiency.

Inspired by recent research, we make the following assumptions for the processor archi-
tecture for the next ten years:

• Processors will continue to integrate more and more CPU cores. We expect that by
the year 2023 the industry will offer manycore processors, featuring a few hundred
CPU cores in a single chip.

• Manycore processors will be more heterogeneous in nature. There will be fewer very
strong (and power-hungry) cores on a chip, surrounded by more relatively weaker
(and power-efficient) cores.

• Manycore processors will be less cache-coherent than today. To increase energy effi-
ciency, we expect that cache coherency will be either limited to smaller groups of CPU
cores (coherency islands) or will be abandoned altogether. Chip-wide communication
will be explicit and managed by software.

Approaching the manycore era, the problem of finding an appropriate parallel program-
ming model becomes more and more important. The de facto standard for cluster-based
high-performance computing is the Message-Passing Interface (MPI) [96]. While MPI
could be an ideal fit for partially coherent manycore architectures to write optimal, hand-
tuned, high-performance applications, one needs to be a parallel programming expert to
write and debug MPI programs. Instead, there have been many interesting programming
model proposals over the last few years that focus on programmer productivity. These
models enable a programmer with little or no background in parallel programming to write
more-or-less serial code which is automatically parallelized by a compiler, a runtime library,
or both. Examples include Cilk/Cilk++ [44], Intel Thread Building Blocks (TBB) [68] and
OpenMP [86]. We are specifically interested in the task-based family of programming mod-
els, in which a serial program is split into tasks, which are relatively small function calls
performing atomic chunks of work that run to completion. A runtime library schedules and
executes the tasks in parallel, effectively constructing a parallel program from a serial de-
scription. Tasks are usually annotated using compiler pragmas and the resulting parallel
program is a faithful extension of the sequential one. Without further assistance from the
programmer, the runtime system considers all spawned tasks to be eligible for execution.
The OpenMP support for tasks [8] falls into this category. A growing number of researchers
advocates that if the programmer also provides information about the data on which the task
will operate, the runtime can make much more informed decisions. Recent examples on such
programming models include Legion [13], Dynamic Out-of-Order Java [38], OmpSs [37]
and Data-Driven Tasks [100]. In the aforementioned Intel Runnemede architecture, the au-
thors co-design the processor hardware with runtime system software, in order to study
the scalability issues from both perspectives. For the software, the authors propose such a
task-based programming model, for four reasons: (i) it facilitates exploitation of all paral-
lelism per application phase, instead of encouraging a static division of an application into
threads, (ii) only the producer and the consumer(s) of a data item need to synchronize, po-
tentially reducing synchronization costs, (iii) the non-blocking “complete or fail” nature of
tasks avoids much of the context-switching overhead of traditional operating systems and
(iv) it makes it easy to identify a computation’s inputs and outputs, and thus to schedule code
close to its data, to marshal input data at the core that will perform a computation, and to
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distribute results from producers to consumers —this also supports the hardware decision
for software-managed scratchpads and caches.

Despite the increasing popularity of dependency-aware, task-based programming mod-
els, there is much room for improvement when one considers their scalability on emerging
manycore processors. A first major weakness of existing programming models is that their
evaluation is either done on existing processors, which are limited to a few tens of CPU
cores at best, or to machine clusters where the network latencies dominate. Thus, we ar-
gue that it remains largely unexplored how the existing programming models (and specifi-
cally the implementation of their runtime systems) will behave on processors with hundreds
of tightly-coupled cores. Second, there is limited support for irregular, pointer-based data
structures, such as trees and graphs, which are necessary for multiple application domains.
In most models the programmer cannot express a task that operates on parts of these struc-
tures. Third, existing models do not project well to future architectures. The increased
processor heterogeneity and decreased cache coherence should be taken into account in the
design of a programming model and its runtime system.

1.2 This Thesis and its Contributions

This thesis delves into the parallel programming challenges that lie ahead in the coming
decade. We focus on the runtime system implementations for dependency-aware, task-
based, parallel programming models. Specifically, we consider the following problems:

A. How should a parallel runtime system be designed, in order to be able to scale well on a
manycore processor ten years from now?

B. How can we implement and evaluate such runtime system designs, since such manycore
processors are not currently available?

To explore problem A, we assume a parallel, task-based, programming model similar
to the OmpSs [37] family and we propose enhancements to support nested parallelism and
pointer-based, irregular data structures. We then design and implementMyrmics1, a runtime
system that implements this programming model. Myrmics is specifically designed to run
on future, heterogeneous, non-coherent processors and to scale well using novel, scalable,
distributed algorithms and policies. Specifically, our thesis2 makes the following contribu-
tions towards problem A:

A1. To support nested parallelism and pointer-based data structures efficiently, we extend
serial memory regions for usage in parallel programming models.

A2. We introduce hierarchical memory management, dependency analysis and scheduling
algorithms for task-based models implemented on non cache-coherent, manycore ar-
chitectures. We show experimentally that this enables scaling to hundreds of cores and
alleviates bottlenecks that are present in existing runtime systems.

A3. We design Myrmics, a scalable task runtime system that uses these algorithms. Myr-
mics uses CPUs with different capabilities to run runtime and application code. Our
system addresses the challenges that a runtime will face on future processors, according
to current design trends.

1 From the greek word “μύρμηξ”, which means “ant” in the katharevousa language form.
2 Polyvios Pratikakis formally proved the programming model determinism and its equivalence to serial

execution. Iakovos Mavroidis wrote the code for the MPI library and helped porting many of the MPI and
Myrmics benchmarks. Foivos Zakkak created the Myrmics code target for the SCOOP compiler.
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A4. We evaluate how Myrmics scales up to 512 worker cores, using several benchmarks,
kernels and applications. We analyze the trade-offs and overheads and we compare the
results with reference MPI baselines on the same platform.

We solve problem B by creating a custom FPGA prototype of a manycore processor.
We specify, design, verify and evaluate the FPGA prototype by itself. We then use it as a
faithful model of a future hardware manycore single-chip processor to run, to debug and
to evaluate the Myrmics runtime system. Our thesis3 makes the following contributions
towards problem B:

B1. We design Formic, a novel FPGA board specifically targeted to be a building block for
multi-board prototyping large, scalable systems.

B2. We develop a non-coherent, scalable, Xilinx MicroBlaze-based hardware architecture.
We use it to create a 512-core homogeneous system using 64 Formic boards. We then
extend the architecture to include eight ARM Cortex-A9 cores, thus creating a 520-core
heterogeneous prototype that emulates a single-chip manycore processor.

B3. We design a software MPI library for the hardware architecture. We use it to evaluate
the hardware prototype using several benchmarks. We also use the MPI library as the
reference programming model to characterize Myrmics performance.

Parts of our work on problem A have been published in 2011 [94] and 2012 [75]; we
have submitted a third article to the ACM Transactions on Architecture and Code Optimiza-
tion journal (under first revision). The Myrmics runtime system has been open-sourced and
is available in a dedicated website [43]. Parts of our work on problem B have been published
in 2012 [74]; we have submitted a second article to the Elsevier Journal of Systems Archi-
tecture (first revision under review). We have also written an extensive technical report [73].
The Formic board schematics and the 512-core architecture have been open-sourced and are
available in a dedicated website [42].

The rest of the dissertation is organized as follows. Chapter 2 presents the state of the
art for parallel programming models, hardware prototyping platforms and runtime systems.
Chapter 3 presents our enhancements for the OmpSs family of programming models. Chap-
ter 4 describes our work to design, to implement and to evaluate the 520-core FPGA pro-
totype. Chapter 5 introduces the Myrmics runtime system, presents its key algorithms and
describes our implementation and evaluation on the FPGA prototype. Chapter 6 summarizes
the existing literature for research in programming models, hardware prototyping platforms
and runtime systems areas. Finally, chapter 7 discusses the strengths and weaknesses of our
approach, presents ideas regarding future work and concludes our thesis.

3 George Kalokerinos made a major contribution to the development and verification of the hardware archi-
tecture. Vassilis Papaefstathiou and Dimitris Tsaliagkos helped with the verification of the finished hardware
prototype. Michael Ligerakis performed the Formic board layout and handled the back-office support for its
manufacturing. Vassilis Papaefstathiou, Stamatis Kavvadias and Giorgos Passas gave valuable advice on the
definition of the architecture.



Chapter 2

Background and State-of-the-Art

In this chapter we present the state of the art in the three fields that are directly related to
our research, and discuss our motivation for the work done in this thesis. In section 2.1 we
overview the existing parallel programming models, in section 2.2 the hardware prototyp-
ing platforms, and in section 2.3 the current runtime systems of the parallel programming
models.

2.1 Parallel Programming Models

Message Passing Interface (MPI)

MPI [96] is a protocol for parallel communication and synchronization among processors
with distributed memory resources. Its first version was developed in 1992, after a working
group decided upon a preliminary standard the year before. The MPI standard defines the
syntax and semantics of library routines for portable applications in Fortran and C.

Most MPI programs follow the Single Program/Multiple Data (SPMD) paradigm, in
which the same program is executed in parallel by all participant processor cores. Program-
mers using MPI are required to argue explicitly about the points where communication and
synchronization occur in the program. Each processor core has an assigned unique identifier
(rank). In the simplest form, two cores communicate by specifying an application buffer to
be sent or received and the rank of the peer core for the communication operation. The MPI
implementation resolves all lower-level details, such as waiting for the other peer to reach
the correct point in the program time, programming the communication hardware to perform
the actual data transfer, waiting for the data to arrive, and resuming the program flow after
the receive buffer is ready to be used (at the receiver side) or the send buffer can be reused
(at the sender side).

There are many MPI implementations, such as the open-source MPICH [83] and Open-
MPI [87]. Many of them use hardware assistance or full offloading of some parts on network
cards that natively support MPI, either using hardware accelerators (such as MPI queue pro-
cessing) or through dedicated processors that implement the MPI software stack on the card.

MPI is considered the de facto choice for distributed-memory communication and is
widely used in high-performance clusters [77], including all top supercomputers. Its pri-
mary advantage is the explicit nature of the communication, which offers the programmer the
ability to fine-tune applications so that communication is optimally overlapped with com-
putation and the communication overhead is minimized. Other advantages include software
portability, mapping and adapting the communicating peers so that the software-perceived
communication coincides with the actual, underlying network topologies, as well as the op-
timal usage of memory resources.

7
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Figure 2.1: The PGAS languages memory model. Processor cores have access to “local” (private)
and “global” (shared) memory. Most languages support two kinds of pointers. Local pointers are
restricted to private, local memory. Global pointers carry metadata and may lead to communication
for accessing the remote data.

However, despite its strong points, MPI remains the equivalent of “assembly” for par-
allel programming. The programmer must explicitly cover any aspect of communication in
the application, which is hard for non-experts: debugging a parallel MPI application is no-
toriously difficult. Also, MPI programs that use dynamically allocated data structures, such
as trees, must manually marshal and unmarshal them for communication. The programmer
must allocate adequate space before a transfer takes place and must rewrite any pointers after
the transfer. Essentially, programmers need to implement small parts of runtime libraries of
Partitioned Global Address Space (PGAS) or task-based programming models (which we
overview below) to handle these cases.

Because of the low programmer productivity and the difficulties faced by beginner- and
intermediate-level programmers, in application fields other than high-performance comput-
ing, MPI is not a very popular choice. Other, more intuitive, but less potent and less per-
forming languages and programming models are often considered as viable candidates.

Partitioned Global Address Space (PGAS) Languages

One such family of viable candidates are the PGAS languages. Non-expert programmers
who are somehow familiar with parallel programming feel comfortable with the hardware
paradigm of shared-memory cache-coherent machines. This paradigm provides a shared
address space where every core can access any other core’s data. This abstraction is intuitive
enough to introduce parallel programming concepts in a natural way —although it is far from
easy to write programs that are completely race-free and safe. However, machines with
distributed memory hierarchies do not offer a common address space. The PGAS family
of languages is a step towards this direction. They provide programmers with the familiar
illusion of a shared address space, which is implemented by the language compiler and/or a
runtime library. The programmer writes parallel code (in the SPMD paradigm, as in the MPI
case) and augments it with language keywords or compiler pragmas that characterize data
variables as “private” or “shared” (figure 2.1). Communication is automatically induced by
the compiler and/or the runtime system when cores access non-local data.

A prominent example of a PGAS language is Unified Parallel C (UPC) [107], which
extends C by providing two kinds of pointers: private pointers, which must point to objects
local to a thread, and shared pointers, which point to objects that all threads can access but
may have affinity to specific cores. The Berkeley UPC compiler [55], which is a reference
implementation, translates UPC source code to plain C code with hooks to the UPC runtime
system that manages the shared memory aspects. Other well-known PGAS languages are
X10 [30, 50], which defines lightweight tasks (activities) that run on specific address spaces
(places), Co-Array Fortran [84], which extends Fortran 95 to include remote objects acces-
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sible through communication, Titanium [52], which extends Java to support local and global
references and Chapel [27], which is a language written from scratch that aims to increase
high-end user productivity by supporting multiple levels of abstractions.

PGAS languages increase programmer productivity by addressing the MPI drawback of
being hard for non-expert programmers. However, they do so by introducing several other
drawbacks. First, the compiler and runtime system introduce overheads for every communi-
cation. More communication than absolutely necessary may be done, either by transferring
shared data back-and-forth, or through piggy-backing them with runtime metadata. In the
case of runtime libraries, some or all processor cores will be kept busy with executing code
related to metadata transfers, object location discovery protocols, etc. The parallel speedups
achieved by MPI are generally infeasible with PGAS languages for distributed-memory ma-
chines. To schedule and to manage parallel tasks, existing PGAS languages tend to require
strict control of the task footprint in memory. To meet this requirement, they restrict the use
of dynamic memory in the program by making all dynamic allocation local to a task [41], or
by statically limiting the available dynamic memory1. Also, expert programmers may find
that fine-tuning parallel applications, e.g. to overlap communication with computation opti-
mally, is more difficult with “clever” runtimes that schedule and distribute resources heuris-
tically, when compared to “dummy” MPI implementations that perform the exact amount
of work that the programmer encodes. Other drawbacks of the PGAS languages are that
they require rewriting applications using the new languages and they do not support irreg-
ular forms of parallelism (such as arbitrary array sub-indexing) or asynchronous task-based
parallelism.

Despite these drawbacks, the performance-productivity trade-off of PGAS languages
makes them attractive and they have gained a significant following over the last years.

Task-based Programming Models

Task-based programming models belong to a different family of competitors to the MPI
model. These models allow the programmer to express parallelism in a very intuitive way.
The programmer writes serial code, which begins running on a single CPU. The program is
split into tasks, which are relatively small function calls performing atomic chunks of work
that run to completion. A runtime library schedules and dispatches the tasks to run on other
CPUs in parallel, effectively constructing a parallel program from a serial description. Tasks
are either annotated using compiler pragmas, or built into the language, and the resulting par-
allel program is a faithful extension of the sequential one. Historically, task-based program-
ming models evolved to replace programming cache-coherent, shared memory architectures
with threads and locks. Although the threading model initially “felt easy” to programmers,
it required reasoning about implicit communication and interactions through shared mem-
ory. This complex, tedious and error-prone process made non-trivial threaded programs
hard to test, to debug and to maintain. Writing good-quality, race-free, well performing
and scalable multithreaded code is considered to be very challenging [69]. Commercial and
academic task-based model programming models increase programmer productivity by ab-
stracting away the difficult parts of parallelization and communication. Notable examples
include Intel TBB [68], OpenMP [8], and Cilk/Cilk++ [19, 44]. As successors to the orig-
inal multithreaded applications, the initial task-based models target cache-coherent shared
memory architectures.

More recent generations of task-based programming models also target heterogeneous
computing systems, based on general-purpose GPUs or other hardware accelerators. To

1 The Berkeley UPC 2.14.0 that we used in the evaluation imposes a static limit of 64 MB per thread for
dynamically allocated memory.
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Figure 2.2: The ClusterSs [23, 101] programming model and infrastructure. The Mercurium com-
piler [10] translates a serial program, annotated with directives. The application binary is linked
with the Nanos++ [11] runtime system, whose master and slaves images run on all processors and
guide the parallelization and running of the application.

know which data must be transferred between the GPU and the host processor(s), the pro-
grammer provides information about the data on which the task will operate. In addition
to moving the correct data back and forth, runtime systems of such programming models
can make much more informed decisions for program correctness and determinism. Specif-
ically, in dependency-aware programming models, spawned tasks are not automatically eli-
gible for execution. A task is ready to be executed only when its data arguments are finished
being written by any previous tasks. Recent examples on such programming models include
OmpSs [37], Legion [13], and Dynamic Out-of-Order Java [38] (which also relies on com-
piler static analysis). In the literature, there are multiple variations on how to express task
dependencies. One such way is to use futures, which declare that a new task must wait for
certain variables (Data-Driven Tasks [100] and X10) or other tasks (Habanero-Java [26]).
OpenStream [93] defines streams, which are language constructs that define how tasks com-
municate by producing and consuming data. No matter what the variation, advantages of
the dependency-aware tasking models include increased productivity, flexible exploitation
of parallelism depending on the application phase, and also an opportunity for runtime sys-
tems to increase data locality, by scheduling computation (i.e., consumer task(s)) close to
the data (i.e., the location of the previous producer task(s)).

We select a class of such dependency-aware, task-based parallel programming mod-
els as the basis for our work: the ones developed by the Barcelona Supercomputing Center
(BSC). BSC has introduced a whole lineage of dependency-aware programming models that
support OpenMP-like tasks for a number of architectures. StarSs runs on cache-coherent,
shared-memory processors [91], CellSs on the IBM Cell Processor [15], ClusterSs on clus-
ters of multiprocessors [23, 101], StarPU on heterogeneous systems with accelerators and
Cell processors [7], and OmpSs on heterogeneous CPUs/GPUs systems [37]. All these pro-
gramming models are supported by the Mercurium compiler and the Nanos/Nanos++ run-
time systems [10, 11]. Figure 2.2 shows a block diagram of ClusterSs.

We set the following targets for our programming model:

Scalability: The programming model must be able to express task parallelism in a way that
enables scaling to hundreds of cores.
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Heterogeneity: As we expect that emerging manycore processors will be heterogeneous,
the programming model must assume that the runtime system will run only on the
few, stronger cores of the processor.

Non-coherency: As we expect that emerging manycore processors will be less coherent
(or totally non-coherent), the programming model must assume explicit data transfers
and related optimizations.

Pointer-based data structures: To support applications in diverse fields other than high-
performance computing, the programming model must be able to express task de-
pendencies on dynamically-allocated, pointer-based data structures, such as trees and
graphs.

To achieve our Scalability target, we extend the base programming model to use nested
and recursive tasks, which enable multiple tasks to spawn other tasks in parallel. To facilitate
simpler, but more scalable, dependency analysis algorithms, we restrict some of the OmpSs
models expressiveness by disallowing tasks to be dependent on parts of objects, such as array
sub-indices. To work towards the Heterogeneity and Non-coherency targets, we specify that
tasks can be dependent only on heap-allocated objects; we further define that heap memory
allocation calls are points of synchronization between the application code and the runtime
system. This choice on the one hand incurs communication cost, but on the other hand
allows the runtime system to be present only on a few cores that share the full knowledge
of all application data locations. To support pointer-based data structures we extend the use
of serial regions, an efficient way to express arbitrary collection of heap objects. We define
how regions can be used in a parallel programming model, and how tasks can use region
arguments to support bulk dependency analysis and data transfer of parts of pointer-based
data structures, as well as to hierarchically decompose an application.

Our enhanced programming model is presented in more detail in chapter 3.

2.2 Hardware Platform

Hardware and parallel software research on multicore systems is challenging, especially at
a time when technology scaling approaches the manycore era. There are two schools of
thought on multicore systems modeling: simulating them in software vs. prototyping them
in hardware using FPGAs.

Modeling complex systems in software simulators like Simics [76] and GEMS [78] is
a very popular approach. One can easily tune architectural parameters and swiftly explore
systems with different characteristics. A weak point of software simulation is that the more
cores one simulates, the slower it gets. To quantify this assertion, we perform the follow-
ing experiment: we simulate a number of cores running a very small piece of bare-metal
software, where each core independently computes the first 2048 Fibonacci numbers. We
model a cycle-accurate full system using the recent and efficient gem5 simulator [18] on an
Intel Core 2 Quad clocked at 2.4 GHz with 4 GB RAM. Figure 2.3 shows that the simulation
time of the 512-core system is 2 hours. Our setup seems capable of simulating an aggre-
gate of roughly 100,000 CPU clock cycles per second, which translates to approximately
200 clock cycles per second per core. For 512 cores it is too slow to run realistically-sized
parallel software. The poor scaling of software simulation cannot be easily mitigated by
multithreading the simulator, which approaches in the literature attempt [82, 95] by sacri-
ficing simulation accuracy or abstracting the simulation into higher levels than clock-cycle
accuracy. Another limitation of relying on simulators to evaluate the performance of hard-
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Figure 2.3: Execution time of the gem5 simulator, where a number of cores independently compute
the first 2048 Fibonacci numbers. The code utilizes private per-core arrays and does not use recur-
sive function calls. Even for such a trivially small, bare-metal software kernel, simulation becomes
impractical for very high core counts.

ware architectural changes is that it can often lead to dubious results [48], because the user
may rely on unrealistic choices of architectural parameters.

Following the hardware prototyping approach, building manycore systems using FPGAs
is a considerably harder and slower path than software simulation. However, running pro-
grams on the final system is very fast. An added benefit is that the modeling process itself
provides more insight into the impact of architectural changes and helps to avoid pitfalls of
unrealistic software simulation parameters. In between the software simulation and hard-
ware prototyping approaches, there is much work in the literature that attempts to bridge the
gap through various hybrid approaches. Tan et al. [99] have published a categorization of
such systems.

We choose to avoid using software simulation, which would both limit the program
sizes that we can run for runtime systems evaluation and obscure important hardware details
for the hardware architecture. Instead, we decide to build a manycore hardware prototype,
that both runs complex software efficiently and offers deeper insight on various hardware
primitives. We consider the increased effort that we spend in developing manycore hardware
prototypes is well offset by the added level of detail and reduced program runtime that it
offers in return. We set the following targets for our hardware prototype:

CPU core: The CPU must be strong and mature enough to support complex software. It
must provide floating point operations to run computational benchmarks.

Cache hierarchy: At least two levels of cache must be present, so that interesting cache
traffic scenarios appear. The caches should be adequately sized and have enough
associativity.

Scalability: We want the system to scale to at least to a few hundred cores.

Connectivity: Emerging manycore chips experiment with various network topologies, like
2D-meshes and hypercubes. Our system should allow similar experiments.

Cost: The system components must be reasonably priced so that the scalability target is
respected.

Prominent examples in the literature of academic and commercial FPGA prototyping
boards include the Berkeley Emulation Engine research boards, BEE2 [29], BEE3 [34] and
BEE4 [14], as well as the Xilinx XUPV5 board [117]. To build a system of hundreds of
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cores, one must use multiple boards and interconnect them in a network. We find that the
existing FPGA boards are limited in at least one of the three following aspects:

1. They do not feature enough SRAM memory, which is needed to model adequately-
sized caches faithfully: this violates our Cache hierarchy constraint.

2. They do not have enough off-board links to interconnect them in interesting network
topologies: this violates our Scalability and Connectivity constraints.

3. They are expensive to buy in large quantities: this violates our Cost constraint.

For these reasons, we do not use any of the existing academic or commercial prototyping
boards. Instead, we design Formic, a custom FPGA prototyping board with multiple SRAM
memories to model caches and multiple off-board links to interconnect many boards for large
systems. We take care to keep the board cost low, so we can afford to manufacture and to
assemble many of them to build our heterogeneous hardware prototype.

To avoid the power, area and design complexity overheads of cache coherency and
the limited scalability of shared-memory programming models, many researchers advo-
cate abandoning cache coherency altogether in favor of architectures that rely on distributed
memory and explicit communication [25, 53, 61, 72]. We share these concerns and choose
to implement a non-coherent hardware architecture, which works towards our Scalability
target. We use multiple Formic boards to create a hardware prototype that uses 512 Xilinx
MicroBlaze [116] cores. We connect our prototype to two ARM Versatile Express plat-
forms [5], each one equipped with a four-core ARM Cortex-A9 processor and an FPGA
daughterboard, and we create a 520-core heterogeneous hardware platform. Our hardware
architecture faithfully models a single-chip processor, as we take care to clock each part
appropriately to model bandwidths and latencies as if all 520 cores were within a single
chip.

The design of the Formic board, the 520-core prototype and its implementation and
evaluation are discussed in detail in chapter 4.

2.3 Runtime Systems

Each of the parallel programming models discussed in section 2.1 is supported by a runtime
system2. The runtime system is developed by system experts. It runs at the same time
with the user application code and provides the functionality of the respective programming
model. Runtime system code runs whenever the user application calls one of the functions
defined in the application programming interface (API) of the programming model. Other
parts of the runtime system may run in the background (e.g., garbage collection code) or
they may be called implicitly when the application code uses specific language constructs
(e.g., the X10 async statement) —in such cases the compiler places the related API calls in
the application code when it encounters the language constructs.

Assuming that a given programming model allows the programmer to express an ap-
plication with enough parallelism to scale, the implementation of its runtime system deter-
mines if the application will scale or not. Among the well-known, scalable runtime systems
are MPICH [83] and OpenMPI [87] for the MPI programming model. Among many other
optimizations, they implement the collective communication MPI calls using scalable, hier-
archical algorithms, tailored to the underlying node topology and exploiting any available
hardware primitives. We can consider the MPI libraries as a reference point for scalability,

2 In the literature, some authors prefer the term term runtime library, or even simply library.
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because MPI is used for production purposes in supercomputers with hundreds of thou-
sands of nodes. The newer task-based programming models target mainly cache-coherent,
shared-memory workstations with few tens of CPU cores, or CPU/GPU combinations. In
the related literature, authors rarely discuss implementation details of their runtime systems.
To the best of our knowledge, existing runtime systems of task-based programming models
exhibit at least some of the following weaknesses:

1. They assume that a single master task can spawn tasks, or that a single CPU node must
handle all task generation (e.g., in ClusterSs [23] (figure 2.2) one CPU becomes the
master node and all others are slaves). After a certain core count, the single master
task and/or CPU node becomes a bottleneck.

2. They feature parallel scheduling and dependency analysis, but as they mostly target
cache-coherent, shared-memory architectures, they implement algorithms that scale
poorly (e.g., using centralized data structures and locking).

3. They evaluate their work running on systems with few tens of CPU cores (usually up
to 32 or 64).

4. They do not project well to emerging heterogeneous architectures, in which it would
be more advantageous if runtime code ran only on the few, strong cores and application
code only on the many, weaker ones.

We argue that it remains largely unexplored how these existing systems will behave on
single-chip, manycore, heterogeneous, partly or fully non-coherent processors. In emerging
manycores, the latencies and CPU configurations will be vastly different than both today’s
cache-coherent, shared-memory multicores and supercomputer clusters.

Apart from the changes that we propose to enhance the scalability of the programming
model, we specifically design the Myrmics runtime system with a primary target to scale
well on emerging manycore processors. We avoid the problems of the existing runtime sys-
tems and implement scalable, hierarchical memory management, task dependency analysis
and scheduling algorithms. We employ scalable, software-based coherency protocols with
explicit data transfers, to maintain a global address space (much like the one in PGAS lan-
guages) although the underlying architecture is non-coherent. We implement and evaluate
Myrmics on the 520-core FPGA prototype directly (a bare-metal software design), as it helps
us disregard any operating system interference and focus on optimizing the runtime system.
To do that, we also develop low-level layers for the FPGA prototype and its peripherals, as
well as a limited-functionality, but resilient, CompactFlash filesystem for data storage.

We discuss in more detail the design, implementation and evaluation of the Myrmics
runtime system in chapter 5.



Chapter 3

Programming Model

In this chapter we explain the parallel programming model we use for the Myrmics runtime
system. Section 3.1 presents the enhancements that we propose over existing dependency-
aware, task-based, parallel programming models. Section 3.2 shows an application code
example to illustrate the concepts that we use. Section 3.3 presents the Application Pro-
gramming Interface (API) for our enhanced programming model. Finally, in section 3.4 we
discuss how our model enables the hierarchical dependency analysis, and we illustrate it
with a detailed example.

Parts of the work presented in this chapter have been published in 2011 [94].

3.1 Programming Model Enhancements

As discussed in section 2.1, we select the Barcelona Supercomputing Center (BSC) family
of dependency-aware, task-based programming models [7, 15, 23, 91, 101] as the basis
for our work, of which the latest and more general in scope is OmpSs [37]. We propose
several enhancements in order to make the programming model that we use for Myrmics
more scalable, more suitable for heterogeneous, non-coherent architectures and to support
pointer-based data structures.

Object Granularity

The authors of StarSs in a different paper [92] present some interesting implementation
side-effects of their programming model. The BSC models, in general, allow tasks to be
dependent on parts of array structures (e.g., a single array element, or one dimension of a
multi-dimensional array). A task can also be dependent on strided arguments, by specify-
ing a starting element and stride lengths1. The authors mention that their approach is more
restrictive than previous work, but more efficient for dependency analysis. They introduce
a compact form for task dependencies using a low-level representation of address bits with
three values (0, 1 and “X”). They build a tree of all task dependencies, including all last
producers (writers) for finished tasks. For every new task dependency, the tree must be tra-
versed, following all branches that may lead to potential overlaps. We argue that although
their approach is more efficient than previous work, it is still a limiting factor for scalability.
By enabling unrestricted sub-indexing, each new task dependency must be checked for po-
tential overlap with a great number of previous dependencies. For hundreds of cores, with
appropriately big datasets of thousands of in-flight tasks, this tree will become a bottleneck.

1 Note that the authors use the term “region” as a set of elements for an array [92]. Our usage of the term
“region” is different, as we mean generic collections of heap objects, which may or may not include arrays.
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A distributed implementation would perform better, but still any new task must traverse
an arbitrary path of the tree and thus the creation and destruction of tasks become global
problems that cannot be handled locally by a part of the CPU cores.

A different approach to this problem is to split the addressable memory into a number
of blocks [106]. Overlapping dependencies are handled by identifying which blocks are
touched by a strided argument. We argue that this method may scale better, but faces a
different problem. Performance may suffer for well-behaved applications that use large
arrays or objects, as they are split into many smaller blocks. If the block size is increased
to handle this case, then performance may suffer because too many overlaps are falsely
detected by the runtime.

We propose to forbid strided accesses in the programming model. Our model allows
task dependencies only on whole objects (as well as regions, which we will explain below).
Although this choice limits the programming model expressiveness, it allows for a much
more efficient runtime system implementation. Every new task dependency can now be
checked for overlap in O(1) time, as it only requires a search in a hash table (using the
pointer value as the key) to locate its dependency queue and check there if the object is used
by any other task. For distributed implementations, the address space can be segmented
across multiple CPU cores, and thus the overlap check can also be done in O(1) time, adding
one step to delegate the check to the correct CPU core. Restrictions to programming model
expressiveness are common, and a number of other researchers are in favor of them to solve
various programming or hardware implementation issues [20, 32].

We impose a second restriction: we allow tasks to be dependent only on objects allo-
cated in the heap. Our reasoning is that this choice allows for a clear interface between the
application and the runtime system. The runtime system intercepts heap allocation and free
calls and tracks each live object, any of which may become a dependency for future tasks.
The user may use any stack object locally in a task, but must expose any object used for task
dependencies to the runtime system, by explicitly allocating it in the heap. This requirement
helps our programming model to be more suitable for heterogeneous and non-coherent ar-
chitectures, where the runtime system runs on different CPU cores than (and does not have
access to the local memory of) the ones running the application tasks. In such architectures,
pointers to stack objects are meaningless, as they refer to private core memory.

Regions

To support pointer-based data structures and to facilitate hierarchical dependency analy-
sis, we borrow a well-known and well-studied construct in memory management literature:
region-based memory management [104]. A region is a user-defined collection of heap-
allocated objects. The user may allocate, free and reallocate objects within a region. More-
over, the user can create and destroy sub-regions that belong to existing regions.

We show an example in figure 3.1. In the left-hand part of the figure, an application
code uses an enhanced heap allocation function (alloc). Its first argument is the customary
allocation size. Its second argument is a region ID (rid_t) that specifies in which region
the object should be allocated. A NULL (or root) region exists by default with region ID
equal to 0. We define a region allocation function (ralloc) that creates a new region from
an existing region parent. In the right-hand part of the figure, we show a possible internal
construct of a runtime system that implements a programming model with regions, the region
tree. A region tree is a hierarchical representation of the parent-child relationships among
regions and objects.

We use regions to express dynamic data structures more intuitively and efficiently. By
allocating some data structure members in a region, the programmer can express accessing or
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1 // NULL region children
2 int *t = alloc(32 * sizeof(int), 0);
3 rid_t A = ralloc(0);
4 rid_t B = ralloc(0);
5
6 // A's children
7 rid_t C = ralloc(A);
8 rid_t D = ralloc(A);
9 long *a = alloc(100 * sizeof(long), A);

10
11 // Leaf objects
12 node *c1 = alloc(sizeof(node), C);
13 node *c2 = alloc(sizeof(node), C);
14 node *d1 = alloc(sizeof(node), D);
15 node *d2 = alloc(sizeof(node), D);

(a) Sample allocation code

A B

DC

"NULL" or

"root" region

region

object

t

c2c1 d1 d2

a

(b) The respective region tree

Figure 3.1: Regions example

transferring the whole structure simply by referring to the region ID. This capability enables
reduced communication overhead for transferring complex, irregular, pointer-based data
structures, which can be tightly packed by an underlying region-based memory allocator.
Our enhanced programming model defines that when a task specifies a region dependency,
it is allowed to access (i) objects belonging to the region and (ii) recursively any objects
belonging to any children sub-regions. This capability further enables an application to
hierarchically decompose its data structures. For example, a whole irregular structure could
belong to a single region; a coarse-grained master task can be spawned to begin processing
the whole data structure. Smaller parts of the data structure could belong to children regions;
the master task could then spawn finer-grained children tasks to process these parts.

In the literature, regions have been found to be very intuitive. They have been used
to increase locality and to accelerate bulk allocation and deallocation. Successful coherent
implementations of regions include stand-alone libraries and built-in programming language
support. Regions preserve the shared-memory abstraction while providing a mechanism to
describe the desired structure of memory and control the locality and placement of memory
objects. Gay and Aiken [46] have measured up to 58% faster execution times on memory-
intensive benchmarks that use region-based memory management versus a conventional
garbage collector.

In-place Spawn Pragmas

The OmpSs family annotates tasks with compiler pragmas to define their memory footprint,
i.e., which task arguments are to be read and which to be written. In OmpSs, this compiler
pragma is put above the function declaration of the task. Whenever the function is called,
the programming model specifies that a task may be spawned by the runtime system. The
latter is free to choose not to spawn the task, but to execute it by the same core that runs the
current task as a simple function call.

We slightly change this behavior. In our programming mode, we place the compiler
pragmas at the function calls instead of the function declarations. This change enables the
user to choose whether a function call must run locally or be spawned as a new task. More-
over, it allows for user and compiler optimizations with “safe” and “no transfer” flags (which
we define in section 3.3) that may be differentiated, depending on the place that the task
spawn happens.
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1 typedef struct {
2 int key;
3 void *data;
4 rid_t lreg, rreg;
5 struct TreeNode *left, *right;
6 } TreeNode;
7
8 main() {
9 rid_t top; // Whole tree

10 TreeNode *root; // Tree root
11
12 // (allocation here) ...
13
14 #pragma myrmics region inout(top)
15 process(root);
16 #pragma myrmics region in(top)
17 print(root);
18 }
19

20 void process(TreeNode *n) {
21 if(!n) {
22 return;
23 }
24 if(n->left) {
25 #pragma myrmics region inout(n->lreg)
26 process(n->left);
27 }
28 if(n->right) {
29 #pragma myrmics region inout(n->rreg)
30 process(n->right);
31 }
32 }
33
34 void print(TreeNode *root) {
35 print(root->left);
36 print_result(root);
37 print(root->right);
38 }

Figure 3.2: Code example with task spawning

Task Nesting

To the best of our knowledge, earlier versions of the OmpSs family (StarSs, StarPU) do not
support task nesting, but newer versions (ClusterSs, OmpSs) seem to do so. Independently
to the newer OmpSs versions, we proposed a fully-nested, task-based programming model
in 2011 [94], where an application task can (i) spawn other tasks, and also (ii) respawn itself
recursively. The second feature is less important, but we consider that the first one is crucial
to make the programming model scalable.

When an application runs on hundreds of cores or more, thousands of tasks will be
spawned. No matter how light a runtime system is, any single point of spawning will become
a bottleneck. The programming model must allow tasks to spawn other tasks, so that multiple
CPUs can be involved in the mass generation of total tasks. Our enhanced programming
model allows for this behavior.

3.2 Code Example

Figure 3.2 shows an example of an application written in our enhanced programming model
that hierarchically processes a binary tree. We use compiler pragmas compatible with the
Myrmics runtime system, which will be presented in detail in chapter 5. We use a source-
to-source compiler [118] to translate the pragma-annotated C code to plain C code with
calls to the Myrmics runtime system interface. We present this interface in the next section
(figure 3.3).

In an initialization phase (not shown in figure 3.2, but similar to the one in figure 3.1), the
user creates one allocation region for the whole tree (top, line 9) and allocates a tree, so that
for each TreeNode *n in a region, its left subtree *left (right subtree *right) is allocated
in a subregion n->lreg (n->rreg). The root tree node is allocated in the top region.
Lines 14–15 spawn one task to process the tree, which spawns two tasks to process the left
and right subtrees recursively (lines 25–30). The inout clause in the pragma specifies that
the spawned task has both read and write access to the top region. Lines 16–17 spawn a
single print task to print all results. The task is dependent on reading the whole tree, stored
in region top. The runtime system will therefore schedule print only when the process
task and its children tasks have finished modifying the child regions of top. When print
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// Region allocation
rid_t sys_ralloc(rid_t parent, int lvl);
void sys_rfree(rid_t r);

// Object allocation
void *sys_alloc(size_t s, rid_t r);
void sys_free(void *ptr);
void sys_realloc(void *old_ptr, size_t

size, rid_t new_r);
void sys_balloc(size_t s, rid_t r,

int num, void **array);

// Task management
#define TYPE_IN_ARG (1 << 0)
#define TYPE_OUT_ARG (1 << 1)
#define TYPE_NOTRANSFER_ARG (1 << 2)
#define TYPE_SAFE_ARG (1 << 3)
#define TYPE_REGION_ARG (1 << 4)

void sys_spawn(int idx, void **args,
int *types, int num_args);

void sys_wait(void **args, int *types,
int num_args);

Figure 3.3: The programming model API

finally runs (lines 35–37), it has read-only access (as defined by the in pragma clause) to
the whole tree and can follow any pointers freely.

Despite being a contrived example, this code highlights some important strengths of our
programming model. Regions allow the programmer to change parts of pointer-based struc-
tures dynamically, e.g., to allocate or free nodes. At the same time, a task can be spawned
by declaring the region as a memory dependency. The runtime system guarantees that all
objects (and sub-regions) in the region will be accessible to the task code when it is exe-
cuted2. This guarantee not only enhances the programming expressiveness, but also allows
the runtime system to optimize for spatial locality by keeping objects in the same region
packed close together. Moreover, using regions to split pointer-based data structures allows
all objects to use plain, machine pointers. In contrast, the few programming models and run-
times that do support pointer-based structures, like UPC [55, 107], resort to “fat” software
pointers, i.e. software identifiers to metadata. Contrary to simple machine pointers, the run-
time system mediates to dereference the fat pointers, which lead to increased overhead per
each dereference.

3.3 Application Programming Interface (API)

Figure 3.3 lists the Application Programming Interface (API) which connects our program-
ming model to a runtime system, such as Myrmics. A programmer may either use this
interface directly to write applications, or employ a compiler such as SCOOP [118]. We
give a description of the interface here; formal semantics and proofs for determinism and
serial equivalence can be found in our previous work [94].

The user allocates a new region with sys_ralloc(). The call returns a unique, non-
zero region ID (of type rid_t), that represents the new region. A region is created under an
existing parent region or the default top-level root region, represented by the special region
ID 0. A level hint (lvl) informs the runtime of how deep the new region is expected to be in
the application region hierarchy, so it can optimize accordingly (more details will be given
later, in section 5.3.3). A region is freed using the sys_rfree() call, which recursively
destroys the region, all objects belonging to it and its children regions.

A new object is allocated by the sys_alloc() system call, returning a pointer to its
base address. The object may belong to any user-created region or the default top-level
root region. Objects are destroyed by the sys_free() call and can also be resized and/or
relocated to other regions by the sys_realloc() call. Since memory allocation calls induce
worker-scheduler communication, we also provide the sys_balloc() call, which allocates

2 In non-coherent or distributed-memory systems by transferring data from producer to consumer CPU cores
(this is necessary for correctness); in cache-coherent, shared-memory systems by prefetching data to the con-
sumer CPU cache (not necessary, but desirable for cache hit rate optimization).
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a number of same-sized objects in bulk and returns a set of pointers. This call minimizes
communication for common cases like the allocation of table rows.

A running task spawns a new task by calling sys_spawn() and specifying an index to
a table of function pointers. Two tables are passed to this call, one containing the actual
task arguments and another describing the dependency modes for them. Each argument
can have read (IN) and/or write (OUT) permissions. For regions, the region ID is passed
as an argument and the REGION bit indicates it is a region. The runtime system must not
perform dependency analysis for arguments that are marked as SAFE. This feature is useful
for passing by-value arguments (e.g. scalar values) to tasks, for objects that already belong
to regions passed to the task, or for cases where compiler static analysis can prove that an
argument is indeed safe to use because of other overlapping dependencies. The NOTRANSFER
bit indicates that although normal dependency analysis semantics apply, the actual data will
not be used by the task, so no data transfer is needed. This optimization can be used in
non-coherent machines to avoid DMAs for tasks whose purpose is to spawn smaller tasks,
but not actually use any objects in a region. Finally, sys_wait() can be used inside a task
that has delegated (parts of) its regions or objects to children tasks and needs to operate
again on them. The arguments and dependency modes arrays are similar to the ones used
by sys_spawn(). The call suspends the task and resumes it when all arguments are again
available locally with the requested permissions3.

3.4 Hierarchical Dependency Analysis

Having introduced the programming model, we show here how the choices that we made
enable a hierarchical dependency analysis process. The 24 snapshots of figure 3.4 show
a small program execution. In the left-hand part of each snapshot we draw the program
state, where with red color (bold) we show the current statement being executed, with black
(solid) the statements that are still active, with gray (dimmed) the statements that we will
execute in the future and with green (strikethrough) the statements that are finished. We use
the notation “t:O” (or “t:R”) to indicate that the program spawns task t that is dependent on
object O (or region R, respectively). With “use O” we indicate that the task reads or writes
the value of object O locally. In the right-hand part of each snapshot we draw the region
tree. Regions are annotated with a counter (number at the top-left corner of every region),
which counts how many of their direct children (i.e., excluding grandchildren and deeper
descendants) have at least one task to execute. Both regions and objects have a task queue
(right of every region, below of every object). A task queue holds running tasks denoted
with “(t)”, waiting tasks denoted with “t”, and becomes a dash “–” when it is empty. When
a task is blocked in a queue temporarily, but in fact is dependent on an object lower in the
region tree, we denote it with “t:O”. The red (thick) arrow shows the region tree traversals
needed for the action in each snapshot.

(a) We assume that this is the initial state of the application program, after all dynamic
memory allocation calls have been made to create two high-level regions (G0 and G1),
three children regions (R0–R2) and six memory objects (A–D, X, Y). All dependency
queues are empty and all region children counters are 0.

(b) The program begins and the first statement spawns task t1 with the memory footprint
of object A. The function main runs at the top-level region (region ∅). The main idea
of the dependency analysis is that the region tree is traversed from the level at which

3 This call is not yet fully operational in Myrmics. As a temporary workaround, we spawn a new task with
the same arguments to perform the rest of the work.
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Figure 3.4: Hierarchical dependency analysis, parts (a)–(h)
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Figure 3.4: Hierarchical dependency analysis, parts (i)–(p)
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Figure 3.4: Hierarchical dependency analysis, parts (q)–(x)
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the task is currently running down to the region or object to which it needs access. If
the path is not blocked by any running task at any level, the task reaches the resource
and gets enqueued at its queue. If a task is in the front of the queues of all objects and
regions to which it needs access (and, in the case of regions, the children counters are
0), then it is ready to run and can be scheduled to a worker core. In this example, t1
reaches object A and begins execution.

(c) The main task continues and a second task, t2, is spawned with access to the region
R1. Again, it reaches R1 without encountering any other task and begins execution.
The task runs at the R1 level and is granted automatic access to all child regions and
objects (in this case D).

(d) The main task spawns task t3, which needs access to object D. The path from ∅ (where
main runs) to D, however, is blocked because t2 is in the queue of R1. Task t3 is
enqueued at the first blocked level (R1 in this case), noting that it actually needs object
D and not the whole R1.

(e) Meanwhile, t2 spawns a child task, t2b, which also needs object D. The path from R1
(where t2 runs) to D is free, so t2b gets D and begins execution. Note the equivalence
to the serial execution: object D is granted first to t2 and all its children, and not t3
which appears later in program order.

(f) Now t2 needs to regain control of D by issuing a wait statement. It is enqueued after
t2b in the queue of D and suspends its execution, without losing the “running” status
in the front of the R1 queue.

(g) Meanwhile, main spawns t4 which needs the whole R0. The task reaches R0, but
cannot get it since the counter reminds us that it has some pending children (in this
case t1 which has A, a part of R0). Task t4 remains enqueued in the front of the R0
queue, but is not ready to run yet.

(h) Main spawns t5 which needs object Y. It has a clear path from ∅ to Y, so it gets the
object and begins running.

(i) Main spawns t6 which needs region G1. It reaches G1, but is not allowed to run since
G1 has a pending child (R2, which has a pending child, Y, where t5 is running).

(j) Main needs object D and gets enqueued at the first blocked level, which is R1. Main
suspends execution at this point.

(k) At this point in time, the maximum parallelism has been reached: no other task can
be spawned and nothing more can be done until one of the running tasks (t1, t2b and
t5) finishes.

(l) Task t1 finishes. When an object or region finishes, the next one in its queue takes
control. If none is there, as in this case, the tree is traversed upwards until the next
non-empty queue is reached. Here, the next in line is t4 which was waiting for the
whole R0 and can now begin to run.

(m) Task t4 spawns t4a, which traverses the path from R0 to A, gets A and runs.

(n) Task t4 spawns t4b, which, similarly, traverses the path from R0 to B, gets B and runs.

(o) Task t4 recurses by spawning itself. We handle same-level recursion by enqueueing
a new task image in front of itself in the queue and not preempting the current one.
Still, the new image cannot begin since R0 has two pending children.
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(p) The old image of t4 finishes. The new one still cannot run because of the two pending
children.

(q) Task t2b finishes and the next in line (t2) is woken up and resumes execution after its
wait statement.

(r) Task t5 finishes. The upwards traversal reaches the next-in-line t6 which was waiting
for region G1 and can now begin running.

(s) Task t2 finishes and is removed from both the D and the R1 queues. Next in line was
t3, which was waiting in the R1 queue but really needed object D. The traversal from
R1 to D is resumed for t3, which reaches D, is in the front of the queue and begins
execution.

(t) Task t4b finishes. Next in line is t4 (second image) for the whole R0, but cannot run
as it still has one more pending child.

(u) Task t3 finishes. Next in line is main, which waited for D blocked in the R1 queue. It
gets down to D and resumes execution after its wait statement.

(v) Task t6 finishes. Nothing more can be woken up from this event, as the path from G1
up to the region tree root does not have any blocked events.

(w) Main finishes. No other event can be found to wake up. Although the main function
of the application exits, the application must terminate only when all pending tasks
complete. This behavior is easy to achieve by employing a children counter also for
region ∅ (not shown in the snapshots).

(x) Task t4a finishes, enabling the second image of the t4 recursion to claim the whole
R0 and begin the t4 code again.

As the example illustrates, this algorithm enables us to discover the parallelism of nested
tasks through local walks in the region tree. If the runtime system distributes the region tree
among multiple CPUs, we expect applications that exhibit hierarchical task-based paral-
lelism can be supported efficiently. Parts of the application can run in isolation, communi-
cating locally with agents of the runtime system that have knowledge of parts of the region
tree. This enhances data locality for the application, as data transfers are localized to nearby
CPU cores. It also allows for a runtime system implementation that exchanges few messages
on non-coherent architectures.





Chapter 4

Hardware Platform

In this chapter we discuss the design, implementation and evaluation of the 520-core FPGA
prototype. We design the hardware platform to model a heterogeneous, non-coherent, single-
chip, manycore processor. Section 4.1 overviews the design of Formic, a scalable, FPGA-
based prototyping board. Section 4.2 describes in detail the hardware architecture for the
FPGA on the Formic board, and how we use multiple Formic boards to model an homoge-
neous, non-coherent, single-chip 512-core processor. Section 4.3 extends our architecture
to use the ARM Versatile Express platforms and explains how we connect two such plat-
forms to model a heterogeneous, non-coherent, single-chip 520-core processor. Section 4.4
discusses our design of a lightweight MPI library for the FPGA prototype, to be used as a
baseline for the evaluation of the Myrmics runtime system performance. Finally, section 4.5
describes our evaluation of the Formic board and the stand-alone FPGA prototype.

Parts of the work presented here have been published in 2012 [74]; we have submitted
a second publication to the Elsevier Journal of Systems Architecture (first revision under
review). We have also written an extensive technical report with the details of the hard-
ware architecture and how it can be used by system programmers [73]. The Formic board
schematics and the 512-core architecture have been open-sourced and are available in a
dedicated website [42].

4.1 The Formic Prototyping Board

Hardware prototyping of a manycore processor is demanding. To model hundreds of CPU
cores in an accurate way, one needs to consider a prototype system with many intercon-
nected boards. As we discussed in section 2.2, existing FPGA prototyping boards have
serious limitations that make them unsuitable for this task. To overcome this problem, we
create Formic, a board specifically designed as a building block for scalable, multi-board
prototyping. Formic is cost-efficient, small, features both SRAM and DRAM memory and
has multiple, conveniently located, SATA-based, off-board connectors to build large systems
easily.

Figure 4.1 presents the Formic board. Its main components are a Xilinx Spartan-6
LX150T FPGA, three Cypress 9-Mbit 166-MHz ZBT SRAMs and a single Micron 1-Gbit
400-MHz DDR2 SDRAM chip. Each SRAM is clocked independently by the FPGA, in-
cluding a separate clock feedback path for deskewing, and offers a raw bandwidth of 5.3
Gbps. The DRAM has a peak bandwidth of 12.8 Gbps. We use three SRAMs and only a
single DRAM chip to support our Cache hierarchy target. SRAMs are necessary to faithfully
model consistently fast access times. The in-FPGA BRAMs are very limited and cannot
be used to model adequately large caches. We do not use multiple DRAM chips, because
mesh-based manycore chips usually interface with multiple DRAM controllers at the pe-

27
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(a) The final, assembled board (b) Bare board with location of major components

Figure 4.1: The Formic prototyping board

riphery of the chip. To be used for more general prototypes, multiple Formic boards can
be used to model the chip core (i.e., the CPU cores, caches and network) and a few other,
DRAM-heavy, boards can be connected to the periphery of the Formic boards network to
offer large amounts of main memory. The single DRAM on each Formic board is more
suitable to model a last-level embedded-DRAM (eDRAM) cache, or other types of memory
resources local to the cores, such as 3D-stacked DRAM [98]. It also helps to keep the board
complexity and cost low.

We select the specific Spartan-6 device as an optimal trade-off among its high capacity
(92K 6-input LUTs, 184K flip-flops, 4.8 MBit BRAMs), its high number of high-speed GTP
serial links (8 x 3.0 Gbps) and its low cost (≈$250)1. This represents a 35% increase in LUTs
and 87% savings in cost compared to the XUPV5 Virtex-5 LX110T-1 device (≈$2,000).
We offset the intrinsically lower performance of the Spartan parts by selecting the fastest
Spartan-6 speed grade (-4).

To make Formic suitable for scalable, multi-board prototyping, we design it to be small
in physical dimensions (10×10 cm). The eight FPGA GTP links are accessible through
standard SATA connectors in two groups of four (top and bottom). Half of each group are
in “Host” and half in “Device” connection modes, so that plain (instead of crossover) SATA
cables can interconnect the boards of a system. All needed voltages are generated on board
from a 12 V unregulated input. At the left and right PCB sides we place mirrored power
supply and buffered JTAG chain connectors, so that boards can be connected in chains. The
JTAG chains connectivity is controlled using slide switches. We include a configuration
PROM for the FPGA, so that large systems can boot fast. Twelve DIP switches are used to
identify each board uniquely, allowing for systems with up to 4096 boards. Large passive
coolers are used for the FPGAs, so that bulk fans can cool multiple boards and minimize the
audible noise.

We use only the outermost I/O pins of the FPGA BGA package and we manage to use
only ten PCB layers, which reduces the board cost significantly. The layers are split be-
tween the sensitive GTP link areas and the more noisy digital ones. Fast digital signals (for
SRAMs and the DRAM) are routed only using the internal signal layers, which are coupled
to adjacent ground layers. GTP link pairs are carefully shielded using ground mini-planes.

1 The dollar amounts mentioned here refer to a cost analysis performed ca. 2010 by comparing list prices
for the specific devices at various retailer websites.
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Figure 4.2: Single Formic FPGA top-level block diagram. Light parts represent blocks described
in Verilog. Dark parts indicate usage of Xilinx IP blocks.

Power planes are located near the top for digital parts, to minimize the distance to component
pins, and near the bottom for the GTP areas, to maximize noise protection. The minimum
trace width used throughout the PCB is 5 mils (0.127 mm) and the smallest drilled holes are
0.3 mm. The DRAM and SRAM traces are length-matched according to strict specifications
to operate reliably at the maximum speed.

On-board regulators are employed to generate seven power supplies: 1.23 V for the
FPGA core, 1.8 V for the DRAM, 0.9 V for its address pins termination, 2.5 V for the
SRAMs, two separate 1.20 V for the GTP links (top/bottom FPGA banks) and 3.3 V for
the RS-232 and some regulator bias pins. Two separate, high-quality, differential, 150 MHz
oscillators clock the top and bottom GTP banks; these enable a 3.0 Gbps link operation. The
FPGA receives a third differential clock input of 200 MHz, which feeds the internal PLLs
to generate all needed frequencies for the logic. The board also features twelve LEDs, an
RS-232 port, a generic two-pin connector for slow, tri-stated management buses (e.g. I2C)
as well as a big, red, comforting reset button.

4.2 The 512-core Hardware Architecture

Figure 4.2 shows the block diagram of a single FPGA. There are eight MicroBlaze Slice
(MBS) blocks, each of them featuring a Xilinx MicroBlaze CPU, its private cache hierarchy
and the related network-on-chip interface. Four MBS blocks share a statically partitioned
SRAM for their L2 data storage, so we implement two SRAM controllers (SRAM_CTL)
to handle the multiplexing and the interface to the SRAM chips. Eight serial link con-
trollers (GTP) connect the network-on-chip to other Formic boards. A Board Controller
(BRD_CTL) handles the RS-232 and I2C interfaces and controls all board-wide features.
Just before the Xilinx DRAM controller (DRAM_CTL), a board-level Translation Looka-
side Buffer (TLB) translates globally-virtual addresses to physical. All of these blocks are
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interconnected by a Crossbar (XBAR).

After initial feasibility studies, we map eight CPU cores per Formic FPGA board. To
satisfy our Cache hierarchy constraint, we provide each core with private 4-KB instruction
and 8-KB data L1 caches and an also private, unified 256-KB L2 cache. The L1 caches are
fully implemented using FPGA BRAMs. The L2 caches use FPGA BRAMs for their tags
and the on-board SRAMs for their data. We decide to use the single DRAM chip per board
as a part of a distributed main memory. The reasoning for this decision is multi-fold. Recent
advantages in Through Silicon Vias (TSVs) enable DRAM memory to be connected close
to the processor cores instead of going to an external chip through the processor peripheral
pins [98]. A different trend is to include more and more eDRAM in commercial processors,
like the IBM POWER7 [109], which uses it as a last-level cache. Both approaches try to
reduce latency by making large memory pools available close to the cores. We follow the
same approach and model the 128-MB on-board DRAM as a local memory pool shared by
the eight cores. Software management of the system-wide distributed main memory presents
interesting challenges for architectural support for operating systems and parallel runtime
research.

We support a global address space in hardware. To economize on hardware resources,
we do not support different virtual address spaces per application. We thus limit the soft-
ware to use a single, global, virtual address space (which implies running a single applica-
tion). However, we keep the separation of protected and user mode to facilitate software
debugging. Expertly-written operating or runtime systems can use the privileged mode and
non-trusted application code can run in user mode, using limited resources. A single address
space allows the use of globally-virtual addresses throughout the system. Caches and DMA
engines operate using the virtual addresses and thus hardware is simplified. We include a
per-board TLB, which translates the virtual addresses to physical just before the DRAM
access. To perform DMAs between different boards, the software must ensure that proper
mappings exist in the source and destination board TLBs. We do not consider that the single
address space limitation is problematic, as the primary target for the FPGA platform is to
allow the evaluation of the Myrmics runtime system, which runs a single application at a
time.

Each board implements a full network-on-chip, centered around a 22-port crossbar. A
variable number of boards can be interconnected in a 3D-mesh2 using the GTP links, grow-
ing the system as required. We support inter-core communication through multiple mech-
anisms. Each core is equipped with its own DMA engine that can explicitly address any
other core or DRAM in the system. All DMA address arguments are augmented by a board
ID, which identifies every board through its X/Y/Z position in the 3D-mesh, and a core ID
which identifies the intra-board location. Cache-to-cache DMAs maintain the coherency
between the two involved cores, as detailed in the MNI block description in the next sec-
tion. Cache-to-DRAM and DRAM-to-DRAM DMAs are also supported to enable cache
flushing and offload memory region copying from the CPUs. We provide one mailbox per
core that can receive messages from the network. Last, we include hardware primitives for
synchronization.

2 We prefer a 3D-mesh to a 2D-mesh or a hypercube topology. Large 2D meshes introduce long delays
among the furthest nodes, unless they are circularly connected (2D-torus); however, the design complexity
grows a lot to avoid deadlocks. Quantitative analysis by Intel concludes that 3D-mesh networks-on-chip may
become attractive candidates for a very large number of cores [57]. Last, for practical reasons, a 3D-mesh of
boards needs the least physical space and the network cable organization is easy to connect and to debug.
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Figure 4.3: Internals of the MicroBlaze Slice (MBS) block. Light parts represent blocks described
in Verilog. Dark parts indicate usage of Xilinx IP blocks.

4.2.1 MicroBlaze Slice

To choose the CPU for our prototype, we first evaluated the popular Leon3 [1] and Open-
RISC [85] soft-core CPUs. Both of them need approximately 3–4K LUTs without including
a floating point unit. We decided instead to use the Xilinx MicroBlaze CPU [116] and con-
figure it in its area-optimized, 3-stage pipeline version. Including a single-precision FPU
and stripped of its native caches and MMU unit, MicroBlaze approximately needs 2,200
LUTs, which satisfies our CPU core target with a small area footprint.

Figure 4.3 shows the MBS block diagram, where the MicroBlaze is located. The CPU
has two 32-bit interfaces, one for the instruction and one for the data accesses. Both are
fed into an Address Region Table (ART) block. ART is programmed by software to specify
five regions on the 32-bit global virtual address space, each of them indicating permission
(read-only, execute), privilege (user/privileged mode) and cacheability bits. One of the five
regions is dedicated to map the location of the CPU peripheral registers.

After permission checking, instruction accesses are cached by a 4-KB, two-way set as-
sociative L1 cache (IL1). Data accesses are cached by an 8-KB, two-way set associative,
write-through, write-no-allocate L1 cache (DL1). We choose a write-through behavior to al-
ways keep the L2 cache up-to-date with (but not necessarily inclusive of) the DL1 contents.
The design is simplified in this way; the private L1 and L2 caches are kept coherent using a
simple invalidation interface, which is used whenever an incoming cache line from a DMA
in L2 arrives. Both instruction and data L1 caches use 32-B cache lines.

L1 misses end up in the L2 cache (L2C), which is a 256-KB, eight-way set associative,
write-back, read/write-allocate cache that uses 64-B cache lines. This cache is also private
to the MBS, but four MBS blocks share a common SRAM for their L2 data. The SRAM
controller statically partitions an 1-MB external SRAM to four 256-KB private regions. The
L2 tags are stored in BRAMs. L2C implements a full-LRU replacement policy.

TheMBS Network Interface (MNI) block handles the communication with the network-
on-chip. L2C can initiateMisses, for fetching cache lines from the local DRAM, andWrite-
backs for cache lines that it evicts to the local DRAM. Our system supports DMAs from and
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to explicitly named MBS blocks (identified by their core IDs). To implement these DMAs
efficiently, each MNI has a local DMA engine that operates at cache-line granularity. For
DMAs that have an MBS-local source address, MNI checks the L2C whether each cache
line is present; this operation is called an L2C Read request. If L2C has the line, it provides
its data to MNI and a packet is dispatched to the destination. If not, MNI generates a packet
to the local DRAM to read the cache line and forward it directly to the destination. L2C
Write requests are performed at the receiving ends of DMAs, where an incoming cache line
from the network is written into L2C if there is adequate space. If the L2C replacement
policy rejects it, MNI forwards the line to the local DRAM. In this way, after the software
completes a DMA to a specific MBS destination node, it is guaranteed that its CPU will
either find all data lines hit in its private L2 cache, or miss and fetch them from the local
DRAM. We impose the limitation of all DMA addresses and sizes to be cache-line aligned
(64-B) to keep the hardware implementation simple3.

CPU peripheral register accesses are handled as normal misses up to MNI, but are then
forwarded to the Control (CTL) block, which keeps 38 memory-mapped registers and con-
trols appropriately all MBS blocks. Handling register accesses by passing through DL1,
L2C and MNI seems inefficient at first glance. As will be explained in section 4.2.6, our
clocking techniques hide most of the extra latency, so this method is efficient enough and
allows for a much simpler datapath. The CTL block features an interrupt controller, which
implements 8 maskable and 5 non-maskable interrupts, a private timer and 13 performance
counters that count events of interest such as L1/L2 hits, misses and network packets. A trace
mechanism records data addresses that cause L2 misses (delinquent loads/stores) and passes
them to the board controller for packing and storing them in defined regions in DRAM.

The Counter and Mailbox (CMX) block keeps 128 hardware counters that can be used
to track the progress of ongoing DMA operations or to implement generic synchroniza-
tion mechanisms [63]. The counters can be polled by the CPU, send an interrupt and/or
send notification packets to other, local or remote, counters when the programmed number
of acknowledgement packets has been received. CMX also implements a 4-KB incoming
mailbox, which can be written from the network and read by the CPU. A separate, single-
word mail slot is provided as well to facilitate remote register reads without engaging the
main mailbox. The CPU can block on both the mailbox and the mail slot to support waiting-
for-event behaviors without polling.

4.2.2 Network-on-chip

We implement a packet-based network-on-chip, centered around a 22-port crossbar switch
inside each FPGA. The network has three separate Virtual Circuits (VCs) to avoid protocol
deadlocks. The lowest VC is reserved for request packets, the middle for responses and
the highest for acknowledgements. All network parts perform flow control for completely
lossless transmissions. The network datapath is 16-bit wide to keep the FPGA LUT count
at a minimum.

Figure 4.4 shows the packet format. All packets have a fixed 7-word header and a
variable-sized payload up to 32 words (64 bytes). An 8-bit header Opcode field differenti-
ates between write and read packets and provides additional control information. A write
packet writes a variable-sized payload to the destination address. If an acknowledgement is
requested, the endpoint responds with a new write packet at the highest VC, which is sent
to the acknowledgement address and has as a payload the number of bytes that were suc-
cessfully written. A read packet requests a number of bytes to be read from the destination

3 The general case presents a number of complexities. Apart from the area overhead, a number of corner
cases arise when arguing what is the expected state of a partially written cache line from multiple sources.
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Figure 4.4: Network packet format: (a) a write packet writes the payload contents to the destination
address, (b) a read packet is sent to the destination address to request a read; the reply is sent to the
source address. In both packet formats, if an acknowledgement address is specified, acknowledge-
ment packet(s) will be sent there when the final write(s) happen.

and returned using write packets back to the source address. The acknowledgement address
is passed unchanged to these write packets, so the source recipient can acknowledge when
the write packets arrive. Writes are always segmented at the cache-line granularity of 64 B.
A single read packet can request a read for up to 1 MB, which will be handled by the desti-
nation DMA engine at a cache line granularity: one response write packet will be generated
for each cache line.

Figure 4.5 shows an abstract view of the crossbar block diagram. The crossbar is sched-
uled in a distributed way, using 22 input and 22 output arbiters that arbitrate the switching
fabric with a round-robin policy and a request-grant-accept protocol. Each input arbiter de-
codes the packet destination board and core ID and routes it to the appropriate MBS node,
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Figure 4.5: Crossbar block diagram

GTP node, local board controller or one of the TLB ports. A single core ID is used for the
“DRAM destination”. Each input arbiter selects one of the five TLB ports using a round-
robin policy when a packet must be routed to the DRAM destination. If the destination board
is not local, dimension-order routing is used to route the packet first towards the correct X
dimension and then towards the Y and Z ones. When all queues become full, this prevents
deadlock by disabling circular dependencies.

The crossbar switch uses combined input and output queueing, supported by custom
elastic buffers that can hold six packets per queue per VC. Figure 4.6a shows how a single
BRAM memory block is partitioned among the 3 VCs. We reserve fewer words for VC 0
packets, which is used for acknowledgements, and full words for VCs 1 and 2, which are
used both for data traffic and for request packets. Figure 4.6b shows the block diagram for
the custom elastic buffer block (Crossbar Interface block, or XBI). We use three separate
sets of asynchronous FIFO pointers, one per VC, which support reading and writing from
different clock domains. Three-bit versions of enqueue and dequeue signals (one bit per
VC) select the correct portion of the single BRAM.

4.2.3 TLB/DRAM

Network packets going to the local DRAM pass through the TLB block, which translates
the virtual addresses to physical and accesses the DRAM. To keep the hardware simple, we
support only large pages of 1 MB, which is a common approach for server configurations to
reduce the number of TLB misses. Modern processors often feature hardware TLB walks.
We implement a simple version of this behavior by fitting the full 4,096-entry page table in
BRAMs and avoid TLB misses altogether. TLB errors can still be triggered by the hardware
if the the translation for a page is left deprogrammed or set to “invalid” by the software.
In this case, a special reply network packet is sent back to the originating MBS block and
triggers an exception to the issuing processor.

Figure 4.7 shows the TLB block structure. The DRAM is accessed using the Xilinx
DRAM controller IP block. We use five crossbar ports to match the four DRAM controller
ports, as will be explained in section 4.2.6 below. A round-robin allocation scheme maps
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Figure 4.8: Memory Map of the 512-core system

incoming packets from the crossbar ports to the first available DRAM controller port. This
mechanism is essentially a small 5×4 crossbar, as shown in the figure. The TLB block
also introduces a minimum, timestamp-based programmable delay to slow down memory
accesses in order to model arbitrarily large main memory delays. We carefully implement
this mechanism to increase the latency of the operations as required, but maintain the full
DRAM throughput.

To avoid confusing the reader later on, we note here that the Myrmics runtime system
currently does not use the capabilities of the TLB block. Myrmics considers all addresses to
be physical. The TLB block operates in bypass mode, translating linearly the first 128 1-MB
virtual pages to the same physical pages. Virtual memory support in Myrmics is proposed
as future work.

4.2.4 GTP Serial Links

We instantiate eight Xilinx GTP transceiver IP blocks as the physical layer of communication
among Formic boards4. Each GTP transceiver offers a bandwidth of 2.4 Gbps after the
8B/10B encoding. Around the Xilinx GTP transceiver blocks we implement FIFO-based
interfaces that connect the links to our network-on-chip. Our logic handles board-to-board,
credit-based flow control by automatically transmitting and receiving credit packets among
data packets. We implement a hardware protocol to probe if the link on the other end is alive

4 Six links are used for the 3D-mesh (two per X, Y and Z dimension). A seventh one is used for the “W”
dimension for the ARM extension, as described in section 4.3. The eighth link is reserved for future expansions.
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after a system reset. This protocol enables Formic boards to boot at any time: the links wait
until the other end is out of the reset mode in order to start sending credit and data packets.

We insert, check and remove CRC-16 headers after all data packets on-the-fly, to guard
for any physical layer errors. Upon a detected error the packet is dropped. No retransmission
is done by the hardware, but errors are sent to the board controller and error counters can be
read by software. Additionally, the software can use the CMX hardware counters to track
the acknowledgements of a DMA: a dropped packet will lead to an incomplete counter count
and the error will be detected. The software can use a timeout and restart the DMA when
such an error is detected.

4.2.5 Memory Map

Figure 4.8 shows the 512-core prototype memory map. Each of the eight CPUs can perform
local loads and stores in their respective 32-bit spaces, accessing the local DRAM through
their respective private L1 and L2 caches. A single 1-MB page is programmed through the
ARS block to map to the architecturally-visible registers that control the CPU caches, and
access to the network engine, mailbox, counters and other peripherals. The figure shows
these windows at the default address 0xFFF00000, at the top 1 MB of the 32-bit address
space. This address is reprogrammable through the ARS block. The lower-right part of the
figure gives more details on which per-core resources can be accessed in the 1-MB windows.

When a CPU core needs to communicate to the rest of the system, it has to go through
its local network engine and program a message or DMA operation, providing the board
and core ID of the destination. Core IDs 0–7 specify the CPUs on a Formic board. Core ID
12 (0xD) can be used by a CPU to access the board DRAM memory without going through
any cache. Finally, core ID 15 (0xF) maps to the board controller, which provides access
to board-wide peripherals and the TLB through a 1-MB window. This window is fixed
at address 0xFFF00000. The upper-right part of the figure shows more details on which
board-wide resources can be accessed in it.

4.2.6 Maintaining Realistic Bandwidth Relationships

Accurate modeling of multicore architectures in FPGA is challenging, because multicore
chips use very wide datapaths. Figure 4.9 shows the architecture of the Intel SCC [53], a
48-core, non-coherent, homogeneous, single-chip processor. Internally it is organized as a
2D-mesh of 1-GHz 32-bit dual-core nodes. Each node is connected to the mesh through four
links (two links per X and Y dimension). The links operate at 2 GHz DDR and are 128 bits
(16 bytes) wide, providing a bandwidth sixteen times more compared to the processor data
port. Our hardware architecture is analogous to SCC, if one considers that a node is an octo-
core Formic board and 64 nodes are connected on a 3D mesh. In this sense, we also face the
same challenge of building a network that has a much greater bandwidth compared to the
processor port. However, mapping wide datapaths in FPGAs leads to very poor utilization
of resources.

An efficient way to address the problem is to create multiple clock domains with syn-
chronized clock edges and then model the high-bandwidth parts of the design using narrow
datapaths but high clock frequencies. Creating such clocks is feasible in modern FPGAs,
which have abundant PLL and DCM resources. We apply this technique in our architec-
ture of a 3D-mesh of Formic boards. Given that the link bandwidth is 2.4 Gbps5, we use a

5 GTP links are clocked at 150 MHz, offering 3.0 Gbps raw bandwidth which drops to 2.4 Gbps with a
8B/10B encoding.
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(a) Chip-level architecture (left) and block diagram of one node (right). A node contains two Pentium
32-bit CPU cores, a shared Message Passing Buffer (MPB) and a 5-port router.

(b) Micro-architecture of the 5-port, crossbar-based router inside each node, its layout and basic per-
formance characteristics.

Figure 4.9: The Intel SCC [53] chip architecture. SCC is a 48-core research prototype, fabricated
in 45 nm CMOS technology in 2010. It is homogeneous, non-coherent and organized as a 2D-mesh.
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Block Datapath Frequency Peak bandwidth
CPU 32 bits 10 MHz 0.32 Gbps / 32 bits/cc
L1 & L2 caches 32 bits 40 MHz 1.28 Gbps / 128 bits/cc
SRAM controller port 32 bits 160 MHz (1/4 cycles) 1.28 Gbps / 128 bits/cc
MNI 16 bits 80 MHz 1.28 Gbps / 128 bits/cc
Crossbar port 16 bits 160 MHz 2.56 Gbps / 256 bits/cc
GTP link 16 bits 150 MHz (8B/10B enc.) 2.40 Gbps / 240 bits/cc
DRAM controller port 32 bits 100 MHz 3.20 Gbps / 320 bits/cc

Table 4.1: Hardware prototype clock frequencies, datapath width and peak throughput

narrow, 16-bit datapath for the network-on-chip at 160 MHz. To maintain a realistic core-
to-network bandwidth we clock the 32-bit CPUs at only 10 MHz, so that the link bandwidth
is eight times the processor data port bandwidth. We use intermediate clock frequencies and
datapath width for other parts of the design to maximize the mapping efficiency. Table 4.1
shows the choice of datapath widths, clock frequencies and peak block throughput in Gbps
and bits per CPU clock cycle. The caches have four times more bandwidth compared to the
CPU to support simultaneously two misses (instruction and data), and two DMAs (incoming
to and outgoing from the cache). The SRAM controller has four times the cache bandwidth,
so that the four MBS blocks can use it without conflicts. MNI has the same bandwidth as
L2C, but uses a 16-bit datapath to match the narrow crossbar width. The full bandwidth
of the DRAM is utilized using four Xilinx DRAM controller ports at 100 MHz (4 ports ×
100 MHz × 32 bits = 12.8 Gbps), so we use five TLB ports to the crossbar to match it
(5 ports × 160 MHz × 16 bits = 12.8 Gbps).

Although the CPU operating frequency appears to be slow —the 3-stage MicroBlaze
cores can be clocked at much higher frequencies on Spartan-6 FPGAs— the system perfor-
mance still exceeds by far the capacities of software simulation. As we discussed briefly
in section 2.2, software simulation of a 512-core architecture simulates approximately 200
clock cycles per second. Our CPUs are clocked at 10,000,000 clock cycles per second, which
gives a speedup of 50,000 —4 orders of magnitude. Therefore, running non-trivial parallel
software may be infeasible using simulation, but becomes feasible and efficient using our
prototype.

Using multiple clock domains and narrow datapaths, we fit an octo-core design with
a 22-port crossbar on the FPGA, which would be impossible if we used 256-bit datapaths
for the network-on-chip to achieve the bandwidth ratio. The SARC prototype [64] imple-
mentation verifies our claim. SARC fits only four cores on a 35% smaller XUPV5 [117]
Virtex-5 FPGA, using 32-bit datapaths and a 6-port crossbar, without providing any band-
width increase for the network-on-chip (the prototype is not mesh-based). A drawback of
our clocking technique is that the DRAM latency appears to be small to the software: an
L2 miss can be served in only 22 CPU clock cycles, which is too fast. We compensate
for this using the timestamp-based delay mechanism in the TLB, which we described in
section 4.2.3.

All clocks except for the GTP ones originate from the single 200 MHz oscillator. We
choose appropriate clock frequencies which are multiple of one another and use the FPGA
PLLs to generate them with aligned clock edges. This choice makes clock domain crossing
trivial to implement. The GTP links oscillators are fixed at 150 MHz in order to maintain
compatibility to other boards to which we have access6. The GTP clocks are generated by

6 The ARM Versatile Express daughterboard has 150 MHz oscillators. Also, the Xilinx XUPV5 supports 150
MHz GTP links. Last but not least, 150 MHz is the SATA-2 compatible speed, which makes future extensions
with hard disks or solid-state drives possible.
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Figure 4.10: The Formic Spartan-6 FPGA floorplan. We place the eight MBS blocks in two columns
to the left and the right parts of the FPGA (mbs0–mbs7). The 22-port crossbar is in the middle (xbar).
On top of it we place the TLB logic (tlb) and below it the board controller (brd) which also contains
the smaller blocks and peripherals (UART, I2C, Xilinx MDM debugger, boot logic, reset controller).
The two thin slices on the left-hand side are the two SRAM controllers, placed close to the respective
I/O pin banks. The thin slice on the upper right-hand side is the DRAM controller, placed near the
Xilinx MCB controller hard macro. The logic for the eight GTP links is grouped into two physical
blocks (gtp0 and gtp1) and placed near the related GTP hard macros.



4.3. Extension to 520-core Heterogeneous Architecture 41

different oscillators and are synchronized to the rest of the system using asynchronous clock
domain crossing techniques.

4.2.7 Implementation

We implement our hardware architecture and map it on multiple Formic boards. The design
is fully described in Verilog Register-Transfer Level (RTL) code. It is accompanied by a
full-system simulation environment with automatic non-regression testing. The hardware
design is extensively tested and currently in a stable state. All hardware primitives have
been tested in hardware simulation and most of them have been used on the field through
extensive benchmarks that target all major parts of the design.

We use the Cadence Incisive [24] RTL flow for the development, hardware simulation
and the non-regression testing. For the FPGA implementation, we use the Xilinx EDK 12.4
tools [115] with a script-based, floorplanned, hierarchical flow. The FPGA floorplan is
shown in figure 4.10. The full octo-core design uses 75% of the LX150T FPGA and we
compile it in under 1.5 hours on a quad-core 2.3 GHz Intel Xeon. We use various floorplan
densities to facilitate the place and routing: MBS blocks are set at 90–95%, while the 22-port
crossbar is set at only 50% density to allow for the very dense wiring.

Our multi-board experimental setup uses 64 Formic boards in a 3D-mesh configura-
tion (bottom right part of figure 4.11), which implements a 512-core hardware prototype.
The boards are supported by a custom Plexiglas case, which features large, under-voltaged,
standard PC fans to create a soft airflow. All boards are connected in a single JTAG chain
using the Formic buffered JTAG connectors. The Xilinx Microprocessor Debugger (XMD)
tool of the EDK tools can connect, control and debug any of the 512 cores in the system.
The board controller (BRD_CTL block) includes a boot ROM of 8 KB implemented using
BRAMs, where a small image is copied to the board DRAM at system reset. The code is
then executed by the first core of each board —the other seven cores are disabled at boot
and must be woken up through software. For our experiments, we overwrite the DRAM of
a single board using the XMD tool connected to the first active processor. We then restart
it to boot from the new code. The new code copies itself using DMAs to the DRAM of all
other boards, and then resets and wakes up the rest of the system processors.

4.3 Extension to 520-core Heterogeneous Architecture

We extend the 512-core Formic-based hardware prototype to include two ARM Versatile
Express platforms [5]. Each of these platforms contains a motherboard, a daughterboard
with a quad-core ARM Cortex-A9 [4] processor and another daughterboard with a Xilinx
Virtex-5 FPGA. The ARM processor has a cache-coherent interconnect for its four cores
and is connected to the FPGA through an Accelerator Coherency Port (ACP). The ACP
port can be used as a master or as a slave. As a master, each of the four Cortex cores has a
memory-mapped window that translates to accesses on the ACP port. As a slave, incoming
reads or writes are served by the ARM processor coherently. Our full hardware prototype
(figure 4.11) is heterogeneous, with 8 ARM Cortex-A9 cores and 512 Xilinx MicroBlaze
cores —the two ARM Versatile Express platforms are the two boxes in the bottom shelf in
the figure.

The hardware architecture for the ARM daughterboard FPGA reuses blocks from the
Formic FPGA architecture that was presented in section 4.2. Figure 4.12a shows the top-
level diagram of the Virtex-5 ARM daughterboard FPGA. In the left part, we use some ARM
IP blocks to demultiplex the ACP port signals and to interface them to our logic. In the right
part, we develop AXI master and AXI slave wrapper blocks to translate the ACP AXI bus
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Figure 4.11: The 520-core heterogeneous prototype platform. 64 Formic boards are organized in a
4x4x4 Plexiglas cube (bottom right). Two quad-core ARM Versatile Express platforms (bottom shelf)
and a Xilinx XUPV5 board (top shelf, right) are connected to the Formic cube. A PC power supply
unit is augmented with digital and analog amperometers (bottom left) for power measurements. A
microcontroller-based box (top shelf, left) controls power and I2C busses to enable remote system
power-up and reset.

protocol to MNI-compatible interfaces. Four ARM Slice Blocks (ARS) are the equivalent of
the Formic MBS blocks: each ARS is dedicated to a single ARM Cortex-A9 core. The four
ARS blocks and the two on-board SATA connectors are interconnected by a scaled-down 7-
port crossbar. Each ARS block (figure 4.12b) contains the MNI and CMX blocks unchanged
from the MBS version and a scaled-down CTL block. The MNI Read and Write interfaces
(traffic initiated by network-on-chip packets) are handled by the AXI Master block, instead
of the MBS L2C. Respectively, the MNI Miss and Fill interfaces (traffic initiated by the
Cortex core memory-mapped load/store interface) are handled by the AXI Slave block.

The Formic XBAR for the 512-core architecture used six GTP links, two per X, Y and Z
dimension. We add a new dimension, W, and we connect the ARM platforms to the Formic
cube through it, so we can integrate the Cortex cores in any position inside the MicroBlaze
3D mesh, exploring hypercube-like connectivity for the strong cores. We make all ARM
board IDs have a W=1 part and we modify the Formic XBAR to route all packets that have
a W=1 destination towards the seventh GTP link. The ARM FPGA daughterboard has two
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Figure 4.12: Block diagrams for the ARM Versatile Express FPGA daughterboard: (a) shows the
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Figure 4.13: MPI implementation details

GTP links. The Virtex-5 XBAR routes packets that have a W=0 destination to the link that
is closer to the X, Y and Z components of the board ID.

The heterogeneous system boots through the ARM platforms. The software is cross-
compiled for both architectures (ARM and MicroBlaze) and the MicroBlaze ELF file is
embedded as raw data at the end of the ARM ELF file. Cortex processors boots the ARM
ELF file. A single Cortex core is selected to be the boot master, that sends the embed-
ded MicroBlaze code and data over the network to all Formic boards main memories using
DMAs. All MicroBlaze cores are then reset and activated by the boot master Cortex core
using network messages.

In a similar way, we connect a Xilinx XUPV5 [117] board with a Virtex-5 FPGA to the
heterogeneous system (top middle part of figure 4.11). We do not include any MicroBlaze
or other soft processor core on the XUPV5 board, but only use use its video input/output
capabilities for demo purposes. Future work could exploit the board DRAM (which is larger
and more expandable than the Formic boards) as well as its Ethernet and USB ports.
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4.4 MPI library for the Hardware Prototype

We develop a lightweight MPI library for our hardware architecture, which supports a basic
set of commands, including send/receive (blocking and non-blocking), barrier, broadcast,
reduction and all-to-all communication. Our design exploits the underlying architectural
features to derive an efficient MPI implementation.

To transfer a buffer between two cores, a descriptor packet is first transmitted from the
sender to the receiver. The descriptor provides all required information —the MPI tag, the
send buffer address and the buffer size— to the receiver in order to fetch the data from the
send buffer. The descriptor may overflow the mailbox of the receiver in the case of multiple
senders, the descriptor as well as the data from the send buffer are transferred through the
DMA engine. The mailbox is used only for transferring single-word control data between
the cores. On the receiver side, the mailbox dequeueing enables fast polling to identify the
peer that is trying to initiate communication.

This basic protocol is shown in more detail in figure 4.13a. In particular, both the sender
and the receiver have a set of statically allocated descriptors at addresses that are made
known to all cores during system initialization. To start a send operation, the sender fills out
one of its descriptors with the MPI tag, the send buffer address and the buffer size (lower part
of figure 4.13b). Next, it transmits a 32-bit operation word including its rank, the ID of the
filled descriptor and the ID of a hardware counter (used to coordinate the operations of the
sender) to the mailbox of the receiver in order to notify the receiver that a new descriptor is
ready (upper part of figure 4.13b). A credit-based mechanism is employed to guarantee that
the mailboxes are not overflown by multiple senders. Every sender is allowed to send an
operation word only if credits for the receiver rank are available. Instead of using the mailbox
for single word communication, a different approach would be to enqueue the descriptor to
the receiver mailbox directly, and to retry if an overflow occurred. We select the former
approach, which behaves fairly and gracefully under heavy loads.

The receiver dequeues the operation word and allocates a local empty descriptor where
the descriptor will be stored initiating a new DMA to fetch it from the sender to its local
memory. Another local hardware counter is used to signal the end of the DMA operation
and to notify the sender automatically by increasing the sender’s hardware counter. The
sender can now free its local descriptor, since it has been transferred to the receiver, and
replenish the mailbox credit. If the send buffer was small enough to fit in the descriptor’s
payload, no more data transfers between the two cores are required; all that the receiver has
to do is to match the sender’s rank and MPI tag with those of of a pending MPI receive
command and then copy the descriptor’s payload to the receive buffer. The behavior we just
described is the eager mode of the implementation. For larger buffers the receiver has to
initiate another DMA in order to transfer the data from the send buffer to the receive buffer
(rendezvous mode). It also uses a local hardware counter to monitor the end of the DMA and
notify the sender once more by increasing its counter. When the receiver counter reaches 0,
the receive operation is complete and the receive buffer can be used for reading. When the
sender counter reaches 0, the send operation is complete and the send buffer can be reused
by the application.

The MPI barrier is implemented with hardware counters using a tree-based protocol
where cores are organized in a tree-like hierarchy [65]. Leaf cores send a notification directly
to their parents by increasing their hardware counters. Intermediate cores monitor their
counters. As soon as all notifications from their children arrive they notify their parents. The
top-level core starts a similar reverse-tree notification process using a second set of counters
to signal the end of the barrier. Cores close in the tree structure are also physically close in
the 3D mesh, in order to keep the notification messages as local as possible. Specifically,
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all cores on each Formic board have a local parent, which guarantees that the notifications
between the leaves and their parent will be kept on the same board.

The MPI broadcast uses the same tree structure as the barrier. However, each parent-
child communication uses the send-receive protocol instead of the counters used by the
barrier. We perform the MPI reduction similarly. Each core receives the values from its
neighbors (children and parent) that do not belong to the destination path of the MPI re-
duction command and sends the single reduced result toward the destination path. For the
operations mentioned so far, we overcome the hardware limitation of 64-B aligned DMAs
by using custom memory allocation calls that always return aligned buffers7. To implement
the all-to-all communication, where the location and displacement of data can be arbitrary,
the MPI library allocates intermediate aligned buffers. The senders of the all-to-all commu-
nication do not use intermediate buffers, since we transfer an aligned superset of the data
to be sent instead of the original data in the send buffers. However, the receivers use the
intermediate aligned buffers for receiving the data from the senders and copying it to the
receive buffers of the MPI command.

4.5 Evaluation

We present a number of measurements in the following pages. The benchmarks in sec-
tions 4.5.2 to 4.5.4 are run multiple times; the initial cache warm-up repetitions are discarded
and measurements are averaged over the remaining repetitions. The L2 miss latency is pro-
grammed to be at 75 clock cycles, which is close to half of the expected off-chip DRAM
latency but is realistic to model embedded DRAM (or localized DRAM though TSVs) close
to the cores. For the MPI benchmarks, the 128-MB DRAM per board is statically parti-
tioned to 16 MB per core by the runtime library. All time measurements are expressed in
CPU clock cycles. We prefer this metric over absolute time in seconds, because it allows for
more objective comparisons to other architectures. The reader can easily expand all mea-
surements to seconds by multiplying by 0.1 μs —the CPUs frequency is 10 MHz. In the
next sections, we present several benchmarks for the Formic-based 512-core prototype, but
we do not include any for the heterogeneous 520-core prototype. The latter is fully validated
and the MPI library is functional for the ARM architecture, including MPI communication
among Cortex and MicroBlaze cores. However, we need additional software to cope with
the heterogeneity (e.g. by load balancing, data distribution), which is not available at the
moment. The main purpose of the MPI library is to provide a solid baseline for the Myr-
mics runtime system evaluation. As the Myrmics application task code runs only on the
MicroBlaze cores, the MPI baseline benchmarks need to run only on the MicroBlaze cores
as well.

4.5.1 Formic Board

We manufactured and assembled 68 Formic boards in total. We successfully verified them
with a self-testing hardware design in the FPGA that exercises simultaneously and contin-
uously the three SRAMs, the DRAM and all eight GTP links at full speed. Pseudo-random
word and packet generators create memory contents and network traffic. Word and packet
validators verify the memory contents and received network packets on the other end. In
total, 66 of the boards were fully functional and 2 presented a single faulty pin at one of the
three SRAM memories. Formic consumes 0.18 A at 12 V (2.16 W) when the FPGA is de-
programmed, 0.72 A (8.64 W) during the self-test (which is the worst case of all the I/O pins

7 In fact, the memory allocator code reuses a stand-alone version of the low-level layer of the Myrmics
memory management subsystem (section 5.3.1).
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Layers / Total Total Off-board
Platform FPGAs Components LUTs BRAM / SRAM / DRAM Links Price
BEE2 5 × Virtex-II 22 / 4000 372K 3 MB / – / 20 GB 180 Gbps $10K
BEE3 4 × Virtex-5 18 / 2500 389K 3.7 MB / – / 64 GB 352 Gbps $18K
XUPV5 1 × Virtex-5 14 / 913 69K 0.7 MB / 1 MB / 256 MB 7.2 Gbps $2K
Formic 1 × Spartan-6 10 / 336 92K 0.6 MB / 3 MB / 128 MB 19.2 Gbps < $1K

Sources: BEE2 and BEE3 PCB features are compared in [34]. The XUPV5 PCB schematics
and bill-of-materials are available online [117]. The BEE2 cost ca. 2005 was $20K [29]. The
most recent price we could find was $10K, cited in a presentation [90]. The cost of $18K for the
BEE3 board is mentioned in [99]. The XUPV5 board costs $2K commercially, but researchers
can purchase it at only $750 [117] if they participate in the University Program.

Table 4.2: Comparing Formic to other hardware prototyping platforms

switching simultaneously) and 0.56 A (6.72 W) when programmed with our non-coherent
prototype design.

Table 4.2 compares Formic to the Berkeley Emulation Engine BEE2 [29] and BEE3 [34]
boards as well as the Xilinx University Program Virtex-5 (XUPV5) board [117]. The Berke-
ley boards use multiple FPGAs per board, offer no SRAM at all, but provide large inter-board
bandwidth. Conversely, the XUPV5 board uses a single FPGA per board, offers a single
1-MB SRAM chip but has limited off-board connectors. Formic is directly comparable to
the XUPV5 board, as it has a single FPGA. Compared to XUPV5, Formic has a 35% bigger
FPGA, three times more SRAM, half as much DRAM and four times more GTP links. We
achieve a much greater SRAM and GTP links ratio per FPGA LUT count, which satisfies
our Cache hierarchy and Connectivity goals. At the same time, Formic is smaller, has four
less PCB layers, one third the total components and features an FPGA with an eight times
cheaper list price. For our small batch of 68 boards, including the prototyping costs as well
as the price of the Spartan-6 components that Xilinx kindly donated to us, we estimate the
total cost to be well under $1,000 per board. Instead, XUPV5 has a commercial price tag of
$2,000. We are convinced that mass production of Formic boards will lead to an even more
pronounced price advantage, which satisfies our Scalability and Cost constraints.

4.5.2 Modeling and Hardware Primitives

The left part of table 4.3 shows the latency in CPU clock cycles for certain simple tasks.
An instruction or data L1 cache hit is served in a single CPU clock cycle. An L1 miss that
hits in the L2 cache is served in four clock cycles. As mentioned in section 4.2.6, an L2
miss is quite fast at 22 cycles, so a timestamp-based programmable delay can be enabled
to model realistic main memory delays. A CPU peripheral register can be accessed in four
clock cycles by the CPU. To perform a full DMA initiation, the software writes six DMA
engine registers and the total operation costs 24 clock cycles. AMessage is a more compact
primitive that sends a single 32-bit word to a destination. This operation needs only three
register accesses and costs 12 clock cycles. Queueing and crossbar delays allow a minimum-
sized packet (16 bytes) to traverse the internal network at three to four clock cycles. Each
board-to-board traversal adds five to six clock cycles per hop. These delays are in line with
state-of-the art, mesh-based [53] and ring-based [61] multicores. Therefore, our approach
to use a variety of clock frequencies and datapath widths has resulted in creating an efficient
prototype that maps well into low-cost FPGAs while maintaining a high degree of realism.

The right part of table 4.3 shows measurements of a few representative complex oper-
ations. A DMA initiation that reads a 32-bit word from the board controller (BRD_CTL
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Primitive Operation Cycles Complex Operation Cycles
L1 hit 1 Board controller read 53
L2 hit 4 Intra-board ping-pong 38
L2 miss (DRAM access) 22 + progr. delay Nearest board ping-pong 49
MBS register access 4 Furthest board ping-pong 131
DMA engine initiation 12 (msg)–24 (DMA) Centralized mailbox barrier 22,993
On-board network traversal 3–4 Centralized counter barrier 19,028
Board-to-board hop 5–6 Hierarchical counter barrier 459

Table 4.3: Latency of operations in CPU clock cycles

Formic subsystem LUTs BRAMs
8 × MBS 54,032 (58%) 168 (63%)
TLB 3,716 (4%) 12 (4%)
BRD_CTL 2,610 (2%) 8 (2%)
8 × GTP 4,510 (5%) 16 (6%)
XBAR 11,836 (12%) – –
SRAM_CTL 304 (0%) – –
DRAM_CTL 468 (0%) – –
Total Formic 78,358 (85%) 205 (76%)

(a) Formic subsystems

MBS sub-block LUTs BRAMs
MicroBlaze 2,194 –
ART 224 –
IL1 124 3
DL1 212 5
L2C 1,150 7
MNI 1,316 1
CMX 385 3
CTL 774 –
XBAR Queues 269 2
Total MBS 6,754 21

(b) MBS sub-blocks

Table 4.4: Hardware area cost in Spartan-6 FPGA, as reported by the XST synthesis tool

block) and returns it to the mail slot costs 53 CPU clock cycles. Two cores that send and
receive single-word messages to each other’s mailboxes need a round-trip time of 38 cycles,
if they are in the same board. This cycle count covers the costs of two Messages, travel
times to the destination and back and one mailbox dequeueing. When the peers are at neigh-
boring boards, the time is increased to 49 cycles. At the worst case, the boards can be nine
hops apart (three per dimension) and the latency is increased to 131 clock cycles. A simple
approach to implement a barrier for all 512 cores in the Formic cube is for each core to
send a message to a “master core” mailbox and the master to reply to all of them through
software. This centralized approach costs 22,993 clock cycles. Replacing the mailbox with
a hardware counter per core, the master core spins on its counter until all others send their
message on it and the counter triggers. This saves the software overhead of dequeueing the
mailbox words in the master core and reduces the latency of the barrier to 19,028 cycles. A
dramatic improvement can be realized if we employ multiple counters to implement twin
barrier enter and wake-up trees fully in hardware [64, 65]. This implementation eliminates
software involvement for all intermediate phases and can realize a barrier in only 459 cycles,
but uses up to 36 hardware counters per core8.

Table 4.4 shows the resources needed in the Spartan-6 FPGA to implement each part of
our hardware architecture9. The majority of the logic is used for the MBS blocks (7% of
the device per MBS) and the crossbar (12%). Inside each MBS, most of the area is spent
on the L2 cache and the Network Interface. These blocks are significantly complex be-

8 18 counters per core for a 9-level barrier-enter tree and a 9-level barrier-exit tree (fan-outs of two). For
rapid, back-to-back barriers, 18 more counters to implement a second version to be used alternatively.

9 Note that these are synthesis estimates. As mentioned in section 4.2.7, the total device is 75% full after
place and route instead of the 85% which is reported by initial synthesis.
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cause they coordinate multi-source traffic from the CPU and the network and implement
coherent DMAs to and from the local cache hierarchy. The Formic design represents a sig-
nificant improvement in mapping efficiency compared to the SARC prototype [64], which
fits four cores with similar-complexity cache hierarchies and a 6-port crossbar in a 35%
smaller FPGA. We achieve this improvement by scaling the clock frequencies and narrow-
ing the network datapaths accordingly, as we described in section 4.2.6. Formic is also
more efficient than the RAMP Blue design [67], a MicroBlaze-based architecture using the
BEE2 boards, that also uses reduced network datapaths, although it is not clear what clock
domains are being used and whether realistic bandwidth ratios are maintained. The authors
fit a much simpler manycore design —twelve cores with direct-mapped L1 caches, no L2
caches, a single shared FPU, no DMA engines and partitioned DRAM access— and an ap-
parently 16-port crossbar into a 24% smaller FPGA with older generation 4-input LUTs, by
implementing the network and crossbar using 8-bit datapaths.

4.5.3 Bare-metal Microbenchmarks

The first bare-metal microbenchmark that we develop measures the throughput of the per-
core DMA engines. A single core fills a software buffer of a certain size and then performs
a large number of back-to-back DMAs to transfer the source buffer to a destination one. The
throughput of various DMA sizes is plotted in figure 4.14a. Three scenarios are shown, from
bottom to top: DMAs from the source core cache to a second core cache on the same board,
DMAs from the source core cache to the DRAM of the same board and DMAs directly from
the board DRAM to another buffer on the same board DRAM. In all cases, for small message
sizes (up to 512 B) the software initiation cost for the DMAs dominates the delay for each
DMA —the data transfer time is less than the software initiation cost. For larger messages
up to 256 KB, we see that the throughput stabilizes. Cache-to-cache transfers perform at
60 bits/cc10, which is 1.8 times more than enough to support outgoing DMAs from the
local CPU (which produces at most 32 bits/cc). Cache-to-DRAM transfers perform slightly
better, 68 bits/cc, because the DRAM destination is round-robin to the five TLB ports and the
network packet processing is amortized. The DRAM-to-DRAM copying peaks significantly
higher at 179 bits/cc, because the local DMA engine only issues minimum-sized read packets
to the TLB. For the largest DMA sizes, cache-to-cache throughput drops, because lines that
do not fit in the destination L2 cache evict others, causing expensive writebacks. The inverse
happens for the cache-to-DRAM case, where lines that are not found locally are requested
from the DRAM to go directly towards the DRAM again.

Figure 4.14b shows a second microbenchmark, where seven cores compete to send a
large number of 1-KB DMAs towards an eighth core, all on the same board. The cores ex-
ecute a pseudo-random busy-wait interval among their DMAs, which is uniformly centered
around a value shown in the X axis of the graph; larger busy-wait intervals result in more
idle network-on-chip states. The Y axis plots the average latency of a single DMA. For
busy-wait intervals of larger than 800 clock cycles, the network is idle enough so that the
DMAs see no contention. For smaller intervals the network becomes more and more loaded
and the average latency increases due to contention.

To evaluate the memory system throughput, we use the STREAM benchmark [80] in its
single-core version. STREAM creates memory arrays and sweeps them doing two memory
operations per iteration (“Copy”), two memory plus one floating-point operation (“Scale”),
three memory plus one floating-point operation (“Add”) or three memory plus two floating-
point operations (“Triad”). Throughput for these combinations is plotted in figure 4.14c for

10 Throughput is expressed in bits per CPU clock cycle to be compliant with our time measurements in clock
cycles. The reader can refer to table 4.1 to find peak datapath throughput numbers per design block.
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Figure 4.14: Bare-metal microbenchmarks [(a)–(c)] and measurements of the MPI library primi-
tives [(d)–(f)]. In (a), we measure the DMA throughput of a single core for the DRAM-to-DRAM
(M→M), Cache-to-DRAM (C→M) and Cache-to-Cache (C→C) scenarios for various DMA sizes.
In (b), 7 cores compete to perform 1-KB DMAs to an eighth core; the average latency is shown vs.
the idle intervals among DMAs. In (c), the STREAM [80] benchmark measures the memory system
throughput for a single core. In (d), we measure the latency of individual MPI library calls. Paren-
thesized numbers denote the number of participating ranks. In (e) and (f) we present the results of
the Sandia MPI Benchmark (SMB) suite [35], which is explained further in the text.

various array sizes. We see that the throughput for small array sizes (less than 700 entries)
is much higher than the rest, because all three arrays fit into the 8-KB L1 cache. A similar
second knee occurs after the 21,500 array entries, where the three arrays cannot fit into the
256-KB L2 cache.

4.5.4 MPI Library Primitives

We create a number of synthetic microbenchmarks to measure the performance of our MPI
library primitives. Figure 4.14d shows their results. Each microbenchmark performs back-
to-back operations with the minimum rendezvous message size (64 B). Blocking sends and
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receives between two cores on the same board complete in approximately 2,700 CPU clock
cycles. Our library outperforms reference, hardware-assisted MPI implementations for high-
end clusters and is well in line with the Intel SCC native message library11. The non-blocking
versions of the send and receive calls can be used at a smaller cost of approximately 650
clock cycles to overlap communication and computation. A 512-core barrier can be com-
pleted efficiently in 5,196 clock cycles. This number is worse than the fully-hardware imple-
mentation of 459 cycles presented in section 4.5.2, but represents a good trade-off that uses
only two hardware counters per core per communicating peer, while it still performs a lot
better than the centralized approach. Broadcast and reduction for 512 cores cost more, 29 K
and 57 K cycles respectively, but are still efficiently implemented hierarchically, compared
to the cost of single send/receive calls.

The Sandia MPI Benchmark (SMB) suite [35] is a well-known collection of MPI bench-
marks that measures the performance under conditions modeled after high-performance
computing applications. We run the Sandia host processor overhead (figure 4.14e) MPI
benchmark to measure the messaging library overhead, defined as the time that the CPU is
engaged in the message transmission or reception, and the application availability, defined
as the fraction of the transfer time that the application is free to perform non-MPI related
work. Results show that the total CPU engagement is almost stable at 1,400–1,600 cycles
for message sizes that are well inside the L2 cache (256 KB); for larger messages, the appli-
cation buffers and code cannot fit into the L2 cache, so the additional cache misses cause the
CPU to be engaged up to 700 cycles more compared to small messages. The CPU is at least
60% available for non-MPI tasks and this grows for bigger message sizes, as the network
transfer time becomes bigger.

We also run the Sandia real-world message rate benchmark (figure 4.14f) for eight cores
on the same board. The benchmark which measures sustained message rate throughput, al-
ways invalidates the caches. It exercises concentrated, multiple communication calls (“All-
start”), overlapped send/receives (“Pair-based”), single-peer communication (“One-way”)
and pre-posted receives (“Pre-post”). The Y axis is in logarithmic scale and shows the sus-
tained rate in messages per 10,000 CPU clock cycles. The maximum rates are in line with
our primitive send/receive latency of 2,700 clock cycles. The message rate degrades grace-
fully as the message size increases for all traffic scenarios.

4.5.5 MPI-based Application Kernels

To test the system and MPI library scalability further, we run a number of parallel, MPI-based
kernels that exhibit varying communication patterns. For all benchmarks in this section, we
select the dataset sizes to be big enough to run at least a few million CPU cycles at their
highest core count.

First we develop a floating-pointMatrixMultiplication benchmark. Cores are a power of
4, organized in a 2D array. Each core keeps a portion of the source A and B and destination
C matrices. In each parallel phase, one core sends its portion of the A array to all other cores
in the core row; one other core sends its portion of the B array to all other cores in the core
column. All cores compute partial sums for their portion of the C array using the received A
and B parts. Figure 4.15a shows the speedups over the serial version for a 384×384 matrix
multiplication. The benchmark scales well, as the increasing number of MPI calls is hidden
under the better fit of the data into the L2 and eventually even the L1 caches.

11 Liu et al. [71] achieve a 6.8 μs latency for eager-mode messages using Infiniband network cards with
RDMA capabilities. Their experimental setup had 2.4-GHz CPU nodes and thus the message delay in their
implementation costs 16,320 CPU clock cycles. Mattson et al. [79] report a round-trip time of 5 μs for the Intel
SCC RCCE messaging library, when two neighboring cores communicate a cache-line-sized message (32 B).
This translates to a 2.5 μs latency per direction, or 2,500 CPU clock cycles for the 1-GHz SCC CPUs.



52 Chapter 4. Hardware Platform

 2

 8

 32

 128

 512

   
 1

   
 2

   
 4

   
 8

  1
6

  3
2

  6
4

12
8

25
6

51
2

S
pe

ed
up

(a) Matrix Multiplication
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(b) Bitonic Sort
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(c) Smith-Waterman
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(d) 2D-FFT
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(e) Jacobi Iteration
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(f) MPI overhead in Jacobi Iteration

Figure 4.15: Results of the MPI-based application kernels. In (a) through (e), the bars show the
speedup of the kernel for a number of cores. The black lines show the ideal linear speedup. In
(f), we present how much slower the MPI version of the Jacobi kernel is compared to a bare-metal
implementation. In all figures, X axis measures the number of active MPI cores.

Figure 4.15b presents the results of a Bitonic Sort algorithm. Each core keeps a part
of an unsorted array of integers. After an initial local sort, cores participate in a number
of exchange phases with a butterfly pattern, where they swap their buffers and merge-sort
incoming data with their own. There are logN phases for N participating cores, organized
to implement a parallel sorting network. We run the benchmark to sort 524,288 integers and
find it scales very well, presenting noticeable super-linearity after 32 cores where all buffers
fit into the L2 caches.

Next, we develop a parallel Smith-Waterman pattern-matching algorithm, which exhibits
anti-diagonal wavefront parallelism. Each core keeps a number of rows of the matching
matrix, organized in stripes to increase the wavefront size. The computation is further split
into blocks per stripe. Each core receives a block from the core responsible for the stripe
above it and can then compute one block of its own stripe, which is then communicated
to the core below it. Figure 4.15c shows the speedups for a 4 K×8 K pattern matching,
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(a) Embarrassingly parallel (EP)
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(b) Conjugate gradient method (CG)
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(c) Integer sort (IS)
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(d) Lower-Upper Gauss-Seidel solver (LU)

Figure 4.16: Results of the MPI-based NAS parallel benchmarks. The sets of bars show the bench-
mark speedup for a number of cores. Different bars in a set represent the dataset choice. The black
lines show the ideal linear speedup. X axis measures the number of active MPI cores.

organized in 16-column blocks and 4-row stripes. This problem does not scale linearly: the
parallelism varies with the size of the anti-diagonal. Still, a speedup of 156 is achieved for
the 512-core case.

To test all-to-all communication patterns, we implement a 2D-FFT kernel. Each core
keeps a number of rows of a floating-point 2D matrix. After the FFT of the local rows, all
cores enter a multi-stage exchange phase, where they transpose portions of their local rows
and exchange them in a butterfly pattern with the other cores. After this phase, a second
local FFT takes place and then a final exchange-and-transpose communication phase occurs.
Figure 4.15d shows the results for a 2 K×2 K FFT. The algorithm scales almost linearly,
with only the 512-core case exhibiting larger communication than computation time. Due
to memory limitations we skip the 1- and 2-core runs.

Last, we develop a Jacobi Iteration method kernel, which displays a nearest-neighbor
communication pattern. Each core keeps a number of rows of a floating-point 2D grid. In
a number of steps, each grid element element is averaged with its north, east, south and
west neighbors. The top and bottom rows of the grid portion are exchanged with the nearest
neighboring core, using double buffering. As figure 4.15e shows, the algorithm scales lin-
early for a 1 K×1 K grid size. We also implement a bare-metal version of this benchmark,
by replacing all MPI communication with direct DMAs that the sender performs directly to
the receiver buffers. As expected, the bare-metal version performs slightly better than the
MPI version. In figure 4.15f we plot the relative performance slowdown of the MPI version
compared to the bare-metal one. The MPI overhead grows with the number of cores: the
per-core communication volume remains stable, however the computation time decreases
and thus the communication-to-computation ratio increases. Still, the MPI overhead is at
most 5.2% in the 512-core case. The spike at the 32-core point is a caching artifact: at
this point the double grid buffers are exactly at the cache size (256 KB). Apparently, the
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bare-metal version fits the code entirely in the IL1 and does not pollute the L2C with code,
whereas the MPI version executes a higher code footprint, cannot fit in the IL1 and pollutes
the L2C.

4.5.6 MPI-based NAS Parallel Benchmarks

To verify and evaluate our hardware prototype using bigger, production-level code, we also
port several of the MPI NAS Parallel Benchmarks (NPB) [9] that are widely used to eval-
uate parallel, distributed-memory machines. The benchmarks are derived from computa-
tional fluid dynamics applications and consist of five kernels and three pseudo-applications.
Problem sizes in NPB are predefined and indicated as different classes. 

Our hardware does not support double-precision floating-point operations, so we con-
vert all such variables and related logic in the benchmarks into single-precision arithmetic.
Moreover, the MicroBlaze compiler does not support Fortran, so we pass the Fortran-based
benchmarks through a Fortran-to-C translator. To guard against errors during the aforemen-
tioned porting process, we run the modified benchmarks also on a x86 Linux platform with
OpenMPI [87] and we make sure that the results on our Formic-based hardware match these
on Linux.

Figures 4.16a to 4.16d present the results from the execution of three NPB kernels, Em-
barrassingly Parallel (EP), Conjugate Gradient (CG) and Integer Sort (IS), and one NPB
pseudo-application, Lower-Upper Gauss-Seidel solver (LU), for the S, W and A dataset
classes. Bars missing on high core counts represent test cases that the benchmarks do not
support —they abort with an error message saying the maximum number of cores is violated.
Bars missing on low core counts cannot fit in the 16-MB memory limit per core distributed
by the current runtime library. The benchmarks scale similarly to what Jeon et al. [58] report
for a 32-way AMD SMP. Totoni et al. [105] report a 4.91 speedup for the CG benchmark
(unknown dataset class) on the Intel SCC for 32 cores; we achieve speedups of 6.5 (class S)
to 22.4 (class W) for 32 cores.

We also successfully ran the Data Traffic (DT) benchmark from the NPB version 3.3,
for the S, W and A classes and the three different communication graphs supported by the
benchmark. This benchmark requires a certain number of cores for each combination of
class and communication graph while increasing the number of cores does not affect the
execution time, so we do not include it in the graphs.



Chapter 5

The Myrmics Runtime System

In this chapter we discuss the design, implementation and evaluation of the Myrmics runtime
system. Myrmics implements the programming model that we presented in chapter 3; we
evaluate it on the FPGA prototype that models a heterogeneous, non-coherent, single-chip
520-core processor that we presented in chapter 4.

Section 5.1 discusses some key choices that we make before we start designing Myr-
mics. Section 5.2 presents the low-level layers of the runtime system. Section 5.3 explains
in detail the distributed memory management layer of Myrmics, which is responsible for
object and region allocation and deallocation. Section 5.4 describes the distributed, hierar-
chical dependency analysis algorithms that we use. Section 5.5 describes the distributed,
hierarchical task scheduling of Myrmics. Section 5.6 overviews the trace and statistics col-
lecting software layer. Section 5.7 presents the limited-functionality, but resilient, Myrmics
filesystem for CompactFlash. Finally, section 5.8 details the evaluation of the Myrmics
runtime.

Parts of the work presented here have been published in 2012 [75]; we have submitted a
second publication to the ACM Transactions on Architecture and Code Optimization journal
(under first revision). The Myrmics runtime system has been open-sourced and is available
on a dedicated website [43].

5.1 Design Choices

Core specialization

We agree with the prediction made for manycore processors, that CPUs must specialize for
certain roles [66, 111]. In Myrmics, cores become either schedulers or workers. Sched-
ulers run the main runtime functions, like memory allocation, dependency analysis and task
scheduling. Workers execute the tasks that schedulers instruct them to execute. The per-
core specialization allows for several advantages. It improves cache efficiency, as the data
working set is smaller: a core either executes runtime code and has in its caches runtime
data structures, or executes application code and has in its caches application data struc-
tures. In heterogeneous processors, assigning control-intensive code to stronger cores and
data-intensive code to weaker cores also improves energy efficiency [49] and enables many
more cores to be active when operating in a fixed power budget [25].

Hierarchical organization

Schedulers and workers communicate strictly in a tree-like hierarchy. Workers form the
leaves of the tree and can exchange messages only with their designated parent schedulers.

55
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Mid-level schedulers communicate only with parent or children schedulers. The tree root
is a single top-level scheduler. We choose this setup for three reasons. First, it allows for
fast message passing. When communication is limited to a small number of peers, we can
employ predefined per-peer buffers to push messages safely and to avoid rendezvous-like
round-trips (more details are given in section 5.2). This style of communication also ex-
ploits any structure that may exist in the interconnection network. Second, hierarchical
structures scale well and avoid contention. In a number of steps logarithmic to the total
core count, information flows from schedulers with broader but more abstract knowledge
(in the higher levels) towards schedulers with less but more specific knowledge (in the lower
levels). Third, hierarchy enhances data locality. A small group of workers communicating
with one or few levels of schedulers close to them can spawn tasks and solve a part of the
problem isolated from the rest of the cores and —more importantly— keeping all data close
to the group. This optimization is possible with a hierarchical setup, but impossible with
non-hierarchical distributed data structures, such as distributed hash tables, which would
involve arbitrary cores located anywhere on the chip.

Memory-centric load distribution

A final design choice affects how the schedulers balance the load of allocation, dependency
analysis and scheduling among them. We choose to follow a memory-centric way. Ob-
jects and regions are assigned to the hierarchy of scheduler cores upon creation, depend-
ing on the relationship defined by the user application, level hints from the user as well as
load-balancing criteria (more details in section 5.3.3). Once assigned, they stay on these
schedulers until freed by the application1. Dependency analysis for arguments is performed
by exchanging messages among the schedulers that are responsible for the objects and re-
gions that comprise the memory footprints of a task. This choice has some advantages and
disadvantages. On the positive side, the user can intuitively reason about the application
decomposition by using a hierarchy of regions. Deeper regions are mapped to lower-level
schedulers and tasks spawned to local workers, keeping data close and reducing control
message exchanges to a minimum. On the negative side, high-level schedulers may not be
utilized enough, as the bulk of the work is performed by lower-level ones. As we target
processors with hundreds of cores or more, we consider this to be a fair trade-off between
system-wide application data locality vs. distribution of scheduler load.

5.2 Low-level Layers

Myrmics runs directly on the heterogeneous prototype platform without any underlying op-
erating system or hypervisor. The lowest Myrmics layer is the architecture-specific one,
split into ARM and MicroBlaze parts. The cores boot, initialize and establish communica-
tion links. Small device drivers present a unified, architecture-independent interface to the
higher layers for operations such as cache management, communication and synchronization
primitives, interrupts, timers and serial port I/O.

A kernel toolset layer provides a set of commonly needed utilities for programming the
rest of Myrmics. It consists of a number of functions for common data structures (lists, tries,
hash tables), a small string library, printing functions and a basic math library.

We construct a Network-on-Chip (NoC) layer to implement fast communication among
scheduler and worker cores. The NoC layer provides two primitives, messages and DMA
transfers. Cores exchange messages only with their parent and children cores, as defined

1 We have done some preliminary analysis for object and region migration, but we do not implement these
mechanisms in Myrmics for the moment.
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in a core hierarchy which is set up during the NoC layer initialization. The message size
is fixed, but programmable. We currently use a message size of 64 bytes, which coincides
with a single hardware cache line. We assign a number of per-peer software buffers. A
peer can push messages using one-way hardware DMA primitives. Hardware mailboxes
are used to implement efficient polling for incoming messages on the receiver side. Hard-
ware counters [63, 65] are used to implement a credit system for the software buffers, so
no overflow can occur under any system load. Messages are very efficient and can be pro-
cessed back-to-back on the order of 450–750 clock cycles, depending on core distance and
buffer availability. For core hierarchies with large fan-outs (e.g., very few schedulers with
many workers), we provide a second, slower NoC mode that does not use per-peer buffers,
depends only on hardware mailboxes and employs a potentially lossy protocol with retrans-
missions upon failure. For the slow mode, the per-message cost starts from 2,500 clock
cycles and climbs up, depending on the contention.

The NoC layer also provides software-supervised DMA transfers. Myrmics can start an
arbitrary number of DMAs calling the NoC layer. The NoC layer starts as many as possible,
depending on the hardware DMA engine queue space. For DMA transfers we impose no
peer limitation; DMAs begin from any source core to any destination core. We do not find
it necessary to impose any further limitation, as the hierarchical task scheduling algorithms
already take care to place consumer tasks at the same CPU cores as (or as close as possible
to) the completed, producer tasks. In the cases that this placement is not possible (such as
processor-wide reductions or fork/joins), data have to travel longer distances; we leave these
data movements to the hardware. Hardware DMAs may fail because remote DMA engines
may reject requests if their queues are full —such failures may happen on hot spots from
which multiple cores try to pull data at the same time. The NoC layer provides mechanisms
to monitor DMA progress using hardware counters, restart failed DMAs and notify the upper
software layers for group completions.

5.3 Memory Management

5.3.1 SLAB Allocator

The lowest layer of the Myrmics memory management system is a SLAB allocator. It man-
ages the dynamic allocation and freeing of memory objects of any size organized in slabs,
which are packed groups of same-sized objects.

SLAB allocation is a well-established method [22], widely employed for memory allo-
cation in operating system kernels. Its primary advantages are that it has a simple imple-
mentation —allowing fast, constant-time allocate and free operations— and that it avoids
external fragmentation, because operating system kernels usually allocate a small variety
of object sizes. Typically, an operating system will also benefit from caching objects that
use slabs. For instance, if all allocations and frees of mutexes happen from the same set of
memory addresses, then reinitialization of some fields of a freshly allocated mutex is often
unnecessary.

In the taxonomy of memory allocation policies [59], SLAB allocation belongs to the
simple segregated storage family. To minimize the code and to maximize cache efficiency,
we use the same allocator for runtime system heap management and to implement the ap-
plication calls for object heap management. The Myrmics allocator differs from existing
segregated storage allocators in several ways. First, the Myrmics kernel uses only a few
size classes. Applications in general tend not to use too many classes2; we target high-

2 Johnstone and Wilson [59] measured that for typical applications 90% of all objects allocated were of just
6.12 different sizes, 99% of all objects were of 37.9 sizes, and 99.9% of all objects were of 141 sizes.
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Figure 5.1: The SLAB allocator internal organization

performance applications that tend to have even more disciplined memory requirements.
Therefore, we relax the requirement that size classes must be a power of two and instead we
support as many classes as requested with the restriction that every size must be aligned to
the size of a cache line, which is 64 B in our case. This versatility reduces fragmentation
and leads to better cache utilization. Second, since we target message-passing architectures,
we design the slabs so that their metadata are carefully separated from the data, which in-
creases the efficiency of hardware transfers and facilitates moving whole regions with fewer
operations.

The system uses two configurable sizes for the basic quantities of allocation. The slab
size, set to 4 KB, is the basic unit used internally in the allocator to assign chunks of memory.
The page size, set to 1 MB, represents the basic unit at which different schedulers trade free
address ranges. It is also the basic unit at which schedulers request memory from their parent
schedulers, as will be explained in section 5.3.3. Whenever a memory allocation request
is completed, the requested size is adjusted upwards to a 64-B aligned slot size. Objects
belonging to the same slot size are serviced from the same set of slabs.

To index memory, the allocator uses a custom 8-degree Trie library, which is tuned to
fit into the minimum 64-B slot size. Tries support fast, constant-time searches. We prefer
them over hash tables for their deterministic performance as well as their added abilities to
offer approximate searches and ordered walks. Figure 5.1 shows a simplified block diagram
of the SLAB allocator. We use three different tries: the Used Trie holds an entry for each
full or partial slab that is in use, keyed by the slab starting address. The Partial Trie holds
the head of a linked list for each slot size that is currently active, keyed by the slot size. The
Free Trie holds an entry for each free range of slabs available in the allocator, keyed by the
starting address of the range. We employ a number of performance optimizations, such as (i)
preallocating empty slabs for commonly used slot sizes, (ii) avoiding frequent Trie updates
through lazily returning free slabs and (iii) eliminating referencing of intermediate slabs to
support efficient allocation and freeing of arbitrarily large slot sizes.

The allocator supports multiple slab pools that operate independently using their own
sets of slabs. Moreover, upon creation of each pool, we specify which other pool will be
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used for its metadata. The separation of metadata from data is crucial to support efficient
region-based communication. The “recursion” of slab pool metadata stops at the runtime
kernel slab pool, which handles its own metadata, as we explain below.

Myrmics is a bare-metal runtime with no underlying operating system; it thus has to
provide memory management for its own kernel dynamic memory. We use the same SLAB
allocator for the application and for the runtime kernel heap management, through the use of
separate slab pools. The kernel heap slab pool is an exception, in the sense that its metadata
are kept in the same slab pool along with the heap data under allocation. This combination
is not straightforward. For example, allocating a new 64-B object in the kernel may require
new 64-B trie nodes that are recursively allocated by the same code path into the same
memory space. Specifically, this behavior may run into two problems: (i) where to allocate
the dynamically allocated metadata (e.g., trie nodes) for the kernel heap pool, and (ii) how
to bootstrap the system.

To solve the first problem, we treat the kernel heap slab pool specially, by imposing
additional constraints for preallocating empty slabs. For all object sizes necessary for the
allocator data structures, we ensure that a minimum amount of empty slabs is left after any
allocation is finished. If too few empty slabs are available, we raise a flag, and as soon
as the (possibly recursive) allocation/free requests are served we replenish the empty slabs
from the Free Trie as needed. This procedure guarantees that we can satisfy any kernel slab
pool request solely from the preallocated empty slabs by setting bitmap bits and without
perturbing trie structures, which could require further allocator requests. Thus, we allow
allocator requests to recurse as needed, knowing that they can be fulfilled without further
recursion when they reach the lowest pool.

We bootstrap the kernel heap slab pool by initially assigning the needed number of pre-
allocated empty slabs in a linear fashion. During boot, kernel heap allocations receive ob-
jects from the predefined slabs and the kernel tracks which slots are allocated. To leave
the bootstrap mode, we perform normal allocation calls for all tracked objects, which set
up all needed data structures with new linearly allocated objects. Eventually, this process
converges3 and when all objects are accounted for, the system is bootstrapped and the linear
allocation is abandoned in favor of the normal one.

5.3.2 Local Memory Allocation

The intermediate layer in the Myrmics memory allocator uses the SLAB allocator to support
hierarchical regions that are local to a scheduler instance. It implements the sys_ralloc(),
sys_rfree(), sys_alloc(), sys_free(), sys_realloc() and sys_balloc() calls,
which were described in section 3.3. We globally construct a region tree, such as the one
shown in figure 5.2, based on the relationship of user-allocated regions and objects. When
the application starts, only the default root region exists. A scheduler core handles a part of
the global region tree. This portion includes whole regions and any objects that belong to
them, but not necessarily all of their descendant regions. The latter may belong to another
scheduler (or schedulers) core(s) deeper in the hierarchy.

We use a new slab pool to build each local region when it is created. We dedicate the
equivalent of a separate heap to each region for many reasons. Our programming model
hinges on communicating whole regions rather than individual objects, and the transfer of
regions should therefore be as compact as possible. Packing region objects in dedicated
slabs isolates them from other regions and enables communication on slab-based quantities.
Further, a future design choice of migrating region responsibility among schedulers becomes

3 It converges because kernel objects are smaller than 4 KB: most allocations complete using the empty slabs
and only a few need new slabs that require new trie nodes.
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Figure 5.2: An example of a region tree. Dotted lines show how the region tree can be split among
multiple schedulers.

feasible because different slab pools have carefully separated metadata. Allocating a new
slab pool per region increases fragmentation, because partially filled and preallocated empty
slabs are dedicated for the new region. We consider this trade-off to be acceptable since
many future object allocations in the region will happen quickly and will be compacted with
other region objects, increasing communication efficiency and locality of region objects.

Apart from the creation of a new slab pool and the basic bookkeeping for the part of the
region tree that is local, each scheduler contains four main data structures, which are also
based on the same trie library. The first two are theUsed Ranges and the Free Ranges Tries.
The former tracks which local region uses which ranges of slabs. The latter contains ranges
of slabs that the allocator can give to local slab pools that request more memory. These tries
enable the allocator to determine in constant time which region is responsible for freeing an
arbitrary pointer or which is the nearest set of free slabs to give to a slab pool under pressure,
in order to keep region addresses as compact as possible.

For similar reasons, and using similar code paths, we use two more tries: the Used
Region IDs tracks which region IDs are handled locally and the Free Region IDs contains
the IDs that can be assigned to new regions. These tries enable quick translation of the
globally unique, programmer-visible region IDs to the slab pools and region data structures,
which are internal to each scheduler.

We use an adaptive mechanism that is based on watermarks to control the limit of exter-
nal fragmentation. Initially, when the allocator is not under memory pressure, the number
of slabs that populate a new region’s free pool is set to the high watermark. If and when
many regions are requested by the application, the allocator reclaims increasing numbers
of free slabs from the regions that have free memory above the low watermark. These are
then used for the new regions. This process stops when all local regions have free memory
equal to the low watermark, at which point the scheduler will communicate with its parent
to request more pages. This policy reduces communication and balances increased locality
of region objects with increased fragmentation.

The local region layer adds a single trie lookup to most common-case operations for
allocating and freeing objects. We consult the Used Ranges or Used Region IDs Tries to
translate the pointer or region ID of the programming model API to a slab pool.

To allocate a new region, when the local scheduler has enough memory and region IDs,
it takes a new region ID from the Free Region IDs Trie and a range of slabs from the Free
Ranges Trie. We create a new slab pool, initializing all related structures described in sec-



5.3. Memory Management 61

Level 2

schedulers

(Level 3: workers)

Level 0

scheduler

Level 1

schedulers

20

13121110

00

21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Figure 5.3: Organization of three scheduler levels, with a 4→1 scheduler-to-scheduler ratio. As-
suming a 8→1 scheduler-to-worker ratio, each level 2 scheduler owns eight workers (not shown).

tion 5.3.1. In the case of increasing memory pressure between the high and low watermarks,
local regions are visited —starting from the one last visited— possibly to trim free slabs. If
we have already performed this process and still need more memory, we use inter-scheduler
communication to request more memory.

Freeing a single region is fast and usually independent of the number of allocated objects.
We destroy the region slab pool by discarding its data structures altogether and returning all
used and free slab ranges to the scheduler Free Ranges Trie. This requires constant-time
operations, independent of the number of objects contained in the slabs. However, there
can be extreme cases where fragmentation of used ranges can lead to more operations, e.g.
when many objects are freed by the application, which lead to a number of slabs above some
programmable thresholds to be freed, which lead to the breakup of range entries in the trie.
In such cases, freeing a single region requires handling all such fragmented ranges. The
programming model also specifies that if the region has children regions, all of them are
also destroyed. Thus, the complexity of hierarchical region freeing grows linearly with the
number of child regions, which is application-specific4.

Transferring regions adds a new intra-scheduler operation on top of those required by the
programming model API. Region packing accumulates a list of starting addresses and sizes
that correspond to the memory usage of a region. The list encompasses all region objects as
well as all child region objects. For each region involved, all slabs in the pool that are full
or partially full are traversed in order5 and a list is built by coalescing adjacent slabs on the
fly, further increasing communication efficiency.

5.3.3 Distributed Allocation

A single scheduler can service a limited number of requests from workers efficiently. As
memory allocation calls involve scheduler-worker communication, we must keep the latency
of these operations low. The memory allocation system must be able to scale to a high
number of schedulers, the number and organization of which depends on the total number
of CPU cores on the processor and their capabilities.

We organize the multiple schedulers in a tree hierarchy, as figure 5.3 shows. The tree has
one top-level scheduler with a number (equal to the scheduler-to-scheduler ratio) of next-
level children. The scheduler tree descends for some levels. We attach multiple worker

4 We do not expect a big number of child regions; our benchmarks use at most three levels.
5 The Used Trie enables fast traversals by remembering the last visited node and following the appropriate

turns on the trees to find the next one.
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cores (equal to the scheduler-to-worker ratio) to each lowest-level scheduler. Processor
cores communicate directly only with cores that are one level above or below them in the
hierarchy. This restriction targets future mesh-based, manycore hardware messaging layers
by localizing communication patterns. It also helps to expose hardware locality constraints
to the software architecture. The tree hierarchy is configurable at system boot. A typical
configuration assigns the strong processor cores to be schedulers and the weak cores to be
workers. The scheduler-to-scheduler and scheduler-to-worker ratios are determined based
on the number of available processor cores.

We divide work between schedulers based on the regions that are local to them. Fig-
ure 5.2 shows an example of how we can split the global region tree among four schedulers.
The mechanisms that we described in section 5.3.2 handle all objects that belong to local
regions. Worker access to objects and regions that are not local to the lowest-level scheduler
incurs inter-scheduler communication so that the scheduler that is responsible for the region
can handle the request. In Myrmics, the task scheduling layer attempts to minimize this cost:
the workers closest to the schedulers that handle some regions should run the tasks that use
these regions. Another alternative, which we leave for future work, would migrate region
metadata among schedulers in order to balance the load of irregular cases.

The highest layer of the memory allocator is an expandable, generic, asynchronous,
event-based server. If an incoming event refers to a local region, the server processes it
and responds. Otherwise, the server forwards the event to its parent or child schedulers.
Replies from other schedulers are intercepted if they refer to pending actions for which the
local scheduler awaits such a reply. Otherwise, we forward them to the original requesters.
Finally, we support reentrant events with saved local state for more complex situations in
which we handle part of the request locally, or the final response must be assembled from
multiple remote responses.

We assign regions to schedulers using both an optional level hint from the programmer
and load-balancing criteria. The application knows how many levels of regions it will create
(or it can guess, if it is data-dependent), so it can help position the new region at an appropri-
ate level within the region hierarchy, which the runtime translates to a scheduler level. Thus,
we use the hint to estimate the “vertical” positioning of a region on the scheduler hierarchy.
If the user does not supply a level hint, we assign new regions to lower-level schedulers. We
use load balancing to determine the “horizontal” positioning; a non-leaf scheduler that must
assign a new region to one of its children does so by selecting the one with the lowest region
load. Schedulers periodically exchange upstream load information messages, whenever the
previous reported load differs by a configurable threshold. Thus, higher-level schedulers
know the load status of their entire subtrees with a programmable degree of certainty.

The top-level scheduler initially owns all memory and all region IDs. During boot,
middle- and low-level schedulers request chunks of both from their parent schedulers. The
chunk, which represents a high watermark, is proportional to the total number of descen-
dant schedulers. When a scheduler cannot service more requests by the internal balancing
mechanism described in section 5.3.2, or when a local request brings the free pools below a
low watermark, the scheduler requests and receives more memory and/or region IDs from
its parent. Extra memory pages and/or IDs are piggybacked to the last request to bring the
scheduler back to the high watermark level without additional messages. Memory among
schedulers is always traded in whole pages —the page size is currently set to 1 MB in Myr-
mics.

Schedulers know how to route requests for remote regions and objects by extending the
Used Ranges and Used Region IDs Tries of non-leaf schedulers to include which child is
responsible for the next hop. We couple this mechanism tightly to the memory and region
ID assignment described above, so the information is readily available and does not require
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extra communication.
When a worker core issues a memory allocation request that its leaf scheduler cannot

handle, the request must pass through a number of schedulers in the hierarchy before it
reaches the scheduler that can answer it. For each hop, we access the Used Ranges or Used
Region IDs Tries to determine if (part of) the request can be handled locally. If not, but
the tries contain an entry, we forward the request to the appropriate child scheduler, which
is either directly responsible or knows to which of its children to delegate the request. If
the address or region ID is not in the tries, we forward the request to the parent scheduler.
Finally, if the top-level scheduler does not contain a corresponding entry, then we propagate
error handling responses down the tree to indicate a programmer error. Programmer errors
include freeing an invalid pointer and allocating an object in a nonexistent region. Thus,
all non-local memory allocation requests incur a cost that is proportional to the distance to
the responsible scheduler in network hops. This cost is generally low, as we assign tasks to
workers as close to the data as possible. and is logarithmic to the number of total CPUs in
the processor.

The boundary cases of scheduler responsibilities present slightly more complex cases. In
the example of figure 5.2, creating region Mb as a child of region M requires a few additional
messages between the two schedulers: the L1 scheduler cannot fully complete the delega-
tion to a child region for which the region ID is unknown at creation time. Handling this and
similar cases, such as deleting boundary regions or hierarchically packing regions owned by
multiple schedulers, is straightforward, but generally requires more inter-scheduler commu-
nication. We create reentrant, stateful events that track each scheduler’s local progress, until
the operation completes successfully.

5.4 Dependency Analysis

In this section we describe the basic functionality of the Myrmics dependency analysis sub-
system. We find it more enlightening to do this presentation through some examples. Fig-
ure 5.4 presents a more formal description of the algorithm to begin dependency analysis for
a new task. Similarly, figure 5.5 presents the algorithm that runs whenever a task finishes
execution, which may also trigger other dependencies to become active.

The dependency analysis subsystem of Myrmics is based upon the two abstractions used
by the memory management layer, objects and regions. We augment their metadata to in-
clude dependency queues, which are in-order lists of tasks waiting for access. A task is
dependency-free and ready to be scheduled when it is at the head of the dependency queues
for all its arguments; in the case of regions, no children regions should be busy as well, as
we will explain in the next paragraph. Figure 5.6a shows a part of a region tree split among
three schedulers. To illustrate the dependency analysis process, we assume that a parent
task, parent(), is already dependency-free, scheduled and running, having a single argu-
ment which is region A. Task parent() is at the head of A’s dependency queue. We further
assume that it spawns a child task, child(), which has a single argument, object 1. As we
described in section 3.4, the dependency analysis subsystem must traverse the region tree
from the point parent() is enqueued towards the child argument and enqueue child()
there. This path is the red (thick) line A→B→F→1 in the figure. If any dependency queue
is non-empty (or if any region children are busy) during the traversal, the process stops and
child() is enqueued at the end of the local queue instead, indicating its final target is object
1 and not the local region. For example, if another task child2() was at the head of F’s
queue, it would imply that child2() should run on the whole region F before child() is
allowed to run using object 1, which is a part of F. In this case, the traversal will resume
when all previous tasks in the queue are finished.
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1 start_dep(arg list) {
2 separate arguments per scheduler;
3 send messages to other schedulers to execute start_dep();
4 for arg in (my arguments) {
5 route(arg, NULL);
6 }
7 }
8
9 route(arg, parent_list) {

10 while (inside my part of region tree) {
11 walk region tree upwards, adding parents to parent_list;
12 if (parent task found)
13 break;
14 }
15
16 if (we are the responsible scheduler of the parent task) {
17 descend_enqueue(arg, parent_list);
18 }
19 else {
20 send message to parent scheduler to continue routing;
21 }
22 }
23
24 descend_enqueue(arg, parent_list) {
25 for parent in (parent_list in descending order) {
26 if (parent outside my part of region tree) {
27 send message to child scheduler to continue descent;
28 }
29 if (dependency queue not empty) {
30 enqueue here, but remember real dependency is arg
31 }
32 children_counter++;
33 }
34
35 parent_counter++;
36
37 enqueue here;
38
39 if ((at head of queue) or
40 (not at head, arg is read-only and all others ahead inside the
41 queue are also read-only)) {
42 if (we are the responsible scheduler of this task) {
43 mark that this arg is ready;
44 if (no more args to wait)
45 dispatch task to be executed;
46 }
47 else
48 send message towards task responsible scheduler to do the above;
49 }
50 }

Figure 5.4: Algorithm of the dependency analysis subsystem, which runs on the scheduler core
responsible for a task, when the task is created. The algorithm begins with start_dep(), called
with the argument list of the task.
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1 stop_dep(arg list) {
2 separate arguments per scheduler;
3 send messages to other schedulers to execute stop_dep();
4 for arg in (my arguments) {
5 dep_next(arg);
6 }
7 }
8
9 dep_next(arg) {

10 remove arg from the dependency queue;
11
12 if (arg is read-only and there are others active inside the dep queue)
13 return;
14
15 for next in (others inside the dep queue) {
16 if (next was just blocked here)
17 descend_enqueue(next, next->parent_list);
18 if (we are the responsible scheduler of this task) {
19 mark that this arg is ready;
20 if (no more args to wait)
21 dispatch task to be executed;
22 }
23 else
24 send message towards task responsible scheduler to do the above;
25 if (arg is read-write)
26 return;
27 }
28
29 if (arg is region and it has pending children) {
30 return;
31 }
32
33 if (arg->parent is local) {
34 arg->parent->children_counter -= arg->parent->parent_counter;
35 arg->parent->parent_counter = 0;
36
37 dep_next(arg->parent);
38 }
39 else {
40 send message to parent scheduler to do the above;
41 }
42 }

Figure 5.5: Algorithm of the dependency analysis subsystem, which runs on the scheduler core
responsible for a task, whenever a task finishes execution. The algorithm begins with stop_dep(),
called with the argument list of the task.
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Figure 5.6: Dependency analysis implementation details

Section 3.4 introduced the concept of a counter to track if a region has any children
regions or objects with any tasks in their queues. In Myrmics we keep several software
counters per region, whose usage becomes more complicated to cover several implemen-
tation details. Whenever an argument traversal as the one we described passes through a
region, we increment a counter in the region to indicate that one of its children has a pend-
ing task. Figure 5.6b shows an example. At the left-hand part, main() (which owns region
A) spawns t1() to work on region C. Counter “c” (for “child”) is incremented in regions
A and B to note there is one child enqueued for a part of these regions. At the middle part
of the figure, this traversal happens again when main() spawns t2() to work on region D,
and t1() spawns t3() to work on region E. Now the child counter in region B has two
children pending. When a task finishes, the next task waiting in the dependency queue of
each task argument is marked as ready. If the queue is empty, no more tasks are waiting
for this argument and the parent region is notified that one of its children has finished. The
parent region decrements its child counter. When the counter reaches 0, its children have
finished and the next task waiting for the whole region can now proceed. In the right-hand
part of figure 5.6b, t1() and t2() both finish and their queues are empty. Region C child
counter is non-zero, as it has one more child operating on a part of it (t3() on region E), so
nothing happens. The region D child counter is zero, and so parent region B is notified and
decrements its child counter, which is now 1. Nothing more happens as B still waits for one
more child (region C, which is at this time delegated to t3() on region E). Myrmics uses
separate child counters to indicate read/write or read-only dependencies, so we can optimize
for multiple tasks to have access to read-only arguments.

As figure 5.6a shows, the region tree path between a parent and a child task may be split
between two (or even more) levels of schedulers. In such a case, for task spawns or task com-
pletions, we exchange a message between the boundary schedulers with enough information
to continue the operation as needed. Task spawning is the most expensive operation, as it
requires multiple traversals, because the parent task can spawn a child that is arbitrarily deep
in the region hierarchy. In the example, parent() owns region A and spawns child() to
operate on object 1. Section 5.3.3 explained how Myrmics schedulers keep sufficient in-
formation to locate object 1 in O(1) time, if it is in the same scheduler as parent(), or to
indicate which scheduler must be contacted next to go towards the object. However, there
is no information about which exact regions lie in the path from A→1, i.e., B and F in this
case6. To discover the path, we locate the target (possibly by messaging the scheduler where
it resides) and follow parent pointers until we encounter the parent task, keeping track of the
intermediate regions through which we pass. We then begin the downwards traversal, as

6 We specifically choose not to keep such information. which would lead to a non-scalable setup. Each time
a new region or object was created, we would have to update all regions up to the root of the region tree to
include the path towards the task.
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Figure 5.7: Scheduling example

described previously, which may involve additional messaging.
Throughout the dependency analysis, each Myrmics scheduler minimizes the number of

messages among schedulers by considering all task arguments simultaneously: schedulers
group necessary communication and pack information for multiple task arguments into as
few messages as possible. We further analyze these message exchanges between boundary
schedulers to avoid race conditions. Specifically, a hazard exists when a child boundary
region finishes its last task and sends an upward message to notify its parent region that it is
finished, while at the same time a new task passes through the boundary parent region and
sends a message to the child to enqueue it there. We avoid this race by employing “parent”
counters in every region that track how many enqueue requests have been received from
its parent. When the dependency queue becomes empty, the child scheduler includes the
number of completed enqueues from this counter to the message towards its parent scheduler.
The parent compares this number to its child counter and disregards the request to proceed
to the next task if the numbers do not match. Figure 5.6b shows these counters as “p” (for
“parent”). As t2() completes (right-hand part of the figure), the parent counter in region D
has the value 1. Thus, 1 is decremented from region B child counter.

5.5 Task Scheduling

Each task in Myrmics is assigned to one of the schedulers, which is responsible to monitor
it until it completes. When a parent task spawns a new child, the responsible scheduler of
the parent task handles the spawn request. The scheduler inspects the arguments that the
new task requires and has two options: either to create the new task locally, or to delegate
it to one of its child schedulers, if it has any. We decide to delegate a new task to a child
scheduler only when all task arguments are handled by this single child scheduler or its
children. To illustrate this concept, figure 5.7a shows both a region tree and how we split
it among three schedulers. Task t1() operates only on object 1. Let us assume that the
scheduler responsible for t1()’s parent task (not shown in the figure) is S2. Upon the
creation of t1(), S2 observes that its arguments (object 1) are assigned to S0. Thus, the
creation of t1() is delegated to S0. Using this memory-centric criterion to balance the task
scheduling load among schedulers is consistent with our key design choices, as explained
in section 5.1.

After a task is created, the dependency analysis subsystem takes over to guarantee that all
task objects and/or regions are safe to be used according to requested read/write privileges.
When the task is dependency-free, it becomes ready to be scheduled for execution. To make
an informed decision, the scheduler responsible for the task initiates a packing operation for
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all task arguments (section 5.3.2). Packing creates an optimized, coalesced list of address
ranges and sizes of all the regions/objects, grouped by the last producer of each such range.
The last producer of data in Myrmics is defined as the last worker core that had write access
to it. Packing is a process carried out by the memory subsystem, which may be hierarchical
and require communication among other schedulers lower in the hierarchy. In figure 5.7a,
packing region A is required to schedule t9() when it becomes dependency-free. S2 will
exchange messages with S0 and S1 to pack regions C and D respectively.

When packing of all task arguments is complete, the scheduling begins. The total sizes
of task data arguments per last producer are used as weights to create a locality score, L:
scheduling the new task to a core that has produced a large part of the data it needs, yields
a higher locality score. We also compile a load-balancing score, B, based on periodic load
report messages that flow upstream in the core hierarchy. Both L and B are normalized
between 0 and 1024. We combine them to create a total score, T = pL+(100−p)B, where
p is a policy bias percentage that we can use to favor one of the two scores over the other.
We evaluate the policy bias effect in section 5.8.2. The scheduling decision may again be
hierarchical in nature. If the scheduler has child schedulers, its decision refers to scheduling
the task to the part of the core hierarchy managed by one of its scheduling children. The
process repeats until a leaf scheduler decides which of its workers will run the task. The
scheduler responsible for the task dispatches it for execution towards the chosen worker
core. At the same time, if any of the task arguments were requested for write access, it
informs the memory subsystem that from now on the last producer is the chosen worker.

Worker cores run a very small portion of the Myrmics runtime system. They await
messages from their parent schedulers, which dispatch tasks to them to be executed. Workers
implement ready-task queues to keep these task descriptors. Some task arguments may
be local to the worker core —if it was the last producer for them— and others may be
remote. The worker orders a group of DMA transfers for all remaining remote arguments
to be fetched from their last producers. The first task in the ready-task queue is allowed
to begin execution when the DMA group has successfully completed. Figure 5.7 shows an
example. In the left sub-figure, eight tasks t1()–t8() operate on eight different objects.
Each worker w0–w3 has two tasks in its ready queue. In the right sub-figure, after all eight
tasks have finished, task t9() (which will perform a reduction on the whole region A) is
now dependency-free and scheduled to run on worker w0. To do so, w0 performs DMA
transfers for objects 2, 4, 5, 6, 7, 8 from their last producers. Whenever two or more task
descriptors exist in the queue, the worker optimizes the DMA transfers by ordering the DMA
group for the second task to the NoC layer before it starts executing the first task. This
technique allows for efficient double-buffering, as communication for the next task is hidden
by the hardware during computation of the current task. Workers do not interrupt running
tasks. If a task calls the runtime for any reason (e.g., to spawn a new task or to perform
a memory operation), the NoC layer checks for new messages and progress of outstanding
DMA transfers.

5.6 Traces and Statistics

We use the Paraver tool [12] to visualize traces of application runs. Myrmics implements a
mechanism to keep a limited number of per-core traces. Interesting points in scheduler and
worker cores are kept in predefined software buffers along with a timestamp, such as dif-
ferent message type reception by schedulers, replies to these events and worker loop states.
When the application finishes, Myrmics compensates for any hardware clock drifts across
all involved CPUs and converts all timestamps to a common timeframe. All cores in turn
dump their encoded event buffers over the hardware prototype serial port. The remote man-
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agement environment of the prototype uploads it to the host machine, where a script converts
it to appropriate Paraver format. This visualization process proved helpful to optimize both
the runtime system code, as well as to ensure the efficiency of the application benchmarks
that we present in the next section.

Figure 5.8 shows a typical Paraver screenshot from a Myrmics benchmark running on
128 worker and 8 scheduler cores. Each row plots the behavior of a core in time, where
gray (dark) denotes idle behavior and other colors (light) denote activity. The first 128 rows
show the workers, the next 7 the level-1 schedulers and the last row the top-level scheduler.
In the start of time, only worker 0 (top row) is active as it initializes data structures and starts
spawning tasks. The shown benchmark has a fork-join structure, where in the start of each
loop repetition multiple tasks are spawned and in the end of each loop repetition their results
are reduced. The figure shows 8 loop repetitions, seen as vertical “gaps” of idle time where
only a few workers and all the schedulers are busy handling the forks and joins.

Myrmics also gathers various statistics throughout application execution, to help quan-
tify how scheduler and worker cores spend their time. For worker cores, we count how much
time they are in the idle state (no task available to run), in the working state (executing a
task) or in the waiting state (a task calls the runtime and waits for a response). We also count
how many tasks are executed by the worker core, how many messages it has exchanged with
its parent scheduler, how many DMA transfers it has made and what is the total size of these
transfers. For scheduler cores, we count how much time they remain in the idle state (wait-
ing for any message to arrive), in memory-related states (working to respond to memory
allocation, freeing or packing requests), or in processing-related states (working to respond
to dependency-analysis and task scheduling requests). We also track the number of tasks
for which the scheduler core is responsible and how many messages it exchanges with other
schedulers or workers. These statistics are reported when the application finishes.

5.7 Filesystem

Before we design the Myrmics filesystem, we implement the CompactFlash device driver
and perform some initial speed tests, which affect our choices for the filesystem. The im-
plemented driver has the capabilities to reset the CompactFlash controller, to query it about
the currently inserted card, to read and to write individual sectors using LBA addresses and
also to read and to write bursts of any amount of sectors with a single ATA command7.

Measurements of the different burst sizes for ATA write commands are shown in fig-
ure 5.9a. We write quantities from 1 up to 256 sectors (shown in the X axis) using different
burst sizes in the device driver (each line represents a different burst size choice; e.g., “bs=4”
means four 512-byte sectors per burst). The test uses scattered sectors, to exclude any hard-
ware controller optimization. Larger burst sizes are faster, because the data words that are
given to the Flash controller are fewer for the same transfer size.

We chose a 4-KB block size. This choice is reasonable for a typical filesystem, re-
duces the number of indirect blocks and also helps to alleviate some overhead, as the purple
(empty square) line (bs=8) indicates in figure 5.9a. Figure 5.9b shows measurements of the
implemented 4-KB block reads and writes, which also include our implemented CRC-64
checksumming overhead that we discuss below. The read performance is linear: each block
is read in 1.68 msec. Writes introduce some variability. We use combined erase-writes,
where the block is first erased and then written with its new value.

This test uses linearly increasing block numbers, so we can guess from the write speed
that probably the underlying erase block size could be 32 blocks (128 KB) —small “step-

7 The ARM Versatile Express motherboard peripheral does not support DMAs for the CompactFlash.



70 Chapter 5. The Myrmics Runtime System

Figure 5.8: A Paraver trace of the K-Means benchmark on 128 workers (top rows), 7 leaf schedulers
and 1 top-level scheduler (bottom rows).
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Figure 5.9: CompactFlash measurements

like” patterns can be discerned every 32 blocks. We deduce that the controller caches up to
128 KB while erasing the block and then fills it up from the cache: the jump from 32 to 33
and around 64 indicates this behavior, which is strengthened by the fact that 128 Kbytes is
a common size for Flash erase blocks.

Each 4-KB block includes an 8-byte CRC-64 checksum, which is based on the ECMA-
182 standard polynomial [112]. We use a look-up table of 256 entries, which speeds up the
algorithm considerably: each data byte is XORed once with the looked up entry and the
CRC is shifted to the left. The CRC-64 is computed every time a block is written to the
Flash and appended to the last 8 bytes of it. Whenever a block is read from the Flash, the
CRC-64 is computed on the first 4092 bytes of the block and then compared to the last 8
bytes written in it: if the comparison fails, a CRC error is returned.

Table 5.1 shows the structure of the six block types used in the Myrmics filesystem.
The first three (Inode, Indirect and Data) comprise most of the filesystem and store all the
data and metadata. The fourth type (the Delete block) is used to reclaim space and the last
two types (Checkpoint and CheckpointBitmap) are used for checkpointing. We discuss the
block types in more detail in the next paragraphs.

Log and Checkpoints

The Myrmics filesystem is log-structured: its data and metadata are stored in a cyclical log,
excluding the two special Checkpoint blocks that are located in the first and the last block
of the device. Figure 5.10a shows the concept of the cyclical log. The log head is the first
candidate block to be written after a successful Checkpoint operation. Blocks are written in
succession in increasing block numbers. The filesystem uses a threaded log structure; new
blocks are written only in free positions. When old, used blocks are encountered, the log
does not move them. It instead finds the first free block after all used ones and uses it. The
current candidate block to be written after all log entries is called the log tail.

Each block carries its header and log_seq_id fields. We use the header to differentiate
the block types as well as to carry two transaction flags, one for transaction start and one
for transaction end. Whenever blocks are written to the log, an always incrementing by 1
log_seq_id is written to them. Each basic filesystem operation is enclosed in a transaction
group. The log replay uses both the log_seq_id and the transaction flags to work correctly.
The replay considers as valid only the blocks that have their log_seq_id field equal to the cur-
rent in-memory log_seq_id+1. Moreover, blocks are only considered in transaction groups;
if any block fails between a transaction start and a transaction end header, the whole trans-
action is discarded and the log replay terminates.

To know whether a block is free or used, the filesystem maintains a free blocks bitmap
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in memory, using one bit per every device 4-KB block. A second in-memory structure is
the inode map, which maps every filesystem inode to a device block number. These two
structures are transferred periodically to the log during the checkpointing process.

Checkpointing is shown in figure 5.10b. Two Checkpoint blocks exist in the first and
last device blocks. When a new checkpointing process begins, one of them is alternatively
used. During filesystem mount, their log_seq_id entries are used to discover which one of
them is the newest. The Checkpoint block itself contains a pointer to the log head after the
checkpoint and a pointer to the start of the free bitmap list. The first 1,356 entries of the
inode map are contained in the Checkpoint block itself, whereas the rest of them are stored
using Indirect blocks. Each Indirect block holds 1,357 more inode map entries and contains
a pointer to the next Indirect block (the indirect field in the table). The inode map entries
are laid out in order. For the current maximum of 10,000 inodes in the filesystem, 7 Indirect
blocks are used to store the whole inode map.

The CheckpointBitmap blocks that are used for the free bitmap list can hold up to 4,076
bytes, which translates to 32,608 bits for an equal amount of blocks. As with the Indi-
rect blocks, a CheckpointBitmap block contains a next entry that points to the next Check-
pointBitmap block. For a 2 GB CompactFlash card, which has 512,316 blocks, we need
16 CheckpointBitmap blocks to store the whole free list. As with the inode map, the free
bitmap is also laid out in order.

The inode map and the free blocks bitmap are kept in memory in a ready-to-dump “live”
block format. During checkpointing, the inode map indirect blocks are appended to the log,
last to first, and each Indirect updates its indirect field to point to the previously written
block. The same process is performed for the free blocks bitmap. The Checkpoint block
itself is written last and contains the pointers to the first inode map Indirect block and the
first CheckpointBitmap block, along with the current Root Inode of the filesystem (which is
simply the inode for the “/” directory) and the current log tail, written as the checkpoint log
head. If anything fails during the checkpointing process, including failure of the Checkpoint
block writing itself, the mount process will deduce that this checkpointing did not complete;
the other Checkpoint block will have a valid CRC-64 and it will be used instead.

The log replay process is covered later in more detail. We only note here that the log
is replayed only on the free blocks as they are viewed by the latest checkpoint, i.e. its free
bitmap. When anything is appended to the log, a valid free block from the in-memory free
bitmap is used. When the log is replayed, the same valid free block from the checkpoint
free bitmap will be found. The only complication is that if we allow blocks to be freed
just ahead of the log write direction and we use them immediately, the in-checkpoint free
bitmap will not guide us to use the correct block and the replay process may be erroneous.
To avoid this problem, we keep two views of the free bitmap in memory: the real version
and the conservative version. When a block is marked as “free”, we only update the real
version. When a block is marked as “used”, we update both versions. When we search for
the next free block to write to the log, we use the conservative version, which happens to be
consistent with the latest checkpoint’s view of which are the free blocks in the filesystem.
When we take a next checkpoint, we synchronize the in-memory structures (the real view is
copied onto the conservative view) and we dump the real view on the disk.

Files and directories

The Myrmics filesystem follows the UNIX tradition of inodes. As seen in table 5.1, all
metadata for files and directories are held in Inode blocks. An Inode block contains a unique,
reusable inode number for the file or directory —as previously stated, this inode number is
also reversely mapped to the block number of the inode through the inode map structure.
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Figure 5.10: Myrmics filesystem operations

The timestamps carry the creation time, accessed time and modification time. The size field
contains the file size in bytes, in the case of file inodes, or the directory entries, in the case of
directory inodes. The attributes fields contain the user ID, group ID and read-write-execute
POSIX-like flags. The data_blocks fields contain up to 1,345 three-byte pointers to data
blocks. In the case of files, these are Data blocks that contain the actual file data. In the
case of directories, these are Data blocks that contain directory entries (dirents), which map
a 64-B name to an inode number. Finally, Inode blocks have an indirect field, which is used
only for files. It can link to an Indirect block, which stores 1,357 more pointers to Data
blocks. Since every Data block holds up to 4,076 bytes of data, a file of up to 5.23 MB can
be stored on disk using only its Inode block; bigger files need to use Indirect blocks, each
Indirect covering for 5.27 additional MB.

Figure 5.10c shows how a new zero-length file is appended to the log. First, the new
file gets a new inode number from the in-memory inode map and a new file inode is written
to the log. The new file name and its inode number is added to its parent directory direntry
block, which is a regular Data block. Then, the parent directory inode itself is updated,
because the pointer to its modified direntry block is updated —and we also need to update
its size and attributes. Thus, three new blocks were added to the log for this operation.
Two of them (the parent direntry data block and the parent inode) already existed and were
modified. The new block numbers are considered “used” in the free blocks bitmap and the
old block numbers are considered “free” (in the real view). In order for this information
also to be accessible during log replay, most of the block structures shown in table 5.1 also
contain free_block fields, which do exactly that. An Inode can free up to two blocks, an
Indirect block or a Data block can free up to one block. In the example of figure 5.10c, the
modified parent direntry data block specifies the old block that it replaces in its free_block
field and the modified parent inode specifies its own old inode there; these are shown as red
(dimmed) arrows in the figure. The three new blocks are also part of a single transaction:
the first block (the new file inode) specifies a transaction start flag in its header and the last
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block (the modified parent inode) a transaction end flag. The log replay treats these blocks
as atomic; if any of them was not successfully written in the log, none of them affect the
filesystem state and it’s like the new file was never created and its parent directory remains
untouched.

Figure 5.10d shows a more complicated example. It refers to the case of appending data
to a file that is already using a single indirect block. This example represents the worst-
case append scenario, in which part of the new data fills the rest of the partially filled last
data block, a new data block is allocated for the rest of the new data and this new data
block cannot fit in the existing indirect block because it is full; a new indirect block must be
allocated. First, the partially filled old last data block is filled with the first part of the new
data; its free_block pointer is used to free the old last data block. Then, the second part of
the new data is written in a new data block. A new indirect block is allocated that points to
the new last data block. The modified indirect block is written to point to the previous data
block and also to the new indirect node; its free_block pointer frees the previous indirect
node. Finally, the modified file inode (containing the new file size and attributes) is written,
pointing to the modified indirect block and freeing the old file inode block. The transaction
flags in this case include the new four blocks, grouping together the file data and metadata
modification.

Creation of new directories is similar to new files: a new directory inode is created (with
no data blocks for its direntries, meaning it is empty) and its parent directory is updated to
hold the new entry name and inode number.

File and directory deletions are a bit trickier. First, the actual data blocks and file inode
(in the case of files) are deleted. In the case of directories, we support only deletion of
empty directories, so only the directory inode must be deleted. Second, the parent directory
entry is removed. This removal is handled by replacing the deleted direntry with the last
direntry of the directory. If we are deleting the last (or only) direntry, no replacement is
done. The problem in these cases is that the remaining modified blocks do not have enough
free_block fields to hold the —possibly big— number of deleted blocks. Also, there is no
way to indicate that an inode number is now free.

To this purpose, the Delete block was introduced. It contains 1,358 block numbers to
be deleted, along with a single inode number to be deleted. One or more such blocks are
used when a file or directory deletion is performed, depending on how many blocks must be
freed. Figure 5.10e shows an example of a small file deletion, where only two data blocks
were used by the file. First, a Delete block is appended to the log, containing pointers to all
file data blocks and its inode. If the file had indirect nodes, these would be also linked to
one of the multiple Delete blocks. Then, the parent directory is modified to delete the file
entry, replacing it with the last entry in the directory. Here we show the worst case, where
these two are in different direntry data blocks. Both are modified, freeing their old data
blocks at the same time. Finally, the modified inode is written, pointing to the two modified
direntry data blocks and having its size decremented by one. Note that inodes can free up
to two blocks: in the case that we were deleting the last entry of a directory and this was
causing the modified direntry data block to be deleted, the second free block would be used
to indicate this case.

The Delete blocks themselves do not consume space on the filesystem. When they are
written, they are immediately freed in the conservative view of the free blocks bitmap. This
ensures that if the filesystem is not cleanly unmounted the Delete blocks will be encountered
by the log replay, but also makes sure that whenever the next checkpointing happens they are
immediately considered free —which is legal, since a successful Checkpoint makes them
obsolete; the information about the free blocks is now safe in its CheckpointBitmap blocks.
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Log replay

When the filesystem is mounted, both the first and last device blocks are read. A valid
Checkpoint may be found in both of them (normal scenario), or in one of them, if the system
crashed during a Checkpoint block write. In the general case, both of them are read and the
one with the newest log_seq_id is considered. Wrap-around issues of the log_seq_id are
handled by splitting the 32-bit space of log_seq_id entries in four quadrants and considering
that the newest checkpoint is the one that is in the next quadrant of the other.8

The winner checkpoint’s inode map indirect blocks and free bitmap blocks are read.
They are both used to construct an in-memory view of the filesystem exactly when the check-
point was taken. The inode map has block pointers to the correct version of blocks at that
time and the free bitmap specifies which blocks were free at this point. The log tail is set
to be the checkpoint log head, which specifies the position of the first candidate free block.
The system log_seq_id is set to the Checkpoint block log_seq_id+1.

Having restored the checkpoint state, we then check if the filesystem state is clean, i.e.,
if the first free block of the system does not contain a valid log entry. A valid log entry is
defined as a correctly written block (its CRC-64 is intact) that bears a log_seq_id equal to
the system log_seq_id with a transaction start flag set. If no such block is found, it means
that the filesystem is clean. Otherwise, we begin the transaction replaying loop.

For each transaction, we read blocks from the transaction start flag until we encounter
a transaction end flag. All blocks should be intact and have a proper log_seq_id. While
we are reading them, no filesystem state change is done; we only remember all relevant
information from the blocks. The first piece of information gathered from all transaction
blocks is their block number. These blocks should be marked as “used”. Delete blocks are
also remembered to be set “free” after they are marked as used, so they can be free in the real
view but not the conservative view. The second piece of information gathered is all fields
that free blocks. These are also to be set free. The final piece of information is new (or
modified) inodes. We keep both the block number and the inode number, so that the inode
map can be updated accordingly. This update includes deleted inode numbers.

As soon as we reach the transaction end flag without encountering any errors, we apply
all filesystem changes that we recorded and move on to the next transaction. Also, the system
log tail and log_seq_id are advanced to the new position. Any failure during the information
gathering causes us to abandon the whole transaction and to end the log replaying.

Complexity

Table 5.2a shows the analytical estimation of the read and write cost in blocks for each one of
the primitive operations we discussed for the Myrmics filesystem. The variance in numbers
represent worst-to-best case scenarios, depending on the fullness of data structures and/or
usage of Indirect blocks.

Table 5.2b shows how these primitives are combined to provide the Myrmics filesystem
functionality. The sum of the respective primitive cost represent the final cost for each
filesystem operation.

8 To be pedantic, this enforces a checkpointing process at least whenever 230 blocks are written. We also
have the requirement that the log itself cannot wrap around before a checkpoint, because we will run out of
conservative space. We limit the maximum filesystem size to 64 GB, so this is guaranteed by the 224 blocks
constraint.
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Read Write
Primitive blocks blocks
create inode 0 1
delete inode 1 + I D
find last direntry 1 …2 0
find named direntry 1 …E 0
add direntry 0 2
delete direntry 0 1 …3
file seek 2 …I+2 0
file read N + I 0
file append 0 N + I + 1

(a) Block layout primitives cost

Filesystem operation Primitives used
create entity find last direntry

create inode
add direntry

delete entity find named direntry
find last direntry
delete inode
delete direntry

file read file seek
file read

file append file seek
file append

search directory find named direntry
(b) Filesystem operation cost

Table 5.2: Myrmics filesystem complexity. In (a), we show the basic primitives complexity in terms
of how many CompactFlash 4-KB blocks will be read and written. E is the number of direntries in
a directory inode, I is the indirect nodes of a file, N is the amount of data blocks to be read/written
from/to the file, D is the needed Delete blocks for the deleted file. In (b), we show the filesystem
operations. The complexity of an operation is the sum of the respective block primitives.

5.8 Evaluation

5.8.1 Memory Management Subsystem on an MPI Cluster

The Myrmics memory allocator was developed earlier than the rest of the system, during an
internship in Lawrence Livermore National Laboratory (LLNL), at which time the FPGA
prototype was still under construction. To speed up the overall development of Myrmics, we
decided to debug and to verify the memory allocator by itself, using the cluster supercom-
puter facilities available in LLNL. This section describes the evaluation of the stand-alone
Myrmics memory management system.

We create a temporary architecture-specific layer wrapper using processes running on
MPI clusters over a Linux operating system. We devote one MPI process for each worker
and each scheduler core. MPI processes request all memory in advance from the Linux
kernel, through large mmap() calls. This memory is subsequently managed by the memory
allocator by intercepting all glibc allocation calls. We use a single runtime kernel slab pool
for both the allocator and for the MPI library. The runtime kernel slab pool is private per
processor, but we do not otherwise separate address spaces or vary privilege levels.

For the stand-alone memory allocator evaluation, we only use the object and region al-
location/freeing calls from the Myrmics API of figure 3.3 (page 19). As the stand-alone
allocator has no task support, we temporarily extend the API with three more calls. The
sys_send() and sys_recv() calls take a target MPI rank and a variable number of re-
gion IDs or object pointers as arguments. Internally, we translate these arguments to lists
of addresses and sizes (by packing regions and querying pointers) and then wrap around the
respective MPI_Send() and MPI_Recv() calls. Also, a sys_barrier() call performs an
MPI barrier among all worker cores. Applications written in this temporary programming
model are essentially MPI programs (communication is explicitly defined by the applica-
tion), but enjoy the benefits of a global address space with region support.

We develop a number of microbenchmarks as well as two larger, application-quality
benchmarks. We use a number of small test programs to test the allocator and to verify its
correctness. Apart from these, we also present the results on four benchmarks: (i) a non-
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Figure 5.11: Evaluation of the Myrmics memory allocator on a high-performance x86_64 cluster,
using an MPI communication layer over an Infiniband network.
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MPI, single-core, random object allocator that analyzes the fragmentation inside a region
slab pool, (ii) a parallel, region-based, Barnes-Hut N-body simulation application, (iii) a
parallel, region-based, Delaunay triangulation application and (iv) a comparison to Unified
Parallel C for dynamically allocated lists.

All MPI-based measurements are done on the LLNL Atlas cluster. Atlas has 1,152
nodes, each of them equipped with four Dual core AMD Opteron 2.4 GHz processors and 16
GB of main memory. The machines are interconnected with an Infiniband DDR network.

Fragmentation measurements

Our first benchmark, a serial program, allocates and frees objects within a single region. The
application tracks all allocated pointers and randomly either allocates an additional object or
frees a randomly chosen existing object. Figure 5.11a presents an execution for single-sized
192-B objects, with a 60% probability of allocating a new one and 40% probability to free
one. The gray (dotted) line shows the application-requested size of all active objects with
units on the left Y axis. The right Y axis shows the number of full and partial slabs. While
the total number of objects grows, the allocator can compact most objects into full slabs; the
number of partially filled slabs is kept constantly low.

Full slabs are demoted to partial ones whenever a free is performed. Figure 5.11b, in
which we vary the alloc/free probability in phases, shows this issue more clearly. The phases
can be allocation-intensive or free-intensive as indicated by the slope of the application size
curve. When frees are more common, full slabs become partial as they develop “holes” of
192 bytes. When the application returns to an allocation-intensive phase, first all holes in
the partial slabs are discovered and plugged. We observe that this behavior is consistent
with our prime concern to keep a region as packed in full slabs as possible, so that a region
communication operation can access few address/size pairs.

In figure 5.11c, the application runs with the same alloc/free phases, but uses six object
sizes randomly during allocation. Three sizes are aligned to the slab size (64, 1024 and
4096 bytes), and the other three are not (192, 1536 and 50048 bytes). Behavior is similar
to the previous measurements, although the large objects (4096 and 50048 bytes) consume
correspondingly more full slabs and thus the ratio of full to partial slabs is much greater.

Barnes-Hut N-Body simulation

The second benchmark is a 3D N-body simulation application that calculates the movement
of a number of astronomical objects in space as affected by their gravitational forces. To
avoid O(N2) force computations, the Barnes-Hut method approximates clusters of bodies
that are far enough from a given point by equivalent large objects at the clusters’ centers of
mass.

From the many variations of the Barnes-Hut method in the literature, we choose to start
with the Dubinski 1996 approach [36], which is a well-known MPI-based implementation.
This approach dynamically allocates parallel trees, parts of which are transferred among
processors. Thus, it is a prime candidate for region-based memory allocation. Dubinski
employs index-based structures with non-trivial mechanisms to allow for efficient transfer,
pruning and grafting of subtrees over MPI. Our temporary programming model supports
a much more intuitive, pointer-based implementation in which we can easily graft trees
since pointers retain their meaning after data transfers. MPI-based applications commonly
resort to complex, “assembly-like” techniques to marshal data efficiently for transfers. The
Myrmics allocator automates this tedious task.

In the Barnes-Hut benchmark, each worker core builds a local oct-tree in each simulation
step for each body that it owns. We build the tree with each level belonging to a different



80 Chapter 5. The Myrmics Runtime System

memory region. The bounding box of the local bodies is communicated in pairs with all
other workers, which compute based on that portion (i.e., number of levels) of the local
tree that must be sent to the communicating peer. We send the respective regions en masse.
After we fetch and graft the portions of the remote trees, we perform the force simulation
and body movement in isolation. A recursive bisection load-balancing stage in which we
split processors into successively smaller groups follows each simulation step. We cut and
exchange bodies along the longest dimension, balancing the load based on the number of
force calculations that each body performed in the previous iteration. The recursive bisection
load-balancer requires that the number of worker cores is a power of two.

Figure 5.11e presents application scaling on up to 512 worker cores with a single sched-
uler core. For each run, stacked bars show the average time of each worker. Time is spent
either communicating with other workers (“Worker comm”), communicating with the sched-
uler via any other API call (“Sched comm”) or doing local work (“Computation”). The first
bar, marked “Serial” on the X axis, shows a single-core run in which the scheduler and a
single worker are on the same processor. The next bar shows the scheduler and the single
worker on separate processors. This distribution increases the cost of scheduler communi-
cation for the same work from 2% to 8%. For more worker cores, scaling is irregular, which
is a data-dependent feature of the recursive bisection load balancer and the Barnes-Hut cell
opening criterion, which needs more tree levels when any cell dimension exceeds certain
quality constraints. Replacing the cell opening criterion gives much smoother scaling re-
sults, but unfortunately sacrifices simulation accuracy. A second observation concerns the
scheduler communication time. As the application scales, each worker requires fewer allo-
cations for its own tree, but the scheduler services more workers and its latency increases.
This increase becomes a problem as early as in 32 cores, after which it grows worse. Last,
worker communication becomes a bottleneck after 256 cores and overtakes the simulation
time at 512 cores. Thus, the given problem size cannot scale further, which is a known
limitation of this Barnes-Hut algorithm [36].

Figure 5.11f verifies our hypothesis that we can successfully distribute the memory al-
location on multiple schedulers. In these experiments, up to eight workers are dedicated to
a single scheduler. When multiple schedulers are present, they are organized in a two-level
tree with a single top-level scheduler. The parenthesized number in the X axis specifies
the number of leaf schedulers that we use. As expected, the scheduler communication time
drops consistently as the application scales up to 128 workers. After that, the increased work
needed to fetch all remote trees also involves the scheduler to pack all remote regions; this
work appears as scheduler communication time.

Delaunay triangulation

Our third benchmark, a Delaunay triangulation algorithm, creates a set of well-shaped tri-
angles that connect a number of points in a 2D plane. Delaunay triangulation is a popular
research topic with many serial and parallel algorithms. We base our code on the imple-
mentation of the serial Bowyer-Watson algorithm by Arens [3]. The algorithm adds each
new point into the existing triangulation, deletes the triangles around it that violate the given
quality constraints and re-triangulates the convex cavity locally. We use the optimization
that Arens described to walk the neighboring triangles in order to determine the triangles
that build the cavity quickly.

The Bowyer-Watson algorithm is difficult to parallelize, so it is an active research topic;
Linardakis [70] wrote an extensive survey on the subject. State-of-the-art distributed mem-
ory approaches combine algorithms of great complexity, such as graph partitioning and mul-
tiple passes that handle the borders of the decomposition. Understanding and modifying
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Figure 5.12: Parallelization of the Bower-Watson algorithm on four cores. Each core works on four
sub-quadrants, which successive rotations to the right, down, left and up communicate among cores.

these algorithms to use regions effectively is beyond the scope of testing and evaluating the
memory allocator, so we follow a simpler parallelization approach.

Our benchmark uses a grid decomposition to divide the 2D space statically into a number
of regions equal to four times the number of worker cores. Each region holds the triangles
with circumcenters within its bounds. All regions are at the lowest level of a hierarchy with
a degree of four; e.g., the top-level master region owns the whole space and its four children
own one fourth of the space. Initially, after we create all regions, the space is empty except
for placeholder triangles that form the borders. A single core begins the triangulation process
by inserting a small number of points up to a limit. We dynamically allocate all triangles into
the appropriate last-level regions of the hierarchy, according to the triangle centers. When
we have inserted enough points to create an adequate number of triangles, the core delegates
the four quadrants to three other cores and to itself and the algorithm recurses with four times
more workers.

Apart from the first step, in which a single core owns the entire space, points near the
borders of the space owned by a core may need to modify triangles that belong to other cores.
Our algorithm postpones the processing of these points, when three re-triangulation phases
occur. Figure 5.12 shows the concept used with four active cores. Themain triangulation is
in the top-left, where each core owns a quadrant of space comprised of four sub-quadrants,
which are the regions one level below in the region hierarchy. The first re-triangulation
uses communication with other cores and rotates the four sub-quadrants to the right. For
example, a point that needs triangles from regions 3 and 6 would be postponed in the main
triangulation, but handled successfully by the blue core in the first re-triangulation. The
two next re-triangulations rotate the sub-quadrants down and left, while a fourth rotation
brings the sub-quadrants upwards back to their original position, in order to be split to more
workers9.

9 Our algorithm assumes each point can be triangulated within two adjacent sub-quadrants and requires the
number of workers to be a power of four.
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Figure 5.11d shows the results for a triangulation with 5 million points. The dotted line
represents the ideal scaling. We find that the scaling is superlinear due to the increased
caching effects that the division of work has over the approximately 650 MB dataset. This
memory locality effect is also apparent from the difference between the serial run and the one
in which a single worker communicates with a single scheduler. In contrast to the Barnes-
Hut runs, the two-process run is faster despite the MPI communication.

Comparison to Unified Parallel C

With our fourth benchmark, we compare the Myrmics memory allocator to Unified Par-
allel C (UPC) [107]. We use the Berkeley UPC 2.14.0 for these measurements. For the
most faithful comparison possible, we instruct the UPC compiler to use its MPI backend for
interprocess communication.

Each worker core (in Myrmics) or thread (in UPC) begins by dynamically building a
linked list of objects. After all cores are done, an all-to-all communication pattern happens
in multiple stages, separated by barriers. In each stage, a pair of workers exchange their
lists, the receiving core modifies all objects and the lists are swapped back to their original
owners.

In UPC, we allocate the list nodes in the shared address space of each thread using the
upc_alloc() call. When the benchmark is in the exchange phase, each thread fetches a list
node locally with upc_memget() for the node, modifies it and returns it to its owner with
upc_memput(). In Myrmics, each worker creates a region and then allocates all list nodes
inside it, which supports a more efficient exchange. To fetch a remote list, a worker fetches
the whole region. We traverse the list nodes by following the pointers locally. When the
whole list is modified, we send the region back in one operation.

Figure 5.11g shows how the benchmark performs in UPC and Myrmics. For both im-
plementations, we use 16 worker cores/threads; in Myrmics a 17th core runs the scheduler.
All list nodes are 256 B (including the shared pointer to the next node), as dynamic mem-
ory allocation requests for typical applications are on average less than 256 B [16]. The X
axis shows the number of objects that are allocated for each worker list. Myrmics performs
3.7–3.9 times better. Sending or receiving the whole list in one call more than compensates
for communication between the scheduler and worker, which happens for every memory
allocation, and region packing, while we must communicate the list nodes one by one in
UPC.

Figure 5.11h shows that the benchmark scales to more than 16 workers; the time scale
on the Y axis is logarithmic. We keep the list size constant at 30,000 objects per core. We
could not use larger problem sizes due to UPC’s limits on total shared memory available.
When using a single scheduler core, Myrmics outperforms UPC by a factor of 3.8–7.0×.
The scheduler overhead can be further improved when using hierarchical scheduling, which
makes Myrmics 4.6–10.7× faster than UPC.

5.8.2 Myrmics Runtime System on the 520-core Prototype

Intrinsic Overhead

This section describes the evaluation of the full Myrmics runtime system on the completed
520-core FPGA prototype. We discard the temporary sys_barrier(), sys_send() and
sys_recv() calls that we employed in section 5.8.1 and use the full Myrmics API (sec-
tion 3.3) with task-based benchmarks.

We begin the Myrmics evaluation by measuring the inherent overheads of the runtime
system. We consider these measurements to be very useful, as they establish a lower limit on
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Figure 5.13: Myrmics intrinsic overhead measurements

the task sizes that Myrmics can handle as well as how well the system can scale. We create
a synthetic microbenchmark that spawns 1,000 empty tasks with the same one object as an
argument. We use a single scheduler core and a single worker core. The worker first spawns
all tasks and we measure how much time this takes. As there is no other worker in the sys-
tem, it afterwards executes all spawned tasks in order, and we measure how long this takes as
well. Figure 5.13a shows the results, normalized to the time for a single task (we divide the
total times by 1,000). We do this experiment in three modes: with the scheduler and worker
being MicroBlaze cores (left/dark blue bars), with a Cortex-A9 scheduler and a MicroBlaze
worker (middle/red bars) and with both cores being Cortex-A9 (right/green bars). To have
a common time reference, all results are measured in MicroBlaze clock cycles. We observe
that the two CPU flavors have approximately a 7–8× difference in running time. As we
are interested in the study of heterogeneous systems, for the evaluation that follows (except
for the “Deeper Hierarchies” paragraph on page 90) we use the heterogeneous setup. This
microbenchmark shows that to spawn an empty task with one argument, a Myrmics appli-
cation needs 16.2 K cycles and to execute such a task it needs 13.3 K cycles. These times
represent the minimum overhead to execute all appropriate runtime functions on the worker
and scheduler cores, as well as all their communication.

We create another microbenchmark to reproduce and to measure the single-master bot-
tleneck in Myrmics. We use one scheduler core and a variable number of worker cores,
from 1 to 512. We let the main task spawn 512 independent tasks, each one operating on a
different object. The children tasks wait for a programmable delay before they return. Fig-
ure 5.13b shows the results. Axes X and Y represent our configuration (number of workers
and the task size) and axis Z shows the achieved speedup vs. the single-worker configura-
tion. We observe that the achievable speedup for a given number of workers is limited by the
task size. Bigger tasks need scheduler interaction less frequently, which makes the single
scheduler more available to other workers. We can also see that there is a speedup-optimal
number of workers for a given task size (filled circles in the figure). Near the optimal point
the scheduler processes tasks and fills the worker queues fast enough so that the workers are
always busy. Adding more workers degrades performance, because there are more events
for the scheduler to process (task completions) in less time, while new tasks always go to
new, empty workers. We expect that the number of optimal workers is found by dividing
the task size by the intrinsic overhead per task (16.2 K cycles). The experiment verifies this:
e.g. for 1 M task size figure 5.13b shows the optimal point to be 64 workers, near the com-
puted 64.7 (1 M / 16.2 K). A final observation is that for a given number of workers, bigger
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Figure 5.14: Myrmics and MPI strong scaling results. The X axis measures the number of worker
cores (Myrmics) or total cores (MPI). The Y axis measures speedup, normalized to single-worker
performance (higher is better). Scheduler cores for Myrmics are as follows: 1 core for flat schedul-
ing, or 1 top-level scheduler plus L leaf schedulers for hierarchical configurations, where L=2 for
32 workers, L=4 for 64 workers and L=7 for 128, 256 or 512 workers.

tasks always lead to higher speedup —and asymptotically towards the perfect speedup. Note
that all these observations are also valid for hierarchical task spawning, as they refer to the
inherent Myrmics overheads.

Scaling

We continue the Myrmics evaluation by running six benchmarks (five computation kernels
and one application) and study how well they scale. For each benchmark that we describe
below, we compare a baseline MPI implementation to two Myrmics variants: one with a
single scheduler and one with multiple schedulers in a two-level hierarchical configuration.
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Figure 5.15: Myrmics and MPI weak scaling results. The X axis measures the number of worker
cores (Myrmics) or total cores (MPI). The Y axis measures slowdown, normalized to single-worker
performance (lower is better). Scheduler cores forMyrmics are as follows: 1 core for flat scheduling,
or 1 top-level scheduler plus L leaf schedulers for hierarchical configurations, where L=2 for 32
workers, L=4 for 64 workers and L=7 for 128, 256 or 512 workers.

Hierarchical Myrmics benchmarks first use regions to decompose the computation to coarse
tasks, each of which then spawns finer tasks with object arguments. In all MPI and Myrmics
setups we hand-select the assignment of MPI ranks and Myrmics workers/schedulers, so
that they map as well as possible to the physical topology of the 3D hardware platform. To
demonstrate fine-grain task parallelism, we use task sizes down to 1 M clock cycles, which
would translate to 0.25 ms tasks in a typical server. To measure strong scaling, we use a
fixed problem size and split it into variable-sized tasks, according to the available workers.
We decompose the problem to a few (2–3) tasks per worker and per computation step. We
select dataset and task sizes that fulfill these constraints. To measure weak scaling, we use
minimum-sized tasks and grow the problem size according to the available workers. The
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algorithms for the MPI and Myrmics variants are exactly the same. We pick non-trivial,
optimized implementations that double-buffer the data structures, overlap computation with
communication steps and perform broadcasts and reductions using scalable (e.g., tree-like)
mechanisms. For each data point, a Myrmics worker and an MPI core perform the same
amount of computation.

We choose our benchmark kernels to test diverse kinds of parallel communication be-
haviors. The first kernel that we use is Jacobi Iteration. Its scaling results are shown in
figures 5.14a and 5.15a. Jacobi Iteration is a subset of a linear algebra iterative solver. A
table of values with a fixed border is split into multiple workers, where each worker takes
a succession of rows. In each loop repetition, every table element is replaced by the aver-
age of its four neighbors (north, east, south, west). This kernel exhibits a nearest-neighbor
communication pattern, because across loop boundaries each worker receives the top and
bottom rows of its neighbors. The second benchmark kernel is Raytracing (figures 5.14b,
5.15b). A description of a scene geometry (objects, lights, camera) is made available to
all workers. Each worker renders a part of a picture frame, by computing how light rays
from the camera to the frame pixels interact with the scene objects and lights. This ker-
nel is embarrassingly parallel, since apart from loading the scene description each worker
computes its own frame parts in isolation. The third kernel is Bitonic Sort (figures 5.14c,
5.15c). Each worker begins with a part of the data to be sorted, and sorts this part. After-
wards, in a number of stages equal to the squared binary logarithm of the number of cores,
workers exchange data and merge-sort their local buffers with the incoming ones. Bitonic
Sort exhibits butterfly-like communication among workers in the data exchange phase. The
fourth kernel is K-Means Clustering (figures 5.14d, 5.15d), which heuristically groups a big
number of 3D objects into a few clusters based on the proximity of the objects. Beginning
with a random cluster assignment, in each iteration the workers assign their share of objects
to the clusters. In the end of each iteration, clusters are recomputed to be at the center of
grouped objects. K-Means Clustering features parallel reductions and broadcasts. The final
benchmark kernel that we use is Matrix Multiplication (figures 5.14e, 5.15e), which multi-
plies two dense arrays. Each worker has a part of the two source arrays and of the destination
array. During each phase, a worker adds partial multiplication results to its destination array
by doing a matrix multiplication of smaller parts of the two source arrays. This kernel ex-
hibits communication bursts, as parts of the source arrays temporarily become hot spots that
are shared by multiple workers for a computation phase. Finally, we evaluate Barnes-Hut,
an application that uses pointer-based data structures and exhibits irregular parallelism (fig-
ures 5.14f, 5.15f). Barnes-Hut efficiently solves an N-body problem by grouping far-away
collections of bodies into single bodies. The application is the same one that we presented
in section 5.8.1, adapted from the temporary programming model to the three new variants
(MPI baseline, flat and hierarchical task-based Myrmics versions).

First, we observe from the scaling results that the MPI benchmarks scale almost perfectly
(green/square lines in all figures). This behavior is expected, both because we employ well-
known parallelization methods and also because we have a lightweight MPI library imple-
mentation that runs on an emulated architecture of a single-chip manycore CPU with an effi-
cient network-on-chip. We can therefore depend on the MPI benchmarks to provide a solid
baseline for comparing the Myrmics performance on the same architecture. Super-optimal
scaling is present in some strong scaling cases (figures 5.14c, 5.14e) where the per-worker
task dataset fits entirely in the caches. Under-optimal weak scaling (figures 5.15c, 5.15e)
is expected, as these algorithms have non-linear complexity when adding more workers.
The Matrix Multiplication graphs have fewer data points, because the algorithm depends on
the number of cores being a power of 4. The Barnes-Hut application does not scale well,
because it involves many and complex steps, such as load-balancing exchanges, all-to-all
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communication and phases with idle workers. We do not include numbers for 256 and 512
cores due to memory constraints, but the scaling already degrades after 64 cores.

Our second observation regards how Myrmics scales using a single scheduler (red/cross
lines). We can see that the single scheduler performs well up to a certain number of workers,
depending on the benchmark. As we use a minimum task size of 1 M cycles, we expect
the turning point to be 64 workers. This is confirmed for benchmarks that have bigger
communication/computation ratio, such as Jacobi and Bitonic, while others are less affected.
We verify our core hypothesis on hierarchical scheduling by observing how Myrmics scales
when using a two-level hierarchy of schedulers (blue/circle lines). In all benchmarks, the
multiple-scheduler setup outperforms the single scheduler because the schedulers manage to
share the load of the workers efficiently, each low-level scheduler being directly responsible
for a subset of the total workers. The Myrmics benchmarks code is written in a hierarchical
way to support this optimization. The application decomposes the dataset into a number
of regions. It then specifies a few high-level tasks that operate on whole regions (e.g., to
perform one loop iteration, or do a reduction on whole regions). These tasks spawn children
tasks that operate on some of the region objects. Myrmics assigns the few high-level tasks
to the top-level schedulers and the many low-level tasks to the low-level schedulers. Thus,
the application run is mostly contained in multiple local “domains”, each consisting of a
low-level scheduler and its workers. Messages and DMA transfers are localized and the
application can scale much better than with the single scheduler setup. As explained in the
legend of figures 5.14 and 5.15, we maintain that each low-level scheduler is responsible
for up to 16–18 workers, for up to 128 worker cores. Our experiments reveal that this is
the scheduler-to-worker ratio that gives the best performance. This ratio is less than the
64 workers we computed with the microbenchmark in section 5.8.2, but it is reasonable
for real-life benchmarks that have multiple arguments per task, with multiple dependencies.
Since our hardware setup is limited to 8 total Cortex-A9 cores, the 256- and 512-worker
cores configuration is sub-optimal, with each low-level scheduler handling up to 37 and 74
workers respectively. We believe the high scheduler-to-worker ratio to be the main reason
that these data points show a degradation in scaling.

The execution time for Myrmics benchmarks is usually longer than the respective MPI
ones. The numbers vary greatly, depending mostly on whether the Myrmics version scales
well on the selected core count that we measure. We find that a typical overhead for data
points that scale well is in the range of 10%–30%. This overhead represents the time the
runtime needs to perform all auto-parallelization work. There are cases where this overhead
can be minimized, e.g., by over-decomposing a very parallel problem into many tasks; the
runtime can complete its work in the background using the scheduler cores, while all workers
are kept busy. However, there are also cases that this cannot be avoided, such as when
reductions must be done across loop boundaries. Furthermore, our experiments analysis
indicates that Myrmics automatic data placement algorithms work quite well. Myrmics
overhead compared to MPI is attributed to the dependency analysis and scheduling, and is
not caused by any excessive remote data transfers.

Qualitative Analysis

To understand how scheduler and worker cores in Myrmics perform further, we select three
of the kernels and study their strong scaling executions in more depth. We choose the worst-
performing kernel (Bitonic Sort), a medium case (K-Means) and the best-performing one
(Raytracing). We first gather statistics about the breakdown of time inside the schedulers and
workers. Results are shown in the left column of figure 5.16. In Bitonic Sort (figure 5.16a),
this analysis reveals the reason it scales poorly. In high core counts, most workers (left
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Figure 5.16: Time breakdown [(a), (c), (e)] and traffic analysis [(b), (d), (f)]. In all figures, the X axis
shows the number of worker cores and below the number of scheduler cores (in parentheses). For
time breakdown measurements, the Y axis measures percentages, based on the total execution time.
The left bar in a pair indicates where a worker core spent its time. The right bar indicates the same
for a scheduler core. The bars are averaged per worker or scheduler core respectively. For traffic
analysis measurements, the Y axis is logarithmic and measures core communication in bytes. The
first bar in a triplet (read/medium) counts the worker message volume, the second bar (blue/dark)
counts the worker DMA transfer volume and the third bar (green/light) counts the scheduler message
volume. The bars are averaged per worker or scheduler core respectively.

bars) spend their time being idle (gray/light) instead of running application tasks (blue/dark),
while the schedulers’ load (right bars, red/medium) increases. Depending on the phase of
the bitonic sorting, the benchmark may spawn a large number of tasks and the schedulers are
not fast enough to handle it. However, if we decrease the dataset decomposition to spawn
fewer tasks, then there are other application phases where the number of tasks is too small
and the performance is degraded due to lack of parallelism. A general observation from our
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experiments is that a scheduler should be kept under 10% busy, in order to process requests
fast enough to be considered responsive. In the 512-worker Bitonic Sort case, the average
scheduler load is 33% and the system is significantly slowed down. Our analysis indicates
that scheduler responsiveness is the main reason the system slows down. Overhead due to
DMA transfers is negligible, which indicates that good data locality is achieved.

K-Means Clustering (figure 5.16c) results show that the workers are kept busy executing
tasks for higher core counts than in the Bitonic Sort case. This behavior is more typical,
since this benchmark spawns an equal number of tasks per computation step. Up to 128
workers, workers are executing tasks for 88% of their time while schedulers are busy 2% of
their time. In the 512-worker case, these numbers become 53% and 17% respectively and
the performance begins to suffer. In Raytracing (figure 5.16e) we see an even more ideal
situation. The total number of tasks is small compared to the other two benchmarks and the
work is embarrassingly parallel. We observe that the scheduler load is at the worst case 6%,
and indeed the benchmark scales well. The workers are busy between 79% of their time at
best (4 workers) and 48% at worst (512 workers). The fact that the workers are not fully
busy at low core counts is explained by the way the benchmark decomposes the dataset: it
assigns chunks of work equal to the picture lines divided by the available workers. Thus, the
working set for each core has the same amount of picture lines, which does not necessarily
imply the same amount of work, as the latter depends on the complexity of the scene —some
picture lines will be in the path of more scene objects than others.

The right column of figure 5.16 shows our second set of qualitative measurements for
the same benchmarks. The pathological case of the bad Bitonic Sort behavior for high core
counts is also highlighted here. We observe that the average per-scheduler message-based
communication (green/light bars) rises much more rapidly in Bitonic Sort than the other
benchmarks, and reaches a very high peak at 512 workers (4 MB, instead of 256 KB and 64
KB). The increased communication is indicative of too many spawned tasks, which is also
reflected in the average per-worker messages (red/medium bars). In Bitonic Sort the worker-
scheduler communication increases at higher core counts; in the other two benchmarks it
slightly decreases. For strong scaling benchmarks with a variable task size, we expect a
worker core to execute roughly the same number of tasks at higher core counts, each task
dealing with a smaller part of the total dataset. The worker message traffic in Bitonic Sort
indicates that workers execute more tasks as the benchmark scales. However, in all three
cases we see that the DMA transfers communication per worker (blue/dark bars) decreases,
which is an artifact of the tasks being smaller.

Locality vs. Load-Balancing

As we explained in section 5.5, when a task is dependency-free the schedulers cooperate
to progressively schedule it down the hierarchy. Two scores are computed, one favoring
subtrees of workers where the arguments that the task needs were last produced (a “locality”
score L), and one favoring subtrees of workers that are idle or less busy than others (a
“load-balance” score B). The total score is T = pL+ (100− p)B, where p is a policy bias
percentage value. We run a series of experiments that sweeps p, to affect the relative weights
of L and B. The results are shown in figure 5.17. We use the Matrix Multiplication kernel
with flat scheduling and 32 workers (figure 5.17a), the Jacobi Iteration with hierarchical
scheduling and 128 workers (figure 5.17b) and the K-Means Clustering with hierarchical
scheduling and 512 workers (figure 5.17c).

As we expected, these two scores are conflicting. The perfect locality is maintained
when only a single worker is used (with a single scheduler), or a single worker sub-tree is
used (hierarchical). This behavior minimizes the DMA transfers communication, but on the
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Figure 5.17: Effect of load-balancing vs. locality scheduling criteria. The X axis shows howmuchwe
favor the locality scheduling score (left X values, p=100) to the load-balancing score (right X values,
p=0). The Y axis shows how this choice impacts the application running time, the system-wide load
balance and the total DMA traffic. Y values are normalized to the maximum for this experiment and
measured in percentages.

other hand causes the application running time to suffer, as only one or a few workers are
busy. When we start taking into account the load-balancing score, we cause more communi-
cation but we also improve the application running time. If we only use the load-balancing
score (far right point in the graphs), communication volume increases, as the schedulers do
not optimize at all for locality. Although not very apparent in the graphs, a noticeable per-
formance degradation exists in this case —e.g., in K-Means, the load-balance-only point is
10% worse in running time vs. the previous one. We find that a good trade-off between run-
ning time and communication volume lies in the range of assigning a 0.7–0.9 load-balance
weight and a 0.3–0.1 locality weight respectively.

Deeper Hierarchies

Our final experiments try to explore how Myrmics behaves using more than two levels of
schedulers. Unfortunately, we are limited to eight ARM Cortex-A9 cores. To answer our
questions, we use only the 512-core MicroBlaze homogeneous system, where we can em-
ploy as many of its cores as we see fit to be schedulers. The MicroBlaze-only system has
different intrinsic overheads. Looking back at figure 5.13a we see that the spawn delay
moves up to 37.4 K cycles. To have a better understanding on how this will affect us, we
first repeat the task granularity impact experiment using a single MicroBlaze scheduler, with
the same parameters as we described in section 5.8.2. Figure 5.18a shows the results for the
homogeneous system. We see that the achievable speedup is much lower for a single sched-
uler. We also observe that for low core counts, now the the optimal number of workers for a
given task size is given by dividing the task size by 37.4 K: e.g. for the 512-K task size, the
optimal number of workers is 16, close to the computed 14 (512 K / 37.4 K). However, for
high core counts there seems to be a trend for the scheduler to saturate faster. For the 8-M
task size, the optimal number of workers is 64, which is much less than the computed 224.

In order to test for multiple scheduler levels, we saturate the schedulers with as much
load as possible. We use a synthetic benchmark that uses a hierarchy of small regions. It
spawns empty task that do nothing. Each task is normally executed in 22.5 K clock cycles, if
the scheduler is under no load. Using the empty tasks, we manage to saturate the schedulers
so that more than two levels of them are needed to satisfy the system load.

Figure 5.18b shows the results of this experiment. First, we observe that for a single
scheduler (red/cross line) the slowdown is excessive for high core counts, much more than
what we get when the tasks have any significant size (such as the figure 5.18a behavior).
Then, we switch to the 2-level scheduling (blue/circle line) and see that the hierarchy of
schedulers performs significantly better. This behavior is consistent with the one we have
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Figure 5.18: Measurements for deeper hierarchies

seen by all the real benchmarks we have run on the heterogeneous platform and presented in
section 5.8.2. For the 2-level scheduling experiments, we use a fanout of 6 for the scheduler-
to-worker ratio, i.e., each low-level scheduler is responsible for 6 workers. We explored
multiple alternatives, and found that this ratio is a good trade-off that makes the low-level
schedulers operate fast enough, without requiring too many schedulers to be present10. As
the 2-level setup scales, the top-level scheduler increasingly begins to saturate: when we
reach the point of 438 worker cores, there are 73 leaf schedulers and 1 top-level scheduler.
Having achieved this saturation point, we then advance the experiment using 3 levels of
schedulers (purple/triangle line). This reduces the latency problems caused by the saturation
of the top-level scheduler and provides roughly a 15% improvement on the slowdown. We
again use a scheduler-to-scheduler ratio of 6 for the middle-to-leaf scheduler configuration.
The improvement is not so dramatic as the one we see from a single scheduler to 2-level
scheduling. Every additional level of scheduling comes with an increase in the Myrmics
overhead, as it implies a more distributed region tree and inter-scheduler communication to
traverse it.

Although it is a contrived example, this experiment confirms that Myrmics can scale
using more than three levels of schedulers. We have also validated the system for correctness
running benchmarks with four and five levels of schedulers, which for the limited number
of worker cores exhibit a performance slowdown compared to the 3-level setup.

10 The reader may recall that for the heterogeneous platform we found out that a good trade-off was a
scheduler-to-worker ratio of 16.





Chapter 6

Related Work

This chapter summarizes the related literature that we covered in chapter 2 and, in some ar-
eas, extends it. Section 6.1 focuses on the parallel programming models and their respective
runtime systems. Section 6.2 focuses on hardware architecture prototyping and simulation.

6.1 Programming Models and Runtime Systems

Partitioned Global Address Spaces (PGAS). PGAS languages provide the a Partitioned
Global Address Space, in which the user specifies how the application data are distributed.
System-wide memory accesses (global) and thread-only accesses (local) are differentiated.
The runtime system must mediate to execute global memory accesses. Unified Parallel C
(UPC) [107] is a popular example. It extends C by providing two kinds of pointers: private
pointers, which must point to objects local to a thread, and shared pointers, which point to
objects that all threads can access but may have affinity to specific cores. The Berkeley UPC
compiler [55], which is a reference implementation, translates UPC source code to plain C
code with hooks to the UPC runtime system, which manages shared memory aspects. Other
well-known PGAS languages are X10 [30, 50], which defines lightweight tasks (activities)
that run on specific address spaces (places), Co-Array Fortran [84], which extends Fortran 95
to include remote objects accessible through communication, Titanium [52], which extends
Java to support local and global references and Chapel [27], which is a language written
from scratch that aims to increase high-end user productivity by supporting multiple lev-
els of abstractions. PGAS languages rely on the user to write hazard-free programs, as the
runtime system ensures neither the correctness nor the determinism of the program. Myr-
mics implements a global address space similar to the one offered by PGAS, and all tasks
are dependent on the memory accesses that they make. The runtime system can use this
information to enforce correctness and determinism, as well as exploit the data placement
knowledge to optimize scheduling for locality.

Task-basedmodels with independent tasks. The first task-parallel programming models
that appeared assume that tasks spawned by the user can begin executing immediately. The
runtime system takes care of scheduling these tasks, but does not automatically infer any
dependence among them. Typical examples of such programming models include Cilk/-
Cilk++ [44], Intel Thread Building Blocks (TBB) [68] and the official OpenMP support
for tasks [8]. These models target cache-coherent, shared memory architectures. As in the
PGAS case, they also rely on the user to write hazard-free programs.
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Static dependency analysis. Another approach to task parallelism is to rely on the com-
piler to perform static analysis, in order to discover which tasks can be safely run in parallel.
Static analysis techniques can be quite complex, lead to imprecise results and may require
significant compilation time, depending on the application. When successful, they can of-
fer correctness guarantees to the user and they alleviate the runtime system from a lot of
overhead, as it can disregard dependency checks from many spawned tasks. Dynamic Out-
of-Order Java [38] is a recent example of such a language, which performs many static
optimizations and also uses heap examiners at runtime, to resolve cases that are ambiguous
by the static analysis. Myrmics does not rely on static analysis techniques, but is still able
to use compiler hints to exclude certain task arguments if the compiler marks them as SAFE
—our modified SCOOP compiler [118] can provide such hints to Myrmics.

Dynamic dependency analysis. The newest class of task-parallel programming models
enables the user to write serial code split into tasks, which are not necessarily allowed to run
immediately when spawned. The user specifies constraints to inform the runtime system
when a task should be allowed to run. The OmpSs family of programming models [7, 15,
23, 37, 91, 101] lets the user annotate a serial code with compiler pragmas that inform the
runtime which variables will be touched by each task and how (read or written). A source-
to-source compiler translates the pragmas into runtime hooks, that call the runtime library
to perform dynamic task dependency analysis. Myrmics follows a similar approach. In
contrast to Myrmics, the OmpSs models support expressive formats for array portions, such
as strides or dimension parts, but do not support pointer-based data structures. Another way
to spawn dependent tasks is to use futures, which declare that a new task must wait for
certain variables (Data-Driven Tasks [100] and X10), or other tasks (Habanero-Java [26]).
Finally, OpenStream [93] offers another alternative to enhance the OpenMP tasking model
to support data-flow parallelism, through the use of streams, which defines how the tasks
produce and consume data.

Regions in task-based programming models. Myrmics support for regions resembles
the Legion programming language [13], which was independently developed by Stanford
while Myrmics was at the final stages of its implementation. In Legion, the user can specify
logical collections of objects and their mapping onto the hardware. Myrmics has a different
target than Legion, as it focuses on how dependent-task runtime systems can be structured
to scale on emerging manycore architectures. The authors of Legion focus instead on the
language structure and do not supply many runtime system details on how they distribute
the system load, or how well their implementation scales —they provide measurements for
at most 32 CPU cores. Legion is a generalization of the Sequoia [41] programming lan-
guage, which introduces hierarchical memory concepts and tasks that can exploit them for
portability and locality awareness. X10 [30, 50] also supports regions, but these refer to
parts of multi-dimensional arrays and can be extracted by the compiler. Chapel [27, 28]
introduces the domain concept to support multi-dimensional and hierarchical mapping of
indexes to hardware locations. Another programming model that uses regions is Determin-
istic Parallel Java (DPJ) [20], which is a parallel extension of Java. DPJ combines compiler
optimizations and dynamic runtime checks to guarantee determinism and to maximize avail-
able parallelism. Like Myrmics, DPJ supports hierarchical regions, but these are statically
inferred at compile-time, while Myrmics regions are dynamic. The DeNovo project uses
DPJ [31, 32] to propose that if languages like it were commonplace, simpler hardware and
memory hierarchy architectures would be feasible.
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Serial region-basedmemorymanagement. Tofte and Talpin introduced managing mem-
ory in regions for serial programs in 1997 [104] as a programming discipline to facilitate
mass deallocation of dead objects in languages, replacing the garbage collector. Memory
is managed as a stack of regions and static compiler analysis determines when regions can
be scrapped in their entirety, thus avoiding the expensive operations of freeing or garbage-
collecting dead objects individually. Gay and Aiken implement RC [46], a compiler of an
enhanced version of C for dynamic region-based memory management that supports regions
and sub-regions. RC focuses on safety: reference counts are kept to warn about unsafe re-
gion deletions or to disable them. The authors claim up to 58% improvement over traditional
garbage collection-based programs. Berger et al. [17] verify that region-based allocation of-
fers significant performance benefits, but the inability to free individual pointers can lead to
high memory consumption.

Parallel region-based memory management. To our knowledge, our work is the first to
introduce parallel region-based allocation. Titanium [52] uses “private” regions for efficient
garbage collection, in the same way as serial region-based allocators do. There is some ten-
tative support for “shared” regions, which are implemented inefficiently with global, barrier-
like synchronization of all cores. Gay’s thesis [47] provides some details on the Titanium
shared regions and briefly mentions a sketch of a truly parallel implementation as future
work. Parallel regions in Myrmics must not be confused with the X10 language regions [30],
which are defined as array subsets and not as arbitrary collection of objects. Legion [13]
offers parallel allocation of logical regions; their work was developed independently to ours.

Shared memory parallel memory allocators. For thread-based, shared-memory archi-
tectures, Hoard [16] is considered one of the best parallel memory allocators. Hoard im-
plements a small number of per-processor local heaps, which are backed by a global heap
when they run out of memory, which is backed in turn by the operating system virtual
memory system. While Hoard focuses on increased throughput, Michael [81] improves
on multi-threaded, lock-based allocators by presenting a scalable lock-free allocator that
guarantees progress even when threads are delayed, killed or deprioritized by the scheduler.
MAMA! [60] is a recent high-end parallel allocator that introduces client-thread cooperation
to aggregate requests on their way to the allocator. McRT-malloc [54] follows a different
approach, by implementing a software transactional memory layer to support concurrent re-
quests; threads maintain a small local array of bins for specific, small-sized slots and they
revert to accessing a public free list to get more blocks; larger slot sizes than 8 KB are di-
rectly referred to the Linux kernel. The Myrmics memory allocator resembles, in many
respects, parallel memory allocators that use heap replication. Our schedulers trade address
ranges hierarchically and serve requests from these ranges. In the MAMA! paper, the au-
thors describe a three-way trade-off for memory allocators: they can only feature two of the
benefits of space efficiency, low latency or high throughput. The Myrmics memory system
sacrifices space efficiency (memory is hoarded by multiple schedulers and preallocated for
region usage) but offers high throughput, low latency and also compactness for memory
objects inside regions.

Flash log-structured filesystems. Both the JFFS [113] and the YAFFS [2] filesystems
are included in the Linux kernel and marked as stable. Gal and Toledo have surveyed
many flash-specific algorithms, data structures, academic/free filesystems as well as re-
lated patents [45]. JFFS stores all data and metadata for files and directories in the log
using variable-length records, but does not include any information about the mapping from
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inode numbers to physical block numbers, nor anything about the free list usage. The sys-
tem mounts by scanning all nodes and building these structures in memory. In the Myrmics
filesystem, we include inode map and free bitmap information into both the checkpoints and
the block metadata themselves in order to speed up mounting and recovery. YAFFS uses
a selection of fixed size chunks, storing some header and valid bits onto the special error
correction pages in the raw Flash devices. No structure is written on disk concerning inode
maps and free lists, resulting in the same increased mount times. YAFFS saves on the large
memory footprint of the variable-length JFFS records by employing many optimizations, in-
cluding approximate pointers and wide trees. It also implements a better erasing algorithm
in two phases. Both JFFS and YAFFS use background cleaning processes to compact data
out of valid blocks and to slowly reclaim space by erasing whole Flash erase blocks (con-
sidered to be in the hundreds of kilobytes). We do not do this in the Myrmics filesystem, in
order not to affect the scheduler responsiveness.

6.2 Hardware Simulators and Prototyping Platforms

FPGA prototyping boards. Two very well-known academic efforts are the Berkeley Em-
ulation Engine boards, BEE2 [29] and BEE3 [34]. A more recent commercial version is the
BEE4 [14] which uses Virtex-6 FPGAs. FAST [33] was developed in Stanford and com-
bines real CPUs (MIPS R3000/3010) with FPGAs for custom logic, along with SRAM-
only memory chips. Xilinx offers single-FPGA boards, such as the XUPV5 platform [117].
Other companies such as the DINI group [103], offer a wide selection of FPGA develop-
ment boards. To the best of our knowledge, none combines SRAM, DRAM and enough
GTP links at a low price.

Hardware prototypes. RAMP Blue [67] is a MicroBlaze-based architecture developed by
Berkeley for the BEE2 boards, that uses reduced network datapaths. Each FPGA has twelve
cores with direct-mapped L1 caches, a single shared FPU, support for partitioned DRAM
access and an apparently 16-port crossbar. There are neither L2 caches, nor DMA engines
for the network. The FPGA is 24% smaller than the one that we use in Formic, with older
generation 4-input LUTs. The authors implementing the network and crossbar using 8-bit
datapaths to economize on hardware resources. The FORTH-ICS SARC [63, 64] prototype
fits four 5-stage MicroBlaze cores with L1 and L2 caches and integrated network interfaces
into the FPGA of the XUPV5 board. It uses a 6-port crossbar with 32-bit datapaths. The
Microsoft Beehive [102] is a prototype for the BEE3 platform that features custom, mini-
malistic 32-bit RISC cores, each of them with only a direct-mapped L1 cache and a token
ring-based internal network. Atlas [110] from Stanford uses the BEE2 board to provide
hardware transactional memory support for the eight PowerPC cores on the FPGAs. The
Scalable Multiprocessor [89] project from University of Toronto, also for the BEE2 board,
provides CAD support to create custom computing machines from data-flow descriptions
in Matlab. Aegis [97] from Cornell University is a prototype of a processor architecture
with security extensions for tamper-proof software execution. These prototypes either use
too simple processors and/or cache hierarchies, or are too specialized to support general-
purpose manycore software development.

Software simulators. The Simics [76] full-system simulator allows users to study how
applications and operating systems run on a hardware architecture. Parts of the architecture
can be tuned by plugins that alter the performance of system portions. GEMS [78] provides
a parametric coherent memory hierarchy performance model, where users can alter or cre-



6.2. Hardware Simulators and Prototyping Platforms 97

ate their own coherency protocols from scratch. Simics and GEMS are often used together
to simulate a system. The gem5 [18] simulator augments the GEMS memory model with
full-system simulation capabilities and provides a stand-alone solution. There are other, spe-
cialized simulators that focus on parts of the system, such as Orion [62] for the network-on-
chip and DRAMsim [108] for the external DRAMs, which are either used alone for design
space exploration, or in conjunction with full-system simulators to improve their accuracy
for specific parts. Full-system simulators run on a single host processor and are too slow
to simulate architectures with high core counts. Parallelizing simulators is considered very
difficult; there are several attempts in the literature, such as Graphite [82] and TaskSim [95],
at the cost of sacrificing simulation accuracy and/or abstracting the nature of the simulation.
Another direction is to use hardware-assisted or hybrid hardware-software simulation. Tan
et al. have written an extensive taxonomy of such systems [99].





Chapter 7

Conclusions

In this chapter we conclude this dissertation. Section 7.1 views our work from a critical
standpoint and revisits the contributions that we make. Section 7.2 presents ideas for ex-
tending our thesis with future work. In section 7.3 we discuss some key insights for runtime
systems scalability, based on the experience we gained during our work. Section 7.4 con-
cludes our thesis with a few final remarks.

7.1 Critical Assessment

After presenting our thesis in detail, we revisit here the contributions listed in the end of
chapter 1 (page 5). We take a critical approach and examine the validity of each contribution,
discussing the strengths and weaknesses of our methods.

A1: Parallel regions. The concept of memory regions in sequential programming is old
and well-studied [46, 104]. We presented the formal semantics in 2011 [94] and the Myr-
mics memory allocator with parallel region support in June 2012 [75]. Independently with
our work, Stanford researchers introduced the Legion programming language in November
2012 [13], which also extends the region concept to parallel programming. Although Legion
regions are “logical” (i.e., a language concept that does not necessarily imply that the un-
derlying memory management system actually has to pack objects in the same region close
together) and an object can belong to many logical regions at the same time, we consider
that their work also makes a similar contribution. To the best of our knowledge, and taking
into account the aforementioned publication dates, our work is the first to extend the region
concept to task-based parallel programming1.

From our own experience of programming several Myrmics benchmarks, regions are
intuitive and easy to use. For pointer-based data structures, regions proved extremely helpful
to write code and to group task arguments efficiently. For strictly array-based codes, using
regions to refer to parts of the array proved to be probably less productive for the programmer
than being able to refer to parts of the array with sub-indexing (as in the OmpSs family [37]),
but allows for a more efficient runtime implementation.

A2: Hierarchical memory management, dependency analysis and task scheduling.
Looking back at figures 5.14–5.15 (pages 84–85), our experiments confirmed that an 8-
scheduler, 2-level hierarchical Myrmics configuration performs 2–8× better than a single-
scheduler one. This performance improvement is the direct outcome of the hierarchically

1 We do not consider the earlier-published (2009) Deterministic Parallel Java [20] regions as competitors, as
their regions are statically inferred by the compiler.
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distributed algorithms that we use for memory management, dependency analysis and task
scheduling. Although implementation details are rarely published, to the best of our knowl-
edge, existing runtime systems internally use centralized, lock-based data structures sup-
ported by cache-coherent memory systems, or exhibit other single points of runtime work
concentration (e.g. a single CPU runs the runtime, or a single master thread/task is allowed
to spawn tasks). We believe that these systems scaling behavior for high core counts will re-
semble the single-scheduler Myrmics configuration. Authors evaluate their work on at most
64 CPUs, where single-point scalability issues may or may not start to appear (also see the
first point about task granularity that we make in section 7.3 below). Our experiments prove
that our proposals for hierarchical algorithms are valid and can reclaim the lost scalability
of the single-point implementations for hundreds of cores. Using hierarchical algorithms
is one way to go, but we do not claim that this is the only way to go; other distributed im-
plementations may perform equally or better. We chose the hierarchical configuration as
a natural fit for emerging architectures (e.g. Runnemede [25]) and to enhance locality by
isolating parts of the problem into parts of the chip, but this choice does come with some
programmability drawbacks (fourth point in section 7.3).

A3: Myrmics target and design. Our literature review suggests that the design and im-
plementation of existing runtime systems is overshadowed by the programming language
features and novelties. Authors rarely reveal runtime implementation details, and instead
turn the spotlight on the programming models. We can think of two possible reasons for this
focus: (i) runtime implementations have novel features, but do not succeed in being pub-
lished, or (ii) authors focus more on increasing programmer productivity through language
design, and then provide a proof-of-concept runtime system that supports these features.
We are inclined to assume the second reason. Myrmics is not “yet another runtime system”,
in the sense that our work focuses on the runtime implementation scalability challenges of
emerging manycore architectures. We made it our top priority to acquire a working model
of a manycore processor according to current trends (see contribution B2 below), in order
to specifically study the unique scalability problems that a runtime is predicted to face on
heterogeneous, non-coherent manycores. We address these problems by designing Myr-
mics to specialize for the heterogeneous nature of the processor and to implement scalable,
hierarchical algorithms for memory management, dependency analysis and task scheduling.

We note here that scaling a runtime system in a single-chip processor is an entirely
different problem than doing so in an MPI cluster: communication latencies are two or-
ders of magnitude faster inside a single-chip processor than in an Infiniband-backed cluster
([71, 79] and sections 4.5.4 on page 50 and 5.2 on page 56). Some runtime systems [13, 23]
are based on GASNet [21] and are therefore portable to clusters. In addition to cluster mea-
surements being again limited to 32–64 nodes, the authors do not define the task granularity
that they use (also see the first point in section 7.3). We guess that runtime systems on clus-
ters use very coarse-grained tasks to hide the communication latencies, which also allows
for computationally-expensive runtime algorithms that do not appear to become bottlenecks.
However, porting such implementations to single-chip manycores would lead to very poor
results.

A4: Myrmics evaluation and analysis. We believe that the evaluation of the Myrmics
runtime system (section 5.8.2 on page 82) is thorough and covers our primary target to
explore the runtime scalability problems and propose solutions for them. We use many
benchmarks, representative of different communication patterns, and we also reveal internal
runtime overheads using microbenchmarks. We contrast our results to hand-optimized MPI
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versions of the same benchmarks, built upon a solid and fast MPI library (see contribution
B3 below).

We consider two weaknesses in our approach. First, although the bare-metal nature of
Myrmics helps us to remove any possible operating system “interference” to performance
measurements, the lack of an underlying operating system (OS) and common userspace
libraries makes it hard to (i) port heavier, more realistic applications which rely on them
and (ii) compare Myrmics to another, baseline runtime system. In retrospect, we still stand
by the bare-metal choice and its limitations. Porting an OS to a non-coherent manycore
architecture correctly is not straightforward. The relatively simple approach would be to
port an OS (e.g., Linux) to our custom hardware using multiple images where each CPU core
runs its own OS. On-chip communication would pass through a kernel driver, which would
emulate a network card. This porting would be feasible from an implementation standpoint,
but too inefficient. The correct approach would be to port the OS using a single image for
all hardware cores. This approach would imply removing the underlying assumption of an
OS that all memory is shared (and coherent) and accessible through load-store processor
instructions. This task would be immense, and it would lie out of our scope to explore the
task-based runtime systems scalability.

A second weakness is the limited internal visibility. Although Myrmics collects enough
tracing and debug information (section 5.6 on page 68), which we used to analyze the qual-
itative aspects of the runtime performance, using a software simulator would have given
us a much more clear view of various performance aspects during the debugging and the
evaluation phases. In parallel to our work, Papaefstathiou et al. [88] explored hardware ar-
chitecture enhancements for a task-based, dependency-aware programming model using the
gem5 [18] software simulator. Using the simulator, on the one hand, their measurements
were much more revealing for many interesting aspects, like cache behavior, power and
memory traffic breakdowns. On the other hand, the authors were forced to limit their results
to 64 cores while the simulations still took days to complete. Again, we stand by our choice
to use FPGA prototyping instead of software simulation, as it enabled scaling to hundreds
of cores.

B1: Formic board. Back in 2010, we decided to undertake the considerable effort to
design and to validate a new FPGA prototyping board, after extensive search for purchasing
a ready one [14, 29, 34, 103, 117]. We created Formic to address all three reasons (SRAM
memory, off-board links and cost) that made existing boards unsuitable for our purposes.
The implementation of the 520-core prototype validated our design choices for the Formic
board in full.

Having the benefit of hindsight, there is one detail that we could implement differently.
Formic has three SRAM and one DRAM memory. Our hardware architecture only uses
two of the SRAMs to store the data of the eight L2 caches, so one SRAM chip remains
unused for the current prototype. If Formic had two SRAM and two DRAM memories
instead, we would have doubled the DRAM memory per board, which would have allowed
for more memory-intensive benchmarks to run. However, doing so would increase the PCB
complexity (DRAM routing is significantly more complicated than SRAM one) and would
thus possibly increase the board size, cost and failure risk factor.

B2: FPGA prototype. We created the basic Formic-based hardware architecture of an
octo-core MicroBlaze building block, by studying state-of-the-art (of the 2010 era) multicore
chips [53, 61]. We analyzed the published network-on-chip and micro-architectural details,
and tuned our architecture accordingly to model similar latencies. We consider that the
final FPGA prototype is as faithful as a model can be, based on trends and predictions on a
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ten-year horizon. The FPGA prototype is the key enabling factor for the Myrmics runtime
system, as it allows us to run software 50,000× faster than software simulation (4 orders of
magnitude), which fully justifies our choice for prototyping vs. simulation.

The relation of ARM Cortex-A9 to Xilinx MicroBlaze cores proved to be a weakness of
our approach. We were limited to exactly two ARM Versatile Express platforms, and thus
had a total of 8 Cortex cores at our disposal. As all but two manufactured Formic boards
proved to be fully functional, we ended up with 512 MicroBlaze cores. The heterogeneous
platform has a 64:1 Cortex to MicroBlaze ratio. Our Myrmics evaluation showed that a
more suitable ratio would be 16:1. The very recent Intel Runnemede [25] proposes an 8:1
ratio. Although the numbers will vary depending on relative core capabilities, the 64:1 ratio
is definitely too big. We believe that Myrmics would scale much better for the 256- and
512-worker core count, if more Cortex cores were available and the ratio was smaller.

B3: MPI library. We designed the MPI library to be as fast as possible, taking full advan-
tage of the underlying hardware capabilities (fast polling through Mailboxes and offloaded
data transfers using the DMA engines). We achieve similar results to the Intel SCC RCCE
messaging library (see the footnote in section 4.5.4 on page 50). We take care that all col-
lective operations are based on scalable, tree-like algorithms. MPI benchmarks scale very
well, which further strengthens our argument that the MPI library is fast and can be used as
a credible baseline against which to compare Myrmics. A drawback of the library, which
does not affect the Myrmics measurements, is that the library does not implement the full
functionality of the MPI standard [96].

7.2 Further Work

We have identified several aspects of our work that can be improved. We list them here,
along with other ideas for further extensions, that came up during the hardware and software
implementation.

Implement wait. The enhanced programming model defines a wait pragma. A task that
has delegated an object or region to a spawned child task can use wait to regain control.
Currently this pragma is not supported in Myrmics. In the cases that we need such behavior,
we spawn a new task with the delegated object/region to work with it. Spawning a new task
incurs more overhead in the common case compared to having an existing task wait on some
of its arguments. However, supporting the wait pragma in Myrmics is quite complicated,
which is the main reason that it was of lower priority compared to runtime features and aca-
demic targets. The programming model defines that the waiting task must be preempted2.
The architecture-specific Myrmics layer needs to support saving the task function state in
predefined breakpoints (saving registers not on the stack, but at a given data hook point; the
used stack space must be copied there as well). The dependency analysis algorithms must
be enhanced to support re-enqueueing of the task to the new targets. The task completion
algorithms must be enhanced to support waking up the task (when other finished tasks un-
block the waiting one) and dequeueing the task from more points than its original arguments
(when the waiting task ultimately finishes).

Implement NOTRANSFER. One optimization of the programming model for non-coherent
architectures is to use the NOTRANSFER flag. It specifies that although the task dependency is

2 The task must really be preempted, as other tasks may be behind it in the worker ready queues. Simply
blocking the worker on the task that waits is not an option, as it would create deadlocks.
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honored normally, the corresponding DMA must not happen. The optimization seems trivial
to implement, but the packed bitmaps that accompany the task arguments from scheduler
to scheduler to ultimate worker are currently full with region and in/out information, and
there is no obvious place to stuff one more bit per task argument that will persist through all
involved messages from task dispatch to scheduling to ultimate worker core.

Library or language for hierarchical allocation. The hierarchical decomposition of user
applications proved to be easy to grasp as a concept, but not so easy to write the application
code (also see the fourth point in section 7.3). The most challenging part was to allocate
the hierarchical data structures, in cases that they were not homogeneous. For example, it
is easy to allocate a hierarchically decomposed array, but quite more difficult to allocate a
hierarchically decomposed stencil application. One way to facilitate the application code is
to provide a library of allocation functions for a number of often needed data structures. The
user can call a library function specifying the decomposition parameters and depth, and the
function can return the data structures, ready to be used. A second way would be for this
difficulty to become the motivation for creating a high-level parallel language, which would
incorporate both the allocation of non-trivial, hierarchically decomposed data structures, as
well as the compiler pragmas for accessing their parts, into language constructs.

Virtual addresses. The hardware architecture supports virtual addresses with 1-MB pages
through the TLB block. However, we have not used this functionality in Myrmics. To
harvest the full memory in the FPGA prototype, a virtual memory layer could be added that
made all Formic board DRAMs act as an aggregated pool of memory. This layer would
enable Myrmics to run applications with much larger datasets than it currently handles.

Region migration. A region in Myrmics is created by a scheduler core, which remains
responsible for it for the rest of its life. Although this key choice greatly simplifies the
runtime system, it could be interesting to explore region migration scenarios, both implicit
and explicit. For the latter, the API could be extended with a sys_rrealloc() call, that
would allow the application to re-parent a region from its current parent to a new one. The
programming model should define that the task executing the new call should have write
access to both parent regions. For the former, Myrmics schedulers under load imbalance
could decide to reassign region responsibility automatically. Any of the migration scenarios
would involve major changes to the memory management system; careful attention should
be given not to introduce races.

Workers for mid- and top-level schedulers. Worker cores in Myrmics are the leaves
of the core tree hierarchy. The (few) tasks handled by mid- and top-level schedulers pass
through lower-level schedulers for dispatching and completion (also see the third point in
section 7.3). It would be very interesting to explore a different core hierarchy organization,
in which mid- and top-level schedulers would have some dedicated worker cores. Tasks
handled by these schedulers would be dispatched locally to these worker pools. The different
organization could lead to reduced per-task overhead for such tasks, but would also probably
mean reduced feasible speedups for well-behaved applications, as the leaf worker pools
would be reduced. A suitable trade-off exploration is necessary. A secondary idea is to
try to match application patterns to core hierarchies: some applications would benefit from
the current Myrmics setup, others (e.g. with heavy reduction/fork-join parallelism) might
benefit from dedicated workers in middle and top levels.
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Integrate filesystem. Currently, the Myrmics filesystem is not visible to application code.
It is limited for use by the Myrmics kernel, as its original purpose was to store multiple ap-
plications, results, traces, etc. Eventually, it was used for none of these, as higher-priority
functionality had to be implemented. In addition to implementing the aforementioned points,
one interesting approach would be to expose the filesystem to application tasks. An applica-
tion could open a file handle and this handle could be similar to a task argument dependency:
task I/O would be serializable in this manner through a path much like an object dependency.

Complete the MPI library. The MPI library implements the basic send/receive calls
(blocking and non-blocking versions), as well as a small set of collective operations (barrier,
broadcast, reduce, allreduce, alltoall). To run more complicated MPI applications, the full
set of MPI calls could be added.

Off-cube board DRAM. To support larger datasets, non-Formic boards (e.g. XUPV5
from Xilinx) with expandable DRAM DIMM slots can be connected to the Formic cube.
The hardware architecture would need to be changed to support these locations as the “real
DRAMs” and either disregard or treat the Formic board DRAMs as L3 caches. The topology
of the new boards is open to multiple ideas. Following the rationale we used for the cur-
rent 3D-mesh architecture and Formic DRAMs, advances in embedded DRAM (eDRAM)
and Through-Silicon Vias (TSVs) suggest that local DRAM resources will be close to each
CPU core; thus, the new boards can be connected on the eighth, currently unused, SATA
connector on some of the Formic boards. If we project the current practice of 2D-mesh ar-
chitectures, DRAM resources are found at the periphery of the mesh; thus, the new boards
can be connected on existing X/Y/Z connectors, extending the 3D mesh dimensions.

Hard or Solid-State Disk on Formic. The eighth, currently unused, SATA connector of
the Formic boards could be used to connect hard disk(s) or solid-state disk(s). Small hard-
ware IP blocks for SATA communication are available (e.g. the recently presented Ground-
hog [114]) and the Formic oscillators that provide clocks to the GTP physical layers are
compatible with SATA-2 speeds.

7.3 Discussion

Throughout the design, development and evaluation of the Myrmics runtime system, we
delved into various scalability problems. Before we conclude the dissertation, we discuss
some key issues and share our acquired insight on them.

First, we have observed that the dominating factor that affects the performance of any
task-parallel runtime system is the duration of the spawned tasks, i.e., the task granularity.
When handling bigger tasks, the runtime system has more time (per task) to work and thus
the perceived (per task) overhead is reduced. Picking the “correct” task size depends on
many factors, such as how much data a task touches and how these data fit into the cache
hierarchy. Smaller tasks sizes strain the runtime system, but on the other hand expose more
parallelism and exhibit better cache hit ratios. Authors do not usually provide details about
how fine or coarse a task granularity they choose for their evaluations. As future runtime
systems need to scale to hundreds of cores, if the scaling is done simply by increasing the
task size to minimize the runtime overhead, it will hurt parallelism. To make the most out of
the emerging manycore architectures, we need to think ahead and propose scalable solutions
for scheduling and dependency analysis algorithms.
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A second point concerns the number of ready (dependency-free) tasks. Assuming a
sufficiently low runtime overhead and an appropriate problem size, is there a benefit in
over-decomposing a problem to very small tasks? For a given per-task overhead, more (and
smaller) tasks will incur a bigger total overhead. On the other hand, when the workers queues
are kept non-empty, the runtime can prepare the next task by transferring its data during the
execution of the current task (as in Myrmics) or by enabling a hardware-assisted prefetcher
to touch the needed cache lines and bring them closer (in cache-coherent systems). We
propose that a good trade-off must be found by decomposing the application so that there is
a number of ready tasks in flight which is dependent on the number of worker cores in the
system. In the Myrmics evaluation, we have picked the number of ready tasks to be around
two times the number of active worker cores. This ratio seems sufficient to keep workers
non-empty, and allow the runtime to optimize for the next task execution, while keeping the
total runtime overhead low.

Third, a point regarding core specialization and hierarchical scaling. As we argued in
section 5.1, we think that in the future manycore chips CPU cores must diversify their func-
tionality. Our experience with the two roles in Myrmics (scheduler and worker) is very posi-
tive, because it allows uninterrupted execution of worker tasks and fast processing of sched-
uler events. Although we do not have an alternative implementation to measure against, we
believe that core specialization leads to improved cache hit ratios and avoids context switch-
ing overhead, for systems where the runtime code must be protected by escalated hardware
privileges. Organizing the cores in a strict hierarchy has proven to be advantageous, but
also cumbersome. Again without having hard evidence against an alternative implementa-
tion, our insight is that the hierarchical organization successfully manages to “concentrate”
application parts around the low-level schedulers. The communication and data movement
remain localized for much of the application running time and thus decrease network traffic
and increase the application and power efficiency. However, restricting the communication
only across parent-children cores tends to be problematic in handling a few cases, e.g., creat-
ing new regions on the boundary between schedulers or top-level schedulers managing (the
few) tasks by forwarding messages through other schedulers towards workers. Our measure-
ments reveal that increasing the levels of the hierarchy seems promising to scale the runtime
system to many hundreds of cores, but this comes with an added overhead per scheduler
level. Tuning the runtime system to a “correct” balance of (levels of) schedulers and work-
ers is again a trade-off. More schedulers balance the runtime load and enable faster event
processing, but also increase the average per-task overhead, especially for non-leaf tasks
that are handled by upper levels of schedulers that need to run reduction-like code. One
avenue that we did not explore —that would alleviate this problem and also map even more
naturally to hierarchical architectures like Runnemede in which every big core is close to a
number of small cores— is to provide mid- and top-level schedulers with dedicated worker
cores, which would run tasks managed by these schedulers (we presented this idea in the
previous section regarding further work).

Our fourth and final point is about the hierarchical programming approach. Our key hy-
pothesis that hierarchical decomposition of the problem is beneficial (as we discussed in the
third point above) seems to be supported. However, providing to the programmer a practical
and intuitive programming model to allow such a decomposition is difficult. Programming
Myrmics benchmarks revealed that regions are extremely helpful to that end (especially for
pointer-based data structures), but still the hierarchical programming experience was diffi-
cult for non-trivial cases. We discussed in the previous section that a good candidate for
further work in this area could be a user library that takes care of the object/region alloca-
tion, which seems to be the most difficult part. A language specifically targeting hierarchical
decomposition would go even further to improve not only the allocation, but also provide
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ways to refer to parts of data structures in a more intuitive way. We feel that hierarchical de-
composition is the correct end goal to target, but more work and innovative ideas are needed
to reach it.

7.4 Concluding Remarks

In this thesis we delve into the challenges that lie ahead for parallel programing on emerging
processors with hundreds of CPU cores. Current trends suggest that future processors will
be more heterogeneous and less cache-coherent than the ones available today. The problem
of programming on such architectures productively by non-expert software developers be-
comes crucial. One path towards this goal is to use task-based programming models, which
are intuitive and productive.

The runtime systems that accompany task-based programming models are not ready
to scale to such architectures. They are developed to map well to existing cache-coherent
multicore chips and are evaluated up to a few tens of cores. Implementation details are rarely
published. To the best of our knowledge, they do not employ scalable algorithms for memory
management, dependency analysis and task scheduling. Furthermore, they do not project
well either to heterogeneous single-chip processors or to partially (or fully) non-coherent
memory systems.

We first solve the basic problem of a viable evaluation platform: heterogeneous, non-
coherent, manycore, single-chip processors are not available for researchers to experiment
with new runtime systems. We propose that FPGA prototyping is the correct approach.
We create a heterogeneous 520-core FPGA prototype that models a single-chip processor
after the current hardware architecture predictions for ten years into the future. Although
hardware prototyping is harder than software simulation, the effort is well worth the added
insight, the modeling accuracy and the execution speed. We estimate that our FPGA proto-
type runs code 50,000× faster than software simulators.

We then study the fundamental problems of making a programming model and its run-
time system scale to hundreds of cores. We explore several mechanisms and policies to-
wards this goal, such as specializing CPU roles, hierarchical organization and limiting task
argument expressiveness. We propose scalable algorithms for memory management, depen-
dency analysis and task scheduling. We create the Myrmics runtime system and evaluate it
on our 520-core FPGA prototype. Our experiments suggest that our main hypotheses are
supported and that many of these ideas are promising. Hierarchical scheduling avoids the
single-master bottleneck and allows Myrmics to scale as well as the MPI baseline to hun-
dreds of cores. Automatic parallelization of the serial code in Myrmics imposes a modest
overhead of 10–30% compared to the hand-optimized MPI code.

Current hardware architecture trends hint that programming models and their runtime
systems must evolve fast to catch up with the increasing number of cores. Radical changes
will be needed if the new processors become more heterogeneous and/or less cache-coherent
than today’s norm. Our work explores interesting problems on researching and enhancing
runtime system scalability; we hope it will stimulate further research in this area.
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