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Abstract

Although Web Search Engines index and provide access to huge amounts of
documents, user queries typically return only a linear list of hits. While this is
often satisfactory for focalized search, it does not provide an exploration or deeper
analysis of the results. One way to achieve advanced exploration facilities, while
exploiting also the structured (and semantic) data that are now available, is to
enrich the search process with entity mining over the full contents of the search
results where the entities of interest can be specified by semantic sources. Such
services provide the users with an initial overview of the information space, allowing
them to gradually restrict it until locating the desired hits, even if they are low
ranked.

In this thesis we consider a general scenario of providing such services as meta-
services (that is, layered over systems that support keywords search) without a-
priori indexing of the underlying document collection(s). To make such services
feasible for large amounts of data we use the MapReduce distributed computation
model on a Cloud infrastructure (Amazon EC2). Specifically, we show how the
required computational tasks can be factorized and expressed as MapReduce func-
tions and we introduce two different evaluation procedures the Single-Job (SJ) and
the Chain-Job (CJ). Moreover, we specify criteria that determine the selection and
ranking of the (often numerous) discovered entities.

In the sequel, we report experimental results about the achieved speedup in
various settings. We show that with the SJ procedure the achieved speedup is
close to the theoretically optimal speedup (2, 5% − 19, 7% lower than the optimal
for a 300MB dataset and from 2 up to 8 Amazon EC2 VMs respectively) and
justify this difference. Indicatively, we achieve a speedup of up to x6.4 on 8 EC2
VMs when analyzing 4, 365 hits (corresponding to 300MB) with a total runtime
of less than 7 minutes (an infeasible task when using a single machine due to high
computational and memory requirements). CJ exhibits somewhat lower scalability
compared to SJ (x5.66 on 8 EC2 VMs) with a longer total runtime (about 30 secs
more for a 300MB dataset) due to the overhead of using two rather than one
MapReduce job. On the other hand, CJ offers the qualitative benefit of providing
a quick preview of the results of the analysis.

Another important contribution of this thesis is a thorough evaluation of plat-
form configuration and tuning, an aspect that is often disregarded and inadequately
addressed in prior work, but crucial for the efficient utilization of resources. We
show that the proposed evaluation methods utilize well the resources (fully utilized
CPU, efficient memory allocation), and the tasks do not have an unreasonably high
overhead (e.g. garbage collection, unnecessarily startup/teardown of JVMs during
task initialization and termination, imbalance in last-task execution times).





Περίληψη

Παρόλο που οι Μηχανές Αναζήτησης ευρετηριάζουν τεράστιους όγκους ιστοσε-
λίδων (εγγράφων γενικότερα), για τις επερωτήσεις των χρηστών επιστρέφουν μόνο
μια γραμμική λίστα «επιτυχιών» (hits). Αν και αυτό να είναι ικανοποιητικό για τις
ανάγκες τις επικεντρωμένης αναζήτησης (focalized search), αυτού του τύπου οι απο-
κρίσεις δεν παρέχουν στο χρήστη ούτε εποπτεία των επιτυχιών, ούτε τη δυνατότητα
ευέλικτης εξερεύνησης τους, ούτε κάποια βαθύτερη ανάλυση των περιεχομένων τους.
΄Ενας τρόπος για παροχή προηγμένης πλοήγησης, και συνάμα αξιοποίησης των (σημα-
σιολογικά) δομημένων δεδομένων που είναι πλέον διαθέσιμα, είναι ο εμπλουτισμός της
διαδικασίας αναζήτησης με εξόρυξη οντοτήτων επί του περιεχομένου των επιτυχιών,
όπου οι οντότητες που μας ενδιαφέρουν μπορούν να προσδιοριστούν από σημασιολογι-
κές πηγές. Αυτός ο εμπλουτισμός δίνει στο χρήστη μια εποπτεία του πληροφοριακού
χώρου των επιτυχιών, η οποία επίσης του επιτρέπει τη σταδιακή μείωση τους ώστε να
μπορεί εκείνος να εντοπίσει τις επιθυμητές επιτυχίες, ακόμα και αν αυτές είναι πολύ
πίσω στην κατάταξη.
Σε αυτήν τη διατριβή θεωρούμε το γενικό σενάριο όπου αυτές οι υπηρεσίες προ-

σφέρονται ως μέτα-υπηρεσίες (ήτοι επί συστημάτων που προσφέρουν αναζήτηση μέσω
λέξεων κλειδιών), χωρίς να απαιτείται ο εκ των προτέρων ευρετηριασμός των υποκε-
ίμενων συλλογών εγγράφων. Για να κάνουμε εφικτή την παροχή τέτοιων υπηρεσιών
για μεγάλους όγκους αποτελεσμάτων, χρησιμοποιούμε το μοντέλο κατανεμημένου υ-
πολογισμού MapReduce επί μιας υποδομής Υπολογιστικού Νέφους (Amazon EC2).
Συγκεκριμένα δείχνουμε πως ο απαιτούμενος υπολογισμός μπορεί να παραγοντοποι-
ηθεί σε συναρτήσεις MapReduce και παρουσιάζουμε δυο διαφορετικές διαδικασίες
υπολογισμού, την «μονοκόμματη» (στο εξής SJ από το Single-Job) και την αλυσιδω-
τή (CJ , από το Chain-job). Επιπλέον, προσδιορίζουμε κριτήρια που καθορίζουν την
επιλογή και κατάταξη των ευρεθέντων οντοτήτων (συχνά πολυπληθείς).
Στη συνέχεια, αναφέρουμε εκτενή πειραματικά αποτελέσματα σχετικά με την ε-

πιτευχθείσα επιτάχυνση (speedup) σε διαφορετικές ρυθμίσεις. Δείχνουμε ότι με τη
διαδικασία SJ επιτυγχάνουμε επιτάχυνση η οποία είναι κοντά στην θεωρητικά βέλτι-
στη επιτάχυνση (2, 5−19, 7% χαμηλότερη από την θεωρητικά βέλτιστη για ένα σύνολο
δεδομένων 300MB και από 2 έως 8 Amazon EC2 VMs αντίστοιχα) και αναλύουμε
αυτή την απόκλιση. Ενδεικτικά, μπορούμε να επιτύχουμε επιτάχυνση έως και x6.4
με 8 EC2 VMs κατά την ανάλυση 4.365 επιτυχιών (που αντιστοιχούν σε 300MB)
με συνολικό χρόνο εκτέλεσης λιγότερο από 7 λεπτά (μια ανέφικτη διαδικασία από
ένα μόνο μηχάνημα λόγω των υψηλών απαιτήσεων, υπολογιστικών και μνήμης). Η
διαδικασία CJ παρουσιάζει κάπως χαμηλότερη κλιμακωσιμότητα σε σύγκριση με την
SJ (x5.66 στις 8 EC2 VMs) με μεγαλύτερο συνολικό χρόνο εκτέλεσης (περίπου 30
δευτερόλεπτα περισσότερο για ένα σύνολο δεδομένων 300MB), ο οποίος οφείλεται
στην επιβάρυνση από τη χρήση δύο αντί της μιας MapReduce διεργασίας. Από την
άλλη, ένα ποιοτικό πλεονέκτημα της διαδικασίας CJ (σε σύγκριση με την SJ) είναι
ότι προσφέρει μια γρήγορη προεπισκόπηση των αποτελεσμάτων της ανάλυσης.
Μια ακόμη σημαντική συνεισφορά αυτής της διατριβής είναι η εκτενής αξιολόγηση
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των θεμάτων διαμόρφωσης (configuration and tuning), μια διάσταση η οποία συχνά
παραβλέπεται ή δεν μελετάται επαρκώς, η οποία όμως είναι κρίσιμη για την επίδο-
ση και την καλή χρησιμοποίηση των πόρων γενικότερα. Δείξαμε ότι οι προτεινόμε-
νες διαδικασίες υπολογισμού χρησιμοποιούν βέλτιστα τους υπολογιστικούς πόρους
(πλήρης χρησιμοποίηση των διαθέσιμων CPU, αποτελεσματική κατανομή μνήμης), και
ότι δεν υπάρχει κάποια αδικαιολόγητη επιβάρυνση (π.χ. στη συλλογή απορριμμάτων
(GC), άσκοπα ξεκινήματα/τερματισμοί των JVMs, ποσοστό «ανισορροπίας» μεταξύ
του χρόνου ολοκλήρωσης των τελευταίων διαδικασιών, κ.α.).
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Chapter 1

Introduction

Although Web Search Engines index and provide access to huge amounts of doc-
uments, user queries typically return only a linear list of hits. While this is often
satisfactory for focalized search, it does not provide an exploration or deeper anal-
ysis of the results. One way to achieve a deeper analysis of the search results is to
perform name entity mining (for short NEM).

Entity search engines aim at providing the user with entities and relationships
between these entities, instead of providing the user with links to web pages. Al-
though this is an interesting line of research and there are already various entity
search engines and approaches [1, 2, 3], according to our opinion, these approach-
es/tools are still in their infancy in the sense that they are not really useful for the
common information needs of the users.

Several user studies [4, 5, 6] have shown that end-users see significant added
value in services that analyze and group the results (e.g. in categories, clusters,
etc) of keyword-based search engines. Such services help them to easier locate the
desired hits by initially providing them with an overview of the information space,
which can be further explored gradually in a faceted search-like interaction scheme
[7].

For those reasons, instead of radically changing the way users search for in-
formation, we propose a method [8] for enriching the classical interaction scheme
of search systems (keyword search over Web pages), with (Named) Entity Min-
ing (or NEM). Furthermore, we specify criteria that determine the selection and
ranking of the (often numerous) identified entities and we propose linking the iden-
tified entities with structured information about them that can reside in different
sources (e.g. in the Linked-Open Data (LOD) cloud, accessible through SPARQL
endpoints). Apart from identifying various ways for enriching the results of key-
word search systems with entity mining, we focus on providing this service over the
textual snippets of the search results at query time, i.e., without any pre-processing.

From an information integration point of view we could say that entity names
are used as the "glue" for automatically connecting documents with data (and
knowledge). This approach does not require deciding or designing an integrated
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schema/view (e.g. [9]), nor mappings between concepts as in knowledge bases (e.g.
[10, 11]), or mappings in the form of queries as in the case of databases (e.g. [12]).
The key point is that entities can be identified in documents, data, database cells,
metadata attributes and knowledge bases.

In this thesis we consider a general scenario where these services are provided
as meta-services, i.e. on top of systems that support keywords search (in our
implementation any system that supports OpenSearch [13] can be straightforwardly
be used). Figure 1.1 illustrates the process that we consider. The initial query is
forwarded to the underlying search system(s) and the results are retrieved; then
the URIs of the hits are used for downloading the full contents of the hits, over
which entity mining is performed. The named entities of interest can be specified
by external sources (e.g. by querying SPARQL endpoints). Finally, the identified
entities are ranked and enriched with semantic descriptions derived by querying
external SPARQL endpoints. The user can gradually restrict the derived answer
by clicking on the entities.

Faceted

Dynamic

Taxonomies

Enriched with 

semantic data

Web Search

System 

(e.g. Google)

The exploratory search process

query

query

top-K

results

Retrieve 

Results

Entity

Mining

top-K

results

Rank 

Entities

entities

SPARQL

queries
REPOSITORY

(entities of 

interest)

Download

full 

contents

(the LOD cloud)

Figure 1.1: The exploratory search process

The process described above is dynamic in nature: the user can set up the
desired underlying search system, the desired kind of entity types and the desired
entity list. For example, in one instance the user may request the analysis of results
coming from Google, where the entities of interest are person names, companies,
and locations. In another instance however, the user may request the analysis of
hits coming from bibliographic sources about the marine domain, where the entities
of interest are water areas, species, industries, and names of politicians.

Figure 1.2 shows an indicative screendump of the results from such a meta-
service. The right bar contains various frames for different entity categories (e.g.
Person, Organization, etc.) and in each of them the identified entities are shown
along with their number of occurrences. By clicking on an entity the user may
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Figure 1.2: An indicative screendump from a NEM process

restrict the answer to those hits that contain that entity. The restricted answer
can be further restricted by clicking on another entity, and so on. By clicking
the icon to the right of each entity the system shows a popup window containing
semantic information fetched and assembled from the LOD cloud. Furthermore,
the system, after user’s request, can apply mining over a desired hit and discover
all entities of that hit.

In a nutshell, in this thesis:

(a) we detail a novel combination of NEM technologies for enriching the classical
web (meta) searching process with entity mining performed at query time,
where the mined entities are exploited for offering faceted exploration, (which
is a type of knowledge base , or browsable summary),

(b) we outline the centralized algorithm for the NEM process,

(c) we elaborate on the ranking of entities and we report the results of a compar-
ative evaluation with users,

(d) we compare the results of NEM over document snippets versus NEM over
the full document contents according to various perspectives (mined entities,
computational cost),

(e) we show that applying NEM over the textual snippets of the top hits, where
the snippet of a hit consists of 10 to 20 words, produces results in real time,

(f) we show that extending NEM (without pre-processing) to the full contents of
the top-hits however, is either infeasible (due to the high computational and
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memory requirements) or can take hours to complete even for hundreds of
hits and thus we aim for a scalable methodology by exploiting MapReduce
distributed computation model to parallelize the NEM process,

(g) we outline two ways for distributing the NEM process onto MapReduce tasks
and examine ways to efficiently execute those tasks on the Apache Hadoop
MapReduce platform on EC2,

(h) we provide the required algorithms and discuss their requirements (e.g. in
terms of exchanged data),

(i) we execute the resulting tasks in a large public Cloud environment (the Amazon
Elastic Compute Cloud (EC2)),

(j) we establish analogies with other tasks (e.g. inverted index construction) and
report the difficulties that we encountered,

(k) we report the factors that affect performance and how to tune them for optimal
resource utilization, and

(l) finally we report extensive and comparative experimental results.

It is important to note when the application performs NEM over the full con-
tents, is demanding in a number of ways: First, it requires transferring (download-
ing) large amounts of data. Second, it is resource-intensive both computationally
(scanning and processing the downloaded contents) and in terms of memory con-
sumed. In fact, performing entity mining on several thousand hits (the scale of
queries considered in this thesis) using the sequential NEM procedure exceeds the
capabilities of any single Cloud VM, eventually leading to a crash. Finally, its par-
allelization requires methods that can balance the load (key to scalability) despite
the fact that the sizes of the downloaded contents are not known a-priori. While
significant attention must be paid to the specification of the MapReduce algorithms
that address the problem at hand, the complexity of appropriately configuring and
tuning the platform for efficient utilization of resources is often disregarded and
inadequately addressed in prior work. One of our key contributions in this thesis
is to thoroughly evaluate the parameter space of the underlying platform and to
explain how to best tune it for optimal execution. We believe that the methods
and results of this thesis are applicable to the parallelization and efficient execution
of other related applications.

The rest of this thesis is organized as follows. In Chapter 2 we discuss the mo-
tivation, context, and related work. In Chapter 3 we describe the centralized task
(architecture, entity-ranking, LOD-based enrichment), and in Chapter 4 we show
how it can be logically decomposed and expressed as MapReduce functions. In
Chapter 5 we detail the implementation of the MapReduce tasks and in Chapter 6
we report experimental results and in Chapter 7 we present the applications/pro-
totypes that we have designed and developed. Finally, in Chapter 8 we provide
our conclusions and discuss future work.



Chapter 2

Background and Related Work

2.1 Analysis of Search Results

2.1.1 Why is it Useful? Evidence from user studies

The analysis of search results is a useful feature as it has been shown by several user
studies. For instance, the results in [14] show that categorizing the search results
improves the search speed and increases the accuracy of the selected results. The
user study [15] shows that categories are successfully used as part of users’ search
habits. Specifically, users are able to access results that are located far in the rank
order list and formulate simpler queries in order to find the needed results. In
addition, the categories are beneficial when more than one result is needed like in
an exploratory or undirected search task. According to [6] and [5], recall-oriented
information can play an important role not only in understanding an information
space, but also in helping users select promising sub-topics for further exploration.

Recognizing entities and grouping hits with respect to entities is not only useful
to public web search, but is also particularly useful in professional search that is,
search in the workplace, e.g. in industrial research and development [16]. The user
study [4] indicated that categorizing dynamically the results of a search process
in a medical search system provides an organization of the results that is clearer,
easier to use, more precise, and in general more helpful than the simple relevance
ranking. As another example, in professional patent search, in many cases one has
to look beyond keywords to find and analyse patents based on a more sophisticated
understanding of the patent’s content and meaning [17]. We should also stress that
professional search sometimes requires a long time. For instance, in the domain
of patent search, the persons working in patent offices spend days for a particular
patent search request. The same happens in bibliographic and medical search.

Technologies such as entity identification and analysis could become a signifi-
cant aid to such searches and can be seen, together with other text analysis tech-
nologies, as becoming the cutting edge of information retrieval science [18]. Anal-
ogous results have been reported for search over collections of structured artifacts,
e.g. ontologies. For instance, [19] showed that making explicit the relationships

7
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between ontologies and using them to structure (or categorize) the results of a
Semantic Web Search Engine led to a more efficient ontology search process.

Finally, the usefulness of the various analysis services (over search results) is
subject of current research, e.g. [20] comparatively evaluates clustering versus
diversification services.

2.1.2 Past Work on Entity Mining over Search Results

There are several approaches that could be used in order to enrich the classical
web searching with NEM. Some of them are described below.

RS: Real-time NEM over the Snippets of the top hits of the answer.
Here entity mining is performed only over the snippets of the top hits of the returned
answer.

QC: Query-time NEM over the Contents of the top hits of the answer.
Here the full contents of the top hits of the returned answer are downloaded and
then entity mining is performed. Clearly, this process can take much more time
than RS.

OC: Off-line NEM over the entire Corpus.
Here we mine all entities of the corpus offline (assuming that the corpus is avail-
able), and we build an appropriate index (or database) for using it at run time. For
each incoming query, the entities of the top-K (e.g. K = 100) hits of the answer
are fetched from the index, and are given to the user. An important observation
is that the size of the entity index in the worst case could be in the scale of the
corpus. Also note that this approach cannot be applied at meta (uncooperative)
search level.

OFQ: Offline NEM over the top hits of the answers of the Frequent

Queries. Here, also offline, for each frequent query of the log file (e.g. for those
which are used for query suggestion), we compute its answer, we fetch the top-K
hits, we apply NEM and save its results as they should be shown (i.e. what the
left bar should show) using the approach and indexes described at [21, 22]. The
benefit of this approach in comparison to OC is that here we do not have to ap-
ply NEM at the entire collection but only at the top hits of the most frequent
queries. This significantly reduces the required computational effort and storage
space. The downside of this approach is that if a user submits a query which does
not belong to the frequent queries, and thus it has not been processed, then the
system cannot offer entities. In that case the system could offer the choice to the
user to apply NEM at query time, i.e. approach RS or QC as described earlier.
Finally, we should note that this approach is applicable also at a meta search level,
but periodically the index has to be refreshed (mainly incrementally).

There is a plethora of related works and systems that offer a kind of entity
search. We should clarify that the various Entity Search Engines are not directly
related to this thesis, since they aim at providing the user only with entities and
relationships between these entities (not links to web pages); instead we focus on
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enriching classical web searching with entity mining. Below we describe in brief a
few of them.

The Entity Search Engine [1, 23, 24] supports only two categories (phone and
email) and users have to type formatted queries (using # to denote entities). NEM
is applied over the entire corpus and the extracted entities are stored in the form
of ordered lists based on document ID (much like storing inverted indices for key-
words), in order to provide their results instantly.

EntityCube [25] is an entity search engine by Mircosoft which extracts entities
and relationships from semi-structured as well as natural-language Web sources.
The goal is to automatically construct and maintain a knowledge base of facts
about named entities, their semantic classes, and their mutual relations as well as
temporal contexts.

MediaFaces [2, 26] provides faceted exploration of media collections and offers a
machine learned ranking of entity facets based on user click feedback and features
extracted from three different ranking sources. For a given entity of interest, they
have collected (from knowledge bases like Wikipedia and GeoPlanet) a large pool
of related candidate facets (actually related entities).

Google’s Knowledge Graph [27] tries to understand the user’s query and to
present (on the fly) a semantic description of what the user is probably searching,
actually information about one entity. In comparison to our approach, Google’s
Knowledge Graph is not appropriate for recall-oriented search since it shows only
one entity instead of identifying and showing entities in the search results. Fur-
thermore if the user’s query is not a known entity, the user does not get any entity
or semantic description.

In addition, works on query expansion using lexical resources (thesauri, ontolo-
gies, etc), or other methods that exploit named entities for improving search (e.g.
[3, 28]) are out the scope of this thesis, since we focus on (meta-)services that can
be applied on top of search results.

With respect to the approaches RS, QC, OC and OFQ described earlier, most
systems follow approach OC, while the only system that offers OFQ is [22]. To
the best of our knowledge the current work is the first that investigates the RS
approach; and the QC by exploiting the scalability of the MapReduce framework
over distributed Cloud computing resources.

2.2 MapReduce and Summarization of Big Data

MapReduce [29, 30, 31, 32] is a popular distributed computation framework widely
applied to large scale data-intensive processing, primarily in the so-called big-data
domain. Big-data applications analyzing data of the order of terabytes are fairly
common today. In MapReduce, processing is carried out in two phases, a map fol-
lowed by a reduce phase. For each phase, a set of tasks executing user-defined map
and reduce functions are executed in parallel. The former perform a user-defined
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operation over an arbitrary part of the input and partition the data, while the
latter perform a user-defined operation on each partition. MapReduce is designed
to operate over key/value pairs. Specifically, each Map function receives a key/-
value pair and emits a set of key/value pairs. Subsequently, all key/value pairs
produced during the map phase are grouped by their key and passed (shuffled to
the appropriate tasks and sorted) to the reduce phase. During the reduce phase,
a reduce function is called for each unique key, processing the corresponding set of
values.

Recently, several works have been proposed for exploiting the advantages of this
programming model [33, 34, 35, 36, 37], impacting a wide spectrum of areas like
information retrieval [33, 38, 39, 40], scientific simulation [33], image processing
[32], distributed co-clustering [41], latent dirichlet allocation [42], nearest neigh-
bours queries [43], and the Semantic Web [44] (e.g. from storing/retrieving the
increasing amount of RDF data1[34] to distributed querying [37] and reasoning
[35, 36]).

Previous work by Li et al. [45] on optimally tuning MapReduce platforms con-
tributed an analytical model of I/O overheads for MapReduce jobs performing
incremental one-pass analytics. Although their model does not predict total exe-
cution time, it is useful in identifying three key parameters for tuning performance:
chunk size (amount of work assigned to each map task); external sort-merge behav-
ior; number of reducers. An important difference with our work is that their model
does not capture resource requirements of the mapper function, a key concern for
us due to the high memory requirements of our NEM engine. Additionally, Li et
al. assume that the input chunk size is known a-priori and thus they can predict
mapper memory requirements, whereas in our case it is not. Another difference is
that Li et al. do not address JVM configuration parameters (such as heap size,
reusability across task executions) that are of critical importance: our evaluation
shows that incorrectly sizing JVM heap size (such as using default values) leads to a
crash; reusing JVMs across task executions can improve execution time by a factor
up to 3.3. Our work thus contributes to the state of the art in MapReduce platform
tuning by focusing on resource-intensive map tasks whose input requirements are
not a-priori known.

2.2.1 Summarization of Big Data

MapReduce has also been used for producing summaries of big data (such as his-
tograms [46]) over which other data analytics tasks can be executed in a more
scalable and efficient manner (e.g. see [47]).

This thesis relates to data summarization in two key aspects:
First, the output of our analysis over the full search results can be considered a
summarization task over text data appropriate for exploration by human users.
Text summarization has been investigated by the Natural Language Processing

1 By September 2011, datasets from Linked Open Data (http://linkeddata.org/) had grown
to 31 billion RDF triples, interlinked by around 504 million RDF links.
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(NLP) community for nearly the last half century (see [48, 49] for a survey). Vari-
ous techniques and methods have been derived for identifying the important words
or phrases, either for single documents or for multiple documents. In the landscape
of such techniques, the summarizations that we focus on are entity-based, concern
multiple documents (not single document summarization), and are topic-driven
with respect to ranking, and generic with respect to the set of identified entities.
They are topic-driven since they are based on the search results of a submitted
query (that expresses the desired topic) and the entities occurring in the first hits
are promoted. However, since we process the entire contents (not only the short
query-dependent snippets of the hits), the produced summary for each document is
generic (not query-oriented). The extra information that is mined in this way gives
a better overview and can be used from the users for further exploration. Moreover,
as we will see later on Section 3.4, we identify various levels of functionality each
characterizing the analyzed content at different levels of detail, and consequently
enable different post-processing tasks by the users (just overviews versus the ability
to also explore and restrict the answer based on the produced summary/index).
To the best of our knowledge, such summaries have not been studied in the past.
Moreover, the fact that they configurable (one can specify the desired set of cate-
gories, entity lists, etc), allows adapting them to the needs of the task at hand; this
is important since there is not any universal strategy for evaluating automatically
produced summaries of documents [48].

Second, our implementations perform a first summarization pass over the full
search results to (i) analyze a small sample of the documents and provide the end-
user a quick preview of the complete analysis; and (ii) collect the sizes of all files
and use them in the second (full) pass to better partition that data set achieving
better load balancing.

2.3 Cloud Computing

MapReduce is often associated with another important trend in distributed com-
puting, the model of Cloud computing [50, 51]. Cloud computing refers to a service-
oriented utility-based model of resource allocation and use. It leverages virtual-
ization technologies to improve the utilization of a private or publicly-accessible
datacenter infrastructure. Large Cloud providers (such as Amazon Web Services,
used in the evaluation of our systems) operate out of several large-scale datacenters
and thus can offer applications the illusion of infinite resource availability. Cloud-
based applications typically feature elasticity mechanisms, namely the ability to
scale-up or down their resource use depending on user demand. MapReduce fits
well this model since it is highly parametrized and can be configured to use as many
resources as an administrator deems cost-effective for a particular job. Given the
importance of Cloud computing for large-scale MapReduce implementations, we
deploy and evaluate our system on a commercial Cloud provider so that our results
are representative of those in a real-world deployment of our service.
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Chapter 3

The Centralized Process

Recalling the exploratory search process described at a high level and depicted in
Figures 1.1 and 1.2, we will now describe a centralized (non-parallel) version of the
process in more detail. The process consists of the following general steps:

• Get the top HK (e.g. HK=200) results of a (keyword) search query

• Download the contents of the hits and mine their entities

• Group the entities according to their categories and rank them

• Exploit Semantic Data (the LOD cloud) for semantically enriching the top-
EK (e.g. EK=50) entities of each category (also for configuring step 2), and

• Exploit the entities in faceted search-like (session-based) interaction scheme
with the user.

This process can also support classical metadata-based faceted search and ex-
ploration [7] by considering categories that correspond to metadata attributes (e.g.
date, type, language, etc). Loading such metadata is not expensive (in contrast to
applying NEM over the full contents) as they are either ready (and external) to
the document or the embedded metadata can be extracted fast (e.g. as in [52]).
Therefore we do not further consider them in this thesis.

In what follows we first introduce notations and elaborate on the ranking of
entities (Section 3.1), we show how to exploit the Linked Open Data (Section 3.2),
and then describe the steps of the above process in more detail (Section 3.3), and
distinguish various levels of functionality (Section 3.4). Next, in Chapter 4 we
describe the parallelization of this process using the MapReduce framework.

3.1 Notations and Entity Ranking

Let D be the set of all documents and C the set of all supported categories, e.g.
C = {Locations, Persons, Organizations, Events}. Considering a query q, let A

13
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be the set of returned hits (or the top-HK hits of the answer), and let Ec be the
set of entities that have been identified and fall in a category c ∈ C.

Entity Ranking

Entity selection and ranking is important since usually the UI has limited space
therefore only a few can be shown at the beginning. We propose tackling this
problem by (a) ranking all identified entities for deciding the top-10 entities to be
shown for each category, and (b) offer to user the ability to show more entities
(all) on demand. Below we focus on ranking methods that do not rely on any log
analysis, so they are aligned with the dynamic nature of our approach.

We need a method to rank the elements of Ec. One approach is to count the
elements of A in which the entity appears, i.e. its frequency. Furthermore, we
can take into account the rank of the documents that contain that entity in order
to promote those entities that are identified in more highly ranked documents
(otherwise an entity occurring in the first two hits will receive the same score as
one occurring in the last two). For an a ∈ A, let rank(a) be its position in the
answer (the first hit has rank equal to 1, the second 2, and so on). We can capture
this requirement by a formula of the form:

Scorerank(e) =
∑

a∈docs(e)

((|A|+ 1)− rank(a)) (3.1)

We can see that an occurrence of e in the first hit, counts |A|, while an occur-
rence in the last document of the answer counts for 1.

Another approach is to take into account the words of the entity name and the
query string. If for an entity e ∈ E, we denote by w(e) the words of its name, and

by w(q) the words of the query, then we can define Scorename(q, e) =
|w(q)∩w(e)|

|w(e)| .

To tolerate small differences (due to typos or lexical variations), we can define an
alternative scoring function that is based on the Edit Distance:

ScorenameDist(q, e) =
|{ a ∈ w(q) | ∃b ∈ w(e), EDist(a, b) ≤ 2}|

|w(q)|
(3.2)

which returns the percentage of the words of q which can be “matched" to one
word of the entity e either exactly or up to an Edit distance equal to 2.

The above scores can be combined to reach a final score that considers both
perspectives. We can adopt the harmonic mean for promoting those entities which
have high scores in both perspectives. However notice that if an entity has not
any query word (or a word that is close to a query word), that entity would take
zero at Scorename and that would zero also the harmonic mean. One approach
to tackle this problem is to compute the plain (instead of the harmonic) mean, or
in place of ScorenameDist(q, e) to have the sum ScorenameDist(q, e) + b for a very
small positive constant b (e.g. b = 0.01).

Score(q, e) =
2 Scorerank(q, e) ScorenameDist(q, e)

Scorerank(q, e) + ScorenameDist(q, e)
(3.3)
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3.2 On Exploiting Linked Open Data

In this Section we provide some information on how to exploit the Linked Open
Data (LOD) in order to enrich the identified entities with more information; a
procedure that was proposed at [8].

There are already vast amounts of structured information published according
to the principles of (LOD). The availability of such datasets enables the enrichment
of the identified entities with more information about them. In this way the user
not only can get useful information about one entity without having to submit a
new query, but he can also start browsing the entities that are linked to that entity.

Another important point is that exploiting LOD is more dynamic, affordable
and feasible, than an approach that requires each search system to keep stored and
maintain its own knowledge base of entities and facts. Returning to our setting, the
first rising question is which LOD dataset(s) to use. One approach is to identify
and specify one or more appropriate datasets for each category of entities. For ex-
ample, for entities in category “Location”, the GeoNames [53] dataset is ideal since
it offers access to millions of placenames. Furthermore, DBpedia [54] is appropriate
for multiple categories such as “Organizations”, “People” and “Locations”. Other
sources that could be used include: FreeBase [55] (for persons, places and things),
YAGO [56] (for Wikipedia, WordNet and GeoNames). In addition FactForge[57]
includes 8 LOD datasets (including DBpedia, Freebase, Geonames, UMBEL, Word-
net). DBpedia and FactForge offer access through SPARQL endpoints [58, 59].

Running one (SPARQL) query for each entity would be a very expensive task,
especially if the system has discovered a lot of entities. Some possible ways to
tackle this problem are: (a) offer this service on demand, (b) for the frequent
queries pay this cost at pre-processing time and exploit the results as described in
[21, 22], (c) periodically retrieve and store locally all entities of each category, so
at real time only a matching process is required (however here we have increased
space and maintenance requirements). Note however that approach (c) is essen-
tially the approach of our prototype (even though no Linked Data are used), since
the Gazetteers of GateAnnie that we use include names of persons (11,974), or-
ganizations (8,544), and locations (29,984); in total about 50,502 names are used
in our setting. Furthermore, lists of prefixes and postfixes are contained that aid
the identification of entities (e.g. from a phrase “Web inventor Tim Berners-Lee",
it recognizes “Tim Berners-Lee" as a person due to the prefix “inventor"). So the
essential difference could be the following: instead of having a NEM component
that contains predefined named lists/rules, it is beneficial (certainly from an archi-
tectural point of view) to offer the ability to the system to download the required
lists (from the constantly evolving LOD) that are appropriate for the application
at hand.
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3.2.1 Case Study: Fisheries and Aquaculture publications

Apart from the case of general purpose Web searching, we have started investigat-
ing this approach in vertical search scenarios. One of this is the domain of FAO
(Food and Agriculture Organization) publications about fisheries and aquaculture.
The underlying keyword search system is the FIGIS search component [60] which
can receive queries through an HTTP API. The search result apart from formatted
HTML can be returned in XML format which uses Dublin Core schema to encap-
sulate bibliographic information. Each returned hit has various textual elements,
including publication title and abstract. The first is around 9 words, the second
cannot go beyond 3,000 characters. As concern NEM, we identified the following
relevant categories: Countries, Water Areas, Regional Fisheries Bodies, and Ma-
rine Species. For each one there is a list of entities: 240 countries, 28 water areas,
47 regional fisheries bodies and 8,277 marine species, in total 8,592 names. Each
such entity is also described and mutually networked in the Fisheries Linked Open
Data (FLOD) RDF dataset. FLOD extended network of entities is exposed via a
public SPARQL endpoint and web based services.

Figure 3.1: A prototype over FAO publications with links to FLOD

The objective is to investigate how to enrich keyword search with entity mining
where the identified entities are linked to entities in FLOD endpoint, and from
which semantic description can be created and served. A screendump of this pro-
totype is shown in Figure 3.1.

3.3 The Centralized Algorithm

Using the notation introduced above, a centralized (non-parallel) algorithm for the
general exploratory search process (steps 1-5) described in Chapter 3 is provided
below (Algorithm 1). For brevity, the initialization of variables (0 for integer-valued
and ∅ for set-valued attributes respectively) has been omitted. The algorithm takes
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as input the query string q, the number HK of top hits to analyze, and the number
EK of top entities to show for each category. Its results is a set of tuples, each
tuple describing one entity and consisting of 6 values: category, entity name, entity
count, entity score, entity occurrences (doc list), entity’s semantic description.

Algorithm 1 Centralized algorithm

1: function DoTask(Query q, Int HK,EK)
2: A = Ans(q,HK) ⊲ Get the top HK hits of the answer
3: for all i = 1 to HK do

4: d = download(A[i]) ⊲ Download the contents of hit i
5: outcome = nem(d) ⊲ Apply NEM on d

6: for all (e, c) ∈ outcome do

7: AC = AC ∪ {c} ⊲ Update active categories
8: e.score(c)+ = i ⊲ Update the score of e wrt c
9: e.count(c)+ = 1 ⊲ Update the count of e wrt c

10: e.doclist(c)∪ = {A[i]} ⊲ Update the (e, c) doclist

11: for all c ∈ AC do ⊲ For each (active) category
12: c.elist = top-EK entities after sorting wrt ∗.score(c)
13: for all e ∈ c.elist do ⊲ LOD-based sem. enrichment
14: if e.semd=empty then

15: e.semd=queryLOD(e)

16: return {(c, e, e.count(c), e.score(c), e.doclist(c), e.semd) | c ∈ AC, e ∈ c.elist}

For clarity, we have used a simplified scoring formula in Alg. 1. To use the
exact entity ranking method described at equation 3.1, line 8 should be replaced
with e.score(c)+ = (HK + 1)− i.

3.4 Levels of Functionality

Algorithm 1 can be seen as providing different levels of functionality, from minimal
to full, each with different computational requirements and progressively richer
post-processing tasks. The minimal level functionality (or L0) identifies only cate-
gories and their entities. The next level (L1) contains the results of L0 plus count
information of the identified entities (what is usually called histogram). The next
level (L2) extends the results of L1 with the ranking of entities using the method
described earlier. Level L3 additionally includes the computation of the document
list for each entity. The results of L3 allow the gradual restriction process by the
user. Level L4 or full functionality further enriches the identified entities with their
semantic description. Algorithm 1 corresponds to L4.

Each level produces a different kind of summary, capturing different features
of the underlying contents and enabling different tasks to be applied over it. The
parameters HK and EK can be used to control the size of the corpus covered by
the summary, and the desired number of entities to identify.

Note that instead of applying this process over the set A (the top-HK hits
returned by the underlying search system(s)) one could apply it over the set of
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all documents D, if that set is available. This scenario corresponds to the case
where one wants to construct (usually offline) an entity-based index of a collection.
Consequently, the parallelization that we will propose in the next sections, could
also be used for speeding up the construction of such an index. The extra time
required in this case is only the time needed for storing the results of the process in
files. Moreover, in that scenario the collection is usually available, thus there is no
cost for downloading it. However, our original motivation and focus is to provide
these services at meta-level and at query time, which is more challenging.



Chapter 4

Parallelization

In this section we describe a parallel version of Algorithm 1 and then adapt it to
the MapReduce framework (Section 4.1). Note that our exposition here focuses on
algorithmic issues. We will describe our MapReduce implementations in Chapter 5.

The main idea is to partition the computation performed by Algorithm 1 by
documents. Let AP = {A1, . . . , Az} be a partition of A, i.e. A1∪ . . .∪Az = A, and
if i 6= j then Ai ∩ Aj = ∅. The downloading of A can be parallelized by assigning
to each node ni the responsibility to download a slice Ai of the partition. The
same partitioning can be applied to the NEM analysis, namely ni will apply NEM
over the contents of the docs in Ai. Other tasks in Algorithm 1 however are not
independent as they operate on global (aggregated) information. This is true for
the collection of the active categories (AC), the collection of entities falling in each
category of AC, the count information for each entity of a category, the doc list of
each entity of category. While the task of getting the semantic description of an
entity is independent, the same entity may be identified by the docs assigned to
several nodes (so redundant computation can take place).

In more detail, instead of having one node responsible for all 1, . . . ,HK doc-
uments, we can have z nodes responsible for parts of the documents: the first
node for 1, . . . ,HK1, the second for HK1, . . . ,HK2, and so on, and the last for
HKz−1, . . . ,HK. Algorithm 2 (DoSubTask) is the part of the computation that
each such node should execute, a straightforward part this is essentially similar to
the previous algorithm. In line (3) the algorithm assumes access to a table A[]
holding the locators (e.g. URLs) of the documents. Alternatively, the values in the
cells A[LowK]−A[HighK] can be passed as a parameter to the algorithm.

Having seen how to create z parallel subtasks, we will now discuss how the
results of those subtasks can be aggregated. Note that entity ranking requires
aggregated information while the semantic enrichment of the identified entities can
be done after ranking. This will allow us to pay this cost for the top-ranked entities
only (recall the parameter EK of Algorithm 1), that is those entities that have to
be shown at the UI. Semantic enrichment for the rest can be performed on demand,
only if the user decides to expand the entity list of a category.
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Algorithm 2 Algorithm for a set of document

1: function DoSubTask(Int LowK,HighK)
2: for all i = LowK to HighK do

3: d = download(A[i]) ⊲ Download the contents of hit i
4: outcome = nem(d) ⊲ Applies NEM on d

5: for all (e, c) ∈ outcome do

6: AC = AC ∪ {c} ⊲ Update active categories
7: e.score(c)+ = i ⊲ Update the score of e wrt c
8: e.count(c)+ = 1 ⊲ Update the count of e wrt c
9: e.doclist(c)∪ = {A[i]} ⊲ Update the (e, c) doclist

10: return {(c, e, e.count(c), e.score(c), e.doclist(c)) | c ∈ AC, e ∈ c.elist}

The aggregation required for entity ranking can be performed by Algorithm
3 (AggregateSubTask). This algorithm assumes that a single node receives the
results from all nodes and performs the final aggregation.

Algorithm 3 Aggregation Function for all categories

1: function AggregateSubTask(...)
2: Concatenate the results of all SubTasks in a table TABLE
3: AC = { c | (c, ∗, ∗, ∗, ∗) ∈ TABLE}
4: for all c ∈ AC do ⊲ For each (active) category
5: c.entities = { e | (c, e, ∗, ∗, ∗) ∈ TABLE}
6: for all e ∈ c.entities do

7: e.count(c) =
∑

{ cnt | (c, e, cnt, ∗, ∗) ∈ TABLE}
8: e.score(c) =

∑
{ s | (c, e, ∗, s, ∗) ∈ TABLE}

9: e.doclist(c) = ∪{ dl | (c, e, ∗, ∗, dl) ∈ TABLE}

10: c.elist = top-EK entities after sorting wrt ∗.score(c)
11: for all e ∈ c.elist do ⊲ LOD-based sem. enrichment
12: if e.semd =empty then

13: e.semd=queryLOD(e)

14: return {(c, e, e.count(c), e.score(c), e.doclist(c), e.semd) | c ∈ AC, e ∈ c.elist}

The aggregation task can be parallelized straightforwardly by dividing the
work by categories, i.e. use |AC| nodes to each aggregate the results of one
category (essentially each will contribute one “rectangle" of information at the
final GUI like the one shown in Figure 1.2). This is sketched in Algorithm 4
(AggregateByCategory). Notice that the count information produced by the re-
duction phase is correct (i.e. equal to the count produced by the centralized algo-
rithm), because a document is the responsibility of only one mapper. The ranking
of the entities of each category is correct because Algorithm 2 takes as parameters
the LowK and HighK and uses them in the for loop and line (7).

A concise version of Algorithm 3 (AggregateSubTask) that exploits Algorithm
4 (AggregateByCategory) is given in Algorithm 5 (AggregateSubTaskConcise).
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Algorithm 4 Aggregation Function for one category

1: function AggregateByCategory(Category c)
2: Merge the results of all SubTasks that concern c in a table TABLE
3: c.entities = { e | (c, e, ∗, ∗, ∗) ∈ TABLE}
4: for all e ∈ c.entities do

5: e.count(c) =
∑

{ cnt | (c, e, cnt, ∗, ∗) ∈ TABLE}
6: e.score(c) =

∑
{ s | (c, e, ∗, s, ∗) ∈ TABLE}

7: e.doclist(c) = ∪{ dl | (c, e, ∗, ∗, dl) ∈ TABLE}

8: c.elist = top-EK entities after sorting wrt ∗.score(c)
9: for all e ∈ c.elist do ⊲ LOD-based semantic enrichment

10: if e.semd =empty then

11: e.semd=queryLOD(e)

12: return {(c, e, e.count(c), e.score(c), e.doclist(c), e.semd) | c ∈ AC, e ∈ c.elist}

Algorithm 5 Aggregation Function for all categories (Concise version of Alg. 3
that exploits Alg. 4)

1: function AggregateSubTaskConcise(...) ⊲ ..
2: Merge the results of all SubTasks in a table TABLE
3: AC = { c | (c, ∗, ∗, ∗, ∗) ∈ TABLE}
4: for all c ∈ AC do ⊲ For each (active) category
5: AggregateByCategory(c)

6: return {(c, e, e.count(c), e.score(c), e.doclist(c), e.semd) | c ∈ AC, e ∈ c.elist}

4.1 Adaptation for MapReduce

In this section we cast the above algorithms in the MapReduce programming style,
whose key concepts were introduced in Section 2.2. From a logical point of view, if
we ignore entity ranking, count information and doclists, the core task of Algorithm
1 becomes the computation of the function nem : A → E ×C. Using MapReduce,
the mapping phase partitions the set A to z blocks and assigns to each node i
the responsibility of computing a function nemi : Ai → E × C. The original
function nem can be derived by taking the union of the partial functions, i.e.
nem = nm1 ∪ . . . ∪ nmz. Mapper tasks therefore carry out the downloading and
mining tasks for their assigned set Ai. Note that the partitioning A → {A1, . . . , Az}
should be done in a way that balances the work load. Methods to achieve this will
be described in Chapter 5. One or more reducer tasks will aggregate the results by
category, as described earlier, and a final reducer will combine the results of the
|C| reducers. The correspondence with MapReduce terminology is depicted in the
following table:
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Figure 4.1: Example of distributed NEM processing using MapReduce

Algorithms MapReduce functions

Alg. 2 DoSubTask Map
Alg. 2 return emit (with key c, value the rest parts of the tu-

ples)
Alg. 4 AggregateByCategory Reduce(params: key c, and value the rest parts

of tuples)
Alg. 4 return emit (with key c, value the rest parts of the tu-

ples)

Mapper tasks executing Algorithm 2 are emitting (key, value) pairs grouped
by category. MapReduce ensures that all pairs with the same key are handled
by the same reducer. This means that line (2) of Algorithm 4 is implemented
automatically by the MapReduce platform. The platform actually provides an
iterator over the results of all subTasks that concern c in a Table TABLE. Figure
4.1 sketches the performed computations and the basic flow of control for a query.



4.1. ADAPTATION FOR MAPREDUCE 23

4.1.1 Amount of Exchanged Information

In this section we estimate the amount of information that must be exchanged
in our MapReduce procedure over network communication. NEM could be used
for mining all possible entities, or just the named entities in a predefined list. In
the extreme case, the entities that occur in a document are in the order of the
number of its words. Another option it to mine only the statistically important
entities of a document. If dasz denotes the average size in words of a document
in D, then the average size of the mined entities per document is in O(dasz). A
node assigned a subcollection Di (Di ⊆ D) will communicate to the corresponding
reducers data with size in O(|Di|dasz). Therefore, the total amount of information
communicated over the network for performing mining over the contents of an
answer A is in O(|A|dasz). If the set of entities of interest E is predefined and a-
priori known, then the above quantity can be expressed as |A||E|, so in general, the
amount of communicated data is in O(|A|min(dasz, |E|)). Note that if the entities
have only count information and no document lists (functionality L2 described in
Section 3.4) then the exchanged information is significantly lower, specifically it is
in O(zmin(dasz , |E|)) where z is the number of partitions. This is because each of
the z nodes has to send at most dasz (or |E|) entities.

4.1.2 An Analogy to Inverted Files

Suppose that the answer A is not ranked, and thus the entities are ranked by
their count. In this case the results of our task resemble the construction of an
Inverted File (IF), otherwise called Inverted Index, for the documents in A where
the vocabulary of that index is the list of entities of interest (i.e. the set E).

The fact that we have |C| categories is analogous to having |C| vocabularies,
i.e. as if we have to create |C| inverted files. The count information of an entity
for a category c (e.count(c)) corresponds to the document frequency (df) of that
IF, while the doclist of each entity (e.doclist(c)) corresponds to the posting list
(consisting of document identifiers only, not tf ∗ idf weights) of an IF. This anal-
ogy reveals the fact that the size of the output can be very large. An important
difference with MapReduce-based IF construction [33] is that our task is more CPU
and memory intensive. Besides the cost of initializing the NEM component (de-
scribed in more detail in Section 5.2.1), entity mining requires performing lookups,
checking rules, running finite state algorithms etc.
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Chapter 5

Implementation of Parallelized

Process

This section describes the MapReduce platform in more detail and outlines two
MapReduce procedures to perform scalable entity mining at query time over the
full search contents. It also highlights the key factors that affect performance.
An important objective guiding our implementation is to achieve effective load
balancing of work across the available resources in order to ensure scalable behavior.

5.1 MapReduce Platform: Apache Hadoop

Our implementation uses Apache Hadoop [61] version 1.0.3, an open-source Java
implementation of the MapReduce [30] framework. MapReduce supports a specific
model of concurrent programming expressed as map and reduce functions, executed
by mapper and reducer tasks respectively. A mapper receives a set of tuples, in the
form (key, value), and produces another set of tuples. A reducer receives all tuples
(outputs of a mapper) within a given subset of the key space.

Hadoop provides runtime support for the execution of MapReduce jobs han-
dling issues such as task scheduling and placement, data transfer, and error man-
agement, on clusters of commodity (possibly virtual) machines. Hadoop deploys a
JobTracker to manage the execution of all tasks within a job, and a TaskTracker in
each cluster node to manage the execution of tasks on that node. It uses the HDFS
distributed file system to store input and output files. HDFS stores replicas of file
blocks in DataNodes and uses a NameNode to store metadata. HDFS DataNodes
are typically collocated with TaskTracker nodes, providing a direct (local) path
between mapper and reducer tasks and input and output file replicas.

5.2 MapReduce Procedures

We have identified two important challenges that must be addressed in our MapRe-
duce implementation: (i) distributing documents to be processed by NEM tasks

25
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is complicated by the fact that important information, such as content size of the
hits, is not known a-priori; and (ii) even with excellent scalability, the end-user
may not want to wait for the entire job to complete, preferring a quick preview
followed by a complete analysis. We have thus experimented with two different
MapReduce procedures: a straightforward implementation (oblivious to (i), (ii))
focusing on scalability, and a more sophisticated implementation taking (i) and (ii)
into account. The former is the single-job procedure, in which partitioning of work
to tasks is done without taking document sizes into account (since the documents
are downloaded after the work has been assigned to tasks). The latter is the chain-
job procedure, in which a first job downloads the documents (and thus determines
their sizes) and performs some preliminary entity-mining (producing the preview),
while a second job (chained with the first) continues the mining over size-aware
partitions of the contents to produce the complete NEM analysis.

5.2.1 Single-job procedure

The single-job procedure comprises a first stage that queries a search engine to
receive the hits to be processed and prepares the distribution to tasks, followed by a
second stage of the MapReduce job itself, both shown in Figure 5.1. A Master node
(where the JobTracker executes) performs preliminary processing. First it queries
a Web Search Engine (WSE), which returns a set of titles, URLs, and snippets.
Next, the Master tries to determine the URL content length in order to better
balance the downloading and processing of URL contents in the MapReduce job.
One way to achieve this is to perform an HTTP HEAD request for each URL prior
to downloading it. Unfortunately, our experiments showed that HEAD requests
often do not report correct information about content length (they are correct in
only 9%-30% of the time). In cases of missing/incorrect information, we resort to
assigning URL content length to the median size of web pages reported by Google
developers [62]. Therefore we consider that the single-job procedure is practically
oblivious to a-priori knowledge of URL content sizes.

Whether we have approximate (single-job procedure) or accurate (chain-job
procedure described in Section 5.2.2) content sizes, we split work to tasks as follows:
First, we sort documents in descending order (based on content length) in a stack
data structure and compute the aggregated content length of all search results.
Then we compute the number of work units (or splits) to be created as (aggregated
content length) / (target split size), where target split size is an upper bound for the
amount of document data (MB) to be assigned to each task. We investigate the
impact of split size on performance in Section 6.2.5. When not stated otherwise
we use a target split size of 1.5MB. Our process repeatedly pops the top of the
stack and inserts it to the split with the minimum total size, until the stack is
empty. When the assignment of URLs is complete, the produced splits are stored
in HDFS.

At the second stage of the single-job procedure (Figure 5.1) a number of mapper
tasks are created on a number of JVMs hosted by Cloud VMs. JVM configuration
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and number of JVMs per VM are key parameters that are further discussed in
Sections 5.3 and 6.2. The operation of each mapper is depicted in Figure 5.2.
Besides the creation of appropriate-size splits, we are taking care to determine the
order of task execution for optimal resource utililization. Taking into account the
fact that our datasets typically include a few large documents (Section 6.2.2) we
schedule the corresponding long tasks early in the job to increase the degree of
overlap with other tasks.

We use the GATE [63, 64] component for performing NEM processing. GATE
relies on finite state algorithms and the JAPE (regular expressions over annota-
tions) language [65]. Our installation of GATE consists of various components,
such as the Unicode Tokeniser (for splitting text into simple tokens such as num-
bers, punctuation and words), the Gazetteer (predefined lists of entity names), and
the Sentence Splitter (for segmenting text into sentences). GATE typically spends
about 12 seconds initializing before it is ready for processing documents. This time
is spent among other things in loading various artifacts such as lists of entities, ex-
pression rules, configuration files, etc. Ideally, the cost of initializing GATE should
be paid once and amortized over multiple mapper task executions. To reduce the
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impact of GATE initialization we decided to exploit the use of reusable JVMs (Sec-
tion 5.3) as well as to overlap that time with the fetching of URL content from the
Internet. As soon as HTML content is retrieved it is fed to GATE which processes
it and outputs categories and entities.

GATE outputs are continuously merged so that entities under the same category
are grouped together, avoiding redundancies. The merged output of a mapper task
is kept in a memory buffer until the task finishes, at which point it is collected and
emitted into a buffer (of size io.sort.mb MB) where it is sorted by category. If the
produced output exceeds a threshold (set by io.sort.spill.percent) it starts to
spill outputs to the local file system (to be merged at a later time). We have sized
the sort buffer appropriately to ensure a single spill to disk per mapper. We use a
combiner [66] to merge the results from multiple mappers operating on the same
node.

The reduce phase performs the merging of mapper outputs per category and
computes the scores of the different entities (Section 3.1). The latter is possible
since the document identifiers reflect the positions of the documents in the list
(e.g. d18 means that this document was the 18th in the answer). Since this is fairly
lightweight functionality we anticipate that there is little benefit from parallelizing
this phase and thus use a single reducer task. This choice has the additional benefit
of avoiding the need to merge outputs from multiple reducers.

5.2.2 Chain-job procedure

We have developed an alternative MapReduce procedure that consists of two
chained [67] jobs (Jobs #1 and #2) as shown in Figure 5.3. The rationale be-
hind this design is the following: Job #1 downloads the entire document set and
thus gains exact information about content sizes. Therefore Job #2 (full analy-
sis) is now able to perform a size-aware assignment of the remaining documents
to tasks. At the same time, we believe that most users appreciate a quick NEM
preview on a sample of the hits before getting the full-scale analysis. Job #1 is
designed to perform such a preview.
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In Figure 5.3, the Master node queries the search engine getting the initial
set of titles, URLs, and snippets. Then, it creates the initial split of the URLs
without using any information about their sizes. Since Job#1 tasks are primarily
downloading documents while performing only limited-scale NEM analysis, there
is no need to create more tasks than the number of JVM slots available. Job #1
mappers (Figure 5.4) will read their split and begin downloading URL contents
while starting the initialization of GATE. Downloaded content is stored as local
files. As soon as GATE is ready, it starts consuming some of these files. As soon
as downloading of all URLs in its split is complete, each map task continues with a
certain amount of entity mining and then terminates. Once all mappers are done,
a reducer uses the sizes of all yet-unprocessed files to create the splits for Job #2.
Having accurate knowledge of file sizes, we can ensure that the splits are as balanced
(in terms of size) as possible. Additionally, having already performed some amount
of entity mining, the system provides a preview of the NEM analysis to the user.
The entire Job #1 is currently scheduled to take about a minute (though this is
configurable), including the overhead of starting up and terminating it. A key point
is that within the fixed amount of time for Job #1, one can choose to perform a
deeper preview (process more documents) by allocating more resources (VMs) to
that job. This point is further investigated in Section 6.2.4.

Job #2 features mappers (Figure 5.5) that initially read files downloaded by
the previous job and process them through GATE. The files are originally stored in
the local file systems of the nodes that downloaded them, so reading them typically
involves high-speed network communication [51]. Having created a balanced split
via Job #1, we have ensured a more efficient utilization of resources compared to
what is possible with the single-job procedure. Just as in the single-job procedure,
the scores of the entities are computed at the single reducer of Job #2.

5.3 Platform parameters impacting performance

While MapReduce is a straightforward model of concurrent programming, tuning
the underlying platform appropriately is a major undertaking that is often not well
understood by application programmers. A variety of configuration parameters set
at their default values usually result in bad performance, and arbitrary experimen-
tation with them often leads to crashing applications. A major objective of this
paper is to highlight the key characteristics of the underlying platform (Hadoop
and the Amazon EC2 Cloud), tune them appropriately for our workloads, and to
investigate their impact on performance.

5.3.1 Mapper parameters

A key parameter is the split, the input data given to each task, which can be either a
static or a dynamic parameter (e.g., either fixed part of an input file or dynamically
composed from arbitrary input sources). Dividing the overall workload size by the
average size of the split determines how many map tasks will be scheduled and
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executed within the MapReduce job. For example, if the total size of hits that we
want to analyse is 12MB and the split set to 2MB we will need a total of six tasks.
One needs to carefully size the split assigned to each mapper. Generally, Hadoop
implementers are advised to avoid fine-grain tasks due to the large overhead of
starting up and terminating them. On the other hand, larger splits increase their
memory requirements eventually increasing garbage collection (GC) activities and
their overhead. In our evaluation we examine the precise impact of task granularity
in performance (Section 6.2.5).

Another key parameter is the number of Java Virtual Machines (JVMs) per
TaskTracker node (VM) available to concurrently execute tasks, which is controlled
via mapred.tasktracker.map.tasks.maximum; we will refer to this parameter as
JpV (or JVMs per VM). Generally, this parameter should be set taking the par-
allelism (number of cores) and memory capacity of the underlying TaskTracker
into account. Fewer JVMs per TaskTracker means that there is more heap space
available to allocate to them. On the other hand, a higher number of JVMs will
better match parallelism in the underlying VM. Another potential optimization is
the reusability of JVMs across task executions. MapReduce can be configured to
reuse (rather than start fresh) a JVM [66, p. 170] across task invocations, thus
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amortizing its startup/termination costs. The degree of reusability of JVMs is
configured via the mapred.job.reuse.jvm.num.tasks parameter, which defines
the maximum number of tasks to assign per JVM instance (the default is one).

At the output of a mapper, one needs to allocate sufficient memory to the Sort
buffer (Figure 5.2) to avoid repeated spills and subsequent merge-sort operations.
The size of the buffer (controlled by the io.sort.mb parameter) defaults to 100MB.
Overdrawing on available memory for this buffer means that there will be less
memory left for GATE processing. In our case, the summarization performed
by NEM reduces the size of the input by an order of magnitude. Even at the
default setting of io.sort.mb, the rate of output expected from our mappers is
not expected to produce spills to disk. Thus io.sort.mb is a non-critical parameter
for our MapReduce jobs.

Since the map phase takes up the bulk of our MapReduce jobs we have paid
particular attention on how to optimally tune MapReduce parameters for it. Our
tuning methodology explores the tradeoffs and interdependencies between these
parameters and outputs the heap size per JVM, JVMs per VM (JpV parameter),
degree of reusability, and split size (MB). The methodology relies on a systematic
exploration of the parameter space using targeted experiments in two phases: The
first (or intra-JVM) phase explores single-JVM performance whereas the second
(or inter-JVM) phase explores performance of concurrently executing JVMs. The
intra-JVM phase explores values of split size, heap size, and reusability for a JVM
and produces tables such as this:

Reusability: R
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

Split Size (MB)

Heap Size (MB)
heap1 heap2 heap3 heap4 heap5

split1 ✗ time1 time2 time3 time4

split2 ✗ ✗ time5 time6 time7

split3 ✗ ✗ ✗ time8 time9

Table 5.1: Execution time varying split size and heap size with fixed reusability R
(✗ means the job failed).

These tables are produced by first creating splits of different sizes typical of
the input workload. For each size, a group of splits are given as input to a JVM
configured for a specific heap size and reusability level. The size of the group is
chosen to ensure that the job reaches steady state but remains reasonably short
to keep the overall process manageable. The final outcome (success/failure, exe-
cution time) is recorded in the corresponding cell of the table. The tradeoffs in
the parameter space are: Higher split sizes improve efficiency but require larger
amounts of heap to ensure successful and efficient execution. Higher reusability
improves amortization of the JVM startup/termination and GATE initialization
costs but requires increasing amounts of heap size to avoid failures and to improve
performance. The heap size parameter takes specific values computed as follows:
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JVM heap memory =
Total VM memory available

JpV
. (5.1)

JpV ranges from a minimum level of parallelism (equal to the number of cores
in the VM) to a maximum level that corresponds to the minimum JVM heap
deemed essential for operation of the JVM.

Our methodology selects configurations from the parameter space of Table 5.1
with the following two requirements: (i) they terminate successfully; (ii) their
execution time is close to a minimum. In our experience, a set of feasible and
efficient solutions can be rapidly determined by direct observation of the tables by
a human expert as exhibited in Section 6.2.7.

For those configurations Ci = (spliti,heapi, reusabilityi) that are feasible and
have minimal execution time, we continue to the inter-JVM phase that examines
them on concurrently executing JVMs. For each configuration Ci, we deploy a
number of splits (a multiple of that used in the previous phase, to account for
concurrently executing JVMs) on as many JVMs as Ci’s heap allows (JpV , Equa-
tion 5.1). Our goal in this phase is to examine the impact of different degrees
of concurrency on efficiency. Configurations with higher concurrency than can be
efficiently supported by the VM platform will be excluded in this phase. Between
configurations that perform best, we select that with the largest heap size for its
improved ability to handle larger than average splits.

5.3.2 Reducer parameters

Our MapReduce jobs require that a reducer collects a fixed set of categories. De-
ciding on the number of reducers to use in a particular MapReduce job has to
take into account the overall amount of work that needs to be performed. More
reducer tasks will help better parallelize the work (assuming units of work are not
too small) while fewer reducer tasks reduce the need for aggregating their outputs
(performed through an explicit HDFS command). The summarization performed
by NEM processing as well as the tuple merging in our mappers significantly reduce
the amount of information flowing between the map and reduce stages, making a
single reducer task the best option in our targeted input datasets. The execution
time of the reducer is proportional to the size of the mappers’ output as quantified
in Section 4.1.1.

The reduce process starts by fetching map outputs via HTTP. The time spent on
communication during this phase depends on the amount of exchanged information
and the network bandwidth. Terminated mappers communicate their results to the
reducer in parallel to the execution of subsequent instances of mappers, thus there
is a significant degree of overlap. Therefore, communication time is in the critical
path only after all mappers have completed (and this time is expected to be minimal
for most practical purposes).

While receiving tuples from mappers, the reduce task performs a merge-sort of
the incoming tuples [66] spilling buffers to disk if needed. The default behavior of
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Hadoop MapReduce is to always spill in-memory segments to disk even if all fetched
files fit in the reducer’s memory, aiming to free up memory for use in executing
the reducer function. When memory is not an issue, the default behavior can be
overridden, to avoid the I/O overhead of unnecessarily spilling tuples to disk. This
can be done by specifying a threshold (percentage over total heap size, default 0%)
over which data collected at the reducer should be spilled to disk. Setting the spill
threshold higher (for example, to 60% of 256MB of heap allocated to the reducer) is
sufficient to fully avoid spills in our experiments without creating memory pressure
for the mapper. For example, a 300MB input dataset produces about 24MB of
total mapper output, which is well below the set threshold.

As reduce tasks store their output on HDFS, having a local DataNode collocated
with each TaskTracker helps, since writes from reduce tasks always go to a local
replica at local-disk speeds. HDFS supports data replication with a default value of
3. Since we are not interested in long-term persistent storage for the files written to
HDFS, we set the replication factor to one. This has the added benefit of avoiding
the overhead of maintaining consistency across replicas. Finally, we decided to
install/locate all the needed resources for tasks on all machines instead of using
the DistributedCache facility [68] to fetch them on demand over the network. While
this requires extra effort on the part of the administrator, it results in faster job
startup times.

5.4 A Measure of Imbalance in Task Execution Times

To capture the degree of imbalance in task execution times in MapReduce jobs
(which may be a cause for inefficiency as shown in our evaluation, Section 6.2.5),
we have defined a measure that we term the imbalance percentage (IP). IP refers
to the variation in last-task completion times (we focus on mappers since this is
the dominant phase in our jobs) across the available JVMs of a given node i and is
defined as follows. Assume that there are Ni JVMs available to execute tasks on
node i and that all JVMs start executing tasks at the same time (Ti,0). The first
JVM to run out of tasks does so at time Ti,min and the last JVM to run out of
tasks does so at time Ti,max. The ideal execution time on node i would therefore
be Ti,min + Di where Di = (Ti,max - Ti,min) / Ni. The imbalance percentage on
node i is thus defined as

IPi =
Di

Ti,max

∗ 100%

The imbalance percentage for the entire job, denoted as IP , is calculated as
the average of the above quantities across all nodes.



34 CHAPTER 5. IMPLEMENTATION OF PARALLELIZED PROCESS



Chapter 6

Evaluation and Experimental

Results

6.1 Centralized Process

At section 6.1.1 we report the results of a comparative evaluation of the three entity
ranking methods by users, while at section 6.1.2 we compare snippet-mining versus
contents-mining from various perspectives.

6.1.1 Comparative Evaluation of Entity Ranking Methods by Users

We comparatively evaluated with users the three methods for entity ranking (equa-
tions (3.1), (3.2) and (3.3) of Section 3.1). Fifteen users participated in the eval-
uation with ages ranging from 20 to 28, 73.3% males and 26.6% females. We
selected a set of 20 queries (given at Appendix A.1) and for each one we printed
one page consisting of three columns, one for each ranking method. Each column
was showing the top-10 entities for the categories Person, Location, Organization.
NEM over full contents were used. We gave these pages to each participant and
asked him/her to mark the most preferred ranking. If (s)he could not identify the
most preferred, (s)he could mark two or even all three as equally preferred. We
aggregated the results based on plurality ranking (by considering only the most
preferred options). The results showed that the most preferred ranking is that of
equation (3.1), which was the most preferred in 228 of the 15x20=300 questions.
The equations (3.2) and (3.3) got almost the same preference, specifically they were
selected as most preferred options in 43 and 44 of the 15x20=300 questions.
In more detail, Figure 6.1a shows that for 13 of the 15 participants, equation (3.1)
is the most preferred, while Figure 6.1b shows that for each of the 20 queries, equa-
tion (3.1) is the most preferred.
From these we conclude that the string similarity between the query and the entity
name did not improve entity ranking in our setting.

35
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Figure 6.1: Left: Aggregated preferences for each user. Right: Aggregated prefer-
ences for each query.

6.1.2 Contents Mining vs Snippet Mining

Since a snippet is a part of a document, the entities discovered in a snippet are
subset of the entities discoverable at the document contents. From this perspective
we could say that the results of snippet mining are “sound" w.r.t. the results of
documents mining.

1

4

16

64

256

1024

4096

1 201 401 601 801

N
u

m
 O

f 
E

n
ti

ti
e

s
: 

P
e

rs
o

n
 

Num of Queries 

Mining Over All Contents

Mining Only Snippets

(a)

1

2

4

8

16

32

64

128

256

512

1024

1 201 401 601 801

N
u

m
 O

f 
E

n
ti

ti
e

s
: 

L
o

c
a

ti
o

n
 

Num Of Queries 

Mining Over All Contents

Mining Only Snippets

(b)

1

4

16

64

256

1024

4096

1 201 401 601 801

N
u

m
 o

f 
E

n
ti

ti
e

s:
 O

rg
a

n
iz

a
ti

o
n

 

Num Of Queries 

Mining Over All Contents

Mining Only Snippets

(c)

Figure 6.2: Comparing the number of mined entities (for categories Person, Loca-
tion, Organization) over all contents and over only snippets for 1000 queries (for
each query its top-50 hits are mined).

To check how different they are we performed various measurements. For a
set of 1000 queries we compared the results of snippet-mining and content-mining
over the top-50 hits of the query answers. In our experiments we considered only
the categories Person, Location and Organization, and the results are shown in
Figure 6.2a, 6.2b and 6.2c respectively (the y-axis is in log scale and the queries
are ordered in descending order with respect to the number of mined entities over
their full contents).

Figure 6.2a shows that the average number of identified persons over full con-
tents is about 527, while the average number of identified persons over snippets
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is about 18, meaning that content mining yields around 29 times more persons.
We should also note that 50% of the queries return less than 500 entities, 43%
of queries retrieve from 500 to 1000 entities and only 7% return more than 1000
entities.

In Figure 6.2b we observe the same pattern for locations: contents-mining in
average returns about 219 entities per query while snippet-mining about 12 enti-
ties. Finally, according to Figure 6.2c, content mining identifies on average 309
organizations while snippet-mining 14 organizations (22 times less).

To sum up, we could say that content mining yields around 20 times more
entities than snippet mining.
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Figure 6.3: Jaccard Similarity between top-10 mined entities (for the categories
Person, Location, Organization over snippet and over full contents for 1000
queries (for each query answer the top-50 hits are considered).

In addition, we compared only the top-10 mined entities as produced by equa-
tion (3.1). We compared these lists as sets using the Jaccard similarity. The results
are shown in the three diagrams of Figure 6.3. We observe that the entities in the
category “Person” have Jaccard similarity 0% for the 65% of queries and more than
20% for less than the 10% of queries. For the categories “Location” and “Organi-
zation”, about half of the queries have 0% similarity. Furthermore, for entities in
“Organization” there are not queries with Jaccard similarity more than 50%, while
for entities in “Location” no queries have more than 70% similarity. In general, we
can conclude that the top-10 entities of snippet mining and contents mining for the
same queries (i.e. the same collection of results) have many differences and only
few entities are the same. This is a predictable result since (as we saw) mining of
contents yields about 20 times more entities than snippets mining.

Computational and Memory Costs

All experiments were carried out using a laptop with processor Intel Core 2 Duo
T8300 @ 2.40Ghz CPU, 4GB RAM and running Ubuntu 10.04 (32 bit), and Google
was used as the underlying engine. The implementation of the system is in Java
1.6 (J2EE platform), using Apache Tomcat 7 (2GB of RAM).
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Snippet-mining Time: The whole procedure over the top-50 snippets (each hav-
ing the size of 193 bytes in average) for one query takes in average 1.5 seconds.
The whole procedure comprises the following steps. At first we retrieve the results
pages from the underlying WSE which costs about 547 ms (36,2% of the total
time). Second, we apply NEM over the snippets of the retrieved query’s answers
which takes about 901 ms (60,4% of the total time). Third, we apply NEM over
the query string which costs about 5,6 ms (0,37% of the total time). Finally, we
create a string representation of the first page of results with cost about 36 ms
(2,4% of the total time) and also a string representation of all entities in about 9
ms (0,6% of total time). The time for ranking entities and categories is negligible
(less than 1 ms).In more detail, and only for the NEM task, some indicative times
follow: 0.2 secs for 10 snippets of total size 0.1 MB, 1.2 secs for 100 snippets of
total size 1.94 MB.
The average main memory requirements for one query (for the whole process) is
about 37MB.

Content-mining Time: The whole procedure over the top-50 full documents (of
total size about 6.8 MB) for one query takes in average 78 seconds. The retrieval
of results from the underlying WSE costs less than one second (1% of the total
time). The downloading of the contents of each result costs about 28 seconds
(36% of the total time). The application of NEM over the contents of the fetched
documents takes about 45 seconds (57% of the total time). The creation of the
string representation of the first page of results costs about 33 ms (0.04% of the
total time) and also a string representation of all entities in about 4,5 seconds (6%
of total time). The sorting of the categories and entities costs only a few ms. Some
indicative times for NEM only: 5.2 seconds for 10 documents of total size 1.5 MB,
107 seconds for 100 documents of total size 16.3 MB.
The average main memory requirements for one query (the whole process) is about
300 MB.

Synopsis. The comparison between snippet and contents mining (over the top-50
hits) can be summarized as:

RS QC

entities per hit: 1.2 10.1

overall time: 1.5 secs 78 secs

main memory footprint for one query: 37 MB 300 MB.

6.2 Parallelized Process

In this section we evaluate performance of our MapReduce procedures during en-
tity mining of different datasets and measure the achieved speedup with different
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numbers of nodes as well as the impact on performance of a number of platform
parameters. In Section 6.2.1 we outline sources of non-determinism in our system
and ways to address them. In Section 6.2.2 we describe the procedure with which
we create realistic synthetic datasets and in Section 6.2.3 we describe our experi-
mental platform. From Section 6.2.4 on we focus on scalability and on the impact
of different platform parameters to efficiency and high performance.

6.2.1 Sources of Non-Determinism

A number of external factors that exhibit varying and time-dependent behavior
are sources of non-determinism that had to be carefully considered when setting
up our experiments. In more detail, these external factors fall into two categories:

Search engine. Results returned by the Bing 1 search RSS service over multiple
invocations of the same query (top-K hits) vary in both number and contents over
time. The Bing search RSS service associates about 650 results per query and each
request can bring back at most 50 results. These results can differ at each request
invocation. Finally, Bing results are accessible via XML pages, which in several
occasions are not well formed (missing XML tags) returning different results for
the same query.

Internet access. Web page download times can vary significantly depending on
the Internet connectivity of the Cloud provider as well as dynamic Internet con-
ditions (e.g. network congestion) at the time of the experiment. Another highly-
variable factor concerns the availability of web pages. Even when the Bing search
engine returns identical results for the same query, trying to download the full con-
tent of the search results from the Internet may fail as some pages may be inacces-
sible at times (connection refused, connection/read time-out) leading to variations
in our input collections. Furthermore, the fact that in 70%-91% of HTTP HEAD
requests Web servers either do not provide content-length information or have re-
fused our requests (connection/read time-out) adds further variability. Finally, the
efficiency of the external SPARQL endpoints is highly variable.

To reduce the effect of the above factors on the evaluation of our systems and
to facilitate reproducibility of our results we decided to perform our experiments
with controlled datasets (Section 6.2.2), which we plan to make available to the
research community. Additionally, since semantic enrichment depends strongly on
the efficiency of the external SPARQL endpoints and is orthogonal to the scalabil-
ity of the core MapReduce procedures we decided to omit it from this evaluation.
While these assumptions lead to better insight into the operation of our core sys-
tem on the MapReduce platform, it is important to note that our system is fully
functional and available for experimentation upon request.

1We chose Bing because it does not limit the number of queries submitted, in contrast to
Google, which blocks the account for one hour if more than 600 queries are submitted.
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6.2.2 Creating Datasets

To evaluate our system under workloads of progressively larger size we create sev-
eral different datasets. Our dataset creation process starts by performing multiple
queries to the Bing RSS engine. The queries are chosen from the top 2011 searches
reported by Bing. These queries are based on the aggregation of billions of search
queries and are grouped by People, News Stories, Sports Stars, Musicians, Con-
sumer Electronics, TV Shows, Movies, Celebrity Events, Destinations, and Other
Interesting Search. For each one of these groups the top-10 queries are reported.
After retrieving the results of queries from Bing we merge them into a single set.
We then download the contents of all Web pages onto a single VM. We also create
the cluster of URLs and store the IDs of documents that belong to each cluster.

An example on how to create a dataset from these queries is the following:
Choose the first query from each group (if the query is already added to the col-
lection then we omit it) and submit it to the search engine. For each submitted
query, download the contents of the top-K hits. It is hard to estimate an appro-
priate K such as to achieve a given dataset size (e.g. 100MB). Our way to achieve
this is to keep downloading results until the aggregated content length exceeds the
target. From this collection we randomly remove documents until we achieve the
desired size. We randomly remove documents, instead of removing only low ranked
documents, in order to simulate a realistic situation. In a real situation the sys-
tem has to analyze every document (in the set of top-k results), even those which
are low ranked. Consequently, a random removal yields a more realistic dataset,
in the sense that the latter will also contain low-ranked documents. However, we
should note that even if we were removing only low-ranked documents, the only
difference would be on the quality of the identified entities. The process and the
measurements would not be affected.

Note that since documents are of arbitrary size it is still hard to achieve the
identical size targeted, so we settle for removing the documents that best approx-
imate the aggregated dataset size. We repeat this procedure with queries in the
second position of each group, and so on, to create more datasets.

We use the naming scheme xMB-SETy for our created datasets, where x is the
dataset size (∈ {100, 200, 300}) and y is the dataset sample identifier (∈ {1, 2, 3}).
Figure 6.4 presents the distribution of sizes for xMB-SET1. The created datasets
represent a range from 1226 (100MB) to 4365 (300MB) documents (hits) on av-
erage. Most documents are small: 89.5%, 93.1%, and 94.7% of the documents in
the 100MB, 200MB, and 300MB datasets respectively are less than 200KB in size.
The largest dataset (300MB) corresponds (approximately) to the first 87 pages of
a search result (where by default each page has 50 hits). We thus believe that the
created datasets fully cover our targeted application domain.
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Figure 6.4: Distributions of sizes for xMB-SET1, x ∈ {100, 200, 300}

6.2.3 Experimental Platform: Amazon EC2

Our experiments were performed on the Amazon Elastic Compute Cloud (EC2)
using up to 9 virtual machine (VM) nodes. A VM of type m1.medium (1 virtual core,
3.4 GB of memory) was assigned the role of JobTracker (collocated with an HDFS
NameNode and a secondary NameNode). We used up to 8 VMs of type m1.large

(2 virtual cores, 7.5 GB of main memory each) as TaskTrackers (collocated with
an HDFS DataNode), a sufficient cluster size for the targeted problem domain. We
provision 4 JVMs to execute concurrently on each VM, 3 used for mappers and
one for a reduce task. This setup was experimentally determined to be optimal,
allowing sufficient memory to be used as JVM heap (2.2GB for a mapper, 256MB
for a reducer) while also taking advantage of the parallelism available in the VM.
We use a single reducer task for all jobs in our experiments, for reasons explained
in Section 5.3. We have verified that there is no benefit from increasing the number
of reducers in our experiments. We configure JVMs to be reused by 20 tasks before
terminated. The VM images used were based on Linux Ubuntu 12.04 64-bit.

To monitor the execution of our MapReduce jobs we employed CloudWatch, an
Amazon monitoring service, and our own deployment of Ganglia [69, 70], a scalable
cluster monitoring tool that provides visual information on the state of individual
machines in a cluster, along with the sFlow [71] plug-in to get the metrics for each
JVM (e.g. mapTask, reduceTask). Ganglia is composed of two servers: the gmetad
server, which provides historical data and collects current data and the gmond server
which collects and servers current statistics. Ganglia also provides a web interface
offering a graphical view of the cluster information. In our implementation we
have set one gmetad (version 3.4.0) server with one Web Interface (version 3.5.4)
in the same node and one gmond (version 3.4.0) to each node. Finally, to monitor
the performance of the Java garbage collector we used the IBM Monitoring and
Diagnostic Tool [72] to analyse JVM logs and tune the system appropriately.
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6.2.4 Scalability

In this section we evaluate the performance improvement as the number of nodes
(VMs) used to perform NEM processing increases. We used datasets of sizes
100MB, 200MB, and 300MB (Section 6.2.2) and evaluate the following three sys-
tem configurations: (1) Single-job procedure using HTTP HEAD info, referred
to as SJ-HEAD; (2) Single-job with a-priori exact knowledge of document sizes,
referred to as SJ-KS (this is an artificial configuration that we created solely for
comparison purposes); and (3) Chain job, referred to as CJ.

We define the speedup achieved using N nodes (VMs) as SN = T1/TN where
T1 and TN are the execution times of our MapReduce procedures on a single node
and on N nodes respectively. Note that we do not use as T1 the time the sequential
NEM algorithm takes on a single node since such an execution is infeasible for our
problem sizes (the JVM where GATE executes crashes). Note that the optimal
speedup possible for a computation is limited by its sequential components, as
stated by Amdahl’s law [73]. Namely, if f is the fraction of the computational
task that cannot be parallelized then the theoretically maximum possible speedup
is SN = 1/(f + (1− f)/N).

Figure 6.5 depicts the execution time for the three different system configura-
tions with increasing number of nodes (VMs). Tables 6.1-6.3 depict the speedups
achieved in all cases. Our observations are:

• All systems exhibit good scalability, which improves with increasing dataset
size. For the 300MB dataset using 8VMs, we observe a SJ-KS speedup of
S8 = 6.45 and a SJ-HEAD speedup of S8 = 6.42 compared to the single-node
case. This is the best speedup we achieved in our experiments. We believe
that the overall runtime of about 6.3′ is within tolerable limits and justifies
real-world deployment of our service. We have not attempted larger system
sizes because –as will be described next– scalability at this point is practically
limited by the tasks that analyze the largest documents in our sets.

• To compare the observed scalability to the theoretically optimal (taking Am-
dahl’s law into account) we need to consider the sequential components of the
MapReduce job as well as scheduling issues (imbalances in last-task comple-
tion times, examined in Section 6.2.5) that reduce the degree of parallelism in
the map phase of the job. We have analyzed these components for a specific
case, the 200MB-SET1 dataset in the SJ-HEAD configuration (Table 6.4). In
this case, we measured the total run time of a job, the sequential components
in each case, the execution time of the longest task (analyzing a 3.68MB doc-
ument, a size that far exceeds the vast majority of other documents in the set
(Section 6.2.2)) and the total runtime of the map phase. The ideal speedup
is computed based on Amdahl’s law, assuming perfect parallelization of the
map phase. The observed speedup is close to (within 9% of) the ideal for
2VMs and 4VMs but diverges from it for 8VMs. The reason for the lower
efficiency in this case is the fact that the map phase becomes bounded by
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the longest task (3.68MB, executing for 4′09′′ out of the 4′36′′ the entire job
takes), which cannot be subdivided. It is important to note that despite our
size-aware task scheduling algorithm (where long tasks are scheduled early
in the job, Section 5.2.1), tasks of that size in some cases create scheduling
imbalances resulting in suboptimal scalability.

• The CJ speedup observed for the 300MB dataset using 8VMs is S8 = 5.66.
The disadvantage of CJ compared to the single-job configurations can be
attributed to the additional non-parallelizable overhead of its two jobs.

• SJ-KS outperforms SJ-HEAD and CJ by a small margin (0.5-3%, decreasing
with higher dataset sizes). This is expected since it leverages a-priori knowl-
edge about document sizes with reduced overhead from using one rather than
two jobs.

Figure 6.5: Query execution time for growing dataset size and increasing number
of nodes (VMs).

# VMs 100MB 200MB 300MB

1 1 1 1
2 1.79 1.97 1.95
4 3.01 3.51 3.61
8 4.04 5.79 6.42

Table 6.1: Speedup for SJ-HEAD
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# VMs 100MB 200MB 300MB

1 1 1 1
2 1.87 1.96 1.96
4 2.87 3.66 3.69
8 3.91 5.36 6.45

Table 6.2: Speedup for SJ-KS

# VMs 100MB 200MB 300MB

1 1 1 1
2 1.78 1.86 1.93
4 2.63 3.32 3.47
8 3.05 4.45 5.66

Table 6.3: Speedup for CJ

Job Sequential Longest Map Observed Ideal
#VMs Time (s) Component (s) Task (s) Phase (s) Speedup Speedup

1 1585 29 249 1556 1 1
2 818 26 249 792 1.93 1.97
4 458 27 249 431 3.46 3.81
8 276 27 249 249 5.74 7.15

Table 6.4: Detailed analysis: SJ-HEAD, 200MB-SET1

Scalability of Job #1 in Chain-job Procedure

In this section we focus on the quality of the summarization work (documents pro-
cessed and entities identified) performed by Job #1 in the chain-job procedure with
increasing system size. Our measure of scalability in this evaluation is the amount
of work performed within a fixed amount of time as the number of processing nodes
increases. We define the amount of work done as the size of documents analyzed
(as a percentage over the entire document list and in absolute numbers (MB)) and
the number of entities identified.

Figure 6.6 depicts the amount of work performed by Job # 1 with an increasing
system size for a fixed execution time (one minute). We observe that as the number
of processing nodes increases, the percentage of documents analyzed grows from
0.6% to 3.8% (the number of entities identified grows from 1186 to 6343) yielding
a progressively better overview (summary) of the entire document list. Based
on these results we conclude that Job #1 exhibits good scalability, and offers
a powerful tradeoff to an administrator when aiming to improve the quality of
overview: either allocate more VMs to Job #1 (costly but faster option) or allow
more execution time on fewer VMs (cheaper but slower option).
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Figure 6.6: Analysis of chain-job #1 on 200MB dataset, 1-min job execution time.

6.2.5 Impact of Number of Splits

In this section we study the effectiveness of a job as we vary the number of input
splits. Using 4 nodes (VMs) and the dataset 100MB-SET1 (created from about
1226 query hits), we execute a sequence of jobs over it with progressively larger
number of splits (and consequently, decreasing split size). For each job we mea-
sure CPU utilization reported by each VM (in m1.large VMs the reported CPU
utilization is the average of the VM’s two virtual cores), job execution times, and
the imbalance percentage within each job.

Figure 6.7: CPU utilization, execution time and imbalance percentage for a number
of jobs whose only difference is the number of splits.

Figure 6.7 (top portion) depicts per-node CPU utilization for each job. Figure
6.7 (bottom) presents the job execution times (bars) and the imbalance percentage
within each job. We observe that CPU utilization is better for fewer splits (20-100),
where the workload assigned to each mapper task takes on average from 96.5s to
18.5s as shown in Figure 6.8. As we increase the number of splits (120-500), CPU
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utilization decreases due to the higher scheduling overhead associated with many
small (granularity of a few (tens) of seconds) tasks. For example, for 500 splits
the job execution time is nearly 2.2 times the execution time of a the job with 20
splits.

Figure 6.8: Map task min/average/max execution time for different number of
splits.

A key observation is that job-execution times in the range of 20 to 120 splits
are nearly constant. Within this range, the workload balance (evidenced by the
imbalance percentage) improves as the number of splits grows. Combining with
our previous observation (that split sizes in the range 150-500 suffer from excessive
scheduling overhead) we arrive at the conclusion that a number of splits between
100 and 120 is a reasonable choice taking all things into account. Choosing a smaller
number of splits would increase the probability that a split may include several
big documents, increasing the garbage collection (GC) overhead (more details in
Section 6.2.6) and imbalance percentage. However, big documents make their
presence felt even in the case of small split sizes (they are responsible for the large
ratio between maximum and average execution times in Figure 6.8).

6.2.6 Impact of Heap Size

In this section we evaluate the impact of JVM heap allocations to job performance.
First we compare query execution time of two jobs, Job 1 and Job 2, each executing
on a single node (VM), with the node hosting three JVMs (assigned to mapper
tasks), using the 100MB-SET1 dataset instance. One of the jobs assigns 1GB of
heap space to its JVMs whereas the other job assigns twice that amount (2GB). We
used the mapred.map.child.java.opts parameter (set to Xmx1024m and Xmx2048m

respectively) to control JVM heap memory allocations. The JVMs used in this
experiment where configured to be reusable (20 times).

Figure 6.9 presents overall execution time and GC activity (in MB) for the two
jobs. We observe that Job 1 (1GB JVM heap) takes an additional 4.8 minutes
(about 30%) to completion compared to Job 2 (2GB JVM heap). The reason for
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this delay is the additional GC overhead that impacts overall query execution time.
The figure shows that GC activity is less frequent for Job 2 (2GB).

Figure 6.9: Garbage collection activity for two jobs that differ in the amount of
memory allocated to JVMs (1GB (left) vs. 2GB (right)).

The impact of heap size can in fact be far more severe than presented above. In
fact, standard heap allocations (default of 200MB in several JVMs) always result
to job failure. Table 6.5 depicts measurements of overall execution time of jobs
consisting of a single split, where the split size varies from 1MB to 35MB and
JVM heap size varies from its default value of 200MB to 2.2GB. These ranges
of split sizes and heap sizes represent practically relevant values (we have not
seen additional performance benefits from higher heap sizes for this range of split
sizes). Each job runs on a single non-reusable JVM. The reported numbers are
average execution times from three different splits created randomly for each size.
A ✗-value in a cell indicates that the job either crashed or terminated for being
unresponsive (executing within GATE) for more than 10 minutes (default value of
mapred.task.timeout parameter).

Heap Size (in MB)
Split Size (in MB) 200 512 756 1024 1256 1512 1756 2048 2256

1 ✗ 58 56 54 56 56 56 57 55
5 ✗ 129 106 105 105 105 105 107 105
10 ✗ ✗ 161 163 161 163 162 165 166
15 ✗ ✗ 500 208 210 204 208 210 213
20 ✗ ✗ ✗ 420 259 258 259 262 260
25 ✗ ✗ ✗ ✗ 787 404 346 350 347
35 ✗ ✗ ✗ ✗ ✗ 1100 550 441 448

Table 6.5: Execution time (sec) of single-split jobs with varying split and heap
sizes.

Table 6.5 shows that with increasing split size one needs to use increasingly
higher JVM heap sizes to avoid job failures. Furthermore, within those heap sizes
that lead to successfully completed jobs, increasing heap size allocations lead to
better performance (as also evidenced by Figure 6.9), up to a point where additional
heap does not help: excessivelly high heap can hurt due to the JVM startup and
teardown overheads (part of which are proportional to heap size).
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In the following section we consider the impact of an additional parameter,
JVM reusability, and then exhibit the tuning methodology outlined in Section 5.3
for selecting key parameters of our MapReduce jobs.

6.2.7 Impact of JVM Reusability

In this section we first exhibit the performance advantage of JVM reusability
by setting up two NEM jobs on the 100MB-SET1 dataset (100 splits) using 4
nodes (VMs) and 3 JVMs per VM. Job 1 uses reusable JVMs (the value of the
mapred.job.reuse.jvm.num.tasks parameter set to 20), whereas Job 2 does not
reuse JVMs (the value of the parameter is set to 1, which is the default). Fig-
ure 6.10 presents the CPU utilization for two jobs whose only difference is JVM
reusability. Each of the curves corresponds to one of the four VMs used in this
experiment.

Figure 6.10: CPU utilization and job execution time for two jobs whose only dif-
ference is reusability of JVMs.

We observe that JVM reusability improves job execution time by about 2.8
times in this case. The advantage of reusability can be higher with increasing
number of splits (e.g. for a 300MB dataset or 300 splits, job performance improves
by about 3.3 times). We note that with reusability the cost of initializing GATE
(about 12sec) is paid once during startup of each JVM and amortized over for the
rest of tasks that are executed in the same JVM. Finally, we observe that JVM
reusability affects CPU utilization: the job featuring non-reusable JVMs consumes
more CPU that is spent in startup/teardown of JVMs during task initialization
and termination.

Having seen the individual impact of the number/size of splits, heap size, and
reusability parameters, we now demonstrate our tuning methodology described in
Section 5.3 to select appropriate settings for these parameters. Tables 6.6-6.8 depict
execution time (sec) of jobs analyzing a 100MB dataset2 varying split sizes (1MB,
2.5MB, 5MB) corresponding to (100, 40, 20) splits; heap sizes (200MB-3.3GB)
computed from Equation 5.1; and reusability in the range (1, 10, 20). The reported
times are averages over three executions using different split sets created randomly.
During this intra-JVM phase we use one VM with a single JVM executing on it at
any time.

2This size is chosen to ensure full utilization in all cases, as max(Reusability)×max(Split size)
= 20× 5MB = 100MB.
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The ✗-value has the same meaning as in Table 6.5.

Reusability: 1
h
h
h
h
h
h
h
h

h
h
h
h
h
h
h
hh

Split Size (MB)

Heap Size (GB)
0.2 0.5 1.1 1.3 1.6 2.2 3.3

1 ✗ 2833 2821 2811 2798 2911 2939
2.5 ✗ 1998 1958 1962 1971 2004 2019
5 ✗ ✗ 1619 1612 1634 1653 1664

Table 6.6: Execution time (sec) varying split size and heap size with reusability 1.

Reusability: 10
h
h
h
h
h
h
h
h
h

h
h
h
h
h
h
hh

Split Size (MB)

Heap Size (GB)
0.2 0.5 1.1 1.3 1.6 2.2 3.3

1 ✗ ✗ 1700 1693 1697 1703 1712
2.5 ✗ ✗ ✗ 3488 1679 1523 1468
5 ✗ ✗ ✗ ✗ ✗ 3445 1468

Table 6.7: Execution time (sec) varying split size and heap size with reusability
10.

Reusability: 20
h
h
h
h
h
h
h
h
h

h
h
h
h
h
h
hh

Split Size (MB)

Heap Size (GB)
0.2 0.5 1.1 1.3 1.6 2.2 3.3

1 ✗ ✗ 4258 1773 1634 1647 1658
2.5 ✗ ✗ ✗ ✗ ✗ 3645 1561
5 ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 6.8: Execution time (sec) varying split size and heap size with reusability
20.

Our first observation is that Table 6.6 features the largest fraction of successful
runs (17 out of 21 possible cases), albeit at the cost of excessive execution times
for 1MB and 2.5MB splits sizes. Execution times of 5MB-split jobs outperform
the others because it has the smallest number of splits (20) minimizing the costs
of JVM startups/terminations and GATE initializations. A related observation
(counter-intuitive at first) is that job execution times worsens with higher heap
allocations, especially for smaller splits. This is explained by the fact that higher
heap sizes increase the cost of JVM startup and teardown overhead, which is paid
all too frequently at the default reusability level of one.

For increasing reusability we observe that execution times improve at the cost
of fewer successful job configurations. For example, in Table 6.8 (reusability 20) we
observe that performance improves for particular configurations, e.g., by up to 44%
for (1MB split size, 2256MB heap size) compared to the same configuration with
reusability one. Figure 6.11 depicts configurations from Tables 6.6-6.8 that are
feasible (do not fail). Within the dashed box we distinguish those configurations
whose execution times are within a small range of the minimum, thus reducing the
list of possible configurations to 30% of the initial set (19 out of 63).
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Figure 6.11: Feasible configurations from Tables 6.6-6.8. The dashed box highlights
the best choices.

Having completed the intra-JVM phase, we move to the inter-JVM phase to
explore the performance of the selected configurations with concurrently executing
JVMs, as described in Section 5.3. In this phase we must use larger datasets to
ensure full utilization in all cases. To keep the size of the experiments manage-
able we study each split size separately with a dataset sized max(Reusability) ×
max(JpV ) × Split size MB. We have excluded split size 5MB mainly due to the
high imbalance percentage it leads to as demonstrated in Figure 6.7. Figure 6.12
depicts execution times for jobs executing on JpV JVMs within a single VM.

Figure 6.12: Execution time (sec) under concurrently executing JVMs. Dashed
boxes highlight the best choices for split sizes 1MB (left) and 2.5MB (right).

Choosing the best configurations from Figure 6.12 for each split size leads to
the following cases:

• For split size 1MB: Best choices are

– C1 = (1.6GB heap, 4 JVMs, reusability 20)

– C2 = (2.2GB heap, 3 JVMs, reusability 20)

Between the two we prefer C2 for its larger heap size (and thus its ability to
handle larger than average objects in a collection).
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• For split size 2.5MB: Best choices are

– C3 = (2.2GB heap, 3 JVMs, reusability 10)

– C4 = (3.2GB heap, 2 JVMs, reusability 20)

Between them we prefer C4 for its larger heap size.

Finally, to compare C2 to C4 we run a last set of experiments on both config-
urations with a dataset sized max(Split size)×max(JpV ) ×max(Reusability) =
2.5× 3× 20 = 150 MB (150 splits for C2 or 60 splits for C4) for full utilization. C2

is found to result in (marginally) lower execution time by about 4%, pointing to it
as the best among the 63 choices considered.

6.2.8 Comparative Results for Different Functionalities and Num-

ber of Categories

In Section 3.4 we described the different levels of functionality that can be sup-
ported by our parallel NEM algorithms, ranging from minimal to full functionality.
In this section we evaluate the impact of the levels of functionality on performance.
Moreover we discuss the impact of increasing the number of supported categories
on performance and output size.

At first, we note that the time required by the mining component is independent
of the level of functionality, since the mining tool always has to scan the documents
and apply the mining rules. Of course, an increased number of categories will
increase the number of lookups, but the extra cost is relatively low. The main
difference between the various levels of functionality is the size of the mappers’
output and the size of the reducers’ output.

For instance, in our experiments over 200MB-SET1, for L0 (minimal function-
ality) the map output was 6MB, which is 2.8 times less than the output for L3
(full functionality). The difference is not big. This is because the average size of
the doc lists of the entities is small. This is evident by Figure 6.13 which analyzes
the contents of the reducers’ output, specifically the figure shows the number of
entities for each category and the maximum and average sizes of the entities’ doc
lists. We observe that the average number of documents per identified entity is
around 3. This means that the sizes of the exchanged information by the different
levels of functionalities are quite close, and this is aligned with the ×2.8 difference
of the mappers’ output.

Of course this depends on the dataset and the entities of interest. We could say
that as |E| increases (recall that the set E can be predefined) the average size of the
doc lists of these entities tends to get smaller. Consequently, we expect significant
differences in the amounts of exchanged information of these levels of functionality
when |E| is small, because in that case the average size of the doc lists can become
high.
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Figure 6.13: Content analysis of Reducer’s output

In our datasets, and with the selected set of categories and mining rules, the
differences of the end-to-end running times were negligible. This is because most
time is spent by the mining component, not for communication3.

Actually, one could "predict" the differences as regards the latency due to the
extra amount of information to be exchanged, based on the analysis of Section
4.1.1, where we estimated the amount of information that has to be exchanged in
various levels of functionality, and the network throughput of the cloud at hand.
Recall that in Section 4.1.1 the amount of information that has to be exchanged
in various levels of functionality is measured as a function of |A| (the number of
hits to be analyzed), dasz (the average size in words of a document), and z (the
number of partitions, i.e. number of nodes used). Specifically:

• Cases L0, L1 (i.e. L0 + counts) and L2 (i.e. L1 plus ranking; the latter does
not increase data): O(zmin(dasz , |E|))

• Case L3 (L2 + doclists): O(|A|min(dasz, |E|)).

It follows that the difference in the amounts of the exchanged information
between L3 and L0/L1/L2 can be quantified as: for the case where E is fixed
(predefined), the difference is in O(|A||E| − z|E|) = O(|E|(|A| − z)), while for the
case where |E| is not fixed (not predefined), the difference is in O(|A|dasz−zdasz) =
O(dasz(|A| − z)).

To grasp the consequences, let’s put some values in the above formulae. For
|A| = 100, dasz = 400KB, and z = 8, the quantity dasz(|A| − z) has the value
400(100-8) KB = 39.2 MB. By considering the capacity of the cloud one could
predict the maximum time required for transferring this amount of information.
For instance, the throughput of Amazon Cloud is 68MB/s ([51]). It follows that
39.2 MB require less than one second.

3Even with the full functionality, the reduce phase constitutes only about 2% of the total job
time when analyzing 300MB-SET1 using 4 nodes.
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Moreover, the above time assumes that the information will be communicated in
one shot. Since it will be done in parallel, the required time will be less. Specifically,
in case we have an ideal load balancing, and thus all mappers start sending their
results at the same point in time, for predicting the part of the end-to-end running
time that corresponds to data transfer, it is enough to consider what one mapper
will send.

For the case of L0/L1/L2 this amount is in O(min(dasz , |E|)), while for the
case of L3 it is in O(|Di|min(dasz , |E|)) where |Di| is the number of docs assigned
to a node, and we can assume that |Di| = |A|/z. Therefore the difference between
L3 and L0/L1/L2, can be quantified as follows: for the case where E is fixed
(predefined), the difference is in O(|A||E|/z − |E|) = O(|E|(|A|/z − 1)), while for
the case where |E| is not fixed (not predefined), the difference is in O(|A|/z dasz −
dasz) = O(dasz(|A|/z − 1)).

Obviously, for big values, the above difference can become significant. For
instance, for building the index of a collection of 1 billion (109) of documents, with
dasz = 400KB and z = 11, the extra amount of exchanged data will be 400∗109/10
KB. With a network throughput of 100 MB/s, the extra required time will be 4∗105

seconds, i.e. around 4.6 days.

Increasing the Number of Categories

Next we evaluated system performance as the number of categories increases. In
general, we expect that the amount of exchanged data, number of lookups, rule
executions, and the output size, increase as the number of categories increases.
Growing the number of categories from 2 to 10 in increments of 2 did not show
a measurable impact on performance. However, the reducer output size and the
number of identified entities increased: in particular, the average number of iden-
tified entities for the 100MB-SETs was from 16,300 (with two categories, Person
and Location, enabled) to 45,227 with all ten categories enabled4.

Compression

As a final note, we originally considered the possibility to compress the doclists of
the exchanged entities using gapped identifiers encoded with variable-length codes
(e.g. Elias-Gamma), as it is done in inverted files, to reduce the amount of infor-
mation exchange in L3. However, since our experiments showed that all different
functionalities have roughly the same end-to-end running time, we decided not to
use any compression as it would not affect the performance. However, compression
could be beneficial in cases one wants to build an index of a big collection, as in
the billion-sized scenario that we described earlier.

4In particular: Person, Location, Organization, Address, Date, Time, Money, Percent, Age,
Drug.
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6.2.9 Improving Scalability through Fragmentation of Documents

In Section 6.2.4 we observed that total execution time and overall scalability are
bounded by the longest tasks, which correspond to the largest files in a collection.
This limit is hard to overcome in NLP tasks such as text summarization or en-
tity mining where entities are accompanied by local scores, as these tasks require
knowledge of the entire document. Thus we have considered documents as undi-
vided elements (or “atoms") which cannot be subdivided. However, in cases where
documents can be subdivided into fragments, one could adopt a finer granularity
approach for better load balancing and thus improved speedup.

To validate the benefit of this approach we produced a variation of the Chain-
Job (CJ) procedure in which we partition files in smaller fragments. Specifically,
we divide documents larger than 800KB in fragments whose size does not exceed
the split size. Our results show that this variation of CJ achieves a speedup of
x6.2 for a 300MB dataset when using 8 Amazon EC2 VMs, an improvement over
the speedup of x5.66 with standard CJ (without document fragments). This is
attributed to the fact that the longest task execution time is now 80 sec in contrast
to standard CJ where this was 249 sec. We should note that this approach is only
applicable to the CJ procedure since its preview phase can be used to fragment the
large documents.

6.2.10 Synopsis of Experimental Results: Executive Summary

The key results of our evaluation of the proposed MapReduce procedures for per-
forming scalable entity-based summarization of Web search results are:

• Our scalable MapReduce procedures can successfully analyze input datasets
of the order of 4.5K documents (search hits) at query time in less than 7′

Such queries far exceed the capabilities of sequential NEM tools. The use of
special computational resources (such as highly parallel multiprocessors with
very large memory capacity) are a potential alternative to our use of Cloud
computing resources, but we consider our solution to be more cost-effective
and ubiquitous.

• We have observed speedups of x6.4 when scaling our system to 8 Amazon
m1.large EC2 VMs (that is, 24 JVMs concurrently executing map tasks) us-
ing our single-job procedure. While we consider this to be a very good level
of scalability, it deviates from perfect (theoretically possible [73]) scalability
due to two primary reasons: The existence of a few very large documents in
the input dataset (Section 6.2.2) means that tasks analyzing them may –even
in the best possible execution schedule– become a limiting factor during the
mapping phase (since documents cannot be subdivided in NEM analysis);
additionally, variability in last-task completion times (expressed via the im-
balance percentage, Section 6.2.5) means that even in the absence of such very
large documents, tasks rarely finish simultaneously, introducing idle time in
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the mapping phase. The impact of these factors increases with system size
(number of VMs).

• Use of our chain-job (CJ) MapReduce procedure performs a size-aware assign-
ment of the remaining documents to tasks of Job #2 and offers the qualitative
benefit of a quick preview of the NEM analysis, compared to the single-job
(SJ) procedure. An administrator can decide to perform a more accurate
preview by either allocating more resources (VMs) or alloting more time to
the first-job of CJ, exploiting a cost vs. wait-time tradeoff. In our experi-
ments, going from one to 8 EC2 VMs increases the percentage of documents
analyzed during the preview phase from 0.6% to 3.8% of a 200MB dataset.
CJ exhibits somewhat lower scalability compared to SJ (x5.66 vs. x6.45 for a
300MB dataset) due to the overhead of using two rather than one MapReduce
job. The issue of big documents can be tackled by an evaluation procedure
that is based on document fragments. This method can be adopted if the
desired text mining task can be performed on document fragments.

• For optimal tuning of the Hadoop platform on Amazon EC2, we evaluated the
impact of the number and size of splits, JVM heap size, and JVM reusability
parameters on performance. We also presented a tuning methodology for
selecting optimal values of these parameters. Our methodology is a valuable
aid to help an expert in tuning the Hadoop MapReduce platforms in order to
optimize resource efficiency during execution of our MapReduce procedures.

• Our evaluation of the impact of different levels of functionality and number
of categories (up to ten categories) showed no impact on end-to-end running
time in the used collections, thus allowing the use of enriched analysis (L3)
without additional cost over lower levels of functionality. However, for bigger
collections the impact can be significant, and for this reason we have analyzed
the expected impact analytically.
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Chapter 7

Applications

In this chapter we describe a number of applications/prototypes that we have
developed in the Information System Laboratory [74] to which this thesis has con-
tributed.

7.1 IOS Prototypes

Instant Overview Searching (IOS) is a powerful search-as-you-type functionality
introduced in [21] which apart from showing on-the-fly only the first page of results
of the guessed query, it can show several other kinds of supplementary information
that provide the user with a better overview of the search space. In more detail, an
off-line analysis (such as NEM or clustering) over the search results is performed for
a set of queries (e.g. the most frequent) and the results are stored in a partitioned
trie-based index [21] by exploiting the available main memory, disk and dedicated
caching techniques [22] in order to provide autocompletion with complementary
information (identified entities, clusters) which can be further exploited in a faceted
search-like [7] interaction scheme.

Figure 7.1 shows the implemented applications that (most are web accessi-
ble [75]) include: 1) a meta-search engine (MSE) over Bing offering instant cluster-
ing of the results (see Fig. 7.1c). 2) a standalone web search engine offering instant
metadata-based groupings [76] of the results (see Fig. 7.1b), and 3) a MSE offering
instant entity mining over the top hits (see Fig. 7.1a). This system retrieves the
top-50 hits from Bing, mines the content of each result and presents to the user
a categorized list with the discovered entities. When the user clicks on an entity,
the results of the specific entity are loaded instantly. Moreover, the system ranks
the categories and the entities which are identified (based on scoring formulas pre-
sented at Section 3.1). Additionally, by clicking at "find its entities" the categories
and the entities that lies to that specific hit are presented. Note that, without IOS
functionality, this computation costs a lot both in time (about one minute) and in
main memory (500 MB in average) per query. In all these applications, the user
with a few keystrokes gets quite informative overviews of the search space.

57



58 CHAPTER 7. APPLICATIONS

Figure 7.1: IOS Applications

All these applications also provide their functionality at query time i.e. for
queries whose analysis is not stored in the trie-based indexes. Moreover, the user
can configure the number of results and the hit’s part (snippet or full content) that
would be analyzed (see at the top left portion of Fig. 7.2).

We have also investigated how to exploit the Semantic Web technologies for
enriching the entities [8] that have been identified in the web search results. Specif-
ically, we have studied how the LOD can be exploited for providing further infor-
mation about the entities that lie in the search results of both general purpose web
search engines and vertical search scenarios.

Figure 7.2 presents a prototype where for each entity the user can ask the
system to fetch more information from the LOD cloud. Currently our prototype
adopts the (a) approach for the general web search scenario, and the (c) approach
for vertical search scenarios. Specifically, when the user clicks on the small icon at
the right of an entity, the system at that time checks if that entity lies in the LOD
cloud (by performing a SPARQL query) and if yes it collects more information
about that entity which are visualized in a popup window as shown in Figure 7.2.

7.2 XSearch in the EU iMarine Project

iMarine [77] is an ongoing FP7 Research Infrastructure Project that will establish
a data infrastructure to support the Ecosystem Approach to fisheries management
and conservation of marine living resources. iMarine empowers practitioners and
policy makers from multiple scientific fields such as fisheries, biodiversity and ocean
observation. The iMarine infrastructure will ensure that otherwise dispersed and
heterogeneous data is available to all stakeholder communities through a shared
virtual environment that brings together multidisciplinary data sources, supports
cross-cutting scientific analysis, and assists communication. The final aim of iMa-
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Figure 7.2: Indicative screendump from IOS Entity mining prototype

rine is to contribute to sustainable environmental management with invaluable
direct or indirect benefits to the future of our planet, from climate change mitiga-
tion and marine biodiversity loss containment to poverty alleviation and disaster
risk reduction.

Part of the iMarine is to leverage and improve existing technologies and tools,
first and foremost, the gCube software system [78] which is a large software frame-
work designed (and being improved from 2006) to abstract over a variety of tech-
nologies belonging data, process and resource management on top of Grid/Cloud
enabled middleware. By exposing them through a comprehensive and homogeneous
set of APIs, portlets and services.

One of the gCube infrastructure’s family of components offers Information Re-
trieval (IR) facilities, i.e. it allows searching over data and information by a wide
range of techniques. The IR framework is decomposed in three major categories:
i) Search Framework, which includes all services focused on the search-specific as-
pects of the gCube platform, ii) Index Management Framework, which includes all
services that are involved in the creation and management of gCube indices and iii)
Distributed Information Retrieval Support Framework, which includes all services
which enhance and support the IR system.

In the context of the participation of the ISL group of FORTH-ICS to the iMa-
rine Project we implemented the XSearch [79] functionality/component. XSearch
is a meta-search engine that reads the description of an underlying search source,
and is able to query that source and analyze in various ways the returned results
and also exploit the availability of semantic repositories. The offered functionali-
ties are: clustering of the results, provision of extracted textual entities, provision
of gradual faceted search, ability to fetch semantic information about extracted
entities and exploitation of the offered services in any web page.
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The functionality of XSearch is offered as a portlet [80] (named as XSearch-
Portlet) or as a web application (named as XSearch-Service) either with the use of
both.

At first we provide some general information for the portlets and portal. Portlets [80]
are pluggable user interface software components that are managed and displayed
in a portal which is a framework for integrating information, people and processes
across organizational boundaries. One of several portal’s implementations is the
Liferay Portal [81], a free and open source enterprise portal written in Java that
allows users to set up features common to websites. The portat is fundamentally
constructed of portlets.

XSearch has three implementations:

• Web application (in which are implemented both Front-end and Back-end)
implemented using Java Servlets at server side and Javascript at client (browser)
side. Figure 7.3 presents an indicative screendump of the implemented ap-
plication.

Figure 7.3: Indicative screendump from XSearch as a web application

In more detail, a user submit the query "yellowfish tuna" and are presented
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the search results (with Bing as underline search system and FLOD [82] as
SPARQL end point) enriched with the clustering and mining results.

• As a portlet and service, responsible for the front-end and the back-end re-
spectively.

At first we provide some implementation details for the XSearch-Portlet.
XSearch-Portlet is a mavenized [83] portlet that is hosted by gCube (a frame-
work dedicated to scientists which adopts Liferay Portal [81] as enabling
portal technology for its Infrastructure Gateway). For a better and more effi-
cient Ajax implementation it was developed with the Google Web Toolkit [84]
(GWT) which is an open source Java software development framework that
emphasizes reusable, efficient solutions to recurring Ajax challenges, namely
asynchronous remote procedure calls, history management, bookmarking,
and cross-browser portability.

Figure 7.4: Indicative screendump of gCube search

In this approach, the underline search system is the gCube Search system [85].
We are using the gCube Search-Portlet in order to submit the query and
enable the semantic analysis. Figure 7.4 shows an indicative screenshot of
gCube Search-Portlet. In particular, a user selects the collections (left por-
tion of fig. 7.4) that he wants to search through (e.g. Naso) and types the
query (e.g. "Aquaculture"). By selecting the check button "Semantic Search"
is enabled the XSearch functionality and finally the query is submitted by
clicking on the "Search" button. After the query is submitted (with se-
mantic search enabled), the gCube Search-Portlet formulates the CQL query
through the Application Support Layer (ASL)1 , submits it to the Search-

1A middleware between gCube Lower level Services and the gCube Presentation Layer.
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System and receives references to the results. This occurs for keeping the
required memory in the portlet in a low state and retrieving the results as
they are required. After receiving the references to the results, the gCube
Search-Portlet stores them in the ASL-Session, i.e. a unique session (an in-
stance of the SessionManager object that is based on the Singleton resource
pattern) that can be retrieved for each user and used to store information.
Also, in the ASL-Session are stored the query terms and the selected collec-
tions that were specified by the user. Then the gCube Search-Portlet triggers
XSearch-Portlet and the web page is redirected to XSearch-Portlet.

XSearch-Portlet starts fetching the top-k (the default value for K is 50) re-
sults to the ASL-Session by using the result’s references. After receiving all
these results it starts two parallel actions; a) it shows the top-K results to the
user and b) send the top-K results to the XSearch-Service for semantic data
analysis. The results (the metadata that are required for analysis, which are
the title and the snippet for each hit) are sent using a TCPLocator; a stream
which allows to expose the local results over the network (through a TCP con-
nection). XSearch-Service starts consuming the results and when it reaches
the desired number of results (the default is 50) it starts analyzing them;
performing named entity mining and results clustering. When the analysis is
done the semantic data analysis results are sent back to the XSearch-Portlet
which is presented at figure 7.5.

Figure 7.5: Indicative screendump of XSearch-Portlet
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As we can observe at figure 7.5, the XSearch-Portlet presents the results
enriched with the clustering and mining results of semantic data analysis.
The first page of the results contains only the top-10 results. If the user
wants to see more results, (s)he should click on a specific page number. After
clicking on the page number, XSearch-Portlet locates the corresponding 10
results and shows them directly to the user. Furthermore, if the user clicks on
a specific entity/cluster the result-space is limited to contain only the results
that are related with the specific entity/cluster. A more detailed analysis of
the process is presented at the sequence diagram of figure 7.6.

• A portlet responsible for both Front-end and Back-end. Note that the portlet
was implemented with exactly the same way as reported in previous approach.

In this approach, the underline search system is either Bing or Google. Figure
7.7 shows an indicative example on which the user types and submits the
query "Barack Obama". As we can observe, for the submitted query the
search results enriched with the clustering and mining results of semantic
analysis are presented.

This approach offers some more functionalities. Specifically, by clicking at op-
tion "Advanced Criteria" it appears a drop-down list (see fig. 7.7) from which
the user can select the number of top results to be analyzed and whether the
analysis should be done over the contents or over the snippet.

By clicking the "Settings" link (top-left portion of figure 7.7) it appears a
pop-up presented at figure 7.8. We can observe that this window consists of
three different tabs: a) Mining b) Clustering c) Search, from which the user
can change the settings for each different component.

In more detail, from the Mining tab (see fig. 7.8): we can select the number of
top results that would be analyzed, whether we want to perform the analysis
over content or snippet, whether we want to add domain restrictions, choose
the desired categories, add a new category either by uploading a file with the
entities or by giving a link to download the list of entities. Additionally, we
can select the preferred ranking formula.

From the clustering tab (see fig. 7.9a): the user can select the number of top
results to be analyzed, whether the analysis should be done over the contents
or over the snippet, the number of clusters that wants to be created and the
preferred clustering algorithm.

Finally, from the Search tab (see fig. 7.9b) we can choose the underline search
system (with Bing and Google currently supported) and add a domain re-
striction to the search results.
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Figure 7.6: Sequence diagram of the approach that uses both portlet and service.
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Figure 7.7: Indicative screendump of standalone XSearch-Portlet

Figure 7.8: Mining settings for the standalone XSearch-Portlet
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(a) (b)

Figure 7.9: Clustering (a) and Search (b) settings for the standalone XSearch-
Portlet
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7.3 Cloud Prototypes

We evaluated the distributed approach over two commercial Cloud providers; the
Amazon [86] and the Flexiant [87]. As we mentioned before all the experiments
that we have reported in Section 6.2 are on Amazon. The reason why we do not
report any experimental result over Flexiant, is because we faced the common
problem of having diverted system clocks. With unsynchronized clocks (between
cluster’s VMs) we could not trust the reported times of MapReduce framework in
which the task times are relative to the Job launch time. Also, Ganglia is affected
because it requires synchronized clocks between the monitoring VMs (as reported
at [70]) in order to report accurate monitoring values.

In order to run a new Single Job (described at Section 5.2.1) we created a
script in Bash programming language. Figure 7.10 presents the parameters that
are needed to run the script which are presented each time that a user tries to
run the script without any parameters. If some of the parameters malformed,
informative error message appears.

Figure 7.10: Indicative screendump of running the bash script that starts a Single
Job

As we can observe the parameters that are needed are: a) the query, b) the
number of top-K results on which we want to perform NEM, c) If we want to
perform the analysis over the snippets or over the full contents. Once the job is
finished some Job’s statistics are presented (see figure 7.11).

There are various ways to retrieve the results. Each reducer produces one
output file (e.g. if there are 30 part files named part-00000 to part-00029 in the
output directory). If the output is large, then it is important to have multiple parts
so that more than one reducer can work in parallel.

One way of retrieving the output is by exploiting the NameNode’s web interface
(see at figure 7.12 ).

Another way of retrieving the output if it is small is to use the -cat option to
print the output files to the console:

• hadoop fs -cat output/*

Another convenient command is to copy them from HDFS to our development
machine. The -getmerge option to the hadoop fs command is useful here, as it
gets all the files in the directory specified in the source pattern and merges them
into a single file on the local file system:
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Figure 7.11: Indicative screendump of Map Reduce Job’s output.

• hadoop fs -getmerge output outputLocalCopy

From the aforementioned ways to retrieve the Job’s results it is obvious that
the last approach (-getmerge) is the most appropriate in case that we want to
present the results on a Web Application. The other two ways, are in most cases
useful when we want to have a quick look over the results or to search for something
specifically.

Furthermore, we have created another bash script which runs a new Chain Job
procedure (described at Section 5.2.2). By default this script takes exactly the same
parameters as the aforementioned script with the only difference that optionally
could take another parameter that indicates the duration (in minutes) of the Job
#1 .

Finally, a human readable format (see figure 7.13) was adopted for the Job’s
final results which was helpful for a better observation of them. In more detail,
each different category is after a blank line and followed by the multitude of the
belonging entities. The belonging entities are listed under the category - one entity
at each line - and each one is followed by the list of document ids (the position of
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Figure 7.12: Indicative example of Namenode GUI

document in the query’s returned list) in which was identified.
The aforementioned MapReduce approaches could be easily exploited through

a Web Application. In particular, one of the processes that someone could follow
is:

(a) create a web application that takes the parameters depicted at 7.10, and then
runs one of the aforementioned bash scripts (Single or Chain Job),

(b) present the query’s results (hits) on the Web Page,

(c) create a servlet which would be triggered from the MapReduce once the job
has finished,

(d) configure the MapReduce parameter mapreduce.job.end-notification.url;
in order to define the target that would be triggered once the job has finished,

(e) formulate the results in a presentable way,
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Figure 7.13: Indicative example of the Job’s results

(f) load the semantic data results to the web page, and

(g) locate a tomcat on the same node on which is located the HDFS Namenode
and deploy the web application.



Chapter 8

Conclusions and Future Work

In this thesis we have discussed methods to enhance web searching with entity
mining. Such enhancement is useful because it gives the user an overview of the
answer space, it allows the user to restrict his focus on the part of the answer
where a particular entity has been mined, it is convenient for user needs (or user
tasks) that require collecting entities, and it can assist the user to assess whether
the submitted query is the right one (i.e. whether it fits to his information need).

We described four main approaches for supporting this functionality and we
focused on two dynamic methods, i.e. methods that are performed at query time
and do not require any pre-processing. Since such methods have not been studied
in the literature (nor supported by existing systems), we compared the application
of NEM over textual snippets versus NEM over the full contents (after having
downloaded them at real time) of the top hits (according to various criteria). In
brief, the experimental results showed that real time NEM over the top snippets is
feasible (requires less than 2 secs for the top-50 hits) and yields about 1.2 entities
per snippet. On the other hand the approach "download and mine over the full
contents" is more time consuming (requires 80 secs for the top-50), but mines much
more entities (in average 10.1 per hit).

However, we show that extending NEM (without pre-processing) to the full
contents (even) for hundreds of top-hits, using a single machine, is either infeasible
(due to the high computational and memory requirements) or can take hours to
complete and thus we aim for a scalable methodology by exploiting MapReduce
distributed computation model to parallelize the NEM process.

In more detail, we have shown how to decompose a sequential Named Entity
Mining algorithm into an equivalent distributed MapReduce algorithm and de-
ploy it on the Amazon EC2 Cloud. To achieve the best possible load balancing
(maximizing utilization of resources) we designed two MapReduce procedures and
analyzed their scalability and overall performance under different configuration/-
tuning parameters in the underlying platform (Apache Hadoop). Our experimental
evaluation showed that our MapReduce procedures achieve a scalability of up to
x6.4 on 8 Amazon EC2 VMs when analyzing 300MB datasets, for a total runtime
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of less than 7′.
Our evaluation fully addresses our targeted application domain (our larger

queries include on average 4365 hits or about 87 pages of a typical search re-
sult). Our methodology and analysis however can straightforwardly extend to far
larger datasets. The summarization performed by NEM reduces the total mapper
output by an order of magnitude compared to the input dataset, thus simplifying
the reducer’s task in our MapReduce procedures. Larger datasets are expected to
increase that output, eventually making the case for deploying multiple reducers.
Considerations for provisioning and tuning reducers described in Section 5.3 will
apply in this case.

As regards entity ranking we comparatively evaluated three methods; one based
on the frequency of the entity and the rank of the hits in which it occurs, one based
on similarity with the query string, and one that combines both. The user study
showed that the string similarity between the query and the entity name did not
improve entity ranking in our setting. Another important point is that the top-10
entities derived from snippet mining and the top-10 entities derived from contents
mining for the same queries are quite different; their Jaccard similarity is less than
30% for the majority of the queries.

There are several directions for future work extending the research presented
in this thesis. One issue that is worth further research is to compare the quality of
the identified entities in snippets versus those identified in contents. Towards the
same direction, it is worth investigating approaches for entity deduplication and
cleaning that are appropriate for our setting.

In future, one could attempt to evaluate empirically this approach in the do-
mains of fisheries/aquaculture and patent search.

The long term vision is to be able to mine not only correct entities but probably
entire conceptual models that describe and relate the identified entities (plus other
external entities) and are appropriate for the context of the user’s information need.
After reaching that objective the exploratory process could support the interaction
paradigm of faceted search over such (crispy or fuzzy) semantic models, e.g. [88]
for plain RDF/S, or [89] for the case Fuzzy RDF.

As regards to parallelized methods, one interesting direction is to generalize the
chain-job procedure to provide progressively more results over a number of stages
(rather than just two). While we anticipate an impact on the efficiency of the
overall MapReduce job, a constant stream of results is expected to be a welcome
feature by end users. On the issue of the type of Cloud resources allocated to a
specific instance of our MapReduce procedures, we plan to explore cost/perfor-
mance tradeoffs within the large diversity of resource types available across Cloud
providers.
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Appendix A

A.1 Queries in the User Study

Fifteen users participated in the evaluation with ages ranging from 20 to 28, 73.3%
males and 26.6% females. We selected a set of 20 queries which are very familiar
to the participants (Greek citizens):

Andreas Papandreou, Athens History, Barack Obama, cities of Italy,

corporation apple, Eiffel Tower, Greek Corporations, Greek Culture,

Greek History, Greek Democrasy, konstantinos karamanlis, London,

Lucas Papademos, Michael Jordan, Microsoft, Olympic games, Olympic

National Park, Rent a Car at Heraklion, Restaurants in Athens,

Tim Berners-Lee.

A.2 Related Works and Systems by Category

Apart from the dimension, described at Section 2.1.2 (i.e. when NEM takes place),
existing works on entitity mining could be distinguished according to various cri-
teria, some indicative are sketched at Figure A.1.

Table A.1 characterizes the more relevant systems according to some basic
criteria.
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----------------------------------------------------------------------------------------------

|User Input | Input Source (format)//over which EM is applied|

| free text queries | texts |

| structured queries | Web pages |

| semi-structured queries | Structured data |

| distinction between keywords and | databases |

| entity types (e.g. Yannis #telephone) | RDF/S KBs, Linked Open Data |

|-------------------------------------------|------------------------------------------------|

|EM technology | Auxiliary/Extenral Sources (for EM) |

| Simple Rules | Dictionaries |

| Handwritten/Templates | Lists of entities |

| Semi-automatic gener. of training data | Databases/Knowledge Bases of Entities |

| Named Entity Classes | |

|--------------------------------------------------------------------------------------------|

|Output | User Feedback |

| relevant document and entities* | Explicit |

| relevant entities* | Click log analysis |

| relevant entities and relationships | Tag analysis |

| by kind of Relationship |-------------------------------------------------

| time, space, closeness | *entity ranking |

| subClassOf, domain specific | based on the current answer |

| by visualization method | based on usage log analysis |

| graph, map | (sessions, tagging) |

| annotations over the text | based on the entire corpus |

| by ability to browse | based on the entire corpus and its links |

| browsable/restricable | to external sources (e.g. wikipedia) |

| Non browsable | |

----------------------------------------------------------------------------------------------

Figure A.1: A rough categorization of Entity Search engines

System Approach Entity Ranking Output

IOS[21, 22] RS, QC,
OFQ

Rank-aware frequency relevant documents and enti-
ties

Entity
Search
Engine
[1, 23, 24]

OC Aggregation of local and global
scoring using probabilistic meth-
ods.

Ranked list of entities com-
bined with a URL for each en-
tity.

EntityCube
[25]

OC According to their relevance to
the query and their popularity
where various different ways are
proposed for computing popu-
larity (e.g. papers citations).

Relevant documents, entities,
biography, News, SNS, Publi-
cations, Name disambiguation
option and Profession

MediaFaces
[2, 26]

OC Statistical analysis of query
terms/sessions and Flickr anno-
tations

Categories combined with their
entities (images)

ECIR [3] QC (16 hits
over Google,
64 over Bing
and Yahoo)

Based on statistics from the nar-
rowed document corpus, which
was acquired via an enhanced
keyword query.

One line for each found tar-
get entity with some attributes
(e.g. TREC topic number)

Table A.1: Some related systems and works with the centralized process
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