
LuaGuardia: A Confidential Computing
Framework for Trusted Execution Environments

Dimitrios Karnikis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisors: Prof. Polyvios Pratikakis, Prof. Sotiris Ioannidis

This work has been performed at the University of Crete, School of Sciences and Engineering, Computer
Science Department.

This work was partially supported by Institute of Computer Science, Foundation of Research and
Technology Hellas

This work was partially supported by Institute of Computer Science, Foundation of Research and
Technology Hellas

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

LuaGuardia: A Confidential Computing Framework for Trusted Execution
Environments

Thesis submitted by
Dimitrios Karnikis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Dimitrios Karnikis

Committee approvals:
Polyvios Pratikakis
Professor, Thesis Supervisor, Committee Member

Sotiris Ioannidis

Xenofontas Dimitropoulos
Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Professor, Director of Graduate Studies

Heraklion, January 2021

Associate Professor, Thesis Advisor, Committee Member

Abstract

Confidential computing applications are enabled by Trusted Execution environments (TEEs)
that are becoming increasingly widespread in the computing landscape. However, their
development and deployment remains challenging due to several reasons. The lack of
high-level TEE abstractions complicates application development and forces the use of
low-level memory- and type-unsafe abstractions. These challenges are exacerbated by
technical issues regarding runtime extensibility, management of cryptographic operations,
and restricted interfaces: even porting existing applications requires manual partitioning,
re-compilation, and linking steps.

This work presents LuaGuardia, a system simplifying the development of confiden-
tial computing. LuaGuardia addresses the aforementioned challenges by offering a set of
abstractions around a TEE-embedded runtime environment of a high-level programming
language. LuaGuardia’s abstractions simplify the development and deployment of such
applications in a type- and memory-safe manner. It also offers a runtime library solving
technical challenges such as code signing, system-call offloading, access control, and dy-
namic code loading. A series of optimizations is also provided that accelerate protected
code execution. Our evaluation applies LuaGuardia to a diverse set of applications, cryp-
tographic functions but also real-world commercial applications, with an average over-
head of 18%, the majority of which is due to I/O delays.

Περίληψη

Οι εφαρμογές εκτελούν κώδικα κρίσιμο για την ασφάλεια ενός συστήματος και

διαχειρίζονται ευαίσθητα ή προσωπικά δεδομένα. Συχνά υποστηρίζονται από Περι-

βάλλοντα Ασφαλούς Εκτέλεσης (ΠΑΕ), τα οποία γίνονται όλο και πιο διαδεδομένα

στον χώρο των υπολογιστών. Ωστόσο, η ανάπτυξη και η εφαρμογή τους παραμένουν

μία πρόκληση για διάφορους λόγους. Αρχικά, η έλλειψη διεπαφών υψηλού επιπέδου

στα ΠΑΕ περιπλέκει την ανάπτυξη εφαρμογών και αναγκάζει τη χρήση γλωσσών που

δε προσφέρουν ασφαλείς διεπαφές μνήμης και τύπων. Αυτές οι προκλήσεις επιδει-

νώνονται από τεχνικά ζητήματα που αφορούν την επεκτασιμότητα του περιβάλλοντος

εκτέλεσης, την διαχείριση των κρυπτογραφικών λειτουργιών αλλά και τις περιορισμένες

διαθέσιμες διεπαφές. Επίσης, η μεταφορά των υπαρχόντων εφαρμογών σε διαφορε-

τικά συστήματα/πλατφόρμες απαιτεί χειροκίνητη τμηματοποίηση της εφαμοργής, εκ

νέου μεταγλώττιση του πηγαίου κώδικα και την υλοποίηση των απαραίτητων βημάτων

σύνδεσης για την τελική δημιουργία του εκτελέσιμου προγράμματος.

Αυτή η εργασία παρουσιάζει το LuaGuardia , ένα σύστημα που απλοποιεί την
ανάπτυξη εφαρμογών βασισμένων σε ΠΑΕ. Το LuaGuardia αντιμετωπίζει τις προανα-
φερθείσες προκλήσεις προσφέροντας ένα σύνολο διεπαφών υψηλού επιπέδου γύρω από

ένα περιβάλλον εκτέλεσης σε γλώσσα υψηλού επιπέδου. Αυτές οι διεπαφές απλοποιο-

ύν την ανάπτυξη τέτοιων προγραμμάτων με γνώμονα τη διατήρηση της ασφάλειας των

τύπων και την προστασία της μνήμης. Ακόμη, προσφέρει μια βιβλιοθήκη που επιλύει

τεχνικές δυσκολίες όπως την υπογραφή του εκτελέσιμου κώδικα, τη διαχείριση των

κλήσεων συστήματος, τον έλεγχο πρόσβασης σε δεδομένα και τη δυναμική φόρτωση

κώδικα. Ακόμη, προσφέρει μια σειρά βελτιστοποιήσεων που επιταχύνουν την εκτέλεση

προστατευμένου κώδικα. Επιπλέον, σε αυτή την εργασία αξιολογούμε την επίδοση του

LuaGuardia σε ένα σύνολο από αλγορίθμους, κρυπτογραφικές συναρτήσεις αλλά και
εμπορικές εφαρμογές. Μέσω πειραμάτων παρατηρούμε ότι το σύστημά μας προσφέρει

τα παραπάνω πλεονεκτήματα, αυξάνοντας κατά μέσο όρο τον χρόνο εκτέλεσης κατά

18%, με την πλειονότητα των χρονικών επιβαρύνσεων να οφείλεται σε καθυστερήσεις

εισόδου/εξόδου.

Acknowledgments

First of all, I would like to thank my supervisor, Professor Polyvios Pratikakis, for
his valuable guidance and all the constructive conversations we had. I also want to ex-
press my deepest gratitude to my advisor, Professor. Sotiris Ioannidis, for giving me the
opportunity to work on so many different, challenging and interesting projects, over the
past three years. His support and advice greatly contributed to my academic and technical
growth. Moreover, I feel thankful to my colleague, mentor and friend Dimitri Deyanni,
for his guidance during my first steps of my academic journey from bachelor years till my
masters.

My warmest regards to all the members of the DiSCs Laboratory, for their friendship,
advice and commitment.

Finally, I want to thank my family and friends for bearing with me and for providing
their invaluable support and caring through all these years.

Contents

1 Introduction 1
1.1 Guarantees . 2
1.2 Outline . 3

2 Background 5
2.1 Trusted Execution Environments . 5

2.1.1 Intel Software Guard Extensions 6
2.1.2 ARM TrustZone . 9

2.2 Just-In-Time Languages . 10
2.2.1 Why Lua . 10

2.3 Motivating Examples . 11
2.3.1 LuaGuardia Overview . 12

3 Threat Model and Assumptions 15

4 System Architecture 17
4.1 LVMAT Components . 17

4.1.1 LVMAT Interpreter . 17
4.1.2 LVMAT Server . 18
4.1.3 LVMAT Client Stub . 19

4.2 LuaGuardia Local Execution Mode . 19

5 System Implementation 21
5.1 Porting the Lua VM . 21
5.2 system-call Handling . 22
5.3 External Modules . 24
5.4 Maintaining Global State . 25
5.5 Code and Client Isolation . 25
5.6 Optimizations . 27

6 System Evaluation 29
6.1 Experimental Testbed . 29

6.1.1 Security Analysis . 29
6.2 Micro Benchmarks . 31

i

6.2.1 Benchmark Applications . 33
6.2.2 Performance Optimizations . 34
6.2.3 Real World Application 1: wrk2 36
6.2.4 Real World Application 2: Snabb/pflua 38
6.2.5 Real World Application 3: Snabb/IPsec 41

7 Discussion And Limitations 43
7.1 Local Execution Mode . 43
7.2 Native Module Support . 43
7.3 Enclave Size . 44

8 Related Work 45

9 Conclusions and Future Work 47
9.1 Summary of Contributions . 47
9.2 Future Work . 47
9.3 Conclusion . 48

ii

List of Tables

5.1 Most used functions supported by LuaGuardia 24

6.1 Benchmark Operations . 35

iii

iv

List of Figures

2.1 A normal trusted function execution. The untrusted requests the creation
of the enclave and then invokes the requested function. This request is for-
warded to the Trusted bridge that performs certain checks and validations,
and then passes the request with its arguments to the respective function
inside the enclave. The code inside the trusted part is executed inside the
EPC cache and the results are fetched back to the call site. The code then
resumes its normal execution. 8

2.2 Exception Levels and Security states on Armv8-a architecture. 10
2.3 LuaGuardia overview . 13

5.1 Potential risks on running a simple Lua script on the untrusted environ-
ment. In LuaGuardia, all the untrusted I/O is handled via encryption,
libraries and data are stored encrypted in the untrusted file-system and the
attacker may not extract any useful information by observing the enclave
code. 28

6.1 Performance comparison between the vanilla Lua virtual machine and Lu-
aGuardia when reading a 32MB file with variable read buffer sizes 31

6.2 Performance comparison between the vanilla Lua virtual machine and Lu-
aGuardia when randomly performing one million accesses (read/write) to
memory locations ranging between 1KB and 4MB 32

6.3 Performance sustained for cryptographic benchmarks 34
6.4 End-to-end performance when executing 12 popular Lua benchmarks. . . 36
6.5 LuaGuardia execution time breakdown with and without server initializa-

tion optimizations. 37
6.6 Performance comparison between the vanilla Lua virtual machine, Lua-

Guardia and LuaGuardia with system-call batching enabled. 38
6.7 Performance sustained when applying system-call batching and enclave

pre-initialization. 39
6.8 Performance sustained for wrk2 . 40
6.9 Performance sustained for pflua . 41
6.10 Performance sustained for IPsec . 42

v

vi

Chapter 1

Introduction

Confidential computing protects data while in use while they are in use, by isolating com-
putations using a hardware-based trusted execution environment(TEE). The main and pri-
mary goal of a TEE is to isolate programs, program fragments, and their data from po-
tentially malicious operating systems, hypervisors, and other privileged or not processes.
TEEs that are are becoming increasingly widespread in the computing landspace [1, 2, 3],
enabling confidential computing applications in analytics, medicine, telemetry and several
other domains.

Unfortunately, developing such confidential computing applications is far from trivial
due to several challenges [4, 5, 6, 7]. This occurs due to TEE lacking high-level abstrac-
tions, a challenge that (i) complicate application development for users that have no prior
TEE knowledge (ii) forces developers to use low-level memory-and type-unsafe abstrac-
tions. As a result, the lack of type and memory safety affects the security of confidential
computing applications which are the applications that TEEs were developed to support
in the first place. Additionally, moving even the critical part of the application requires
a lot of manual work such as code partitioning, re-compilation and linking the entire
application including the components of the application that run outside of the trusted
environment. Such static code requirements impair the development and use of certain
applications that require code extensibility.

In this work, we present LuaGuardia, a system aimed at simplifying the development
of confidential computing on TEEs. LuaGuardia offers a set of high-level abstractions
for building applications from the scratch or porting existing legacy applications to the
TEE. LuaGuardia’s key insight is to embed the runtime environment of a high-level pro-
gramming language into the TEE. In LuaGuardia’s case, the language is Lua and the TEE
is based on Intel SGX. We opted for Lua due to its high-level semantics, its dynamic
meta-programming facilities(which include runtime code evaluation), and its small mem-
ory footprint: the original Lua interpreter consists of 19K Lines of Code(LoC), consum-
ing minimal enclave memory thus leaving more memory resources available for applica-
tions that are built atop of LuaGuardia. LuaGuardia packages a small runtime library for
dealing with application signing, extensibility, system-call forwarding and other technical
challenges.

1

2 CHAPTER 1. INTRODUCTION

To test the effectiveness of LuaGuardia, we applied it to a large set of programs,
among which are three large, popular and high-performance applications ported to lever-
age TEE-facilities —i.e., an HTTP telemetry tool that TEE-offloads its sensitive analytics,
a packet-filtering tool that TEE-offloads its packet matching facilities, and a VPN-as-a-
Service that TEE-offloads its encryption and decryption phases. The effort of porting
these applications is lowered significantly by LuaGuardia’s abstractions and services. The
overall overhead due to the TEE averages 13– 41% (avg: 18%). Applying several opti-
mizations lowers the overheads to 5–95%, especially for short-lived program fragments.
Summarizing, the contributions that LuaGuardia offers are the following:

• We design and implement LuaGuardia, a lightweight code offloading system cen-
tered around Intel SGX, namely LuaGuardia, that enables confidential computing
using a high-level language, such as Lua, eliminating the need to learn or port code
to device-specific TEEs.

• We perform several low-level optimizations as well as implement additional fea-
tures, such as enclave pre-allocation, capture memory snapshots and system-call
batching, to accelerate LuaGuardia’s runtime performance, boosting the overall per-
formance by up to 70%.

• We show how LuaGuardia can be used by a diverse set of applications, from crypto-
graphic algorithms and simple popular benchmarks to real-world networking toolk-
its. Our evaluation results show that LuaGuardia has an average overhead of 18%
for real-world applications, compared to their unprotected counterparts.

1.1 Guarantees

LuaGuardia offers and ensures the following strong guarantees for each new Lua script
that is executing within LuaGuardia’s interpreter:

• Operations on the given code, data and modules only happen once. After that point,
the execution is self contained inside the enclave with no interaction with the un-
trusted world (providing that no call outside of the enclave occurs).

• The communication channel between the LuaGuardia Client (Section 4.1.2, 4.1.3)
is end-to-end encrypted, thus all the exchange data, code and results are never ex-
posed neither to the network operator nor to a malicious cloud provider. Same logic
applies to the handling of I/O system-calls such as fread/fwrite· Any potential read,
will first perform a round of decryption on the contents of the file, and then process
them inside the enclave, whereas a write will encrypt the data before exiting the
enclave.

• LuaGuardia ensures that even if the code executing inside the trusted interpreter is
hostile to the enclave, the sandboxed environment that is provided will prevent it
from interfering with the normal operation of the system.

1.2. OUTLINE 3

• By leveraging the attestation primitives that Intel SGX [8] offers, a client may safely
gain the trust of LuaGuardia server about the validity, the soundness and the validity
of the enclave running her code. Furthermore, at post execution, apart from the
results, LuaGuardia server returns an execution log with the hash of the code, data
and input that executed as an extra token of reliability.

1.2 Outline

The rest of this dissertation is organized as follows. Chapter 2 presents a brief background
on the most used and popular Trusted Execution Environments available in the market. In
the same chapter, we also describe in detail why did we select Lua language among others
interpreted languages and the benefits it offers to the user. In the next Chapter 3, we
present the Threat Model of our system and the assumptions we make for our work. In
Chapter 4 we describe in great detail the core components of LuaGuardia regarding the
client entity, the server entity and the main Lua virtual machine.

Moving on, on Chapter 5 we describe the whole porting process of the Lua interpreter
inside the SGX enclave, the challenges that we had to deal with and the optimizations that
are implemented that ameliorate the performance of the enclave(since TEEs introduce
overhead to the application). More specifically, we document how the execution process
works, how LuaGuardia handles system-call requests, dynamic support for Lua modules,
global state preservation and execution modes.

Chapter 6 provides a thorough evaluation and analysis of LuaGuardia framework
on several different micro application benchmarks that range from memory bound al-
gorithms, to I/O algorithms and cryptographic functions on different size of input. More-
over, we present the overhead LuaGuardia introduces to larger scale applications as real
use cases. On Chapter 7 we present an analysis on the limitations SGX imposes to our
implementation, problems that LuaGuardia cannot handle at the moment and potential
attacks that render our framework is susceptible to. On Chapter 8 we survey prior exist-
ing work regarding SGX and interpreter languages as well as code offloading and finally
Chapter 9 summarizes the dissertation and points out future research directions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Developing a program to execute on a TEE poses several challenges. To make these chal-
lenges concrete, we describe several example applications (Section 2.3), none of which
can trivially implemented on or ported to today’s TEE abstractions. These examples illus-
trate key requirements for the design of a framework for confidential computing, which
we overview next. Before describing these examples, however, we describe in great detail
the term of TEE and also briefly refresh the most commonly used TEEs.

2.1 Trusted Execution Environments

The term TEE is widely used among chip manufacturers and platform providers but
nonetheless no precise explanation on the term has been explicitly coined. To overcome
this issue, we cite several definitions of TEEs showing the discrepancy between the dif-
ferent terms:

• Tal et al, 2003 [9] refer to TEE as: Trusted virtual machine monitor (TVMM)
that partitions a tamper-resistant hardware platform into multiple, isolated virtual
machines (VM), providing the appearance of multiple boxes on a single, general-
purpose platform.

• OTMP, 2009 [10] describe TEE as: An Execution Environment with security ca-
pabilities that resists against a set of defined threats and satisfies certain properties
related to isolation, secure storage, cryptographic operations and anti-code tamper-
ing.

• GlobalPlatform, 2011 [11] refers to TEE as: An environment where the following
properties are valid:

1. Any code executing inside the TEE is trusted in authenticity and integrity

2. The other assets are also protected in confidentiality

3. The TEE shall resist to all known remote and software attacks and a set of
external hardware attacks

5

6 CHAPTER 2. BACKGROUND

4. Both assets and code are protected from unauthorized tracing and control
through debug and test features

• Vasudevan et al, 2014 [12] propose the term as: A set of required resources intended
to enable trusted code execution: (i) Isolated Execution, (ii) Secure Storage, (iii)
Remote Attestation, (iv) Secure Provisioning and (v) Trusted Path.

• Sabt et al, 2015 [13] analyze in great detail that a TEE is: A tamper resistant pro-
cessing environment that runs on a separate kernel. It guarantees the authenticity of
the executed code, the integrity of the runtime states (e.g. CPU registers, memory
and sensitive I/O), and the confidentiality of its code, data and runtime states stored
on a persistent memory. In addition, it shall be able to provide remote attestation
that proves its trustworthiness for third-parties. The content of TEE is not static; it
can be securely updated. The TEE should resist against all software attacks as well
as the physical attacks performed on the main memory of the system.

• Quarkslab, 2018 [14] refer to TEE as: A secure area inside a main processor that
runs in parallel with the operating system, in an isolated environment. It guarantees
that the code and data loaded in the TEE are protected with respect to confidentiality
and integrity.

As we can conclude from the above various definitions of TEE term, the common points
on all of them can be summed up to: A system that is secure, offers isolation and a sand-
boxing environment independent from the main operating system that supports memory
encryption, persistent storage capabilities, trusted code execution that has high levels of
reliability, a form of unique identification to accommodate attestation and cryptographic
services [15], [16], [17], [18], [19], [20].

2.1.1 Intel Software Guard Extensions

Intel Software Guard Extensions (SGX)[21] is a hardware extension available to recent
Intel CPUs, firstly available on Intel Skylake family processors, targeted for x86 archi-
tecture that has as a goal to provide system integrity, sandboxing, data protection and
confidentiality guarantees to security-sensitive code and data computations performed on
a system where all the privileged software and hardware (kernel, OS, peripherals) are po-
tentially malicious that try to disrupt normal operations. Intel SGX introduces the term of
enclave as trusted execution environment provided by the SGX API to the applications.

Internals The data and the code that reside inside the enclave are protected from
the unstrusted outside world and are stored inside a memory protected region called
Enclave Page Cache (EPC). Kernel, other enclaves and non-enclave applications
may not access an enclave’s code, whereas an enclave code may access untrusted code
(only to the application that is bound with it) by using Outside Calls. Outside Calls
(ocalls) refer to the allowed function calls an enclave may perform to the untrusted part
of the application. Similarly, one or multiple untrusted applications that are bound with
the enclave may perform Enclave Calls to access the enclave functions. Enclave

2.1. TRUSTED EXECUTION ENVIRONMENTS 7

Calls (ecalls) are strictly defined functions that reside inside the enclave and act as nor-
mal functions. The functions that are allowed for ecalls/ocalls are defined at Enclave
Definition Language (EDL) which is a script file that defines the functions as
well as the contains information regarding the flow of the data and various checks that
should be applied on them before any function call connected with the enclave. One of
the primitives of Intel SGX is to keep the Trusted Computing Base (TCB) as small as
possible in order to minimize the potential attack surface. Currently, the max available
memory in EPC ranges from 64 - 128MB [22]. Consequently, only a limited number of
active enclaves may be live on the same time on the system. On Windows OS, 128MB
is the max available memory that an enclave may support. On contrast, on Linux OS the
developer may explicitly request additional protected memory during compilation time up
to several GB through paging. When memory pages of the enclave need to be swapped out
and moved to the untrusted DRAM, a supplied chip mechanism available called Memory
Management Engine (MME) is responsible for encrypting the requested pages, and
then storing the to the DRAM. Similarly, when swapped pages must be read by the en-
clave, MME unit fetches the encrypted pages and performs on-the-fly decryption to read
the actual content and data.

Application and Tools An SGX application can be viewed as two separate and dis-
tinct entities that communicate through a trusted bridge. The untrusted part of the appli-
cation that is located and is being executed in the non secure system memory and has full
access to all the resources available to the platform whereas the trusted code is executed
inside the enclave and the EPC that has access to the features provided by the SGX API.
SGX applications execute strictly in Ring 3 (user-space) and are supplied with a modified
and stripped version of libc in the extend that they do not have access to system-calls,
I/O or privileged instructions. To implement such calls and requests, the developer has to
define them in the EDL file before compilation to create these edge routines. Edger8r
is the tool that is shipped with the SGX SDK and is responsible for creating such bridges
between the untrusted part of the application and the enclave. After the edges have been
created and the compilation is finished, the Enclave Signing Tool is invoked that
produces a signature that contains enclave properties. Any post compilation changes to the
code, the data or the enclave signature can be detected and the execution will be aborted.

Life of an Enclave In the SGX API, the instantiation and initialization of an enclave
is being carried out by the non secure entity of the SGX application. Specifically, by in-
voking the ECREATE instruction, a free EPC page is converted in SGX Enclave Control
Structure (SECS) containing information related to BASEADDR and SIZE. SECS are the
metadata per enclave that are stored by SGX and are tied to each enclave. An enclave’s
identity is identical to its specific SECS which is the first step to the enclave creation,
whereas the destruction of an enclave would result in the deallocation and eviction of the
reserved EPC pages. ECREATE validates the content of SECS and results in failure in
case of invalid values. Additionally, it is responsible to initialize the INIT attribute of en-
clave with the false value, prohibiting the trusted code execution until its value is switched
to true as well as setting SECS as uninitialized. In the current state, EADD instruction is
issued by the system to load additional code and data in the enclave but also to create new
EPC pages. EADD reads parses a Page Information Structure (PAGEINFO)

8 CHAPTER 2. BACKGROUND

which acts as an intermediate to communicate with the current SGX implementation. The
information contained in PAGEINFO are the Virtual Address (VA) of the EPC page that
will be created, the VA of the non secure pages that will have their data copied into the
EPC page as well as the permission attributes of the page. In the current version, chang-
ing the permissions of EPC pages is not supported by the API. After the data and code
has been loaded to the enclave, the system makes use of a Launch Enclave (LE) to
acquire a unique EINIT Token Structure bound to enclave that marks the SECS state as
initialized. LE is a privileged enclave provided by Intel and is a requirements to instan-
tiate and launch new enclaves. After LE is launched, enclave’s INIT field is set to true,
meaning that execution may now start on Ring 3. After this point EADD may no longer be
issued on the same enclave. The untrusted program may now issue EENTER instruction
to execute enclave code. When the execution of a trusted function completes, EEXIT is
issued to context switch from the trusted to the non secure part and the results are returned
to the caller. An enclave is destroyed only when all of its’ EPC pages are deallocated and
the SECS page is freed. This is done by the EREMOVE instruction. A normal trusted
function execution is shown at Figure 2.1.

Untrusted Part

Trusted Part

① Application

② Instatiate the Enclave

③ Call Trusted Funtion

Trusted
Bridge ⑤

④ Trusted Function

Execute

Return

⑥ Resume Execution

Figure 2.1: A normal trusted function execution. The untrusted requests the creation of the
enclave and then invokes the requested function. This request is forwarded to the Trusted
bridge that performs certain checks and validations, and then passes the request with its
arguments to the respective function inside the enclave. The code inside the trusted part is
executed inside the EPC cache and the results are fetched back to the call site. The code
then resumes its normal execution.

2.1. TRUSTED EXECUTION ENVIRONMENTS 9

2.1.2 ARM TrustZone

Similar to Intel SGX, ARM TrustZone [23] is a set of hardware extensions available in
almost all ARM CPUs. The benefit on TrustZone is that is available in the majority of
mobile phones, smart devices and IoT boards making the most widely available TEE in
the market [24]. TrustZone denotes two separate worlds: the Rich Execution Environ-
ment (REE) which is called as normal world and the Trusted Execution Environment
(TEE) called trusted world. To ensure complete world isolation, TrustZone offers hard-
ware security extensions components such as CPU, memory controllers and peripherals.
In contrast to the term enclave, ARM TZ introduces the term Trusted Application (TA)
and refers to applications running in the secure world. At any given point during sys-
tem execution, the world the processor currently executes is determined by the value of
a processor bit, known as Non-Secure(NS) bit. The value of this bit may be read by the
Secure Configuration Register(SCR) and is transmitted to the whole system. TrustZone
introduces a new processor mode that intents to preserve the processor state across world
switching and transitions. This processor mode is called Monitor Mode. When a se-
cure monitor call(smc) instruction is issued, the processor can context switch between the
secure and the normal world and freeze the execution in normal world application [25].
In contrast with x86 Ring execution levels, ARM architecture has Processor Modes called
Exception Levels(EL). Armv8-a/AARCH64 offer four exception levels and two security
states (secure or non-secure bit). EL0 is the lowest privileged execution level where nor-
mal applications run in user-space. EL1 is the kernel space, normal kernel if the code
executing is running on non secure world, or trusted kernel, which is a standalone kernel
that executes in secure mode that handles requests for the TAs. EL2 is reserved for the
hypervisor(Secure Partition Manager for the secure part that configures security attributes
for the peripheral devices [26]) and EL3 is used for Secure Monitor [27]. A clear overview
of the EL states is shown at Figure 2.2.

Despite TrustZone’s wide availability on IoT devices and phones, several problem
it faces do not encourage further research and development on this field. First of all,
due to TrustZone nature, the existence of two separate worlds poses a huge threat to the
integrity of the system. In case one of the TA’s running in the secure world becomes
compromised, all the other TA’s are susceptible to be attacked as well since they share
the same memory and address space. Furthermore, even though the underlying hardware
the TrustZone extensions exists in almost every ARM processor in the market, there is
no universal SDK/API by ARM. As a result, there are several independent and distinct
SDKs([28], [29], [30], [31], [32]) targeted for different devices and boards that in most
cases are closed source and not a available to the end user. Due to high costs of the secure
memory in TrustZone, the available live memory to the end user ranges from 3-5MB [33],
which is expected to have small memory footprint in the trusted environment, reducing
the attack code surface, but also limits the available resources to the developer.

Some of the security features that Arm TrustZone provides are: (1) Security States
(Secure thread, Trusted Code Handler, Library Managers, RTOS), (2) Secure interrupts,
(3) State transitioning (boundary crossings), (4) Memory management, (5) Trusted boot
and (6) Secure code and data memory [34]. In contrast with Intel SGX, TrustZone lacks

10 CHAPTER 2. BACKGROUND

the support for providing a secure root-of-trust and attestation services, thus rendering
the system unable to attest to the user or an external verifier that the code running in the
isolated processor is trustworthy [35]. So it is up to the chip vendor to provide additional
hardware to amend for the lack of attestation features [35], [36].

App1 App2

Guest OS

Hypervisor

Trusted App1 Trusted App2

Trusted OS

Secure Partition manager

Firmware / Secure Monitor

EL0

EL1

EL2

EL3

Non-Secure State Secure State

Figure 2.2: Exception Levels and Security states on Armv8-a architecture.

2.2 Just-In-Time Languages

2.2.1 Why Lua

Lua [37] is a powerful high level, lightweight, portable and strongly typed scripting lan-
guage. It offers several state-of-art programming features such as procedural program-
ming, sandboxing, object-oriented programming, functional programming that is targeted
for embedded uses in applications. Lua has been utilized in many industrial and com-
mercial programs and applications such as Adobe Lightroom [38], Wireshark [39], Snort
[40], World of Warcraft[41]. Lua is portable and cross-platform since it’s interpreter is
developed in ANSI C that may be built out-of-the box using a compliant compiler. Lua’s
small memory footprint(40K) as well as small code size (150-200K) [42] makes it an ideal
participate for Intel SGX limited resources.

SGX SDK official API is documented on native C/C++ making Lua a perfect can-
didate since it is written in plain C. At the time of development of LuaGuardia, Lua5.3
version [43] was the latest revision of Lua. Its size is about 19K LoC and it consists of

2.3. MOTIVATING EXAMPLES 11

20 source code files, which is a pretty small cost for the feature it provides [44]. More-
over, Lua provides a fast and efficient built-int Garbage Collector(gc). The collection
process initiates automatically and cleans all the objects that are considered dead, un-
reachable and are no longer needed by the execution state. Lua implements an incremen-
tal mark-and-sweep collector and is based on two fields that control its collection cycles:
(i) garbage-collector pausewhich controls the waiting time of the gc before ini-
tiating a new cleaning process and (ii) garbage-collector step multiplier
that controls the speed of the gc in relation with the memory allocation. Since both of
them are easily configurable, the developer of an enclave is facilitated since the mem-
ory de-allocation happens automatically and all the valuable resources are freed, without
the live EPC pages, resulting in swapping them to the non-secure DRAM and degrading
overall enclave performance.

Dynamic module loading and support is another great benefit for Lua. Specifically,
it is quite easy to interface Lua with the C API as well as write packages in C language
targeted for Lua programs. A developer may leverage and use the C API provided by
Lua source, and program dynamic libraries that may be loaded during execution time of
a Lua program but also access Lua internal structures and entities prior unavailable to the
traditional Lua execution environment. Apart from dynamic libraries, one could provide
Lua programs with library modules[45]. Modules are a core part of Lua language since
they extend the functionalities of a program. When a module is executed, all its contents
(functions and statements) are executed and then are imported to the global environment
(all functions,tables and global variables are stored to _ENV or _G variable, which is a
global-scoped table storing the environment of the Lua execution state). In LuaGuardia,
Lua module support is fully supported 5.3 whereas C module loading in unsupported due
to SGX limitations 7.2.

2.3 Motivating Examples

Consider a few confidential computing scenarios where part of an application needs to run
on untrusted, TEE-enabled devices. One such example is an HTTP telemetry tool that can
be deployed in SDN/NFV or 5G environments to gather periodic performance statistics
into a TEE where it runs analytics—e.g., to extract average latency or detailed latency per-
centiles. Another example is a packet-filtering tool that offloads sensitive packet filtering
tools and associated matching to the TEE. A final example is the ad-hoc establishment of
secure connections between private networks and public cloud providers (e.g., VPN-as-a-
Service) that uses the TEE to protect the key establishment with the remote peers and the
corresponding cipher operations.

In all these examples, a TEE offers critical security benefits to the part of the appli-
cation that operates on sensitive data in untrusted environments. Unfortunately, reaping
these benefits requires the manual development or porting of TEE-executing fragments
using low-level interfaces provided by the TEE manufacturer—which causes several prac-
tical challenges.
Manual Effort Developing in a low-level language requires significantly more effort and

12 CHAPTER 2. BACKGROUND

care than developing in high-level languages—an effort that is even more pronounced for
short program fragments for analytics or pattern matching like the ones described above.
Even if the program is already implemented in a low-level language such as C/C++, which
would simplify the use of TEE API, it still requires manual partitioning, re-compilation,
library porting, and linking of the entire application, including the components running
outside the TEE.
Extensibility In many domains such as analytics, learning, and telemetry, there is a
need for extending or updating a program during its execution. This causes an impedance
mismatch with the static nature of TEE-executing code where adding new functionality
dynamically or executing code is impossible. In these cases, adding even a single-function
module requires compilation, linking, and re-deployment of the entire TEE-executing
component—including starting the TEE afresh. This entire process is on the order of tens
of seconds, rather than tens of millisecond required for simply shipping a function to the
TEE.
Safety Finally, by rewriting the analytics component in a low-level programming lan-
guage such a C/C++ makes the analytics program susceptible to traditional memory cor-
ruption attacks—after all, memory and type safety and their affects to security are a key
reason why developers use a high-level programming language.

2.3.1 LuaGuardia Overview

To address these challenges, LuaGuardia embeds a Lua runtime inside a TEE to ad-
dress the challenges of manual effort, dynamic extensibility, and runtime safety—by
piggy-backing on the characteristics of a high-level programming language. Lua is a
general-purpose embeddable programming language, offering memory and type safety,
data-description facilities, and runtime meta-programming—including ones that allow a
program to manipulate its own environment [46].
Manual Effort LuaGuardia offers significant developer economy compared to low-level
abstractions, because of the productivity benefits stemming from a high-level, dynamic
programming language. Our example applications can leverage the Lua library ecosys-
tem, without having to develop them from scratch—such as analytics, learning, and infer-
ence. We note that LuaGuardia does not require the entire application to be written in Lua:
as Lua is embeddable in C/C++ programs, LuaGuardia can be used to create a high-level
TEE interface even for programs developed in low-level programming languages— and
we show this in our evaluation section.
Extensibility Based on a dynamic language, LuaGuardia is naturally extensible via run-
time code evaluation of Lua code. Using LuaGuardia’s interface at runtime, the engineer
in our example would be able to extend and configure the available runtime functionality
by sending and evaluating additional functions during the execution of the platform.
Safety Finally, as Lua is a memory- and type-safe programming language, the engi-
neer does not need to worry about low-level attacks in their code. LuaGuardia provides
additional wrappers to limit the access of TEE-executing code to key interfaces, offer-
ing a lightweight sandbox that provides additional protections beyond the base type- and

2.3. MOTIVATING EXAMPLES 13

SGX Enclave

System Call
Wrappers

I/O
Wrappers

Code
Modules

LuaVM

re
q

ui
re

(“
lib

”)
read lib.lua

fr
ea

d
(l

ib
.lu

a)

en
cr

yp
te

d
lib

.lu
a

decrypted
lib.lua

lib
 lo

ad
e

d

System Call
Handler

LuaGuardia Server
Lua code

Modules

Arguments

Data

Client

Request
Handler

Initialize

request

results

Lua code

Modules

Arguments

Data

1

102

39

4

8

5 7

6

Figure 2.3: LuaGuardia overview

memory-safety guarantees provided by the Lua environment.
While the current enclave programming models provide sufficient code security and

data confidentiality, often times they do not appeal to developers creating modern and
modular applications for several reasons. For example, applications that wish to provide a
main functionality that can later be extended with modules and plugins cannot utilize se-
cure enclaves at their current state. The first limitation is that enclave-protected code has to
be statically compiled and signed during development and any subsequent modifications
to their code base requires the re-compilation of the entire source tree. Moreover, the
available abstractions offered by the enclave infrastructure are low level and require expe-
rience and proper understanding of their semantics in order to provide sufficient security.
However, even when properly utilized, enclave protected code has to be developed either
in C or C++ which do not offer type and memory safety, thus, implementation bugs can
still compromise the application’s security. One could argue that a system that provides
a certain degree of extensibility without the need for complete source tree re-compilation
could be developed from scratch. However, such systems usually result to big code bases
that break the as small as possible TCB design principle encouraged in TEE
development.

14 CHAPTER 2. BACKGROUND

Chapter 3

Threat Model and Assumptions

LuaGuardia assumes a powerful and malicious entity, possessing super user privileges,
has full physical access to the underlying hardware and peripherals, the whole software
stack, the Operating System as well as control the kernel but cannot interfere or tamper
with the CPU. Moreover, we consider denial-of-service attacks (DoS) on SGX software,
libraries and hardware, access to network and file-system out of scope for our work. Addi-
tionally, an attacker could potentially halt or interrupt the execution of LuaGuardia, how-
ever that should not enable her to extract or guess any sensitive enclave secrets, encryption
keys or data. Furthermore, attacks targeting the Intel SGX hardware such as side-channel,
timing attacks or cache attacks ([47], [48], [49]) are orthogonal to the implementation of
LuaGuardia and any potential research work that manages to counter and mitigate these
kind of attacks may have direct impact and benefit on our system. LuaGuardia assumes
that the design, implementation and API of Intel SGX SDK is free of memory bugs, leaks
and vulnerabilities. Finally, we assume that all the components and entities (Section 4.1)
of LuaGuardia are free of software vulnerabilities that could compromise the system’s
integrity and security.

15

16 CHAPTER 3. THREAT MODEL AND ASSUMPTIONS

Chapter 4

System Architecture

4.1 LVMAT Components

LuaGuardia is an ecosystem of several components(trusted and not) that co-exist and
their final goal is to achieve trusted code execution. The architecture of LuaGuardia is
showed in Figure 2.3. Typically, an application that runs in the untrusted domain aims
to offload security-sensitive computations to the trusted component, whereas the latter
is responsible for accepting and handling secure code execution requests encapsulated
within SGX enclaves.

4.1.1 LVMAT Interpreter

As the name suggests, the whole interpreter of Lua language had to be ported inside the
SGX in the enclave as the only trusted and secure part of the whole framework. By do-
ing so, we ensure that our interpreter is trusted at pre-compilation phase, signed by Intel
during the compilation, thus rendering any potential code injection or data or code ma-
nipulation attacks or actions impossible. Due to the limitations of the SGX API and the
limited resources it provides (since it acts as a reverse sandbox), several changes had to
be done on the vanilla Lua implementation. First of all, all the signal dependent code
has been removed since the required headers are not available nor may be provided in
enclave libraries. Moreover, references to dlopen family of functions are not supported
by Intel SGX since they can impose a great risk to enclave integrity. This occurs due to
dlopen dynamically loading and mapping libraries on the memory, and since dlopen is a
system-call, it has to be proxied to the untrusted part of the application to be served. As
a result, the mapped memory will be allocated in the untrusted RAM, thus none of the
potential native Lua modules can be trusted, so such functionality is opted out. To be
honest, enclave does not offer any I/O functionality neither any system-call handling. In
a real world scenario where a malicious entity has full control to our computer, we cannot
trust any component rather than the underlying hardware provided by SGX, so system-
calls are disabled. To overcome this issue, there are two available alternatives. The first
is to provide proxy functions and requests to the untrusted environment. This is done
by crafting and declaring the requested helper functions in the EDL file (pre-compilation

17

18 CHAPTER 4. SYSTEM ARCHITECTURE

phase) and implementing them in the trusted part of the application. Additionally, these
proxies have to be implemented in the untrusted part in order to perform the requested
untrusted calls such as system-calls, I/O, network operations. The most crucial part of
the interpreter is the FILE structure and the functions such as fopen, fread, fclose, fgets.
These functions are important for fetching and reading the code to be executed inside the
enclave, writing the program execution results to files, returning them back to the client
and providing basic file functionality, prior unavailable to the enclave. As mentioned be-
fore, neither these function calls are trusted and their results may be altered. However,
on Section 5.2 we describe in great detail on how we handle those untrusted calls and
validate the integrity. The second alternative to handling system-calls is to emulate them
by offering a self-contained software implementation of the system-call based on the ex-
isting API provided by Intel SGX SDK in combination with proxied function calls. Let’s
assume that read system-call is exposed to our application through EDL interface, thus
any function call that handles file reads(fgets, fread, fgetc, etc) may be built upon read
system call without increasing the TCB of our application and minimizing the number of
OCALLs to the untrusted world.

4.1.2 LVMAT Server

The component with the most significant value and importance in the whole ecosystem
is the LuaGuardia server. In the trusted environment, LuaGuardia provides a language
virtual machine, based in Lua. It primarily consists of an SGX-enabled Lua interpreter
which is responsible for performing computations and has no access to system-calls or
other available peripherals. Such additional functionality that requires to access the un-
trusted environment as well as components of the Operating System, but also handling of
incoming client connections are offered by the driver code of the enclave. In this way,
we manage to limit the TCB of our system, while being able to offer on par functionality
and features with the original Lua implementation. On Chapter 6 we evaluate our base
implementation with the vanilla Lua interpreter. The server application is responsible for
several tasks that are required in order to ensure and instantiate trusted end-to-end com-
munication between the two revolving parties, the client that requests to execute code
computations in a trusted environment as well as the LuaGuardia server that handles the
code execution requests and serves the user. First of all, the server awaits for incoming
code execution requests. As soon as a client connects to the server, both parties must per-
form a Diffie-Hellman [50] in order to generate the shared key for the encrypted commu-
nication. The steps required for this operation to complete are the following: (1) Generate
key-pair of public and private keys inside the enclave and forward only the public key to
the untrusted environment, (2) send the public key to the client, (3) receive the public key
of the client in the untrusted app and store it inside the enclave, (4) generate the shared
secret that resides inside the enclave using the private key of the enclave and the public
key of the client, (5) send the encrypted shared AES key to client. Similar steps are also
done on the part of the client. As soon as the previous steps are completed, all the traffic
between the two entities will be encrypted using the shared AES key. After this point, the
server receives the requested code, modules and data input all in encrypted format. These

4.2. LUAGUARDIA LOCAL EXECUTION MODE 19

data are passed through to the enclave, where the decryption phase takes place, gets the
plain data and start executing the requested code inside the enclave interpreter. After the
execution is done, all the data results are encrypted, proxied to the server socket which is
responsible for transmitting the data back to the client.

4.1.3 LVMAT Client Stub

The client component of LuaGuardia acts as a standalone thin layer library. Firstly, it en-
ables remote users to securely connect with LuaGuardia server, over an end-to-end client-
server-enclave encrypted communication channel and request the execution of Lua scripts
in a protected memory space. The simple thin layered design of the LuaGuardia client,
enables clients to offload new as well legacy Lua applications to the enclave interpreter
with minor changes to the existing Lua applications. Furthermore, LuaGuardia client does
not require SGX capabilities and its most critical task is has to deal with is handling and
establishing the encrypted communication channel with the server’s commodity crypto-
graphic operations that may either be hardware capabilities apart from SGX, or software
implementations. As a result, this enabled the LuaGuardia client to operate on low power
or embedded devices.
Similar to the LuaGuardia server, the client has also to perform a certain amount of steps
before performing a secure Lua code execution. (1) Generate a new key-pair and transmit
the client public key to the server, where it requests dynamically a new code execution
environment. (2) The server is informed about the incoming request and a Diffie-Hellman
key exchanged is performed between the two entities. (3) The client, the key establish-
ment is performed entirely in the untrusted memory since we assume that the client does
not have TEE capabilities, although a Trusted Platform Module (TPM) may be used for
this step, whereas on the server side, the key generation is entirely generated inside the
enclave. (4) The newly-generated keys are stored inside the enclave and are never exposed
to the untrusted DRAM nor the file-system. This process generates a client-server-enclave
communication channel that prevents malicious users from eavesdropping and monitoring
the network, server’s memory or the file-system to obtain the exchanged data. (5) Once
the communication phase is done, and the unique AES key is shared between the two
parties, the client may start offloading the Lua code with all its dependencies (modules,
input data) and encrypt them using the shared AES key. (6) Finally it awaits for the server
to send back the results.

4.2 LuaGuardia Local Execution Mode

Another mode that is supported on LuaGuardia server offers local code execution where
the client and the server are co-located on the same physical machine. This option enables
newly developed or legacy Lua applications to be deployed and make use of SGX capa-
bilities without the need of transmitting code over the network. However, we must note
that this mode is opted to use under several conditions. First of all, this mode may only be
considered secure in case where a malicious attacker has absolutely no control over the

20 CHAPTER 4. SYSTEM ARCHITECTURE

system or the file-system, but her influence restricts to compromising user space applica-
tions. The main problem for this relies on that LuaGuardia’s virtual machine has to fetch
the executable code, loadable modules and input data from the untrusted file-system or the
DRAM. Since no prior encryption has been performed, the files are stored in plain-text
format in the untrusted memory. Adding an extra layer of encryption to the files is futile
because the operation will take place in the untrusted component of the application. So,
by controlling the file-system, a malicious party may compromise and leak the Lua code,
data and input while they are being transferred into the SGX enclave.

Chapter 5

System Implementation

In this section we are going to present and demonstrate the full implementation details of
LuaGuardia as well as the challenges we encountered and optimizations we implemented
while porting the Lua interpreter inside the SGX enclave.

5.1 Porting the Lua VM

The interpreter we based our implementation on is Lua 5.3.5 [37]. Compiling the vanilla
Lua source code generates two distinct binaries. The first one is named lua that is capa-
ble of loading and executing plain Lua scripts or pre-compiled Lua binary chunks. The
latter output is named luac and it is the Lua compiler, responsible for translating Lua
source code into binary files that contain pre-compiled chunks that can later be loaded
and executed by the interpreter at a different point in time. We chose to utilize and port
the official Lua virtual machine instead of the third-party developed LuaJIT [51], despite
the latter offering considerable performance benefits and increase, for several reasons.
First of all, using the official Lua interpreter guaranties that all the features provided by
the language will always be up to date, according to its standards and ISA, thus offering
almost full compatibility with vanilla Lua virtual machine. Secondly, LuaJIT offers a big-
ger TCB, a property that we strive to keep as small as possible for memory efficiency and
auditing reasons. Moreover, offers Lua script compatibility up to version 5.1, which is
the latest available version of LuaJIT, so any newer script of Lua will not be compliant
with its environment. Finally, SGX enclaves do not support the creation of additional
executable memory pages during execution, a feature, that will be available on version 2
SGX hardware revision [52]. Our LuaGuardia implementation utilizes the original Lua
implementation instead of the Lua compiler as our main interpretation engine that will
be running inside the execution environment. The original code base of Lua consists of
25 headers files, containing 4269 LoC, and 35 source code files containing 19482 LoC
of native C code. The total code base spans 23751 LoC, rendering the Lua language a
perfect candidate for a protected dynamic language environment as it keeps a minimal
TCB that can easily audited. We port the vanilla Lua virtual machine into the SGX en-
clave on an Arch Linux based host running kernel version 5.7.6 using the official Intel

21

22 CHAPTER 5. SYSTEM IMPLEMENTATION

SGX SDK version 2.8 for Linux and the used for compiler GCC 9.2.1. The whole Lua-
Guardia implementation consists of 26132 LoC, where 1377 LoC comprise the untrusted
part of LuaGuardia while the rest 24755 LoC comprise the trusted part of the application,
residing in the trusted environment.

While our port tries to keep a quite minimal code base, the implementation of the
interpreter is not a straightforward task. First of all, the original code had references to
signals and dlopen family of functions that are currently not supported nor provided
by the SGX SDK API. For these reasons, we perform several changes and modifications
to the original code to bypass these requirements without having a negative impact nor
affecting the expected functionality of the virtual machine. Moreover, the Lua source code
contains and requires several function calls in order to operate normally. Some examples
of them are fopen, fwrite, clock. Of course, none of these calls are neither
provided or exposed by the SDK API since all of them result into system-calls, which
are excluded from the SGX environment. To solve this problem, we develop and provide
wrapper functions in order to proxy such unsupported function calls to the untrusted part
of LuaGuardia’s component, where they are served.

Except from the interpreter port inside the enclave, we also have to provide the re-
quired functionality in the enclave in order to enable LuaGuardia to act as a remove
server and service, to establish a secure communication channel with its candidate clients.
Moreover, the server has to be able to handle and parse encrypted blobs of client requests
containg Lua code, Lua modules and input data that all of them are going to be forwarded
inside the enclave, decrypted and finally executed within the interpreter. Finally, we de-
velop a protected instance manager, that is responsible for handling the various clients
and providing each one with a separate instance for isolation purposes.

5.2 system-call Handling

The most common issues with many TEEs, including Intel SGX, is the lack of system
call support. This is normal and expected, since in any real-life SGX scenario, the only
piece of software and hardware that are considered trusted is the same the enclave and
the underlying SGX hardware, thus system-calls, that are not considered components of
the trusted environment, are excluded and not supported. Assuming that the enclave has
access to system-calls and that the kernel is malicious, such direct call from the enclave to
the kernel may compromise and expose enclave secrets as well leak protected data, thus
rendering the whole security scheme provided by SGX hardware useless. On the other
hand, almost all applications with SGX capabilities need invoke system-calls to perform
basic functionalities, such as access to peripherals, access to the network infrastructure
or the file-system. When utilizing Intel SGX, most of the times these calls are requested
from within the enclave code and are forwarded through proxy functions (provide in the
EDL file) to the untrusted part of the application, where they are served and handled by
the system. In particular, it is up to the developer of the enclave to design and implement
that intermediate layer that will handle and bridge the enclave code with the untrusted
application that will handle the requests and fetch back the results from the untrusted part

5.2. SYSTEM-CALL HANDLING 23

of the application.

Normally, custom built SGX-enabled applications might require only a few system-
calls that can be easily wrapped by the developers, however this same scheme does not
apply to LuaGuardia. Since our implementation leverages and utilizes a full-fledged,
drop-in replacement of Lua virtual machine, enclosed in SGX enclaves, several challenges
have to be addressed. First, we need to accommodate the system-calls that are required
by the Lua virtual machine itself in order to function properly. Second, new system-calls
may be issued during the execution of different Lua scripts. The former case may be
considered a more straightforward approach, as the required system-calls can easily be
accounted for, which unfortunately does not apply in the latter case where all the system-
calls requirements may be known a-priori but will be resolved at execution time.

The most common approach to handle such an issue, is to implement custom system-
call wrapper for each and every one of them. However, modern operating systems provide
several hundreds of system-calls (about 400 on Linux), without the majority of them being
necessary required or called by the Lua interpreter or an executing Lua script. Further-
more, many of these system-calls, could be triggered by an offloaded script and abused
to perform malicious activities on the remote host. For this exact reason, we decide and
provide interfaces for only the bare minimum of the system-calls that are required in or-
der to achieve normal functionality of the Lua interpreter inside the enclave but also to
minimize the potential attack surface without having to keep proxying functions to the
untrusted application. By observing the original source code, we realized that the most
commonly used functions, resulting to system-calls, are those that are associated with
data I/O such as fopen,fwrite,fread, etc. In order to provide system-call support
to the Lua interpreter residing within the SGX enclaves, we have to develop custom func-
tions that will be defined in the EDL file and implemented in the non-enclave part of the
application, performing an OCALL to it for each pending request. Once such a request is
handled to the OCALL function, since the untrusted part of the application has full access
to the whole system, the handle will be handled, get the results, and fetch them back to
enclave after performing the typical SGX checks to the data. However, the validity of the
data transferred from the outside of the enclave within the enclave have to be explicitly
checked for their integrity the mechanisms that have to be implemented by the application
developer. In the SGX model, the only entity we assume trusted is the enclave, whereas
the Lua scripts, Lua modules and input data that are required for the execution, must be
provided with the each client request in encrypted format, thus we prohibit read and write
operations to arbitrary file-system locations at the server side. Optional file offloading
and handling may be performed by the client in predefined server file-system locations
in an encrypted manner, using SGX’s sealing and unsealing functionality offered by In-
tel’s API, enabling secure and persistent storage in the untrusted file-system. A list of the
supported functions resulting in system calls available to the protected Lua interpreter is
presented in Table 5.1.

24 CHAPTER 5. SYSTEM IMPLEMENTATION

Table 5.1: Most used functions supported by LuaGuardia

Ported Functions

fopen freopen fclose ftell fseek
fread fwrite fgets fputs feof
ferror exit clock getenv time

5.3 External Modules

By design, Lua is an extensive programming language that offers dynamic module capa-
bilities in two ways. It has built-in support for two types of libraries: (i) libraries that are
implemented in entirely pure Lua code, and (ii) libraries that are native modules built in
C/C++ that may be registered using the native Lua C API. In order to support the former
module loading, the are two main properties that are required to be supported inside the
enclave. The first one is the FILE structure in order to handle files and I/O. Secondly,
all the functions that are invoked by the Lua virtual machine such as fopen, fread,
fwrite, etc are the bare minimum required in order to fetch and load a Lua encrypted
module from the untrusted file-system, decrypt it in the trusted part, verify the content of
the module against a known checksum for integrity purposes, finally, the interpreter will
load the module and start executing it. This specific design prevents attacks from mod-
ifying or replacing modules found in the host system’s memory/file-system or modules
received over the network. The checksums required for module validation may be either
pre-stored in LuaGuardia’s enclave, such as checksums for standard libraries, or received
in encrypted format during the data transferring phase. With this mechanism in place,
any require (<module_name>) snippets found in a Lua script, import the declared
library assuming that it exists in the untrusted file-system (encrypted), and then the mod-
ule’s API is exposed to the developer. This intermediate layer is transparent and offers the
same functionality as the vanilla Lua module loading.

On the other hand, native C/C++ libraries, are compiled as shared objectives using
Lua’s C and may only be loaded by LuaGuardia’s untrusted part, using the dlopen
family of functions. This functionality prevents us from providing dynamic C/C++ library
support for the following reasons. First of all, since shared objects cannot be loaded in
LuaGuardia’s enclave, their integrity may not be verified by the system. Secondly, the
functions loaded in LuaGuardia’s untrusted part may only interface with the enclave code
via a predefined -at compile phase- proxy layer(EDL). Thus, each function’s prototype
is not known during the execution of Lua code, something contradicting with the design
of Intel SGX. Additionally, since the shared objects are stored in the file-system, and
dlopen family of functions are not available in pure enclave code, a malicious entity
may tamper and intercept with their code.

5.4. MAINTAINING GLOBAL STATE 25

5.4 Maintaining Global State

Typically, the lifespan of Lua script that is executing inside LuaGuardia’s trusted environ-
ment can be divided in the following phases: (i) setup the end-to-end client-server-enclave
encrypted communication, (ii) encrypt and transfer the Lua code, Lua modules and ad-
ditional data, (iii) the subsequent code execution within the enclave, (iv) the gathering
of the results that are sent back to the client in encrypted format, (v) termination of the
execution session, cleanup of the resources and reset LuaGuardia to a clean state ready to
accept new requests.

The previous phases describe a basic execution example, that does not require to keep
any state across program executions. By the end of each LuaGuardia’s session, the cur-
rent state is set to clean, and is ready to handle any new incoming code execution re-
quests. However, it could be quite beneficial for the users to transfer the execution state
of a Lua program either from client-to-enclave or vice versa. In greater detail, the de-
veloper may explicitly partition the code she would like to execute, declare with tags the
critical functions, snapshot the memory state up to the critical functions, encrypt them
and wrap them in a blob, and then transfer the execution to the enclave. Switching to
the enclave, the snapshotted state of the client’s memory is loaded into the newly created
environment which is stored in a table called _G that is assigned during a creation
of a new Lua_State during each new Lua interpreter startup. At this point, after the
memory is loaded into the table, all the clients values are loaded, and the execution may
resume to the critical only functions, with all the required variables and dependencies
already loaded in the memory. All this functionality is provided by LuaGuardia’s API:
(i) the LuaGuardia _dump which traverses the environment table and extract all the
loaded variables and functions, (ii) the LuaGuardia _parse which takes as input a
file in JSON format, created by LuaGuardia _dump function, and injects the found
entries in _G. Moreover, LuaGuardia _dump is responsible for the encryption of the
exported data as well as the creation of the required metadata for their validation. Simi-
larly, LuaGuardia _parse decrypts the given file and performs integrity checking on
the exported data prior to restoring them to _G.

5.5 Code and Client Isolation

By leveraging the hardware and security properties offered by Intel SGX enclaves, Lua-
Guardia guaranties that a protected Lua interpreter that resides within the enclave stays
and remains isolated from the rest of the system, including other untrusted applications,
other enclaves, hardware peripherals as well as the operating system kernel. In order to
assure and enforce client isolation, LuaGuardia registers a new SGX protected Lua in-
terpreter, residing in a separate enclave, for each different client. As mentioned, before,
at each new client session, a new end-to-end channel is established, with a different and
unique AES key used for the encryption, that can be optionally preserved across different
sessions with the same client. As a result, attackers cannot gain access to the protected
resources that reside inside the SGX enclave nor on the LuaGuardia instances utilized by

26 CHAPTER 5. SYSTEM IMPLEMENTATION

other clients, aiming to tamper the executed scripts or monitor the execution results.

5.6. OPTIMIZATIONS 27

5.6 Optimizations

One of the main challenges with the implementation of LuaGuardia is providing support
for protected Lua script execution within reasonable performance overheads. While the
steps described in the previous sections enable the execution of the protected Lua virtual
machine inside the SGX enclaves, they are not optimal in terms of performance.

Initialization As it is already described in the previous sections, each new client re-
quest for trusted and dynamic code execution establishes a new client connection and
triggers the instantiation of a new isolated and protected Lua interpreter instance at the
LuaGuardia server. The process of the initialization can be previewed at two steps: (i)
issue the creation a new SGX enclave in the untrusted part of the application, (ii) reset
the encapsulated enclave to a clean state, ready to handle a new client connection but also
free and cleanup the resources and destroy the enclave on the untrusted part of the ap-
plication. The main problem to this phase is that the creation and the destruction of the
enclave introduce a great overhead to the script execution. On Figure 6.7, we can observe
that this design may significantly increase the overall performance as the main initializa-
tion overhead it derives from the creation and destruction of SGX enclave. Moreover,
this overhead is increased as the chosen maximum enclave memory is expanded via Lua-
Guardia’s configuration during the compilation phase.

System-call Batching Since optimizations in the network stack, such as TCP con-
figuration or data compression, are not universally applicable as they benefit a portion of
applications, whereas might decrease the performance of others. An other we are look-
ing into to improve the performance and decrease the slowdowns that are occurred by
Intel SGX due to the enclave crossings, data validations and pointer checking is to batch
system-calls. The motivation behind this optimization is due to the large slowdowns in-
troduced to the handling of consuming I/O operations, due to the fact that SGX enclaves
do not have direct access to system-calls. Consequently, every time trusted code tries to
invoke a system-call, this invocation is proxied to the untrusted environment based on
the EDL file, and is served by the respective function there and the results are returned
back to the enclave. After extensive research and evaluation, we found out that the con-
tinuous context-switching between trusted enclave code and the untrusted environments
performed several validation, integrity and size checks to the copied buffers that decayed
the overall performance of the system. In many cases, these issues may be ameliorated
by batching a number of the same system-calls. By doing so, system-calls that are not
dependent to one another, may be buffered and served with a single, or in worse case, at
least much fewer, OCALLS in certain parts of the Lua script’s execution.

28 CHAPTER 5. SYSTEM IMPLEMENTATION

local matcher_lib = require(“matcher”)

local dataset = fopen(“data.csv”, “r”)

local file_content = dataset:read("*all")

match_lib.match(file_content, config)

matcher.lua might be

tampered in the filesystem
Tampered System Calls

Dataset might be leaked

②

③

④

①

Processing and config leakage

Figure 5.1: Potential risks on running a simple Lua script on the untrusted environment.
In LuaGuardia, all the untrusted I/O is handled via encryption, libraries and data are stored
encrypted in the untrusted file-system and the attacker may not extract any useful infor-
mation by observing the enclave code.

Chapter 6

System Evaluation

In this section we present the performance and security of evaluation of LuaGuardia. On
the first section, we describe possible attacks against that target LuaGuardia and discuss
in great detail on how our system and architecture is able to defend itself against them.
Moving on, we provide a thorough performance evaluation and comparison using a series
of different and diversified micro-benchmarks, as well as three popular Lua-based real-
world applications, namely wkr2 [53], pflua [54] and a custom lite IPsec on top of the
snabb [55] framework.

6.1 Experimental Testbed

Our main server, hosting LuaGuardia, is based on a SGX-enabled Intel(R) Core(TM) i7-
8700k CPU clocked at 3.7GHz with 32GB of RAM, running on Arch Linux with kernel
version 5.4.23-1-lts. LuaGuardia is compiled in hardware/signed SGX mode, preventing
any debugging or enclave monitoring. The client is running on a separate machine with
same specifications. We also use a system based on an Intel(R) Core(TM) i7-6700 CPU
with 16GB of RAM, acting as an HTTP server using machines are interconnected over a
1GbE wired network for the needs of wrk2 application.

Evaluation Highlights Without any optimizations utilized, LuaGuardia introduces an
average execution overhead of about 23% 6.2.1. Initialization optimizations can signif-
icantly increase LuaGuardia’s overall performance and specifically for short-lived Lua
scripts 6.2.2. We can observe that system-call batching is responsible for 70% perfor-
mance improvements 6.2.2. Finally, the overhead LuaGuardia introduced to large scale,
real-world applications is an average of 17-19%.

6.1.1 Security Analysis

We validate and assess the security properties and guarantees offered by LuaGuardia by
attempting and performing different attacks and demonstrating how our SGX-assisted
system is able to mitigate them.

29

30 CHAPTER 6. SYSTEM EVALUATION

Data Integrity & Confidentiality A quite common technique for attacks is to exploit
software vulnerabilities and bugs, either found on the target Lua script or on the same Lua
interpreter, in order to inject malicious code. Such attacks target the control flow of the
executing script within the SGX enclave, where quite often it aims to extract or tamper the
sensitive data, code or dataset as shown in Figure 5.1. LuaGuardia encapsulates the entire
Lua interpreter within the secure SGX enclaves; any Lua code that needs to be executed
along with the corresponding data and modules, arrive at the server securely as mentioned
in Sections 4.1.3, 4.1.2, in an encrypted format, where they are fetched and decrypted
on-the-fly inside the enclave’s LuaGuardia virtual machine. Since all the required Lua
code, input and dependencies are stored in the untrusted file-system, and their plain data
reside inside the enclave only, our system is able to prevent access against fully privileged
attackers.

Similarly to incoming data, the output logs of the executed Lua scripts are added with
an extra layer of encryption using the shared AES key which was generated at previous
phase. The encryption takes place inside the SGX enclave and the encrypted results are
transmitted back to the client securely, in a cipher-text format. In order to verify our
system’s integrity, we use sgx-gdb tool to attach to the LuaGuardia running enclave
process, using administrative permissions (i.e., root access); by attaching to the process
we can attempt to tamper the execution in order to dump the executing code, the offloaded
data and modules that are being processed. However, since we have compiled the enclave
in Release Mode, all the debugging information as well as all the code symbols are
stripped for the final executing binary, so the attacker may no extract any useful informa-
tion by observing the code. Additionally, due to the implementation of the SGX hardware,
actions such as altering data or injecting code are completely prohibited, thus always re-
sulting in Segmentation Violations.

Controlling the Kernel In case of a full system compromise including the kernel, the
execution of an unprotected Lua virtual machine, the file-system and the network inter-
faces may be monitored or manipulated. However, even if a malicious party can monitor
and intercept the network traffic between LuaGuardia and its clients or the file-system,
they are not able to obtain the client requests containing the code, the input data and the
server executing responses, as both of them are encrypted throughout the entire path and
are only decrypted inside the enclave. The same rules apply for the data that are stored
persistently in the file-system as they are sealed before leaving the trusted environment
and unsealed upon required. The unsealing operation takes place solely in the enclave
and validates the persistently stored data before reuse. Moreover, even if the attacker
manages to acquire full read/ write/execute rights in the whole system or manipu-
late process execution via the kernel they still cannot tamper or monitor the code executing
in the enclave due to its reverse-sandbox property. As a result, such attempts will result
in Segmentation Violations since the enclave’s protected memory is not mappable outside
of the enclave.

6.2. MICRO BENCHMARKS 31

6.2 Micro Benchmarks

In this section, we provide extensive evaluation of LuaGuardia using a series of different
micro benchmarks, that have as a goal to help us understand and explain the different
variables that affect the overall performance of our system and implementation as well
as how it performs in comparison to a vanilla Lua virtual machine. It is known that
that the execution performance of an SGX-enabled application is, almost, identical to
its non-SGX variant as long as the code is pure, meaning it is self contained, has no
external dependencies, does not perform system-calls or any I/O is invoked and all the
required data are accessible in the enclave. Moreover, the I/O between the enclave and
the untrusted world can be quite expensive as the execution has to be transferred between
the enclave and its driving application and data are encrypted and decrypted each time
they enter or leave the enclave as well as several additional checks are performed on the
copied data for integrity and security purposes. An additional overhead is induced, which
is linked with the storage and manipulation of data in the enclave, is the 128MB live
protected memory limitation, discussed in Section 2.1.1. Storing and accessing data that
exceed the live available protected memory shall trigger expensive page swapping that
requires performing encryption of the page that will be swapped and the decryption of the
decryption, each time this operation occurs.

 0

 1

 2

 3

 4

64B
128B

256B
512B

1KB
2KB

4KB
8KB

16KB

32KB

64KB

128KB

256KB

512KB

1M
B
2M

B
4M

B

E
x
e

c
u
ti
o
n

 T
im

e
 (

S
e

c
o

n
d
s
)

Data size per read

Vanilla
SGX

SGX Init
SGX Exec

Figure 6.1: Performance comparison between the vanilla Lua virtual machine and Lua-
Guardia when reading a 32MB file with variable read buffer sizes

Data Retrieval In order to understand and evaluate the impact introduced by perform-
ing system-calls that are served via transferring the execution context to the untrusted part
of the application as well as the overheads introduced by triggering the protected mem-
ory page swapping, we perform the following experiments. First, we develop a simple
Lua benchmark script that reads data from a 32MB file from the untrusted file-system in

32 CHAPTER 6. SYSTEM EVALUATION

chunks ranging from 64B up to 4MB input size. We execute the script using both the orig-
inal Lua virtual machine and LuaGuardia’s implementation and present the performance
results in Figure 6.1, where Vanilla indicates the performance of the unmodified Lua
virtual machine and SGX the end-to-end performance of LuaGuardia’s interpreter. The
overall execution of LuaGuardia is broken down to SGX Init and SGX Exec indicat-
ing the time required to create and initialize the enclave entity of LuaGuardia and the
time required only for the Lua script to complete code execution respectively. As we can
see in the figure, increasing the read data buffer significantly reduces the execution time
as fewer system-calls are involved and the execution time is transferred fewer times be-
tween the trusted and the unprotected spaces of LuaGuardia. Furthermore, the encryption
process for the enclave inbound data is triggered less frequently. However, we notice
that increasing the read data buffer beyond the input size of 2KB, has little to no effect
in further increasing the performance. Additionally, the overall end-to-end execution of
LuaGuardia is increased in comparison to the original Lua virtual machine due to the ex-
pensive enclave initialization while the required script execution time is, almost, identical
to the stock interpreter, indicating that Intel SGX does not introduce significant perfor-
mance overheads when carefully designing the enclave I/O channels and requirements.

 0

 0.4

 0.8

 1.2

 1.6
Read

E
x
e

c
u
ti
o
n

 T
im

e
 (

S
e

c
o
n
d

s
)

 Vanilla SGX SGX Init SGX Exec

 0

 0.4

 0.8

 1.2

 1.6

1KB
2KB

4KB
8KB

16KB

32KB

64KB

128KB

256KB

512KB

1M
B

2M
B

4M
B

Write

Array size

Figure 6.2: Performance comparison between the vanilla Lua virtual machine and Lua-
Guardia when randomly performing one million accesses (read/write) to memory loca-
tions ranging between 1KB and 4MB

6.2. MICRO BENCHMARKS 33

Memory Accesses The next step to our evaluation process is to measure the perfor-
mance overhead introduced by randomly accessing the enclave protected memory with
and without triggering page swapping. In order to achieve such result, we design a simple
Lua benchmark script that performs 1 million random memory accesses to consecutive
protected memory spaces, ranging from 1KB to 4MB. We execute the script in two differ-
ent ways, the first time we perform random 1B writes while the second 1B reads at each
random access. The results of this analysis are presented in Figure 6.2. We notice that
the memory access times achieved by LuaGuardia, are almost identical to those achieved
by the original Lua Virtual Machine when enclave page swapping is not triggered and the
target memory space resides in the live protected memory area. Moreover, we plan the
allocation of consecutive memory spaces exceeding 1MB so that we start triggering the
memory page swapping mechanism offered by Linux. In such cases, we can observe that
the page swapping effects affect the overall execution of the system, enforcing a linear
performance degradation as the amount of non-live protected memory increases.

6.2.1 Benchmark Applications

Cryptographic Benchmarks Our main goal here is to observe and understand the prop-
erties and parameters that affect LuaGuardia’s performance. To do so, we evaluate and
execute 12 popular cryptographic algorithms using the original Lua virtual machine and
LuaGuardia’s interpreter, recording only the script execution time for both of the meth-
ods. The selected cryptographic algorithms provide a representative combination of heavy
arithmetic operations along with memory resource utilization, which can stress the sys-
tems under test, in terms of excessive computations. The results of this experiment are
presented in Figure 6.3. The execution time is normalized to indicate the processing of
1MB input of each one of the cryptographic algorithms. Furthermore, we present the
performance overhead introduced on top of each bar cluster, roundup to 0.5. The results
indicate that the average performance overhead introduced by LuaGuardia may reach up
to 23% whereas SHA256 yields the highest performance overhead, reaching up to 46%.
This behaviour reported for SHA256 is mainly attributed to the increased memory re-
quirements of this implementation which triggers protected memory page swapping.

Benchmark Suite In this section, we evaluate and profile LuaGuardia using 12 popular
benchmark applications, developed in pure Lua. The purpose of this evaluation is to un-
derstand LuaGuardia’s performance properties when utilizing its two different execution
methods, (i) local and (ii) remote execution. As described in Section 4.2, when Lua-
Guardia operates in local execution mode, both the target Lua script(s) and their data
reside on the same physical machine, in contrast with remote execution mode, where the
Lua scripts, the code modules and the additional environment dependencies are securely
transmitted by the client, over the network.

Table 6.1 shows a short description of each of the benchmarks chosen for this anal-
ysis. Overall, they cover a wide range of different properties, including computational,
memory, and I/O-intensive workloads. By doing so, we are able to exercise different
characteristics of LuaGuardia and compare it against the vanilla Lua virtual machine.

34 CHAPTER 6. SYSTEM EVALUATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

blake2b

cha
checksum

m
d5

norx
norx32

rabbit

rc4
salsa

sha256

sha512

xtea

E
x
e

c
u
ti
o

n
 T

im
e

 (
S

e
c
o
n

d
s
)

Vanilla
SGX

 24% 17% 12%

14%
21%

31%

19%

26%

19% 46%

36%

8%

Figure 6.3: Performance sustained for cryptographic benchmarks

We execute each benchmark ten times using the vanilla Lua virtual machine and the
two operation modes provided by LuaGuardia and report the average end-to-end execution
time in Figure 6.4. The reported values for LuaGuardia contain the time required to
initialize the server, including the initialization of the SGX enclaves and the original Lua
interpreter, as well as the encryption and decryption operations required in order to secure
the incoming Lua scripts, their input data and modules, as well as the results. Moreover,
in the case of remote execution, the overall time also includes the network I/O.

As we can see in the figure, the stock Lua interpreter yields significantly better re-
sults compared to LuaGuardia when benchmarks with very low computational needs are
executed. However, the delta between the stock Lua virtual machine and LuaGuardia
decreases as the benchmarks become more computational intensive or demand more I/O
and thus require more time to execute. Also, the performance overhead introduced by
the network I/O when LuaGuardia is executed remotely is quite minimal as the encryp-
tion and decryption of the incoming data and each script’s output is performed in both
methods and is not offloaded to the network layer. These results indicate that major over-
head introduced by LuaGuardia mostly derives by its expensive initialization, as between
executions the server is always terminated and re-initialized.

6.2.2 Performance Optimizations

As described in the previous section, the initialization time of the SGX enclaves and the
Lua virtual machine introduce a significant performance overhead, especially when exe-
cuting lightweight scripts that are not computation-intensive, yielding sub-second perfor-
mance. To further understand the various overheads introduced by LuaGuardia’s software
stack, we re-evaluate LuaGuardia with the same benchmarks, reposing the execution time
breakdown into three different categories: (i) network I/O, (ii) initialization and (iii) ex-
ecution. The values reported for initialization contain the time required for initializing

6.2. MICRO BENCHMARKS 35

Table 6.1: Benchmark Operations

Micro benchmark Operation

deltablue Object-oriented constraint solver
life Game of Life puzzle
mandelbrot Mandelbrot computation
queens Solves the Queens puzzle

coll.detect Airplane collision detection simulation
fasta Generates DNA sequences
ray Ray casting simulation
richards Operating system kernel simulation

bin.trees Creates perfect binary trees
havlak Loop recognition algorithm
nbody n-body simulation of solar system
recurs.fib Performs recursive Fibonacci

both the enclaves and the protected Lua virtual machine, while the execution time corre-
sponds to the required cryptographic operations. As shown in Figure 6.5, we notice that
the initialization time overshadows the execution of the faster benchmarks when the ini-
tialization optimizations are disabled. This overhead can be further exaggerated in cases
where clients needs to repeatedly offload the execution of lightweight, self-contained,
functions that yield very small execution times (e.g., sub-second).

Initialization Optimizations In order to lift this limitation, we perform the following
optimization. To overcome these start-up overheads, we re-design LuaGuardia to use pre-
initialized enclaves. In particular, the SGX enclave that hosts the protected Lua virtual
machine, as well as its driving code is initialized only once during bootstrap and remains
active throughout the entire server’s lifetime. Afterwards, each client request yields the
initialization of the protected Lua virtual machine, each time reusing the always-active
SGX enclave. The Lua virtual machine is always re-initialized upon each client request,
discarding the previous Lua state, to ensure the confidentiality of previous executions.

Once the initialization optimization is in place, we evaluate LuaGuardia with the same
benchmark setup, reporting again the execution time breakdown. The results of this anal-
ysis are depicted in the bottom row of Figure 6.5. Comparing the overall execution time
breakdown of the new LuaGuardia version we notice that the optimized design signifi-
cantly reduces the initialization time allowing for faster end-to-end execution, especially
for short-lived Lua scripts.

system-call Batching In order to evaluate our second optimization, the system-call
batching, we design and implement a Lua benchmark that iteratively performs a system-
call, in this case write(). We execute the script multiple times, each time increasing the
number of requested system-calls, ranging between 10 thousand up to one million, using
the vanilla Lua virtual machine and LuaGuardia with and without system call batching.

36 CHAPTER 6. SYSTEM EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

deltablue life mandelbrot queensE
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

 0

 1

 2

 3

 4

coll.detec fasta ray richards

Vanilla
SGX Local

SGX Remote

 0

 5

 10

 15

bin.trees havlak nbody recurs.fib

Figure 6.4: End-to-end performance when executing 12 popular Lua benchmarks.

When system-call batching is enabled, LuaGuardia hooks the function and stores the re-
sults to be written in a local buffer, that resides in the enclave, instead of performing an
SGX OCALL each time. At the end of the execution, the results are written to the script’s
desired location using a single OCALL. As displayed in Figure 6.6, we notice that the over-
all execution performance is increased by an average of 70% for applications performing
multiple system-calls.

Optimization Results We now re-evaluate LuaGuardia with all optimizations enabled,
using the same experimental setup that has been described in Section 6.2.1. Figure 6.7,
compares the execution time achieved by the stock Lua virtual machine with the un-
optimized and optimised LuaGuardia implementations. The outcome of this evaluation
clearly indicates that the aforementioned optimization increased the performance capabil-
ities of LuaGuardia and significantly decreased the delta between the vanilla Lua virtual
machine and our system when executing short-lived Lua scripts. Moreover, for more com-
putationally intensive scripts, the performance achieved by LuaGuardia is almost compa-
rable to the stock Lua virtual machine, with the only exception being havlak due to its
high live memory requirements which constantly trigger enclave memory page swapping.

6.2.3 Real World Application 1: wrk2

In this section we evaluate wrk2’s performance when executing over LuaGuardia. wrk2 [53]
is a modified version of the original wrkHTTP benchmarking tool, which uses Lua scripts
for the generation of HTTP requests, the processing of the responses and any kind of re-
porting. At its original implementation, wrk2 is based upon LuaJIT. However, the pro-
vided scripts are also executable via the stock Lua virtual machine, and consecutively

6.2. MICRO BENCHMARKS 37

 0

 20

 40

 60

 80

 100
E

x
e
c
u

ti
o

n
 T

im
e

 (
p

e
rc

e
n

ta
g

e
)

U
n
o

p
ti
m

iz
e
d

Network I/O Initialization Execution

 0

 20

 40

 60

 80

 100

deltablue

life
m

andelbrot

queens

coll.detec

fasta
ray

richards

bin.trees

havlak

nbody

recurs.fib

O
p

ti
m

iz
e

d

Figure 6.5: LuaGuardia execution time breakdown with and without server initialization
optimizations.

by LuaGuardia. We choose to evaluate our system using wkr2 since it serves as a good
example of networking applications that generates synthetic load and requires external
services, such as an HTTP server.

Experimental Setup Besides the two machines for the LuaGuardia server and client,
we also setup an external HTTP server, running darkhttpd, which wrk2 will connect
to and perform the benchmarking operations. For our analysis, we execute three different
wrk2 Lua scripts, (i) Auth, (ii) Counter and (iii) Report. The first script performs
response handling and retrieves an authentication token. The second script changes the
request path and header for each request while the third Lua script implements a custom
done() method that reports latency percentiles in a CSV format.

Evaluation Process We use the LuaGuardia client to execute wrk2 which connects to
the HTTP server and each time initiates one of the three different Lua scripts. For each
HTTP request, wkr2 executes the target script by offloading it to the LuaGuardia server.
Upon script execution, the client receives the script’s output and finalizes the operation.
This is a particularly different design compared to the other applications since each script
is re-executed upon each HTTP requests. This means that for each packet transmitted
to the HTTP server, LuaGuardia’s protected Lua virtual machine is reinitialized in order

38 CHAPTER 6. SYSTEM EVALUATION

 0

 2

 4

 6

 8

 10

10K
100K

200K
300K

400K
500K

600K
700K

800K
900K

1M

E
x
e

c
u

ti
o

n
 T

im
e
 (

S
e

c
o

n
d
s
)

Number of Prints

Vanilla
SGX

SGX Optimizations

Figure 6.6: Performance comparison between the vanilla Lua virtual machine, Lua-
Guardia and LuaGuardia with system-call batching enabled.

to execute the appropriate wrk2 Lua script. The design followed by wrk2 serves as a
good example of clients constantly requesting script executions with minimal data and
low computation requirements and is ideal in order to stress LuaGuardia’s initialization
optimizations.

Results The results obtained after executing the three wrk2 Lua scripts using both the
stock Lua virtual machine and LuaGuardia are presented in Figure 6.8. The X-axis in-
dicates the executed scripts while the Y1-axis indicates the sustainable throughput in
KB/sec. The bar clusters follow the Y1-axis and the throughput achieved by the stock Lua
virtual machine is marked as Vanilla xput while the values reported by LuaGuardia
are marked as SGX xput. The Y2-axis indicates the average requests per second while
the achievable values are presented with lines/points, following a similar marking. The
overhead introduced by LuaGuardia is also reported on top of each bar cluster with each
value being round up to 0.5. Observing the results, we notice that LuaGuardia introduces
34% overhead for the Auth benchmark and 28% overhead for the Counter benchmark.
The main reason behind this behaviour is that Auth triggers an authentication token re-
trieval that stresses the I/O path more than the other three benchmarks. On the other hand,
we can see that Report yields almost the same throughput and requests/sec result since
the script is only executed once and requires very minimal processing and I/O.

6.2.4 Real World Application 2: Snabb/pflua

The second real-world application that we choose to evaluate LuaGuardia with is Snabb
[55]. Snabb is a virtualised Ethernet toolkit that allows the implementation of networking
applications using Lua. Originally, Snabb utilizes the LuaJIT instead of the Lua virtual

6.2. MICRO BENCHMARKS 39

 0

 0.01

 0.02

 0.03

 0.04

 0.05

deltablue life mandelbrot queens

T
im

e
 (

S
e
c
o
n
d
s
)

 0

 1

 2

 3

 4

coll.detec fasta ray richards

Vanilla
SGX Opts

 0

 5

 10

 15

bin.trees havlak nbody recurs.fib

Figure 6.7: Performance sustained when applying system-call batching and enclave pre-
initialization.

machine, however, the developed scripts are also able to be executed with the stock Lua
virtual machine as well as with LuaGuardia. One of the many applications provided by
Snabb is a packet filtering module, namely pflua. The pflua packet matcher is developed
with Lua, using 9600K LoC, and filters incoming packets based on pflang [56], a filter
that is also used by tcpdump [57].

Dataset In order to execute and evaluate Snabb/pflua, we use a dataset of 12 pcap traces,
each one containing 32 thousand packets. One of the traces, labeled uni, is a properly de-
anonymized and GDPR compliant real traffic trace, collected at an educational institute.
The rest of the traces are provided by Snabb as test cases, each one divided by its protocol.
In order to properly evaluate LuaGuardia with these traces, we expand Snabb’s synthetic
traces by replaying them in order to increase their size to 32 thousand packets. The rule-
set provided to pflua contains one hundred custom rules, defined in pflang, and is used in
order to process all pcap traces. We design the rule-set in such a way that multiple rules
are being triggered by each trace, making this way the workload uniform and comparable
across all input data.

Evaluation Process Once all the required data and the rule-set are gathered, we pro-
ceed with the evaluation of Snabb/pflua in the following way. First, we execute Snabb in
order to extract the packet information from each pcap trace and transform it to a pflua-
compatible format. Internally, Snabb uses L7 firewall which at each iteration extracts the
packet data, transforms it and then forwards the output to LuaGuardia that executes the
pflua Lua code. The rule-set utilized by pflua also resides in LuaGuardia’s SGX enclave.
In this way, it is not readable or modifiable by malicious parties that wish to monitor the

40 CHAPTER 6. SYSTEM EVALUATION

 0

 10

 20

 30

 40

 50

 60

Auth
C
ounter

R
eport

 0

 50

 100

 150

 200

 250

 300

T
h

ro
u
g

h
p
u

t
K

B
/s

e
c

R
e

q
u
e

s
ts

 p
e

r
s
e

c
o

n
d

Vanilla xput
SGX xput

Vanilla req/s
SGX req/s

34%

28%

2%

Figure 6.8: Performance sustained for wrk2

packet filtering process or alter the applied rules. Once each packet reaches the SGX en-
clave, it is being processed by the pflua module which buffers the results and returns them
back to the Snabb client when the entire trace is processed. We repeat this operation for
every trace, using both the vanilla Lua virtual machine and LuaGuardia.

Results The results of this analysis are presented in Figure 6.9. The X-axis indicates the
pcap trace being filtered while the Y-axis indicates the overall execution time. The end-
to-end execution time achieved by the stock Lua virtual machine is tagged as Vanilla
while SGX reports the execution time required by the LuaGuardia server with all opti-
mizations enabled. On top of each bar cluster we report the overhead introduced by Lu-
aGuardia, round up to 0.5. As we can see in the figure, LuaGuardia introduces less than
20% overhead for most of the traces while the average overhead is 19%. The biggest delta
is reported when processing the BitTorrent pcap trace, reaching 41%. We attribute
this overhead to the design of pflua’s filtering for the following reason. Each packet in the
trace contains a significantly big payload that has to be transferred inside LuaGuardia’s
SGX enclave, despite the fact that our filtering only applies rules based on packet head-
ers. For this reason, a considerable amount of data has to be encrypted, transferred and
decrypted without actually being required by the packet filtering process. Moreover, the
processing required to filter each packet based on its header is quite minimal, thus being
unable to hide such overhead. In contrast, the stock Lua virtual machine does not need
to perform this costly transfer operation. However, we can see that LuaGuardia is able to
process the real-world traffic trace, namely uni, with a minimal overhead of 14%.

6.2. MICRO BENCHMARKS 41

 0

 1

 2

 3

 4

 5

bittorrent

iseries

m
D
N
S3

nfsv2

nfsv3

rtp sm
tp

telnet

telnet-raw

tftp-rrq

tftp-w
rq

uni

E
x
e

c
u
ti
o

n
 T

im
e

 (
S

e
c
o
n

d
s
)

Vanilla
SGX

41%

15%
20%

21%
18%

22%

15%
16% 15%

13% 13%
14%

Figure 6.9: Performance sustained for pflua

6.2.5 Real World Application 3: Snabb/IPsec

As described in the previous section, Snabb is a simple Ethernet toolkit that enables the
development of networking applications using Lua. For our third real-world application,
we design and implement a custom module for Snabb. The module utilizes Snabb in
order to decode pcap traces and transform them into JSON. Afterwards, the transformed
packets are forwarded to our Lua module, executed by LuaGuardia, which is responsible
for encrypting end decrypting each packet, operating as a lite IPSec module.

Data We evaluate our custom module using the pcap traces described in Section 6.2.4.
Since our custom module is based on Snabb, similar to the previously discussed Snab-
b/pflua, we choose not to modify our pcap dataset for consistency. Moreover, in this way
we will be able to observe and compare the overhead introduced by LuaGuardia when
operating on the same data but performing a different type of computation. More specif-
ically, we aim to observe if the performance delta between the stock Lua virtual machine
and LuaGuardia is decreased when a computational intensive task takes place alongside an
I/O intensive operation such as transferring network traffic to and from the SGX enclaves.

Evaluation Process We begin our Snabb/IPsec module development by implementing
a configuration that specifies the functions responsible for parsing and processing pcap
traces. More specifically, we replace the I/O facility provided by Snabb with our own
implementation which exposes an SGXreader and an SGXwritter object. Upon ini-
tialization, we create a new SGXreader and SGXwritter context. Afterwards, using
the pull method, exposed by the SGXreader, we iterate each packet found in a pcap
file and encode it using JSON. Each encoded packet is then written to the output using the
push() method provided by the SGXwritter. Once the entire trace is processed, it is
forwarded to our IPsec module, executed securely by the LuaGuardia server.

42 CHAPTER 6. SYSTEM EVALUATION

Internally, the module receives the JSON encoded packets and performs encryption
and decryption of each packet payload. This operation is performed using ChaCha20-
Poly1305. Once every packet in the pcap trace passes a round of encryption and decryp-
tion, the results are forwarded back to the client. After carefully inspecting the module’s
correctness, we execute Snabb/IPsec using both the vanilla Lua virtual machine as well as
LuaGuardia with every optimization enabled, each time processing a different pcap trace.

Results The evaluation results obtained after the module’s execution are presented in
Figure 6.10. In a similar fashion to the previous analysis, the X-axis indicates the pcap
trace being processed while the Y-axis indicates the overall execution time. We mark the
end-to-end execution time achieved by the vanilla Lua virtual machine as Vanilla and
the results obtained by the execution of the LuaGuardia server as SGX. On top of each bar
cluster we report the overhead introduced by LuaGuardia, round up to 0.5. The evaluation
indicates that the processing of most of the traces using LuaGuardia, introduces a 15%
performance overhead. The average overhead is 17%, 2% lower than the value reported
for Snabb/pflua. This observation, along with the fact that the execution times are one
order of magnitude bigger than those reported for Snabb/pflua, is an initial indication of
our expectation — computational-intensive tasks tend to overshadow the I/O overhead
introduced by SGX enclaves. This is more evident when comparing the overhead intro-
duced by LuaGuardia when processing the bittorrent pcap trace using Snabb/pflua
and Snabb/IPsec. We can see that the overhead is reduced by 18% since the high execu-
tion time required to encrypt and decrypt each packet in the trace tends to overshadow the
time needed to transfer the big packet payloads into the enclave.

 0

 10

 20

 30

 40

 50

bittorrent

iseries

m
D
N
S3

nfsv2

nfsv3

rtp sm
tp

telnet

telnet-raw

tftp-rrq

tftp-w
rq

uni

E
x
e

c
u
ti
o
n

 T
im

e
 (

S
e
c
o

n
d
s
)

Vanilla
SGX

23%

15% 15%

15%
16%

19% 15%

15% 15%

15% 15%

21%

Figure 6.10: Performance sustained for IPsec

Chapter 7

Discussion And Limitations

7.1 Local Execution Mode

As mentioned in Section 4.2, even though Local Execution mode is supported by Lua-
Guardia, we opt out not to use it, for the already mentioned reasons. As a result, even
the same machine that runs the LuaGuardia server, may not use and leverage the SGX
capabilities for its own use, since a malicious attacker may tamper the execution scripts
due to the takeover of the file-system and the I/O. One solution to this issue, assuming
that the attacker has full take-over of the system including the fs, the system kernel and
the peripherals, would be to preload the different Lua scripts with their data in the Lua-
Guardia enclave and perform code requests to the enclave. However, this solution disables
LuaGuardia’s ability to execute code dynamically, thus we opt not to use it.

7.2 Native Module Support

As mentioned in Section 4.1.1, the dlopen family of functions is not supported nor its
use is endorsed within the enclave. This occurs due to the fact that dlopen is a system-call,
and thus has to be served and executed in the untrusted part of the application. As a re-
sult, the memory mapping of the requested shared library will be performed and allocated
at non secure memory, thus it will introduce several security risks, since LuaGuardia’s
enclave cannot monitor nor validate the integrity of the untrusted memory. A solution to
this issue would be to pre-compile and include the required group of native Lua libraries
in the main LuaGuardia interpreter. This would allow and help LuaGuardia virtual ma-
chine to have better compatibility with the legacy Lua scripts, but would introduce several
problems. First of all, including and compiling additional to the enclave would increase
the TCB size of the enclave, that might trigger the memory page swapping in case the
live used memory of the enclave exceeds the 128MB, resulting in decreased performance.
Secondly, adding third-party code to the enclave that is not trusted, might contain memory
leaks or bugs that may risk LuaGuardia’s environment and facilitate new kind of attacks.
Finally, adding new code to the enclave requires that the developer has SGX insight and
understands the structure of the project. Of course, this solution is intended only for SGX

43

44 CHAPTER 7. DISCUSSION AND LIMITATIONS

developers that have deep understanding of the project architecture and security primi-
tives.

7.3 Enclave Size

Another problem regarding application development using Intel SGX concerns the mem-
ory limitations and constraints introduced by the underlying hardware. As mentioned in
Section 2.1.1, the limitations of the available live memory is limited to 128MB totally
in the system. Due to this issue, several problems arise. First of all, all the enclaves se-
cure memory allocations have access only to this 128MB memory, whereas any request
that exceeds this limitation, triggers the swapping mechanism in the system, resulting into
slower performance of all the applications that leverage and utilize enclave functionality.
In LuaGuardia, we acknowledge this issue and we opted to use 150MB of live memory.
This choice was made since it was the bare minimum required in order to perform all the
mentioned micro and macro benchmarks in the previous section. Furthermore, keeping
the TCB small is an aspect that all the application developers should keep in mind when
developing in TEEs platforms. Even though LuaGuardia is fully capable of executing Lua
scripts and may work as a drop-in replacement of Lua5.3, executing whole applications
within the enclave is not endorsed. However, the option to increase the max available
memory(using swapping) may be increased by LuaGuardia’s configuration.

Chapter 8

Related Work

VC3 [58] uses SGX to achieve confidentiality and integrity for the Map Reduce frame-
work. Haven [59] aims to execute unmodified legacy Windows applications inside SGX
enclaves by porting a Windows libOS into SGX. Similarly, Graphene-SGX [60] encapsu-
lates the entire libOS, including the unmodified application binary, supporting libraries,
and a trusted runtime with a customized C library and ELF loader inside an SGX enclave.
SCONE [61] is a shielded execution framework that enables developers to compile their
C applications into Docker containers. These works are either domain-specific or provide
a container-based or libOS approach in which users can run general-purpose applications.
LuaGuardia provides a balance between these approaches by providing general purpose
program execution through a high-level programming language, such as Lua, that also
keeps the TCB size minimal.

Ryoan [62] provides a distributed framework that utilizes hardware SGX enclaves to
protect sandbox instances, written in C, from potentially malicious computing platforms.
It is designed as such confined modules operate on the given input once and do not hold
their state (similar to LuaGuardia) preventing potential data and state leakage. Glam-
dring [63] is a source-level partitioning framework that secures applications written in
plain C. The developer has explicitly to pinpoint the sensitive and crucial data using an-
notations. Then Glamdring automatically identifies and partitions the code into untrusted
and enclave code parts. In contrast with LuaGuardia, the developer has to recompile the
code with the newly added annotations and then perform the analysis to partition the code
whereas on LuaGuardia neither additional annotations are needed nor any code analysis.

Similar to our work, Civet [4] is a framework developed concurrently with Lua-
Guardia and partitions Java applications into the SGX enclaves. The framework also
provides garbage collection but introduces significantly greater overhead compared to
our system. TrustJS [64] also explores the possibility of bridging Javascript language
with SGX enclaves in securing security-sensitive Javascript components inside browser
applications. However, TrustJS requires script partitioning regarding the trusted scripts,
data and meta information. Additionally, it does not attempt to provide a general execu-
tion sandbox for legacy Javascript applications. ScriptShield [65] enables development in
SGX enclaves using high level scripting languages such as Lua, JS, Squirrel. In contrast

45

46 CHAPTER 8. RELATED WORK

to LuaGuardia though, it fails to demonstrate its practicality on real-life applications, in
terms of performance. On LuaGuardia, we have performed all the necessary optimiza-
tions that makes it practical to use in real-life applications. [66] introduces a reactive
middleware framework approach for data stream processing on the cloud based on In-
tel SGX and Lua. Overall, LuaGuardia builds on the same objectives, however provides
many optimizations that are necessary to make it practical in terms of performance.

Finally, several improvements for SGX have been recently developed, such as SGXBOUNDS [67],
SGX-Shield [68], Eleos [69] and T-SGX [70]. All these works are orthogonal to our ap-
proach and can be integrated to LuaGuardia.

Chapter 9

Conclusions and Future Work

In this section we present a summary of the contributions of this work (§ 9.1) and some
thoughts on potential future work (§ 9.2).

9.1 Summary of Contributions

In this work, we develop a novel dynamic code execution framework that supports code
offloading and execution of Lua legacy applications with their respective code modules
and required environment dependencies. More specifically, the ported virtual machine is
able to achieve and have close performance to the original Lua interpreter, in case where
the executing code has no external dependencies after virtual machine and code bootstrap
phase. In addition, our framework functionality may be enriched by adding additional
Lua modules. Furthermore, we hook the underlying system-call dependencies of Lua vir-
tual machine, intercept them and offload them to the untrusted OS for execution, without
affecting the normal script execution. In this way, we achieve a complete mediation of the
OS-enclave interface.

9.2 Future Work

As future work, we plan on exploring more high level languages similar to Lua such as
Javascript, Java and Python on the same concept but for different purposes, in which every
language is strong at. Additionally, the same concept of LuaGuardia can also be applied
on ARM TrustZone hardware. Arm’s TEE offers an alternative approach that its main
targets are mobile phones, IoT devices and smart devices. As a result, we could apply and
enforce LuaGuardia or similar approaches based on ARM TrustZone, that leverage high
level language code execution to strengthen the security of Android devices or its whole
ecosystem of devices. Another interesting aspect for improvement for LuaGuardia and
similar projects would be to dynamically load and execute shared libraries alongside with
the Lua or any other high level language scripts inside the trusted execution environment.
By doing so, we can almost achieve perfect Lua code compatibility.

47

48 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.3 Conclusion

LuaGuardia allows the easy development of confidential computing through a lightweight,
yet extensible, programming language, such as Lua. By doing so, it remedies the com-
plexity of application signing, as well as the execution of dynamically-loaded code. Lua-
Guardia enables several optimizations at the interpreter level which allow protected code
execution with reasonable performance overheads. Our evaluation results show that it can
be used by a diversified set of applications, with reasonable overheads.

The evaluation of our system shows normal performance capabilities without adding a
huge slowdown to the executing code. The performance of our implementation averages
13– 41% (avg: 18%). Applying several optimizations lowers the overheads to 5–95%,
especially for short-lived program fragments.

Bibliography

[1] P. Maene, J. Götzfried, R. De Clercq, T. Müller, F. Freiling, and I. Verbauwhede,
“Hardware-based trusted computing architectures for isolation and attestation,”
IEEE Transactions on Computers, vol. 67, no. 3, pp. 361–374, 2017.

[2] “ARM Security Technology, Building a Secure System using TrustZone Tech-
nology,” http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[3] “Intel Software Guard Extensions (Intel SGX),” https://software.intel.com/en-us/
sgx.

[4] C.-C. Tsai, J. Son, B. Jain, J. McAvey, R. A. Popa, and D. E. Porter, “Civet: An
efficient java partitioning framework for hardware enclaves,” in 29th {USENIX} Se-
curity Symposium ({USENIX} Security 20), 2020.

[5] “Open Enclave SDK,” https://openenclave.io/sdk/.

[6] “Asylo: An open and flexible framework for enclave applications,” https://asylo.
dev/.

[7] M. S. Melara, M. J. Freedman, and M. Bowman, “Enclavedom: Privilege separa-
tion for large-tcb applications in trusted execution environments,” arXiv preprint
arXiv:1907.13245, 2019.

[8] “Intel SGX Attestation,” https://software.intel.com/content/www/us/en/develop/
topics/software-guard-extensions/attestation-services.html.

[9] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A virtual
machine-based platform for trusted computing,” in Proceedings of the nineteenth
ACM symposium on Operating systems principles, 2003, pp. 193–206.

[10] “ADVANCED TRUSTED ENVIRONMENT: OMTP TR1,” http://www.omtp.org/
OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf.

[11] “TEE System Architecture,” http://read.pudn.com/downloads788/ebook/3112995/
GP/GPD_TEE_SystemArch_v1.0.pdf.

49

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://openenclave.io/sdk/
https://asylo.dev/
https://asylo.dev/
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.html
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://read.pudn.com/downloads788/ebook/3112995/GP/GPD_TEE_SystemArch_v1.0.pdf
http://read.pudn.com/downloads788/ebook/3112995/GP/GPD_TEE_SystemArch_v1.0.pdf

50 BIBLIOGRAPHY

[12] A. Vasudevan, J. M. McCune, and J. Newsome, Trustworthy execution on mobile
devices. Springer, 2014.

[13] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: what
it is, and what it is not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1. IEEE,
2015, pp. 57–64.

[14] “Introduction to Trusted Execution Environment: ARM’s TrustZone,” https://blog.
quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.
html.

[15] “What is a Trusted Execution Environment (TEE)?” https://www.trustonic.com/
news/technology/what-is-a-trusted-execution-environment-tee/.

[16] N. Asokan, J.-E. Ekberg, K. Kostiainen, A. Rajan, C. Rozas, A.-R. Sadeghi,
S. Schulz, and C. Wachsmann, “Mobile trusted computing,” Proceedings of the
IEEE, vol. 102, no. 8, pp. 1189–1206, 2014.

[17] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: Secure and minimal
architecture for (establishing dynamic) root of trust.” in Ndss, vol. 12, 2012, pp.
1–15.

[18] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel® software
guard extensions: Epid provisioning and attestation services,” White Paper, vol. 1,
no. 1-10, p. 119, 2016.

[19] “Introduction to Trusted Execution Environments,”
https://globalplatform.org/wp-content/uploads/2018/05/
Introduction-to-Trusted-Execution-Environment-15May2018.pdf.

[20] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure channel
between rich execution environment and trusted execution environment.” in NDSS,
2015.

[21] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint Arch., vol.
2016, no. 86, pp. 1–118, 2016.

[22] “Intel Software Guard Extensions Developer Reference for Linux OS,”
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_
Reference_Linux_2.10_Open_Source.pdf.

[23] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive survey,”
ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[24] “MOBILE (ANDROID) HARDWARE STATS 2017,” https://web.archive.org/web/
20170808222202/http://hwstats.unity3d.com:80/mobile/cpu-android.html.

[25] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Sanctuary: Arming
trustzone with user-space enclaves.” in NDSS, 2019.

https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html
https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html
https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html
https://www.trustonic.com/news/technology/what-is-a-trusted-execution-environment-tee/
https://www.trustonic.com/news/technology/what-is-a-trusted-execution-environment-tee/
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.10_Open_Source.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.10_Open_Source.pdf
https://web.archive.org/web/20170808222202/http://hwstats.unity3d.com:80/mobile/cpu-android.html
https://web.archive.org/web/20170808222202/http://hwstats.unity3d.com:80/mobile/cpu-android.html

BIBLIOGRAPHY 51

[26] “Secure Partition Manager,” https://developer.nordicsemi.com/nRF_Connect_SDK/
doc/latest/nrf/include/spm.html.

[27] “ARM Cortex-A57 MPCore Processor Technical Reference Manual,”
https://developer.arm.com/documentation/ddi0488/d/programmers-model/
armv8-architecture-concepts/exception-levels.

[28] “Optee,” https://www.op-tee.org/.

[29] “Nvidia Trusty TEE,” https://docs.nvidia.com/jetson/l4t/index.html.

[30] “Trustonic,” https://www.trustonic.com/.

[31] “Google Trusty TEE,” https://source.android.com/security/trusty.

[32] “Samsung TEEGRIS,” https://developer.samsung.com/teegris/overview.html.

[33] J. Amacher and V. Schiavoni, “On the performance of arm trustzone,” in IFIP
International Conference on Distributed Applications and Interoperable Systems.
Springer, 2019, pp. 133–151.

[34] “Arm TrustZone Technology,” https://developer.arm.com/ip-products/security-ip/
trustzone.

[35] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng, “Providing root of trust for arm
trustzone using on-chip sram,” in Proceedings of the 4th International Workshop on
Trustworthy Embedded Devices, 2014, pp. 25–36.

[36] “Samsung Knox Developer Documentation,” https://docs.samsungknox.com/dev/knox-
attestation/about-attestation.htm.

[37] “Lua Language,” http://www.lua.org/about.html.

[38] “Adobe Lightroom,” https://www.adobe.io/apis/creativecloud/lightroomclassic.
html.

[39] “Wireshark,” https://www.wireshark.org/.

[40] “Snort,” https://www.snort.org/.

[41] “World of Warcraft,” https://wowwiki.fandom.com/wiki/Lua.

[42] “Lua Unofficial FAQ (uFAQ),” https://www.luafaq.org/.

[43] “Lua 5.3 Reference Manual,” https://www.lua.org/manual/5.3/.

[44] “Lua Technical Notes,” https://www.lua.org/notes/ltn002.html.

[45] “Lua Environment and Modules,” https://www.lua.org/manual/2.1/section3_2.html.

https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/include/spm.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/include/spm.html
https://developer.arm.com/documentation/ddi0488/d/programmers-model/armv8-architecture-concepts/exception-levels
https://developer.arm.com/documentation/ddi0488/d/programmers-model/armv8-architecture-concepts/exception-levels
https://www.op-tee.org/
https://docs.nvidia.com/jetson/l4t/index.html
https://www.trustonic.com/
https://source.android.com/security/trusty
https://developer.samsung.com/teegris/overview.html
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
http://www.lua.org/about.html
https://www.adobe.io/apis/creativecloud/lightroomclassic.html
https://www.adobe.io/apis/creativecloud/lightroomclassic.html
https://www.wireshark.org/
https://www.snort.org/
https://wowwiki.fandom.com/wiki/Lua
https://www.luafaq.org/
https://www.lua.org/manual/5.3/
https://www.lua.org/notes/ltn002.html
https://www.lua.org/manual/2.1/section3_2.html

52 BIBLIOGRAPHY

[46] L. H. De Figueiredo, R. Ierusalimschy, and W. Celes Filho, “Lua: an
extensible embedded language,” https://www.drdobbs.com/open-source/
lua-an-extensible-embedded-language/184410014.

[47] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware guard
extension: Using sgx to conceal cache attacks,” in International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2017,
pp. 3–24.

[48] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi,
“Software grand exposure:{SGX} cache attacks are practical,” in 11th {USENIX}
Workshop on Offensive Technologies ({WOOT} 17), 2017.

[49] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel sgx,” in
Proceedings of the 10th European Workshop on Systems Security, 2017, pp. 1–6.

[50] E. Rescorla, “Rfc2631: Diffie-hellman key agreement method,” USA, 1999.

[51] M. Pall, “The luajit project,” Web site: http://luajit.org, vol. 1015, 2008.

[52] B. C. Xing, M. Shanahan, and R. Leslie-Hurd, “Intel® software guard extensions
(intel® sgx) software support for dynamic memory allocation inside an enclave,” in
Proceedings of the Hardware and Architectural Support for Security and Privacy
2016, 2016, pp. 1–9.

[53] “A constant throughput, correct latency recording variant of wrk,” https://github.
com/giltene/wrk2.

[54] “Packet filtering in Lua,” https://github.com/Igalia/pflua.

[55] “Snabb: Simple and fast packet networking,” https://github.com/snabbco/snabb.

[56] “PFlang,” https://github.com/Igalia/pflua/blob/master/doc/pflang.md.

[57] “tcpdump,” https://www.tcpdump.org/manpages/tcpdump.1.html.

[58] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich, “Vc3: Trustworthy data analytics in the cloud using sgx,” in 2015
IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 38–54.

[59] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted
cloud with haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3,
pp. 1–26, 2015.

[60] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library {OS} for
unmodified applications on {SGX},” in 2017 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 17), 2017, pp. 645–658.

https://www.drdobbs.com/open-source/lua-an-extensible-embedded-language/184410014
https://www.drdobbs.com/open-source/lua-an-extensible-embedded-language/184410014
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://github.com/Igalia/pflua
https://github.com/snabbco/snabb
https://github.com/Igalia/pflua/blob/master/doc/pflang.md
https://www.tcpdump.org/manpages/tcpdump.1.html

BIBLIOGRAPHY 53

[61] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al., “{SCONE}: Secure linux
containers with intel {SGX},” in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), 2016, pp. 689–703.

[62] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox
for untrusted computation on secret data,” ACM Transactions on Computer Systems
(TOCS), vol. 35, no. 4, pp. 1–32, 2018.

[63] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin, F. Kelbert, T. Rei-
her, D. Goltzsche, D. Eyers, R. Kapitza et al., “Glamdring: Automatic applica-
tion partitioning for intel {SGX},” in 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17), 2017, pp. 285–298.

[64] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. Pietzuch, and R. Kapitza,
“Trustjs: Trusted client-side execution of javascript,” in Proceedings of the 10th
European Workshop on Systems Security, 2017, pp. 1–6.

[65] H. Wang, E. Bauman, V. Karande, Z. Lin, Y. Cheng, and Y. Zhang, “Running lan-
guage interpreters inside sgx: A lightweight, legacy-compatible script code harden-
ing approach,” in Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, 2019, pp. 114–121.

[66] A. Havet, R. Pires, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni, “Secure-
streams: A reactive middleware framework for secure data stream processing,” in
Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems, 2017, pp. 124–133.

[67] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber, and C. Fet-
zer, “Sgxbounds: Memory safety for shielded execution,” in Proceedings of the
Twelfth European Conference on Computer Systems, 2017, pp. 205–221.

[68] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim, “Sgx-shield:
Enabling address space layout randomization for sgx programs.” in NDSS, 2017.

[69] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless os services
for sgx enclaves,” in Proceedings of the Twelfth European Conference on Computer
Systems, 2017, pp. 238–253.

[70] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating controlled-channel
attacks against enclave programs.” in NDSS, 2017.

	1 Introduction
	1.1 Guarantees
	1.2 Outline

	2 Background
	2.1 Trusted Execution Environments
	2.1.1 Intel Software Guard Extensions
	2.1.2 ARM TrustZone

	2.2 Just-In-Time Languages
	2.2.1 Why Lua

	2.3 Motivating Examples
	2.3.1 LuaGuardia Overview

	3 Threat Model and Assumptions
	4 System Architecture
	4.1 LVMAT Components
	4.1.1 LVMAT Interpreter
	4.1.2 LVMAT Server
	4.1.3 LVMAT Client Stub

	4.2 LuaGuardia Local Execution Mode

	5 System Implementation
	5.1 Porting the Lua VM
	5.2 system-call Handling
	5.3 External Modules
	5.4 Maintaining Global State
	5.5 Code and Client Isolation
	5.6 Optimizations

	6 System Evaluation
	6.1 Experimental Testbed
	6.1.1 Security Analysis

	6.2 Micro Benchmarks
	6.2.1 Benchmark Applications
	6.2.2 Performance Optimizations
	6.2.3 Real World Application 1: wrk2
	6.2.4 Real World Application 2: Snabb/pflua
	6.2.5 Real World Application 3: Snabb/IPsec

	7 Discussion And Limitations
	7.1 Local Execution Mode
	7.2 Native Module Support
	7.3 Enclave Size

	8 Related Work
	9 Conclusions and Future Work
	9.1 Summary of Contributions
	9.2 Future Work
	9.3 Conclusion

