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Euvyapioticg
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Tov euyopio T xaL ToV ETXI® Wiaitepa.

Evyaplote tov e€aipetind dvidpwno, xodnynt Mdexo Katoouldxn, o onolog
enane xodoploTixd pOAo GTNV ToEEld oL Amd TIC TEOTTUYLAXES CTIOLOES UEYEL
ofepa, OVTog TNYY) ouctodo&iag xaL EUTVEUONS GTOYOV.

Euyopiotd tov moAd xohd @iho xou cuvepydtn T'dvvn Iovtaln yio i
opétenteg oulnthoelc and Ty oy teptodo tne datePric. H ouuBoiy tou
ATAY OUCLAC TIXAC ONUACIAS TNV EXTUOEUTIXY BladLxacior Tou SLBoxToEIXOV.
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Kodhytavvdnn, mou agiépnoe apxetd ypovo yia va e Borndfoel omote elya
%dmolo TEOBANUAL.
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X0l UE AVEYTNXOY GE QUTY| TNV BUOKOAY TOPELX TV TEAEUTUWY ETMV.



Contents

Introduction

Molecular Dynamics and Statistical Mechanics

2.1 Introduction. . . . . . . . ... ... ... ...

2.2 Statistical Mechanics . . . . . . ... oo 0oL

2.3 Classical Mechanics. . . . . . . .. ... ... ... .. ...,
2.3.1 Equations of motion . . . .. ... ... ...

2.4 Molecular Dynamics . . . . . ... ... ... 0.
2.4.1 Verlet algorithm . . . ... ... ... ... ......
2.4.2 Thermostats . . . . ... ... ... ... ... ...
2.4.3 BBKalgorithm . . .. ... ... ... ... ...,
2.4.4 Periodic boundary conditions . . . . . ... ... ...
2.4.5 Interaction potential . . . . . . . ... ... ... ...
24.6 Bonds, Angles . . ... ... ... ... ...

Sensitivity Analysis
3.1 Introduction. . . . . .. .. .. ... ... ... .. ...
3.2 Pathwise Sensitivity Analysis for Langevin Dynamics . . . . .
3.2.1 Stochastic equation of motion . . . . . ... ... ...
3.2.2 Relative Entropy Rate and Fisher Information Matrix
for Langevin Processes . . . . . . .. .. .. ... ...
3.3 Models and Observables . . . . . ... ... ... .......
331 LJfluldmodel ... ... ... ... ... . ......
3.32 CHimodel . ... ... .. ... ... ... ......

3.3.3 Observables . . . . ... .. ... ... ... ......
3.4 Results. . . . . . . e
3.41 LJfluid . ... ... ... ...
342 CHy . . . . . o e

3.5 Conclusion . ... ... .. .. ... ... .. e
3.6 Appendix . . . . ...
3.6.1 Pathwise SA at the discrete-time level . . . . . . . ..
3.6.2 Expansion of the continuous-time RER . . . . .. ..
3.6.3 Potential energy terms of CHy . . . . . . . ... ...



3.7 Supplementary Material . . . . ... ... ... ........ 51

Relative Entropy 55
4.1 Introduction. . . . . . . . . ... ... ... . 99
4.2 Theoretical Aspects . . . . . . ... 58
4.2.1 Atomistic and Coarse Grained Description . . . . . . . 58
4.2.2 The many body Potential of Mean Force and approx-
imations . . . . . . ... 99
4.3 Parametrization methods for CG models at equilibrium . . . 62
4.3.1 Boltzmann Inversion . . . . . . ... .. ... ..... 62
4.3.2 Force Matching . . . . . ... ... ... ... ... .. 63
4.3.3 Relative Entropy . . . . . . ... ... 65
4.4 Molecular models and Simulations . . . ... ... ... ... 67
4.4.1 Methane . . . . . . .. ... ... ... 67
4.42 Water . . . . . . .. .. e 69
4.4.3 Alkane liquid . . . . ... ... ... 69
45 Results. . . . . . . 70
4.5.1 Two Methane . ... ... ... ... ... ...... 70
4.5.2 Bulkmethane . . . . ... ... ... .......... 73
4.5.3 Watermodel .. ... ... . ... ... ... ..., 76
454 Alkane . . . . . . . .. ... 78
4.6 Discussion and Conclusions . . . . . . ... .. ... ..... 80
Cluster Expansions 84
5.1 Introduction. . . . . . ... ... .. ... .. ... ..., 84
5.2 Molecular Models . . . . . . .. .. ... ... ... ...... 87
5.2.1 Atomistic and “exact” coarse-grained (CG) description 87
5.2.2 Coarse-grained approximations . . . . . .. ... ... 89
5.3 Cluster expansion . . . . . . . . . .. .. L oo 91
5.3.1 Full calculation of the PMF . . . . . ... ... .... 93
5.3.2 Thermodynamic consistency . . . . . . . .. ... ... 95
5.3.3 Pair correlation function . . . . . ... ... ... ... 96
5.4 Model and Simulations . . . . . . ... ... ... 97
54.1 Themodel ... ... ... ... .. ... ...... 97
5.4.2 Simulations . . . . .. ... ... .0 98
5.5 Results. . . . . . . . . 101
5.5.1 Calculation of the effective two-body CG potential . . 101
5.5.2 Bulk CG CH4 runs using a pair potential . . . . . .. 105
5.6 Effective three-body potential . . . . . . . ... .. ... ... 111
5.6.1 Calculation of the effective three-body potential . . . 111
5.6.2 CG Runs with the effective three-body potential . . . 114
5.7 Discussion and conclusions . . . . . . . ... ... ... .. .. 114



6 2-Body, 3-Body calculations

6.1 Introduction. . . . . . ... .. .. ... ... ... ...,
6.2 2-Body. ... ... ...
6.2.1 Constrainedruns . . . . . . ... ... ...
6.2.2 Run specifications . . . . .. ... ..o
6.2.3 UST estimator . . . . ... ... .. ... ...
6.2.4 MD noise in constrained runs . . . . ... ...
6.2.5 Inverse g(r) . . . . . . ..
6.3 3-Body. .. ... ...
6.3.1 Constrainedruns . . . . . . ... ... ... ... ...
6.3.2 COM positions . . . . . .. ... ... ... ......
6.3.3 Statistical accuracy . . . . ... ..o
6.3.4 Geometric averaging . . . . . . . ... ...
6.3.5 4-Body . ... .. ...
6.4 WO representation . . . . . ...
6.4.1 Cubic polynomial . . . . . ... .. ...
6.4.2 Numerical calculation of partial derivatives . . . . . .
6.4.3 Comparison . . . . . . .. ...
6.5 CGruns . . . .. . . . . e

7 Conclusions
.1  Definitions

References

117
117
117
118
121
121
123
124
128
128
129
131
134
138
138
139
143
144
144

149
151

151



Abstract

The theoretical study of complex materials, through mathematical and
computational modeling (computer simulations) of many-particle systems
has been a vibrant field of study during the last decades. Such materi-
als are used in technological applications, ranging from nanotechnology, to
aerospace engineering materials up to biomedical applications, drug design
etc. Recently, there has been significant progress both in the level of an-
swering fundamental physical questions, and in the development of novel
algorithms, numerical methods and simulations. At the same time there
is a rapid increase in computer processing capabilities and architectures
[1, 2]. Simulation techniques for such systems vary from quantum, to micro-
scopic (atomistic) up to mesoscopic (Coarse-Grained, CG) and to the contin-
uum level. In this thesis we develop novel mathematical and computational
methodologies for studying molecular systems in multiple length scales. In
more detail, we: (a) Develop/apply a sensitivity analysis methodology for
the parameters of the model systems, by using ideas from information the-
ory in a probabilistic framework. (b) Examine different parameterization
schemes of CG effective potentials, and (c) Propose a new CG parameter-
ization methodology based on rigorous cluster expansion techniques. The
above numerical approaches can be used to a vast variety of different molec-
ular systems.

H Yewpnuixd perétn xodde xol oL UTOAOYICTIXES TEOCOUOIWOEL, TOAU-
TAOXWY LOPLAXMY VAXGOV/CUOTNUATWY, ATOTEAODY €Vol EVERYS DIETO TNUOVIXG
nedio xatd TN Sidpeta TV TEAEUTAlWY SEXAETIOY. TAxd TéTolou eldoug yenot-
HoTolOUVTOL GE TOUElS PE epaproYEg and TN vavoteyvoloyia, tn Bloteyvoloyia
edC TNV 0gpodlae TN wnyovixd, TNV Blo-tateud] (T.y. avamTuEn QopUdxmy)
%0 OL TEYVIXEC TPOGOUOLWGEWY HOPLUXWY GUG TNUATOY APOPOUY DLUPORETIXES
uedodoroyieg oe €va TOAD YeYdho €0pOC, amd TO XBAVTIXG OTO UXPOCKOTIXO
(atouioTind) eninedo, TO PECOOXOTIXG (ABEOTONUEVO) €WC XUl TO GUVEYEC
eninedo. Mtnv napodoa epyasio avanTOEoUE Uldl GELRE XOUVOTOUWY oI NUOTIXGY
X0l UTOAOYLOTIXOV UEVOBONOYLOY Yial T1) UEAETT) TOAUTAOXGY HOPLOXWY CUC T
UATWY TOCO OE ATOULO TIXO 6G0 xal ot adpoTolnuévo entenedo. Ilo cuyxexpiuéva:
(o) AvoamtOZope ot EQupPOCUUE Ula avdhuoT Voo INGiag OTIC TUPOUETEOUS TWY
HOPLOXGY HOVTEAWY, YENOWOTOLMVTAS WoEeg amd Tn Vewplo TAnpogopiag ce éva
mdovodewentind nhaioto. (B) EZetdoope dwupopetinée uedbdouc napapetponoinong
OMOTEAECUATIXGY (BUVOIXDV) UBEOTIONUEVKDY LOVTEA®Y, YL ol GUC TUOTIXT
HETdPBoom amd To Puxpooxomixd (atopmoxd) oto uecooxomxd eninedo. (Y)
Hapovoidooue uior véa pedodoroyio e€orywyhg TV oBEOTOMNUEVLY SUVOHIXODY,
n omolo Paciletar oc TEYVIXEC AVATTUYUATOV ouddwy. ‘Okec ol mopamdve
TEYVIXES DOXIUAOTNXAY OE ATAYL LOPLAXE. GUC THUNTA, EVE UTOPOUY TEQUUTER VOl



yenowornoindolyv ce éva ueydho ebpog THavey TOAITAOXWY LOPLIXDY CUC T
UdTwy.



Chapter 1

Introduction

The study of molecular systems, especially as complexity increases, e.g. pro-
teins and other macromolecluar systems, is challenging for experiments as
well as for numerical simulations, due to the broad range of time and length
scales involved. Typically, the time scale in atomistic simulations if of the
order of O(10~* — 1078)sec (with time resolution dt € O(107?)sec), the
length scale for the non-bonded interactions are O(10~?)m for system sizes
of O(10%) particles. One can easily see that the differences in the corre-
sponding scales are vast between real experiments. Phase transitions for
instance, occur in the order of few seconds (depending on the system and
temperature) and in many cases the computational cost is prohibitive.

Simulations can be used in order to replace or complement experi-
ments, by providing detailed structural, conformational and dynamical prop-
erties of the system, down to a level of description where conventional macro-
scopic measurements cannot reach. The accuracy of simulations relies on
the quality of the atomistic force-fields (potential) between particles. Typ-
ically, pair interaction potentials are utilized, where the shape is controlled
by adjustable parameters (e.g. Lennard-Jones, Morse potentials). The pa-
rameters of such potentials can be derived either by fitting to experimental
data, in order to reproduce properties of homogeneous bulk systems, or by
performing detailed ab-initio calculations.

Having the above in mind, it is desirable to reduce the required compu-
tational cost, by describing the system through a smaller number of degrees
of freedom, in comparison with the fully atomistic level. This is the main
idea behind Coarse-Grained (CG) models, which have been proven very
efficient means for increase of spatio-temporal scales accessible by simula-
tions [3, 4, 5, 6, 7, 8, 9, 10]. Here we focus on particle-based approaches,
in which groups of atoms are replaced by structureless interaction centres
(beads or “superatoms” in literature) that interact through effective poten-
tials. CG models produce correct results for the study of equilibrium and
structural properties, however dynamical properties like diffusion (or other



time-correlated properties) are not always recovered. The basic reason for
this failure is that the CG procedure eliminates degrees of freedom that
should appear in the CG dynamics in the form of dissipation and thermal
noise, both connected through the fluctuation-dissipation theorem [11].

Another aspect is the degree of Coarse-Graining. In low CG degree
models a small number of atoms (usually 5-10) are lumped together. These
models can be used to predict properties at the monomeric level, while at the
same time, atomistic detail can be re-introduced into the CG configurations,
providing direct information in the all-atom level. Alternatively, in many
cases, coarser models (large number of monomers, or even long molecules
are represented as a single CG bead) are required in order to study more
complex systems [7, 12].

We should note here, that from a mathematical point of view, Coarse-
Graining is a subfield of dimensionality reduction [13, 14, 15] and some
methods are principal component analysis, polynomial chaos and diffusion
maps [15, 16]. By eliminating atomistic details that are considered “unnec-
essary”, CG models may provide three or more orders of magnitude greater
efficiency than atomically detailed models [17].
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Figure 1.1: Multiscale modeling, from electronic structure level up to con-
tinuum for a polymer/solid interfacial system [18].

The accuracy of the CG models depends on the specific CG interaction
potential (or force field) representation. There are several suggestions over
the last decades [4, 19, 20]. On the one hand are more qualitative bead-
spring type of models, in which molecules are represented as a series of
beads interacting via Lennard-Jones like potentials, connected by (harmonic
or FENE) springs to account for the intramolecular interactions of beads on
the same molecule. On the other hand, are systematic, more quantitative
CG models, in which atoms are lumped into beads or CG particles and they



interact via effective CG potentials, which are derived from long atomistic
simulations as an approximation of the (many-body) potential of mean force,
PMF. PMF methods are further subdivided in categories, such as:

(a) The Force Matching [21, 19, 22], where a minimization technique is
used for fitting a parameterized force functional according to mean forces in
the atomistic level.

(b) Another PMF method [23] (discussed later in Chapters 4 and 5) is re-
lated to the reversible work theorem and the mapping W(R) = —KgT In Z(R),
where Z(R) is the mapped partition function and W (R) is the PMF but it
is a free energy function involving entropic contribution as well.

(c) An alternative approach to mean forcing, is to use structure based
methods like the iterative Boltzmann Inversion (IBI) [5], in which one is in-
terested in matching the radial distribution function (rdf) among the atom-
istic and CG levels, in an iterative fashion. All the above methods are
rigorously valid in equilibrium.

As a general note, we stress that the use of CG models to describe (pre-
dict) the dynamics of complex systems is a subtle issue. The main reason
is that the reduced degrees of freedom result to less friction between CG
particles and therefore the time scale (and time-correlations) does not cor-
respond to the atomistic one. To overcome this problem, in our description
we used Langevin dynamics which involves friction forces in the equation of
motion.

Uncertainty quantification (UQ) is the qualitative and quantitative es-
timation of uncertainties in complex physical, mechanical and engineering
systems and is of paramount importance in multiscale modeling, where prop-
erties evaluated at the atomic-molecular scale are transferred to the macro-
scopic scale. UQ can determine how likely is the outcome of an experiment,
if some of the system parameters are known up to a degree, meaning that
they are described by a statistical distribution function. Sources of un-
certainty can stem from i) numerical uncertainty ii) model uncertainty iii)
parametric uncertainty. Numerical uncertainties are related to the finite
time of the dynamic simulation, the number of particles, the time resolu-
tion (time-step) etc. Model uncertainty comes from the specific force field
representation and its calibration to experimental properties. Parametric
uncertainties stem from errors in parameter values due to noisy or insuffi-
cient measurements.

In the general context of UQ, Sensitivity Analysis (SA) is a powerful tool
that gives insight into how small variations (uncertainty) in system parame-
ters (input) can affect the results (output) if the system substantially. This
means that this type of parameters have to be determined very accurately, as
they are points of control in model dynamics. Such perturbations can occur
form computational erros, uncertainty and errors resulting from experimen-
tal parameter estimation [24] (such as parameter fitting through ensemble
averages of macroscopic thermodynamic quantities). Thus, parametric SA



can provide critical insight into UQ. Depending on the magnitude of the
perturbations, SA can be classifiend into local (infinitesimal, one-at-a-time
parameter perturbation) and global (finit, multiple parameter perturbation).

Furthermore, SA in not restricted to UQ but it is of pivotal significance
in several other applications. The notion of robustness of a system is the
stability of its behavior under simultaneoud changes in model parameters
or variations of orders of magnitude in insensitive parameters that insignifi-
cantly affect the dynamics and can be addressed by utilizing parametric SA
approaches. SA can also be used in optimal experimental design [25], and
identifiability analysis [26].

Stochastic modeling (models that use random forcing in the equations,
according to probability density functions) is a powerful means of studying
complex system. Such mathematical models involve slightly more calcula-
tions (to account for friction and collisions) and can accelerate the dynamics
by increasing the time discretization. SA is suitable for this kind of systems,
since it allows to extract information about the sensitivity and identifiability
of parameters.

The main goals of this thesis are:

(a) To develop a novel sensitivity analysis methodology for complex
molecular systems,

(b) To examine different parameterization of CG effective potentials, and

(c) To propose a new CG parameterization based on rigorous cluster
expansion methodologies.

In more detail, we have developed a SA methodology suitable for complex
stochastic systems, which relies on information loss due to parameter pertur-
bations between time-series distributions, hence referred to as “pathwise”.
This is achieved by employing the rigorously-derived Relative Entropy (RE)
and the associated Relative Entropy Rate (RER), which can be thought of
as “change of information per unit time”. RE or Kullback-Leibler diver-
gence of two probability measures p(dzr) = p(x)dr and v(dx) = v(z)de is
given by:

R(i\v) = [ o) log “Ejg

and allows to define a psedo-distance between them. In the context of Chap-
ter 3, p(z) and v(x) are probability distributions (or in weaker assumptions
non-equilibrium steady-state measures) which come from perturbations in
potential parameters. In the CG context of Chapter 4, the RE method
employs the minimization of Relative Entropy between microscopic Gibbs
measures j(dr) and p’(dx) (or back-mapping [6]) representing approxima-
tions to the exact Coarse space Gibbs measure.

The Fisher Information Matrix (FIM) is associated with RER and con-
stitutes a gradient-free approach to quantify parameter sensitivities. FIM is
the Hessian of the RE and spectral analysis of this matrix provides further

dz (1.1)



insight on sensitivities, parameter identifiability and dependencies (correla-
tions) [27].

As mentioned earlier, we use CG methods based on comparing quantities
between the atomistic and Coarse level, in order to construct an effective
potential. The main issue is that although pair interactions are a good ap-
proximation for the microscopic level, after Coarse-Graining, a multi-body
effective potential is derived, which for realistic system sizes cannot be cal-
culated. Therefore, the pair effective CG potential is a (reasonable) approx-
imation, which is made in an uncontrolled way, meaning that it is a solution
to an “inverse problem”. In Chapter 5, we suggest to explicitly compute
the constrained configuration integral over all atomistic configurations that
correspond to a given CG state and from that, suggest applications with a
quantitative error.

Cluster expansions methods originate from the works of Mayer [28] and
are valid in high temperature gas regime. The key idea is to form lumps
of particles (clusters) and construct a CG potential from rigorous calcula-
tions of expanding the logarithm of the partition function in an absolutely
convergent series. A hierarchy of CG Hamiltionians, based on the cluster-
ing, results to CG potentials of 2-Body, 3-Body and so on, in a systematic
way. Constrained atomistic simulations of increasing sizes are performed in
vacuum in order to construct controlled approximations of effective poten-
tials and assess their validity, a posteriori, through the structural observable
quantity rdf, in order to maintain correct thermodynamic properties. Fi-
nally, we assess the trade off between computational complexity-cost over
accuracy between CG models.

We organize this thesis as follows. In Chapter 2, we briefly present
the basic ideas behind molecular simulation, from Statistical Mechanics and
derivation of the models, to common computational techniques. During this
PhD thesis, three papers were written (two published, one submitted) and a
fourth one is under development [29, 30, 31]. Chapters 3, 4, 5 correspond to
the respective manuscripts, where there is some additional material. More
specifically, Chapter 3 is on the sensitivity analysis of model parameters of
stochastic C'Hy4 system. We use the information theoretic quantity of Rela-
tive Entropy and the associated Fisher Information Matrix on the equilib-
rium and non-equilibrium steady-state regimes. In Chapter 4, we reviewed,
compared and contrasted various CG methodologies for molecular systems of
different complexity, such as force-matching, Iterative Boltzmann Inversion
and Relative Entropy. Chapter 5 is on systematic Coarse-Graining based
on cluster expansions and mean force calculations. Construction of 2-Body
and 3-Body effective potentials of different molecular systems is explained
in detail in Chapter 6. It involves theoretical and especially the numeri-
cal/technical part of the 3-body computations and will appear as a future
publication.



Chapter 2

Molecular Dynamics and
Statistical Mechanics

2.1 Introduction

We carry out computer simulations in order to model molecular systems
and to study their structural and dynamical properties, starting from the
microscopic interactions between them. This can be used as a computational
design tool that help us to predict structure-properties relations of complex
molecular materials. At the same time serves as a complement to conven-
tional experiments [32]. For example, a typical experiment measures the
average of an observable quantity (property) over a “large” number of par-
ticles and over “large time scales”. In contrast, molecular simulations (e.g.
molecular dynamics) measure instantaneous positions and velocities of the
particles where no real experiment can provide such detailed information. If
we wish to use computer simulation as the numerical counterpart of exper-
iments [33], we must know what kind of averages (with respect to pressure,
internal energy etc.) we should aim to compute. In order to explain this,
we need to introduce notions from statistical mechanics.

2.2 Statistical Mechanics

We start by reviewing basic ideas from the classical mechanics. The macro-
scopic thermodynamic state of a system is described by the following prop-
erties: the number of particles N. temperature T', pressure P and volume
V. Others can be derived by the equations of state and fundamental equa-
tions of thermodynamics. The instantaneous mechanical state is defined
by the positions and momenta (6N dimensions in total) and later on we
will associate the aforementioned properties with them. Note, that in this
description we neglect quantum effects.

The microscopic system (positions and momenta at a given time instant



:= {q(t),p(t)}) evolves in time through Newton’s equations of motion, so
we define the (Hamiltionian) flow of a point in phase space (6 N-dimensional
sub-space) as I'(t). The macroscopic property A is a time average over a
long time interval T":

(AY = (AT = lim — / AT (2.1)

T—oo 1

In computer simulations the integral becomes Zle A(T'(7)) and we re-
quire that the long trajectory explores the phase space satisfactorily, so
that computed time averages correspond to averages of same parameters
(N, P, T) but different initial conditions, i.e. different starting phase point
r.

Gibbs suggested replacing the time average by the ensemble average,
(ergodic theorem) where ensemble is a collection of points I' in phase space.
The points are described according to probability density p(I') = pyyr(T) =
PNPT(I') = pens(I'). In this notation, phase point I' represents a typical sys-
tem (N, P,T = const) at any particular instant of time. Using the Liouville
operator L and Liouville’s theorem, we may write:

Opens (T, 1)
ot

The rate of change of pe,s at a fixed point I' in phase space, is related to
the flows into and out of that point. If pe,s(I') represents an equilibrium
ensemble, then % = 0. Such a system, is termed ergodic.

We now replace the time average in eq. (2.1) by an average taken over
the ensemble phase space points

<“4>€‘HS = A|pens ZA pens (23)

= _inenS(Fat> (22)

We define the sum over states I', the partition function Qepng as:

Wens(r)

Qens (2‘4)

Qens = Z Wens(r)a pens(F) =
r

where Weps(T') is the non-normalized form of pens(I'). Qens is a function of
the macroscopic properties defining the ensemble.

The above would suggest that the computation of thermodynamic quan-
tities would be the evaluation of Qepns, but this summation is not feasible.
There are too many states (in the vast continuous description of phase space
I') with very low weight Wepsdue to non-physical overlaps between the repul-
sive cores of the molecules. In MD, (-)ops is replaced by a trajectory average,
assuming that we are dealing with equilibrium (ergodic) systems, and since
the Newton’s equations generate a succession of states I' in accordance with
the distribution function pyyg; E is constant energy.



We describe the energy of the system by the Hamiltonian at the phase
point I' as H(I'). The Canonical Ensemble has a probability density

proportional to:
e M/ (kBT) (2.5)

(the constant is determined by the definition of zero entropy) kp is Boltz-
mann’s constant, and the partition function is:

QNvT = Z e~ 1/ ksT) (2.6)
T

At thermodynamic equilibrium, the function that is minimized in this case
is the Helmholtz free energy

AHelmholtz = —kBTQNvVT (2.7)

(The corresponding representation for a quantum system of Q(N,V, E) de-
generate eigenstates is S = kpIn(Q2(N,V, E)).) For a separable Hamiltio-
nian (see next section) H(q,p) = K(p) + U(q) the partition function Qnyr

is rewritten as:
Iy = / e~U@/(KsT) g, (2.8)

There are other ensembles, depending on the constant macroscopic quan-
tities: the micro-Canonical ensemble Q) nv g, the isothermal-isobaric Q npr,
the grand-Canonical Qv (p is the chemical potential). In principle, all
of them produce average properties which are consistent with one another,
in the thermodynamic limit. Our MD simulations are under the NVT" and
NPT ensembles.

2.3 Classical Mechanics

We define the microscopic state of the system by specifying the generalized
positions and momenta of the NV particles:

q= ((J17Q27---;QN)
p =(p1,p2;---,PN) (2.9)

In this classical approximation of the system, the particles interact with
potential U(q) and the energy of the system is the Hamiltonian H(q, p)
which in turn is written as the sum of the kinetic and potential energy
functions:

H(p,q) = K(p) +U(a) (2.10)

where

N 2
Kp) =Y X (2.11)
i=1

2mi
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The potential energy U defines all interparticle interactions and it is possible
to construct from H, an equation of motion which governs the entire time-
evolution of the system and all its mechanical properties. The Hamiltonian
‘H defines the equilibrium distribution function for p and q.

In principle, the potential energy of the system can be written as:

Ul@=> > uaag)+> > Y ugga)+...  (212)

i g>i i > k>j>i

where u(?) is the potential between pairs of atoms, u(®) between triplets and
so on. We are interested in the relative distance between particles, so we
can write u(?(q;, q;) = u®(|r;;|) where ri; = ¢; — ;.

2.3.1 Equations of motion

The energy of the system is conserved in time. Let us denote the generalized
coordinates q and ¢, the latter being the time derivatives of the positions.
The classical equations of motion can be formulated in many ways [34].
Here, we use the Lagrangian formulation (equivalent to the Hamiltonian),
in which eq’s. of motion are derived though the Euler-Lagrange equations:

d oL oL
ﬁ(?q)_?q =0
ﬁ(q7(1) =K-U

The generalized momentum is defined as

_oc

= — 2.13
so the Hamiltonian form of the equations of motion is:
¢i = g;f.
(2.14)
pi = —23;
i
for Cartesian coordinates, eq. (2.14) becomes
r; = %
(2.16)

pi = -V, U=Ff

fi is the force acting on atom 7. Solving the equations of motion for the sys-
tem involves the integration of first-order differential equations. Assuming



V and K do not depend explicitly on time (% = 0), the form of eq. (2.16)
guarantees that the total derivative H = % is zero i.e. the Hamiltonian is
a constant of motion. The equations of motion are also reversible in time.
We call trajectory, the evolution of the positions of a particle, in time:

{d®,p®}, telabCcz (2.17)

2.4 Molecular Dynamics

Molecular Dynamics (MD) simulation consists of the numerical, step-by-
step, solution of the classical equations of motion. There are many algo-
rithms (numerical schemes) for solving systems of ODE’s of the form (2.16).
The key requirements of such an algorithm in our case should have the
properties:

i) It must not involve a large number of force evaluations per time step
dt. High order methods are more accurate but the computational cost is
vast, in comparison to the gains of accuracy. Every MD code spends more
than 80% of the computation time in force evaluation.

ii) It should satisfy the energy conservation law (or at least satisfy the
energy on the average, instead of on every time-step. See BBK algorithm).

iii) It should permit the use of large time-step dt, in order to achieve
longer time simulation. stability

iv) It should be efficient in terms of number of calculations and require
as little memory as possible. This is because computations and storage,
scale with the number of particles.

Every numerical scheme is associated with numerical errors (discretiza-
tion errors, round-off errors in computations and storage of variables etc)
which means that after long times, we cannot actually have an exact solution.
This does not pose a serious problem as, we demand energy conservation
(with minor fluctuations) and we are interested in average quantities. Ther-
modynamic properties of the system are extracted through time averages
of observable quantities and we don’t need exact trajectories, just states
sampled from the correct ensemble. Essentially we require exact solutions
of equations for times comparable with the correlation times of interest, so
that we may accurately calculate time correlation functions (little long-term
energy drift).

2.4.1 Verlet algorithm

The most widely used method for integrating equations of motion is the
Velocity Verlet algorithm and is obtained by using Taylor expansions at
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time instants t — dt and t + dt. The trajectory at time-step t+dt = n+1 is:
d
pt2 =pr — 4VU(q")
"t = ¢+ dtM 1 pntl/2 (2.18)

pn-‘rl — pn+1/2 o %VU(qn-i-l)

where the equations are in vector form and M is the matrix containing the
masses. Velocity Verlet is a second order numerical scheme. Note, that we
are not using higher order high-accuracy numerical schemes as they require
more computations (and memory). In addition, such schemes are usually
more accurate at short times, exhibiting larger errors fro very long times. On
the other hand, Velocity Verlet (an Verlet methods in general) are reversible
and conserve energy at long atomistic simulations, without energy drift.

2.4.2 Thermostats

The Verlet algorithm samples trajectories from the NV E ensemble. In prac-
tice we are interested in performing MD simulations under constant pressure
P or temperature T or both, in order to produce results (average properties)
comparable to experimental observables. In this case, we reformulate the
Lagrangian (?7?) to include constraints for these quantities. The most widely
used thermostat to constraint 1" is the Nosé-Hoover thermostat, which con-
sists of additional degrees of freedom in the set of equations of motion (2.14).
We add a potential term of the form

Vs = gKpT In(s) (2.19)

where ¢ = 3Natoms — Nbonds — 3, § is the new degree of freedom. In con-
junction with section 2.2, we are sampling from the NVT ensemble. A
good thermostat should be able to rapidly enforce the correct probability
distribution function of the ensemble.

2.4.3 BBK algorithm

We mention another description of the system, which involves stochastic
equations of motion. We will explain in the next chapters the need of this
alternative description of the evolution of the system in time.

In general, we insert random and drift forces in the deterministic equa-
tions to account for collisions of “ghost” particles of the heat bath. These
forces constitute the thermostat and model an infinite reservoir of energy.
This model, Langevin dynamics, conserves energy on the average (not on
every timestep as eq. (2.16)) and the corresponding stochastic equations of
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motion read:
dgy = M~ pdt
(2.20)
dpe = =V U (gr)dt — (q:) M~ pedy + o (q)dWs

where W} is a standard Brownian motion bringing energy to the systm, v(g;)
is the coupling coefficient (it is constant in our case) and —v(q;)M ~!p,dt is
the viscous friction term [35].

T_ 2y
p
is the fluctuation-dissipation relation, which ensures that the Canonical measure

at the correct temperature is sampled. The time discretization of the system
(3.23) is given by:

oo (2.21)

pn+1/2 =t — %VU(Q”) _ %,YM—Ipn + %O’Gn

qn+1/2 =q¢"+ dtM—lpn"rl/Q (222)

pn+1 — pn _ %VU(anrl) _ %,YMflanrl 4 /%O.Gn+1/2

where Verlet is used for the Hamiltionian (deterministic part) and midpoint
Euler for the thermostat part. G are Gaussian random vectors ~ N (0, 1).

2.4.4 Periodic boundary conditions

MD simulations aim to provide information about the properties of a macro-
scopic system, whereas we employ systems of a few hundred up to thousands
of particles. This number is far away from the thermodynamic limit. In or-
der to simulate bulk phases it is essential to choose boundary conditions that
mimic the presence of an infinite bulk surrounding the N-particle system,
otherwise we encounter finite volume effects. Periodic boundary conditions
(PBC) is the solution and the volume containing the N particles is replicated
along 3-dimensions, having additional 26 cloned volumes. Every time a par-
ticle tries to contact the simulation volume walls, it enters from the wall
opposite, instead of bouncing back. Moreover, this periodic image of the
system affects interparticle non-bonded interactions. Schematically, figure
(2.1) shows the periodic boundary conditions in 2 dimensions. Interactions
are depicted by arrows towards cloned particles using PBC, and this setup
is termed as “minimum image convention”.

2.4.5 Interaction potential

As mentioned in section 2.3, the force-field (or the interaction potential) con-
tains the information regarding interaction between atoms and/or molecules.
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Figure 2.1: Minimum image convention. The dashed box includes interac-
tions between the nearest clones.

The most widely used interaction potential for atoms belonging in dif-
ferent molecules (intermolecular interaction) is the Lennard-Jones potential
(figure (2.2)) given by

12 6
4 |:<ULJ> N (O—LJ> :| ’ .f 'J
urs(ry) = o) Lo BT ST (03)

0, otherwise,

where 7., is the interaction cutoff radius we artificially set in order to reduce
the computational cost while the total pairwise non-bonded potential energy
of the system is

Unon—bond(r) = Z ULJ(T'L']')

1<ij<N
1<J

2.4.6 Bonds, Angles

Bonds and angles between atoms inside molecules are treated as (i) rigid
or (ii) modeled with harmonic potentials. In case (i), bonds enter the La-
grangian in the form of constraints:

L(r,#) =) Apog(r) (2.24)
k

where k is the set of constraints, Ay are the corresponding Lagrange multi-
pliers and the constraints are of the form o = T?j — dfj. The constraining
of rigid bonds requires extra degrees of freedom in the equations of motion
which are handled by algorithms such as the SHAKE or the RATTLE [36]
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Figure 2.2: LJ potential for e = 1,0 =1

When harmonic potentials are used, the bond and angle potentials are

of the form:
1 2 1 2
Ubond = iKbond(rij —70)%, Uangle = §K€(9ijk — ) (2.25)

between particles ¢ and j and angle between particles 1, j, k respectively.
Then, the bonded potential energies are defined as:

Ubond = 3 _ tbona(r'™)

k
Uangle = Z uangle(e(k)) (226)
k

k being the id in the set of bonds and angles respectively. See Appendix C
in chapter 3 for a more rigorous definition for the C Hy model. The total
potential energy of the system becomes:

U= Unon—bond + Ubond + Uangle (227)

In the case of electrostatic charges, we add appropriate Coulomb potentials.
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Chapter 3
Sensitivity Analysis

This chapter is primarily based on the published paper [29]. In the end, we
have added the supplementary material of this publication.

In this work we present a parametric sensitivity analysis (SA) methodol-
ogy for continuous time and continuous space Markov processes represented
by stochastic differential equations. Particularly, we focus on stochastic
molecular dynamics as described by the Langevin equation. The utilized
SA method is based on the computation of the information-theoretic (and
thermodynamic) quantity of relative entropy rate (RER) and the associated
Fisher information matrix (FIM) between path distributions and it is an
extension of the work proposed by Y. Pantazis and M. A. Katsoulakis [J.
Chem. Phys. 138, 054115 (2013)].

A major advantage of the pathwise SA method is that both RER and
pathwise FIM depend only on averages of the force field therefore they are
tractable and computable as ergodic averages from a single run of the molec-
ular dynamics simulation both in equilibrium and in non-equilibrium steady
state regimes. We validate the performance of the extended SA method
to two different molecular stochastic systems, a standard Lennard-Jones
fluid and an all-atom methane liquid and compare the obtained parameter
sensitivities with parameter sensitivities on three popular and well-studied
observable functions, namely, the radial distribution function, the mean
squared displacement and the pressure. Results show that the RER-based
sensitivities are highly correlated with the observable-based sensitivities.

3.1 Introduction

Molecular simulation is the bridge between theoretically developed models
and experimental approaches for the study of molecular systems in the atom-
istic level. [32, 33] Nowadays, molecular simulation methodologies are used
extensively to predict structure-properties relations of complex systems. The
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importance of numerical simulations in material sciences, biology and chem-
istry has been recently acknowledged by the 2013 Nobel price in Chemistry
“for the development of multiscale models in complex chemical systems”.
The computational modeling of realistic complex molecular systems at the
molecular level requires long molecular simulations for an enormous distri-
bution of length and time scales. [14, 37, 38, 18] The properties of the
model systems depend on a large number of parameters, which are usually
obtained utilizing optimization techniques matching specific data taken ei-
ther from more detailed (e.g. ab-initio) simulations or from experiments.
Furthermore, stochastic modeling is especially important for describing the
inherent randomness of molecular dynamics in various scales.

All the above complexities imply the need of rigorous mathematical tools
for the analysis of both deterministic and stochastic molecular systems. Un-
certainty quantification (UQ) in computational chemistry is of paramount
importance, especially in multiscale modeling, where properties evaluated at
the atomic-molecular scale are transferred to the mesoscopic scale. [38, 39]
Sources of epistemic uncertainty can stem from (i) numerical uncertainty,
(ii) model uncertainty and (iii) parametric uncertainty. Numerical uncer-
tainties are related to the finite time of the dynamic simulation, the number
of particles, as well as values of the parameters related to the numerical
method used (e.g. time-step), to name some. Model uncertainty comes
from the specific force field representation and its calibration to experimen-
tal properties, and the usage of specific boundary conditions. Parametric
uncertainties stem from errors in parameter values due to noisy or insuffi-
cient measurements. Of all the above, the uncertainty associated with the
parameters of the potential is the least understood. [39, 40] Furthermore,
intrinsic stochasticity of the system is added on top of epistemic uncertainty.
This type of uncertainty is also called aleatoric.

There exists a diverse range of UQ approaches proposed in the litera-
ture. Variance-based methods such as analysis of variance (ANOVA), [41]
Bayesian statistical analysis [42, 40] (applications to deal with large uncer-
tainties) and polynomial chaos expansions [43] have been widely used. The
first two methods are based on multiple and usually expensive Monte Carlo
runs resulting in huge computational cost whereas the latter becomes in-
tractable when the parameter space is large. An in depth study of this last
method in MD has recently been presented by Rizzi et al. [43].

Sensitivity analysis (SA) is a powerful tool that gives insight of how
small variations (uncertainty) in system parameters (input), can affect the
output of the system substantially. Such perturbations occur from compu-
tational errors, uncertainty and errors resulting from experimental parame-
ter estimation [24] (such as parameter fitting through ensemble averages of
macroscopic thermodynamic quantities). Thus, parametric SA can provide
critical insights in uncertainty quantification. KEspecially in the stochastic
setting (e.g., Langevin dynamics in molecular systems), SA is performed
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by analysis of the system’s mean behavior, i.e., several simulations start-
ing from a configuration at the stationary (or steady states) regime. The
stationary regime is crucial for complex molecular systems since it captures
not only static quantities such as the radial distribution function but also
dynamical quantities which includes transitions between metastable states
in complex, high-dimensional energy landscapes and intermittency. [44] De-
pending on the magnitude of the perturbations, SA can be classified into
local (infinitesimal, one-at-a-time parameter perturbation) and global (fi-
nite, multiple parameter perturbation).

Furthermore, the role of SA is not restricted to UQ but it is of piv-
otal significance in several other applications. First, robustness of a system
meaning the stability of the behavior under simultaneous changes in model
parameters or variations of orders of magnitude in insensitive parameters
that insignificantly affect the dynamics can be addressed utilizing paramet-
ric SA approaches. Second, sensitivity analysis on experiment conditions
under which information loss is minimized, establish optimal experimental
design. [25] Furthermore, identifiability analysis employs SA to determine a
priori whether certain parameters can be estimated from experimental data
of a given type. The work in Ref. contains a general framework of SA in
MD (proteins) using the observable helicity while cross-validation with ex-
perimental data is also displayed. Overall, SA plays a fundamental role in
multiscale design and as it has been highlighted by Braatz et al.[45].

Typically in a stochastic setting, the most common local parametric SA
method is based on partial derivatives on ensemble averages of quantities
of interest around a nominal parameter value. [46] Large derivatives indi-
cate strong sensitivity of the observable to the particular parameter while
the opposite holds when the derivative values are small. There has been
an increasing number of methods to compute the partial derivatives espe-
cially in discrete-event systems whose applications range from biochemi-
cal reaction networks to operations research and queuing theory. Finite-
difference approaches based on common random numbers, [46] on common
reaction path [47] which exploits positive correlations among coupled per-
turbed /unperturbed reaction paths as well as coupling methods [48, 49]
have been proposed. There are certain issues associated with these finite-
difference approaches; the estimator of the partial derivative has bias while
the variance of the gradient estimator increases with the dimension of the
parameter space. Instead of using the finite-difference approaches, one can
utilize Girsanov measure transformation to directly compute the infinitesi-
mal sensitivity. [50, 51, 52] In MD simulations where both time and states
are typically continuous, lordanov et al. [53] performed SA in three poten-
tials of different functional forms (and number of parameters) in order to
compare their influence in thermodynamic quantities. Instead of perturbing
the potential parameters they scaled the potentials one-at-a-time (local SA)
aiming to minimize the discrepancy from the experimental values of each
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observable separately.

Another class of sensitivity methods which is not focused on specific ob-
servable functions but on the overall properties of the stochastic process is
based on information theory concepts. Application of information-theoretic
SA methods to analysis of stochastic models uses quantities such as entropy,
relative entropy (or Kullback-Leibler divergence), the corresponding Fisher
information matrix as well as mutual information. Relative entropy (RE)
measures the inefficiency of assuming a perturbed (or “wrong”) distribution
instead of assuming the unperturbed (or “true”) one. RE have been used
for the SA study of climate models [54] where the equilibrium probability
density function (PDF) has been obtained through an entropy maximization
subject to constraints induced by the measurements, while Fisher informa-
tion matrix (FIM) is an indispensable tool for optimal experimental design.
[25] In a typical SA approach based on RE, explicit knowledge of the equi-
librium PDF is assumed. However, in systems with non-equilibrium steady
states (NESS) (i.e., systems in which a steady state is reached but the de-
tailed balance condition is violated), there are no explicit formulas for the
stationary distribution and even when a Gibbs measure is available, it is
usually computationally inefficient to sample from. Such non-equilibrium
systems are common place in molecular systems with multiple mechanisms
such as reaction-diffusion systems or driven molecular systems. [55]

In Ref. [44], the RE between path distributions (i.e., distributions of the
particle trajectories) for discrete time or discrete event systems has been
utilized as a measure of sensitivity. When the system is in stationarity the
relative entropy of the two path distributions decomposes into two parts;
(i) the relative entropy rate (RER) that scales linearly with time and (ii) a
constant term related to the relative entropy of the initial distribution of the
system. For long times, the first term dominates providing major insights
on the sensitivity of the system with respect to parameter perturbations. In
this work, we extend the SA method proposed in Ref. [44] to the case of
stochastic differential equations (i.e., continuous-time and continuous state
space) and particularly the Langevin equation. Furthermore, when pertur-
bations are small, a Taylor expansion on RER is performed revealing the
lower order of this expansion which is the pathwise FIM associated with the
RER. Practically, RER is an observable of the stochastic process which can
be computed numerically as an ergodic average in a straightforward manner
as it only requires local dynamics (in our case the forces). Similarly, FIM
computations are feasible in the same fashion with the advantage of being
more informative since any perturbation direction can be explored. Both
of these observables can be sampled on the fly, from a single MD run since
only the reference process needs to be simulated. Finally, spectral methods
for the calculation of RER were introduced for the over-damped Langevin
case in Ref. [56].

The studied pathwise SA method has major advantages which can be
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listed as follows. First, it is a gradient-free method which does not re-
quire knowledge of the equilibrium PDF. By gradient-free we mean that
the pathwise FIM does not depend on the extent of the perturbation, so
when the computation for different perturbations is necessary (especially
in high-dimensional problems) the extra cost is minimal in comparison to
the straightforward RER calculation. Second, it is rigorously valid for long-
time, stationary dynamics in path-space including metastable dynamics in
a complex landscape. Third, it is suitable for non-equilibrium systems from
statistical mechanics perspective; for example in NESS processes such as
dissipative systems where the structure of the equilibrium PDF is unknown.
Fourth, it is fast since it requires samples only from the unperturbed process
which can be also obtained in a trivially parallel manner.

Overall, major novelties of the current work compared to previous work
[44] are the following: i) Validation through observables of interest to molec-
ular simulation of realistic complex fluids in comparison to the low dimen-
sional systems studied previously. ii) Results are utilized from the con-
tinuous time. In Ref. [[44]], as well as in the appendix A, the current SA
approach (RER and pathwise FIM) based on a discretized version of the nu-
merical scheme is also presented, whereas in the following section we derived
RER for the continuous time SDE. iii) The new approach is independent of
the integration scheme one employs to integrate the equations numerically.

The work presented here is a part of a more general hierarchical simu-
lation scheme that involves multiple simulation level and a broad range of
length and time scales. [57, 58, 59] Here, we apply the above methodology
on stochastic molecular systems as the RER and FIM methods are based
on this setting i.e., non-deterministic with random noise. As test cases we
examine: (a) a benchmark Lennard-Jones (LJ) fluid model, [33, 60] and,
(b) a detailed all-atom methane (CH4) model. [61] The LJ fluid system
is the most widely used in molecular simulations model of a simple fluid,
whereas the second one employs more complexity due to the intramolecular
bond and angle potentials in addition to the LJ intermolecular potential.
Methane has been also extensively studied over the years due to the fact
that it is in abundance in nature and has environmental impacts as well as
it can be used as fuel being the main component of natural gas. The method
can be applied to a general SDE of the form dY (¢) = B(t,w)dt+o(t,w)dB(t)
where B(t) is a (finite) dimensional Brownian motion provided that the dif-
fusion term o(¢,w) remains the same (Assumption II.1). This also holds for
DPD or Brownian dynamics where the equations are almost identical.

The proposed pathwise SA method is validated through proper observ-
able quantities upon perturbation of the potential parameters, which in-
clude structural, dynamical and thermodynamic properties of both LJ and
methane model systems. We stress here that the utilized SA method based
on RER and the pathwise FIM is independent of the observable quantities,
which is not the case for derivative-based SA methods where they suffer from
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smoothness assumptions on the observable functionals. The partial deriva-
tive of an observable is related with the RE through the Pinsker inequality
(see ineq. (3.16)). The Pinsker inequality asserts that small RER (or FIM)
values result in small changes in observable expectation values under per-
turbation; thus RER and FIM can serve as a screening tool for specific
observables. The present work provides a detailed quantitative study con-
cerning the relation between the pathwise SA method (RER / FIM tools)
and specific observables of molecular systems.

The organization of the paper is as follows. The following Section de-
scribes the path-wise sensitivity analysis method for Langevin dynamics in
detail. In Section 3.3, the LJ fluid model, the methane model as well as
various observable functions are presented followed by Section 3.4 where the
validation of the proposed pathwise SA method is demonstrated. Finally,
we conclude the paper in Section 3.5.

3.2 Pathwise Sensitivity Analysis for Langevin Dy-
namics

This Section describes and motivates the info-theoretic approach for sensi-
tivity analysis of stochastic Molecular Dynamics. Particularly, the RER and
the corresponding pathwise FIM are derived for the Langevin equation.

3.2.1 Stochastic equation of motion

Langevin dynamics models a Hamiltonian system which is coupled with a
thermostat. [35] The thermostat serves as a reservoir of energy. In Langevin
dynamics, the motion of particles is governed through a probabilistic frame-
work by a system of stochastic differential equations given by

dp; = FO(q;)dt — yM ' pydt + cdW; , '

where ¢, € R is the position vector of the N particles in d-dimensions,
pr € R is the momentum vector of the particles, M is the (diagonal)
mass matrix, FO(:) : RN — R is the driving (conservative) force which
depends on a parameter vector § € RX (e.g. parameters of the specific
atomistic force field), v is the friction matrix, o is the diffusion matrix and
Wy is a dN-dimensional Brownian motion. In the equilibrium regime, the
forces are of gradient form, i.e., F%(q) = —VV?(q) where V9(.) is the
potential energy. Moreover, the fluctuation-dissipation theorem asserts that
friction and diffusion terms are related with the inverse temperature g € R
of the system by
ool =287 1y,
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Under gradient-type forces and the fluctuation dissipation theorem, the
Langevin system has a Gibbs equilibrium (or invariant) distribution, u?(-,-),
given by

i (dg. dp) = e V@M dgdp (3:2)
In non-equilibrium steady states, however, the stationary distribution, pf(, ),
is generally not known restricting the sensitivity analysis methods that rely
on the explicit knowledge of the steady states. Though, as we show below,
the proposed pathwise sensitivity methodology is not limited to equilibrium
systems and it works equally well in the non-equilibrium steady states regime
since it only necessitates the explicit knowledge of the driving forces (i.e.,
the local dynamics).

3.2.2 Relative Entropy Rate and Fisher Information Matrix
for Langevin Processes

Let the path space X’ be the set of all trajectories { (g, pt)}tho generated by
the Langevin equation in the time interval [0, T]. Let Q?QT] denote the path
space distribution, i.e., the probability to see a particular element of path
space, X, for a specific set of parameters 6. Consider also a perturbation
vector, ¢g € RX, and denote by Q?J;(]’ the path space distribution of the
perturbed process, (g, p¢). The proposed sensitivity analysis approach is
based on the quantification of the difference between the two path space
probability distributions by computing the relative entropy (RE) between

them. Thus, the pathwise RE of the unperturbed distribution, Q‘[go ) with

respect to the perturbed distribution, Q?&“ﬁ’, assuming that they are abso-

lutely continuous with respect to each other is defined as

dQf
R(Q| @) = [ 1og =02 (3.3
dQ [0,7]
dQf, 7y . . o .
where —2-- is the Radon-Nikodym derivative and it is well-defined due to

[0,77]

the absolute continuity assumption. A key property of RE is that R(Q[HO 7] |Q?O+;‘]))

0 with equality if and only if Q[QO’T Q?OJF;O which allows us to view rel-
ative entropy as a “distance” (more precisely a semi-metric) between two
probability measures capturing the relative importance of parameter vector
changes. [41] Moreover, from an information theory perspective, the rela-

tive entropy measures loss/change of information when Q9+60 is considered

[0,T]
instead of Q 0.7]" [62]
The necessary and sufficient conditions of the two path distributions
(perturbed and unperturbed) to be absolutely continuous are provided next.

Assumption 3.2.1. Assume that
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(a) the diffusion matriz, o, is invertible, and,

(b) EQfo . [exp { fOT lu(qe, pe)|Pdt}] < oo, where the function u(-,-) : RN —
R24N s defined such that for all pairs (g, p) it should hold that

. M=p—M1p
[ 0 o }u(q’p) - [ FO(q) = yM~'p — (F**<(q) —yM~'p) |’

or, equivalently,
ou(q.p) = F’(q) = F'*(q) .

Notice that such a function, u(-,-), exists due to (a). Furthermore, (a)
implies that the noise is non-degenerate for the momenta. In practice (b)
means that the difference in the conservative forces is bounded over the path
[0,T] as F? FP+< are bounded away from arbitrarily small intermolecular
distances. Then, the RE of the path distribution defined in (3.3) is finite and
an explicit formula can be estimated as the following proposition asserts.

Proposition 3.2.1. Let Assumption 3.2.1 holds. Assume also that (qo, po) ~
VP and (qo, po) ~ V<0 where V9(-,-) and 9T (-,-) are two initial distribu-
tions which should be absolutely continuous with respect to each other. Then,

R(Qbm|Q19) = R |p*H0)

'R ' 2dt
+ 5B | [ lutap)]

Proof. Under Assumption 3.2.1, the Girsanov theorem applies providing an
explicit formula of the Radon-Nikodym derivative[63] which is given by

dQf v’
[0, T\  dv
dQ([goJr;]) <{(Qtapt)}t:o> = W(QOvPO)X

T 1 /T
exp —/ U(Qt7pt)Tth—§/ lu(qe, pe)Pdt 3
0 0

Moreover, W; := fg u(gs, ps)dt + Wy is a Brownian motion with respect
to the path distribution Qfo AL meaning that, for any measurable function

(3.4)
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. T -
f(-,+), it holds EQ[QO,T] [fo f(qt,pt)Tth] = 0. Then,

. dv?
R(Q?O,T]‘Q[OOTT[])) = / <log m(%,po)
T 1 T
- / u(qtvpt)Tth - 5/ |u(qt1pt)|2dt> dQ[eoyT]
0 0

dv? r .
:/1og W(Qmpo)dQﬁ),T] —//0 U(ant)TthdQ?o}T]
1 g 2 0
o3 [ ot Paaql
0

1 T
ZR(V0|V9+EO)+§// |u(gs, pe) P dtdQf oy
0
g

We remark that this proposition is a result on the transient regime since
the initial distributions can be anything as fas as they are absolutely con-
tinuous with respect to each other. In the stationary regime, a significant
simplification of the pathwise RE occurs. As the following proposition as-
serts, pathwise RE is decomposed into a linear in time term plus a constant
where the slope of the linear term is the relative entropy rate (RER).

Proposition 3.2.2. Let Assumption 3.2.1 holds. Assume also that (qo, po) ~
1 and (Go, o) ~ pfte where pf(-,-) and pf*eo(.,.) are the stationary dis-
tributions for the unperturbed and the perturbed process, respectively, which
should be absolutely continuous with respect to each other. Then, the path-
wise RE equals to

R(QG 11 QL) = TH(QYIQ") + (| +) (3.5)

where
HQQ" ) =
1 0+ 0/ \WT (. T\—1 00+ 0 (3.6)
SEuo [(F77(q) = F7(q))" (007) " (F77(g) = F7(q))]

1s the Relative Entropy Rate.

Proof. First notice that we drop the 7" subscript from the definition of RER
because RER is time-independent. Then, it is straightforward to show from
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the previous proposition that

R(Qfo.m| Q')
01, 0+eo 1 ’ 2 o
=R(p’|p’T°) + 3 u(gqe, pe)["dtdQpo
0

1 /7T
= R(p?|pfF) + */ /lu(Qtvpt)|2dQ[00,T dt
_ R(M9|Me+€0 ,/ /|u q,p ‘ dq’dp)

T
= R(uO|plt) + SEwllu(@.p)] -
O

RER inherits all the properties of relative entropy (non-negativity, con-
vexity, etc.) and it measures the change of information in path space per
unit time. For large times, the term that involves RER is the significant
term, since it scales linearly with time, while the constant one becomes less
and less important. Moreover, the estimation of RER necessitates only the
knowledge of the driving forces (i.e., the local dynamics) which is avail-
able since the driving forces are computed in any numerical scheme of the
Langevin equation.

Pathwise Fisher information matrix: Generally, RE is locally a quadratic
functional in a neighborhood of parameter vector, §. Under smoothness as-
sumption in the parameter vector, the curvature of the RE around 6, defined
by its Hessian, is the FIM. Analogously, we define the Hessian of the RER
to be the pathwise FIM denoted by Fy (QY). The relation between the RER
and the pathwise FIM is

H(QIQ") = Sef Fu(@)eo + Olleof?) (37)

Under smoothness assumption of the force vector, FY(-), with respect to
the parameter vector, 6, an explicit formula for the pathwise FIM for the
Langevin process is straightforwardly obtained from (3.6) given by

Fu(Q") =E,p[VoF ()" (o0") 'V (q)] , (3-8)

where VyF?(-) is a dN x K matrix containing all the first-order partial
derivatives of the force vector (i.e., the Jacobian matrix). Observe that
the pathwise FIM does not depend on the perturbation vector, ¢y, making
pathwise FIM an attractive “gradient-free” quantity for sensitivity analysis.
Indeed, the RER for any perturbation can be recovered up to third-order
utilizing only the pathwise FIM and (3.7). Moreover, the spectral analysis
of Fy(Q) would allow to identify which parameter directions are most/least
sensitive to perturbations.
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Example 1: Unknown stationary distribution: In many molecular
systems the steady state is not a Gibbs distribution and typically it is not
known explicitly. This is commonplace in non-equilibrium molecular systems
such as models with multiple mechanisms, e.g. reaction-diffusion systems, or
driven molecular systems. [55, 64] Here we consider such a mathematically
simple example, where we assume that the force field consists of two com-
ponents; one conservative term given as minus the gradient of the potential
energy and another term that is not the gradient of a potential function.
Mathematically, the force field is given by

F(q) = -VV%(q) + G(q)

where we further assume for simplicity that only the conservative term de-
pends on the parameter vector, f. Since, the resulting Langevin process is
at the non-equilibrium regime, the steady states do not admit an explicit
form. However, denoting by i’ the unknown stationary distribution of the
Langevin process driven by the above forces, the RER is given by

HQIQ" ) =

1 - . (3.9)
FEw (VY70 (q) = YV ()" (00™) T (VV T (q) = VV(9))] -

Notice that the expression in the expectation does not depend on the non-
conservative forces and it is the same expression as in the equilibrium regime.
However, the dependence on the non-conservative forces is evident through
the (unknown) stationary distribution, fi’.

Example 2: Inverse temperature perturbation: Using the fluctuation-
dissipation relation, we can substitute the friction parameter ~ with the
inverse temperature S and compute the RER and the pathwise FIM for
perturbations. Indeed, substituting in eq. (3.6) the relation v = %BO’O’T, we
are looking for u(-,-) such that

0
[ 0 o } ulg,p) = [ —%ﬂaaTM_lp—F %(ﬂ—l—eg)aoTM‘lp ’

where €g is the perturbation of inverse temperature. Notice that the forces

were cancelled out in this expression for u because no perturbation is per-
formed in the parameters of the forces. At the stationary regime, RER is
then given by

2

€

B Tar—1_ _Tyr—1
H(QP|QPTes) = S Euslp"M oo M ] (3.10)
where p8(-) is the stationary distribution of the process. It is evident that
RER is a quadratic function of the perturbation of the inverse temperature
and interestingly enough it depends only on the momenta, p. The above
formula is valid for any force field and implies that the sensitivity of the

(inverse) temperature as quantified by the relative entropy between path
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distributions is independent of the underlying system as it defined by the
forces or by the potential function, V?(-).

Furthermore, in the equilibrium regime where the stationary distribution
is given by the Gibbs measure (eq. (3.2)), (3.10) can be further simplified
because of the Gaussian nature of the momenta, p. Indeed, assuming for
simplicity that M = mlI;y and o = ol with m,o € R, (3.10) is rewritten

as
2

M@ = 2N (3.11)
8pm
Consequently, the pathwise FIM in the logarithmic scale (see equation be-
low) is given by

Fr(Q28) = %dN . (3.12)

SA in the logarithmic scale: In many molecular systems, the model
parameters may differ by orders of magnitude, thus, it is more appropri-
ate to perform relative perturbations, i.e., the i-th element of the pertur-
bation vector is 8;ep;. After straightforward algebra, the elements of the
logarithmic-scale Fisher information matrix are given by

( (Q10g9)) = 0:0; (F'H(Q ))i,j , L=l K. (313)
We refer to Ref. [44] for more details.

Statistical estimators: Even though the Langevin equation is degenerate
since the noise applies only to the momenta, the process is hypo-elliptic
and ergodic under mild conditions on the potential energy, V(:). There-
fore, RER and the corresponding pathwise FIM can be computed as ergodic
averages. Note though that in order to obtain samples from the Langevin
process, a numerical scheme should be employed resulting in errors due to
the discretization procedure. There exist several numerical integrators such
as BBK and BAOAB for the Langevin equation. [35, 65] In Appendix 3.6.1,
BBK integrator is briefly reviewed. The inserted bias is of order O(At)
where At is the time-step as it has been shown for Langevin equation under
compactness condition [66, 67, 68] (e.g., under bounded domain). Then, the
statistical estimator for the RER is given by

€ 1 - € i T
HQIQT ) == > (F™*(q") = F(¢")
=1

(00™)H(FH(qW) = FO(q"))

(3.14)

where n is the number of samples and, similarly, the statistical estimator
for the pathwise FIM is given by

= % > VoF (¢ (00™) T Ve (gP) . (3.15)

Sensitivity Bound: Relative entropy provides a mathematically elegant
and computationally tractable methodology for the parameter sensitivity
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analysis of Langevin systems. Such an approach focuses on the sensitivity of
the entire probability distribution, either at equilibrium or at the path-space
level, i.e., for the entire stationary time-series quantifying among others the
transferability skills of the molecular models. However, in many situations
in molecular simulations, the interest is focused on observables such as radial
distribution function, pressure, mean square displacement, etc. Therefore, it
is desirable to attempt to connect the parameter sensitivities of observables
to the relative entropy methods proposed here. Indeed, relative entropy
can provide an upper bound for a large family of observable functions, g,
through the Pinsker (or Csiszar-Kullback-Pinsker) inequality, [62]

[E oo la] —Eqr, . (o]l < lglloo/2R(Qfp Q1) (3.16)
where || - ||oo denotes the supremum (here, maximum) of g. In the con-

text of sensitivity analysis, inequality (3.16) states that if the relative en-
tropy is small, i.e., insensitive in a particular parameter direction, then, any
bounded observable g is also expected to be insensitive towards the same
direction. In this sense, ineq. (3.16) can be viewed as a screening tool
for parametric “insensitivity analysis” of observables. Sharper sensitivity
bounds than inequality (3.16) were also developed recently. [69] Specifi-
cally, the authors showed that for path observables g we have ]E 9+60 [g] —
T]

@911 < \[FVarg | [T6l\/2R(QE 1@ ) + 04 (GJ;?HQ[OT]))

In contrast to (3.16), the latter inequality provides bounds that involve the
(time rescaled) variance of observables. We refer to Ref. [69] for other re-
lated bounds. Note that the inverse is not necessarily true.[69] If the relative
entropy is large for a specific parameter direction, then an observable g may,
or may not, exhibit sensitivity with respect to the same parameter direction.

3.3 Models and Observables

This section describes the two molecular models discussed here and several
observable functions on which the proposed sensitivity analysis method is
validated. A prototypical Lennard-Jones fluid model with two force field pa-
rameters and a methane model with ten parameters are presented. Observ-
ables such as the radial distribution function, the mean square displacement
and the pressure spanning from a wide range of model properties are also
provided. All simulations are performed under constant number of atoms,
volume and temperature (NVT ensemble).

3.3.1 LJ fluid model

In order to investigate the sensitivity analysis for a realistic system we ex-
amine the LJ fluid model. In this model, the atoms are identical, interacting
with the Lennard Jones potential with reduced non-dimensional parameters
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ey = 1,007 = 1. One of the advantages of the LJ fluid is that there exists
a phase diagram of the reduced density p* versus the reduced temperature
T*. [60] The popularity of this model relies on the generality of systems of
molecular liquids that can be described as well as computational efficiency.
We restrict the force field interactions in the vicinity of cutoff radius 7.
Thus, the (truncated) LJ pair potential is given by

12
()
VLJ(TZ'j) = LJ Tij
0, otherwise,

6
o .
( Ti;) } , i iy <Tew

(3.17)

while the total potential energy of the system is

Vi) = > Vis(ry) ,
1<ij<N
1<)

with

rij = g — q;| = \/(Qf — g+ (qf —a))? +(¢f — )?

being the Euclidean distance between the atoms.

Sensitivity analysis is performed on the LJ potential parameters €7y and
ory and as we show later (see section 3.4), the most sensitive parameter is
the latter. We consider a system of NV = 2048 atoms in a cubic simulation
box of side length L = 14.30,; with periodic boundary conditions (PBC).
The reduced temperature of the run is 7% = 0.857 which means that the
system is in liquid phase (number density p* = 0.7). For the numerical
scheme, the time-step is At = 1073 while the length of the run is 10° time-
steps. An equilibration period of 10% steps is sufficient for the fcc lattice to
melt and standard reduced units are used throughout the simulations.

3.3.2 (CH,; model

Methane is a more complicated molecule combined of two different types of
atoms; carbon (C) and hydrogen (H). Active research is targeted on C'Hy
because of its environmental impact and energy utilization. [70] Our sen-
sitivity study is expanded and validated on this more complex molecular
model which consists of different intermolecular potentials between the pairs
of atoms (bonded and non-bonded) as well as additional parameters imposed
by the geometry of the molecule (bonds and angles). We define V(q) the
total potential and N the total number of atoms (both C’s and H’s).

V(Q) = Vbond(‘]) + Vangle(Q) + VLJ(Q) . (318)

where Viond(q), Vangie(q) are quadratic intramolecular potential functions
of the bonds and angles respectively. V7 j(q) is the non-bonded potential as
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{y C/y

Figure 3.1: Visualization of the C'Hy interactions. The site to site non-
bonded LJ interactions (intermolecular) are marked in red whereas the in-
tramolecular potential interactions are marked in green.

defined in the previous subsection. For more details concerning the model
see Appendix C.

The parameter vector, 6, consists of six LJ parameters (three different
LJ potentials depending on the atom type, see also Figure 3.1), two bond
parameters and two angle parameters. The parameters values of CHy are
summarized in Table 5.1 whereas the values of the simulation parameters
are presented in Table 3.2.

ens[B | oy 1 | reur

c-cC 0.0951 3.473 15.0
C—-H 0.0380 3.159 15.0
H-H 0.0152 2.846 15.0
Ky (Keaty | 1o 14) | K ([ Eealy) | G raq)
700 1.1 100 1.909

Table 3.1: Non-bonded LJ coefficients as well as bond and angle coefficients
for methane. [61]

N(molecules) | T [K] | L [A] p[%l;s] ~
512 100 32.9 0.0143 | 0.5

Table 3.2: Simulation parameters for C Hy

3.3.3 Observables

To validate the proposed pathwise SA approach we have calculated various
observables that are related to thermodynamical, structural and dynamical
properties of the molecular stochastic models. These quantities are experi-
mentally tractable and are related to the microscopic as well as the macro-
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scopic level. In more detail, here, we focus on radial distribution function
(RDF), mean square displacement (MSD) and pressure. Other studies [53]
in the literature computed observables such as the Helmholtz free energy,
density, enthalpy to name some. Despite the fact that the RDF as well
as the pressure are equilibrium quantities, MSD is related to the dynamics
(time-series averaging) making the proposed pathwise method suitable for
such long-time quantities. Note also, that there are no closed analytic ex-
pressions for all the above observables with respect to the force field (model)
parameters.

Radial distribution function

The structure of liquids is characterized by the pair radial distribution func-
tion, g(r), (¢ (r) to be more precise) and it is the most important observ-
able of molecular simulations due to the fact that the ensemble average of
any pair function may be expressed by it. [32, 71] Furthermore, g(r) can
be calculated experimentally by X-ray diffraction. [71] The RDF is the pair
distribution function that indicates the normalized distribution of a pair of
identical atoms (or molecules) at a given distance. For long intermolecular
distance r in liquids, g(r) fluctuates around unity. This static observable is
based on the equilibrium structure of the system and it is constructed by
histogram averages. For N identical atoms let the two-atom distribution
function be

1
P](vz)(QL(]Q) = /eﬂv(q)dq;g .oodgn (3.19)

(N —2)!
where ¢1, g2 are the positions of the first and second atoms kept fixed, irre-
spective of the configuration of the rest of the particles. For a (homogeneous)
liquid, it holds that

_N
~ Vol

where p is the number density while Vol is the volume of the simulation
box. If the atoms were independent of each other, P would equal p? 5o
in practice g(r) corrects for the spatial (density) correlation between atoms.
For the CHy model, we consider the molecular g(r) which is based on the
center of mass of each individual molecules.

PP = p2g ) (r,

), P (3.20)

Mean square displacement

The mean square displacement associates the diffusion coefficient, D, with
the atom (or center of mass for molecules) coordinates and is a measure of
the spatial extent of random motion of the Langevin dynamics. It is defined
as

MSD = ((Qt - Qt0)2> = EQ[to,t] [(Qt - Qt0)2] (321)
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where ¢, g, are vectors of particle positions at time ¢ and reference time
instant ¢y, while the brackets, (-, ), denote ensemble averaging over all con-
figurations of all the atoms (or molecules). This quantity provides us with
information about the dynamical properties of the system. The MSD and
the diffusion coefficient, D, are related by Einstein’s equation

_ 2
op = L i 2% — )%

= 5 hm 5 (3.22)

Where d is the dimension of the system (here d = 3).

Pressure

Temperature and pressure are macroscopic thermodynamic parameters de-
fined in an experimental setup but they can also be defined microscopically.
Pressure is given by the expression [32]

p o vir

p=t
B+Vol’

where the first term is the kinetic energy contribution while vir is the atomic
(or molecular) virial given by

Ui’l“zé Z Zﬂj’rij .

1<i<N j>i

Note that Fj; is the total force (both non-bonded and bonded in the C'Hy
case) between atoms (or molecules) i and j.

3.4 Results

Every model at hand has a domain of applicability; i.e., the forcefield repre-
sentation allows to calculate (usually thermodynamic) properties of interest
in accordance to experimental values within a margin of error. This means
that a force field might represent well one property, such as density, but may
not be valid for others, or might represent all of them less accurately. In
the following we perform simulations where the RER and FIM for each per-
turbed variable are computed. Discussion on the results as well as validation
with respect to the observable quantities defined in section 3.3.3 supports
our results.

3.4.1 LJ fluid

RER and FIM calculations for the LJ fluid are summarized in Figure 3.2.
We compare the RER value using the continuous time statistical estima-
tors, Eqgs. 3.14, 3.15. The middle bar corresponds to the FIM-based RER
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whereas the left and right bars are the values of estimator 3.14 for a neg-
ative and positive perturbation by ey = 5% respectively. All the plots are
normalized upon division with the number of particles. As the figure sug-
gests oy is the most sensitive parameter. Systems size effects have been
thoroughly examined by performing test simulations of bigger systems under
the same parameters, which produce similar results to those presented here.
It has been shown for a similar model that uncertainty in thermodynamic
and transport properties based on the potential parameters is larger than
statistical simulation uncertainty. [42]

The corresponding results for the discrete time case using the BBK in-
tegrator are shown in the Appendix. There’s minor discrepancy of order
O(At) as previously mentioned in section 3.2 due to the discretization er-
ror bias. We note here that the continuous time computations are faster
since the RER and FIM formulas are less complex.

RER and FIM for all the parameters (logscale)

10 =ER T T
WER )
-FIM—based
DRER (+so)
10° 1 ]
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Figure 3.2: RER and FIM of continuous time estimators (3.14), (3.15).
Comparing with the discrete time case (supplementary material), the values
are almost identical. oy ; is the most sensitive parameter.

Validation on the stronger sensitivity on o7y compared to €y, s, is demon-
strated by the RDF (g(r)) plots shown in Figure 3.3. Note that the gradient
of the potential, i.e. the interatomic force, depends linearly with respect to
€ry7. An increase in this parameter leads to a deeper potential well and
stronger attraction between the atoms at the same distance. Thus, as ex-
pected, positive perturbation in €7y leads to an increase of the first peak in
the RDF graph. In addition, only the first peak of the g(r) is affected, the
rest of the curve remains the same. Positive (negative) perturbations on the
orj parameter shift the whole RDF graph due to the fact that the atoms
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Figure 3.3: Effect of perturbation of €y ; parameter by +5% (upper panel)
and o7y parameter by £5% (lower panel) on RDF. The first peak is shifted
vertically for fluctuations around er; whereas it is shifted to the right or
left when the fluctuations concern the o ; parameter. It is clear that oy
(lower pannel) is more sensitive as the plots differ substantially, which is in
agreement with the RE method.

sense greater (weaker) repulsion forces. Hence, the distribution maximum
is transferred to a longer (shorter) distance. We also notice that the peak
of the curve has increased at the new maximum which can be explained
by the finite volume of the same simulation box (NVT ensemble) of the
unperturbed system.

In order to get a more detailed insight on the RDFs shown in Figure
3.3 we have also computed the Ly norm, shown in Table 3.3. The Ly norm
is suitable for a comparison of the unperturbed versus the perturbed plots
g% (r) and g+ (r) respectively. As the RER/FIM computations have shown
that there is a relative entropy difference of about 2 orders of magnitude with
respect to the two potential parameters (Figure 3.2), we now observe a con-
sistent difference, of about 5 times in Lo, for the RDF observable. Table 3.3
and Figure 3.3 suggest that the positively and negatively perturbed RDF
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plots exhibit a more symmetric behavior on the e;; parameter than the
orj. Moreover —5%0c,; changes the packing of the LJ fluid completely;
all the density distribution peaks are moved to a shorter distance. This
result is consistent with Pinsker’s inequality ( refPinsker) as the more sen-
sitive direction allows for greater differences in the expected values of the
observables.

Opposite perturbation directions yield different RER values whereas this
is not the case for the FIM based RER which is a second-order (quadratic)
approximation. In one of the realizations in our example, RER for +(—)5%0o.s
is 360.7 (101.1) and FIM is 196.6 meaning that H(Q?|Q%*) is not symmet-
ric FIM and the negative direction being more sensitive.

There is no analytic formula that relates the MSD to the potential pa-
rameters but we expect that a larger deviation will result upon perturbation
of a more sensitive parameter. As we can see in Figure 3.4, the line for the
insensitive perturbed parameter €y, s slightly differs from the black one, both
for positive and negative ¢g. On the contrary, the line that corresponds to
the increased oy is further away and under the unperturbed one. Based
on the aforementioned discussion on g(r) this is reasonable, as an increase
in the oy values leads to stronger repulsive forces at the same distance,
hence more atom collisions and consequantely to a larger friction coefficient,
i.e. lower mobility of the LJ atoms. A decrease in or; lowers the inter-
atomic repulsive forces and there’s no significant effect at this density be-
cause the random forcing dominates the dynamics. This result is consistent
with Pinsker’s inequality as it provides an upper bound only, meaning that
although this parameter is indicated as more sensitive (bigger RER value on
the r.h.s.) the expected value with respect to this observable slightly changes
upon perturbation. Additional runs (realizations of the Markov chain start-
ing from different configurations) for the same negative o ; direction have
shown that the errorbars are within 2.5%. The linear dependence of the
interatomic forces with respect to €r; accounts for increased (decreased)
interatomic interaction strength when this parameter is changed upwards
(downwards).

perturbation || ||g%(r) — ¢?T<(r)]|L, % RER
+5%er; 0.049 0.8 % 0.79
—5%ers 0.066 -1.17% 0.79
+5%017 0.47 -3.83 % 409
—5%ory 0.59 74 % 115
Tewt = 1.607 0.189 -3.44 % 0.71
Teut = 1017 0.01 0.19% | 1.6 x 10~*

Table 3.3: Ly norm of the difference of the unperturbed minus the perturbed
g(r) and normalized area difference.
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Figure 3.4: MSD for different perturbed directions by +5%. The €1 ; pa-
rameter has a small impact in comparison with the more sensitive o ;. The
MSD plot for the positive perturbation of oy ; stands out as the increased
collisions dominate the random forcing. FErrorbars indicate the standard
deviation for —5%o0; and the deviation propagates with time. The inset
illustrates the diffusion coefficient difference in logscale.

Table 3.4 contains the diffusion coefficient D (from eq. 3.22) related to
Figure 3.4 and depicts a quantitative aspect. The perturbation direction of
+5%0,7 is dominant and clearly results in slowing down the diffusion of the
LJ fluid particles.

As mentioned above for simulation of the LJ fluid standard non-dimensional
(reduced units) are used. The reduced pressure is denoted by P* and Table
3.4 contains the simulation results. Once more we observe a greater influ-
ence in perturbation of the parameter o,y especially for a positive increase.
This is consistent with the fact that the volume remains unchanged and
the repulsive forces increase as discussed earlier, giving a pressure rise of
fourteen times more for a +5% perturbation. We observe the opposite fact
for a reduction in oy ;. The €15 parameter has a more symmetric influence
and this is explained by the linear increase in the forces (derivative of the
potential formula) between the atoms and consequently via the virial coeffi-
cient it is depicted at the pressure. The third column of Table 3.4 compares
the relative pressure change with respect to the unperturbed run and the
pressure standard deviation is on the column that follows. Parameter o ;
alters the pressure by an order of magnitude, a result which is consistent
with the RER/FIM calculations in the previous subsection.
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Discontinuous model parameter: cutoff radius

The r¢yt is a parameter of the model but the potential is not differentiable
with respect to it. Hence we can compute the relative entropy rate but we
cannot have an estimate of the Fisher Information matrix because the com-
putation of FIM involves products of partial derivatives (see also Eq. 3.15).
Figure 3.5 summarizes the quantity R(rew"|reut) per particle, where in
this notation we mean that the RER integral differential is with respect to
the path space measure corresponding to the model’s r.,; as reference. The
potential tends to zero at distance r.,; = 2.50 5, that is a typical value also
used in the literature, so information lost upon trimming the potential tail is
small in comparison to that when 7., is shifted to the left. We expected that
the RER should be higher for a negative perturbation of r.,; as validated in
Figure 3.5 and the asymmetry (exponential form for negative perturbation)
comes from the formula (plot) of the potential; more information regarding
the attractive part is lost rapidly for a —10% reduction step from the refer-
ence Ty = 4ory. Indeed the trick of the r.,; convention has been used in
molecular simulations in order to reduce the computations at the expense
of minimal information loss, so our results using this pseudo-metric indicate
that our choice of r.,; is suitable. Additional runs for an increase in 7.y
suggest a trivial gain of information based on the ’H(QTZZHQTW/) value as
well as the RDF (see next).

The RDF plot changes with a change in 7., as shown in Figure 3.6.
When the potential tail is restricted up to 7., the long-range attractive
part is zero after that distance. This results to weaker long-range attractive
forces (loss of cohesive energy) hence the first peak in the RDF graph is lower
and the mass is distributed to the right. We have included the plot of a 60%
decrease to illustrate the higher dependence on a “premature” truncation
and a plot of 75% increase for comparison. The empirical value of 2.50 5 is
adequate for simulations, but a further reduction to 1.6 o ; results to huge

perturbation || P* % 0STD D[@]

unperturbed || 0.11 - 0.25 3.2x 1074
+5%er, -0.10 | -1.92 0.26 ||| 2.9 x 10~
—5%e¢r; 0.28 1.56 0.23 3.4 %107
+5%071,g 1.71 | 14.34 0.6 1.8 x1074
—5%0; -047 | -5.24 0.12 ||| 3.04 x 1074

Table 3.4: (left)Pressure change with respect to different perturbation di-
rections of the LJ fluid parameters. or; is the most sensitive direction.
(right)Diffusion coefficient of the MSD plots. The errorbars are within
+2.5%.
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Figure 3.5: RER per particle for different r.,; values in logscale. Perturba-
tion of -10% corresponds to the 90% of the reference r.,; = 40 ;. There is
significant loss of information when we restrict the potential tail (reu) to
less than one half, as that value is near the minimum of the potential well
and a fraction of the attractive forces is lost.

loss of information, especially for the attractive part. On the contrary, if we
almost double the reference value of 4015 to 7oy, the gain is minimal and
this can be seen in Figures 3.5 and 3.6.

We have seen here that the influence of this parameter is minimal in
comparison with the potential parameters in Figure 3.2 for this reference
value in terms of RER. RER per parcticle for a —5%er; pertrubation is
similar to a —60% redution in .. The Lo norm of the g(r) difference for
different r,; values (Table 3.3 and Figure 3.6 ) illustrate the same behavior
too. At this point we should stress that the sensitivity of the observables
on et changes if we choose another reference value; however in practice
usually 7., is not one of the parameters tuned during the force field devel-
opment /optimization.

Non-equilibrium regime LJ fluid

Finally, we have also studied a non-reversible LJ fluid. In more detail, we
have checked the effect of an additional non-gradient term in the force in the
y-direction i.e. F%(q) = ~VV%(q) —G(q),G(q) =[0,,0,0,a,0,...,0,,0]T.
a = 1 for the irreversible case and the term G(q) is divergence-free. The
eigenvalues and dominant eigenvectors are summarized in Table 3.5 and
the corresponding RDF plot is given for comparison in Figure 3.7. We
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Figure 3.6: LJ fluid g(r) for different r.,; values. Bigger re, results to
longer range attractive forces binding the atoms closer (higher peak). As
the Lo norm quantifies, the influence of almost double 7., value (4o
is considered as reference), slightly affects the plot and Pinsker inequality
validates this fact. On the other hand, a decrease of this parameter leads
to loss of information and the corresponding g(r) describes a completely
different model. Note that for this plot we increased the system size as the
simulation box dimensions restrict the maximum value of 7.y;.

expected that despite the fact that this process has a different measure
close to the stationary measure of the reversible one, the extra non-gradient
term cancels out in eq. (3.6). Hence our results as expected are similar but
we have demonstrated that the method is general and can be used for a
process equipped with a steady state measure. We aim to the study of more
complex systems in non-equilibrium [64] in future work.

a=0 a=1

eigenvalues | eigenvector || eigenvalues | eigenvector
9.434 x10* 0.062 1.012 x10° 0.0621
4.33 x 10! 0.998 4.48 x10! 0.998
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Table 3.5: eigenvalues and eigenvectors for the non-reversible case
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Figure 3.7: RDF plot for the irreversible case. The norm values are:
[lg?T5%ers (r) — P (r)]| 2=0.058, ||g” 5% (1) — ¢°(r)|| 2=0.4T3

3.4.2 CH,

In the following we discuss calculations of RER-FIM as well as various ob-
servables for the all-atom methane liquid. FIM and RER calculations are
summarized in Figures 3.8 and 3.9. In more detail, Figure 3.8 shows that
the RER values vary orders of magnitude for the various parameter per-
turbations, hence we grouped them in four panels a)-d). In Figure 3.9 the
FIM-based RER. data is plotted in logscale for comparison. We note here
that due to the uneven number of the different pairsof C—C, C—H, H—H
we have divided with 8 and 16 the quantities corresponding to the second
and third type of pairs in order to obtain comparable plots. All RER values
are normalized with the number of corresponding interactions. Furthermore,
bigger systems consisting of 4000 molecules conclude with identical results.
As in the LJ paradigm, we can see a greater sensitivity on the o ; parame-
ters instead of the corresponding e, ; ones. The errorbars indicate that the
variance of the estimators were small and that a positive perturbation in-
creased the value of the RER with respect to the FIM-based RER estimate.
Clearly the most sensitive parameter is the C' — H bond length 7y followed
by the bending angle 6.

The fact that rg and fy are more sensitive is not surprising if we consider
that the type of all harmonic potentials is very steep. K, Ky constants
are of the order O(10? — 1073) as obtained from more detailed (ab initio)
calculations or from fittings of experimental data (see Table 3.2). These con-
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stants are part of the VVy,,4, VVingie which is contained in the estimators.
The asymmetry in the o;; RER values in comparison to the FIM values
(panel b in Fig 3.8) is explained by the third order term contribution in the
expansion of RER. A rigorous calculation in Appendix B shows that this
term includes the Hessian of the gradient of the potential with respect to
the parameters and is non-zero for oy, ;.

Observables

We perform the same observable computations as with the LJ fluid model
in order to validate the predicted sensitivity of the parameters provided by
the RER and pathwise FIM methods. Although we have performed simula-
tions for various values of the parameters, we chose 5% as a suitable value
for better representation of our results. Note that in principe parameter
sensitivities change as we change phase space point; in higher temperatures
or low densities each observable is affected differently and our proposed RE
method incorporates this behavior through the force differences (eq. 3.6).
Here we have performed simulations in the temperature range from 80 to
180 K and qualitatively similar results were observed. A more detailed study
of SA over various temperatures of more complex (macromolecular) systems
will be the subject of a future work.

As in the case of the RDF of the LJ fluid, an increase in the o,y param-
eters shifts the graphs to the right (Figure 3.10) due to the repulsive forces.
All the differences with respect to the Lo norm are summarized in Table 3.6
for clarity.

In addition, from the set of RDF data presented in Figure 3.10, an
increase in Jf}H values results to larger deviations. As we keep the volume
fixed, the contribution of the C' — H interactions in the packing is larger
than that of the C' — C pairs because of the larger number of C' — H pairs.
Following this graph is the one involving afJ_H increase because of the even
smaller numerical value in comparison to the other oy ;’s. At this point the
smaller mass of the hydrogens is the reason although the number of pairs
(hence interactions) is the largest.

The MSD plots indicate the agjq , af f{ as the most sensitive parameters.
An increase in oy results to increased collisions and smaller diffusion co-
efficient (smaller MSD) as can be seen in Figure 3.11. As in the LJ case,
positive o perturbations (for all three types) result to greater repulsive
forces, hence reduced diffusivity. ez, ; variations slightly affect the MSD with
respect to the other parameters and the same holds for Kj and Ky too (we
have omitted the plots for brevity). Under this dynamic observable the in-
tramolecular interactions are less relevant than the intermolecular ones, for
the specific state point (temperature and density) studied here.

Pressure calculations for different perturbation directions are summa-
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Figure 3.8: C'"H4 per molecule RER-FIM comparison with error bars using
the two different estimators for £5% perturbations in all the parameters.
Non-bonded (a and b) and bonded (c and d) potential parameters are shown.
The parameters are grouped according to their order of magnitude. The
most sensitive one is ry followed by 6y and there has been a minor scaling
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according to the number of atom-atom pairs.




Figure 3.9: CH4 FIM-based RER comparison for
logscale.
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Figure 3.10: C'H4 molecular g(r) for +5% perturbations on oz ;. The tail of

the plot varies slightly hence the zoomed region differs more. As in the LJ
fluid case, the oy defines the shift of the curve horizontally.
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perturbation || [lg"(r) — ¢"*°(")l[z, | [19°(r) — 8" ()|
¢ 1.0 x 1072 1.2 x 1072
o¢-¢ 1.1x10°1 5.7x1072
C—H 1.7 x 1072 9.6 x 1073
oC—H 2.8 x101 1.7 x 1071
H—H 1.4 x 1072 1.15 x 1072
oH—H 2.05 x 1071 1.6 x 101
K, 1.1 x 1072 9.7 x 1073
70 1.01 x 107! 1.1x10°?!
Ky 8.7 x 1073 8.2 x 1073
6o 9x 1073 9x 1073

Table 3.6: Ly norm of the difference of the unperturbed minus the perturbed

g(r) for £5% perturbation.
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Figure 3.11: CH4 MSD for 5% perturbations. We have summarized the most
important directions. With respect to this observable, the most sensitive
parameter is 0~ followed by o =H . This is in accordance with the RER
in Figure 3.9. The inset illustrates the diffusion coefficient differences in
logscale.
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perturbation || P+ [atm] % osrp | P/~[atm] W
unperturbed 19.7 - 58.4 - -
) -3.9 -1.2 51.7 33.1 +0.7
o¢-¢ -2.3 -1.1 53.1 87.4 +3.4
C—H -31.3 -2.6 52.2 63.6 +2.2
oC—H 177.2 +8 56.7 44.3 +1.2
ef—H 8.27 -0.6 49.1 23.7 +0.2
oH—H 437 +21.2 | 56.3 195 +10.9
K, 15.3 -0.2 49.6 14.3 -0.3
To 281 +13.3 | 56.5 217 +12
Ky 18.6 -0.05 52.9 14.9 -0.2
6 13.7 -0.3 52.45 13.3 -0.3

Table 3.7: Pressure for +5% perturbation of different directions and the
corresponding standard deviation. The most sensitive parameters rg and

H-H . .
o ;" increase the pressure substantially.

rized in Table 3.7. According to this observable quantity Ufj_H and rg are
the most sensitive parameters, which are also indicated by the RE methods.
As in the case of the LJ fluid, a change in ey ; (in all pair types) affects the
pressure less than a change in oy j. Pressure rises through an increase in
orj due to more atom collisions. Additionally, stronger forces account for a
higher pressure virial. The presented results are in accordance with earlier
work [72] on an LJ model of water, in which sensitivity analysis using partial
derivatives of observables with respect to the parameters were used. That
study also demonstrated that pressure is greatly affected by variations in
ory and classified the bond length, o7 and the bond constant as the most
sensitive ones.

A change in the bending angle 6y does not affect the pressure [73] as
well as the impact of the constants K3, Ky on the pressure is minimal. We
note that the unperturbed system pressure is higher than latm because the
model we chose (forcefield and integrator) does not reproduce the whole C Hy
phase diagram precisely. Such small deviations from the equations of state
and experiments are expected. We refer to the supplementary materials for
more figures and results which were omitted here for brevity.

From the computational efficiency point of view, the main computational
load is another force calculation, for each perturbed parameter, on every
step. This cost is of the order of k£ parallel simulations, where k is the number
of parameters to be perturbed. The FIM requires another k force evaluations
(partial derivative with respect to 6y of the force) per step and one cheap
matrix multiplication with the perturbation vector ¢3. The computational
advantage of the FIM at this point is that it is independent of the values
of €y, meaning that if we wanted to change the nominal parameter values
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0 by a new ¢y, we just have to multiply FIM by that vector. For the C'Hy
system, a trajectory of 20000 timesteps (sample every 40 timesteps) was
sufficient for our RER/FIM calculations whereas the ¢(r) required circa
100000 timesteps (50 ps). Moreover, the RE methodology can be seen as
a screening tool for “insensitivity” analysis meaning that if the system is
insensitive towards a perturbation direction, we do not have to estimate
observable quantities through expensive long runs. Unlike the widely used
finite differences method which requires observable estimations of two (or
even worse, the average of two) perturbed directions, our method requires
only two short observable independent runs.

3.5 Conclusion

In this paper we present a parametric SA approach for complex stochastic
molecular systems. The focus was set particularly to the Langevin equation,
however, it is applicable to any molecular system that can be described by
a system of stochastic differential equations. The presented SA approach is
an extension of the work in Ref. [44] and is based on the relative entropy
per unit time of the path distribution at a reference parameter point with
respect to the path distribution at a perturbed parameter point.

Major advantages of this method are that: i) it is capable of handling
non-equilibrium steady state systems, ii) it is independent of the numerical
scheme, iii) it is computationally tractable through the expansion of the RER
which results in the pathwise FIM. Pathwise FIM provides a fast “gradient-
free” method for parametric SA since it provides an estimate —up to third-
order accuracy— of the RER for different perturbation directions through a
simple matrix multiplication. iv) it is based on the continuous time SDE.

We examined two systems; the well-known prototypical LJ fluid and a
more complex one: methane (CHy). SA on the LJ fluid system was based on
the potential parameters €75, o,y with the latter being the more sensitive to
perturbations whereas C Hy involved 6 intermolecular and 4 intramolecular
potential parameters with the intramolecular parameters being the most
sensitive in terms of RER.

For the validation of our proposed SA approach various observables have
been monitored: static and dynamic observable quantities such as the radial
distribution function, the mean square displacement and the pressure. The-
oretical justification of the SA approach is also provided through the Pinsker
inequality. We also investigated the effect of the potential cutoff radius, 7y,
by numerically computing the RER showing first that RER can be used as
an information criterion for assigning appropriate values to parameters of
the system and second that 5% perturbation of o;,; produce greater impact
than changing re,: from 4075 to 1.607,;.

We highlight physics-driven limitations of the FIM method; i) higher
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order corrections (with respect to the expansion of RE in ¢y) may be needed
depending on the physical system at study (density, temperature, phase
etc). ii) no FIM estimates for discontinuous parameters with respect to the
derivatives are available (see 7¢, in sec. IV.A.1) iii) FIM provides informa-
tion on the sensitivity of a parameter but cannot indicate if a positive or a
negative perturbation is more substantial.

As far as computational efficiency is concerned, the RER estimation
requires only one additional force evaluation per perturbation direction and
it is observable independent unlike other SA methods. In addition, less
steps are required for an accurate estimate than the typical number of steps
needed for the calculation of an observable. Moreover the partial derivatives
of the conservative forces with respect to the parameter vector 6 are needed
for the FIM estimation where the tradeoff is the independence of the nominal
value of the perturbation vector ¢g.

Finally, RE for high-dimensional systems was used as a measure of loss of
information in coarse-graining. [74, 75, 25] Coarse-graining (CG) methods of
stochastic systems allow for constructing optimal parametrized Markovian
coarse-grained dynamics within a parametric family, by minimizing the in-
formation loss (i.e., the relative entropy) on the path space. Application
of RE to the error analysis of coarse-graining of stochastic particle systems
have been pioneered in these papers. [76, 77, 78] Recent ongoing work on ap-
plication of the RE framework for CG in the non-equilibrium regime where
there’s no Gibbs structure can be found in Ref. [79]. We aim to utilize
the current SA method to tackle with more complex hybrid macromolecu-
lar materials or biomolecular systems in and out-of equilibrium conditions.
[80, 59, 58] Another goal is to adapt the RE method to quantify and indicate
the most efficient CG interaction potential of mesoscale simulations. [81]

3.6 Appendix

3.6.1 Pathwise SA at the discrete-time level

In Section 3.2, we perform SA by first deriving RER and the corresponding
pathwise FIM for the continuous-time stochastic Langevin process and then
discretizing the process to get numerical estimates for these quantities.[82]
We can reverse the order of SA and first discretize the Langevin process and
then derive the RER and the pathwise FIM. Here, the latter approach is
presented using the BBK algorithm as a numerical integrator of the Langevin
process which defines a discrete-time Markov chain. A preliminary example
of this approach can be found in Ref. [44]. In the BBK integrator, the
Hamiltonian part of the Langevin equation (3.1) is integrated with the Verlet
propagator whereas the thermostat is an Ornstein-Uhlenbeck process and
the explicit/implicit propagator is used.
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The BBK algorithm [35] reads

zmg=m—vwm — Mgt + o AW;
Git1 = i + AtM " p s (3.23)
Pi+l = DPitpl — VV(qu)— — M p Gt 5 +oAW,

AW;, AW, 1 are iid Gaussian random vectors with zero mean and covari-
2

ance matrix 7IdN while At is the time step of the numerical scheme. Notice
that other choices of numerical integrators can be utilized such as the ones
proposed by Leimkuhler et al. [83, 65] which introduce a relatively weak
perturbative effect on the physical dynamics.

We define the state of the discrete-time system at time-step i as z; =
(qi,pi) € R?N. The process {z;}}£, for the BBK integrator is a Markov
chain with transition probability P?(z;, z;41) where 6 € RE is the vector of
the system’s parameters. Notice that the length of the discrete-time process
is related with the time window of the continuous-time process through
T = MAt. The path space probability density, ng a(+), is defined as

QgM({Z’l}’L - /’L H P ZZv ZH-l (324)

where [i%(-) denotes the stationary distribution of the discrete-time. As in
the continuous-time case, we perturb the parameter vector, 6, by adding
a perturbation vector ¢y € R¥. At the stationary regime, the pathwise
relative entropy of QO .y With respect to Q9+60 admits also a decomposition
into a linear in time term plus a constant. [44] Indeed, it holds that

R(Qh.a1Q0HT) = MH(Q’1Q"F0) + R(i’|"+) (3.25)

where R(fi%|a?+<) is the relative entropy between the stationary distribu-
tions while H(Q%|Q?*<0) is the RER of the discrete-time Markov chain given
by

6
H(Q?|QF0) = Epo l/uw PY(z,2')log Piff(;i)dz’ : (3.26)

The discrete-time RER is related with the continuous-time RER through
[81]

H(QV|QIT0) = dim fH(Qe‘QG—HO) . (3.27)

As expected, discrete-time RER is locally a quadratic functional in a
neighborhood of 6 hence its curvature around 6, defined by the Hessian, is
the pathwise FIM which is given by [44]

Fu(Q%) =

(3.28)

Ee

i P%(2,2")Vylog P%(z,2')Vglog P’(z,2/)"d?

R2dN
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We refer to ([44]) for statistical estimators of the discrete-time RER and the

corresponding pathwise FIM while in Supplementary Materials we provide
detailed formulas for the numerical calculation of (3.26) and (3.28) for the
BBK integrator.

3.6.2 Expansion of the continuous-time RER

We now expand the RER in eq. (3.6) through Taylor series expansion around
the point . We start with expanding the m-th component of the force,
F9+<(g), around

FoFe0(q) = F? (q) + Vo F? (q)eo + ,60 o VFn(@)eo + O(leol®)  (3.29)

where V denotes the 1 x K gradient vector while V? denotes the K x K
Hessian matrix. Then, the RER is written as

H(QG |Q0+60)
= LEl(F"0(q) — F*()) (00") (PP (q) — F*(q))]

5 Z By [(F2:(a) = FAu(@)(00™) ™) (FL7() = Fi(g)

mnl

= Z UU m nEp/’ [nggL(q)€QVQFg (q)eo]
m,n=1

dN
t3 3 (007) DB, [VoFi(a)eock V3R (@)eo] + Olleol*)

m,n=1

The pathwise FIM comes from the second-order term while the third-order
term defines a tensor matrix.

For the LJ non-bonded potential, the leading term of the second-order
term (i.e., the pathwise FIM) in the RER expansion when o7, is perturbed is
of order O (( Tit ) 0) while the leading term of the third-order term of RER is

of order O((”%)g) with (typically) or7 < . The fact that the leading term
of the third-order term has smaller exponent compared to the second-order
term, makes the contribution of the third-order term to the value of RER
significant on average. Therefore, the asymmetry between H(Q%|Q?*+<0) and
H(Q?|Q%<0) observed both in the LJ fluid (Figure 3.2) and the methane
(Figure 3.8) stems exactly from the significance of the third-order term. No-
tice that asymmetries between positive and negative perturbations are not
rare and have been observed in biological reaction models and one method
that is employed for assessing parameter identifiability in non-linear models
is the profile likelihood method. [84]
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3.6.3 Potential energy terms of C'H,

In this section, the details of the total potential V' (¢) = Viona(q)+ Vangie(q) +
V1.7(q) for the methane model are presented. The total bond potential equals
to

%ond(Q) = Z %ond(‘Qj - Qz’) (330)
A

where

A= {q;=C, q;=H q;,q; € same CHy,
4 bonds per CHy}

while the local bond potential is

1
Viond(1a5 — @il) = Veona(rij) = §Kb(7“o —qi)? . (3.31)

The two constants ry and K3 determine the distance and the strength of the
bond between the two atoms, respectively.

The angle defined for each triplet H —C' — H on the same C' H4 molecule
is denoted by 0. Then, the total angular potential is

Vangle(q) = Z Vangle(AQjQiQk) (332)
B
where
B = {¢;=C, 95, 9=H, g, qj,q € same C'Hy,
6 angles per CHy} ,

while the local angular potential is given by

1
Vangle(ZQjQiQk) = Vangle('gijk) = §K9(00 - Gijk)2 . (333)

The two constants 6y and Ky determine the degree and the strength of the
angle, respectively.
Moreover, the non-bonded term of the potential energy, V7 s(q), is given
by
Vig(a) =Y Ves(lg — al) (3.34)
C

where
C= {Qian:H or C, ¢;,q; € different CH,}

while the functional form of the LJ potential, V7, ;(r;), is given by (3.17).
Since the LJ potential is the non-bonded term, the sum in (3.34) is over
all the atoms of the other methanes. It is convenient furthermore to divide
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this sum into three sums, each one corresponding on a different class of
interactions between C' — C,C — H, H — H. Thus, we can rewrite

VLJ Z VLc:Iic(,rZ]) + Z V[{:I]iH T’L] + Z VH C T’L] ) (335)

where

Ci1 = {qZ7QJ: C}
Co = {¢i= C, ¢;=H, ¢;, q; € different CH,}
Cs = {qi,q;= H, ¢;,q; € different CHy} .

Each LJ potential has its own parameter values.
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3.7 Supplementary Material
Details on discrete time case

In this section we illustrate the derivation of the numerical implementation
of our proposed method based on the BBK integrator. We calculate the RE
estimators based on the derived state transition probabilities.

Calculation of transition probabilities

After reordering the equations of the BBK integrator we get (matrix form)
the expressions for the new timestep 7 + 1

2
Qi1 =q; + M AT - ’YMfl%)Pi - MﬁlATtVV(qz') + M~ At/ 2y~ LAW;
(I+yM 1 5p e = (R)AG = V(V(gi) 5 + v 275_1AW1-+%
(3.36)
From the above set of normal distributions we define the transition proba-
bility as a product of two independent normal ones:
P(q;,p; — qi—‘rlvpi-l—l) = P(¢;+119;,p;) P(Pi11la:: i qz’+1) (3.37)

This splitting of P is feasible because the numerical scheme of BBK is non-
degenerate. The corresponding formulas after reordering eq. (3.36) are:

P(q;.1lpi q;) = 1 ‘o { B
1P Bi) = (o) dN ger (A0 -2))12 = TP LT 2413,
B AtM—1 L At?
1ag; = M AT = T2+ M VY (@) e |
P(ps1 )= ! cexp{ o2
DP;i111Pi»4;,9i+1) = ((2W)de€t(At’yﬁ_1Id)1/2 Xp 2At’y
yAtM T M At
I+ =5 —)pi = ;A + VV(ai) 5112
where
z|[ar = 2T Mz, M e RIVXIN 5 c RINV
1 1 1
M1 :diag<—,...,—,...,—)
mi mq my
d-times
hence

av N
(05 (o)

i=1

o1



Detailed Calculation of RER and path-wise FIM for
BBK

The statistical estimator H; (obtained from the Radon-Nikodym derivative)
is utilized (see Ref. [1] in main text)

- 1 Pz, zi11)
0™ = —— Y log -0 3.38
! nAt Z %8 PrFeo(z;, 2i41) (3.38)
1=0 +

The corresponding estimator for FIM derived in the same fashion is:
1 n—1
™= nAt 2 Volog P?(zi, zit1)Volog P?(zi, zip1)" (3.39)
7=
From eq.’s (3.37) and (3.38) the RER is given by:

n—1

o 1 PY(q;,p — i1, Pit1)
Hl Q@ Q9+60 — l v ¢ v 3.40
( ‘ ) nAt ZZ: P0+€O (qul — q7,+17p1+1) ( )

n—1 0
1 P%(g;.1la;, p;
Z [10 (g;4119:: ;)

- nAt S U Pieo(g; |g;, p;)

+ log

Pe(pi+1\qz‘7pz'7qi+1) ]
Po+eo(p;,116;, 05, G4 1)

where

log P’(g; 41|pi, 4;) = log((27r)dN Ayp1yIN Hm
& A A AP 2
- s om0 - S0 - Bhw; + 2o v, @)
]—1

m; 2m; 2m

dN -
logpe(pi—&—l‘pivqi)qzq_l) = _710g((27rAt76 1)

B YAt At 2
C29AL ; {(1 + ij)@i“) At(AqZ) (VJV (gi11))
0
, (Aqy); = (gi1); — (g0)5;, V= 6—%

(Ag;); is the momentum difference of atom j in time. The Fisher informa-
tion matrix (FIM) is k£ x k in dimension, (for the C' H; model studied here
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k = 10, which include the LJ €1, 017, bond and angle coefficients) and the
(I,m)-th element at the i-th timestep is given by the partial derivatives of
(3.37) with respect to the potential coefficients:

(Volog P?(2i, zi11)Volog P%(zi, zix1) D )im = (3.41)
0 0
[%(IOgPG(Qi+1‘Qi>pi)) 2, —(log P (pz+1!qz,pz,qz+1))}

0 0
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RER and FIM calculations for the LJ fluid are summarized in Figure 3.12.
We compare the RER value using the discrete time estimators (3.38), (3.39)
and the middle bar corresponds to the FIM-based RER (eq.(3.5) in paper,
when T" — o0) whereas the left and right bars are the values of estimator
(3.38) for a negative and positive perturbation by ey = 5% respectively. The
perturbation in the figures is in logscale. The errorbars (variance) of the
RER estimator is larger than the one corresponding to FIM, necessitating
more samples for accurate estimation. All the plots are normalized upon
division with the number of particles and simulations of bigger systems
under the same parameters produce the same results. As the figure suggests
o1y is the most sensitive parameter.

We conclude that the discrete time version is in very good agreement,
O(At), with the continuous time version presented in the main text.
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RER and FIM for all the parameters (logscale)
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Figure 3.12: FIM based RER (per particle) for various directions using the
two different estimators (3.38), (3.39). LJ parameters perturbed by +5%.
The plot is in logscale and the most sensitive variable is o7 ; (the errorbars
are indecipherable). The variance of the RER estimator is larger than the
one corresponding to FIM thus more samples are needed.
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Chapter 4

Relative Entropy

This chapter is primarily based on the published paper [30].

Hierarchical coarse graining of atomistic molecular systems at equilib-
rium is an intensive research topic during the last few decades. In this
work we discuss theoretical and numerical aspects of different parametriza-
tion methods (structural-based, force matching and relative entropy) to de-
rive the effective interaction potential between coarse-grained particles. All
methods approximate the many body potential of mean force; resulting,
however, in different optimization problems. We apply and compare these
methods to: (a) a benchmark system of two isolated methane molecules;
(b) methane liquid; (¢) water; and (d) an alkane fluid. Differences between
the effective interactions, derived from the various methods, are found that
depend on the actual system under study. The results further reveal the
relation of the various methods and the sensitivities that may arise in the
implementation of the numerical methods used in each case.

4.1 Introduction

Soft matter fluids involve a very broad range of materials, from polymers,
to colloids up to biomolecular systems. The theoretical and computational
modeling of such systems is a very intense research area due to both ba-
sic scientific aspects and technological applications [33, 14]. Indeed, a direct
quantitative link between chemical structure at the molecular level and mea-
surable macroscopic quantities over a broad range of length and time scales
is still missing. Such a knowledge would be especially important for the
tailored design of materials with the desired properties, over an enormous
range of possible applications in nano-, bio-technology, food science, drug
industry, cosmetics etc.

A common characteristic of all above systems is that they exhibit mul-
tiple characteristic lengths and times, that cannot be described by a single
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simulation technique. Therefore a quantitative study of specific molecu-
lar systems, over a broad range of spatio-temporal scales, require the ap-
plication of hierarchical simulation methodologies that rigorously connect
different levels of description. On the most detailed (classical) level simu-
lation methods (such as molecular dynamics, MD, and Monte Carlo, MC)
using all-atom models allow direct quantitative predictions of the proper-
ties of molecular systems [14, 32, 8]. However, it is desirable to reduce the
required computational cost by describing the system through a smaller,
compared to the full atomistic detail, number of degrees of freedom. This
is the main idea behind the coarse-grained (CG) models, which have been
proven very efficient means in order to increase the length and time scales
accessible by simulations, in continuum as well as in lattice molecular sys-
tems, [33, 3, 4, 5, 6, 7, 8, 9, 10, 85, 86, 3, 19, 87, 88, 23, 89, 20, 15, 90, 91,
92, 93, 76, 94, 95, 96, 97].

Among several different types of CG models here we focus on system-
atic - hierarchical ones, which are developed by lumping groups of atoms
into CG particles (beads or ”superatoms” in the literature), and deriving
the effective CG interaction potentials directly from more detailed (micro-
scopic) simulations. Such models are capable of predicting quantitatively
the properties of specific systems and have been applied with great suc-
cess to a very broad range of molecular systems (see for example refs.
[3, 4, 5, 6, 10, 85, 86, 59, 87, 23, 89, 20, 98, 99, 100, 101, 102] and references
therein). We also restrict our discussion on CG models with a low degree
of coarse-graining, in which a small number of atoms (usually 5-10, up to
1-2 monomers) are lumped together. These models can be used to predict
properties at the monomeric level, while at the same time atomistic detail
can be re-introduced into the CG configurations, providing direct informa-
tion in the all-atom level. Altertnatively, in many cases coarser models, in
which a large number of monomers, or even long molecules are represented
as a single CG bead, are required in order to study more complex systems
[7, 103, 11, 93, 12].

The most important part in all such CG models is to develop rigorous
all-atom to CG methodologies that allow, as accurate as possible, an approx-
imation of the “exact” CG effective interaction. With such approaches the
hierarchical combination of atomistic and CG models could be used in order
to study specific molecular complex systems without adjustable parameters,
and by that become truly predictive.

We should also note here that from a mathematical point of view coarse-
graining is a sub-field of the dimensionality reduction [13, 14, 15], a very ac-
tive research subject in scientific computing, applied statistics and numerical
analysis. Indeed, several statistical methods have been developed for the re-
duction of the degrees of freedom under consideration, in a deterministic or
stochastic model, such as principal component analysis, polynomial chaos
and diffusion maps, [15, 16].
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In this work we examine in detail numerical parameterizing methods to
construct a reduced CG model that approximates the properties of reference
(microscopic) molecular systems, based on statistical mechanics, and which
have been used extensively the last two-three decades in the theoretical
modeling of molecular systems across a very broad range of disciplines, from
physics to chemistry and biology as well as in engineering sciences. Such
methods usually consider the optimization of proposed parametric models
using different minimization principles, that is considering a pre-selected
observable ¢ and then minimizing (average) values over a parameter set ©

i COS 30 b
min Leost (¢ 0)

where L5t is a cost function properly defined on the different observables.
Different methods consider different sets of observables. For example:

(a) In structural, or correlation, based methods the observable is the pair
radial distribution function g(r), related to the two-body potential of mean
force (see section 4.2), for the intermolecular interaction potential, and dis-
tribution functions of bonded degrees of freedom (e.g. bonds, angles, dihe-
drals) for CG systems with intramolecular interaction potential, [90, 92, 4,
5,9, 7].

(b) Force matching (FM) or multi-scale CG (MSCG) methods [21, 3, 19, 22,
88] is a mean least squares problem that considers as observable function
the total force acting on a coarse bead.

(c) The relative entropy (RE) [6, 89, 79] method employs the minimization
of the relative entropy, or Kullback-Leibler divergence, between the micro-
scopic Gibbs measure p and p? representing approximations to the exact
coarse space Gibbs measure. In this case, the microscopic probability dis-
tribution can be thought as the observable.Information inequalities, such as
the Csiszar-Kullback-Pinsker inequality [62] and generalizations [69] suggest
that the models obtained by the RE minimization method apply to many
reasonable observables.

These methods, in principle, are employed to approximate a many body
potential (PMF) describing the equilibrium distribution of CG particles ob-
served in simulations of atomically detailed models. To achieve this, sev-
eral numerical approaches have been used for the different observables. For
example: (a) correlation based methods use the direct Boltzmann inver-
sion [4, 9, 38] or iterative techniques such as iterative Boltzmann inversion,
IBI, [104, 5] and inverse Monte Carlo, IMC, [92, 91]. (b) Force match-
ing approaches solve a typical least squares problem [105, 19], whereas (c)
minimization of the relative entropy is performed through standard Newton-
Raphson approaches and stochastic optimization [106, 20].

Note that besides the above numerical parametrization schemes, more
analytical approaches for the approximation of the CG effective interaction,
based on traditional liquid state theory and on pair correlation functions
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have been also developed [107, 108, 109, 110, 93, 111, 12].

The main goal of this work is to examine different parameterization
methods for obtaining rigorous CG model (i.e. effective CG interaction)
through numerical approximations of the PMF. In more detail, we employ
iterative inverse Boltzmann, force matching and relative entropy approaches
for various molecular systems and numerical algorithms.

First, we discuss the theoretical background of the methods and their
ability to approximate the PMF. We present the FM using the probabilis-
tic language of conditional expectation, reformulating it as a projection
onto spaces of coarse observables. Second, we provide a critical compari-
son/discussion of all above methods, applied on the same molecular systems.
We also examine numerical aspects (e.g. different basis set functions, error
analysis, convergence issues) related to the implementation of the different
techniques for specific test cases. Furthermore, we compare the predictions
of the different CG models by comparing the structural and dynamical be-
havior of the CG molecular systems, compared to the detailed all-atom ones.

The structure of this work is as follows. In the next Section, we introduce
the atomistic molecular system and its coarse graining through the definition
of the CG map, the n-body distribution function and its corresponding n-
body potential of mean force. The different approximation methods for the
CG effective interaction (potential of mean force) are presented in detail in
Section 4.3. The molecular models and details about the atomistic and CG
simulations are given in Section 4.4. Results for different molecular systems
examined here are given in Section 5.5. Finally, we close with Section 4.6
summarizing and discussing the results of this work.

4.2 Theoretical Aspects

4.2.1 Atomistic and Coarse Grained Description

Assume a prototypical problem of N (classical) molecules in a box of volume
V at temperature 7. Let q = (¢1,...,q9n) € R3N describe the position of
the N particles in the atomistic (microscopic) description, with potential
energy U(q). The probability of a state q at temperature T is given by the
Gibbs canonical measure

p(dq) = Z~ exp{—pU(q)}dq, (4.1)

where Z = fst e BU(@dq is the partition function, 8 = k'BLT and kp is

the Boltzmann constant. We denote f(q) the force corresponding to the
potential U(q),

fo RN RW
f](q) = _qu‘U(q)a Jj=1...,N, (42)
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i.e. fj(q) is the force exerted to the j-th particle.
Coarse-graining is considered as the application of a mapping (CG map-

ping)
m: RN R
q+— II(q) € R?M (4.3)

on the microscopic state space, determining the M (< N) CG particles as a
function of the atomic configuration q. We denote by Q = (Q1, ..., Q) any
point in the CG configuration space R3 and use the bar ” notation for
quantities on the CG space. We call atoms the elements of the microscopic
space with positions g; € R3,j =1,...,N and 'CG particles’ the elements
of the coarse space with positions @Q; € R3, i =1,..., M.

The mappings most commonly considered in coarse graining of molec-
ular systems are linear mappings represented by a set of non-negative real
constants {(;;,i =1,...,M, j=1,...,N}, for which

IL(q) =Y Gig €R? i=1,...,M. (4.4)
J

-

A nice discussion about the choice of CG mapping is given in [23, 81]. In this
work we consider CG maps such that: A CG particle is the center of mass
of a group of microscopic particles for which a particle contributes only to
one CG particle, that is, if (;; # 0 for some i =1,...,M and j =1,...,N,
then (y; =0forallk #ik=1,..., M.

4.2.2 The many body Potential of Mean Force and approxi-
mations

Having defined the CG mapping II, (4.3), the probability that the CG sys-

tem has configuration Q, is given by

Q) = / pda, AQ) ={qeR™: Mg =QqQ),  (45)
2(Q)

If we require that it is of the canonical Gibbs form then

i(dQ) = Z ' exp{—pU™"(Q)}dQ,

and the corresponding free energy defines the M —body potential of mean
force (PMF),

UPME(Q) = —; log/ e U@ gq. (4.6)
Q)

We denote the mean force FPMF : R3M 5 R3M corresponding to the PMF
defined by (4.6), assuming it exists, by

FZPMF(Q) _ _VQZ_UPMF(Q), i=1,....,.M. (47)

99



Approximate forms for the Potential of Mean Force

The calculation of the PMF is a task as difficult and costly as is calculating
expectations on the microscopic space. Instead, one seeks for an effective
potential function U*(Q) that 'best’ approximates the PMF which is easy
to formulate and calculate. This is the ultimate goal of all numerical meth-
ods discussed here (structural-based methods, force matching, relative en-
tropy) for molecular systems at equilibrium. In all these methods one pro-
poses a family of interaction potential functions U(Q) in a parametrized,
or a functional, form, U(Q;6), # € ©, and seeks for the optimal U*(Q),
(U*(Q) = U(Q;6%)), that "best approximates’ the PMF. We denote by

fp(dQ) = Z " exp{~AU(Q)}dQ, (4.8)

the equilibrium probability measure at the coarse grained configurational
space for the given CG potential function U(Q), where Z = Ik e AUQ)4Q is
the corresponding partition function.

In general the many body PMF can be described as being composed
by two-body, three-body, e.t.c., interactions; thus, if we define the pairwise
distance R;; = ||Q; — Q;ll, 4,7 =1,..., M, we may write

UPMR(Q) = Z ug(Ri;) + ZU:&(RU, Rii, Rjg) + ...
i ik

Usually a two-body effective pair potential is assumed to approximate the
PMF

U(Q) =Y u(Ry) ~ U™ (Q).
0,3
Note that if the CG particle interactions are only two-body then we have
exactly that

UM Q) = Zuz(sz) .

This is true for an ”ideal” system of two isolated molecules, such as the
example of two C'Hy’s presented in section 4.4.1.

Next, we present different possible functional representations of the coarse
interaction potential and force field used in the numerical studies of the cur-
rent work. These are separated to non-bonded and bonded CG particles
interactions.

Non-bonded pair potentials. We assume dependence of U(Q;6) on the pair-
wise distance R;; 4,5 =1,..., M,

U(Q;0) = > u(Rij0), (4.9)

Joi#d
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then
8U(Rij; (9) dRZ'j
8Rij de

Fi(Q;0) = —V,;U(Q;0) =) (4.10)

i#]
If a contribution to the pair interaction potential u(R;#) is of the form
>, 0kdk(R), the corresponding contribution to the force Fj(Q;6), j =
1,..., M would depend on the derivatives of ¢} (R). Then the choice of
either representing ¢y (R) or ¢} (R) depends on the problem studied.

Possible representations of the pair CG interaction potential u(R; 6) used
in the literature are of the following form:

(a) Tabulated potentials: In this case values of the potentials (and possi-
bly forces) at specific distances are used. Such potentials are typically used
in DBI and IBI type of methods where the numerical scheme is performed
directly on the effective potential.

(b) Polynomial basis approximation: Usually linear and cubic splines [112]
are considered. The linear splines {d),(cl) (R)}}_, and cubic splines {gf),(:) (R)} o
are determined for a given set of knots I,,, [112]. Note that for the chosen
set of knots I, in (Ry, R.) the number of the parameters for cubic splines is
2n.

(c) Lennard-Jones (LJ) potential: Here we have also incorporated LJ
type of potentials that depend on two parameters 6; and 65,

1 1
R12 RS
Polynomial basis and Lehnard-Jones representations are linear in the pa-
rameters, that is any w(R) is written as

U(R) =0 — 65 Ry < R<R.. (4.11)

w(R) =) 0k¢r(R), Ro<R<Re, (4.12)
k=1

where n is the dimension of the representation and Ry and R, are cut-off
distances that are fixed and not parameters of the representation.

(d) Morse potential: Finally we have employed Morse type representa-
tion for the CG effective interaction, which depends in a non-linear form on
three parameters,

2
u(R) =0y (1- e ) 9 Ry<R<R.. (4.13)

Note that the choice of the proper basis set is particularly important, [113].
Besides the above functional forms other possible representations of the
interatomic potentials are also considered in the literature, such as (a)
Parametrized wavelets [114] and (b) Gaussian basis representation [115].

Bonded pair potentials. For many coarse graining procedures it is necessary
to consider intra-molecular bonded interactions, i.e. bonds, angles, dihe-
drals between CG particles. This is the case in the example of the alkane
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liquid we present in section 4.4.3. The interactions for bonds and angles are
represented either again by splines or by harmonic potentials of the type:

up(r) = 07 (r — 63), (4.14)
where b refers to bonds or to angles.

Remark. Beyond pair interaction potentials: Note that in all above cases
for the non-bonded potential pair interaction potentials are considered. The
incorporation of many-body non-bonded potentials is also an active research
field [116, 23].

4.3 Parametrization methods for CG models at
equilibrium

4.3.1 Boltzmann Inversion

The first family of numerical methods for obtaining the CG interaction
potential that we examine are the structural, or correlation, based ones.
Typical such methods are: the direct inverse Boltzmann, DBI [4]; the it-
erative inverse Boltzmann, IBI [90, 5, 104]; and the inverse Monte Carlo,
IMC [92, 91]. The relation between these methods and the potential of
mean force is straightforward, since the n-body PMF is defined through the
n-body distribution (correlation) function ¢ (R) [71],

1
U PME(Ry — ~3 log g™ (R) .
Actually, in all these methods the CG effective interaction is calculated
through a conditional (pair) distribution function g(R), defined over all
atomistic configurations that correspond to a specific CG one, through

O(R) = ; log g(R) (4.15)
where R is the pairwise distance between two CG particles. In more detail:

(a) DBI employs directly relation (4.15) to infer the interaction potential
U(R) from a reference CG (pair) distribution function §"*f)(R) obtained
from the analysis of the all-atom configurations.

In DBI type of methods the CG effective interaction is decomposed in
independent bonded and non-bonded parts. The former are derived from
bonded (usually bonds, angles, dihedrals) distributions obtained from sim-
ulations of a single isolated molecule, whereas the latter are either fully
repulsive [4, 9], or they are obtained from two isolated molecules in vac-
uum [117, 10]. Such approaches are computationally efficient since a full
atomistic sampling of the reference system is not required; at the same time
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they are expected to be exact in the gas phase, since they neglect higher or-
der correlations. However, for homogeneous systems, such as simple liquids
and bulk polymers [4, 9, 10, 118, 119, 86, 57], they can provide an accurate
prediction of the structure and in some cases of thermodynamic properties.

(b) In IBI methods [104] an iterative numerical minimization problem is
introduced based on g(R). In more detail the (pair) CG potential is refined
at the iteration (i 4+ 1) according to the following scheme:

QI

. . (i)
UHD(R) = UD(R) + ckpT log - (R)

greN(R)

(4.16)

—~

where c is a constant to ensure stability of the iterative process.
Convergence is checked in each iteration by examining whether the CG
non-bonded distribution function matches the reference (derived from the
atomistic run) one, within the numerical accuracy. Thus, the two-body
potential of mean force, also converges to the (two-body) reference PMF.
An analogous scheme exist also for the bonded part of the potential, based
on bonded distribution functions.

(¢) In IMC an alternative to the above numerical problem is introduced
also by "matching” a set of reference distribution functions. The difference
with the IBI methods is that the CG effective interaction update scheme is
expressed in a thermodynamically consistent way in terms of the number of
particle pairs with a specific inter-particle distance, which correspond to the
tabulated value of the potential. The latter can be directly related to the
radial distribution function; therefore IMC type of potentials are expected
to match perfectly those of the IBI ones. For more details, concerning
implementation issues of IMC see [91, 92, 120].

The latter two approaches should result exactly into the same potential
since both are based on the same distribution functions. A comparison of
these techniques can be found in [121]. Here we focus on DBI and IBI
methods.

4.3.2 Force Matching

The force-matching method determines a CG effective force F(Q;6), and
thus an effective potential in view of (4.10), from atomistic force information
through the mean least-square minimization

min Ey, [||h(q) F(IX(a);0)|°] (4.17)

where || - || denotes the Euclidean norm in R** and E,[] averages with
respect to the probability measure du(q). h(q) € R3M is the local mean
force, whose component h;(q), i = 1,..., M is the force exerted at i — th
CG particle that is a function of the microscopic forces. For example, if the
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CG mapping is the one that defines the CG particles as the center of mass
of a group of atoms then hi(Q) = > jcigronp i fi@), 1=1,... M.

In work [81], we presented a rigorous probalistic formulation and a gen-
eralization of the traditional force matching approach that applies to more
complex and nonlinear coarse-graining maps. The formulation of the force
matching method in the probabilistic language of conditional expectations
allowed us, moreover, to prove that the relative entropy and force matching
are equivalent when the PMF

FPME(Q) e £:= {F(Q;0),0 € ©}. (4.18)

This probabilistic formulation gives in addition a geometric representation
of the force matching method (see also Figure 1 of ref [81]). Within this
formulation the F*MF(Q) is the conditional expectation (a projection) of
a local mean force h(q) onto the coarse forces space L?(u;II) = {F €
L?(p)| there exists F' : R3M — R3M st F(q) = F(II(q))}. Here L?(u)
denotes square integrable functions with respect to the probability measure
. This property guarantees that the solution of the mean least squares
problem (4.17) “best approximates” the PMF. The generalized force match-
ing approach is based on the observation that h(q) is not uniquely defined,
one choice is

1
B

where J(q) = D(q)D!(q) is the Jacobian matrix of the CG map and D €
R33N with elements Dyj(q) = Vg, ILi(q), i = 1,...,M,j = 1,...,N,
and -! denotes matrix transpose. The second term in (4.19) depends on the
curvature Vg - J71(q)D(q) that contributes only when the CG map in non-
linear. Also, its dependence on the inverse temperature suggests that it will
be significant at low temperatures. In [81] we present in detail examples of
CG mapping and corresponding local mean forces h(q). For the linear CG
map (4.4) the local mean force

h(q) =J " (a@)D(q)f(q) + % Vq-J ' (q)D(q), (4.19)

h(q) = (WIT") "W f(q), (4.20)

for any W : R3M — R3N guch that WII? is invertible, ensures that the least
squares problem for if & = L?(u;II) has optimal solution the PMF. This
representation agrees with the findings in work [19], where the local mean

force is given by hi(q) = > {group i} 2% fj(aq) for the case of CG mapping
where particles that contribute to a single CG particle.

Numerical approaches. According to (4.10) we write the force in the
form

Fi(Q;0) =) 0kthr(Q), (4.21)
k=1
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where 1(Q) = Xy, 00 (|Qs — Q). The set {g4(r)}i may be chosen as
described in section 4.2.2 or corresponding to the potential parametrization

are given from relation (4.10). A set of i.i.d samples {qy, £ = 1,...,ns}
with distribution u(q) is generated once from atomistic simulations. Thus
the estimator for the mean least squares problem is

1 ns M n 2
— YN (hi(CM) -> 9k¢)k(ﬂ(qg))> -
%=1 i=1 k=1
Recall that h;(q) is the local mean force given by (4.19) or (4.20) in the
generalized FM formulation. For the CG map to the center of mass of
groups hi(Q) = > e groupi f7(Q) is chosen.
There are two approaches to the solution of this minimization problem.
Either, directly solving the system

FO=h (4.22)

where 8 = [0y, ...,60,], Fis an 3Mn;xn matrix with entries ¢x (II(qr))v, (TI(qy)),
and h is a 3Mn; vector with entries h;(II(qs)). Or, solving the system of
canonical equations

Gf=h (4.23)
where G = F!F is an M x n and h = Fth.

The advantage of the later is its low dimensionality compared to the
first. On the other hand the condition number of matrix G may be very
large for some systems. In this case one should consider to solve the system
(4.22). To avoid the direct solution of the very high-dimensional linear sys-
tem (4.22) block-averaging is introduced [3, 87]. An iterative approach has
been introduced to solve the FM problem in [105], employing CG simula-
tions for updating the parameters similar to the IBI, IMC and some methods
for the RE minimization. In the numerical results we present in section 4.4
we solve the system of canonical equations. Tests using the block averaging
with SVD for the CH4 example 4.4.1 resulted similar results.

4.3.3 Relative Entropy

This method considers the minimization of the relative entropy (RE),

1(a)
R (u ;ﬁ) =F {log } , 4.24

| 1T H(a) 424
between the microscopic Gibbs measure x(q) and and a back-mapping 1%(q)
of the approximate CG measure i(Q) (4.8), [6, 89]. Its success on approx-
imating the PMF is based on (a) the properties of RE, that R (u|7r) > 0

for all probability measures p, 7 and R (u|7) = 0 if and only p = 7 and
(b) the definition of the PMF f(Q) based on which we can write du(q) =
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di(Q)dv(q|Q), where v(q|Q) is a back-mapping probability. The minimiza-
tion of RE is thus equivalent to

argmin {BE# [U(H(q); 0) — U(q)] — {log Z% —log Z} } ) (4.25)
0cO

where Z¢ = Jgan e PUQINGQ, Z = Jran e~ PU(@) | Note that as the relative

is positive the an optimal solution(s) always exist.

We should also state here that, as shown in the above relations RE
minimization problem can be defined either directly on the path or on the
equilibrium ensemble. The former is expected to be more general since
it is valid for systems out of equilibrium too [96]. In addition, such an
approach can be used to employ relative entropy as a tool for sensitivity
analysis [79, 29]. Preliminary numerical data show good agreement between
the two approaches, for the systems at equilibrium we examine here.

Numerical approaches. Different optimization algorithms have been used
for the RE minimization problem, Newton-Raphson, Robins-Monro and
modifications, [6, 89, 20].

In the standard Newton-Raphson algorithm the parameters 6 are up-
dated by the following iterative scheme. Given an initial guess §(0), §(-+1)
is updated by

—1
k1) — g(k) _ (H,g >) @9 e®), k=o0,...,

where x > 0, J,gn)(O) and H ,gn)(ﬁ) are estimators of the Jacobian
J(0) = BEL[VoU(I(q); 0)] — BEL[VeU(Q;0)],
and the Hessian matrix H(6) with entries

Hy(0) = BE, [W] ~ BE; PZU(Q;G)]

26:00; " | 00,00,
9 oU(Q;0) 0U (Q; 0) 2 oU(Q; 0) oU(Q; 0)
+5 Eﬁ[ 20, 20, ] —B Eﬁ[ 20, }E“[ 26, ] '

A set of ii.d samples {qs, ¢ = 1,...,ns} from pu(q) from atomistic
simulations is generated once. While, for each updated %) i.i.d samples
{Qék), ¢ =1,...,mg} from fi(Q;0%) are generated from coarse grained
simulations for each iteration k. Thus the estimator of the Jacobian is

T (0) = ﬁni > " VU (T (qe); 6) — 5mi S veU(QY;6),  (4.26)
=1 ¥ e=1

and similarly for the Hessian. Additionally, the Hessian provides information
on the asymptotic convergence of the solution. In works [106, 122] authors
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introduce a deterministic iterative scheme based on importance sampling
with respect to a fixed parameter 6y for computing averages on the CG
space. With the importance sampling the CG sampling at each update is
avoided though the algorithm becomes very sensitive to small differences of
the updated 6 to 6y. This drawback can be improved with (a) a good 6y
close to the optimal and (b) update periodically the CG sample set used.
As the minimization of RE involves the minimization of expectations
stochastic optimization methods may be more efficient, [123, 124, 125], than
direct Newton-Raphson or steepest descent. In [20] the authors propose
modified Robbins-Monro algorithm that is essentially a stochastic optimiza-
tion version of the Newton-Raphson algorithm. The modified Robbins-
Monro algorithm reduces the instabilities that may appear in the Newton-
Raphson due to singular Hessian estimators as result of poor sampling. The
one step update of the iterative scheme consists of two parts:
(1) The first ¢ > 0 updates of 0 are given by

(k)

gt — gk) _ ypk)

where H](.n) (OFNpk) = Jlgn)(ﬁ(k)), that are Newton-Raphson steps.
Then (2) for k£ >t a Robbins-Monro step is employed

gk+1) — p(k) _ ajjé”)(g(k)> 7

and «; are rates introduced to ensure convergence of the algorithm, with
properties o > 0,c; — 0, D572, a; = 00,> 22, a? < 0.

At this point, we would like to shortly discuss the relation of the above
methods. As it has been shown before in [106] RE and IBI methods are
directly related at equilibrium, both should convergence in the same po-
tential, for the same basis set. In addition, we have recently discussed the
relation between RE and FM methods, which are in principle asymptot-
ically equivalent both for the case of linear and nonlinear coarse-graining
maps [81].

Note also that in all above methods the information required from the
more detailed all-atom level concerns canonical sampling of all-atom sys-
tems; i.e. we do not use results related to their dynamics. Thus, any
sampling technique, such as Monte Carlo, molecular dynamics or Langevin
(stochastic) dynamics, is appropriate for the atomistic simulations.
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4.4 Molecular models and Simulations

4.4.1 Methane
Two isolated methane molecules

The simplest system to begin with is the one with only two interacting
methane, C Hy, molecules in vacuum. This is a reference system for which
the many-body PMF is exactly equal to the two-body one.

In order to compute the effective non-bonded two-body potential for this
simple system we have used the following methods:

(a) Constraint runs: A series of Langevin dynamics (LD) runs are per-
formed in which the distance between the two C'H4 molecules, R = Ry 2 :=
[|Q1 — Qz2]|, is constant by keeping both centres of mass (COM) fixed in
space. Essentially, on every step throughout the trajectory, we subtract the
total force acting on each COM, allowing the atoms to move, resulting in
rotations but not translations of the CHy COM. R ranges from R,,;, to
Riazr (Rimaz = Reutoff), With Rpyin = 34 and Ryep = 12A. Each run
is about 1ns, whereas the time step is 1fs. During these runs the con-
straint forces are recorded. Note that for such constraint runs a stochastic
numerical scheme, such as LD, is required since standard MD simulations
might be trapped in configurations of minimum energy. The effective po-
tential Ucg(R) is calculated by numerical integration of the constraint force
(fYRyy=r from Ry,in up to Rpyaz-

(b) Geometric direct calculation: In addition, for this simple system, we
have calculated directly the two-body PMF (constraint partition function),
through “full sampling” of all possible configurations using a geometrical
method proper for rigid bodies. In more detail, the geometric averaged
constrained two-body effective potential Ugjeom (R), is obtained by rotating
the two C'H4 molecules around their COM’s, through their Eulerian angles
and taking account of all the possible (up to a degree of angle discretiza-
tion) orientations. In this case the molecules are treated as rigid bodies; i.e.
bond lengths and bond angles are kept fixed, essentially it is assumed that
intra-molecular degrees of freedom do not affect the intermolecular (non-
bonded potential) ones. The advantage of this method is that we avoid
long (and more expensive) molecular simulations of the canonical ensemble,
which might also get trapped in local minima and inadequately sample the
phase space. This method is very similar to the one used by McCoy and
Curro in order to develop a C H4 united-atom model from all-atom config-
urations [117].

(¢c) DBI method: We have also performed free LD runs for the two
isolated methane molecules and calculated the pair distribution function. By
direct inversion we estimate the two-body potential of mean force, Upgr(R).

All above calculations have been performed using the all-atom Dreiding
force field [61]. We have also checked different temperatures, i.e. T'= 80K,
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T =100K,T = 120K and T = 300K.

Bulk methane

Methane liquid was also simulated at constant temperature (NVT condi-
tions) at T' = 80K, 100K and 120K for several ns. 512 C'H4 molecules were
modeled, whereas the density was calculated after equilibrating the system
in the NPT ensemble for 5ns. The time step was 0.5fs and a cut-off distance
of 10A was used.

For the coarse-grained representation of C'Hy, we have used a one-site
representation with a pair potential.

4.4.2 Water

One of the most well-studied liquids both through atomistic and coarse-
grained models in the literature is water [126]. Here we have simulated all-
atom water, using one of the most typical atomistic force fields, the SPC/E
[127]. The model system consists of 1192 molecules at ambient conditions
(T = 300K, P = latm). The time step was 1fs. A cut-off distance of 104
was used, while electrostatic interactions were calculated using PME. We
first equilibrate the system under NPT conditions for about 50ns. Then,
NVT simulations, in the average density, were performed for 20ns. All-atom
configurations were recorded every 10ps.

For the coarse-grained representation of HoO, we have also used a one-
site representation with a pair potential. In the CG representation of water
electrostatic interactions were not required to be introduced.

In Figure 4.1 we show a snapshot from the bulk water simulations. Both
the all-atom and the CG representations are shown.

4.4.3 Alkane liquid

The above systems (methane and water) illustrate examples with only non-
bonded CG degrees of freedom; i.e. the whole molecule is represented as
a single CG bead. To further examine CG models with bonded degrees of
freedom we have also examined liquid hexane.

All-atom simulations of hexane were performed using the OPLS all-atom
force field [128]. The system consists of 512 hexane molecules at T=300K.
The time step was 1fs. A cut-off distance of 104 was used, while electro-
static interactions were calculated using PME. The model system was first
equilibrated in the NPT ensemble (T' = 300K, P = latm) for about 10ns.
Then, NVT simulations, in the average density, were performed for 10ns.
All-atom configurations were recorded every 1ps. In all above systems the
radial distribution function was calculated using a 0.01 nm grid spacing.
For the coarse-grained representation of hexane we use two CG beads, i.e.
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Figure 4.1: All-atom and CG representation of water.

a 3:1 (3 monomers correspond to 1 CG particle) mapping scheme.

We should also state here that all atomistic and coarse-grained simula-
tions have been performed using a home-made parallel simulation package,
whereas all analysis has been executed performed through home-made codes
in Matlab, Python and C++ (all codes are available upon request).

4.5 Results

4.5.1 Two Methane

First, we examine all the different approaches discussed in the previous
sections for a reference system of two isolated molecules (methanes here) in
vacuum. In such an ”ideal” system the n-body PMF is a two-body one; i.e.
the pair approximation in the calculation of PMF is exact.

In Figure 4.2 we present data from the geometric and the structural-
based methods for this system at a specific temperature (7" = 100K). In
more detail, we estimate Up,(R) through:

(a) A ”direct” method (U, gP;l}ﬁ ), using the geometrical approach described
in section 4.2 that involves the direct calculation of the constraint partition
function, treating the two molecules as rigid bodies. Note that in this case
in the all-=atom description bond lengths and bond angles are kept fixed.

(b) The constraint force approach. In this case the constraint force
required to keep fixed two methane molecules at a specific distance is com-
puted. Then through a numerical integration the effective potential between
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the two molecules (CG particles), UEME | is computed. This is a method that

has been used extensively in the literature to estimate effective pair CG in-
teraction between two molecules, as well as differences in the free energy
between two states.

(c) The DBI method: CG effective potential, USNY, is obtained by in-
verting the pair (radial) correlation function, g(R), computed through a
stochastic LD run with only two methane molecules in the simulation box.
The g(R) of the two methane molecules is also shown in Figure 4.2.

It is clear from Figure 4.2 that all above methods give the same estimate
for the CG effective interaction (PMF). There are only slight differences
between the various sets of data in the regions of high potential (short dis-
tances). This is not surprising if we consider that high energy data from
any simulation technique that samples the canonical ensemble, exhibit large
error bars, due to difficulties in sampling. The only method that provides a
“full”, within the numerical discretization, sampling at any distance is the
geometric one; however as discussed before (see section 4.4) such a method is
possible to be applied only in relatively simple molecules (such as methane)
and assumes rigid bond lengths and bond angles.

4,0 T T T T T T T T T T T

PMF

Uer

PMF

Upg,

PMF E
Ugeom

——aR)|

T~
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0577717171777 7T
35 40 45 50 55 60 65 70 75 80 85 9,0
distance (A)

Figure 4.2: “Exact” PMF for two isolated C'H4 molecules, calculated
through a direct geometric calculation, constraint force approach and DBI
method (7'= 100K). The g(r) from a MD run is also shown.

Next, we examine the application of the force matching procedure (least
squares minimization problem on forces) for this simple system. In Fig-
ure 4.3a we present the forces derived by solving the minimization, using
different basis function sets: linear (linear splines, cubic splines, LJ) and
non-linear ones (Morse). Here we have used in the FM minimization prob-
lem the total force on each CG bead. It is clear that linear splines, cubic
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splines and a Morse type basis give the same results. Only the results using
the LJ basis slightly deviate. In the inset of Figure 4.3 the derived potential,
through numerical integration of the forces are shown. All basis functions
discussed here provide again the same solution, but the L.J basis one.

Note that theoretically it is not required to use this specific force for
the local forces in the FM minimization problem, but rather a more general
form (see also section 4.2) and references [81, 19]). Here we have also used
this form with W = Dy the in relation (4.20), that is actually a weighted
average of the atomistic forces. Results are shown in Figure 4.3b. It is clear
that data from such a minimization problem are different. Possible reasons
for such discrepancies are related to the range of £ (4.18) of possible CG
effective interactions captured with the specific basis sets.

The above data further emphasize the importance of the functional form
used for the parametrization of the CG potentials. Even for such a simple
case as two isolated C'H4 molecules the standard LJ types potential, that
are used extensively in the united-atom models are not capable to accurately
describe the all-atom system, in contrast to more flexible functional forms,
such as the Morse one.

For completeness we also examine the same system at three different
temperatures, i.e. T'= 80K, T = 120K and T' = 300K. Note that in all
these temperatures but the highest one bulk methane is in fluid state. Our
goals was to examine the behavior of the different minimization methods at
various temperatures. All methods provide again the same estimate for the
CG effective interaction. Data for UPMF(T') are shown in Figure 4.4. We
observed slight differences in the CG effective interactions (free energies) for
the different temperatures that become larger for the highest temperature.

Finally, note the role of the molecular structure. Methane has a rather
simple molecule structure, with almost perfect spherical symmetry. This
allows a rather accurate estimation of the PMF between two molecules even
at relative short distances. This is not the case for other molecules. For
example, even for two ethane molecules, sampling at short distances might
become very difficult (data not shown here). The latter, as well as the effect
of temperature, over a broader range from gas to fluid state, will be discussed
elsewhere [31].

4.5.2 Bulk methane

Approximation of the many-body CG PMF

Here we examine a more realistic system, of a bulk methane liquid. We
approximate the many-body PMF between the CG particles through the
different approaches discussed above.

First, we apply the IBI method for this system using the all-atom data.
Data for the CG pair correlation function, g(R), and the resulting potential
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Figure 4.3: (a) Forces for two isolated C'Hy molecules through FM using
different basis sets. In the inset the derived PMF is shown. (b) Forces using
the weighted version (7' = 100K).

for various iterations are presented in Figure 4.5. In the same plot the
reference CG g(R) data from the all-atom simulations are also shown. IBI
converges for this system (tolerance is 10~%) after 14 iterations.

Next, we examine the FM method for the CHy fluid, by analyzing the
reference data from the all-atom simulations. In Figure 4.6 we present the
forces derived form the numerical solution of the FM least squares mini-
mization problem for the bulk methane system. As before, we have solved
the problem using different basis function sets: linear splines, cubic splines,
LJ and Morse. Linear splines, cubic splines and a Morse type basis give
the same results, within the numerical accuracy. Only the results using the
LJ basis slightly deviate. In the inset of Figure 4.6 the derived potential,
through numerical integration of the forces are shown. All basis functions
discussed here provide again the same solution, but the LJ basis one. Re-
sults concerning the CG effective interaction are also very close to the data
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Figure 4.4: PMF for two C'H4 molecules in vacuum through different meth-
ods for different temperatures: T = 80K, 100K, 120K and 300K.

obtained form the two isolated C Hy in the vacuum.

We have also examined the application of the relative entropy minimiza-
tion problem for the C'Hy liquid. Here we have used the typical Newton-
Raphson scheme presented in section 4.3. Convergence is achieved after
about 20 iterations.

Data about the pair PMF, that is an approximation of the many-body
PMF, for the bulk methane fluid derived from the different approaches (IBI,
FM and RE) are shown in Figure 4.7. In the same graph the PMF of
the two isolated methane molecules discussed before are shown. It is clear
that different methods give slightly different approximations of the PMF.
However, the differences between the various sets of data are rather small,
less than 5% in overall.

Bulk CG methane runs

Here we use the different CG models (approximated pair CG interaction
potentials) derived above, to predict the properties of the bulk CG methane
fluid. In all cases we compare with the reference all-atom bulk system.
First, in Figure 4.8 we examine the structure of the model CG methane
liquid by presenting the resulting CG pair correlation function, g(R), from
the different models and from the all-atom data for a system. As expected
the CG model derived from the IBI method gives a g(R) very close to the one
derived from the analysis of the all-atom data. Interestingly the CG model
derived from the FM model gives also in good agreement to the reference one,
despite the small differences in the CG interaction potential (see Figure 4.7).
This is not surprising if we consider that for most molecular systems small
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Figure 4.5: Iterative Boltzmann inversion for bulk C'Hy liquid (7' = 100K):
(a) g(r) and (b) pair potential for different iterations.

differences in the interaction potential lead to even smaller differences in the
obtained pair correlation function. Overall, differences between the different
sets of data are less than 5% using square differences defined on the level of
g(R). Similar is the case also for the other temperatures (T' = 80K) studied
here (data not shown).

Second, in Figure 4.9 we shortly discuss the dynamics of the model CG
methane liquid by presenting the mean square displacements (msd’s) of the
CG particles derived from the different models, as well as from the analysis of
the all-atom methane simulations. Note that in all CG simulations used here
dynamics is not expected to follow the all-atom one, since the intrinsic time
scale of the CG model is not the same as that of the underlying chemical
system. The reason is that due to the reduced degrees of freedom in the
CG description, the friction between the CG beads is significantly reduced
compared to what it would be if the monomers were represented in full
atomistic detail [10, 100, 11]. Data for the methane liquid at 7' = 100K are

75



—e— Cubic
- -~ Linear
—-=-—- Morse 14

2 CH, Exact| |

15

Potential (kcalmol ')

Force (kcalmol ' A™')

0.5

0.5 I I | I I L I
4 4.5 5 5.5 6 6.5 7 7.5

Distance (Angstroms)

Figure 4.6: Forces obtained through the FM scheme for bulk C'Hy liquid.
In the inset is the derived potential (7" = 100K).

shown in Figure 4.9a. As we expect dynamics from the atomistic system is
slower than of the CG models. At the same time there are clear differences
between the CG models. This show us again that despite the fact that
structure obtained from the different CG models is very similar, monomeric
friction is much more sensitive into small differences in pair non-bonded
potential, resulting into considerable differences in macroscopic quantities,
such as mean square displacements and diffusion coefficient. A detailed
examination of the dynamical behavior of the different CG models will be a
subject of a future work.

4.5.3 Water model

The next example considered here is water. First, we apply the IBI method
for this system using the all-atom data. Convergence of IBI for water is more
sensitive than for the methane fluid discussed before. Indeed more than 100
iterations are required for the CG RDF in order to match the atomistic data.
Data for the CG pair correlation function, g(R), are shown in Figure 4.10a.
As we can see the final g(R) curve obtained form the IBI method matches
almost exactly the reference curve.

Then, we apply the RE and the FM methods for water. Numerical im-
plementations for these methods are very sensitive to poor sampling. In FM
the matrix F in (4.22) becomes singular, while in IBI and RE the iterative
procedure fails. Specifically, the speed of convergence for the NR iterative
scheme is based on the x parameter, whereas its stability primarily depends
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Figure 4.7: Bulk CH; PMF approximated from different methods (7" =
100K).

on the condition number of the Hessian. The condition number depends
on a number of parameters: The trajectory length (at what extent does the
sample size evenly cover the chosen basis function); the chosen basis set; and
the correlation of the above with the model parameters: number of atoms,
complexity of the coarse graining mapping and other.

An important issue is poor sampling towards the minimum distance
of the pair potential R,,;,. If this is the case, in RE the Jacobian may
involve negative values while the Hessian matrix becomes singular and the
iterative scheme either stops or produces enormous fluctuations. A way to
overcome this issues is is the enrichment of nodes towards 7., together
with extrapolation of the potential on the first couple of nodes. Another
good practice is smoothing out the potential after every iteration to reduce
the noise in the updated forces.

In Figure 4.10b we show the CG ¢g(R) obtained from RE minimization
problem together with the reference curve, obtained from the analysis of the
all-atom data. The curves are very close to each other; however there are
small differences, in particular in small distances, close to the first maximum.
Note that theoretically it is expected that the RE outcome, in the level
of g(R), should agree to the IBI one [106]. We should report here that
we have calculated the CG potential derivatives appearing in the Jacobian
and Hessian in the Newton-Raphson scheme by direct sampling during the
corresponding CG run.

In Figure 4.11 results for the effective CG potential from the RE and
the FM method are presented. Although both RE and FM potentials have
a very similar structure with two minima, the actual values of the potential
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Figure 4.8: CG pair correlation function g(r) for the different CG models
and from the reference all-atom simulations (7' = 100K), for the bulk CHy
model.

are considerably different, in contrast to the CHy fluid discussed in the
previous section. the target one. Possible reasons for these discrepancies
are related, as also discussed in section 4.3, to the fact that FM and RE
are only asymptotically equivalent, meaning that finite size basis sets effects
might be important during the numerical optimization procedure. Clearly
more work is requires to clarify such differences [105, 81].

4.5.4 Alkane

The last example we examine here concerns a short alkane, hexane. In the
case of IBI method, first the bonded potential was calculated, convergence
occurs after a few, 2-3, iterations. Then the non-bonded the bonded poten-
tials were iteratively refined. The run length for each iteration was 100 ps
with snapshots written every 1.0 ps. A grid spacing of 0.01nm and a cut-off
distance of 1.2nm were used.

Concerning the FM method, an explicit separation of bonded and non-
bonded interactions is not required (see also section 4.3). Therefore, both
bonded and non-bonded CG potentials were obtained at the same time using
the same type of basis set.

Both bonded and non-bonded potentials between FM and IBI were found
to be in good agreement with each other. Data for the obtained CG effec-
tive potentials for the hexane liquid are shown in Figure 4.12. First, in
Figure 4.12a the bonded effective potential derived form the DBI simula-
tions are shown. To examine the difference between the DBI approach (first
iteration in the IBI scheme) and the FM one, in Figure 4.12b the correspond-
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Figure 4.9: Mean square displacement of C'H4 molecules obtained from the
different CG models and from the reference all-atom simulations, (a) T' =
100K, (b) T = 80K.

ing non-bonded potentials are shown. Clear that small differences between
the DBI and the FM predictions were founded.

Overall, the liquid hexane studied here is an example were IBI and FM
type of methods found to give rather similar CG effective potentials. Note,
however, that this is not always the case. Indeed strong differences betwee
the predictions of the FM and the IBI type of methods might occur if the
basis set used is not complete enough to represent the CG potential in
the well sampled region of CG space. At the same time FM CG potential
should be large and positive in the un-sampled regions of CG space. If there
is a strong dependence between the CG degreess of freedom this might not
be the case. For more details see refs [121, 113]. The detailed numerical
investigation of such correlations will be the subject of a future work.

4.6 Discussion and Conclusions

Finding the optimum effective interaction potential between CG particles
for a given model (i.e. CG mapping scheme) is a very challenging problem
in molecular simulations of complex systems. Most of the more rigorous
approaches for deriving such a CG potential (force field) are based on nu-
merical parametrization of the (many-body) potential of mean force. In this
work we have discussed different parametrization methods: (a) correlation-
based methods (direct Boltzmann inversion and iterative Boltzmann inver-
sion), (b) Force matching, and (c) Relative entropy methods. All methods
were presented in the probabilistic language of conditional expectation.
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Figure 4.10: (a) g(R) of CG water model through IBI for various iterations
and (b) g(R) of CG water model through RE method, and the reference
curve. (T = 300K)

Below we summarize our findings.

(a) The probabilistic formalism, discussed shortly here, provides a gen-
eralized force matching formula, as a CG minimization problem both for
linear and nonlinear CG maps (see also ref. [81]). In addition, it proves that
CG methods based on relative entropy and force matching are in principle
asymptotically equivalent. If we consider that RE methods are expected to
give the same solution as the IBI methods, for a given CG mapping and a
specific basis set, then we see the direct theoretical relation of all methods
discussed here.

(b) Despite the fact that all the above methods are approximations of
the same (many-body) potential of mean force, it is not clear that their
numerical implementation will converge into the same solution, since there
are differences in the derived numerical schemes. To further examine this
issue we apply IBI, FM and RE on the same reference (atomistic) systems.
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Figure 4.11: CG effective interactions for CG water molecules by analyzing
the all-atom data, using force matching and relative entropy techniques.
(T = 300K)

In all cases we have used the same (linear) mapping scheme, and we have
approximated the effective CG interaction using pair potentials. Concern-
ing the different systems: (1) First, for the simple system of two isolated
methanes all methods give, within the numerical accuracy, the same CG
effective potential, i.e. all of them approximate accurately the pair, exact in
this case, CG PMF. For such a simple system a further geometric method,
that treats molecules as solid objects was also presented that provides the
”full” sampling of the phase space. (2) Second, for a simple liquid (methane
fluid) the CG effective potentials derived from the different methods are very
similar. Slight differences of the order of 5-10% are found that are within
the numerical accuracy. CG simulations with the derived force field also
show structural properties in very good agreement with the reference (all-
atom) data for all models. Different is the case for the dynamic properties;
friction in the CG models is clearly more sensitive to slight differences in
the CG potential used. (3) On the contrary, larger differences in the derived
CG potential from the various methods are observed for water. (4) Finally,
we also present and shorty discuss an example with bonded potential, the
hexane fluid. Data were in good agreement between the different methods.

(¢) The various methods discussed here show also different numerical
difficulties: (1) IBI is a straight forward technique, however a large number
of iterations might be required for convergence. Such a method is capa-
ble to describe pair distribution functions by construction, but higher order
distributions, as well as cross-correlations, can not be described. (2) The ap-
plicability of FM depends strongly on the basis functional set, which should
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Figure 4.12: CG effective interactions for hexane molecules by analyzing
the all-atom data, obtained through force-matching and DBI approaches:
(a) bonded potential, and (b) non-bonded potential (T' = 300K).

be capable to describe accurately the sampling regime. In addition, despite
the fact that theoretically it is possible to construct a local mean force in
order to best approximate the PMF with FM, using a coarsening transforma-
tion of the microscopic forces (local mean force), numerical test performed
here resulted in different solution than the original numerical problem. (3)
Completeness of basis set is also a main issue for RE.

(d) A general comment valid for all methods, is related to the actual
numerical problems for parts of the phase space, where the energy is very
high; i.e. areas with rare sampling. The optimization problem in such areas
can be problematic, therefore special techniques are required. Practically,
first a detailed analysis of the all-atom configurations should be used to
reveal these regions and then proper extrapolation functional forms, as well
as smoothing approaches, for the CG potentials should be used, in order to
prevent sampling from such regimes.
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(e) Application of all above methods requires a very good sampling of
the reference all-atom system. Such a sampling might be problematic for
complex (e.g. polymeric) molecules. On the contrary, DBI correlation-
based approach, that is based on the decomposition of the CG potential
in bonded and non-bonded components can be a computationally efficient
alternative. Such a methodology neglects many body terms; however, for
several systems such and can provide an accurate prediction of the structural
and thermodynamic properties [4, 9, 10, 99].

Finally, we should state that the work presented is a first step towards
a systematic comparison of different numerical parametrization schemes for
realistic molecular systems. Several issues remain to be examined: For exam-
ple, all systems studied here concern pair non-bonded CG effective potential;
the use of many-body, or density dependent, CG potentials would expect
to be important, in particular in systems of high density. In addition, non-
linear CG maps could be also relevant especially when free energy differences,
such as in thermodynamic integration, are to be computed. Parametrization
of the dynamics of CG models is also one of the most challenging issues, in
particular for non-equilibrium molecular systems [129, 98, 96].
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Chapter 5

Cluster Expansions

This chapter is primarily based on a submitted paper [31].

Here, we present a systematic coarse-graining (CG) strategy for many
particle molecular systems based on cluster expansion techniques. We con-
struct a hierarchy of coarse-grained Hamiltonians with interaction potentials
consisting of two, three and higher body interactions. The accuracy of the
derived cluster expansion based on interatomic potentials is examined over a
range of various temperatures and densities and compared to direct compu-
tation of pair potential of mean force. The comparison of the coarse-grained
simulations is done on the basis of the structural properties, against detailed
all-atom data. We give specific examples for methane and ethane molecules
in which the coarse-grained variable is the center of mass of the molecule.
We investigate different temperature and density regimes, and we examine
differences between the methane and ethane systems. Results show that the
cluster expansion formalism can be used in order to provide accurate effec-
tive pair and three-body CG potentials at high T" and low p regimes. In the
liquid regime the three-body effective CG potentials give a small improve-
ment, over the typical pair CG ones; however in order to get significantly
better results one needs to consider even higher order terms.

5.1 Introduction

The theoretical study of complex molecular systems is a very intense research
area due to both basic scientific questions and technological applications. [33]
A main challenge in this field is to provide a direct quantitative link between
chemical structure at the molecular level and measurable macroscopic quan-
tities over a broad range of length and time scales. Such knowledge would
be especially important for the tailored design of materials with the de-
sired properties, over an enormous range of possible applications in nano-,
bio-technology, food science, drug industry, cosmetics etc.
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A common characteristic of all complex fluids is that they exhibit multi-
ple length and time scales. Therefore, simulation methods across scales are
required in order to study such systems. On the all-atom level description,
classical atomistic models have successfully been used in order to quantita-
tively predict the properties of molecular systems over a considerable range
of length and time scales. [32, 33, 8, 14] However, due to the broad spectrum
of characteristic lengths and times involved in complex molecular systems
it is desirable to reduce the required computational cost by describing the
system through a small number of degrees of freedom. Thus, coarse-grained
(CG) models have been used in order to increase the length and time scales
accessible by simulations. [33, 3, 4, 5, 6, 7, 8, 9, 10, 85, 86, 3, 19, 87, 88, 23,
89, 20, 15, 90, 92]

From a mathematical point of view, coarse-graining is a sub-field of
dimensionality reduction; there are several statistical methods for the re-
duction of the degrees of freedom under consideration in a deterministic or
stochastic model, such as principal component analysis, polynomial chaos
and diffusion maps.[14, 15] Here we focus our discussion on CG methods
based on a combination of recent computational methods and old theoreti-
cal tools from statistical mechanics. Such CG models, which are developed
by lumping groups of atoms into CG particles and deriving the effective CG
interaction potentials directly from more detailed (microscopic) simulations,
are capable of predicting quantitatively the properties of specific molecular
systems (see for example refs. [3, 4, 5, 6, 7, 10, 85, 86, 59, 87, 23, 89, 20, 98,
103] and references therein).

The most important part in all systematic CG models, based on detailed
atomistic data, is to develop rigorous all-atom to CG methodologies that
allow, as accurate as possible, estimation of the CG effective interaction.
With such approaches the combination of atomistic and hierarchical CG
models could allow the study of a very broad range of length and time
scales of specific molecular systems without adjustable parameters, and by
that become truly predictive. [19, 10, 87] There exists a variety of methods
that construct a reduced CG model that approximates the properties of
molecular systems based on statistical mechanics. For example:

(a) In structural, or correlation-based, methods the main goal is to find
effective CG potentials that reproduce the pair radial distribution func-
tion g(r), and the distribution functions of bonded degrees of freedom (e.g.
bonds, angles, dihedrals) for CG systems with intramolecular interaction
potential. [90, 92, 4, 5, 9, 7] The CG effective interactions in such meth-
ods are obtained using the direct Boltzmann inversion, or reversible work,
method [119, 9, 38, 99] or iterative techniques, such as the iterative Boltz-
mann inversion, IBI [104, 5], and the inverse Monte Carlo, IMC, (or inverse
Newton) [92, 91] approach.

(b) Force matching (FM) or multi-scale CG (MSCG) methods [21, 3, 19,
22, 88, 105] is a mean least squares problem that considers as observable
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function the total force acting on a coarse bead.

(c) The relative entropy (RE) [6, 89, 79] method employs the minimization
of the relative entropy, or Kullback-Leibler divergence, between the micro-
scopic Gibbs measure p and pf, representing approximations to the exact
coarse space Gibbs measure. In this case, the microscopic probability distri-
bution can be thought as the observable. The minimization of the relative
entropy is performed through Newton-Raphson approaches and/or stochas-
tic optimization techniques. [106, 20]

In practice, all above numerical methods are employed to approximate a
many body potential of mean force (PMF), Upyr, describing the equilibrium
distribution of CG particles observed in simulations of atomically detailed
models. Besides the above numerical parametrization schemes, more an-
alytical approaches have also been developed for the approximation of the
CG effective interaction, based on traditional liquid state theory and on pair
correlation functions. [107, 108, 109, 110, 93, 111, 12]

Here we discuss an approach for estimating Upyr, and the correspond-
ing effective CG non-bonded potential, based on cluster expansion methods.
Such methods originate from the works of Mayer and collaborators [28] in
the 40’s. In the 60’s numerous approximate expansions have been further
developed [130, 131] for the study of the liquid state. Later, with the ad-
vancement of powerful computational machines, the main focus has been
directed on improving the computational methods such as Monte Carlo and
molecular dynamics. However, the latter are mostly bulk calculations and
they get quite slow for large systems. Reducing the degrees of freedom by
coarse-graining has been a key strategy to construct more efficient methods,
but with many open questions with respect to error estimation, transferabil-
ity and adaptivity of the suggested methods. Based on recent developments
of the mathematical theory of expansion methods in the canonical ensemble
[132], our purpose is to combine the two approaches and obtain powerful
computational methods, whose error compared to the target atomistic cal-
culations can be quantified via rigorous estimates. In principle, the validity
of these methods is limited to the gas regime. Here we examine the accu-
racy of these methods in different state points. This attempt consists of the
following: a priori error estimation of the approximate schemes depending
on the different regimes, a posteriori error validation of the method from
the coarse-grained data and design of related adaptive methods.

In previous years, we have developed CG models, based on cluster expan-
sions, for lattice systems, obtaining higher order schemes and a posteriori
error estimates [133], for both short and long range interactions [75] and
designing adaptive methods [78] and investigating possible strategies for re-
construction of the atomistic information. [95] This is very much in the spirit
of the polymer science literature [134, 9, 10] and in this paper we get closer
by considering off-lattice models. The proposed approach is based on typical
schemes that are based on isolated molecules. [38, 117, 119] Here we extend
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such approaches using cluster expansion tools for deriving CG effective po-
tentials. We start from typical 2-body (pair) effective interaction, but some
results can be extended to many-body interactions as well. We also present
a detailed theoretical investigation about the effect of higher order terms in
obtaining CG effective interaction potentials for realistic molecular systems.
Then, we show some first results from the implementation of three-body
terms on the effective CG potential; a more detailed work on the higher
order terms will be given in a forthcoming work. [135]

The structure of the paper is as follows: In Section 5.2, we introduce
the atomistic molecular system and its coarse-graining via the definition of
the CG map, the n-body distribution function and the corresponding n-
body potential of mean force. The cluster expansion based formulation of
the CG effective interaction is presented in Section 5.3. Details about the
model systems (methane and ethane) and the simulation considered here
are discussed in Section 5.4. Results are presented in Section 5.5. Finally,
we close with Section 5.7 summarizing the results of this work.

5.2 Molecular Models

5.2.1 Atomistic and “exact” coarse-grained (CG) descrip-
tion

Here we give a short description of the molecular model in the microscopic
(all-atom) and mesoscopic (coarse-grained) scale. Assume a system of N
(classical) atoms (or molecules) in a box A(¢) := (—%, %]d C R? (for some
¢ > 0), at temperature 7. We will also denote the box by A when we
do not need to explicit the dependence on ¢. We consider a configuration
qa={q,...,qv} of N atoms, where ¢; is the position of the i atom. The
particles interact via a pair potential V : R? — RU{oco}, which is stable and

tempered. Stability means that there exists a constant B > 0 such that:

> V(s—q)=-BN, (5.1)
1<i<j<N

for all N and all ¢1, ..., qn. Moreover, temperedness requires that
C(B) == / eV _1)dr < 0. (5.2)
Rd

where § = kﬁ%T and kp is Boltzmann’s constant. The canonical partition
function of the system is given by

1 _
ZgAN = N!/AN dqy .. .dgy e PHND, (5.3)
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where Hj is the Hamiltonian (total energy) of the system confined in a

domain A:
N 9

p.
Hp(p,q) := =L +U(q). 5.4
A(P,q) §2m+ (a) (5.4)
By U(q) we denote the total potential energy of the system, which for pair
type potentials is:

Ul@:= ), V- (5.5)

1<i<j<N

where for simplicity we assume periodic boundary conditions on A. Inte-
grating over the momenta in (5.3), we get:

N

A _
Z,B,A,N = ]V'/AN dq1 .. .que AU(q) =: /\NZg,A,N7 (5.6)

where )\ := /2 Tn the sequel, for simplicity we will consider A = 1 and

(*57)
B
identify Zg A v = Zg An- Fixing the positions ¢; and ¢o of two particles, we
define the two-point correlation function :

(2).at ! / 1 -su@
qQ,q) ‘= —— [ dg3...dgn—=——¢ . 5.7
It is easy to see that in the thermodynamic limit the leading order is p?,
where p = % and |A| is the volume of the box A. Thus, it is common
1 (2).at

to define the following order one quantity g(r) := 2PN A (q1,q2), for r =
|g1 — q2|- More generally, for n < N, we define the n-body version

1
(n) - -

1
/ dqny1 - - - dqn
AN—n ZﬂvAvN

and from that the order n potential of mean force (PMF), Upmr(qi, - - -, Gn)
[136, 71] given by

(5.8)

e PU(@)

Upmr(qis -y qn) == ; log g(”)(ql, ceesn)- (5.9)

We define the coarse-graining map 7 : (RY)N — (RY)M on the micro-

scopic state space, given by 7' : q — T(q) = (T1(q),...,Tu(q)) € RM,

which determines the M (M < N) CG degrees of freedom as a function

of the atomic configuration q. We call “CG particles” the elements of the

coarse space with positions r = {r1,...,7)r}. The effective CG potential
energy is defined by

Uet(r1, .-y 70) 1= —— log/ dgi ...dgn e_'BU(q), (5.10)
{



where the integral is over all atomistic configurations that correspond to a
specific CG one using the coarse-graining map. Note, that U.g is in practice
equivalent, up to a constant, to the (constraint) PMF. In the example we
will deal with later, the configuration r will represent the centers of mass
of groups of atomistic particles. This coarse graining gives rise to a series
of multi-body effective potentials of one, two, up to M-body interactions,
which are unknown functions of the CG configuration. Note also that by
the construction of the CG potential in (5.10) the partition function is the

same:
ZBAN = /drl...drM/ dqe V(@
{Tq=r}

(5.11)
- / dry ...dryge”PUn(riern) = 769,

The main purpose of this article is to give a systematic way (via the clus-
ter expansion method) of constructing controlled approximations of U.g that
can be efficiently computed and at the same time we have a quantification of
the corresponding error for both “structural” and “thermodynamic” quanti-
ties. By structural we refer to g(r), while by thermodynamic to the pressure
and the free energy. Note that both depend on the partition function, but
they can also be related [71] to each other as follows:

Bp=p— gpQ/O ru (r)g(r)dnridr, (5.12)

for the general case of pair-interaction potentials u(r).

5.2.2 Coarse-grained approximations

As mentioned above there are several methods in the literature that give
approximations to the effective (CG) interaction potential Ueg as defined in
(5.10). Below we list some of them without claim of being exhaustive:

(a) The ‘correlation-based (eg. DBI, IBI and IMC) methods that use the pair
radial distribution function g(r), related to the two-body potential of mean
force for the intermolecular interaction potential, as well as distribution
functions of bonded degrees of freedom (e.g. bonds, angles, dihedrals) for
CG systems with intramolecular interaction potential.[90, 92, 4, 5, 9, 7]
These methods will be further discussed below.

(b) Force matching (FM) methods [21, 3, 88] in which the observable func-
tion is the average force acting on a CG particle. The CG potential is
then determined from atomistic force information through a least-square
minimization principle, to variationally project the force corresponding to
the potential of mean force onto a force that is defined by the form of the
approximate potential.

(c) Relative entropy (RE)[6, 89, 20] type methods that produce optimal CG
potential parameters by minimizing the relative entropy, Kullback-Leibler
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divergence between the atomistic and the CG Gibbs measures sampled by
the atomistic model.

In addition to the above numerical methods, analytical works for the
estimation of the effective CG interaction, based on integral equation the-
ory, have also been developed [93]. A brief review and categorization of
parametrization methods at equilibrium is given in references [23, 30].

The correlation-based iterative (e.g. IBI and IMC) methods use the fact
that for a pair interaction wu(r), by plugging the virial expansion of p in
powers of p into (5.12) and comparing the orders of p, one obtains that [71]

g(r) = e Py (r),

() =1+ c1(r)p + ca(r)p® + . .. (5.13)

Given the atomistic “target” g(r) from a free (i.e., without constraints) atom-
istic run, by inverting (5.13) and neglecting the higher order terms of ~(r)
one can obtain a first candidate for a pair coarse-grained potential wu(r).
Then, one calculates the g(r) that corresponds to the first candidate and
by iterating this procedure eventually obtains the desired two-body coarse-
grained potential. This iteration should in principle converge since there
exists a pair interaction that can be reconstructed from a given correlation
function []. However, this is only an approximation (accounting for the ne-
glected terms of order p and higher in the expansion of (7)) since we know
that the “true” CG interaction potential should be multi-body, as a result
of integrating atomistic degrees of freedom. Hence, having agreement on
g(r) does not secure proper thermodynamic behaviour and several methods
have been employed towards this direction, see for example refs [5, 137, 93]
and the references within.

In order to maintain the correct thermodynamic properties, our approach
in this paper is based on cluster expanding (5.10) with respect to some small
but finite parameter ¢ depending on the regime we are interested in. For
technical reasons we will focus on low density - high temperature regime.
As it will be explained in detail in the next section, the resulting cluster
expansion provides us with a hierarchy of terms:

U =UP 4+ UG +0O(%),

U(2)(T1, e 7TM) = Z W(2)(T’i7 Tj)7
id (5.14)
U(3)(r1, cey ) = Z W(g)(ri,rj,rk), etc,
i,k
together with the corresponding error estimates.

The above terms can in principle be calculated independently via fast
atomistic simulations of 2, 3, etc. molecules, in the spirit of the conditional
reversible work CRW method. [117, 38, 99, 86] In more detail, the effective
non-bonded (two-body) CG potential can be computed as follows:
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(a) One method is by fixing the distance 71 o := r;—rz between two molecules
and perform molecular dynamics with such forces that maintain the fixed
distance r12. In this way we sample over the constrained phase space and
obtain the conditioned partition function as in (5.10). Then, by integration
of the constrained force the two-body effective potential can be obtained.
(b) Alternatively, by inverting g(r) in (5.13) for two isolated molecules, the
two-body effective potential can be directly obtained, since for such a system
y(r) =1.

Here we examine both methods, see Figure 5.3. Note also that the valid-
ity of cluster expansion provides rigorous expansions for g(r), the pressure
and the other relevant quantities. Hence, with this approach we can have
a priori estimation of the errors made in (5.13). Another benefit of the
cluster expansion is that the error terms can be written in terms of the
coarse-grained quantities allowing for a posteriori error estimates and the
design of adaptive methods [78]; see also discussion in Section 5.7.

5.3 Cluster expansion

The cluster expansion method originates from the work of Mayer and col-
laborators, see ref. [28] for an early review, and consists of expanding the
logarithm of the partition function in an absolutely convergent series of an
appropriately chosen small but finite parameter. Here we will adapt this
method to obtain an expansion of the conditioned partition function (5.10).

For the purpose of this article we assume that the CG map 7T is a product
T = ®ij\i1Ti creating M groups of l1,...,ly particles each. We index the
particles in the i*" group of the coarse-grained variable r; by K kzlz We
also denote them by q' := (qki’ e ,qklz-.), fori=1,..., M. Then (5.10) can

be written as:

M
Uet(T1, ..y r0r) i= —; logHAi({Tiqi =r;})

=1 (5.15)

1 o
- Blog/Hu(dq’;m)e‘BU(O‘),
=1

where, for simplicity, we have introduced the normalized conditional mea-

sure:
l{Tiqi:”}

NS =)’

and by A we denote the measure l%-!qu} .. .quliv. To perform a cluster

; 1
pldd’s7i) o= Tyday - - dgyg (5.16)

expansion in the second term of (5.15) we rewrite the interaction potential
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Figure 5.1: Visualization of the partition in (5.18) for non-intersecting sets
Vi =1{2,3,4,5}, Vo = {6,7}, V3 = {9,10,11} in each of which we display by
solid lines the connected graphs g; € Cy;, @ = 1,2, 3.

as follows:

li lj (517)

=3 > Vllaw, a0 D

Then, we have

e U@ — T (1 LAV al) 1)

i<j

= Z HZ 1 fuld.a), (5.18)

ey Vim 1=1g€Cy, {i,j}€E(g)
\Vi|>2VC{L SN}

where  fij(q’,qf) i= e V(@) 1,

where for V' C {1,..., N}, we denote by Cy the set of connected graphs
on the set of vertices with labels in V. Furthermore, for g € Cy, we denote
by E(g) the set of its edges. Since p in (5.16) is a normalized measure, from
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(5.15) we obtain:

M
Usit(r1, - 7ar) = — ;logH)\i({Tiqi — )

i=1
_élog Z HC(VZ)
Vi,V =1
[Vi|>2,Vic{1,...,N}
. oMx - 10
:—Blogiqquz:m}) (5.19)
1
"3 > <)
vc{l,...,.N}
1
3 2 V)
v,V
VnV'=g

where (V) := [ X e, [l jyemy fii(d's @’ )day with av := {q'}iev, is
a function over the atomistic details of the system. Note that the above
expression involves a sum over all possible pairs, triplets etc. which is a
convergent series for values of the density p = % and of the inverse tem-

perature 3 such that pC(8) < ¢, where C(f) is defined in (5.2) and ¢ is
a known small positive constant.[132] If we simplify the sum in (5.19) one
can obtain [132] expansion (5.14) where

1
W, ) = B /ﬂ(dql;n) p(da®; ) fra(a', q®) (5.20)
and
1
WO (ry,ra,1m3) i= — 3 p(da's ) p(da®; re) p(da®; )

fia(a'.d®) fos(a®.a®) f51(a®, ab).

Recall also the definition of f; ; in (5.18).

(5.21)

5.3.1 Full calculation of the PMF

Notice that the potentials W) and W) in (5.20) and (5.21), respectively,
have been expressed via the Mayer functions f; ;. However, the full effective
interaction potential between two CG particles can be directly defined as
the (conditional) two-body PMF given by

W(Q),fuu(rh re) 1=

1 -
- 510g/u(dq1;r1)u(dq2srz)e AVia ),

(5.22)
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By adding and subtracting 1 and expanding logarithm, we can relate it to
(5.20):

_/3w(2),full(r17r2) _
log/:u(dql;ﬁ)u(qu;rz) e BV(a'a®) _

log(1 + / p(dats ) p(de®s ) fra(a o2) =
(5.23)
/ w(das 1) p(da?; r2) fra(d, @)

- % </M(dq1;7“1)u(dq2;r2) fl,z(ql,q2)>2

+...

Higher order terms in the above equation are expected to be less/more
important in high/low temperature.

Similarly, for three CG degrees of freedom 71, 1o, 73, the full PMF is given
by

WO () g g) 1=
1
- 510g/,u(dql;rl)u(dqQ;rg)/,L(dq?’;rg) (5.24)

e P Xicici<s V(qivqj)‘

By adding and subtracting 1 we can relate it to (5.20) and (5.21) (in the
following we simplify notation by not explicitly showing the dependence
on the atomistic configuration and neglecting the normalized conditional
measure):

e*ﬁW@)»f‘lll :/e(V12+V13+V23)

:1+/f12+/f13+/f23—I—/f12f13 (5.25)

+/f13f23+/f12f23+/f12f23f137

which implies that

@)full — —;(/f12+/f13+/f23+

/f12f23f13+/f12f13+/f13f23+/f12f23—

Uf12/f13+/f13/f23+/f12/f23])

+...

(5.26)
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In principle, we can rewrite (5.14) with respect to W&l and 7 3).full,

Note however, that both of these terms contain the coarse-grained two-body
interactions, hence in order to avoid double-counting, when we use both, we
have to appropriately subtract the two-body contributions. For some related
results, see also the discussion about Figure 5.11.

5.3.2 Thermodynamic consistency

As already mentioned, several coarse-graining strategies lack of thermody-
namic consistency, see also the discussion by Louis [138] and Guenza [93].
On the other hand, by construction, the cluster expansion approach gives
quantified approximations to the correct thermodynamic behaviour. Hence,
from (5.14), by considering only the two-body contribution, for the finite
volume free energy we have that

—_BU®@)
log Zg AN = 5‘A‘ log/drl...drMe pU

1
+ = 0(e%)),
A o)
where the error is uniform in N and |A| and negligible in the limit. Thus, the
approximation U of the CG Hamiltonian implies a good approximation
of the free energy. Similarly, for the pressure as a function of the activity z,
we have:

ﬁ‘A’ (5.27)

_ (2)
a7 8 2 2 = e 32 [ e
N>0 N>0 (528)
Lo
3 0

Both quantities have limits given by absolutely convergent series with re-
spect to p = N/|A| for the first and z or p for the second. As a side remark,
let us mention that in order to compute them we have two 0]))‘510113 the first
is to use (5.27) and calculate the integral [ dry...drye —sU® using molecu-
lar dynamics. Alternatively, we can use the corresponding expansions - e.g.
for the free energy we would obtain [139]

log Zga.n = p(logp—1) + Z Bap" + finite volume errors (5.29)
n>1

B \A\
- and compute the coefficients Sx. The latter are not bulk computations

as they involve 2, 3, etc particles so they are rather efficient, at least up to
some order.
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5.3.3 Pair correlation function

Recalling the coarse-grained map T from the previous section, we fix two
centers of mass r; and ro and integrate over all atomistic configurations so
that the first two groups q' and g of atomistic configurations have the
above fixed centers of mass. Partitioning the N particles into M groups of
l1,...,ly particles and choosing two of them (indexed by 1 and 2) to be
the fixed ones, we define the “projected” correlation function at the coarse-
grained scale as follows:

P (r,ma) =
Mo 1
/ )\’L(dqz) re_ﬂU(q) =
{T1(at)=r1, Ta(q?)=r2} ;4 B,AN
o 1
drs...dr / dq':r) ———e PU@ =
/ 3 M z-HlM( q )ZB,A,N

/dTg Loodryy Cgl e—ﬁUeE(m,...,rM).
Z5.AM

Hence, using (5.14) we can construct coarse-grained approximations for the
correlation functions as well. Alternatively, as a corollary of the cluster
expansion, we can write (5.7) as a convergent power series with respect to
the density. These are old results [131] for which the convergence has also
been proved recently in the context of the canonical ensemble. [140] In the
limit N — oo, A — R? such that % = p, we obtain:
AT (el 2
g(r) = V@I (14 pCy(a’, a?)
+p*Cu(a’, 4?) +) (5.30)
r:=T(q") — T(d),

where
Cs(q',q) = /Ad% J1,3/3.2, fij = e V@) _q (5.31)

and

Ci(d',q%) ZZ/dQ:a dqga f1,3f3,4fa,2
+4/dQ3 dqs f13f34f1,4 2,2
(5.32)
+/dQ3 dqsfi13f32f1.4fa2

+ /dQ3 das f13f1,4f23f2,4f3.4
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Note that this formula could also be used at the coarse-grained level with
the pair coarse-grained potential W2, giving an alternative way to compute
it.

5.4 Model and Simulations

5.4.1 The model

A main goal of this work, as mentioned before, is to examine the parame-
terization of a coarse-grained model using the cluster expansion formalism
described above for simple realistic molecular systems; in this work we study
liquid methane and ethane. In more detail, we consider N molecules of C Hy
and we denote as @ = {qi, . . ., v } to be the positions of the N many carbons
and q; = {gi1,...,¢ 4} be the positions of the 4 hydrogens that correspond
to the i*" carbon. We have two types of interactions, namely the bonded
with (many body) interaction potential V, and the non-bonded with pair
interaction potential V,,;. The latter are of Lennard-Jones type between all
possibilities: C — C, C — H and H — H (with different coefficients), i.e.,
Vb = Voo + Vo + V. In the model used here the non-bonded interac-
tions within the same C'H4 molecule are excluded.
The microscopic canonical partition function is given by

1 1
Zom, =— q(=)N
et =3 [ )
N (5.33)
/ H dqie_ﬂ(ZZN:l Vb(‘ji7Qi)+U7zb((_17Q17~-~7QN))’
AN
where U, is a pair potential of all possible pairs among q,q, ..., qu, all of

L-J type (eventually with different parameters). Note also that since only
the 4 particles of H are indistinguishable, we have introduced the factor 1/4!
for each molecule.

We are interested in computing the effective Hamiltonian when only the
centers of mass of the N many molecules are prescribed. Hence, let us
introduce a map T : A> — A which gives the center of mass of a molecule
consisting of an atom of C' together with the prescribed 4 atoms of H which
are linked to C' by the bonded interactions, i.e., by denoting q; = (g, q;) we
have:

4
_ 1 _
T(qz> = m(mc% +mpy jz_:l qm). (534)
We introduce the variables rq,...,ry for the centers of mass. Our goal

is to find the effective potential Ueg(ry,...,rn). We define the “bonded”
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(normalized) prior measure by

1

dlab(éh‘;ri) = minlT(qi):rie_ﬁVb(Qi),
7 Z (5.35)
41 —_ a -
b(ri) = 4! /Ar inlT((_li):Tie V(@)

Note that here we could have also included possible non-bonded interactions
between atoms of the same molecule. This would be important for the case
of coarse-graining a molecule with intra-molecular non-bonded interactions;
for the methane molecule studied here such interactions do not exist. Then,
from (5.33) we obtain:

N
1
ZoH, = NI /ANdrl co.dry HZb(Ti)
=1

N (5.36)
[ T dintas e Pt
i=1
The effective free energy is defined by:
BUes( ) s s
- eff\T1s-- "M ) . (- 7
e = }_[1 Zp(ri) /il_[ldﬂb(qw”) (5.37)

e_ﬁUnb((_llv---qu)
9

for which we can construct approximations following formula (5.19). A
similar analysis holds for ethane as well.

The total (atomistic) potential energy V' (q), for both methane and ethane,
is defined by

V(Q) = Vbond(Q) + Vangle(‘]) + VLJ(Q) . (538)

where Viona(q), Vangie(q) are quadratic intramolecular potential functions
of the bonds and angles respectively. V7j(q) is the non-bonded potential
as defined in the previous subsection. The parameters values of CHy are
summarized in Table 5.1.

The more simple, non-spherically symmetric ethane molecule consists of
one rigid bond connecting two united atom C'Hs beads. Table 5.2 summa-
rizes this model.

5.4.2 Simulations

The simplest system to simulate is the one with only two interacting methane,
or ethane, molecules in vacuum. This is a reference system for which the
many-body PMF is equal to the two-body one. In addition we have also
simulated the corresponding liquid systems. The atomistic and CG model
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Kcal ]
mol

c-C 0.0951 3.473 15.0
C-H 0.0380 3.159 15.0
H-H 0.0152 2.846 15.0

eryl OLJ (Al | Teut 1A

Ky (xeay | ro (a1 | Ko (o Eeely | 0o praa
700 1.1 100 1.909

Table 5.1: Non-bonded L.J coefficients as well as bond and angle coefficients
for methane. [61]

Kcal
6LJ[ mc:l ] OLJ [Al | Teut [A]

CHs; — CHj || 0.194726 3.75 14.0

Table 5.2: Non-bonded LJ coefficients for ethane. [141]

methane systems were studied through molecular dynamics and Langevin
dynamics (LD) simulations. All simulations were conducted in the NVT
ensemble. For the MD simulations the Nose-Hoover thermostat was used.
Langevin dynamics models a Hamiltonian system which is coupled with a
thermostat. [35] The thermostat serves as a reservoir of energy. The densi-
ties of both liquid methane and ethane systems were chosen as the average
values of NPT runs at atmospheric pressure. NVT equilibration and pro-
duction runs of few ns followed and the size of the systems were 512 C'Hy
and 500 C'Hs — C'H3 molecules. We note here that the BBK integrator used
for Langevin dynamics exhibits pressure fluctuations of the order of £40 atm
in the liquid phase, whereas temperature fluctuations have small variance
and the system is driven to the target temperature a lot faster than with
conventional MD.

In order to compute the effective non-bonded coarse-grained potential,
different simulation runs have been used which are discussed below.

Constrained runs

The first method which we use in order to estimate the effective CG potential
is by constraining the intermolecular distance between two molecules, r =
71,2, in order to compute the constrained partition function (5.11). We call
it “constrained run” of two methane, or ethane, molecules and special care
had to be taken in order to avoid long sampling of the low probability short
distances. This method is very similar to the conditional reversible work
methods in which CG degrees of freedom are constrained at fixed distances,
as well as in free energy calculations. Technically, we pin the centres of
mass (COM) of each CG particle in space and, on every step throughout the
stochastic (Langevin) dynamics trajectory, we subtract the total force acting
on each COM. Hence, we allow the atoms to move, resulting in rotations
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but not translations of the CG degrees of freedom (CH4, COM). During
these runs the constraint forces are recorded. The mean value (f), ,—, is
calculated in the same manner and we get WML f(3) from f = —VW

Both W&l £y and WMl u(r) are based on the same trajectory.
Then, the effective potential is calculated by numerical integration of the
constraint force (f);,—r from rpy,in Up to Tmaz-

The constrained run technique described above, accelerates the sampling
for short distances but there is a caveat; the ensemble average at very short
distances (left part of the potential well) is strongly affected by the geometric
arrangement of specific atoms between the two molecules, and the system
might be trapped in the minimum of energy. For example, the two C'Hy
molecules are oriented according to the highly repulsive forces and rotate
around the axis connecting the two COM’s. Due to this specific reason,
we utilized stochastic (Langevin) dynamics in order to better explore the
subspace of the phase space, as a random kick breaks this alignment. We
determine the minimum amount of steps needed for the ensemble average
to converge, in a semi-empirical manner upon inspection of the error-bars.

Geometric direct computation of PMF

In order to further accelerate the sampling and alleviate the noise problems
at high energy regions, that might become catastrophic in the case of the
non-symmetric CH3 — CH3 model, we have also calculated the two-body
PMF (constraint partition function) directly, through “full sampling” of all
possible configurations using a geometrical method proper for rigid bodies.
In more detail, the geometric averaged constrained two-body effective po-
tential TW(2):9¢0™ (1) is obtained by rotating the two (methane or ethane)
molecules around their COM’s, through their Eulerian angles and taking
account of all the possible (up to a degree of angle discretization) orienta-
tions. The main idea is to cover every possible (discretized) orientation and
associate it with a corresponding weight. The Euler angles proved to be the
easiest way to implement this; each possible orientation is calculated via a
rotation matrix using three (Euler) angles in spherical coordinates.

The above way of sampling is more accurate (less noisy) than constrained
canonical sampling and considerably faster. In addition, the nature of the
computations allows massive parallelization of the procedure. We used a
ZYZ rotation with d¢ = dip = df = /20 for CH4 and simple spherical
coordinate sampling with d¢ = 7/20,df = 7/45 for CH3z — CH3 (as it is
diagonally symmetric in the united atom description). Note however, that
in this case the molecules are treated as rigid bodies; i.e., bond lengths and
bond angles are kept fixed, essentially it is assumed that intra-molecular
degrees of freedom do not affect the intermolecular (non-bonded potential)
ones. The advantage of this method is that we avoid long (and more ex-
pensive) molecular simulations of the canonical ensemble, which might also
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get trapped in local minima and inadequately sample the phase space. We
should also state that this method is very similar to the one used by Mc-
Coy and Curro in order to develop a C' Hy united-atom model from all-atom
configurations. [117]

All atomistic and coarse-grained simulations have been performed using
a home-made simulation package, whereas all analysis has been executed
through home-made codes in Matlab and Python.

Figure 5.2: Snapshot of model systems in atomistic and coarse-grained de-
scription. (a-b) Two and three methanes used for the estimation of the CG
effective potential from isolated molecules. (c) Bulk methane liquid.

5.5 Results

5.5.1 Calculation of the effective two-body CG potential

First, we present data related to the calculation of the two-body potential of
mean force for the ideal system of two (isolated) molecules. For such a sys-
tem the conditional M-body CG PMF is a 2-body one. In Figures 5.3a and
5.3b we provide data for the CG effective interaction between two methane
and ethane molecules, through the following methods:

(a) A calculation of the PMF using the constraint force approach, W (?)
as described in section 5.4.2. In this case the constraint force required
to keep two methane molecules fixed at a specific distance is computed.
Then through a numerical integration the effective potential between the
two molecules (CG particles), UEMF, is computed. This is a method that
has been extensively used in the literature to estimate effective pair CG
interaction between two molecules, as well as differences in the free energy
between two states. Alternatively, through the same set of atomistic config-
urations the two-body PMF, W@ full v can be directly calculated through

Jfull, f
)
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Figure 5.3: Representation of the two-body PMF, for two isolated molecules,
as a function of distance r, through different approximations: geometric
averaging, (constrained) force matching and inversion of g(r). (a) CHy at
T = 100K, (b) CH3—CHs at T'= 150K. For the methane the corresponding
g(r) curve is also shown.

Eq (5.22).

(b) A direct calculation of the PMF, W (2).geom. using a geometrical ap-
proach as described in Section 5.4.2 that involves the direct calculation of
the constraint partition function, treating the two molecules as rigid bodies.
Note that in this case in the all-atom description bond lengths and bond
angles are kept fixed.

(c) DBI method: The CG effective potential, W ®9(") is obtained by
inverting the pair (radial) correlation function, g(r), computed through a
stochastic LD run with only two methane (or ethane) molecules freely mov-
ing in the simulation box. The pair correlation function, g(r), of the two
methane molecules is also shown in Figure 5.3a.

The first two of the above methods refer to the direct calculation of the
constrained partition function (5.10) with constrained forces and canonical
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sampling, while the third uses the “Direct Boltzmann Inversion” approach.
All above data correspond to temperatures in which both methane and
ethane are liquid at atmospheric pressure (values of —kgT are also shown
in Figure 5.3).

First, for the case of the two methane molecules (Figure 5.3a) we see very
good agreement between the different methods. As expected, slightly more
noisy is the W®@-LU (115 curve as fluctuations in the (e=#V(9) term for a
given ri9 distance in equation (5.22), are difficult to cancel out. The small
probability configurations in high potential energy regimes having a large
impact in the average containing the exponent, hence the corresponding plot
is not as smooth as the others are. In addition, as previously mentioned,
W@l B oomes from the same trajectory (run) but the integration of the
(f)ry, from Teytof Up to 712 washes out any non-smoothness. Note, that
for the same system recently CG effective potentials based on IBI, force
matching and relative entropy methods have been derived and compared
against each other. [30]

Second, for the case of the two ethane molecules (Figure 5.3b) we see
a good, but not perfect, agreement between the different sets of data, es-
pecially in the regions of high potential energy (short distances). This is
not surprising if we consider that high energy data from any simulation
technique that samples the canonical ensemble, exhibit large error bars, due
to difficulties in sampling. The latter is more important for ethane com-
pared to methane case due to its molecular structure; indeed the atomistic
structure of methane approximates much better the spherical structure of
CG particles than ethane. The only method that provides a “full”, within
the numerical discretization, sampling at any distance is the geometric one;
however as discussed before (see Section 5.4) such a method neglects the
bond lengths and bond angle fluctuations.

Next, we also examine an alternative method for the computation of the
effective CG potential, by calculating the approximate terms from the cluster
expansion approach. For the latter we use the data from the constraint runs
of two methane molecules integrated over all atomistic degrees of freedom,
as given in formula (5.20). In Figures 5.4a and b we demonstrate the PMF
through cluster expansions and the effect of higher order terms as shown
in equation (5.23), of the two isolated molecules, for CHy and CHs — CHs
respectively. As discussed in the Section 5.3, cluster expansion is expected
to be more accurate at high temperatures and/or lower densities. For this
reason, we examine both systems at higher temperatures, than of the data
shown in Figure 5.3; Values of —kpT are shown with full lines. Both systems
show the same behavior. First, it is clear that the agreement between W (2)
and the (more accurate) W@l ig very good only at long distances, whereas
there are strong discrepancies in the regions where the potential is minimum
as well as in the high energy regions (short distances). Second, it is evident
that adding terms up to the second order with respect to 5, we obtain a
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Figure 5.4: Relation of the PMF through cluster expansions and energy av-
eraging at high temperatures, i.e., W) (ry,ro) and W®-full(3) 75 through
expansion over 3 for (a) CHy at T' = 300K and (b) CH3—CH3z at T = 650K.
As expected from the analytic form and the relation between the two for-
mulas, W@ and W@l tend to converge to the same effective potential.
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better approximation of T (2):full

Effect of temperature-density

Next, we further examine the dependence of the PMF, for the two isolated
methanes, on the temperature, by studying the system at 7' = 80K ,100K,
120K, 300K and 900K. In more detail, in Figures 5.5a and b we com-
pare the difference between W@ and W@l gt different temperatures. As
discussed in Section 5.3, the cluster expansion method is valid only in the
high temperature regime. This is directly observed in Figure 5.5a; at high
temperatures, W is very close to W@l which is exact for the system
consisting of two molecules. Note the small differences at short distances,
which, as also discussed in the previous subsection, are even smaller if higher
order terms are included in the calculation of W(?); see also Figure 5.4.

On the contrary, at low temperatures there is a strong discrepancy
around the potential well as shown in Figure 5.5b. In fact, for values of
r close to the potential well and for rather high values of 8 the contribution
to the integral (5.2) is large and the latter can exceed one, rendering the
expansion in (5.23) not valid. In Figure 5.5b we see that the term (5.20)
is not small so the expansion (5.23) is not valid. The case for ethane is
qualitatively similar.

For completeness, we also plot the potential of mean force at different
temperatures for the system of two C'H4 molecules, see Figure 5.6. In prin-
ciple, equation (5.20) is a calculation of free energy, hence it incorporates
the temperature of the system and thus both approximations to the exact
two-body PMF, W@ and W@l are not transferable. Indeed, we ob-
serve slight differences in the CG effective interactions (free energies) for
the various temperatures, which become larger for the highest temperature.

5.5.2 Bulk CG CH4 runs using a pair potential

In the next stage, we quantitatively examine the accuracy of the effective CG
interaction potential (approximation of the two-body PMF), in the liquid
state based on structural properties like g(r). Here we use the different
CG models (approximated pair CG interaction potentials) derived above,
to predict the properties of the bulk CG methane and ethane liquids. In all
cases we compare with structural data obtained from the reference all-atom
bulk system, projected on the CG description.

In Figures 5.7a and b we assess the discrepancy between the CG (pro-
jected) pair distribution function, g(r), taken from an atomistic run, and the
one obtained from the corresponding CG run based on W&l a5 already
seen in Figure 5.3 of methane and ethane respectively. Note that g(r) is
directly related to the effective CG potentials (N = 2 in Eq (5.8)).

It is clear that for methane (Figure 5.7a) the CG model with the W (2)-full

105



—p(2).full _ -
(a) W ;. T =100K

. —w.full P 900k
1. .
5 ---W@), T =100K

---W®) T =900K

0.8 T : : :
(b) _W(z),full
0.6 w2
* = I’V(Z)*fu“cxp. up to 274 grder
04 — KT
g3 o2r
x| &
ST
—
-
& o2
0.4 RS i
-0.6 1
I I I I I I I I I I I

Figure 5.5: (a) PMF through cluster expansions, using (5.20) and (5.23) for
different temperatures for the C Hy model. (b) PMF through cluster expan-
sions and energy averaging, i.e., W® (ry,ro) and W@z ) through
expansion over 8 for CHy at T'= 150K. The expansion is not valid at this
temperature.
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Figure 5.6: Potential of mean force at different temperatures (geometric
averaging). Two CH4 molecules at T=80K, 100K, 120K, 300K

potential gives a g(r) very close to the one derived from the analysis of the
all-atom data. This is not surprising if we consider that for most molecular
systems, small differences in the interaction potential lead to even smaller
differences in the obtained pair correlation function. Interestingly the CG
model with the W) is also in good agreement with the reference one, despite
the small differences in the CG interaction potential discussed above (see
Figures 5.4a and 5.8b). As expected, the difference comes from the missing
higher order terms of eq (5.14).

The fact that the CG effective potential, which is derived from two
isolated methane molecules, gives a very good estimate for the methane
structure in the liquid state is not surprising if we consider the geometrical
structure of methane, which is rather close to the spherical one. On the
contrary, for the case of ethane (Figure 5.7b) predictions of g(r) using pair
CG potential are much different compared to the atomistic one, especially
for the short distances. Even larger differences would be expected for more
complex systems with long-range interactions, such as water. [30]

Similar is the case also for the other temperatures (7' = 80K) studied in
this work (data not shown here).

Effect of temperature-density

We further study the structural behavior of the CG systems at different
state points; i.e., temperature/density conditions, compared to the atomistic
ones. First, we examine the temperature effect by simulating the systems
discussed above (see Figure 5.7) at higher temperatures; however keeping
the same density. In Figures 5.8a,b we present the RDF of methane from
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Figure 5.7: RDF from atomistic and CG using pair potential, W), for
CHy system at T'= 80K (a) and CHs — CHs at T' = 150(b). Spherical CG
approximation to the non-symmetric ethane molecule induces discrepancy
and implies there is more room for improvement.
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Figure 5.8: RDF of methane from atomistic data, and CG models using pair
potential at different temperatures: (a) 7' = 300K, (b) T'= 900K. In both
cases the density is p; = 0.3799-Z

cm3”

atomistic and CG runs using pair potential at T' = 300K, and T = 900K
respectively.

It is clear that the analysis of the CG runs using the W&l potential
gives a pair distribution function g(r) close to the atomistic one for both
(high) temperatures, similar to the case of the T'= 80K shown before. In
addition, the CG model with the W) potential is in very good agreement
with the atomistic data at high temperature (Figure 5.8b), whereas there
are small discrepancies at lower temperatures (Figure 5.8a), in particular at
the maximum of g(r). This is shown in the inset of Figures 5.8a,b. Note also
that in this high temperature the incorporation of the higher order terms in
W®) leads to very similar potential as the W®)-full (see also Figure 5.4a),
and consequently to very accurate structural g(r) data as well.

Next, we examine the structural behavior of the CG systems at different
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Figure 5.9: RDF of methane from atomistic and CG using pair potential at
different densities p1 > p2, (a) T'= 300K, (b) T'= 900K.
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densities. In Figure 5.9a we present the g(r) from atomistic and CG runs us-
ing pair potential at different densities (p1 = 0.3799 25 and ps = 0.0395-2
and T = 300K, and T" = 900K). There is apparent discrepancy from the
reference (atomistic) system in both densities in agreement to the data dis-
cussed above in Figure 5.8a.

For the case of higher temperature data (7" = 900K ) and the same den-
sities, as shown in Figure 5.9b, the pair distribution function, g(r), obtained
from the CG model with the W@ effective interaction is very close to the
data derived from the W@l one  and in very good agreement to the ref-
erence, all-atom, data. This is not surprising since, as discussed before, at
high temperatures the cluster expansion is expected to be more accurate,
since cluster expansions hold for high 7" and low p.

Overall, the higher the temperature the better the agreement in the g(r)
derived from the CG models using any of W@ and W@l These data

are in better agreement with the atomistic data as well.

5.6 Effective three-body potential

In the last part of this work we briefly discuss the direct computation of
the three-body effective CG potential and its implementation in a (stochas-
tic) dynamic simulation. More results about the three-body terms will be
presented in a future work. [135]

5.6.1 Calculation of the effective three-body potential

In the following we present data for the 3-body potential of mean force es-
timated from simulation runs and geometric computations involving three
isolated molecules. We have two suggestions for the 3-body PMF: (a) For-
mula (5.21) derived from cluster expansion formalism, which is valid for
rather high temperatures and (b) another one based on the McCoy-Curro
scheme given in formula (5.24). Here we present data using the latter for-
mula, a detailed comparison of the three-body effective potentials, W (3)-full
and W) using Eqs. (5.21) and (5.24) will be given elsewhere. [135]
Similarly to the two-body potential, the corresponding calculations can
be performed by constrained molecular dynamics (or any other method that
performs canonical sampling). For this one needs to calculate the deriva-
tive of the three-body potential with respect to some distance. However,
as previously stated, deterministic MD simulations of a constrained system
might easily get trapped in local energy minima, so we utilized stochastic
dynamics for the three-body case. In addition, rare events (high energy,
low probability configurations) induce noise to the data, despite long equili-
bration (burn-in) periods or stronger heat-bath coupling in the simulations.
Although smoothing could in principle have been applied, it would wash-
out important information needed upon derivation with respect to positions
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(f= —VqW(3)). Therefore, we choose here to present results from the “di-
rect” geometric averaging approach. The total calculations are one order
of magnitude more than the two-body ones (all possible orientations of the
two molecules for one of the third one), so special care was given to spatial
symmetries.

The new effective three-body potential, W , is naturally a func-
tion of three intermolecular distances: r13,713,723. The discretization of
the COM’s in space is on top of the angular discretization mentioned in
Section 5.4.2 and relates to the above three distances. The investigation of
WLl for a1l possible distances is beyond the scope of this article. Here,
we only study some characteristic cases, showing W&l data as a func-
tion of distance 793 for fixed 712 and 713, comparing always with the sum
of the corresponding two-body terms. In more detail, in Figures 5.10a~-d we
present simulations based on the effective three body potential W®)-full and
the sum S W& (geometric averaging) for CHy at T = 80K for different
COM distances [A]: (a) r12 = 3.9, r13 = 3.9, (b)riz = 4.0, 713 = 4.0, (c)
rig = 4.3, r13 = 4.0, (d) ri2 = 3.8, 113 = 5.64. At smaller distances, the
potential of the triplet deviates from the sum of the three pairwise potentials
and this is where improvement in accuracy can be obtained. As shown in
Figure 5.10 improvement is needed for close distances around the (3 dimen-
sional) well. We used a 3-dimensional cubic polynomial to fit the potential
data (conjugate gradient method) which means that 20 constants should be
determined. A lower order polynomial cannot capture the curvature of the
forces upon differentiation. The benefit of this fitting methodology (over
partial derivatives for instance) is the analytical solution of the forces with
respect to any of 19,713,723 in contrast to tabulated data that induce some
small error.

Overall, there are clear differences between the 3-body PMF, W (3) full
and the sum of three two-body interactions, W(Q)’fuu, at short r1s9, 713 and
rog distances. On the contrary, for larger distances the sum of two-body in-
teractions seems to represent the full three-body PMF very accurately. This
is a clear indication of the rather short range of the three-body terms. Based
on the above data, the range of the 3-body terms for this system (methane
at T = 80K) is: 119 € [3.8 : 4.1]A, 713 € [3.8 : 4.1]A and 3 € [3.8 : 5]A;
hence, the maximum distance for which three-body terms were considered,
is rcut_(,ﬁg:BA. In practice we need to identify all possible triplets within
Teut-off,3- Naturally, by including higher-order terms the computational cost
has increased as well. More information about the numerical implementa-
tion of the three-body CG effective potential and its computational efficiency
will be given elsewhere. [135] We should state here that in order to keep the
temperature constant (in the BBK algorithm), due to the extra three-body
terms in the CG force field, a larger coupling constant value for the heat
bath was required.
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Figure 5.10: Effective potential comparison between the W)l 3-hody
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Figure 5.11: RDF from atomistic and CG using pair, W@l and three-
body, Wl potential for C'Hy (T'" = 80K). Three dimensional cubic
polynomial was used for the fitting.

5.6.2 CG Runs with the effective three-body potential

Next we examine the effect of the 3-body term on the CG model by perform-
ing bulk CG stochastic dynamics simulations using the new CG model with
the 3-body terms described above. In this case we incorporate the 2-body
CG effective potential described before for distances larger than 7cyi-off 3,
whereas we use WGl for triplets with all distances (112, r13, and r93) be-
low 7cut-off,3. In practice, we compute all possible pair interactions and for
the triplets with distances in the above defined range, we ” correct” by adding
the difference between WGl and the corresponding sum of W@l j e
the difference between the data sets shown in Figures 5.10a-d.

Results on the pair distribution function, g(r), for bulk (liquid) methane
at T'= 80K are shown in Figure 5.11. In this graph data from the atomistic
MD runs (projected on the CG description), the CG model involving only
pair CG potentials, and the new CG model that also involves 3-body terms
are shown. First, it is clear that g(r) data derived from the CG model that
involves only pair CG potentials show clear deviations, compared to the
reference all-atom data. Second, the incorporation of the three-body terms
in the effective CG potential slightly improves the prediction of the g(r),
mainly in the first maximum regime.

5.7 Discussion and conclusions

In recent years we have experienced an enormous increase of computational
power due to both hardware improvements and clever CPU-architecture.
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However, atomistic simulations of large complex molecular systems are still
out of reach in particular when long computational times are desirable. A
generic strategy in order to improve efficiency of the computational methods
is to reduce the dimensionality (degrees of freedom) by considering system-
atic coarse-grained models. There have been many suggestions on how to
compute the relevant CG effective interactions in such models; a main issue
here is that even if in the microscopic (atomistic) level there are only pair in-
teractions, after coarse-graining a multi-body effective potential (many-body
PMF) is derived, which for realistic molecular complex systems cannot be
calculated. Therefore, a common trend has been to approximate them by
an “effective” pair potential by comparing the pair correlation function g(r).
This seems reasonable since given the correlation function one can solve the
“Inverse problem” [142] and find an interaction to which it corresponds. But,
this is an uncontrolled approximation without thermodynamic consistency.

Instead, here we suggest to explicitly compute the constrained configu-
ration integral over all atomistic configurations that correspond to a given
coarse-grained state and from that suggest approximations with a quantifi-
able error. This is similar to the virial expansion where one needs to inte-
grate over all positions of particles that correspond to a fixed density and it
is based on the recent development of establishing the cluster expansion in
the canonical ensemble. [132]; see also Ref. [140, 71] for the corresponding
(in the canonical ensemble) expansions for the correlation functions and the
Ornstein-Zernike equation. The main drawback that limits the applicability
of these expansions is that they are rigorously valid only in the gas phase. To
extend them to the liquid state is an outstanding problem and even several
successful closures like the Percus-Yevick are not rigorously justified. There-
fore, there is need of further developing these methods and relate them to
computational strategies.

In this paper we extend the above methods by presenting an approach
based on cluster expansion techniques and numerical computations of iso-
lated molecules. As a first test we presented a detailed investigation of
the proposed methodology to derive CG potentials for methane and ethane
molecular systems. Each CG variable corresponds to the center-of-mass for
each molecule. Below, we summarize our main findings:

(a) The hierarchy of the cluster expansion formalism allowed us to sys-
tematically define the CG effective interaction as a sum of pair, triplets, etc.
interactions. Then, CG effective potentials can be computed as they arise
from the cluster expansion.

(b) The two-body coarse-grained potentials can be efficiently computed
via the cluster expansion giving comparable results with the existing meth-
ods, such as the conditional reversible work. In addition we present a more
efficient direct geometric computation of the constrained partition function.

(¢) The obtained pair CG potentials were used to model the correspond-
ing liquid systems and the derived ¢(r) data were compared against the
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all-atom ones. Clear differences between methane and ethane systems were
observed; For the (almost spherical) methane, pair CG potentials seems to
be a very good approximation, whereas much larger differences between CG
and atomistic distribution functions were observed for ethane.

(d) We further investigated different temperature and density regimes,
and in particular cases where the two-body approximations are not good
enough compared to the atomistic simulations. In the latter case, we consid-
ered the next term in the cluster expansion, namely the three-body effective
potentials and we found that they give a small improvement over the pair
ones.

Overall, we conjecture that the cluster expansion formalism can be used
in order to provide accurate effective pair and three-body CG potentials at
high T and low p regimes. In order to get significantly better results in the
liquid regime one needs to consider even higher order terms, which are in
general more expensive to be computed and more difficult to be treated. A
more detailed analysis of the higher-order terms will be a part of a future
work. [135] Finally, another future goal is to extend this investigation in
larger molecules (e.g. polymeric chains) that involve intra-molecular CG ef-
fective interactions as well, and to systems with long range (e.g. Coulombic)
interactions.
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Chapter 6

2-Body, 3-Body calculations

6.1 Introduction

In this chapter, we show how to construct effective Coarse Grained (CG) po-
tentials through atomistic simulations, using only a small number of atoms.
The numerical algorithm is applied on CG potentials involving 2- and 3-
body potentials; however, our proposed methodology is quite general and,
in principle can be extended even for higher order terms. We later on use
the obtained effective potentials in CG level simulations and compare the
results (specific observables) with the corresponding atomistic (projected to
the Coarse level) simulations, in order to assess the efficiency and accuracy
of our findings.

The chapter is divided as follows: First, we set up the problem with the
construction of 2-Body effective potential and all the issues and difficulties
associated with it. Different techniques of estimating the same quantity
enable us to validate our results. We then proceed to the 3-Body case which
is intrinsically more complex and computationally more expensive. The
challenge is the construction of accurate CG potentials that can be used in
realistic production runs.

6.2 2-Body

Our goal is to estimate the ensemble average of an observable quantity,
for instance non-bonded potential energy: (V"°(q))|,, over a subspace of
the phase space. Here q is the vector of cartesian coordinates of all the
atomic particles, r1, rg are the projections (3 dimensional coordinates) of
the first and second centres of mass (COM’s) and rio = |r1 — ra| is scalar
and fixed. As mentioned in the Introduction, it is common practice that
these kind of average quantities are exported from long atomistic trajectories
by properly analyzing the atomistic data. Usually, a binning procedure is
used by defining a discretization step, dr, of the variable r and calculate the
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specific chosen quantity (V") at every step dr accumulating its value to the
corresponding bin. After the run is over, the mean value over the grouped
values that correspond to [r,r + dr] converges to the desired (V"*(q))|,.

In other words, we end up calculating a histogram. For the case of two
particles in vacuum, this is a slow process, for a number of reasons. First and
foremost, the bins that correspond to longer distance values r are heavily
populated, due to the vacuum of the simulation box. In effect, the close r
value bins merely have a small number of samples, if any at all, even for long
trajectories. In addition, deterministic thermostats, like the well known and
frequently used Nose-Hoover fail to reach the target average temperature
when not in bulk.

All of the above urged us to constrain the molecule COM’s in space.
This technique efficiently tackles with the problem of ”poor sampling” at
the high potential energy parts of the configuration space. The ensemble
average is a histogram in this case as well and the number of samples per
bin is defined in the beginning of the simulation. After the number of steps
(samples) is simulated, we artificially move the COM’s apart by dr and
proceed to estimate (V™(q))|,44r- The two-particle (out of N in total)
projected constrained partition function is given:

7(2),proj (r1,rg) = / e*Ban(Q)dq (6.1)
{T1(q1)=r1,T2(q2)=r2}

6.2.1 Constrained runs

The constraining of the molecules is performed as follows: First we select the
distance r between the COM’s. Then we pin the COM of each CG particle in
space and on every step throughout the MD trajectory, we subtract the total
force acting on each COM. Hence we allow the atoms inside each CG particle
to move, resulting in rotations but not translations of the CG degrees of
freedom. Otherwise (COM’s at fixed distance but mutually rotating as a
rigid body apart from the individual rotation around each COM), we would
have had to subtract the rotational entropy (see [38] ). Technically, this
pinning procedure requires two constrains on every time step (for BBK). One
is based on the momenta (3.23) and the other one on the forces. Suppose
we are on the ¢t — th time step and calculate the momenta at the half step
p!t1/2 in eq (3.23). Exactly after that, we perform constraining in order to
prevent velocity drift. This means, for each atom j inside the CG particle ¢
we subtract the velocity of the centre of mass:

t+1/2 _ t+1/2 Zﬁl{oms 521/2

TS — 6.2
b b #atoms (6.2)

In the fraction we don’t multiply by the atomic mass because each CG
particle is considered as a rigid body. On the second step of the integrator,
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the coordinates ¢! are updated and a force calculation follows. The last
step in the integration scheme updates the momenta p!*! to a complete time
step dt through the total forces (conservative, drift and random), so a new
constraint is needed:

#atoms t41
i1 2=l Pig

Pij = Pij Hatoms (6.3)

In the velocity Verlet case, there are two steps in the integrator so we only
need one constrain for the total conservative forces, in exactly the same
manner, right after —VV is computed. We note that the velocity centre of
mass of the whole system should be set to zero once, in the beginning of the
run, in the same way.

A very useful quantity (observable) derived from the constrained runs
is the average force among the two particles (constraint COMs), (f"®)|,,,,
which is used for the calculation of the PMF. We define the vector ri2 con-
necting the two COM’s as the support of the magnitude f of the force f
between those CG particles. This force can either be positive (repulsive)
or negative (attractive). In order to simplify the calculations both COM’s
are pinned in space as mentioned and ris is parallel to the X axis. Later
on, the COM of the second particle is further moved at ri2 + dr, along the
X-dimension as well. Naturally, the whole procedure is implemented in a
general way and works for any displacement along XY Z as well. So we com-
pute the total non-bonded force vector fo° acting on COM i (ffP=—fFP),
then find its magnitude and project it along ri2. The bonded and angu-
lar forces cancel-out, except for the very close distances where some bonds
might get compressed (see section on noise 6.2.4). Note, that integration
of the average force between particles 1 and 2 leads to the corresponding
potential of mean force.

In figure (6.3) we compare a C Hy United Atom (CG) model with given
LJ parameters with our computed ensemble average of the (effective) po-
tential between atoms, for the case of the OPLS forcefield. Our proposed
constraining method satisfactorily estimates the CG potential.

As mentioned in the previous section, (f) at this fixed value of 712 is a
simple arithmetic mean over all samples, which follow the canonical ensem-
ble.

Then we artificially move the CG particles apart by dr, continue the
simulation and repeat the procedure to get (f),+qr. A schematic of the
constraining is shown in figure (6.1).

We stress the fact that although we have biased the dynamics of the run,
sampling (ensemble average) with respect to the proper equilibrium measure
is performed. This is due to the fact that on every step, we first sample and
then constrain; correct the forces on each COM to remain in place, allowing
it to rotate freely. An alternative way to avoid non-ergodicity and speed up

119



g ﬁ» <f—2
v S

-
Lo

Figure 6.1: 2 Constrained C'Hy in space, along the X-dimension. Atomistic
and CG description.

the sampling is through biased potentials, like umbrella sampling, conforma-
tional flooding etc. We also note that this is a free energy calculation type
of a problem [33]. Therefore, there is an explicit temperature dependence
on the observables under study.

Stochastic Dynamics

During the constrained simulations in vacuum, we encountered severe issues
when trying to place the two molecules, and sample the phase space, at close
distances. Despite choosing very small timesteps, of the order of O(10719)
sec, the intermolecular bonds would either break, crashing the simulation, or
rotate in parallel. The latter means that the system has found a local energy
minimum and the integrator is not able to explore the phase space properly.
In other words, the sampling is not performed using the correct equilibrium
measure because the system cannot reach equilibrium distribution, hence
the system is not ergodic any more.

would get trapped in every case, even for higher temperatures, and this
could be seen upon simple inspection with VMD ([143]) apart from the noisy
averages.

In order to overcome the above problem we used stochastic dynamics,
by employing the Langevin thermostat with the BBK integrator. In this
case the system is not "trapped” in energy minima thanks to the random
forces, or "kicks” in the equations of motion, which model the heat bath.
The only drawback using this integrator in the increased computational cost
associated with the force evaluation. Apart from the vacuum runs, Langevin
dynamics proved also to be faster in equilibrating low density bulk melts, in
comparison to the deterministic MD thermostat (see figure 5.9).
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7maflitep 5 77”“2;'56’) s total # steps dr
CH, 51077 € [3.2:5.2) | 10°r € [5.2 : 7] 2 10” 0.05A4
CHs —CH3 | 15 107r € [3.5:5.7) | 10°7 € [5.7 : e 10%° 0.05A

Table 6.1: run parameters

6.2.2 Run specifications

Practically, in all above cases our goal is to approximately estimate the
constrained partition function:

// eiﬁvnb(‘”dqldqg, (6.4)
T(qi)=ri

which is an intrinsically extremely hard calculation (see section (6.2.3)). Ev-
ery system has a different partition function and the difficulty of calculating
it, monotonically increases depending on its complexity. In our case, C' Hy
is a spherically symmetric molecule and the relative orientations needed are
less than the axially symmetric C Hs — C' Hs molecule. After long simulation
times for the constrained run and taking into account the error bars of the
observables, we can determine a lower bound of the steps required in order
to obtain a smooth graph (usually the observable is the pair potential). We
concluded that the discretization of dr = 0.05A is sufficiently accurate for
the length scales we are interested in. The PMF' calculations, described
above, require numerical integration (e.g. trapezoidal or Simpson’s rule)
over this variable r, and the associated error with this discretization value
is smaller than that of the order of the method scheme. We call the variable
containing the number of samples (steps) needed for every fixed ri2 value
in the histogram as “maxstepsdr”. The variable values are summarized in
table 6.1.

In figure (6.2)a we see good agreement between the method of calculating
the ensemble average of the potential and the method of integration of the
forces ensemble average to get the same quantity for CHy. In figure (6.2)b
we have the same result for the C H3 —C Hj3 system. In this case the molecule
gets easily trapped in local energy minima and the sampling is inadequate
at close distance, but the calculation of integrating the forces from r,; down
t0 Tmin smooths out (f). The problem persists in higher temperatures as
well, even for very large trajectories and stronger coupling (larger £ constant
in BBK) with the heat bath. We address this issue in section (6.2.4).

6.2.3 U¢f estimator

We need to calculate the integral

) n
e’gUg'f :/ e BV b(ql’q2)dq1dq2 (6.5)
lg1—gz|=r
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Figure 6.2: PMF (V™) and (f) for (a) CHy4 at T = 80K. Good agreement
between methods. (b) same for CHs — CHz at T = 150K, noisy (V™).

and g3 is given accordingly. On the other hand, the BBK integrator produces
trajectories qit), qét)

numericaly, where the atomistic positions for C Hy atoms are: ¢ = {q1,¢1,1,91,2,¢1,3: 1,4}
according to the stationary measure

__pi/bond 1 b
e ﬁV on _,’_Vang 6+V’ﬂ
lu(q) = f 6_5vbond+vangle+vnb

(6.6)

the denominator being the atomistic partition function Z,¢om, so an ergodic
average (1/nsteps x S 1 "'P* A(q®)) of a quantity A(g) is given by

o—BVtondyangle yymb
A= [A@ = [ @) utdo)
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Figure 6.3: PMF (V™) and a United Atom model for CHy at T = 300K, the
atomistic C—C, C—H LJ interactions are plotted for magnitude comparison.
OPLS UA forcefield [144].

In order to estimate the constrained integral (6.5) instead of (6.7) we need
to calculate:

1
1 nsteps 1 (68)
nsteps k=1 —pvnb
as:
1
1 e,ﬁvbond+vangle+vnb =
fconst'r e,@vnb fe_[gvbond+vangle+vnb dq
_ bond angle nb
fe pybond v +V dq
= (69

fconstr 6_ﬁvbond+vangle+vnb dq

/ e—BV”b(q)dq + felsewh
constr

constr

_B(an +Vangle)dq

G_B(an+vbond+vangle)dq

6.2.4 MD noise in constrained runs

Overall, for the adequate sampling of the phase space long simulations are
required. This is particular problematic at very close distances of the two
particles (high energy regimes); i.e. despite the fact that our 2-body con-
strained runs are computationally very efficient, it is not possible to accu-
rately determine the constraint partition function for such distances. On top
of that, when we are trying to compute (V"°(q))|,, we essentially average
samples of e AV k = 1 : maxstepsdr (see section (6.2.3)). In our case,
the inverse temperature /3 is positive and at close distances V™ is large, so
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e=BV"™ are very small numbers, in the range O(1071) -O(107*). Summing

up very long vectors of numbers that small, produces unavoidable numerical
errors, even when double precision arithmetic (and proprietary compilers)
is used.

Note that the usage of typical block averaging techniques [33] do not im-
prove the results either. This problem is further magnified when we take the
logarithm of <e_ﬁvnb>|r at the final post processing stage of the calculation,
in order to obtain (V™)|.. All of the above urged us to seek for another
method to crosscheck the validity of our findings.

6.2.5 Inverse g(r)

An alternative method to obtain accurate sampling is the Direct Boltzmann
Inversion (DBI). The key idea is that we attempt to infer information from a
bulk (macroscopic) quantity and construct an effective pair potential. The
formula used is the reversible work theorem: e PW(0) = g(r) (see section
6.2.5) which relates the radial distribution function g(r) with the potential
energy. In our case we have two molecules (CG particles) moving freely in
vacuum, so extra care is needed in the proper normalization when calculating
the g(r).

W (r) is the total potential of the system for every value r between the
COM’s of the two CG particles. We simulate this system in the atomistic
level, allowing the particles to move around for a very long time in vacuum
which resembles the gas phase and the limit of the reversible work theorem.
In this way, we are able to “extract” the real pair potential. The long
trajectory ensures that the g(r) is smooth enough. As there are only two
particles involved (we map the COM’s of the molecules to CG particles),
the g(r) form has one peak at the potential minimum and then approaches
unity towards longer distances, which is typical for the gas phase.

In figure (6.4) we show a preliminary test for the non-dimensional Lennard
Jones fluid case. There is not absolute agrrement between the pair potential
and the inverted g(r) because the latter comes from a bulk run, so there
are multiple peaks up to r., In figure (6.5)a we can see that for CHy, the
constrained run technique and the inverse g(r) are almost the same, within
error tolerance (less than 5% throughout the plot), so our proposed con-
strained run method is accurate. In figure (6.5)b the inverse g(r) effective
potential W2)9(") is similar to the W(®)F but the (smoothed) W3\ is still
not quite accurate. It is not strange as we have addressed this issue again
for this less symmetric molecule. In the next section, we will use a more
accurate technique. Note that in these figures, the g(r) comes from two
atoms moving freely in vacuum, so there’s only one peak.
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Figure 6.4: Ilustration of the inverse g(r) method for the non-dimensional
LJ fluid case (bulk, 500 atoms).

Reversible Work Theorem

We first define the radial distribution function for n out of total N identical
particles and then state the theorem in the general case 77.

Let P™(ry,ro,...,7,) be the joint probability distribution for finding par-
ticle 1 at rq, ..., particle n at r,.

P™(ry g, ) = /---/P(rN)drn+1---drN (6.10)

Assuming that the particles are identical, the probability of finding any
particle at r1,... etc is given by:
N!

T = —
/) (N —n)!
The radial distribution function for n fixed atoms (out of N interacting in
total through Un(r1,...,7n)) is given by (see McQuarrie):

P (1,72, PM(ry, 7y, 1) (6.11)

™) (yr N 2
g(")(rl,...,rn) T (1 ) =

pn
ﬁp(n)(rla'”arn) . N'V” f“’fe_BUNdTTH_l dTN
(%)n ~ (N —n)!IN® A
—ﬂUNdn ceed
~yndte ZNT 1IN 6.19)

The reduced distribution functions P, p" are related to a Helmholtz
free energy by [145]:

g(”) (riy...,1mp) = e~ B (r,rn) (6.13)
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Figure 6.5: PMF (V™) and W():9()(r) from DBI for (a) CHy at T = 80K
and (b)CHs — CH3 at T' = 150. Good agreement between methods.

where w(r) is usually termed as “reversible work”. Upon substitution in
eq.(6.12) we take the logarithm of both sides and then take the gradient
w.r.t. the position of the j-th (j € {1,...,n}) fixed particle allowing the
remaining to move.

gy = o PN (N UN) g - dry (6.14)
j [ [eP0Ndrpsy - -dry :

The term —V;Uy is the force acting on particle j so the rhs is the (pair)
mean force f j(n) acting on j averaged over all the configuration of the other

N — n moving particles. So fén) = —ij(") which means that w( is the
potential whose gradient gives the mean force acting on j. In the case of
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n = 2 fixed particles at distance r = |r; — ro| apart, eq. (6.13) becomes

_ —w@(r)
g(r) = e :
get:

If we ensemble average the force acting on particle 1 we

d ;0N — [(dU/dr)e~Vdrs - - dry
TN = dra---d 1
<d7“1 utr >7’1,7’2fiaced f e—BU T3 N (6 5)

After straightforward calculations (see Chandler p.201) it holds:

d  n L d
(L =512 1
<d7"1 U(T )>r1,r2fi$ed ﬁ ClTl 8 9(7’1, TQ) (6 6)

This result shows that —kpT log(g|r1 — r2|) is a function whose gradient
gives the force between particles 1 and 2 averaged over the equilibrium
distribution for all the other particles. Integration of the averaged force
yields the reversible work in eq.(6.13). When the density becomes very
small, the two molecules r apart, are not affected by the remaining N — 2
molecules and so w® (r) — U(r) as p — 0.
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6.3 3-Body

In the following, we are interested in constructing a higher order effective
potential between three molecules. The key idea is to assess the tradeoff
between accuracy in CG calculations versus a computationally more de-
manding force evaluation. The extension of this framework on top of pair
(2Body) interactions is neither trivial, nor computationally cheap. The rea-
son is that we have increased the dimension of the problem; the pair poten-
tial that was a function of distance r15 between COM’s, now involves three
distances 12,713, 723. Things are even more complicated when one tries to
evaluate the forces between three particles. This last issue is two-fold:

i) The calculation f; = —Vq,W(r12,713,723) from the data extracted
from the calculations of three constrained particles in vacuum, and

ii) The identification of triplets in the CG level run and correct attribu-
tion of forces among them.

6.3.1 Constrained runs

We extend the notion of 2-Body constrained runs in the case of three par-
ticles in a straightforward manner. The setup for the first two CG particles
remains the same and we place a third one within the cutoff range of the
atomic potential. The new extra distances starting from CG particle @

and @ are r13 and 793 respectively. The atomistic non-bonded pair poten-
tial between atoms of CG particles @ and @ is calculated, then between

@ and @ and finally between @ and @ The total potential energy
based on this atomistic pair potential is a sample for the ensemble average
<W(3)>|T12,T13,T‘23'

The same constraining methodology of subtracting COM forces (or mo-
menta depending on the integrator) on every time step, for the CG particles
to remain pinned in space, applies. When an adequate number of samples
is gathered for the triplet {ri2,713,723}, we need to move one of the three
CG particles by dr and repeat this procedure. When we move, for instance
rs by drs, two of the distances change: 713 and re3. As one can easily
see, the dimensionality of possible discretization, the mesh, has increased by
two. In the 2-body case he had a discretization of intermolecular distances
r12 by dr, so {r € [Fmin, 7 cut];dr} In the 3-body case this space becomes
{7'12 € [rminyrcutLrli’) € [rminyrcut]7r23 € [rmin7rcut];dr} - TL3 Conﬁgura—
tions, or ”points”. Each one of these n® points requires an independent long
trajectory so we can run a separate simulation, provided that is has equi-
librated “sufficiently” before we extract the mean. We mention again that
although we insert bias in the dynamics of the run, we sample with respect
to the correct equilibrium measure.
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6.3.2 COM positions

In the previous section, we presented the problem on the huge number of
points and the major computational cost associated with it. It is vital to
exploit any symmetries of the vectors riz,r13,re23. Remember that in the
2-body case, we displaced the two COM’s along the z-axis for simplicity.
Here we keep those two fixed and displace @ on a semicircle around @,
so we move along the X — Y plane. Of course, the algorithm is general and
the code works even if the positions employed the Z-dimension.

The potential energy <V(3)> is a scalar quantity depending on the relative
positions of the atoms or the three distances between them. So there is in-
variance under internal rotation of the COM indices; i.e. W®) (r12,713,723) =
W®) (rs1,7m39,713). The same holds for rotation of @ around (by varying

the Z coordinate) the fixed vector ri2 formed by @ and @ inthe X - Y
plane, as seen in figure 6.6a. The next symmetry to be exploited, is along the
Y'Y axis in the same manner and is shown in 6.6b, meaning that rotation
of @ around @ is sufficient (no need to repeat around @)

Figure 6.6: Triplet symmetries in space. Symmetry along X’X (upper) and
Y'Y (lower)
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Figure 6.7: Algorithm 1 sampling strategy.

After taking account of all the above notes, we conclude that when dis-
tance 112 is fixed (by pinning @ and @) and ri3 is fixed by rotating @

counter-clockwise around @ on a circle bow of radius r13, the variable of
distance ro3 takes all the possible values in the range [rinin, reut]). This bow
starts when 793 is at rn and ends when the Y-coefficient of @ reaches 0,
because of the symmetry across X'X. {r12,713,:} is sampled so we proceed
to sample {ri2,r13+dr,:}. Now @ is moved further away from @ and @
SO 712,713 change.

A clever way for clarity and bookeeping of the data i.e. changing one
of the variables r3, 713,723 at a time, is to rotate @ around @ by d¢
clockwise. Then we recalculate the distances 712,713,723 and proceed as

before; rotate @ around @ Schematically the triangle 123 changes shape,
but 712 and r13 remain the same, see figure (6.7).

On the final step we need to alter 12 in order to sample {ri2+dr,r13,:},
which is straightforward and then go to the first step and reiterate this
procedure.

The whole above procedure is better seen in figure (6.7), while its im-
plementation is described in algorithm 1.

Note, again that we can think of every triplet {rio, 713,723} as a “separate
simulation” because we bias the dynamics by pinning the COM’s instead of
one really long simulation. The correct equilibrium measure is maintained,
provided that we throw away an initial burn-in period on every run. The
space discretization for the two system COM’s is found in table (6.2).

drio do doy
CH, | 005A| =& z
CH; —CH; | 0.054 | 3.8:59] | 3.8 : 6]

Table 6.2: COM space discretization df in the models for algorithm 1.

130



Algorithm 1 define the COM’s in cartesian coordinates

Precondition: set COM’s at r1,ro,r3, do, dp1
1: FIND ’7"12|, |7’13‘, ‘7‘23’

2:

3: for i in range=[r3" : r19%] do

4: FIND rs, ‘7’12|, ‘T13|, |T‘23|

5 for k in range [1 : max iterations| do

6: FIND polar coordinates for ry,ro,r3

7: ROTATE rj33 by —d¢ around ry

8: if (r3)y < (r1)y then > r13 parallel to ry2: no new
> info if rotation continues

9: place rg back to the original position

10: find polar coordinates for rq,rs, r3

11: ROTATE ra3 by +d¢; around ra

12: Calculate new |ris|

13: end if

14: STORE ry{,ro,rs

15: end for

16: end for

6.3.3 Statistical accuracy

In section 6.2.4 we mentioned the problems that arise when we try to en-
semble average quantities at low probability /high energy configurations of
phase space, for two CG particles in vacuum. Sampling problems can be
even stronger in the 3-Body case, as the energy term e~ #(Viz+Via+Vas) 'y
being the atomistic level potential energy between molecules @ and @, is
quite small or highly improbable. In an attempt to properly visualize the
4-dimensional data r12,713, 723, W(?’) (7”12, 713, 7”23), we keep 12,713 fixed and
plot W®) against ro3.

In figure (6.8) we show the effective 3-Body potential W 3)MP for CHy at
T = 100K for the set of distances r15 = 3.9;1, r13 = 4.0A and ro3 € [3.5: 8];1
and 719 = 4.14, 713 = 4.4A and 793 € [3.5 : 8]A in conjunction with the 2-
Body W@ (r15) + W (113) + W) (193) for comparison. This latter sum is
essentially what all pairwise CG representations use in the last decades. In
the first set, we discern a gain in information with W®:MP “although the
noise is high. As the three CG particles move away from each other (6.9),
WGMD hecomes smooth. Even for very long trajectories of the order of
(8-107) steps (= 40ns), the fluctuations remain. We also threw out burn-in
periods of length twice as much as the production run, without considerable
success.

The above simulations refer to the C'Hy molecule. Sampling the phase
space for the (spherically) asymmetric C H3 — C'Hs was proved to be even
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Figure 6.8: W®):MP(3.9 4.0,:) and W (3.9) + W3 (4.0) + W) (3.4 : 1eyy)
for CHy at T = 100K. We see gain in information as expected, but the
noise is high in the MD simulations.

harder, as we see next. We checked with the wvariance of the estimator (-)
and it does not decrease below a threshold dependent on the temperature
and system. More specifically, we experimented with different values of the
coupling coefficient of the heat-bath (£ in BBK), timestep dt, burn-in period
(up to 60% of the trajectory) and intermolecular distances, without success.

In figure (6.10) we show the effective 3-Body potential for C H3 — C Hs at
T = 150K for ri9 = 4.24,7r13 = 4.5A and ro3 € (3.5 : 8.5];1, in conjunction
with the 2-Body W® (ri2) + W® (ry3) + W@ (ry3) for comparison. There
are clear fluctuations throughout the ro3 range.

In figure (6.11) we see that even for a set of relatively long distances,
the estimator of the 3-Body potential (W) (4.2,4.5,5.54)) has large vari-
ance. The problem persists for bigger/smaller timstep dt, larger heat-bath
coupling coefficient &, and total simulation time up to 1000ns!

Taking a closer look at the numerics of the ensemble averaging, we con-
cluded that the reason that (-) won’t improve as we increase the simulation
time (even if small or larger timesteps dt where used) is due to rare events.
After a couple of million steps, there would be a small number of (valid)
configurations where the molecules allign with each other, giving rise to the
energy of the system of circa two orders of magnitude more. In effect, this
has high impact on the averages and we end up with fluctuations in the
W) figure.

We have further examined different smoothing techniques, such as the
moving average with various values for the moving window. However, all
of them proved to be useful in the range of W& () — STW®)(), so any
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Figure 6.9: WGMDP (4.1 4.4, ;) and W (4.1) + WP (4.4) + WP (3.4 : 7o)
for CHy at T = 100K. There is less noise as well as information gain as CG
particles move away.

information from our detailed atomistic constrained runs could be washed
out in this manner.

One would suggest that an alternative way of calculating the ensemble
average, which in practice is:

W)l = [ Ulntda) (6.17)

and so far we approximate by:

({U(a))lu ~ lim —ZU (6.18)

N—oo N

by Monte Carlo (MC) simulation. Note, that for ergodic trajectories, MD
and MC results should are equivalent with respect to the calculation of sta-
tistical averages (apart from dynamic related results like the MSD). That
calculation would work provided that we model the bond potentials cor-
rectly and define appropriate MC moves. In principle, the result would
be slower averaging convergence because the problem of sampling the low
probability areas remains. The proposal distribution based on the configu-
rational energy from the intermolecular potential, by which the MC moves
are accepted, is still the same: eBUM(r2) Tt is very small and low prob-
ability configurations are rarely accepted (remember that u ~ U|0, 1] and

u < e_*BUnb).
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Figure 6.10: W) (4.2,4.5,:) and W (4.2) + W) (4.5) + WP (3.4 : 10ys) for
CHs;—CHg at T = 150K. We see some gain in information around the well
as expected, but the noise is still high in the MD simulations.

6.3.4 Geometric averaging

All of the sampling issues discussed above were resolved with the geometric
averaging technique 77. At this point we do not perform molecular dynamics
for the 2-body and 3-body systems any more. On the contrary, we displace
(rotate more precisely) the molecules around their COM, taking account all
possible orientations based on their appropriate probability weight.

In more detail, for the 2-body system, we pin the COM of each CG par-
ticle in space and place the atoms of that particle by defining their Cartesian
coordinates. Then, instead of integrating the equations of motion, we rotate
@ while keeping @ still. The rotation is done by using the Euler angle
formulation; the axes of the original cartesian frame are rotated by three
angles: «, 3,7 [34]. Each one is formed by rotation of X’X towards Y'Y,
Y'Y towards Z'Z and Z'Z towards X’'X respectively. There are six possible
rotation sequences for full coverage of the sphere surface and we used the
ZY Z one.

The angle discretization was df = w/20 for CHy (df = 7/90,d¢ =
/45 for CHs — C'H3) and was determined by separate sequential runs until
convergence on the ensemble average was reached. We note that in this
method, we do not take into account bond vibrations, i.e. the molecule is
rigid. We stress that we found no differentiation in the results. Furthermore,
tests on constrained MD and SD runs agree with this finding as well, because
the intermolecular forces cancel out on the average and the bond and angular
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Figure 6.11: MD noise in (W)(4.2,4.5,5.54)) for varying the number of
timesteps per sample of the same simulation of length 1000ns. CHs — C'Hj
at T'= 150K

« I} v de

CH, 0:7] | [0:F] | [0:7F] 50

0 10} do do

CH3 —CHs | [0:7] | [0:27] = 50

Table 6.3: Euller angle range and discretization df in the models.

potential energies are not taken into account in the ensemble averages.

The same procedure was extended for the 3-body case. The compu-
tational cost increases by an order of magnitude as there are in total n3
(= n xn xmn, nis the number of orientations per molecule) orientations.
In the CH3 — C'Hg case, we need to take into account more orientations
(despite the fact that the atom-atom computations are fewer) because of
the asymmetry of the molecule. By exploiting the symmetries of all possi-
ble orientations for this system, we were able to perform the computations
relatively fast; i.e. full sampling can be performed in a couple of days for
CHy and five days for CHs — C'Hs, on a system of 20 cores (intel Xeon @
2.6GHz).

In algorithm 2 we sketch the geometric averaging method for the case of
3 molecules. This computation includes a triple loop over orientations, so
df is the discretization variable that defines the order of the computational

s

cost. The C'Hy system takes about 1 hour (serial runs on 8 cores) for dff = 55
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Algorithm 2 Geometric Averaging for 3 CG particles

Precondition: Use algorithm 1 to define the COM positions:

N =

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:

30:

COM; (), COM;(), COM;()

# define orientations once i.e. rotations about each COM
for o in [0,27], « = a + df do > rotation of coordinate frame along o
angle
for 5 in [0,7], 8=+ df do
for v in [0,27], v =~y + df do
# ZY Z orientation of a CG particle at the origin (0,0,0)
according to «, 8,7y
orient(l  :  n.atoms,1 : 3 idr_orientations) =
rot_matriz(a, 5, 7)
idx_orientations = idx_orientations + 1
end for
end for
end for

# calculate atomistic positions at COM; (), COMs(), COMs;/()
for ¢ in the set of COM’s do
# calculate atomistic positions for COM;
q1(1 : n_atoms, 1 : 3,1) = COM; (i) + orient(1 : n_atoms)
q2(1 : n_atoms, 1 : 3,i) = COMa(i) + orient(1 : n_atoms)
q3(1 : n_atoms, 1 : 3,i) = COM3(i) + orient(1 : n_atoms)
end for
# main loops for sampling the potential on every {ri2,r13,723}
Brb = o
for i in [1 : idx_orientations| do
for j in [1 : idx_orientations] do
for k in [1 : idx_orientations| do

Calculate UZo™, U™, U ;l,f;om > atom-atom
_ atom atom atom
Ucur - Ui]’ + Uzk + Ujk
Utotal = Uotal + e~ ProUeur > Weight included!
end for
end for
end for
— — Uotar .
Utotal T idz_orientations3 > Normalize

log (Uiota
Uog = e
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Figure 6.12: Euller angles and corresponding rotation of the coordinate
frame (Wikipedia)

and 11 hours (intel Xeon @ 2.6GHz) for a discretization of dff = g5, as the

number of orientations (per CG particle) has increased from 2542 to 7935.
On the other hand, the accuracy was negligible meaning that df = 55 is
sufficient for this model.

For C H3 — C'Hs we used plain spherical coordinate sampling due to the
geometry of the model; rod-like. Of course the Euler angle discretization
can be applied with an extra computational cost. In order to speed up the
computations, we parallelized all above computations. In more detail, we
employed OMP paradigm, since all different configurations are independent.
The dimensions of the problem scaled up to 20 CPU’s (dependent on angle
discretization). As a reference, we used 8 OMP threads per run and the
number of orientations where 1886, so it took about 3 days (on 7*8=56
cores). The angle ranges and discretizations are summarized in table (6.3).

At this point we mention that the C'Hy system is faster, as we ex-
ploited (experimentally) one of its properties. We converted the triple “for
loop” into a double while we oriented the CG particles in an inverse or-
der. More specifically, in algorithm 2, line 21, we replaced the loop with
j = idx_orientations — i + 1 and the ensemble average remained the same,
while the computational cost dropped by days!
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Figure 6.13: 3-dimensional representation of WB)geom data for rio = 4.3
fixed, and r13 € [3.8 : 5.8], r13 € [3.2 : rey) for CHy at T = 80K. The

double-well is clear.

6.3.5 4-Body

For completeness purposes, we include a rough description of how complex
the 4-Body effective potential might be. We need 4 additional variables to
uniquely determine the positions of the COM’s as shown in figure (6.14).
Note that we employ torsional angles as only @ and @ reside on the Z =0
plane. All of these mean that the level of complexity in constructing, as well
as using, the potential has risen dramatically. In the case of C Hy where
the triple for loop over neighbours is computationally less demanding, the
W B)geom mioht be feasible in days.

Our assumption is that in the CG level simulation, a 4-Body potential is
computationally unfeasible because of the 7 parameters. First and foremost
the bottleneck of any MD code is the force evaluation and a quad “for loop”
over neighbours is more expensive by one order. Inside the loops, there will
be external trigonometric function calls for angle estimations which have a
detrimental impact in performance. Last and most importantly, the fitting
of the data is hard and prone to numerical errors, so the overall benefit
might not even be quantifiable; the examination of such terms could be a
part of a future work.

6.4 WO representation

After the collection of W) data has finished we are able to use them in the
CG level simulation. In order for W®) (r12,713,723) to be in a usable form,
we need either a functional form of the potential and of the forces, as we
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Figure 6.14: 4-Body COM constraining. W® (15,713, ¢, 0,734,714, 724). Te-
side on the Z = 0 plane.

normally have in the atomistic simulations, or a tabulated (up to a degree of
discretization) form for the potential and forces. Both methodologies have
advantages and disadvantages, so we focus on each one separately.

6.4.1 Cubic polynomial

The simplest, handy and usual methodology is fitment of the data to a
usable formula. By usable we mean a tradeoff between low complexity and
accuracy for less and correct calculations. In principle, as we employ higher
dimensional functions containing more terms, the mean squared error of the
fitting is reduced. Then, after W s determined, we have to take the

cubic
spatial gradient with respect to each cartesian position: —Vyg, Wc(jz)n . for the
calculation of the forces. This is done analytically, once, for the specific
functional form.

We note at this point, as it was our first failed attempt, that the func-
tional should be at least a three dimensional cubic polynomial. Three di-
mensional as of the parameters (12,713, 7r23) and cubic, because we require
its gradient, which is quadratic, to be able to capture the curvature of the
force well.

The form of the cubic polynomial, containing constants P__ to be deter-

mined, is:
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f(x,¥,2) = Pooo + Proox + Poroy + Poo1z
+ Pyoox® + Poaoy? + Pooaz?
+ Prioxy + Pio1xz + Po11yz
+ P3oox® + Posoy® + Poosz® (6.19)
+ Piixyz + Poiox?y + Pog1x°z
+ Poo1y?z + Poioyz? + Piaoxy? + Piooxz?
where

x = |rjj| = |ai — qj

y = |rik| = qi — ax| (6.20)

z = |rjx| = [gj — gk

2 = (g — g2 1 (¢ — @) 1 (¢ — O
The gradient of the X-dimension with respect to qj is:
(1) (1) (1) (1)

0 4 " — 4 q;
{) 0+ Pioo————— + P010]7 + Poo10
24! X ¥l
+ Poo02(g; p— )) + Py202( Z( )~ q,(:)) +0
ly| (1) ) x|
+ P qZ(l) g + (g; q — 6.21
110(( j )‘X| ( )|y|) ( )
OEEON L] OEON
+ Pio1 ((qZ q; )|x\) + Pout ((qz @ )|y|>
+ Ps00 (3\x](q(1) - qj(-l))) + Po303|yl(g; - q,ﬁl))
X
P () =)+ = o)

X
+&m%¢h%>m+<”—£wg)

(
(

+ P (2((12-(1) - q,i”)lz!) + Porz <(q§1) - ql(cl))w>
(

vl
2
+ Prao (g — qj(-l))‘fyx‘| +2(q") ;(gl))\X\)
Z
+ Poo1 (2((1( ) )’Z\) + Pio2 (( o q](l))’X”)

and after tedious, error-prone chain rule differentiation

of - of

aqj(l) ’ aql(gl)

(6.22)
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are calculated in the same manner. Fortunately, there is symmetry with
respect to the @ and ®) coordinates. As one can see, the cost and complexity
increases dramatically if we move to a polynomial of order four.

At this point we need to fit the data from the constraint (or geometric)
runs. The main idea of the fitting is to solve the minimization problem:

min|f(x,y,z) — data| = minG(x,y, z) (6.23)

X,y,Z x7y7z

with the Conjugate Gradient method, where:
G(x,y,z) = %XTAX —XxTp (6.24)

where matrix A € R?*20;

x = |rj;| and the m-th row contains the terms for the coefficients in eq.
(6.19) corresponding to data(™.

Pio2

data™
data®

b= . c R™X 1
data™

and data(™ is the W®)(.,.,-) of the m-th triplet {r%n), rggn), rgb)}.
We convert A to a symmetric matrix, i.e. its normal form, by:
A
ATb (6.25)

S >2
o
b
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The conjugate gradient algorithm takes up to a hundred steps to con-
verge, depending on the data set.

We validated the solution with Cholesky decomposition of AX = b as
well. In order to have an estimate of the wellness of fit, apart from inspection,
we use the root mean squared error (RMSE):

1|\ i i))2
RMSE =~ Zi:(f( ) — data®) (6.26)
here f(i) = Wc(il)n c(r%,r&?,rél)) is the determined cubic polynomial value
and data® = W) (rg,rgg,rg)) at the same COM distances. For better
inspection, we define the normalized “local error” Ej,., as the curvature is
steeper towards 7.,in:
, @ — b(i),

=" (6.27)

—Sw®
041 . %(3),geom’
— 7 (3),cubi
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Figure 6.15: Comparison between the fitted cubic polyomial PMF
W3eubic(4. 03,9, 1), geometric averaging data W(3)g0m (40,39, :) and
W2 (4.0) + W3.9) + WP(34 : rey) for CHy at T = 80K,
rog € [3.8:5.0]. The fit captures the potential well, so we are in agree-
ment with the data and can proceed to the 3-Body CG run.

In figure (6.15) we see the resulting fitted cubic polynomial to the geo-
metric averaging W(3)’ge°m'(4.0, 3.9,:) data for CHy. The polynomial suc-
cessfully captures most of the area of interest around the potential well. The
range of ro3 for this system was determined experimentally by eq.’s (6.26)
and (6.27).
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12 713 723 Tcuf
CH, [3.8:4.1] [ [3.8:4.1] | [3.8:5] | 124
CHs —CHs3 | [3.8:44] | [3.8:5.9] | [3.8:6] | 144

Table 6.4: Fitting range for distances 712,713 and ro3 in the models.

6.4.2 Numerical calculation of partial derivatives

Next, we examine the usage of the W) data in the CG simulations, using
numerical calculation of partial derivatives. We term this partial derivatives
because we used central differences in order to evaluate the forces:

OW ) (r1g,m13,m93)  OWE) (r1g,113,m03)  OW S (r1g, 713, 723)

- b ) 6.28
Oq1 Jqz 0qs ( )
T2 = \ql - QZ\ (6-29)
on the triplets, meaning:
OW P (r12,713,793)  OW ) (r12,713,723) Or12
Oq oria Oq1
OW ) (r19, 113, 793) Ir13
+ L 6.30
ori3 a1 (6.30)
n OW ) (112,713, 723) Oras
(97"12 8q1
81"12 1
= — 6.31
dax 12 2 ( )

Note that agla(f) contains information from @ and @ ‘We use the notation

1,2, 3 instead of i, j, k because we require rio < riz < 723.
The central differences scheme reads:

OW ) (r19,713,m93) WS (r1 + dria, r13,723) — W (119 — dria, 713, 723)

87’12 2d’l“12

(6.32)
So we end up with three tables containing the partial derivatives of W),
on the discretization of the triplet positions.

In the CG level run, we look up the 3-Body potential W) P4 ags well
as the force magnitude f(3)(r12,r13,r23). We try to be more precise in
the simulation by using the average value between staggered points, for
instance W®»d(4,02,55) = (WEPrd(4,0,55) + WE»d (405 5,5))/2
and the same holds for the forces.

The differentiation was not a straightforward task because ri9, 713,723
have different ranges. On top of that, ro3 values slightly vary when we
place COM @ on a circle bow (d¢=fixed) for every ri3 value. We imposed

143



different tolerance values for central differences (6.32) across the range of
r12,713,723. We mention again that the reason for not allowing r;; in the
range [r,in, rey) is (with the aid of symmetries): a) to limit the computa-
tional cost of sampling W () b) keep the tables small for quick access in the
CG simulations.

The different range of the three distances induces a little complexity to
the CG level code. We need to check if the triplet of particles is within ¢,
range and then sort the distances (in ascending order) before we look them
up in the partial derivatives tables, which slows down the performance in
comparison with the polynomial fit.

6.4.3 Comparison

At this point we are required to assess both methods. We cannot directly
compare W) as it is in tabulated form in the partial derivatives method
(geometric averaging data). So we directly compare the forces between the
two methods.

We did opt for the partial derivatives when we suspected accuracy issues
at close distances for the cubic polynomial in the C H3 — C H3 model. All the
potential curvatures are very steep at the repulsive (left part of the well) in
comparison to the attractive, for instance see figure (6.15). This means that
it is harder for the polynomial to be accurate in that region. This would not
pose a problem if it had not been for the force calculation. As mentioned in
another chapter, there is a small fraction of configurations at close distances,
so that would affect the total potential energy by a small constant. But it
is more complicated than that. The fitting procedure evenly captures the
whole dataset of the geometric averaging sampling W (3):8e0™m with bigger
local errors Ej,. at closer {ris, 713,723} distances. In effect, although the
differentiation is done analytically, giving an accurate value for each triplet,
it is skewed in the closer regions. At this point, we suspected that the partial
derivatives is more accurate, despite the discretization errors (tabulated form
and central differences O(dr?) error). In figure (6.16) we see the comparison
of the force evaluation between W®)cubic and partial derivatives at close
distances r12 = 3.9,r13 = 3.8,r23 € [3.2 : 5]. We can see differences towards
Tmin and we see believe that the partial derivatives are more accurate. In
the next section, we are able to assess the effect of this claim in the actual
CG simulation.

6.5 CG runs

In the previous sections, we have been constructing effective potentials that
describe the interactions between CG particles. In this section, we assess
the accuracy by inspection of the CG simulation results. More specifically,
we will assess the accuracy of the effective potentials with respect to the
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Figure 6.16: Comparison between the forces taken from fitted cubic poly-
nomial W®)cubic(3.9 3.8 +) and partial derivatives (doted lines) in the same
range, in all three dimensions. CHy at T = 80. We see good agreement
as we move to longer rog values, though there is minor difference at close
distances.

thermodynamic observable g(r). A representation of the procedure we have
followed so far is depicted in (6.19).

We note here that the evaluation of pressure is not correct. This is
because every MD algorithm has a tail correction for the pressure prunc,
which is analogous to the tail correction of the potential energy (Ui =
(1/2) [ Arr?p(r)U(r)dr) due to the cutoff radius rey [33]. In our con-
struction of the 2-Body potential, we end up with a tabulated form of the
effective potential W@ and Perune cannot be evaluated. On top of that, the
stress tensor associated with pressure evaluation, is written with respect to
pair interactions, so it is not clear how to include three body interactions.
Nevertheless, we still have an estimate of the relative pressure (without
Ptrunc) for the 2-Body runs, but not a direct comparison with the reference
(atomistic) systems.

As seen in (6.19), we insert the effective potential (as a table or parame-
terized formula) in the CG level simulation, along with the CG coordinates
through the mapping operator T' (see Chapter 4). Our aim is to let the
system equilibrate (by monitoring average quantities like the energy, tem-
perature, pressure g(r) and others) and export statistics and observables.

In the case of the W(2:geom 2. Body CG potential for both systems, the
g(r) between the reference and CG system is shown in figure (6.17)a for
both systems. As expected, the effective pair potential does not predict the
structure correctly. In the C'Hy case, the difference between the CG and
reference g(r) is smaller and it gets even smaller as temperature rises. This
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Figure 6.17: Comparison between the reference (atomistic) and CG W)
g(r) for a) CHy at T = 80K and b) CH3z — CH3 at T' = 150K.

small difference, in conjunction with the C'Hs —C' H3 system, can be justified
from the close packing of this symmetric molecule; the mapping of one C' Hy
to a spherical superatom of the same mass is a good approximation. So the
CG particles tend to come even closer than the molecules in the atomistic
description and this can be extracted from the height of the first peak.

In figure (6.17)b, the C H3 — C'Hs sytem is not properly described by a
spherical superatom, as it is rod-like and symmetric only in two dimensions.
In effect, we see a significant difference between the two g(r) plots. This
difference persists even in higher temperatures and in lower densities. So
it is due to the mapping and less because of the higher order terms in the
pairwise potential approximation.

In figure (6.18) we show the improvement due to the more accurate
3-Body potentials W®)cubic apnq W @) d- - Both methods, slightly vary
because of the different approximation of the forces over the triplets of atom,
as we argued in section (6.4.3). Overall, both methods improve on the
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Figure 6.18: Comparison between the reference (atomistic) and CG W)
g(r) for a) CHy at T = 80K and b) CHs — CHs at T = 150K.

estimation of the CG g(r) at the cost of extra computations.

We note that the extra forcing in the system, required stronger coupling
with the heat bath (dissipation), because the temperature was higher as a
result of the extra kinetic energy.
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Chapter 7

Conclusions

In this work, we focused on: (a) the sensitivity analysis of molecular models,
and (b) systematic coarse graining of different molecular systems. In chapter
3 we used the relative entropy, RE, metric in order to assess, qualitatively
and quantitatively, which model (force field) parameters are more significant
to small variations. We validated our findings against thermodynamic and
structural observable quantities, which indicated that RE indeed predicts
the impact that certain parameters have. The simulations were conducted
on the path space, in equilibrium and non-equilibrium steady-state regimes.
This method is quite general and can be used in models of stochastic nature
whose random component is under mild assumptions.

The Relative Entropy Rate and Fisher Information matrix are the com-
ponents per unit time of RE which we used in order to infer sensitivity. The
RER and observables chosen, are related through the Pinsker inequality
which bounds differences before and after perturbations in the parameter
nominal values. RER is based on force differences so calculations are per-
formed on the fly. FIM is independent of the parameter values and can
be calculated once in order to screen out the most important parameters
in high-dimensional systems. Our proposed methodology is independent of
the numerical scheme, and provides a gradient-free approach for parametric
SA.

In the LJ fluid system, the most sensitive potential parameter was o=/,
whereas in the more complex C'Hy4 system, which totals 10 bonded and non-
bonded parameters, the bond length 7 is the most sensitive one. The MSD
and rdf observables agree with this finding. We also concluded that from a
computational efficiency perspective, less steps are required for an accurate
estimate than the typical number of steps need for the calculation of an
observable.

In chapter 4 RE is used as a measure of loss of information in Coarse-
Graining. We adapted the RE method to quantify and indicate the most
efficient CG interaction potential in systems of increasing complexity. Also,
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we compared this way of determining Coarse-Graining with force matching
and Iterative Boltzmann Inversion. The probabilistic formalism provides
a generalized FM formula as a CG minimization problem, both for linear
and non-linear CG maps. It also proves that RE and FM are in principle
asymptotically equivalent. In practice, we found that the numerical imple-
mentations in the three methods are not bound to converge to the same
solution, as there are differences in the derived numerical schemes. We used
the derived pair potentials in CG simulations and checked that the struc-
tural properties are in good agreement with the reference data, for the case
of the CH,4 system. The dynamic properties, like the MSD, are more sensi-
tive to slight differences in the three derived CG potentials. For the case of
the water model, there are larger differences in the derived potentials.

The applicability of FM and RE depends heavily on the basis functional
used and it is of vital importance that the samples in high-energy, low-
probability areas at close distances are adequately populated. We tackled
with this issue by a preliminary detailed analysis in the all-atom configura-
tions, and proper extrapolation and extra basis nodes in those regions.

In chapters 5 and 6 we derived 2-body and 3-body effective potentials
using cluster expansions and potential of mean force techniques. We pro-
posed a rigorous, systematic Coarse Graining strategy, both theoretical and
algorithmic, in which we construct a hierarchy of CG Hamiltonians. We
quantified the accuracy of the proposed CG potentials in terms of the rdf in
CG simulations. For the 2-body potentials, we used four different methods
which converged (within minor fluctuations) to similar form, for the C'Hy
model and with a small difference in the non-spherically symmetric ethane
model. The 3-body potential is computationally more expensive but slightly
more accurate than the 2-body. We highlighted the issues and complexity
associated with such computations. Finally, we conjecture that the cluster
expansion formalism can be used in order to provide accurate effective pair
and 3-body CG potentials at high temperature and low density regimes.

The above methods, that were developed during this PhD were applied
in a few characteristic molecular fluids, like methane and ethane as well
as in water and in small alkanes. However, the methods are quite general
and in principle can be applied to more complex molecular systems, such as
macomolecular (polymeric) fluids, biomolecular systems (e.g. peptides and
proteins) and hybrid polymer/nanoparticles nanocomposites or graphene
based hybrid systems. The application of these techniques on such complex
systems will be a main direction in the future.

150



.1 Definitions

e simulation box the volume in our simulations where particles move,
subjected to periodic boundary conditions

e periodic boundary conditions when a particle moves towards the
walls of the simulation volume it does not bounce back with oppo-
site velocity sign but disappears and enters through the wall across it
instead.

e thermostat method of controlling the temperature in a simulation
to remain fixed. It can either be extra degrees of freedom in the
equations of motion, rescaling of the velocities with respect to kinetic
energy, random and dissipative forcing according to distributions etc.

e integrator the numerical scheme that solves the Newtonian equations
of motion of the system in time according to time discretization dt

e ensemble average collection of particle configurations that corre-
spond to macroscopic quantities N, V,T, P, E and are associated with
a probability measure. In principle this set is not countable.

e trajectory set of cartesian coordinates for each particle in the system,
for every (discretized by dt) time point in the interval [0:T].

e Coarse Graining the mapping of atoms, through an operator, to
a larger particle “superatom” in order to decrease the system total
degrees of freedom and reduce the computational cost.

e Burn-in period the part of the trajectory (or number of timesteps)
that we throw out when calculating averages, or properties in a sim-
ulation. It is an empirical value, dependent on the complexity of the
system or stochastic process at study.

e royt cutoff distance (or radius) beyond which the intermolecular po-
tential is set to zero, instead of asymptotically approaching zero. This
approximation reduces the bulk simulation computational cost signif-
icantly and appropriate (potential) tail corrections are applied.
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