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Abstract

Given the growing need for managing market risk, risk prediction plays an
increasing role in finance. Value at risk (VaR), is a measure of market risk used
by financial institutions. Interpreting the VaR as the quantile of future portfolio
values conditional on current information, the conditional autoregressive value at
risk (CAViaR) model specifies the evolution of the quantile using an autoregres-
sive process and estimates the parameters with regression quantiles. However,
uncertainty with regard to model selection in CAViaR model estimators, raises
the issue of indentifying the best quantile predictor. In this study, we propose an
AIC and an Equal Weighted method that generates combinations of conditional
VaR estimators based on single CAViaR models. The aim of the research, is to
compare single CAViaR models against combined ones for their ability to forecast
VaR. We apply this method to real financial data, providing empirical support for

our results.



Introduction

Financial crisis has (once again) called into question risk management prac-
tices and whether risk measures can be forecast accurately enough for that pur-
pose. This paper adds to this challenge by proposing semi-parametric conditional
autoregressive VaR (CAViaR) models and specifically, evaluating them for fore-
casting tail risk, after-crisis period, for three financial index returns. The motiva-
tion is to generate more accurate and efficient forecasts of VaR for index returns,
by using single CAViaR models or combined CAViaR models, to help achieve bet-
ter risk measurement and risk management practice. We attempt this, by examine

which model after all, has the better performance and the most desirable results.

Financial markets and products continue to become increasingly complex, and
risk management and regulations need to keep pace with this rapid process. The
Basel II Accord is designed to monitor and encourage sensible risk taking, using
appropriate models to calculate VaR and daily capital charges. VaR is now a stan-
dard tool in risk management and became highly important following the 1995
amendment to the Basel Accord, whereby banks and other Authorized Deposit-
taking Institutions (ADIs) were permitted to use internal models to forecast daily
VaR. VaR was pioneered by J.P. Morgan Corporation, via their RiskMetrics sys-
tem, in 1993 and is more formally defined by Jorion (1996).

In this work, we define the VaR as a measure of risk and we mention some
methods of evaluating VaR. Also, we propose a new semi-parametric family of
quantile risk CAViaR models and try to estimate the VaR for these models, in
a time horizon for two given confidence level. Finally, we introduce combined
CAViaR forecasts based on single CAViaR models and discuss the selection of
optimal CAViaR model.

The research is structured as follows. In Chapter 1, some basic informa-



tions for VaR are reviewed and CAViaR specifications, are presented. Also, in
this Chapter, the criteria for measuring VaR performance are discussed. Chapter
2 discusses the combined CAViaR forecasts based on single CAViaR models and
how other researchers analyze their structure. In addition, in this chapter we dis-
cuss our perspective of analysis the combined forecasts using the AIC measure.
Empirical analysis is conducted in Chapter 3 on European financial indices, in-
cluding IBEX index, OSEBENCH index and SMI index to forecast VaR. Some
concluding remarks are given in Chapter 4. Finally, some technically details are

given in the appendix.
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Chapter 1

Value at Risk (VaR)

1.1 Risk Management

Risk management is the identification, assessment, and prioritization of risks fol-
lowed by coordinated and economical application of resources to minimize, moni-
tor, and control the probability and/or impact of unfortunate events or to maximize
the realization of opportunities. Risk management’s objective is to assure uncer-
tainty does not deflect the endeavor from the business goals.

Risks can come from various sources including uncertainty in financial mar-
kets, threats from project failures (at any phase in design, development, produc-
tion, or sustainment life-cycles), legal liabilities, credit risk, accidents, natural
causes and disasters, deliberate attack from an adversary, or events of uncertain.
There are two types of events i.e. negative events can be classified as risks while
positive events are classified as opportunities. Several risk management standards
have been developed including the Project Management Institute, the National In-
stitute of Standards and Technology, actuarial societies, and ISO standards. Meth-
ods, definitions and goals vary widely according to whether the risk management

method is in the context of project management, security, engineering, industrial
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8 CHAPTER 1. VALUE AT RISK (VAR)

processes, financial portfolios, actuarial assessments, or public health and safety.

Risk sources are identified and located in human factor variables, mental states
and decision making as well as infrastructural or technological assets and tangible
variables. Strategies to manage threats (uncertainties with negative consequences)
and risk sources typically include avoiding the threat, reducing the negative ef-
fect or probability of the threat, transferring all or part of the threat to another
party, and even retaining some or all of the potential or actual consequences of a
particular threat, and the opposites for opportunities (uncertain future states with
benefits).

Management of risk is a central core in the management sector of each com-
pany. More specifically, is the way with which companies approach the risks
associated with their actions, intending profits. Center of attention in a right risk
management is the acknowledgement and operation of these risks. In this way,
the access possibility of the company’s goals enhances. The management of risk
could be applied in all operations, in order to deal with problems in advance. The
management of risk is separated in three basic parts: the acknowledgement of
risk, the quantitative definition of risk and the control or mitigation of his con-
sequences. By the analysis of the plans for the time, the cost and the quality
is possibly arise outcomes far away of basic aims and interests. Also, the com-
pany should know how to act if something goes wrong. Specifically, the company
should consider how risky an operation is and which technique should be followed
in order to define the risk quantitatively.

Some of these techniques are:

e The expected value

e The sensibility analysis

e The Monte Carlo method
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e The condition of failure analysis

e The Program evaluation and review technique (PERT)

As long as, the risk, has been defined, a short of procedure are demanded in or-
der to ensure that the possibility of risk should be diminished or the consequences
should be mitigated. Management of risk enables a better depiction of reality
and an important benefit as far as the improvement of plants is concerned. From
the phase of planning, the sectors that need more attention are already indicated.
In that way, risks should be managed quickly and presently. In addition, in that
way, risk should be valued and risk’s course should be followed in the past. This

cognition should be deployed in future projects.

1.2 Market Risk

Market risk is the possibility for an investor to experience losses due to factors
that affect the overall performance of the financial markets in which he is involved.
Market risk, also called, “systematic risk”, cannot be eliminated through diversifi-
cation, though it can be hedged against. Sources of market risk include recessions,
political turmoil, changes in interest rates, natural disasters and terrorist attacks.
Companies in the United States are required to detail how their productivity and
results may be linked to the performance of the financial markets. This is meant to
provide a reflection of how a company is exposed to financial risk. For example,
a company providing derivative investments or foreign exchange futures may be
more exposed to financial risk than companies who do not provide these types of
investments. This information helps investors and traders make decisions based
on their own risk management rules.

The two major categories of investment risk are market risk and specific risk.

Specific risk, also called “unsystematic risk”, is tied directly to the performance of
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a particular security and can be protected against through investment diversifica-
tion. One example of unsystematic risk is, a company declaring bankruptcy, mak-
ing its stock worthless to investors. Market risk exists because of price changes.
The standard deviation of changes in prices of stocks, currencies or commodities
is referred to as price volatility. Volatility is rated in annualized terms. It may be
expressed as an absolute number, such as $10, or a percentage of the initial value,
such as 10 %. To measure market risk, investors and analysts use the value at risk
method (VaR). VaR method is a well known and established risk management
method, but it comes with some assumptions that limit its correctness. We should

discuss this subject on a great scale below.

1.3 Definition of VAR

1.3.1 The Origin and Development of VaR

In the late 1970s and 1980s, a number of major financial institutions started work

on internal models to measure and aggregate risks across the institution as a whole.
They started work on these models in the first instance for their own internal risk
management purposes as firms became more complex, it was becoming increas-
ingly difficult, but also increasingly important, to be able to aggregate their risks
taking account of how they interact with each other, and firms lacked the method-
ology to do so [1].

Extreme price movements in the financial markets are rare, but important. The
stock market crash on Wall Street in October 1987 and other big financial crises
such as the Long Term Capital Management have attracted a great deal of attention
among practitioners and researchers, and some people even called for government
regulations on the derivative markets. In recent years, the seemingly large daily

price movements in high-tech stocks have further generated discussions on market
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risk and margin setting for financial institutions. As a result, VaR has become a
widely used measure of market risk in risk management. The new risk system was
highlighted in JP Morgans 1993 research conference and aroused a great deal of
interest from potential clients who wished to buy or lease it for their own purposes.
The subsequent adoption of VaR systems was very rapid, first among securities
houses and investment banks, and then among commercial banks, pension funds

and financial or non-financial institutions.

Meanwhile, other financial institutions had been working on their own internal
models, and VaR software systems were also being developed by specialist com-
panies that concentrated on software but were not in a position to provide data.
The resulting systems differed quite considerably from each other. Even where
they were based on broadly similar theoretical ideas, there were still considerable
differences in terms of subsidiary assumptions, use of data, procedures to estimate
volatility and correlation. Besides, not all VaR systems were based on portfolio
theory, some systems were built using historical simulation approaches that esti-
mate VaR from histograms of past profit and loss data, and other systems were

developed using Monte Carlo simulation techniques.

Risk management has experienced a revolution in recent years, started by
VaR, which was developed in response to the financial / derivative disasters of the
late 1980s and early 1990s. VaR was pioneered in 1993, part of the “Weatherstone
4:15 pm” daily risk assessment report, in the RiskMetrics model at JP Morgan
(1996). Subsequently, the Group of Thirty (G-30) advised financial institutions to

value positions using market prices and to assess financial risks via VaR [2].

Concluding, the need to improve control of financial risks has led to a uni-
form measure of risk, the VaR measure, which the private sector is increasingly
adopting as a first line of defense against financial risks. Regulations and central

banks, also, provided the impetus behind VaR. The Basel Committee on Bank-
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ing Supervision announced in April 1995 that capital adequacy requirements for
commercial banks are to be based on VaR. In December 1995, the Securities and
Exchange Commission issued a proposal that requires publicly traded U.S. cor-
porations to disclose information about derivatives activity, with a VaR measure
as one of three possible methods for making such disclosures. Thus, the unmis-
takable trend is toward more-transparent financial risk reporting based on VaR
measures [3]. Despite some criticism of VaR, for example, it does not measure the
magnitude of the loss for violations and it is not “coherent” , it is recommended

in Basel II and is widely used in industry. For details see Jorion (2001).

1.3.2 Measuring VaR

To formally define a portfolio’s VaR, one first must choose two quantitative fac-
tors: the length of holding horizon and the confidence level. The significance of
the quantitative factors depends on how they are to be used. If the resulting VaRs
are directly used for the choice of a capital cushion, then the choice of the con-
fidence level is crucial. This choice should reflect the company’s degree of risk
aversion and the cost of a loss exceeding the VaR. Higher risk aversion, or greater
costs, implies that a larger amount of capital should be available to cover possible
losses, thus leading to a higher confidence level. In contrast, if VaR numbers are
used only to provide a companywide yardstick to compare risks among different
markets, then the choice of confidence level is not very important.

To compute the VaR of a portfolio, define Wy as the initial investment and y as

its rate of return. The portfolio value at the end of the target horizon is W= Wy(1 +
y). Define p and G as the annual mean and the standard deviation of y, respectively,
and A, as the time interval considered. VaR is defined as the dollar loss relative
to what was expected, that is VaR =E(W) - W#*= Wy( u - y*), where W* is the

lowest portfolio value at given confidence level a. Finding VaR is equivalent to
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identifying the minimum value, W*, or the cutoff return, y* [3].

In its most general form, VaR can be derived from the probability distribution
for the future portfolio value, f(w). At a given confidence level, o, we wish to
find the worst possible realization, W*, such that the probability of exceeding this
value is o, where a = [ f(w)dw or such that the probability of a value lower
than W*is | - o, where 1 - o0 = fXV; fw)dw [3].

In order to understand in depth the notion of VaR, the reader should recall that
the VaR on a portfolio is the maximum loss we might expect over a given holding

or horizon period, at a given confidence level a. Mathematically that is,
o =Pr(y; < -VaR|F_y),

where y, is the log return series at time t given from y; = [log(P;) —log(P,—1)] - 100,
P; express close price of the index at time t, o is the given confidence level and F;_1
denotes the information set at time t-1. Models and methods for VaR forecasting
are an ongoing debate for financial practitioners and statisticians [4].

The VaR is thus proportional to a quantile in the conditional one-step-ahead
forecast distribution for the observations. Hence, the VaR is defined contingent on
two arbitrarily chosen parameters. As we mention above these are the holding or
horizon period, which is the period of time over which we measure our portfolio
profit or loss, and which might be daily, weekly, monthly, or whatever and a confi-
dence level o, which indicates the likelihood that we will get an outcome no worse
than our VaR, and which might be 50%, 90%, 95%, 99% or indeed any fraction
between 0 and 1. The most commonly used range is the 95th to 99th percentile
range. The choice of these components by risk managers greatly affects the nature
of the VaR model. The VaR is illustrated in the figure below, which shows a com-
mon probability density function (pdf) of profit/loss (P/L) over a chosen holding
period [1].
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Figure 1.1 Value at Risk ( Note: Produced using the “normal var figure” function)

To get the VaR, we must choose a confidence level (o). If this is 95%, say,
then the VaR is given by the negative of the point on the x-axis that cuts off the
top 95% of observations from the bottom 5% of tail observations. In this case,
the relevant x-axis value is -1.645, so the VaR is 1.645. The negative value of
observations corresponds to a positive VaR, indicating that the worst outcome at
this level of confidence is a loss of 1.645.

In practice, the point on the x-axis corresponding to our VaR will usually be

negative and, where it is, will correspond to a (positive) loss and a positive VaR.
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However, this x-point can sometimes be positive, in which case it indicates a profit
rather than a loss, and in this case the VaR will be negative. This also makes sense:
if the worst outcome at this confidence level is a particular profit rather than a loss,
then the VaR, the likely loss, must be negative. As mentioned already, the VaR is
contingent on the choice of confidence level, and will generally change when the
confidence level changes. We should also remember that the VaR is contingent
on the choice of holding period as well, and so we should consider how the VaR
varies with the holding period.
The VaR figure has two important characteristics. The first is that it provides
a common consistent measure of risk across different positions and risk factors.
It enables us to measure the risk associated with a fixed-income position, say, in
a way that is comparable to and consistent with a measure of the risk associated
with equity positions. VaR provides us with a common risk yardstick, and this
yardstick makes it possible for institutions to manage their risks in new ways that
were not possible before. The other characteristic of VaR is that it takes account of
the correlations between different risk factors [1]. If two risks offset each other, the
VaR allows for this offset and tells us that the overall risk is fairly low. If the same
two risks do not offset each other, the VaR takes this into account as well and gives
us a higher risk estimate. Clearly, a risk measure that accounts for correlations is
essential if we are to be able to handle portfolio risks in a statistically meaningful
way.
VaR information can be used in many ways:
1. Senior management can use it to set their overall risk target, and from that
determine risk targets and position limits down the line. If they want the

firm to increase its risks, they would increase the overall VaR target, and

vice versa.

2. Since VaR tells us the maximum amount we are likely to lose, we can use it
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to determine capital allocation. We can use it to determine capital require-
ments at the level of the firm, but also right down the line, down to the level
of the individual investment decision: the riskier the activity, the higher the

VaR and the greater the capital requirement.

3. VaR can be very useful for reporting and disclosing purposes, and firms
increasingly make a point of reporting VaR information in their annual re-

ports.

4. We can use VaR information to assess the risks of different investment op-
portunities before decisions are made. VaR-based decision rules can guide
investment, hedging and trading decisions, and do so taking account of the

implications of alternative choices for the portfolio risk as a whole.

5. VaR information can be used to implement portfolio-wide hedging strate-

gies that are otherwise rarely possible.

6. VaR information can be used to provide new remuneration rules for traders,
managers and other employees that take account of the risks they take, and
so discourage the excessive risk-taking that occurs when employees are re-
warded on the basis of profits alone, without any reference to the risks they

took to get those profits.

In short, VaR can help provide for a more consistent and integrated approach to
the management of different risks, leading also to greater risk transparency and

disclosure, and better strategic management [1].

1.3.3 Criticisms of VaR

Most risk practitioners embraced VaR with varying degrees of enthusiasm, and

most of the debate over VaR dealt with the relative merits of different VaR sys-
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tems, the pros and cons of Risk Metrics, of parametric approaches relative to
historical simulation approaches, and so on. However, there were also, those who

warned that VaR had deeper problems and could be dangerous.

A key issue was the validity of the statistical and other assumptions underly-
ing VaR, especially the transfer of mathematical and statistical models from the
physical sciences where they were well suited to social systems where they were
often invalid. Such applications often ignore important features of social systems,
the ways in which intelligent agents learn and react to their environment, the non-
stationarity and dynamic interdependence of many market processes, and so forth
features that undermine the plausibility of many models and leave VaR estimates

wide open to major errors [1].

A related argument was that VaR estimates are too imprecise to be of much
use, and empirical evidence suggests that different VaR models can give very
different VaR estimates. To make matters worse, VaR models were exposed to
considerable implementation risk as well, so even theoretically similar models
could give quite different VaR estimates because of the differences in the ways in
which the models are implemented. It is therefore difficult for VaR advocates to
deny that VaR estimates can be very imprecise. In other words, if VaR estimates
are too inaccurate and users take them seriously,they could take on much bigger

risks and lose much more than they had bargained for [1] .

Also, if VaR measures are used to control or remunerate risk-taking, traders
will have an incentive to seek out positions where risk is over or underestimated
and trade them. They will therefore take on more risk than suggested by VaR
estimates so our VaR estimates will be biased downwards and their empirical evi-
dence suggests that the magnitude of these underestimates can be very substantial.
Other suggest that the use of VaR might destabilise the financial system. Thus,

VaR players are dynamic hedgers, and need to revise their positions in the face of
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changes in market prices. If everyone uses VaR, there is a danger that this hedg-
ing behaviour will make uncorrelated risks become very correlated and firms will

bear much greater risk than their VaR models might suggest [1].

VaR has its drawbacks as a risk measure and some of these are fairly obvious.
VaR estimates can be subject to error and VaR systems can be subject to model risk
(i.e., the risk of errors arising from inappropriate assumptions on which models
are based) or implementation risk (i.e., the risk of errors arising from the way in
which systems are implemented). However, such problems are common to all risk
measurement systems, and are not unique to VaR. More specifically, the VaR only
tells us the most we can lose if a tail event does not occur, it tells us the most we
can lose 95 % of the time, or whatever, but tells us nothing about what we can
lose on the remaining 5% of occasions. If a tail event (i.e., a loss in excess of
VaR) does occur, we can expect to lose more than the VaR, but the VaR figure
itself gives us no indication of how much that might be. However, it is not always
feasible to use information about VaRs at multiple confidence levels, and where
it is not, the failure of VaR to take account of losses in excess of itself can create
some perverse outcomes. Also, a VaR measure can discourage diversification of

risks because it fails to take into account the magnitude of losses in excess of VaR

[1].

But there is also a deeper problem with VaR. Sub-additivity, which means
that aggregating individual risks does not increase overall risk, is thus a highly
desirable property for any risk measure. Unfortunately, VaR is not generally sub-
additive, and can only be made to be sub-additive if we impose the (usually) im-
plausible assumption that returns, are normally (or slightly more generally, ellip-

tically) distributed [1] [5].



1.4. VAR CLASSIFICATION 19

1.4 VaR C(Classification

The existing VaR methods have been classified into three broad categories: para-
metric, semiparametric and nonparametric. Parametric approaches involve a pa-
rameterization of the behavior of prices, with conditional quantiles estimated us-
ing a conditional volatility forecast and an assumption for the shape of the distri-
bution. An example is a GARCH volatility model with a Student-t distribution or
perhaps an asymmetric t distribution [6]. A notable benefit of a parametric method
is the complete formation of the conditional returns distribution. A significant pit-
fall of a parametric approach is that the specification of the variance equation and
the choice of distribution may be wrong [7] [8].

The semiparametric VaR category includes applications of extreme value
analysis and methods based on quantile regression, such as the CAViaR mod-
els introduced by Engle and Manganelli (2004). Using an autoregressive frame-
work, CAViaR models aim to derive the evolution of the desired quantile rather
than extracting the quantile from an estimate of a complete distribution or from
a volatility estimate. The approach has the advantage of allowing the shape of
the conditional returns distribution to be time-varying, and for the time-variation
to be different for different quantiles of the distribution. The CAViaR models
introduced by Engle and Manganelli (2004) are presented below.

The most widely used non-parametric method is historical simulation. With
this method, the VaR is estimated as the quantile of the empirical distribution of
historical returns from a moving window of the most recent periods. The advan-
tage of historical simulation is that it requires no distributional assumption and
that it is easy to compute. However, the VaR estimation can be poor and slow to
converge to the actual VaR, especially for the extreme quantiles. In other words,
the VaR forecast might be inaccurate due to inadequate rolling window of risk

factors [9]. Another difficulty, is in the choice of the number of observations to
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include in the moving window[9]. A moving window that is too small leads to
large sampling errors, while too many observations in the moving window re-
sults in sluggish adaptation to the dynamic changes in the true distribution. Some
researchers attempt to overcome this issue through their exponentially weighted
approaches to VaR estimation [7] [8] .

Hendricks(1996) examine three most common categories of VaR models,
equally weighted moving average approaches, exponentially weighted moving av-
erage approaches, and historical simulation approaches. The first two approaches
or “variance-covariance” VaR approaches, assume normality and serial indepen-
dence and an absence of nonlinear positions such as options. The dual assump-
tion of normality and serial independence creates ease of use for two reasons [10].
First, normality simplifies value-at-risk calculations because all percentiles are
assumed to be known multiples of the standard deviation however normality may
under-estimate the extreme outcomes|[11]. Second, serial independence means
that the size of a price move on one day will not affect estimates of price moves
on any other day. In the same spectrum and according to a distribution assumption
or not, the range of different methods that have been developed for VaR estimation
and forecasting in the literature could be also categorized, as indirect and direct

methods [2].

1.4.1 Parametric approaches: GARCH and RiskMetrics mod-

els

Much of the literature on VaR forecasting focuses on GARCH and RiskMetrics
models as benchmarks. More precisely, the GARCH(1,1) model with Gaussian
and Student-t errors and the IGARCH(1,1) of RiskMetrics model with Gaussian
errors, are considered in the empirical analysis. For a log return series y;, let y; =

U + 0. Then o, follows a GARCH(r,s) model if
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r s
2 2 2
Oy =0r &, 0;” =0p + Zaiazfi + Z Bjctfj
i=1 =1

and we also assume that

max(r,s)
0 >0,0;>0,B;>0and Y o;+pi<l.
i=1

where again € is a sequence of iid random variables with mean 0 and variance 1.
It is understood that o; = 0 for i > r and B; = 0 for j>s. The latter constraint on o;
+B ; implies that the unconditional variance of o is finite, whereas it’s conditional

2 evolves over time. Also, €, is often assumed to be a standard normal

variance G;
or standardized Student-t distribution or generalized error distribution.

GARCH model encounters an important weakness. For instance, it responds
equally to positive and negative shocks. In addition, recent empirical studies of
high-frequency financial time series indicate that the tail behavior of GARCH
models remains too short even with standardized Student-t innovations [1]. For

parametric methods, also RiskMetrics models are used. The model is specified as

follows:

yt= (Xt,
o= 6;&;, where € ~ iid N(0,1),

o’=(1-M) o | +Lo’ .

Under each model, the one-step-ahead VaR at a-quantile level is computed,
as VaR; =, + D, ' 6,, where D, 1 is the inverse cumulative distribution function

for the distribution D [4].

1.4.2 Semiparametric approaches: The CAVIAR models

Despite VaR’s conceptual simplicity, its measurement is a very challenging statis-

tical problem, and none of the methodolology developed so far gives satisfactory
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solutions. Because VaR is simply a particular quantile of future portfolio values,
conditional on current information, and because the distribution of portfolio re-
turns typically changes over time, the challenge is to find a suitable model for
time-varying conditional quantiles. The problem is to forecast a value each period
that will be exceeded with probability (1- o) by the current portfolio, where o
€ (0,1) represents the confidence level associated with the VaR. Let y;, t=1 un-
til T denote the time series of returns and T denote the sample size. We want
to find VaR such that o0 =Pr( y; < -VaR|F,_;). We remind that F;_; denotes the

information set at time t-1.

More specifically, Engle and Manganelli (2004), propose a different approach
to quantile estimation, thus instead of modeling the whole distribution they model
the quantile directly. The distribution of stock market returns is auto-correlated,
consequently the VaR, which is tightly linked to the standard deviation of the dis-
tribution, must exhibit similar behavior. In order to formalize this characteristic, it
is used use some type of autoregressive specification, which is called Conditional
Autoregressive Value at Risk (CAViaR) models [13]. CAViaR models, usually,
employ GARCH-type specifications, giving rise to the Indirect GARCH (1G),
Symmetric absolute value (SAV), and Asymmetric slope (AS) CAViaR models.
Also, Jeon J. and Taylor J.(2013) introduce in their article, the indirect AR(1)-
GARCH(1,1)(I) CAViaR model. These are:

The Indirect GARCH(1,1) (IG) CAViaR model,

Jra(B) = (Bo+ Blftzfl,ot(B) +Bay: V2

The Symmetric absolute value (SAV) CAViaR model,

Jra(B) = Bo+B1fi-1.a(B) +Balyi-1l-
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The Asymmetric slope (AS) CAViaR model,

Jra(B) = Bo+Bifi—1.a(B) + (B2lpy, >0y +B3lgy, <0y) [ Vi1 |
The Indirect AR(1)-GARCH(1,1)(I) CAViaR model,

fra(B) =Bayie1+ (Bo+B1 ((fio1.a(B) -Bavi—2)?) + B3 ((yi—1 -Bayi—2)?)) /2.
The Threshold CAViaR model,

Bo+Bifi—1,0(B) +Balyi—1], yi—1 <7

ft,oc(B) -
B3 +Bafi—1.a(B) +Bslyi—1], yi—1>r,

where f; o(+) denotes the a-level conditional quantile.

The first equation is exactly equivalent to the dynamic quantile function for a
GARCH(1, 1) model with an identically independently distributed (iid) symmet-
ric error distribution and mean = 0. The model, thus, allows efficient estimation
for GARCH(1, 1) quantiles with unspecified error distribution. This is an advan-
tage: GARCH models are typically estimated under a parametric error distribu-
tion. However, it is well known that standard GARCH models tend to overreact
to large return shocks, essentially they overreact to a variance increase (since they
are squared). As such, we prefer the absolute value model types, which depict in
second and third equation.

The first two CAViaR models respond symmetrically to positive and nega-
tive observations, with linear responses and parameters. To account for financial
market asymmetry, via the leverage effect, the SAV-CAViaR model was extended
to AS-CAViaR model[13]. Hence, the AS-CAViaR model responds differently
to positive and negative observations as the indicator function, I(-), is designed
specifically to capture the asymmetric leverage effect. This effect is the tendency

for volatility to be greater following a negative return than a positive return of
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equal size. Also, I-CAViaR model allows for the conditional mean to be time-
varying [8].

In general, CAViaR models are semi-parametric in nature: dynamics are spec-
ified but error distributions are not [12]. In the same spirit, recent work has been
devoted to threshold nonlinear specifications such as the Threshold and Threshold
Indirect GARCH CAViaR models. As Gerlach et al.(2011) and Tsiotas (2014)
point out that in CAViaR team models there is a threshold nonlinear extension of
the VaR model. In these spesifications all parameters in the volatility (and mean)
equations were allowed to change between regimes, based on an observed thresh-
old. As a result, the Threshold (T) CAViaR model is given by the last equation.
Here, 1 is the threshold value, typically set as r = 0, or estimated. This specifica-
tion called the T-CAViaR model, includes both the SAV-CAViaR (r =e0) and the
AS-CAViaR (r =0, B = B3, B1 = B4) models as special cases.

The CAViaR models’ estimation is treated using a standard quantile regres-
sion approach. Thus, one can estimate the one-step-ahead conditional quantile,
Oi+1,0 = fi+1,0(P), at a nominal level o by minimizing with respect to B, as

follows[14]:
minBLa(etlfT] ,B) = ming Z(oc —Ie, ) €141
1

over the sample of yi,...,yr observations. Here, (0t —I,,,_,) - €1 stands for the
quantile loss function with error &1 = y;41 - fi+1,a(P)-

The general dynamic quantile model may be written

Yt =ﬁ,0€ (B’ )’l—l)"' gl‘ 5

where y; is the observation at time t, y;_; are the explanatory variables, 3 are
unknown parameters and € is an error term. The function f; (-) defines the dy-
namic link between y; and y,; ;| and is usually linear in 3 and y,_1, an aspect that

is extended here. The conditional o quantile level is then[12]
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qo 01 | B, yi-1)= fz,oc(BJt—l)v

where [Ai is the solution of the above minimization.

1.4.3 Non-Parametric approaches: Historical Simulation Ap-

proach

Arguably the simplest way to estimate VaR is to use the sample quantile estimate
based on historic return data, which is referred to as historical simulation (HS).
There are several varieties of this method, with various advantages and disadvan-
tages (for details see Dowd, 2002). We entertain the most popular way which we
call (naive) HS, and the most successful way, which is filtered historical simula-

tion (FHS).

For HS, the VaR estimate for t+1 is given by the empirical a-quantile, Qg (),
of amoving window of w observations up to date t, that is Val?,ﬂ = —Qu(y,, Vie1yeees Viewt1)
[6]. For example, with a moving window of length, say, w=1000 observations, the
5% VaR estimate is simply the negative of the 50" sample order statistic. Notice
that, besides ignoring the oftentimes blatant non-iid nature of the data, predictions
extending beyond the extreme returns observed during the past w observations
are not possible with this method. Also, the resulting VaR estimates can exhibit
predictable jumps when large negative returns either enter into or drop out of the

window.

For FHS, a location-scale model (such as the equation for a time-varying vari-
ance, captured by a GARCH(r,s) process, see above) is used to prefilter the data.
VaR forecasts are then generated by computing the VaR from paths simulated

using draws from the filtered residuals [6].
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1.5 Testing VaR models

Generally speaking, back-testing a VaR model means checking whether the re-
alized daily returns are consistent with the corresponding VaR produced by an
interval model of a financial institution, over an extended period of time. In this
paragraph we discuss assessing the accuracy of VaR estimates and forecasts. The
Basel II Accord requires financial institutions to use back-testing, so that at least
one year of actual returns are compared with VaR forecasts. There are some com-
mon criteria for comparing the forecasting performance of VaR models and we
are going to discuss below.

The Basel Committee (1996) classified the reasons for model back-testing

failures into the following categories|4]:

1. Basic integrity of the model: The system is unable to capture the risk of the

positions or there is a problem in calculating volatilities and correlations.

2. Model’s accuracy could be improved: Risk of some instruments not mea-

sured with sufficient precision.

3. Bad luck, or markets moved in a fashion that could not be anticipated by the
model. For instance, volatilities or correlations turned out to be significantly

different than what was predicted.

4. Intra-day trading: There is a change in positions after the VaR estimates

were computed.

1.5.1 Back-testing

Before we can use risk models with confidence, it is necessary to validate them.
Back-testing is the critical issue in model validation. More specifically, back-

testing is the application of quantitative, typically statistical, methods to determine
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whether a model’s risk estimates are consistent with the assumptions on which the
model is based. Back-tests are a critical part of the risk measurement process, as
we rely on them to give us an indication of any problems with our risk measure-
ment models (e.g., such as misspecification, underestimation of risks, etc.). In
other words, back-testing is a key part of the internal model’s approach to mar-
ket risk management as laid out by the Basel Committee on Banking Supervision

(1996).

Having completed our preliminary data analysis, we turn now to formal sta-
tistical back-testing. All statistical tests are based on the idea that we first select
a significance level, and then estimate the probability associated with the null hy-

pothesis being “true”.

Typically, we would accept the null hypothesis if the estimated value of this
probability, the estimated prob-value, exceeds the chosen significance level, and
reject it otherwise. The higher the significance level, the more likely we are to
accept the null hypothesis, and the less likely we are to incorrectly reject a true
model (i.e., to make a Type I error, to use the jargon). However, it also means
that we are more likely to incorrectly accept a false model (i.e., to make a Type II
error). Any test therefore involves a trade-off between these two types of possible

€Iror.

In principle, we should select a significance level that takes account of the
likelihoods of these errors (and, in theory, their costs as well) and strikes an ap-
propriate balance between them. However, in practice, it is very common to select
some arbitrary significance level such as 5% and apply that level in all our tests.
A significance level of this magnitude gives the model a certain benefit of the
doubt, and implies that we would reject the model only if the evidence against it
is reasonably strong: for example, if we are working with a 5% significance level,

we would conclude that the model was adequate if we obtained any prob-value
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estimate greater than 5%.

A test can be said to be reliable if it is likely to avoid both types of error
when used with an appropriate significance level. In other words, if we use a
99% confidence interval, we expect to find exceptions in 1% of the instances. By
determining a range of the number of exceptions that we would accept, we must
strike a balance between rejecting an accurate model (Type I error) and accepting

an inaccurate model (Type II error) [11].

1.5.2 Violation Rate

A common criterion to compare VaR models is the violation rate, defined as
the proportion of observations for which the actual return is more extreme than
the forecasted VaR level, over the forecast period [12] or as the proportion of

violations. The violation rate (here after & ) is defined as:

ZtT:II()’t < _ft,oc(B)
T

o=

where T is the sample size. A forecast model’s & should be close to the nomi-
nal level a. We employed the ratio & /o, to help compare the competing models,
where models with & /o ~ 1 are most desirable. When & < a risk and loss es-
timates are conservative (higher than actual), while alternatively, when & > o ,
risk estimates are lower than actual and financial institutions may not allocate suf-
ficient capital to cover likely future losses. Here solvency outweighs profitability
and for models where & / o are equidistant from 1, lower or conservative rates are

preferred, for example, &/ o = 0.9 is preferred to &/ o = 1.1 [12].
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1.5.3 Other Back-tests

Back-testing represents a way to test how well VaR estimates would have per-
formed in the past, i.e., how often was the actual 1-day (or 10-day) loss greater
than the 95% (or 99%) VaR measure. Before presenting some commonly dis-
cussed back-tests, let’s initially recall that y; is the observed returns and ft,oc([5>
that is the respective one-day VaR defined for a quantile level a. Now define a
violation sequence by the following indicator function, also called in the literature

“hit sequence’:

1 ) if Ye > f;‘7(X(B)7
0 , if y <fiup)

T
and compute the numbers of violations N = Z H;.
=1
Three standard hypothesis-testing methods for evaluating and testing the ac-

H[:

curacy of VaR models are analyzed below: the unconditional coverage (UC) test
of Kupiec (1995): a likelihood ratio test, the conditional coverage (CC) test of
Christoffersen (1998): a joint test, combining a likelihood ratio test for indepen-
dence of violations and the UC test and the Dynamic Quantile (DQ) test of Engle
and Manganelli (2004). From these tests we used in our work the conditional
coverage CC test of Christoffersen [16]. Readers should skim through the original
papers for specific details. Let us, present a detailed description for each one of
them[17]:

(i) Kupiec (1995) : Some of the earliest proposed VaR back-tests is due to
Kupiec (1995), which proposes a nonparametric unconditional coverage test based
on the proportion of exceptions. Assume a sample size of T observations and a
number of violations of N. The objective of the test is to know whether or not &

= N/T is statistically equal to . In other words the null hypothes is :

Hy: =0
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The probability of observing N violations over a sample size of T is driven
by a Binomial distribution and null hypothesis Hy: & =o can be verified through

a LR test of the form:

6N (1—a)TN
aN(1—a)T—N’

LR,; =2In
which follows (under the null hypothesis) the chi-squared distribution with one
degree of freedom. Kupiec (1995) finds that the power of his test is generally
poor in finite samples, and the test becomes more powerful only when the number
of observations is very large.

(ii) Christoffersen (1998) : The unconditional property does not give any
information about the temporal dependence of violations, and the Kupiec (1995)
test ignores conditioning coverage, since violations could cluster over time, which
should also invalidate a VaR model. In this sense, Christoffersen (1998) extends
the previous LR statistic to specify that the hit sequence should also be indepen-
dent over time. We should not be able to predict whether the VaR will be violated,
since if we could predict it, then, that information could be used to construct a
better risk model [17]. The proposed test statistic is based on the mentioned hit
sequence H;, and on T;;, that is defined as the number of days in which a state
j occurred in one day, while it was at state i the previous day. The test statistic,
also depends on 7;, which is defined as the probability of observing a violation,
conditional on state i the previous day. It is also assumed that the hit sequence
follows a first order Markov sequence with transition matrix given by

- 1—-my 1—m
o T
Note that under the null hypothesis of independence, we have that = mp= 1;

= (Tp; + T11) / T and the following LR statistic can thus, be constructed:
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(1 —mp)"00 (m9) 01 (1 — 1t1) 10 (70, ) 14

LRing =2In (1 — ) Too+Tio (1) Fon + 71

The joint test, also known as, conditional coverage test, includes uncon-
ditional coverage and independence properties and is simply given by LR, =
LR, + LR;,;, where each component follows a chi-squared distribution with one
degree of freedom, and the joint statistic LR, is asymptotically distributed as x%z).
An interesting feature of this test is that a rejection of the conditional coverage
may suggest the need for improvements on the VaR model, in order to eliminate
the clustering behavior. On the other hand, the proposed test has a restrictive
feature, since it only takes into account the autocorrelation of order 1 in the hit
sequence.

(iii) Engle and Manganelli(2004) : They, also, suggested a specification test,
also known as dynamic conditional quantile (DQ) test, which involves running the

following regression
DQoos = (Hir! X,[ X/ X,17" X/ Hiry) / (o 1- ),
where X; =[ c, V; (), Z;], Z; denotes lagged Hit, , Hit; = I; () - o and

1, if oy < fiap)
0 ) if yl‘Zfl,OL(B)a

The null hypothesis is the independence between Hif, and X;. Under the null,

L(o) =

2
q

the proposed metric to evaluate one-step-ahead forecasts (DQ,,;) follows a x7 in
which g=rank( X;). Note that the DQ test can be used to evaluate the performance
of any type of VaR methodology ( and not only the CAViaR family) [17]. For
specific details, reader should skim to the article of Engle and Manganelli(2004)
in which is in.

In conclusion, under the null hypothesis, Kupiec (1995) employs a likeli-

hood ratio to test whether VaR estimates, on average, provide correct coverage



32 CHAPTER 1. VALUE AT RISK (VAR)

of the lower o percent tails of the forecast distributions. Christoffersen (1998)
develops an independence test, employing a two-state Markov process, and com-
bines this with the UC test to develop a joint likelihood ratio conditional coverage
test, that examines whether VaR estimates display correct conditional coverage at
each point in time. The conditional coverage test thus examines simultaneously
whether the violations appear independently and the unconditional coverage is
o. The DQ test is also a joint test of the independence of violations and correct
coverage. It employs a regression-based model of the violation-related variable
“hits”, defined as I(y; < —f; o(p) - @ which will on average be o if unconditional
coverage is correct. A regression-type test is then employed to examine whether
the “hits” are related to lagged “hits”, lagged VaR forecasts, or other relevant re-
gressors, over time, a model producing accurate and independent violations and
“hits” will not be. The DQ test is well known to be more powerful than the CC
test. The tests and criteria above do not consider whether the magnitude of the
VaR forecasts is appropriate, only that the violations occur independently and in

the right proportion [4].



Chapter 2

Combined Forecasts

In the VaR literature, the model selection has been based on non-statistical and
statistical tests, such as the coverage tests [14]. Generally speaking, statistical
analyses require the consideration of more than one model. Thus, one could in-
vestigate how these specifications can estimate VaR at a pre-specified nominal
level, given the alternative conditional quantile models. The existing model se-
lection strategies have led to considerable instability on CAViaR model selection.
Specifically, non-statistical tests instability is considerable among data series and
the nominal level used [18].

The same model selection strategies have led researchers to adopt models
that produce biased parametric and forecast estimates. An alternative strategy
consists of introducing combined (or weighted) estimators, which can potentially
improve the estimator stability and model uncertainty with the suitable assigned
weights. Combining VaR estimators can potentially capture extreme and rare
financial events that are not detected by a single model case. Also, the well-
documented bias of VaR estimation calls for the use of combined VaR forecasts

to improve VaR validation.

If it is not clear which of two forecasts performs better, a combination can be

33
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the best option [19]. Combining methods include information contained in each
of individual forecast. The combined forecasts should be applied if several differ-
ent models can be combined to obtain better forecast, there is no certainty about
the future state of the object forecast, and where large forecasting error involves
a high cost. By combining, forecasters, should be able to reduce inconsistency
in estimates and to cancel out biases to some extent [7]. The work by Bates and
Granger (1969) often is considered to be the seminal article on combining fore-
casts. They combined two separate sets of forecasts of airline passenger data to
form a composite set of forecasts. They concluded that the composite set of fore-
casts can yield lower mean-square error than either of the original forecasts. Past
errors of each of the original forecasts are used to determine the weights to at-
tach to these two original forecasts in forming the combined forecasts. They, also,
examined different methods of deriving these weights [19].

In this chapter, we briefly introduce the idea of combined VaR forecasts in
order to obtain better forecasts. Also, we try to review comparative empirical
forecasting studies, that have considered the combining VaR forecasting methods
and model averaging techniques. Finally, we try to explain the four combined
methods: Simple Average Combining (SimpAvg), Unrestricted Linear Combi-
nation (LinearComb), Weighted Averaged Combining (WtdAvg) and Weighted
Averaged Combining Optimized using Exponential Weighting (WtdAvgExp) [7].

2.1 Model Averaging

Statistics literature includes attempts to resolve this model selection uncertainty
by adopting averaging strategies for predictors. This approach intends to use
weighted estimators to improve the forecasting accuracy and/or variability by as-

signing an appropriate weight. Model averaging (MA) is a technique that assumes
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uncertainty about the type of model with which data are generated.

Statistical thinking in many aspects of science have been profoundly influ-
enced by the introduction of AIC (Akaikes information criterion) as a tool for
model selection and as a basis for model averaging. In their paper, Link and
Barker (2006), advocate the Bayesian paradigm as a broader framework for mul-
timodel inference, one in which model averaging and model selection are naturally
linked, and in which the performance of AIC-based tools is naturally evaluated.
Prior model weights, implicitly associated with the use of AIC are seen to highly
favor complex models: in some cases, all but the most highly parameterized mod-
els in the model set are virtually ignored a priori. They suggest the usefulness of
the weighted BIC (Bayesian information criterion) as a computationally simple
alternative to AIC, based on explicit selection of prior model probabilities rather
than acceptance of default priors associated with AIC. They note, however, that
both procedures are only approximate to the use of exact Bayes factors. Assume

a set of models M = (M1, Ms,..., Mg), Akaikes information criterion is defined by
AIC;=—2log[g(y:|6\), M;)] + 2k;,

where k; is the number of parameters in the model. Models with smaller values of
AIC are favored on the basis of fit and parsimony. AIC weights for a collection of
models are proportional to exp( -1/2 AIC) [20].

Link and Barker (2006) argue that the use of model weights in prediction re-
quires their interpretation as posterior model probabilities. This observation raises
the question as to which set of prior model weights are implicitly chosen when
one uses AIC weights. The answer provides valuable insights into the operating
characteristics of AIC in multimodel inference, explaining its well-documented
tendency to favor highly parameterized models. They, also, recommend that an-
alysts use weighted BIC (Bayesian information criterion) as a computationally

simple alternative to AIC, based on explicit selection of prior model probabilities,
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rather than the default choice implicit to the use of AIC. The weighted BIC (and
AIC, as a special case) use approximate rather than exact Bayes factors, which are
the fundamental quantities for updating prior to posterior model probabilities.
Link and Barker(2006), also, assume a set of priors on parameters, one for
each model in M, they denote the prior on parameters 8() of model M; by g( o)
| , M;). They, finally, introduce a collection of prior probabilities (1], Ty, ..., TR)
assigned to the collection M, independent of the data; w; = Pr(M;) is the prior

probability that model M; is true.

The Bayesian information criterion is defined by

BIC; =2 log[g (y, | 8, M;) ] + k; log(T),

and 0() is the maximum likelihood estimator of the parameters for model i, k; is
the number of parameters in model 1, and T is the sample size. Taking into account

the previous equations we can obtain approximate posterior probabilities:

exp(—BIC;/2)T;
Zexp —BIC;/2)w;

w; &~ Pr(M;ly;) =~

Assigning uniform prior probabilities to the set M, m; [1/R], yields what are com-
monly referred to as BIC weights. This last equation can be thought of as a gen-

eralized BIC weight.

exp(—BIC-/2)

Zexp (—BIC,/2)

w; &~ Pr(M|y;) ~

We could replace BIC with AIC, resulting in what has been called smoothed
AIC (AIC) or weighted AIC (WAIC). The weights are
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exp(—AIC;/2)
R

w; &~ Pr(M;|y;) =~ .
Zexp(—AIC,/2)

In our thesis, we specify the weights w;, in the case of CAViaR models as:

AIC; = —2log[La (e}, B)] +2k;

BIC; = —2log|Ly(€\ '}, B)] + 2kilog(T)

where La(ellJle ,B) is the CheckLoss function with error &1 = yry1 - fi+1.a(B), ki

is the number of parameters in each CAViaR model i and T is the sample size.

2.2 Combined estimating methods

Granger(1989) and Granger et al., (1989) introduce the idea of using quantile
regression to combine quantile forecasts. Using simulated data, Taylor and Bunn
(1998) assess the usefulness of different restrictions on the parameters of the quan-
tile regression combination. More recently, Zou and Yang (2004) have introduced
a new combined method for time-series forecasting called aggregate forecast-
ing through exponential re-weighting (AFTER). Giacomini and Komunjer (2005)
have, also, introduced combining estimation to the conditional quantile literature.
They have stated that one can, in principle, compare the out-of-sample average
loss implied by alternative quantile forecasts in CAViaR estimations by choosing
the appropriate loss function.

Another interesting research (Jeon and Taylor , 2013), proposes VaR esti-
mation methods that are a synthesis of CAViaR time series models and implied
volatility. Forecast combining methods, with weights estimated using quantile re-

gression, are considered. Results, for daily index returns indicate that the newly
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proposed methods are comparable or superior to individual methods, such as the
standard CAViaR models and quantiles constructed from implied volatility and
the empirical distribution of standardized residuals. In addition, Tsiotas (2014)
propose a quasi-Bayesian model averaging method that generates combinations
of conditional VaR estimators based on single CAViaR models. Finally, Ratuszny
(2015), use four methods of combining forecasts in order to check whether simul-
taneous use of information both from historical time series and regarding markets’

expectation can improve accuracy of forecasts.

2.2.1 Combined CAViaR models

Regarding the implementation of combined estimates two important issues should
be managed, according to Tsiotas (2014). The first is the choice of the loss func-
tion and the second is the assignment of weights in the combinations. Tsiotas
(2014), introduce, a loss quantile function designed for the case where the quantile
estimate is expressed as a linear combination of two rival CAViaR specifications.
Given that the estimation of a given quantile model is based on the minimization
of the CheckLoss function La(etlJfTh ,B), the objective function for the combined

CAViaR model becomes

L(X(Et]_;#‘lv B7W7A1+2) = Z(a_lﬁz+h,1+2<o) : 8f+h<l37w)’

t

where €z+h(B, w) is the a-quantile error given the estimated parameter vector fS =
(B,,B,) from the CAViaR modelsA; and As.
Thus, given the ﬁ estimates, the w =( wy,w;) vector can be derived by solving

a minimization problem, such as the following:

minWLa(StlfTh, B,w,A142) = Z(Oc — I,y 11000) € (Bsw).
t

Also, regarding the weights w, we let them lie in some compact subset of R? and

we assume that wi +wy =1, with w; > 0 and wy > 0.
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2.2.2 Simple Average Combining (SimpAvg)

In order to analyze the basic methodology of Jeon and Taylor( 2013), let us
first introduce the idea of Implied Quantile(IQ). More specifically, Jeon and Tay-
lor(2013) construct an IQ estimator for period t as the product of implied volatility

implied

recorded in the previous period, 6,

, and the quantile, of an empirical distribu-
tion, which we construct as the distribution of the in-sample values of y; , defined
earlier, standardized by implied volatility. The IQ estimator can be expressed in

the following form:
0/ () = 05 (o) 5"

In basing quantile estimation on implied volatility, the IQ approach captures the
market’s expectation of future risk. Another advantage is that the method does
not assume a particular distribution for the asset returns, and it involves no pa-
rameter estimation. We also considered the use of a Gaussian assumption, but
the post-sample forecasting results were comfortably superior for the empirical
distribution. It is interesting to note that this simple approach to capturing an “im-
plied quantile” assumes returns standardised with implied volatility are i.i.d. By
contrast, the CAViaR models allow for the shape of the conditional distribution to
be time varying, as well as the volatility. The IQ method is similar to the filtered
historical simulation, but different in that we use implied volatility instead of the
variance estimated from a GARCH model [8].

The simplest and most widely used forecast combining method is to take
the simple arithmetic mean of the individual forecasts. We consider the simple
average of the quantile forecasts from the IQ method and one CAViaR model

(Jeon and Taylor, 2013):

VaR, (o) = 1 0{%a) +  VaREAVIR (o)
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The method will be here denoted as SimpAvg according to Jeon and Taylor (2013)
nomenclature. The aim of this approach is to determine the combination of fore-

casts with lower error variance than in case of individual forecasts.

2.2.3 Unrestricted Linear Combination (LinearComb)

A traditional approach to combining is to compute linear combinations of fore-
casts, called also regression method (Jeon and Taylor, 2013). The method will be
denoted as LinearComb according to Jeon and Taylor (2013) nomenclature. Fore-
cast is formed on the basis of an IQ forecast and one of CAViaR models (Jeon and

Taylor, 2013):
VaR, () =71 + 7> 0% o) + Y3VaREAVaR ()

The parameters ¥, and Y3 inform about the dynamics of forecasted variable. If the
sum of the parameters Y, and 3 is less than unity, the individual predictions are
more volatile than the risk measure VaR. If the sum of the parameters is greater
than one, then the individual forecasts are of less dynamic than VaR [8].

There are several difficulties with this combination method. The first is related
to collinearity of individual forecasts. If the individual predictions are quite good,
they would not differ significantly and this entails the phenomenon of collinearity.
Consequently, the low-significance and high randomness of estimated weights are
obtained. Another issue is the autocorrelation of the random component, caused
by autocorrelation of dependent variable. The third issue is related with the in-
ability to impose zero restrictions for correlation between the errors of individual
forecasts, when examining the behavior of individual forecasts in the past. In ad-
dition, regression method requires large data sets, which in case of time series is
fulfilled. The advantage of this method is the lack of restrictions on the parameters

and lack of assumptions about unbiasedness of individual forecasts [7].
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2.2.4 Weighted Averaged Combining (WtdAvg)

The Weighted Averaged Combining method is based on the relation between fore-
cast error in the past [8]. In this approach the unbiasedness of quantile forecast is
assumed. Error variance of combined forecast will be equal or smaller than of the
individual forecasts. The method in research will be noted as WtdAvg according
to Jeon and Taylor (2013) nomenclature. The resultant quantile forecast is of the
form (2627), without constant, where combining weights are constrained to be

between zero and one.
VaR; (o, w) =w Q{Q + (1- w)VaRCAViaR (q)

Bunn (1989) noted greater robustness of the method compared with regression
method. Taylor and Bunn (1998) pointed out that the value of the weight indicates

the relative explanatory powers of the two quantile predictors.

2.2.5 Weighted Averaged Combining Optimized using Expo-
nential Weighting (WtdAvgExp)

The method is similar to Weighted Averaged Combining but additionally the
Exponential Weighting factor for the optimization of the combining weight is ap-
plied. The factor gives greater weight to the more recent observations in the quan-
tile regression optimization. In this way the nonstationarity problem of weights is
solved. This is particularly important when the time series exhibits time-varying
and cyclical volatility. Boudoukh et al. (1998) insist that such an approach is
a reasonable compromise between statistical precision and adaptation to the lat-
est information. Exponentially Weighted Quantile Regression (EWQR) method
solves the following minimizing problem (Jeon, Taylor, 2013):

min,, ( Z M=oy - VaR, (o, o) | +
tly; <—VaR;(o,w)
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+ ) AT (1- ) | y; - VaR: (o, w) |)
tly;>—VaR,(a,w)

where VaR; (o, w) are expressed in the previous paragraph. A lower value of the
decay parameter A implies faster exponential decay, and hence more weight is
given to the recent observations and less historical information is captured. This

method is noted as WtdAvgExp according to Jeon and Taylor (2013).

2.3 One-step-ahead combined estimates

For the alternative single CAViaR models, we form pairs of weighted combined

one-step-ahead CAViaR estimates. These are, the SAV+AS-CAViaR model:

fir1,5av+as (0,B) =wfit1sav (0, B) + (1-w) fir1as (&, B)

the SAV+I-CAViaR model:

frersaver (0,B) =wfiisav (0,B) + (1-w) fre1r (0, B)
and the AS+I-CAViaR model:

freras+r (0,B) =wfiyias (a,B) + (1-w) fir1g (0, B).

Also, for the alternative single CAViaR models, we form pairs of equal weighted
combined one-step-ahead CAViaR estimates. In this specification we put w equal

to 1/2. These are, the SAV+AS-CAViaR(EqualW) model:

fir1.8av+as (0, B) =1/2fi11 sav (0, B) + (1-(1/2)) fit1.45 (0, B)

the SAV+I-CAViaR(EqualW) model:

frrr.sav4r (0,B) =1/2fii1 5av (0, B) + (1-(172)) fis11 (0, B)

and the AS+I-CAViaR(EqualE) model:

frerassr (0,B) =1/2fiv1.45 (0, B) + (1-(172)) fiy1.1 (o, B).
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Empirical data analysis

3.1 Our data

In order to apply the methodology on real data, a researcher needs to construct
the historical series of portfolio returns and to choose specification of the func-
tional form of the quantile. We considered three daily European stock market
indices: the IBEX 352SYTE(Spain)!, the SMI(SSMI) (Switzerland) > and the
OSE BENCH IDX GI( Norway)>. The data were obtained from Yahoo Finance

I'The IBEX 35 is the benchmark stock market index of the Bolsa de Madrid, Spain’s principal
stock exchange. Initiated in 1992, the index is administered and calculated by Sociedad de Bolsas
and comprising the 35 most liquid Spanish stocks, traded in the Madrid Stock Exchange General
Index.

2The Swiss Market Index (SMI) is Switzerland’s stock market index, which makes it the most
important in the country. As a price index, the SMI is not adjusted for dividends, but a perfor-
mance index that takes account of such distributions is available (the SMIC - SMI Cum Dividend).
The SMI was introduced on 30 June 1988 at a baseline value of 1500 points. Its composition is
examined once a year. The securities contained in the SMI currently represent more than 90 % of
the entire market capitalisation, as well as of 90% trading volume. Because the SMI is considered
to be a mirror of the overall Swiss stock market, it is used as the underlying index for numerous
derivative financial instruments such as options, futures and index funds.

3The OSE BENCH IDX GI( Norway) is an investable index containing a representative se-
lection of all listed shares on Oslo Brs, an online market place where all trading is done through
computer networks. Oslo Brs is the only independent stock exchange within the Nordic countries.
Trading starts at 09:00am and ends at 04:30pm local time on all days of the week except weekends
and holidays declared by Oslo Brs in advance. The stock exchange offers a full product range in-
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and covered the period from January 1, 2002 to September 30, 2016, approxi-
mately 3700 observations. Figures 3.1,3.2 and 3.3 below, show plots of these
series. The log return series were generated by taking logarithmic differences of
the daily close price, y; = [log(F;) — log(P;—1)] - 100, where P, is the close price at
time t. It is evident that the return series are clearly characterized by basic features
which are typical in financial return series, such as a mean near zero and clusters
of high and low volatility. Small differences in end-dates across indices occurred

due to different indices-specific non-trading days.

cluding equities, derivatives and fixed income instruments. The OSEBENCH is revised on a half
year basis and the changes are implemented on December 1 and June 1.
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Figure 3.2 Plot of SMI return data series
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Figure 3.3 Plot of OSEBENCH return data series

3.2 Descriptive Statistics

Let us, first, introduced some basic statistical information about the terms skew-

ness, kurtosis and Jarque-Bera test.
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3.2.1 Skewness-Kurtosis

Consider a series y; and t=1,...,T with mean u and standard deviation G. Let u,
=E [(x — u)"] be the r-th central moment of y, with u = 2. The coefficients of

skewness and kurtosis are defined as

E[(x—p)?]
Ele—p? PP

=

3
RE

T=

)

and

o= b = El—w?]
ot T E[(x—p)*
If y; is symmetrically distributed, then u3 and thus T will be 0. Sample estimates

of T and k can be obtained on replacing the population moments y, by the sample
T

moments &, = T~' Y (yy —¥)". If y; is iid and normally distributed, then v/T T
=1

— N(0,6) and v/T K — N(0,24).

When a distribution is positively skewed, we shall in fact have Mean > Median
> Mode, and the presence of observations on the right hand side of a distribution
makes it positively skewed. On the other hand, the presence of observations to
the left hand side of a distribution make it negatively skewed and the relationship
between mean, median and mode is: Mean < Median < Mode. In a symmetrical

distribution, the Mean, Median and Mode are equal to each other [25].

Skewness measures the lack of symmetry of the frequency curve of a distri-
bution, whereas, kurtosis is a measure of the relative peakedness of its frequency
curve. A measure of kurtosis was previously given and was defined as K. The
value of k=3 for a mesokurtic curve. When x > 3, the curve is more peaked than
the mesokurtic curve and is called as leptokurtic. Similarly, when k < 3, the curve

is less peaked than the mesokurtic curve and is called as platykurtic curve [25] .
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3.2.2 Jarque-Bera Test

In statistics, the Jarque-Bera test is a test of whether sample data have the skew-
ness and kurtosis matching a normal distribution. The test statistic JB is defined
as

T—c+1

1
JB = T(’C2+Z(K—3)2)

where T is the number of observations (or degrees of freedom in general), T is the
skewness, K is the kurtosis, and ¢ is the number of regressors. The JB statistic
asymptotically has a chi-squared distribution with two degrees of freedom, so
the statistic can be used to test the hypothesis that the data are from a normal
distribution. The null hypothesis is a joint hypothesis of the skewness being zero
and the excess kurtosis being zero. Samples from a normal distribution have an
expected skewness of 0 and an expected excess kurtosis of 0 (which is the same as
a kurtosis of 3). As the definition of JB shows, any deviation from this increases

the JB statistic [26].

3.2.3 Summary Statistics

The time series of returns were checked for the presence of the following fea-
tures: fatter tails than in the normal distribution (identified on the basis of the
quantile plots, histograms and the Jarque-Bera test), skewness, kurtosis( see Ta-
ble 3.1). The returns display a degree of kurtosis approximately 6.5 ( leptokurtic
kurve) and positive skewness is evident both in three cases, indicating consider-
able asymmetry. The Jarque Bera-test reject normality at the 5% and 1% level in
three cases. As we notice, small amount of p-values have a result the rejection
of the null hypothesis of normality. The variance of the time series returns is the
highest in the case of OSEBENCH index. As a consequence, “standard” methods,

based on the assumption of normality, tend not to suffice, which has led to various
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alternative strategies for VaR prediction. The most prominent of these are outlined

in the following subsections.

Table 3.1: Summary statistics of return index series financial series

IBEX OSEBENCH SMI
mean -0.00054 -0.01553 -0.00284
variance 0.43276 0.43539 0.27228
skewness 0.08149 0.55494 0.11905
kurtosis 6.4651 6.35902 6.82533
min. -5.85587 -4.40319 -4.68501
max. 5.72628 4.55046 3.93925

Jarque-Bera test 224.53(< 2.2e-16) 6394.1 (<2.2e-16) 7283.4(< 2.2e-16)

3.3 Parametric Estimation and VaR forecast

Before analyzing the empirical data results, let us first explain the basic method-
ology of our research. We investigate the sampling performance of a family of
conditional VaR models, the CAViaR models. In practice, we limit our attention
to a few representative specifications, including the SAV-CAViaR, AS-CAViaR
and [-CAViaR models. Our aim is two-fold. Firstly, we estimate the parameters
(B) of each model and test the Violation Rate (here after &) or the ratio &/c. of the
individual CAViaR models for the three financial indices. Secondly, we examine
the ability of a single CAViaR model to correctly estimate the nominal level o
via & , by employing weighted CAViaR models. In other words, we determine

whether a single CAViaR model can forecast VaR in the presence of combined

VaR dynamics.
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To this end, we employ the following strategy: first, we use quantile regres-
sion to estimate the B for each model in a within sample estimation. In our thesis,
the within sample period is from 01/01/2002 until 30/12/2008 and the out-of-
sample period is from 01/01/2009 until 30/09/2016, in our first set of results. Also,
we estimate the 3 for each model in a within sample period from 01/01/ 2002 un-
til 30/12/ 2013 and apply back-testing in a out-of-sample period from 01/01/2014
until 30/09/2016. Consequently, we use the estimated f; o(B) in order to estimate
the & / afor each model.

In other words, we used the first observations in the within sample period
to estimate the models and the last observations for out-of-sample testing. We
estimated 1% and 5% 1-day VARs (f; «(f)), using the SAV-CAViaR, AS-CAViaR
and I-CAViaR models. Finally, we test our estimates in the out-of-sample period
by calculating some test-values. As we mention above, we compare the estimated
& to the assigned nominal level o.. This non-statistical validation test estimates the
empirical nominal level (or &) which takes the following form for a m forecast or

test sample size and a n within sample size:

Z;n:n+1l(yt < _ft,oc([?))
- .

& —

Our second aim is to generate a combination of conditional VaR estimates
based on single CAViaR models by calculating weights, which are derived from
AIC measure. At first, we calculate CheckLoss functions of each model by using
the estimated betas and use these CheckLoss functions in order to calculate the
AIC and estimate the weights. Again, we aim to make a forecast by calculating
the estimated & in the out-of-sample period and test our estimates by calculating
some test-values. In the end, we generate three new combined estimates based on
the single CAViaR models, by applying the weighted coefficients and using alter-

nately the three CAViaR models. Basic concept is to investigate the performance
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of the combined CAViaR estimates compared to that of the individual estimates.
Also, working with the same way, we generate VaR estimates based on single

CAViaR models of equal weights.

3.3.1 VaR forecast for the 2009-2016 period

In order to provide a complete introduction of results, we divide our results into
groups of results. Thus, we work in two forecasting periods. In this paragraph we
illustrate the results for the 2009-2016 forecasting period and in the next paragraph
we illustrate some results for the 2014-2016 forecasting period. Consequently, the
full sample was divided into a learning sample or within sample period: January 1,
2002 to December 30, 2008 and a forecast or testing sample or out-of-sample pe-
riod: the trading days from January 1,2009 to September 30, 2016, and the results
illustrate in this paragraph. Likewise, the full sample was divided into a learning
sample : January 1, 2002 to December 30, 2013 and a forecast sample period: the
trading days from January 1,2014 to September 30, 2016, and the results illustrate

in the next paragraph.
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Table 3.2: Estimated parameters of CAViaR models for index SMI
B SAV-CAViaR AS-CAViaR I-CAViaR

o =0.05

Bo -0.0078(0.0110)  -0.0204(0.0068) [0.8731](0.0185)
Bi [0.8545](0.0169) [0.8988(0.0081)  -0.1136(0.0545)
B> -0.2739(0.0303)  -0.2952(0.0143) [0.2190(0.0430)
B3 -0.0143(0.0205)  -0.2470(0.0317)
By [0.0160(0.0076)
o =0.01

Bo -0.0074(0.0159)  -0.0216(0.0105) [0.8780](0.0094)
Bi [0.8418(0.0145) [0.9215](0.0088)  0.0033(0.0316)
B, -0.4364(0.0186)  -0.3481(0.0150) [0.50190.0293)
B3 -0.0188(0.0206)  -0.1701(0.0367)
B4 0.0225(0.0217)

Note: Entries in brackets next to each estimated parameter, represent standard errors, boxed

values indicate significant parameter according to t statistics.
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Table 3.2 reports the value of the estimated parameters and the corresponding

standard errors for the three CAViaR models, SAV-CAViaR, AS-CAViaR and I-

CAViaR model applied to the SMI index for nominal level o0 =0.05 and o =0.01.

We should check the hypothesis that B =0. Thus, our initial hypothesis, Hy is B =0

and our alternative hypothesis, H; is B # 0. We could use the type
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which follows t-student distribution with T-2 degrees of independence. For
example, at 0=0.05 and for the SAV model BAZ =0.8545 and Sg, = 0.0169. Conse-
quently,
~0.8545

From the table 6 page 435 ( Phoinos,1999) for T-2= 3742-2=3740 degrees of
independence at 0:=0.05, we found, |t3740,0.05| = 1.96. The degrees of indepen-
dence in the table approach the «. And so, because, 50.56 > 1.96, Hy hypothesis
is rejected at a=0.05 and [§2 is a statistically significant estimator. In the same way,
we calculate the significance of our rest estimators. Among others, we notice the
strong significance of [§2 estimators for SAV and AS- CAViaR models at both
nominal levels. Likewise, we notice strong significance of BAl and BA3 estimators
for [-CAViaR model at both nominal levels [25].

As we mention before, VaR is forecast one day ahead for each day in the
forecast sample of approximately 1900 returns, using a range of competing mod-
els. Table 3.3 shows the ratios of the estimated (&) at the given nominal levels,
0=0.05, 0.01, across the three models and three return data series. An estimated
& equals to the given nominal level is highly desirable. The best model’s ratio in
each index is that which approaches enough to 1 and is boxed. The results are
quite different from a=0.05 to 0.01. However, all the models are much closer in
performance and ratios closer to 1 across most models. Also, the majority of the
results do not under-estimate or over-estimate the risk, as the most of the results
are not differ enough from 1.

Specifically, as we notice in Table 3.3 at o =5%, AS-CAViaR model does not
display a & /o close enough to the optimum level, for none of the data sets. On
the other hand, SAV-CAViaR show a /o close enough to 1 both in OSEBENCH
and SMI return data series. [-CAViaR introduces the desirable effect for the IBEX

case. For a=1%, we notice controversial results, as each model introduce a good
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performance in each case. The SAV-CAViaR model shows the best performance in
three out of six cases, at both nominal levels, whereas the AS-CAViaR model ap-
pears less successful results in comparison with other models. Finally, [-CAViaR
model appears relatively successful in achieving second place, with two desirable
results close to 1, in IBEX and SMI data set series and three out of six times

achieving the second desirable result, at both nominal levels.

Table 3.3: Ratio for &/ o=0.05, 0.01 for each model across the three indices

Models Ibex Osebench Smi

o =0.05

SAV-CAViaR  0.96823  |1.169945| |1.069087|
AS-CAViaR  1.190116  1.25063  1.190116

I-CAViaR 1190116 1.089259

o =0.01

SAV-CAViaR 1260716 1.563288

AS-CAViaR 1.563288 |1.008573| 1.210287

I-CAViaR 1.512859  1.664145 |1.059002

Note: Entries in each table represent the G/o.. Boxed numbers indicate the favored model.
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Table 3.4: ChecklLoss functions

Models Ibex Osebench Smi

o =0.05

S.CheckLoss  99.19611 93.65973 90.86233
AS.CheckLoss 93.85468 92.46308 85.38442
I.CheckLoss 97.17359 95.00548 85.78754
o =0.01

S.CheckLoss  26.45912 25.84891 23.5111
AS.CheckLoss 24.92244 25.39028 21.93466
I.CheckLoss 25.14795  25.5322  21.99209

Table 3.4 includes the CheckLoss functions. The results are based on all
IBEX,SMI and OSEBENCH return data series and cover nominal levels o of 1%
and 5%. As CheckLoss functions evaluate the loss we should choose the model,
which display the least value of a CheckLoss function. AS-CAViaR is the model
which appears the best performance, as six out to six cases displays the least value
of a CheckLoss function. I-CAViaR model is in the second place, as appears the
relatively highly values in five to six cases. Finally, S-CAViaR shows the worst

results.
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Table 3.5: Estimated weights from AIC function

Models Ibex Osebench Smi

a =0.05

weights.SandAS  0.1024 0.8975 0.4754 0.5245 0.0963 0.9036
weights.Sandl 0.4971 0.5028 0.84190.1580 0.1769 0.8230
weights.ASandl  0.8965 0.1034 0.8546 0.1453 0.6685 0.3314
o =0.01

weights.SandAS 0.4333 0.5666 0.5672 0.4327 0.4284 0.5715
weights.Sandl 0.5852 0.4147 0.6988 0.3011 0.5598 0.4401
weights.ASandl  0.6485 0.3514 0.6389 0.3610 0.6291 0.3708

57

Note: The first number indicates the weight for the first written model and the second number

indicates the weight for the first written model.

Based on the aforementioned posterior simulation results, Table 3.5 reports
the estimated weights and Table 3.6 reports the one-step-ahead &/ o ratio and the
corresponding Christoffersen’s conditional coverage test. The combined CAViaR
models SAV+AS-CAViaR, SAV+I-CAViaR and AS+I-CAViaR derive from the
AIC Weighted Individual CAViaR forecasts. The combined CAViaR models SAV+AS-
CAViaR(EqW), SAV+I-CAViaR(EqW) and AS+I-CAViaR(EqW) derive from Equal
Weighted Individual CAViaR forecasts, thus weights are equal to 0.5. The esti-
mated weights add up to 1. The results are based in IBEX,SMI and OSEBENCH
return data series and cover nominal levels o of 1% and 5%. The most desirable
ratio in each index is boxed, while bolded numbers indicate the model is rejected

by CC test (at a 5% level). Naturally, we prefer models with ratios close to 1,
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while again ratios less than 1 are preferred to those above 1 that are equidistant

from 1.

First, at o = 5%, in all return data series, except OSEBENCH, one of the Equal
Weights combined models ranks first, with &/ & closest to 1. Specifically, in IBEX
return data series the SAV+AS-CAViaR(EqW) ranks first with 1.0085 and in SMI
return data series the SAV+I-CAViaR(EqW) ranks first with 1.0388. Further, AS-
CAViaR in three cases, [-CAViaR especially in OSEBENCH return data series,
the SAV+AS-CAViaR model in three cases and the AS+I-CAViaR model in three
cases, all have ratios mostly above 1. Thus, this group of models consistently
under-estimates 5% risk levels in these markets. Also, in IBEX return data se-
ries SAV-CAViaR model, the SAV+I-CAViaR model and SAV+I-CAViaR(EqW)
model display values below 1, 0.9682, 0.9178 and 0.9178 accordingly. Thus, this

group of models, in IBEX return data series, over-estimates 5% risks levels.

As far as o = 1% is concerned, a different story applies. As a consequence,
SAV+AS-CAViaR, SAV+AS-CAViaR(EqW) and SAV+I-CAViaR(EqW) models,
in IBEX return data series, display the most desirable result, all with 1.1094. Pos-
sibly, this effect is due to the fact that the cumulative AIC weights are close to 0.5.
Also, in OSEBENCH return data series, a different story applies. Here the AS-
CAViaR model has the best performance with 1.0085. Also, SAV+AS-CAViaR
and SAV+AS-CAViaR(EqW) models over-estimates 1% risks levels, with the
same value 0.9581. In SMI return data series, at o = 1%, AS+I-CAViaR and
AS+I-CAViaR( EqW) models have the best performance with 1.0085. Further,
SAV-CAViaR in three cases, AS-CAViaR in IBEX and OSEBENCH return data
series, I-CAViaR in three cases, SAV+I-CAViaR in three cases and AS+I-CAViaR
in IBEX return data series, all have ratios mostly above 1. Thus, this group of

models under-estimates 1% risk levels.

At o =5%, AIC Weighted CAViaR models and single CAViaR models do not
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display a ratio &/a close enough to the optimum level, except in OSEBENCH data
set series. Thus, the AIC Weighted CAViaR models places second in one out of
three data sets, while the Equal Weighted CAViaR models places first in two out of
three data set at ot =5%. At at=1%, we notice controversial and confusing results,
as AIC Weighted CAViaR models introduce a &/o ratio close enough to the opti-
mum level. For example, both in the case of index IBEX for SAV+AS-CAViaR
model and in the case of index SMI for AS+I-CAViaR model, we have desir-
able results. Also, in IBEX data set series SAV+AS-CAViaR(EqW) and SAV+I-
CAViaR(EqW) and AS+I-CAViaR( EqW) in SMI data set series rank first. In
OSEBENCH data set series, a different story applies as AS-CAViaR has the best
performance. Thus, the AIC Weigthed CAViaR models places first in two out of
three data sets and Equal Weighted CAViaR models places first in two out of three

data sets, too.
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Table 3.6: CAViaR model evaluation using the check-loss function applied to

financial data series

Models Ibex Osebench Smi

o =0.05

SAV-CAViaR 0.9682(0.3925)  1.1699(0.2219)  1.0690(0.00005)
AS-CAViaR 1.1901(0.1301)  1.2506(0.7864)  1.1901(0.9919)

I-CAViaR

SAV+AS-CAViaR

SAV+I-CAViaR
AS+I-CAViaR

1.0287(0.0907)
1.1094(0.1163)
0.9178(0.1163)
1.1497(0.0848)

1.1901(0.0717)
1.2405(0.2918)

[1.1396)(0.1119)

1.2002(0.6571)

1.0892(0.6928)
1.1497(0.5026)
1.0892(0.3857)
1.1598(0.2390)

SAV+AS-CAViaR(EqW) |1.0085((0.6283)
SAV+I-CAViaR(EqW) 0.9178(0.2175)

AS+I-CAViaR(EqW) 1.0388(0.5351)

1.2304(0.3128)  1.0993(0.0479)

1.1497(0.0291) | 1.0388((0.2457)

1.1497(0.1072)  1.1598(0.2390)

o =0.01

SAV-CAViaR 1.1598(0.4623)  1.2607(0.3228)  1.5632(0.3209)
AS-CAViaR 1.5632(0.0887) (0.185 1) 1.2102(0.0328)
I-CAViaR 1.5128(0.3369)  1.6641(0.2904)  1.0590(0.5024)

SAV+AS-CAViaR
SAV+I-CAViaR 1.2607(0.4241)
AS+I-CAViaR 1.6137(0.5262)

SAV+AS-CAViaR(EqW) |1.1094((0.4923)

SAV+]I-CAViaR(EqW) 1.1094/(0.4821)
AS+I-CAViaR(EqW) 1.6137(0.3131)

[1.1094(0.4923)

0.9581(0.1641)  1.2102(0.4430)
1.2607(0.3228)  1.3615(0.3878)
1.0590(0.2074)  [1.0085(0.5231)
0.9581(0.1641)  1.2607(0.4241)
1.1598(0.2686)  1.3615(0.3878)

1.1094(0.2309) | 1.0085 |(0.5231)

Note: Entries in each table represent the G/o.. Numbers in brackets next to each ratio represent
the p-values of the conditional LR test. Boxed numbers indicate the favored model, bold indicates
the model is rejected by CC test (at a 5% level).



3.3. PARAMETRIC ESTIMATION AND VAR FORECAST 61

Examining both nominal levels, SAV+I-CAViaR(EqW) and SAV+AS-CAViaR(EqW)
display the best performance as they rank first in two out of six data set se-
ries. The AS-CAViaR model shows the worst performance (value far enough
from 1) in three out of six cases, in three data set series and at o= 5%, 1%.
The AS+I-CAViaR model has the second place among all the models at a=1%
in OSEBENCH data set, the I-CAViaR model has the second place at ®=5% in
IBEX data set, the SAV+I-CAViaR(EqW) and AS+I-CAViaR(EqW) models have
the second place at =5% in OSEBENCH data set. SAV-CAViaR has the second
place at 0=5% in SMI data set and at =1% in IBEX data set. The AS+I-CAViaR
model has the second place among all the models at o=1% for OSEBENCH data
set and I-CAViaR displays second place in SMI data set series, at o = 1%. Thus,
SAV-CAViaR and I-CAViaR models appear good performance, and they take the

second place, at both nominal levels.

Among the single models, the SAV-CAViaR model shows the best perfor-
mance in three out of six cases and I-CAViaR model has the second place as it
shows the best performance in two out of six cases. While, among single mod-
els, the single AS-CAViaR model shows the worst performance (value far enough
from 1) in four out of six cases, at both nominal levels. Among AIC Weighted
CAViaR models, the AS+I-CAViaR model shows the worst performance(value far
enough from 1) in three out of six cases, and SAV+I-CAViaR the best perfor-
mance (value close enough to 1) in three out of six cases, at both nominal levels.
Among Equal Weighted CAViaR models, the SAV+I-CAViaR(EqW) model shows
the worst performance (value far enough from 1) in three out of six cases, however
the same model appears relatively successful values of &/ a ratio at both nominal

levels.
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Also, SAV+AS-CAViaR(EqW) model performs good enough to take the sec-
ond place, among Equal Weighted CAViaR models, at both nominal levels. Table
3.6 contains the p-values of the conditional LR test for each model over the IBEX,
OSEBENCH and SMI index, at ot = 1%, 5%. First, at o = 5%, none of the models
are rejected in IBEX return data series, as the LR-p-values are higher that the 0.05,
with Hy: & = a. In OSEBENCH return data series, the SAV+I-CAViaR(EqW)
model with LR-p-value 0.0291, is rejected. Finally, in SMI return data series, the
SAV-CAViaR model and the SAV+AS-CAViaR(EqW) model with LR-p-values
0.00005 and 0.0479, respectively, are rejected. At 1% confidence level, none of
the models are rejected in IBEX and OSEBENCH return data series, as the LR-
p-values are higher that the 0.05. Finally, in SMI return data series AS-CAViaR
model with LR-p-value 0.0328, is rejected. However, before reject a model, it is

reasonable to check our estimates with other tests.
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Figure 3.4 Plot of IBEX returns January 2009 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.5 Plot of IBEX returns January 2009 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.6 Plot of IBEX returns January 2009 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.7 Plot of IBEX returns January 2009 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.8 Plot of IBEX returns January 2009 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.9 Plot of IBEX returns January 2009 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.10 Plot of SMI returns January 2009 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.11 Plot of SMI returns January 2009 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.12 Plot of SMI returns January 2009 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.13 Figure 3.8 Plot of SMI returns January 2009 to Semptember 2016(black lines),
together with 1% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.14 Plot of SMI returns January 2009 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.15 Plot of SMI returns January 2009 to Semptember 2016(black lines), together with1%
forecasted VaR(red lines) under I-CAViaR.
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Figure 3.16 Plot of OSEBENCH returns January 2009 to Semptember 2016(black lines), together
with 5% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.17 Plot of OSEBENCH returns January 2009 to Semptember 2016(black lines), together
with 1% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.18 Plot of OSEBENCH returns January 2009 to Semptember 2016(black lines), together
with 5% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.19 Plot of OSEBENCH returns January 2009 to Semptember 2016(black lines), together
with 1% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.20 Plot of OSEBENCH returns January 2009 to Semptember 2016(black lines), together
with 5% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.21 Plot of OSEBENCH returns January 2009 to Semptember 2016(black lines), together
with 1% forecasted VaR(red lines) under I-CAViaR.
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Figures 3.4-3.21 illustrate the VaR forecasts in IBEX,SMI and OSEBENCH
return data series, for the SAV-CAViaR, AS-CAViaR and I-CAViaR models, at o
=5% ,1%. As we refer above, the forecast sample includes the after-crisis period.
More specifically, includes the period from January 1,2009 to September 30, 2016.
All the series and their VaR’s seem to have high-volatility periods towards their

start, in each case corresponding to the effects of the 2008 financial crisis .

3.3.2 VaR forecast for the 2014-2016 period

Table 3.7 reports the one-step-ahead G/ o ratio and the corresponding Christof-

fersens conditional coverage test. The combined CAViaR models SAV+AS-CAViaR,
SAV+I-CAViaR and AS+I-CAViaR derive from the AIC Weighted Individual CAViaR
forecasts. The combined CAViaR models SAV+AS-CAViaR(EqW), SAV+I-CAViaR(EqW)
and AS+I-CAViaR(EqW) derive from Equal Weighted Individual CAViaR fore-

casts, thus weights are equal to 0.5. The estimated weights add up to 1. The
results are based on IBEX,SMI and OSEBENCH return data series and cover
nominal levels o0 of 1% and 5%. The most desirable ratio in each index is boxed,
bold indicates the model is rejected by CC test (at 5% level). Naturally, we prefer

models with ratios close to 1, while again ratios less than 1 are preferred to those

above 1 that are equidistant from 1.
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Table 3.7: CAViaR model evaluation using the check-loss function applied to

financial data series

Models Ibex Osebench Smi

0 =0.05

SAV-CAViaR 0.8226(0.4800)  [0.9705](0.7506)  0.7194(0.1716)
AS-CAViaR [0.9645](0.0231)  1.1176(0.0180) [0.8920](0.1906)
I-CAViaR 0.7943(0.9092)  0.9117(0.6259)  0.6618(0.2091)
SAV+AS-CAViaR 0.9361(0.0784)  0.9411(0.6875) [0.8920(0.1906)
SAV+I-CAViaR 0.7659(0.9708)  [0.9705)(0.7506)  0.6043(0.2522)
AS+I-CAViaR 0.8226(0.8487)  1.0588(0.0443) [0.8920(0.1906)
SAV+AS-CAViaR(EqW)  0.7943(0.9092)  0.9411(0.6875)  0.6618(0.2091)
SAV+I-CAViaR(EqW)  0.7659(0.9708)  0.9411(0.6875)  0.6618(0.2091)
AS+I-CAViaR(EqW) 0.7943(0.9092)  0.8823 (0.5661)  0.6330(0.2300)
o =0.01

SAV-CAViaR [0.9929(0.7076)  1.6176(0.1641)  [1.0071(0.1426)
AS-CAViaR 1.4184(0.1259)  1.4705(0.0062)  1.4388(0.0001)
I-CAViaR 0.8510(0.7480)  0.4411(0.8703)  0.5755(0.8294)
SAV+AS-CAViaR 1.1347(0.6680)  0.7352(0.7853)  0.8633(0.7463)
SAV+I-CAViaR 0.7092(0.7891)  [1.0294(0.0556)  0.7194(0.7876)
AS+I-CAViaR 1.2765(0.6292)  0.7352(0.0242)  0.5755(0.8294)
SAV+AS-CAViaR(EqW)  1.1347(0.6680)  0.7352(0.7853)  0.8633( 0.7463)
SAV+I-CAViaR(EqW)  0.7092(0.7891)  0.5882(0.8276)  0.8633(0.7463)
AS+I-CAViaR(EqW) 0.8510(0.1031)  0.7352(0.0242)  0.5755(0.8294)

Note: Entries in each table represent the &/c.. Numbers in brackets next to each ratio represent

the p-values of the conditional LR test. Boxed numbers indicate the favored model, bold indicates

the model is rejected by CC test (at a 5% level).
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First, at o« = 5%, in all return data series, except IBEX, one of the AIC
Weighted CAViaR models ranks first, with &/ o closest to 1. Specifically, in
OSEBENCH return data series the SAV+I-CAViaR ranks first with 0.9705 and
in SMI return data series the SAV+AS-CAViaR and AS+I-CAViaR models rank
first with 0.8920. Also, SAV-CAViaR and AS-CAViaR illustrate a ratio closest to
1, for the same return data series. Further, all the models in IBEX and SMI return
data series and the majority of the models in OSEBENCH return data series, have
ratios mostly below 1. Thus, this group of models consistently over-estimates 5%
risk levels in these markets. As far as o = 1% is concerned, none of the Equal
Weighted CAViaR models display a ratio closest to 1. As a cosenquence, SAV-
CAViaR, dispalys the best performance in IBEX and SMI return data series with
0.9929 and 1.0071, respectively. SAV+I-CAViaR model, display the most desir-
able result, in OSEBENCH return data series, with 1.0294. Also, SAV-CAViaR
and AS-CAViaR models under-estimates 1% risks levels, with 1.6176 and 1.4705,
in OSEBENCH return data series and AS-CAViaR under-estimates 1% risk leves

in SMI return data series, with 1.4388.

At o0 =5%, Equal Weighted CAViaR models does not display a ratio G/ close
enough to the optimum level. Thus, the AIC Weighted CAViaR models places
second in two out of three data sets, while the single CAViaR models places first
in three out of three data sets at a=5%. At a=1%, we notice controversial and
confusing results, as both AIC Weighted CAViaR models, specifically SAV+I-
CAViaR model, and single CAViaR models(SAV-CAViaR) introduce a G/ ratio
close enough to the optimum level. Thus, the AIC Weighted CAViaR models
places second in one out of three data sets. However, single CAViaR models

places first in two out of three data sets. Examining both nominal levels, SAV-



3.3. PARAMETRIC ESTIMATION AND VAR FORECAST 75

CAViaR model display the best performance as it ranks first in three out of six
data set series. The AS+I-CAViaR(EqW) model shows the worst performance
(value far enough from 1) in three out of six cases, in three data set series and at

o= 5%, 1%.

Among the single models, the SAV-CAViaR model shows the best perfor-
mance in three out of six cases and AS-CAViaR model has the second place as it
shows the best performance in two out of six cases. While, among single models,
I-CAViaR model shows the worst performance (value far enough from 1) in four
out of six cases, at both nominal levels. Among AIC Weighted CAViaR models,
the SAV+I-CAViaR model shows the worst performance (value far enough from
1) in three out of six cases, and SAV+AS-CAViaR the best performance (value
close enough to 1) in four out of six cases, at both nominal levels, however the
same model appears relatively successful values of & / a ratio at both nominal
levels. Among Equal Weighted CAViaR models, the SAV+I-CAViaR(EqW) and
AS+I-CAViaR(EqW) models show the worst performance (value far enough from

1) in three out of six cases.

Also, Table 3.7 contains the p-values of the conditional LR test for each model
over the IBEX, OSEBENCH and SMI index, at & = 1%, 5%. First, at o@ = 5%,
none of the models are rejected in SMI return data series, as the LR-p-values are
higher that the 0.05 and we accept our Hy : & = o. In OSEBENCH return data
series, AS-CAViaR and SAV+I-CAViaR models, are rejected. Finally, in IBEX
return data series, the AS-CAViaR model with LR-p-values 0.0231 is rejected. At
1% confidence level, none of the models are rejected in IBEX return data series, as
the LR-p-values are higher that the 0.05. Finally, in OSEBENCH and SMI return
data series, AS-CAViaR, AS+I-CAViaR, AS+I-CAViaR(EqW) and AS-CAViaR,
are rejected respectively. However, before reject a model, it is reasonable to check

our estimates with other tests.
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Let us introduce some plots, which are illustrated the VaR forecasts in IBEX,
SMI and OSEBENCH return data series, for the SAV-CAViaR, AS-CAViaR and
[-CAViaR models, at &« = 5% ,1%. As we refer above, the forecast sample includes
the period from January 1,2014 to September 30, 2016. We illustrate the plots in
Figures 3.22-3.33 below.
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Figure 3.22 Plot of IBEX returns January 2014 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.23 Plot of IBEX returns January 2014 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.24 Plot of IBEX returns January 2014 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.25 Plot of IBEX returns January 2014 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.26 Plot of IBEX returns January 2014 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.27 Plot of IBEX returns January 2014 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.28 Plot of SMI returns January 2014 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.29 Plot of SMI returns January 2014 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.30 Plot of SMI returns January 2014 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.31 Figure 3.32 Plot of SMI returns January 2014 to Semptember 2016(black lines),
together with 1% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.32 Plot of SMI returns January 2014 to Semptember 2016(black lines), together with
5% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.33 Plot of SMI returns January 2014 to Semptember 2016(black lines), together with
1% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.35 Plot of OSEBENCH returns January 2014 to Semptember 2016(black lines), together
with 5% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.36 Plot of OSEBENCH returns January 2014 to Semptember 2016(black lines), together
with 1% forecasted VaR(red lines) under SAV-CAViaR.
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Figure 3.37 Plot of OSEBENCH returns January 2014 to Semptember 2016(black lines), together
with 5% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.38 Plot of OSEBENCH returns January 2014 to Semptember 2016(black lines), together
with 1% forecasted VaR(red lines) under AS-CAViaR.
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Figure 3.15 Plot of OSEBENCH returns January 2014 to Semptember 2016(black lines), together
with 5% forecasted VaR(red lines) under I-CAViaR.
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Figure 3.18 Plot of OSEBENCH returns January 2014 to Semptember 2016(black lines), together
with 1% forecasted VaR(red lines) under I-CAViaR.
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Chapter 4

Concluding Remarks

The importance of VaR became institutional in August 1996, when U.S. bank
regulators adopted a “market risk” supplement to the Basel Accord of 1988. VaR
has, thus, become a risk measure for setting capital-adequacy standards of U.S.
commercial banks [23]. The data used in our empirical application consist of 15
years, approximately,of daily returns on IBEX, SMI and OSEBENCH. The data
were obtained from Yahoo Finance and covered the period from January 1, 2002
to September 30, 2016. After the theoretical model specification and estimation
based on the Engle-Manganelli methodology|13],we implement an applied exer-

cise.

Our goal is to test and compare alternative models of one-step-ahead forecasts
of fw(ﬁ), the conditional a-level quantile of the distribution of y;. We perform
the evaluation in an out-of-sample period. This involves dividing the sample of
size T into an within-sample part of size n and an out-of sample part of size m,
so that T = m+ n. The within-sample portion is used to produce the estimates of
betas, and the evaluation is performed over the remaining out-of-sample portion.

In particular, we estimate three CAViaR models, the SAV-CAViaR model, the AS-
CAViaR model and the I-CAViaR model and we consider the 5% and 1% VaR

87



88 CHAPTER 4. CONCLUDING REMARKS

forecasts. Since none of the forecasts of single models is dominant and there
is no universally accepted accepted ranking of the various methods, we decided
to check if a forecast combination method based on AIC or in equal weights,
may display better results compared to individual forecast. In practice, we assess
whether a combined conditional CAViaR forecast can produce better predictions
than the estimates based on single CAViaR models at nominal levels of 1% and

5%.

First, we use real financial data to validate the & /o generated by our single
CAViaR models at both nominal levels. The results for the 2009-2016 forecast
period, show that the SAV-CAViaR model shows the best performance in three
out of six cases, at both nominal levels, whereas the AS-CAViaR model appears
less successful results in comparison with other models. Second, we create new
estimates, by combining single CAViaR models alternatively. Finally, we display
the forecast estimates from both single and combined CAViaR models and we
statistically and non-statistically assess whether the single or weighted models

display the best performance at nominal levels of 1% and 5%.

The empirical results for the 2009-2016 forecast period, indicate that the com-
bined (both the AIC Weighted and Equal Weighted) CAViaR models are compet-
itive to the single model alternatives. More specifically, although we notice con-
troversial results, examining all the models, SAV+I-CAViaR(EqW) and SAV+AS-
CAViaR(EqW) models display the best performance as they rank first in two out
of six data set series. The AS-CAViaR model shows the worst performance(value
far enough from 1) in three out of six cases, in three data set series and at o= 5%,

1%.

As far as the empirical results for the 2014-2016 forecast period, is concerned,
we notice quite different results. In other words, the combined (both the AIC

Weighted and Equal Weighted) CAViaR models display a ratio & /o closest to 1
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in three out of six data set series, while single CAViaR models display a ratio &
/o closest to 1 in five out of six data set series. Especially, at a=1%, both the AIC
and Equal Weighted CAViaR models dispaly a bad performance, as their results,
are strongly far enough from 1.

Perhaps, each of the findings should be useful for practitioners and institu-
tions. However, many additional questions emerge for future research. Due to
time limitations, we only focus on 1-day forecasting, in three models and in three
return data series. Extensions to include more than three return data sets and other

estimating VaR models are potential directions for further research.
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Appendix

R is in an open code application of the object-oriented mathematical program-
ming language S. R has developod from statistics all over the world and is a free
software, which is covered by the GNU General Public License. This license,
also, ensures the dissemination and modification of the software. Syntactically
and functionally, R has many similarities with the language S in which is used the
known statistical package S™.

R is a complete software for management of data, estimation and graphical
representation. Also, R is a completely organised and composed system and is
not a specific and rigid toll, such as other data analysis softwares. R uses new
methods of data analysis and has been expanded to a big collection of packages.
Although, an important part of programs written in R concern specific parts od
data analysis. The last statistical methodologies, are available for use in R.

For our estimations we use the following packages:
e ¢1071: for the Descriptive Statistics

e ucminf: for the CAViaR estimation models-Backtesting





