Au

1,n-

2013

:

DEHYDROGENATIVE CYCLOADDITION OF TETHERED 1,n-DIHYDRODISILANES TO ALKYNES CATALYZED BY GOLD NANOPARTICLES

KOTZAMPASAKI VASILIKI

SUPERVISOR: PROFESSOR . STRATAKIS

MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CRETE FEBRUARY 2013

....»

, .

Albert Einstein

,

«

6

,

,

: 03/10/1988,

	2006-		2011:		, ,
	,		õ	ö 7.58.	
	2009-	2010:			: õ
				Mn ^{III} /Ca	Ш
	Mn^{III} »	ö.	:		
	2010-		2011: Erasmu	S	
					: õ Synthesis of an
important	intermediate	towards th	e synthesis of	f Largasol»ö.	:
2007-2008	8:				
2012:					II.

1.	6		,	,
		2009.		
2.			(ESOC),	,
		2011.		

- Kotzabasaki, V.; Inglis, R.; Siczek, M.; Lis, T.; Brechin, E. K.; Milios, C. Dalton.Trans. 2011, 40, 1693
 Kotzabasaki, V.; Siczek, M.; Lis, T.; Milios, C. Inorg. Chem. Commun. 2011,
- *14*, 213.
- [3] Kotzabasaki, V.; Lykakis, I. N.; Gryparis, C.; Psyllaki, A.; Vasilikogiannaki,
 E.; Stratakis, M. *Organometallics* 2013, *32*, 665.
- [4] Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I.N.; Stratakis, M. *Submitted to* Adv. Synth. Catal.

CURRICULUM VITAE

Date of Birth: 03/10/1988, Amarousio Athens

EDUCATION

September 2006-February 2011: Bachelor of Chemistry, Department of Chemistry, University of Crete, Degree 7.58.

October 2009-June 2010: Bachelor Thesis with the title õSynthesis and characterization of heterometallic clusters Mn^{III}/Ca^{II} and of hexacoordinated clusters of Mn^{III}ö. Supervisor Professor: Costas Milios.

September 2010-February 2011: Erasmus at the University of Leipzig in Germany, Bachelor Thesis with the title: õSynthesis of an important intermediate towards the synthesis of Largasolö. Supervisor Professor: Athanasios Giannis.

TEACHING EXPERIENCE

2007-2008: Lab assistant at Basic Chemistry I.

2012: Lab teaching assistant at Organic Chemistry Lab II.

PARTICIPATION IN CONFERENCES

1. 6[°] Greek Conference of Toxicology and Forensics, Kalamata, December 2009

 Volunteer at the European Symposium of Organic Chemistry (ESOC), Crete, Greece, July 2011.

PUBLICATIONS

- [1] Kotzabasaki, V.; Inglis, R.; Siczek, M.; Lis, T.; Brechin, E. K.; Milios, C. *Dalton.Trans.* **2011**, *40*, 1693
- [2] Kotzabasaki, V.; Siczek, M.; Lis, T.; Milios, C. Inorg. Chem. Commun. 2011, 14, 213.
- [3] Kotzabasaki, V.; Lykakis, I. N.; Gryparis, C.; Psyllaki, A.; Vasilikogiannaki,
 E.; Stratakis, M. *Organometallics* 2013, *32*, 665.
- [4] Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I.N.; Stratakis, M. *Submitted to* Adv. Synth. Catal.

,

. . . .

 \cdot , \cdot , , \cdot , \cdot

· , , ,

, ,

.

		1,1,3,3-			
1,n-		,			
		,			
		, Dd(II)	2,5-	-1,2,5-	
Hivama	C-C	Pu(11)		,	
 Au/TiO2 			·		1.1.3.3-
- 110/110 ₂		(2), 1.1.1.3.5	5.7.7.7-		(3).
1,1,3,3,5,5			(4)		1,2-
()		(5)			,
					1,1,3,3-
	,				
•					
		4,7-	-1,3,2,4,7	-	
•					
FO O	1,n-			,	
[3+2]					Au
		•			
• Pd(II)	-	Hivama	2 5-	-1 2 5-	
1 u(11)		TTyama	2,5-	-1,2,5-	,
:		,			, 1,n-
, 2,5-	-1,2,5-	,	Hiy	ama.	

SUMMARY

In the current Thesis a generalized methodology of the dehydrogenative addition of 1,n-dihydro-tethered oligosilanes to alkynes is presented. Furthermore, mechanistic studies regarding the reaction among 1,1,3,3 tetramethyldisiloxane and alkynes were carried out. In addition, we present the synthetic use of 2,5-dihydro-1,2,5-oxadisiloles, products of these reactions, in C-C coupling reactions with aryl iodides catalyzed by Pd(II), the known Hiyama coupling. The results can be summarized as follows:

- Au/TiO₂ catalyzes the dehydrogenative addition of 1,1,3,3tetraphenyldisiloxane, 1,1,1,3,5,7,7,7-octamethyltetrasiloxane, 1,1,3,3,5,5hexamethyltrisiloxane and 1,2-bis(dimethylsilyl)benzene to alkynes in high yields.
- The formation of the seven-membered heterocyclic ring of 4,7-dihydro-1,3,2,4,7 dioxatrisilepines by the Au-catalyzed reaction among alkynes and 1,1,3,3,5,5-hexamethyltrisiloxane appears for first time in literature.
- The mechanism of the dehydrogenative addition of 1,1,3,3tetramethyldisiloxane to alkynes is postulated, which includes a formal [3+2] cycloaddition via a cyclo-gold-disiloxane intermediate.
- The Hiyama coupling (Pd(II), aryl iodides) of 2,5-dihydro-1,2,5-oxadisiloles was studied and found to form products of mono or di-substitution depending on the steric hindrance of the tertiary olefinic carbon atom of the reacting oxadisilole.

Key words: Heterogeneous catalysis, dehydrogenative cycloaddition, 1,ndihydrodisilanes, 2,5-dihydro-1,2,5-oxadisiloles, Hiyama coupling

1.	
1.1	Au
1.2	Au
1.3	,
	Auííííííííííííííí18
1.4	21
1.5	
1.6	
1.7	
1.8	C-C
1.9	
2.	
2.1	
	.40
2.2	1,1,3,3- (2)
	Au/TiO ₂ ííííííííííííííííí41
2.3	1.1.1.3.5.7.7.7 (3)
2.0	Au/TiQ ₂
2.4	113355- (4)
2	$Au/TiO_{2}i i i i i i i i i i $
2.5	12-() (5)
2.0	$Au/TiO_{2}(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)($
26	1133-
2.0	$TMDS \qquad \qquad \Delta u/TiO_{si} 49$
27	Hivamaí i i i i i i i i i i i i i 56
2.7	
J . 2 1	62
J.I 2 D	,03
3.2	
	80
	87

.

Au

1:

TiO₂.

	Au/TiO ₂ ,		
		Au(), $HAuCl_4$. ¹⁶
	HAuCl ₄ ,3H ₂ O	· ·	
	111100401120		,
	, т:О	2 h	20 C
,	1102	2 11	80°C,
рН	3 8.	,	
			70
C.			$(XRD)^{17}$
			(high resolution
TEM) ¹⁷			Au.
	Au(I) Au(III)		,
	TiO_2 . ¹⁸		
		_	_
		-	, TiOa
			19
	5 nm. ,		
		2 nm	l. ,
	$CO CO_2$		<25 C
			5 nm. ²⁰
1.2		Au	
	2		T_1O_2 , CeO_2
	,		
	,		,21-24
,25-26	,		.17,27-30
O Au/TiO ₂	Au/CeO ₂		
(2)		

>95%.

15

(=Ce, Ti).

 O_2

2:

Au/ O₂

Au/CeO₂

Corma³¹ Au/TiO₂ 3

•

(reactive oxygen species, ROS)

•

3:

Au/CeO₂.

,

 $\label{eq:pd} Pd/TiO_2, \ Au-Pd/TiO_2, \ Au-Pd/SiO_2, \ Au-Pd/Al_2O_3, \ Au-Pd/Fe_2O_3 \\ Au/TiO_2,$

, Au/TiO_2

(

.

) .

4:

 O_2

Au.

6:

Au

85%,

.

Au

•

,

Au

Au/TiO₂

Au¹⁸

(active sites),

Au/TiO₂

TiO₂

Au/TiO₂

7.³⁹

Au/TiO₂

8.

(

•

 TiO_2

,

8:

 Au/TiO_2 .

TiO₂.

,

Au (I)

⁴¹ (. .

Au.

CO⁴⁵⁻

, Kaneda⁴²⁻⁴⁴ Au/HT (HT: hydrotalcite,
$$Mg_6Al_2(OH)_{16}CO_3 \cdot nH_2O$$
)
(>99%) (
) TOF (Turn Over Factor) (Turn Over Number) 270⁻¹ 2×10⁴, .
10.

2·⁴⁷ 46

10:

Au/HT

(BS: basic site, HT:

hydrotalcite).

•

1: CO₂

Au

•

1.4

٠

Au

,

49-57,15

Au(I) Au(III).

•

,

CeO₂ (1,6)- ,⁷⁷

2 - Au/TiO₂ (1.2% mol), 70 C 1,2- .

Η

,

2 ,2 -3,3 -

20%.

2 -

11.

11:

/ Au(III).

Au(I) Au(III).

Au(III).⁷⁹

80

(12).

12:

Au/CeO₂

Au

(benzannulation)

Corma Ga

Garcia,

CeO₂, Fe₂O₃, TiO₂

•

.14,81

13.

14:

Au/CeO₂.

Au

_

(15).

16:

 Au/TiO_2

(0.8-1.4% mol,

, 70 °C).⁹¹

,

•

(TMDS),

(

92		

Pt(0),

17).⁹³

Au/TiO₂ 1,2-

2,5-

() Pt(CH₂=CH₂)(PPh₃)₂,⁹⁴

-2,5-

•

Pd(PPh₃)₄

17:

Pt(0) Au/TiO₂.

)

,

-(

3).

.95

(

3:

Au/TiO₂.

99%.

•

1/1 , , 20-30% TMDS

0

TMDS

•

4:

1% mol Au/*meso*-TiO₂.

			(\ldots)	,	C-C	C-0).
2006	Corma	Serna ^{104,105}				
(Au/Ti	O ₂ Au/Fe	$e_2O_3)$				
		100% (5).			
		0				

Pd

_

(II),

(19).¹⁰⁶

,

19:

4-

 TiO_2

.

20:

,

Au/TiO₂.

21:

Au/TiO₂.

,

(6).

.

6:

Au/TiO₂.

Cao¹¹⁴

CO/H₂O (water-gas shift

reaction).

,

•

22:

CO/H₂O

Au/TiO₂-VS.

KOH.

$Ar = N_{s}$	
isopropanol, hv N-Ar	conversion (%) /selectivity (%)
produc*	/*/me (h)
	100/99/5
	100/95/3
	100′56′6
-NO ₂ Me N _N Me	58′99′3
	100′82′3
	$Ar - N_{N} Ar - N_{N$

7:

UV/Vis

-

 Au/ZrO_2 .

NaBH₄

٠

,

· , , 120-122

> Ar $-NO_2$ $\xrightarrow{Au NPs}$ Ar $-NH_2$ H_3B-NH_3 $\xrightarrow{Au NPs}$ $NH_4^+ + BO_2^- + 3H_2$

23: NaBH₄

-

Au.

.

B-H NaBH₄ (BH₃-NH₃) (23), .¹²³ .

, Au^+/Au^{3+} , Pd^0/Pd^{2+} , $Pd^0 Pd^{2+}$,

Au, . , , Pd, C-C

MCM-41

25:

,

.

Ullmann

Au@PMO.

,

	,			1.5,	1,1,3,3-
	(TMDS	5)		Au/Ti	$O_2.^{92}$
			1,n-		1,1,3,3- ,
,		TMDS C-C	, Pd(II)	2,5-	-1,2,5-
	Hiyama.				

,

(2), 1,1,1,3,5,7,7,7-(3), 1,1,3,3,5,5-(4)1,2-(5)(8).129

,

2.1

(2)

¹³⁰ (**6**)

Au/TiO₂

1,1,3,3-

,

NaOH (27). 1.5 hHCl. (2)

•

100:1 (75%).

CI Ph∑¦∕H Ph 6	NaOH 1M Et ₂ O,1.5 h 75%	OH Ph _\ _ Si ⁻ H Ph	<u>×2</u> -H₂O	Ph Ph Ph SI O SI Ph H 2 H
27:	1,1,3,3-			

7b-12b)

%,

7a-12a

.

,

38%, 40%, 40%, 42%, 40% 38%

.

Au/TiO₂.

•

3-4

1,1,3,3-

•

,

1,1,3,3-

1	2.	70 C	
1,2-	() 1.	.2 mol%
Au/TiO ₂ ,			

.

78-96%. , 1,1,1,3,5,7,7,7-

.

9.

TMSO, O, OTMS S ⁽ S ⁽ S ⁽) Me ⁽ H, H ⁽ Me	S Au/TiO ₂ 1.2 % mol dry DCE 70º C	
$R_1 \rightarrow R_2$	>	R_1 R_2
alkyne	products	Yield/Time_
Me-	13a	78%/14 h
F	9c	94%/12 h
n-C ₅ H ₁₁ 10	10c	91%/16 h
	¹¹ C	96%/14 h
MeCOOE+ 14	1 4 a	85%/16 h
9:		1,1,1,3,5,7,7,7-
		Au/TiO ₂ .

¹³C NMR

1,1,1,3,5,7,7,7-

29:

,

1,1,1,3,5,7,7,7-

(3)

Au/TiO₂.

1,1,1,3,5,7,7,7-

2.4

1,1,3,3,5,5- (4)

,

Au/TiO₂

.

,

(

(4)

,

31).

Au/TiO₂. ,

TMDS,

(2 3),

76 95%.

,

,

32:

Au

TMDS

^{90-91,131} (33).

Lewis.¹³²

,

,

33:

(

 Au/TiO_2

8-d

 8
 1
 n-BuLi (-78 °C, 30 min),

 D2O (
 33).
 TMDS

 8-d
 8a-d
 D>97%

 34).
 33
 D
 ,

.

HD

,

•

8-*d*

1,1,3,3-

Au/TiO₂.

.

TMDS

TMDS , 1a, 1,1,3,3,5,5,7,7-(**1b**). 1b). (D_2O GC-MS, **1b** (35). 33 , 1b. 1,1,3,3,5,5,7,7- $-1,7-d_2$ (**1b**-*d*₂) IV -36. -_ Pt, Pd, Ir Rh 1, -H₂) (.133 IV Ι (H_2 36),

Si-H

 R_3Si -Au-Si R_3 IVAu(I)Si-Si.135

.

IV

[3+2]

134

2,5- -1,2,5-

36:

,

IV TMDS

TMDS

(11).

Hammett $^+$ ((R² = 0.68 0.64),

Entry	X	k _X /k _H
1	<i>p</i> -Me	0.74
2	<i>p</i> -MeO	0.88
3	<i>p</i> -NMe ₂	0.68
4	<i>p</i> -F	1.39
5	<i>p</i> -CF ₃	4.72

11:HammettTMDS

57

Pd(0).

,

,

cis-1,2- (41).

	$R_1 - S_1^{i}R_3 + R^2 - X$	Σύζευξη Ηlyama ────≻ R	¹ -R ²
Σú	λάνια	Αλογονίδια	Συνθήκες
1)	R R ¹ -SÍ-R R	R ² =αρυλο,αλκενυλο, αλλυλο,ετεροαρυλο	ενεργοποιητής! ΤΒΑΓ πρόσθετο! Αg ₂ Ο καταλύτης: Pd/)
	R=Me R ¹ =αλκενυλο,αρυλο, αλκυνυλο,βενζοφουρυλα	X=I,Br,O1+	θερμοκρασίαι rt
2)	R ^{1_} Si(allyl) ₃ R ¹ =αρυλο	R ² =αρυλο,ετεροαρυλο X=Br,CI	ενεργοποιητήςι TBAF καταλύτηςι Pd/II) διαλύτηςι THF/H2O θερμοκρασίαι 80 °C
3)	R ¹ -S!R _n X _{3-n} R=αλκυλο (Me,E*,κυκλοεζυλο) R ¹ =αρυλο,αλκενυλο, αλκυνυλο n=0,1,2 X=CI,F	R ² = αρυλο,ετεροαρυλο, αλκενυλο,αλκυλο X = CI, Br, Ι, ΟΤ [≠]	ενεργοποιητής! ΤΒΑΕ καταλύτης! Ρd(II) διαλύτης! ΤΗΕ/Η ₂ Ο θερμοκρασία! -120 ⁰ C
4)	R ¹ –S [:] Me _n (OR) _{3-n} R=αλκυλο	R ² = αρυλο,αλκυλο X = C I , Br, Ι, ΟΤ [≠]	ενεργοποιητής: TBAF καταλύτης: Pd(11) διαλύτης: THF/H2O θερμοκρασία: r+
5)	ΟΗ R ¹ -S ^í -R R R=αλκυλο (Me,E ⁺ ,Pr), αρυλο R ¹ =αρυλο, αλκενυλο, αλκυνυλ ετεροαρυλο, κυκλοπροπυλ	R ² =αρυλο,αλκενυλο,αλλυλο, αλκυλο,ετεροαρυλο X = CI, Br, Ι, ΟΤ S,OMS ο, ο	ενεργοποιητής፣ TBAF καταλύτης፣ Pd() διαλύτης፣ THF/H2O θερμοκρασίαι r ⁺
6)	ΟΜ ⁺ R ¹ -S!— M=Na, K, Csl R ¹ =αρυλο,αλκευυλο, αλλυλο,ετεροαρυλο	$R^2 = \alpha \rho v \lambda o, \alpha \lambda \kappa \varepsilon v v \lambda o$ X = CI, Br	ενεργοποιητής! NaH καταλύτης! Pd(II) προσθετο! Cul διαλύτης! THF/H2O θερμοκρασία! r+90 °C
7)	_ O R ^{1·S¹ S¹ R¹ R¹=αρυλο,αλκενυλο}	R ² =αρυλο X = Ι, Br	ενεργοποιητής! ΤΒΑΓ καταλύτης! Ρd() διαλύτης! ΤΗΓ/Η2Ο θερμοκρασία! r*

40:

Hiyama.

2,5- -1,2,5-

Hiyama

2,5- -1,2,5-

•

2,5- -1,2,5-

,

Hiyama 2,5- -1,2,5-

3.1 , ¹H NMR, ¹³C NMR nOe , (CDCl₃), 300 500 MHz () Bruker. GC-MS Shimadzu GCMS-QP5050, QHR-47 30 . Shimadzu GC-17A 60 (HP-5). (flash column , chromatography) SiO₂ (silica gel), (TLC) SiO₂, (94 mL) 6 mL H₂SO₄ (98%), 1.0 gr 1.5 gr , TLC , 20% w/v MeOH, • (Et_2O) (THF) Na, , • , Au/TiO₂, World Strem Chemicals (1% w/w Au). Gold Council (1.5% w/w Au) 3.2 1,1,3,3-. (4.5 mmol) NaOH (2 mmol, 1M). 1.5 h HCl.

100:1.

1,n-

-

•

Au/TiO₂

$$R \longrightarrow \frac{R' \xrightarrow{R'} \xrightarrow{R'} \xrightarrow{R'} \xrightarrow{R'}}{1.2 \cdot 1.5 \text{ mol } \% \text{ Au}/\text{TiO}}, \xrightarrow{R'} \xrightarrow{R'} \xrightarrow{R'} \xrightarrow{R'} \xrightarrow{R'}$$
(vial) 1.0 ml (DC),
(0.1-0.2 mmol), 1-2 1,n- - (0.0.3-0.4 mmol) 0.5 ml 1.2-1.5 mol% Au/TiO₂.

(TLC, GC-MS).		-
3,	80 C	1.2-
	• • •	

silica gel

Hiyama 2,5- -1,2,5-

.

	R'OR' R'/ R' R	5 mol % Pd(db TBAF THF, rt	ab 	R Ar	or Ar	
				2,5-	-1,2,5-	(0.2
mmol)	TH	F (0.5 mL)	3		TBAF (0.6 mmol)	0
°C.			10			5 mol%
Pd(d	lba) ₂					
THF (0.6 mmo	1)					
(GC-	MS).					silica
gel						

.

1,n-

Au/TiO₂

 $\begin{array}{cccc} 2,2,3,5,5- & -2,5- & -1,2,5- & (7a) \\ & & & & & \\ & & & & \\ & &$

¹H NMR (300 MHz, CDCl₃): 7.70-7.66 (m, 8H), 7.49-7.33 (m, 17H), 7.28 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): 163.7, 143.7, 140.6, 135.2, 134.7, 134.5, 134.2, 130.4, 130.4, 128.6, 128.0, 128.0, 127.1, 126.8. HRMS: calcd for $C_{32}H_{26}OSi_2$ +H, 483.1600; found 483.1595.

* 3-(2-)-2,2,5,5- -2,5- -1,2,5-

(**8**a)

¹H NMR (300 MHz, CDCl₃): 7.85 (s, 1H), 7.72 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 7.67-7.59 (m, 8H), 7.45-7.28 (m, 12H), 7.23 (dt, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.5 Hz, 1H), 3.11 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 157.2, 155.7, 143.7, 136.1, 134.9, 134.9, 134.5, 130.1, 129.7, 129.3, 127.8, 127.6, 127.0, 123.7, 121.0, 110.6, 53.4. HRMS: calcd for $C_{33}H_{28}O_2Si_2$ +H, 513.1706; found 513.1704.

¹H NMR (300 MHz, CDCl₃): 7.72-7.65 (m, 8H), 7.62 (s, 1H), 7.48-7.36 (m, 14H), 6.97 (t, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): 163.3 (d, $J_{C-F} = 245.0$ Hz), 162.1, 143.5 (d, $J_{C-F} = 2.0$ Hz), 135.1, 134.9, 134.8, 130.5, 130.4, 128.8, 128.7, 128.4 (d, $J_{C-F} = 8.0$ Hz), 128.1, 128.0, 115.5. HRMS: calcd for C₃₂H₂₅FOSi₂+H, 501.1506; found 501.1502.

¹H NMR (300 MHz, CDCl₃): 7.68-7.62 (m, 8H), 7.46-7.35 (m, 12H), 7.09 (s, 1H), 2.48 (t, J = 7.5 Hz, 2H), 1.52-1.42 (m, 2H), 1.25-1.17 (m, 4H), 0.80 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 168.5, 141.4, 135.1, 134.9, 134.8, 134.1, 130.2, 130.1, 127.9, 127.9, 36.1, 31.6, 27.8, 22.4, 13.9. HRMS: calcd for C₃₁H₃₂OSi₂+H, 477.2070; found 477.2063.

¹H NMR (300 MHz, CDCl₃): 7.73 (d, J = 7.0 Hz, 4H), 7.66 (d, J = 7.0 Hz, 4H), 7.51-7.36 (m, 12H), 6.87 (s, 1H), 1.88-1.82 (m, 1H), 0.87-0.80 (m, 2H), 0.68-0.62 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): 170.4, 136.4, 135.1, 135.0, 134.8, 134.2, 130.3, 130.2, 128.0, 127.9, 16.4, 9.7. HRMS: calcd for C₂₉H₂₆OSi₂+H, 447.1600; found 447.1602.

★ 2,2,5,5-3-(
-1-2)-2,5-1,2,5(12a)

¹H NMR (300 MHz, CDCl₃): 7.70-7.66 (m, 8H), 7.49-7.33 (m, 17H), 7.28 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): 163.7, 148.4, 143.7, 140.6, 135.2, 134.7, 134.5, 134.2, 130.4, 130.4, 128.6, 128.0, 128.0, 127.8, 127.1, 126.8. HRMS: calcd for $C_{29}H_{26}OSi_2$ +H, 447.1600; found 447.1591. (13a)

-3-(p-

((

)-2,5-

¹H NMR (300 MHz, CDCl₃): 7.43 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.00 6.99 (, 1H ,), 0.36, 0.32, 0.30 0.25 (, 3H ,), 0.14, 0.12, 0.11 0.09 (,

9H ,); 13 C NMR (75 MHz, CDCl₃,): 162.9, 162.8, 140.6, 140.5, 137.9, 137.9, 137.0, 136.9, 129.3, 129.3, 126.6, 126.6, 21.2, 21.2, 1.9, 1.8, 1.8, 1.7, -0.2, -0.4, -0.5, -0.7. HRMS: calcd for $C_{17}H_{32}O_3Si_4$ +H, 397.1507; found 397.1502.

* 3-(4-)-2,5- -2,5- (())-2,5- -1,2,5- (9c)

¹H NMR (300 MHz, CDCl₃): 7.51-7.44 (m, 2H), 7.04 (t, J = 8.5 Hz, 2H), 6.96 6.94 (, 1H ,), 0.34, 0.30, 0.29 0.25 (, 3H ,), 0.14, 0.11, 0.09 0.08 (, 9H ,

); ¹³C NMR (75 MHz, CDCl₃,

): 162.6 (d, $J_{C-F} = 245.0$ Hz), 162.6 (d, $J_{C-F} = 245.0$ Hz), 161.8, 161.8, 141.6 (d, $J_{C-F} = 2.0$ Hz), 141.5 (d, $J_{C-F} = 2.0$ Hz), 135.9, 135.9, 128.2 (d, $J_{C-F} = 8.0$ Hz), 128.1 (d, $J_{C-F} = 8.0$ Hz), 115.4 (d, $J_{C-F} = 21.0$ Hz), 115.4 (d, $J_{C-F} = 21.0$ Hz), 1.8, 1.7, 1.7, 1.6, -0.4, -0.6, -0.6, -0.8. HRMS: calcd for C₁₆H₂₉FO₃Si₄+H, 401.1256; found 401.1252.

* 2,5- -3- -2,5- (())-2,5- -1,2,5-(10c)

¹H NMR (300 MHz, CDCl₃): 6.39 and 6.38 (, 1H), 2.25 (t, J = 7.5 Hz, 2H), 1.52-, 1.44 (m, 2H), 1.34-1.25 (m, 4H), 0.90 (t, J = 7.5 Hz, 3H), 0.21, 0.20, 0.16 0.15 (, 3H), 0.11, , 9H 0.10, 0.09 0.08 (); 13 C NMR (75 MHz, CDCl₃,): 168.1, 168.0, 142.0, 142.0, 36.1, 36.1, 31.7, 31.7, 28.1, 28.1, 22.5, 22.5, 14.0, 14.0, 1.8, 1.8, 1.8, 1.8, -0.6, -0.8, -0.9, -1.2. HRMS: calcd for C₁₅H₃₆O₃Si₄+H, 377.1820; found 377.1814. * 3--2,5--2.5-)-2,5-(() 1,2,5-(11c) TMSO 0 OTMS Ме 11C ¹H NMR (300 MHz, CDCl₃): 6.32 6.30 (, 1H), 1.66-1.47 (m, 1H), 0.81-0.75 (m, 1H), 0.66-0.55 (m, 3H), 0.21, 0.19, 0.17 0.15 (, 3H), 0.13, 0.10, 0.10 0.08 (); ¹³C NMR , 9H): 170.0, 169.9, (75 MHz, CDCl₃, 138.2, 138.1, 16.8, 18.8, 8.2, 8.2, 8.0, 7.9, 1.8, 1.8, 1.8, 1.7, -0.3, -0.6, -0.6, -0.9. HRMS: calcd for C₁₃H₃₀O₃Si₄+H, 347.1350; found 347.1346.

¹H NMR (300 MHz, CDCl₃): 4.27-4.14 (m, 2H), 2.22 and 2.21 (, 3H ,), 1.31 (t, J = 7.5 Hz, 3H), 0.30,

0.26, 0.23 0.19 (, 3H ,), 0.11, 0.10, 0.09 0.07 (, 9H ,); ¹³C NMR (75 MHz, CDCl₃,): 172.3. 172.2, 167.2, 144.8, 144.8, 59.7,

59.7, 17.3, 17.2, 14.3, 14.3, 1.7, 1.6, 1.6, 1.6, -0.8, -1.2, -2.4, -2.7. HRMS: calcd for C₁₄H₃₂O₅Si₄+H, 393.1405; found 393.1399.

♦ (E)-5-(-3- -3-)-1,1,1,3,5,7,7,7-

-3- (15a)

¹ NMR (300 MHz, CDCl₃): 5.84 (t, J = 7.0 Hz, 1H), 4.67 (s, 1H), 2.16-2.06 (m, 4H), 1.01-0.93 (m, 6H), 0.13 (s, 3H), 0.12 (s, 3H), 0.11 (s, 9H), 0.10 (s, 9H); ¹³C NMR(75 MHz, CDCl₃): 143.3, 139.9, 21.6, 21.2, 14.7, 13.9, 1.8, 1.7, 1.5, -0.4.

★ 2,2,4,4,7,7(13b)

¹H NMR (300 MHz, CDCl₃): 7.10 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.33 (s, 1H), 2.34 (s, 3H), 0.26 (s, 6H), 0.22 (s, 6H), 0.16 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 164.0, 147.1, 145.2, 135.7, 128.7, 126.3, 21.0, 1.6, 1.3, 0.7. HRMS: calcd for C₁₅H₂₆O₂Si₃+H, 323.1319; found 323.1314.

¹H NMR (300 MHz, CDCl₃): 7.19 (dt, $J_1 = 7.5$, $J_2 = 2.0$ Hz, Hz, 1H), 7.04 (dd, $J_1 = 7.5$ Hz, $J_2 = 2.0$ Hz, 1H), 6.92 (dt, $J_1 = 7.5$ Hz, $J_2 = 1.0$ Hz, 1H), 6.77 (br d, J = 7.5 Hz, 1H), 6.37 (s, 1H), 3.76 (s, 3H), 0.27 (s, 6H), 0.17 (s, 6H), 0.14 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 162.7, 155.0, 147.2, 138.2, 128.5, 127.7, 121.0, 109.6, 54.4, 1.4, 1.0, 0.8. HRMS: calcd for C₁₅H₂₆O₃Si₃+H, 339.1268; found 339.1262.

)-2,2,4,4,7,7- -4,7- -1,3,2,4,7-

(9d)

¹H NMR (300 MHz, CDCl₃): 7.09-6.93 (m, 4H), 6.32 (s, 1H), 0.26 (s, 6H), 0.20 (s, 6H), 0.15(s, 6H); ¹³C NMR (75 MHz, CDCl₃): 163.1, 161.6 (d, $J_{C-F} = 245.0$ Hz), 148.0 (d, $J_{C-F} = 1.0$ Hz), 144.1 (d, $J_{C-F} = 3.5$ Hz), 127.9 (d, $J_{C-F} = 8.0$ Hz), 114.8 (d, $J_{C-F} = 21.0$ Hz), 1.5, 1.3, 0.7. HRMS: calcd for C₁₄H₂₃FO₂Si₃+H, 327.1068; found 327.1063.

¹H NMR (300 MHz, CDCl₃): 6.15 (s, 1H), 2.10 (t, J = 6.5 Hz, 2H), 1.52-1.35 (m, 6H), 0.89 (t, J = 7.0 Hz, 3H), 0.19 (s, 6H), 0.18 (s, 6H), 0.09 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 163.2, 142.1, 40.3, 31.7, 29.1, 22.5, 14.0, 1.4, 1.0, 0.7. HRMS: calcd for C₁₃H₃₀O₂Si₃+H, 303.1632; found 303.1626.

★ 2,2,4,4,6,7,7-E -4,7- -1,3,2,4,7- -5-(14b)

¹H NMR (300 MHz, CDCl₃): 4.19 (q, J = 7.0 Hz, 2H), 1.80 (s, 3H), 1.30 (t, J = 7.0 Hz, 3H), 0.25 (s, 6H), 0.24 (s, 6H), 0.11 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 172.6, 155.0, 149.1, 60.2, 21.1, 14.3, 0.9, 0.5, 0.1. HRMS: calcd for C₁₂H₂₆O₄Si₃+H, 319.1217; found 319.1213.

¹H NMR (300 MHz, CDCl₃): 7.64-7.56 (m, 2H), 7.44-7.25 (m, 7H), 6.87 (s, 1H), 0.39 (s, 6H), 0.38 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 162.2, 147.2, 145.8, 145.0, 144.2, 133.4, 133.1, 128.3, 128.2, 128.1, 126.5, 126.3, 0.0, -0.5.

¹H NMR (300 MHz, CDCl₃): 7.64-7.58 (m, 2H), 7.43-7.36 (m, 2H), 7.17 (d, J = 7.0 Hz, 2H), 7.15 (d, J = 7.0 Hz, 2H), 6.84 (s, 1H), 2.37 (s, 3H), 0.38 (s, 6H), 0.36 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 161.9, 145.1, 145.1, 144.3, 144.2, 136.1, 133.3, 133.1, 128.9, 128.3, 128.1, 126.2, 21.1, 0.1, -0.5. HRMS: calcd for C₁₉H₂₄Si₂+H, 309.1495; found 309.1490.

★ 2-(2-)-1,1,4,4- -1,4 [b]-[1,4]
(8d)

¹H NMR (300 MHz, CDCl₃): 7.63-7.57 (m, 2H), 7.44-7.36 (m, 2H), 7.22 (dd, $J_I =$ 7.5 Hz, $J_2 = 2.0$ Hz, 1H), 7.04 (dd, $J_I =$ 7.5 Hz, $J_2 = 2.0$ Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 7.5 Hz, 1H), 6.84 (s, 1H), 3.82 (s, 3H), 0.39 (s, 6H), 0.30 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 161.4, 155.3, 147.0, 146.1, 144.5, 136.8, 133.0, 132.9, 128.9, 128.1, 127.9, 127.7, 121.0, 109.8, 54.7, -0.6, -0.6. HRMS: calcd for C₁₉H₂₄OSi₂+H, 325.1443; found 325.1433.

¹H NMR (300 MHz, CDCl₃): 7.64-7.58 (m, 2H), 7.43-7.37 (m, 2H), 7.23-7.18 (m, 2H), 7.02 (t, J = 8.5 Hz, 2H), 6.83 (s, 1H), 0.36 (s, 6H), 0.36 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 161.8 (d, $J_{C-F} = 243.5$ Hz), 161.1, 146.0 (d, $J_{C-F} = 1.0$ Hz), 144.7, 144.0, 143.2 (d, $J_{C-F} = 3.0$ Hz), 133.4, 133.1, 128.4, 128.2, 127.9 (d, $J_{C-F} = 8.0$ Hz), 115.0 (d, $J_{C-F} = 21.0$ Hz), 0.0, -0.5. HRMS: calcd for C₁₈H₂₁FSi₂+H, 313.1244; found 313.1235.

¹H NMR (300 MHz, CDCl₃): 7.60-7.54 (m, 2H), 7.40-7.33 (m, 2H), 6.57 (s, 1H), 2.30 (br t, J = 6.5 Hz, 2H), 1.52-1.44 (m, 2H), 1.39-1.26 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H),

0.31 (s, 6H), 0.27 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 162.4, 145.0, 144.8, 140.4, 133.1, 133.0, 128.0, 127.9, 40.0, 31.7, 28.3, 22.6, 14.1, -0.4, -0.8.

¹H NMR (300 MHz, CDCl₃): 7.62-7.54 (m, 2H), 7.41-7.35 (m, 2H), 6.30 (s, 1H), 0.39 (s, 6H), 0.26 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 162.9, 144.8, 144.7, 134.1, 133.2, 133.1, 128.1, 128.0, 18.0, 7.0, -0.3, -0.9. HRMS: calcd for $C_{15}H_{22}Si_{2}$ +H, 259.1338; found 259.1334.

* 1,1,4,4- -1,4- [b][1,4] -2-(16a)

¹H NMR (300 MHz, CDCl₃): 8.02 (s, 1H), 7.62-7.55 (m, 2H), 7.44-7.36 (m, 2H), 4.28 (q, J = 7.0 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H), 0.43 (s, 6H), 0.34 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 168.4, 159.1, 150.3, 144.7, 142.6, 133.7, 133.1, 128.5, 128.2, 60.7, 14.3, -0.2, -1.0. HRMS: calcd for C₁₅H₂₂O₂Si₂+H, 291.1236; found 291.1231.

¹H NMR (300 MHz, CDCl₃): 7.60-7.53 (m, 2H), 7.41-7.36 (m, 2H), 4.28 (q, J = 7.5 Hz, 2H), 2.09 (s, 3H), 1.35 (t, J = 7.5 Hz, 3H), 0.37 (s, 6H), 0.35 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 170.6, 158.6, 146.3, 143.7, 143.2, 133.1, 133.0, 128.4,

128.3, 60.2, 21,0, 14.5, -0.7, -1.8. HRMS: calcd for $C_{16}H_{24}O_2Si_2$ +H, 305.1393; found 305.1388.

Hiyama 2,5-

1,2,5-

*	()-1-
•	<u>ا</u>)-1-

-4-

¹H NMR (300 MHz, CDCl₃): 7.52 (d, J = 7.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.36 (t, J = 7.0 Hz, 2H), 7.28-7.23 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 1.5 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 137.5, 137.4, 134.5, 129.4, 128.61, 128.60, 127.7, 127.4, 126.4, 126.37, 21.2.

¹H NMR (300 MHz, CDCl₃): 7.52 (d, J = 7.0 Hz, 2H), 7.36 (t, J = 7.0 Hz, 2H), 7.31-7.24 (m, 2H), 7.13-7.05 (m, 4H), 6.83 (dd, $J_I = 8.0$ Hz, $J_2 = 2.5$ Hz, 1H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 160.0, 138.8, 137.2, 129.6, 129.0, 128.7, 128.6, 127.7, 126.5, 119.2, 113.3, 111.8, 55.3.

✤ (E)-4-

¹H NMR (300 MHz, CDCl₃): 8.03 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 7.0 Hz, 2H), 7.56 (t, J = 8.5 Hz, 2H), 7.38 (t, J = 7.0, 2H), 7.33-7.27 (m, 1H), 7.23 (d, J = 16.5 Hz, 1H), 7.13 (d, J = 16.5, 1H), 3.93 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 166.9, 141.8, 136.8, 131.2, 130.0, 129.0, 128.8, 128.2, 127.6, 126.8, 126.3, 52.1.

¹H NMR (300 MHz, CDCl₃): 7.40 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.04 (s, 2H), 2.36 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): 137.3, 134.7, 129.4, 127.6, 126.3, 21.2.

¹H NMR (300 MHz, CDCl₃): 7.60 (dd, $J_I = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 7.49 (d, J = 16.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.26 (dt, $J_I = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.09 (t, J = 1.5 Hz, 1H), 7.08 (d, J = 16.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H) 6.91 (d, J = 7.5 Hz, 1H), 6.83-6.79 (m, 1H), 3.90 (s, 3H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 159.8, 156.9, 139.4, 129.5, 129.0, 128.7, 126.5, 123.8, 120.7, 119.3, 113.0, 111.8, 110.9, 55.5, 55.2.

♦ (E)-4-(2-

¹H NMR (300 MHz, CDCl₃) : 8.01 (d, J = 8.0 Hz, 2H), 7.61 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 7.60 (d, J = 16.5 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.31-7.26 (m, 1H), 7.14 (d, J = 16.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 3.92 (s, 3H), 3.91 (s, 3H). ¹H NMR (300 MHz, CDCl₃) cis : 7.86 (d, J = 8.5 Hz, 2H), 7.31-7.21 (m, 3H), 7.11-7.07 (m, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.80 (d, J = 12.5 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 3.88 (s, 3H), 3.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) : 167.0, 157.1, 142.52, 130.04, 129.9, 129.3, 128.7, 128.1, 127.9, 126.7, 126.3, 120.8, 111.0, 55.5, 52.0.

♦ (E)-1- -4-(4-()) (19a)

¹H NMR (300 MHz, CDCl₃): 7.59 (s, 4H), 7.43 (d, J = 7,5 Hz, 2H), 7.19 (d, J = 7.5 Hz, 1H), 7.18 (d, J = 16.5 Hz, 1H), 7.07 (d, J = 16.5 Hz, 1H), 2.38 (s, 3H).

* ()-1- -3-(4-()) (19b) $F_{3}C$ 19b

¹H NMR (300 MHz, CDCl₃)
: 7.61 (s, 4H), 7.18 (d, J = 16.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.10 (d, J = 16.5 Hz, 1H), 7.06 (d, J = 1.5 Hz, 1H), 6.88-6.84 (m, 1H), 3.86 (s, 3H). ¹H NMR (300 MHz, CDCl₃) cis
: 7.48 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 7.18 (d,

1H), 7.14 (d, J = 7.5 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (75 MHz, CDCl₃)

: 160.0, 140.7 (q, $J_{C-F} = 1.0$ Hz), 138.1, 131.1, 131.0, 129.8, 129.3 (q, $J_{C-F} = 32.0$ Hz), 127.4, 127.3, 126.6, 125.6 (q, $J_{C-F} = 4.0$ Hz), 124.2 (q, $J_{C-F} = 270.0$ Hz), 119.5, 113.9, 112.0, 55.3.

¹H NMR (300 MHz, CDCl₃): 7.46 (d, J = 8.5 Hz, 2H), 7.27 (t, J = 7.5 Hz, 2H), 7.09 (d, J = 7.5 Hz, 2H), 7.07 (d, J = 16.5 Hz, 1H), 7.04 (s, 1H), 6,95 (d, J = 16.5 Hz, 1H), 6.90 (d, J = 8.5 Hz, 2H), 6.80 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): 159.9, 159.3, 139.1, 130.0, 129.6, 128.5, 127.7, 126.5, 119.0, 114.1, 112.9, 111.5, 55.3, 55.2.

♦ (Z)-4,4 -(E -1- -1,2-) ()(21a)

¹H NMR (300 MHz, CDCl₃): 7.10 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 6.36 (s, 1H), 2.44 (t, 7.0 Hz, 2H), 2.35 (s, 3H), 2.23 (s, 3H), 1.39-1.34 (m, 2H), 1.33-1.28 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 142.6, 138.6, 136.2, 135.5, 134.8, 129.1, 128.8, 128.5, 128.4, 125.7, 40.8, 31.5, 27.7, 22.5, 21.2, 21.1, 14.1.

¹H NMR (300 MHz, CDCl₃): 7.07 (d, J = 8.5 Hz, 2H),6.88-6.82 (m, 4H), 6.64 (d, J = 8.5 Hz, 2H), 6.32 (s, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 2.43 (t, J = 7.0 Hz, 2H), 1.39-1.34 (m, 2H), 1.31-1.27 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): 158.3, 157.7, 141.2, 133.8, 130.5, 130.0, 129.7, 125.2, 113.9, 113.3, 55.2, 55.1, 40.7, 31.4, 27.7, 22.5, 14.1.

* (Z)-4,4 -(E -1- -1,2-) () (21c) F $r-C_5H_{11}$ 2^4c

¹H NMR (300 MHz, CDCl₃): 7.11-7.06 (m, 2H), 7.00-6.95 (m, 2H), 6.88-6.83 (m, 2H), 6.81- 6.75 (m, 2H), 6.39 (s, 1H), 2.45 (t, J = 7.0 Hz, 2H), 1.39-1.35 (m, 2H), 1.31-1.27 (m, 4H), 0.87 (t, J = 7.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): 161.8 (d, $J_{C-F} = 244.0$ Hz, 161.2 (d, $J_{C-F} = 244.0$ Hz), 142.3, 136.9 (d, $J_{C-F} = 3.0$ Hz), 133.4 (d, $J_{C-F} = 3.0$ Hz), 130.04 (d, $J_{C-F} = 8.0$ Hz), 130.2 (d, $J_{C-F} = 8.0$ Hz), 125.3, 40.4, 31.4, 27.5, 22.5, 14.0.

)-4-

(22a)

¹H NMR (300 MHz, CDCl₃): 7.20 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.44 (d, J = 16 Hz, 1H), 5.68 (dd, $J_1 = 16.0$ Hz, $J_2 = 8.0$ Hz, 1H), 2.32 (s, 3H), 1.61-1.49 (m, 1H), 0.83-0.77 (m, 2H), 0.51-0.46 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): 136.2, 135.0, 133.8, 129.2, 127.3, 125.5, 21.1, 14.4, 7.1.

✤ (Z)-4,4 -(1-K

) (22b)

¹H NMR (300 MHz, CDCl₃): 7.11 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.36 (s, 1H), 2.35 (s, 3H), 2.22 (s, 3H), 1.74-1.67 (m, 1H), 0.75-0.68 (m, 2H), 0.57-0.52 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): 143.0, 137.2, 136.5, 135.5, 134.7, 129.1, 128.8, 128.7, 128.5, 124.3, 21.2, 21.0, 20.1, 5.6.

¹H NMR (300 MHz, CDCl₃): 7.22 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H), 5.60 (dd, $J_1 = 16.0$ Hz, $J_2 = 9.0$ Hz), 3.80 (s, 3H), 1.62-1.48 (m, 1H), 0.82-0.76 (m, 2H), 0.50-0.45 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): 158.5, 132.6, 130.7, 126.8, 126.6, 113.9, 55.3, 14.3, 7.1.

♦ (E)-1-(2-K

¹H NMR (300 MHz, CDCl₃): 7.27-7.22 (m, 2H), 6.99-6.93 (m, 2H), 6.42 (d, J = 16.0 Hz, 1H), 5.64 (dd, $J_1 = 16$ Hz, $J_2 = 9.0$ Hz, 1H), 1.58-1.51 (m, 1H), 0.90-0.78

(m, 2H), 0.52-0.47 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): 161.7 (d, $J_{C-F} = 244.0$ Hz), 134.6 (d, $J_{C-F} = 2.0$ Hz), 134.0 (d, $J_{C-F} = 3.0$ Hz), 126.9 (d, $J_{C-F} = 8.0$ Hz), 126.2, 115.3 (d, $J_{C-F} = 21.0$ Hz), 14.4, 7.2.

¹H NMR (300 MHz, CDCl₃): 7.15-7.01 (m, 2H), 7.02-6.97 (m, 2H), 6.84-6.73 (m, 4H), 6.38 (s, 1H), 1.72-1.65 (m, 1H), 0.79-0.72 (m, 2H), 0.57-0.52(m, 2H); ¹³C NMR (75 MHz, CDCl₃): 160.4, 133.3, 130.6 (d, $J_{C-F} = 8.0$ Hz), 130.3 (d, $J_{C-F} = 8.0$ Hz), 123.8, 115.4 (d, $J_{C-F} = 21.0$ Hz), 114.8 (d, $J_{C-F} = 21.0$ Hz), 19.8, 5.7.

✤ (Z)-4,4-(3-K

¹H NMR (300 MHz, CDCl₃): 7.07 (d, J = 8.5 Hz, 2H), 6.84 (t, J = 8.5 Hz, 4H), 6.63 (d, J = 8.5 Hz, 2H), 6.29 (s, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 2.32 (d, J = 7.0 Hz, 2H), 1.78-1.59 (m, 5H), 1.32-1.13 (m, 4H), 0.95-0.83 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): 158.3, 157.7, 139.5, 133.8, 130.0, 129.7, 127.7, 126.5, 113.9, 113.2, 55.1, 55.0, 49.0, 35.2, 33.2, 26.6, 26.2.

✤ (Z)-4,4-(3-K

¹H NMR (300 MHz, CDCl₃): 7.10 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H),

6.90 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 6.35 (s, 1H), 2.35 (s, 3H), 2.34 (d, J = 7.0 Hz, 2H), 2.23(s, 3H), 1.76-1.61 (m, 5H), 1.32-1.13 (m, 4H), 0.99-0.83 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): 140.9, 138.6, 136.2, 135.5, 134.8, 129.1, 128.8, 128.5, 128.4, 127.1, 49.0, 35.2, 33.2, 26.6, 26.2, 21.2, 21.0.

- 1. Hashmi, S. Chem. Rev. 2007, 107, 3180.
- 2. Corma, A.; Garcia H. Chem. Soc. Rev. 2008, 37, 2096.
- 3. Pina, C.; Falletta, E.; Prati, L.; Rossie, M. Chem. Soc. Rev. 2008, 37, 2077.
- 4. Hashmi, S.; Hutchings, G. Angew. Chem. Int. Ed. 2006, 45, 7896.
- 5. Arcadi, A. Chem. Rev. 2008, 108, 3266.
- 6. Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239.
- 7. Nunez, E.; Echavarren A. Chem. Rev. 2008, 108, 3326.
- 8. Gorin, D.; Sherry, B.; Toste, F. Chem. Rev. 2008, 108, 3351.
- Bandini, M.; Emer, E.; Tommassi, S.; Umani-Ronchi, A. *Eur. J. Org. Chem* 2006, 3527.
- 10. Furstner, A.; Davies, P. Angew. Chem. Int. Ed. 2007, 46, 3410.
- a) Stratakis, M.; Garcia, H. *Chem. Rev.* 2012, *112*, 4469.
 b) Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. *Chem. Rev.* 2012, *112*, 2467.
- 12. Biella, S.; Prati, L.; Rosii, M. J. Mol. Catal. Chem. 2003, 197, 207.
- Enache, D.; Edwards, J.; Landon, P.; Solsona, B.; Carley, A.; Herzing, A.;
 Watanabe, M.; Kiely, C.; Knight, D.; Hutchings, G. *Science* 2006, *311*, 362.
- Rossignol, C.; Arrii, S.; Morfin, F.; Piccollo, L.; Caps, V.; Roussset, J. J. Catal. 2005, 230, 476.
- **15.** Carrettin, S.; Concepcion, P.; Corma, A.; Nieto, J.; Puntes, V. *Angew. Chem. Int. Ed.* **2004**, *43*, 2538.
- 16. Huang, J.; Dai, W.; Li, H.; Fan, K. J. Catal. 2007, 252, 69.
- 17. Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178, 566.
- 18. Fierro-Gonzaleza, J. C.; Gates, B. C. Chem. Soc. Rev. 2008, 2127.
- Kohyama, M.; Haruta, M.; Maeda, Y.; Ichikawa, S.; Okazaki, K. Appl. Catal.
 A. 2005, 291, 45.
- 20. Valen, M.; Lai, X.; Goodman, D. Science 1998, 281, 1647.
- 21. Abad, A.; Almela, C.; Corma, A.; Garcia, H. Tetrahedron 2006, 62, 6666.
- 22. Abad, A.; Almela, C.; Corma, A. Garcia, H. Pure Appl. Chem. 2007, 79, 184.
- 23. Abad, A.; Almela, C.; Corma, A. Garcia, H. Chem. Commun. 2006, 3178.
- Comotti, M.; Della Pina, D.; Matarrese R.; Rossi, M. Angew. Chem. Int. Ed.
 2004, 43, 5812.
- 25. Corma, A.; Domine, M. Chem. Commun. 2005, 4042.

- 26. Biella, S.; Prati, L.; Rossi, M. J. Mol. Catal. A: Chem. 2003, 197, 207.
- 27. Taylor, B.; Lauterbach, J.; Delgass, W. Appl. Catal. A. 2005, 291, 188.
- 28. Cumaranatunge, L.; Delgass, W. J. Catal. 2005, 232, 38.
- 29. Hayashi, T.; Wada, M.; Haruta, M.; Tsubota, M. Jpn. Pat. 1998, 103, 30291.
- **30.** Alvaro, M.; Aprile, C.; Corma, A.; Ferrer, B.; Garcia, H. J. Catal. **2007**, 245, 249
- **31.** Carrettin, S.; Hao, Y.; Aguilar-Guerrero, V.; Gates, B.; Trasobares, S.; Calvino, J.; Corma, A. *Chem. Eur. J.* **2007**, *13*, 7771.
- 32. Flistrup, R.; Johansen, L.; Christensen, C. Chem. Commun. 2008, 2750.
- **33.** Xu, Y.; Landon, P.; Enache, D.; Carley, A.; Roberts, M.; Hutchings, G. *Catal. Lett.* **2005**, *101*, 175.
- **34.** Weissermel, K.; Harpe, H.; *Industrial Organic Chemistry*, 4th edn, Wiley-VCH, Weinheim, **2003**.
- Hughes, D.; Xu, Y.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D.; Carley,
 A.; Attard, G.; Hutchings, G.; King, F.; Stitt, E.; Johnston, P.; Griffin, K.;
 Kiely, C. *Nature* 2005, 437, 1132.
- **36.** Lignier, P.; Morfin, F.; Mangematin, S.; Massin, L.; Rousset, L.; Caps, V. . *Chem. Commun.* **2007**, 186.
- **37.** Lignier, P.; Morfin, F.; Piccolo, L.; Rousset, J.; Caps, V. *Catal. Today* **2007**, 122, 284.
- 38. Biella, S.; Prati, L.; Rossi, M. J. Catal. 2006, 206, 242.
- 39. Raptis, C.; Garcia, H.; Stratakis, M. Angew. Chem. Int. Ed. 2009, 48, 3133.
- **40.** Yasuda, A.; Tanaka, S.; Oshima, K.; Yamamoto, H.; Nozaki, H. *J. Am. Chem. Soc.* **1974**, *96*, 6513.
- **41.** Larock, R. C. Comprehensive Organic Transformations, Wiley, New York, 1999, p. 272.
- 42. Mitsudome, T.; Noujima, A.; Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem. Int. Ed. 2010, 49, 5545.
- **43.** Kaneda, K.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K. *Molecules* **2010**, *15*, 8988.
- 44. Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. *Molecules* 2011, *16*, 8209.
- **45.** Mitsudome, T.; Noujima, A.; Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. *Chem. Eur. J.* **2010**, *16*, 11818

- 46. Ni, J.; He, L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Chem. Commun.
 2011, 47, 812.
- Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem. Int. Ed. 2011, 50, 2986.
- 48. Xiang, D.; Liu, X.; Sun, J.; Xiao, F.-S.; Sun, J. Catal. Today 2009, 148, 383.
- 49. Naya, K.; Ishikawa, R.; Fukui, K.-I. J. Phys. Chem. C 2009, 113, 10726.
- **50.** Chiorino, A.; Manzoli, M.; Menegazzo, F.; Signoretto, M.; Vindigni, F.; Pinna, F.; Boccuzzi, F. J. Catal. **2009**, 262, 169.
- Manzoli, M.; Boccuzzi, F.; Chiorino, A.; Vindigni, F.; Vindigni, F.; Deng, W.; Flytzani-Stephanopoulos, M. J. Catal. 2007, 245, 308.
- **52.** Brown, M. A.; Ringleb, F.; Fujimori, Y.; Sterrer, M.; Freund, H.-J.; Preda, G.; Pacchioni, G. J. Phys. Chem. C **2011**, 115, 10114.
- **53.** Goguet, A.; Ace, M.; Saih, Y.; Sa, J.; Kavanagh, J.; Hardacre, C. *Chem. Commun.* **2009**, 4889.
- 54. Ono, L. K.; Cuenya, B. R. J. Phys. Chem. C 2008, 112, 4676.
- 55. Fu, L.; Wu, N. Q.; Yang, J. H.; Qu, F.; Johnson, D. L.; Kung, M. C.; Kung, H. H.; Dravid, V. P. J. Phys. Chem. B 2005, 109, 3704.
- 56. Concepcion, P.; Carrettin, S.; Corma, A. Appl. Catal. A 2006, 307, 42.
- 57. Klimev, H.; Fajerwerg, K.; Chakarova, K.; Delannoy, L.; Louis, C.; Hadjiivanov, K. J. Mater. Sci. 2007, 42, 3299.
- 58. Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
- 59. Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
- 60. Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
- 61. Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
- 62. Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239.
- 63. Arcadi, A. Chem. Rev. 2008, 108, 3266.
- 64. Muzart, J. Tetrahedron 2008, 64, 5815.
- 65. Shen, H. C. Tetrahedron 2008, 64, 3885.
- 66. Yamamoto, Y.; Gridnev, I. D.; Patil, N. T.; Jin, T. Chem. Commun. 2009, 5075.
- 67. Furstner, A. Chem. Soc. Rev. 2009, 38, 3208.
- 68. Shapiro, N. D.; Toste, F. D. Synlett 2010, 675.
- 69. Hashmi, A. S. K. Angew. Chem. Int. Ed. 2010, 49, 5232.
- 70. Boorman, T. C.; Larrosa, I. Chem. Soc. Rev. 2011, 40, 1910.

- 71. Bandini, M. Chem. Soc. Rev. 2011, 40, 1358.
- 72. Corma, A.; Leyva-Perez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657.
- **73.** Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. *Chem. Rev.* **2011**, *111*, 1954.
- 74. Lykakis, I. N.; Efe, C.; Gryparis, C.; Stratakis, M. Eur. J. Org. Chem. 2011, 2334.
- 75. Menon, R. S.; Findlay, A. D.; Bissember, A. C.; Banwell, M. G. J. Org. Chem.
 2009, 74, 8901.
- 76. Nevado, C.; Echavarren, A. M. Chem. Eur. J. 2005, 11, 3155
- 77. Garcia-Mota, M.; Cabello, N.; Maseras, F.; Echavarren, A. M.; Perez-Ramirez, J.; Lopez, N. *ChemPhysChem* 2008, 9, 1624.
- 78. Carrettin, S.; Blanco, M. C.; Corma, A.; Hashmi, A. S. K. Adv. Synth. Catal.
 2006, 348, 1283.
- 79 Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553.
- 80. Hashmi, A. S. K.; Rudolph, M.; Siehl, H.-U.; Tanaka, M.; Bats, J. W.; Frey, W. *Chem. Eur. J.* 2008, *14*, 3703.
- 81 Abad, A.; Corma, A.; Garcia, H. Top. Catal. 2007, 44, 237.
- 82. Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584.
- 83. Zhang, X.; Corma, A. Angew. Chem. Int. Ed. 2008, 47, 4358.
- 84. Marciniec, B.; Maciejewski, H.; Pietraszuk, C.; Pawluc, P. in: *Hydrosilylation: A Comprehensive Review on Recent Advances*, (Eds.: B. Marciniec), Advances in Silicon Science Series, *Vol.* 1, Springer, 2009.
- 85. Trost, B. M.; Ball, Z. T. Synthesis 2005, 853.
- 86. Roy, A. K. Adv. Organometal. Chem. 2008, 55, 1.
- 87. Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
- 88. Corey, J. Y. Chem. Rev. 2011, 111, 863.
- Caporusso, A. M.; Aronica, L. A.; Schiavi, E.; Martra, G.; Vitulli, G.; Salvadori, P. J. Organomet. Chem. 2005, 690, 1063.
- 90. Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Angew. Chem. Int. Ed. 2007, 46, 7820.
- 91. Psyllaki, A.; Lykakis, I. N.; Stratakis, M. Tetrahedron 2012, 68, 8724.
- 92. Lykakis, I. N.; Psyllaki, A.; Stratakis, M. J. Am. Chem. Soc. 2011, 133, 10426
- 93. Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3, 1073.

- **94.** Tanaka, M.; Uchimaru, Y.; Lautenschlager, H.-J. Organometallics **1991**, *10*, 16.
- 95. Phan, S. T.; Lim, W. C.; Han, J. S.; Yoo, B. R.; Jung, I. N. Organometallics 2004, 23, 169.
- 96. Bailie, J. E.; Hutchings, G. J. Chem. Commun. 1999, 2151.
- 97. Bailie, J. E.; Abdullah, H. A.; Anderson, J. A.; Rochester, C. H.; Richardson, N. V.; Hodge, N.; Zhang, J.-G.; Burrows, A.; Kiely, C. J.; Hutchings, G. J. *Phys. Chem. Chem. Phys.* 2001, *3*, 4113.
- 98. Zhu, Y.; Qian, H.; Drake, B. A.; Jin, R. Angew. Chem. Int. Ed. 2010, 49, 1295.
- 99. Wang, C.-M.; Fan, K.-N.; Liu, Z.-P. J. Catal. 2009, 266, 343.
- 100. Mertens, P. G. N.; Poelman, H.; Ye, X.; Vankelecom, I. F. J.; Jacobs, P.A.; De Vos, D. E. *Catal. Today* 2007, *122*, 352.
- 101. Mertens, P. G. N.; Vandezande, P.; Ye, X.; Poelman, H.; Vankelecom, I. F. J.; De Vos, D. E. Appl. Catal., A 2009, 355, 176.
- **102.** You, K.-J.; Chang, C.-T.; Liaw, B.-J.; Huang, C.-T.; Chen, Y.-Z. *Appl. Catal., A* **2009**, *361*, 65.
- **103.** Wang, M.-M.; He, L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. *Green Chem.* **2011**, *13*, 602.
- 104. Corma, A.; Serna, P. Science 2006, 313, 332.
- 105. Corma, A.; Serna, P. Nat. Protoc. 2006, 1, 2590.
- 106. Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Appl. Catal., A 2009, 356, 99.
- 107. Grirrane, A.; Corma, A.; Garcia, H. Science 2008, 322, 1661.
- 108. Serna, P.; Concepcion, P.; Corma, A. J. Catal. 2009, 265, 19.
- 109. Corma, A.; Concepcion, P.; Serna, P. Angew. Chem. Int. Ed. 2007, 46, 7266.
- 110. Corma, A.; Serna, P.; Garcia, H. J. Am. Chem. Soc. 2007, 129, 6358.
- 111. Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
- 112. Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.
- **113.** Su, F.-Z.; He, L.; Ni, J.; Cao, Y.; He, H.-Y.; Fan, K.-N. *Chem. Commun.* **2008**, 3531.
- **114.** He, L.; Wang, L.-C.; Hao, H.; Ni, J.; Cao, Y.; He, H.-Y.; Fan, K.-N. *Angew. Chem. Int. Ed.* **2009**, *48*, 9538.
- 115. Liu, L.; Qiao, B.; Chen, Z.; Zhang, J.; Deng, Y. Chem. Commun. 2009, 653.
- 116. Peng, Q.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Commun. 2011, 47, 6476.

- 117. Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Angew. Chem. Int. Ed. 2010, 49, 9657.
- 118. Zhu, H.; Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Zhao, J.; Guo, C.; Xie, T.; Wang, D. Chem. Commun. 2009, 7524.
- **119.** Vankayala, R.; Sagadevan, S.; Vijayaraghavan, P.; Kuo, C.-L.; Hwang, K. C. *Angew. Chem. Int. Ed.* **2011**, *50*, 10640.
- 120. Praharaj, S.; Nath, S.; Ghosh, S. K.; Kundu, S.; Pal, T. Langmuir 2004, 20, 9889.
- **121.** Kumar, S. S.; Kumar, C. S.; Mathiyarasu, J.; Phani, K. L. *Langmuir* **2007**, *23*, 3401.
- **122.** Yan, N.; Zhang, J.; Yuan, Y.; Chen, G.-T.; Dyson, P. J. Li, Z.-C.; Kou, Y. *Chem. Commun.* **2010**, *46*, 1631.
- 123. Kalidindi, S. B.; Jagirdar, B. R. ChemSusChem 2012, 5, 65.
- 124. Chandra, M.; Xu, Q. J. Power Sources 2007, 168, 135.
- 125. Jiang, H.-L.; Umegaki, T.; Akita, T.; Zhang, X.-B.; Haruta, M.; Xu, Q. Chem. Eur. J. 2010, 16, 3132.
- 126. Gonzalez-Arellano, C.; Abad, A.; Corma, A.; Garcia, H.; Iglesias, M.; Sanchez, F. Angew. Chem., Int. Ed. 2007, 46, 1536.
- 127. Karimi, B.; Esfahani, F. K. Chem. Commun. 2011, 47, 10452.
- 128. a) Tanabe, M.; Osakada, K. Organometallics 2010, 29, 4702. b) Tanaka, M.; Uchimaru, Y.; Lautenschlager, H.-J. J. Organometallics 1991, 10, 16. c) Sunada, Y.; Imaoka, T.; Nagashima, H. Organometallics 2010, 29, 6157.
- 129. Kotzabasaki, V.; Lykakis, I. N.; Gryparis, C.; Psyllaki, A.; Vasilikogiannaki, E.; Stratakis, M. *Organometallics* 2013, *32*, 665.
- 130. Uvarov, V. M.; de Vekki, D. A.; Reshetilovskii, V. P.; Skvortsov, N. K. Russ.
 J. Gen. Chem. 2010, 80, 35.
- 131. Shore, G.; Organ, M. G. Chem. Eur. J. 2008, 14, 9641.
- 132. a) Tsuchimoto, T.; Fujii, M.; Iketani, Y.; Sekine, M. Adv. Synth. Catal. 2012, 354, 2959. b) Kahnes, M.; Gorls, H.; Westerhausen, M. Organometallics 2010, 29, 3490.
- 133. Curtis, M. D.; Greene, J. J. Am. Chem. Soc. 1979, 100, 6362.
- 134. Sunada, Y.; Fujimura, Y.; Nagashima, H. Organometallics 2008, 27, 3502.

- 135. a) Gualco, P.; Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. Angew. Chem. Int. Ed. 2011, 50, 8320. b) Gualco, P.; Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. Organometallics 2012, 31, 6001.
- 136. a) Yokelson, H. B.; Millevolte, A. J.; Gillette, G. R.; West, R. J. Am. Chem. Soc. 1987, 109, 6865. b) Boatz, J. A.; Gordon, M. S. J. Phys. Chem. 1989, 93, 3025.
- 137. Chenoweth, K.; Chenoweth, D.; Goddard III, W. A. Org. Biomol. Chem. 2009, 7, 5255.
- 138. Hiyama, T.; Nakao, Y. Chem. Soc. Rev. 2011, 40, 4893.
- 139. a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1989, 54, 268. b) Sugiyama, A.;
 Ohnishi, Y.; Nakaoka, M.; Nakao, Y.; Sato, H; Sakaki, S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 12975.
- 140. Hatanaka, Y.; Fukushima, S.; Hiyama, T. Chem. Lett. 1989, 1711.
- 141. Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845.
- 142. a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918. b) Hatanaka, Y.;
 Hiyama, T. Synlett. 1991, 845.
- 143. a) Hiyama, T., Sahoo, A. K.; Oda, T.; Nakao, Y. Adv. Synth.Catal. 2004, 346, 1715. b) Nakao, Y.; Oda, T.; Sahoo, A. K.; Hiyama, T. J. Organomet. Chem. 2003, 687, 570.
- 144. Homsi, F.; Hosoi, K.; Nozaki, K.; Hiyama, T. J. Organomet. Chem. 2001, 624, 208.
- 145. Li, L.; Navasero, N. Org. Lett. 2004, 6, 3091.
- 146. Denmark, S. E; Wehrli, D.; Choi, J. Y. Org. Lett., 2000, 2, 2491.
- 147. Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486.
- 148. Denmark, S. E.; Butler, C. R.; J. Am. Chem. Soc. 2008, 130, 3690.
- 149. Li, L.; Navasero, N. Org. Lett. 2006, 8, 3733.

*: hydrosilylation product

200 175 150 125 100 75 50 25 0

