
Multiplatform incremental OTAP strategy for
resource-constrained IoT devices

Konstantinos Arakadakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Xenofontas Dimitropoulos

Thesis Co-Advisor: Dr. Alexandros Fragiadakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

This research has been financed by the European Union and Greek national funds through
the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RE-
SEARCH – CREATE – INNOVATE (project code: T1EDK-03389).

University of Crete
Computer Science Department

Multiplatform incremental OTAP strategy for resource-constrained
IoT devices

Thesis submitted by
Konstantinos Arakadakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Konstantinos Arakadakis

Committee approvals:
Xenofontas Dimitropoulos
Professor, Thesis Supervisor

Kostas Magoutis
Associate Professor, Committee Member

Hamed Haddadi
Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Assistant Professor, Director of Graduate Studies

Heraklion, July 2021

Multiplatform incremental OTAP strategy for
resource-constrained IoT devices

Abstract

The Internet of Things (IoT) presents itself as an emerging technology, which is
able to interconnect a soaring number of heterogeneous smart devices around the
world, for supporting complex data-driven applications in a variety of domains.
The ability to wirelessly update these devices is paramount, as it allows the inte-
gration of additional functionality into their firmware, the resolution of code errors
and security vulnerabilities, or even their complete re-purpose, without physically
accessing them. Such Over-the-Air Programming (OTAP) solutions require the
compaction of the transmitted data during a network update, in order to reduce
the energy consumption in the network, which is due to the necessary communica-
tion operations.

To meet this need, IoT devices can also be updated using a technique, called
incremental programming, that avoids the retransmission of the entire firmware,
when an updated version has been released. The most common form of this tech-
nique is through the so-called differencing algorithms, that execute at a firmware
server and aim to detect common segments between two firmware versions, produc-
ing an encoded patch that is disseminated to the network. This way, the devices
can utilise parts of the firmware they currently run, in order to reconstruct the
updated version locally.

In this work, we survey techniques, protocols, and schemes that focus on the re-
duction of the transmissions during a network update, and have found widespread
application in large-scale IoT networks. We also emphasize the essential steps of
the firmware update process, along with the proposed approaches and techniques
that implement them. Besides, we discuss contributions that focus on the secu-
rity aspects of OTAP, as recent cyberattacks have revealed that unsecured update
strategies can allow adversaries to inject faulty or malicious firmware into a net-
work, manipulating its operation.

Furthermore, we present a differencing algorithm we have developed, called
Dfinder, that can compute small patches, based on delta encoding. The algorithm
has O(nlogn) time and O(n) space complexity, and utilises enhanced suffix arrays
and state-of-the-art construction techniques, that enable the efficient detection of
common segments between two firmware versions. Additionally, we propose an
extension of the algorithm, that halves the storage requirements at the receiver,
so that devices with limited storage can also be updated, incrementally. Finally,
we integrate Dfinder in an OTAP testbed and show that it can reduce the update
time and the corresponding energy consumption of IoT networks up to 96%.

Poluplatforµik† strathgik† gia thn epauxhtik†
as‘rmath enhmËrwsh suskeu∏n

diadikt‘ou-twn-pragmàtwn periorismËnwn pÏrwn

Per–lhyh

To diad–ktuo twn pragmàtwn (IoT) apotele– mia exelissÏmenh teqnolog–a, h opo-
–a e–nai se jËsh na diasundËsei Ënan auxanÏmeno arijmÏ Ëxupnwn suskeu∏n, gia thn
upost†rixh pol‘plokwn dedomenokentrik∏n efarmog∏n. H dunatÏthta as‘rmathc
anabàjmishc aut∏n twn suskeu∏n e–nai exËqousac shmas–ac, kaj∏c epitrËpei thn
enswmàtwsh epiplËon leitourgikÏthtac sto logismikÏ touc, th diÏrjwsh laj∏n kai
eupajei∏n tou k∏dika, † akÏma kai ton epanaprosdiorismÏ tou skopo‘ touc, d–qwc
na apaite–tai h fusik† epaf† me autËc. TËtoiec l‘seic as‘rmatou programmatismo-
‘, apaito‘n th s‘mptuxh twn apostalËntwn dedomËnwn katà thn anabàjmish, ∏ste
na meiwje– h katanàlwsh enËrgeiac sto d–ktuo, h opo–a ofe–letai stic apara–thtec
leitourg–ec as‘rmathc epikoinwn–ac.
Gia na ikanopoihje– aut† h anàgkh, oi suskeuËc IoT mporo‘n ep–shc na anabaj-

misto‘n, mËsw miac teqnik†c, pou onomàzetai epauxhtikÏc programmatismÏc, h opo–a
apofe‘gei thn epanapostol† olÏklhrou tou logismiko‘, Ïtan Ëqei dhmiourghje– mia
ananewmËnh Ëkdosh. H pio diadedomËnh morf† aut†c thc teqnik†c, e–nai mËsw twn
algÏrijmwn diaforàc, oi opo–oi br–skoun ta koinà tr†mata d‘o ekdÏsewn logismiko‘
kai upolog–zoun Ëna kwdikopoihmËno ¨mpàlwma¨, to opo–o apostËlletai sto d–ktuo.
Me autÏn ton trÏpo, oi suskeuËc mporo‘n na qrhsimopoi†soun mËrh tou logismiko‘
pou trËqoun eke–nh th stigm†, ∏ste na sunjËsoun th nËa Ëkdosh topikà.
Se aut†n thn ergas–a, meletàme teqnikËc, prwtÏkolla dikt‘ou kai sust†mata

pou Ëqoun anaptuqje– me skopÏ th me–wsh tou Ïgkou twn metadÏsewn katà thn ana-
bàjmish dikt‘wn IoT kai Ëqoun brei ap†qhsh se d–ktua megàlhc kl–makac. EpiplËon,
d–noume Ëmfash sthn anàlush twn bhmàtwn thc diadikas–ac anabàjmishc, parousiàzo-
ntac diàforec teqnikËc pou ta ulopoio‘n. AkÏmh, anafËroume mhqanismo‘c oi opo–oi
epikentr∏nontai sthn asfàleia tou as‘rmatou programmatismo‘, miac kai prÏsfatec
epijËseic Ëqoun apokal‘yei pwc anasfale–c strathgikËc anabàjmishc, mporo‘n na
epitrËyoun thn egkatàstash epiblabo‘c logismiko‘ apÏ tic suskeuËc enÏc dikt‘ou,
ephreàzontac th leitourg–a touc.
EpiplËon, parousiàzoume Ënan algÏrijmo diaforàc, onÏmati Dfinder, o opo–oc

mpore– na upolog–sei mikrà ¨mpal∏mata¨, qrhsimopoi∏ntac kwdikopo–hsh dËlta. O
algÏrijmoc Ëqei O(nlogn) qronik† kai O(n) qwrik† poluplokÏthta kai qrhsimo-
poie– epauxhmËnouc p–nakec apojemàtwn kai s‘gqronec teqnikËc upologismo‘ touc,
pou epitrËpoun thn apodotik† e‘resh koin∏n tmhmàtwn metax‘ d‘o ekdÏsewn lo-
gismiko‘. AkÏmh, parousiàzoume m–a epËktash tou algÏrijmou, h opo–a mei∏nei tic
apojhkeutikËc apait†seic sth merià tou paral†pth katà to †misu, ∏ste suskeuËc me
periorismËno apojhkeutikÏ q∏ro na mporo‘n ep–shc na anabajmisto‘n epauxhtikà.
TËloc, enswmat∏noume to Dfinder se m–a platfÏrma as‘rmatou programmatismo‘
dikt‘wn IoT kai de–qnoume pwc mpore– na mei∏sei ton qrÏno kai thn enËrgeia pou
apaito‘ntai gia thn anabàjmish dikt‘wn IoT mËqri kai 96%.

Euqarist–ec

Ja †jela na ekfràsw th bajià ekt–mhsh kai eugnwmos‘nh mou ston epÏpth kajh-
ght† mou k‘rio Xenof∏nta DhmhtrÏpoulo, o opo–oc me filoxËnhse sthn ereunhtik†
tou omàda, kaj' Ïlh th diàrkeia twn metaptuqiak∏n mou spoud∏n. MËsa se autÏ to
peribàllon katàfera na antallàxw idËec kai gn∏seic, oi opo–ec epËtreyan thn exËlix†
mou tÏso san epist†monac Ïso kai san ànjrwpoc. AkÏmh, ofe–lw na ton euqari-
st†sw diÏti me thn bo†jeia tou katàfera na me–nw kai na ergast∏ gia pËnte m†nec
sth Sigkapo‘rh, kànontac praktik† àskhsh sto National University of Singapore
(NUS) , Ïpou apokÏmisa shmantikËc gn∏seic kai empeir–ec. EpiplËon, den ja mporo-
‘sa na euqarist†sw arketà ton sunepiblËponta ereunht† AlËxandro Fragkiadàkh,
o opo–oc upomonetikà me bo†jhse katà thn diàrkeia aut†c thc ergas–ac, profËrontac
mou ulikÏ, gn∏seic kai protrËpontàc me na belti∏nomai suneq∏c. TËloc, ofe–lw na
euqarist†sw touc gone–c mou, KalliÏph kai Man∏lh, oi opo–oi p–steyan se mËna kai
me st†rixan me Ïpoio trÏpo mporo‘san stic spoudËc mou, Ïpwc kai ta upÏloipa mËlh
thc oikogËneiac mou, pou †tan pànta prÏjumoi na me ako‘soun kai na mou d∏soun
mia sumboul†. 'Enac ex' aut∏n e–nai kai o pappo‘c mou, o Miqàlhc, o opo–oc Ëfuge
stic arqËc tou metaptuqiako‘ mou, allà gnwr–zw pÏso per†fanoc ja Ëniwje.

Sthn oikogËneià mou

Table of contents

Table of contents i

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Internet of Things (IoT) . 1

1.1.1 Wireless Sensor Networks (WSNs) 2
1.2 Over-The-Air Programming (OTAP) 3
1.3 Problem Statement . 4
1.4 Incremental Programming . 5
1.5 Contributions . 7

2 Related Literature 9
2.1 Improving Firmware Similarity . 10

2.1.1 Slop Regions . 12
2.1.2 Position-Independent Code (PIC) 13
2.1.3 Indirection Tables . 13
2.1.4 Relocatable Code . 14

2.2 Differencing Algorithms . 14
2.2.1 Fixed Block Comparison (FBC) 15
2.2.2 Rsync . 15
2.2.3 Xdelta . 16
2.2.4 BSDiff . 16
2.2.5 RMTD . 17
2.2.6 DASA . 17
2.2.7 R3diff . 18
2.2.8 Delta Generator (DG) . 18

2.3 Dissemination Protocols . 19
2.3.1 XNP . 20
2.3.2 Trickle . 20
2.3.3 Deluge . 20
2.3.4 Multihop Network Reprogramming (MNP) 21

i

2.3.5 Seluge . 21
2.3.6 Sluice . 22
2.3.7 Secure firmware updates using open standards 22
2.3.8 ASSURED . 22

2.4 Comparison of the Related Literature and our Contribution 23

3 Enhanced Suffix Arrays and Applications 25
3.1 Notation and Preliminaries . 26
3.2 The Suffix Array . 27
3.3 SA and LCPA Construction . 28
3.4 DivSufSort . 32

3.4.1 Additional Notations . 32
3.4.2 Basic Operation . 32
3.4.3 Inducing the ISA and LCPA, in conjunction with the SA . . 33

4 Dfinder 35
4.1 Block Moves Detector (BMD) . 37

4.1.1 Type 1: Matching segments found in the current firmware
(copied in forward order) 39

4.1.2 Type 2: Matching segments found in the current firmware
(copied in reverse order) . 40

4.1.3 Type 3: Matching segments found in the partially recon-
structed updated firmware (copied in forward order) 41

4.1.4 Type 4: Matching segments found in the partially recon-
structed updated firmware (copied in reverse order) 41

4.2 Optimiser . 43
4.3 In-place Reconstruction of the Updated Firmware 46
4.4 Orientation of Dfinder to Executable Files 47

5 OTAP Testbed 49
5.1 IoT Technologies and Standards . 49

5.1.1 IEEE 802.15.4 . 50
5.1.2 6LoWPAN . 50
5.1.3 RPL . 51
5.1.4 Constrained Application Protocol (CoAP) 51
5.1.5 OMA Lightweight Machine to Machine (LwM2M) 52
5.1.6 Eclipse Leshan . 53
5.1.7 Contiki-NG . 53
5.1.8 RPL Border Router . 53
5.1.9 Zolertia RE-Mote Platform 54

5.2 Testbed Implementation . 55
5.2.1 OTAP Server . 55
5.2.2 OTAP Client . 57
5.2.3 Device Preparation . 58

ii

5.2.4 Delta Script Download and Firmware Installation 59
5.2.5 Firmware Reconstruction 62

6 Experimental Evaluation 63
6.1 Evaluation using Randomly Generated Binary Files 64
6.2 Evaluation using Actual Firmware Images 69

6.2.1 Optimised Code . 70
6.2.2 Unoptimised Code . 72

6.3 Energy Consumption and Dissemination Performance 73

7 Conclusion and Future Work 79

8 Acknowledgments 81

Bibliography 83

iii

iv

List of Tables

2.1 Summary of differencing algorithms 15

3.1 The suffixes of sequence "banana" 27
3.2 The SA, ISA and LCPA computed on sequence "banana" 28

4.1 Types of matching segments BMD is able to detect for each segment
of the updated firmware . 35

5.1 Manifest structure . 57

6.1 The benchmarked differencing algorithms 63
6.2 The different firmware versions that we inputted to the differencing

algorithms . 69
6.3 The size of the compiled firmware images using the default optimi-

sations . 70
6.4 Delta script size (in bytes) produced by the benchmarked differenc-

ing algorithms for optimised code 70
6.5 Mean execution time (in seconds) of differencing algorithms for op-

timised code . 71
6.6 Peak memory consumption (in bytes) of differencing algorithms for

optimised code . 71
6.7 The size of the compiled firmware images without linker optimisations 72
6.8 Delta script size (in bytes) produced by the benchmarked differenc-

ing algorithms for unoptimised code 72
6.9 Mean execution time (in seconds) of differencing algorithms for un-

optimised code . 73
6.10 Peak memory consumption (in bytes) of differencing algorithms for

unoptimised code . 73
6.11 The predefined energest types . 74
6.12 Electric current per operation/state of CC2538 SoC 75
6.13 The delta script size (in bytes) produced by the benchmarked dif-

ferencing algorithms for an LwM2M-enabled Contiki-NG application 75

v

vi

List of Figures

1.1 Total number of IoT connected devices worldwide (2019-2030) . . . 1
1.2 Typical scenario of an interconnected sensor network 2
1.3 Common segments between two firmware versions 6

2.1 The steps for wirelessly updating an IoT network, using delta encoding 10

3.1 Median execution time of SACAs versus input file size 31
3.2 Median memory consumption of SACAs versus input file size . . . 31

4.1 ADD instructions format . 36
4.2 COPY instructions format . 36
4.3 The main components of Dfinder 37
4.4 The construction of byte-array T as a composition of the two firmware

versions, the current and the updated one 38
4.5 Finding Type 1 matching segments 40
4.6 Finding Type 2 matching segments 40
4.7 Finding Type 3 matching segments 41
4.8 Finding Type 4 matching segments 42
4.9 Copy_type1_rel and Copy_type3_rel instructions format 47
4.10 Copy_in-place instructions format 48

5.1 An IoT protocol stack . 50
5.2 LwM2M architecture . 52
5.3 An interconnected IoT network, using a border router 54
5.4 Zolertia RE-Mote Platform . 55
5.5 List of IoT devices registered to the Leshan server 56
5.6 The available resources and methods offered by an LwM2M client,

when the device runs the firmware image 59
5.7 The available resources and methods offered by an LwM2M client,

when the device runs the firmware installer 60
5.8 Flow of firmware upgrade from v1.0 to v2.0 using delta image . . . 61

6.1 The size of the resulted delta script size versus the unsimilarity (ex-
pressed by the Levenshtein distance) of the two input binary files . 66

vii

6.2 Execution time of differencing algorithms versus the unsimilarity
(expressed by the Levenshtein distance) of the two input binary files 67

6.3 Execution time of differencing algorithms versus the total size of the
two input binary files . 67

6.4 Peak memory consumption of differencing algorithms versus the ac-
cumulated size of the two input binary files 68

6.5 Time in seconds needed for updating the target IoT device 76
6.6 Energy consumption during firmware update 76
6.7 Energy consumed by the target IoT device per operation/state dur-

ing firmware update . 77

viii

Chapter 1

Introduction

1.1 Internet of Things (IoT)

The ever-expanding evolution of big data and artificial intelligence (AI) has re-
vealed their necessity for building the future smart society (Society 5.0)1; a human-
centered society that balances economic prosperity with the resolution of social
issues by a system that integrates both cyberspace and physical space. In this
society, the Internet of Things (IoT) plays a foremost role, connecting a soaring
number of islands of smart objects, robotics, and devices, empowered by the ac-
celerated adoption of advanced cellular technologies, such as 5G. The information
collected by these smart devices (wearables, electric vehicles, sensors, etc.) can be
used for refining the AI algorithms and allow them to make more precise decisions
without any human involvement, greatly benefiting both the industry and human

0

5

15

20

25

10

30

Co
nn

ec
te

d
de

vi
ce

s
in

 b
ill

io
ns

2019 2020* 2021* 2022* 2023* 2024* 2025* 2026* 2027* 2028* 2029* 2030*

7.74
8.74

10.07
11.57

13.15
14.76

16.44

18.15
19.91

21.72

23.57

25.44

Figure 1.1: Total number of IoT-connected devices worldwide (2019-2030)2

1https://www8.cao.go.jp/cstp/english/society5_0/index.html
2Source: www.statista.com/statistics/1183457/iot-connected-devices-worldwide

1

2 CHAPTER 1. INTRODUCTION

life. The significance of IoT can also be showcased by the increasing number of
IoT-connected devices, while recent studies predict that by the year 2030 the total
number of them will reach 25.44 billion, as illustrated in Figure 1.1. Subsequently,
IoT has attracted the interest of academic circles, with them developing new tech-
nologies for supporting this multi-protocol and multi-platform infrastructure we
refer to as IoT.

1.1.1 Wireless Sensor Networks (WSNs)

Wireless Sensor Networks (WSNs) are Low-Power and Lossy Networks (LLNs) and
constitute an early form of ubiquitous information and communication networks,
comprising one of the fundamental blocks of IoT. They are self-configuring networks
of low-cost, radio-equipped devices (called motes or nodes), which have constrained
resources [25] and are deployed in quantity to monitor or control their surrounding
environment. The information gathered by these devices often needs to be uploaded
to the cloud, so that it can be processed accordingly. To this end, WSNs also
integrate border routers in their topology, which allow the seamless communication
of the nodes with the internet, as the limitations that govern such networks do not
allow this communication to be performed natively. Hence, the border router acts
as a sink, receiving all the messages that originate from the nodes of the network
and forwarding them towards the internet, and vice versa. Besides, a WSN may be
heterogeneous, in the essence that the devices that it consists of can have different
functions/roles, manufacturer, etc. The application areas such networks have been
used to, cover a wide spectrum of needs and domains, ranging from smart cities
and healthcare to industrial automation and military surveillance, to name a few.

Internet

Border router

Wireless Sensor Network

IPv4/IPv6

Figure 1.2: Typical scenario of an interconnected sensor network

In general, a node contains a microcontroller, a wireless module, memory, sen-
sors/actuators, as well as a power source (often in the form of a battery), while

1.2. OVER-THE-AIR PROGRAMMING (OTAP) 3

some nodes may have different configurations, depending on their purpose in the
network. According to their roles, nodes can be classified into sensors, sinks and
actuators. Sensors are typically equipped with various kinds of sensing modules
and collect information about their surrounding environment, which they trans-
mit to the sink nodes. On the other hand, upon receiving this information, the
sink nodes pass it to the border router so that it can reach the internet. Besides,
actuators are devices that are used for controlling their surrounding environment
(e.g. switching on/off LED lights), based on sensor readings and other user inputs.
Additionally, depending on the application and the geography, the nodes may form
various network topologies (e.g. ring, star, mesh, etc.). Finally, the software these
devices run to serve their purpose is called firmware and is accommodated in their
internal flash memory; the flash is also used for running the firmware from, as the
RAM is too limited for this task.

1.2 Over-The-Air Programming (OTAP)

Regardless of the attention given during firmware development, software bugs can
occur at any level of the system and stage of the development cycle [21], and their
effects may be realized after the deployment of the network, degrading the Quality-
of-Service (QoS) or even the integrity of it. Hence, firmware updates are frequently
released either for resolving bugs [87] or security vulnerabilities [45], or for support-
ing additional features. On the other hand, the inability to update an IoT network
can result in decreased network performance, security breaches that could compro-
mise the privacy and safety of the network, and in general, undermine the long-term
sustainability of the deployment. Additionally, the IoT devices found in some de-
ployments may need to be completely repurposed, as they may be assigned different
roles, due to changes in their environment. Thus, as their storage is too limited to
accommodate multiple application images simultaneously, the new firmware should
be compiled at a firmware server and then used to flash these devices. In the most
common scenario, however, updates introduce small modifications to the firmware
code, from one version to the next, modifying the implementation of a few functions
and reconfiguring some application parameters [83].

Traditionally, in order to update a WSN, maintenance personnel had to be
dispatched, collect the devices, and access them via a serial port or another hard-
wired back-channel, so that they can flash them with the new firmware image.
The limitation of this solution, however, is the lack of scalability, and the vast
amount of time it requires, which may not be tolerable when an update includes
security patches that should be installed promptly. Furthermore, physical access to
these devices may be infeasible sometimes, as they may be located in inaccessible
areas (e.g. implanted into asphalt roads), or even implanted into human bodies,
operating as medical sensors [97].

To alleviate the above limitations, in the early 2000s were developed the first
systems that offered Over-The-Air programming (OTAP) support for WSNs [90].

4 CHAPTER 1. INTRODUCTION

These systems included a firmware server that compiled the updated firmware ver-
sion and then transmitted it to its neighboring devices, over a radio channel. Once
a device had fully received the update, it rebooted, the bootloader overwrote the
contents of the internal flash memory (program memory) with the new firmware
and started running the updated version3. A limitation of these preliminary so-
lutions, however, was that only the devices that were within the radio range of
the server could receive the update. Nowadays, due to the large geographical scale
of modern IoT networks, multi-hop communication is a reality, and to facilitate
proper OTAP, more advanced dissemination protocols have been designed, whose
goal is the reduction of the energy consumption in the network, avoiding redundant
transmissions and collisions that can degrade the quality of the channel.

1.3 Problem Statement

When designing OTAP solutions, the limitations that bind the LLNs [57], due to
their constrained nature, should be taken into account. For instance, IoT devices
are mostly battery-powered and operate unattended in harsh environments for
extended periods of time [24], while some of these devices may rely on ambient
power sources such as solar energy [27], wireless energy, and RF. A node’s lifespan
is greatly affected by routine operations such as those involved in wireless radio
communication. For instance, the transmission of a single bit of data could consume
roughly the same amount of energy as executing 1000 instructions [78]. Writing
data into the flash memory is not a lightweight process either, as a higher voltage is
required, resulting in additional power consumption. All the above conclude that
the required time for updating a network, as well as the total power consumption,
are significantly affected by the size of the data that need to be transmitted to the
network and stored by the target devices, during a network upgrade.

However, the microcontrollers found in motes are not suitable for running com-
plex cryptographic (RSA [69], AES [20]), or compression algorithms, as the execu-
tion time will be significantly high, during which the node may be unable to perform
any other operations. Regardless, the energy consumption caused by these opera-
tions would render them unsuitable for such energy-constrained environments. To
address this limitation, the research community works towards lightweight algo-
rithms [65], and hardware-accelerated cryptography operations [8].

Additionally, it is very common for IoT devices to have a limited NAND-based
flash memory [79], which needs to accommodate both the bootloader and the
firmware code. The situation gets harsher if we consider that a portion of the flash
memory may be occupied for storing rollback images (golden images), for providing
fail-safe OTA updates. Hence, a firmware update strategy should optimally utilize
the available flash memory and give great emphasis on reducing its degradation,
caused by excessive erases (e.g. storing temporal data in the RAM [39, 18, 51, 86]).

3Throughout this work, we refer to the old and new firmware versions as the current and
updated one, respectively.

1.4. INCREMENTAL PROGRAMMING 5

Based on the above, a solution is needed for reducing the transmitted data
during a network upgrade, without applying a traditional compression algorithm.
Besides, this solution has to make very efficient use of the limited flash memory
included in IoT devices.

1.4 Incremental Programming

As developers used to release firmware updates regularly, transmitting the entire
firmware when a new version had been released, quickly became obsolete, triggering
the development of the first incremental programming schemes [68, 3]. In the
context of firmware updates, incremental programming is a technique that aims at
reducing the volume of transmitted data during a network update, by avoiding the
transmission of the entire firmware. It is based on the fact that two versions, of the
same firmware, share many structural similarities, and hence, some parts of the new
version may not need to be transmitted, as the receivers already possess them as
parts of the version they currently run. In the literature, incremental programming
has been introduced in various forms, some of which will be discussed in the next
chapter; however, in this study, we will focus on the one that is based on delta
encoding.

As the server knows the firmware version that the nodes currently run, it could
compute and transmit an encoded patch, which describes the differences between
the two firmware versions: the firmware version that the server just compiled and
the one that the nodes currently run. Upon receiving this patch, the nodes can
apply it on the current version to reconstruct the updated one, locally (fCurrent ~

fPatch = fUpdate). Hence, instead of transmitting the updated firmware, the server
could simply disseminate this patch, which is significantly smaller than the firmware
image itself, reducing the energy consumption and the time needed for updating a
network.

The process of computing such a patch of minimal size between two firmware
versions is often referred to as delta encoding or differential compression [88] and
is done by a differencing algorithm. This patch, or delta script (these terms will
be used interchangeably in this study), formally describes the differences (non-
common segments) between two file versions, and also contains a set of instructions
that the nodes need to perform, so that they reconstruct the updated one, using
parts of the version they currently have. For instance, as shown in Figure 1.3, only
A0, D0 and F 0 need to be explicitly transmitted, as they are not common between
the two firmware versions, while the remaining segments could be reconstructed
by the receiver, simply copying the corresponding (matching) segments from the
current firmware image.

Differencing algorithms can be further subdivided into block-level (e.g. [37, 93])
and byte-level (e.g. [19, 32]) algorithms, according to the level of granularity they
operate at, to detect common segments between two files. The byte-level algo-
rithms usually produce smaller delta scripts, as they are more flexible and can

6 CHAPTER 1. INTRODUCTION

F

E

D

C

B

A

F΄

D΄

A΄

B΄=C

C΄=B

E΄=F

Current version Updated version

F

E

D

C

B

A

F΄

D΄

A΄

B΄=C

C΄=B

E΄=F

Figure 1.3: Common segments between two firmware versions

detect more common segments with varying lengths, while the block-level coun-
terparts, typically have lower execution time and memory footprint but produce
larger delta scripts. The performance of a differencing algorithm is determined by
three factors [33]: (i) the compression ratio, (ii) the time complexity, and (iii) the
space complexity. Unfortunately, these three indices constraint each other, as often
an algorithm that can produce small delta scripts suffers from poor execution time
and memory footprint.

There has been an effort to create universal delta script formats (e.g. VCD-
IFF [47], GDIFF [4]), while some algorithms use custom ones [19, 17] that support
additional instructions in order to achieve a more efficient encoding. Despite their
differences, all proposed formats feature two core instructions, with a relatively
standardized syntax: COPY and ADD. A COPY instruction is used for encoding
a segment of the updated firmware that is common between the two firmware ver-
sions and subsequently does not need to be transmitted. On the other hand, an
ADD instruction encodes a non-common segment of bytes, found in the updated
firmware, which needs to be transmitted to the target nodes. Besides, some for-
mats, such as VCDIFF, include an additional instruction, called RUN, which is

1.5. CONTRIBUTIONS 7

used for encoding bytes of the updated firmware which are repeated multiple times
(e.g. segments that consist of many zeros). It is evident that in order to produce
smaller delta scripts, the differencing algorithms should aim at reducing the num-
ber of ADD instructions, as the respective non-common byte segments contribute
mostly to the delta script size. Thus, they should work towards maximizing the
number of common segments found between two versions, so that they can produce
smaller delta scripts.

1.5 Contributions

In this thesis, we present a byte-level differencing algorithm we have developed
in ANSI C, called Dfinder, that uses enhanced suffix arrays [1] and can generate
small delta scripts, very efficiently (both in time and memory). Dfinder can de-
tect various types of common segments between two firmware versions, effectively
increasing the ratio of the bytes of the updated firmware that can potentially be
encoded using COPY instructions. Namely, for a segment of the updated firmware,
Dfinder can find a matching one in the current firmware, as long as the latter can
be copied in forward or reverse order to reconstruct the former segment. For in-
stance, both "abcde" and "edcba", found in the current version, could be copied to
reconstruct the segment "abcde", found in the updated one. Besides, the algorithm
can utilise parts of the updated firmware that have already been reconstructed to
find matching segments for following segments (of the updated firmware). For ex-
ample, if the updated version was "abcdeabcde", the first half of it could be copied
to reconstruct the second half. Additionally, the time and space complexity of the
algorithm are kept low (O(nlogn) and O(n)) and takes less than 0.05 seconds to
compute a delta script for all Contiki-NG4 applications (up to 80 KiB) that we
tested for Zolertia RE-Mote platform5.

Furthermore, a drawback of traditional incremental programming approaches
is that the nodes are required to have enough storage space to accommodate both
firmware versions, simultaneously, during the reconstruction process. However,
this may not be feasible in some deployments, due to cost limitations. To alleviate
this challenge, we propose an extension of Dfinder that allows the receivers to
perform the reconstruction of the updated firmware in-place, starting at the flash
address where the current firmware version is stored. Subsequently, in order to be
updated incrementally, IoT devices need to have no extra space than that needed
for storing the base firmware version, in the first place. Furthermore, we integrate
Dfinder in an OTAP testbed that we implemented, and evaluate its performance,
comparing it with other differencing algorithms. Besides, using the testbed we
showcase how the time and energy needed for updating IoT networks are affected
when an incremental approach is followed.

4www.contiki-ng.org
5www.zolertia.io/product/re-mote

8

Chapter 2

Related Literature

The limitations imposed by the inherent restricted nature of IoT networks have
forced the academia and the industry to develop OTAP strategies, focused on
reducing the transmitted data volume during network upgrades. Some of these ap-
proaches constitute a form of incremental programming, as their operation is based
on reusing parts of the previous version for the reconstruction of the updated one
(e.g. proposed differencing algorithms). Besides, different network protocols have
been proposed in the literature, that enable the efficient and robust dissemination
of the update, while some of them are focused on securing the communication
by applying cryptography algorithms. In this chapter, we present some of these
contributions and we compare them to our work.

Virtual machines partially overcome the challenge of large updates, by running
interpreted code. Since byte code is typically much smaller than the native coun-
terparts, updates in such systems are also smaller and easier to be distributed.
The idea of VMs running on resource-constrained devices was first implemented in
Maté [55] and VM* [49]. Although VMs seem a promising way for reducing the
update size, they also introduce latency, as the interpreted execution is generally
slower, while some resources are constantly occupied by the VM itself. Besides, this
approach does not work for updating the core components of the virtual machine
(engine), as in this case, the whole updated VM image has to be transmitted to
the target devices.

The main advantage of modular operating systems over non-modular ones is
the support of dynamic linking [21] and loading. This way, systems such as Con-
tiki OS [22] 1, only need to receive the modified modules of the updated firmware
image, as the dynamic linker can use them for re-linking the image and loading it
again. However, apart from the modified module(s), the new symbol and reloca-
tion tables also need to be transmitted, contributing to the transmission volume
significantly. Elon [18] avoids the transmission of the relocation table, introduc-
ing the concept of replaceable components. A drawback, however, is that these

1Dyncamic linking/loading was supported by the preliminary version of Contiki-OS, but is not
supported in Contiki-NG.

9

10 CHAPTER 2. RELATED LITERATURE

components are stored in the RAM of the devices, and subsequently need to be
re-transmitted in case of a reset, which is common for WSN nodes. Regardless, an
OTAP strategy based on the support of dynamic linking at the receiver implements
the incremental programming paradigm, because the unmodified modules do not
need to be transmitted, as the receiver already possesses them and can use them
for the construction of the updated image.

Updated firmware
Firmware
similarity

improvement

Current firmware

Enhanced
Updated
firmware

Differencing
algorithm

Current firmware

Delta script Delta script
dissemination

Update
application

Figure 2.1: The steps for wirelessly updating an IoT network, using delta encoding

Incremental programming, based on delta encoding, has attracted the attention
of the research community, presenting as a promising approach for the reduction of
the transmitted data, during a network upgrade; this is the technique we will focus
on in this work and mainly discuss in this chapter. As illustrated in Figure 2.1,
the main steps for updating an IoT network using delta encoding are as follows.

• Firmware similarity improvement, which includes the utilization of tech-
niques that mitigate the effects of function and variable shifts in the updated
firmware image, and increase the similarity between two firmware versions;
hence, potentially resulting in the reduction of the computed delta script size.

• Differencing algorithm application, including the utilisation of a differ-
encing algorithm on two firmware images, in order to compute a delta script.
The delta script contains a set of instructions that, once applied to the current
firmware, enable the reconstruction of the updated version.

• Delta script dissemination, which is responsible for orchestrating the effi-
cient and reliable distribution of the delta script to the devices of the network,
applying a suitable network protocol that focuses on avoiding excessive trans-
missions.

• Update application, which refers to the OTAP stage that takes place at
the node, once it has fully received the delta script, and includes the recon-
struction, verification, installation, and execution of the updated firmware.
This step is strictly connected to the patch generation process and the chosen
delta format, so that the delta script can be interpreted accordingly.

2.1 Improving Firmware Similarity

Although firmware updates usually introduce minor modifications to the firmware
source codE, these changes can result in the disproportional increase of the com-
puted delta script. In [82], the authors distinguish four firmware properties that

2.1. IMPROVING FIRMWARE SIMILARITY 11

affect the size of the generated delta script.

Function shifts
In the updated firmware version one or more functions may be modified, altering
the size of their implementations. This shrinkage or increase of them can force
functions whose implementation is located at higher addresses, to be shifted (to
other addresses), to comply with the new size of the modified functions. Subse-
quently, calls towards these shifted functions will have different target addresses 2

between the two versions. Finally, as all these altered target addresses are en-
coded using distinct ADD instructions, the size of the computed delta script can
be significantly increased.

Global variable shifts
The insertion or deletion of global variables in the source code is another factor that
can affect the size of the computed delta script. The global variables of a program
are stored in two adjacent sections of the RAM: .data and .bss. The initialized
global variables are mapped to the former section, while the uninitialized ones
are mapped to the latter. When a global variable is introduced or removed, the
variables that have been mapped to higher addresses are shifted. Hence, similar to
function shifts, any reference to these variables will have a different target address
between two firmware versions, increasing the delta script size, due to the insertion
of additional ADDs.

Relative jumps
The jump instructions transfer the program sequence to an absolute flash address,
given in the instruction format. Hence the next instruction to be executed is
the one present at that flash memory. However, instead of using absolute target
addresses, relative jumps are performed based on an offset, that represents the
distance between the jump instruction and the target address. The insertion or
deletion of instructions, between a relative jump instruction and its target address,
will cause the alteration of the respective offset, forcing the injection of additional
ADDs in the final delta script.

Indirect addressing
In RISC architectures, memory locations can only be accessed indirectly, through
the processor registers. Indirect addressing provides fast access to large data struc-
tures, such as arrays, linked lists, unions, etc. As global variables are shifted,
resulting in the modification of the global variable layout, the corresponding indi-
rect instructions will contain different target addresses (between the two versions),
which must be encoded using ADDs.

Based on all the above, it is paramount to preserve the similarity of two firmware
2The flash address where the implementation of the called function originates at.

12 CHAPTER 2. RELATED LITERATURE

versions, before the delta script computation, in order to ensure that the resulted
delta script will have the smallest size possible. This can be achieved, by mitigating
the effects of the shifts using some similarity preserving techniques, such as the ones
that are discussed in this section.

2.1.1 Slop Regions

Slop regions were introduced in [48] and since then, they have been adopted in
many OTAP schemes for addressing the function and variable shifts. A slop region
is defined as a free memory space, located directly after a function’s implementa-
tion, where the function can grow or shrink without forcing any other functions to
relocate. If a function grows, part of its slop region will be utilized for accommo-
dating the new code. On the other hand, if a function shrinks, its slop region will
grow, occupying the removed part of the function. Slop regions have also been used
between the .data and .bss sections in RAM, so that the uninitialized variables do
not need to be shifted when initialized global variables are introduced or removed
in the new version[71].

To mitigate the effects of function shifts, an OTAP scheme, called Qdiff [82]
proposes an alternative implementation of slop regions. Qdiff does not create
a slop region for each function during linking, as other implementations do. In
contrast, when a function is deleted or shrunk, the resulted available space becomes
slop region. Hence, slop regions can be found only immediately after a function’s
implementation, caused by the shrinkage of its implementation, or by the deletion
of other functions. On the other hand, if a function grows, Qdiff will try to find a
slop region right after the function implementation and if such a region exists, the
function will expand there; otherwise, the updated function will be relocated at the
end of the firmware code. This way, by removing (or shrinking) and/or creating
(or expanding) some functions in the updated version, Qdiff proactively creates
empty slop regions that can be assigned to functions, later on.

In Qdiff [82], the authors also follow an interesting approach for addressing
global variable shifts. As mentioned above, the .data and .bss sections are located
in adjacent regions in RAM and expand towards the same direction (towards higher
addresses). The authors modified the method that is responsible for the expansion
of these two sections, so that they expand towards the opposite direction. The
two sections originate at fixed addresses, having a large empty space between them
and expand towards the opposite direction, progressively filling the space between
them. This, way the uninitialized variables are not shifted when initialized ones
are removed or inserted in the firmware source code.

A drawback of this technique, however, is that excessive fragmentation of the
flash memory may occur, as some regions of the flash may contain actual code,
while others being empty slop regions. Apart from the inefficient utilization of
the flash memory, fragmentation can also increase energy consumption because the
control circuitry needs to activate a larger number of memory regions during the
operation to run the firmware image. The authors in [38] show that the energy

2.1. IMPROVING FIRMWARE SIMILARITY 13

consumption can increase by up to 5% when memory is fragmented. Finally, extra
attention is needed when a function grows beyond its slop region, as it may need
to relocate to a different address.

2.1.2 Position-Independent Code (PIC)

Position-independent code is a piece of software that is allowed to execute regardless
of the absolute memory address it is loaded at. If a code is position-independent,
all references and target addresses in instructions are relative, representing the
distance between the calling instruction and the respective destination. Hence, if
this piece of code needs to relocate in the updated firmware version, these relative
addresses will not be affected, which would not be the case if absolute addresses had
been used instead. Subsequently, PIC has been used, for improving the similarity
of firmware versions before the delta script computation (e.g. in SOS operating
system [30]).

However, due to hardware limitations of embedded devices, the offset of the rel-
ative jumps can be performed only within a certain range, limiting the application
of this technique. For example, Atmel AVR platform supports PIC but restricts
the size of the program to 4 KB. Additionally, PIC needs compiler support, which
is not the case for some platforms (e.g. MSP platform [21]).

2.1.3 Indirection Tables

The use of indirection tables was introduced in Hermes [71] and Zephyr [72], as a
countermeasure against the effects of function shifts. When the updated firmware
image is linked, an indirection table is created, that has an entry for each function
of the firmware, which is called at least once. Each such entry contains the flash
address, where the respective function is located at. This way, all calls toward
functions can be replaced by jumps towards the corresponding entries of the table,
which will indirectly give control to the called functions.

The advantage of this technique is that when a function relocates, only its
entry in the indirection table is affected and needs to be updated, while the target
address of all instructions that call this function will stay intact, containing the
respective entry of the indirection table.

However, this technique is platform-specific and linker modification is required,
which may affect the performance of the code. Moreover, as function calls are
performed indirectly, through the table, the run-time latency of function calls in-
creases. Finally, apart from the delta script, the table also needs to be transmitted
and stored at a fixed address of the device flash memory. This can be problematic
when we use this approach on complex programs with many functions and func-
tion calls, as the table size will be significantly increased, resulting in transmission
overhead, while a large amount of flash memory may be occupied for the table
itself.

14 CHAPTER 2. RELATED LITERATURE

2.1.4 Relocatable Code

The relocatable code is a software module whose initial address can be dynamically
moved around the available address space and loaded in multiple addresses. When
such a code is compiled, a relocation table is also created, containing an entry for
each reference in the code that should be dynamically resolved, when the program
is loaded. Subsequently, it is a common technique for traditional dynamic linking
and loading.

In R2 [17], the authors utilize the concept of relocatable code for mitigating
the effects of function and variable shifts. Initially, the linker is instructed to to
generate relocatable code for the updated firmware image. Then the image is
parsed and all references to symbols (functions or global variables), are set to a
predetermined value which remains the same across all firmware versions. Each
such altered reference has an entry in the relocation table, which contains the
correct value. As the references between the two versions will be the same, set to
the predetermined value, the effects of the function and variable shifts between the
two versions will be mitigated. Then, the relocation table and the altered firmware
image are merged and used for delta generation. Upon receiving the delta, the
device is able to reconstruct the firmware image and the relocation table, while it
can also resolve the addresses using the latter.

A disadvantage of relocatable code, however, is that it requires a modular OS
at the recipient side, with a sophisticated loader that can resolve the relocated ad-
dresses before the firmware executes. It must also be mentioned that although the
use of relocatable code and indirection tables seem similar, these techniques have
some major differences. The relocatable code must be resolved during load-time,
while the indirection table-based code operates at run-time, introducing additional
latency. Furthermore, the metadata of the relocatable code are generally larger in
terms of size compared to those of the indirection table-based code.

2.2 Differencing Algorithms

In order to achieve more efficient utilization of the available resources in resource-
constrained IoT networks during a network update, the transmission volume has
to be minimized. This can be accomplished through a process called delta script
generation, which relies on two observations: (i) both the server and target IoT
nodes have the current firmware version, and (ii) the updates mostly introduce
small modifications in the firmware code. Thus, only the parts of the updated
firmware that are not common between the two versions, need to be transmitted,
followed by a set of commands that instruct the node how to reconstruct the
updated version, locally. Some of the most popular differencing algorithms are
shown in Table 2.1 and discussed in this section.

2.2. DIFFERENCING ALGORITHMS 15

Algorithm Granularity Time complexity Space complexity

FBC [37] block-level O(n) O(n)

Rsync [93] block-level O(n2) O(n)

Xdelta [58] block-level O(n) O(n)

BSDiff [19] byte-level O(nlogn) O(n)

RMTD [32] byte-level O(n3) O(n2)

DASA [63] byte-level O(nlogn) O(n)

R3diff [19] byte-level O(n3) O(n)

DG [40] byte-level O(n2) O(n)

Table 2.1: Summary of differencing algorithms

2.2.1 Fixed Block Comparison (FBC)

FBC [37] is the simplest known method for comparing two firmware images, aiming
at reducing the required transmissions during a network upgrade. This algorithm
divides the two images into blocks of fixed size and compares the respective blocks.
For each pair of matching blocks, a COPY instruction is inserted into the delta
script, while the non-matching ones need to be explicitly transmitted, along with
the delta script. In order to encode the latter blocks, an ADD instruction has to
be inserted in the delta script.

The main benefit of this technique is the low time and space overhead, as well as
the ease of implementation. Moreover, despite its simplicity, it works quite well for
small firmware changes, as only the altered blocks are transmitted. Nevertheless,
it operates at block-level granularity and is not able to detect a high number of
common pairs, especially when the update includes excessive modifications, that
can span across many blocks.

2.2.2 Rsync

Rsync [93] (and the corresponding Rdiff utility) is a file synchronization tool,
that is used by many incremental reprogramming schemes [36, 72], for detecting
common segments between two file versions. It operates at block-level and was
initially developed for exchanging binary files over low-bandwidth channels. Rsync
segments the two files into fixed-sized blocks and uses a sliding window with a size
equal to the block size, to scan the two files for matching segments.

First, both the rolling-checksum and a MD4 checksum of each block of the
old version are calculated. Then, the window traverses the new file in a sliding
window fashion, and the digest of the current window gets computed. This way,
potential matches for the window can be detected, conducting a lookup with the
digests of the old file blocks. Similar to other sliding window protocols, if a match
is found for the current window, the window moves forward one block, otherwise

16 CHAPTER 2. RELATED LITERATURE

it moves one byte, signing the first byte of the current window as unmatched. All
these unmatched bytes are accumulated and transmitted when the next matching
is found, or when the window reaches the end of the old file.

Although Rsync can find common subsequences with higher accuracy compared
to FBC, it still faces the same drawbacks, since its granularity depends on the used
window size; thus, being unable to detect common segments with a size smaller
than that of the used window. For instance, if two respective blocks of two file
versions differ by a single byte, the entire block of the new file has to be explicitly
transmitted. Additionally, being a general-purpose differencing algorithm, Rsync
does not use any file-specific knowledge and is outperformed in the context of
executable files, by more specific tools, such as BSDiff and various versions of
Xdelta. Moreover, Rsync cannot update files in place, as the output file must not
be the same as the input one.

2.2.3 Xdelta

Xdelta [58] is a linear time and space differencing algorithm that operates at block-
level and generates delta scripts in VCDIFF format. The algorithm merges the
two input files, constructing a new file, which is compressed using LZ77 [89] (or
another compression algorithm), compressing only the part that contains the new
file. As the two file versions share many common segments, the updated version
will be efficiently compressed. In this essence, data compression can be considered
as a special case of differencing, where no old file is provided. Besides, Xdelta
results in small delta size by optimizing the generated instruction set and merging
small instructions into one; the generated delta script consists of a sequence of
instructions (ADD, COPY, or RUN).

Additionally, a trait of this application is that it prioritizes speed over com-
pression performance and is favored when the delta computation time is the most
important factor. However, in normal operation mode, Xdelta consumes a signifi-
cant amount of memory, which may be intolerable if the firmware server computes
multiple patches, simultaneously. Besides, the nodes have to be instructed to in-
terpret the VCDIFF format, so that they can reconstruct the updated firmware,
properly.

2.2.4 BSDiff

BSDiff [73] is a differencing algorithm that focuses on executable files, and uses
suffix sorting for the efficient computation of patches. First, the two files are
scanned both forwards and backwards, so that segments of the new file, that exactly
match with others of the old file, are detected. Next, BSDiff computes approximate
matches, expanding the detected matching segments in either direction, so that
every suffix/prefix of the extension matches in at least half of its bytes. These last
matches correspond to slightly modified segments of the updated firmware, that
have small differences between the two versions. For instance, these can be regions

2.2. DIFFERENCING ALGORITHMS 17

that contain calls to shifted functions. Additionally, the main parts of the resulted
delta script (instructions and matches) are further compressed using the bzip2
compression library 3. Besides, the algorithm relies on common change patterns
observed in executable code, so that it produces smaller patches for executable
files, compared to other such tools. Finally, BSDiff has O((n + m) ⇤ logn) time
complexity and requires no more than max(17⇤n, 9⇤n+m)+O(1) bytes of memory,
for its execution.

2.2.5 RMTD

RMTD is a byte-level differencing algorithm proposed by Jingtong Hu et. al.
in [32]. A novelty of this algorithm is that in order to encode a segment S of
the updated firmware, it can also detect matching segments in the part of the
updated firmware that will have already been reconstructed when S is about to
be reconstructed. As the instructions in the delta script are sequentially executed
by the recipient, the updated version is progressively reconstructed. Thus, when
a segment of the updated firmware, encoded in an instruction (ADD or COPY),
is about to be reconstructed, the part of the updated firmware that precedes it in
order, will have already been reconstructed in flash memory. In addition, RMTD
can detect common segments between two firmware versions, in both forward and
reverse order. For instance, the segment "edcba" is considered as a matching one
for the segment "abcde", and the one could be used to reconstruct the other.

RMTD uses a large 2D matrix for recording the common bytes of the two
firmware images. Based on this matrix, the algorithm can detect all the pairs of
matching segments. The result of this operation consists of two lists that con-
tain the matching segments of the two images, as well as the matching segments
between the partially reconstructed updated image and the rest of the (updated)
image, respectively. Once these two lists are computed, the algorithm finds the
optimal combination of COPY and ADD instructions to encode the segments of
the updated firmware, using a dynamic programming approach.

Being able to utilize the partially reconstructed part of the updated firmware
and detecting segments that can be copied in reverse order to reconstruct their
matching ones (in the updated firmware) enables RMTD to generate very small
delta scripts. However, the algorithm has been criticized for its excessive time and
space complexity (O(n3) and O(n2)) that render it unusable for modern large-scale
applications [63]. The authors in [63] have reported that RMTD crashed when the
code size becomes too large (⇠ 42 KiB), due to lack of memory resources.

2.2.6 DASA

DASA [63] is a differencing algorithm proposed by Biyuan Mo et. al., aiming
at producing delta scripts, keeping the space and time complexity low. In order
to accomplish this, the algorithm utilizes an efficient data structure, called suffix

3www.sourceware.org/bzip2

18 CHAPTER 2. RELATED LITERATURE

array (SA) [15]. First, DASA constructs a byte-array, as the composition of the two
firmware images, which is used to compute the SA using the doubling algorithm [15].
Precomputing the SA as well as some auxiliary arrays, the algorithm can conduct
efficient queries, that allow the detection of common segments (in forward order)
between two firmware versions.

The authors implemented a function called findK, that given an index i of the
updated image, returns the smallest possible index k, so that the subsequence of
the updated firmware that originates at the kth byte and ends at the (i 1)th one
is a common segment (found both in the updated and current image), and thus
could be reconstructed copying the respective segment from the current firmware.
Besides, to compute the optimal delta script size, the authors follow a dynamic
programming approach.

In experimental evaluation [63] DASA outperformed Rsync in terms of delta
script size, which is expected, as Rsync is a block-level algorithm. Furthermore,
DASA has better execution time and smaller memory footprint than RMTD, which
is heightened when the firmware image is large.

2.2.7 R3diff

R3diff [19] is a byte-level differencing algorithm, which is heavily inspired by its
predecessor; DASA. R3diff can only detect common segments between the two
firmware versions in forward order, while it also adopts a dynamic programming
approach, similar to the one presented in DASA, for the computation of delta
scripts. However, instead of using SAs, the algorithm computes the hash value for
every three bytes of the current image, located in consecutive order and the findK
method operates according to these digests.

2.2.8 Delta Generator (DG)

The authors in [40] have presented another differencing algorithm, called Delta
Generator (DG). The algorithm places the two firmware images side-by-side and
performs a XOR operation between the respective bytes, aiming at revealing the
non-matching sequences of bytes, as the matching ones can easily be encoded using
COPY instructions. Then, these non-matching sequences of the updated firmware
are used for detecting the common and non-common subsequences between the two
versions.

The algorithm has O(n+m) space and O(nm) time complexity, where n is the
size of the current firmware image and m the size of the non-matching sequences
found after XOR, and subsequently, the execution time and the memory footprint
heavily depends on the structural similarity of the two versions. A comparative
study of DG and R3diff was conducted in [54], where the authors inferred that
DG outputs significantly smaller delta scripts than R3diff for small-sized images.
However, this statement does not hold, as more data and code is shifted. Finally,
the authors conclude that DG is not able to provide optimization for a high number

2.3. DISSEMINATION PROTOCOLS 19

of small changes; instead, it generates several ADD instructions that encode regions
with a few bytes for each non-matching segment.

2.3 Dissemination Protocols

The protocols designed for distributing data in WSNs are not suitable for dissemi-
nating firmware updates for several reasons. First, the update size is typically much
larger (in the order of kilobytes) than that of the data that are usually transmitted,
while the protocols have not been optimised for such large payloads. Second, while
the flow of the data transmissions in a WSN is bidirectional, including operation
information from sensors and commands toward actuators, etc., the flow of the
update image is mostly one-way, from the firmware server to the nodes.

Hence, purpose-specific network protocols have been designed, that focus on
the efficient dissemination of firmware updates from a firmware server to the nodes
of an IoT network. These protocols have to cope with the unreliable nature of the
wireless medium, employing mechanisms for the provision of a reliable firmware
update process. Regarding this, the nodes should be able to provide feedback, in
the form of positive or negative acknowledgments (ACKs), indicating the correct
reception of packets, or request the retransmission of lost ones. Additionally, it
is evident that flooding the network with the packets is not a viable solution, as
it will result in redundant transmissions, depleting the nodes’ battery, while it
can also cause broadcast storm problem [94], where overlapping radio signals result
in increased contention and packet collisions. Hence, these protocols should be
designed to reduce the number of needed transmissions, allowing more efficient
dissemination. so that they comply with the restricted nature of these networks.
Besides, some network protocols designed for this task [13, 29, 16] use pipelining to
rush the upgrade of IoT networks. When pipelining is used, a node upon receiving
some chunks of the update can distribute them to its neighbors, acting as a source
for them. An extensive survey on the update dissemination protocols is presented
in [11].

Besides, the injection of faulty firmware images and their installation by the
nodes can manipulate their behavior. To alleviate this risk, some dissemination
protocols focus on securing the process, by ensuring the authenticity and integrity of
the received firmware image. Again, the support of security has to be implemented
efficiently, which will not deplete the battery of the nodes. Digitally signing the
whole firmware image and requiring each node to verify it, once it has received it,
would increase the time needed for upgrading a network significantly. The reason is
that each device should first receive the firmware image in its entirety, verify it and
then propagate it to its neighbors, preventing the pipelined dissemination of the
update in the network. In addition, if an error occurs during the dissemination, the
node will be able to detect it only once it has received the whole update. A more
efficient, and secure approach is to divide the update into pages and include the
digest of each page in the payload of the previous one. This way, a node can verify

20 CHAPTER 2. RELATED LITERATURE

each page upon reception, enabling the pipelined dissemination of the update in a
secured way.

2.3.1 XNP

XNP [90] is the earliest network protocol that focused on the upgrade of resource-
constrained networks. The protocol transmitted the entire firmware image and
was able to reach only the nodes that were only one hop away from the firmware
server. The firmware server divides the update into packets and broadcasts them
sequentially. Once a node has fully received the update, the bootloader copies the
code to the flash memory and restarts the node [96].

2.3.2 Trickle

Trickle [56] is an update dissemination protocol, originally built for the Mica-
2 motes 4, that follows a "polite gossip" approach for propagating the updated
firmware image throughout the nodes of a network. In Trickle, each node period-
ically broadcasts an announcement that contains the current firmware version it
runs, informing others about potential updates.

The update process originates when a node overhears that another node can
provide a newer firmware version, or if it receives a broadcast by another one, in-
dicating that it executes an older version. This "polite gossip" approach renders
Trickle robust and scalable, able to operate in various networking environments
(sparse, dense network topologies). Moreover, when a node overhears that a neigh-
bor broadcasts metadata for an outdated firmware version, it broadcasts the code
of the newer version, initiating the update of the outdated node(s).

2.3.3 Deluge

Deluge [13] was built for the Mote-2 devices as the default network reprogramming
protocol of TinyOS. Deluge employs a negotiation mechanism based on Trickle and
uses pipelined firmware dissemination for increased performance.

Using Trickle, nodes periodically advertise the pages of a firmware version they
can provide through broadcast packets, while other nodes send requests for pages
they are missing and are willing to receive. Deluge enforces a sequential transmis-
sion of the pages, so for a node to request a missing page, it is required to have
successfully received all previous ones. When a node receives an advertisement
packet and infers that there is a new firmware version available, it first finds the
lowest-numbered page that it needs to receive. In most cases, where the firmware
image binary has been completely changed, this page will be the first one. Once
this page is determined, the node waits for a predefined time interval to receive
further advertisements transmitted by neighboring nodes and to decide which of

4www.cmt-gmbh.de/Mica2.pdf

2.3. DISSEMINATION PROTOCOLS 21

them can provide the specific page. When this period is up, the node heuristi-
cally selects one of the available source nodes and transmits a request packet that
indicates the page and the packets within the page that it wants to receive.

A disadvantage of Deluge, however, is that it requires the nodes’ radio to be
constantly turned on, which results in increased energy consumption. Moreover,
the protocol does not support fault detection or recovery mechanisms. Finally,
the authors have proposed some optimizations on the protocol based on forward
error correction (FEC), using the digital fountain approach [12], a method used for
efficient transmission of bulk data by heterogeneous nodes.

2.3.4 Multihop Network Reprogramming (MNP)

MNP [51] is a multi-hop reprogramming protocol for TinyOS, designed for the
Mica-2 and XSM [75] nodes. The protocol aims at reducing the network collisions
that occur during the firmware dissemination by proposing a source node selection
heuristic, which guarantees that at any given time, at most one node can act as a
firmware source for a given neighborhood.

The nodes in a neighborhood broadcast packets that contain the ID of the
node that they prefer to act as a source. The one with the highest popularity
starts transmitting, while the other potential sources suppress themselves. Once
it has finished, it falls in an idle state, allowing other nodes to be selected as
sources. Besides, MNP improves propagation performance by supporting pipelined
dissemination.

2.3.5 Seluge

Seluge [34] is a secure extension of Deluge, that provides integrity assurance for the
received firmware and also provides resistance against DoS attacks that specifically
target the firmware dissemination process. Seluge provides direct authentication
of each received packet, defeating the DoS attacks that exploit the authentication
delays the nodes face by waiting to receive the rest of each page. Moreover, all
advertisements and requests are authenticated using a weak authentication scheme
along with a signature, since it can be efficiently verified by a node; however, it
still takes a vast amount of time for an attacker to forge the authenticator.

The firmware image is divided into fixed-size pages and each page is further
subdivided into packets and for each one of them, the respective digest is computed.
Starting from the last page of the updated firmware, the digest of each packet will
be appended to the payload of the corresponding packet of the previous page.
Namely, the packets of each page will contain the digests of the packets of the next
page. This is an iterative process, forming a hash tree [84] that is used as the basis
for the computation of the final signature.

22 CHAPTER 2. RELATED LITERATURE

2.3.6 Sluice

Sluice [53] is based on Deluge and uses hash chains for ensuring the authenticity
and integrity of the received firmware image, and it also provides pipelined dis-
semination of the update. Similar to Deluge, Sluice divides each firmware image
into several pages and integrates signatures and hash functions for efficient code
authentication. More specifically, the digest of each page is computed and is ap-
pended to the payload of the previous page, forming a chain of hashes (hash-chain).
Following the concept of digital stream signing, only the head of the hash-chain
(first page of the chain) is signed using the private key of the firmware provider,
requiring only one signature to be computed for the whole update. For this digital
signature, the ECDSA algorithm is used with 160-bit SHA-1 hashes.

Using this digital signature, a node can verify the source of the update and can
also ensure the integrity of the image, comparing the digest of each page with the
one stored in the payload of the previous one. Thus, there is minimal overhead for
the nodes, as the only operations required are a single signature validation and the
computation of the hash value for each received page.

2.3.7 Secure firmware updates using open standards

The authors in [99] propose a firmware update mechanism based on open stan-
dards such as CoAP, LwM2M, SUIT, etc. The firmware server signs the firmware
image and its metadata (manifest) using ECC and more specifically, the ed25519
and ECDSA/p256r1 algorithms and elliptic curves. There is a two-process ap-
proach that gives higher flexibility: first, only the metadata are transmitted, and
if successfully verified by the receiving node (using a trust anchor with knowl-
edge of firmware provider’s public key), the firmware image is downloaded using
CoAP block operations. No deltas are used, and during transmission, neither the
metadata nor the firmware image is encrypted.

2.3.8 ASSURED

The authors in [5] propose a scalable architecture for OTAP, supporting end-to-
end security. They distinguish four types of stakeholders: (i) original equipment
manufacturer (OEM), (ii) firmware distributor, (iii) domain controller, and (iv)
connected devices. OEM cryptographically signs a new firmware version using
ECC, based on Ed25519, and the devices verify the signature prior to installing
this new version. Firmware distributor’s role is solely firmware distribution and
can be a non-trusted entity, while the domain controller can set policies on the
firmware update process (e.g. use of firmware deltas) that are included within a
metadata structure (manifest).

ASSURED was built in two proof-of-concept implementations: (i) on Hy-
dra [23], a hybrid (HW/SW) remote attestation design based on a micro-kernel,
which offers process memory isolation and enforces access control to memory re-
gions, and (ii) on ARM Cortex-M23 MCU that is equipped with Trustzone security

2.4. COMPARISON OF THE RELATED LITERATURE AND OUR CONTRIBUTION23

extensions [74] and is able to partition the system into two regions (secure, non-
secure).

2.4 Comparison of the Related Literature and our Con-
tribution

As noted in the previous chapter, Dfinder is a differencing algorithm that enables
the efficient computation of small delta scripts. With that in mind, it is useful
to examine how it compares to other such algorithms, regarding the compression
ratio, as well as the execution time and the memory footprint. First, to the best of
our knowledge, apart from Dfinder only DASA and BSDiff utilize suffix sorting for
the computation of delta scripts, resulting in remarkably low space and time com-
plexity. Additionally, it is a byte-level differencing algorithm, resulting in smaller
delta scripts than the block-level counterparts (e.g. FBC, Rsync, Xdelta).

However, comparing Dfinder with some academic contributions, such as DASA
and R3diff, our algorithm can encode a larger ratio of bytes (in the updated version)
using COPY instructions, as it can utilise the partially reconstructed part of the
updated firmware for detecting matching segments, and these matching segments
can also be copied either in forward or reverse order to reconstruct the respective
segments of the updated firmware. This trait allows Dfinder to compute smaller
delta scripts, especially when the modifications are extended. These are the match-
ing segment types that RMTD can also detect, with significantly higher time and
space complexity. Furthermore, compared to BSDiff, Dfinder does not apply com-
pression on any part of the delta script, resulting in less processing overhead for
the nodes.

Besides, Dfinder enables the in-place reconstruction of the updated firmware,
originating at the same flash address, where the current fimware version is stored, so
that nodes with limited flash storage can also be updated, incrementally. Finally,
instead of mitigating the effects of function and variable shifts in the updated
image, Dfinder follows a platform-agnostic approach and processes the resulted
delta script itself, reducing its size. This way, Dfinder does not require a priori
knowledge about the firmware structure and does not depend on sophisticated
OSes, allowing its seamless port to other platforms and OSes.

24

Chapter 3

Enhanced Suffix Arrays and
Applications

The generic name enhanced suffix array stands for the set of data structures that
include the suffix array (SA), as well as some auxiliary arrays (LCP array, -
array, etc.) that can emulate powerful data structures, like suffix trees in a myriad
of combinatorial string problems. These data structures play an important role in
the efficient operation and low complexity of Dfinder ; hence, in this chapter, we
focus on their construction and their use in accelerating decision and enumeration
queries.

The suffix tree (ST) [28] is a powerful data structure that has been used in
many different areas such as in data compression [81], pattern matching [98], string
processing [2], computational biology [85], etc. It is a compacted trie [10], refined
to a minimum state finite automaton, that stores the suffixes of a sequence, so that
all its possible subsequences are represented by a path originating from the root of
the structure. Encoding all suffixes of a sequence in linear space allows the efficient
retrieval of a large amount of information, such as the detection of patterns. Such
pattern matching applications consist of detecting all occurrences of a subsequence
in a sequence. However, STs suffer from two major factors that can seriously affect
their performance: (i) although they have asymptotically linear space complexity,
their memory consumption is quite large, and (ii) they usually suffer from poor
locality in memory, achieving a mediocre caching utilisation. These drawbacks are
easily observable in large applications that need to conduct a lot of queries using
the ST.

The SAs were introduced by Manber and Myers [59] as a space-efficient alter-
native to STs, which also improves the execution time significantly. Additionally,
it has been shown [1] that every algorithm that uses a ST can be replaced by an
equivalent SA-based one, with the same time complexity.

25

26 CHAPTER 3. ENHANCED SUFFIX ARRAYS AND APPLICATIONS

3.1 Notation and Preliminaries

Before diving into the enhanced SAs and their construction, we are presenting some
basic definitions and fundamentals of string processing and suffixes, that will ease
the discussion.

Definition 3.1.1. An alphabet ⌃ is a finite ordered set of symbols, which has a
fixed size = |⌃|, and the included symbols are comparable to each other.

Definition 3.1.2. A sequence T of length n is considered valid if it is a finite
sequence of symbols over a given alphabet ⌃ (T 2 ⌃

⇤), with T = t0t1...tn1. The
empty sequence has length 0 and is denoted by ".

Definition 3.1.3. Let T be a sequence of length n and i an index over it (0 

i < n). The notation ti denotes the ith symbol of the sequence 1 . Moreover, given
two indexes i and j, with i  j, we define the subsequence Ti...j of T , that contains
all symbols of T that are between the ith and the jth ones, including these two.
However, if i > j, then Ti...j = ", as such a subsequence cannot be defined.

Definition 3.1.4. A sequence of length n has n distinct suffixes and each such ith

suffix is denoted by Si = Ti...n1 and is identified by its starting position in the
sequence (simply the index i).

For instance, in the context of a byte-level differencing algorithm, such as
Dfinder, the alphabet ⌃ contains all possible values a single byte can get (|⌃| = 28),
and the general comparison operation can be applied on them. Besides, each bi-
nary file can be interpreted as a sequence over ⌃, and its size in bytes will be the
size n of that sequence. Moreover, each such sequence T of length n, has n suffixes
and the ith suffix is basically a subsequence of T , containing the last n i bytes
(Si = titi+1...tn1, with i 2 [0, n)) (see Figure 3.1).

Definition 3.1.5. The lexicographic comparison of two sequences U and V with
size lU and lV , respectively, can be performed as follows:

• U =
LEX

V if lU = lV AND Ui = Vi 8i 2 [0, lU)

• U <
LEX

V if Ui = Vi 8i 2 [0,min(lU , lV)) AND lU < lV

OR if 9 j 2 [0,min(lU , lV)) : Uj < Vj AND Ui = Vi 8 i 2 [0, j)

One can easily observe that two suffixes of the same sequence can never be equal,
as they inherently have unequal lengths. Moreover, notice that by combining the
above operators, we can define more complex ones, such as 

LEX
,

LEX
, etc.

Definition 3.1.6. The longest common prefix (lcp) of any two sequences U and
V , can be computed as lcp(U, V) = max{ 0 : U0...1 =

LEX
V0...1}.

1Throughout this work, we consider that the indexing of all arrays starting at 0. Hence the
0
th symbol corresponds to the first symbol of a sequence.

3.2. THE SUFFIX ARRAY 27

The last definition also applies at suffixes, taking into account their starting
positions in the sequence. Namely, the lcp of two suffixes Si and Sj of a sequence
T is denoted by lcp(i, j) = max{ 0 : Ti...i+1 =

LEX
Tj...j+1}.

S0 banana
S1 anana
S2 nana
S3 ana
S4 na
S5 a

Table 3.1: The suffixes of sequence "banana"

3.2 The Suffix Array

The SA of a sequence T is an array that stores a permutation of the starting
positions of all its suffixes, in lexicographically ascending order, so that S(SAi) 

LEX

S(SAi+1), 8i 2 [0, n 1); basically, SAi contains the starting position of the ith

smallest suffix of T. This way, when we refer to the order of a suffix, we refer to
the entry (index) of SA, where this suffix has been mapped to.

Besides, as suffixes are mapped in SA in lexicographical order, they form groups
(intervals) that share common prefixes. For example, suffixes that have the same
first symbol will be mapped to consecutive entries of the SA, and the same holds
for the suffixes that share the same first two, or three symbols, etc. As shown
in Table 3.2, suffixes S5, S3 and S1 form one such group of suffixes, sharing the
common prefix "a". On the other hand, S3 and S1 compose another group, sharing
the prefix "ana". Besides, we can conclude that two suffixes that share the lcp will
be mapped to adjacent entries in the SA. This way, in order to find the lcp that a
suffix may have with any other suffix, we can simply visit the two adjacent suffixes
of it in the SA, and bilaterally compute the lcp of the former suffix with these two,
keeping the maximum value.

Additionally, we define the inverse array of the SA, called ISA (ISA = SA1)
that contains the rank of each suffix of T . Respectively, 8i 2 [0, n), ISAi contains
the rank of suffix Si, or equivalently, the number of lexicographically smaller suf-
fixes. It must be noted that the rank is also the index of SA where the suffix has
been mapped to. Using both SA and ISA, makes feasible the efficient detection of
suffixes that share the lcp, by simply visiting adjacent entries in the SA. Namely,
the rank of suffix Si can be obtained as i0 = ISAi; thus, the suffixes that share
the lcp with Si can either be the one mapped in SAi01 or SAi0+1. Having pre-
computed only these two arrays, one has to perform an on-line comparison of the
sequences to find which one shares the lcp with Si.

28 CHAPTER 3. ENHANCED SUFFIX ARRAYS AND APPLICATIONS

Nevertheless, when many such queries are required during algorithm execution,
SA and ISA are often used in conjunction with an auxiliary array, called LCP
array (LCPA), which contains the length of the lcp between each pair of consecutive
suffixes in the SA. More specifically, LCPAi contains the length of the lcp of the ith

smallest suffix with the (i1)th smallest one, 8i 2 (0, n), while LCPA0 = 0. Using
the LCPA in conjunction with the SA, reduces the time complexity for deciding
if a pattern P of length m exists in a sequence T of length n, from O(mlogn) to
O(m+ logn). In Table 3.2, we present the three aforementioned arrays, computed
on the sequence "banana". Having pre-computed the LCPA, one can calculate the
lcp of any two suffixes Si and Sj in linear time complexity, using Equation 3.1.

lcp(i, j) = min(LCPAfloor+1,... , LCPAceil),
with floor = min(ISAi, ISAj) and ceil = max(ISAi, ISAj)

(3.1)

Index SA ISA LCPA

0 5 (S5 : a) 3 0
1 3 (S3 : ana) 2 1
2 1 (S1 : anana) 5 3
3 0 (S0 : banana) 1 0
4 4 (S4 : na) 4 0
5 2 (S2 : nana) 0 2

Table 3.2: The SA, ISA and LCPA computed on sequence "banana"

3.3 SA and LCPA Construction

The efficient construction of SAs is a task that is accomplished through the appli-
cation of a suffix array construction algorithm (SACA) [76] on the input sequence.
If the sequence size is small, the SA can be computed naively, using a sorting
algorithm, such as bucket sort, or IntroSort, to name a few. The latter sorting al-
gorithm is a hybrid sorting algorithm that uses three sorting algorithms to achieve
better execution time, Quicksort, Heaport and Insertion Sort. However, when the
input sequence is larger, more advanced SACAs are needed, in order to achieve
better execution time and keep the memory footprint low.

The first such algorithm is presented in the original paper of SAs [59] and
is based on an iterative technique, called prefix doubling, having O(nlogn) time
complexity. The algorithm needs logn iterations and operates as follows. Initially,
all suffixes are put into groups (called buckets), according to their first symbol,
using a sorting algorithm, such as bucket sort or radix sort, composing a preliminary
SA. Inductively, during each iteration the buckets are further partitioned, sorting
the respective suffixes according to twice the number of symbols that were scanned

3.3. SA AND LCPA CONSTRUCTION 29

during the previous iteration. This operation can be performed efficiently, utilising
the SAs that were computed in the previous iterations. Furthermore, as soon
as the algorithm finishes all suffixes are ordered, with each one of them having
a distinct rank. Although this algorithm had super-linear (higher than linear)
time complexity, at the time it was a space-saving alternative to the linear-time
ST construction algorithms, which required a lot of space for the storage of the
structure.

Later on, more works were presented [41, 31, 46, 44], proposing SACAs that
achieved linear time complexity using different approaches, including DC, the an-
cestor of DC3 [42]. However, all of them followed a recursive strategy for the
construction of SA. Although the theoretical challenge was solved, it turned out
that better tuned super-linear algorithms could still outperform the linear ones in
practice. The reason for it is the large constant factors hidden in the asymptotic
analysis of the linear algorithms, as well as their larger space requirements com-
pared to the simpler super-linear counterparts. However, this changed in 2009 when
the SA-IS algorithm [70] was introduced; an algorithm that is linear in theory and
also very fast in practice. Later on, Yuta Mori, the creator of DivSufSort 2 further
engineered SA-IS, improving its performance significantly. These two algorithms
(SA-IS and Divsufsort) are currently considered the fastest suffix sorters. Since
then, the competition in the field of suffix sorting has become very challenging.
Some experimental SACAs have also been proposed that introduce new algorith-
mic ideas, such as Radix SA [77]. Finally, Bucket Pointer Refinement (BPR) [80]
is another SACA that has been benchmarked multiple times in previous studies,
showing that it performs well on real-world data and is remarkably fast on highly
repetitive inputs.

As mentioned above, SAs are usually used in conjunction with LCPAs, allow-
ing efficient queries to be conducted on the input sequence. The construction of
the LCPA is usually possible during the computation of the SA, and many algo-
rithms have been adapted accordingly; however, this is not always an easy task.
Hence, apart from suffix sorting algorithms with integrated LCPA construction ca-
pabilities, have also emerged several "standalone" LCPA construction algorithms
that require the input sequence and the pre-computed SA to construct the LCPA.
In [59], the authors present an LCPA construction algorithm that has O(nlogn)
time and and O(n) space complexity. Later on, in 2001, Kasai et al. presented
KLAAP [43] (see Algorithm 1), the first linear algorithm that given an SA and
the input sequence, can compute the LCPA. This algorithm is optimal in theory
and also very fast in practice, while it required minimal space, for storing the ISA.
Besides, Manzini et al. [62] have proposed a modified version of KLAAP that is
more space-conscious, but in the experimental evaluation was shown that this ver-
sion is up to two times slower than the original one. In 2009, Kärkkäinen, Manzini
and Puglisi presented a refinement of KLAAP, called , that achieved better ex-
ecution time. Besides, instead of building the actual LCPA, the algorithm builds

2www.github.com/y-256/libdivsufsort

30 CHAPTER 3. ENHANCED SUFFIX ARRAYS AND APPLICATIONS

a permutated LCPA, in which the values appear in sequence order, instead of
lexicographical order.

Algorithm 1 Kasai’s LCPA construction algorithm (KLAAP)
Input: SA, ISA, T
Output: LCPA

1: k 0
2: i 0
3: while i < n do
4: if ISAi = 0 then
5: LCPA(ISAi)

 0
6: else
7: j SA(ISAi1)

8: while Ti+k = Tj+k do
9: k k + 1
10: end while
11: LCPA(ISAi)

 k

12: k max(k 1, 0)
13: end if
14: end while

Nevertheless, advances in suffix sorting algorithms soon emerged in a situation
where the suffix sorting was faster than the construction of the LCPA. This situ-
ation is paradoxical as suffix sorting is considered to be a more computationally
intensive operation than the computation of the LCPA. Hence since then, the two
major suffix sorters have been augmented with the ability to also induce the LCPA,
while computing SA [26].

During Dfinder development, we benchmarked some well-known SACAs, to se-
lect the one with the better performance, regarding the execution time and memory
consumption, and integrate it in our algorithm. In order to conduct these experi-
ments, we used Saca-bench framework [7, 6], which provides a plethora of SACAs
implemented in C/C++ and an API for including additional SACAs in the tests.
Based on our evaluation results, DivSufSort [60] was among the ones with the
smallest execution time, while it also had a remarkably small memory footprint.
These results keep in track with the ones presented in [77] and other benchmarks 3.
The results of our experiments about the execution time and memory consump-
tion of the benchmarked SACAs are shown in Figure 3.1 and Figure 3.2. In order
to produce the results we created a large number of files with varying sizes, and
applied each algorithm, tracking the corresponding performance. Additionally, in
order to get more accurate results, we repeated each experiment 100 times. Finally,
besides SACAs we also tested a naive computation of the SA which is based on
the sort function found in the standard library of C++ (std::sort)4, but has quite
large execution time.

3www.github.com/y-256/libdivsufsort/blob/wiki/SACA_Benchmarks.md
4std::sort is based on Introsort

3.3. SA AND LCPA CONSTRUCTION 31

Figure 3.1: Median execution time of SACAs versus input file size5

Figure 3.2: Median memory consumption of SACAs versus input file size

Finally, we decided to integrate DivSufSort (release v2.0.2-1) in Dfinder, due to
its remarkable performance, as well as the vast attention it has received from the

5The system used to conduct the experiments had an Intel® Xeon® CPU E5-2630 v2 clocked
at 2.60GHz, with 4 GiBs of RAM and Linux kernel 5.4.0-70-generic.

32 CHAPTER 3. ENHANCED SUFFIX ARRAYS AND APPLICATIONS

research community, resulting in its thorough validation, porting to various pro-
gramming languages, and implementation of parallel DivSufSort versions. These
features render DivSufSort an ideal option for Dfinder, as seamless porting to other
platforms is feasible, a trait that can further improve the performance and scal-
ability of our algorithm in the future. Besides, we chose to integrate a modified
version of DivSufSort (presented in [26]), that also induces the LCPA, as based on
the benchmarks presented in [26] it is the optimal method for computing both the
SA and LCPA, with minimal memory overhead.

3.4 DivSufSort

DivSufSort is currently considered a state-of-the-art suffix sorter and has been
integrated into many works, such as bioinformatics libraries 6. Although it is not
a linear (in time) algorithm (it has O(nlogn) time and O(n) space complexity),
it is very fast in practice, as it avoids the overhead of recursions and fully utilises
induced sorting ; a sorting principle that induces the order of suffixes using a subset
of suffixes that have already been sorted, by prepending symbols. Besides, the
algorithm is very space-conscious, as it needs very little space mainly for storing
bucket pointers. Although DivSufSort is open-source, due to its complication, the
first documentation of it was introduced in 2017 [26]. In the same work, the authors
augmented the algorithm, allowing it to also induce the LCPA in conjunction with
the SA; this DivSufSort version we further augmented and integrated into Dfinder.
In this section, we main components and operation of the DivSufSort algorithm,
based on the documentation provided in [26].

3.4.1 Additional Notations

In addition to the definitions provided in Section 3.1, we introduce some suffix
classifications, needed for the comprehension of DivSufSort. A suffix Si is an A-
suffix if ti > ti+1 or if i = n 1. On the other hand, if ti < ti+1 the suffix is
considered to be a B-suffix. Last, if ti = ti+1, then the suffix Si is assigned to have
the same type as the its next one (Si+1). Finally, if a suffix Si is a B-suffix and
suffix Si+1 is an A-suffix, then Si is also a B*-suffix. This classification results in a
partial order among the suffixes. For instance, an A-suffix will be lexicographically
smaller than a B-suffix, if they share the same first symbol. Finally, given two
consecutive B*-suffixes Si and Sj , the string Ti..j+1 is called B*-substring.

3.4.2 Basic Operation

DivSufSort consists of three stages. In the first stage, the algorithm determines the
type of all suffixes (if they are A-, B-, or/and B*-suffixes) in a single scan of the
sequence from right to left. Moreover, during this stage, the algorithm composes

6www.github.com/NVlabs/nvbio

3.4. DIVSUFSORT 33

the c0- and (c0, c1)-buckets, assigning suffixes into buckets according to their first,
or first two symbols, respectively, and the borders of the computed buckets are
recorded.

During the second stage, all B*-suffixes are sorted and put in the SA; this is a
three-step process. First, all B*-substrings are sorted in-place and independently
for each (C0, C1) bucket. The sorting is performed using an implementation of
IntroSort (ISS) [67], that uses the Multikey Quicksort (MKQS) [9] and Heapsort
(HS). After all B*-substrings have been ordered, the ISA is computed on them,
which will contain the rank of each B*-suffix. Then, using ISA, the ranks of all B*-
suffixes are computed, following an approach similar to prefix doubling. However,
instead of doubling the length of the suffix prefix that is examined in each iteration,
the algorithm doubles the number of the considered B*-substrings, which can have
an arbitrary length. At this point, the algorithm has computed the ranks of all
B*-suffixes. Their sorting is performed using Quicksort (QS), augmented by the
repetition detection [61] technique. In this way, the final ISA of all B*-suffixes is
computed and hence the SA can be calculated in linear time complexity.

During the last stage, the algorithm induces the A-suffixes and B-suffixes using
the partial order that exists in any (C0, C1) bucket; A-suffixes are lexicographically
smaller than B-suffixes and B*-suffixes are smaller than B-suffixes. The algorithm
scans the computed SA twice. First, scanning from left to right the A-suffixes are
induced, while the B-suffixes are induced scanning the opposite direction (from
right to left).

3.4.3 Inducing the ISA and LCPA, in conjunction with the SA

The authors in [26], apart from the documentation of DivSufSort, also proposed
a modification that allows it to induce the LCPA, in conjunction with the SA.
As soon as the B*-suffixes are lexicographically ordered, LCPA is computed on
them using a sparse version of the -algorithm [52]. On the other hand, A-suffixes
and B-suffixes are induced using a technique that allows answering range minimum
queries (RMQs) using a min-stack data structure. Finally, the algorithm computes
the LCP values of the suffixes that are placed at bucket borders, as they cannot
be automatically induced. This approach was shown [26] to be faster than all
the previous LCP inducing SACAs based on SA-IS and competitive with the -
algorithm, the fastest known "standalone" LCP construction algorithm. Finally,
we modified the algorithm, so that it also induces the ISA, as it is computed during
the final iteration. However, we did not measure any significant improvement on the
performance, as the ISA construction is a computationally lightweight operation,
given the precomputed SA.

34

Chapter 4

Dfinder

Delta encoding aims at producing a delta script, which expresses the differences be-
tween two file versions; in the context of this thesis, between two firmware versions.
Interpreting the delta script, the receiver can reconstruct the updated firmware ver-
sion locally, utilising (copying) segments of the current one. Dfinder is a byte-level
differencing algorithm that follows a dynamic programming approach, which al-
lows the efficient computation of small delta scripts. Its competitive advantage,
over other such algorithms, is that using the Block Moves Detector (BMD) module
(discussed in section 4.1), the algorithm can detect various types of matching seg-
ments, for each segment of the updated firmware (see Table 4.1). This trait allows
it to increase the ratio of the bytes of the updated firmware, which can potentially
be encoded using COPY instructions, effectively reducing the size of the final delta
script. More precisely, for each segment of the updated firmware BMD can detect
matching ones in the current firmware, which can be copied either in forward or
reverse order to reconstruct the former. For instance, BMD considers both "abcde"
and "edcba" (found in the current firmware) as matching ones for segment "abcde"
of the updated image. Besides, BMD can utilise parts of the updated firmware
that have already been reconstructed by the receiver to find matching segments for
following segments (of the updated firmware). These segments found in the par-

Type 1 Matching segments found in the current firmware, which must be
copied in forward order.

Type 2 Matching segments found in the current firmware, which must be
copied in reverse order.

Type 3 Matching segments found in the partially reconstructed updated
firmware, which must be copied in forward order.

Type 4 Matching segments found in the partially reconstructed updated
firmware, which must be copied in reverse order.

Table 4.1: Types of matching segments BMD is able to detect for each segment of
the updated firmware

35

36 CHAPTER 4. DFINDER

tially reconstructed part of the updated firmware can be copied either in forward
or reverse order to reconstruct respective following segment.

The encoding of delta scripts that Dfinder outputs, supports two prime in-
structions: ADD and COPY. Besides, COPYs are further subdivided to four sub-
instructions (Copy_typeX|X 2 {1, 2, 3, 4}), according to the type of the matching
segment that BMD has detected for the encoded one, such as the ones presented
in Table 4.1. Although the same format is used for each such COPY variant, a
distinct opcode is required (1,2,3 and 4, respectively), so that the type can be
recognized by the receiver and the reconstruction of the encoded segment can be
performed properly. The format of these instructions is shown in Figure 4.2 and
Figure 4.1, with overhead of ↵ = 2 bytes for ADDs and = 5 bytes for COPYs,
needed for containing the opcode, the length of the encoded segment, etc. In the
final delta script, consecutive bytes of the updated firmware form regions of bytes,
which can be reconstructed copying their matching segments, and are encoded us-
ing COPY instructions, while the rest need to be explicitly transmitted and are
encoded using ADDs. As each ADD instruction has an non-negligible overhead,
consecutive ADDs are merged to form larger ones. Hence, although two COPYs
may be placed one after the other in the final delta script, the same does not hold
for two (or more) ADDs.

OpC Length of encoded
segment (n) Payload (encoded segment)

3 bits 13 bits n bytes
 a bits

Figure 4.1: ADD instructions format

OpC Length of encoded
segment (n) Copy-segment address (m)

3 bits 13 bits 24 bits
 β bits

Figure 4.2: COPY instructions format

Each byte of the updated firmware can be encoded using an ADD instruction,
while some may also be able to be encoded using one or more possible COPYs,
if they belong to segments of bytes for which BMD was able to detect matching
ones. The goal of the algorithm is to select the optimal instruction, which can
encode each such byte of the updated firmware, resulting in the minimisation of
the final delta script size. The worst-case scenario which results in the largest
possible delta script, is when all bytes of the updated firmware (of size n) are
encoded using a single ADD instruction, causing a delta script of size ↵+n bytes.
On the other hand, in the case of two identical firmware images, all bytes will
form a segment encoded in a single COPY, resulting in a delta script of bytes.
Actually, the last two examples are not entirely accurate regarding the delta script

4.1. BLOCK MOVES DETECTOR (BMD) 37

size, as in our implementation each encoded segment is limited to 213 1 bytes, as
the field that contains the length of it, is 13 bits long. Based on our experiments,
this size is sufficient, as we did not find matching segments with length larger
than that threshold for actual firmware images. Besides, apart from the length of
the encoded segment, a COPY instruction also contains the initial address of the
Copy-Segment, which is the segment that needs to be copied to reconstruct the
encoded one. As mentioned earlier, the former segment can either be found in the
current firmware image, or the partially reconstructed part of the updated image.
Hence, the address of this segment (m) is represented as the distance of it from
the beginning of the respective image. As the receiving node is aware of the initial
address of these images, the reconstruction of the updated firmware is seamless
and does not require additional information (e.g. absolute flash addresses).

divSufSort

Optimiser

BMD

Delta script

Current firmware image
+

Updated firmware image

Enhanced SA

Figure 4.3: The main components of Dfinder

The main structure of Dfinder is shown in Figure 4.3. The two firmware images
are concatenated and the resulted byte-array is given as input to divSufSort, so that
it can compute the required enhanced SA. Then, Optimiser (see Section 4.2) uses
the resulted data structures, as well as the firmware images, to compute the delta
script. To this end, Optimiser uses BMD, in order to detect matching segments
and select the optimal encoding-instruction for each byte of the updated firmware,
composing the final delta script as a combination of consecutive ADD and COPY
instructions.

4.1 Block Moves Detector (BMD)

The string to string correction problem was defined in [95], as the problem of
finding the optimal combination of operations (insert, delete and update) that
transform a sequence into another. The first approaches to solve this problem were
based on finding the longest common subsequences between two sequences, using

38 CHAPTER 4. DFINDER

dynamic programming. However, these solutions fail to capture the generality of
delta compression. For instance, they assume that the common subsequences are
found in the same order in the two sequences, and are not able to capture repetitive
subsequences.

In order to resolve these limitations, Tichy defined the same problem using
block moves [91]. A block move is a triple (m, k,) which describes the bounds of
two subsequences of length , originating at the mth and kth symbol (e.g. byte)
of the respective file version, so that OLDm...(m+1) =

LEX
NEWk...(k+1). Hence, a

delta script can be constructed as a minimal covering set of such block moves that
describe overlapping matching segments between two file versions; BMD is used
for finding such block moves between two firmware versions (Current and Update),
as well as between the partially reconstructed updated firmware and the rest of
it. For this purpose, Dfinder constructs the byte-array T (see Figure 4.4), as a
composition of the two firmware versions in both forward and reverse order, and
the enhanced SA (SA, ISA and LCPA) is calculated based on it, using divSufSort.

Current firmware
(reversed) T= Current firmware Updated firmware Updated firmware

(reversed)

0 l1 l2 l3 l4

T1 T2 T3 T4

Figure 4.4: The construction of byte-array T as a composition of the two firmware
versions, the current and the updated one

Given an index i, that resembles the ith byte of the updated firmware, BMD
initially computes its’ mapping index i0 in T , as i0 = l4i1 and obtains the suffix
Si0 , which originates in T4. The main goal is to find the suffix Sj0 , which shares
the lcp with Si0 , and also fulfills the requirements for at least one of the possible
matching segments types that are discussed below. This way, the common prefix of
these two suffixes, when mapped to the actual firmware images, resembles the block
move (m, k,), which allows the reconstruction of Updatek...i, with i = k + 1.
Besides, BMD tries to find the smallest possible k, so that it results in the largest
possible encoded segment. This block move can also be interpreted as a pair of
matching segments either (i) between the two firmware versions, or (ii) between the
partially reconstructed updated firmware and the remaining part of the updated
firmware. The first segment of this pair is a segment of the updated firmware that
could potentially be reconstructed, copying the second one, either in forward or
reverse order. We refer to the former segment as Reference-Segment (RS) and the
latter as Copy-Segment (CS).

Using the pre-computed enhanced SA, BMD can find the suffixes that share
the lcp with Si0 very efficiently, as they are placed in consecutive entries of SA.
In such a way, the algorithm iteratively visits the suffixes that have been placed
in increasingly further entries of SA, from the one where Si0 has been mapped to,
and it finally stops when it finds a suffix that fulfills the requirements of at least

4.1. BLOCK MOVES DETECTOR (BMD) 39

one of the matching segments types. Namely, if Si0 is the cth smallest suffix of T,
it will be mapped to the cth entry of SA. BMD will iteratively visit SAc±1, SAc±2,
SAc±3, ..., until it finds the suffix Sj0 , which satisfies the requirements of at least
one matching segments type (see Algorithm 2). The common prefix of these two
suffixes resembles a pair of matching segments -or a block more-, when mapped
back to the domain of the actual firmware images. Finally, if BMD was not able
to find a suitable block move for given i, it denotes this inability returning k =1.

In order to ease the discussion about BMD we provide some further clarifica-
tions and definitions. First, we define the function map, which allows the tran-
sition from the domain of T to the one of the respective firmware image. This
function gets an index i0 and returns the index i, so that Ti0 = Firmwarei, where
Firmware is the respective firmware image which is accommodated in the region
of T (T1, T2, T3, or T4), where i0 is located. Namely, if l2  i0 < l3, i will be
the mapping index in the domain of the updated firmware, so that Ti0 = Updatei.
Moreover, if the firmware image in that region is in its original order (not reversed),
i can simply be computed by the order of i0 in that specific region. However, if
the image is reversed (e.g. T4), i is calculated as the mirroring index of i0 in that
region. For instance, if i0 is the second in order index in T4, i is the second to last
index of the updated firmware. This also implies that if two indices i0 and j0 are lo-
cated within a region where the corresponding firmware is reversed and i0 < j0, the
relationship of their mapping indices i and j in the respective firmware image, will
be reversed (i > j) and vice versa. The function map also enables the transition of
a subsequence of T to the domain of the respective firmware image, simply using
the function on the bounds of that sequence. For instance, if two indices i0 and j0

are within [l1, l2) with i0 < j0, we can conclude that Ti0...j0 =
LEX

Currenti...j (i < j).
However, if i0 and j0 were within [0, l1), the resulted subsequence Currenti...j would
correspond to ", as the firmware that is accommodated in that region is reversed
and hence i0 < j0 () i > j. For this reason we introduce the function reverse,
which reverses the order of symbols found in a sequence. This way, we can proceed
with the previous example, having that Ti0...j0 =

LEX
reverse(Currentj...i) (j < i).

4.1.1 Type 1: Matching segments found in the current firmware
(copied in forward order)

The first region of T (T1) is used for finding CSs in the current firmware version,
which can be copied in forward order to reconstruct the respective RS. In order
such a CS to be valid, the lcp of Sj0 and Si0 , that originates at j 0, has to be entirely
within T1. As shown in Figure 4.5, the subsequences Tj0...m0 and Ti0...k0 are equal,
as they correspond to the lcp of Sj0 and Si0 . In order the subsequence Tj0...m0 to be
within T1, m0 has to be less than l1, with m0 = j0+ 1. Moreover, as the pair of
indices (j0,m0) is within T1 and (i0, k0) within T4, which both regions accommodate
reversed images, we can imply that their mapping indices to the actual firmware
images (current and update) will have reversed relationship: j > m and i > k.

40 CHAPTER 4. DFINDER

Hence, having that Tj0...m0 =
LEX

Ti0...k0 results in Currentj...m =
LEX

Updatei...k (i > k,
j > m), and applying the reverse function to both sides of the equation, results
in Currentm...j =

LEX
Updatek...i, with m < j and k < i. Hence, the segment of

the current firmware shown at the left side of the equation can be copied as is to
reconstruct the corresponding segment Updatek...i of the updated firmware.

Current firmware
(reversed) Current firmware Updated firmware Updated firmware

(reversed)

0 l1 l2 l3 l4

T1 T2 T3 T4

λ λ

j' m' i' k'

Figure 4.5: Finding Type 1 matching segments

4.1.2 Type 2: Matching segments found in the current firmware
(copied in reverse order)

Similar to the previous matching segments type, T2 is used for finding CSs in the
current firmware, which need to be copied in reverse order to reconstructs the
corresponding RS. For this matching segments type to hold, the lcp of Sj0 , and
Si0 , originating at j0, has to be within the bounds of T2, as shown in Figure 4.6;
in other words, j0 > l1 and m0 < l2, with m0 = j0 + 1. This way, the segment
Tj0...m0 , when mapped to the current firmware, fits entirely in the image.

Having that Tj0...m0 =
LEX

Ti0...k0 , with j0 < m0 and i0 < k0, and given that only the
pair of indices (i0, k0) is in region that accommodates a reversed image, we can con-
clude that for the mapping indices: j < m and i > k. Additionally, using the map
function on the bounds of the two segments, results in Currentj...m =

LEX
Updatei...k.

Furthermore, applying the reverse function on both sides of the last equation, we
get that reverse(Currentj...m) =

LEX
Updatek...i, with j < m and k < i. Thus, in

order to reconstruct the segment Updatek...i, the segment Currentj...m has to be
copied in reverse order (originating from the mth byte of the current firmware and
finalizing at the jth one, with j < m).

Current firmware
(reversed) Current firmware Updated firmware Updated firmware

(reversed)

0 l1 l2 l3 l4

T1 T2 T3 T4

λ λ

j' m' i' k'

Figure 4.6: Finding Type 2 matching segments

4.1. BLOCK MOVES DETECTOR (BMD) 41

4.1.3 Type 3: Matching segments found in the partially recon-
structed updated firmware (copied in forward order)

Apart from containing the reference suffix Si0 , T4 is also used for finding CSs in
the partially reconstructed part of the updated firmware, which need to be copied
in forward order to reconstruct the respective RSs. As the node interprets the
delta script, it will progressively reconstruct the updated firmware. Hence, when
a segment of the updated firmware is about to be reconstructed, the updated
firmware up to this point will have already been reconstructed and be available for
finding CSs at, as they precede the respective RSs in order.

The main requirement for this matching segments type is the chosen CS to
always precede the respective RS in order. As the CS (Updatem...j) has to precede
the RS (Updatek...i) in the domain of the updated firmware, the prime requirement
of this matching segments type is k > j, so that the former segment entirely
precedes the latter in order. Given that all indices (m0, j0, k0, i0) are within T4, which
contains a reversed firmware image, we can also conclude that k > j () k0 < j0.
Thus, the suffix Sj0 can be used for finding Type 3 matching segments, only if j 0 is
greater than the respective k0.

Having that Tj0...m0 =
LEX

Ti0...k0 , being the lcp of Sj0 and Si0 , and that all pairs of in-
dices are within T4 (see Figure 4.7), we can conclude that Updatej...m =

LEX
Updatei...k

with j > m and i > k. Thus, applying the reverse function on both sides, the above
equation results in Updatem...j =

LEX
Updatek...i. Finally, the segment of the updated

firmware at the left side of the equation will always precede the one at the right
side, as k > j, and hence could be copied to reconstruct it.

Current firmware
(reversed) Current firmware Updated firmware Updated firmware

(reversed)

0 l1 l2 l3 l4

T1 T2 T3 T4

λλ

j' m'i' k'

Figure 4.7: Finding Type 3 matching segments

4.1.4 Type 4: Matching segments found in the partially recon-
structed updated firmware (copied in reverse order)

In contrast to the previous matching segments type, the segments of the partially
reconstructed update firmware that have to be copied in reverse order to reconstruct
the respective RSs can be found in T3. In order to ensure that the CS precedes the
RS in the domain of the updated firmware, the value z0 is computed as the mirroring
index of k0 in T3 (z0 = 2 ⇤ l3 k0). Moreover, as the indexes m0 and z0 are in a
region with non-reversed firmware image, we conclude that their mapping indices
to the updated firmware image keep their relationship: m0 < z0 () m < z.
Furthermore, the mapping index of k0 in the updated firmware, k equals to z,
because z0 was computed as the mirroring index of k0 in T3. Hence, as the CS

42 CHAPTER 4. DFINDER

(Updatem...j) has to precede the RS (Updatek...i) in the domain of the updated
firmware, m < k () m0 < z0. The previous concludes that as Tj0...m0 =

LEX
Ti0...k0 ,

the former subsequence has to be within [l2, z
0), as shown in Figure 4.8.

After applying the map function on both sides of equation Tj0...m0 =
LEX

Ti0...k0 ,
results in Updatej...m =

LEX
Updatei...k, with k < i and j < m < z (thus j < m <

k < i). Using the reverse function on both sides of the equation, we conclude that
reverse(Updatej...m) =

LEX
Updatek...i. Hence, in order to reconstruct the segment

Updatek...i, we can copy Updatej...m in reverse order. Besides, it was shown above
that m < k, ensuring that the latter segment entirely precedes the former.

Current firmware
(reversed) Current firmware Updated firmware Updated firmware

(reversed)

0 l1 l2 l3 l4

T1 T2 T3 T4

λ λ

j' m' i' k'z'

Figure 4.8: Finding Type 4 matching segments

Algorithm 2 Block Moves Detector
Input: SA, ISA, LCPA, i
Output: m, k,

1: i0 l4 i 1
2: offset 1
3: j0 SAISA

i0
+offset

4: while No matching segment is found do
5: temp_ lcp(j0, i0, LCPA)
6: if temp_ = 0 then
7: break

8: end if
9: m0 j0 + temp_ 1
10: k0 i0 + temp_ 1
11: z0 2 ⇤ l3 k0 + 1
12: if 0 < j0 < l1 & j0 < m0 < l1 then . Check requirements for Type 1 matching segments
13: (R_j0, R_m0, R_k0, R_, R_type) (j0,m0, k0, temp_, 1)
14: break

15: else if l1 < j0 < l2 & j0 < m0 < l2 then . Check requirements for Type 2 matching segments
16: (R_j0, R_m0, R_k0, R_, R_type) (j0,m0, k0, temp_, 2)
17: break

18: else if j0 > k0 then . Check requirements for Type 3 matching segments
19: (R_j0, R_m0, R_k0, R_, R_type) (j0,m0, k0, temp_, 3)
20: break

21: else if l2 < j0 < l3 & j0 < m0 < z0 then . Check requirements for Type 4 matching segments
22: (R_j0, R_m0, R_k0, R_, R_type) (j0,m0, k0, temp_, 4)
23: break

24: end if
25: offset offset+ 1
26: j0 SAISA

i0
+offset

27: end while

4.2. OPTIMISER 43

28: . Repeat lines 4-27 with j0 SAISA
i0
offset and decrementing offset in each iteration, calculating

(L_j0, L_m0, L_k0, L_, L_type)
29: if R_ > L_ then
30: m map(R_m0)
31: k map(R_k0)
32: R_

33: else
34: m map(L_m0)
35: k map(L_k0)
36: L_

37: end if
38: return (m, k,)

4.2 Optimiser

Optimiser is the component of Dfinder which constructs delta scripts, aiming at
minimizing their final size. To this end, Optimiser follows a dynamic programming
approach, similar to the one presented in [19], which allows the selection of the
optimal instruction (ADD or COPY), in order to encode each byte of the updated
firmware.

At this point, we will introduce some notations which will allow further dis-
cussion about Optimiser. First, let Opti denote the size of the smallest partial
delta script that needs to be transmitted so that the receiver can reconstruct the
first i + 1 bytes of the updated firmware (of n bytes). We can conclude that (i)
if i > j, then Opti Optj 8i, j 2 [0, n) , and (ii) Optn1 represents the size of
the final delta script, as it resembles the size of the smallest delta script, which
allows the reconstruction of the entire updated firmware. Moreover, we introduce
two additional notations: OptAi and OptCi . The former represents the size of the
smallest partial delta script, which enables the reconstruction of the first i+1 bytes
of the updated firmware, and the last instruction is an ADD. On the other hand,
the latter notation represents the size of the smallest partial delta script, which
enables the reconstruction of the first i+1 bytes of the updated firmware, and the
last instruction is a COPY. Hence, Opti can be computed as the minimum value
of these two notations (Opti = min(OptAi , OptCi)). Additionally, we introduce the
notation BPi (back-patch), which denotes if it is preferred the (i 1)th byte to
be encoded using an ADD or a COPY instruction, because this information is
available for a byte of the updated firmware only when the next (ith) byte has been
processed.

Optimiser consists of two primal stages. During the first stage, each byte of the
updated firmware is processed individually, and the corresponding values are com-
puted, progressively filling the OptA, OptC , Opt and BP arrays (see Algorithm 3).
Starting from the 0th (first) byte of the updated image, these values are computed
for each ith byte, until Optn1 is finally calculated. During this process, the value
OptCi is computed as Optk1+, if a respective block move was detected by BMD
for the given i, or OptCi 1, otherwise. On the other hand, OptAi is computed
as OptAi min(OptAi1 + 1, OptCi1 + ↵+ 1).

44 CHAPTER 4. DFINDER

Although during the (i 1)th iteration, Optimiser may choose to encode the
(i1)th byte using a COPY instruction, in the next (ith) iteration it may infer that
it is optimal to encode the last two bytes ((i 1)th and ith) using an ADD. This
transition of the encoding of the previous byte is flagged, using the BP bit-array.
This array allows the efficient injection of ADD instruction in the delta script in
the next stage, as segments which should be encoded using ADDs will form regions
in BP , with value 1. It is computationally inexpensive to find such segments using
BP, as the algorithm only needs to find the highest ordered byte j, for which:
OptAj < OptCj . It can be proven that under the given encoding, this algorithm
produces an accurate estimation of the size of the the optimal delta script [19].

Algorithm 3 Computation of the optimal arrays
Input: n

Output: OptA, OptC , Opt, BP

1: BP0 0
2: OptC0

3: OptA0 ↵+ 1
4: Opt0 min(OptA0 , OptC0)
5: for i = 1 to n do
6: k BMD(i).k
7: if k =1 then
8: OptCi 1

9: else
10: OptCi Optk1 +

11: end if
12: add1 OptAi1 + 1

13: add2 OptCi1 + ↵+ 1

14: OptAi min(add1, add2)
15: BPi argmin(add1, add2)
16: Opti min(OptAi , OptCi)
17: end for
18: return OptA, OptC , Opt, BP

Algorithm 4 Instructions creation helper functions
1: function CreateAddInstruction(length, segment)
2: Instruction c

3: c.opcode 0
4: c.length length
5: c.encodedSegment segment

6: return c

7: end function

1: function CreateCopyInstruction(m, k, length, type)
2: Instruction c

3: c.opcode type

4: c.m m

5: c.k k

6: c.length length

7: return c

8: end function

During the next stage (see Algorithm 5), the bytes of the updated firmware
are iterated over in reverse order, and the respective OptCi and OptAi are compared
to infer if the optimal option is to inject an ADD or a COPY instruction in the

4.2. OPTIMISER 45

Algorithm 5 Computation of the delta script
Input: OptA, OptC , BP , Update

Output: Final delta script
1: i n 1
2: pos 0
3: while i 0 do
4: if OptAi > OptCi then
5: (m, k,, type) BMD(i)
6: Instructionspos CreateCopyInstruction(m, k,, type)
7: i k 1
8: else
9: l BPi

10: i_temp i 1
11: while l = 1 do
12: l BPi_temp

13: i_temp i_temp 1
14: end while
15: Instructionspos CreateAddInstruction(i i_temp, Updatei_temp...i)
16: i i_temp

17: end if
18: pos pos+ 1
19: end while
20: return Reverse(Instructions)

delta script. If the former is the case, the algorithm checks if there is a contiguous
block of bytes in BP array with value 1, ending at the ith byte. This block, which
is originated from a lower-ordered byte and finalizes at the currently iterated byte
i will be encoded using a single ADD instruction and the next byte to check will
be the one that precedes the one at the beginning of the block. On the other
hand, if the algorithm detected that a COPY command is preferred, a COPY
instruction is injected in the delta script, containing the information needed for the
reconstruction of the encoded segment (starting from the kth byte and finalizing
at the currently iterated byte). Again, the algorithm continues the reconstruction
from the (k 1)th byte, which precedes the encoded segment. To construct the
delta script, Optimiser uses the functions found in Algorithm 4, which allow the
construction of ADD and COPY instructions.

Proof that Optimiser computes the smallest delta script under the given
encoding

First, OptA0 = ↵ + 1 and OptC0 = and represent the size of the delta script
needed to reconstruct the first byte of the updated firmware, sending an ADD and
a COPY instruction, respectively. These values are optimal, as we know that in
the first case the total size of the delta script that enables the reconstruction of the
first byte is ↵ + 1 bytes and bytes in the latter case. Additionally, if OptAi and
OptCi are optimal for byte i, we can conclude that Opti is also optimal because it
is calculated as the minimum value of them.

Using induction we want to prove that for every byte i, both optCi and optAi
are optimal given that these values are optimal for all previous bytes (e.g. i 1).

46 CHAPTER 4. DFINDER

Proving that optCi is optimal, is quite simple. OptCi = optk + and k is the
smallest possible index, so that the segment Updatek...i can be reconstructed by
another segment. Besides, optk is optimal, because k < i. Hence, optCi is optimal.

Regarding optAi , it is calculated as optAi = min(optAi1+1, optCi1+↵+1). If the
previous byte was added, then optAi = optAi1 + 1, as the last byte will be encoded
in a larger ADD instruction. On the other hand, if the (i 1)th byte was copied
(optCi1  optAi1), then optAi = ↵+1, as a new ADD instruction must be created to
encode the last byte. optAi is calculated as the minimum cost with the last-encoded
byte and hence it is optimal, given that both optAi1 and optCi1 are optimal.

4.3 In-place Reconstruction of the Updated Firmware

Traditional incremental programming approaches, based on differencing algorithms,
require the receiver to have enough storage space, for accommodating both firmware
versions, simultaneously. In this update fashion, the current firmware remains in
flash, while the updated image is reconstructed at a different flash address. This
approach allows the current firmware to stay intact so that segments of it can be
copied for reconstructing the updated firmware.

Although this approach allows the algorithm to find the maximum number of
such matching segments between the current and the updated firmware version,
it may be infeasible as the receiver may not have enough storage, due to cost
limitations. To this end, we propose an extension of Dfinder, which guarantees that
the reconstruction can be performed in-place; starting at the same flash address,
where the current version is located.

As the updated firmware is reconstructed at the same address where the current
one is located, the current version will progressively be overwritten. As a result,
CS which are located at this overwritten part may be altered, resulting in faulty
reconstruction of the respective RS. Interestingly, this overwritten flash region will
now accommodate the partially reconstructed part of the updated firmware, which
is used for finding type 3 and type 4 CSs. Hence, we have to guarantee that when
the reconstruction is conducted in-place, the type 1 and type 2 CSs will succeed
the respective RSs in order, so that they are not yet overwritten.

For type 1 CSs this requirement is fulfilled, simply ensuring that |l1 m0|
|l4 k0|, so that for the mapping indexes in the two firmware versions: m k.
This way, when the segment Updatek...i is about to be reconstructed, the respec-
tive RS, Currentm...j will not be overwritten. Regarding type 2 CSs, we cannot
use their initial address m for ensuring the aforementioned requirement, as these
segments are copied in reverse order, and m is the highest offset of that segment
(reverse(Currentj...m)). Hence, purely based on m in this case we cannot guar-
antee that the CS will entirely precede the corresponding RS. However, we can
impose an additional requirement, based on j 0, so that i < j0 l1, with i being the
index that was initially inputted to BMD. As a result the segment Updatek...i will
precede the Currentj...m, and will not be overwritten when the reconstruction of

4.4. ORIENTATION OF DFINDER TO EXECUTABLE FILES 47

the former is conducted.
Ensuring that these relationships hold, allows the reconstruction to be per-

formed in-place, as all detected CSs will not precede the respective RSs and will
have not been overwritten when they need to be copied. Of course these addi-
tional requirements reduce the number of the available CSs for each RS, resulting
in larger delta scripts, compared to the out-of-place reconstruction which preserves
the current firmware throughout the reconstruction process.

4.4 Orientation of Dfinder to Executable Files

Although the above methodology works remarkably well for unstructured binary
files, it fails to utilise some traits of executable files, such as firmware images. For
instance, in actual firmware images, and especially when linker optimisations are
used, large common segments are placed in the same order in the two firmware
versions. Hence, we decided to modify the algorithm to utilise these traits and
achieve higher compression ration on executable files.

To this end, we introduced three additional instructions, which enable a more
efficient delta encoding. More specifically, when using Dfinder on actual firmware
images, we realized that the majority of the instructions were Type 1 or Type 3
COPY instructions, while for most of them the distance of the initial address (m)
of the CS (in the current firmware) from the one of the respective RS (in the
updated firmware) was less than 256. For such cases, the initial address of the
CS could be expressed using a single byte (instead of three), as the distance of it
from the initial address of the RS. Besides, an mentioned above many CSs and RSs
that were encoded using Type 1 Copy instructions, had identical initial addresses;
meaning that these two segments originate at the same address in the two firmware
images.

To exploit these traits, we introduce the following instructions: Copy_type1_rel,
Copy_type3_rel and Copy_in-place (see Figure 4.9 and Figure 4.10). The first two
instructions resemble Type 1 or Type 3 COPYs, which represent the initial address
of the CS using a single byte, as the distance from the initial address of the recon-
structed RS, with total overhead of = 3 bytes. The latter instruction does not
have a CS initial address field at all, as the two matching segments have the same
initial address in the two firmware versions. Subsequently, Copy_in-place instruc-
tions have total overhead of = 2 bytes. Besides, we modified Optimiser to also
take into account these additional instructions, achieving optimal delta encoding.

OpC Length of encoded
segment (n)

Copy-segment
address offset (m)

3 bits 13 bits 8 bits
 γ bits

Figure 4.9: Copy_type1_rel and Copy_type3_rel instructions format

48 CHAPTER 4. DFINDER

OpC Length of encoded
segment (n)

3 bits 13 bits
 δ bits

Figure 4.10: Copy_in-place instructions format

Furthermore, due to micro-changes in the updated firmware, caused by function
or variable shifts, often entire regions are identical between the two versions, except
for a few bytes; even a single byte. This results in delta scripts which contain many
ADD instructions, which have a single byte as payload. We refer to these ADDs
as light ADDs. To avoid the overhead of light ADDs in the final delta script we
introduce a processing step, using the following approach. Once the delta script
has been computed, all instructions are iterated over, light ADDs are tracked, and
their single-byte payload is stored in a byte-array. Moreover, all light ADDs are
removed and we construct a bit-array, which has length equal to the number of the
remaining instructions in the delta script. This bit-array is used for recording the
existence of a removed light ADD before each such instruction. Moreover, these
two arrays are augmented to the delta script. Hence, during the reconstruction,
before executing each instruction, the receiver checks the corresponding entry of
the bit-array and if the value is 1 (meaning that there was initially a light ADD
before the current instruction), the respective single-byte payload can be retrieved
using the byte-array. Using this approach, we can avoid the additional overhead of
light ADDs, resulting in substantially smaller delta scripts.

Chapter 5

OTAP Testbed

In this chapter, we describe the architecture of the testbed we implemented to
evaluate the performance of Dfinder in an actual OTAP scenario for resource-
constrained IoT networks. Specifically, we designed the testbed to support devices
running the Contiki-NG OS, while the firmware upgrade of these devices takes place
using the delta script that is calculated using Dfinder. The system also enables
the transmission of the entire updated firmware image; however, as we primarily
focus on the support of incremental programming, we omit some implementation
details and mainly discuss the components that allow devices to be upgraded using
delta scripts, securely and seamlessly. The architecture consists of three entities:
the OTAP server, the IoT network, and the border router. The OTAP server is an
interconnected computing system, which is needed for the cross-compilation of the
updated firmware image, the computation of the delta script, and its transmission
to the devices of the IoT network. In order to build a small IoT network, we
used the Zolertia RE-Mote platform, running the Contiki-NG OS. Finally, the
border router facilitates the interconnection of the IoT network with the rest of the
internet, and subsequently the end-to-end communication of the IoT devices with
the OTAP server.

5.1 IoT Technologies and Standards

The main IoT technologies and standards that are utilised in our system are dis-
cussed in this section. We present some network protocols which belong to different
layers of an IoT protocol stack, such as the one presented in Figure 5.1. It must
be noted that the figure is limited to present the protocols (and a few more) that
were used in this thesis; however, a typical IoT stack will usually include more
protocols, some of which are not limited to the IoT ecosystem.

49

50 CHAPTER 5. OTAP TESTBED

Application
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

XMPP
CoAP

MQTT
LwM2M

TLS DTLS UDP TCP

HTTP

6LoWPAN

IEEE
802.15.4

RFID
NFC

IEEE
802.11
(WiFi)

GSM
LTE

ICPMv6RPLIPv6

Figure 5.1: An IoT protocol stack

5.1.1 IEEE 802.15.4

IEEE 802.15.4 [50] (RFC 4944) is one of the most established standards that enable
the communication in Low-power and Lossy Networks (LLNs). It is a packet-based
radio protocol that defines the physical layer (PHY) and the medium access control
(MAC) specifications, serving as the foundation for several protocol stacks (e.g.
Zigbee, WirelessHART, SmartLink, etc.). The first version of the standard was
announced by IEEE 802.15 Task Group 4 (TG4) in 2003 and since then many
versions of it have emerged (e.g. IEEE 802.15.4e, IEEE 802.15.4g).

The standard supports multiple modulation schemes, including BPSK, ASK,
O-QPSK, MR-FSK, MR-OFDM, and MR-O-QPSK, and its operational frequency
includes the 2.4GHz industrial, scientific and medical (ISM) band to facilitate
worldwide availability, while 868 and 915 MHz bands are also supported for Europe
and USA, respectively. Besides, the standard has maximum data rate of 250 Kbps,
depending on the used modulation scheme and operational frequency band. Fur-
thermore, the standard can provide fully acknowledged frame delivery, which may
be desirable in environments with high interference. In the original specification,
the frame size (MTU) is limited to 127 bytes, aiming at reducing the probability
of frame errors by forcing a small frame size. Finally, it applies collision avoidance
through CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) on
the physical layer. This way, the devices have to sense the channel before starting
the transmission and are allowed to proceed only if the channel is idle.

5.1.2 6LoWPAN

6LoWPAN [66] (RFC 6282) is an acronym of IPv6 over Low-Power Wireless Per-
sonal Area Networks and defines the standards for IPv6 communication over the
IEEE 802.15.4 protocol. It is a network stack (or adaptation layer) that allows
IPv6 (RFC 2460) packets to be carried efficiently within constrained links, such as

5.1. IOT TECHNOLOGIES AND STANDARDS 51

IEEE 802.15.4 links, as IPv6 needs an MTU of at least 1280 bytes 1. This way, the
end-to-end native communication of IoT devices with any IPv6 network is enabled.

This is achieved by compressing the IPv6 headers and fragmenting the IPv6
datagrams sourced from the internet, by an adaptation layer placed below IP, for
supporting the IEEE 802.15.4 maximum MTU. On the other hand, the headers
need to be decompressed and the IPv6 datagrams reassembled when the traffic
is forwarded to the internet, for supporting the IPv6 minimum MTU. Besides,
6LoWPAN enables stateless auto-configuration, as IoT devices inside a 6LoWPAN
network can automatically generate their own IPv6 addresses.

5.1.3 RPL

RPL 2 [35] (RFC 6550) is a routing protocol that enables IPv6 datagrams to be
routed in constrained IoT networks. It is a distance-vector protocol 3 that computes
a Destination Oriented Directed Acyclic Graph (DODAG), based on a set of metrics
and constraints. The computed DODAG has a single root node (DODAG route)
and exists a path from every node to this root. Finally, this graph is automatically
built by the devices, exchanging ICMPv6 control packets.

5.1.4 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) [14] (RFC 7252) was standard-
ized by IETF as a lightweight alternative to HTTP, for enabling the Machine-
to-Machine (M2M) communication of resource-constrained devices. It follows the
client-server model. where clients can make requests to servers and the servers
send back responses. Similar to HTTP, CoAP is a RESTful protocol, featuring the
typical GET, POST, PUT and DELETE methods, which can be used for accessing
the resources of a server, using a URI path. In addition, using the Resource Discov-
ery mechanism, servers can provide a list of their accessible resources, along with
metadata about them. A client may "subscribe" for one or more of these resources
using the Observe option, so that it receives updates about state changes from the
server, when such changes occur to the corresponding resources. CoAP is designed
to have minimal RAM requirements (⇠10 KiB) and small code space. Besides, the
protocol uses UDP links, and the communication can be secured using the Data-
gram Transport Layer Security (DTLS) protocol [64] (RFC 4347) using Pre-shared
Key (PSK), Raw Public Key (RPK), or X.509 certificates, while it can also offer
reliable communication, acknowledging the successfully received messages.

1It must be noted that the frame format of IEEE 802.15.4g does not have this limitation.
2Pronounced "ripple"
3Distance-vector protocols are more suitable for constrained devices, compared to the link-state

counterparts, as the former need to store substantially less control plane data at each device.

52 CHAPTER 5. OTAP TESTBED

5.1.5 OMA Lightweight Machine to Machine (LwM2M)

The Lightweight Machine to Machine (LwM2M) protocol [92] is a lightweight de-
vice management protocol, located at the application layer of the OSI stack, and
is specified by the Open Mobile Alliance (OMA). It focuses on reducing of energy
and data consumption needed for the M2M communication, rendering it ideal for
low-power and low-capacity IoT devices. LwM2M follows the client-server com-
munication model (see Figure 5.2) and implements it extending the CoAP, so that
LwM2M management operations and responses are mapped to respective CoAP
counterparts (Coap method calls and response codes). This communication scheme
requires an LwM2M server and an LwM2M client. The client is usually located in
an IoT network, while the server can be an interconnected computing system, typi-
cally deployed in the cloud or a data center, and can simultaneously serve hundreds
of IoT networks. The clients have to subscribe to one or more LwM2M servers,
offering access to their resources. During their communication, both the server
and the client can make requests. Hence, these two entities must not be confused
with the typical client-server communication model where only the client makes
requests and the server responds. In the case of LwM2M, the server acts as the
coordinator of the communication. In addition, LwM2M defines a simple resource
model, where the client has different objects, which are definitions of some of its
resources (e.g. temperature reading from a sensor). Besides, the client can have
several instances of the same object. By interacting with these resources the server
can change several aspects in the device during run time, like the firmware that
the device should run.

LwM2M client

Obj Obj Obj

LwM2M objects

LwM2M server

M2M app #2M2M app #1 M2M app #3

Protocol Stack
CoAP, DTLS, UDP

Figure 5.2: LwM2M architecture

5.1. IOT TECHNOLOGIES AND STANDARDS 53

5.1.6 Eclipse Leshan

Eclipse Leshan 4 is an OMA LwM2M client and server implementation in Java,
which provides a highly documented API, enabling developers to create their
LwM2M applications. Finally, it is based on Californium CoAP and Scandium
DTLS implementations and supports IPSO objects.

5.1.7 Contiki-NG

Contiki-NG is an open-source, event-driven operating system, developed for resource-
constrained IoT devices. It has been designed to run on devices with limited pro-
cessing power and memory, and has been ported on a wide range of platforms,
rendering it an ideal solution for developing novel IoT applications. Contiki-NG
includes a plethora of easily extendable general libraries for sensing and actuat-
ing, as well as some cryptography libraries and mechanisms for estimating power
consumption. Besides, it contains multiple demo applications which can be easily
tested on target devices, or using the Contiki’s network simulator, called Cooja.

In order to enable the communication between nodes, Contiki-NG uses the
traditional OSI (Open Systems Interconnection) stack for implementing its network
protocol stack, called NETSTACK. It includes traditional TCP/IP protocols (e.g.
UDP, TCP IPv4, IPv6, HTTP, ICMP), as well as some recently standardized low-
power wireless standards, such as RPL, CoAP, LwM2M, and 6LoWPAN. On the
networking layer, it relies on an IPv6 stack, offering lightweight implementations
for IP, UDP, and TCP. The networking layer is composed of two sub-layers, the
upper IPv6 layer and the lower adaptation layer (6LoWPAN), which both operate
on top of the IEEE 802.15.4. Besides, regarding routing, Contiki-NG applies RPL
in the network topology. Contiki-NG supports different MAC protocols, such as
CSMA/CA (non-beacon enabled) and TSCH 5. The former is a protocol where the
radio is always in listening mode, and is allowed to transmit only once it has checked
the medium and verified that it is not occupied. Hence, the power consumption
is high, as the radio is constantly turned on. The latter is a MAC layer that
uses channel hopping and allows nodes to turn off the radio for fixed periods of
time. Additionally, Contiki-NG implements lightweight stack-less threads, called
protothreads, and all of them share the same memory stack. By not using separate
stack spaces, these threads are non-preemptive, avoiding the context switching
when another thread is yield.

5.1.8 RPL Border Router

The border router or edge router is a device found at the edge of an IoT network,
enabling the communication of the latter with external networks. As mentioned
above, an adaptation layer, in the form of 6LoWPAN, is required for enabling the

4www.eclipse.org/leshan
5Contiki-NG does not support ContikiMAC Radio Duty Cycling Protocol.

54 CHAPTER 5. OTAP TESTBED

communication of IoT devices with the internet over IPv6. Contiki-NG imple-
ments the 6LoWPAN adaptation layer using an RPL border router, which acts as
a 6LoWPAN router. These devices are tasked with routing the ingress and egress
traffic towards the destination, as well as handling the compression/decompression
of IPv6 headers and fragmentation/defragmentation of IPv6 datagrams, as speci-
fied by 6LoWPAN. Finally, the border router will also record the addresses of the
IoT devices, so that they are accessible in the internet as shown in Figure 5.3.

Node
Border Router

IPv6

6LoWPAN
Network

IPv4/IPv6

Internet

Figure 5.3: An interconnected IoT network, using a border router6

5.1.9 Zolertia RE-Mote Platform

In order to construct an IoT network of the testbed, we used the Zolertia RE-
Mote platform (see Figure 5.4). Besides, we used a single RE-Mote in the role
of the 6LoWPAN border router, enabling the interconnection of the IoT devices
with our OTAP server (a laptop connected via USB with the border router). The
platform is equiped with the Zolertia Zoul module. Zoul is based on the Texas
Instruments CC2538, which has a 32-bit ARM Cortex-M3 system on chip (SoC)
(clocked up to 32 MHz), with integrated IEEE 802.15.4-compliant tranceiver, at 24
GHz. Besides, it features 512 KiB of program flash and 32 KiB of RAM, while it
also offers hardware acceleration for a wide range of cryptography functions (AES-
128/256, SHA2, ECC-128/256). Additionally, it also includes a Texas Instruments
CC1200 868/915 MHz RF transceiver, for enabling dual-band communication. The
on-board Texas Instruments CC1200 enables multiple modulation formats (2-FSK,
2-GFSK, 4-FSK, 4-GFSK, MSK, OOK). These traits, along with their small power
consumption, have empower the support of the Zolertia RE-Mote platform from
the Contiki-NG community.

6Source: www.zolertia.io/6lowpan-iot-protocol

5.2. TESTBED IMPLEMENTATION 55

Figure 5.4: Zolertia RE-Mote Platform7

5.2 Testbed Implementation

In this section we present the components of the testbed, along with their main
functionality.

5.2.1 OTAP Server

The OTAP server is an interconnected computing system that is responsible for
preparing the delta script using the Dfinder algorithm and transmitting it to the
devices of an IoT network, allowing their upgrade by reconstructing the updated
firmware. In particular, this communication is enabled, using the LwM2M protocol,
where the OTAP server corresponds to the Eclipse Leshan server and the IoT device
is an LwM2M client that registers to the server. Concurrently, the Eclipse Leshan
provides a graphical interface to manage the firmware update procedure, such as
the one shown in Figure 5.5 that presents the IoT devices that have registered to
the server.

Each time a new firmware version has been released, the update sequence be-
gins. First, the OTAP server collects the newly compiled binary file and uses
it, in conjunction with the firmware image that the target devices currently run,
to calculate the delta script (using Dfinder). Then, some additional information
(manifest) is augmented to the delta script, composing the final OTAP image,
which is transmitted to the devices using LwM2M. The structure of the OTAP
image consists of the manifest, the manifest signature, and the delta script itself.
The manifest describes the corresponding firmware images (current and updated
ones), containing valuable information about them (e.g. their digest), while at
the same time provides information needed for the successful reconstruction of the
updated firmware image. The manifest signature is important for identifying the
authenticity of the delta script. In the following paragraphs, we describe in detail

7Source: www.zolertia.io/product/re-mote

56 CHAPTER 5. OTAP TESTBED

Figure 5.5: List of IoT devices registered to the Leshan server

how the different parts of the above structure are produced and how they enhance
the system’s operation.

Manifest generation The manifest consists of the fields described in Table 5.1.
Among others, the manifest specifies if the OTAP server is ready to transmit the
entire image of the updated firmware version or a delta script. If it is the latter
case, the manifest must also specify if the reconstruction has to be performed in-
place or out-of-place. Upon receipt, the OTAP client on the device checks and
confirms the manifest fields and proceeds with the update process.

Manifest version ID In case multiple versions of manifest exists each one has
an ID which describes the structure of the manifest.

Monotonic Sequence
Number (MSN)

The UTC timestamp at the time of manifest generation,
it is used to declare the freshness of the new image.

Vendor ID Describes the vendor of the device in which the image is
compatible.

5.2. TESTBED IMPLEMENTATION 57

Class ID Describes the class of the device in which the image is
compatible.

Precursor image digest Contains the SHA-256 digest of the precursor image and
is used so that the device can assure that it bears the
appropriate image to apply the delta script.

Expiration time The date that the installed firmware expires and a new
one has to be installed.

Update type Used for identifying that the update is incremental (based
on delta scripts) or not.

Reconstruction type Declares if the reconstruction has to be performed in-place
or not.

Storage location Defines the flash address where the delta script should be
stored at (e.g. memory offset).

Payload digest The SHA-256 hash of the payload used to verify the in-
tegrity of the received delta script.

Payload size The size of the payload used to confirm that the applica-
tion partition has enough space to store the received delta
script.

Reconstruction
checksum

Contains the CRC-16 value of the updated firmware.

Reconstruction
location

Defines the flash address where the updated firmware will
be reconstructed at.

Table 5.1: Manifest structure

Signature generation The OTAP server applies a digital signature to the man-
ifest using the user’s private key (also known as signing key) to confirm the image
author and guarantee the integrity of the delta script. Note that the public-private
key pair is generated using any of the Contiki-NG supported elliptic curves (e.g.
secp256r1).

Delta script generation Once the updated firmware version has been compiled,
the resulted firmware image is collected, in conjunction with the current firmware
image. These two files have Intel-Hex format and need to be converted to binary
files. Then, Dfinder is used for computing the delta script based on the two images.

5.2.2 OTAP Client

OTAP client is based on the LwM2M client and it is installed on IoT devices. OTAP
client ensures efficient firmware over the air updates of the devices while enabling
effective remote management of the device. Those two client’s characteristics are
the cornerstone of the over-the-air updates, as will be discussed below.

58 CHAPTER 5. OTAP TESTBED

5.2.3 Device Preparation

Updating the firmware of an IoT device requires an initial preparation of the device.
For this reason, a base image is created which has to be installed on the devices
(via USB) before their deployment, to enable future OTAP support. Specifically,
the flash is divided unequally into four partitions. The first partition contains the
firmware installer, the second partition contains the device metadata, the third
partition contains the running application image, while the fourth partition re-
mains empty until the first incremental update occurs. The last partition is used
for storing the received delta scripts, and if the reconstruction is out-of-place, for
storing the reconstructed updated firmware. On the other hand, if the reconstruc-
tion is performed in-place, the fourth partition will only store the delta script, as
the reconstructed image will replace the current application image, located at the
third partition.

• Firmware Installer: The firmware installer is a stand-alone Contiki-NG
application, that features the necessary functionality for supporting LwM2M
communication, and allowing the reconstruction of the updated firmware,
according to the received delta script. Each time a new firmware update is
available, the device is set to OTAP mode and boots to the firmware installer.

The firmware installer is designed to connect to the OTAP server by the
OTAP client and securely download and verify the OTAP image. Besides,
it stores the received delta script at the end of the fourth partition, allowing
the reconstruction and installation of the updated firmware.

• Metadata: The metadata partition consumes one page (2048 Bytes) of the
program flash and contains information about the installed application im-
age. The metadata fields are the DTLS credentials, the public part of the
verification key, the Monotonic Sequence Number (MSN), the vendor and
the class IDs of the device, the digest, the expiration time, and the storage
location. The metadata are important for a variety of reasons. Particularly,
the DTLS credentials are used by the device to communicate with the OTAP
server over the DTLS protocol. The verification key is used to verify the
integrity and authenticity of the received delta script, while the monotonic
sequence number ensures its freshness. The vendor and class IDs describe
the characteristics and the family of the device. The image digest is the
SHA-256 hash of the installed image and is essential in differential updates,
as it provides guarantee that the reconstruction will be performed based on
the correct firmware versions. The expiration time defines the date that the
installed image ceases to be supported and a new one has to be installed.
Finally, the storage location describes the flash address where the current
image is installed.

• Application Image: this partition accommodates the installed application
image. The application image is the firmware which the device loads after

5.2. TESTBED IMPLEMENTATION 59

each boot if no update request occurs. As the first application image, we use
a simple application that blinks the device on-board LED every 1 second and
connects to the OTAP server by the OTAP client. The application image is
updated upon OTAP server request.

5.2.4 Delta Script Download and Firmware Installation

Each time a new firmware version is available, the OTAP server informs the target
devices, using the proper LwM2M resource, to stop the execution of the current
firmware and boot to the firmware installer. This operation can be done very
easily through the Leshan platform, selecting the target device from the list of the
registered devices, and pressing the "Factory Reset" button (see Figure 5.6).

Figure 5.6: The available resources and methods offered by an LwM2M client,
when the device runs the firmware image

Once the selected device has booted the firmware installer, the OTAP server ini-
tiates the transmission of the manifest. Again, this operation can be done through
the Leshan interface (see Figure 5.7), by pressing the "Write" button and selecting
the computed OTAP image. The received manifest is stored in the RAM of the

60 CHAPTER 5. OTAP TESTBED

Figure 5.7: The available resources and methods offered by an LwM2M client,
when the device runs the firmware installer

device and based on the contained signature, as well as the public key stored in the
metadata section, the firmware installer validates the integrity and the authenticity
of the manifest. If the signature is valid the next step is to identify the manifest
fields to prevent the installation of an unsuitable (e.g. wrong class, vendor ID)
or out-of-order firmware (e.g older MSN). The identification of the manifest fields
results from their comparison with the corresponding metadata fields. In case the
digital signature or the manifest fields are invalid, then the device aborts the update
process and boots to the application partition where the current firmware image
is already installed. On the other hand, if the manifest is successfully verified, the
firmware installer continues the download of the delta script while the SHA-256 di-
gest is calculated on it. Once the downloading is completed, the firmware installer
checks if the calculated digest of the received data is the same as the payload digest
field of the manifest. If it is not the case, the update is aborted, otherwise, the
firmware installer originates the reconstruction of the updated firmware.

Using the corresponding field (Reconstruction type) of the manifest, the firmware
installer can tell if the reconstruction of the updated firmware has to be performed

5.2. TESTBED IMPLEMENTATION 61

in-place or not. If it is the former case, it determines the address of the currently
installed firmware (based on the device metadata) and starts the reconstruction
at that address. However, if the reconstruction is performed out-of-place, the up-
dated firmware is reconstructed at an address specified in the received manifest,
within the fourth partition (as long as it does not overlap with the delta script).
In either case, the CRC-16 (cyclic redundancy check) of the reconstructed image is
computed and compared with the one presented in the manifest. If these values are
equal, the reconstruction was successful, the corresponding fields at the metadata
partition are updated respectively, and the device boots to this just reconstructed
firmware image. On the other hand, if the computed CRC-16 differs from the one
present in the manifest, the reconstruction (and thus the update) has failed. If
this is the case, we must study two instances. First, if the reconstruction was done
in-place, the firmware image which was installed in the third partition before the
update will have been overwritten by the falsely reconstructed image, and thus
been corrupted. In this case, the firmware image is unusable and the device needs
to boot to the firmware installer and remain inoperational, waiting for a new OTAP
attempt. However, if the reconstruction was done out-of-place, the current version
will have not been overwritten and the device can simply boot to this version,
staying operational until its upgrade is reattempted. The entire flow of the delta
update process is depicted in Figure 5.8.

Application
v1.0 Application

v2.0

 Yes

 No

Is manifest
signature valid?

Download
Manifest

Start

Download
delta script Yes

 No

Are manifest
fields valid?

 Yes

Is the delta script
digest valid?

Reconstruct
the updated
application

 No

Yes

Was the

reconstruction
successful?

 Yes

 No

Was the

reconstruction done
 in-place?

 No

 Yes

Is there an
update?

Boot to
Firmware
Installer

 No

Figure 5.8: Flow of firmware upgrade from v1.0 to v2.0 using delta image

62 CHAPTER 5. OTAP TESTBED

5.2.5 Firmware Reconstruction

In order to reconstruct the updated firmware successfully, the instructions in the
delta script have to be interpreted by the device in order. Interpreting these instruc-
tions, data are written to sequential memory regions, progressively reconstructing
the updated firmware. However, in order to be able to write data to a flash address,
the corresponding block (of 2048 Bytes) has to be erased entirely first. As a result,
the aforementioned interpretation of the delta script would not work, as any flash
write would require the data that have been written to that block previously to be
erased.

For this reason, we used a buffer of 2048 Bytes that we progressively fill by inter-
preting the instructions, and only when it is full, we write the contained data to the
corresponding flash block. This method works exceptionally when the reconstruc-
tion is out-of-place, as long as we have previously erased the entire flash region
where the updated firmware will be located after the reconstruction. However,
when the reconstruction is done in-place, we are not able to erase the entire recon-
struction flash region, because this is the flash region where the current firmware
located. As a result, all copy instructions would be rendered false. In order to
avoid this, each block has to be erased separately before it is overwritten with the
data contained in the buffer. This approach also affects the reconstruction time
(and energy consumption) as a mass-erase is more efficient than deleting individual
memory blocks.

Chapter 6

Experimental Evaluation

In this chapter, we will focus on the evaluation of the incremental programming
approach that we proposed in this thesis. To this end, we compare Dfinder with
other differencing algorithms (see Table 6.1), regarding the execution time, the
memory footprint, and the resulted delta script size. In order to enable their accu-
rate comparison, we benchmark them inputting both randomly generated binary
files, as well as actual images of different Contiki-NG firmware versions. This way,
we can measure their performance under various changes that may occur between
two firmware versions with higher accuracy. Finally, we measure how the dissemi-
nation performance and the energy consumption in the network are affected, when
the update is done incrementally, using the proposed strategy (based on the delta
scripts that Dfinder computes).

BSDiff
Delta Generator

JojoDiff
R3diff
Rdiff

RMTD
Xdelta3
Dfinder

Table 6.1: The benchmarked differencing algorithms

Apart from JojoDiff 1, all other algorithms that were used during the evaluation
have already been discussed in Chapter 2. JojoDiff is a differencing utility imple-
mented in C++, which has been developed to produce delta scripts for executable
files. The utility tries to find the differences between two executable files, using a
heuristic algorithm, which has constant space and linear time complexity. Hence,

1www.jojodiff.sourceforge.net

63

64 CHAPTER 6. EXPERIMENTAL EVALUATION

it may not be able to find the smallest delta script for most firmware updates, but
it is fast and requires a fixed amount of memory. Besides, it is an open-source
project which enables its seamless modification and integration to OTAP systems.

Regarding RMTD and R3diff (the differencing algorithm used in R3 [19]), we
accessed them using the publicly available repository that the authors of R3 have
provided, and we executed them using the parameters: ↵ = 2 and = 5. Hence,
we run R3diff as a component of an OTAP system, called R3, which also includes a
similarity preserving mechanism, called R3sim. BSDiff, Xdelta3 and Rdiff are well-
known difference utilities, which can easily be accessed using the package manager
of most Linux distributions. Moreover, we configured Xdelta3 to avoid additional
compression on the output, as we are interested in the differencing capabilities of
the utility. Furthermore, due to copyright issues, we could not access the source
code of Delta Generator (DG); however, the authors kindly provided us a Windows
10 executable. Hence, as DG had to be run on a separate computing system,
the measured memory consumption and time performance cannot be compared
with the ones of the other utilities. Finally, all experiments (except the ones that
involved DG) were conducted on a Linux system, which includes an Intel® Xeon®
CPU E5-2630 v2 clocked at 2.60GHz, with 4 GiBs of RAM and 5.4.0-70-generic
kernel.

6.1 Evaluation using Randomly Generated Binary Files

Although Dfinder is oriented to executable files, such as firmware images, it is
useful to examine how it performs on unstructured binary files. The motive is that
when building an updated firmware image, changes in the source code may result
in large segments of code that are not common between the two versions. As a
result, some difference utilities may be unable to detect common patterns in these
regions, resulting in large delta scripts. For instance, we were able to catch on
this effect when multiple printf calls were added in the updated source code of a
Contiki-NG application.

In order to conduct the experiments, we generated a thousand random binary
files of various sizes, which were coupled into pairs of two, with the first representing
the old file and the other one the new (updated) file. Then, we inputted these
pairs to the differencing algorithms to compute the corresponding delta scripts,
also tracking the memory consumption and execution time. In addition, in order to
measure the similarity of the binary files of each input pair, we used the Levenshtein
distance -or edit distance- metric, which computes the number of operations that
need to be performed on a sequence, to transform it into another one. Thus, this
metric can be used for expressing how unsimilar two files -or two sequences- are.
However, due to the recursive nature of the algorithm, it fails on large inputs and
the execution time is extravagant. Thus, we introduce a naive estimation of the
Levenshtein distance of two files, which requires fewer memory resources and time,
and operates by computing the Levenshtein distance metric on smaller blocks of

6.1. EVALUATION USING RANDOMLY GENERATED BINARY FILES 65

these files. First, the two files are divided into equal-sized blocks. As the two files
may have unequal sizes, the first (old) file has n such blocks, while the latter (new)
has m blocks. Then, the estimation of the Levenshtein distance is calculated using
Equation 6.1. Note that fNEW :i denotes the ith block of the new file and fOLD:j

the jth block of the old file, respectively.

Levenshtein_distance_EST (fOLD, fNEW) =Pm

i=1
minnj=1 Levenshtein_distance(fOLD:j , fNEW :i)

(6.1)

Besides, the proposed estimation takes into account the size of the new file, so that
the measured Levenshtein distance does not exceed it. Hence, this metric is more
appropriate, as the produced encoding shall enable the reconstruction of the new
file version and not the transformation of the old version into the new one, as the
original Levenshtein distance does. On the other hand, the original Levenshtein
distance measures the operation needed for transforming a sequence into another;
hence, it measured metric may be way larger than the size of the updated file.
Additionally, we measured the execution time of each algorithm using the Linux
time utility, and the memory consumption was measured using the Valgrind suite 2

(see Listing 6.1).
$valgrind --tool=massif --pages-as-heap=no --massif-out-file=massif\
command; grep mem_heap_B massif | sed -e 's/mem_heap_B =\(.*\)/\1/ '\
| sort -g | tail -n 1

Listing 6.1: The use of Valgrind for obtaining the peak memory consumption of a
bash command

Figure 6.1 presents the size of the delta script that the benchmarked differenc-
ing algorithms computed. The x-axis represents the logarithm (with base 10) of the
Levenshtein distance of each input pair of binary files, while the y-axis represents
the corresponding delta script size in Bytes. Moreover, the figure does not contain
any information about JojoDiff, Rdiff and DG, as these algorithms consistently
produced patches of size equal to the one of the updated (new) file. Moreover,
we did not use the Dfinder version which is oriented to executable files (see sec-
tion 4.4), as the generic one is more appropriate for unstructured files, which do not
contain specific patterns. Besides, we inferred that both Dfinder versions (the one
that enables the in-place reconstruction and the one that enables the out-of-place
reconstruction of the updated file) perform almost identically; hence we aggregate
these two Dfinder versions in the plot.

Based on the plot, we infer that as the unsimilarity of input files increases,
all algorithms tend to compute larger delta scripts. However, BSDiff and Xdelta3
generally produce the smallest ones, while Dfinder tends to create similar-sized
delta scripts to the ones that RMTD computes. Moreover, compared to other al-
gorithms, BSDiff seems to be less prone to the increase of unsimilarity of input
files, as its incline is not that steep, compared to the rest of the algorithms. This
trait can be explained by the fact that BSDiff uses compression on the computed

2valgrind.org

66 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.1: The size of the resulted delta script size versus the unsimilarity (ex-
pressed by the Levenshtein distance) of the two input binary files

delta script, causing its further shrinkage. Based on the above, we expect BSD-
iff to perform better than the other algorithms when the firmware modifications
are extended, as it will be able to encode these large uncommon segments more
efficiently, in terms of size.

Figure 6.2 depicts the execution time of each differencing algorithm, and how
it is affected by the unsimilarity of the input files. First, we can notice that as the
unsimilarity increases, Dfinder tends to have larger execution time, while Rdiff,
BSDiff, and Xdelta3 have constant execution time. The unpredictable execution
time of R3diff is due to the application of R3sim (the similarity preserving mech-
anism of R3) on the inputs. In contrast to previous studies, we were able to run
RMTD for relatively large files (⇠ 30 KiB), on a system with mediocre memory
resources. However, the execution time was extravagant (⇠ 100 seconds) and hence
we did not include these measurements in the plot as they would disturb the final
result.

Figure 6.3 showcases how the execution time of the algorithms is affected by
the total size of the two input files. Based on it, we can infer that the size of
the input files does not provide a good factor for determining the execution time
of Dfinder. Additionally, this Figure allows us to observe that R3diff needs more
time as the size of input files gets larger. Besides, in this plot we can observe, that
R3diff takes longer than JojoDiff to compute delta scripts; this information was
not showcased in the previous plot, as these higher values of execution time for

6.1. EVALUATION USING RANDOMLY GENERATED BINARY FILES 67

Figure 6.2: Execution time of differencing algorithms versus the unsimilarity (ex-
pressed by the Levenshtein distance) of the two input binary files

Figure 6.3: Execution time of differencing algorithms versus the total size of the
two input binary files

68 CHAPTER 6. EXPERIMENTAL EVALUATION

R3diff were presented as outliers in the measured results and were hidden in the
plot due to the application of polynomial fitting.

Although the execution time of a differencing algorithm is a major factor for
determining its performance, memory consumption is far more important, es-
pecially when the algorithm is used by a firmware server that simultaneously
serves hundreds of networks. Figure 6.4 presents the peak memory consump-
tion of the algorithms we benchmarked. In contrast to the execution time, the
memory consumption is primarily affected by the size of the input files, as they
use auxiliary data structures with size proportional to that of the input files.
For instance, Dfinder uses the byte-array T and other arrays, that have size of
2 ⇤ (length(fNEW) + length(fOLD)) bytes. Based on our experiments, we infer
that Rdiff has the lowest memory consumption, which is to be expected as it is a
block-level differencing utility and its operation does not require any sophisticated
data structures. On the other hand, RMTD is the most memory-intensive algo-
rithm, which is due to the two-dimensional array that it uses for the detection of
the common segments. We can also observe that Xdelta3, Rdiff, JojoDiff, and BS-
Diff have constant memory requirements (for the tested inputs). Finally, Dfinder
and R3diff have almost identical memory consumption, which is significantly less
than that of the other algorithms (apart from Rdiff).

Figure 6.4: Peak memory consumption of differencing algorithms versus the accu-
mulated size of the two input binary files

6.2. EVALUATION USING ACTUAL FIRMWARE IMAGES 69

6.2 Evaluation using Actual Firmware Images

In order to benchmark the differencing algoritms on actual Contiki-NG firmware
images, we used the hello-word application, which is included in Contiki’s repos-
itory. Introducing incremental modifications in the source code, we were able to
produce seven firmware versions, as shown in Table 6.2.

Version 1 Base version
Version 2 Two initialized variables were added, and their values are printed

using an additional printf call
Version 3 A new function was implemented and called
Version 4 An additional instruction is added in the implementation of the

new function
Version 5 No modifications (same as version 4)

Version 6 An additional printf call was added
Version 7 Three new functions were implemented and called

Table 6.2: The different firmware versions that we inputted to the differencing
algorithms

During the compilation of a firmware image, the compiler may use various
optimisation techniques, which can affect its final size and subsequently the perfor-
mance of differencing algorithms (compression ratio). For instance, redundant or
unused code may be removed, reducing the overall firmware image size. Addition-
ally, some functions may be inlined by the compiler, favoring the execution time
over the size of the firmware. As a result, references to such (inlined) functions
are replaced by the corresponding code; hence, their relocation will not cause the
typical function shift effects. As the proposed technique is not limited to a specific
platform, we want to suppress any optimisations imposed by the compiler, as they
may vary across platforms. This way, we are able to better observe how the differ-
ences between two firmware versions affect the resulted delta script size. To this
end, we compiled the firmware image of each produced version, using both the de-
fault optimisations (-0s), as well as suppressing the optimisations, using the flags:
OPTIMIZATIONS=-O0 and SMALL=0, as specified in Contiki-NG wiki 3. It must be noted
that this way, not all optimisations are suppressed; for instance, unused functions
may still be removed during the compilation. Hence, once we had compiled the
images for all seven firmware versions, we applied each differencing algorithm on
each pair of sequential firmware versions, creating six delta scripts that allow the
transition from one version to the next. During this process, we monitor the delta
script size, as well as the execution time and memory consumption of each algo-
rithm. Besides, this process was done for both optimised and unoptimised code,
and the experiments were repeated 100 times to compute the execution time of

3www.github.com/contiki-ng/contiki-ng/wiki/Platform-openmote-cc2538

70 CHAPTER 6. EXPERIMENTAL EVALUATION

each algorithm more accurately.

6.2.1 Optimised Code

First, table 6.3 depicts the size of the firmware images, that were compiled using
the default optimisations. It must be noted that V4 and V5 firmware images are
identical as no modifications were introduced to V5. Besides, V3 image is identical
to V4 -and V5-, due to linker optimisations. In the following tables, with bold are
the best values achieved by the differencing algorithms, for each firmware update.

Firmware
version

Size in
Bytes

V1 41608
V2 41628
V3 41628
V4 41628
V5 41628
V6 41740
V7 41740

Table 6.3: The size of the compiled firmware images using the default optimisations

In Table 6.4 is depicted the delta script size that the differencing algorithms
computed. Based on it, we can obtain several insights. First, due to the larger delta
scripts that all algorithms produced, we can infer that large volume of differences
exist between the V1 and V2 images, as well as the V5 and V6 images. These two
firmware updates (V1 ! V2 and V5 ! V6) share the addition of a printf call in
the source code of the updated firmware version. Besides, we observe that Rdiff
performs poorly during these two firmware updates, as the resulted delta script is
similar-sized to the image of the updated firmware version. Additionally, during
these two firmware updates, the out-of-place-reconstruction Dfinder version and
BSDiff compute the smallest delta scripts, among all other algorithms.

Firmware
Update

RMTD DG Dfinder
(in-place)

Dfinder
(out-of-place)

Rdiff R3diff BSDiff Xdelta3 JojoDiff

V1 ! V2 3771 5910 8286 2392 41639 5465 1057 3568 3939
V2 ! V3 13 11 31 31 2065 16 160 63 15
V3 ! V4 5 2 26 26 9 5 140 53 -
V4 ! V5 5 2 26 26 9 5 140 53 -
V5 ! V6 3871 6026 8362 2479 41751 5569 1175 3719 4043
V6 ! V7 46 63 71 57 2065 54 209 92 60

Table 6.4: Delta script size (in bytes) produced by the benchmarked differencing
algorithms for optimised code

6.2. EVALUATION USING ACTUAL FIRMWARE IMAGES 71

During the other firmware updates, all algorithms can compute relatively small
delta scripts, with RMTD and DG computing the smallest ones. Besides, both
Dfinder versions have remarkably good results as they compute delta scripts only
25 bytes larger than the smallest one. In addition, JojoDiff failed to produce delta
scripts when inputted two identical files. Finally, BSDiff produced the largest delta
scripts when the updated firmware version introduces a small volume of differences.

Firmware
Update

RMTD Dfinder
(in-place)

Dfinder
(out-of-place)

Rdiff R3diff BSDiff Xdelta3 JojoDiff

V1 ! V2 151.480 0.072 0.033 0.020 0.483 0.023 0.049 1.807
V2 ! V3 154.524 0.039 0.039 0.015 7.345 0.016 0.050 1.167
V3 ! V4 153.790 0.052 0.037 0.014 8.800 0.015 bf0.011 -
V4 ! V5 161.040 0.042 0.039 0.016 10.412 0.018 0.008 -
V5 ! V6 133.800 0.045 0.022 0.019 0.292 0.023 0.029 1.532
V6 ! V7 104.939 0.021 0.023 0.011 4.358 0.011 0.033 0.779

Table 6.5: Mean execution time (in seconds) of differencing algorithms for opti-
mised code

In Table 6.5 we can see the mean execution time of each algorithm during the
experiments. We can observe that regardless of the firmware update, RMTD takes
the longest time to compute a delta script, while Rdiff requires the least time. In
addition, BSDiff is the second-fastest algorithm, with Xdelta3 and both Dfinder
versions taking the third place. Next in order comes JojoDiff and then R3diff. In-
terestingly, R3diff requires more time to produce delta scripts for firmware updates
with small differences.

Firmware
Update

RMTD Dfinder
(in-place)

Dfinder
(out-of-place)

Rdiff R3diff BSDiff Xdelta3 JojoDiff

V1 ! V2 1735978794 4168820 4167398 125022 3926883 7777418 103265334 7777498
V2 ! V3 1736005122 4162861 4166957 39006 3921774 7777498 103265334 7777498
V3 ! V4 1736005082 4162858 4166954 32862 3921763 7777498 68531254 -
V4 ! V5 1736005082 4162858 4166954 32862 3921763 7777498 68531254 -
V5 ! V6 1745357186 4177690 4176288 125022 3935951 7777722 103265446 7777498
V6 ! V7 1745342858 4174096 4178175 39006 3932340 7778170 103265446 7777498

Table 6.6: Peak memory consumption (in bytes) of differencing algorithms for
optimised code

In Table 6.6 we can observe the peak memory consumption of the differencing
algorithms. We infer that Rdiff is the most space-efficient algorithm, while R3diff
and R3diff come next. In addition, BSDiff and JojoDiff consume almost double
the memory. Finally, RMTD and Xdelta3 are quite memory-intensive algorithms
for all firmware updates.

72 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2.2 Unoptimised Code

Linker optimisations may not be applicable for all processor families. Besides, the
effects of some firmware modifications may be hidden by the application of opti-
misations. Hence, we repeated the above experiments producing firmware images
suppressing the linker optimisations. In Table 6.7 is shown the size of these com-
piled firmware images. We can observe that these firmware images are quite larger
that the linker-optimised ones from the previous experiments. Additionally, mind
that only the V4 and V5 firmware images are identical, as not modifications have
been introduced to the source code updated version.

Firmware
version

Size in
Bytes

V1 73472
V2 73504
V3 73620
V4 73644
V5 73644
V6 73756
V7 73924

Table 6.7: The size of the compiled firmware images without linker optimisations

Firmware
Update

RMTD DG Dfinder
(in-place)

Dfinder
(out-of-place)

Rdiff R3diff BSDiff Xdelta3 JojoDiff

V1 ! V2 4101 6491 11759 2663 73518 5993 1429 4002 4360
V2 ! V3 4291 6541 12531 3023 73634 6143 1523 4194 4480
V3 ! V4 4054 6453 11783 2566 73658 5954 1296 3946 4251
V4 ! V5 5 2 33 33 11 5 142 53 -
V5 ! V6 4127 6559 11660 2600 73770 6016 1369 4002 4378
V6 ! V7 4277 6629 12270 2910 73938 6170 1513 4187 4567

Table 6.8: Delta script size (in bytes) produced by the benchmarked differencing
algorithms for unoptimised code

Table 6.8 shows the delta script size that the algorithms produced for the
firmware updates. Compared to the previous experiments (using linker-optimised
firmware images), we can infer that all algorithms produce quite larger delta scripts.
This implies that even small modifications in the firmware source code can result
in large differences and subsequently large delta scripts. Hence, we can infer the
same insight as we did for optimised firmware images when the updates included a
large volume of differences. As a result, BSDiff produces the smallest delta scripts,
while Dfinder produces the second smallest ones.

In Table 6.9 and Table 6.10 is shown the execution time and the peak mem-
ory consumption of the differencing algorithms, respectively. We can also obtain

6.3. ENERGY CONSUMPTION AND DISSEMINATION PERFORMANCE 73

Firmware
Update

RMTD Dfinder
(in-place)

Dfinder
(out-of-place)

Rdiff R3diff BSDiff Xdelta3 JojoDiff

V1 ! V2 298.538 0.053 0.035 0.012 0.724 0.017 0.030 0.830
V2 ! V3 286.104 0.052 0.035 0.012 0.722 0.017 0.027 0.803
V3 ! V4 285.835 0.050 0.033 0.011 0.730 0.017 0.028 0.821
V4 ! V5 292.823 0.038 0.042 0.011 16.09 0.014 0.006 -
V5 ! V6 287.351 0.053 0.041 0.012 0.728 0.016 0.030 0.813
V6 ! V7 287.721 0.054 0.031 0.015 0.731 0.016 0.027 0.835

Table 6.9: Mean execution time (in seconds) of differencing algorithms for unopti-
mised code

Firmware
Update

RMTD Dfinder
(in-place)

Dfinder
(out-of-place)

Rdiff R3diff BSDiff Xdelta3 JojoDiff

V1 ! V2 5409050762 7356671 7354695 125948 6923551 7968626 103428282 7777498
V2 ! V3 5426112262 7366969 7364339 125948 6933177 7968986 103428398 7777498
V3 ! V4 5429648850 7370913 7368856 125948 6936808 7969498 103428422 7777498
V4 ! V5 5429633194 7364462 7368558 33788 6931267 7969594 68563270 -
V5 ! V6 5446165162 7379666 7377820 125948 6945902 7969818 103428534 7777498
V6 ! V7 5470975066 7395673 7393328 125984 6960896 7970602 103428702 7777498

Table 6.10: Peak memory consumption (in bytes) of differencing algorithms for
unoptimised code

the same insights as we did for optimised code; however, the execution time and
memory consumption may be affected by the larger size of the compiled firmware
images. Interestingly, the memory consumption of BSDiff and JojoDiff is not af-
fected by the larger size of input files, but they still consume more memory than
Dfinder. Additionally, the memory consumption of BSDiff, Xdelta3 and JojoDiff
is not affected by the larger input files. Regarding the execution time, only the one
of RMTD, JojoDiff, and R3diff seem to be significantly affected. On the contrary,
the execution time of Dfinder is not affected by the larger size of input firmware
images, but requires more memory for the used data structures.

6.3 Energy Consumption and Dissemination Performance

In this section, we examine if the reduction of transmitted data actually affects the
update time and the energy consumption in the network and the magnitude of it.
To this end, we used the testbed we presented in Chapter 5 and implemented a
simple Contiki-NG project that includes the LwM2M module, enabling the com-
munication of the devices with the firmware server. Besides, introducing the mod-
ifications that are presented in Table 6.2, we produced seven firmware versions and
compiled the corresponding images. As the RE-Motes are based on CC2538, we
compiled those images, so that the board operates at PM1 low power mode, using
CSMA/CA MAC protocol. As a result, the antenna is always turned during the
delta/firmware transmission, but it is turned off during firmware reconstruction.

More specifically, we used a laptop in the role of the firmware server, which is

74 CHAPTER 6. EXPERIMENTAL EVALUATION

connected over USB with a RE-Mote, which runs the RPL border router Contiki-
NG application. Besides, another RE-Mote is located three meters away from the
border router, which acts as the target device that we want to update. Additionally,
the laptop is able to communicate with the target device, via the border router,
using Contiki’s tunslip6 utility. Tunslip6 creates a virtual network interface (tun)
and uses SLIP (serial line internet protocol) to encapsulate and pass IP traffic
over the two ends of the serial line. Using this setup, we update the target RE-
Mote, both incrementally, transmitting the delta script that Dfinder computed, and
transmitting the entire firmware image. To measure the time needed to update the
device, we used the Contiki-NG Rtimer library, which allows high clock resolution
and can calculate time intervals in ticks. Thus, for incremental updates, we were
able to track the time needed to download the delta script, and reconstruct the
updated firmware; otherwise, we track the time needed to download the entire
firmware.

In order to compute the energy consumption, we use Contiki’s Energest mod-
ule, which operates by tracking the time various hardware components are turned
on. By knowing the current these components operate, we are able to compute
the energy consumption. The supported energest types that can be monitored in
all Contiki-NG platforms are shown in Table 6.11. The first two types track the
different modes of CPU, while the next two track when the radio is on and the
respective state. Besides, to provide a more accurate measurement of the energy
consumption, we use Rtimer library to track the duration of flash erases and writes.
Hence, we are able to track how long the CPU is in low power mode or not, how
long the antenna is listening or transmitting, and how long the device performs
flash erases and writes. Besides, we can compute the energy consumption of each
state/operation using Equation 6.2 and the total energy consumption can be cal-
culated as the sum of the individual energy consumptions for each state/operation.

Type Purpose

ENERGEST_TYPE_CPU The CPU is active
ENERGEST_TYPE_LPM The CPU is in low power mode
ENERGEST_TYPE_TRANSMIT The radio is transmitting
ENERGEST_TYPE_LISTEN The radio is listening

Table 6.11: The predefined energest types

Energy consumption [mJ] =
Energest_Value ⇤ Current ⇤ Voltage

RTIMER_SECOND
(6.2)

The voltage, current and RTIMER_SECONDS can usually be found in the datasheet
of the used platform. For instance, for CC2538 SoC 4, the used voltage is 3V,

4www.ti.com/lit/ds/symlink/cc2538.pdf?ts=1623877461875&ref_url=https%253A%252F%
252Fwww.ti.com%252Fproduct%252FCC2538

6.3. ENERGY CONSUMPTION AND DISSEMINATION PERFORMANCE 75

RTIMER_SECONDS is 32768 and the current per operation is shown in Ta-
ble 6.12.

State/Operation Current

CPU 13mA
LPM 0.6 mA
RX (0 dBm) 24mA
TX (-100 dBm) 24mA
Flash erase 13 mA
Flash write 8 mA

Table 6.12: Electric current per operation/state of CC2538 SoC

For consistency, apart from Dfinder we used the other differencing algorithms
too, to observe how they compare to each other regarding the delta scripts produced
for each firmware update. It must be noted that the firmware image for each version
was ⇠ 81 KiBs. Based on the larger delta scripts by all differencing algorithms,
we can infer that the firmware updates with large volume of differences are the
following: V1 ! V2, V5 ! V6, and V6 ! V7.

Firmware
Update

RMTD DG Dfinder
(in-place)

Dfinder
(out-of-place)

Rdiff R3diff BSDiff Xdelta3 JojoDiff

V1 ! V2 7668 12069 19184 4809 79656 11093 1803 7327 7863
V2 ! V3 11 11 38 38 2065 14 154 62 13
V3 ! V4 5 2 35 35 11 5 142 53 -
V4 ! V5 5 2 35 35 11 5 142 53 -
V5 ! V6 7684 12141 19134 4788 79708 11115 1797 7352 7885
V6 ! V7 7619 11968 19104 4700 77859 11048 1705 7272 7802

Table 6.13: The delta script size (in bytes) produced by the benchmarked differ-
encing algorithms for an LwM2M-enabled Contiki-NG application

Regarding the update time (see Figure 6.5), we can infer that the overall time
needed for updating the target device, is substantially reduced when it is updated
incrementally, due to the vast reduction of the transmitted data. We can also
infer that the updates with a large volume of differences require more time, due
to the larger delta script size. However, even in these cases, the update time is
substantially improved, compared to transmitting the entire firmware.

Furthermore, due to the reduction of the transmitted data, the antenna needs
to stay active (in listening mode) for a shorter period of time, as it is deactivated
when the reconstruction begins. Hence, in Figure 6.6 we can observe the energy
consumed by the node when it is updated incrementally is reduced up to 96% for
updates with a small volume of differences and 92% for updates with a large volume
of differences, when the reconstruction is done out-of-place.

76 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.5: Time in seconds needed for updating the target IoT device

Figure 6.6: Energy consumption during firmware update

6.3. ENERGY CONSUMPTION AND DISSEMINATION PERFORMANCE 77

Additionally, in Figure 6.7 is shown the energy consumed for each stage/opera-
tion during the update. Interestingly, RX is the most energy-intensive state, as the
antenna needs to stay active in listening mode, waiting to receive more data. We
can also infer that the energy consumed for flash operations when the reconstruc-
tion of the updated firmware is done in-place is more compared to the out-of-place
reconstruction. The reason is that in the first case multiple erases must be per-
formed for separate flash blocks, while in the second case only one mass-erase is
needed for a large flash region, which is more efficient.

Figure 6.7: Energy consumed by the target IoT device per operation/state during
firmware update

Summarizing, if the update includes a small volume of differences between
the two sequential firmware versions, both Dfinder versions operate exceptionally,
reducing the time and energy consumption to 96% for out-of-place reconstruction
and 94% for in-place. On the other hand, when there is a large volume of differences,
the out-of-place Dfinder version retains its benefits, reducing the time and energy
consumption up to 90%, while the in-place version achieves a 70% reduction.

78

Chapter 7

Conclusion and Future Work

In this thesis, we focused on OTAP support in resource-constrained IoT networks.
We underlined the primal limitations such networks face and presented a technique
called incremental programming, which enables their efficient upgrade by transmit-
ting an encoded patch (called delta script) that describes the differences between
the two firmware versions. Besides, we presented the related literature that mainly
consists of works that introduce differencing algorithms, that aim at producing the
smallest delta scripts possible, keeping the execution time and memory consump-
tion low. Furthermore, some network protocols have been introduced that allow
the efficient dissemination of the delta script or the entire firmware in the network,
while also ensuring its authenticity and freshness, securing the upgrade process.

Additionally, we developed and presented a byte-level differencing algorithm,
called Dfinder, that utilises enhanced suffix arrays, resulting in the computation of
small delta scripts, with small execution time and memory footprint. Besides, the
algorithm can construct delta scripts that enable the reconstruction of the updated
firmware image in-place, starting at the flash address where the current firmware
image originates. This trait renders it an ideal solution for incremental OTAP
solutions that focus on platforms with very constrained storage resources. In order
to evaluate its performance, we developed a testbed that enables the OTAP of an
IoT network, transmitting a delta script that a firmware server remotely computes,
using Dfinder.

During the evaluation, we compared Dfinder with other differencing algorithms,
regarding the produced delta script size, the execution time, and the memory con-
sumption. Based on our experiments, we found out that our algorithm consistently
produces very small delta scripts when small modifications have been introduced to
the firmware source code, while it also produces the second smallest delta scripts
when these modifications are extended. Besides, Dfinder has quite a small exe-
cution time (less than 0.05 seconds) and the memory consumption is one of the
smallest ones, among the algorithms we tested. The last trait renders it ideal for
firmware servers that may simultaneously serve hundreds of IoT networks. Finally,
using the testbed that we implemented, we showcased that updating IoT networks

79

80 CHAPTER 7. CONCLUSION AND FUTURE WORK

incrementally (based on the delta scripts computed by Dfinder) can reduce both
the update time and energy consumption in the network up to 96%.

As future work, we plan to port our solution to other operating systems, such
as Zephyr RTOS, and other platforms. Besides, we want to extend our testbed and
evaluate it in a heterogeneous multihop network, which consists of many different
IoT boards and OSes. This way, we could find out the limitations that these
platforms may face (e.g.lack of support for a communication protocol) and try to
address these issues, offering workarounds (e.g. implementations using alternative
protocols). Besides, we plan to modify the upgrade process, so that the delta script
instructions can be bundled into distinct LwM2M messages and avoid the storage
of the entire delta script in the flash, before the reconstruction stage, rendering our
solution more space-efficient. Finally, we want to study why some modifications
in Contiki-NG (e.g. the insertion of a printf call) result in substantially larger
delta scripts than other modifications do. This way, we could try to mitigate these
effects and produce even smaller delta scripts for Contiki-NG platform.

Chapter 8

Acknowledgments

This research has been financed by the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innova-
tion, under the call RESEARCH – CREATE – INNOVATE (project code: T1EDK-
03389).

81

82

Bibliography

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replac-
ing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms,
2(1):53 – 86, 2004. The 9th International Symposium on String Processing
and Information Retrieval.

[2] Alberto Apostolico. The Myriad Virtues of Subword Trees. In Alberto Apos-
tolico and Zvi Galil, editors, Combinatorial Algorithms on Words, pages 85–96.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1985.

[3] K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragkiadakis.
Firmware over-the-air programming techniques for iot networks – a survey,
2020. Accessed: 2020-10-02.

[4] Jonathan Payne Arthur van Hoff. Generic Diff Format Specification, 1997.

[5] N. Asokan, T. Nyman, N. Rattanavipanon, A. Sadeghu, and G. Tsudik. As-
sured: Architecture for secure software update of realistic embedded devices.
IEEE Transactions On Computer-aided Design Of Integrated Circuits and Sys-
tems, pages 2290–2300, 2018.

[6] Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Hermann Foot,
Florian Grieskamp, Marvin Löbel, Oliver Magiera, Rosa Pink, David Piper,
and et al. sacabench.

[7] Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Hermann Foot,
Florian Grieskamp, Marvin Löbel, Oliver Magiera, Rosa Pink, David Piper,
and Christopher Poeplau. SACA Bench. April 2019. Publisher: Technische
Universität Dortmund.

[8] U. Banerjee, A. Wright, C. Juvekar, M. Arvind, and A. Chandrakasan. An
energy-efficient reconfigurable dtls cryptographic engine for securing internet-
of-things applications. IEEE Journal of Solid-state circuits, 54:2339–2352,
2019.

[9] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and search-
ing strings. In Proceedings of the Eighth Annual ACM-SIAM Symposium on

83

84 BIBLIOGRAPHY

Discrete Algorithms, SODA ’97, page 360–369, USA, 1997. Society for Indus-
trial and Applied Mathematics.

[10] F. Bodon and L. Rónyai. Trie: An alternative data structure for data mining
algorithms. Mathematical and Computer Modelling, 38:739–751, 2003.

[11] S. Brown and C. Sreenan. Software Updating in Wireless Sensor Networks: A
Survey and Lacunae. Journal of Sensor and Actuator Networks, pages 717–
760, 2013.

[12] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach
to reliable distribution of bulk data. ACM SIGCOMM Computer Communi-
cation Review, pages 56–67, 1998.

[13] A. Chlipala, J. Hui, and G. Tolle. Deluge: Data dissemination for network
reprogramming at scale. In Class project, Berkeley, University of California,
2004.

[14] Louis Coetzee, Dawid Oosthuizen, and Buhle Mkhize. An analysis of coap as
transport in an internet of things environment. 05 2018.

[15] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better external
memory suffix array construction. Journal of Experimental Algorithmics, 12,
2008.

[16] C. Dong and F. Yu. An efficient network reprogramming protocol for wireless
sensor networks. Computer Communications, 55, 2014.

[17] W. Dong, Y. Liu, C. Chen, J. Bu, C. Huang, and Z. Zhao. R2: Incremental
Reprogramming Using Relocatable Code in Networked Embedded Systems.
IEEE Transactions on Computers, 62:1837–1849, 2013.

[18] W. Dong, Y. Liu, X. Wu, L. Gu, and C. Chen. Elon: enabling efficient
and long-term reprogramming for wireless sensor networks. In Proc. of the
ACM SIGMETRICS international conference on Measurement and modeling
of computer systems - SIGMETRICS ’10, page 49. ACM Press, 2010.

[19] W. Dong, B. Mo, C. Huang, Y. Liu, and C. Chen. R3: Optimizing relocatable
code for efficient reprogramming in networked embedded systems. In Proc. of
the IEEE INFOCOM, pages 315–319, 2013.

[20] F. D’Souza and D. Panchal. Advanced encryption standard (aes) security
enhancement using hybrid approach. In Proceedings of the International Con-
ference on Computing, Communication and Automation (ICCCA), pages 647–
652, 2017.

[21] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic linking
for reprogramming wireless sensor networks. In Proc. of the 4th international

BIBLIOGRAPHY 85

conference on Embedded networked sensor systems - SenSys ’06, page 15. ACM
Press, 2006.

[22] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible op-
erating system for tiny networked sensors. In 29th Annual IEEE International
Conference on Local Computer Networks, pages 455–462, 2004.

[23] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Hydra: hybrid design for
remote attestation (using a formally verified microkernel). In Proceedings of
ACM WiSec, pages 99–110, 2017.

[24] M. Ersue, D. Romascanu, J. Schoenwaelder, and A. Sehgal. Management of
Networks with Constrained Devices: Use Cases, rfc7548. Technical report,
2015.

[25] M. Farooq and T. Kunz. Operating Systems for Wireless Sensor Networks: A
Survey. Sensors, pages 5900–5930, 2011.

[26] J. Fischer and Florian Kurpicz. Dismantling divsufsort. ArXiv,
abs/1710.01896, 2017.

[27] Andres Gomez. On-demand communication with the batteryless mirocard:
Demo abstract. In Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, SenSys ’20, page 629–630, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[28] Roberto Grossi. Suffix Trees and their Applications in String Algorithms.
1997.

[29] A. Hagedorn, D. Starobinski, and A. Trachtenberg. Rateless Deluge: Over-the-
Air Programming of Wireless Sensor Networks Using Random Linear Codes.
In 2008 International Conference on Information Processing in Sensor Net-
works (ipsn 2008), pages 457–466, 2008.

[30] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. SOS -A Dynamic
operating system for Sensor Networks. In Proc. of MobiSys, 2005.

[31] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-
and-space barrier in constructing full-text indices. SIAM J. Comput., 38:2162–
2178, 01 2009.

[32] J. Hu, Chun Jason Xue, Yi He, and Edwin H.-M. Sha. Reprogramming with
Minimal Transferred Data on Wireless Sensor Network. In Proc. of the 6th
International Conference on Mobile Adhoc and Sensor Systems, pages 160–
167, Macau, China, 2009. IEEE.

[33] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. Delta algorithms: An
empirical analysis. ACM Trans. Softw. Eng. Methodol., 7(2):192–214, April
1998.

86 BIBLIOGRAPHY

[34] S. Hyun, P. Ning, A. Liu, and W. Du. Seluge: Secure and DoS-Resistant Code
Dissemination in Wireless Sensor Networks. In 2008 International Conference
on Information Processing in Sensor Networks (ipsn 2008), pages 445–456,
2008.

[35] Oana Iova, Pietro Picco, Timofei Istomin, and Csaba Kiraly. Rpl: The routing
standard for the internet of things... or is it? IEEE Communications Magazine,
54:16–22, 12 2016.

[36] Jaein J. and D. Culler. Incremental network programming for wireless sensors.
In Proc. of the First Annual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks., pages 25–33, 2004.

[37] J. Jeong. Node-level Representation and System Support for Network Pro-
gramming, 2003.

[38] O. Kachman. Configurable Reprogramming Scheme for Over-theAir Updates
in Networked Embedded Systems, 2016.

[39] O. Kachman. Effective multiplatform firmware update process for embedded
low-power devices, 2018.

[40] O. Kachman and M. Balaz. Optimized differencing algorithm for firmware
updates of low-power devices. In 2016 IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems (DDECS), pages
1–4. IEEE, 2016.

[41] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array con-
struction. In Proceedings of the 30th International Conference on Automata,
Languages and Programming, ICALP’03, page 943–955, Berlin, Heidelberg,
2003. Springer-Verlag.

[42] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix
array construction. J. ACM, 53(6):918–936, November 2006.

[43] Toru Kasai, Gunho Lee, Hiroki Arimura, Arikawa Setsuo, and Kunsoo Park.
Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
Applications. In Proceedings of the 18th Annual Symposium on Combinatorial
Pattern Matching, volume 2089, pages 181–192, 2001.

[44] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time
construction of suffix arrays. In Ricardo Baeza-Yates, Edgar Chávez, and
Maxime Crochemore, editors, Combinatorial Pattern Matching, pages 186–
199, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[45] A. Kishore. Turning internet of things (iot) into internet of vulnerabilities
(iov) : Iot botnets, 2017.

BIBLIOGRAPHY 87

[46] Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix
arrays. Journal of Discrete Algorithms, 3(2):143–156, 2005. Combinatorial
Pattern Matching (CPM) Special Issue.

[47] D. Korn, J. MacDonald, J. Mogul, and K. Vo. The VCDIFF Generic Differ-
encing and Compression Data Format. RFC Editor, 2002. Published: RFC
3284.

[48] J. Koshy and R. Pandey. Remote incremental linking for energy-efficient re-
programming of sensor networks. In Proc. of the Second European Workshop
on Wireless Sensor Networks, 2005., pages 354–365, Istanbul, Turkey, 2005.
IEEE.

[49] J. Koshy and R. Pandey. VMSTAR: synthesizing scalable runtime environ-
ments for sensor networks. In SenSys 2005 - Proceedings of the 3rd Inter-
national Conference on Embedded Networked Sensor Systems, pages 243–254,
2005.

[50] Anis Koubaa, Mário Alves, and Eduardo Tovar. Ieee 802.15.4 for wireless
sensor networks: A technical overview. 01 2005.

[51] S. Kulkarni and L. Wang. MNP: Multihop Network Reprogramming Service
for Sensor Networks. In 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05), pages 7–16, 2005.

[52] Juha Kärkkäinen, Giovanni Manzini, and Simon Puglisi. Permuted longest-
common-prefix array. pages 181–192, 06 2009.

[53] P. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure Dissemination of
Code Updates in Sensor Networks. In 26th IEEE International Conference on
Distributed Computing Systems (ICDCS’06), 2006.

[54] K. Lehniger and S. Weidling. The Impact of Diverse Execution Strategies on
Incremental Code Updates for Wireless Sensor Networks. In Proceedings of the
8th International Conference on Sensor Networks, pages 30–39. SCITEPRESS
- Science and Technology Publications, 2019.

[55] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks.
In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2002.

[56] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A Self-Regulating Al-
gorithm for Code Propagation and Maintenance in Wireless Sensor Networks.
In Proceedings of the 1st Conference on Symposium on Networked Systems
Design and Implementation - Volume 1. USENIX Association, 2004.

[57] T. Liu, C. Sadler, P Zhang, and M. Martonosi. Implementing software on
resource-constrained mobile sensors: experiences with Impala and ZebraNet.

88 BIBLIOGRAPHY

In Proceedings of the 2nd international conference on Mobile systems, appli-
cations, and services - MobiSYS ’04, page 256. ACM Press, 2004.

[58] J. Macdonald. Xdelta - open-source binary diff. 2011.

[59] Udi Manber and Gene Myers. Suffix Arrays: A New Method for On-Line
String Searches. SIAM Journal on Computing, 22(5):935–948, October 1993.

[60] Michael A. Maniscalco and S. J. Puglisi. Faster lightweight suffix array con-
struction.

[61] Michael A. Maniscalco and Simon J. Puglisi. An efficient, versatile approach
to suffix sorting. ACM J. Exp. Algorithmics, 12, June 2008.

[62] Giovanni Manzini. Two space saving tricks for linear time lcp array compu-
tation. In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory
- SWAT 2004, pages 372–383, Berlin, Heidelberg, 2004. Springer Berlin Hei-
delberg.

[63] B. Mo, W. Dong, C. Chen, J. Bu, and Q. Wang. An efficient differencing
algorithm based on suffix array for reprogramming wireless sensor networks. In
Proc. of the 2012 IEEE International Conference on Communications (ICC),
pages 773–777, 2012.

[64] Nagendra Modadugu and Eric Rescorla. The design and implementation of
datagram tls. 12 2003.

[65] M. Mughal, X. Luo, A. Ullah, S. Ullah, and Z. Mahmood. A lightweight digital
signature based security scheme for human-centered internet of things. IEEE
Access, pages 31630–31643, 2018.

[66] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the 4th Workshop
on Embedded Networked Sensors, EmNets ’07, page 78–82, New York, NY,
USA, 2007. Association for Computing Machinery.

[67] D. Musser. Introspective sorting and selection algorithms. Softw. Pract. Exp.,
27:983–993, 1997.

[68] Guiqiang Ni, Yingzi Yan, J. Jiang, Jianmin Mei, Zhilong Chen, and Junxian
Long. Research on incremental updating. In ICC 2016, 2016.

[69] S. Nisha and M. Farik. RSA Public Key Cryptography Algorithm – A Re-
view. International Journal of Scientific & Technology Research, pages 187–
191, 2017.

[70] G. Nong, S. Zhang, and W. H. Chan. Linear suffix array construction by
almost pure induced-sorting. In 2009 Data Compression Conference, pages
193–202, 2009.

BIBLIOGRAPHY 89

[71] R. Panta and S. Bagchi. Hermes: Fast and Energy Efficient Incremental Code
Updates for Wireless Sensor Networks. In IEEE INFOCOM 2009 - The 28th
Conference on Computer Communications, pages 639–647. IEEE, 2009.

[72] R. Panta, S. Bagchi, and S. Midkiff. Zephyr: efficient incremental reprogram-
ming of sensor nodes using function call indirections and difference computa-
tion. In USENIX, 2009.

[73] Colin Percival. Naive differences of executable code, 2003.

[74] S. Pinto and N. Santos. Demystifying arm trustzone: A comprehensive survey.
ACM Computing Surveys, 2019.

[75] Prabal D., M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless
sensor network platform for detecting rare, random, and ephemeral events. In
IPSN 2005. Fourth International Symposium on Information Processing in
Sensor Networks, 2005., pages 497–502, 2005.

[76] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of suffix
array construction algorithms. ACM Comput. Surv., 39(2):4–es, July 2007.

[77] Sanguthevar Rajasekaran and Marius Nicolae. An elegant algorithm for the
construction of suffix arrays. Journal of Discrete Algorithms, 27:21 – 28, 2014.

[78] N. Reijers and K. Langendoen. Efficient Code Distribution in Wireless Sensor
Networks. In Proc. of the 2nd ACM International Conference on Wireless
Sensor Networks and Applications, pages 60–67. Association for Computing
Machinery, 2003.

[79] M. Sanvido, F.R. Chu, A. Kulkarni, and R. Selinger. nand Flash Memory and
Its Role in Storage Architectures. Proc. of the IEEE, 96:1864–1874, 2008.

[80] Klaus-Bernd Schürmann and Jens Stoye. An incomplex algorithm for fast
suffix array construction. Software: Practice and Experience, 37(3):309–329,
2007.

[81] Martin Senft. Suffix tree based data compression. In Proceedings of the 31st
International Conference on Theory and Practice of Computer Science, SOF-
SEM’05, page 350–359, Berlin, Heidelberg, 2005. Springer-Verlag.

[82] N. Shafi, K. Ali, and H. Hassanein. No-reboot and zero-flash over-the-air pro-
gramming for Wireless Sensor Networks. In Proc. of the 9th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communi-
cations and Networks (SECON), pages 371–379, 2012.

[83] J. Shi, J. Wan, H. Yan, and H. Suo. A survey of Cyber-Physical Systems. In
Proc. of the International Conference on Wireless Communications and Signal
Processing (WCSP), pages 1–6, 2011.

90 BIBLIOGRAPHY

[84] A. Shoufan and N. Huber. A fast hash tree generator for Merkle signature
scheme. In Proceedings of 2010 IEEE International Symposium on Circuits
and Systems, pages 3945–3948, 2010.

[85] Anish Man Singh Shrestha, Martin C. Frith, and Paul Horton. A
bioinformatician’s guide to the forefront of suffix array construction al-
gorithms. Briefings in Bioinformatics, 15(2):138–154, 2014. _eprint:
https://academic.oup.com/bib/article-pdf/15/2/138/562332/bbt081.pdf.

[86] T. Stathopoulos, J. Heidemann, and D. Estrin. A Remote Code Update Mech-
anism for Wireless Sensor Networks. Technical report, 2004.

[87] M. Stolikj, P. J. L. Cuijpers, and J. J. Lukkien. Patching a patch — software
updates using horizontal patching. In 2013 IEEE International Conference on
Consumer Electronics (ICCE), pages 647–648, 2013.

[88] Torsten Suel and Nasir Memon. Algorithms for delta compression and remote
file synchronization. 07 2003.

[89] Dingwen Tao, Sheng Di, and Franck Cappello. Exploration of pattern-
matching techniques for lossy compression on cosmology simulation data sets.
pages 43–54, 10 2017.

[90] Crossbow Technology. Mote In-Network Programming User Reference Version
20030315. Crossbow Technology, Inc.

[91] Walter F Tichy. The string-to-string correction problem with block moves.
ACM Transactions on Computer Systems (TOCS), 2(4):309–321, 1984.

[92] David Tracey and Cormac Sreenan. Oma lwm2m in a holistic architecture for
the internet of things. pages 198–203, 05 2017.

[93] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis,
The Australian National University, 1999.

[94] Y. Tseng, S. Ni, Y. Chen, and J. Sheu. The Broadcast Storm Problem in a
Mobile Ad Hoc Network. Wireless Networks, 8:153–167, 2002.

[95] Robert A. Wagner and Michael J. Fischer. The string-to-string correction
problem. J. ACM, 21(1):168–173, January 1974.

[96] B. Wang, Y. Chen, H. Gu, J. Yang, and T. Zhao. Two Energy-Efficient,
Timesaving Improvement Mechanisms of Network Reprogramming in Wireless
Sensor Network. In Embedded Software and Systems, pages 473–483. Springer
Berlin Heidelberg, 2005.

[97] C. Wilson. Sensors in medicine. The Western journal of medicine, 1999.

BIBLIOGRAPHY 91

[98] Minoru Yoshida, Kazuyuki Matsumoto, Qingmei Xiao, Xielifuguli Keranmu,
Kenji Kita, and Hiroshi Nakagawa. Extracting corpus-specific strings by using
suffix arrays enhanced with longest common prefix. In Information Retrieval
Technology, pages 360–370, Cham, 2014. Springer International Publishing.

[99] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli. Secure
firmware updates for constrained iot devices using open standards: A reality
check. IEEE Access, 2019.

