
A Mobile Application Aiming To Provide

Selected Content And Offline Experience to

Students

Georgios Parasyris

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Evangelos Markatos

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

A Mobile Application Aiming To Provide Selected Content And
Offline Experience to Students

Thesis submitted by
Georgios Parasyris

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Georgios Parasyris

Committee approvals:
Evangelos Markatos
Professor, Thesis Supervisor

Yannis Tzitzikas
Professor, Committee Member

Dimitris Plexousakis
Professor, Committee Member

Departmental approval:
Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, March 2020

admin
Stamp

Abstract

There has been a significant change on the way users access content during the
past decade, where a consistent increase on mobile device usage can be observed.
The mobile device market share increased from almost 1% during 2009 [18] to
54.34% in 2019 [19]. Users nowadays have multiple channels to access information
on the web since each one of them typically owns a number of devices.

In the meantime, it became apparent that device and OS tailored user ex-
perience and consistency is expected. Web and app development technologies
progressed during this journey ending up providing a variety of tools to developers
to accommodate the increasing need for mobile-friendly apps. While mobile apps
evolved, users were found to spent significantly more time using them instead of
accessing content via mobile browsers. Native device features revolutionised user
experience in mobile devices, resulting in richer and more personalised interaction
between users and their digital content.

This thesis proposes an end-to-end solution to deliver university-related con-
tent to students via a cross-platform mobile application. The solution includes a
website scrapper that generates data sets and stores them in a publicly accessible
folder within the Computer Science Department’s ecosystem. The application’s
implementation includes interchangeable data providers, in order to both consume
the generated data and account for future changes. The content delivered consists
of areas that are likely to be accessed daily by a typical student. The work pro-
posed in this thesis aims to create a new channel for students to access university
content and provide to them a richer user experience.

After reviewing the plurality of development options and presenting the ones
picked, the solution architecture details are provided. A high level description of
the user experience per module follows, presenting the proposed mobile-friendly
developed interfaces.

Εφαρμογή Για Κινητές Συσκευές Με Σκοπό Την

Προσφορά Επιλεγμένου Περιεχομένου Και

Εκτός-Σύνδεσης Εμπειρία Χρήστη σε Φοιτητές

Περίληψη

Κατά τη διάρκεια της τελευταίας δεκαετίας έχει αλλάξει σημαντικά ο τρόπος

πρόσβασης των χρηστών όσον αφορά το περιεχόμενο στο διαδίκτυο, όπου παρατη-

ρείται συνεχής αύξηση χρήσης κινητών συσκευών. Το μερίδιο αγοράς των κινητών

συσκευών αυξήθηκε από σχεδόν 1% το [18]2009 σε 54,34% το 2019[19]. Οι χρήστες

σήμερα έχουν στη διάθεσή τους πολλαπλά κανάλια πρόσβασης στο διαδίκτυο, μιας και

συνήθως ο καθένας τους έχει στην κατοχή του έναν αριθμό συσκευών.

Παράλληλα, έγινε φανερό ότι η εξατομικευμένη εμπειρία και συνέπεια ανά συσκευ-

ή και λειτουργικό σύστημα είναι χαρακτηριστικά που αναμένονται από τους χρήστες.

Οι τεχνολογίες ανάπτυξης ιστοσελίδων και εφαρμογών εξελίχθηκαν κατά τη διάρκεια

αυτής της διαδρομής, καταλήγοντας να παρέχουν μια ποικιλία εργαλείων, συμβάλ-

λοντας στην κάλυψη της αυξανόμενης ανάγκης για εφαρμογές φιλικές προς κινητές

συσκευές. Ακολουθώντας την εξέλιξη των εφαρμογών για κινητά, παρατηρήθηκε ότι

οι χρήστες αφιερώνουν πολύ περισσότερο χρόνο χρησιμοποιώντας εφαρμογές αντί

των προγραμμάτων περιήγησης για να αποκτήσουν πρόσβαση στο περιεχόμενο. Τα

native χαρακτηριστικά προκάλεσαν επανάσταση στην εμπειρία χρήσης σε κινητές συ-
σκευές, με αποτέλεσμα την πιο πλούσια και πιο εξατομικευμένη αλληλεπίδραση μεταξύ

χρηστών και του ψηφιακού τους περιεχομένου.

Η παρούσα εργασία προτείνει μια μια end-to-end λύση για την παροχή περιεχο-
μένου σε φοιτητές μέσω εφαρμογής συμβατής με πολλαπλές πλατφόρμες. Η λύση

περιλαμβάνει πρόγραμμα ανίχνευσης ιστότοπου που εξάγει δεδομένα και τα αποθηκε-

ύει σε έναν κοινόχρηστο φάκελο εντός του οικοσυστήματος του Τμήματος Επιστήμης

Υπολογιστών. Η υλοποίηση της εφαρμογής περιλαμβάνει εναλλάξιμους παρόχους δε-

δομένων, προκειμένου να καταναλώσει τα παραγόμενα δεδομένα και να προβλέψει για

μελλοντικές αλλαγές. Το περιεχόμενο που παραδίδεται αποτελείται από ενότητες που

είναι πιθανό να προσεγγίζονται καθημερινά από έναν τυπικό φοιτητή. Η εργασία που

προτείνεται σε αυτή τη διατριβή στοχεύει στην προσθήκη ενός νέου καναλιού πρόσβα-

σης πανεπιστημιακού περιεχομένου και στη δημιουργία μιας πλουσιότερης εμπειρίας

για τους χρήστες τους.

Μετά την ανασκόπηση των επιλογών όσον αφορά την ανάπτυξη εφαρμογών και

την παρουσίαση εκείνων που επιλέχθηκαν, παρατίθεται η αρχιτεκτονική της προτει-

νόμενης λύσης. Ακολουθεί μια παρουσίαση σε υψηλό επίπεδο της εμπειρίας χρήστη

ανά ενότητα, παρουσιάζοντας τις προτεινόμενες mobile-friendly διεπαφές.

Acknowledgements

First and foremost I would like to thank Prof. Evangelos Markatos for the
continuous support and guidance I received through this journey.

Secondly I would like to thank Mrs Evaggelia Kosma and Prof. Georgios
Georgakopoylos for their understanding and patience regarding the remote status
during certain parts of my studies.

I have the utmost respect for the Computer Science Department of Univer-
sity of Crete, as a university and as an organisation, and I would like to state
that I recognise and advertise the fact that I have been treated well during both
my Undergraduate and Postgraduate studies along with being prepared for this
competitive market.

Moreover, I would like to thank Marco Ottolini - Styloola CEO/CTO during
my time at the company - and Nick Desjarnis - my manager in Wealth Dynamix
- for never raising issues that would affect my studies.

A shout-out to Yannis Vardas and Stylianos Piperakis for never letting me get
consumed by the business side, ensuring that there is (some) work-studies balance.

I would like to also thank Tilemahos Argiris for being a great designer and
spending the time to advise on the UX aspect of the application as well as designing
figures included in this Thesis.

Last but not least, I am more than grateful to my parents Evripidis and Lili
and to my sister Vasia, they have done their very best to support me during this
double-goal journey.

Contents

Table of Contents i

List of Tables iii

List of Figures v

Listings vii

1 Introduction 1

1.1 Overview - Identifying the gap . 1

1.2 Thesis structure . 2

2 Background 5

2.1 Website crawler . 5

2.2 Mobile Applications . 5

2.2.1 App Types . 5

2.2.1.1 Native App . 5

2.2.1.2 Hybrid App . 6

2.2.1.3 Progressive Web App (PWA) 7

2.2.2 Front-End Technology - Options 7

3 System Modeling and Implementation Details 9

3.1 Modules and Data Structures . 9

3.1.1 Announcements - News . 9

3.1.2 Contact Information . 10

3.1.3 Courses . 10

3.1.4 Documents . 11

3.1.5 Map . 11

3.1.6 Model Program . 11

3.1.7 People . 12

3.1.8 Schedule . 12

3.2 Server-side . 12

3.2.1 Python Website Crawler . 13

3.2.1.1 Main Function . 15

i

3.2.1.2 Crawl module overview 16
3.2.2 REST Test Server . 17

3.2.2.1 Node.js Server Structure 17
3.3 Front-end . 18

3.3.1 API Library . 19
3.3.1.1 Module Classes . 20
3.3.1.2 Data Providers . 21
3.3.1.3 Data Services . 25

3.3.2 Helper Services . 28
3.3.3 Application Components . 29

4 User Interface 31
4.1 Announcements - News . 31
4.2 Contact Information . 33
4.3 Courses . 34
4.4 Documents . 35
4.5 Map . 36
4.6 Model Program . 37
4.7 People . 38
4.8 Schedule . 40

5 Summary and Future work 43
5.1 Summary . 43
5.2 Future work . 43

Bibliography 45

ii

List of Tables

3.1 Announcement/News Data Structure 9
3.2 Contact Data Structure . 10
3.3 Course Data Structure . 10
3.4 Document Data Structure . 11
3.5 Room Data Structure . 11
3.6 Model Program Semester Data Structure 11
3.7 Person Data Structure . 12
3.8 Schedule Data Structure . 12
3.9 Configuration Model . 14

iii

iv

List of Figures

2.1 Native application flow [20] . 6
2.2 Hybrid application flow [20] . 7
2.3 Ionic Framework wrapping Angular 8

3.1 Web scrapping process overview . 13
3.2 API library overview . 20
3.3 File structure example . 29
3.4 Data preparation for display purposes 30

4.1 Home page - Announcements tab 32
4.2 Home page - News tab . 32
4.3 Contact List page - Search . 33
4.4 Course List page - Search . 34
4.5 Course List page - Details . 34
4.6 Document List page - Search . 35
4.7 Map page . 36
4.8 Model Program page . 37
4.9 People page - Details . 38
4.10 People page - Filters . 39
4.11 Schedule page - Week swipe . 40
4.12 Schedule page - Search . 41
4.13 Schedule page - Landscape mode 41

v

vi

Listings

3.1 Configuration file example . 14
3.2 Version file example . 15
3.3 Python - main function . 15
3.4 Python - crawl module . 16
3.5 Node.js - app.js . 17
3.6 Node.js - Mock routes . 17
3.7 Node.js - Mock functions . 18
3.8 App configuration example . 19
3.9 Front-end API - BaseData class . 20
3.10 Front-end API - ISerializer interface 20
3.11 Front-end API - Document class 21
3.12 Front-end API - StaticProvider class 22
3.13 Front-end API - RESTProvider class 24
3.14 Front-end API - DataService class 26
3.15 Front-end API - Module service class example 28
3.16 Fron-tend API - CallHandler Service class 28

vii

viii

Chapter 1

Introduction

Over the past few years, users have been found to spend more and more time
on their mobile devices using apps instead of accessing websites. This increasing
usage is being leveraged by organisations to keep their audience better engaged.
Following the same paradigm, top universities utilize mobile apps as a means for
their students to access university-related user-tailored content. This work aims to
bridge this gap regarding Computer Science Department of University of Crete, to
provide a new way to access educational content while leveraging mobile devices’
native capabilities. The next section will describe the problem and then this
chapter concludes with the thesis structure.

1.1 Overview - Identifying the gap

Nowadays there are multiple ways to deliver content to end-users, the most com-
mon one being websites. Web development has greatly progressed from static web-
sites to fully Responsive Web Design (RWD), initially using CCS3 media queries
and later utilizing libraries that have taken RWB to the next level (e.g. Bootstrap
[3]). This has given the developers the means to design for a range of devices,
bringing information to desktop computers, tablets and mobile phones through
the same code-base.

On the other hand, users have been observed to be turning away from the
browser, spending almost 86% of their time on mobile apps while using mobile
devices, a number that rises almost 14% per year [26]. This has lead the industry
to separate the purpose of each channel, using websites to increase the market-
ing share and the target audience, while apps are being used to offer a different
user experience (UX) to existing users. Usually a subset of content and services
is available through mobile apps, enriched with the native feel and look and the
convenience of offline data access.”Well-designed apps aren’t just small desktop
apps or sites, they focus on mobile scenarios and take full advantage of the mobile
device capabilities. As a result, they may provide only a subset of the full desktop
or Website functionality, or even completely different functionality”[24].

1

2 CHAPTER 1. INTRODUCTION

Mobile apps present a number of advantages over responsive websites:

• mobile-friendly gestures that are considered a given nowadays in mobile user
experience, ”swipe” and ”long-press” being the key ones,

• native capabilities, where offline storage, geo-location and push notifications
being the most important ones,

• the convenience of the content being ”one-button-away” either in the app
drawer or on the home screen of the mobile device, which bundled with
offline-first approach creates the illusion of instant access to the desired con-
tent.

The question ”Responsive web app vs mobile app” is a common one. Often
a decision has to be made to pick one of the two where both is not an option.
This popular dilemma has been investigated and the most popular mobile app
disadvantage is the cost , the amount of investment required to develop an app
[12] [21] [23] [27] [28].

Bringing the above to the Computer Science Department of University of Crete
ecosystem, the work in this thesis aims to serve a subset of the content through a
mobile app to the students. The areas that have been selected for this purpose are
(i) announcements and news, (ii) general purpose contact information, (iii) courses,
(iv) documents, (v) map-related information, (vi) model program, (vii)people and
their contact information - where available - and (viii) current semester’s schedule.
These areas are to be referred to as modules in Chapter 3.

The last part of the problem resides on the data source side. Publicly available
REST APIs do not exist and a constraint regarding this work was to not add to
the maintenance responsibilities by deploying another server. A python crawler
has been developed in order to overcome this obstacle and deliver the content to
the app.

1.2 Thesis structure

The rest of the thesis is organized in four (4) sections as indicated in the table of
contents:

• The second section will provide information related to the technologies this
implementation is based on.

• The third section will dive into the technical implementation of the system
end-to-end. It includes details related to the architecture of the three distinct
components of the solution: (i) the python crawler, (ii)the front-end data
API and (iii) the app implementation.

1.2. THESIS STRUCTURE 3

• The fourth section will present a high level description of the solution, demon-
strating the algorithm to feed data to the app along with providing data and
user interface(UI) details for each module included.

• Finally, the fifth section will summarize this thesis and discuss future work
directions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this section, the key technologies utilized for the proposed implementation are
presented.

2.1 Website crawler

As stated in section 1.1, a low-maintenance data source was included in the re-
quirements of this solution. Hence, a website crawler was implemented.

The language of choice was Python[9] due to the range of libraries available
for web scraping. Three libraries were considered regarding the web crawling
functionality: (i)Scrapy [13], (ii) Selenium[14] and (iii)BeautifulSoup[8]. All of
them are open-source projects.

The last one, BeautifulSoup, was picked for this solution. The library is being
imported locally, along with all the python-related external dependencies, all of
them being part of the submitted repository. The crawler aspect of the solution
has been tested in the environment it will run in, the department’s Unix machines,
and has been found to be fully compatible. More details are presented in section
3.2.

2.2 Mobile Applications

This is an era of smartphones and mobile apps, as thousands of apps are launched
in app stores daily [22]. But they are not all built the same way, there are at least
3 different types of apps, which are listed in section 2.2.1.

2.2.1 App Types

2.2.1.1 Native App

Native apps are developed targeting a single mobile operating system (OS) exclu-
sively, thus they are native for that particular platform or device [7].

5

6 CHAPTER 2. BACKGROUND

Main advantages of native apps is the high performance and the consistent user
experience since developers use native UI. They are usually accessible through the
equivalent app store.

The main disadvantage regarding native apps is the cost. Due to the need of
developing apps for each OS, organisations end up facing almost doubled develop-
ment effort, maintenance responsibilities and price.

An example of a native application flow can be seen in Figure 2.1:

Figure 2.1: Native application flow [20]

2.2.1.2 Hybrid App

Hybrid apps are built using web technologies,with HTML5, CSS and Javascript
playing a crucial role. This itself increases the development options significantly,
since there are a number of Single Page Application (SPA) frameworks available,
most popular of which are the following: (i)Angular [1], (ii)React[11], (iii)Ember[4]
and vi)Vue [16].

If a Hybrid is based on an SPA, usually Apache Cordova[2] is being used to
provide access to native functionality.

2.2. MOBILE APPLICATIONS 7

An example of a hybrid application flow utilizing Cordova can be seen in Fig-
ure 2.2:

Figure 2.2: Hybrid application flow [20]

Apart from Cordova, Ionic[5], React-Native[10] and Xamarin[17] frameworks
can be used for developing a hybrid app, all of them being open-sourc projects
and providing cross-platform capabilities, meaning the app can target multiple
operating systems while having one code-base.

2.2.1.3 Progressive Web App (PWA)

A PWA is positioned between a common web application and a hybrid app. Fol-
lowing the typical website paradigm, PWAs are hosted on a server and distributed
using URLs instead of app stores.
They utilize Service Workers in order to provide offline user experience. They meet
their limitation on the native part, where access is only permitted to device fea-
tures supported by modern web browsers e.g. camera, audio recording and video
capture.[25].

2.2.2 Front-End Technology - Options

Following the presentation of the different mobile app types, this section will
present the choices that were made regarding the proposed solution.

8 CHAPTER 2. BACKGROUND

Due to the app not being demanding in terms of performance, since it resembles
more a store application following the list-details example per module rather than
a graphic intensive game, the proposed app for this thesis is a hybrid one.

The cross-platform framework of choice is Ionic which, as stated above, is an
open-source project. Ionic wraps Apache Cordova on the native side and provides
flexibility on the framework the SPA is developed in, where the choice was the lat-
est version of the Angular Framework. Angular was introduced initially in 2010 as
AngualrJS and was completely refactored to a different framework in 2016 which
is usually referred to as Angular2+. Applications are developed in both versions
today, which adds to the credibility and the lifespan of the framework.

Figure 2.3: Ionic Framework wrapping Angular

Chapter 3

System Modeling and
Implementation Details

This chapter provides details regarding the system implementation. Firstly, data
models per module are presented, followed by the python crawler description. In
Section 3.3 the front-end side is presented, providing details on the API Library
implementation, the helper services and the application components developed
within this proposal.

3.1 Modules and Data Structures

3.1.1 Announcements - News

Announcement and news entities share the very same structure. An announce-
ment or a news entity can have its state set to ”pinned” or ”important”, otherwise
the item is considered to be part of the feed with state set to ”stream”.

Field Description

entityId: string Id defined in the HTML element
title gr: string Title in Greek
title en: string Title in English
description gr: string Description in Greek
description en: string Description in English
date: string Date posted
url: string Unique announcement/news URL
state: enum Pinnied, important or stream state

Table 3.1: Announcement/News Data Structure

9

10 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

3.1.2 Contact Information

The module in this section includes the department’s general contact information.

Field Description

entityId: string Id defined in the HTML element
title gr: string Title in Greek
title en: string Title in English
description gr: string Description in Greek
description en: string Description in English
date: string Date posted
url: string Unique announcement/news URL

Table 3.2: Contact Data Structure

3.1.3 Courses

Courses module includes both undergraduate and postgraduate courses.

Field Description

area code gr: string Course area code in Greek
area code en: string Course area code in English
area name gr: string Course name code in Greek
area name en: string Course area code in English
code gr: string Course code in Greek
code en: string Course code in English
name gr: string Course name in Greek
name en: string Course name in English
program gr: string Course program in Greek
program en: string Course program in English
description gr: string Course Description in Greek
description en: string Course Description in English
prerequisites gr: complex Prerequisite courses in Greek
prerequisites en: complex Prerequisite courses in English
suggested gr: complex Suggested courses in Greek
suggested en: complex Suggested courses in English
url: string Unique course URL
ects: string ECTS assigned to the course
email: complex[] Emails related to the course

Table 3.3: Course Data Structure

3.1. MODULES AND DATA STRUCTURES 11

3.1.4 Documents

The document collection consists of the items listed in
”https://www.csd.uoc.gr/index.jsp?content=secretariat services#Entypa” web-
site - there is no English version available although the groundwork for it already
exists. Each document can have different source types, ”WORD” and ”PDF”
being the common ones.

Field Description

label gr: string Document label in Greek
label en: string Document label in English
sources gr: complex Crawled sources in the Greek version

of the website
sources en: complex Crawled sources in the English version

of the website

Table 3.4: Document Data Structure

3.1.5 Map

Map module has been added in order to provide info related to the rooms in the
building of the Computer Science Department. This collection is not the result of
website scrapping as it consists of a room list and each room’s map coordinates.
Field Description

title gr: string Room title in Greek
title en: string Room title in English
aliases: string [] Other names the room is known as
floor: number The floor the room is present at
coords: number [] Room’s exact latitude and longitude

coordinates

Table 3.5: Room Data Structure

3.1.6 Model Program

Model program collection includes the suggested route for undergraduates to com-
plete the program in eight (8) semesters.
Field Description

title gr: string Semester title in Greek
title en: string Semester title in English
courses gr: complex [] Greek variation of courses included in

the semester.
courses en: complex [] English variation of courses included in

the semester.

Table 3.6: Model Program Semester Data Structure

12 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

3.1.7 People

”People” module pulls data from different categories, (i)academic staff,
(ii)administrative personnel, (iii)emeriti faculty, (iv)honorary doctors, (v)lab
personnel, (vi)special teaching staff and (vii)visiting instructor member are
aggregated into one collection. The categories drive the ”position en” and
”position gr” fields which can then be used as filters in equivalent page, as shown
in section 4.7.

Field Description

ID: string Id defined in the HTML element
name gr: string Name in Greek
name en: string Name in English
description gr: string Description in Greek
description en: string Description in English
position gr: string Person position in Greek
position en: string Person position in English
email: string Person’s email
img?: string Person image
url?: string Person’s website

Table 3.7: Person Data Structure

3.1.8 Schedule

Schedule collection provides the weekly schedule for the current semester.

Field Description

code gr: string Course code in Greek
code en: string Course code in English
name gr: string Course name in Greek
name en: string Course name in English
schedule gr: complex Weekly schedule in Greek
schedule en: complex Weekly schedule in English

Table 3.8: Schedule Data Structure

3.2 Server-side

As mentioned in Introduction - Defining the problem, the requirements included
the server-side to not require maintenance.

This resulted into a python crawler to be developed and tailored towards the
current Computer Science Department website content, both in Greek and English,
as described in Section 3.2.1. Aiming to accommodate future changes regarding

3.2. SERVER-SIDE 13

data sources, a REST API test server is presented in section 3.2.2, responsible
for serving demo data to the front-end, demonstrating that the solution is flexible
enough to consume data from different data sources.

3.2.1 Python Website Crawler

The python crawler is developed to be run within the Computer Science infras-
tructure, hence a dedicated account has been created for that purpose.

The crawling process, an overview of which can is presented in Figure 3.1,
gets triggered by a cron job on a predetermined timeslot each day.

Figure 3.1: Web scrapping process overview

1. Initially all available configuration files are gathered, the structure of which
can be seen in Listing 3.1.

2. Following each configuration, the python crawler gets data for every language
present in the ”url” field.

3. Data gathered in step 2 are being appended to the file determined as ”out-
putFileName” which is considered a new dataset candidate. This leads to
the option of different configurations updating the same file e.g. the people
collection is the target of a number of configuration files.

14 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

4. Dataset candidates are being compared to the equivalent release versions
(releases are candidates from a previous crawl invocation). In case they are
found not to be identical, the candidate file gets moved to the release set
and the module’s version gets updated.
⇒ There is one candidate per module.
⇒ Each release is attached to a version, which is the current module version.

5. In case at least one module is updated, the version of the version.json is
updated.

Field Description

module: string This field identifies the module the
configuration belongs to. Multiple
configurations can be included in the
same module.

url: string Key-value collection where available
languages are the keys and the target
URLs that need to be crawled are the
values

outputFileName: string The file where the result of crawling
based on the current configuration has
to be appended.

type: string - optional This field identifies the sub-module
type.

Table 3.9: Configuration Model
Configuration file example:

1 {

2 "module": "people",

3 "type": "administrative_personnel",

4 "url": {

5 "gr": "https: // www.csd.uoc.gr/CSD/index.jsp?

content=administrative_personnel&openmenu=demoAcc2&lang=g

",

6 "en": "https: // www.csd.uoc.gr/CSD/index.jsp?

content=administrative_personnel&openmenu=demoAcc2&

lang=en"

7 },

8 "outputFileName": "people.json"

9 }

Listing 3.1: Configuration file example

Versions File example:

3.2. SERVER-SIDE 15

1 {

2 "_v": "0.0.7",

3 "modules": {

4 "announcements": "0.0.1",

5 "contacts": "0.0.2",

6 "courses": "0.0.2",

7 "documents": "0.0.1",

8 "model-program": "0.0.2",

9 "news": "0.0.1",

10 "people": "0.0.4",

11 "schedule": "0.0.2"

12 }

13 }

Listing 3.2: Version file example

3.2.1.1 Main Function

1 configs = os.listdir(DEFAULT_CONFIG_PATH)

2 newKeys = {}

3 for config in configs:

4 configOptions = json_load_byteified(open(DEFAULT_CONFIG_PATH

+ config))

5 moduleName = configOptions['module ']
6 sourceFile = DEFAULT_CANDIDATE_PATH + configOptions['module ']

+ '.json'
7 if shouldUpdateRelease(DEFAULT_CANDIDATE_PATH + configOptions

['outputFileName '], DEFAULT_RELEASE_PATH + configOptions['
outputFileName ']):

8 currentVersion = None

9 try:

10 currentVersion = increment_ver(

11 versions['modules '][configOptions['module ']])
12 except (AttributeError , KeyError):

13 currentVersion = "0.0.1"

14 if os.path.isfile(sourceFile) and os.stat(sourceFile).

st_size != 0:

15 # print('copying ...')
16 shutil.move(os.path.join(sourceFile),

17 os.path.join(DEFAULT_RELEASE_PATH +

configOptions['module '] + '.json'))
18 newKeys[moduleName] = currentVersion

19 if(len(newKeys.keys()) > 0):

20 versions['_v'] = '0.0.1 ' if '_v' not in versions else

increment_ver(

21 versions['_v'])
22 for key in newKeys:

23 versions['modules '][key] = newKeys[key]

24 with open(DEFAULT_VERSION_PATH , 'w') as f:

25 json.dump(versions , f, indent=4, ensure_ascii=False ,

sort_keys=True)

Listing 3.3: Python - main function

16 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

3.2.1.2 Crawl module overview

In this section an overview of the crawl module is provided. As mentioned in
Section 3.2.1, the configuration files hold a set of URLs - one per language. After
retrieving the HTML response for a language version, then - based on the module
provided by the configuration - a module-tailored process prepares the data that
end up in the pre-defined output file.

1 def crawlModule(configPath):

2 with open(configPath) as json_data_file:

3 config = json_load_byteified(json_data_file)

4 module = config['module ']
5 outputFile = config['output ']
6 retdata = []

7 firstDone = False

8 for lang in config['url']:
9 html = config['url'][lang]

10 r = requests.get(html)

11 c = r.content.decode('utf -8').replace (...).encode('
utf -8')

12 parser = config['parser '] if 'parser ' in config else

'html.parser '
13 soup = BeautifulSoup(c, parser)

14 if module == "people":

15 ...

16 if module == "schedule":

17 ...

18 if module == "contacts":

19 ...

20 if module == "model -program":

21 ...

22 if module == "courses":

23 ...

24 if module == "documents":

25 ...

26 if module in ['announcements ', 'news']
27 ...

28 # check if file exists , read it

29 if os.path.isfile(outputFile) and os.stat(outputFile).st_size

!= 0:

30 olddata = json_load_byteified(open(outputFile))

31 retdata = retdata + olddata

32 with open(outputFile , 'w') as f:

33 json.dump(retdata , f, indent=4, ensure_ascii=False ,

sort_keys=True)

Listing 3.4: Python - crawl module

3.2. SERVER-SIDE 17

3.2.2 REST Test Server

A Node.JS server has been included in the implementation to ensure the flexibility
and the abstraction of the data. This has been developed while believing that in
the future, when REST APIs are available, a large-scale refactoring would not be
required.

The server has been created through utilizing a generator library, Sventech Node.js
generator[15].

3.2.2.1 Node.js Server Structure

Server.js

1 var express = require('express '),
2 mongoose = require('mongoose '),
3 app = express (),

4 cors = require('cors'),
5 { router } = require('./api/utilities '),
6 responseHanlder = require('./api/middleware/responseHandler ');
7
8 /* setting port */

9 var port = process.env.PORT || 5000;

10 // Initialize the modules

11 const modules = require('./api/modules ');
12 mongoose.connect('mongodb: // localhost/demo', { useNewUrlParser:

true }); // connect to our database

13
14 app.use(cors());

15 app.use(router);

16 app.use(responseHanlder);

17
18
19 // port attached

20 app.listen(port);

21 console.log('Node JS server listening to port ' + port);

Listing 3.5: Node.js - app.js

Mock Routes

1 /**

2 * ROUTES FOR MODULE: MOCKS

3 */

4 const { router } = require('../../ utilities ');
5 const mockFunctions = require('./ functions ');
6
7 ...

8
9 router.post('/mock', createMock);

10 router.get('/mock/: collection /:id', retrieveMock);

11 router.get('/mock/: collection ', retrieveMock);

12 router.put('/mock/: mockId ', updateMock);

18 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

13 router.delete('/mock/: mockId ', deleteMock);

Listing 3.6: Node.js - Mock routes

Mock Module Functions

1 /**

2 * FUNCTIONS FOR MODULE: MOCKS

3 */

4 const create = (req , res , next) => {

5 ...

6 }

7
8 const retrieve = (req , res , next) => {

9 if (req.params.hasOwnProperty('collection ')) {

10 let rawdata = require('./ csdExports/' + req.params.collection

+ '.json');
11 let collection = JSON.parse(JSON.stringify(rawdata));

12 if (req.params.hasOwnProperty('id')) {

13 res.locals.data = collection.find(i => i.id == id);

14 next();

15
16 }

17 else {

18 res.locals.data = collection;

19 next();

20 }

21
22 }

23 }

24
25 const update = (req , res , next) => {

26 ...

27 }

28
29
30 const _delete = (req , res , next) => {

31 ...

32 }

33
34 module.exports = {

35 create ,

36 retrieve ,

37 update ,

38 delete: _delete

39 };

Listing 3.7: Node.js - Mock functions

3.3 Front-end

On the application side the decision msfr was to utilize Angular and Cordova in
order to target more devices, giving the application cross-platform capabilities.

3.3. FRONT-END 19

This lead to the Ionic framework to be selected for development reasons specif-
ically because of it’s ability to wrap both Angular and Cordova, and deliver a
mobile hybrid app while providing the option of deploying a PWA. Also, Ionic
framework ensures that the look and feel of the app follows the OS-related styling
guidelines.

The front-end implementation has been divided into three parts, the API Library
- that handles the incoming data -, the helper services that have been developed
to overcome certain obstacles and the UI Components that are responsible for
consuming said data.

In Listing 3.8 a typical app configuration file is presented which demonstrates how
modules can be enabled and point to a specific data source.

1 {

2 "dataSources": {

3 "rest": {

4 "enabled": true ,

5 "url": "http:// localhost:5000"

6 },

7 "static": {

8 "enabled": true ,

9 "url": "https: // www.csd.uoc.gr /~ folderServingData/releases"

10 }

11 },

12 "modules": {

13 "announcements": {

14 "enabled": true ,

15 "source": "static"

16 },

17 "documents": {

18 "enabled": true ,

19 "source": "static"

20 },

21 // populate foreach module

22 }

23 }

Listing 3.8: App configuration example

3.3.1 API Library

The API Library has been developed in order to be able to implement inter-
changeable services and feed data arriving from different sources. This level of
abstraction and flexibility is achievable through the separation between services
that handle the data and the data provider types.

20 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

Figure 3.2: API library overview

3.3.1.1 Module Classes

Each module has an equivalent class that casts the incoming data and ensures
that the structure consumed by the UI is the expected one. The classes extend the
BaseData class which consits of a static ISerializer property. This interface forces
each module class to implement a ”fromJson” and a ”toJson” method in order to
properly cast data.

1 export class BaseData {

2 public static serialiser: ISerializer<BaseData>;

3 }

Listing 3.9: Front-end API - BaseData class

1 export interface ISerializer<T> {

2 fromJson(json: any): T;

3 toJson(resource: T): any;

4 }

Listing 3.10: Front-end API - ISerializer interface

3.3. FRONT-END 21

A module class example, the Document class, is presented in Listing 3.11:

1 export class Document extends BaseData {

2 constructor(

3 public _id: string ,

4 public label: string ,

5 public source: object ,

6 public type?: ModuleType // enum

7) {

8 super();

9 }

10
11 public static serialiser = {

12
13 /**

14 * Cast a JSON object to Document class

15 * @param obj: JSON object

16 */

17 fromJson(obj: any): Document {

18 return new Document(

19 obj._id ,

20 obj.label ,

21 obj.source ,

22 ModuleType.documents

23);

24 },

25
26 /**

27 * Cast Document class to JSON object

28 */

29 toJson(item: Document): any {

30 return {

31 _id: item._id ,

32 label: item.label ,

33 source: item.source ,

34 type: item.type

35 };

36 }

37 };

38
39 public toJson (): any {

40 Document.serialiser.toJson(this);

41 }

42 }

Listing 3.11: Front-end API - Document class

3.3.1.2 Data Providers

There are two (2) distinct data providers included in the solution:

• Static Data Provider

• REST Data Provider

22 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

Static Data Provider

Serving the need for no server actually included in the implementation
and the python crawler being developed to bridge the gap between webpage data
and the absence of REST APIs, static data provider is necessary on the front-end
side.
This provider mirrors the python crawler behaviour:

1. On startup, if at least on of the modules in the app configuration is set to
use the static provider, then the version file is retrieved.

2. The retrieved file is checked against the local one. If a module version is
different - or non existent in the local version file - and is set to use the static
provider, then this module is marked as needed to be updated. In case the
local version file is inaccessible (e.g. initial run), then all the related modules
are marked for update.

3. When the module service (e.g. PeopleService) is being instantiated for the
first time, and the related module has been marked for update, then the data
for this collection are retrieved from the remote dataset (e.g. people.json).

• If the collection already exists, it is being fully replaced, ensuring that
the application is updated with the latest data.

It’s worth mentioning that StaticProvider utilizes PouchDB to store data on the
device, ensuring the offline user experience.

1 @Injectable ()

2 export class StaticProvider<T> extends DataProvider<T> {

3
4 proxyPath: string = 'releases ';
5 baseKey: string = 'csd_';
6 public mandatoryUpdate: boolean = false;

7 offlineDb: PouchDBDataProvider;

8 constructor(

9 public route: string ,

10 public module: string ,

11 private callhandler: CallHandlerService ,

12) {

13 super();

14 this.offlineDb = ServiceLocator.injector.get(

PouchDBDataProvider);

15 this.data$ = new BehaviorSubject<any>(this.data);

16 this.mandatoryUpdate = this.checkRetrieveState(this.module ,

this.baseKey);

17 }

18
19 getSignle(id: string): Observable<T []> {

20 return from(this.offlineDb.retrieve(this.module , { id }));

21 }

22

3.3. FRONT-END 23

23 getSignleByField(field: string , value: string): Observable<T> {

24 return from(this.offlineDb.retrieveByField(this.module , field

, value));

25 }

26
27
28 getAll (): Observable<T []> {

29 const ret = new Promise<T []>(async (resolve , reject) => {

30 if (this.mandatoryUpdate) {

31 try {

32 const data: any = await this.sendRequest('GET', `${
this.proxyPath }/${this.route}`, {});

33 await this.offlineDb.updateCollection(this.module , data

);

34 this.updateData(data , resolve);

35 }

36 catch (err) {

37 throw Error(err);

38 }

39 }

40 else {

41 let response;

42 try {

43 response = await this.offlineDb.retrieve(this.module);

44 this.updateData(data , resolve);

45 }

46 catch (err) {

47 response = null;

48 }

49 if (response == null) {

50 const data: any = await this.sendRequest('GET', `${
this.proxyPath }/${this.route}`, {});

51 await this.offlineDb.updateCollection(this.module , data

);

52 this.updateData(data , resolve);

53 }

54 }

55 });

56 return from(ret);

57 }

58
59 private sendRequest(method , url , payload): Promise<any> {

60 // ... submit request through the callhandler

61 }

62
63 async updateCollection(module: string): void {

64 try {

65 const data = await this.getAll ().toPromise ();

66 this.offlineDb.updateCollection(this.module , data);

67 this.mandatoryUpdate = false;

68 localStorage.setItem(`static_retrieve_${this.module}`, '
false ');

69 }

70 catch (err) {

24 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

71
72 }

73 }

74
75 private checkRetrieveState(module: string , baseKey: string):

boolean {

76 const retrieveState = localStorage.getItem(`static_retrieve_$
{module}`);

77 if (retrieveState != null) {

78 const moduleState = JSON.parse(retrieveState);

79 return moduleState || false;

80 }

81 return false;

82 }

83
84 private updateData(data: T[], callback: any): void {

85 this.data = data;

86 this.data$.next(data);
87 callback(this.data);

88 }

89 }

Listing 3.12: Front-end API - StaticProvider class

REST Data Provider

In REST provider implementation, every call is handled by the callhan-
dler instance provided. It has been included in the solution to ensure the data
source flexibility.

1 @Injectable ()

2 export class RESTProvider<T> extends DataProvider<T> {

3
4 constructor(

5 public route: string ,

6 public module: string ,

7 private callhandler: CallHandlerService ,

8) {

9 super();

10 this.data$ = new BehaviorSubject<any>(this.data);

11 }

12
13 getSignle(id: string): Observable<T> {

14 return from(this.sendRequest('GET', `${this.route }/${id}`));
15 }

16
17
18 getAll (): Observable<T []> {

19 const ret = new Promise<T []>(async (resolve , reject) => {

20 try {

3.3. FRONT-END 25

21 const data: any = await this.sendRequest('GET', `${
this.route }`);

22 this.updateData(data , resolve);

23 }

24 catch (err) {

25 reject(err);

26 }

27 });

28 return from(ret);

29 }

30
31 getSignleByField(field: string , value: string): Observable<T> {

32 if (this.data != null) {

33 const found = this.data.find(x => x[field] === value);

34 if (found != null) {

35 return of(found);

36 }

37 }

38 return this.getAll ().pipe(map((data: T[]) => {

39 const found = data.find(x => x[field] === value);

40 if (found == null) {

41 throw new Error('Item not found ');
42 }

43 return found;

44 }));

45 }

46
47 private sendRequest(method: string , url: string , payload = null

): Promise<any> {

48 return new Promise(async (resolve , reject) => {

49 this.callhandler.sendRequest(

50 method , url , payload

51).then((data: any) => {

52 resolve(data);

53 }).catch((err) => {

54 reject(err);

55 });

56 });

57 }

58 }

Listing 3.13: Front-end API - RESTProvider class

3.3.1.3 Data Services

The implementation of the DataService is a key part of the solution. This is the
decision point regarding which data provider is used for each module.

DataService wraps CRUD functions by calling the provider’s equivalent action.
This service is responsible for casting the data in the correct format before feeding
them to the UI components.

26 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

DataService constructor requires four (4) parameters: i)route, which is the
route that should be called to retrieve data, ii)module, the collection tag, iii)
CallhandlerService instance, as described in Section 3.3.2, and an ISerializer
structure (Listing 3.10).

1 {

2 @Injectable ({

3 providedIn: 'root'
4 })

5 export class DataService<T extends BaseData> {

6 provider: DataProvider<T>;

7 constructor(

8 public route: string ,

9 public module: string ,

10 private callhandler: CallHandlerService ,

11 public serializer: ISerializer<T>

12) {

13 const config: ConfigService = ServiceLocator.injector.get(

ConfigService);

14 this.provider = this.getDataProvider(config.getModuleProvider

(module));

15 }

16
17
18 private getDataProvider(config: any): DataProvider<T> {

19 let ret: DataProvider<T>;

20 switch (config) {

21 case 'static ':
22 ret = new StaticProvider<T>(

23 this.route ,

24 this.module ,

25 this.callhandler

26);

27 break;

28 case 'rest':
29 ret = new RESTProvider<T>(

30 this.route ,

31 this.module ,

32 this.callhandler

33);

34 break;

35 case 'empty ':
36 default:

37 throw new Error('Provider type not found ');
38 break;

39 }

40 return ret;

41 }

42
43 public get data(): T[] { return this.provider.data; }

44

3.3. FRONT-END 27

45 public get data$ (): BehaviorSubject<T []> { return

this.provider.data$; }

46
47 public getSingle(id: string): Observable<T> {

48 return this.provider.getSingle(id)

49 .pipe(map((data: any) => this.serializer.fromJson(data) as

T));

50 }

51
52 public getAll (): Observable<T []> {

53 return this.provider.getAll ()

54 .pipe(map((data: any[]) => this.castData(data)));

55 }

56
57 public create(item: T): Observable<T> {

58 return this.provider.create(item)

59 .pipe(map((data: any) => this.serializer.fromJson(data) as

T));

60 }

61
62 public update(item: T): Observable<T> {

63 return this.provider.update(item)

64 .pipe(map((data: any) => this.serializer.fromJson(data) as

T));

65 }

66
67 public delete(id: string): Observable<T> {

68 return this.provider.delete(id)

69 .pipe(map((data: any) => this.serializer.fromJson(data) as

T));

70 }

71
72 public getSignleByField(field: string , value: string):

Observable<T> {

73 return this.provider.getSignleByField(field , value)

74 .pipe(map((data: any) => this.serializer.fromJson(data) as

T));

75 }

76
77 protected castData(data: any): T[] {

78 return data.map(item => this.serializer.fromJson(item) as T);

79 }

80 }

Listing 3.14: Front-end API - DataService class

This leads services attached to the static or the REST provider to be declared in
a simple compact pattern. These services are the following:

• AnnouncementsSevice

• ContactService

• CoursesService

28 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

• DocumentsService

• ModelProgramService

• NewsService

• PeopleService

In Listing 3.15 the ContactService declaration is presented as an example:

1 @Injectable ()

2 export class ContactService extends DataService<Contact> {

3 constructor(

4 public callHanndler: CallHandlerService

5) {

6 super('contacts ', 'contacts ', callHanndler ,

Contact.serialiser);

7 }

8 }

Listing 3.15: Front-end API - Module service class example

3.3.2 Helper Services

CallHanlderService

Call handler service is responsible for preparing and dispatching HTTP
requests. The request can be sent either via the Angular level or through the
native one. The latter contributed in solving an issue regarding the static
provider, where getting the data from a public folder within the Computer Science
ecosystem raised cross-origin resource sharing (CORS) errors.

1 @Injectable ()

2 export class CallHandlerService {

3 serverURI: string;

4 constructor(private angularHttp: HttpClient , private

nativeHttp: HTTP) { }

5
6 sendRequest(method: string , endpoint: string , payload: any =

{}) {

7 return new Promise ((resolve , reject) => {

8 // ... Prepare request

9 if (this.isNative ()) {

10 this.sendNativeHttpRequest(`${this.serverURI}${endpoint
}`, method , params , {}, headers , payload , resolve ,

reject);

11 } else {

12 this.sendAngularHttpRequest(endpoint , method , params , {},

headers , payload , resolve , reject);

13 }

3.3. FRONT-END 29

14 });

15 }

16
17 private sendAngularHttpRequest(url: string , method: string ,

params: any , options: any , headers: any , body: any ,

onSuccess , onError) {

18 // ... handle request on the browser level

19 }

20
21 private sendNativeHttpRequest(url: string , method: string ,

params: any , options: any , headers: any , body: any ,

onSuccess , onError) {

22 // ... handle request on the native level

23 }

24
25 private isNative () { return !! window['cordova ']; }

26 }

Listing 3.16: Fron-tend API - CallHandler Service class

3.3.3 Application Components

Each module has it’s own set of files, some of them following the single-details
pattern, a pattern which brings consistency in the UX across different modules.
A typical file set of a module is presented in Figure 3.3:

Figure 3.3: File structure example

30 CHAPTER 3. SYSTEM MODELING AND IMPLEMENTATION DETAILS

In a module page, data are being received through the equivalent service by
subscribing to the service’s getAll() method that returns an Observable as shown
in Figure 3.4.

There are cases where data need to be processed before fed to the template e.g.
when there is a need to be sorted alphabetically.

Figure 3.4: Data preparation for display purposes

Chapter 4

User Interface

This chapter provides details regarding the modules that have been picked to be
served via the app to the end users.

Note: The content displayed in the rest of the chapter is the result of crawling the
actual website, hence language incompatible content should not be considered an
issue - the app serves the content available in the specified language with Greek
acting as the fallback option.

4.1 Announcements - News

As stated in section 3.1.1, announcements and news share the same structure.
This lead to the decision to include both of them in the same screen as tabs and
present the same behavior by design. Each module page consists of a list of cards
that provide the title. Users can see details by tapping on the card, triggering the
description area to enlarge.

31

32 CHAPTER 4. USER INTERFACE

Figure 4.1: Home page - Announcements tab

Figure 4.2: Home page - News tab

4.2. CONTACT INFORMATION 33

4.2 Contact Information

Contact information page consists of cards displaying for each entity the related
fields such as email, phone number(s) and website links. By selecting one the
equivalent functionality is triggered, e.g. the phone app, the mail app or the
default browser.
There is also a search box available aiming to assist the user in reaching faster
the desired information.

Figure 4.3: Contact List page - Search

34 CHAPTER 4. USER INTERFACE

4.3 Courses

Courses module follows the list-details paradigm, assisted by a search box.

Figure 4.4: Course List page - Search

Figure 4.5: Course List page - Details

4.4. DOCUMENTS 35

4.4 Documents

Documents page consists of cards displaying for each entity the related available
formats. By clicking one the document formats, the user can download the
selected document

There is also a search box available that utilizes document titles, filenames
and extensions.

Figure 4.6: Document List page - Search

36 CHAPTER 4. USER INTERFACE

4.5 Map

Leaflet library [6] is utilized in order to implement the map module. The
user is presented with a map centered to the Computer Science department
location. A search box on top reveals a list of rooms when focused. When a
room is selected, the equivalent floor overlay is enabled and a marker on the
location of the room is revealed along with a card containing the room information.

A button present left of the search box re-centers the map to the initial
coordinates.

Figure 4.7: Map page

4.6. MODEL PROGRAM 37

4.6 Model Program

Model program module displays the current eight-semester suggested route to
satisfy the Bachelor’s requirements.

Each semester holds a list of courses and the related ECTS credits. Total
ECTS row exists at the bottom of each semester’s card as shown in Figure 4.7:

Figure 4.8: Model Program page

38 CHAPTER 4. USER INTERFACE

4.7 People

People module follows the list-details paradigm, assisted by a search box, as pre-
sented in Figure 4.8. On top of that, a filter button exists near the top right
corner, which reveals all the person types within the current data set.

Figure 4.9: People page - Details

4.7. PEOPLE 39

Figure 4.10: People page - Filters

40 CHAPTER 4. USER INTERFACE

4.8 Schedule

Schedule module displays information related to the current semester’s classes
available on a weekly basis. The right side of the UI is swipable (Figure 4.10)
in order to reveal all five (5) days of the week. A searchbar has been added to
provide the user with the choice to filter based on the courses name or code.

Figure 4.11: Schedule page - Week swipe

4.8. SCHEDULE 41

Figure 4.12: Schedule page - Search

Figure 4.13: Schedule page - Landscape mode

42 CHAPTER 4. USER INTERFACE

Chapter 5

Summary and Future work

5.1 Summary

Nowadays users spend an increasing amount of time on their mobile devices. To
add to that, the preference of using mobile apps over accessing content via mobile
browsers has been observed. This has been leveraged by organisations in multiple
occasions in order to keep the users better engaged and connected to their digital
content.

The proposed work in this thesis is the adoption by the Computer Science
Department of a new channel to connect with its students. It has been designed
taking into consideration the core areas students tend to interact with on a daily
basis and has accounted for the absence of the REST APIs with a daily-spawned
website scrapper. The front-end API library has been developed following a
generic pattern, aiming to accommodate future changes regarding data sources.
Lastly, the versioning of the data ensures that the end-users receive new data only
if a collection has been updated.

5.2 Future work

As mentioned in section 5.1, the current implementation includes a web scrapping
mechanism to generate data sets. The first step regarding future work needs to be
the implementation of a server to replace that mechanism and act as the main data
source for the mobile app. The server should act as an intermediate between the
students and their digital content that is currently scattered between at least three
websites: (i)www.csd.uoc.gr, (ii)elearn.uoc.gr and (iii)www.students.cc.oc.gr. This
will provide a single point of access for the students and, on top of that, personal-
ized content since not only will they be able to access course information, but also
their grades, their GPA, the courses they registered for in the current semester etc.

Moreover, since this server is suggested to be developed in-house and be part of

43

44 CHAPTER 5. SUMMARY AND FUTURE WORK

the technologies maintained by the department, there is a wide variety of services
and features that can be added in this new relationship with the students that are
currently handled via emails:

1. Push notifications, the most popular way to keep users engaged and informed
on mobile devices, should be utilized to communicate to the students impor-
tant messages. Some scenarios regarding this feature are the following ones:

(a) an important announcement needs to reach every student (emergency
situation, important event etc.)

(b) when a class has been cancelled, students registered to the class need
to be notified.

(c) an assignment deadline is in the near feature, a situation where it would
be beneficial for students that have not submitted their solutions to be
reminded of that.

2. New processes can be added as in-house maintained content, where the stu-
dent can be instantly informed regarding the availability (e.g. using push
notifications) and track the status of the request at any time. The automa-
tion of these processes can also lessen the staff’s workload. There are a
number of cases regarding this feature:

(a) Applications for graduate studies

(b) Meal services requests,

(c) Accommodation requests,

(d) Suspension of studies or

(e) Course registration for the current semester - a case where the server
has to act as an intermediate between the students and the current
place this functionality exists in, students.cc.uoc.gr

3. The functionality described in (2) suggests that an administrator dashboard
is included in the solution, where actions like handling the requests and
digitally singing documents take place.

Bibliography

[1] angular.io.

[2] Apache cordova - cordova.apache.org.

[3] Bootstrap.

[4] emberjs.com.

[5] Ionic framework.

[6] Leafletjs.

[7] Popular types of apps - thinkmobiles.com/blog/popular-types-of-apps/.

[8] Python beautifulsoup library - https://www.crummy.com/software/beautifulsoup/.

[9] Python programming language - .python.org.

[10] React native.

[11] reactjs.org.

[12] Responsive website vs mobile app: Comparison.

[13] scrapy.org.

[14] selenium-python.readthedocs.io.

[15] Sventech node.js generator.

[16] Vue.js.

[17] Xamarin - dotnet.microsoft.com/apps/xamarin.

[18] Desktop vs mobile vs tablet market share worldwide, 2009.

[19] Desktop vs mobile vs tablet market share worldwide, 2019.

[20] Muhammad Hakim A. Phonegap/cordova vs native application, 2012.

45

46 BIBLIOGRAPHY

[21] Chris Ciligot. Mobile app vs. mobile website: A ux comparison – which is the
better option?, 2019.

[22] Suyash Dubey. Types of mobile apps, 2019.

[23] By Dhananjay Goel. Native mobile app or mobile web app: What is best for
your business?, 2018.

[24] Everett N McKay. UI is Communication: How to Design Intuitive, User
Centered Interfaces by Focusing on Effective Communication. 2013.

[25] Priyesh Patel. Pwa vs hybrid app vs native: Choosing the right mobile app,
2018.

[26] Ewan Spence. The mobile browser is dead, long live the app, 2014.

[27] Stelios Xinogalos Spyros Xanthopoulos. A comparative analysis of cross-
platform development approaches for mobile applications. 2013.

[28] Matt Warcholinski. App vs website – which to develop first?

