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Abstract  

Prostate cancer (PCa) is the second most common cancer diagnosed in male population 

worldwide, affecting 1.4 million men annually. Early assessment of the malignancy is crucial 

for treatment planning and extending patients’ life expectancy. Imaging modalities such as 

Magnetic Resonance Imaging (MRI) are used for the non-invasive classification of patients in 

order to prevent overtreating indolent malignancies and undertreating those who warrant 

immediate treatment. The field of radiomics offers a large quantity of imaging features that 

describe the cancer phenotype and can be used in training machine learning (ML) models for 

predicting cancer aggressiveness. Effective model training necessitates feature selection, 

decreasing the high dimensionality and ensuring the inclusion of pertinent and non-

redundant features. The objective of this study is to investigate the most commonly used 

feature selection methods and classifiers in order to predict the tumor’s aggressiveness and 

analyze how various image preprocessing techniques affect the performance of the models. 

A publicly available multivendor dataset consisting of 225 samples with clinically significant 

PCa (csPCa) from 220 patients was used for the analysis. Samples were split in two cohorts 

based on ISUP score provided by clinicians. The first cohort (n = 135) contains samples with 

an assigned ISUP score equal to 2 (low aggressiveness csPCa) and the second cohort (n = 90) 

comprise samples with an assigned ISUP score of 3, 4 and 5 (high aggressiveness csPCa). 

Samples with ISUP score equal to 2 tend to have cancer cells that grow slowly, as opposed to 

the moderate and quick growth of cancer cells in samples of the second cohort. Thus, early 

detection of the tumor grade could prevent an unnecessary intervention or accelerate biopsy. 

A comprehensive search for the optimal pipeline was conducted for classifying the 

aggressiveness of csPCa. Intensity normalization methods and the N4 bias field correction 

method were used to investigate whether these preprocessing steps affect the performance 

of the models. For the original and each pre-processed dataset, a cross-combination strategy 

leveraging 6 classifiers and 13 feature selection methods was used for determining an optimal 

pipeline that reduces overfitting and best determines the tumor grade. Furthermore, hybrid 

feature selection methods were also investigated, using the optimal parameter set extracted 

from the pipeline. Methods investigated in this study demonstrated a balanced accuracy of 

70% in determining the tumor’s aggressiveness, providing promising results in early detection 

of aggressiveness of csPCa. 
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Περίληψη 

Ο καρκίνος του προστάτη είναι ο δεύτερος πιο συχνός καρκίνος που διαγιγνώσκεται στον ανδρικό 

πληθυσμό παγκοσμίως, επηρεάζοντας 1,4 εκατομμύρια άνδρες ετησίως. Η πρώιμη αξιολόγηση της 

κακοήθειας είναι κρίσιμη για τον σχεδιασμό της θεραπείας και την επέκταση του προσδόκιμου ζωής 

των ασθενών. Οι απεικονιστικές μέθοδοι, όπως η Μαγνητική Τομογραφία, χρησιμοποιούνται για την 

μη-επεμβατική κατηγοριοποίηση των ασθενών, ώστε να αποφασιστεί η κατάλληλη θεραπεία τους 

ανάλογα με τον βαθμό κακοήθειας. Ο τομέας της ραδιομικής προσφέρει μία μεγάλη ποσότητα 

απεικονιστικών χαρακτηριστικών που περιγράφουν το φαινότυπο του καρκίνου και μπορούν να 

χρησιμοποιηθούν για την εκπαίδευση μοντέλων μηχανικής μάθησης, με σκοπό την πρόβλεψη του 

βαθμού της επιθετικότητας του όγκου. Η αποδοτική εκπαίδευση τέτοιων μοντέλων προϋποθέτει την 

ύπαρξη μεθόδων επιλογής χαρακτηριστικών, ώστε να μειωθεί η υψηλή διάσταση του χώρου των 

χαρακτηριστικών και να διασφαλιστεί η επιλογή συναφών και χρήσιμων χαρακτηριστικών για την 

πρόβλεψη. Στόχος της παρούσας μελέτης είναι η χρήση και η αξιολόγηση των πιο ευρέως 

χρησιμοποιούμενων μεθόδων επιλογής χαρακτηριστικών και ταξινομητών, προκειμένου να 

προβλεφθεί η επιθετικότητα του καρκίνου, καθώς και η ανάλυση της επιρροής διάφορων μεθόδων 

προ-επεξεργασίας εικόνων στην απόδοση των μοντέλων. Ένα δημόσια διαθέσιμο σύνολο δεδομένων 

με εικόνες από διαφορετικούς προμηθευτές μαγνητικών τομογράφων, το οποίο περιλαμβάνει 225 

δείγματα με κλινικά σημαντικό καρκίνο του προστάτη από 220 ασθενείς, χρησιμοποιήθηκε για την 

ανάλυση. Τα δείγματα διαχωρίστηκαν σε δύο ομάδες βάση του σκορ ISUP το οποίο εξήγαγαν 

κλινικοί. Η πρώτη ομάδα δειγμάτων (ν=135) συμπεριλαμβάνει τα δείγματα με ISUP σκορ ίσο με 2 

(λιγότερο επιθετικός, αλλά κλινικά σημαντικός καρκίνος του προστάτη), ενώ η δεύτερη ομάδα (ν=90) 

περιέχει τα δείγματα με ISUP σκορ ίσο με 3, 4, ή 5 (αρκετά επιθετικός, κλινικά σημαντικός καρκίνος 

του προστάτη). Ο διαχωρισμός αυτός έγινε με βάση το γεγονός ότι τα δείγματα της πρώτης ομάδας 

έχουν καρκινικά κύτταρα όπου αναπτύσσονται πιο αργά σε αντίθεση με την μεσαία προς ραγδαία 

ανάπτυξη των κυττάρων στα δείγματα της δεύτερης ομάδας. Συνεπώς, η έγκαιρη ανίχνευση του 

βαθμού της επιθετικότητας του καρκίνου μπορεί να αποτρέψει μια περιττή επέμβαση ή να 

επιταχύνει την βιοψία. Μια εμπεριστατωμένη αναζήτηση των βέλτιστων μεθόδων διεξήχθη, με 

σκοπό την κατηγοριοποίηση της επιθετικότητας του κλινικά σημαντικού όγκου. Μέθοδοι 

κανονικοποίησης των τιμών της έντασης της εικόνας καθώς και η μέθοδος N4 φιλτραρίσματος 

χρησιμοποιήθηκαν, για να εξεταστεί ο τρόπος επιρροής τους στην απόδοση των μοντέλων. Για το 

αρχικό σύνολο δεδομένων και τις επεξεργασμένες εκδοχές του χρησιμοποιήθηκαν συνδυασμοί από 

6 ταξινομητές και 13 μεθόδους επιλογής χαρακτηριστικών, για να καθοριστούν οι βέλτιστες 

παράμετροι των μοντέλων, οι οποίες μειώνουν την πιθανότητα overfitting και ταυτόχρονα αυξάνουν 

την ικανότητα του μοντέλου να διαχωρίζει το βαθμό επιθετικότητας του καρκίνου του προστάτη. 

Επιπροσθέτως, χρησιμοποιήθηκαν υβριδικές μέθοδοι επιλογής χαρακτηριστικών, με βάση τις 

βέλτιστες παραμέτρους όπου εξήχθησαν από την αρχική ανάλυση. Οι μέθοδοι που εξετάστηκαν στην 

παρούσα έρευνα έδειξαν ισορροπημένη ακρίβεια (balanced accuracy) 70% για τον καθορισμό του 

βαθμού του όγκου, παρέχοντας ελπιδοφόρα αποτελέσματα για την πρώιμη ανίχνευση του 

επιθετικού, κλινικά σημαντικού καρκίνου του προστάτη. 

  



Application Grade Thesis 

 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 7 of 57 
 

Table of Contents 

Acknowledgements ................................................................................................................................. 3 

Abstract ................................................................................................................................................... 5 

Περίληψη ................................................................................................................................................ 6 

Table of Contents .................................................................................................................................... 7 

List of figures ........................................................................................................................................... 8 

List of tables ............................................................................................................................................ 9 

Chapter 1: Introduction ........................................................................................................................ 10 

Chapter 2: State-of-the-art ................................................................................................................... 13 

Chapter 3: Research methodology ....................................................................................................... 19 

3.1 Dataset description ..................................................................................................................... 19 

3.2 Image preprocessing ................................................................................................................... 22 

3.2.1 Bias field correction ............................................................................................................. 22 

3.2.2 Normalization methods ....................................................................................................... 23 

3.3 Radiomics extraction ................................................................................................................... 26 

3.4 Feature Selection Methods ......................................................................................................... 26 

3.4.1 Pearson and Spearman correlation ..................................................................................... 27 

3.4.2 minimum Redundancy Maximum Relevance (mRMR) ........................................................ 28 

3.4.3 MIFS, CMIM, JMI methods ................................................................................................... 28 

3.4.4 Boruta................................................................................................................................... 29 

3.4.5 Least Absolute Shrinkage and Selection Operator (LASSO) ................................................. 30 

3.4.6 Relief family of algorithms ................................................................................................... 30 

3.5 Machine Learning Analysis .......................................................................................................... 34 

3.6 Hybrid Feature Selection............................................................................................................. 36 

Chapter 4: Research findings / results .................................................................................................. 37 

4.1 Results of main analysis .............................................................................................................. 37 

4.2 Results of hybrid feature selection methods .............................................................................. 44 

Chapter 5: Discussion ............................................................................................................................ 45 

Chapter 6: Conclusion ........................................................................................................................... 49 

References ............................................................................................................................................ 50 

Appendices ............................................................................................................................................ 55 

 



Application Grade Thesis 

 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 8 of 57 
 

List of figures 

Figure 1. Flowchart for the radiomic analysis conducted by Chaddad et al. (2018) [39]. .................... 16 

Figure 2. Pipeline configurations investigated by Rodrigues A. et al. (2021) [42]. ............................... 17 

Figure 3. Radiomics workflow used in the current study ..................................................................... 19 

Figure 4. Annotated sample of the dataset with single Region Of Interest (ROI). The ROI is depicted 

with green color. ................................................................................................................................... 21 

Figure 5. From left to right, the N4 filtered image after cropping the 20% of the image in the middle, 

the fat segmentation (with red color) and the muscle segmentation (with red color) are presented.

 .............................................................................................................................................................. 24 

Figure 6. Illustration of how the neighbors are selected and weighted in various Relief-based 

algorithms adopted from [63]. ............................................................................................................. 33 

Figure 7. Main analysis workflow ......................................................................................................... 35 

Figure 8. Analysis workflow using hybrid feature selection ................................................................. 36 

Figure 9. Distribution of balanced accuracy per dataset ...................................................................... 37 

Figure 10. Distribution of AUC per dataset ........................................................................................... 37 

Figure 11. Balanced Accuracy for each classifier per feature selection method and dataset. ............. 39 

Figure 12. Balanced Accuracy for univariate, Boruta and LASSO feature selection methods per 

classifier and dataset. ........................................................................................................................... 40 

Figure 13.Balanced accuracy for multivariate feature selection methods per classifier and dataset.. 41 

Figure 14. Balanced Accuracy for Relief-based algorithms per classifier and dataset ......................... 42 

  



Application Grade Thesis 

 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 9 of 57 
 

List of tables 

Table 1. Grade Group (ISUP score) and Gleason score correspondence .............................................. 20 

Table 2. Distribution of samples per vendor ........................................................................................ 21 

Table 3. Distribution of images per vendor .......................................................................................... 22 

Table 4. Distribution of images per magnetic field strength ................................................................ 22 

Table 5 Descriptions of the datasets used for the analysis .................................................................. 25 

Table 6. Optimal combination of feature selection method and classifier per dataset. The number of 

selected features along with the balanced accuracy are presented in the last two columns. ............ 43 

Table 7. Balanced accuracy for hybrid feature selection methods per dataset. Optimal threshold is 

selected for the Pearson correlation coefficient-based feature selection method for each dataset 

based on the previous analysis. ............................................................................................................ 44 

 

 

 

  



Application Grade Thesis 

 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 10 of 57 
 

Chapter 1: Introduction 

The second most common cancer diagnosed in male population is prostate cancer (PCa) 

which affects 1.4 million men worldwide annually [1], [2]. The prevalence of prostate cancer 

exhibits significant geographical variation with higher rates reported in developed countries, 

such as North America, Europe, and Australia, and lower rates in less developed countries. 

Disparities are related to the access to healthcare, socioeconomic factors, health illiteracy and 

genomic susceptibility. Well-established risk factors of the disease are age (PCa is diagnosed 

mostly in men over 50 years old), ethnicity, family history of the disease, and genetic 

mutations, i.e. genes strongly associated with PCa, such as BRACA1 and BRACA2 which 

influence the risk for PCa. In addition, modifiable factors, such as lifestyle, environment (e.g. 

exposure to chemicals and ionizing radiation) and alimentary factors can also influence the 

development of PCa. For instance, the intake of lycopene or soy reduce PCa risk [3], [4]. In 

contrast, physical inactivity, alcohol and dairy product consumption are associated with 

increased PCa risk [1], [5]. Tobacco is positively associated with deaths from PCa [1].  

PCa originates in the prostate gland, which is located below the bladder and in front of the 

rectum. Prostate consists of three areas: a) the peripheral zone (PZ) constituting the majority 

of the prostate gland; b) the transition zone (TZ) encompassing the urethra; and c) the central 

zone (CZ). Most cases of PCa are found in PZ which is exactly behind the rectal wall and thus 

it is detectable with a rectal exam (RE). A common biomarker used in PCa screening is high 

prostate specific antigen (PSA) values in blood serum. PSA is a glycoprotein expressed by the 

prostate tissue, it can be found mostly in semen and it ordinarily circulates in the blood. This 

protein is produced by both cancerous and non-cancerous tissue and can be detected 

primarily using PSA tests. When PSA tests and RE indicate prostate cancer, a biopsy is 

performed to determine the aggressiveness of the tumor. The aggressiveness is measured 

using the Gleason score (GS) and the International Society of Urological Pathology (ISUP) 

grade group. However, investigating only PSA level is not enough for diagnosing PCa, since 

PSA tests demonstrate limited sensitivity and they cannot detect tumor’s aggressiveness [6] 

neither distinguish between other prostate conditions i.e. prostatitis and prostatic 

hyperplasia [7]. The main cause of the limited diagnostic ability of PSA tests is that the levels 

of PSA in blood are influenced by external factors, such as lifestyle, hormonal profile, obesity 

and even infections in the urinary tract. Hence, these factors may lead to false positive or 

false negative results. Furthermore, similar PSA levels have been observed in patients with 

both low and high-risk tumors, making PSA a less accurate diagnostic tool. Even though 

screening using RE and PSA tests is recommended for early detection of cancer, other 

diagnostic tools could be used in the process of medical decision making for avoiding 

undertreatment of malignant tumors and overtreatment of indolent malignancies.  

Imaging modalities are of paramount importance in diagnosing PCa. Magnetic Resonance 

Imaging (MRI) scans of the prostate is a ubiquitous screening method for the malignancy 
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detection, alongside with the RE and PSA tests. MRI results are interpreted by clinicians which 

can request immediate biopsy (if PI-RADS > 3), plan a treatment tailored to the patient’s needs 

and monitor disease progress. In more aggressive forms, PCa manifests rapid growth with 

high possibility of metastasis to near organs, bones and lymph nodes. MRI demonstrates 

restricted capability of detecting metastasis, especially to lymph nodes. Thus, detection of the 

malignancy in early, less aggressive stage is crucial for the survival of the patient. The rapid 

development of the field of radiomics could aid early detection. Radiomic analysis entail high-

throughput feature extraction (e.g., shape, texture, etc.), from medical images coupled with 

machine learning techniques for developing powerful diagnostic models. The non-invasive 

nature of the analysis and the promising results reported in the literature have led to an 

increased scientific interest in developing models for detection, segmentation, classification 

of the tumor and prediction of treatment response. 

Developing radiomic analysis workflows is not an effortless task. Medical images require some 

preprocessing steps before being used in machine learning pipelines. The most common steps 

are anonymization for ensuring privacy of the patients, filtering and noise reduction for 

enhancing the quality of the images and feature extraction. Data normalization is a 

prerequisite for multicenter datasets due to the variability introduced to the images by 

different scanner vendors, models and acquisition protocols. In un-normalized datasets, the 

feature extraction process may derive imaging features of increased variability which may 

hamper robustness and generalizability of the machine learning models. Moreover, image 

filtering is crucial for attenuating variations in the pixel values of the images and thus 

enhancing drastically their quality. In magnetic resonance imaging, bias field correction is 

mandatory for correcting the intensity inhomogeneities, caused by the radiofrequency coil, 

eddy currents and several patient-related factors [8]. 

Another important step is feature selection, which reduces the number of features feeding 

only pertinent and non-redundant features to the machine learning (ML) models. It is a 

required step of the pipeline, since the high dimensionality of the feature space hinders the 

training process and reduces the predictive power of the models, a phenomenon known as 

the “Curse of Dimensionality”. Feature selection methods can be divided in three main 

categories: filtering, embedded and wrapper [9]. Filtering methods can be further divided in 

univariate and multivariate methods. The former assumes that features are independent and 

selects features based only on the information they provide for the target class. The latter 

considers between-features interactions, selecting features that are highly correlated with 

the target class and provide the least information about the already selected features. Filter 

methods can evaluate the quality of the selected feature set quickly and are independent of 

the classifier used, which may cause reduction in the accuracy of the predictions. Wrapper 

feature selection methods select features iteratively, keeping features that maximize the 

classifier’s performance. Even though these methods are slower, they demonstrate reduced 

classification error. Embedded methods (e.g. Random Forest features importance and Least 

Absolute Shrinkage and Selection Operator coefficients) are based on the intrinsic properties 
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of the classifier for calculating feature scores, resulting in higher execution speed. 

Furthermore, hybrid methods leveraging two or more feature selection methods are used in 

order to combine the strengths of each method acquiring an optimal feature set. Ensemble 

methods leverage multiple feature selection methods in parallel, improving the quality and 

stability of the selected features. 

The current study investigates pipelines for predicting PCa’s aggressiveness and analysing the 

influence of image preprocessing techniques on models’ performance. A public dataset 

containing T2weighted images of the prostate from multiple vendors is used for the analysis. 

All images contain incidents of clinically significant PCa (csPCa) and are split in two cohorts 

based on cancer aggressiveness, indicated by the ISUP score. Most common feature selection 

methods and classifiers from the literature are evaluated in different combinations for 

determining an optimal pipeline and parameter set. Intensity normalization methods and the 

N4 bias field correction method are applied to the images for investigating their impact on 

the performance of the models. In addition, hybrid feature selection methods are 

investigated using the optimal parameter set extracted from the previous analysis. An unseen 

hold-out test set of the initial dataset is used for evaluating the models’ performance. 

A comprehensive description of the analysis is presented in the next chapters. Chapter 2 

introduces an extensive literature review, concerning the recent breakthroughs in the field of 

image preprocessing, radiomics, feature selection and classification in prostate cancer. 

Chapter 3 describes the methodology followed in this study and chapter 4 reports the results 

of the analysis. A discussion about the findings of the study and a brief comparison with other 

studies is presented in chapter 5 and finally, chapter 6 concludes the study.  
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Chapter 2: State-of-the-art 

The high prevalence of prostate cancer in men worldwide has drawn the attention of many 

researchers towards the detection of the tumor’s aggressiveness. Prostate cancer 

aggressiveness classification is a critical task that assists clinicians in disease management 

through guiding treatment planning and possibly predicting patient outcomes. Accurate 

classification allows clinicians to differentiate between indolent tumors that may require 

conservative approaches, such as active surveillance, and malignancies that demand 

immediate action. Several biological methods are employed for diagnosing PCa 

aggressiveness. Assessment of histopathological features after the prostate tissue biopsy is 

the baseline approach. However, several molecular markers and genetic profiling techniques 

involving the analysis of specific gene mutations and expression are gaining prominence for 

assessing the disease aggressiveness.  

The most common molecular marker used for the diagnosis of the disease is PSA tests which 

measure the PSA values in the serum. Another common marker is PSA density (PSAd), which 

is calculated as the ratio of PSA to the volume of the whole gland [10]–[12]. Other PSA 

derivatives are RSA velocity [13] and PSA doubling time [14] were proposed; however, these 

biomarkers could not provide valuable insight for the outcome prior to the biopsy [15]. For 

improving the low sensitivity and specificity of measuring PSA values in the serum, age specific 

reference ranges are introduced in clinical practice for counterbalancing the influence of age 

and prostate volume on PSA values [16]. Horoszewicz et al. in 1987 [17] identified that 

Prostate-specific Membrane Antigen (PSMA) glycoprotein found in epithelial cells and blood 

was overexpressed in patients with PCa. A nuclear structural protein called Early Prostate 

Cancer Antigen (EPCA) is associated with cancer and has demonstrated high sensitivity and 

specificity in prostate cancer detection [18], [19]. A comprehensive review of molecular 

markers has been conducted by Bradford et al. [20]. Finally, Choudhury et al. [21] reviewed 

the use of several genetic markers in prostate cancer diagnosis and treatment planning. 

Imaging has also a crucial role in diagnosing and managing patients with prostate cancer. 

Magnetic resonance imaging (MRI) is widely used in clinical practice for the detection and 

grading of the tumor. Prostate Imaging and Reporting and Data System (PI-RADS) [22] is a 

structured category assessment system developed in 2012 (version 1), containing clinical 

guidelines on a consensus basis for evaluating prostate multi-parametric MRI (mpMRI). It was 

updated in 2014 (version 2) [23], [24] for alleviating the confusion on how to weight each 

parameter of the mpMRI and achieving optimal prostate lesion characterisation. More 

precisely, PI-RADS score shows the likelihood of a tumor to be clinically significant cancer. The 

value of this score is determined based on the findings of the multiparametric MRI and the 

range of values is from 1 to 5, where higher values indicate higher risk of clinically significant 

cancer to be present. However, the PI-RADS score measures the likelihood of a tumor to be 

malignant rather than the tumor’s aggressiveness. To this end, the International Society of 

Urological Pathology (ISUP) grading system and Gleason score are used to grade the tumor, 
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indicating the aggressiveness [25]. The ISUP grading system defines the grade of tumor with 

a value from 1 to 5 depending on the Gleason score [26] in order to better predict the prostate 

cancer outcome. 

The emergence of the field of radiomics influenced the development of machine learning and 

deep learning algorithms for the automatic segmentation of the prostate gland and the 

lesions, and for the classification of the tumor’s grade. The lesion segmentations are required 

for extracting radiomic features and they highly affect the values of the extracted features. 

Radiomic features are imaging features that describe the shape, the intensities distribution 

and the intensities dependencies, reflecting the tumor’s heterogeneity.  

Image quality and data harmonization are also important factors for radiomic feature 

extraction. Several image preprocessing techniques are employed for enhancing image 

quality and aim to address poor image quality, artifacts and standardize data for subsequent 

analysis, such as classification and radiomic feature extraction. Common preprocessing 

methods are bias field correction, intensity normalisation, resampling, filtering and 

discretization. 

MRI images often suffer from intensity variations caused by the non-uniformity of the 

radiofrequency (RF) field during image acquisition. This low frequency signal, called bias field, 

degrade the image quality resulting in intensity inhomogeneities. Bias field correction 

techniques, such as N4 or nonparametric methods, are used to correct the intensity variations 

and improve the uniformity of the image. The N4 method [8] is a popular bias field correction 

method and has been used as a preprocessing step in classification [27] and segmentation 

studies [28]–[32]. However, this method has several parameters that their values should be 

tuned. Martin et al. [32] experimented on the values of some N4 parameters by applying the 

algorithm to breast phantoms. They identified 50 iterations, fitting level 5 and the use of a full 

mask as optimal configuration for the bias field correction reducing the intensity 

inhomogeneities. A recent study by Dovrou et al. [33] investigated a variable set of values for 

five parameters of N4ITK filter for bias field correction in MR prostate images. They used the 

Full Width at Half Maximum (FWHM) of the periprostatic fat distribution as metric to quantify 

the improvement of the image quality after applying the bias field correction method. The 

main hypothesis was that after applying the bias field correction, the tissue representation 

becomes more homogeneous and thus the value of the FWHM of the periprostatic fat 

distribution is smaller. They examined 240 different configurations of N4 bias field correction 

in 4 datasets with images scanned by surface coil and a combination of endorectal and surface 

coil at 1.5T and 3T magnetic field strength. The derived optimal configuration of the N4 filter 

was affected by the type of the coil used during the scanning of the subject rather than the 

magnetic field strength. The optimal configuration for images scanned with a combined 

surface and endorectal coil at 1.5T or 3T is: convergence threshold 0.001, shrink factor 2, 

fitting level 6, number of iterations 100 and the use of default mask. The optimal configuration 

for prostate images scanned with surface coil at 1.5T or 3T is: convergence threshold 0.001, 

shrink factor 2, fitting level 5, number of iterations 25 and the use of default mask. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/prothrombin
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MR images do not have standardized intensity values for the various tissues, hampering the 

direct comparison of MR images even when they are scanned with the same conditions and 

acquisition protocols. Intensity normalization techniques are employed to standardize the 

intensity levels across different MRI scans or sequences. This ensures consistency in the image 

intensities, allowing for more accurate comparison and analysis of the data. In the medical 

image analysis, same tissues should have the same intensity representation in order to be 

comparable for subsequent analysis. Hence, intensity normalization techniques aim to 

harmonize the intensities of MR images and bring them into a common scale. The most 

common intensity normalization techniques used in MR images are min-max scaling, z-score 

normalization and the histogram matching method [34]. Nyul et al. [34] introduced a non-

linear histogram normalization technique for image harmonization. This technique learns a 

standard histogram from a set of images, identifying specific landmarks and then linearly 

maps the image intensities to the intensities of the standard histogram. The landmarks are 

histogram-specific parameters that describe the distribution of the histogram.   

Furthermore, resampling involves changing the resolution or voxel size of the MRI image, 

which can be useful for matching the resolution of different images or facilitating 

computational analysis. Discretization is the process where the signal intensities are clustered 

to specific range intervals, i.e. bins of the histogram, in order to limit the range of intensities. 

This is a crucial step to efficiently calculate the radiomic features, reducing the computational 

complexity. There are two major categories of discretization: a) the absolute discretization 

with fixed bin size/width (FBS) method and the relative discretization with fixed bin number 

(FBN) method. There is no agreement in which method is better and it may be application 

specific.     

Feature selection techniques are used for reducing the computational complexity and 

avoiding overfitting of the models. Quantitative features extracted from images are widely 

used in several machine learning approaches. The dimensionality of the feature space is high, 

requiring increased computational complexity for processing and model training. A common 

category of feature selection techniques is univariate filtering methods, such as Pearson and 

Spearman correlation-based feature selection. MRMR [35] is a multivariate filtering method, 

commonly used in the literature. Embeded methods like Least Absolute Shrinkage and 

Selection Operator (LASSO) [36], wrapper methods like Boruta [37] and the Relief family of 

feature selection algorithms [38] are widely used as feature selection methods. 

Several studies have investigated the ability of radiomic features to predict the prostate 

cancer aggressiveness. Chaddad et al. [39] investigated the ability of radiomic features 

extracted from T2W images and Apparent Diffusion Coefficient (ADC) maps to non-invasively 

predict the Gleason score. The workflow of the analysis included the detection of the sub-

volume of the Region of Interest (ROI), the radiomics extraction and the statistical and 

machine learning analysis and is presented in Figure 1. In this study, 99 patients with prostate 

cancer were included and 41 radiomic features were extracted from the tumor sub-volume. 

The patients were divided into three groups based on their Gleason score. Group 1, group 2 
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and group 3 consist of patients with Gleason score equal to 6, 3+4 and ≥ 4+3, respectively. A 

Random Forest classifier strategy was used to predict the Gleason score groups and the 5-fold 

cross validation strategy were implemented to evaluate its performance. More precisely, the 

classifier achieved an average Area Under the Curve of Receiver Operating Characteristic 

(AUCROC) of 83.40, 72.71 and 77.35% in predicting the group 1, group 2 and group 3, 

respectively. The most important radiomic features for predicting group1 were zone size 

percentage, large zone size emphasis and zone size non-uniformity. All these features belong 

to the Gray Level Size Zone matrix and also showed significant correlation with the Gleason 

score group after performing Kruskal-Wallis and Spearman’s rank correlation tests with Hol-

Bonferroni procedure for multiple corrections. Furthermore, the Entropy and the Sum 

Entropy features, which belong to the Gray Level Co-occurrence matrix, were the most 

important features for predicting group 2 and group 3, respectively.  

 

Figure 1. Flowchart for the radiomic analysis conducted by Chaddad et al. (2018) [39]. 

Furthermore, Li et al. [40] investigated the potential of several clinical and radiomics models 

for predicting clinically significant prostate cancer using bi-parametric MRI (bpMRI) (T2w and 

ADC). They concluded that the radiomics-based model and the combined radiomics-clinical 

models outperformed the clinical model, achieving AUC 98% compared to 79%, respectively. 

Additionally, Liu et al. [41] demonstrated that machine learning model based on radiomics 

extracted from Dynamic Contrast Enhanced (DCE) MRI images has also very good 

performance in predicting prostate cancer aggressiveness (Gleason score ≤ 7 versus Gleason 

score ≥ 8), achieving AUC 84% and higher.   

A study by Rodrigues A. et al. [42] investigated pipelines for predicting the aggressiveness of 

prostate cancer using bpMRI data. Samples with Gleason score greater than 7 were 

considered as aggressive prostate cancer. T2w, Diffusion weighted Imaging (DWI) and ADC 

images from the PROSTATEx challenge were used to fit 288 different pipelines. Each pipeline 

was executed 50 times to account for distribution comparison, while keeping 25% of the data 

as a holdout dataset. The authors used segmentations from both the lesions and the whole 

gland for model performance comparison. In addition, they constructed four datasets using: 

a) the  radiomics from the lesion; b) the radiomics from the whole gland; c) the lesion radiomic 

features and features that describe the anatomical location of the lesion; and d) whole gland 

radiomics from images with single lesions. In the pipelines, they included several sampling 

strategies, feature selection methods and machine learning algorithms (Figure 2). The results 
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suggested that features extracted from the whole gland were more stable than features 

extracted from the lesion Volume of Interest (VOI). Furthermore, features extracted from the 

whole gland seem to provide helpful insights for predicting the prostate cancer 

aggressiveness. 

 

Figure 2. Pipeline configurations investigated by Rodrigues A. et al. (2021) [42]. 

Similar to our study, Sun P. et al. [43] investigated the predictive value of several machine 

learning pipelines on glioma grading. The authors fitted the 240 combinations of 16 feature 

selection methods and 15 classifiers with radiomic features extracted from 210 patients with 

glioblastoma and 75 with low-grade glioma. For each patient, images from four modalities 

were used, including T1 gadolinium (T1-Gd), T1, T2 and FLAIR. Cross validation and random 

train-test split strategies were used for evaluating the predictive performance of all the 

combinations. Their results were promising for glioblastoma classification, since the optimal 

combination achieved balanced accuracy 94.40% and AUC 98.6% using 10-fold cross 

validation. The balanced accuracy increased to 95.3% and an AUC of 98.1% was achieved 

when using the random train-test splitting strategy. Finally, the results suggested that the 

predictive performance of the models were affected by both the feature selection methods 

and the classifiers used for grading glioblastoma.   

Furthermore, deep learning models have been developed to predict clinically significant 

prostate lesions, showing promising performance. Seetharaman et al. [44] implemented a 

convolutional neural network using as input T2W and ADC maps, achieving AUROC equal to 

75%. Bhattacharya et al. [45] leveraged MR images and histopathology images to combine 

the information stemming from these two modalities. They identified correlated deep 

features between radiology and pathology images and fed them into a convolutional neural 

network to predict clinically significant lesions. The model’s performance was equal to 82 and 

86% in radical prostatectomy and biopsy cohort patients, respectively.  

Bertelli et al. [46] conducted a monocentric study and investigated the ability of machine 

learning and deep learning models to predict the prostate cancer aggressiveness using T2W, 
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ADC and combined T2W and ADC images. The prediction of the tumor’s aggressiveness was 

based on the ISUP score. More specifically, the patients were divided into two groups, i.e., 

patients with low grade (ISUP ≤ 2) and patients with high grade (ISUP ≥ 3). They utilized 2 

cohorts, consisting of 85 (PI-RADS 2.0) and 27 (PI-RADS 2.1) patients, respectively. They 

extracted 95 radiomic features for each slice from T2W images and ADC maps and applied 

data augmentation techniques, such as Adaptive Synthetic (ADASYN), Synthetic Minority 

Oversampling Technique (SMOTE) and its variants. Ensemble classifiers were used to combine 

the advantages and the predictions of single classifiers to boost the final performance. 

Furthermore, a deep learning analysis was applied implementing Convolutional Neural 

Networks (CNN) on 2D data. The results showed that both the machine learning and deep 

learning models had better performance when trained on T2w images. More specifically, the 

machine learning and the deep learning model achieved an AUROC of 75% and 87.5%, 

respectively, when tested on the hold-out PI-RADS 2.0 test set with T2w images.  

Another study conducted by Castillo et al. [47] compared the performance of deep learning 

and radiomics models on classifying the clinically significant prostate cancer using mpMRI 

(T2w, DWI and ADC). They tested their models in 3 external multicentric cohorts, consisting 

of 374 patients in total. The patients with ISUP grade equal or larger than 2 were classified as 

significant prostate cancer. The results showed that the radiomic model outperformed the 

deep learning model in the three independent testing sets, achieving AUCs of 88, 91 and 65% 

compared to 70, 73 and 44%, respectively. Thus, this study concluded that radiomic model is 

more generalizable and accurate model for predicting clinically significant prostate cancer 

than deep learning model. 
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Chapter 3: Research methodology 

This study identifies an optimal pipeline for detecting prostate cancer aggressiveness. 

Deploying machine learning models for such purpose, while achieving high performance, is a 

challenging task. In this section, the methodology used for developing an optimal pipeline is 

thoroughly explained. Machine learning workflow, including the preprocessing steps, the 

feature extraction, standardization and feature selection methods used, is presented in the 

following sections. The schematic representation of the radiomics workflow used in the 

current study is depicted in Figure 3. The analysis was implemented using Python (version 3.9) 

programming language on a computer with Ubuntu 22-LTS, 16-core CPU and 64GB RAM. 

 

Figure 3. Radiomics workflow used in the current study 

 

3.1 Dataset description 

One of the most important components of a machine learning workflow is the dataset used 

in the analysis. The quantity and quality of the dataset directly affect the performance of the 

models. In the current study, the publicly available dataset from the “PI-CAI” (Prostate 

Imaging: Cancer AI) challenge [48] (accessed on February 5, 2023) is used for the development 

of the radiomic pipeline. It is a multi-center and multi-vendor dataset consisting of 1500 

bpMRI prostate exams from 1476 patients, including annotations, as well as clinical and 

acquisition metadata. There are two modalities included in the dataset, i.e. T2w and DWI. The 

annotations are derived from DWI, but they were resampled for the T2w images and are used 

in the current study. Data was acquired retrospectively and provided from three Dutch 

centers, i.e. Radboud University Medical Center (RUMC), Ziekenhuis Groep Twente (ZGT), 

University Medical Center Groningen (UMCG), and one Norwegian center the Norwegian 
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University of Science and Technology (NTNU). Clinical data include patient and study 

identifiers, PSA and PSA density values, prostate volume, MRI exam date, patient age, 

histopathological type, the ISUP score and Gleason score. 

Gleason score is a grading system for prostate cancer, developed in 1960s by Gleason D. et 

al. [49] and updated in 2014 [25]. This system examines the patterns of cancer cells in the 

prostate tissue, how they behave and look compared to normal cells. Tumor cells fall into 5 

distinct patterns and are graded on a scale of 1 to 5 according to the observed behaviour and 

appearance. Grade 1 cells resemble to normal prostate tissue, while grade 5 cells have been 

mutated resulting in significantly different tissue appearance than normal prostatic tissue. 

These patterns are combined and form the Gleason Score. For instance, tumor cells can have 

two patterns indicated with a combination of two numbers, from which the first one 

corresponds to the most prevalent pattern. A tumor with patterns 3 and 4 with prevalence of 

pattern 3 corresponds to a Gleason Score of 3 + 4 = 7. Thus, patterns 3 + 4 and 4 + 3 are not 

the same, since in the second case the cancer is more aggressive, as pattern 4 is more 

prevalent among the cells. Finally, in 2014 an updated prostate cancer grading system was 

proposed by the International Society of Urological Pathology (ISUP), called the Grade Group 

(GG) or ISUP score [25]. ISUP score is strongly correlated with Gleason Score (GS) and their 

correspondence is shown in Table 1. 

Table 1. Grade Group (ISUP score) and Gleason score correspondence 

Gleason score ISUP score Description 

6 (3 + 3) 1 Cancerous cells tend to grow slowly 

7 (3 + 4) 2 
Most cancer cells tend to grow slowly, while the rest grow 
moderately 

7 (4 + 3) 3 
Most cancer cells tend to grow moderately, while the rest 
grow slowly 

8 (4 + 4) 4 All cancer cells tend to grow moderately 

9 (4 + 5, 5 + 4), 10 5 Cancer cells are likely to grow moderately to quickly 

 

From 1500 MRI scans, 220 are accompanied by manually extracted delineations, while 5 of 

the 220 exams have multiple lesions. Thus, there are 225 samples of csPCa, which are 

identified by the ISUP score evaluated by clinicians. In Figure 4, a representative sample of 

the dataset is depicted along with the annotated lesion. Samples are split in two cohorts 

based on the aggressiveness of the tumor. The first cohort contains the cases (n=135) where 

the ISUP score is equal to 2 (low aggressiveness), and the rest of the samples (n=90) lie in the 

second cohort where ISUP is greater than 2 (high aggressiveness). This splitting is based on 

the proliferation rate of the tumor cells, as tumors with ISUP greater than 2 tend to be more 

aggressive due to the rapid growth of cancerous cells [50]. 
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Figure 4. Annotated sample of the dataset with single Region Of Interest (ROI). The ROI is depicted with green color. 

The PI-CAI dataset contains images acquired using MRI scanners from Philips and Siemens, 

including multiple models of the two manufacturers and different magnetic field strengths. 

Table 2 shows the detailed distribution of the 220 images used in the current study in terms 

of vendor and model used for data acquisition. 

Table 2. Distribution of samples per vendor 

Vendor Model 
Magnetic Field 

Strength 
# of samples 
per vendor 

# of samples 
per model 

Philips 
Medical 
Systems 

Achieva 1.5T 
83 

19 

Ingenia 3T 64 

Siemens 

Aera 1.5T 

 
137 

6 

Prisma 3T 12 

Skyra 3T 97 

TrioTim 3T 22 

Table 3 and 4 summarize the number of samples for each class per vendor and per magnetic field 

strength, respectively. Τhe distribution of samples for each class per vendor is suitable for stratifying 
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the data, since it is more balanced than the distribution based on the field strength and it efficiently 

captures the variability between the vendors.  

Table 3. Distribution of images per vendor 

  Philips Medical Systems Siemens 

Low aggressiveness csPCa 56 79 

High aggressiveness csPCa 27 63 

 

Table 4. Distribution of images per magnetic field strength 
 1.5T 3T 

Low aggressiveness csPCa 18 117 

High aggressiveness 
csPCa 

7 83 

 

3.2 Image preprocessing 

Several preprocessing steps are used in radiomic studies to improve the quality of the data 

and decrease the variability in the image intensities. Especially in multicentric studies, the 

differences in the vendors and acquisition protocols may result in significant variations in the 

image intensities. In order to reduce the inconsistencies and the variability, image 

normalization techniques and a bias field correction method were used in the current study 

to assess their impact on the model’s performance for the PCa aggressiveness.  

 

3.2.1 Bias field correction 

MR images suffer from a low-frequency variation in their acquired signal, resulting in intensity 

inhomogeneities. This non-uniformity is called bias field and is generated due to poor 

radiofrequency coils, gradient eddy currents, variations in flip angle and subject-scanner 

interactions. Bias field correction methods are categorized into prospective and retrospective 

methods [51]. The former calibrate and improve the acquisition process in order to remove 

the bias field. The latter aim to reduce the bias field generated by the properties of the 

scanned object and are more frequently used. The retrospective methods are divided into the 

following four categories: a) filtering methods; b) surface fitting-based methods; c) intensity-

based methods; and d) histogram-based methods.  

The N4ITK bias field correction method [8] is a retrospective histogram-based technique and 

has been very widely used as a preprocessing step in radiomic studies [52], [53]. The N4ITK 

method is the state-of-the-art method for bias field correction and is an improvement of the 

N3 filter [54]. The N4ITK filter is available in python by the open-source toolkit SimpleITK. The 

improvements of the N4ITK are the multi-resolution B-spline fitting routine and the optimized 
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iterative process. The algorithm is an iterative process of deconvolving the histogram by a 

Gaussian, estimating the corrected intensities and smoothing the bias field using the B-spline 

model. The N4ITK has several parameters that their values should be defined. These 

parameters are the convergence threshold, the shrink factor, the fitting level, the number of 

iterations and the use of a mask. The convergence threshold is the stopping criterion of the 

iterative process and the shrink factor defines how much the original sample will be 

downsampled before estimating the bias field. The fitting level defines the number of levels 

that will be used to determine the resolution of the B-spline grid and the number of iterations 

refer to the number of the maximum iterations at each level. In this study, we used parameter 

values that have been identified as optimal for prostate images scanned using a surface coil 

by Dovrou et al. [33]. More specifically, they identified that the optimal configuration of the 

N4ITK filter for these images of PI-CAI dataset is: convergence threshold 0.001, shrink factor 

2, fitting level 5, number of iterations 25 and the use of default mask (use of non-zero values 

of the image). Thus, all the MR prostate images were bias field corrected using this optimal 

configuration of the N4ITK filter in order to reduce the intensity inhomogeneities. 

 

3.2.2 Normalization methods 

Furthermore, intensity normalization techniques were applied to the images in order to 

reduce the variability in the intensity values of the images. More precisely, three 

normalization methods were applied. The state-of-the-art Z-score normalization method was 

used, which rescales and shifts the standardized intensities by the mean value of the signal 

intensities of the image. The pixel values are normalized according to the following equation: 

𝐼𝑛𝑒𝑤(𝑥) =  
𝐼(𝑥) − 𝜇

𝜎
 

Where 𝐼𝑛𝑒𝑤(𝑥) is the normalized value of pixel x, 𝐼(𝑥) is the original value of pixel x, μ is the 

mean value of the signal intensities of the image and σ is the standard deviation of the signal 

intensities of the image. 

Moreover, two biologically-motivated normalization techniques were used in order to 

homogenize the signal intensity space. These methods are based on the concept of White 

Stripe normalization [55] method, which was developed for normalizing brain images. To this 

end, two pelvis specific methods were applied to the MR prostate images, called fat-based 

normalization and muscle-based normalization technique. In order to apply these methods, 

an approximation of the fat and the muscle tissue should be identified. To this end, a 

segmentation method was used to automatically segment the fat and muscle tissue in MR 

pelvic images. Firstly, the N4 bias field correction method was applied to the images in order 

to produce images free from bias field artifacts. Each image was subsequently cropped by 

removing the 20% of the columns in the middle of the image to automatically remove the 

heterogeneous prostate gland and simultaneously maintain the largest area of the fat and the 

muscle tissue. The fat signal intensity is expected to be the highest among the other abundant 
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tissues of the pelvic region in T2W imaging of the prostate. As opposed to the fat tissue, 

muscle tissue is expected to occupy the low signal distribution of the spectrum in the whole 

histogram. The K-means algorithm was applied to the cropped image, setting K equal to 2, in 

order to identify the 2 clusters of the low intensity values (i.e. muscle tissue approximation) 

and the high intensity values (i.e. fat tissue approximation). Especially for the segmentation 

of the muscle tissue, the 12th percentile of the distribution is calculated in order to remove 

the 12% of the lower values that correspond to background pixels representing air and the 

vessels. The effect of this percentile was assessed by an experienced radiophysicist evaluating 

the results obtained by different percentiles. An example of an N4 filtered image after 

removing the 20% in the middle and the corresponding fat and muscle segmentations (with 

red color) are presented in Figure 5. 

 

Figure 5. From left to right, the N4 filtered image after cropping the 20% of the image in the middle, the fat segmentation 
(with red color) and the muscle segmentation (with red color) are presented. 

In the fat-based normalization method, the fat tissue, which was automatically segmented, 

was used as reference tissue in order to normalize the whole image according to statistics 

derived from the fat’s distribution. More precisely, in the fat-based normalization method, 

the image intensity values are transformed according to the following equation: 

𝐼𝑓𝑎𝑡−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥) =
𝐼(𝑥)  −  𝜇𝑓𝑎𝑡

𝜎𝑓𝑎𝑡
 

where μfat is the mean intensity value of the voxels that correspond to the fat tissue and 𝜎𝑓𝑎𝑡  

is the standard deviation of the voxels that correspond to the fat tissue. 

Accordingly, in the muscle-based normalization technique, the image intensity values are 

transformed according to the following equation: 

𝐼𝑚𝑢𝑠𝑐𝑙𝑒−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥) =
𝐼(𝑥)  −  𝜇𝑚𝑢𝑠𝑐𝑙𝑒

𝜎𝑚𝑢𝑠𝑐𝑙𝑒
 

where 𝜇𝑚𝑢𝑠𝑐𝑙𝑒  is the mean intensity value of the voxels that correspond to the muscle tissue 

and 𝜎𝑚𝑢𝑠𝑐𝑙𝑒  is the standard deviation of the voxels that correspond to the muscle tissue. 
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Hence, the aforementioned bias field correction and normalization methods were applied 

independently and in combination to the MR prostate images in order to assess the effect of 

each preprocessing pipeline to the model’s performance. More precisely, six different 

datasets were derived and used for subsequent analysis, which are: a) original dataset; b) Z-

score normalized dataset; c) N4 bias field corrected dataset; d) N4 bias field corrected and Z-

score normalized dataset; e) fat-based normalized dataset; and f) muscle-based normalized 

dataset. The 6 datasets used in the analysis and their brief description are presented in Table 

5. 

Table 5 Descriptions of the datasets used for the analysis 

Dataset Description 

Original The PI-CAI dataset described in section 3.1 

Original Normalized Z-score normalized dataset 

N4 N4 filtered dataset 

N4 Normalized N4 filtered dataset with Z-score normalization 

Fat Fat-based normalized dataset 

Muscle Muscle-based normalized dataset 
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3.3 Radiomics extraction 

Radiomic feature extraction requires several parameters, which configure the extraction 

process, the number and type of features. An important parameter is the width of the bins 

that will be used to discretize images before extraction. Bin width was calculated using a fixed 

bin size and the mean range of intensities per image, using the following equation:  

𝐵𝑖𝑛𝑊𝑖𝑑𝑡ℎ =
𝑀𝑒𝑎𝑛𝑅𝑎𝑛𝑔𝑒

𝐵𝑖𝑛𝐶𝑜𝑢𝑛𝑡
 

For the purposes of this study, 𝐵𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is set to 32 and ranges are calculated by loading 

every image, subtracting the minimum value from the maximum value and then calculating 

the average range for a specific dataset. Using the above equation, the bin width is calculated 

for the original and all preprocessed datasets for extracting radiomic features. Finally, all 

images were resampled to isotropic voxel size of 1mm using the B-Spline interpolator. 

In this study, features were extracted with the Python library pyradiomics [56], which is 

commonly used in the literature for radiomic feature extraction. A total of 1132 features were 

automatically extracted from the segmented region of each image using: i) the original image 

without any filtering, ii) wavelet filtered images and iii) Laplacian of Gaussian filtered images 

with sigma values 2, 3, 4, and 5. The extracted features are related to the distribution of 

intensity levels and they were calculated using the histogram (first order statistics), shape and 

texture, i.e. Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), 

Gray Level Size Zone Matrix (GLSZM) and Gray Level Dependence Matrix (GLDM). Extracted 

features for all patients are saved in comma separated values (csv) files, which additionally 

include the patients’ ids and the assigned ISUP score per lesion. All the features were 

standardized as an initial preparatory step for subsequent analysis. 

 

3.4 Feature Selection Methods 

Data with high dimensionality are difficult to be handled, as models have the tendency to 

overfit on large feature spaces, a phenomenon known as the “Curse of Dimensionality” (CoD). 

Hence, CoD causes lagging performance on unseen data, and more sophisticated models are 

required for achieving high accuracy [9]. Thus, after the feature extraction process, it is 

necessary to select a subset of those features to reduce the computational costs and improve 

models’ performance. The selection process is not trivial and should be meticulously 

conducted in order to keep only the most informative and not redundant features. There are 

several feature selection techniques used in the literature, a subset of which is used in the 

current analysis. The 13 feature selection methods used in this study are: Pearson correlation, 

Spearman correlation, Minimum Redundancy Maximum Relevance (mRMR), Mutual 

Information Feature selection (MIFS), Conditional Mutual Information Maximization (CMIM), 

Joint Mutual Information (JMI), Boruta, Least Absolute Shrinkage and Selection Operator 
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(LASSO) and Relief family of algorithms. In order to use these feature selection methods, the 

ITMO_FS (univariate and multivariate filtering methods), sklearn (LASSO), Boruta_Py (Boruta) 

and skrebate (RBAs) libraries were used. The LASSO feature selection method and methods 

from ITMO_FS were modified to be compatible with sklearn library, following the library’s 

guidelines1. Thus, these methods can subsequently be used in the pipeline. The 

implementation of each method is briefly described. 

 

3.4.1 Pearson and Spearman correlation 

Both Pearson and Spearman feature selection are univariate filter methods, which select 

features based on the correlation between two variables. Thus, the correlation between each 

feature and the target variable or between two features can be calculated. These techniques 

are quick, but they do not take into consideration the interactions between more than two 

variables. Thus, it is not guaranteed that only non-redundant features are selected and may 

hamper the prediction accuracy. In the current study, Pearson and Spearman correlations are 

calculated between all possible pairs of features. For every pair that exhibits a correlation 

higher than a predefined threshold, the feature with the greatest average correlation among 

all features is eliminated. Thus, an initial filtering of the highly correlated features is 

performed in order to face the multi-collinearity.  

Pearson correlation coefficient measures the linear association between two variables, using 

the following formula:  

𝑐𝑜𝑟𝑟𝑋,𝑌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
 

where 𝜎𝑋𝑌 is the covariance between X and Y, 𝜎𝑋 the standard deviation of X and 𝜎𝑌 the 

standard deviation of Y. The values of Pearson coefficient are from -1 (fully negative 

correlation) to 1 (fully positive correlation), while 𝑐𝑜𝑟𝑟𝑋,𝑌 = 0 indicates no correlation 

between the two variables. In addition, a positive correlation means that when the value of 

one variable increases, then the value of the other variable also increases. In contrast, a 

negative correlation shows that when the value of the one variable increases, then the other 

decreases. Spearman correlation coefficient measures the non-linear associations between 

the features. It works in the same way as the Pearson correlation, but it uses their ranks 

instead of calculating the covariance and standard deviation directly on the features. Both 

methods are widely used for feature selection, since they greatly reduce the initial feature 

space.  

  

                                                           
 

1 For the technical guidelines used see: https://scikit-learn.org/stable/developers/develop.html  

https://scikit-learn.org/stable/developers/develop.html
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3.4.2 minimum Redundancy Maximum Relevance (mRMR)  

Minimum Redundancy Maximum Relevance (mRMR) is one of the most commonly used 

feature selection methods in the literature [35]. It is a multivariate filter method which keeps 

features that are informative for the prediction task and avoids redundancy. The selection 

process begins with an empty feature set and the feature that is highly relevant with the 

target variable is selected. For determining the most informative feature, the f-statistic is 

calculated. The next feature selected is the feature that is highly relevant with the target 

variable and has simultaneously minimum redundancy with respect to the selected feature. 

Redundancy is calculated as the average Pearson coefficient for all selected features. This 

process iteratively selects the feature with the maximum feature score, until the feature set 

size reaches the predefined limit.  

In each iteration, the i-th feature score is calculated as: 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒𝑖 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑓𝑖 , 𝑡𝑎𝑟𝑔𝑒𝑡)

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑓𝑖, 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑒𝑡)
 

where 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑒𝑡 is the set of selected features, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 is the f-statistic 

between the feature and the target label and redundancy is calculated as: 

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑓𝑖, 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑒𝑡) =
1

𝑀
∑ |𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐶𝑜𝑟𝑟(𝑠, 𝑓𝑖)|

𝑠 ∈ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑒𝑡
 

where 𝑀 equal to the number of already selected features and 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐶𝑜𝑟𝑟 is the Pearson 

correlation coefficient between the feature 𝑓𝑖  and the selected feature 𝑠. Note that the 

absolute value of Pearson correlation coefficient is used, as the magnitude of the correlation 

is important rather than the sign (positive or negative). 

 

3.4.3 MIFS, CMIM, JMI methods 

Mutual Information Feature selection (MIFS), Conditional Mutual Information Maximization 

(CMIM) and Joint Mutual Information (JMI) methods are also multivariate filters that not only 

select the most informative features for the target variable, but they also keep features that 

are not highly correlated with each other. These methods work iteratively like the mRMR 

method but they use different measures for selecting features. They are all based on the 

entropy decrease that occurs if a feature is selected. Entropy is the randomness that exists in 

a system and thus the features should be selected in a way that the total entropy of the 

system is reduced.  

MIFS method uses mutual information (I), which is the randomness that is removed from the 

system when a feature is selected, providing more information for the target variable. 

Moreover, this method introduces a penalty for reducing feature redundancy. The feature 

score is calculated by the following equation: 
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒𝑀𝐼𝐹𝑆(𝑓𝑖) = 𝐼(𝑓𝑖; 𝑡𝑎𝑟𝑔𝑒𝑡) − 𝛽 ∑ 𝐼(𝑓𝑖; 𝑠)
𝑠 ∈ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑒𝑡

 

The penalty term is multiplied by a coefficient 𝛽 which was found through experiments that 

its optimal value is 1, without strong proof [57]. 

JMI method uses the joint mutual information criterion for selecting features. The basic idea 

is that every feature that is ‘complementary’ with the already selected features should be 

included. The feature score is calculated as: 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒𝐽𝑀𝐼(𝑓𝑖) = ∑ 𝐼(𝑓𝑖 𝑠; 𝑡𝑎𝑟𝑔𝑒𝑡)
𝑠∈𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑒𝑡

 

Finally, CMIM method maximizes the conditional mutual information criterion, which 

includes features that are informative with respect to target, while simultaneously considers 

the conditional relations between features. This method initially selects the feature with the 

highest mutual information with the target variable. Then, it iteratively selects features based 

on the conditional mutual information with the target and the relevant information gained 

with the already selected features. The feature score can be evaluated using the following 

equation: 

  
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑐𝑜𝑟𝑒𝐶𝑀𝐼𝑀(𝑓𝑖) = 𝐼(𝑓𝑖;  𝑡𝑎𝑟𝑔𝑒𝑡) − max

𝑠 ∈ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑆𝑒𝑡
[𝐼(𝑓𝑖;  𝑠) − 𝐼(𝑓𝑖; 𝑠|𝑡𝑎𝑟𝑔𝑒𝑡)] 

For more information about these methods see [58]. Furthermore, these methods provide 

feature sets that are more likely to improve the accuracy of the models, but the calculations 

are slower than the univariate filtering methods. 

 

3.4.4 Boruta 

Boruta is a wrapper feature selection method that leverages the Random Forest (RF) classifier 

for generating feature sets, containing all the significant features [37]. It generates 

randomized permutations of the features (shadow features) and selects the features 

performing better than the best shadow feature. The performance measure is the feature 

importance that is inherently generated by the RF algorithm. After the first iteration Boruta 

finds all features that had greater importance than a specific threshold, called hits. This 

threshold is equal to the maximum importance of all the shadow features. A statistical two-

sided equality test for all features is used to determine whether the feature is accepted or 

rejected. This iteratively process of selecting features continues for a predefined number of 

iterations or until all features are accepted or rejected. Moreover, Boruta algorithm may 

terminate with some features that are not accepted, neither rejected; thus, the algorithm is 

indecisive about those features (weak features) and the machine learning developer should 

decide whether these features will be included. In the current study, the weak features are 

excluded from the subsequent analysis. To conclude, Boruta is an efficient feature selection 
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technique based on a simple statistical test that additionally provides an overall ranking of 

the features. 

 

3.4.5 Least Absolute Shrinkage and Selection Operator (LASSO) 

Least Absolute Shrinkage and Selection Operator (LASSO) feature selection is another 

commonly used algorithm [36]. It is an embedded method based on Lasso regression, which 

is a linear model that adds a scalable penalty term to the least squares cost function. The 

complete cost function with the 𝑙1 penalty is: 

1

2𝑁
∑ (𝑦𝑟𝑒𝑎𝑙

(𝑖)
− 𝑦𝑝𝑟𝑒𝑑

(𝑖)
)

𝑁

𝑖=1
+ 𝛼 ∑ |𝑎𝑗|

𝑛

𝑗=1
 

where N is the number of training samples, 𝑎𝑗 the coefficient of j-th feature, 𝑛 the number of 

features and the hyperparameter 𝛼 scales the penalty term. If the lasso regressor discovers 

two features which are linearly correlated, it will attempt to shrink the coefficient of the less 

important feature to 0, for optimizing the cost function. After the optimization is completed, 

the features with coefficients equal to zero are discarded; thus, only the important and non-

redundant features are preserved. Standardization of the data before training the lasso 

regression model and tuning of the hyperparameter 𝛼 using cross validation (CV) are two 

mandatory steps. Thus, for each examined dataset, the value of the hyperparameter α was 

investigated using 3-fold cross validation.  

 

3.4.6 Relief family of algorithms 

The algorithms of the Relief family estimate the quality of the features based on their ability 

to distinguish instances that are near to each other. They are able to discover any strong 

dependency between the features, while correctly estimating the features’ quality.  

The basic Relief algorithm [59], [60] is used when feature selection is applied on a two-class 

classification task. Initially all features’ weights are equal to zero. In every iteration, the 

algorithm selects a random instance (I), finds the nearest samples of the same class (hit) and 

the nearest sample of the opposite class (miss) and it updates the weights according to the 

following equation: 

𝑊[𝑓𝑖] = 𝑊[𝑓𝑖] −
𝑑𝑖𝑓𝑓(𝑓𝑖 , 𝐼, 𝐻)

𝑚
+

𝑑𝑖𝑓𝑓(𝑓𝑖, 𝐼, 𝑀)

𝑚
 

where H is the nearest hit, M the nearest miss, m the number of total iterations and the 𝑑𝑖𝑓𝑓 

function is defined based on the features category. For categorical features, 𝑑𝑖𝑓𝑓 function is 

defined as:  

𝑑𝑖𝑓𝑓(𝑓𝑖, 𝐼1, 𝐼2) = {
0; 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑖  𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝐼1, 𝐼2

1; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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while for numerical features is defined as: 

𝑑𝑖𝑓𝑓(𝑓𝑖, 𝐼1, 𝐼2) =
|𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑖 𝑖𝑛 𝐼1 −  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑖  𝑖𝑛 𝐼2|

max(𝑓𝑖) − min(𝑓𝑖)
 

If the distance between the randomly selected instance of a positive class and the hit (which 

is also in the positive class) is large, or the distance of the selected instance and the nearest 

miss (which is in the negative class) is small, then the feature separates two instances of the 

same class (positive class) and it does not separate samples of different class. This behavior is 

not desirable and thus the algorithm reduces the weight of this feature. Thus, the algorithm 

tries to find high quality features that best discriminate samples of different classes.  

In this study, several Relief-based algorithms (RBAs) were used as feature selection methods. 

An extended version of the Relief algorithm, called ReliefF, is used, which handles multiclass 

classification tasks and missing data. In this variant, the algorithm finds the k-nearest hits and 

misses, instead of only one. After randomly selecting the instance I, it finds the k-nearest hits 

and for every class different than the class of the selected instance, it finds the k-nearest 

misses. The weights are updated as follows: 

𝑊[𝑓𝑖] = 𝑊[𝑓𝑖] − ∑
𝑑𝑖𝑓𝑓(𝑓𝑖 , 𝐼, 𝐻𝑗)

𝑚 ∗ 𝑘 

𝑘

𝑗=1

+ ∑ [
𝑃(𝐶)

1 − 𝑃(𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝐼)
∑

𝑑𝑖𝑓𝑓 (𝑓𝑖 , 𝐼, 𝑀𝑗(𝐶))

𝑚 ∗ 𝑘 

𝑘

𝑗=1
]

𝐶 ≠𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝐼

 

where 𝑘 is the number of nearest neighbors, 𝑃(𝐶)is the probability of the class C, and 𝑀𝑗(𝐶) 

is the j-th miss that belongs to class C. As the parameter 𝑚 approaches the number of 

instances 𝑛, the weight estimations are getting more reliable [61]. The 𝑑𝑖𝑓𝑓(𝑓𝑖, 𝐼1, 𝐼2) function 

is also updated for probabilistically managing missing data. If one of the instances (e.g. 𝐼1) has 

missing data, the 𝑑𝑖𝑓𝑓 function become: 

𝑑𝑖𝑓𝑓(𝑓𝑖 , 𝐼1, 𝐼2) = 1 − 𝑃(𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑖  𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐼2|𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝐼1) 

If both instances have missing data, then the 𝑑𝑖𝑓𝑓 function become: 

𝑑𝑖𝑓𝑓(𝑓𝑖, 𝐼1, 𝐼2) = 1 − ∑ (𝑃(𝑉 |𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝐼1) × 𝑃(𝑉 |𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝐼2))
# 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓𝑖

𝑉
 

For more information about the implementation of Relief and ReliefF algorithms see [62].  

In addition to ReliefF, other variants of Relief algorithm, i.e. Surf, Surf Star, Multi Surf and 

Multi Surf Star, which are implemented in the skrebate [63] Python library, are also used in 

this study. All these variants have the same core idea with the ReliefF, but differ in terms of 

neighbor selection and weights updating. 
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Surf [64] algorithm uses the notion of threshold-based neighbors, where all instances that are 

in a distance less than a threshold T are considered neighbors and are weighted equally. The 

value of T is set equal to the average pairwise distance between all instances. The extended 

version Surf* (Surf star) [65] uses the same threshold T, introducing the “far” scoring. All 

instances that are within the T are considered hits and those outside T or “far” from the 

current instance are considered misses. Also, the algorithm weights differently each 

neighboring instance. The hits are weighted with 𝑛 + 1, where 𝑛 is the number of features, 

decreasing the feature score and misses are weighted with 𝑛 − 1, which yields an increase in 

the feature score, respectively.  

Moreover, the Multisurf* (Multisurf star) [66] algorithm introduced a dead-band-zone, where 

all instances in this zone have zero weights. The limits for this zone are 𝑇𝑛𝑒𝑎𝑟 = 𝑇 + 𝜎 and 

𝑇𝑓𝑎𝑟  = 𝑇 − 𝜎, where T is a decision threshold for finding neighbors that is equal to the 

pairwise mean distance between the selected instance and all the others, instead of the 

pairwise mean distance between all instances used in Surf. The parameter 𝜎 is equal to the 

standard deviation of the pairwise distance between the selected instance and all the others. 

Hits yield an increase in feature score and misses a decrease, as opposed to the Surf* 

algorithm. This happens since in “far” (distance > 𝑇𝑓𝑎𝑟) instances it is more frequent to find 

different values.  

The last algorithm used for feature selection is Multisurf [63], which applies the  same logic 

as Multisurf*, without utilizing the notion of “far” scoring. Despite the improved ability to 

determine 2-way interactions, “far” scoring may fail to identify main effect interactions [38]. 

Multisurf is a feature selection method that allows the detection of these main effect 

interactions, while it is more computationally efficient than the others and can be applied to 

a variety of data types.  

In Figure 6, illustrations depicting the selection process and weighting of neighbors in the 

various Relief-based algorithms are presented.   
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Figure 6. Illustration of how the neighbors are selected and weighted in various Relief-based algorithms adopted from [63]. 
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3.5 Machine Learning Analysis 

The next step after radiomic features extraction and selection is the classification of the 

samples into low aggressive (𝐼𝑆𝑈𝑃 = 2) and high aggressive (𝐼𝑆𝑈𝑃 > 2) csPCa. For this task, 

several classification algorithms are used in the literature. The most commonly used are the 

Support Vector Machines (SVM), Naïve Bayes (NB), Random Forest (RF), k-Nearest Neighbour 

(kNN), and Extreme Gradient Boost (XGB), which are also used in this study. All algorithms are 

initialised with the default parameters and SVM is used with both linear and gaussian (RBF) 

kernel. The samples were split into a train and test set, where the test size is equal to the 40% 

of the total samples. A stratification strategy based on the target variable and the 

manufacturer of the scanner was used for splitting the data.  Thus, the training set consists of 

135 samples, while the test set consists of 90 samples. For every dataset and execution of the 

pipeline, the train and test indices are preserved for making the results comparable. 

A cross-combination strategy was used in order to derive all the possible combinations of 

feature selection algorithms and classifiers for each dataset. Grid Search Cross-Validation 

(GSCV) with 4 folds was used for optimizing the feature selection method regarding its 

hyperparameter, while extracting the optimal feature set, on the training set. The 

hyperparameter for most feature selection methods is the number of selected features. More 

specifically, for each feature selection method that requires a specific number of features to 

be selected, we experimented on the number of the selected features on the cross-validation 

schema, using all the possible values between 3 and 100 with a step 5. For the univariate 

feature selection methods, the optimal threshold for excluding highly correlated features was 

investigated using all the possible values between 0.70 and 0.95 with a step 0.05. 

Furthermore, the value of the hyperparameter α of the LASSO method was investigated using 

the 4-fold cross validation for each dataset. The various combinations of feature selection 

methods and classifiers were investigated for each derived dataset.  

To this end, a dynamic pipeline was developed to analyse how the various aforementioned 

feature selection and image preprocessing methods influence the performance of the 

classifiers. The analysis consists of a z-score feature normalization and dynamically injection 

of feature selection method and classifier, resulting in 78 possible pipelines for each dataset. 

The z-score normalisation was performed using the sklearn Python library [67]. 

Finally, the performance of each pipeline (i.e., specific feature selection method coupled with 

a specific classifier for each dataset) was assessed on the hold-out test set. More precisely, 

after GSCV the model is retrained on the train set using the derived optimal feature number 

for the examined feature selection method. The performance of the model is assessed on the 

test data using several metrics, which are the Area Under Curve (AUC), Accuracy, Balanced 

Accuracy, F1-score, Precision, Recall, and Cohen’s Kappa. The balanced accuracy, the F1-score 

and the Cohen’s Kappa are useful metrics when assessing the performance of a classifier on 

imbalanced dataset. The Confusion Matrix was also calculated. The model assessment 

methodology is shown in Figure 7. 
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Figure 7. Main analysis workflow 
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3.6 Hybrid Feature Selection 

After determining the optimal feature number for every combination of classifier and feature 

selection method, the study further investigates the impact of using a combination of feature 

selection methods on the performance of the models. Thus, a univariate feature selection 

method coupled with the optimal model extracted from the previous experiment was used. 

The best performing threshold in the initial analysis is used as threshold for the univariate 

feature selection method in the hybrid analysis. Furthermore, for the sake of completeness, 

GSCV is also used in the second feature selection method. The pipeline is fitted using the 

training data for extracting the new optimal features sets, while metrics are calculated on the 

unseen testing set. Figure 8 presents the pipeline. 

 

 

Figure 8. Analysis workflow using hybrid feature selection 
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Chapter 4: Research findings / results 

4.1 Results of main analysis 

The evaluation metrics calculated on the hold-out test set for each cross-combination pipeline 

(i.e. feature selection method and classifier for a specific dataset) were saved in JSON files. 

The results were post-processed in order to extract the optimal feature set and the model 

which can better discriminate the low aggressive from the high aggressive csPCa. The 

distributions of balanced accuracy and AUC score metrics achieved using the various pipelines 

per dataset are calculated and presented in the boxplots shown in Figures 9 and 10, 

respectively. 

 
Figure 9. Distribution of balanced accuracy per dataset 

 
Figure 10. Distribution of AUC per dataset 

Boxplots indicate that the median balanced accuracy (i.e., green line in the figure) and AUC in 

all datasets is in the range of 52% to 55% and of 0.52 to 0.55, respectively. The classifiers 

achieved higher performance using the original and N4 filtered datasets, without 

normalisation, than the other datasets. Moreover, the original dataset demonstrated the best 

performance reaching balanced accuracy equal to 70% (AUC: 0.7, precision: 65.62%, recall: 

60%). The rest of the datasets demonstrated comparatively limited balanced accuracy as the 

normalised original, muscle-based normalised and fat-based normalised datasets achieved 

maximum balanced accuracy in the range of 60% to 65% (AUC: 0.62 – 0.63, precision: 48.57% 

- 55.55%, recall: 44.11% - 57.14%). The normalised N4 filtered dataset demonstrated poorer 
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performance with balanced accuracy equal to 62.16% (AUC: 0.62, precision: 48.57%, recall: 

54.83%). Thus, the boxplots indicate that most combinations of feature selection methods 

and classifiers resulted in poor performance in each dataset as the 75th percentile of the 

distributions of balanced accuracy and AUC is lower than 60%, reflecting the challenging 

nature of predicting prostate cancer aggressiveness.  

The balanced accuracy is used as main metric to assess and visualize the performance of the 

various pipelines, as it better reflects the accuracy of the model in imbalanced datasets. In 

Figure 11, the balanced accuracies achieved by each classifier per feature selection method 

and dataset are presented. The XGB classifier performed optimally when trained and tested 

on the original dataset, using the Pearson or Spearman univariate feature selection method, 

achieving balanced accuracy of 70%. This classifier also achieved balanced accuracy higher 

than 60% on the N4 dataset using the JMI, LASSO, ReliefF, Surf*, mRMR and CMIM feature 

selection methods, with the latter achieving the highest accuracy among these methods. 

Gaussian Naïve Bayes classifier achieved similar maximum balanced accuracy on all datasets 

(less than 60%), except for the original unnormalized and normalized dataset. More precisely, 

using Surf* and Multisurf on the unnormalized and the normalised original dataset, 

respectively, achieved balanced accuracy higher than 60%. 

The kNN algorithm achieved the highest performance (balanced accuracy = 66.70%) when 

coupled with the ReliefF feature selection method on the N4 filtered dataset. Random Forest 

demonstrated optimal balanced accuracy higher than 60% using mRMR in all datasets, except 

for the N4 filtered and the unnormalized original dataset. The Multisurf and Spearman 

methods achieved the optimal performance in the N4 filtered and the unnormalized dataset, 

respectively. However, the best performing feature selection method for the Random Forest 

classifier was the Spearman rank correlation coefficient in the original dataset. The SVM 

classifier with the linear kernel exhibits balanced accuracy near 60% using Pearson, Spearman 

and ReliefF methods in several datasets. However, the use of the LASSO method increases 

the metric to 65.25% on the original dataset. Finally, the SVM classifier using the gaussian 

(RBF) kernel demonstrated a balanced accuracy larger than 60% using the Multisurf and the 

Surf* methods. More precisely, this classifier coupled with the Multisurf method achieved 

balanced accuracy of 61.69% on the fat-based normalization method. Furthermore, the use 

of Multisurf and Surf* methods with this classifier achieved optimal performance, reaching a 

balanced accuracy of 63.09% and 61.39% on the muscle-based normalization dataset, 

respectively.  
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Figure 11. Balanced Accuracy for each classifier per feature selection method and dataset. 
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In Figures 12-14, the balanced accuracies achieved by each feature selection method per 

classifier and dataset are presented. Univariate feature selection methods demonstrated the 

best performance achieving 70% balanced accuracy on the original dataset using the XGB 

classifier (Figure 12). Both Pearson and Spearman correlation coefficient test had the same 

performance using threshold equal to 0.85. LASSO and Boruta coupled with SVM linear kernel 

and XGB, respectively, demonstrated a balanced accuracy of 65.25% and 64.99%, 

respectively, on the original dataset. All multivariate filtering methods also provided mediocre 

results. The mRMR method achieved a balanced accuracy close to 60% for each dataset using 

either Random Forest classifier or XGB (Figure 13). MIFS, JMI and CMIM have also unstable 

performance across all datasets with a balanced accuracy in the range of 40% to 65%. These 

feature selection methods achieved the best performance having balanced accuracy greater 

than 60% using the XGB classifier.  

  

  

 

 

Figure 12. Balanced Accuracy for univariate, Boruta and LASSO feature selection methods per classifier and dataset. 
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Figure 13.Balanced accuracy for multivariate feature selection methods per classifier and dataset 

 

In addition, Relief-based algorithms demonstrated similar performance to the rest feature 

selection methods (Figure 14). More specifically, ReliefF achieved an optimal balanced 

accuracy of 66.70% when using the kNN classifier on the N4 filtered dataset. None of the 

classifier achieved a balanced accuracy greater than 60% when using the Surf method as 

feature selection technique. In contrast, the SVM with rbf (gaussian) kernel, the XGB and the 

Gaussian Naïve Bayes resulted in a balanced accuracy greater than 60% using the Surf* 

method on the muscle, N4 filtered and original dataset, respectively. Furthermore, the use of 

Multisurf method resulted in a balanced accuracy larger than 60% in several classifiers in all 

datasets, except for the N4 normalized dataset. The Multisurf* method achieved a balanced 

accuracy equal to 61.74% when using the SVM linear classifier on the original dataset. The 

other classifiers resulted in poorer performance (less than 60%) when using the Multisurf* in 

all datasets.  
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Figure 14. Balanced Accuracy for Relief-based algorithms per classifier and dataset 

The pipelines of feature selection methods and classifiers that resulted in the optimal 

performance for each dataset are presented in Table 6.  

For the original dataset, the optimal pipeline consists of Pearson correlation coefficient-based 

feature selection with threshold equal to 0.85, with 175 features (Appendix A), followed by 

the XGB classifier, achieving balanced accuracy of 70%. For the z-score normalised version of 

the original dataset, the Pearson-based selection method with 143 selected features 

(threshold equal to 0.85) and the SVM-Linear classifier were identified as optimal pipeline, 

achieving a balanced accuracy of 63.11%. The optimal pipeline for the N4 filtered version of 

the dataset consists of the ReliefF method using 68 features coupled with the kNN classifier, 
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achieving balanced accuracy equal to 66.70%. For both N4 normalised and fat-based 

normalised, the optimal pipeline includes the mRMR selection method with 23 selected 

features and the Random Forest classifier. In these two datasets, the optimal pipelines 

achieved balanced accuracy of 62.16%. Finally, for the muscle-based normalised dataset, the 

optimal pipeline includes the Multisurf selection method with 18 selected features and the 

SVM-RBF algorithm achieving a balanced accuracy equal to 63.09%. The N4 normalized and 

the fat-based normalized datasets achieved the lower balanced accuracy among the 

examined datasets, indicating weaker ability to identify the prostate cancer aggressiveness. 

In contrast, the optimal pipeline for the prediction of PCa aggressiveness consists of the 

univariate feature selection method with threshold equal to 0.85 and the XGB classifier on 

the original dataset. 

Table 6. Optimal combination of feature selection method and classifier per dataset. The number of selected features along 
with the balanced accuracy are presented in the last two columns. 

Dataset 
Feature Selection 

Method 
Classifier 

# of Selected 
Features 

Balanced 
Accuracy (%) 

Original 
Pearson/ Spearman 
(Thres=0.85) 

XGB 175 70.00 

Original with 
normalization 

Pearson/ Spearman 
(Thres=0.7) 

SVM (Linear) 143 63.11 

N4 filtered ReliefF kNN 68 66.70 

N4 filtered with 
normalization 

mRMR Random Forest 23 62.16 

Fat-based 
normalization 

mRMR Random Forest 23 62.16 

Muscle-based 
normalization 

Multisurf SVM (RBF) 18 63.09 
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4.2 Results of hybrid feature selection methods 

After the completion of the analysis and the extraction of the optimal pipeline for each 

dataset, hybrid feature selection methods were also evaluated. The Pearson and the 

Spearman univariate methods were used as the first feature selection method to filter and 

exclude the highly correlated features. In the first experiment, this filtering was followed by 

the optimal pipeline derived from the initial analysis in order to predict the tumor’s 

aggressiveness. However, in the original dataset and its normalized version, the optimal 

feature selection methods were also univariate methods. Thus, the second-best performing 

pipeline was used for the hybrid methods analysis. For the original dataset, the second-best 

performing pipeline consisted of the CMIM with 73 features coupled with the XGB classifier. 

For the normalized version, the pipeline includes the Multisurf with 13 features and the GNB 

classifier. These pipelines achieved balanced accuracy equal to 67.18% and 62.50% in the 

initial analysis, respectively. Furthermore, in a second experiment, the same optimal 

thresholds for the univariate feature selection methods were used, while GSCV was 

performed to identify the optimal number of features that the second feature selection 

method should select. 

Table 7 presents the results per dataset for the two experiments using hybrid feature 

selection methods. Both experiments demonstrate decreased balanced accuracy score. On 

the original dataset, the pipelines achieved balanced accuracy larger than 60% in both 

experiments. However, all the pipelines demonstrated balanced accuracy in the range of 

49.22% to 59.74% in the rest datasets. In addition, no significant improvement in the 

performance is observed while using GSCV for finding the optimal number of selected 

features for the second feature selection method. 

Table 7. Balanced accuracy for hybrid feature selection methods per dataset. Optimal threshold is selected for the Pearson 
correlation coefficient-based feature selection method for each dataset based on the previous analysis. 

Dataset 
Balanced Accuracy 

Optimal Threshold 
Optimal Threshold and Feature 

Number 

Original 61.81% 60.77% 

Original with normalization 54.93% 57.40% 

N4 filtered 59.61% 52.98% 

N4 filtered with 
normalization 

58.57% 49.22% 

Fat-based normalization 57.27% 54.28% 

Muscle-based normalization 58.44% 59.74% 
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Chapter 5: Discussion 

In this study, various radiomic pipelines are developed to classify the aggressiveness of 

clinically significant prostate cancer. The main objective is to determine whether the cancer 

cells grow slowly or quickly enough for more efficient treatment planning. Image 

preprocessing techniques were applied to images to generate several filtered and normalised 

versions of the original PI-CAI dataset. In addition, 468 combinations of image preprocessing, 

feature selection methods and classifiers were employed to identify the optimal pipeline for 

detecting PCa aggressiveness. All pipelines were evaluated on a holdout test set. The analysis 

was extremely time-consuming, as the training and the testing of all possible pipelines in all 

datasets lasted for approximately 6 weeks. 

After thoroughly examining the predictive power of all pipelines, the use of the original 

unnormalized dataset and the Pearson correlation coefficient-based feature selection 

method (threshold = 0.85) coupled with XGB classifier achieved a balanced accuracy of 70%. 

This pipeline achieved the highest performance among all the examined pipelines in detecting 

PCa aggressiveness. Pearson coefficient-based selection reduces the number of radiomic 

features from 1132 to 175 feeding the XGB classifier with the most informative features. 

Pearson and Spearman univariate filtering methods demonstrated the same performance 

using the same threshold and selecting the same features on both the normalized and 

unnormalized original datasets, implying the linear correlations between the radiomic 

features. The CMIM method with XGB achieved 67.18% balanced accuracy on the original 

dataset without any preprocessing, which is the second-best performing pipeline among all 

pipelines and datasets.  

However, the third-best performance overall is achieved using the ReliefF algorithm for 

feature selection and the k-Nearest Neighbors classification algorithm on the N4 filtered 

dataset achieving a balanced accuracy equal to 66.70%. The values of the evaluation metrics 

in the N4 filtered dataset analysis are similar to their values in the original dataset. Hence, the 

bias field correction method does not negatively affect the ability of the models to detect the 

grade of the malignancy. Despite the promising results of the N4 filtering image preprocessing 

method, the normalized N4 filtered and the fat-based normalization methods demonstrated 

the lowest balanced accuracy of 62.16% among the optimal pipelines, using the mRMR and 

the Random Forest classifier. The z-score normalised version of the original dataset 

demonstrated balanced accuracy equal to 63.11% using the Pearson feature selection 

method (threshold = 0.7) and the SVM classifier with linear kernel. The use of a lower 

threshold implies the exclusion of a larger proportion of correlated features, indicating that 

the classifier requires features with low correlation between each other to make the optimal 

decision. However, none of the pipelines in this dataset outperformed the optimal pipeline 

trained in the original set. The second-best performing pipeline for this specific dataset 

consists of the Multisurf selection algorithm and the Naïve Bayes classifier achieving a 

balanced accuracy of 62.50%. Furthermore, the muscle-based normalized dataset achieved 



Application Grade Thesis 

 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 46 of 57 
 

balanced accuracy of 63.09%, which is close to the performance of the normalized original 

dataset. Thus, only the N4 filtering method does not degrade the model’s performance.  

The preprocessing techniques do not improve the performance of the classifiers in predicting 

the tumor’s aggressiveness. Significant differences in the tumor’s phenotype may be 

distorted by the preprocessing techniques affecting the radiomic features’ values and thus 

degrading their ability to characterize the tumor. Although preprocessing techniques alter the 

pixel values for enhancing the visual interpretation of the images, in this context they seem 

to hamper the model’s performance. Furthermore, none of the feature selection methods 

efficiently work for all classifiers. Accordingly, none of the classifiers efficiently work with all 

feature selection methods. Thus, the feature selection method and the classifier used for 

predicting the tumor’s aggressiveness should be carefully selected. However, the XGB 

classifier is the only classifier that achieved a good performance (balanced accuracy larger 

than 60%) using all the feature selection methods except from the RBAs. The selected pipeline 

also depends on the dataset (preprocessed or not) in which to be applied as the signal 

intensities in the image are affected by the preprocessing technique. All classifiers, except for 

the kNN and the SVM rbf kernel, had optimal prediction results when using the original 

unnormalized data. The kNN and the SVM rbf kernel achieved their highest performance, but 

lower than the other classifiers in the original dataset, in the N4 filtered and the muscle-based 

normalized datasets, respectively. According to the results of the current study, the selection 

of the Pearson Correlation test with threshold equal to 0.85 and the use of the XGB classifier 

using the original dataset without any preprocessing are recommended for the challenging 

task of identifying the tumor’s aggressiveness. 

The use of the hybrid feature selection methods resulted in lower prediction performance. 

Pearson correlation coefficient feature selection method was used as the first filtering 

method of the pipeline, using the optimal thresholds that were extracted for each dataset 

from the initial analysis. The derived optimal feature method for each dataset was used as 

the second feature selection method coupled with the corresponding classifier for identifying 

the most informative radiomic features. The overall performance decreased in all datasets 

when executing the hybrid feature selection methods. Original dataset still achieves the best 

performance with a balanced accuracy of 61.81% followed by the N4 filtered dataset with a 

balanced accuracy of 59.61%. The normalized original, the normalized N4, the fat, and the 

muscle based normalized datasets achieved a balanced accuracy of 54.93%, 58.57%, 57.27%, 

58.44%, respectively. This performance decrease occurs as the second feature selection 

methods were trained using different feature spaces. More precisely, the second feature 

selection methods were initially trained using the whole feature set (i.e., 1132 radiomics 

features). In the hybrid feature selection methods, the second feature selection method is 

fed with a significantly smaller feature space extracted after applying the first univariate 

method. Thus, the feature selection method when used as a second method may result in 

different selected radiomics compared to using it alone, as a different initial feature space is 

fed into the method. 
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Finally, the results are similar in the second experiment, where the second feature selection 

methods were trained using grid search 3-fold cross validation. Specifically, an increase in the 

balanced accuracy is observed when using the normalized original and muscle-based 

normalized datasets to 57.40% and 59.74%, respectively. In the rest datasets, the 

performance is decreased. The decrease in the performance may be due to application of the 

first selection method. More specifically, the first feature selection method eliminated a 

significant number of the original 1132 radiomic features, which may impact the selection 

capacity of the second feature selection methods. Furthermore, while applying GSCV, the 

optimal number of the selected features is tested on a small validation set and thus the 

optimal number may be different than the initially extracted one, which is used in the first 

experiment of the hybrid feature selection methods.  

Overall, the limited performance of the hybrid feature selection methods may be due to the 

lack of optimization of the overall pipeline, instead of the second method only. The 

identification of the optimal threshold for the univariate method, which was used as a first 

step of feature filtering, was not investigated. The derived optimal threshold from the initial 

analysis was used in order to directly assess its effect on a hybrid feature selection method. 

The optimal pipeline identified in the current study achieved a balanced accuracy of 70% and 

AUCROC of 0.70 in predicting the challenging task of prostate cancer aggressiveness. A similar 

study conducted by Sun et al. [43] investigated various feature selection methods and 

classifiers on glioma grading. The authors focused on a different pathology and anatomic 

region than in our study. However, they drawn the same conclusion that the predictive 

performance is affected by both the feature selection method and the classifier. Several other 

studies investigated the ability of radiomics and machine learning models to identify the 

clinically significant PCa from the non-clinically significant [42], [47]. Our aim was to identify 

the low aggressive tumor from the high aggressive tumor based on the cells growth. Thus, the 

results from these studies cannot be compared with our results, since the clinical and research 

question is different. Furthermore, Chaddad et al. [39] investigated a similar clinical problem 

to our study, predicting the grade group of the tumor based on the Gleason score. They 

achieved higher performance (AUC larger than 70%), but they used radiomics extracted from 

two modalities (i.e., T2w and ADC) and a significantly smaller dataset (i.e., 99 patients). Thus, 

the results cannot be directly compared as radiomics from different modalities were used. 

Moreover, Bertelli et al. [46] investigated the same clinical question to our study for 

predicting the prostate cancer aggressiveness based on same classification of the ISUP score. 

A slightly better performance was achieved having an AUC of 0.75. However, a significantly 

smaller dataset (i.e., 85 patients) was used than in our study (i.e., 220 patients). Thus, the 

robustness of these results are restricted. However, we achieved a classification performance 

close to the state-of-the-art performance for predicting the tumor’s aggressiveness using a 

larger dataset than in the most studies. Hence, our study shows promising results in the 

challenging task of predicting the prostate cancer aggressiveness.   
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This study has several limitations. First, multiple iterations of the data splitting on train and 

test set should be performed in order to produce more robust results. Even though the data 

were split in a stratified manner and the train and test indices were the same for each dataset, 

models should be trained and tested for a predefined number of iterations in order to 

produce generalizable results. Second, the original dataset size is limited. More samples are 

required in order to build robust and well-validated datasets. Furthermore, the whole analysis 

of identifying the optimal pipeline for each dataset is an extremely time-consuming task, 

restricting the number of methods and classifiers to be examined. Moreover, multiple 

experiments were difficult to be performed due to the enormous execution time, making it 

difficult to reproduce the analysis. However, the preliminary results obtained from the 

current study when using the original dataset are promising for the classification of the 

prostate cancer aggressiveness.  
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Chapter 6: Conclusion 

Classifying the aggressiveness of clinically significant prostate cancer is a challenging task. In 

this study, 468 combinations of different image preprocessing techniques, feature selection 

methods and classifiers were used to identify the optimal pipeline. Biologically motivated 

image preprocessing techniques and N4 filtering were used for enhancing the quality of the 

images. Results suggest that none of the image preprocessing steps could improve the 

performance of the classifiers in the specific task. Original unnormalized data demonstrated 

the best performance with a balanced accuracy of 70% (AUC: 0.70) using univariate filtering 

(Pearson and Spearman) feature selection methods and the XGB classifier. The normalized 

datasets achieved balanced accuracy in the range of 60% to 65% (AUC: 0.62 - 0.66), while the 

best performance among the preprocessed datasets achieved when using N4 filtered 

unnormalized dataset. Univariate filtering coupled with XGB and SVM with linear kernel 

achieved the optimal performance in the original and original normalized, respectively. 

ReliefF, Multisurf and mRMR coupled with KNN, SVM with Gaussian kernel and Random 

Forest, respectively, demonstrated optimal performance in the rest datasets. The optimal 

number of selected features varies from 18 to 175. Pearson and Spearman methods revealed 

a large number of selected features. Multisurf extracted a minimal feature set of 18 features, 

achieving balanced accuracy of 63.10%. Using hybrid feature selection methods, surprisingly, 

do not enhance the performance of the models. In contrast, the results retain a balanced 

accuracy in the range of 54.93% to 61.81% (AUC: 0.54 - 0.61). Optimizing the second feature 

selection method worsen even more the overall performance due to the restricted number 

of features.  

Larger datasets could be used to validate the results of the current study. Multiple iterations 

could be used in order to increase the robustness of the results. Executing multiple runs and 

averaging the metrics will provide a clearer insight on the ability of the methods proposed to 

predict the tumor’s aggressiveness. However, use of multiple runs requires increased 

computational resources and is extremely time-consuming; thus, it was not feasible to be 

performed in the current study.  Furthermore, mpMRIs (T2W, DWI and ADC) available in the 

dataset would be used in order to assess whether the combined information obtained from 

all modalities enhance the performance of the models. Moreover, further feature selection 

methods and classifiers could be used to assess their performance. Tuning the 

hyperparameters of classifiers and optimizing the Pearson coefficient’s threshold for hybrid 

feature selection are also recommended. Classifier stacking is another technique used for 

alleviating the poor performance of some classifiers, while utilizing the predictive power of 

the more powerful ones. Moreover, optimization of the dynamic pipeline for enabling parallel 

and distributed execution will be developed in future work in order to reduce the 

computational time. Furthermore, the use of a combination of both hand-crafted and deep-

radiomics will be used in a future work to assess their joint predictive power in identifying the 

prostate cancer aggressiveness.  
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Appendices 

Appendix A – Optimal selected feature set from original dataset using Pearson correlation-base 

feature selection and XGB classifier. 
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