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Optimizations for the Query Language SPARQL-LD

Abstract

Linked Data is a method for publishing structured data in the Web for assisting
their linking and integration. A constantly increasing number of organizations and
owners publish their data on the Web as Linked Data and SPARQL is the standard
query language. However the majority of SPARQL implementations require the
data to be available in advance in main memory or accessible through a SPARQL
endpoint.

SPARQL-LD is an extension of SPARQL 1.1 (designed by FORTH-ICS) that
overcomes this restriction and allows fetching and querying RDF data from any
Web source and format i.e., RDFa, JSON-LD, Microdata and Microformats. Us-
ing SPARQL-LD one can query a dataset corresponding to an RDF dump, or a
dataset corresponding to the partial results of a query (i.e., discovered at query
execution time), or RDF data that are dynamically created by Web Services. This
functionality can motivate content owners to adopt the Linked Data principles and
enrich their digital content and services with RDF, for having their data directly
queryable via SPARQL–LD without having to create and maintain an operational
SPARQL endpoint.

In this thesis we focus on optimizations for SPARQL-LD in particular on: (a)
methods for exploring the syntactic variations of graph patterns in a SPARQL
query in order to choose a near to optimal execution plan without the use of statis-
tics (to this end we utilize query reordering techniques, using selectivity estimation
procedures on new unbound variables for increasing efficiency and decreasing inter-
mediate results and thus the number of calls to remote sources), and (b) methods
for parallelizing RDF data retrieval by using SPARQL-LD for efficient data caching.

Finally, we report experimental results on real datasets for evaluating the ef-
ficiency as well as the quality of the proposed optimizations. The results showed
improved efficiency on SPARQL queries in comparison to existing methods.





Βελτιστοποιήσεις για τη Γλώσσα Επερώτησης

Διασυνδεδεμένων Δεδομένων SPARQL-LD

Περίληψη

Τα Διασυνδεδεμένα Δεδομένα (Linked Data) είναι ένας τρόπος δημοσίευσης δε-
δομένων στο διαδίκτυο που διευκολύνει τη διασύνδεση (μέσω της χρήσης URIs αντί
απλών τιμών) και την ολοκλήρωσή τους. Υπάρχει ένας διαρκώς αυξανόμενος αριθμός

οργανισμών ή επιχειρήσεων που δημοσιεύουν τα δεδομένα τους ως διασυνδεδεμένα

δεδομένα (Linked Data) τα οποία είναι επερωτήσιμα μέσω της SPARQL που είναι
η στάνταρ γλώσσα επερωτήσεων του Σημασιολογικού Ιστού (Semantic Web). Ω-
στόσο, η χρήση της SPARQL προϋποθέτει ότι από τα δεδομένα προς επερώτηση είναι
διαθέσιμα εκ των προτέρων στην κύρια μνήμη ή σε κάποιο σημείο σύνδεσης SPARQL
(SPARQL endpoint).
Για να δώσουμε μεγαλύτερη ευελιξία, σε αυτήν την εργασία επικεντρωνόμαστε

στην SPARQL-LD, μια επέκταση της SPARQL 1.1 που σχεδιάστηκε στο Ινστιτούτο
Πληροφορικής, η οποία προσφέρει τη δυνατότητα επερώτησης σε απομακρυσμένα δε-

δομένα ακόμα και αν δεν φιλοξενούνται από ένα σημείο σύνδεσης SPARQL. Χρησιμο-
ποιώντας τη SPARQL-LD μπορεί κανείς να επερωτήσει σύνολα δεδομένων (datasets)
που είναι προσβάσιμα ως RDF dumps, ως ενσωματωμένα δεδομένα σε ιστοσελίδες, δη-
λαδή σε μορφή RDFa, JSON-LD, Microdata ή Microformat, καθώς και σε δεδομένα
που αντιστοιχούν σε μερικά αποτελέσματα μιας επερώτησης (δηλαδή, που ανακτήθη-

καν κατά το χρόνο εκτέλεσης της επερώτησης), ή που δημιουργήθηκαν δυναμικά από

υπηρεσίες διαδικτύου. Αυτή η λειτουργικότητα μπορεί να δώσει κίνητρο στους ιδιο-

κτήτες περιεχομένου να υιοθετήσουν τις αρχές των διασυνδεδεμένων δεδομένων και

να εμπλουτίσουν το ψηφιακό τους περιεχόμενο και υπηρεσίες τους με RDF, αφού
έτσι τα δεδομένα τους θα είναι άμεσα επερωτήσιμα μέσω της SPARQL-LD χωρίς να
χρειάζονται να δημιουργήσουν και να συντηρούν ένα λειτουργικό σημείο σύνδεσης

SPARQL.
Εν συνεχεία, επικεντρωνόμαστε σε βελτιστοποιήσεις που αφορούν τη SPARQL-

LD, συγκεκριμένα σε: (α) μεθόδους που διερευνούν συντακτικές παραλλαγές των
μοτίβων γράφων (Graph Patterns) μιας επερώτησης SPARQL για την επιλογή του
σχεδόν βέλτιστου πλάνου εκτέλεσης χωρίς τη χρήση στατιστικών στοιχείων (για το

σκοπό αυτό εφαρμόζουμε τεχνικές αναδιάταξης επερωτήσεων βασισμένων σε τεχνι-

κές εκτίμησης της εκλεκτικότητας νέων - μη δεσμευμένων - μεταβλητών με στόχο την

επιτάχυνση καθώς και τη μείωση των απομακρυσμένων κλήσεων), και (β) τεχνικές

παράλληλης ανάκτησης RDF δεδομένων από το διαδίκτυο με την χρήση απομακρυ-
σμένων επερωτήσεων της SPARQL-LD για αποδοτικότερη προσωρινή αποθήκευση
των δεδομένων.

Τέλος, αναφέρουμε πειραματικές μετρήσεις που πραγματοποιήθηκαν πάνω σε πραγ-

ματικά σύνολα δεδομένων για την αξιολόγηση της απόδοσης καθώς και της ποιότητας

των προτεινόμενων βελτιστοποιήσεων, όπου παρατηρήθηκε σημαντική βελτίωση της

επίδοσης κατά την χρήση απομακρυσμένων κλήσεων σε σχέση με άλλες μεθόδους.
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Chapter 1

Introduction

1.1 Topic and Motivation

The content of the World Wide Web (WWW) is currently formatted in a natural
language, mainly through HTML. Even though such a language is human-readable
and human-understandable, the machines or else the software agents are only able
to read this information. The machine-intelligibility cannot be achieved with the
current technology.

This gap is called to be solved through the Semantic Web, an extension of
the WWW. The term was coined by the Tim Berners-Lee, the inventor of the
WWW and the director of the Word Wide Web Consortium (W3C), and aims at
converting unstructured and semi-structured documents into semantically struc-
tured knowledge, that can be processed directly and indirectly by machines. The
promoted formats give the ability to the machines to interpret the content of the
web page and find, share and integrate information more easily.

Linked Data is about using the Web to connect related data that wasn’t pre-
viously linked, or using the Web to lower the barriers to linking data currently
linked using other methods. More specifically, Wikipedia defines Linked Data as
”a term used to describe a recommended best practice for exposing, sharing, and
connecting pieces of data, information, and knowledge on the Semantic Web using
URIs and RDF”. The goal is to extend the Web with a data commons by publish-
ing various open datasets as RDF on the Web and by setting RDF links between
data items from different data sources [18].

Linked Data and Web technologies have essentially transformed the Web from
a publishing-only environment into a vibrant place for information dissemination
where data is exchanged, integrated, and materialized in distributed repositories.
In this emerging global data space, the real benefit we can get from the available
semantic data relies on our capability to access and interpret them. Most of the
applications require data integration as well as reconstruction in order to adapt
them to other contexts of use than the ones they were originally envisioned for.
There are a variety of techniques to manipulate and use such data based on their

1
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meaning. A central issue in this context is the meaningful querying and storage of
semantic data. With this in mind we are striving for efficient query and storage
techniques for linked data expressed in RDF, the base component of linked open
data and therefore the standard data model for the Web of Data.

However, the current state of the available commercial RDF stores known
as SPARQL endpoints, shows problematic query performance and responsiveness,
typically caused by bad query plans, especially in complex queries. Since SPARQL
language is declarative, a SPARQL query can be written differently with several
orders of expressions. However, the execution time for the different orders that are
generated from the same SPARQL statement can vastly vary in efficiency. Some-
times, simple re-orderings can reduce the querying time considerably. Therefore
Query Planning, which evaluates the possible query plans and finds a best one for
the query engine, is regarded as an essential task in query optimizer.

An important question has risen, how one can efficiently access and query
this constantly increasing body of knowledge? SPARQL [8] is a standard query
language (W3C Recommendation) for retrieving and manipulating RDF data from
the Web of Data. However, the majority of SPARQL implementations require
the data to be available in advance, i.e., to exist in main memory, or in a RDF
repository accessible through a SPARQL endpoint. Nonetheless, Linked Data
exists in the Web in various forms; even an HTML Web page can contain RDF
data through RDFa [7], or JSON-LD [1], or Microdata [5], or Microformats [6] or
RDF data that may be dynamically created by Web Services.

Our work is based on SPARQL-LD [10], a generalization of SPARQL 1.1 Fed-
erated Query [9] that allows to directly and flexibly exploit this wealth of data.
SPARQL-LD extends the applicability of the service operator (of SPARQL 1.1
Federated Query) enabling to query any HTTP Web source containing RDF data.
SPARQL-LD does not require the named graphs to have been declared, thus one can
even fetch and query a dataset returned by a portion of the query (i.e., whose URI
is derived at query execution time).

1.2 Objectives and Approach

In this thesis we focus on query optimizations for SPARQL-LD. There are two main
approaches for query optimization, i.e., on how to evaluate the cost of SPARQL
expressions. The most common approaches use pre-computed statistics [45] and
heuristics [59]. The first approach calculates certain summary data on RDF re-
sources, usually using histogram based methods, and then utilize the data to eval-
uate the cost of query plans. Heuristic-based methods first define certain heuristics
according to the observation on RDF data sources and then apply these heuristics
to estimate the cost. Each approach has some advantages and also some limita-
tions. Statistics-based methods are usually more expensive in terms of implemen-
tation, required resources (time, storage) and maintenance, particularly for large
scale evolving semantic data over the Web, in spite of that, such methods preserve
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relatively higher accuracy. Heuristic-based approaches are easier to implement and
cost less, but can be less efficient.

Nevertheless, in many use cases, where SPARQL users are accessing LOD data
sources, typically reachable over an URI and often freshly loaded, the database
may not have the needed statistics (e.g., histograms) for cost-based optimization.
Moreover, in RDF it is not immediately clear on what to create statistics, as the
data is essentially a directed labelled graph, where the same predicates may be used
between multiple sub-classes of subjects/objects (and where these sub-classes are
not explicitly declared or recognizable), and in which predicates themselves may
also re-appear as subjects and objects, mixing data and metadata in this one big
graph. With this in mind the job of a SPARQL query optimizer is significantly
complex, not only because of the usually large amount of self joins, but also because
it is not trivial to estimate the join hit-ratios in the SPARQL case. As a result,
SPARQL endpoints, even if they rely on cost-based statistics for certain kinds of
predicates (such as selections, or certain well-known joins) will in many other cases
have to rely on heuristics anyway.

In the case of SPARQL-LD we could rely on statistics to improve the efficiency
of the system over specific resources, e.g., the statistics that were gathered from
wikipedia, yago and wikidata in section 5.1. However due to the dynamic nature
of SPARQL-LD to be able to query any HTTP resource and endpoints, we will use
a heuristics approach that applies general rules and filters to enable querying over
different datasets.

Thus, in this thesis we present a heuristic approach to solve this problem by
devising heuristics based query optimization techniques without the need of any
knowledge of the stored dataset. Our work focuses on static Group Graph Pattern
(GGP) optimization for SPARQL queries and main memory graph implementa-
tions of RDF data. Our presented optimization approaches are inspired from join
re-ordering strategies using selectivity estimation [58]. To this end, we exploit the
syntactic and structural variations of the triple and service patterns and oper-
ators in a SPARQL query in order to choose a near to optimal execution plan
without the need of any statistics. Based solely on the syntax of a SPARQL query,
we can decide which service calls to evaluate first (by selecting the service

call with the lowest selectivity) in order to reduce the intermediate results, hence
increasing query performance.

The main problem we are going to tackle in this thesis is best explained by
a simple example. Consider the query displayed in Figure 1.1 which represents
a series of service calls executed over RDF data to retrieve information about
scientific journals. In more detail the first federated query is executed against
the endpoint of dbpedia1 and searches for academic journals that focus on the
subject of toxicology and retrieves their labels as well as same-as connections to
other endpoints. Similarly, the second federated query is executed against the

1https://dbpedia.org/sparql
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endpoint of wikidata2 and searches for journals that are published in 1978 and
originate from United Kingdom. While the third federated query uses a variable
operator to fetch all the relative information from the dereferencable URIs of the
journals recovered in the previous service calls. The question is in which order a
query engine should execute the three service calls. Given the research on join
order strategies that has been pursued for relational database systems, we can
safely state that a query engine should execute first the second triple pattern as
its result set is considerably smaller compared to the result set of the first triple
pattern. We can observe that the second federated query is more restrictive than
the first one. With this in mind the third federated query needs to preserve its
order in order to be correctly evaluated since it makes use of a variable service

operator. Therefore, a static optimizer is in need to reverse the service calls (or
graph patterns) and improve the efficiency of the query while securing the correct
results. Our query planner is abstractly illustrated in 1.2. Briefly speaking, the
first step is to analyze the service patterns of the query Graph, the second step
is to use the estimated costs based on heuristics to search for the best plan and
finally to rewrite the query based on this plan.

Having said that, remote query executions may frequently lead to unsuccessful
results or failed query attempts. Since maintaining a reliable endpoint requires a
significant additional cost (both in effort and in computer resources) that not all
publishers are willing or able to pay. Notice also that HTTP servers are much more
reliable than SPARQL endpoints. Actually, availability is the main bottleneck to-
wards the success of the Semantic Web as a reliable technology. Buil-Aranda et
al. [20] tested 427 public endpoints and found that their performance can vary
by up to 3-4 orders of magnitude, while only 32.2% of public endpoints can be
expected to have monthly uptimes of 99-100%. Therefore, it may be more reli-
able to directly retrieve the triples of a dereferenceable URI than retrieving the
same triples by invoking a query against a remote endpoint (considering of course
that the query requirements are satisfied). With this in mind in this thesis we
also present the format extension implemented on SPARQL-LD, to enable querying
HTML resources that contains JSON-LD, Microdata or Microformats. An exam-
ple in Figure 1.3, shows a Web page with data about contact information, social
profile links and logo image, that are in Microdata format, which can be extracted
by the SPARQL-LD.

1.3 Contributions

In this context, the main contributions of this thesis are:

• We identify factors that affect query efficiency and propose a heuristics based
static query reordering optimization technique on graph pattern restrictions,

2https://query.wikidata.org/
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1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

3 PREFIX owl: <http://www.w3.org/2002/07/owl#>

4 PREFIX dct: <http://purl.org/dc/terms/>

5 PREFIX wdt: <http://www.wikidata.org/prop/direct/>

6 PREFIX wd: <http://www.wikidata.org/entity/>

7 PREFIX dbo: <http://dbpedia.org/ontology/>

8 PREFIX dbp: <http://dbpedia.org/property/>

9 PREFIX dbc:<http://dbpedia.org/resource/Category:>

10 SELECT Distinct ?journal ?journal_info WHERE {

11 SERVICE <http://dbpedia.org/sparql> { #538

12 ?dbp_journal a dbo:AcademicJournal.

13 ?dbp_journal dct:subject dbc:Toxicology_journals.

14 ?dbp_journal owl:sameAs ?journal.

15 ?dbp_journal rdfs:label ?label.

16 }

17 SERVICE <https://query.wikidata.org/sparql> { #3

18 ?journal wdt:P31 wd:Q5633421.

19 ?journal wdt:P571 "1978-01-01"^^xsd:dateTime.

20 ?journal wdt:P495 wd:Q145.

21 }

22 SERVICE ?journal { #176

23 ?journal ?p ?journal_info.

24 }

25 }

Figure 1.1: SPARQL query against multiple endpoints (such as DBpedia and
Wikidata) to retrieve information about resources classified as scientific journals.

by evaluating the syntactic variations of graph patterns, in order to execute
close to optimal execution plans.

• We devise a parallel fetching technique of remote HTTP resources that signif-
icantly improves the performance of the SPARQL-LD in some circumstances.

• We showcase a caching optimization of service bindings retrieved from re-
mote sources to increase the efficiency of the SPARQL-LD.

• We present an extended format support for SPARQL-LD over popular HTML
formats i.e., embedded JSON-LD, Microformats and Microdata that are used
extensively on the Web [44].

• We extensively evaluate the effectiveness of SPARQL-LD as of the proposed
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Figure 1.2: The basic steps of our query planner.

Figure 1.3: An Web page using Microdata format.



1.3. CONTRIBUTIONS 7

optimizations techniques and offer more complete results over real datasets
that are widely used such as dbpedia, wikidata and yago3.

3https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/
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1.4 Outline of Thesis

The rest of this thesis is organized as follows:
Chapter 2 discusses the context and describes related work and what distin-

guishes the current one in contrast to the known literature.
Chapter 3 presents SPARQL-LD, its functionality and the extended service op-

erator and provides architectural and applicability details.
Chapter 4 details the optimization techniques proposed by this thesis such as

static group graph pattern reordering optimizations using selectivity estimation
and methods for parallelizing RDF data retrieval for efficient data caching.

Chapter 5 evaluates the performance of the SPARQL-LD. Then it reports and
analyzes the experimental results over 3 real datasets and also introduces statistical
metrics on datasets used.

Finally chapter 6 concludes the thesis and identifies directions for future re-
search.



Chapter 2

Context and Related Work

2.1 Background

In this section, we discuss the importance of the Semantic Web and introduce
the Resource Description Framework (RDF) data model [37] and its SPARQL [8]
query language for querying RDF data. Finally we present the SPARQL-LD [24]
and its infrastructure on which we base our optimizations.

2.1.1 Semantic Web, RDF and LOD

The vision of the Semantic Web is to publish and query knowledge on the Web in
a semantically structured way. The idea of a Semantic Web was introduced to a
wider audience by Berners-Lee in 2001 [16]. According to his vision, the traditional
Web as a Web of Documents should be extended to a Web of Data where not only
documents and links between documents, but any entity (e.g., a location or a
person) and any relation between entities (e.g., isFatherof) can be represented on
the Web. When it comes to realizing the idea of the Semantic Web, knowledge
graphs (KGs) are currently seen as one of the most essential components. The
term ”Knowledge Graph” was coined by Google in 2012 and is intended for any
graph-based knowledge base. We define a Knowledge Graph as an RDF graph.

The Resource Description Framework (RDF) is a graph-based data model rec-
ommended by W3C for publishing (linked) Web data on the Semantic Web.

RDF is based on the concept of resource which is everything that can be
referred to through a Uniform Resource Identifier (URI). In particular, RDF builds
on triples to relate URIs to others URIs, to constants called literals or to unknown
values called blank nodes (which are similar to the notion of labelled nulls in
incomplete databases). A triple is a statement (s p o) meaning that the subject
s is described using the property p (a.k.a. predicate) by having the object value
o. Formally, given U , L and B denoting three (pairwise disjoint) sets of URIs,
literals, and blank nodes respectively, a well-formed triple is a tuple (s p o) from
(U ∪ B)× U × (U ∪ L ∪ B). In the following, we only consider well-formed triples.

9
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A set of triples is an RDF graph, in which every triple (s p o) corresponds to
a directed edge labelled with pfrom the node labelled with sto the node labelled
with o.

In this thesis, we focus on those KGs having specific aspects, for instance the
KGs should be freely accessible and freely usable within the Linked Open Data
(LOD) cloud (an example is shown in figure 2.1 [63]). Linked Data refers to a set
of best practices [53] for publishing and interlinking structured data on the Web,
defined by Berners-Lee [56]. Linked Open Data refers to the Linked Data which
”can be freely used, modified, and shared by anyone for any purpose.” The aim of
the Linking Open Data is to publish RDF data sets on the Web and to interlink
these data sets.

Figure 2.1: A 3D Visualization of LOD datasets.

For selecting the KGs for analysis, we regarded all datasets which fulfilled the
above mentioned requirements. Based on that, we selected DBpedia, Wikidata,
and YAGO as KGs for our comparison. In this thesis, we give a systematic overview
of these KGs. Furthermore, we provide an evaluation information for users who
are interested in using one of the mentioned KGs in a research or industrial setting,
but who are inexperienced in which KG to choose for their concrete purposes.

2.1.2 SPARQL

SPARQL [51] is the W3C standard for querying RDF graphs. In this thesis, we
consider the Basic Graph Pattern (BGP) queries of SPARQL, i.e., its conjunctive
fragment allowing to express the core Select-Project-Join database queries. In
such queries, the notion of triple is generalized to that of triple pattern (s p o)
from (U ∪ B ∪ V )× (U ∪ V )× (U ∪ L ∪ B ∪ V ), where V is a set of variables. The
normative syntax of BGP queries is SELECT ?v1 ... ?vm WHERE t1 ... tn where
t1, ..., tn are triple patterns and ?v1, ..., ?vm are distinguished variables occurring
in t1 · · · tn which define the output of the query. Observe that repeating a variable
among triple patterns is the way of expressing joins. In the following, we assume
BGP queries which do not contain cartesian products. The evaluation of a query q,
defined as SELECT ?v1 · ··?vm WHERE t1 · · · tn, on an RDF graph G is: eval(q) =
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{f(?v1 · ··?vm)|f : varbl(q) → val(G) is a function s.t. {f(t1), · · ·, f(tn)} ⊆ G},
with varbl(q) the set of variables and blank nodes occurring in q, val(G) the set
of URIs, literals and blank nodes occurring in G, and f a function replacing any
variable or blank node of q with its image in val(G). By a slight abuse of notation,
we denote by f(ti) the triple obtained by replacing the variables or blank nodes
of the triple pattern ti according to f. Observe that blank nodes do not play
any particular role in queries, since (normative) query evaluation treats them as
non-distinguished variables.

2.1.3 SPARQL-LD

This thesis is based on SPARQL-LD, which is an extension (actually a generaliza-
tion) of SPARQL 1.1 Federated Query [9] that allows to directly and flexibly exploit
this wealth of data. SPARQL-LD extends the applicability of the service opera-
tor (of SPARQL 1.1 Federated Query) enabling to query any HTTP Web source
containing RDF data. This extension does not require the named graphs to have
been declared, thus one can even fetch and query a dataset returned by a portion
of the query (i.e., whose URI is derived at query execution time).

Such a functionality can motivate Web publishers to enrich their documents
and digital libraries with RDF since it makes their data directly accessible via
SPARQL without needing to set up and maintain an endpoint (e.g., they can
just publish RDF dumps). The use of an endpoint for a dataset consisting of a
small number of triples does not justify the provision effort. Maintaining a reliable
endpoint requires a significant additional cost (both in effort and in computer
resources) that not all publishers are willing or able to pay. Notice also that HTTP
servers are much more reliable than SPARQL endpoints. Actually, availability
is the main bottleneck towards the success of the Semantic Web as a reliable
technology. Buil-Aranda et al. [20] tested 427 public endpoints and found that
their performance can vary by up to 3-4 orders of magnitude, while only 32.2% of
public endpoints can be expected to have monthly uptimes of 99-100%. Therefore,
it may be more reliable to directly retrieve the triples of a dereferenceable URI
than retrieving the same triples by invoking a query against a remote endpoint
(considering of course that the query requirements are satisfied).

Fig. 2.2 shows a query that can be answered by SPARQL-LD. The query first
accesses Europeana’s [33, 36] SPARQL endpoint1 for retrieving artists of works
related to Renaissance (lines 2-3). Then, by querying the dereferenceable URI of
each artist, the query retrieves and shows a description (in English) and an image
of only those of Mannerist style (lines 4-6). Note that Europeana does not contain
information about artist styles. Notice also that the artist URIs are derived at
query execution time. One could also integrate in the same query data from any
Web resource or Web Service that offers its data in a standard RDF or microdata
format. As an example, consider that an online bookstore service exports its search

1http://sparql.europeana.eu/
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results in microdata. Using SPARQL-LD one can directly access this service through
SPARQL and find books about the artists returned by the two SERVICE patterns
in the query of Fig. 2.2. Likewise, in the same query one could exploit a video
service and find links of YouTube videos related to some of the artists.

Consequently, the functionality offered by SPARQL-LD can overcome limits of
information integration, enrichment and exploitation. We will further discuss
SPARQL-LD in Section 3.

1 PREFIX dbr: <http://dbpedia.org/resource/>

2 PREFIX dc: <http://purl.org/dc/elements/1.1/>

3 PREFIX dct: <http://purl.org/dc/terms/subject>

4 PREFIX dbo: <http://dbpedia.org/ontology/abstract>

5 PREFIX foaf: <http://xmlns.com/foaf/0.1/depiction>

6 SELECT DISTINCT ?creator ?descr ?photo WHERE {

7 SERVICE <http://sparql.europeana.eu/> {

8 ?work dc:subject dbr:Renaissance .

9 ?work dc:creator ?creator . }

10 SERVICE ?creator {

11 ?creator dct:subject dbc:Mannerist_painters .

12 ?creator dbo:abstract ?descr .

13 ?creator foaf:depiction ?photo FILTER(lang(?descr)="en") . } }

Figure 2.2: An example of a SPARQL query that can be answered by SPARQL-LD.

SPARQL-LD language was first demonstrated in a short (demo) paper by Fafalios
et al. [23] that extended the SPARQL 1.1 Federated Query, by enabling to query
any HTTP resource such as web pages containing RDFa and embedded turtle for-
mat or directly querying RDF files, e.g., rdf/xml, turtle and n3 formats. Further-
more his work includes two optimizations, i.e., index of know SPARQL endpoints
and request-scope caching of fetched dataset optimization. Compared to this work
in this thesis we extended the supported formats, by enabling to query any web
page containing JSON-LD, Microdata and Microformats I & II. Moreover we fur-
ther analyzed more optimization cases and present two more, i.e., parallel fetching
of remote resources and query reordering optimization. Finally we have updated
SPARQL-LD to support the newer version of Jena and ARQ.

SPARQL-LD was also published in the conference paper [24].

2.2 Related Work

In Subsection 2.2.1 we discuss the main methods for querying Linked Data, while in
Subsection 2.2.2 we present similar optimization that SPARQL-LD can incorporate.

2.2.1 Basic Methods for Querying Linked Data

The approach that we propose is considered a method to execute queries over the
Web of Linked Data. Such approaches can be classified in three main categories:
query federation, data centralization, and link traversal.
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The idea of query federation is to provide integrated access to distributed
sources (RDF sources in our case) on the Web. For example, the DARQ engine [52]
provides transparent query access to multiple SPARQL services by giving the user
the impression that one single RDF graph is queried despite the real data being
distributed on the Web. Similarly, the SemWIQ system [39] provides access to dis-
tributed RDF data sources using a mediator service that transparently distributes
the execution of SPARQL queries without the need to specify the target endpoints.
Given the need to address query federation, in 2013 the SPARQL W3C working
group proposed a query federation extension for SPARQL 1.1 [9]. Buil-Aranda et
al. [19] describe the syntax of that extension and formalize its semantics.

The idea of data centralization is to provide a query service over a collection
of Linked Data copied (and probably transformed) from different sources on the
Web. Such a collection of sources is usually called “Warehouse”. There are domain
independent warehouses like Sindice [46] and SWSE [34], but also domain specific
like the MarineTLO-based Warehouse [60]. Such approaches are quite distant to
the context of our work since they require the data to exist in a single repository,
but they can significantly benefit from the functionality offered by SPARQL-LD. For
instance, a query service over such a repository can support SPARQL-LD and offer
the ability to also integrate (during query execution) data coming from online RDF
sources (like the example in Fig. 2.2)

Link traversal approaches exploit the Linked Data principles for discovering
data related to URIs given in the query. For instance, the work in [29,30] discovers
data that might be relevant for answering a query, by following RDF links between
data sources based on URIs in the query and in partial results. Specifically, the
URIs are resolved over the HTTP protocol into RDF data which is continuously
added to the queried dataset using an iterator-based pipeline. Diamond [42] is
a similar in spirit query engine to evaluate SPARQL queries on distributed RDF
data where, as a query is being evaluated, additional Linked Data can be identified
by exploiting dereferenceable URIs. Finally, LDQL [32] is a declarative language
to query Linked Data which is also based on link traversal. LDQL separates query
components for selecting query-relevant regions of Linked Data, from components
for specifying the query result that has to be constructed from the data in the
selected regions.

2.2.2 Methods for optimizing SPARQL queries

Works on query planning optimizations techniques for SPARQL. Works
on query planning optimizations techniques for SPARQL [21] includes but not lim-
ited to: a)query rewriting based on statistics optimizations, b)selectivity based op-
timizations (heuristics), c)mixed strategy for query optimizations (hybrid), d)fedex
framework and e)graph traversal algorithm for SPARQL query optimizations.

Heuristics based. The idea of static query optimization (which is the main
focus of this thesis), i.e. join ordering optimization of triple patterns before query



14 CHAPTER 2. CONTEXT AND RELATED WORK

evaluation is to find an execution plan which will return results sets the fastest,
before executing the query, which is typically coupled with the use of heuristics
and summaries (e.g., statistics) about the data being queried.

One such notable work is Tsialiamanis et al. [59], proposes a set of heuristics
on triple patterns for query optimization without using statistics, supported by
their experiments. More specific the method which they represent their query
statements are by using basic triple patterns to build a graph that is composed
of nodes and edges as query planning space. They built a graph called variable
graph, which only considers the variables appearing in triple patterns, and then
they assign a weight to these variables by using the number of their occurrence in
the SPARQL query. This representation is related directly to their cost estimation
model, which aims to find maximum weight independent sets of the variable graph.
In the same context Song et al. [57] provides a heuristic-based approach by extend-
ing the work in [59]. They provide more heuristics and expand the evaluation cost
by taking into consideration more expressions such as filter. Their query planning
methods are implemented within Corese and the system is evaluated using BSBM
benchmark.

Query rewriting based on statistics optimizations. An important aspect of
the execution time of queries is heavily influenced by the number of joins neces-
sary to find the results of the query. Therefore, the goal of query optimization is
(among other things) to reduce the number of joins required to evaluate a query.
Such optimizations typically focus on histograms based selectivity estimation of
query conditions. Piatetsky introduce in [49] the concept of selectivity estimation
of a condition. Estimation of conditions are often supported by histogram distri-
butions of attribute values. Related to the Semantic Web, Perez analyze in [48]
the semantics and complexity of SPARQL. Harth [28] investigate the usage of
optimized index structures for RDF. The authors argue that common RDF infras-
tructures do not support specialized RDF index structures. The index proposed
by the author supports partial keys and allows selectivity computation for single
triple patterns. Hartig et al. [31] present a SPARQL query graph model (SQGM)
which supports all phases of query processing, especially query optimization and a
set of operators to model the SPARQL operations. The author provides transfor-
mation and rewriting rules to SPARQL on Jena to exploit the fast path algorithm
more often.

Similarly Neumann et al. [45] present the RDF-3x a native-RDF system that re-
lies heavily on the use of indexes to process SPARQL queries over compressed RDF
triples. In particular, triples are compressed by lexicographically sorting them and
storing only the changes between them. RDF-3X builds a clustered B+tree index
with composite keys over every possible collation order of triple components. Fur-
thermore, RDF-3X uses aggregated indexes for each of the three possible pairs of
triple components and in each collation order (sp, so, ps etc.). Each index stores
the two columns of a triple on which it is defined and an aggregated count that
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denotes the number of occurrences of the pair in the set of triples. Aggregated in-
dexes that are organized in B+-trees, are much smaller than the full-triple indexes
and are used to avoid decompressing duplicate triples in the final query results.
In addition, RDF-3X builds all three onevalue indexes that hold for every RDF
constant the number of its occurrences in the dataset. This work also analyzes join
ordering optimizations by using sorted index lists and statistics about counters of
frequent predicate-sequences paths that are potential join patterns. Despite the
exhaustive indexing employed by RDF-3X, the size of the indexes does not exceed
the size of the dataset thanks to the compression scheme. Furthermore this work
relies on a cost model to estimate the number of intermediate results based on
statistics and makes use of histograms to precompute the most frequent paths for
query patterns. In contrast, our heuristic-based SPARQL planner produces plans
using solely the heuristics and without statistics.

Schmidt et al. [54] discusses the complexity of SPARQL evaluation, focusing
on Optional operator and analyze rewriting techniques. In particular this work
study the set of equivalences over the SPARQL algebra as well as well known to
relational algebra rewriting rules. Moreover, this work proposes an approach to
semantic query optimization, based on the classical chase algorithm.

Hybrids based. Some systems take advantage of both statistics to evaluate
the cost estimation as well some provided heuristics based cost estimations. One
such work is from Stocker in [58] that provides a static basic graph pattern opti-
mization based on triple patterns variable counting using a main memory graph
implementation as well as analyzing the heuristics of joined triple patterns using
a probabilistic framework. They evaluate each triple pattern using a formula that
provides a selectivity score ranging from 0 to 1, thus being able to reorder the
triple patterns based on this score. Moreover this work uses a histogram, such
methods are widely used for storing summary data, this practice maintains rela-
tive high accuracy but cost much time and storage space. Another similar work
is described by Gropper et al. [27] where the authors provide a brief optimization
on joined triple pattern reordering by counting new variables of triple patterns. In
addition this work measures the result size of join operands if the above method
is inclusive and reorder the execution plan accordingly. They also make use of
indexing optimizations coupled with statistics about the knowledge bases used.

The work by Montoya in [43] contains query reordering optimization through
decomposing queries in sub-queries according to joins (or UNIONS) in order to
assign an endpoint to each one heuristically (using the namespace and running ask
queries) by evaluating each IRI predicate. Furthermore calls to endpoints are sent
to retrieve the number of expected returned triples, for each sub query and use this
information to execute their query plan and reorder the sub queries accordingly.
Liu et al. [41] proposes a query planner that uses basic triple patterns to build
a graph that is composed of nodes and edges as query planning space. But they
differentiated by using nods as normal vertices and triple vertices, the difference
is that the former refers to the variables with constraints in a triple pattern and
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Table 2.1: Comparison between notable works on query planning.

Author Sparql Representation Cost Estimation

Tsialiamanis 2012 Pattern variable graph Heuristic-based

Huang 2010 - Stats-based

Liu 2010 SPARQL query graph Stats-based

Stocker 2008 Basic pattern graph Hybrid

Neumann 2008 Basic pattern graph Stats-based

Our Work Service-Graph pattern Heuristic-based

the latter refers to the whole triple pattern, so forth the normal edges and triple
edges. This approach maintains not only the connections between triple patterns
but also the relations within the triple patterns themselves.

Most of the above works don’t discusses how query plans (i.e., join orders and
join variables) are found as we do in our work. In the work by Vidal et. al. [62]
RDF triples are stored in a large triple table and a set of physical operators are pro-
posed for efficiently implementing starshaped queries. In this work, a randomized
cost-based optimization strategy is adopted to determine the most cost-effective
plan among a set of execution plans of any shape (bushy, left deep etc.). The
cost-based optimizer uses statistics about the size of properties, and the selectiv-
ity of subjects and objects to determine the most prominent star-shaped joins. In
our work, we are able to produce near to optimal plans without the use of any
statistics, we rely on the proposed heuristics. Another work by Huang et al. [35] fo-
cuses on join estimation for star queries and chain queries patterns with correlated
properties and precomputed statistics. First they use the Bayesian networks for
star queries to compactly represent the joint probability distribution over values of
correlated properties and then chain histogram for star queries, which can obtain
a good balance between the estimation accuracy and space cost. Similarly Pichler
in [50] discusses about the complexity about equivalence on Join and Optional
operators as well as on union and projection operations. Furthermore Bernstein
in [17] proposes OptARQ an optimization framework based on selectivity estima-
tion to reduce the intermediate result sets of triple patterns. This optimization is
based on static query rewriting rules and leverages histograms based models for
its selectivity estimation on triple patterns. Although this work uses statistical in-
formation about the underlying ontological resources in order to get an estimation
and rank the patterns and thus is unsuitable for our work. Finally they make use
of filter rewriting rules reduce the intermediate result sets.

In this thesis, we will adopt a method similar to [59] and [58], which propose a
set of heuristics based on the sparql syntax to reorder triple patterns. However in
this thesis we evaluate graph patterns (i.e., service calls) instead of triple patterns
and extend those heuristics. In table 2.1 we provide a comparison between notable
works that focus on heuristic based cost estimation as well as statistic based cost
estimation.
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Works on parallelization techniques for SPARQL. Works on parallelization
techniques for SPARQL and parallel solutions include works such as the FedX
framework et al. [55] that allows for virtual integration of heterogeneous LOD
sources into a federation, on-demand without preprocessing. FedX creates left
linear plans of sub-queries, using a rule-based system and can each be answered
exclusively by existing endpoints (or exclusive groups). Then with the use of
bounded variables the framework decides the query join order which is evaluated
in a block-nested loop fashion to reduce the number of source requests. One of the
main contribution of this work is their use of executing parallel queries using an
exclusive group technique.

Query equivalence works. It is crucial in query optimization to always retrieve
the correct results. Some related works on query equivalence include: the work of
Angles et al. [15] which focus on rewriting some SPARQL operations such as unsafe
filter operations or specific differences between patterns (such as a transformation
from a minus pattern to a combination of optional and filter ones). Also the
work from Kochut on [38] provides SPARQLeR, a SPARQL query validator that
can transform queries to SPARQL algebra and adding support to semantic path
queries.
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Chapter 3

SPARQL-LD: Functionality
and Examples

In this chapter we present the system SPARQL-LD previously described in [24] as
well as the format extension that is implemented in this thesis.

3.1 Architecture

Although the majority of SPARQL implementations requires the data to be avail-
able in advance (in main memory or in a repository), the specification of SPARQL
allows to directly query an RDF dataset accessible on the Web (in a standard
format) and identifiable by an URI through the operators FROM/FROM NAMED and
GRAPH. However, this has an important limitation: it requires knowing in advance
the URI of the dataset and having declared it in the FROM NAMED clause. Thus, a
URI coming from partial results (that get bound after executing an initial query
fragment) cannot be used in the GRAPH operator as the dataset to run a portion of
the query. Furthermore, although RDFa [7] and JSON-LD [1] are W3C standards
that are exploited by an ever-increasing number of publishers, we have not man-
aged to find a SPARQL implementation that can directly query such RDF data. In
addition, using the service operator of SPARQL 1.1 Federated Query [9], we can
invoke a portion of a query against a remote RDF repository. However, service
requires the URI to be the address of a SPARQL endpoint, thus one cannot ex-
ploit this operator for querying RDF data accessible on the Web but not available
through an endpoint.

Extended SERVICE definition. The SPARQL 1.1’s service operator (service
a P ) is defined (in [19]) as a graph pattern P evaluated in the SPARQL endpoint
specified by the URI a, while (service ?X P ) is defined by assigning to the variable
?X all the URIs (of endpoints) coming from partial results, i.e. that get bound
after executing an initial query fragment. The idea behind SPARQL-LD is to enable
the evaluation of a graph pattern P not absolutely in a SPARQL endpoint a, but
generally in an RDF graph Gr specified by a Web Resource r. Thus, now a URI

19
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given to the service operator can also be the dereferenceable URI of a resource,
the Web page of an entity (e.g., of a person), an ontology (OWL), Turtle, or N3
file, etc. An example is shown in Fig. 3.1 In case the URI is not the address of
a SPARQL endpoint, the RDF data that may exist in the resource are fetched at
real-time and queried for the graph pattern P .

Figure 3.1: Sparql-LD extended Service function.

SPARQL-LD is a generalization of SPARQL in the sense that every query that
can be answered by the original SPARQL can be also answered by SPARQL-LD.
Specifically, if the URI given to the service operator corresponds to a SPARQL
endpoint, then it works exactly as the original SPARQL (the remote endpoint
evaluates the query and returns the result). Otherwise, instead of returning an
error (and no bindings), it tries to fetch and query the triples that may exist in
the given resource.

Moreover, the execution of a service pattern may fail due to several reasons.
For instance, if the given URI corresponds to an endpoint, the endpoint may return
an error to the query, while if the URI corresponds to a Web page, the page may
be down. In such cases, the invoked query containing a service pattern normally
fails as a whole. In SPARQL 1.1 Federated Query, queries may explicitly allow
failed service requests with the use of the silent keyword which indicates that
possible errors encountered while accessing a remote SPARQL endpoint should be
ignored and a single solution with no bindings should be returned. In SPARQL-LD,
the presence of the silent keyword has exactly the same functionality, i.e. it
allows failed service requests.

3.2 Extended Functionality

SPARQL-LD has been implemented using Apache Jena [3] framework. Jena is an
open source Java framework for building Semantic Web applications. Specifically,
we have extended Jena 3.3 ARQ component1. ARQ is a query engine for Jena

1http://jena.apache.org/documentation/query
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that supports SPARQL 1.1. The implementation is available as open source2. An
endpoint that supports SPARQL-LD is publicly available3.

The implementation can be described through the following process (depicted
at Figure 3.2): we first check if the URI corresponds to a SPARQL endpoint by
submitting the ASK query “ASK {?x ?y ?z}”. In case we get a valid answer, we
continue just like the default query federation approach, i.e. the corresponding
graph pattern (query) is submitted to the endpoint. In case we do not get a valid
answer, it means that the URI is not the address of an endpoint. Then, we read the
content type header field of the URI by opening an HTTP connection and setting
the value application/rdf+xml to the ACCEPT request property. Now, according
to the returned content type, we fetch and query the corresponding triples.

Since structure data that are embedded in HTML pages has seen an increase in
use, we enabled SPARQL-LD to query more encoding formats that are embedded in
web pages like microdata, microformats and JSON-LD. For the case of HTML Web
pages(the content type is text/html or application/xhtml+xml), we try to fetch
and query the structured data that may be embedded in the Web page as RDFa,
JSON-LD, Microformats or Microdata. For this purpose the a modified version of
Apache - ANY23 framework [2] was incorporated in SPARQL-LD . The process is
separated in three steps , the first step was to use Apache - ANY23 mime detector
(Apache Tika) to identify the format type of the data in the web page. Then
using the information that was retrieved, the appropriate resource data extractor
was selected that will retrieve the required web embedded resources and transform
them in RDF triples (if they are not already). Finally the data are loaded in our
SPARQL-LD to enable the refined query process to take place. If the Web page does
not contain any RDF data, the query returns no bindings. The implementation
allows also to read and query N3, TURTLE, RDF\XML and JSON-LD files.

Figure 3.2: SPARQL-LD implementation process.

Here we give example queries that demonstrate the functionality offered by
SPARQL-LD.

2https://github.com/fafalios/sparql-ld
3http://users.ics.forth.gr/~fafalios/sparql-ld-endpoint
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3.2.1 Querying dynamically-created RDF data.

X-Link [22] is a Linked Data-based Named Entity Extraction (NEE) framework
which can export the result of the NEE process in RDF using the Open NEE
model [22]. An X-Link Web service configured for the marine domain is publicly
available (http://139.91.183.72/x-link-marine). This service can identify names
of several types of entities in a given Web document and link them to DBpedia [40]
resources. For instance, we can request to perform NEE with fishes and countries
as the entities of interest at the Web page: “http://www.hawaii-seafood.org/

wild-hawaii-fish” and get the results in the default RDF/XML format, with the
following request:

http://139.91.183.72/x-link-marine/api?categories=fish;country&link=1

&url=http://www.hawaii-seafood.org/wild-hawaii-fish

Using the proposed extension, one can exploit the APIs of such services directly
through SPARQL. For instance, Figure 3.3 depicts a query that parameterizes and
calls the above annotation service at query execution time (the namespaces have
been omitted to save space). The query first retrieves Web pages related to the
fish genus Thunnus by querying its dereferenceable URI (lines 2-3). Then, it calls
the X-Link service for identifying names of fishes and countries in the retrieved
Web pages (lines 4-6), and for each detected entity the query retrieves (and shows)
its name, its category and its number of occurrences in the Web pages (lines 7-
9). Finally, the entities are ordered by the number of occurrences in descending
order (line 10). Thus, using this functionality, one can annotate a large corpus
of Web documents and get the results in RDF, by simply writing and submitting
a SPARQL query. Note also that this query can be answered by any endpoint
that implements the proposed extension (independently of the data stored in the
endpoint).

1 SELECT DISTINCT ?detectedEntity ?categoryName (count(?position) as ?NumOfOccurrences) WHERE {

2 SERVICE <http://dbpedia.org/resource/Thunnus> {

3 dbr:Thunnus dbo:wikiPageExternalLink ?page }

4 VALUES ?templ { <http://83.212.107.202/x-link-marine/api?categories=fish;country&url=PAGE> }

5 BIND(REPLACE(str(?templ), "PAGE", str(?page), "i") as ?x) BIND(URI(?x) as ?serv)

6 SERVICE ?serv {

7 ?annot oa:hasBody ?ent .

8 ?ent oae:regardsEntityName ?detectedEntity ; oae:position ?position .

9 ?ent oae:belongsTo ?category . ?category rdfs:label ?categoryName }

10 } GROUP BY ?detectedEntity ?categoryName ORDER BY DESC(?NumOfOccurrences)

Figure 3.3: Example of a SPARQL query that parameterizes and calls an annota-
tion service at query execution time.

3.2.2 Querying RDFa.

Using SPARQL-LD one could previously query data in RDFa format that are em-
bedded in Web pages. Such RDF data is directly available through SPARQL.
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For example, the query in Figure 3.4 returns all co-authors together with their
publications. The list of co-authors is obtained by querying the RDF data that is
embedded in the Web page, as shown in fig. 3.5 (lines 2-4), while their names and
publications are obtained by querying the dereferenceable URI of each co-author
(lines 5-7). Notice that the author URIs are derived at query execution time. A
part of the fetched data is depicted in 3.8.

1 SELECT DISTINCT ?authorName ?paper WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios/> {

3 ?p <http://purl.org/dc/terms/creator> ?author

4 FILTER(?author != <http://dblp.l3s.de/d2r/resource/authors/Pavlos_Fafalios>) }

5 SERVICE ?author {

6 ?author <http://xmlns.com/foaf/0.1/name> ?authorName .

7 ?paper <http://purl.org/dc/elements/1.1/creator> ?author.

8 }

9 }

Figure 3.4: Example of a SPARQL query that reads and queries RDF data em-
bedded in a Web page (as RDFa) at query execution time.

3.2.3 Querying JSON-LD embedded in HTML.

Using the proposed extension, JSON-LD data that are embedded in HTML pages
through java-scripts are directly available through SPARQL.

For example, the query in Figure 3.6 returns the URL, logo and the available
contact info from the web page embedded JSONLD script 3.9. The script that was
retrieved is depicted in 3.10. Another example is also depicted in 3.7 that returns
information from a Google search result. The actual JSON-LD script is shown in
3.11.

1SELECT ?url ?logo (Str(?phone) as ?phonenum) WHERE {

2 SERVICE <http://www.popsugar.com/> {

3 ?jlitem <http://schema.org/logo> ?logo;

4 <http://schema.org/url> ?url;

5 <http://schema.org/contactPoint>/<http://schema.org/telephone> ?phone.

6 }

7}

Figure 3.6: Example of a SPARQL query that reads and queries JSON-LD data
embedded in a Web page at query execution time.
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Figure 3.5: Web page using RDFa format.
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1SELECT ?title ?logo ?searchTerm WHERE {

2 SERVICE <https://www.google.gr/search?q=patrick+coombe+book&oq=patrick+coombe+book&aqs=chrome..69i57.4355j0j1&sourceid=chrome&ie=UTF-8> {

3 ?jlitem <http://purl.org/dc/terms/title> ?title;

4 <http://www.w3.org/1999/xhtml/vocab#icon> ?logo;

5 <http://www.w3.org/1999/xhtml/vocab#shortcut> ?searchTerm.

6 }

7}

Figure 3.7: Another example of a SPARQL query that reads and queries JSON-LD
data embedded in a Web page at query execution time.

3.2.4 Querying Microdata embedded in HTML5.

With SPARQL-LD we can use SPARQL queries on web pages that contain data in
Microdata format embedded in HTML5 pages.

For example, the query in Figure 3.12 returns all the customers feedback about
their travel agency, such as rating, message and details about the vacation. The
web page has enhanced its resources with Microdata, as show in fig. 3.13 and fig.
3.14.

1SELECT * WHERE {

2 SERVICE <http://holidayplace.co.uk/about/customer-feedback> {

3 ?s <http://data-vocabulary.org/Review/summary> ?description;

4 <http://data-vocabulary.org/Review/bestRating> ?rating;

5 <http://data-vocabulary.org/Review/itemreviewed> ?vacationInfo.

6 }

7}

Figure 3.12: Example of a SPARQL query that can execute queries over web pages
that contain resources in Microdata format.

3.2.5 Querying Microformats embedded in HTML.

Another use of the proposed extension is that, we can use SPARQL queries on Mi-
croformats I & II that are embedded in HTML pages. Microformats is the simplest
way to markup structured information in HTML, where Microformats2 improves
ease of use and implementation for both authors (publishers) and developers. Such
formats include but are not limited to HGEO, HCARD, HEVENT, HPRODUCT,
HLOCATION and HENTRY, that involve markup information about specific peo-
ple, locations, images, dates, blogspots or even events.

For example, the query in Figure 3.15 returns all contact information from the
web page, about the author, such as name, surname and description of the web
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Figure 3.8: Fetched RDFa data.

page 3.16, that are in HCARD format. The returned data can be shown in fig.
3.17.

1SELECT ?name ?subject WHERE {

2 SERVICE <http://cold32.com/about-the-author-and-contact.htm> {

3 ?jlitem <http://vocab.sindice.net/any23#dcterms.subject> ?subject;

4 <http://vocab.sindice.net/any23#web_author> ?name.

5}

Figure 3.15: Example of a SPARQL query that reads and queries Microformat
data embedded in a Web page at query execution time.

s

3.3 Current Applications of SPARQL-LD

SPARQL-LD is a framework that can be used (and extended) by other applications
according to their needs, allowing its exploitation in a plethora of contexts and
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Figure 3.9: Web page using JSON-LD format.

application scenarios. Specifically, SPARQL-LD can be used as a:

• Java Library which can be integrated in the code of the intended application.

• Web Application that can receive submissions and return the outcomes of
the analysis.

• Web Service which can be used through a REST API.
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Figure 3.10: A JSON-LD parsed Script

Figure 3.11: A Google search results that uses JSON-LD format.



3.3. CURRENT APPLICATIONS OF SPARQL-LD 29

Figure 3.13: A feedback web page embedded with Microdata format.

Figure 3.14: The microdata items (”itemprop”) from the web page.
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Figure 3.16: Web page using HCARD format.
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Figure 3.17: The HCARD format of the web page containing Microformats.
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Chapter 4

Optimizations

The current chapter of this thesis is organized as follows: section 4.1 discusses on
optimization index of SPARQL endpoints, section 4.2 presents a caching optimiza-
tion of fetched datasets, section 4.3 introduces a caching optimization of returned
service bindings, section 4.4 presents a parallel execution of service calls opti-
mization, and finally an optimization based on reordering will be presented in
section 4.5.

4.1 Index of Known SPARQL Endpoints

We have seen that, compared to the original service operator, the only additional
cost is the time to run an ASK query (as we will see in §5, this cost is about 200 ms in
average). To eliminate this cost, we can keep a small index with the URIs of known
endpoints (like DBpedia’s and Europeana’s) as well as the URIs of endpoints that
have been already checked. Thereby, if the service URI exists in the index,
the query is directly forwarded to the endpoint, otherwise an ASK query is first
submitted.

For example, consider the query of Figure 4.1. The query first retrieves Greek
painters from the dereferenceable URI of the corresponding DBpedia category
(lines 2-3), and then it queries Europeana’ SPARQL endpoint for retrieving works
of these painters (lines 4-6). However, if the number of painter URIs returned by
the first SERVICE invocation is n, the query will call the remote endpoint n times
(one for each painter URI), which in turn requires to run n ASK queries. Thus, in
case we do not use the proposed index of known endpoints, the expected cost for
running n ASK queries is about n× 200 ms.

Experimental results are given in Section 5.2.1 .

4.2 Caching of Fetched Datasets

A SPARQL query may contain multiple service invocations against the same
Web resource. Consider for example the query of Figure 3.4. In case the same
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1 SELECT DISTINCT ?painter ?work WHERE {

2 SERVICE <http://dbpedia.org/resource/Category:Greek_painters> {

3 ?painter <http://purl.org/dc/terms/subject> ?greekPainter }

4 SERVICE <http://europeana.ontotext.com/sparql> {

5 ?objectInfo <http://purl.org/dc/elements/1.1/creator> ?painter .

6 ?objectInfo <http://www.openarchives.org/ore/terms/proxyFor> ?work } }

Figure 4.1: Example of a SPARQL query that calls the same remote SPARQL
endpoint multiple times.

co-author exists in more than one publications, the corresponding RDF triples (of
co-author’s URI) will be redundantly fetched multiple times.

In such cases, fetching and loading repeatedly the same resource triples costs
both in time, computer resources and traffic load. To avoid this, for a submitted
query we can use a cache (usable only in the context of a submitted query) of
datasets that have been already fetched. Thereby, in each new service invocation,
we first check if the corresponding URI exists in the cache in order to avoid re-
fetching its triples. The cache can be cleared after query execution. Of course, one
could instead apply a caching policy that will keep the fetched resources in cache
after query execution for serving future queries for a period of time and according
to the available main memory, e.g. a combination of static and dynamic caching
as it is used by web search engines [47].

Experimental results are given in Section 5.2.2 .

4.3 Request-scope Caching of SERVICE Bindings

There is the case of multiple service invocations against the same URI for the
same graph pattern P . To avoid such redundant evaluations, for a submitted query
we can cache the bindings resulted from each service-execution pair (URI, P ).
Then, for each new service invocation, if the corresponding (URI, P ) pair exists
in the cache, we abort its execution, return the cached bindings, and we continue
to the next query stage. The cache is cleared after query execution.

For example, consider the query in Figure 4.2 The query first fetches all author
URIs from the personal Web page of P. Fafalios (lines 2-3), and then, for each
author URI, it directly queries the corresponding (dereferenceable) Web resource
for retrieving and showing all of the author’s papers. Since in the first SERVICE

invocation we do not use the DISTINCT operator, the variable ?authorURI may
be bound with the same URI more than one times (in case the same person is
author in more that one papers). However, in this case the query executes the
same graph pattern to the same fetched (and maybe cached, if we adopt the
optimization described in §4.2) RDF triples multiple times. Thus, caching the
bindings and re-using them can save time, especially in case the remote resource
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contains a very big number of triples and the graph pattern that must be executed
over these triples contains costly operators (like FILTER and OPTIONAL).

Using this optimization we can get a modest speedup if the Group Pattern
of the service call contains one of the following patterns: a) Filter pattern,
b)Optional pattern or c)a sequence modifier such as distinct or order by. Ex-
perimental results are provided in Section 5.2.3 .

1 SELECT Distinct ?uris ?labels WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 ?uris a <http://dbpedia.org/ontology/Fish>;

4 <http://dbpedia.org/property/name> ?name .}

5 SERVICE <http://users.ics.forth.gr/~fafalios/data/100000.n3> {

6 Select Distinct ?uris ?labels Where {

7 ?uris ?p ?labels .

8 FILTER (?p!= <http://www.w3.org/2000/01/rdf-schema#name>).

9 FILTER (langMatches( lang(?labels), "en" )).

10 FILTER( (contains(STR(?uris),"shark") &&

11 contains(STR(?uris),"Great")) ||

12 (regex(STR(?labels), "large", "i")) ) . }}

13}

Figure 4.2: Example of a SPARQL query that may execute the same heavy load
graph patterns to the same remote resource multiple times.

4.4 Parallel fetching of Remote resources

A SPARQL Query may consist of multiple service call invocations against dif-
ferent Web resources. In such cases we can fetch and cache these resources in
a parallel fashion before executing the query. This optimization consists of two
phases.

The starting phase occurs during the query processing stage where we retrieve
all the IRIs service call operators. Then we can fetch the data from these IRIs,
as long as they point towards HTTP resources (e.g., RDFa, microdata, JSON-LD,
microformats) or RDF files (turtle, RDF/XML, N3, JSONLD) and not endpoints.
The retrieval process is executed in a parallel for each individual IRI. In case the
IRI directs towards endpoints the IRI of the endpoint is added to the list of known
endpoints as described in 4.1.

For example consider the query depicted in figure 4.3. The query can retrieve
data from the RDFa page that is pointed by the first service IRI, the ontology
pointed from the second service IRI and add wikidata endpoint from the third
service IRI to the list of known endpoints (4.1), in parallel.
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In some instances the service operator is a variable. In such cases the service
clause involving a variable can be executed as a series of separate invocations of
SPARQL query services. The results of each invocation are combined using union.
That said, the query engine needs to evaluate the variable results and retrieve the
list of service IRIs. With this in mind, in the second phase, we can retrieve the
additional data from the list of IRIs in parallel.

An example of a query is illustrated in figure 4.4. The query needs to first
execute the first service invocation to yield bindings for the variable ?uri which
will retrieve fish IRIs from dbpedia. We can now use this list of IRIs to fetch
resources from these sources in parallel.

All things considered, we can benefit from this optimization if some of the
remote sources that needs to be retrieved are quite large and therefore can delay
the whole process when the data are fetched sequentially. However there is always
the issue that the retrieved data may not have enough space to be stored in cache
and consequently the query would fail.

1SELECT Distinct ?s ?s2 ?s3 WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios> {

3 ?s1 ?p1 ?o1 } (3.4s)

4 SERVICE <http://www.ics.forth.gr/isl/ontology/MarineTLO/> {

5 ?s2 ?p2 ?o2 . } (0.5s)

6 SERVICE <https://www.wikidata.org/wiki/Q7132780> {

7 ?s3 ?p3 ?o3 }} (1.7s)

Figure 4.3: Example of a SPARQL query where we can fetch remote resources in
parallel.

1 SELECT ?uri WHERE {

2 SERVICE <http://dbpedia.org/sparql > {

3 ?uri a dbo:Fish }

4 SERVICE ?uri { ?uri dbo:abstract ?abstr } }

Figure 4.4: Example of a SPARQL query with a variable ?uri as a service oper-
ator, where we can fetch remote resources in parallel.

4.5 Query reordering based on pattern restriction

In this section we will analyze our join ordering optimization using pattern re-
striction heuristics that is based on the syntax of SPARQL queries. We model the
problem and provide 4 formulas based on heuristics.
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4.5.1 Modeling

Let Q be a SPARQL query and let S = (s1, s2, . . . , sn) be a sequence of n service

patterns contained in Q. For a service pattern si, let gi be its nested graph pattern
and Bi be the list of bindings of Q before the execution of si. Our objective is to
compute a reordering S′ of S that minimizes its execution cost. Formally:

R∗ = argmin
S′

cost(S′) (4.1)

In our case, the execution cost of a sequence of service patterns S′ corre-
sponds to its total execution time. However, the execution time of a service

pattern si ∈ S′ highly depends on the query patterns that precede si, while the
bindings produced by si affect the execution time of the succeeding service pat-
terns. Considering the above, we can estimate cost(S′) as the weighted sum of the
cost of each service pattern si ∈ S′ given Bi. Formally:

cost(S′) =
n∑

i=1

(cost(si|Bi) · wi) (4.2)

where cost(si|Bi) expresses the cost of service pattern si given Bi (i.e., given
the already-bound variables before executing si), and wi is the weight of service
pattern si which expresses the degree up to which it influences the execution time
of the sequence S′. For example, one could define wi = n−i+1

n , since its forthcoming
service pattern is highly depended on the preceding service patterns in a query.
In this case, for a sequence of four service patterns S′ = (s1, s2, s3, s4), the weights
are: w1 = 1.0 (since it influences the execution time of 3 more service patterns),
s2 = 0.75, s3 = 0.5, and s4 = 0.25.

Now, the cost of each service pattern si can be estimated based on the inverse
selectivity (or unrestrictiveness) of its graph pattern gi given Bi. Formally:

cost(si|Bi) = unrestrictiveness(gi|Bi) (4.3)

A service graph pattern that is very unrestrictive will return a big result set
(big number of bindings), which in turn will increase the number of joins and the
number of calls to succeeding service patterns, resulting in higher total execution
time. Thus, our objective is to first execute the more restrictive service patterns
that will probably return small result sets.

As proposed in [58] and [59] (for the case of triple patterns), the restrictiveness
(or unrestrictiveness) of a graph pattern can be determined by the number and
type of new (unbound) variables in the graph pattern. The most restrictive graph
pattern can be considered the one containing the less unbound variables. Then, it
is the one containing the less bounded variables. Subjects can be also considered
more restrictive than objects, and objects more selective than predicates (usually
there are more triples matching a predicate than a subject or an object, and more
triples matching an object than a subject). Moreover, a triple that contains a
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literal instead of a URI in the object position is more restrictive since URIs can
be also used as subjects and thus can return more data. Finally, the number and
type of joins can also affect the restrictiveness of a graph pattern. Below, we define
formulas for unrestrictiveness that consider the above factors.

4.5.2 Approaches

4.5.2.1 Variable Count (VC).

Our first unrestrictiveness measure considers only the number of graph pattern
variables without considering whether they are bound or not. For a given graph
pattern gi, let V (gi) be the set of variables of gi. The unrestrictiveness of gi can
be now simply defined as:

unrestrictiveness(gi|Bi) = |V (gi)| (4.4)

With the above formula, the higher the number of variables in a graph pattern is,
the higher is its unrestrictiveness score.

Consider the example in figure 4.5. The first service call, containing a triple
pattern of 3 variables, is more likely to retrieve a higher number of results than
the second one that contain only one. Therefore we can conclude that the second
service call is more restrictive and thus more efficient to execute first.

1 SELECT ?s WHERE {

2 SERVICE <http://lod.openlinksw.com/sparql/> {

3 ?s ?p ?o } (#438M+)

4 SERVICE <http://dbpedia.org/sparql> {

5 ?s a dbo:fish } (#19392) }

Figure 4.5: Example of a VC optimization.

4.5.2.2 Unbound Variable Count (UVC).

Now, we can also consider the set of binding Bi before the execution of a service

pattern si. Let first V u(gi, Bi) be the set of new (unbound) variables of gi given
Bi. The unrestrictiveness of gi can be now defined as:

unrestrictiveness(gi|Bi) = |V u(gi, Bi)| (4.5)

For example in figure 4.6, the first service call, that is retrieving all types of
fishes from the order of Ostariophysi, is more likely to retrieve a small number of
results than the rest. With that in mind executing the third service call second
is the most beneficial since both of the variables of the triple pattern are bounded,
compared to the second service call that still has the label variable unbound.
Finally the fourth service call is the most costly, therefore it will be executed
last.
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1 SELECT Distinct ?uri ?label ?img WHERE {

2 SERVICE <http://dbpedia.org/sparql> { #41

3 ?uri dbr:order dbr:Ostariophysi }

4 SERVICE <http://users.ics.forth.gr/~yannakis/data/10000.n3> { #10,000

5 ?uri rdfs:label ?label }

6 SERVICE <http://lod.openlinksw/sparql> { #330K+

7 ?uri <http://www.w3.org/2002/07/owl#differentFrom> ?uri. }

8 SERVICE <https://query.wikidata.org/sparql>{ #50k+

9 ?uri2 foaf:depiction ?img; ?p ?o.}

10}

Figure 4.6: Example of a UVC optimization.

4.5.2.3 Weighted Unbound Variable Count (WUVC).

The above formulas do not consider the type of the unbound variables in the graph
pattern, i.e., whether they in the subject, predicate or object position in the triple
pattern. For a graph pattern gi and a set of bindings Bi, let V u

s (gi, Bi), V
u
p (gi, Bi)

and V u
o (gi, Bi) be the set of subject, predicate and object unbound variables in

gi, respectively. Let also ws, wp and wo be the weights for subject, predicate and
object variables, respectively (where ws+wp+wo = 1.0). We first define a weighted
variable score which considers both the number and the type of unbound variables.
The unrestrictiveness of gi can be now defined as:

unrestrictiveness(gi|Bi) = |V u
s (gi, Bi)| · ws + |V u

p (gi, Bi)| · wp + |V u
o (gi, Bi)| · wo (4.6)

As proposed in [58] and [59], subjects can be considered more restrictive than
objects, and objects more restrictive than predicates, which means that a subject
variable may return more bindings than an object variable, and an object variable
more bindings than a predicate variable. Thus, one can define values where ws >
wo > wp. From further studies [25] we can conclude that the possibility of a triple
matching a predicate variable is 50% more than subject and 40% more than a
object whereas an object is 10% more possible to be matched with a triple than
a subject. Therefore we can define the weights based on this study as ws = 0.24,
wo = 0.27, wp = 0.49. Moreover, if a variable exists in more than one triple
pattern position (e.g., both as subject or object), we consider it as being in the
more restrictive position.

Consider the example in figure 4.7. The second service call is more likely to
retrieve a higher number of results than the others. However the third one is the
most restrictive according to the current weights. Therefore it is more efficient to
execute the third service call first, then the first and finally the second one.
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1 SELECT ?s ?o WHERE {

2 SERVICE <http://dbpedia.org/sparql> { #343

3 ?s ?p dbo:Carcharhiniformes .} (1 s, 1 p)

4 SERVICE <https://query.wikidata.org/sparql> { #33M+

5 ?s owl:sameAs ?o .} (1 s, 1 o)

6 SERVICE <http://lod.openlinksw.com/sparql/> { #128

7 dbr:Shark ?p ?o .} (1 p, 1 o)

Figure 4.7: Example of a WUVC optimization.

4.5.2.4 Joins-aware Weighted Unbound Variable Count (JWUVC).

When a graph pattern contains joins, its restrictiveness is usually increased de-
pending on the type of joins (e.g., chain, star or unusual join) [35] as well as by
the number of joins. For a graph pattern gi, let Js(gi), Jp(gi) and Jo(gi) be the
number of joined subjects, predicate and object in gi, respectively. Let also jt be
the weight for the join type, respectively (where 0.5 < jt < 1.0), [35]. According to
the study performed by Gallego [26], more than 90% of join types used in queries
are star or chain queries. Thus in this work, we will only focus only on these two
types as well as their combination. Bellow we define a formula which considers
both the type, the number of unbound variables and the number of joins.

unrestrictiveness(gi|Bi) =
|V u

s (gi, Bi)| · ws

1 + Js · jt
+
|V u

p (gi, Bi)| · wp

1 + Jp · jt
+
|V u

o (gi, Bi)| · wo

1 + Jo · jt
(4.7)

4.5.3 Discussion on Other Cases

If the query contains an OPTIONAL operator (or negation) then we only reorder
the service calls above and bellow the OPTIONAL operator to preserve the
correct results. Furthermore, when a Select query exist in a service pattern we
only consider cost of the variables in the Select clause. Finally in FILTER cases
we consider the filtered variables same as joined cases but the value of jt for the
JWUVC formula is higher.

4.5.4 Case of Variable in service Operator

In case of a variable service operator we take care to maintain its order in the
query and therefore we reorder the upper and lower part independently. Using
this method we make sure that the variable operator is bounded as well as that we
retrieve the correct results. However service calls that don’t contain this variable
are free to be reordered without this restriction.
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4.5.5 Case of frequent used properties

Frequent used properties such as rdfs:type or owl:sameAs are considered unrestric-
tive and are counted as variables in the service call.

4.5.6 Case of service pattern with Literal

In graph patterns the more bound a components is, the more selective the pattern
is [61]. With this in mind we consider graph pattern with a higher number of
literals more restrictive. This is especially useful when we consider join patterns
in a service call to reduce the overall size of the join results. Similarly we conclude
that literals are more selective than URIs.

4.5.7 Computation of Optimal Re-ordering

In this paper we aim at finding the best query plan, we search for the service

call using the estimated costs using the previous heuristics and formulas. We do
not generate all candidate query plans in advance because a trade-off is necessary
when doing optimization, since the planning time needs to be counted as part of
the execution time. Thus, this paper adopts a greedy algorithm starting at the
service call with smaller cost and searching other linked service calls recur-
sively. The purpose is to reduce the size of the data set to be queried as much as
possible, as soon as possible. The algorithm balances between optimization time
and accuracy of query planning in order not to spend too much resources on the
task for optimizing the query. Hence, the algorithm may not find the most optimal
solution in some cases due to the constraints of greedy algorithm.

4.5.8 Combination of Triple and SERVICE patterns

A basic query triple pattern has lower selectivity and higher cost than a named
graph pattern. But when the named query triple pattern conforms to t(?, ?, ?), we
will consider that it costs more than the basic query triple pattern, if the service

pattern does not only contain query triple patterns like t(?, ?, ?). This would only
affect Services that are bound by local variables. Since we want to reduce the total
number of calls. A query executed with a specific named or service graph pattern
has higher selectivity and costs less, for instance, graph foaf:bob { ... } costs less
than service graph Service ¡URI¿ { ... } in a SPARQL query. Furthermore a
Service with a variable operator is less restrictive than Services with a specific
URI.

‘
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Chapter 5

Experimental evaluation

We have seen that using SPARQL-LD, one can run queries which are more expressive
than those supported by SPARQL 1.1. Nevertheless, here we evaluate the efficiency
of the extended service operator for several querying scenarios, examining also
the cost of each task of query execution.

We first present a sort synopsis of the datasets that were used for these ex-
periments, in (§5.1). Then we evaluate the proposed optimizations i.e., index of
known SPARQL endpoints, caching of fetched datasets, parallel fetching of remote
resources and join ordering based on restriction estimation, in (§5.2). This allows
us to investigate the efficiency for each of our optimizations.

The experiments were carried out using an ordinary computer with processor
Intel Core i5 @ 2.8Ghz CPU, 8GB RAM and HDD 250 GByte running Windows
10 (64 bit). The implementation is in Java 1.8 on Apache ARQ 3.3 and ANY23
2.1.

5.1 Description of Datasets and Queries used for the
experiments

In this section we will describe the characteristics of the queries that were used for
the benchmarks as well as the properties of the datasets and endpoints that we
run the experiments on. We run several set of queries, each containing multiple
service calls or complex join patterns. For the first set of queries we increased the
complexity of each service call while maintaining the number of service calls.
For the second set of queries we increased the number of service calls per query
while maintaining the same complexity.

5.1.1 Characteristics of endpoints

The endpoints used for this evaluation were, Dbpedia, Wikidata and Yago, as well
as some rich JSON-LD pages and RDF files that were produced randomly, from
DBpedia, ranging from 1, 000 to 1, 000, 000 triples each.
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Table 5.1: Datasets statistics.

Dataset Yago DBpedia Wikidata

Triples 1,001,461,792 1, 436, 545, 545 748,530,833

URIs 348,565,990 369,254,196 244,013,839

Literals 682,313,508 161,398,000

Distinct
subjects

331,807,591 31,391,000 142,278,154

Distinct
predi-
cates

106 2,819 1,874

Distinct
objects

17,438,118 83,285,000 101,745,685

Table 5.2: Yago statistics on joins.

Dataset Yago

s ./ s 165,937,025

s ./ p 9,396,314

s ./ o 48,560,142

p ./ p 65,992,300,043,771

p ./ o 0

o ./ o 30,079,265,139

Distinct
s ./ p

82

Distinct
s ./ o

2,169,728

Distinct
p ./ o

0

DBpedia [4]: is a knowledge base containing content that has been converted
from Wikipedia, that by the time of writing this thesis, the English version con-
tained more than 20 million resources.

Wikidata [12]: is a free, collaborative, multilingual, secondary database, col-
lecting structured data to provide support for Wikipedia, Wikimedia Commons
[13], the other wikis of the Wikimedia movement, and to anyone in the world.

Yago [14]: is a huge semantic knowledge base, derived from Wikipedia, Word-
Net and GeoNames. Currently, YAGO has knowledge of more than 10 million
entities (like persons, organizations, cities, etc.) and contains more than 120 mil-
lion facts about these entities.

Statistics gathered from these endpoints are presented in fig. 5.1 and fig. 5.2.
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Table 5.3: Effect of first optimization (index of known endpoints).

Query
Num of calls to

indexed
endpoints

Time without
Opt.

Time with Opt. Speedup

Q1 10 3.5 sec 1.8 sec 1.9×
Q2 102 27.2 sec 16.5 sec 1.6×
Q3 103 9.6 min 2.5 min 3.9×
Q4 104 44.8 min 24 min 1.9×
Q13 10 7.4 sec 3.2 sec 2.3×
Q14 102 36.1 sec 19.4 sec 1.9×
Q15 103 4.9 min 2.8 min 1.9×

5.2 Effect of Optimizations

We run experiments with and without the proposed optimizations (effectively
comparing our system with the system in [23]). As regards the first optimiza-
tion (index of known endpoints), the expected speedup depends on the number
of SERVICE calls to endpoints that exist in the index. As regards the second op-
timization (caching of fetched datasets), the expected speedup depends on both
the number of SERVICE calls to already-fetched resources and on the size (num-
ber of triples) of these resources. The queries used in this evaluation are available
at http://users.ics.forth.gr/~fafalios/sparql-ld/Eval.zip. We run each
query 7 times in a consecutive manner for each optimization technique and here
we report the average values.

5.2.1 Index of Known SPARQL Endpoints evaluation

Regarding the first optimization, we run experiments for different number of calls
to “known” remote endpoints (Dbpedia and Wikidata). Table 5.3 shows the
speedup for each case. The speedup is calculated as the query execution time
when the optimization is not applied divided by the optimized time. We notice
that, using the proposed optimization method, the query execution time can be
significantly improved (in our experiments, it is from 1.6 to 3.9 times faster).

5.2.2 Caching of fetched datasets evaluation

As regards the second optimization, we run experiments for different number of
calls to already-fetched resources, for different number of triples in these resources
and by increasing the number of duplicate IRIs in these resource. Table 5.4 shows
the results. As expected, this optimization can highly improve the efficiency of
query execution (in our experiments, it is from 1.2 to 24.6 times faster), while it
also reduces the transfer of data between local server and remote sources. More
information about the queries can be found in appendix 7.1 .



46 CHAPTER 5. EXPERIMENTAL EVALUATION

Table 5.4: Effect of second optimization (caching of fetched datasets).

Query
Num of calls to

cached
datasets

Num of
triples

Time
without

Opt.

Time with
Opt.

Speedup

Q5 16 103 11.9 sec 1.4 sec 8.5×
Q6 16 104 72.9 sec 5.7 sec 12.7×
Q7 16 105 10.3 min 39.8 sec 15.5×
Q16 16 106 1.7 hours 5.2 min 19.2×
Q8 10 102 11.8 sec 9.6 sec 1.2×
Q9 102 102 35.9 sec 10.7 sec 3.4×
Q10 103 102 4.8 min 11.6 sec 24.6×
Q17 5 ∗ 103 102 21.7 min 11.9 sec 115.2×
Q18 104 102 39.2 min 13 sec 180.9×

Table 5.5: Effect of second optimization (caching of fetched datasets) on duplicate
URis.

Query
Num of

duplicate URIs

Time
without

Opt.

Time with
Opt.

Speedup

Q19 44 62.7 sec 15.9 sec 3.9 ×
Q20 116 284 min 39.9 sec 4.2 ×
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Table 5.6: Effect of third optimization (parallel fetching of Remote resources).

Query
Num of
datasets

Num of
triples per

dataset

Time
without

Opt.

Time with
Opt.

Speedup

Q8 10 102 11.8 sec 10.6 sec 1.1×
Q9 102 102 35.9 sec 29.9 sec 1.2×
Q10 103 102 4.8 min 4.2 min 1.1×
Q36 10 105 6.5 min 4.9 min 1.3×
Q37 102 105 55.3 min 41.3 min 1.3×
Q38 10 ∗ 1 102,105 18.1 sec 13.1 sec 1.4×
Q39 102 ∗ 10 102,105 6.9 min 4.7 min 1.5×
Q40 103 ∗ 102 102,105 62.2 min 34.8 min 1.8×

5.2.3 Parallel fetching of Remote resources evaluation

As regards the third optimization, we run experiments for different of small and
large datasets, by increasing their number. We also used a mix of small and
large datasets, for the third part. Table 5.6 shows the results. As expected,
this optimization can highly improve the efficiency of query execution (in our
experiments, it is from 1.1 to 1.8 times faster), especially when querying a mix of
small and larger datasets.

Observing the results we can notice a decrease in speedup when we increase
the number of small datasets. That is due to the parallel conflicts that happens
when more than one dataset is retrieved at the exact same moment.

5.2.4 Query reordering evaluation

As regards the fourth optimization, we run experiments for 15 different types of
query patterns. In particular we used increasingly more complex query patterns
for the first 4 queries (e.g., queries Q21-Q24). Then we evaluated our system by
increasing the number of service calls (e.g., queries Q26 - Q30) while maintaining
the same complexity. And finally we evaluated different join patterns (e.g., star
and chain join patterns) as well as a mix of the above (e.g., queries Q25, Q31 -
Q35). Dotplot 5.1 shows the results. As expected, this optimization can achieve
the optimal query plan more than 80%, improving the overall efficiency of query
execution.

However, there are some results where our system didnt reach the optimal
execution plan. That can be observed in 3 query patterns. The main reason for
these results is due to the high complexity of joins where our planner was unable to
reach the optimal plan. Moreover our system had difficulties when a FILTER case
was used. Nonetheless when SPARQL-LD didn’t achieve the best optimal execution
plan it was still close to optimal, as we can observe from the results.
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Figure 5.1: Reordering Evaluation.

5.2.4.1 Jena TDB Optimizer

Jena TDB optimizer [11] involves both static and dynamic optimizations, employ-
ing query reordering techniques or a statistics based strategy. These options are
by default disabled and need to be selected explicitly.

In our system, we focused on static optimizations, i.e., transformations of the
SPARQL algebra performed before query execution begins, without using any
statistical data. Hence we will evaluate only the query reordering optimization.
TDB uses a triple pattern reordering technique based on the number of variables
in a triple pattern. This optimization decides the best order of triple patterns in
a basic graph pattern after all of the variables have been bound.

With that said, by enabling TDB optimizer on top of our query reordering
optimization, would improve the overall query execution process, especially in
cases involving complex graph query patterns, e.g., queries Q22-Q24. First, by
employing our query reordering technique we would reorder the service patterns
of the query and then the algebra for each graph pattern would be rewritten to
a better one by the TDB optimizer, further decreasing the query execution time.
However in cases involving multiple number of service calls that contain single
triple patterns, e.g., queries Q26-Q30, the TDB optimizer would fail to improve
the query execution time.

5.3 Evaluation analysis

All of the above optimizations have satisfying results. More specific:

• For the first optimizations the experiments showed up to 3.9 times faster

• For the second optimizations the experiments showed up to 24.6 times faster

• For the third optimizations the experiments showed up to 1.8 times faster
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• While for the fourth optimization, we reached close to 80% of optimal time

Specifically for the fourth optimizations and based on the results from DBpe-
dia and Wikidata we can conclude that the best results came from the JWUVC
formula. The statistics gathered actually confirm this results since the datasets
contains a low count of unique predicates while maintaining a high unique count of
objects per subject. We also observed that in the experiments where we increase
the complexion of each service call the results are also in favor of WUVC formula
but in this case also simple UVC returned good results. This is due to the increase
of joins in the service pattern. However when our planner is evaluated over large
star joins it fails to produce plans in a regular basis that are close to optimal.
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Chapter 6

Conclusion and Future Work

In this work we propose a heuristics-based query planner for SPARQL-LD that uses
a set of heuristics based on syntactic and structural characteristics of SPARQL
graph patterns. To this end, we exploited query reordering techniques to produce
plans that minimize the number of service calls to remote SPARQL endpoints,
by selecting service call patterns that are most likely to have high selectivity
first and thus reducing the intermediate results. In particular, we propose a set
of formulas for deciding which service patterns of a SPARQL query are more
selective, thus beneficial for the planner to evaluate first in order to reduce the
intermediate results during query execution. These formulas are generic and can
be used separately or complementary to each other as well as with other heuristic
planners.

Specifically, in our work we propose the reduction of the query planning prob-
lem by modeling a SPARQL query as a sequence of service patterns, where each
pattern is assigned an unrestrictiveness cost. Our objective is to first execute
the more restrictive service pattern that will return the smallest result set. To
the best of our knowledge no other work on query planning focuses on reordering
service patterns.

The proposed optimizations are implemented on SPARQL-LD, a SPARQL 1.1
extension that allows to directly fetch and query RDF data from any HTTP Web
source. Using the extended SPARQL-LD that was implemented in this thesis, one
can exploit and combine in the same SPARQL query: i) data stored in the (local)
repository, ii) data coming from online RDF or JSON-LD files, iii) data coming
from dereferenceable URIs, iv) data that is dynamically created by Web services, v)
data coming by querying other SPARQL endpoints and with the extension, vi)data
embedded in Web pages as RDFa, Microdata, Microformats and JSON-LD. The
functionality offered by SPARQL-LD motivates Web publishers to follow the Linked
Data principles and offer their data in RDF without needing to set up and maintain
a costly SPARQL endpoint. For instance, a museum can enrich its Web page with
JSON-LD, or just put online an RDF dump, and thereby make its data directly
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accessible via SPARQL. In this thesis we focused on optimizations for SPARQL-
LD, in particular on: (a) static methods for query reordering using selectivity
estimation techniques on new (unbound) variables for increasing efficiency and
decreasing the number of calls to remote sources, (b) methods for parallelizing
RDF data retrieval for efficient data caching, (c) caching techniques for fetched
datasets and (d) by using indexing to store the known SPARQL endpoints.

The experimental evaluation showed that they can highly improve the query
execution time. Specifically, as regards (a), the experiments showed promising
results, in particular we executed queries on popular SPARQL endpoints like DB-
pedia, Wikidata and Yago. The results suggested that in most cases (90%) we came
close to optimal results and improved effectively the query performance of original
Jena system. However for queries that contain large star joins our heuristics cost
model fails to produce near to optimal plans. Nevertheless our findings confirmed
our underlying assumptions regarding the selectivity of subject-property-object
components in a service pattern as well as the selectivity of the join patterns. As
regards (b), the experiments showed a minor improvement when we fetch multiple
resources that are small in size, up to 1.2× faster. However in case there were a
mix of small and big fetched data the evaluation times produced better results,
up to 2.1× faster. Both of these optimizations highly depend on the nature of
data queried but in many cases the results where encouraging. Considering (c),
the results showed a big improvement, up to 26× faster, since the reduction on
transferring the data is between local server and remote sources is considerable.
Regarding (d), the results showed a mild improvement, up to 3.9× faster.

6.1 Future Work

There are several directions worth further research, including:

• Machine learning re-ordering by using statistics from datasets or endpoints
that were queried in the past.

• Extend SPARQL-LD to altogether bypass endpoints by transforming queries to
endpoints to queries towards HTTP resources by using dereferencable URIs.

• Analyze more features from the SPARQL language such as the OPTIONAL
and FILTER clause.

• Investigate the effects of applying our heuristics cost based query planning
model in a distributed environment such as SPARK.
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Appendix

Here we list the queries that were used for our evaluations.
Queries Q1-Q4 and Q13-15 are used for the evaluation of the first optimization
(i.e., index of known endpoints, subsection 5.2.1).
Queries Q5-Q10 and Q16-20 are used for the evaluation of the second optimization
(i.e., caching of fetched datasets, subsection 5.2.2).
Queries Q8-Q10 and Q36-40 are used for the evaluation of the third optimization
(i.e., parallel fetching of remote datasets, subsection 5.2.3).
Queries Q21-Q35 are used for the evaluation of the fourth optimization (i.e., query
reordering, subsection 5.2.4).
The queries description is further analyzed in section 5.2.

7.1 Queries

1SELECT Distinct ?uris ?labels WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios/data/10.n3> {

3 ?uris <http://www.w3.org/2000/01/rdf-schema#label> ?labels }

4 SERVICE <http://dbpedia.org/sparql> {

5 ?uris a <http://dbpedia.org/ontology/Fish> }

6}

Figure 7.1: Q1 10 calls to indexed endpoints
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1SELECT Distinct ?uris ?labels WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios/data/100.n3> {

3 ?uris <http://www.w3.org/2000/01/rdf-schema#label> ?labels }

4 SERVICE <http://dbpedia.org/sparql> {

5 ?uris a <http://dbpedia.org/ontology/Fish> }

6}

Figure 7.2: Q2 100 calls to indexed endpoints

1SELECT Distinct ?uris ?labels WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios/data/1000.n3> {

3 ?uris <http://www.w3.org/2000/01/rdf-schema#label> ?labels }

4 SERVICE <http://dbpedia.org/sparql> {

5 ?uris a <http://dbpedia.org/ontology/Fish> }

6}

Figure 7.3: Q3 1,000 calls to indexed endpoints

1SELECT Distinct ?uris ?labels WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios/data/10000.n3> {

3 ?uris <http://www.w3.org/2000/01/rdf-schema#label> ?labels }

4 SERVICE <http://dbpedia.org/sparql> {

5 ?uris a <http://dbpedia.org/ontology/Fish> }

6}

Figure 7.4: Q4 10,000 calls to indexed endpoints

1SELECT Distinct ?fishuri ?name ?image WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 ?fishuri <http://dbpedia.org/ontology/family>

4 <http://dbpedia.org/resource/Cyprinioidea> .

5 ?fishuri <http://xmlns.com/foaf/0.1/depiction> ?image .

6 SERVICE <http://users.ics.forth.gr/~fafalios/data/1000.n3> {

7 ?fishuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

8}

Figure 7.5: Q5 Constant number of calls to cached datasets – Different number of
dataset’s triples. 1,000 triples.
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1SELECT Distinct ?fishuri ?name ?image WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 ?fishuri <http://dbpedia.org/ontology/family>

4 <http://dbpedia.org/resource/Cyprinioidea> .

5 ?fishuri <http://xmlns.com/foaf/0.1/depiction> ?image .}

6 SERVICE <http://users.ics.forth.gr/~fafalios/data/10000.n3> {

7 ?fishuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

8}

Figure 7.6: Q6 Constant number of calls to cached datasets – Different number of
dataset’s triples. 10,000 triples.

1SELECT Distinct ?fishuri ?name ?image WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 ?fishuri <http://dbpedia.org/ontology/family>

4 <http://dbpedia.org/resource/Cyprinioidea> .

5 ?fishuri <http://xmlns.com/foaf/0.1/depiction> ?image .

6 SERVICE <http://users.ics.forth.gr/~fafalios/data/100000.n3> {

7 ?fishuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

8}

Figure 7.7: Q7 Constant number of calls to cached datasets – Different number of
dataset’s triples. 100,000 triples.

1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 { SELECT ?personuri ?comment WHERE {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?personuri a <http://dbpedia.org/ontology/Person> .

5 ?personuri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment

6 } } LIMIT 10 }.

7 SERVICE <http://users.ics.forth.gr/~fafalios/data/100.n3> {

8 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.8: Q8 Constant number of calls to cached datasets – Different number of
dataset’s triples. 10 calls to cached datasets.
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1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 { SELECT ?personuri ?comment WHERE {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?personuri a <http://dbpedia.org/ontology/Person> .

5 ?personuri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment

6 } } LIMIT 100}.

7 SERVICE <http://users.ics.forth.gr/~fafalios/data/100.n3> {

8 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.9: Q9 Constant number of calls to cached datasets – Different number of
dataset’s triples. 100 calls to cached datasetss.

1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 { SELECT ?personuri ?comment WHERE {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?personuri a <http://dbpedia.org/ontology/Person> .

5 ?personuri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment

6 } } LIMIT 1000}.

7 SERVICE <http://users.ics.forth.gr/~fafalios/data/100.n3> {

8 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.10: Q10 Constant number of calls to cached datasets – Different number
of dataset’s triples. 1,000 calls to cached datasetss.

1SELECT DISTINCT ?authorURI ?paper WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios> {

3 ?p <http://purl.org/dc/terms/creator> ?authorURI }

4 SERVICE ?authorURI {

5 ?paper <http://purl.org/dc/elements/1.1/creator> ?authorURI }

6}

Figure 7.11: Q11 Retrieve RDFa from fafalios personal page.
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1PREFIX dbr: <http://dbpedia.org/resource/>

2PREFIX dc: <http://purl.org/dc/elements/1.1/>

3SELECT DISTINCT ?creator ?descr ?photo WHERE {

4 SERVICE <http://europeana.ontotext.com/sparql> {

5 ?work dc:subject dbr:Renaissance .

6 ?work dc:creator ?creator FILTER(REGEX(STR(?creator),

7 "^http://dbpedia"))}

8 SERVICE ?creator {

9 ?creator <http://purl.org/dc/terms/subject>

10 dbr:Category:Mannerist_painters .

11 ?creator <http://dbpedia.org/ontology/abstract> ?descr

12 FILTER(lang(?descr)=’en’) .

13 ?creator <http://xmlns.com/foaf/0.1/depiction> ?photo }

14}

Figure 7.12: Q12 Retrieve renaissance artists and return their descriptions and
photos.

1 SELECT DISTINCT ?artistURI (Count(?works) AS ?numOfWorks) WHERE {

2 {Select Distinct ?artistURI Where {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?artistURI <http://dbpedia.org/ontology/field> <http://dbpedia.org/resource/Painting>}}Limit 10}.

5 SERVICE <http://europeana.ontotext.com/sparql> {

6 ?objectInfo <http://purl.org/dc/elements/1.1/creator> ?artistURI .

7 ?objectInfo <http://www.openarchives.org/ore/terms/proxyFor> ?works.

8 }

9}Group By ?artistURI

Figure 7.13: Q13 10 calls to indexed endpoints.
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1SELECT DISTINCT ?artistURI (Count(?works) AS ?numOfWorks) WHERE {

2 {Select Distinct ?artistURI Where {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?artistURI <http://dbpedia.org/ontology/field> <http://dbpedia.org/resource/Painting>}}Limit 100}.

5 SERVICE <http://europeana.ontotext.com/sparql> {

6 ?objectInfo <http://purl.org/dc/elements/1.1/creator> ?artistURI .

7 ?objectInfo <http://www.openarchives.org/ore/terms/proxyFor> ?works.

8 }

9}Group By ?artistURI

Figure 7.14: Q14 100 calls to indexed endpoints.

1SELECT DISTINCT ?artistURI (Count(?works) AS ?numOfWorks) WHERE {

2 {Select Distinct ?artistURI Where {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?artistURI <http://dbpedia.org/ontology/field> <http://dbpedia.org/resource/Painting>}}Limit 1000}.

5 SERVICE <http://europeana.ontotext.com/sparql> {

6 ?objectInfo <http://purl.org/dc/elements/1.1/creator> ?artistURI .

7 ?objectInfo <http://www.openarchives.org/ore/terms/proxyFor> ?works.

8 }

9}Group By ?artistURI

Figure 7.15: Q15 1,000 calls to indexed endpoints.

1SELECT Distinct ?fishuri ?name ?image WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 ?fishuri <http://dbpedia.org/ontology/family>

4 <http://dbpedia.org/resource/Cyprinioidea> .

5 ?fishuri <http://xmlns.com/foaf/0.1/depiction> ?image .

6 SERVICE <http://users.ics.forth.gr/~fafalios/data/1000000.n3> {

7 ?fishuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

8}

Figure 7.16: Q16 100 triples .
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1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 { SELECT ?personuri ?comment WHERE {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?personuri a <http://dbpedia.org/ontology/Person> .

5 ?personuri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment

6 } } LIMIT 5000}.

7 SERVICE <http://users.ics.forth.gr/~fafalios/data/100.n3> {

8 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.17: Q17 5,000 calls to cached datasets .

1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 { SELECT ?personuri ?comment WHERE {

3 SERVICE <http://dbpedia.org/sparql> {

4 ?personuri a <http://dbpedia.org/ontology/Person> .

5 ?personuri <http://www.w3.org/2000/01/rdf-schema#comment> ?comment

6 } } LIMIT 10000}.

7 SERVICE <http://users.ics.forth.gr/~fafalios/data/100.n3> {

8 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.18: Q18 10,000 calls to cached datasets

1SELECT DISTINCT ?authorName ?paper WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios/> {

3 ?p <http://purl.org/dc/terms/creator> ?author

4 FILTER(?author !=

5 <http://dblp.l3s.de/d2r/resource/authors/Pavlos_Fafalios>) }

6 SERVICE ?author {

7 ?author <http://xmlns.com/foaf/0.1/name> ?authorName .

8 ?paper <http://purl.org/dc/elements/1.1/creator> ?author }

9 }

Figure 7.19: Q19 Evaluating duplicate URIs.44 duplicate URIs
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1SELECT DISTINCT ?creator ?descr ?photo WHERE {

2 SERVICE <http://europeana.ontotext.com/sparql> {

3 ?work dc:subject dbr:Renaissance .

4 ?work dc:creator ?creator FILTER(REGEX(STR(?creator),

5 "^http://dbpedia"))}

6 SERVICE ?creator {

7 ?creator <http://purl.org/dc/terms/subject>

8 dbr:Category:Mannerist_painters .

9 ?creator <http://dbpedia.org/ontology/abstract> ?descr

10 FILTER(lang(?descr)=’en’) .

11 ?creator <http://xmlns.com/foaf/0.1/depiction> ?photo }

12}

Figure 7.20: Q20 Evaluating duplicate URIs. 116 duplicate URIs

1 SELECT Distinct ?battle where {

2 SERVICE <https://query.wikidata.org/sparql> {

3 ?battle ?p "Battle of Gettysburg" . }

4 SERVICE <http://dbpedia.org/sparql> {

5 res:Battle_of_Gettysburg owl:sameAs ?battle. }

6}

Figure 7.21: Q21 A simple query to find the IRI of the battle of Gettysburg in
wikidata endpoint. This example focus on the number of variables in a Service
call. .

1 SELECT Distinct ?battle ?abstr ?place where {

2 SERVICE <https://query.wikidata.org/sparql> {

3 ?battle ?p "Battle of Gettysburg" ;

4 wdt:P625 ?place.}

5 SERVICE <http://dbpedia.org/sparql> {

6 res:Battle_of_Gettysburg owl:sameAs ?battle;

7 dbo:abstract ?abstr. }

8}

Figure 7.22: Q22 A simple query to find the IRI of the battle of Gettysburg in
wikidata endpoint. This example focus on the number of variables in a Service
call with a more complex pattern.



7.1. QUERIES 61

1 SELECT Distinct ?battle ?abstr ?place where {

2 SERVICE <https://query.wikidata.org/sparql> {

3 ?battle ?p "Battle of Gettysburg" ;

4 wdt:P625 ?place. }

5 SERVICE <http://dbpedia.org/sparql> {

6 res:Battle_of_Gettysburg owl:sameAs ?battle;

7 dbo:abstract ?abstr. FILTER (lang(?abstr) = "en" ) }

8}

Figure 7.23: Q23 A simple query to find the IRI of the battle of Gettysburg in
wikidata endpoint.

1 Select ?item ?name WHERE {

2 SERVICE <http://dbpedia.org/sparql/> {

3 ?item a dbo:Artist;

4 dbp:name ?name;

5 dbo:birthDate ?bd;

6 owl:sameAs ?item2.

7 Filter (?bd < "1900-01-01"^^xsd:dateTime ) }

8SERVICE <https://query.wikidata.org/sparql> {

9 ?item2 ?o wd:Q483501;

10 wdt:P569 ?db2;

11 rdfs:label ?name2 .

12 Filter (lang(?name2)="en") .

13 Filter (?db2 < "1900-01-01"^^xsd:dateTime )}

14 }

Figure 7.24: Q24 A query where we get all artist names birthdate as well as urls
to other endpoints and compare them from the data in wikidata to retrieve only
the English labels.
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1 Select ?item ?name WHERE {

2 SERVICE <http://dbpedia.org/sparql/> {

3 ?item a dbo:Artist;

4 dbp:name ?name;

5 dbo:birthDate ?bd;

6 owl:sameAs ?item2.

7 Filter (?bd < "1900-01-01"^^xsd:dateTime ) }

8 SERVICE <https://query.wikidata.org/sparql> {

9 ?item2 ?o wd:Q483501;

10 wdt:P569 ?db2;

11 rdfs:label ?name2 .

12 Filter (lang(?name2)="en") .

13 Filter (?db2 < "1900-01-01"^^xsd:dateTime )}

14 SERVICE <http://users.ics.forth.gr/~yannakis/files/1000.n3>{

15 ?item a dbo:Artist.

16}

17 }

Figure 7.25: Q25 A simple query where we load the graph for a given OCLC
record URI, extracting the predicate for the OCLC Number and then querying
Wikidata’s SPARQL endpoint based on that number.

1 select Distinct ?authors ?works where {

2 Service <http://dbpedia.org/sparql/>{

3 ?authors dbo:notableWork ?works.}

4 Service <http://dbpedia.org/sparql/>{

5 ?authors dbo:influencedBy dbr:Jules_Verne.}

6}

Figure 7.26: Q26 A query to find notable works influenced by Jules Verne.
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1A query to find the notable works influenced by Jules Verne that are also Science fiction.

2 select Distinct ?authors ?works where {

3 Service <http://dbpedia.org/sparql/>{

4 ?authors dbo:notableWork ?works.}

5 Service <http://dbpedia.org/sparql/>{

6 ?authors dbo:influencedBy dbr:Jules_Verne.}

7 Service <http://dbpedia.org/sparql/>{

8 ?authors ?p2 dbr:Science_fiction.}

9}

Figure 7.27: Q27 A query to find notable works influenced by Jules Verne.

1 select Distinct ?authors ?p ?values where {

2 Service <http://dbpedia.org/sparql/>{

3 ?authors dbo:notableWork ?works.}

4 Service <http://dbpedia.org/sparql/>{

5 ?authors dbo:influencedBy dbr:Jules_Verne.}

6 Service <http://dbpedia.org/sparql/>{

7 ?authors ?p ?values.}

8 Service <http://dbpedia.org/sparql/>{

9 ?authors ?p2 dbr:Science_fiction.}

10}

Figure 7.28: Q28 A query to retrieve all English information from the notable
works influenced by Jules Verne, that is also Science fiction.
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1 select Distinct ?authors ?p ?values where {

2 Service <http://dbpedia.org/sparql/>{

3 ?authors dbo:notableWork ?works.}

4 Service <http://dbpedia.org/sparql/>{

5 ?authors dbo:influencedBy dbr:Jules_Verne.}

6 Service <http://dbpedia.org/sparql/>{

7 ?authors ?p ?values.}

8 Service <http://dbpedia.org/sparql/>{

9 ?authors ?p2 dbr:Science_fiction.}

10 Service <http://dbpedia.org/sparql/>{

11 ?authors owl:sameAs ?authors2. }

12}

Figure 7.29: Q29 A query to retrieve all English information from the notable
works influenced by Jules Verne, which is also Science fiction. Furthermore we
want all related writers that have a URI in Wikidata.

1 select Distinct ?authors ?p ?values where {

2 Service <http://dbpedia.org/sparql/>{

3 ?authors dbo:notableWork ?works.}

4 Service <http://dbpedia.org/sparql/>{

5 ?authors dbo:influencedBy dbr:Jules_Verne.}

6 Service <http://dbpedia.org/sparql/>{

7 ?authors ?p ?values.}

8 Service <http://dbpedia.org/sparql/>{

9 ?authors ?p2 dbr:Science_fiction.

10 Service <http://dbpedia.org/sparql/>{

11 ?authors owl:sameAs ?authors2. }

12 Service <https://query.wikidata.org/sparql>{

13 ?authors2 wdt:P27 wd:Q34266. }

14}

Figure 7.30: Q30 A query to retrieve all English information from the notable
works influenced by Jules Verne, which is also Science fiction. Furthermore we
want all related writers that have a URI in Wikidata and are Russian.
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1 SELECT ?work ?name WHERE {

2 SERVICE <http://lod.openlinksw.com/sparql/> {

3 ?uri dct:subject ?oclcNumber.

4 ?uri2 dct:creator ?oclcNumber. }

5 SERVICE <https://query.wikidata.org/sparql> {

6 ?work wdt:P243 ?oclcNumber.

7 ?work wdt:P50 ?name. }

8}

Figure 7.31: Q31 A simple query where we load the graph for a given OCLC
record URI, extracting the predicate for the OCLC Number and then querying
Wikidata’s SPARQL endpoint based on that number.

1SELECT Distinct ?uri ?label ?img WHERE {

2 SERVICE <http://users.ics.forth.gr/~yannakis/data/1000.n3> {

3 ?uri rdfs:label ?label. }

4 SERVICE <http://dbpedia.org/sparql> {

5 ?uri a dbo:Fish; dbo:family dbr:Cyprinid. }

6 SERVICE <http://lod.openlinksw/sparql> {

7 ?uri2 owl:sameAs ?sameuri.

8 ?sameuri dbo:order ?uri.

9 ?uri dct:subject dbc:Fish_of_Europe.}

10 SERVICE <https://query.wikidata.org/sparql>{

11 ?uri2 foaf:depiction ?img; ?p ?o.}

12}

Figure 7.32: Q32 Get all labels from local file. But return only those that are
type Fish, exist in openlinksw but exist in Europe and have an image depiction.
Also return the URL and the image depiction.
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1SELECT Distinct ?uri ?class ?descr WHERE {

2 SERVICE <http://lod.openlinksw/sparql> {

3 <http://dbpedia.org/ontology/weight> a ?class.

4 ?property a ?class.

5 ?property2 a ?class. Filter(?property!=?property2). }

6 SERVICE <http://lod.openlinksw/sparql> {

7 ?property rdfs:label ?label.

8 ?property rdfs:range ?range.

9 ?property <http://www.w3.org/2007/05/powder-s#describedby> ?file}

10 SERVICE ?file {

11 ?uri <http://open.vocab.org/terms/describes> ?descr.}

12}

Figure 7.33: Q33 Get all functional properties and then retrieve their range label
and the RDF file that defines them. Then for each file return the descriptions.

1SELECT ?journal ?journal_info WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 ?dbp_journal a dbo:AcademicJournal.

4 ?dbp_journal dct:subject dbc:Toxicology_journals.

5 ?dbp_journal owl:sameAs ?journal.

6 ?dbp_journal rdfs:label ?label.}

7 SERVICE <https://query.wikidata.org/sparql> {

8 ?journal wdt:P31 wd:Q5633421.

9 ?journal wdt:P571 "1978-01-01"^^xsd:dateTime.

10 ?journal wdt:P495 wd:Q145.}

11 SERVICE <http://lod.openlinksw.com/sparql/>

12 ?journal dc:title ?journal_info.}

13}

Figure 7.34: Q34 Get all toxological journals from dbpedia. Then retrieves only
journals published form U.K. in 1978, found in wikidata. And finally returns the
title from yago.
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1SELECT Distinct ?uri ?page ?img WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 ?uri a dbo:Fish.

4 ?page <http://xmlns.com/foaf/0.1/primaryTopic> ?uri. }

5 SERVICE <http://lod.openlinksw/sparql> {

6 ?uri2 owl:sameAs ?uri.

7 ?uri wdt:P171 \Thunnini";

8 dbo:abstract ?abstr.}

9 SERVICE <https://query.wikidata.org/sparql>{

10 ?uri foaf:depiction ?img; ?p ?o.}

11}

Figure 7.35: Q35 Get all fishes and their wiki pages. But return only those that
exist in openlinksw, belong to genre Thunnini and have an image depiction. Also
return the URL of the wiki page and the image depiction.

1SELECT DISTINCT ?fish WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 { SELECT ?personuri ?comment WHERE {

4 ?personuri a <http://dbpedia.org/ontology/Person> .

5 } LIMIT 10}

6 }

7 SERVICE <http://users.ics.forth.gr/~fafalios/data/100000.n3> {

8 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.36: Q36 Constant number of calls to cached datasets – Different number
of dataset’s triples. 10 calls to cached datasets.
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1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 SERVICE <http://dbpedia.org/sparql> {

3 { SELECT ?personuri ?comment WHERE {

4 ?personuri a <http://dbpedia.org/ontology/Person> .

5 } LIMIT 100}

6 }

7 SERVICE <http://users.ics.forth.gr/~fafalios/data/100000.n3> {

8 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.37: Q37 Constant number of calls to datasets – Different number of
dataset’s triples. 100 calls to datasetss.

1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 SERVICE <http://users.ics.forth.gr/~yannakis/files/100000.n3> {

3 { SELECT ?uri WHERE {

4 ?uri rdfs:label ?label .

5 } LIMIT 10}

6 }

7 SERVICE <http://users.ics.forth.gr/~yannakis/files/1000.n3> {

8 ?uri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

9}

Figure 7.38: Q38 Constant number of calls to datasets – Different number of
dataset’s triples. 100 calls to datasetss. With 10 calls to smaller dataset.
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1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 SERVICE <http://users.ics.forth.gr/~yannakis/files/100.n3> {

3 { SELECT ?personuri WHERE {

4 ?personuri rdfs:label ?label .

5 } LIMIT 10}

6 }

7 SERVICE <http://users.ics.forth.gr/~yannakis/files/100000.n3> {

8 { SELECT ?personuri WHERE {

9 ?personuri rdfs:label ?label2 .

10 } LIMIT 100}

11 }

12 SERVICE <http://users.ics.forth.gr/~yannakis/files/1000.n3> {

13 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

14}

Figure 7.39: Q39 Constant number of calls to datasets – Different number of
dataset’s triples. 100 calls to datasetss. With 100 calls to smaller dataset.

1SELECT DISTINCT ?personuri ?name ?comment WHERE {

2 SERVICE <http://users.ics.forth.gr/~yannakis/files/100.n3> {

3 { SELECT ?personuri WHERE {

4 ?personuri rdfs:label ?label .

5 } LIMIT 100}

6 }

7 SERVICE <http://users.ics.forth.gr/~yannakis/files/100000.n3> {

8 { SELECT ?personuri WHERE {

9 ?personuri rdfs:label ?label2 .

10 } LIMIT 1000}

11 }

12 SERVICE <http://users.ics.forth.gr/~yannakis/files/1000.n3> {

13 ?personuri <http://www.w3.org/2000/01/rdf-schema#label> ?name }

14}

Figure 7.40: Q40 Constant number of calls to cached datasets – Different number
of dataset’s triples. 1,000 calls to cached datasetss. With 1000 calls to smaller
dataset.
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