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Abstrtact

In this master thesis, we studied surface-localized electronic states of metals. In particular, we
determine characteristic properties of Schockley surface states!''*'*#!5I for Au and Cu slabs. We

did the calculation using Density Functional Theory (DFT)"*",

We construct slabs with different number of atomic layers. These layers are parallel to the
(100) and (111) plane of FCC structure. We solved the N-electron Schrédinger equation™ as

implemented in the open-source package Grid-based Projector Augmented Wave method (GPAW)

[9,10,18]

We locate surface states by observing Bloch States, ( nk ), where the probability of finding
electrons at surface atoms is much higher than the probability of finding them in bulk atoms. We
modify slab thickness (number of layers) and observe when the probability starts to converge. We
confirm the surface states by applying three methods. In the first method, we find the diagram of
the probability density per atom. The next method was a graphical way to prove the surface state, in
which we examine wavefunction plots. For this method, we used VMD and ASE™. In the last
method, we plot the probability density in real space. All three methods are used to confirm that a

particular Bloch state is indeed a surface state.

Subsequently, we repeated the same process for relaxed surfaces, in which the first and the

last atom of slabs are allowed to relax.

The next step of the thesis concerns the computational calculation of the workfunction for
different thicknesses of slabs. We fitted the square of the absolute value of wavefunction and
applying Schockley's Surface State theory, we found values for the metal's workfunction in very

good agreement to direct simulation.
Finally, we repeated the same process for Cu slabs.

So far, Schockley's theory was applied and explained results in semiconductors. In this
thesis,it is confirmed that this theory could be applied also to metalic surfaces, because it derived

from nearly free electrons model.

11
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Iepiinym

L€ QLTI TN HETATTUXLOKT SIXTPIPT) HEAETOAUE EVIOTIOHPEVES EMPAVEIORKEG KATAGTAOELG
OE HETOAAA. XUYKEKPIHEVA, TIPOOSIOPICUHE XUPAKTNPLOTIKEG 1010TNTEG NG Bewpiag TOL
Schockley™ 2314551 v Sopry  Xpuvoov (Au) ko XaAkod (Cu). O vmoAoyopot
npaypatonomfnkav xpnoponoiwviag v Density Functional Theory (DFT).

EEKIVIOOHE QTIAXVOVTAG OOUEG HE SLHPOPETIKO aplBO KTOHIKOV OTPOHAT®V OO TIG
emineSa (100) ko (111) g Soprg FCC. Aboape v e€iowon tov Schrodinger™ yix N apBuo
nAekTpoviav, Onwg epappoletor oto eAevBepo mokéTo Tov GPAW!P 018,

Evtomicape emM@avelOKEG KATAOTAOELG TIXPATNPOVIAG TNG Katdotaong tov Bloch, (

nk ), 6mov 1 mMOAVOTHTA Vo PPOVHE €va MAEKTPOVIO OF EMQAVEINKO (TOHO €ivon TOAD
HEYOAUTEPN O’ OTL OTA E€0WTEPIKA ATOHN, To Omoix €xouv TNV 16 yewpeTpia pe TV
Tprodiaotatn dopn. MetafdAlovtag tov aplfpo T®V ATOHIKOV OTPOHAT®V TAPATNPOVHE HETK
and molo Tiaxog 1 mBavotnta Eekivael va ouykAlvel. EmBefoiwoape TG emMQAvVEIOKES
KOTOOTAOELG PE 3 SlaQopeTiKEG peBOSoLG. v mpwtn péBodo, eTidéape to Stdypappa g
mBavotntag ava dtopo. H emopevn peBodog NTov i ypa@ikn omodelén €MQAVELNKG
KOTAOTHOTG, OTIOV €MEEEPYNOTIKALE TIG KUPHATOOLVAPTIOELG TOU CLOTHHNATOG XPT|OHOTOIWVTOG
™ VMD kot to ASEY. Yty tehevtaia péBodo, KAVOPE TN YPOQIKY] TOPROTOON TNG
TIUKVOTN TG THAVOTNTAG OTOV TpayHaTIKO Xwpo. Kat ot tpeig peBodorl xpnotponomfnkav yia

v emPefainon 6T Gviwg pix ouykekplpévn katdotaor Bloch eival empavelakn katdotaon.

I ouvéyelwn, emavaAdpape v idiax diadikaoia yia relaxed surfaces, otig omoieg to
TPOTO KAl TO TEAELTALO ATOHO TNG SopnNG NTav eAevBepo va petakivnBet ko va tonoBetndet pe

TETOL0 TPOTIOL WOTE VO EAXYIOTOTIOLEL TNV EVEPYELX TOL CLOTIHATOG.

To enmopevo Prpa TG epyaciog x@OpPoOVOE TOV LITOAOYIOHO TOU €pyou €£080L Yl TX
SIQOPETIKA TAYXN TV Sopav. DTdyvovTag T0 SIAYPOpH TNG TLUKVOTNTA TBavoTNTag KAl
epappolovtag G Bewpia tov Schockley, Pprikape TG TpEG yix 1o €pyo €§080L TV
HETOANKQV ETPAVEIOV TIOL HEAETAONHE Kol BPloKOTaV O TIOAD KOA] CUH@O®VIa pE TNV

voAoyloTikn pébodo.
13



EnavaAdBape Tig i61eg Stadikaoieg yiax TG 161eq PETOANIKEG €TQAVELEG 0 SOPEG XAAKOD

(Cu).
Meéypt topa, n Bewpia tov Schockley €xer epappootel kol e&nynoel amoTeEAECHATA Yl

NHyoyovs. X' autr T HeTantuylokn epyacia emPBefoiwbnke n xpnon g Bewpiag kot y

HETOANIKEG EMPAVELEG, YIATL TIPOEPXETAL ATIO TO HOVTEAO TV EAEVBEP®V NAEKTPOVIGV.
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1.

THEORY and BASIC PRINCIPLES
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1.1 Crystal Surfaces and Structures

Crystal structure is the periodic and ordered arrangment of atoms, ions or molecules in a
material. It appears in nature to minimize the energy of the system that is formed. The structure

is repeated along the principal directions of the three dimensional space.

The most common crystal structure are the cubic one (SC, BCC, FCC). There are also
tetragonal, rhombohedral, orthorhombic, monoclinic, triclinic structures.In this thesis we focus

on cubic structures because the metals we study have all FCC structure.

In Simple Cubic (SC) structure, there is an atom on the vertices of the unit

cell. A unit cell contains N 1:8%:1 atom and the nearest neighbor are

at distance a, where a is the one side length of the square that two atoms
are located. This parameter depends on the material. The filling factor,

Figure 1.1.1:Simple which is the fraction of volume in a crystal structure that is occupied by

Cubic (SC)™ , o
constituent partlcles , 1S ¢

4_7TR3 an
3 ;.3 2 _4nl
(13 a3 3 8

APF =N,

o=

~52,4 %

In Face — Centered — Cubic (FCC) structure there are

atoms on the vertices of the cell and also an atom at

the center of every face of the unit cell. A unit cell

contains Ni:8%+6%:1+3:4 atoms. The nearest
(a) () neighbor distance is a2_2 , where o is a parameter

. . _ _ . 2]
Figure 1.1.2 : Face - Centered — Cubic (FCC that depends on the material. The filling factor is

19



4 4 a\/z °
RS
3 3 4 _n 2

=74%

In Body — Centered — Cubic (BCC) structure, an

Tatom is located on the vertices of the unit cells, and

also an atom at the center of the cube. A unit cell

contains N,=8 % +1=1+1=2 sites. The nearest

@.—'# -
T

= et 5 _ . . . av3 .
Figure 1.1.3: Body - Centered - Structure (BCC)'? neighbor distance is N correspondingly.

41 4 ﬂ(a\@)?’
The filling factoris APF...=N;, 3 —=2 3 34 :nf:68%
a a

A periodic function V(F) is a function that obeys V(F+R,)=V(¥) , where
R,=n,d,+n,d,+n,d, , with da, d,d, are basis vectors and n,,n,,n, can be any integer

number.

Bravais lattice is a set of points in space. These points are defined by the ends of the vectors

R, . The volume of the unit cell is given by the formula: V,.=|(d@,Xd,)-@| -

n

The reciprocal Bravais lattice is also a Bravais “"®""! lattice and the vectors have the form

G,=mb,+m,b,+m,b, and obey R -G,k =2né,, . Using this condition, we can define the

n

basis vectors of the reciprocal lattice b, b, b,

20



Using the formulas above, we can conclude to the table below about the FCC and BCC

strustures :

Structure

BCC

FCC

Basis Vectors

Bravais lattice Reciprocal lattice
a,=ax, - 2m, .
_'1 AO b1:T(_ZO+X0)
aB,=ay, 2

52:7(_}0"')70)

b;;sz0
Elzg(y(ﬁio) 51:2%( Xo+ Yo+ 7o)
G=9(%,+7)) 52—27”@50 ot 7o)
G, =3 (%y+50) b= (it Yo o)

For the reciprocal lattice, the volume of the unit cell is given by the formula:

Ve =|(byXb,)by ,andisrelatedto Vy. as VeV =(21) .

In a specific three dimensional Bravais lattice, we can define lattice planes by choosing three

noncolinear lattice points. A family of lattice planes is the set of all parallel and equidistant

lattice planes. Using the reciprocal lattice, all the possible families of the lattice planes can be

categorized.

The crystalographic planes are defined by three indices, known as Miller indices. All the planes

that are parallel to each other have the same Miller indices.

(100)

Figure 1.1.4 : lattice planes [4]

21

Figure 1.1.4 show three lattice planes:

the plane (100), (110) and (111).

(111)



The (100) plane contains :

. 4%= 1 atom per unit cell, for the SC structure

* 4-—=1 atom per unit cell, for the BCC structure

A1
4

. 4%+ 1=2 atoms per unit cell, for the FCC structure

(100)
Figure 1.1.5: (100) plane ™

The (110) plane contains :

. 4%: 1 atom per unit cell, for the SC structure

. 4%+1 =2 atoms per unit cell, for the BCC structure

1
110y 47

Figure 1.1.6 : (110)
plane ¥

=1 atom per unit cell, for the FCC structure

The (111) plane contains :

. 3 1_1 atom per unit cell, for the SC structure

6 2
1 3 .
. 3-€+1:§ atoms per unit cell, for the BCC structure
(111) 1 1 .
) . 3-=+3-==2 atoms per unit cell, for the FCC structure
Picure 1.1.7 : (111) 6 2

plane™

In this thesis we focus on the planes (100) and (111).

22



1.2 N-Electron Schrédinger equation

When we have to calculate properties and quantities in solid-state materials, it is
important to find the Hamiltonian operator which describes the system. In this case, we start
with the many — body Schrédinger equation. The Hamiltonian contains the kinetic energy of
all the particles within the solid and their interaction energies. ® Not all the electrons contribute
to the same extent to the total energy. Electrons can be divided into two categories, the valence
electrons and core electrons. Core electrons are strongly bound to the nucleous and therefore
do not participate to the chemical bonding, as the valence electrons do. So, the Hamiltonian of
the system would include two constituents, which are distinguished in the valence electrons and

the lattice ions, and can be described by the following formula :

2 2

1 1 2,Z;
H:HeI+Hio el Ion___z Z e Z Z 2M 2 Z e

47I£0|r - 1‘ oyt 4n€0|r - 217 47I€0|R —R|

The Hamiltonian would be distinguished in three terms:

* The electrons part:

2m 2Z i - ZVZ 2Z

i#j 4n€0|r i#j dne |r—r‘

2

Using the atomic units ( =h=m,=1 ) the above equation could be formed:

4 1e,

g Py 1
g2 295 |ri_rj|

It includes the kinetic energy of all the electrons. Their potential energy is described by a
Coulomb term. The sums run over all the electrons indices excluding self- interaction for

I#]

* The nuclei part:

23



I ZZJ _ 2 ZZJ
Hio Z ;4n£0|R R| Z2M ,;47150|R —R||

The formula includes the total kinetic energy of the nuclei and the potential term which
consist of the Coulomb interactions. The Z; and Z ; are representing the atomic numbers. The

sums run over all the ion indices again excluding self-interaction for I#J

* The electron - nuclei interaction part:

1 Z, Z e’
el ion Z 4 711e |R R|
Ii] 0

It is constructed corresponding to the electron-nuclei interaction as a sum of two-particle
interacttions between electrons and ions depending on their distance to each other and the

atomic numbers.

Those equations are the basis for the quantum mechanical analysis of most solid state
properties. Now we make the transition from the Hamilton function to the Hamilton operator. If
we use the coordinate representation we get a Hamilton operator depending on all the electron
and ion coordinates and correspondingly a wavefunction as a function of all the coordinates

and spin.

In order to solve a very difficult problem with so many factors, we have to make some
approximations. Using the Born — Oppenheimer approximation we assume that the nuclear
motion is slow and thus in comparison to the electrons, the nuclei is fixed. The solution of the
energy eigenvalues equation could be formed:

Hy=Ey=(H,+H,_, )y=Ey
The ions positions are fixed, so the many - electron wavefunction
W(r,0,,ry0,,..,r,0,;R,,Ry,...,R,) is a function of all electron positions and spin and the ion

positions are only parameters.

24



1.3 Density Functional Theory

Denstiy Functional Theory (DFT) is a computational quantum mechanical method to reseach
the electronic structure of a many-particle system. It is a method which is used for problems

which can not be solved analytically.

The theoretical basis of the DFT was given by the two Hohenberg — Kohn theorems (H — K) >
19, The first theorem exhibits that the ground state properties of a many-electron system are
uniquely determined by an electron density that depends on only 3 spatial coordinates. The
second indicates that the electron density which minimizes the energy of the overall functional
is the true electron density corresponding to the full ground state solution of the Schrodinger

equation.

As I mentioned at the previous chapter, the solution of a quantum mechanical problem starts
from the Schrodinger's equation H¥Y = EW, where in this problem it is a formula described by

the following formula:

2

Z Ze ‘ lz _ZZMVz 12 Z,Ze’

H=H,+H
~ 4nelr—R| 24 4n50|r—r | 21 4neO|R —R|

el— lon

In this case, every operator which is included in the Hamiltonian is described by the electron

density as H=H(n(r))

The electron density is n(r) obeys the normalization relation:

N:fn(r)dr

One starts the solution using the one electron Schrodinger equation:
1 o
(_EVZ'H,I (r)+ u([n] ;r)+uxc([n1‘ )n¢],'r)) lIIa(;‘(r)_Eaa q]ad(r)

25



S (r)=n,(r),n.(r)

na(r)=; O (= Ee)|¥ e (r)

o is the z-component of the spin, a includes the rest of the electron quantum numbers. The
above formula contains the step function theta, in which want to emphasize to orbitals with one

electron while the other are empty. p is the chemical potential.

The equation contains the external potential u(r) and also the effective potential using the

classical Hartree potential u([n];r):f d’r' n(r’)

The total electron energy will be given by :

EZTS[n¢,n¢]+f ern(r)u(r)+U[n]+Exc([n¢,n¢])

T, [ne =3 0 (4= Ey) (W3 ViI,,)
n(r)n(r’)
| _

where

U[n]:%_]‘ dgrd3r'r—r,|

Xc

on,(r)

As last term we have the exchange-correlation energy E xc , whose derivative gives

exchange - correlation potential.

LDA

The Local Density Approximation is used to determine the exchange - correlation functionals.

Xxc

E{n(r)]=[ &’rn(r) B2 (n(r)

E"I=E"+E"" is the exchange and correlation energy per particle in an uniform electron

density n, which can be distinguished in exchange and correlation contribution respectively.

26



LSDA

It is the Local Spin Density Approximation. The difference with the previous approximation is

that this formula includes the electron spin  Ex>"'[n,,n,]=[ &’rn(r)E,(n,,n,)

Xc

GGA

LDA considers that the density is piecewise constant and overestimate the exchange-correlation
energy. This overestimation of the energy is corrected using the gradient of the density. These
corrections are referred to as generalized gradient approximations (GGA) and is given by the

below formula:

En(r)]=[d’ra(r)f(n(r),Vn(r))

27



1.4 Electronic Surface States

A surface is the termination of a bulk crystal. A fraction of the chemical bonds which
constitute the bulk crystal structure are broken at the surface. These bonds have to be broken to
create the surface and thus the formation of a surface costs energy. In comparison with the bulk
properties, the electronic structure near to the surface is notably different. Even an ideal surface
with its atoms at bulk-like positions displays new electronic levels and modified many-body
effects due to the change in the chemical bonding. Many macroscopic effects and phenomena
on surfaces are related to this change in electronic structure. On the theoretical side, the general
approach is similar to that for the bulk-crystal, but now we solve the Schrodinger's equation for

an electron near the surface, M 12H13]

In comparison with the bulk problem, two major difficulties arise for the surface, the
symmetry and the surface-structure. For the first difficulty, even in the ideal case, symmetry
only exists in directions within the plane of the surface. Perpendicular to the surface, the
periodicity breaks down and the mathematical solution becomes much more complicated. The
second difficulty is more severe, because of changes in atom's positions. A complete calculation
of the electronic structure requires a knowledge of the atomic positions (coordinates). This is
complicated, becuase of the changed chemical bonding near the surface. This change frequently
results in surface relaxation and reconstruction. This means that the atoms are displaced from

the ideal positions which they would occupy if the bulk crystal were simply truncated.

Consequently, surface states are electronic states found at the surface of materials. They
are formed due to the sharp transition from solid material that ends with a surface and are found
only at the atom layers closest to the surface. The termination of a material with a surface leads
to a change of the electronic band structure from the bulk material to the vacuum. In the

weakened potential at the surface, new electronic states can be formed, so called surface states.

28



1.5 Shockley Surface States

Shockley States are named after the American physicist William Shockley. Shockley
states are the states that result when solving the Schrodinger equation in the framework of the
nearly free electron approximation for clean and ideal surfaces. Shockley states are thus states
that arise due to the change in the electron potential associated solely with the crystal

termination. !

When we investigate the electronic surface states of an ideal crystal, we assume perfect
two dimensional periodicity within the surface. ™*""*! However, we have broken symmetry
perpendicular to the surface. The most general one-electron wavefunction @, for states near an
ideal surface has plane-wave (Bloch) character for coordinates parallel to the surface r;= (x,y):

D (r), z)zuku(r”, z)exp(ikyr)) (eq.1.5.1)

where k; = (kky) is a wavevector parallel to the surface. The simplest model to derive most of
the important properties of surface states is the one-dimensional semi-infinite chain of
periodically arranged atoms. The surface is then represented by the end of the chain. The
results gained from the 1D surface can then be generalized for the 2D crystal surface. We

assume, similar to the nearly free electron model, a cosine-like potential along the chain.

Vacuum

Crystal, z < 0

— F Vae
Epr)t
Vo

--------------------------- K === -

0

i =
T L

z

Figure 1.5.1: Nearly — free — electron model for a cosine
potential along a linear chain [11]
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V,,forz>0
Viz)=! 2 —2m 1
(z) V(e +e ¢ ):2Vcos(2%),forz<0 &

Now, we have to solve Schrodinger's equation:

A o
=By =[5 SV (29 ()=E¥ (o)

using the potential (1) for V(z).

For the solution, we start deep inside the crystal, z<<0, far away from the surface z = 0.
In this case, we consider that the potential can be assumed to be periodic, V(z) = V(z+na). For

this problem, we get the well-known bulk solutions:

Figure 1.5.2: Energy Bands for one - electron
bulk states ™

Away from the Brillouin zone boundaries k L:i% , the eigenstates of the Hamiltonian are

plane waves and their energies are those of the free electron parabola. Near the boundaries we
get the characteristic band splitting. This happens due to the fact that in lowest-order

approximation of the electron wave function is a superposition of two plane waves:

2n

: (i(L )Z)
w(z)=Ae*“+Be " (eq.1.5.2)

30



Substituting into the Schrédinger's equation we get the matrix:

n* -
—K,—E(k,) 1%
2m 2 ~[A}=o (eq. 1.5.3)
v 2 k)|
2m*  a +
Around the Brillouin zone boundary, near to k L:iE:+E

> =% , with  k, =k+mn/a , where
a

small values of k correspond to the k, . Two elements of the above matrix will be changed:

%w g)z—E(K) | \72 'H=0
v =) - ()

And also the approximation of the electron wavefunction will be written:

a) :eikz(Aei;Z.}.B e—i;z)
:>l/J(z):eikZ(Aexp(i%z)+Bexp(—i%z)) (eq. 2.5.4)

Now, it is interesting to solve the above system to get the energy eigenvalues :

I8 Tl
h2 T 2 E—m(K+E)
(=—(k+=) —E)A+VB=0 |B= A
2m a - \%
2 T 2 hz - 2
Va+[2—(K——) —E]b=0 E Z—(K——)
m a A= m a B
\%
Substituting B The wavefunction will be formed:
2 2
' E—zh—(K+£)
lp(z):Ae'kZ[exp(i%zH mV a exp(—i%z)] (eq. 1.5.5)

where A is a normalization factor. The energy eigenvalues must be clarified.

31



, K T\ m P SN
o B 2 T s ) B () - vizo
e (1)) En (1)) =0
=BT () En( (e (1)) —v=o

The target is to find the energy eigenvalues. The polyonymal's discriminant is:
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Ak’
) +1

h (K2+(£)2)1|V|\/(h2’(n) +1:h_((K+£)2—2K£>i|V|\/(
m a ma m a a maV
72 2 B2 72 2 72 2 72 72 2
SE. = (kD) — R V] () 1= (D) V][ () +1
= 2m a ma maV 2m a malV| malV |

2

B (M) ) S +J< T 1) (eq. 1.5.6)
m a B ma|V|™ | mal|V| B

* Deep inside the crystal

The solution of the wavefunction have to be separated into three regions, deep inside the

crystal, near to the surface and after the vacuum.

For regions deep inside the crystal (z << 0, subscript i) the electron wave functions {s; are

obtained by using the above energy eigenvalues and substituting appropriate leads to:

>y

W — V|, #rx Rk ,
= ~:A€lKZ emz/a_l_|T _ — i\/ —+1le inz/a
deepinside i [ a| | a|v| :I

where A is a normalization factor. Deep inside the crystal, we get the familiar electronic bands
E(k,) ,which are periodic in reciprocal k, - space. Near the zone boundaries we have
splitting into allowed and forbidden energy bands where the forbidden energy region has a
width of 2|V| as you can see from the energy formula for k =0:
B
(

Ei(KZO)Zﬂ g) +|V| (eq.1.5.7)
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h2 2
iz T +_2m(%) n wp e (V| it
for E, o Wi(z)=Ae [exp(zzz)+#exp(—lzz)]:Ae [e +oe ]
_ﬂz(l)z 9
. _ ikz LT T 2m a . TT _ ikz a’ V| iy
forE o :0,(z)=Ae [exp(lgz)+#exp(—1gz)]—Ae [e e ]

if V>0 then:

LTt LT
1—Zz —1—2Z

forE, _o:wi(z)=Ae"[e® +e ° |~e"cos(Zz)
+(k=0) a

forE_ _,:.(z =Aeikz[eiz —e @ ]~e"sin(Zz)
(k=0)**i a

Otherwise (V<0):

forE, . _.:y;(z =Aeikz[elgz—e_lgz]~eikzsin(Ez)
(k=0) a

LTt
1—Zz

forE_(,_o:W,(z)=Ae"[e* ve @ ]~eikzcos(%z)

This results are absolutely related with the splitting near to the zone boundaries "',

Summarized in a table they can be written:

Energy Wavefunction
V>0 V<0
| T
E \ Top of the gap ool A s . (T
LR ~cos(—=z) ~sin(—=z
(%) +V| (5 2) (57)
S
Bottom of the gap  #* ,7\> ~ T T
Moy ~sin(—z) ~cos(—z
(%) =1V (57) (52
~— .
0 3 K

Figure 1.5.3 : Energy gap'**
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We now proceed the solution of the Schrédinger's equation near a solid surface and also near

the end of the chain.

e In the vacuum region:

The wavefunction solution in the constant potetnial V , has to be exponentially decaying:

o

|2m
|

3

(Vo—E)z

,E<V, (eq.2.5.8)

We are interested to find the solution near a solid surface.

« Near the Surface :

There are two ways to determine the surface solutions.

Since W, has no complex contribution e ™* it can only be matched with the solutions inside the

crystal g if you have a superposition of an incoming and a reflected wave (standing wave):
¥Y,(z=0)=a¥,(z=0,x)+B ¥;(z=0,—k) (eq. 1.5.9)

A Re(¥) From the Figure, we can understand that a surface state is

possible to be described by a standing Bloch wave and

Crystal Vacuum
yaN e . matched with an exponentially decaying tail ¥ , in the

> 2z
\/ 0 vacuum.

Figure 1.5.4 : Real part of
wavefunction for a standing Bloch
wave
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The other way for the surface solutions could become possible if we allow complex wave

2
vectors. Letting k to be imaginary (k = -iq) (1.5.10) and defining y=isin(26)=—i " T‘%
ma

(2.5.11) , the energy formula would be formed :

Boon 2 Knq \/ g\’
>FE=——-I(——iqg) +|V||i — 4/ —1 = 1
Eoon? o, n. h'mq r°rq .’
E=——((Z) —g¢—2iqZ)+ +| V] 1—(——
=E=o () —q—2iq_)+i——=+[V]| malv]

. V B # 2 »
wr :AelKZ[ mz/aiM[_ K i\/( T[f ] mz/a], =—iq
V. ma|V| ma|V|
V| . # h L
>y 'i:A qZ[ mz/ai|_‘j|[i T[g i\/(—i T[g +1] mz/a]
V" ma|V| ma|V|
‘ & # 72 2 72
= A s L L i\/1+ —i ) 1oy =isin(28) = —i
V  mal|V| ma|V| mal|V|

ZW'.:Aqu[eim/ail |[i'SiH(Z&)i\/l*‘(i'SiH(Zé))2]871-”2/0]

1
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<

=>IP ,-:14eqz[einz/ai |

[i-sin(268)+y1—sin’(28)]e ™],sin’ (28 )+cos’(26)=1

' v
=>‘P’,:Aeqz[ei”Z’”iM‘;[i-sin(Zé)i\/l—sin2(26)]ei”Z/“],sin2(26)+cosz(26)=1
o qz[ inzla |‘7| . s —inzla
>P'=Ae¥[e 17[1-sm(26)i|cos|(26)]e ]
Although, i'—Y': +1’l:f V>0 , the above wavefunction would be formed:
vV [—1,if V<0

>P'=A eqz[eim/ai[cos(26)il"SiIl(Z 6)]‘37“&/0]:eﬂw:COS(Z(S)ii-sin (26)
>y ’i:A eqz[eim/aieizi(s e—inz/a]

LT . T N
i—zxib —i=z*id

>P ' =Ae" e xe ¢

P (2<0)=2Ae" " cos(Lz+8)~e" cos(Zz+65)
=

,q=-ik (eq.1.5.13)

5 9

P (z<0)=2iAe’ " sin(%zié%eq_i‘ssin(azié)

where A is a normalization factor.

The probability density is: =
k4 'i(z$0)|2~e2qzsin2(%z +6)

So, concisely, the wavefunction fro z<0 and z>0, could be described:

iZoris —ilzxis
W'_Aquiié[e a — a —
=

=
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At the surface should apply:

¥, (2=0)=¥"(z=0)
v, d¥',
dz (=) dz (=)

Using these conditions, we can find the parameters A and D.

1 Re(z‘u) From the Figure 1.5.5, we can understand that a surface

state wavefunction is localized at the surface. It is

778 \ qualitatively Figure. As we expected, the amplitude
— >z .

\/ 0 vanishes for values far away from the surface and the

electrons are localized within a couple of As of the surface

Figure 1.5.5 : Real part of one electron
wavefunction for a surface state localized
at the surface ™’

plane.

As, it was shown , the energies eigenvalues are obtained as:

_hz my 210 _hznq
E(Q)—ﬂ[(g) —q ]—|V|\/1 <ma|\7|) (eq. 1.5.14)

The values of E remain real and y doesn't diverge for z<<0 if 0<q<q,,,,=ma|V|#*n . For

these specific values of q and as we can observe from the formula of the Energy E(q) (eq.

1.5.14), all energies fall into the forbidden gap of the bulk electronic-band structure.
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Figure 1.5.6 : Electronic band structure for a semi-
infinite chain of atoms ™

Another important consequence the matching conditions are restricting the allowed values for
the energy eigenvalues. Within the continuous range of energy levels in the forbidden bulk
band gap only one energy level is fixed by our matching conditions. So, this calculation of the
semi-infinite chain yields as solution a single electron surface state located in the gap of the

bulk states.

Now we can generalize this result of the one dimensional semi-infinite chain to the
surface of a three dimensional crystal. The two dimensional translation symmetry parallel to
the surface leads to a general Bloch-type wavefunction @(r,z) for the surface state. The

ikry

model changes in r | and are contributed by e and the energy increases by the term

r’kil2m .
QDSS(rH,z):uku(rH,z)exp(ikHrH)
=@ (ry,z)=P(z)uy (r))exp(ikr)
Energy eigenvalues are then functions of k,=m/a—iq and k. As a consequence the matching

conditions which have to be fulfilled for every single k ; separately yield a (in general

different) energy level for every k ; for the surface state. From that we get a two dimensional
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band structure for the electronic surface states Eq(k).

Esurface:EkL'i' Ess (kH)

272 272
LSS

= Esurface = % 2 m*

where m"* is the effective mass of the electron.

It has to be mentioned that also the bulk electronic states live on the surface with only small

modifications. One has to take them into account when mapping the true surface states.

Figure 1.5.7 : Hypothetical electronic
band structure of a crystal [11]

A surface state is described by the energy and its wave
vector k | parallel to the surface. Bulk state is
characterized by both k ; and k, wave numbers. In the
two-dimensional Brillouin zone of the surface, for each
value of k; therefore a rod of k, (where the symmetry is
broken)is extending into the three-dimensional Brillouin
zone of the Bulk. Bulk energy bands that are being cut by
these rods allow states that penetrate deep into the crystal.
One therefore generally distinguishes between true
surface states and surface resonances. True surface states
are characterized by energy bands that are not degenerate

with bulk energy bands. These states are existing in the

forbidden gap only and are therefore localized at the surface.
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1.6 Tamm Surface States

Tamm States are named after the Russian physicist Igor Tamm respectively. Tamm
States are called the surface states that are calculated by using the tight-binding model. In the
tight binding approach, the electronic wavefunctions are usually expressed as linear
combination of atomic orbitals (LCAO)." In contrast to the nearly free electron model used to
describe the Shockley states, the Tamm states are suitable to describe also transition metals and

wide gap semiconductors.

The lattice potential is constructed from a superposition of N free atom potentials at the

position Ry, V(F)=> U(i—R,) .
1

The non-self-consistent Schrédinger equation for the bands is
A 1 2 >
Hy=E¥> [_EV +V(r)|P=EY¥

:[—%V2+U(F)+(V(F)—U(F))]lIJ:ElP 2.6.1)

The simplest trial function ansatz is a superposition of s-like Wannier orbitals:

qjk(F):Z al,k(p(?_ﬁl) (1.6.2)

and [—%V2+U(F)]II’:E0‘P (1.6.3)

When (1.6.2) is substituted into (1.6.1), a large number of Hamiltonian matrix elements are
generated between orbitals centred on different sites.

—a,ifI=I'#N,1

R)@(F-Ry)=_ . Yi}lfij'l:}:vlz 1

0, otherwise

[dx@" (F=R)(v(

=
~—
|
c
—
=~¢
|
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Hll H1N (9] C,

le H_zN. G |=E.|C,

Hy, v | Cn Cy
Eo_a' _y 0 0 Ic1l Ic1l
_y EO_a _y 0 C2 CZ
=0 -y E,~«a 0 o |TE
0 e ven _y Eo_a' CN CN

The result is a recursion relation for the expansion coefficients:

YC1—1+(E_E0+G)C1+YC1+1:O
(E—E,+a')c,+yc,=0
YCN—1+(E_E0+O' ')CNZO

ilkd —ilkd

If ¢, ,=Ae"™+Be , and substituting I' =1,1 £ 1, then the c,;x would be written:

i(I—1)k —i(l-1)k
Cl—l:Ael( ) d+B i(1-1)kd
ikd —ikd
c,=Ae"“+B"

i(1+1)kd —i(l+1)kd
C1+1:Ael(‘+ ) + Be (1)

Thus, the dispersion of the energy spectrum will be formed:
E=E,=E,—a—2ycos(kd) (1.6.4)

The solution will be completed if we found an expression for k. Using appropriately the

. . 1 . .
equations, the parameter k would be written: k:ﬂn and —¢""  with N different

Nd WETN €

solutions, —N/2<n<N/2
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As I mentioned above , the simplest trial function ansatz is a superposition of s-like Wannier

orbitals: ¥, (#)=>.a, ,®(F—R,) :‘I’k(?):zieikd'qb(F—l_i,)
o ~ VN

All these solutions have equal probability |a,,k|2:% on each atom of the chain. This is not

true for solutions on openended and semi-infinite chains, because all the atoms of the chain has

the same probability.

This deadlock lead us to the concept of the local densities of states (LDOS) ", The density of

states shows us how many states are in a given energy intervall at E.

p(E)dE=Y,6(E'~E,)dE,E<E'<E+dE
k

As I mentioned above, we are interested in the local density of states :
p(E,r)=Z |lpk(’”)‘25(E '_Ek):z ‘<lpk(r)|lpk(r)>‘z5(E '~ E,)
k k

or the density of states on atom -1 : p(E,I)=), f @, (r)'6(E'=E)d’r

k  cellof atoml

Using this way, we can define a surface state as a state with a large local density of states at the
surface atom. On long chains or in crystals this is possible, when the amplitude of the
wavefunction decays strongly towards the bulk. If this decay is exponential as for complex k,
we speak of proper surface states. On the other hand, in cases where the amplitude near
boundaries is much larger than on the bulk atoms. Although, these amplitudes persist

throughout the crystal, we speak of surface resonances.
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Specifically, if |a'—a|>|y| two of the roots are complex. For each, the corresponding
eigenfunction has appreciable amplitude only on a surface atom and the energy of these states
split off either above or below the bulk continuum ( E=E,=E,—a—2ycos(kd) ).

Tamm surface states occur only if there is a strong enough disturbance ( a'#a ) of the
potential right at the surface - exactly what one might expect at a semiconductor surface with

broken bonds. %
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2. Calculations and Results
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2.1 DFT calculations and surfaces

In this project I study surface states. The basic target was to simulate a structure which
would be infinite in the xy plane and finite along the z-axis. The periodicity will extend only on

the xy-plane.

The planes (100) and (111) are studied in this project.
We study both Au and Cu system.

To find the surface states, I followed three different methods that are based
on wavefunctions and the probabilities:

1) Localization Probability

Figwe 2.1 2) The Probability plot

slab model of 3) The Probability Density along z-axis

(100) plane, xz-

plane with 6
atom laywers

We consider unrelaxed (ideal) surfaces as well as relaxed ones, where first and last layer

of each slab are allowed to move in order to obtain the structure that minimizes the total energy.
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2.2 _Computational method

I studied two different planes, the (100) and the (111) plane. The plane (100) is
orthogonal, as opposed to the plane (111), which is rhombohedral. Both planes contain one

atom per cell.

Slab models were constructed using the relevant tool from Atomic Simulation
Enviroment (ASE). For all cases, we use a unit cell where a slab of metal lies in the middle of
the unit cell, separated by a thick vacuum region along z-axis (see Fig. 2.1.1). An essential part
of the code is the vacuum that there is between the cells. The bigger is the vacuum, the better

the results, because we avoid interactions between slabs.

To calculate the total energy, we used Grid-Projector Augmented Wave method (GPAW).
It is an open source python code based on PAW method ", This method uses pseudo-
wavefunctions according to the Born-Oppenheimer approximation, and make it possible to
reconstruct the wavefunction more smooth near to the core, where there are a lot of

correlations.

GPAW uses real-space grid for the calculations. This method has significant
computational cost, especially in term of CPU time and memory space that occupies. However,
it is very accurate and can be very easily parallelized and take advantage of modern multi-core

computers.

In gpaw, the parameters that we have to consider are number of grid points and the k-
points. The number of k-points is relative to the Brillouin zone. The number of the grid points

is inversally proportional to the grid width, which is defined:

h=—2
gpts+1

, where a is the length of the simulation box.
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The accuracy of the results is depending to the number of the grid points. A big number of grid
points leads the programm to a very time consuming calculations, so we have to find an
appropriate number of grid points in order to have accurate results and not so much time to

calculate.

In most materials, the grid width should be around 0,2 A, in order to have good energy

converge.

The k-points is also an important parameter. It is related with the Brillouin zone and the
reciprocal lattice of the system, and also with the periodicity of the wavefunction. According to
the Bloch's theorem, in a periodic system the energy eigenvalues can be described by a periodic

function u(r), as:  y(r)=e™ u(r) .

As was the case for grid points, the more k vectors are used, the more accurate the
calculations are. At the same time, the computation time increases with increasing number
of k-points. So we have to find again the smallest possible number of k-points that provides

the desired accuracy of the results.

For the calculations below, the number of k-points was kpts=(9,9,1) (total of 81

k , vectors ), which provide periodicity to the xy plane only.

Below are some Figures with slabs builded by the (100) and (111) planes. Figures 2.2.1
and 2.2.2 describe FCC structure. Figure 2.2.3 is a simulation of a 5-atomic layers slab of
Au(100), with 10 A vacuum either the sides of slab. Figure 2.2.4 is exactly the same simulation

as Figure 2.2.3, but for Au(111).
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Figure 2.1.3: Simulation cell picturing a (100) slab with 5 atomic layers

————————— S

Figure 2.1.4:Simulation cell picturing a (111) slab with 5 atomic layers

Figure 2.2.1: unit cell of the

FCC structure ((100) plane) Figure 2.2.2: unit cell repeated
along all axis((100) - plane)



2.3 Methods for locating surface states

This chapter includes the main results of this thesis. I follow specific methods to the
results. At below subchapters we present three methods that confirm the results and the case of

surface state.

* Localization Probability:

This method gives Probability per atom. A wavefunction that describes a Bloch state
can be projected on atomic orbital. Using Dirac formalism the probability density could be

described as:

|liunk F anlm ‘r r |Ylm<90’(roa)
:>Pa:Z |Ca,1,m| and Z P.=1
I,m a

a = number of atom

R(r) = sphericaly symmetric radial part of the wavefunction

The indices a correspond to the atoms that an slab contains. The indices 1,m are coming
from the spherical harmonics. We focused on t = 0. In case t = 0 is not included in the
calculation, we use T with the smallest magnitude. This way we examine the Bloch state with
the highest symmetry. The probability per atom is calculated finding the lowest k-point of the
system, and then we calculate the square of the absolute value of the product of pseudo

wavefunction with the spherical harmonics for every band and all the atoms per band. The sum
of the probabilities per band for the atoms must be equal to 1 ( Y P,=1 ). The next step was
to find the maximum value of the probability, which is calculated for all the atoms per band, for
the surface atoms of the slab. After a certain thickness, the probability for a surface state is

getting to converge. If we measure a probability of 80-90 percentage for the first atom (or the

first two atoms) of slab, it would give us strong evidence for the existence of a surface state.
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* Probability Plots

This method is a graphical way to view a surface state. It is also a validation of the
previous method. We save the numbers of bands that presented the highest probability for the
edge atoms of slabs. Using the Atomic Simulation Enviroment (ASE) we create files (in .cube
format) with the wavefunctions per atom for the specific states one for each. The next step is to
plot these files using VMD (Visual Molecular Dynamics) and see the figure with the shell. The

plot veryfies that these wavefunctions are indeed localized on edge atoms. "’

* Probability Density related with the distance on z-axis

This time we calculate the square of the pseudo wavefunction for the specific number of

band ( P(z)=|¥(z)|* ) . The x- and y- components are averaged out:
P(z)=] [ |y(x,y.2)] dxdy

We normalize P(z) so that f P(z)dz=1 within the simulation cell.
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2.3.1 Localization Probability

This method is based on the probability density of the electrons. In a surface state, the
electron is localized near the surfaces of the material. In other words, the electrons have to be

localized on the first or the last atom of the simulation cell.

For each electronic state, we calculate the propability that the electron is localized at
each atom. We then chose those bands that yield high probabilities at the edge atoms.
Some results of the plane (100) for various slab thickness.Each layer contains contains

one atom per cell as it is shown in the structures of the Figures 2.3.1.1 and 2.3.1.2.

* For the first atom

Layers Band no. | Energy (eV) | Efemi(eV) E - Epmi(eV) | Erobebiltven m
10 52 -6,7475 -4,8850 -1,8625 ~ 55 %
1 58 -6,7905 -4,9488 11,8417 ~73,5%
12 63 -6,7776 -4,9137 -1,8639 ~61%
13 70 -6,7798 -4,9259 11,8541 ~72 %
14 76 -6,7815 14,9261 11,8554 ~ 74 %
15 80 -6,7800 -4,9084 11,8716 ~ 74 %

Table 2.3.1.1: Electronic states localized at the first atom of each (100) slab. For each slab, we present the
energy at the localized state, its difference from the Fermi level and the probability that this electron will be
found at
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Observing the Table 2.3.1, it is
clear that after the fourteen atom-
layers, the probability of a surface
state is starting to converge. The
surface state for each case is being
observed five to eight bands above
(on average six bands). As the atoms
are increasing, the total number of the
bands is increasing correspondingly.
So, the Surface State is being
observed at “similar” number of band
as the number of atoms increases. A
proof of this, is that the difference
between the enegy of the band that a
surface state is being observed and
the Fermi level, is approximately
constant as the number of atoms
increase and the difference starts
from the second decimal point.
Observing the Figure 2.3.1.1, the first
atom has ~ 55% probability (the atom
with the number 0) and the second
has ~ 16%. So the first two atoms
(near to the surface)present ~ 71%
probability. The Figure 2.3.1.2 shows
that The first atom has ~ 74%
probability and the second has ~
21%. So the first two atoms (near to
the surface)present ~ 95%

probability. It is a clear surface state!!
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Focused on the 1st atom
Band =52 . E =-6.7475 eV . E_f = -4.8850 eV
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Figure 2.3.1.1: Probability of localization for a Au (100) slab with

10 layers.

Focused on the 1st atom

Band = 80 ,E =-6.7800 eV . E_f=-4.9084 eV
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Probabilities per atom
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Figure 2.3.1.2: Same as Fig 2.3.1.1 for Au (100)slab with 15 layers.



We repeat the process and locate bands that are localized at the last layer of our simulation cell.

Layers Band | Energy (eV) | Efemi(eV) E - Epmi(eV) | EBrobabilven m
10 53 -6,7467 -4,8850 -1,8617 ~ 55 %
1 57 -6,7994 -4,9488 -1,8506 ~ 73,5 %
12 64 -6,7774 -4,9137 11,8637 ~61%
13 69 -6,7800 -4,9259 -1,8538 ~ 72 %
14 75 -6,7822 -4,9261 11,8561 ~ 74 %
15 81 -6,7795 -4,9084 -1,8711 ~ 74 %

Table 2.3.1.2: Same as the Table 2.3.1.1 for the last atom of the Au (100) slab.

Continuing the process for the last
atom on the (100) plane, we got the
results quoting on the Table 2.3.2.
Observing the table, it is clear that
what was refered above is applied
and in this case: 'Surface State is
being observed at “similar” number
of band as the number of atoms
increases.’ The proof is exactly the
same and related with the difference
between the band energy and the
Fermi energy.

Comparing the two Tables,
someone could observe that the
surface states for either the first or
the last atom, occur at nearby (or

'meighboring') bands.

Focused on the last atom
Band = 81 . E =-6.7795 eV _E_f = -4.9084 eV
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[

atoms

9 10 11

1213 14

Figure 2.3.1.3: Same as Fig 2.3.1.2 for a band localized at the last atom.

At the Figure 2.3.1.3, the last layer has ~ 74% probability (the atom with the number 14). It is a clear surface state

at the other side of the slab.

Observing the Tables and the Figures of this subchapter, we can see that in small thickness slabs, the probability is

shared at the edge layers (Fig 2.3.1.1). Increasing the thickness of slabs, it is defined localization on the one edge

layer or the other of slab.
55



2.3.2 Probability Plots

is

In this subchapter is described the second way of the surface state appearance. This way
graphic. This way is a graphical verification of the previous process, which is refered before.

Figure 2.3.2.1 describes a 10-atomic layer slab with the peobability density almost

shared on edge atoms, the first atom has around 55% probability, the second has ~ 14% and the

last 20%. This situation occurs on band 52. Figure 2.3.2.2 describes the same situation as Fig.

2

.3.2.1 but for 15 layer slab and different number of band. In this figure there is a clear surface

state, because the first atom has ~ 86,4 % and the second ~ 21% probability density. The sum of

the is around 97,4%. Clear Surface state!

Figures 2.3.2.3 and 2.3.2.4 describes the same situation as the Fig. 2.3.2.2 with

periodicity on specific axis.
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Figure 2.3.2.1: Contour plot of |@|? for band 52 in Au(100)
slab with 10 layers. Compare to Fig. 2.3.1.1 .

Figure 2.3.2.2: Same as Fig 2.3.2.1 for band 80 in Au(100) with 15
layers.
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2.3.3 Probability Density along z-axis

In this subchapter we presented results from the third method. In the following table (Table

2.3.3.1) we present the positions of the Au slab with 10 atom — layer chain and Fig. 2.3.3.1

describes the probability density functional with the distance of the atoms on z — axis.

atom | X —axis | Y—axis | Z - axis
0 1.4425 1.4425 10.0000
1 0.0000 0.0000 12.0400
2 1.4425 1.4425 14.0800
3 0.0000 0.0000 16.1200
4 1.4425 1.4425 18.1600
5 0.0000 0.0000 20.2000
6 1.4425 1.4425 22.2400
7 0.0000 0.0000 24.2800
8 1.4425 1.4425 26.3200
9 0.0000 0.0000 28.3600

Table 2.3.3.1: Cartesian coordinates (in A) of
atoms in a ten-layer Au(100) slab.

Probability density
P(z) =f(z)
L | |

03 =
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0 | | | ] | |
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Figure 2.3.3.1: Probability density for Au(100) with 10— layers
slab and for band 52.

Figure 2.3.3.1 presents exactly the same situation as the Figures 2.3.1.1 and 2.3.2.1, this

time uses z-dependent probability density. Observing the Table 2.3.3.1, there is periodicity on

the xy plane, in contrast to the z-axis where the slab is bounded between z = 10 and z = 28,36

A.

Doing the same work for an Au chain with 15 atom — layer chain:
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atom | X —axis | Y—axis @ Z - axis Probability Density
0 0.0000 0.0000 10.0000 ; | i lzﬂ'z" —
1 1.4425 1.4425 12.0400
2 0.0000 0.0000 14.0800 I i
3 1.4425 1.4425 16.1200 03 &
4 0.0000 0.0000 18.1600 071 _
5 1.4425 1.4425 20.2000 B |
6 0.0000 0.0000 22.2400 g
7 1.4425 1.4425 242800 | 20T 7
8 0.0000 0.0000 26.3200 § 04 .
9 1.4425 1.4425 28.3600 25l _
10 0.0000 0.0000 30.4000
1 1.4425 1.4425 32.4400 wal” i
12 0.0000 0.0000 34.4800 01 -
13 1.4425 1.4425 36.5200 —
14 0.0000 0.0000 38.5600 #dowstrot

Table 2.3.3.2: Cartesian coordinates (in A)

of atoms in a 15-layer Au(100) slab.

Fig. 2.33.2 and 2.3.3.3
describe a clear surface state on the
first and the last atom respectively,
using the third method (Probability
Density as a function of z). Table
2.3.3.2 shows the atom-positions.
The first atom is at ten A of the z-
axis, where the surface state is
located. Similarly, last atom, is at

about 38,5 A of the slab.
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Figure 2.3.3.2: Probability density for Au(100) with 15— layers
slab and for band 80.
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Figure 2.3.3.3: Probability density for the last atom of Au(100) with
10- layers slab and for band 81.




2.3.4 Au(111)

In this subchapter we present exactly the same work, but for Au (111). Continuing the process,
surface states are confirmed by the same methods. Each layer contains one atom per cell as it is

shown in the structures in Figures 2.3.4.1.

e First atom

Layers | Band no. | Energy (eV) | Efermi (V) | E - Efemi (€V) %‘{ﬁ Similarly Bands
10 32 -9,0378 -4,9778 -4,0600 ~ 44 % 33,34,35
11 38 -9,0385 -5,0091 -4,0294 ~ 87 % 39
12 39 -9,0620 -4,9881 -4,0739 ~ 87 % 40
13 45 -9,0731 -5,0381 -4,0350 ~ 87 % 46
14 49 -9,0695 -5,0187 -4,0508 ~ 87 % 50
15 52 -9,0470 -5,0061 -4,0409 ~ 88 % 53

Table 2.3.4.1: Electronic States localized at the first atom of each (111) slab. For each slab, we present the energy at the
localized state, its difference from the Fermi Level and the probability that this electron will be found at the first atom

e [ast atom

Layers | Band no. | Energy (V) | Efermi (V) |E - Efomi (€V) %‘{ﬁ Similarly Bands
10 32 -9,0378 -4,9778 -4,0600 ~ 44 % 33,34,35
11 38 -9,0481 -5,0091 -4,0390 ~ 87 % 37
12 41 -9,0566 -4,9881 -4,0685 ~ 87 % 42
13 43 -9,0745 -5,0381 -4,0364 ~ 87 % 44
14 47 -9,0797 -5,0187 -4,0610 ~ 87 % 48
15 50 -9,0554 -5,0061 -4,0493 ~ 88 % 51

Table 2.3.4.2: Same as Table 2.3.4.1 for the last atom of the Au(111) slab..

Starting with the case of the 10 atom — layers slab, is proved that the three methods which were

showed above confirms the same result.
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Band no Energy (eV) Efermi (eV) E - Efermi (€V, Probability on Similarly Bands
surlace atom
First atom
32 -9,0378 -4,9778 -4,0600 ~ 44 % 33,34, 35
Last atom
32 -9,0378 -4,9778 -4,0600 ~ 44 % 33,34, 35

Table 2.3.4.3: Electronic States localized at the first and the last atom simultaneously with the same probability at

the same number of Band. In small thickness slabs, the probability is shared at the edge layers, as Au(100) occurs.

Probabilities per atom

FProbability
=
=

03

02

0.1

atoms

Figure 2.3.4.1: Probability of localization for a Au(111) slab with 10

layers.

° o

v

© @ ¢ ‘%
¢

Figure 2.3.4.2: Contour plot of |y|? for band 52 in Au(100) slab

with 10 layers. Compare to Fig. 2.3.4.1 .

Probability Density
P(z) = fiz)
1 | |
. . . 0.9
atom | X —axis | Y—axis | Z - axis o
0 0.0000 0.0000 10.0000 ‘
0TE
1 1.4425 0.8328 12.3556 -
B k-
2 0.0000 1.6657 14.7112 L
3 0.0000 0.0000 17.0668 £050
4 1.4425 0.8328 19.4224 £ o4r
5 0.0000 1.6657 21.7779 03—
6 0.0000 0.0000 24.1335 021
7 1.4425 0.8328 26.4891 0.1
8 0.0000 1.6657 28.8447 0 | | | |
0 5 10 15 20 25 30
9 0.0000 0.0000 31.2003 z (Angstrom)
] . i Figure 2.3.4.3: Probability density for Au (111)slab with 10 layers
Table 2.3.4.4: Cartesian coordinates (in A) of a ten-layer and for band 32

slab.
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Bands | Energy (eV) | E — E suy st. (eV)
31 -9,3127 -0,275
32 -9.0377 0
33 -9.0373 0,0004
34 -9.0370 0,0007
35 -9.0366 0,0011
36 -8.7815 -0,2562

Table 2.3.4.5: Near Band Energies of
the electronic state that localized at the
first and the last atom for a Au(111) slab
with 10 layers and the Energy difference

with the SS.

In this case, there is the same situation on the first and the last atom and it
is confirmed by the three ways. Although, the remarkable point in this
case is that the same probabilities appear at the bands 33, 34 and 35. It is
explained by the energy. These bands are almost degenerated because

differ from the second decimal place and later.

At the table below are the values of the Energy depending on the band

and the differentiation between the Energy of the SS and the Energy bands of the table. The little difference

between the Energy of the band that there is a surface state and the near bands is explained later. For now, the

explaination coming from the symmetries.

Continuing with the case of the 15 atom — layers chain.

Band Energy (eV) Efermi (€V) E - Efermi (eV) Probability on Similarly Bands
surface atom
First atom
52 -9,0470 -5,0061 -4,0409 ~ 88 % 53
Last atom
50 -9,0554 -5,0061 -4,0493 ~ 88 % 51
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Table 2.3.4.6: Electronic States localized at the first and the last atom with the same probability, at near bands.



Probabilities per atom

Surface State on the first atom
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Figure 2.3.4.4: Probability of localization for a Au(111) slab with 15
layers.
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Figure 2.3.4.6: Contour plot of |y|?for band 52 in Au(111) slab
with 15 layers. Compare to Fig. 2.3.4.4 .
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Figure 2.3.4.8: Probability density for Au (111) slab with 15 layers and
for band 52. Compare to Fig. 2.3.4.4 and 2.3.4.6 .
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Probabilities per atom

Surface State on the last atom
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Figure 2.3.4.5: Same as Fig. 2.3.4.4 for the last atom-layer slab.
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Figure 2.3.4.7: Contour plot of |y|? for band 50 in Au(100)
slab with 15 layers. Compare to Fig. 2.3.4.5 .
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Figure 2.3.4.9: Probability density for Au (111) slab with 15
layers and for band 52. Compare to Fig. 2.3.4.5 and 2.3.4.7 .



Atom | X —axis | Y—-axis | Z - axis
0 1.4425 0.8328 10.0000
1 0.0000 1.6657 12.3556
2 0.0000 0.0000 14.7112
3 1.4425 0.8328 17.0668
4 0.0000 1.6657 19.4224
5 0.0000 0.0000 21.7779
6 1.4425 0.8328 24.1335
7 0.0000 1.6657 26.4891
8 0.0000 0.0000 28.8447
9 1.4425 0.8328 31.2003
10 0.0000 1.6657 33.5559
11 0.0000 0.0000 35.9115
12 1.4425 0.8328 38.2671
13 0.0000 1.6657 40.6227
14 0.0000 0.0000 42.9782

Table 2.3.4.7: Cartesian coordinates (in A) of atoms in
a ten-layer Au(111) slab.

First atom

Last atom

Bands | Energy (eV) | E — E sug.s.(eV) | E — E suf s. (eV)
50 -9.0554 - 0
51 -9.0551 - 0,0003
52 -9.0470 0
53 -9.0466 0,0004

Table 2.3.4.8: Near Band Energies of the electronic state
that localized at the first and the last atom for a Au(111) slab

with 10 layers and the Energy difference with the SS.

Observing the Figures below and the Table 2.3.4.5,
there is a clear Surface State on the first and the last
atom correspondingly. It is confirmed by the three
ways.

The value of the probability is about 88%.

It is remarkable that the same probabilities for
a surface state appearance present at neighboring
bands for the first and the last atom respectively. As I
refered below for the case of the 10 atom-laywer
slab,

differ from the second decimal place and later. Exactly

these bands are almost degenerated because

the same occurs here.

Table 2.3.4.8 contains values of the Energy
bands that observe the surface states and the
differentiation between the Energy of the Surface
State and the Energy bands of the table. The dashes
are because the interest is to compare the Energy of
the surface state with the energy of the band that

present the same probability. So, it appears the

same situation as the case of the 10 atom-laywer slab. In this case, the same probability appears

only at one band, which is neighbor. The reason is the that the bands are almost degenerated, as I

refered it previously. Although all the bands, that is presented a surface state on the first or the

last atom, are neighboring. The explaination of this is the symmetries. There is a symmetry on z-

axis and another one on xy-plane, on where there is periodicity. If I fold the chain, the one edge

come to the other and the new chain is similar to the previous one. If I rotate the chain relative to

z-axis, the chain never changes. These are the two explaination for the symmetries respectively.
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2.4 Relaxed Surfaces

In this subchapter we repeat the calculation after relaxation of the atomic coordinates. Atom
near the edges of each slab are allowed to move, so that the total energy is minimized. Using
this process, surface states could be distinguished even to slabs with a few atoms. Below are

data in tables, comparing the results before and after the minimization.

2.4.1 Relaxed Au(100):

Surface State on the 1st atom

. _ . Probability on
Layers Band no. Energy (eV) Egmi(eV) E - Epmi(eV) =2 face atom
52 -6,7475 -4,8850 -1,8625 ~55%
10 55 -6,7457 -4,9442 -1,8015 ~ 85,5 %
58 -6,7905 -4,9488 -1,8417 ~73,5%
1 59 -6,7898 -5,0386 -1,7512 ~ 86,6 %
63 -6,7776 -4,9137 -1,8639 ~61 %
12 63 -6,7750 -4,9788 -1,7962 ~ 85,2 %
70 -6,7798 -4,9259 -1,8541 ~72%
13 69 -6,7808 -5,0054 -1,7754 ~ 86,2 %
76 -6,7815 -4,9261 -1,8554 ~74 %
14 76 -6,7811 -4,9965 -1,7846 ~84,1%
80 -6,7800 -4,9084 -1,8716 ~74 %
15 81 -6,7730 -4,9966 -1,7764 ~ 86,4 %

Table 2.4.1.1: Surface State for Au (100) slabs. For every atom-laywer slab, the first line gives the surface state
before the relaxation and the second after relaxation of atomic coordinates.
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atom | X —axis | Y—axis | Z - axis
0 0.0000 0.0000 9,8390
1 1.4425 1.4425 12.0400
2 0.0000 0.0000 14.0800
3 1.4425 1.4425 16.1200
4 0.0000 0.0000 18.1600
5 1.4425 1.4425 20.2000
6 0.0000 0.0000 22.2400
7 1.4425 1.4425 24.2800
8 0.0000 0.0000 26.3200
9 1.4425 1.4425 28.3600
10 0.0000 0.0000 30.4000
1 1.4425 1.4425 32.4400
12 0.0000 0.0000 34.4800
13 1.4425 1.4425 36.5200
14 0.0000 0.0000 38.7210

Table 2.4.1.2: Atom positions of the 15 atom — layer slabs,

builded by the Au (100) dfter relaxation.

The Table 2.4.1.2 has positions of 15 atom-layers on
the (100) plane after the minimization. Comparing
with the Table 2.3.3.2 is clear that the only difference
between the two Tables is the z-component of the
surface atoms. The minimization is applied on the
edge atoms. So, these atoms are moving to minimize
the total energy of the system. The distance of the
edge atoms to the rest of chain is the same and is 2.20
A on z-axis. The atoms of the relaxed slab has the

same distance between them, 2.04 A.

Observing the Table 2.4.1.1 it is clear that the probability of a surface state converges

from the 10 atom-layer chain. And a matter of fact is that after the relaxation the probability is

getting higher than before. Furthermore, surface state is presented at lower bands, so the SS

Energy minimizes. A characteristic case is the chain of 12 atoms, where the SS presents on the

same band as before the minimization, although the Energy of the band that appear the SS is

minimized. Also, the difference between the SS Energy and the Energy Fermi is about 1,78 eV.

The Table 2.4.1.1 refers to the first atom of each slab. Exactly the same are applied to the last

atom SS. The corresponding table is in the appendix.
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2.4.2 Relaxed Au(111)

Surface State on the 1st atom:

Layers Band Energy (eV)  Efemi(eV) E - Efmi (V) Probability on Similarly Bands
surlace atom
32 -9,0378 -4,9778 -4,0600 ~ 44 % 33,34,35
10 32 -8,9046 -5,0505 -3,8541 ~945% 33
38 -9,0385 -5,0091 -4,0294 ~87 % 39
11 36 -8,9280 -5,1017 -3,8262 ~933% 37
39 29,0620 -4,9881 -4,0739 ~87 % 40
12 40 -8,9498 -5,1027 -3,8471 ~ 94,6 % 41
45 -9,0731 -5,0381 -4,0350 ~ 87 % 46
13 43 -8,8886 -5,0691 -3,8195 ~ 95 % 44
49 -9,0695 -5,0187 -4,0508 ~87 % 50
14 47 -8,9397 -5,1029 -3,8368 ~94.2 % -
52 -9,0470 -5,0061 -4,0409 ~ 88 % 53
15 51 -8,9290 -5,1151 -3,8139 ~ 95 % 52

Table 2.4.2.1: Surface State for Au (111) slabs. For every atom-laywer slab, the first line gives the surface state before the
relaxation and the second dfter relaxation of atomic coordinates.

atom | X —axis | Y—axis | Z - axis
0 0.0000 0.0000 9,8090
9 0.0000 0.0000 31.3920

In this plane was followed exactly the same process
as the (100). The same comments apply as before.

The distance of the edge atoms to the rest of chain is

Table 2.4.2.2: Cartesian coordinates (in A) of edge atom the same and is 2.55 A on z-axis.
for a relaxed 15-layer slab.

The atoms of the rest chain has the same distance between them, 2.356 A. This is the case, in which the same

situation appears at a near band. It was explained before, at 2.3.4 subchapter. The explanation is coming from

the two symmetries, the fold and rotate of the chain relative to the z-axis. The rotation gives a symmetry on

the xy-plane. So, the two components of the plane gives the degeneracy and this gives the same results. The

corresponding table for the last atom is in the appendix.
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2.5 Workfunction

The next step of the project is to calculate the workfunction for the two surfaces I
considered. The workfunction, can be obtained from the potential energy curve from either

sides of the slab.

In the theory, the slabs are semi-infinite, so the potential energy could be measured from
the one side. Although, in my case, in which the chain is finite, the potential energy have to be

measured in either sides.

The two planes might have different workfunctions. This is caused to the structure and

the distance between the atoms respectively.

2.5.1 Potential Energy

In this subchapter we present results for an electron as a function of its z-coordinate. Below are
Tables with the results, in which V ¢ is the workfunction from the left side of the slab and V g
is the workfunction from the right side.

For the Plane 100:

* Before minimization * After minimization:
Layers V iefe V right E rermi Layers V ieft V right E rermi

10 4,856 4,858 -4,885 10 4,878 4,826 -4,944

11 4,839 4,840 -4,949 11 5,059 5,086 -5,035

12 4,798 4,798 -4,914 12 5,008 5,007 -4,979

13 4,801 4,802 -4,926 13 4,908 5,056 -5,005

14 4,801 4,801 -4,926 14 4,973 4,958 -4,997

15 4,791 4,794 -4,908 15 4,919 4,966 -4,997
Table2.5.1.1: Potential Energy from the two sides of the Table2.5.1.2: Same as Table 2.5.1.1 for relaxed Au (100)
slabs and the Fermi level before relaxed Au (100) slabs. slabs.
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Figure 2.5.1.1: Total electronic potential for 13-layer Au (100) slab before minimization.

In the Figure 2.5.1.1, it is
clear that at the positions that
the atoms are located, there is
a minimum peak. Observing
the total Figure, the potential
energy looks like a cosine
the
The

function,

Schockley

similarly to
model.
constant value of the potential
energy from the left side is
about 4,801 eV and at the
right 4,802 eV. These
energies are calculated from

the differnce between the

In the Figure 2.5.1.2 occurs
exactly the same situation as
the Figure 2.5.1.1 . The only
difference is the number of
the atoms. So as the number
of the atoms grows, the
length of the chain is getting
bigger. The potential energy
from the left side is about
4,791 eV and at the right
4,794 eV. The number of the
peaks corresponds to the

number of the atoms.
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Figure 2.5.1.2: Same as Fig. 2.51.1 for 15-layer Au (100) slab.



For the Plane (111):

* Before minimization

After minimization:

Atoms Vleft \'% right E rermi Atoms Vleft Vright E rermi
10 4,894 4,894 -4,978 10 5,032 5,032 -5,050
11 4,889 4,891 -5,009 11 5,109 5,124 -5,102
12 4,949 4,937 -4,988 12 5,118 5,126 -5,103
13 5,048 5,058 -5,038 13 5,049 5,054 -5,069
14 5,003 5,042 -5,019 14 5,187 5,037 -5,103
15 4,945 5,007 -5,006 15 5,092 5,092 -5,115
Table 2.5.1.3: Same as Table 2.5.1.1 before relaxed Au Table2.5.1.4: Same as Table 2.5.1.1 for relaxed Au (111)
(111) slabs. slabs..
g The Figure 2.5.1.3 present the
5T
25— 5 workfunction for the (111) plane at the
o—— .
s \ / case of 15 atoms chain after the use of
R T
SE — the minimization. The location of every
= sk o
® ; peak represents the atoms and the
B A0 7
& 25k - height of the peaks shows the potential
= - . .
g energy of the atoms. The first and the
8 175+ <]
20 last atom feature tall peaks becuase of
—— Ef=-5115eV
war — ooy the  minimization. = Using  the
251 -
2750 | minimization for the first and the last
| \ | | | | | | | | | | :
0TG5 10 15 20 25 30 35 40 45 50 5 atom, these atoms are moving to
z (Angstrom)

Figure 2.5.1.3: Same as Fig. 2.5.1.2 for 15 layer relaxed Au (111) slab.

minimize the total energy of the

system.

So, these atoms are further away than the others and minimizing the potential energy because

of the distance. The potential energy from the left side is about 5,092 eV and at the right 5,092

eV.

Comparing the Figures 2.5.1.2 and 2.5.1.3, it is clear that there is a difference for the length of

the peaks for the plane (100) and the (111). The reason is the structure of the two planes. The

atoms of the (111) plane are closer than the (100) plane, so the potential energy increases.
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The next step of the project concerns the compare between the computational measurement of
the workfunction and the workfunction which coming from the fitted values of the density

probability.

2.5.2 COMPARISON TO THE SCHOCKLEY MODEL

Tables 2.5.1.1 — 2.5.1.4 contains the workfunction at the left and the right side of the
chain. The values of the this table are rounded at the third decimal point. At the subchapter
2.3.3 is presented the third way of the proof of the surface states. There are some diagrams of
the probability density. Using the fitted values of the diagrams, it will be found the function
that describes the graph.

William Schockley developed a theory for semiconductors. However, as we can see at
the below subchapters, this theory is allowed to be used aslo at metals and the proof is coming
from the density probability. The Schockley Surface States theory predicts for the density
probability that:

Re(v)

N [wmorerorany <
_\//\\\/ 5 a and |¥'(z>0)f~e '*

! |‘P'i(zS0)|2~e2quin2(§zi6)

Figure 1.5.5 : Real part of one

electron wavefunction for a surface B2 13
state localized at the surface where ‘(VO_Ek)|:E , E= 5
m
2 2

and E=E = 251 at the other side of z, and it is valid because of the continuity of functions.

hZ
So, Vy=lE,~EJ=1{(K'~q)

The Figure 1.5.5 describes the real part of one electron wavefunction for a surface state
localized at the surface. Here, we rather use the probability density [{| >. The computational
method didn' t locate the first atom at the z=10, because the code leaves spacing between the

slabs.
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So, the first atom is located around the point of z (=10 (10 A on z-axis). For example, for Au

(100) the first atom is located at z, = 9,839. The equation for || *will be:

2 2q(z— 2 T
1@ (2<0)f~e*"" “ cos* (L (z—2z,)+6)
2 —2k(z—
o and [P (z>0)f~e 2%
2 2 — .2(TT
¥ (z<0)P~e™* sin? (L (z—2z,)+6)
(0§
P(z) = f(Z) Probability Density
Fitted Values P(z) = f(z)
1 T T T T T T T T T T T T 1 T I I
09 — 09+ 2|
08— 7 08— I
07+ b ] 0.7+ _
= | 2
706 1 406~ —
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! z
2 04l 1 204l §
£ 04 I 1 E 0.4
03 - 03— =
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Figure 2.5.2.1: Fitted values on the first atom of the density probability of ~Figure 2.5.2.2: Probability Density of the 15 layers at the Au (100)
the Au (100) plane at the case of the 15 layers using minimization. plane with minimization.

For the fitted values, it was used the below function at the left side of the chain:

7(1*20)
y=Aye ™ ~sin2(l(z—zo)+A3),forz >7,
2
72,

N>

y=A,e A forz<z,
At the Figure 2.5.2.1, the triangles up describes the Probability Density, the red dashed line
describes the function for z>z, and the green for z<z,
From the values of A ; and A ,, it will be determined the values of q and k
correspondingly. The parameters Ao, A1, A2, As A4
Ay : Amplitude of the descending oscillation
A and A ,: Decay time
A : Distance between the atoms

1 Ajs: Phase difference



In the case that describes the Figure 2.5.2.1, it is:

(2-9,810)
y=0,861-e " -sinz(ﬁ(z—9,810)+1,431),forzZzO
’(2—9,603)
y=0,861-¢ *** | forz<z,

1
2g=—— _ 2
Consequently, 1’111 = Z:(l”‘z‘gé and V0=\Ek—Eq|=2h—\(k2—q2)|:4,920918ev
2k= =5 m
0,409

The computational value of the workfunction holding 6 decimal points is 4,919408 eV. The

Table 2.5.1.2 contains values of workfunction holding 3 decimal points.

comp v fitted values
0 VO

|4,919408 —4,920918|

The percentage difference is 100 %= -100% ~ 0,0003 %
P & e ° 4,919408 ° °
P(z) =1(z)
| : e . , , At the other side of the chain, the Figure
0sl- 1 2.5.2.3 describes a surface state using the way
i 3 |
08 - of the density probability. In this case is used:
07+ ) _
5 06l [ - (2-2) T
g T 1 y=Age " sin’(—(z—z,)+A,),forz<z,
E L 1 7(2720)
£ A ] y=A,e “ forz>z,
03 -
02l { | The z, is about 40 A. Specifically, the last
o1 q | | atom is located at z, = 38,721.
A RO TSR R T ——— Following the same process, the functions that
0 5 10 15 20 25 30 35 40 45 50
z (Angstrom)

describe the Figure are:
Figure 2.5.2.3: Fitted values on the last atom of the density probability of the Au 8

(100) at the case of the 15 layers using the minimization.
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(z—38,501)

y=0,8-e "¢ .sin’(

T
2357 (z—38,501)+1,541), for z <z,

_(2—38,202)

y=0,520-e *** forz>z,

1
2=t
Consequently, 1’111622:(1)"21‘512 and V,=|E, E\— |k —q°)|=5,225702eV
2k= v
0,399

The computational value of the workfunction holding 6 decimal points is 4,965701 eV.

comp fitted values|
0 - V

1100 05— [4:965701—5,225702|

-100%~0,052 %
vy 4,965701

The percentage difference is

The parameter A , is very close to the distance that the code locate the atoms. It is a
parameter that corresponds to the distance of the atoms. The distance between the the atoms on
the (100) plane is 2,04 A. The first atom is located at the point z=10, although it is moving at
2=9,839 because of the minimization. The next atoms are at the points z=12,04 , z=14,08 . . .
The last atom is at z=38,721. Without the minimization, the last atom would be at z=38,56. The
last atom is 2,201 A away to the semifinal. In the two cases, first and last atom gets away from
the rest of the chain to minimize the Energy. The first atom is 2,201 A away from the second,

the distance between the rest except the last are 2,04 A.
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The (111) Plane:

The process for the (111) plane is exactly the same as the (100). The difference between

the two planes is the structure, in other words the atom-coordinates are changed to create the

slab.

P(z) = 1(z)

Fitted values

09

= = = =
¥, ] [=3 =] ==
I T T T

Probability Density
=
=
I

| FiA

=
[
|

=
i
|

01

Figure 2.5.2.4: Fitted values on the first atom of the density probability of Au (111) at the
The triangles up describes the Probability

Density, the red dashed line describes the function for ~z=Z, and the green for

case of the 15 layers using minimization.

z<z,

T .

z (Angstrom)

The functions that describe the Figure are:

y=0,923-¢  °™ .sin?(
2,246

1

Therefore, 1
2k=——
0,381
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(2—9,805)

0,786 _, |q=0,636

k=1,311

A

b
(2—9,775)

y=0,925-¢ *®' for z<z,

The distance between the the
atoms on the (111) plane is 2,356
A. The first atom is located at the
point z=10, although it is moving
at z=9,792 because of the
minimization. The next atoms are
at the points 2z=12,356 ,
z=14,711 . . . The last atom is at
2=42,986. Without the
minimization, the last atom would
be at z=43,186. So, the distance
between the edge atoms and the
rest atoms of the chain is 2,564 A,
and the distance between the

atoms of the rest chain is 2,356 A.

(z—9,805)+1,351),forz>z,

and V,=|E,—E_=5,007697 eV



The computational value of the workfunction holding 6 decimal points is 5,091697 eV.

comp __ v rfitted values
0 \%4

5,091697—5,007697|
100 %="= >
yeom ? 5,091697

0

The percentage difference is -100%~1,65%

P(z) = (z)

Fitted values
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Figure 2.5.2.5: Fitted values on the last atom of the Density Probability of Au (111) at the case of the 15
layers using minimization.

(z—43,167)

y=0,910-¢ %% -sin2(2;15(z—43,167)+1,794),forz$z0

(z—43,267)

y=0,901-e 7 forz>z,

1
2q=——
Consequently, 0’7146=> Z:(l)’gﬁ and V,=|E, E\— \k —q°)|=4,967895 eV
2k=—— -
0,378
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The computational value of the workfunction holding 6 decimal points is 5,091630 eV.

comp fitted values|
0 B VO

The percentage difference is -100 %~ 2,43%

comp
0

P(z) = 1(z)

Fitted values
l T T T T | T T T T

09— —

s = o
= T
| | I
| | I

Probability Density
=
(¥,
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01 4 o —]
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Figure 2.5.2.6: Fitted values on the last atom of the density probability of the Au(111) for a 10- layer before
relaxation.

Figure 2.5.2.6 describes the case of the 10 atom-layer slab. The characteristic in this
Figure is that there is the same probability density on either the sides of the slab. In this case,
wasn' t used the minimization, so the first and the last atom didn' t move away from the rest
chain. The first atom is located on z = 10 (at z-axis) and the last on z = 31,2003. So, z ; = 10

and z, = 31,2.

From the left side of the slab:
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_(z—10)
y=0,421-e " .sin’(

7T
2’356(z—lO)+1,388),forzSzl

(z—10)

y=0,409-e *** forz>z,

1
2= )
Consequently, 1’(;692 Z:?;Sg and VO:\Ek—Eq\:;—m|(k2—q2)\:4,894802eV
2k= o
0,408

The computational value of the workfunction holding 6 decimal points is 4,893904 eV.

comp fitted values|
0 - VO

The percentage difference is -100 %~0,02% .

comp
VO

From the right side of the slab:

(z—31,2)

y=0,409-¢ "% .sin*(—
2,356

)

(z—31,2)+1,671),forz>z,
_(z—31,2)

y=0409-e " forz<z,

1
2q=—_ )
Consequently, 1’262:» Z:‘l”‘z‘g and VO:\Ek—Eq\:Zh—l(kZ—qZ)\:4,934549eV
ok=—r (k=L m
0,406

The computational value of the workfunction holding 6 decimal points is 4,893903 eV.

comp __ v sfitted values
0 VO

The percentage difference is -100 %~0,83% .

comp
0
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2.6 Cu slabs

In this chapter of the project, we present the same work on the same planes at the
Cooper. The structure of the cooper is also FCC with lattice constant at 3,597 A. The atomic
number is 29, so the electron configuration is [Ar] 3d '° 4s', where Ar is Argon. Copper is at
the same column of the Periodic Table, so the number of the valence electrons is the same. The
computational solution of the problem, using GPAW, uses 11 valence electrons. Although, there

is 1 valence electron. The reason is that the d-level is completed and there is only one electron

in 4s. So, this electron is used as valence.

All the calculations have done using the minimization.

2.6.1 Cu(100)

Beginning with Cu(100), the Tables 2.6.1.1 and 2.6.1.2 describes the features of the first

and the last atom respectively.

e First atom

Layers | Band no. | Energy (eV) | Efemi(€V) | E - Efrmi (€V) %L ‘m’
5 27 -5,8189 -4,3430 11,4753 ~ 46,7 %
10 56 5,7838 -4,3219 11,4619 ~90,3 %
1 61 5,8303 44314 11,3989 ~92,7 %
12 68 5,8064 -4,3604 11,4460 ~91,8%
13 74 5,7860 -4,3615 11,4245 ~91,6 %
14 78 -5,8130 -4,3648 11,4482 ~90,2 %
15 84 -5,8109 -4,3832 11,4282 ~92,4%

Table 2.6.1.1: Electronic States localized at the first atom of each Cu(100) slab. For each slab, we present the energy at
the localized state, its difference from the Fermi Level and the probability that this electron will be found at the first

atom.
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e [ast atom

Layers Band no. | Energy (eV) | Egmi(eV) E - Efemi(€V) | =eieiiivon

5 27 - 5,8189 -4,3430 -1,4753 ~ 46,7 %

10 55 -5,7912 -4,3219 - 1,4693 ~ 90,3 %

11 62 - 5,8292 -4,4314 - 1,3978 ~92,7%

12 67 -5,8114 -4,3604 - 1,4510 ~91,7 %

13 73 - 5,7996 -4,3615 - 1,4381 ~ 91,6 %

14 79 - 5,8079 - 4,3648 - 1,4310 ~90,2 %

15 85 - 5,8102 -4,3832 - 1,4270 ~92,4%

Table 2.6.1.2: Same as Table 2.6.1.1 for the last atom of Cu(100) slab.
Observing the Tables 2.6.1.1 and Probabilites per atom
2.6.1.2, it is clear that at the ten atom- l
layers, the probability of a surface state |
is starting to converge. The surface state i
for each case is being observed five to 0 i
eight bands above (on average six E : -
bands). As layers increases, the total . 7
number of the bands increases |
correspondingly. So, the SS is being |
observed at “similar” number of band as Do L L |
4 5 6 7 8 9 10 11 12 13 14

the number of atoms increases.

A proof of this, is that the
difference between the enegy of the
band that a surface state is being
observed and the Fermi level, is
approximately constant as the number
of atoms increase and the difference

starts from the second decimal point.
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atoms

Figure 2.6.1.1: Probability of localization for a Cu(100) slab with
15 layers.

Figure 2.6.1.2: Contour plot of |y|? for band 85 in Cu(100)
slab with 15 layers. Compare to Fig. 2.6.1.1 .



Comparing the two tables, someone could observe that the surface states for either the

first or the last layer, occur at nearby (or 'neighboring') bands.

It is the same situation as the Au nanostructures.

atom | X —axis | Y—axis | Z - axis
0 0,0000 0,0000 9,9490
1 1,2763 1,2763 11,8050
2 0,0000 0,0000 13,6100
3 1,2763 1,2763 15,4150
4 0,0000 0,0000 17,2200
5 1,2763 1,2763 19,0250
6 0,0000 0,0000 20,8300
7 1,2763 1,2763 22,6350
8 0,0000 0,0000 24,4400
9 1,2763 1,2763 26,2450
10 0,0000 0,0000 28,102

Table 2.6.1.3: Cartesian coordinates (in A) of atoms in

an 11-layer Cu(100) slab.

Probability Density on z-axis

Piz)=f(z)
1.2 T | T | T T

08— -

=

=
I
|
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O
b kB
I T I I
| | | |

=

2
I
|

=
=
T
|

| | | | | L
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z (Angstrom)

Figure 2.6.1.3: Probability density for Cu(100) slab with 11— layers and

for band 62.

=

=

Figure 2.6.1.3 presents exactly the same situation as the Figures 2.6.1.1 and 2.6.1.2, but

using another way. Observing the Table 2.6.1.3, there is periodicity on the xy plane, in contrast

of the z-axis, where the slab is developing.

Firstly, the edge atoms are at the points z=10.00 and z=28.05 respectively. After, five

repetition, the system converges and these atoms are situated at positions z=9.9490 and

2=28.1020 correspondingly. The relaxationation is applied on the edge atoms. These atoms are

moving to minimize the total energy of the system. The distance of the edge atoms to the rest of

chain is the same and is 1.856 A on z-axis. The atoms of the rest chain has the same distance

between them, 1.805 A.

Subsequently, the workfunction is the next step.
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E permi(ev) | The Table 2.6.1.4 contains the workfunction

from two sides of slab. Our chain is finite.

Schockley's theory study models for semi-

infinite chains, consequently there is potential

only at the the one side, in contrast with our

slabs where there is at either the sides.

Atoms | Vi (eV) | Viign(eV)
5 4,324 4,324 - 4,3430
10 4,314 4312 -4,3219
1 4,409 4,409 - 4,4314
12 4,348 4,344 - 4,3604
13 4,338 4,338 -4,3615
14 4,352 4,351 - 4,3648
15 4,360 4,359 - 4,3832

Table 2.6.1.4: Potential Energy from the two sides of the
slabs and the Fermi level for relaxed Cu (100) slabs.

In Figure 2.6.1.4, it is clear that
at the positions that the atoms
are located, there is a minimum
peak. The height of the curve of
the edge atoms is smaller than
the others. It occurs because of
the relaxation and the distance
of the edge atoms and the rest of
the slab. As the distance is
getting bigger and biggrer, the
potential energy getting smaller.
Observing the total Figure, the
potential energy looks like a
cosine function, similarly to the

Schockley model.

Workfunction

—
=
I

Potential Energy (eV)
o
I

25—

— E_f=-4383eV
V_1=4360eV
— V¥ 2=4350eV

5 10 15 20 25 30 35 40 45
z (Angstrom)

Figure 2.6.1.4: Total electronic potential for relaxed 15-layer Cu (100) slab.

The potential energy from the left side is about 4,360 eV and at the right 4,359 eV. These

energies are calculated from the differnce between the Fermi level and the point that begins the

potential energy.
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P(z) = 1(z)

Fitted values
T T | T | T | T

1.2 — —

=
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I
I

Probability Density
=
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[
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] L | L ] Il | 1 | 1 L | Bl | I L 1
0 5 10 15 20 25 30 35 40 45 50
Z (Angstrom)
Figure 2.6.1.5: Fitted values on the last atom of the Density Probability of Cu(100) at the case of a 15-layers slab
dfter relaxation.

From the theory is known that:

1@ (z<0)P~e*" “ cos?(Z (z—2,)+6)

1

and |®'(z>0)f~e %

QRIS 9l

1@ (z<0)]*~e* " sin*(Z(z—z,)+ )

atom | X — axis | Y- axis | Z - axis The same comments apply as before. The distance
0 0.0000 0.0000 9,955 of the edge atoms to the rest of slab is the same
15 0.0000 0.0000 35,314 and is 1,85 A on z-axis. The atoms of the rest slab

Table 2.6.1.5: Cartesian coordinates (in A) of edge atom

for a relaxed 15-layer slab.

The last is at the position z,= 35,314.
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are 1,81 A away.



In the case that describes the Figure , it is:

(z—35,377)

y=1,125-¢ °*° .sin*(

Tt
2220 (z—35,377)+1,671), for z<z,

_(z-354)
y=1,122-e "% forz>z,

1
2q=—— )
Consequently, 0’215:» Z:%S’i‘l‘ and V0:|Ek—Eq|:;—m\(kz—q2)|:4,443618ev
2k=—r K=L
0,403

The computational value of the workfunction holding 6 decimal points is 4,359434 eV. The

Table 2.6.1.4 contains values of workfunction holding 3 decimal points.

comp v fitted values
0 VO

|4,359434 —4,443618|
100 %="> :
yrcomp ? 4,359434

0

The percentage difference is 100%~1,9%

For the Figures 2.6.1.1, 2.6.1.2 and 2.6.1.5, the corresponding Figures for the atoms of the

opposite edge are at the appendix.

2.6.2 Cu(111)

Continuing with the plane (111), the Tables describes the features of the first and the last atom

respectively.

e First atom

Layers Band no. Energy (eV) | Efmi(eV) | E - Efermi (€V) | Brebabilivon | Simjlgr Bands
5 14 - 7,2891 - 4,6639 - 2,6252 ~73,1% 15
10 35 - 7,1466 - 4,5510 - 2,5956 ~ 88,9 % 36
11 37 -7,1971 - 4,5781 - 2,6190 ~87,1% 38
12 41 -7,1841 - 4,5523 - 2,6318 ~87,2% 42
13 45 - 7,2097 - 4,5650 - 2,6447 ~ 82,2 % 47

Table 2.6.2.1: Electronic States localized at the first atom of each Cu(111) slab. For each slab, we present the energy at the
localized state, its difference from the Fermi Level and the probability that this electron will be found at the first atom.

83



e [ast atom

Layers | Band no. Energy (eV) | Eferni(€V) E - Epenni (€V) | Erobabiivon | Simjlgr Bands
5 16 - 7,2824 - 4,6639 - 2,6185 ~73,1% 17
10 33 -7,1576 - 4,5510 - 2,6066 ~ 88,8 % 34
11 39 - 7,1895 - 4,5781 -2,6114 ~87,1% 40
12 43 - 7,1820 - 4,5523 - 2,6297 ~87,1% 44
13 44 - 7,2099 - 4,5650 - 2,6449 ~ 82,3 % 46

Table 2.6.2.2:Same as Table 2.6.2.1 for the last atom of Cu(111) slab.

Probabilities per atom

Observing the Tables 2.6.2.1 L |

and 2.6.2.2 , it is easy to realize 091 .
that the explanation is exactly 08 .
the same as before. At the 10- 07 -
layer slab, the probability of a os .
surface state is starting to % 0.5 -
converge. The surface state for = 04 _

each case is being observed two 03
to six bands above (on average 0.2

5 bands). As the layers 0.1

increase, the total number of the 0 I | | | \

4 5 6 7 8 9

. atoms
bands Increase Figure 2.6.2.1: Probability of localization for a Cu(111) slab with 10 layers.
correspondingly. So, the SS is
being observed at “similar”
number of band as the number
® -
of atoms increases. @ ® ® ®* L" i ‘
> ® ®

Figure 2.6.2.2: Contour plot of |y|?for band 85 in Cu(111) slab with 11 layers.
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A proof of this, is that the difference between the enegy of the band that a SS is being observed

and the Fermi level, is approximately constant as the number of layers increases and the

difference starts from the second decimal point.

This is the case, in which the same situation appears at near band. Comparing again the

two Tables, someone could observe that the surface states for either the first or the last atom,

occur at nearby (or 'meighboring') bands. It was explained before, at subchapter 2.3.4 and 2.4.2.

The explanation is coming from the two symmetries, the fold and rotate of the chain relative to the

z-axis. The rotation gives a symmetry on the xy-plane. So, the two components of the plane gives

the degeneracy and this gives the same results.

atom | X —axis | Y—axis | Z - axis
0 1,2763 0,7369 9,9605
1 0,0000 1,4738 12,0842
2 0,0000 0,0000 14,1685
3 1,2763 0,7369 16,2527
4 0,0000 1,4738 18,3369
5 0,0000 0,0000 20,4212
6 1,2763 0,7369 22,5054
7 0,0000 1,4738 24,5896
8 0,0000 0,0000 26,6739
9 1,2763 0,7369 28,7581
10 0,0000 1,4738 30,8423
1 0,0000 0,0000 32,9658

Probability Density

=
bt

=
o

=
n

Probability Density
P(z)=f(z)

[} TN T BT

5

10

15

20 25 30 35 40 45 50
Z (Angstrom)

Table 2.6.2.3: Cartesian coordinates (in A) of atoms in  Figure 2.6.2.3: Probability density for Cu(111) slab with 12— layers

a 12-layer Cu(111) slab.

and for band 42.

Figure 2.6.2.3 presents exactly the same situation as the Figures 2.6.2.1 and 2.6.2.2, but using

another way. Observing Table 2.6.2.3, there is periodicity on the xy plane, in contrast of the z-

axis, where the slab is developing.

Firstly, the edge atoms are at the points z=10.00 and z=32.93 respectively. After, two

repetition of the minimizaion, the system converges and these atoms are situated at positions

2=9.96 and z=32.97 correspondingly.

85



These atoms are moving to minimize the total energy of the system. The distance of the edge

atoms to the rest of slab is the same and is 2.1237 A on z-axis. The atoms of the rest chain has

the same distance between them, 2.0842 A.

The workfunction is the next step.

Table 2.6.2.4 contains the
workfunction from two sides the

slab.

In Figure 2.6.2.4, it is clear that

at positions that atoms are
located, there is a minimum peak.
The explanation of the height of
the curve of the edge atoms is the
same as previously at (100)
plane. Observing the total Figure
2.6.2.4, the potential energy
looks like a cosine function, as

previously.

The potential energy from the left
side is about 4,520 eV and at the
right 4,503 eV. These energies
are calculated from the differnce
between the Fermi Level and the
point that begins the potential

energy.
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Layers | Vi (eV) | Viighe(eV) | E Fermi (€V)
5 4,641 4,641 - 4,6639
10 4,529 4,529 - 4,5510
11 4,556 4,556 - 4,5781
12 4,535 4,529 - 4,5523
13 4,520 4,503 - 4,5650

Table 2.6.2.4: Potential Energy from the two sides of the
slabs and the Fermi level for relaxed Cu (111) slabs.

Workfunction
5 | T T T T | T | T | T T T T
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Figure 2.6.2.4: Total electronic potential for relaxed 13-layer Cu(111) slab.




P(z) = 1(z)

Fitted values
1 T T | T | T | T | T | T | T | T | T
o —— v =0.925%expl-(x- 10.0245) 1 0301y {sinipi*(x- 10.0245W2.08253+ 1 5p°2
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Figure 2.6.2.5: Fitted values on the last atom of the Density Probability of Cu(111) at the case of a 13-layers slab
dfter relaxation.

atom X —axis | Y—axis | Z - axis The same comments apply as before. The distance
0 0.0000 0.0000 9,994

12 0.0000 0.0000 35,017
Table 2.6.2.5: Cartesian coordinates (in A) of edge atom and is 2,09 A on z-axis. The atoms of the rest slab

for a relaxed 13-layer slab.

of the edge atoms to the rest of slab is the same

are 2,08 A away.

The last is at the position z,= 35,017.
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In the case that describes the Figure 2.6.2.5, it is:

(z—10,0245)
Tt

y=0,925-¢ 0% -sinz(m(z—10,025)+ 1,5),for z>z,

(2-10,014)
y=0,925-e *** forz<z,

1
2q=— 2
Consequently, 1’230: i:(l)"llgg and V0:|Ek—Eq|:;—m\(kz—q2)|:4,423138ev
2k= o
0,423

The computational value of the workfunction holding 6 decimal points is 4,519910 eV. The

Table 2.6.2.4 contains values of workfunction holding 3 decimal points.

comp fitted values|
0 B VO

|4,519910 —4,423138]|
100 %="2 >
yeom ? 4,519910

0

The percentage difference is 100%~2,14%

For the Figures 2.6.2.1,2.6.2.2 and 2.6.2.5, the corresponding Figures for the atoms of the

opposite edge are at the appendix.
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Conclusions

In this thesis we perform a comprehensive study of electronic structure of surfaces of fcc

metals Au and Cu within the framework of density functional theory.

We calculate characteristic electronic and structural properties of these surfaces like the
electron density and workfunction. Surface States are being observed at “similar” band number,
n, of Bloch States y,; as the slab thickness increases at constant difference between the
enegy of that band and the Fermi level. The degeneracy of the bands that surfaces states are

being observed on the Au(111) are due to the symmetries of the system.

Atomic relaxation enhances the probability's of localization. Furthermore, surface state

is presented at lower bands, so the SS Energy is lowered.

We calculate the workfunction directly and by fitting our surface states to the theory
Schockley. The percentage difference between these methods was too small, giving a direct
verification of the validity of this theory to metals. It is the first time that Schockley's theory is
verified for non-semiconductors.

Repeating the process for Cu(100) and Cu(111), we observed similar results.

So far, Schockley's theory was applied and explained results in semiconductors. We

confirmed that this theory could be applied also to metalic surfaces.

Future work could include comparison of the observed surface states to Tamm theory.
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APPENDIX

Surface State on the last atom Plane (100)

Probability on
Layers Band no. Energy (V) Egmi(eV) E - Epmi(eV) “oermon
53 -6,7467 -4,8850 41,8617 ~ 55 %
10 54 -6,7484 -4,9442 41,8042 ~ 85,5 %
57 -6,7994 -4,9488 -1,8506 ~ 73,5 %
11 60 -6,7870 -5,0386 -1,7484 ~ 86,5 %
1 64 -6,7774 -4,9137 -1,8637 ~61%
64 -6,7680 -4,9788 -1,7892 ~ 85,2 %
13 69 -6,7800 -4,9259 41,8538 ~72 %
70 -6,7796 -5,0054 11,7742 ~ 86,2 %
14 75 -6,7822 -4,9261 41,8561 ~ 74 %
75 -6,7861 -4,9965 -1,7896 ~ 84,2 %
15 81 -6,7795 -4,9084 11,8711 ~ 74 %
80 -6,7827 -4,9966 41,7861 ~ 86,4 %

Table A.1: Surface State for the last layer of Au (100) slabs. For every atom-laywer slab, the first line gives the
surface state before the relaxation and the second after relaxation of atomic coordinates.
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Densities of States

n=10-15
30 T T I T T T
L — 10 atoms, E_f=-49442 eV |
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15 atoms, E_f = - 4.9966 eV
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Figure A2: The diagramm of the DOS for the Au(100) after relaxation. There are all slabs
and its Fermi Level.

Densities of States

n=10-15
30 | T T |

2151 — 10atoms,B_f=-4.8850 eV |

a5 — 11 atoms. E_f=-4.9488 eV _|
12 atoms, E_f=-4.9137 eV

2251 — 13 atoms. E_f=-49259 &V —
I 14 atoms, E_f = -4.9261 ¢V

2 15 atoms, E_f = -4.9084 ¢V 7

1251~

Densities of States
p—
L
[

,_
=]
|

7.5

i ";‘z’nﬂm ola
10 15 20

{-]20 3 -10
Energy (eV)
Figure Al: The diagramm of the DOS for the Au(100) before relaxation, using only the

96 xc. There are all slabs and its Fermi Level.



Surface State on the last atom Plane (111):

Probabili -
Atoms Band Energy (eV) Epmi(eV) E-Egmi(eV) fexdixor  Similarly Bands
32 -9,0378 -4,9778 -4,0600 ~ 44 % 33,34,35
10 34 -8,8995 -5,0505 -3,8490 ~ 94,6 % 35
38 -9,0481 -5,0091 -4,0390 ~ 87 % 37
11 38 -8,9272 -5,1017 -3,8255 ~93,3% 39
1 41 -9,0566 -4,9881 -4,0685 ~ 87 % 42
42 -8,9375 -5,1027 -3,8348 ~ 94,6 % 43
13 43 -9,0745 -5,0381 -4,0364 ~ 87 % 44
45 -8,8856 -5,0691 -3,8165 ~ 95 % 46
14 47 -9,0797 -5,0187 -4,0610 ~ 87 % 48
48 -8,9395 -5,1029 -3,8366 ~94,2 % -
15 50 -9,0554 -5,0061 -4,0493 ~ 88 % 51
53 -8,9286 -5,1151 -3,8135 ~ 95 % 54

Table A2: Surface State for the last layer of Au (100) slabs. For every atom-laywer slab, the first line gives the surface state before
the relaxation and the second after relaxation of atomic coordinates.
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Densities of States

n=10-15
30 I
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25 10 atoms, E_f=-4.9778 eV _|
11 atoms, E_f = -5.0091 eV
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Energy (eV)

Figure A3: The diagramm of the DOS for the Au(111) before relaxation, using only the
xc. There are all slabs and its Fermi Level.
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Figure A4: The diagramm of the DOS for the Au(100) after relaxation. There are all slabs
and its Fermi Level.



Probabilitics per atom
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Figure A6:Contour plot of |y|? for band 84 in Cu(100)
0L slab with 15 layers. Compare to Fig. A5 .
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atoms.

Figure A5: Probability of localization for the last layer of a
Cu(100) slab with 15 layers.
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Figure A6: Probability Density for Cu(100) slab with 15-layers. Fitted values on the firs atom after
relaxation.The computational workfunction is 4,313575 eV and from the fitted values is 4,417400 eV.
The percentage difference is about 2,4 %.
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Probabilities per atom
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Figure A7: Probability of localization for for the last atom of a Cu(111)
slab with 10 layers.
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Figure A9: Probability Density for Cu(111) slab with 13-layers. Fitted values on the last
atom dfter relaxation. The computational workfunction is 4,503352 eV and from the fitted
values is 4,465295 eV. The percentage difference is about 1,2%.
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Plane 211

Figure All: Unit cell of (211)
e plane of FCC structure ((110)
Figure A10: Simulation cell picturing a (211) slab with 3 atomic- plane)

layers (3 atoms per layer)

* For the first 3 atom of the layer

Layers | no. of Atoms | Band no. | Energy (V) | Efmi(eV) %
3 9 66 6,7423 -0,8786 ~ 46 %
4 12 32 -3,6802 0,0049 ~ 41 %
5 15 42 -2,9012 0,9211 ~ 41 %
6 18 98 0,2350 1,5458 ~ 44 %
7 21 113 0,8117 2,1513 ~ 64 %
8 24 74 -1,1057 2,6835 ~ 66 %
9 27 148 1,7596 3,0827 ~ 66 %
10 30 165 2,1567 3,5066 ~ 68 %
11 33 180 2,5107 3,8520 ~ 67 %
12 36 196 2,8342 4,1734 ~ 68 %

Table A3: Electronic States localized at the first layer of each Cu(211) slab. For each slab, we present the energy
at the localized state, the Fermi Level and the probability that this electron will be found at the first layer (both
three atoms).
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* For the last 3 atom of the layer

Layers | no. of Atoms | Band no. | Energy (eV) | Efemi(eV) %
3 9 66 6,7423 -0,8786 ~ 46 %
4 12 32 -3,6802 0,0049 ~ 41 %
5 15 43 -2,9008 0,9211 ~ 42 %
6 18 97 0,2313 1,5458 ~ 43 %
7 21 114 0,8153 2,1513 ~ 64 %
8 24 76 -1,0896 2,6835 ~ 66 %
9 27 147 1,7573 3,0827 ~ 66 %
10 30 164 2,1527 3,5066 ~ 68 %
11 33 181 2,5152 3,8520 ~ 67 %
12 36 197 2,8385 4,1734 ~ 68 %

Table A4: Electronic States localized at the last layer of each Cu(211) slab. For each slab, we present the energy
at the localized state, the Fermi Level and the probability that this electron will be found at the last layer (both
three atoms).

Figure A12: The diagramm of the DOS for the Au(100) after relaxation. There are
all slabs and its Fermi Level.
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