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Abbreviation

Density Functional Theory DFT

Generalized-Gradient Approximation GGA

Exchange Correlation potential XC

Local Density  Approximation LDA

Local - Spin Density Approximation LSDA

Grid-based Projector Augmented Wave method GPAW

Atomic Simulation Enviroment ASE

Visual Molecular Dynamics

Periodic Boundary Conditions

VMD

PBC

Brillouin - Zone points kpts

Grid points gpts

Density of States DOS

Surface State SS
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Abstrtact

In this master thesis, we studied surface-localized electronic states of metals. In particular, we

determine characteristic properties of Schockley surface states[11,12,13,14,15]   for Au and Cu slabs.  We

did the calculation using Density Functional Theory (DFT)[9,10].

We construct slabs with different number of atomic layers. These layers are parallel to  the

(100)  and  (111)  plane  of  FCC  structure. We  solved  the  Ν-electron  Schrödinger equation[8] as

implemented in the open-source package Grid-based  Projector Augmented Wave method (GPAW)
[9,10,18].

We locate surface states by observing Bloch States, ( n k⃗ ), where the probability of finding

electrons at surface atoms is much higher than the probability of finding them in bulk atoms. We

modify slab thickness (number of layers) and observe when the probability starts to converge. We

confirm the surface states  by applying three methods. In the first method, we find the diagram of

the probability density per atom. The next method was a graphical way to prove the surface state, in

which we examine wavefunction plots.  For this  method, we used VMD and ASE [17].  In  the  last

method, we plot the probability density in real space. All three methods are used to confirm that a

particular Bloch state is indeed a surface state.

Subsequently, we repeated the same process for relaxed surfaces, in which the first and the

last atom of slabs are allowed to relax.

The next step of the thesis concerns the computational calculation of the workfunction for

different  thicknesses  of  slabs.  We  fitted  the  square  of  the  absolute  value  of  wavefunction  and

applying Schockley's Surface State theory, we found values for the metal's workfunction in very

good agreement to direct simulation. 

Finally, we repeated the same process for Cu slabs.

So  far,  Schockley's  theory  was  applied  and  explained  results  in  semiconductors.  In  this

thesis,it is confirmed that this theory could be applied also to metalic surfaces, because it derived

from nearly free electrons model.
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Περίληψη

Σε αυτή τη μεταπτυχιακή διατριβή μελετήσαμε εντοπισμένες επιφανειακές καταστάσεις

σε  μέταλλα.  Συγκεκριμένα,  προσδιορίσαμε  χαρακτηριστικές  ιδιότητες  της  θεωρίας  του

Schockley[11,12,13,14,15]  για  δομή  Χρυσού  (Au)  και  Χαλκού  (Cu).  Οι  υπολογισμοί

πραγματοποιήθηκαν χρησιμοποιώντας την Density Functional Theory (DFT).

Ξεκινήσαμε φτιάχνοντας δομές με διαφορετικό αριθμό  ατομικών στρωμάτων από τις

επίπεδα (100) και (111) της δομής FCC. Λύσαμε την εξίσωση του Schrödinger [8] για Ν αριθμό

ηλεκτρονίων, όπως εφαρμόζεται στο ελεύθερο πακέτο του GPAW[9,10,18]. 

Εντοπίσαμε  επιφανειακές  καταστάσεις  παρατηρώντας  της  κατάστασης  του  Bloch,  (

n k⃗ ),  όπου  η  πιθανότητα  να  βρούμε  ένα  ηλεκτρόνιο  σε  επιφανειακό  άτομο  είναι  πολύ

μεγαλύτερη  απ'  ότι  στα  εσωτερικά  άτομα,  τα  οποία  έχουν  την  ίδια  γεωμετρία  με  την

τρισδιάστατη δομή. Μεταβάλλοντας τον αριθμό των ατομικών στρωμάτων παρατηρούμε μετά

από  ποιο  πάχος  η  πιθανότητα  ξεκινάει  να  συγκλίνει.  Επιβεβαιώσαμε  τις  επιφανειακές

καταστάσεις με 3 διαφορετικές μεθόδους. Στην πρώτη μέθοδο, φτιάξαμε το διάγραμμα της

πιθανότητας  ανά  άτομο.  Η  επόμενη  μέθοδος  ήταν  μια  γραφική  απόδειξη  επιφανειακής

κατάστασης, όπου επεξεργαστήκαμε τις κυματοσυναρτήσεις του συστήματος χρησιμοποιώντας

το  VMD  και  το  ASE[17].  Στην  τελευταία  μέθοδο,  κάναμε  τη  γραφική  παράσταση  της

πυκνότητας πιθανότητας στον πραγματικό χώρο. Και οι τρεις μέθοδοι χρησιμοποιήθηκαν για

την επιβεβαίωση ότι όντως μια συγκεκριμένη κατάσταση Bloch είναι επιφανειακή κατάσταση. 

Στη συνέχεια,  επαναλάβαμε την ίδια διαδικασία για relaxed surfaces,  στις οποίες το

πρώτο και το τελευταίο άτομο της δομής  ήταν ελεύθερο να μετακινηθεί και να τοποθετηθεί με

τέτοιο τρόπου ώστε να ελαχιστοποιεί την ενέργεια του συστήματος.

Το επόμενο βήμα της εργασίας αφορούσε τον υπολογισμό του έργου εξόδου για τα

διαφορετικά  πάχη  των  δομών.  Φτιάχνοντας  το  διάγραμμα της  πυκνότητα  πιθανότητας  και

εφαρμόζοντας  της  θεωρία  του  Schockley,  βρήκαμε  τις  τιμές  για  το  έργο  εξόδου  των

μεταλλικών  επιφανειών  που  μελετήσαμε  και  βρισκόταν  σε  πολύ  καλή  συμφωνία  με  την

υπολογιστική μέθοδο.
13



 Επαναλάβαμε τις ίδιες διαδικασίες για τις ίδιες μεταλλικές επιφάνειες σε δομές Χαλκού

(Cu).

Μέχρι  τώρα,  η  θεωρία  του  Schockley  έχει  εφαρμοστεί  και  εξηγήσει  αποτελέσματα  για

ημιαγωγούς. Σ' αυτή τη μεταπτυχιακή εργασία επιβεβαιώθηκε η χρήση της θεωρίας και για

μεταλλικές επιφάνειες, γιατί προέρχεται από το μοντέλο των ελεύθερων ηλεκτρονίων.
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1.    THEORY and BASIC PRINCIPLES
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1.1    Crystal Surfaces and Structures

Crystal  structure  is  the  periodic  and ordered  arrangment  of  atoms,  ions  or  molecules  in  a

material. It appears in nature to minimize the energy of the system that is formed. The structure

is repeated along the principal directions of the three dimensional space. 

The  most  common  crystal  structure  are  the  cubic  one  (SC,  BCC,  FCC).  There  are  also

tetragonal, rhombohedral, orthorhombic, monoclinic, triclinic structures.In this thesis we focus

on cubic structures because the metals we study have all FCC structure.

In Simple Cubic (SC) structure, there is an atom on the vertices of the unit

cell. A unit cell contains N i=8⋅
1
8

=1  atom and the nearest neighbor are

at distance a, where a is the one side length of the square that two atoms

are located.  This  parameter depends on the material.  The filling factor,

which is the fraction of volume in a crystal structure that is occupied by

constituent particles [3], is :

APF SC=N i

4 π
3

R3

a3 =1⋅

4 π
3

(
a
2

)
3

a3 =
4 π
3

⋅
1
8

=
π
6

≈52,4 %

In Face – Centered – Cubic (FCC) structure there are

atoms on the vertices of the cell and also an atom at

the center of every face of the unit cell.  A unit cell

contains  N i=8⋅
1
8

+6⋅
1
2

=1+3=4  atoms. The nearest

neighbor distance is  a√2
2

, where α is a parameter

that  depends  on  the  material.  The  filling  factor  is

19

Figure 1.1.1:Simple
Cubic (SC) [1]

Figure 1.1.2 : Face - Centered – Cubic (FCC) [2]



APF FCC=N i

4 π
3

R3

a3 =4

4 π
3

(
a √2

4
)

3

a3 =
π √2

6
=74%  .

In Body – Centered – Cubic (BCC) structure, an

atom is located on the vertices of the unit cells, and

also an atom at the center of the cube. A unit cell

contains  N i=8⋅
1
8

+1=1+1=2  sites.  The nearest

neighbor distance is a√3
2

 correspondingly. 

The filling factor is APF FCC=N i

4 π
3

R3

a3 =2

4 π
3

(
a √3

4
)
3

a3 =
π √3

8
=68 %  .

A  periodic  function  V ( r⃗ )  is  a  function  that  obeys  V ( r⃗ + R⃗n)=V ( r⃗ ) ,  where

R⃗n=n1a⃗1+n2 a⃗2+n3 a⃗3 , with  a⃗1, a⃗2, a⃗3  are basis vectors and  n1 , n2, n3  can be any integer

number.

Bravais lattice is a set of points in space. These points are defined by the ends of the vectors

R⃗n .  The volume of the unit cell is given by the formula: V B C=|(a⃗1× a⃗2)⋅a⃗3| .

The reciprocal Bravais  lattice is  also a Bravais  [5][6][7] lattice and the vectors have the form

G⃗m=m1 b⃗1+m2b⃗2+m3b⃗3  and obey  R⃗n⋅G⃗m=2π δ nm . Using this condition, we can define the

basis vectors of the reciprocal lattice b⃗1, b⃗2, b⃗3 :

b1=2 π
a⃗2×a⃗3

(a1×a2)⋅a3

 ,  b2=2 π
a⃗3×a⃗1

(a1×a2)⋅a3

  ,  b3=2 π
a⃗1×a⃗2

(a1×a2)⋅a3

20

Figure 1.1.3: Body - Centered - Structure (BCC) [2]



Using  the  formulas  above,  we  can  conclude  to  the  table  below about  the  FCC and  BCC

strustures [6]:

Basis Vectors
Structure Bravais lattice Reciprocal lattice

BCC

a⃗1=a x̂0

a⃗2=a ŷ0

a⃗3=
a
2

( x̂0+ ŷ 0+ ẑ0)

b⃗1=
2π
a

( ^−z0+ x̂0)

b⃗2=
2π
a

( ^−z0+ ŷ0)

b⃗3=
4 π
a

ẑ0

FCC
a⃗1=

a
2

( ŷ0+ ẑ0)

a⃗2=
a
2

( x̂0+ ẑ0)

a⃗3=
a
2

( x̂0+ ŷ 0)

b⃗1=
2π
a

(− x̂0+ ŷ0+ ẑ0)

b⃗2=
2π
a

( x̂0− ŷ0+ ẑ0)

b⃗3=
2 π
a

( x̂0+ ŷ 0− ẑ0)

For  the  reciprocal  lattice,  the  volume  of  the  unit  cell  is  given  by  the  formula:

V R L=|(b⃗1× b⃗2)⋅b⃗3| , and is related to V B C  as   V B C⋅V R L=(2π )
3 .

In a specific three dimensional Bravais lattice, we can define lattice planes by choosing three

noncolinear lattice points. A family of lattice planes is the set of all parallel and equidistant

lattice planes. Using the reciprocal lattice, all the possible families of the lattice planes can be

categorized.

The crystalographic planes are defined by three indices, known as Miller indices. All the planes

that are parallel to each other have the same Miller indices.

Figure  1.1.4  show  three  lattice  planes:

the plane (100), (110) and (111). 

21

Figure 1.1.4 : lattice planes [4]



 The (100) plane contains :

• 4⋅
1
4

=1  atom per unit cell, for the SC structure

• 4⋅
1
4

=1  atom per unit cell, for the BCC structure

• 4⋅
1
4

+1=2  atoms per unit cell, for the FCC structure

The (110) plane contains :

• 4⋅
1
4

=1  atom per unit cell, for the SC structure

• 4⋅
1
4

+1=2  atoms per unit cell, for the BCC structure

• 4⋅
1
4

=1  atom per unit cell, for the FCC structure

The (111) plane contains :

• 3⋅
1
6

=
1
2

 atom per unit cell, for the SC structure

•  3⋅
1
6

+1=
3
2

atoms per unit cell, for the BCC structure

•  3⋅
1
6

+3⋅
1
2

=2  atoms per unit cell, for the FCC structure

In this thesis we focus on the planes (100) and (111).

22

Figure 1.1.6 : (110)
plane [4]

Picure 1.1.7 : (111)
plane [4]

Figure 1.1.5: (100) plane [4]



1.2    N-Electron   Schrödinger   equation

When  we  have  to  calculate  properties  and  quantities  in  solid-state  materials,  it  is

important to find the Hamiltonian operator which describes the system. In this case, we start

with the many – body Schrödinger equation.  The Hamiltonian contains the kinetic energy of

all the particles within the solid and their interaction energies.  [8] Not all the electrons contribute

to the same extent to the total energy. Electrons can be divided into two categories, the valence

electrons and core electrons. Core electrons  are strongly bound to the nucleous and therefore

do not participate to the chemical bonding, as the valence electrons do. So, the Hamiltonian of

the system would include two constituents, which are distinguished in the valence electrons and

the lattice ions, and can be described by the following formula :

Η=Η el+ H ion+H el−ion=−
ℏ

2

2me
∑

i

∇ i
2
−∑

i , I

Z I e2

4πε 0|r i−R I|
+

1
2
∑
i≠ j

e2

4 πε0|ri−r j|
−∑

I

ℏ
2

2M I

∇ I
2
+

1
2
∑
I≠ j

Z I Z j e
2

4 πε0|RI −R j|

The Hamiltonian would be distinguished in three terms:

• The electrons part:

Η el=∑
i

pi
2

2me

+
1
2
∑
i≠ j

e2

4 πε0|r i−r j|
=−

ℏ
2

2me
∑

i

∇ i
2
−

1
2
∑
i≠ j

e2

4πε 0|r i−r j|

Using the atomic units  ( e2

4 πε0

=ℏ=me=1 ) the above equation could be formed:

Η el=∑
i

pi
2

2
+

1
2
∑
i≠ j

1
|r i−r j|

It includes the kinetic energy of all the electrons. Their potential energy is described by a

Coulomb term.  The  sums run over  all  the  electrons  indices  excluding self-  interaction  for

i≠ j .

• The nuclei part:
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Η ion=∑
I

P I
2

2 M I

+
1
2
∑
I≠ J

Z I ZJ e2

4 πε0|RI −RJ|
=−∑

i

ℏ
2

2 M I

∇ I
2
−

1
2
∑
I≠J

Z I ZJ e2

4 πε0|RI −RJ|

The formula includes the total kinetic energy of the nuclei and the potential term which

consist of the Coulomb interactions. The Z I  and Z J  are representing the atomic numbers. The

sums run over all the ion indices again excluding self-interaction for I≠J .

• The electron - nuclei interaction part:

H el−ion=
1
2
∑
I≠ j

Z I Z j e
2

4 πε0|RI −R j|

It is constructed corresponding to the electron-nuclei interaction as a sum of two-particle

interacttions between electrons and ions  depending on their  distance to each other  and the

atomic numbers.

Those equations are the basis for the quantum mechanical analysis of most solid state

properties. Now we make the transition from the Hamilton function to the Hamilton operator. If

we use the coordinate representation we get a Hamilton operator depending on all the electron

and ion coordinates and correspondingly a wavefunction as a function of all the coordinates

and spin.

In order to solve a very difficult problem with so many factors, we have to make some

approximations.  Using the Born – Oppenheimer approximation we assume that the nuclear

motion is slow and thus in comparison to the electrons, the nuclei is fixed. The solution of the

energy eigenvalues equation could be formed:

Ĥ ψ =Ε ψ ⇒(H el+H el−ion)ψ =Ε ψ

The  ions  positions  are  fixed,  so  the  many  -  electron  wavefunction

ψ (r1 σ1 ,r 2σ 2 , ... ,r nσ n; R1 , R2 ,... , Rk)  is a function of all electron positions and spin and the ion

positions are only parameters.
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1.3    Density Functional Theory

Denstiy Functional Theory (DFT) is a computational quantum mechanical method to reseach

the electronic structure of a many-particle system. It is a method which is used for problems

which can not be solved analytically.  

The theoretical basis of the DFT was given by the two Hohenberg – Kohn theorems (H – K)  [9],

[10].  The first theorem exhibits that the ground state properties of a many-electron system are

uniquely determined by an electron density that depends on only 3 spatial coordinates. The

second indicates that the electron density which minimizes the energy of the overall functional

is the true electron density corresponding to the full ground state solution of the Schrödinger

equation.

As I mentioned at the previous chapter, the solution of a quantum mechanical problem starts

from the Schrödinger's equation HΨ = ΕΨ, where in this problem it is a formula described by

the following formula:

Η=Η el+ H el−ion+H ion=−
ℏ

2

2me
∑

i

∇ i
2
−∑

i , I

Z I e2

4πε 0|r i−R I|
+

1
2
∑
i≠ j

e2

4 πε0|ri−r j|
−∑

I

ℏ
2

2M I

∇ I
2
+

1
2
∑
I≠ j

Z I Z j e
2

4 πε0|RI −R j|

In this case, every operator which is included in the Hamiltonian is described by the electron

density as Ĥ=H (n(r )) .

The electron density is n(r) obeys the normalization relation:

N=∫n (r )dr

One starts the solution using the one electron Schrödinger equation:

(−
1
2

∇
2
+u (r )+u([n];r )+uxc

σ
([n↑ ,n↓]; r ))Ψ ασ (r )=Eασ Ψ ασ (r )

25



nσ (r )=∑
a

Θ(μ−Εασ )|Ψ ασ (r )|
2
,n (r )=n↑(r ) ,n↓(r )

σ is the z-component of the spin, α includes the rest of the electron quantum numbers. The

above formula contains the step function theta, in which want to emphasize to orbitals with one

electron while the  other are empty.  μ is the chemical potential.

The  equation  contains  the  external  potential  u(r)  and also the  effective  potential  using  the

classical Hartree potential  u([n]; r)=∫ d3r '
n(r ' )
|r−r '|

 .

The total electron energy  will be given by :

E=T s [n↑ , n↓]+∫ d2r n(r )u(r )+U [n]+Exc([n↑, n↓])

where {T s [n↑ , n↓]=∑
ασ

Θ(μ−Εασ) ⟨Ψ ασ|−
1
2

∇
2|Ψ ασ ⟩

U [n]=
1
2∫ d

3
r d

3
r '

n (r )n (r ')
|r−r '|

As last term we have the exchange-correlation energy E XC , whose derivative 
δΕxc

δnσ(r )
   gives

exchange - correlation potential.

LDA

The Local Density Approximation is used to determine the exchange - correlation functionals. 

E xc
LDA

[n(r)]=∫d3 r n(r )E xc
unif

(n(r ))

Exc
unif

=E x
unif

+Ec
unif  is the exchange and correlation energy per particle in an uniform electron

density n, which can be distinguished in exchange and correlation contribution respectively. 
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LSDA

It is the Local Spin Density Approximation. The difference with the previous approximation is

that this formula includes the electron spin E xc
LSDA

[n↑, n↓]=∫ d3 r n(r ) Exc(n↑, n↓)  .

GGA

LDA considers that the density is piecewise constant and overestimate the exchange-correlation

energy.  This overestimation of the energy is corrected using the gradient of the density. These

corrections are referred to as generalized gradient approximations (GGA) and is given by the

below formula: 

 E xc
GGA

[n (r)]=∫d3 r n(r ) f (n (r ), ∇ n(r ))

27



1.4    Electronic Surface States

A surface is the termination of a bulk crystal. A fraction of the chemical bonds which

constitute the bulk crystal structure are broken at the surface. These bonds have to be broken to

create the surface and thus the formation of a surface costs energy. In comparison with the bulk

properties, the electronic structure near to the surface is notably different. Even an ideal surface

with its atoms at bulk-like positions displays new electronic levels and modified many-body

effects due to the change in the chemical bonding. Many macroscopic effects and phenomena

on surfaces are related to this change in electronic structure. On the theoretical side, the general

approach is similar to that for the bulk-crystal, but now we solve the Schrödinger's equation for

an electron near the surface. [11],[12],[13]

In comparison with the bulk problem, two major difficulties arise for the surface, the

symmetry and the surface-structure. For the first difficulty, even in the ideal case, symmetry

only  exists  in  directions  within  the  plane  of  the  surface.  Perpendicular  to  the  surface,  the

periodicity breaks down and the mathematical solution becomes much more complicated. The

second difficulty is more severe, because of changes in atom's positions. A complete calculation

of the electronic structure requires a knowledge of the atomic positions (coordinates). This is

complicated, becuase of the changed chemical bonding near the surface. This change frequently

results in surface relaxation and reconstruction. This means that the atoms are displaced from

the ideal positions which they would occupy if the bulk crystal were simply truncated.

Consequently, surface states are electronic states found at the surface of materials. They

are formed due to the sharp transition from solid material that ends with a surface and are found

only at the atom layers closest to the surface. The termination of a material with a surface leads

to a  change of  the  electronic  band structure from the bulk material  to  the vacuum. In the

weakened potential at the surface, new electronic states can be formed, so called surface states.
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1.5    Shockley Surface States

Shockley States are named after the American physicist William Shockley. Shockley

states are the states that result when solving the Schrödinger equation in the framework of the

nearly free electron approximation for clean and ideal surfaces. Shockley states are thus states

that  arise  due  to  the  change  in  the  electron  potential  associated  solely  with  the  crystal

termination. [11]

When we investigate the electronic surface states of an ideal crystal, we assume perfect

two dimensional  periodicity  within the surface. [13],[14] However,  we have broken symmetry

perpendicular to the surface. The most general one-electron wavefunction Φss  for states near an

ideal surface has plane-wave (Bloch) character for coordinates parallel to the surface  r || = (x,y):

Φss(r∥ , z)=uk
∥
(r∥ , z)exp(i k∥r∥)  (eq. 1.5.1)

where k|| = (kx,ky) is a wavevector parallel to the surface. The simplest model to derive most of

the  important  properties  of  surface  states  is  the  one-dimensional  semi-infinite  chain  of

periodically arranged atoms.  The surface is  then represented by the end of  the chain.  The

results gained from the 1D surface can then be generalized for the 2D crystal surface. We

assume, similar to the nearly free electron model, a cosine-like potential along the chain.
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Figure 1.5.1: Nearly – free – electron model for a cosine
potential along a linear chain [11]



V (z )={
V 0 , for z>0

V̂ (e
2πiz

a +e
−2πiz

a )=2V̂ cos (
2 πz

a
) , for z<0

 (1)

Now, we have to solve Schrödinger's equation:

 Η̂ ψ=Εψ ⇒[−
ℏ

2

2m
d2

dz2
+V (z )]Ψ (z)=E Ψ (z)  ,

 using the potential (1) for V(z).

For the solution, we start deep inside the crystal, z<<0, far away from the surface z = 0.

In this case, we consider that the potential can be assumed to be periodic, V(z) = V(z+na). For

this problem, we get the well-known bulk solutions:

Away from the Brillouin zone boundaries k ⊥=±
π
a

, the eigenstates of the Hamiltonian are

plane waves and their energies are those of the free electron parabola. Near the boundaries we

get  the  characteristic  band  splitting.  This  happens  due  to  the  fact  that  in  lowest-order

approximation of the electron wave function is a superposition of two plane waves:

ψ (z)=A ei k ⊥ z+B e
(i (k⊥−

2π
a

) z)

 (eq. 1.5.2)
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Figure 1.5.2: Energy Bands for one - electron
bulk states [11]



Substituting into the Schrödinger's equation we get the matrix:

[
ℏ

2

2m
k ⊥

2
−E(k ⊥) V̂

V̂
ℏ

2

2 m
(k ⊥−

2π
a

)
2

−E(k⊥ )]⋅[ A
B ]=0  (eq. 1.5.3)

Around the  Brillouin zone boundary,  near  to  k ⊥=±
G
2

=±
π
a

,  with  k ⊥=κ +π /α ,  where

small values of κ correspond to the k ⊥ .  Two elements of the above matrix will be changed:

[
ℏ

2

2 m
(κ+

π
a

)
2

−E (κ) V̂

V̂
ℏ

2

2 m
(κ−

π
a

)
2

−E (κ)]⋅[ A
B ]=0

And also the approximation of the electron wavefunction will be written:

ψ (z)=A e
i (κ+

π
a

)z
+B e

i (κ−
π
a

)z
=e ikz

(A e
i π

a
z
+B e

−i π
a

z
)

⇒ψ (z )=e
ikz

( A exp (i
π
a

z)+B exp(−i
π
a

z))  (eq. 2.5.4)

Now, it is interesting to solve the above system to get the energy eigenvalues :

{(
ℏ

2

2m
(κ +

π
a

)
2

−E) A+V B=0

Va+[
ℏ

2

2 m
(κ−

π
a

)
2

−E]b=0

⇒ {B=

E−
ℏ

2

2 m
(κ+

π
a

)
2

V
Α

Α=

E−
ℏ

2

2m
(κ−

π
a

)
2

V
Β

Substituting B The wavefunction will be formed: 

ψ (z)=A eikz
[exp (i

π
a

z)+

E−
ℏ

2

2m
(κ+

π
a

)
2

V
exp (−i

π
a

z )]  (eq. 1.5.5)

where A is a normalization factor. The energy eigenvalues must be clarified. 
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(
ℏ

2

2m
(κ−

π
a

)
2

−E)

( E−
ℏ

2

2 m
(κ−

π
a

)
2

)

V
Β+V B=0

⇒−V 2=−(E−
ℏ

2

2m
(κ−

π
a

)
2

)( E−
ℏ

2

2 m
(κ−

π
a

)
2

)

⇒ E2−
ℏ

2

2 m
[(κ−

π
a

)
2

+(κ +
π
a

)
2

] E+(
ℏ

2

2m
(κ2−(

π
a

)
2

))
2

−V 2=0

⇒ E2−
ℏ

2

2 m
(2 κ2+2(

π
a

)
2

) E+(
ℏ

2

2 m
(κ2−(

π
a

)
2

))
2

−V 2=0

⇒ E2−
ℏ

2

m
(κ2+(

π
a

)
2

) E+(
ℏ

2

2 m
(κ2−(

π
a

)
2

))
2

−V 2=0  

The target is to find the energy eigenvalues. The polyonymal's  discriminant is:

Δ=(
ℏ

2

m
(κ2

+(
π
a

)
2

))
2

−4 [(
ℏ

2

2m
(κ2

−(
π
a

)
2

))
2

−V 2
]=(

ℏ
2

m
(κ2

+(
π
a

)
2

))
2

−4(
ℏ

2

2 m
(κ2

−(
π
a

)
2

))
2

+4 V 2

⇒ Δ=(
ℏ

2

m
(κ2

+(
π
a

)
2

))
2

−(
ℏ

2

m
(κ2

−(
π
a

)
2

))
2

+4V 2
=

ℏ
2

m
[ (κ2

+(
π
a

)
2

)
2

−(κ2
−(

π
a

)
2

)
2

]+4V 2

⇒ Δ=(
ℏ

2

m
)

2

[4 κ2(
π
a

)
2

]+4V 2=4[(
ℏ

2 κ π
ma

)
2

+V 2]

So, the solutions can be determinated:

E±=
1
2

[
ℏ

2

m
(κ2

+(
π
a

)
2

)±2√(
ℏ

2 κ π
ma

)
2

+V 2
]=

ℏ
2

2 m
(κ2

+(
π
a

)
2

)±√V 2
((

ℏ
2 κ π

maV
)

2

+1)
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⇒ E±=
ℏ

2

2m
(κ2

+(
π
a

)
2

)±|V|√(
ℏ

2κ π
maV

)
2

+1=
ℏ

2

2m
((κ+

π
a

)
2

−2κ
π
a

)±|V|√(
ℏ

2κ π
maV

)
2

+1

⇒ E±=
ℏ

2

2m
(κ +

π
a

)
2

−
ℏ

2 κ π
mα

±|V|√(
ℏ

2 κ π
maV

)
2

+1=
ℏ

2

2m
(
π
a

+κ )
2

±|V̂|[−
ℏ

2 π κ

ma|V̂|
±√(

ℏ
2 π κ

ma|V̂|
)

2

+1]

 E±=
ℏ

2

2m
(

π
a

+κ)
2

±|V̂|[−
ℏ

2 π κ

ma|V̂|
±√(

ℏ
2 π κ

ma|V̂|
)

2

+1]  (eq. 1.5.6)

• Deep inside the crystal

The solution of the wavefunction have to be separated into three regions, deep inside the

crystal, near to the surface and after the vacuum. 

For regions deep inside the crystal (z << 0, subscript i) the electron wave functions ψ i are

obtained by using the above energy eigenvalues and substituting appropriate leads to:

{ψ (z)= A eikz
[exp(i

π
a

z)+

E−
ℏ

2

2 m
(κ +

π
a

)
2

V
exp(−i

π
a

z )]

E±=
ℏ

2

2m
(
π
a

+κ )
2

±|V̂|[−
ℏ

2 π κ

ma|V̂|
±√ ℏ

2 π κ

ma|V̂|
+1 ]

⇒Ψ deepinside=Ψ i=A e iκz
[e iπz/a

+
|V̂|

V̂
[−

ℏ
2 π κ

ma|V̂|
±√ ℏ

2 π κ

ma|V̂|
+1]e−iπz / a

]

where A is a normalization factor. Deep inside the crystal, we get the familiar electronic bands

E(k ⊥) ,which are periodic in reciprocal  k ⊥ - space. Near the zone boundaries we have

splitting into allowed and forbidden energy bands where the forbidden energy region has a

width of 2|V̂|  as you can see from the energy formula for κ =0:

E±(κ=0)=
ℏ

2

2m
(
π
a

)
2

±|V̂|  (eq. 1.5.7)
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{ for E+(κ=0 ):ψ i(z )= A e ikz
[exp(i

π
a

z )+

E+−
ℏ

2

2m
(
π
a

)
2

V
exp(−i

π
a

z)]=A eikz
[e

i π
a

z

+
|V̂|
V

e
−i π

a
z

]

for E−(κ=0) :ψ i(z)=A e ikz
[exp (i

π
a

z)+

E−−
ℏ

2

2m
(

π
a

)
2

V
exp (−i

π
a

z)]= A eikz
[e

i
π
a

z
−

|V̂|
V

e
−i

π
a

z
]

if V>0 then:

{for E+(κ =0):ψ i(z )= A e ikz
[e

i π
a

z

+e
−i π

a
z

]∼eikz cos (
π
a

z )

for E−(κ=0) :ψ i(z)=A e ikz
[e

i
π
a

z
−e

−i
π
a

z
]∼eikz sin(

π
a

z)

Otherwise (V<0):

{for E+(κ =0):ψ i(z )= A e ikz
[e

i π
a

z

−e
−i π

a
z

]∼e ikzsin (
π
a

z )

for E−(κ=0) :ψ i(z)=A e ikz
[e

i
π
a

z
+e

−i
π
a

z
]∼e ikz cos(

π
a

z)

This results are absolutely related with the splitting near to  the zone boundaries [15].

Summarized in a table they can be written:

Energy Wavefunction

V>0 V<0
Top of the gap ℏ

2

2 m
(
π
a

)
2

+|V̂| ∼cos (
π
a

z) ∼sin (
π
a

z )

Bottom of the gap ℏ
2

2m
(
π
a

)
2

−|V̂| ∼sin (
π
a

z ) ∼cos(
π
a

z)
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Figure 1.5.3 : Energy gap [15]



We now proceed the solution of the Schrödinger's equation near a solid surface and  also  near

the end of the chain. 

• In the vacuum region:

The wavefunction solution in the constant potetnial V 0  has to be exponentially decaying:

Ψ 0=D e
−√ 2 m

ℏ
2 (V 0− E) z

, E<V 0  (eq. 2.5.8)

We are interested to find the solution near a solid surface. 

• Near the Surface : 

There are two ways to determine the surface solutions. 

Since Ψ 0 has no complex contribution e iκz it can only be matched with the solutions inside the

crystal ψ i if you have a superposition of an incoming and a reflected wave (standing wave):  

Ψ 0(z=0)=aΨ i(z=0,κ )+β Ψ i(z=0,−κ)  (eq. 1.5.9)

From the  Figure,  we  can  understand that  a  surface  state  is

possible  to  be  described  by  a  standing  Bloch  wave  and

matched  with  an  exponentially  decaying  tail  Ψ 0   in  the

vacuum.
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Figure 1.5.4 : Real part of 
wavefunction for a standing Bloch 
wave



The other way for the surface solutions could become possible if we allow complex wave

vectors. Letting κ to be imaginary (κ = -iq) (1.5.10) and defining  γ=i sin(2δ )=−i
ℏ

2 πq

ma|V̂|

(2.5.11) , the energy formula would be formed :

E=E±=
ℏ

2

2m
(
π
a

+κ )
2

+|V̂|[−
ℏ

2 π κ

ma|V̂|
±√(

ℏ
2 π κ

ma|V̂|
)

2

+1]

⇒ E=
ℏ

2

2m
(
π
a

−iq)
2

+|V̂|[ i
ℏ

2 π q

ma|V̂|
±√(−i

ℏ
2 π q

ma|V̂|
)

2

+1]

⇒ E=
ℏ2

2m
((

π
a

)
2

−q2
−2 iq

π
a

)+i
ℏ2 π q
ma

±|V̂|√1−(
ℏ2 π q

ma|V̂|
)

2

⇒ E=
ℏ

2

2m
((

π
a

)
2

−q2
)±|V̂|√1−(

ℏ
2 π q

ma|V̂|
)
2

 (2.5.12)

Corresponding, for the wavefunction :

Ψ 'i= A eiκz
[e iπz/ a

±
|V̂|

V̂
[−

ℏ
2 π κ

ma|V̂|
±√(

ℏ
2 π κ

ma|V̂|
)

2

+1]e−iπz /a
] , κ=−iq

⇒Ψ ' i=A eqz
[eiπz/ a

±
|V̂|

V̂
[ i

ℏ
2 π q

ma|V̂|
±√(−i

ℏ
2 π q

ma|V̂|
)

2

+1]e−iπz/a
]

⇒Ψ ' i=A eqz
[eiπz/ a

±
|V̂|

V̂
[ i

ℏ
2 π q

ma|V̂|
±√1+(−i

ℏ
2 π q

ma|V̂|
)

2

]e−iπz/a
] , γ=i sin(2δ)=−i

ℏ
2 πq

ma|V̂|

⇒Ψ ' i=A eqz
[eiπz / a

±
|V̂|

V̂
[ i⋅sin(2δ )±√1+(i⋅sin(2δ ))

2
]e−iπz /a

]
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⇒Ψ ' i=A eqz
[eiπz / a

±
|V̂|

V̂
[ i⋅sin(2δ)±√1−sin2

(2δ)]e−iπz / a
] ,sin2

(2δ )+cos2
(2δ )=1

⇒Ψ ' i=A eqz
[eiπz / a

±
|V̂|

V̂
[ i⋅sin(2δ)±√1−sin2

(2δ)]e−iπz / a
] ,sin2

(2δ )+cos2
(2δ )=1

⇒Ψ ' i=A eqz
[eiπz / a

±
|V̂|

V̂
[ i⋅sin(2δ)±|cos|(2δ )]e−iπz / a

]

Although, ±
|V̂|

V̂
={+1 , if V >0

−1 , if V <0
, the above wavefunction would be formed:

⇒Ψ ' i=A eqz [eiπz / a±[cos(2δ )±i⋅sin(2δ)]e−iπz/ a ] , e±2 iδ=cos(2 δ)±i⋅sin (2 δ)

⇒Ψ ' i=A eqz [eiπz / a±e±2 iδ e−iπz / a]

⇒Ψ ' i=A eqz±iδ
[e

i π
a

z±iδ
±e

−i π
a

z±iδ
]

⇒{Ψ ' i(z≤0)=2 Αeq+iδ cos (
π
α

z±δ )∼eq+iδ cos(
π
α

z±δ )

Ψ 'i(z≤0)=2iΑeq−iδ sin(
π
α

z±δ )∼eq−iδ sin (
π
α

z±δ )

 , q = -iκ   (eq. 1.5.13)

where A is a normalization factor.

The probability density is: ⇒{|Ψ 'i(z≤0)|
2
∼e2 qzcos2

(
π
α

z±δ)

|Ψ ' i(z≤0)|
2
∼e2qz sin2

(
π
α

z±δ )

 

So, concisely, the wavefunction fro z<0 and z>0 , could be described:

⇒{Ψ 'i= A eqz±iδ [e
i

π
a

z±iδ
±e

−i
π
a

z±iδ
]

Ψ 0=D e
−√2m

ℏ
2 (V 0−E )z

, E<V 0
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 At the surface should apply:

{
Ψ 0(z=0)=Ψ ' i(z=0)

dΨ 0

dz ( z=0)

=
dΨ ' i

dz (z=0)

Using these conditions, we can find the parameters A and D. 

As, it was shown , the energies eigenvalues are obtained as:

E(q)=
ℏ

2

2m
[(

π
a

)
2

−q2
]±|V̂|√1−(

ℏ
2 π q

ma|V̂|
)  (eq. 1.5.14) 

The values of E remain real and ψ doesn't diverge for z<<0 if  0<q<qmax=ma|V̂|ℏ
2 π . For

these specific values of q and as we can observe from the formula of the Energy E(q) (eq.

1.5.14), all energies fall into the forbidden gap of the bulk electronic-band structure. 
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Figure  1.5.5  :  Real  part  of  one  electron
wavefunction for a surface state localized
at the surface [11]

From the Figure 1.5.5,   we can understand that a surface

state  wavefunction  is  localized  at  the  surface.   It  is

qualitatively  Figure.  As  we  expected,  the  amplitude

vanishes  for  values  far  away  from  the  surface  and  the

electrons are localized within a couple of Ås of the surface

plane.



Another important consequence the matching conditions are restricting the allowed values for

the energy eigenvalues. Within the continuous range of energy levels in the forbidden bulk

band gap only one energy level is fixed by our matching conditions. So, this calculation of the

semi-infinite chain yields as solution a single electron surface state located in the gap of the

bulk states.

Now we can generalize this result of the one dimensional semi-infinite chain to the

surface of a three dimensional crystal. The two dimensional translation symmetry parallel to

the surface leads to a general Bloch-type wavefunction Φss(r∥ , z)  for the surface state. The

model changes in r || and are contributed by  e i k∥r∥  and the energy increases by the term

ℏ
2k∥

2
/2m . 

Φss(r∥ , z)=uk
∥
(r∥ , z)exp(i k∥r∥)

⇒Φss(r∥ , z )=Ψ (z )uk
∥
(r∥)exp (i k∥r∥)

Energy eigenvalues are then functions of  k⊥=π/a−iq and k || . As a consequence the matching

conditions  which  have  to  be  fulfilled  for  every  single  k || separately  yield  a  (in  general

different) energy level for every k || for the surface state. From that we get a two dimensional
39

Figure 1.5.6 : Electronic band structure for a semi-
infinite chain of atoms [11]



band structure for the electronic surface states    Ess(k || ). 

Esurface=E k
⊥
+ Ess(k∥)

⇒ E surface=
ℏ

2 k ⊥

2

2m∗
+

ℏ
2 k∥

2

2m∗

where  m∗  is the effective mass of the electron.

It has to be mentioned that also the bulk electronic states live on the surface with only small

modifications. One has to take them into account when mapping the true surface states. 

A surface state is described by the energy and its wave

vector  k ||   parallel  to  the  surface.  Bulk  state  is

characterized by both k ||   and k  ⊥ wave numbers. In the

two-dimensional Brillouin zone of the surface, for each

value of k|| therefore a rod of k  ⊥ (where the symmetry is

broken)is extending into the three-dimensional Brillouin

zone of the Bulk. Bulk energy bands that are being cut by

these rods allow states that penetrate deep into the crystal.

One  therefore  generally  distinguishes  between  true

surface states and surface resonances. True surface states

are characterized by energy bands that are not degenerate

with bulk energy bands. These states are existing in the

forbidden gap only and are therefore localized at the surface.
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Figure 1.5.7 : Hypothetical electronic 
band structure of a crystal [11]



1.6    Tamm Surface States

Tamm States  are  named after  the  Russian physicist  Igor  Tamm respectively.  Tamm

States are called the surface states that are calculated by using the tight-binding model. In the

tight  binding  approach,  the  electronic  wavefunctions  are  usually  expressed  as  linear

combination of atomic orbitals (LCAO). [7] In contrast to the nearly free electron model used to

describe the Shockley states, the Tamm states are suitable to describe also transition metals and

wide gap semiconductors.

The lattice potential is constructed from a superposition of N free atom potentials at the

position R l,  V (r⃗ )=∑
l

U (r⃗−R⃗ l) .

The non-self-consistent Schrödinger equation for the bands is

 Ĥ ψ=E Ψ ⇒[−
1
2

∇
2
+V (r⃗ )]Ψ =ΕΨ

⇒[−
1
2

∇
2
+U (r⃗ )+(V (r⃗ )−U ( r⃗))]Ψ=ΕΨ (2.6.1)

The simplest trial function ansatz is a superposition of s-like Wannier orbitals:

Ψ k (r⃗ )=∑
l

al , k Φ (r⃗−R⃗ l)  (1.6.2)

and  [−
1
2

∇
2
+U (r⃗ )]Ψ=Ε0Ψ (1.6.3)

When (1.6.2) is substituted into (1.6.1), a large number of Hamiltonian matrix elements are
generated between orbitals centred on different sites.

∫d3 xΦ∗
(r⃗−R⃗l)(V (r⃗ )−U ( r⃗−R⃗l))Φ (r⃗−R⃗ l' )={

−a ,if l=l '≠N ,1
−γ ,if l=l '±1

−a ' ,if l=l '=N =1
0, otherwise
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[
H 11 … H 1 N

H 12 ⋯ H 2 N

⋮ ⋱ ⋮
H N 1 ⋯ H NN

]⋅[
c1

c2

⋮
cN

]=E⋅[
c1

c2

⋮
c N

]

⇒[
Ε0−a ' −γ 0 … 0

−γ Ε0−α −γ ⋯ 0
0 −γ Ε0−α ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ −γ Ε0−a '

]⋅[
c1

c2

c3

⋮
cN

]=E⋅[
c1

c2

c3

⋮
c N

]
The result is a recursion relation for the expansion coefficients:

{
γ cl−1+(E−E0+a)c l+γ c l+1=0

(E−E0+a ')c1+γ c2=0
γcΝ−1+(Ε−Ε0+α ')cΝ=0

If c l ,k=Ae ilkd
+Be−ilkd , and substituting l' =1,l  ± 1 , then the c l,k  would be written:

{
c l−1= Aei(l−1)kd

+B−i(l−1)kd

c1= Aeikd
+B−ikd

cl +1= Aei (l +1)kd
+Be−i (l+1)kd

Thus, the dispersion of the energy spectrum will be formed:

E=E k=E0−a−2 γcos(kd )  (1.6.4)

The  solution   will  be  completed  if  we  found  an  expression  for  k.  Using  appropriately  the

equations, the parameter k would be written:  k=
2π
Nd

n  and  al , k=
1

√N
e

ikdl   with N different

solutions,  −N /2⩽n⩽N /2  . 
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As I mentioned above , the simplest trial function ansatz is a superposition of s-like Wannier

orbitals: Ψ k (r⃗ )=∑
l

al , k Φ (r⃗−R⃗ l)   ⇒Ψ k (r⃗ )=∑
l

1

√N
e

ikdl
Φ( r⃗−R⃗l)

All these solutions have equal probability |al ,k|
2
=

1
N

 on each atom of the chain. This is not

true for solutions on openended and semi-infinite chains, because all the atoms of the chain has

the same probability.

This deadlock lead us to the concept of the local densities of states (LDOS)  [16]. The density of

states shows us how many states are in a given energy intervall at E. 

ρ(Ε)dE=∑
k

δ (Ε '−Εk)dE , E⩽E'⩽E+dE

As I mentioned above, we are interested  in the local density of states :

  ρ(Ε , r )=∑
k

|Ψ k (r )|
2
δ (Ε '−Εk )=∑

k
|⟨Ψ k (r)|Ψ k (r )⟩|

2
δ (Ε '−Εk )

or the density of states on atom - l  : ρ(Ε , l )=∑
k

∫
cell of atom l

|Ψ k (r )|
2
δ(Ε '−Ε k)d3r

Using this way, we can define a surface state as a state with a large local density of states at the

surface  atom.  On  long  chains  or  in  crystals  this  is  possible,  when  the  amplitude  of  the

wavefunction decays strongly towards the bulk. If this decay is exponential as for complex k,

we speak of  proper  surface states.  On the  other  hand,  in  cases  where  the  amplitude  near

boundaries  is  much  larger  than  on  the  bulk  atoms.  Although,  these  amplitudes  persist

throughout the crystal, we speak of surface resonances.
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Specifically,  if  |a'−a|>|γ| two  of  the  roots  are  complex.  For  each,  the  corresponding

eigenfunction has appreciable amplitude only on a surface atom and the energy of these states

split off either above or below the bulk continuum  ( E=E k=E0−a−2 γcos(kd ) ). 

Tamm surface  states  occur  only  if  there  is  a  strong  enough disturbance  ( a '≠a )  of  the

potential right at the surface - exactly what one might expect at a semiconductor surface with

broken bonds. [16]
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2. Calculations and Results
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2.1 DFT calculations and surfaces

In this project I study surface states. The basic target was to simulate a structure which

would be infinite in the xy plane and finite along the z-axis. The periodicity will extend only on

the xy-plane.  

We consider unrelaxed (ideal) surfaces as well as relaxed ones, where first and last layer

of each slab are allowed to move in order to obtain the structure that minimizes the total energy.
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Figure  2.1.1:
slab  model  of
(100) plane,  xz-
plane  with  6
atom laywers

The planes (100) and (111) are studied in this project.  

We study both Au and Cu system. 

To find the surface states, I followed three different methods that are based

on wavefunctions and the probabilities:

1) Localization Probability

2) The Probability plot

3) The Probability Density along z-axis



2.2  Computational method

I  studied  two  different  planes,  the  (100)  and  the  (111)  plane.  The  plane  (100)  is

orthogonal, as opposed to the plane (111), which is rhombohedral.  Both planes contain one

atom per cell.

Slab  models  were  constructed  using  the  relevant  tool  from  Atomic  Simulation

Enviroment (ASE). For all cases, we use a unit cell where a slab of metal lies in the middle of

the unit cell, separated by a thick vacuum region along z-axis (see Fig. 2.1.1). An essential part

of the code is the vacuum that there is between the cells. The bigger is the vacuum, the better

the results, because we avoid interactions between slabs. 

To calculate the total energy, we used Grid-Projector Augmented Wave method (GPAW).

It  is  an  open  source  python  code  based  on  PAW method [17].  This  method  uses  pseudo-

wavefunctions  according to  the  Born-Oppenheimer approximation,  and make it  possible  to

reconstruct  the  wavefunction  more  smooth  near  to  the  core,  where  there  are  a  lot  of

correlations. 

GPAW  uses  real-space  grid  for  the  calculations.  This  method  has  significant

computational cost, especially in term of CPU time and memory space that occupies. However,

it is very accurate and can be very easily parallelized and take advantage of modern multi-core

computers. 

In gpaw, the parameters that we have to consider are number of grid points and the k-

points. The number of k-points is relative to the Brillouin zone. The number of the grid points

is inversally proportional to the grid width, which is defined:

h=
a

gpts+1
, where a is the length of the simulation box.
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 The accuracy of the results is depending to the number of the grid points. A big number of grid

points  leads  the  programm to  a  very  time consuming calculations,  so  we have  to  find  an

appropriate number of grid points in order to have accurate results and not so much time to

calculate.

In most materials, the grid width should be around 0,2 Å, in order to have good energy

converge.

The k-points is also an important parameter. It is related with the Brillouin zone and the

reciprocal lattice of the system, and also with the periodicity of the wavefunction. According to

the Bloch's theorem, in a periodic system the energy eigenvalues can be described by a periodic

function u(r), as: ψ (r )=e i k⃗⋅⃗r u(r ) .

As was the case for grid points, the more k⃗   vectors are used, the more accurate the 

calculations are. At the same time, the computation time increases with increasing number 

of k-points. So we have to find again the smallest possible number of k-points that provides 

the desired accuracy of the results.

For  the  calculations  below,   the  number  of  k-points  was  kpts=(9,9,1)  (total  of  81

k⃗  , vectors ), which provide periodicity to the xy plane only. 

Below are some Figures with slabs builded by the (100) and (111) planes. Figures 2.2.1

and 2.2.2 describe FCC structure. Figure 2.2.3 is a simulation of a 5-atomic layers slab of

Au(100), with 10 Å vacuum either the sides of slab. Figure 2.2.4 is exactly the same simulation

as Figure 2.2.3, but for Au(111).
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Figure 2.2.1: unit cell of the
FCC structure ((100) plane) Figure 2.2.2: unit cell repeated

along all axis((100) - plane)

Figure 2.1.3: Simulation cell picturing a (100) slab with 5 atomic layers

Figure 2.1.4:Simulation cell picturing a (111) slab with 5 atomic layers



2.3 Methods for locating surface states

This chapter includes the main results of this thesis. I follow specific methods to the

results. At below subchapters we present three methods that confirm the results and the case of

surface state. 

• Localization Probability:

This method gives Probability per atom. A wavefunction that describes a Bloch state

can be projected on atomic orbital. Using Dirac formalism the probability density could be

described as:

  |ψn k⃗ ( r⃗ )>=∑ ca ,l , m R(|⃗r−r⃗ a|)|Y l , m(θa , φa)>

⇒ Pa=∑
l ,m

|ca ,l , m |2and ∑
a

Pa=1

a = number of atom

R(r) = sphericaly symmetric radial part of the wavefunction

The indices a correspond to the atoms that an slab contains. The indices l,m are coming

from the spherical  harmonics.  We focused on τ  = 0.  In  case  τ  = 0 is  not  included in the

calculation, we use τ with the smallest magnitude. This way we examine the Bloch state with

the highest symmetry. The probability per atom is calculated finding the lowest k-point of the

system,  and  then  we  calculate  the  square  of  the  absolute  value  of  the  product  of  pseudo

wavefunction with the spherical harmonics for every band and all the atoms per band.  The sum

of the probabilities per band for the atoms must be equal to 1 ( ∑
a

Pa=1 ). The next step was

to find the maximum value of the probability, which is calculated for all the atoms per band, for

the surface atoms of the slab. After a certain thickness, the probability for a surface state is

getting to converge. If we measure a probability of 80-90 percentage for the first atom (or the

first two atoms) of slab, it would give us strong evidence for the existence of a surface state.
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• Probability Plots

This method is a graphical way to view a surface state. It is also a validation of the

previous method. We save the numbers of bands that presented the highest probability for the

edge atoms of slabs. Using the Atomic Simulation Enviroment (ASE) we create files (in .cube

format) with the wavefunctions per atom for the specific states one for each. The next step is to

plot these files using VMD (Visual Molecular Dynamics) and see the figure with the shell. The

plot veryfies that these wavefunctions are indeed localized on edge atoms. [19]

• Probability Density related with the distance on z-axis

This time we calculate the square of the pseudo wavefunction for the specific number of

band ( P(z)=|Ψ(z)| 2  ) . The x- and y- components are averaged out:

P(z)=∫∫ |ψ (x , y , z )|2 dx dy

We normalize P(z) so that ∫P(z )dz=1 within the simulation cell.
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2.3.1  Localization Probability

This method is based on the probability density of the electrons. In a surface state, the

electron is localized near the surfaces of the material. In other words, the electrons have to be

localized on the first or the last atom of the simulation cell. 

For each electronic state, we calculate the propability that the electron is localized at

each atom. We then chose those bands that yield high probabilities at the edge atoms.

Some results of the plane (100) for various slab thickness.Each layer contains contains

one atom per cell as it is shown in the structures of the Figures 2.3.1.1 and 2.3.1.2.

• For the first atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

10 52 -6,7475 -4,8850 -1,8625 ~ 55 %

11 58 -6,7905 -4,9488 -1,8417 ~ 73,5 %

12 63 -6,7776 -4,9137 -1,8639 ~ 61 %

13 70 -6,7798 -4,9259 -1,8541 ~ 72 %

14 76 -6,7815 -4,9261 -1,8554 ~ 74 %

15 80 -6,7800 -4,9084 -1,8716 ~ 74 %
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Table 2.3.1.1: Electronic states localized at the first atom of each (100) slab. For each slab, we present the
energy at the localized state, its difference from the Fermi level and the probability that this electron will be
found at 
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Observing the Table 2.3.1, it is

clear  that  after  the  fourteen  atom-

layers,  the  probability  of  a  surface

state  is  starting  to  converge.  The

surface  state  for  each  case  is  being

observed five to eight bands  above

(on average six bands). As the atoms

are increasing, the total number of the

bands  is  increasing  correspondingly.

So,  the  Surface  State  is  being

observed at “similar” number of band

as the number of atoms increases.  A

proof  of  this,  is  that  the  difference

between the enegy of the band that a

surface  state  is  being  observed  and

the  Fermi  level,  is  approximately

constant  as  the  number  of  atoms

increase  and  the  difference  starts

from the second decimal point. 

Observing the Figure 2.3.1.1, the first

atom has ~ 55% probability (the atom

with  the  number  0)  and  the  second

has  ~  16%.  So  the  first  two  atoms

(near  to  the  surface)present  ~  71%

probability. The Figure 2.3.1.2 shows

that  The  first  atom  has  ~  74%

probability  and  the  second  has  ~

21%. So the first two atoms (near to

the  surface)present  ~  95%

probability. It is a clear surface state!!

Figure 2.3.1.1: Probability of localization for a Au (100) slab with 
10 layers.

Figure 2.3.1.2: Same as Fig 2.3.1.1 for Au (100)slab with 15 layers.



We repeat the process and locate bands that are localized at the last layer of our simulation cell.

Layers Band Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

10 53 -6,7467 -4,8850 -1,8617 ~ 55 %

11 57 -6,7994 -4,9488 -1,8506 ~ 73,5 %

12 64 -6,7774 -4,9137 -1,8637 ~ 61 %

13 69 -6,7800 -4,9259 -1,8538 ~ 72 %

14 75 -6,7822 -4,9261 -1,8561 ~ 74 %

15 81 -6,7795 -4,9084 -1,8711 ~ 74 %
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Table 2.3.1.2: Same as the Table 2.3.1.1 for the last atom of the Au (100) slab.

Figure 2.3.1.3: Same as Fig 2.3.1.2 for a band localized at the last atom.

Continuing  the  process  for  the  last

atom on the (100) plane, we got the

results  quoting  on  the  Table  2.3.2.

Observing  the  table,  it  is  clear  that

what  was  refered  above  is  applied

and  in  this  case:  'Surface  State  is

being observed at “similar” number

of  band  as  the  number  of  atoms

increases.'  The  proof  is  exactly  the

same and related with the difference

between  the  band  energy  and  the

Fermi energy.

Comparing  the  two  Tables,

someone  could  observe  that  the

surface  states  for  either  the  first  or

the  last  atom,  occur  at  nearby  (or

'neighboring') bands. 

At the Figure 2.3.1.3, the last layer has ~ 74% probability (the atom with the number 14). It is a clear surface state

at the other side of the slab. 

Observing the Tables and the Figures of this subchapter, we can see that in small thickness slabs, the probability is

shared at the edge layers (Fig 2.3.1.1). Increasing the thickness of slabs, it is defined localization on the one edge

layer or the other of slab.



2.3.2  Probability Plots

In this subchapter is described the second way of the surface state appearance. This way

is graphic. This way is a graphical verification of the previous process, which is refered before. 

Figure  2.3.2.1  describes  a  10-atomic  layer  slab  with  the  peobability  density  almost

shared on edge atoms, the first atom has around 55% probability, the second has ~ 14% and the

last 20%. This situation occurs on band 52.  Figure 2.3.2.2 describes the same situation as Fig.

2.3.2.1 but for 15 layer slab and different number of band. In this figure there is a clear surface

state, because the first atom has ~ 86,4 % and the second ~ 21% probability density. The sum of

the is around 97,4%. Clear Surface state! 

Figures  2.3.2.3  and  2.3.2.4  describes  the  same  situation  as  the  Fig.  2.3.2.2  with

periodicity on specific axis.
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Figure 2.3.2.1: Contour plot of |ψ| 2 for band 52 in Au(100) 
slab with 10 layers. Compare to Fig. 2.3.1.1 .

Figure 2.3.2.3: Same as Fig. 2.3.2.2, periodic on y-axis.

Figure 2.3.2.4:
Same  as  Fig
2.3.2.2,
periodic  on  z-
axis

Figure 2.3.2.2: Same as Fig 2.3.2.1 for band 80 in Au(100) with 15 
layers.



2.3.3  Probability Density along z-axis

In  this subchapter we presented results from the third method. In the following table (Table

2.3.3.1) we present the positions of the Au slab with 10 atom – layer chain and Fig. 2.3.3.1

describes the probability density functional with the distance of the atoms on z – axis. 

atom X – axis Y – axis Z - axis
0 1.4425 1.4425 10.0000

1 0.0000 0.0000 12.0400

2 1.4425 1.4425 14.0800

3 0.0000 0.0000 16.1200

4 1.4425 1.4425 18.1600

5 0.0000 0.0000 20.2000

6 1.4425 1.4425 22.2400

7 0.0000 0.0000 24.2800

8 1.4425 1.4425 26.3200

9 0.0000 0.0000 28.3600

Figure 2.3.3.1 presents exactly the same situation as the Figures 2.3.1.1 and 2.3.2.1, this

time uses z-dependent probability density. Observing the Table 2.3.3.1, there is periodicity on

the xy plane, in contrast to the z-axis where the slab is bounded between z = 10 and z = 28,36

Å. 

Doing the same work for an Au chain with 15 atom – layer chain:
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Figure 2.3.3.1: Probability density for Au(100) with 10– layers 
slab and for band 52.

Table 2.3.3.1: Cartesian coordinates (in Å) of
atoms in a ten-layer Au(100) slab.



atom X – axis Y – axis Z - axis
0 0.0000 0.0000 10.0000

1 1.4425 1.4425 12.0400

2 0.0000 0.0000 14.0800

3 1.4425 1.4425 16.1200

4 0.0000 0.0000 18.1600

5 1.4425 1.4425 20.2000

6 0.0000 0.0000 22.2400

7 1.4425 1.4425 24.2800

8 0.0000 0.0000 26.3200

9 1.4425 1.4425 28.3600

10 0.0000 0.0000 30.4000

11 1.4425 1.4425 32.4400

12 0.0000 0.0000 34.4800

13 1.4425 1.4425 36.5200

14 0.0000 0.0000 38.5600
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Figure 2.3.3.2: Probability density for Au(100) with 15– layers 
slab and for band 80.

Figure 2.3.3.3: Probability density for the last atom of Au(100) with 
10– layers slab and for band 81.

Table 2.3.3.2:  Cartesian coordinates (in Å)
of atoms in a 15-layer Au(100) slab.

Fig.  2.3.3.2  and  2.3.3.3

describe a clear surface state on the

first and the last atom respectively,

using the third method (Probability

Density as a function of z).  Table

2.3.3.2  shows  the  atom-positions.

The first atom is at ten Å of the z-

axis,  where  the  surface  state  is

located.  Similarly,  last  atom,  is  at

about 38,5 Å of the slab.



2.3.4  Au(111)

In this subchapter we present exactly the same work, but for Au (111). Continuing the process,

surface states are confirmed by the same methods. Each layer contains one atom per cell as it is

shown in the structures in Figures 2.3.4.1.

• First atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similarly Bands

10 32 -9,0378 -4,9778 -4,0600 ~ 44 % 33 , 34 , 35

11 38 -9,0385 -5,0091 -4,0294 ~ 87 % 39

12 39 -9,0620 -4,9881 -4,0739 ~ 87 % 40

13 45 -9,0731 -5,0381 -4,0350 ~ 87 % 46

14 49 -9,0695 -5,0187 -4,0508 ~ 87 % 50

15 52 -9,0470 -5,0061 -4,0409 ~ 88 % 53

• Last atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similarly Bands

10 32 -9,0378 -4,9778 -4,0600 ~ 44 % 33 , 34 , 35

11 38 -9,0481 -5,0091 -4,0390 ~ 87 % 37

12 41 -9,0566 -4,9881 -4,0685 ~ 87 % 42

13 43 -9,0745 -5,0381 -4,0364 ~ 87 % 44

14 47 -9,0797 -5,0187 -4,0610 ~ 87 % 48

15 50 -9,0554 -5,0061 -4,0493 ~ 88 % 51

Starting with the case of the 10 atom – layers slab, is proved that the three methods which were

showed above confirms the same result.
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Table 2.3.4.1: Electronic States localized at the first atom of each (111) slab. For each slab, we present the energy at the
localized state, its difference from the Fermi Level and the probability that this electron will be found at the first atom

Table 2.3.4.2: Same as Table 2.3.4.1 for the last atom of the Au(111) slab..



Band no Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similarly Bands

First atom

32 -9,0378 -4,9778 -4,0600 ~ 44 % 33 , 34 , 35

Last atom

32 -9,0378 -4,9778 -4,0600 ~ 44 % 33 , 34 , 35

atom X – axis Y – axis Z - axis
0 0.0000 0.0000 10.0000

1 1.4425 0.8328 12.3556

2 0.0000 1.6657 14.7112

3 0.0000 0.0000 17.0668

4 1.4425 0.8328 19.4224

5 0.0000 1.6657 21.7779

6 0.0000 0.0000 24.1335

7 1.4425 0.8328 26.4891

8 0.0000 1.6657 28.8447

9 0.0000 0.0000 31.2003
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Figure 2.3.4.3: Probability density for Au (111)slab with 10 layers 
and for band 32.Table 2.3.4.4: Cartesian coordinates (in Å) of a ten-layer

slab.

Figure 2.3.4.1: Probability of localization for a Au(111) slab with 10
layers. 

Figure 2.3.4.2: Contour plot of |ψ| 2 for band 52 in Au(100) slab 
with 10 layers. Compare to Fig. 2.3.4.1 .

Table 2.3.4.3: Electronic States localized at the first and the last atom simultaneously with the same probability at
the same number of Band.  In small thickness slabs, the probability is shared at the edge layers, as Au(100) occurs.



Continuing with the case of the 15 atom – layers chain.

Band Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similarly Bands

First atom

52 -9,0470 -5,0061 -4,0409 ~ 88 % 53

Last atom

50 -9,0554 -5,0061 -4,0493 ~ 88 % 51
Table 2.3.4.6: Electronic States localized at the first and the last atom with the same probability, at near bands. 
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At the table below are the values of the Energy depending on the band

and the differentiation between the Energy of the SS and the Energy bands of the table. The little difference

between the Energy of the band that there is a surface state and the near bands is explained later. For now, the

explaination coming from the symmetries.

In this case, there is the same situation on the first and the last atom and it

is confirmed by the three ways. Although, the remarkable point in this

case is that the same probabilities appear at the bands 33, 34 and 35. It is

explained by the energy.  These bands  are  almost  degenerated  because

differ from the second decimal place and later.  

Bands Energy (eV) E – E Surf. St. (eV)

31 -9,3127 -0,275

32 -9.0377 0

33 -9.0373 0,0004

34 -9.0370 0,0007

35 -9.0366 0,0011

36 -8.7815 -0,2562

Table  2.3.4.5:  Near  Band  Energies  of
the electronic state that localized at the
first and the last atom for a Au(111) slab
with 10 layers and the Energy difference
with the SS.
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Figure 2.3.4.6: Contour plot of |ψ| 2 for band 52 in Au(111) slab 
with 15 layers. Compare to Fig. 2.3.4.4 .

Figure 2.3.4.4: Probability of localization for a Au(111) slab with 15 
layers.

Figure 2.3.4.7: Contour plot of |ψ| 2 for band 50 in Au(100) 
slab with 15 layers. Compare to Fig. 2.3.4.5 .

Figure 2.3.4.5: Same as Fig. 2.3.4.4 for the last atom-layer slab.

Figure 2.3.4.8: Probability density for Au (111) slab with 15 layers and 
for band 52. Compare to Fig. 2.3.4.4 and 2.3.4.6 .

Figure 2.3.4.9: Probability density for Au (111) slab with 15 
layers and for band 52. Compare to Fig. 2.3.4.5 and 2.3.4.7 .



Table  2.3.4.8  contains  values  of  the  Energy

bands  that  observe  the  surface  states  and  the

differentiation between the Energy of the Surface

State and the Energy bands of the table. The dashes

are because the interest is to compare the Energy of

the surface state with the energy of the band that

present  the  same  probability.  So,  it  appears  the

same situation as the case of the 10 atom-laywer slab. In this case, the same probability appears

only at one band, which is neighbor. The reason is the that the bands are almost degenerated, as I

refered it previously. Although all the bands, that is presented a surface state on the first or the

last atom, are neighboring. The explaination of this is the symmetries. There is a symmetry on z-

axis and another one on xy-plane, on where there is periodicity. If I fold the chain, the one edge

come to the other and the new chain is similar to the previous one. If I rotate the chain relative to

z-axis, the chain never changes. These are the two explaination for the symmetries respectively.
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First atom Last atom

Bands Energy (eV) E – E Surf. St. (eV) E – E Surf. St. (eV)

50 -9.0554 - 0

51 -9.0551 - 0,0003

52 -9.0470 0 -

53 -9.0466 0,0004 -

 Table 2.3.4.8: Near Band Energies of the electronic state
that localized at the first and the last atom for a Au(111) slab
with 10 layers and the Energy difference with the SS.

Atom X – axis Y – axis Z - axis
0 1.4425 0.8328 10.0000

1 0.0000 1.6657 12.3556

2 0.0000 0.0000 14.7112

3 1.4425 0.8328 17.0668

4 0.0000 1.6657 19.4224

5 0.0000 0.0000 21.7779

6 1.4425 0.8328 24.1335

7 0.0000 1.6657 26.4891

8 0.0000 0.0000 28.8447

9 1.4425 0.8328 31.2003

10 0.0000 1.6657 33.5559

11 0.0000 0.0000 35.9115

12 1.4425 0.8328 38.2671

13 0.0000 1.6657 40.6227

14 0.0000 0.0000 42.9782

Table 2.3.4.7: Cartesian coordinates (in Å) of atoms in
a ten-layer Au(111) slab.

Observing the Figures below and the Table 2.3.4.5,

there is a clear Surface State on the first and the last

atom correspondingly.  It  is  confirmed by the  three

ways.

The value of the probability is about 88%. 

It is remarkable that the same probabilities for

a  surface  state  appearance  present  at  neighboring

bands for the first and the last atom respectively. As I

refered  below for  the  case  of  the  10  atom-laywer

slab,   these  bands  are  almost  degenerated  because

differ from the second decimal place and later. Exactly

the same occurs here.



2.4  Relaxed Surfaces

In this subchapter we repeat the calculation after relaxation of the atomic coordinates. Atom

near the edges of each slab are allowed to move, so that the total energy is minimized. Using

this process, surface states could be distinguished even to slabs with a few atoms. Below are

data in tables, comparing the results before and after the minimization.

2.4.1  Relaxed Au(100):

Surface State on the 1st atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

10
52 -6,7475 -4,8850 -1,8625 ~ 55 %

55 -6,7457 -4,9442 -1,8015 ~ 85,5 %

11
58 -6,7905 -4,9488 -1,8417 ~ 73,5 %

59 -6,7898 -5,0386 -1,7512 ~ 86,6 %

12
63 -6,7776 -4,9137 -1,8639 ~ 61 %

63 -6,7750 -4,9788 -1,7962 ~ 85,2 %

13
70 -6,7798 -4,9259 -1,8541 ~ 72 %

69 -6,7808 -5,0054 -1,7754 ~ 86,2 %

14
76 -6,7815 -4,9261 -1,8554 ~ 74 %

76 -6,7811 -4,9965 -1,7846 ~ 84,1 %

15
80 -6,7800 -4,9084 -1,8716 ~ 74 %

81 -6,7730 -4,9966 -1,7764 ~ 86,4 %
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Table 2.4.1.1: Surface State for Au (100) slabs. For every atom-laywer slab, the first line gives the surface state
before the relaxation and the second after relaxation of atomic coordinates.



atom X – axis Y – axis Z - axis
0 0.0000 0.0000 9,8390

1 1.4425 1.4425 12.0400

2 0.0000 0.0000 14.0800

3 1.4425 1.4425 16.1200

4 0.0000 0.0000 18.1600

5 1.4425 1.4425 20.2000

6 0.0000 0.0000 22.2400

7 1.4425 1.4425 24.2800

8 0.0000 0.0000 26.3200

9 1.4425 1.4425 28.3600

10 0.0000 0.0000 30.4000

11 1.4425 1.4425 32.4400

12 0.0000 0.0000 34.4800

13 1.4425 1.4425 36.5200

14 0.0000 0.0000 38.7210

Observing the Table 2.4.1.1 it is clear that the probability of a surface state converges

from the 10 atom-layer chain. And a matter of fact is that after the relaxation the probability is

getting higher than before. Furthermore, surface state is presented at lower bands, so the SS

Energy minimizes. A characteristic case is the chain of 12 atoms, where the SS presents on the

same band as before the minimization, although the Energy of the band that appear the SS is

minimized. Also, the difference between the SS Energy and the Energy Fermi is about 1,78 eV.

The Table 2.4.1.1 refers to the first atom of each slab. Exactly the same are applied to the last 

atom SS. The corresponding table is in the appendix.
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The Table 2.4.1.2 has positions of 15 atom-layers on

the  (100)  plane  after  the  minimization.  Comparing

with the Table 2.3.3.2 is clear that the only difference

between  the  two  Tables  is  the  z-component  of  the

surface  atoms.  The  minimization  is  applied  on  the

edge atoms. So, these atoms are moving to minimize

the total  energy of  the  system.  The distance of  the

edge atoms to the rest of chain is the same and is 2.20

Å on z-axis.  The atoms of the relaxed slab has the

same distance between them, 2.04 Å.  

Table 2.4.1.2: Atom positions of the 15 atom – layer slabs,
builded by the Au (100) after relaxation.



2.4.2  Relaxed Au(111)

Surface State on the 1st atom:

Layers Band Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similarly Bands

10
32 -9,0378 -4,9778 -4,0600 ~ 44 % 33 , 34 , 35

32 -8,9046 -5,0505 -3,8541 ~ 94,5 % 33

11
38 -9,0385 -5,0091 -4,0294 ~ 87 % 39

36 -8,9280 -5,1017 -3,8262 ~ 93,3 % 37

12
39 -9,0620 -4,9881 -4,0739 ~ 87 % 40

40 -8,9498 -5,1027 -3,8471 ~ 94,6 % 41

13
45 -9,0731 -5,0381 -4,0350 ~ 87 % 46

43 -8,8886 -5,0691 -3,8195 ~ 95 % 44

14
49 -9,0695 -5,0187 -4,0508 ~ 87 % 50

47 -8,9397 -5,1029 -3,8368 ~ 94,2 % -

15
52 -9,0470 -5,0061 -4,0409 ~ 88 % 53

51 -8,9290 -5,1151 -3,8139 ~ 95 % 52

atom X – axis Y – axis Z - axis
0 0.0000 0.0000 9,8090

9 0.0000 0.0000 31.3920
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Table 2.4.2.2: Cartesian coordinates (in Å) of edge atom
for a relaxed 15-layer slab. 

In this plane was followed exactly the same process

as the (100).  The same comments apply as before.

The distance of the edge atoms to the rest of chain is

the same and is 2.55 Å on z-axis. 

The atoms of the rest chain has the same distance between them, 2.356 Å. This is the case, in which the same

situation appears at a near band. It was explained before, at 2.3.4 subchapter. The explanation is coming from

the two symmetries, the fold and rotate of the chain relative to the z-axis. The rotation gives a symmetry on

the xy-plane. So, the two components of the plane gives the degeneracy and this gives the same results. The

corresponding table for the last atom is in the appendix.

Table  2.4.2.1:  Surface  State  for  Au (111)  slabs.  For every  atom-laywer  slab,  the  first  line  gives  the  surface state  before  the
relaxation and the second after relaxation of atomic coordinates.



2.5  Workfunction

The next  step of  the  project  is  to  calculate  the  workfunction for  the  two surfaces  I

considered. The workfunction, can be obtained from the potential energy curve from either

sides of the slab. 

In the theory, the slabs are semi-infinite, so the potential energy could be measured from

the one side. Although, in my case, in which the chain is finite, the potential energy have to be

measured in either sides. 

The two planes might have different workfunctions. This is caused to the structure and

the distance between the atoms respectively. 

2.5.1  Potential Energy

In this subchapter we present results for an electron as a function of its z-coordinate. Below are

Tables with the results, in which V left is the workfunction from the left side of the slab and V  right

is the workfunction from  the right side. 

For the Plane 100:
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• Before minimization

Layers V left V right E Fermi

10 4,856 4,858 -4,885

11 4,839 4,840 -4,949

12 4,798 4,798 -4,914

13 4,801 4,802 -4,926

14 4,801 4,801 -4,926

15 4,791 4,794 -4,908

• After minimization:

Layers V left V right E Fermi

10 4,878 4,826 -4,944

11 5,059 5,086 -5,035

12 5,008 5,007 -4,979

13 4,908 5,056 -5,005

14 4,973 4,958 -4,997

15 4,919 4,966 -4,997

Table2.5.1.2: Same as Table 2.5.1.1 for relaxed Au (100)
slabs.

Table2.5.1.1:  Potential  Energy  from  the  two  sides  of  the
slabs and the Fermi level before relaxed Au (100) slabs.
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Figure 2.5.1.1: Total electronic potential for 13-layer Au (100) slab before minimization.

In  the  Figure  2.5.1.1,  it  is

clear that at the positions that

the atoms are located, there is

a  minimum peak.  Observing

the total Figure, the potential

energy  looks  like  a  cosine

function,  similarly  to  the

Schockley  model.  The

constant value of the potential

energy  from  the  left  side  is

about  4,801  eV  and  at  the

right  4,802  eV.  These

energies  are  calculated  from

the  differnce  between  the

Fermi level and the point that

begins the potential energy. 

Figure 2.5.1.2: Same as Fig. 2.51.1 for 15-layer Au (100) slab.

In the Figure 2.5.1.2 occurs

exactly the same situation as

the Figure 2.5.1.1 . The only

difference is the number of

the atoms. So as the number

of  the  atoms  grows,  the

length of the chain is getting

bigger. The potential energy

from the  left  side  is  about

4,791  eV  and  at  the  right

4,794 eV. The number of the

peaks  corresponds  to  the

number of the atoms.



For the Plane (111):

So, these atoms are further away than the others and minimizing the potential energy because

of the distance. The potential energy from the left side is about 5,092 eV and at the right 5,092

eV. 

Comparing the Figures 2.5.1.2 and 2.5.1.3, it is clear that there is a difference for the length of

the peaks for the plane (100) and the (111). The reason is the structure of the two planes. The

atoms of the (111) plane are closer than the (100) plane, so the potential energy increases.
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• Before minimization

Atoms V left V right E Fermi

10 4,894 4,894 -4,978

11 4,889 4,891 -5,009

12 4,949 4,937 -4,988

13 5,048 5,058 -5,038

14 5,003 5,042 -5,019

15 4,945 5,007 -5,006

• After minimization:

Atoms V left V right E Fermi

10 5,032 5,032 -5,050

11 5,109 5,124 -5,102

12 5,118 5,126 -5,103

13 5,049 5,054 -5,069

14 5,187 5,037 -5,103

15 5,092 5,092 -5,115

Table2.5.1.4:  Same as  Table  2.5.1.1  for  relaxed  Au (111)
slabs..

Figure 2.5.1.3: Same as Fig. 2.5.1.2 for 15 layer relaxed Au (111) slab.

The  Figure  2.5.1.3  present  the

workfunction for the (111) plane at the

case of 15 atoms chain after the use of

the minimization. The location of every

peak  represents  the  atoms  and  the

height of the peaks shows the potential

energy of the atoms. The first and the

last atom feature tall peaks becuase of

the  minimization.  Using  the

minimization for the first and the last

atom,  these  atoms  are  moving  to

minimize  the  total  energy  of  the

system. 

Table  2.5.1.3:  Same  as  Table  2.5.1.1  before  relaxed  Au
(111) slabs.



The next step of the project concerns the compare between the computational measurement of

the workfunction and the workfunction which coming from the fitted values of the density

probability. 

2.5.2 COMPARISON TO THE SCHOCKLEY MODEL

Tables 2.5.1.1 – 2.5.1.4 contains the workfunction at the left and the right side of the

chain. The values of the this table are rounded at the third decimal point. At the subchapter

2.3.3 is presented the third way of the proof of the surface states. There are some diagrams of

the probability density. Using the fitted values of the diagrams, it will be found the function

that describes the graph.

William Schockley developed a theory for semiconductors. However, as we can see at

the below subchapters, this theory is allowed to be used aslo at metals and the proof is coming

from the  density  probability. The  Schockley  Surface  States  theory  predicts  for  the  density

probability that:

{|Ψ 'i(z≤0)|
2
∼e2qz cos2

(
π
α

z±δ )

|Ψ 'i(z≤0)|
2
∼e2qz sin2

(
π
α

z±δ )

and |Ψ 'i(z>0)|
2
∼e

−2√ 2 m
ℏ

2 (V 0− E) z

where |(V 0−Ek)|=E , Ek=
ℏ

2 k2

2m

and E=Eq=
ℏ

2q2

2m
 at the other side of z 0  and it is valid because of the continuity of functions.

So, V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|

The Figure 1.5.5 describes the real part of one electron wavefunction for a surface state

localized at the surface. Here, we rather use the probability density |ψ|  2. The computational

method didn' t locate the first atom at the z=10, because the code leaves spacing between the

slabs.
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Figure  1.5.5  :  Real  part  of  one
electron wavefunction for a surface
state localized at the surface



 So, the first atom is located around the point of z  0=10 (10 Å on z-axis). For example, for Au

(100) the first atom is located at z 0 = 9,839. The equation for  |ψ| 2 will be: 

{|Ψ 'i(z≤0)|
2
∼e2q (z− z0) cos2

(
π
α

(z−z0)±δ )

|Ψ 'i(z≤0)|
2
∼e2q (z −z0) sin2

(
π
α

(z−z0)±δ )

 and |Ψ 'i(z>0)|2∼e−2 k (z− z0)

For the fitted values, it was used the below function at the left side of the chain:

{y= A0⋅e
−

(z− z0)

A 1 ⋅sin2
(

π
A2

(z−z0)+ A3) , for z≥z0

y= A0⋅e
(z−z0)

A4 , for z<z0

At the Figure 2.5.2.1, the triangles up describes the Probability Density, the red dashed line

describes the function for z≥z0  and the green for z< z0 .

From  the  values  of  A 1 and  A 4  ,  it  will  be  determined  the  values  of  q  and  k

correspondingly. The parameters A 0, A 1, A 2, A 3, A 4:
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Figure 2.5.2.1: Fitted values on the first atom of the density probability of 
the Au (100) plane at the case of the 15 layers using minimization. 

Figure 2.5.2.2: Probability Density of the 15 layers at the Au (100) 
plane with minimization.

Α 0 : Amplitude of the descending oscillation

Α 1 and A 4 : Decay time 

A 2 : Distance between the atoms

A 3 : Phase difference



In the case that describes the Figure 2.5.2.1, it is:

{y=0,861⋅e
−

(z−9,810)
1,110 ⋅sin2

(
π

2,26
(z−9,810)+1,431) , for z≥z0

y=0,861⋅e
(z−9,603)

0,409 , for z<z0

Consequently, { 2q=
1

1,11

2k=
1

0,409

⇒{q=0,451
k=1,223

 and  V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|=4,920918eV

The computational value of the workfunction holding 6 decimal points is 4,919408 eV. The

Table 2.5.1.2 contains values of workfunction holding 3 decimal points.

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %=
|4,919408−4,920918|

4,919408
⋅100%∼0,0003%
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At  the  other  side  of  the  chain,  the  Figure

2.5.2.3 describes a surface state using the way

of the density probability. In this case is used:

{y= A0⋅e
(z− z0)

A 1 ⋅sin 2
(

π
A2

(z−z0)+ A3) , for z≤z0

y= A0⋅e
−

(z−z0)

A4 , for z>z0

The  z 0 is  about  40  Å.  Specifically,  the  last

atom is located at z 0 = 38,721. 

Following the same process, the functions that

describe the Figure are:
Figure 2.5.2.3: Fitted values on the last atom of the density probability of the Au
(100) at the case of the 15 layers using the minimization.



{y=0,8⋅e
(z−38,501)

1,116 ⋅sin2
(

π
2,357

(z−38,501)+1,541) , for z≤z0

y=0,520⋅e
−

(z−38,202)

0,399 , for z>z0

Consequently, {2q=
1

1,116

2k=
1

0,399

⇒{q=0,449
k=1,254

 and  V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|=5,225702 eV

The computational value of the workfunction holding 6 decimal points is 4,965701 eV. 

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %=
|4,965701−5,225702|

4,965701
⋅100%∼0,052%

The parameter A 2   is very close to the distance that the code locate the atoms. It is a

parameter that  corresponds to the distance of the atoms. The distance between the the atoms on

the (100) plane is 2,04 Å. The first atom is located at the point z=10, although it is moving at

z=9,839 because of the minimization. The next atoms are at the points z=12,04  , z=14,08 . . .

The last atom is at z=38,721. Without the minimization, the last atom would be at z=38,56. The

last atom is 2,201 Å away to the semifinal. In the two cases, first and last atom gets away from

the rest of the chain to minimize the Energy. The first atom is 2,201 Å away from the second,

the distance between the rest except the last are 2,04 Å. 
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The (111) Plane:

The process for the (111) plane is exactly the same as the (100). The difference between

the two planes is the structure, in other words the atom-coordinates are changed to create the

slab. 

The functions that describe the Figure are:

{y=0,923⋅e
−

(z−9,805)
0,786 ⋅sin2

(
π

2,246
(z−9,805)+1,351) , for z≥z0

y=0,925⋅e
(z−9,775)

0,381 , for z<z0

Therefore, {2q=
1

0,786

2k=
1

0,381

⇒ {q=0,636
k=1,311

 and  V 0=|Ek−Eq|=5,007697 eV
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Figure 2.5.2.4: Fitted values on the first atom of the density probability of Au (111)  at the
case of  the 15 layers using minimization.  The triangles up describes the Probability
Density,  the  red  dashed  line  describes  the  function  for  z≥z0  and  the  green  for

z< z0

The  distance  between  the  the

atoms on the (111) plane is 2,356

Å. The first atom is located at the

point z=10, although it is moving

at  z=9,792  because  of  the

minimization. The next atoms are

at  the  points  z=12,356   ,

z=14,711 . . .  The last atom is at

z=42,986.  Without  the

minimization, the last atom would

be  at  z=43,186.  So,  the  distance

between  the  edge  atoms  and  the

rest atoms of the chain is 2,564 Å,

and  the  distance  between  the

atoms of the rest chain is 2,356 Å. 



The computational value of the workfunction holding 6 decimal points is 5,091697 eV. 

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %=
|5,091697−5,007697|

5,091697
⋅100%∼1,65%

{y=0,910⋅e
(z−43,167)

0,746 ⋅sin2
(

π
2,315

(z−43,167)+1,794) , for z≤z0

y=0,901⋅e
−

( z−43,267)

0,378 , for z> z0

Consequently, {2q=
1

0,746

2k=
1

0,378

⇒ {q=0,671
k=1,324

 and  V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|=4,967895eV
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Figure 2.5.2.5: Fitted values on the last atom of the Density Probability of Au (111)  at the case of the 15
layers using minimization. 



The computational value of the workfunction holding 6 decimal points is 5,091630 eV. 

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %∼2,43% .

Figure 2.5.2.6 describes the case of the 10 atom-layer slab. The characteristic in this

Figure is that there is the same probability density on either the sides of the slab. In this case,

wasn' t used the minimization, so the first and the last atom didn' t move away from the rest

chain. The first atom is located on z = 10 (at z-axis) and the last on z = 31,2003. So, z  1 = 10

and z 2 = 31,2.

From the left side of the slab:
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Figure 2.5.2.6:  Fitted values on the last  atom of  the density  probability  of  the Au(111) for a 10- layer before
relaxation.



{y=0,421⋅e
−

(z−10)
1,069 ⋅sin2

(
π

2,356
(z−10)+1,388) , for z≤z1

y=0,409⋅e
(z−10)

0,409 , for z>z1

Consequently, {2q=
1

1,069

2k=
1

0,408

⇒{q=0,468
k=1,226

 and  V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|=4,894802 eV

The computational value of the workfunction holding 6 decimal points is 4,893904 eV. 

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %∼0,02% .

From the right side of the slab:

{y=0,409⋅e
(z−31,2)

1,062 ⋅sin2
(

π
2,356

(z−31,2)+1,671) , for z≥z2

y=0,409⋅e
−

(z−31,2)

0,406 , for z<z2

Consequently, {2q=
1

1,062

2k=
1

0,406

⇒{q=0,471
k=1,232

 and  V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|=4,934549 eV

The computational value of the workfunction holding 6 decimal points is 4,893903 eV. 

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %∼0,83% .
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2.6  Cu slabs

In this  chapter  of  the  project,  we present the  same work on the  same planes  at  the

Cooper. The structure of the cooper is also FCC with lattice constant at 3,597 Å. The atomic

number is 29, so the electron configuration is [Ar] 3d 10 4s 1  , where Ar is Argon. Copper is at

the same column of the Periodic Table, so the number of the valence electrons is the same. The

computational solution of the problem, using GPAW, uses 11 valence electrons. Although, there

is 1 valence electron. The reason is that the d-level is completed and there is only one electron

in 4s. So, this electron is used as valence. 

All the calculations have done using the minimization.

2.6.1  Cu(100)

Beginning with Cu(100), the Tables 2.6.1.1 and 2.6.1.2 describes the features of the first

and the last atom respectively. 

• First atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

5 27 -5,8189 -4,3430 -1,4753 ~ 46,7 %

10 56 -5,7838 -4,3219 -1,4619 ~ 90,3 %

11 61 -5,8303 -4,4314 -1,3989 ~ 92,7 %

12 68 -5,8064 -4,3604 -1,4460 ~ 91,8 %

13 74 -5,7860 -4,3615 -1,4245 ~ 91,6 %

14 78 -5,8130 -4,3648 -1,4482 ~ 90,2 %

15 84 -5,8109 -4,3832 -1,4282 ~ 92,4 %
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Table 2.6.1.1: Electronic States localized at the first atom of each Cu(100) slab. For each slab, we present the energy at
the localized state, its difference from the Fermi Level and the probability that this electron will be found at the first
atom.



• Last atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

5 27 - 5,8189 - 4,3430 - 1,4753 ~ 46,7 %

10 55 - 5,7912 - 4,3219 - 1,4693 ~ 90,3 %

11 62 - 5,8292 - 4,4314 - 1,3978 ~ 92,7 %

12 67 - 5,8114 - 4,3604 - 1,4510 ~ 91,7 %

13 73 - 5,7996 - 4,3615 - 1,4381 ~ 91,6 %

14 79 - 5,8079 - 4,3648 - 1,4310 ~ 90,2 %

15 85 - 5,8102 - 4,3832 - 1,4270 ~ 92,4 %
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Table 2.6.1.2: Same as Table 2.6.1.1 for the last atom of Cu(100) slab.

Figure 2.6.1.1: Probability of localization for a Cu(100) slab with
15 layers.

Observing the Tables 2.6.1.1 and

2.6.1.2, it is clear that at the ten atom-

layers, the probability of a surface state

is starting to converge. The surface state

for each case is being observed five to

eight  bands   above  (on  average  six

bands).  As  layers  increases,  the  total

number  of  the  bands  increases

correspondingly.  So,  the  SS  is  being

observed at “similar” number of band as

the number of atoms increases. 

A  proof  of  this,  is  that  the

difference  between  the  enegy  of  the

band  that  a  surface  state  is  being

observed  and  the  Fermi  level,  is

approximately  constant  as  the  number

of  atoms  increase  and  the  difference

starts from the second decimal point.

Figure 2.6.1.2: Contour plot of |ψ| 2 for band 85 in Cu(100)
slab with 15 layers. Compare to Fig. 2.6.1.1 .



Comparing the two tables, someone could observe that the surface states for either the

first or the last layer, occur at nearby (or 'neighboring') bands. 

It is the same situation as the Au nanostructures.

atom X – axis Y – axis Z - axis
0 0,0000 0,0000 9,9490

1 1,2763 1,2763 11,8050

2 0,0000 0,0000 13,6100

3 1,2763 1,2763 15,4150

4 0,0000 0,0000 17,2200

5 1,2763 1,2763 19,0250

6 0,0000 0,0000 20,8300

7 1,2763 1,2763 22,6350

8 0,0000 0,0000 24,4400

9 1,2763 1,2763 26,2450

10 0,0000 0,0000 28,102

Figure 2.6.1.3 presents exactly the same situation as the Figures 2.6.1.1 and 2.6.1.2, but

using another way. Observing the Table 2.6.1.3, there is periodicity on the xy plane, in contrast

of the z-axis, where the slab is developing. 

Firstly, the edge atoms are at the points z=10.00 and z=28.05 respectively. After, five

repetition,  the  system  converges  and  these  atoms  are  situated  at  positions  z=9.9490  and

z=28.1020 correspondingly. The relaxationation is applied on the edge atoms. These atoms are

moving to minimize the total energy of the system. The distance of the edge atoms to the rest of

chain is the same and is 1.856 Å on z-axis. The atoms of the rest chain has the same distance

between them, 1.805 Å.  

Subsequently, the workfunction is the next step.
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Figure 2.6.1.3: Probability density for Cu(100) slab with 11– layers and
for band 62.

Table 2.6.1.3: Cartesian coordinates (in Å) of atoms in
an 11-layer Cu(100) slab.



Atoms V left (eV) V right (eV) E Fermi (eV)

5 4,324 4,324 - 4,3430

10 4,314 4,312 - 4,3219

11 4,409 4,409 - 4,4314

12 4,348 4,344 - 4,3604

13 4,338 4,338 - 4,3615

14 4,352 4,351 - 4,3648

15 4,360 4,359 - 4,3832

The potential energy from the left side is about 4,360 eV and at the right 4,359 eV. These

energies are calculated from the differnce between the Fermi level and the point that begins the

potential energy. 
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The Table 2.6.1.4 contains the workfunction

from two sides of  slab.  Our chain is  finite.

Schockley's  theory  study  models  for  semi-

infinite chains, consequently there is potential

only at the the one side, in contrast with our

slabs where there is at either the sides.

Table 2.6.1.4:  Potential  Energy from the two sides  of  the
slabs and the Fermi level for relaxed Cu (100) slabs.

Figure 2.6.1.4: Total electronic potential for relaxed 15-layer Cu (100) slab.

In Figure 2.6.1.4, it is clear that

at  the  positions  that  the  atoms

are located, there is a minimum

peak. The height of the curve of

the  edge  atoms is  smaller  than

the others. It  occurs because of

the  relaxation  and  the  distance

of the edge atoms and the rest of

the  slab.  As  the  distance  is

getting  bigger  and  biggrer,  the

potential energy getting smaller.

Observing  the  total  Figure,  the

potential  energy  looks  like  a

cosine function, similarly to the

Schockley model. 



From the theory is known that:

{|Ψ 'i(z≤0)|2∼e2q (z− z0) cos2(
π
α

(z−z0)±δ )

|Ψ 'i(z≤0)|
2
∼e2q (z −z0) sin2

(
π
α

(z−z0)±δ )

 and |Ψ 'i(z>0)|
2
∼e−2k (z− z0)

atom X – axis Y – axis Z - axis
0 0.0000 0.0000 9,955

15 0.0000 0.0000 35,314

The last is at the position z 0 = 35,314.
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Figure 2.6.1.5: Fitted values on the last atom of the Density Probability of Cu(100)  at the case of a 15-layers slab
after relaxation. 

The same comments apply as before. The distance

of the edge atoms to the rest of slab is the same

and is 1,85 Å on z-axis. The atoms of the rest slab

are 1,81 Å away. 
Table 2.6.1.5: Cartesian coordinates (in Å) of edge atom
for a relaxed 15-layer slab. 



In the case that describes the Figure , it is:

{y=1,125⋅e
(z−35,377)

0,815 ⋅sin2
(

π
2,220

(z−35,377)+1,671), for z≤z0

y=1,122⋅e
−

( z−35,4)

0,403 , for z>z0

Consequently, {2q=
1

0,815

2k=
1

0,403

⇒ {q=0,614
k=1,241

 and  V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|=4,443618eV

The computational value of the workfunction holding 6 decimal points is 4,359434 eV. The

Table 2.6.1.4  contains values of workfunction holding 3 decimal points.

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %=
|4,359434−4,443618|

4,359434
⋅100%∼1,9%

For the Figures 2.6.1.1, 2.6.1.2 and 2.6.1.5, the corresponding Figures for the atoms of the

opposite edge are at the appendix.

2.6.2  Cu(111)

Continuing with the plane (111), the Tables describes the features of the first and the last atom

respectively. 

• First atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similar Bands

5 14 - 7,2891 - 4,6639 - 2,6252 ~ 73,1 % 15

10 35 - 7,1466 - 4,5510 - 2,5956 ~ 88,9 % 36

11 37 - 7,1971 - 4,5781 - 2,6190 ~ 87,1 % 38

12 41 - 7,1841 - 4,5523 - 2,6318 ~ 87,2 % 42

13 45 - 7,2097 - 4,5650 - 2,6447 ~ 82,2 % 47
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Table 2.6.2.1:  Electronic States localized at the first atom of each Cu(111) slab. For each slab, we present the energy at the
localized state, its difference from the Fermi Level and the probability that this electron will be found at the first atom.



• Last atom

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similar Bands

5 16 - 7,2824 - 4,6639 - 2,6185 ~ 73,1 % 17

10 33 - 7,1576 - 4,5510 - 2,6066 ~ 88,8 % 34

11 39 - 7,1895 - 4,5781 - 2,6114 ~ 87,1 % 40

12 43 - 7,1820 - 4,5523 - 2,6297 ~ 87,1 % 44

13 44 - 7,2099 - 4,5650 - 2,6449 ~ 82,3 % 46
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Table 2.6.2.2:Same as Table 2.6.2.1 for the last atom of Cu(111) slab.

Figure 2.6.2.1: Probability of localization for a Cu(111) slab with 10 layers.

Figure 2.6.2.2: Contour plot of |ψ| 2 for band 85 in Cu(111) slab with 11 layers.

Observing  the  Tables  2.6.2.1

and 2.6.2.2 , it is easy to realize

that  the  explanation  is  exactly

the same as before. At the 10-

layer  slab,  the probability of  a

surface  state  is  starting  to

converge. The surface state for

each case is being observed two

to six bands  above (on average

5  bands).  As  the  layers

increase, the total number of the

bands  increase

correspondingly.  So,  the  SS  is

being  observed  at  “similar”

number of band as the number

of atoms increases. 



A proof of this, is that the difference between the enegy of the band that a SS is being observed

and the  Fermi  level,  is  approximately  constant  as  the  number  of  layers  increases  and  the

difference starts from the second decimal point.

This is the case, in which the same situation appears at near band.  Comparing again the

two Tables, someone could observe that the surface states for either the first or the last atom,

occur at nearby (or 'neighboring') bands. It was explained before, at subchapter 2.3.4 and 2.4.2.

The explanation is coming from the two symmetries, the fold and rotate of the chain relative to the

z-axis. The rotation gives a symmetry on the xy-plane. So, the two components of the plane gives

the degeneracy and this gives the same results. 

 

atom X – axis Y – axis Z - axis
0 1,2763 0,7369 9,9605

1 0,0000 1,4738 12,0842

2 0,0000 0,0000 14,1685

3 1,2763 0,7369 16,2527

4 0,0000 1,4738 18,3369

5 0,0000 0,0000 20,4212

6 1,2763 0,7369 22,5054

7 0,0000 1,4738 24,5896

8 0,0000 0,0000 26,6739

9 1,2763 0,7369 28,7581

10 0,0000 1,4738 30,8423

11 0,0000 0,0000 32,9658

Figure 2.6.2.3 presents exactly the same situation as the Figures 2.6.2.1 and 2.6.2.2, but using

another way. Observing Table 2.6.2.3, there is periodicity on the xy plane, in contrast of the z-

axis, where the slab is developing. 

Firstly, the edge atoms are at the points z=10.00 and z=32.93 respectively. After, two

repetition of the minimizaion, the system converges and these atoms are situated at positions

z=9.96 and z=32.97 correspondingly.
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Figure 2.6.2.3: Probability density for Cu(111) slab with 12– layers
and for band 42.

Table 2.6.2.3: Cartesian coordinates (in Å) of atoms in
a 12-layer Cu(111) slab.



 These atoms are moving to minimize the total energy of the system. The distance of the edge

atoms to the rest of slab is the same and is 2.1237 Å on z-axis. The atoms of the rest chain has

the same distance between them, 2.0842 Å.  

The workfunction is the next step.
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Figure 2.6.2.4: Total electronic potential for relaxed 13-layer Cu(111) slab.

Layers V left (eV) V right (eV) E Fermi (eV)

5 4,641 4,641 - 4,6639

10 4,529 4,529 - 4,5510

11 4,556 4,556 - 4,5781

12 4,535 4,529 - 4,5523

13 4,520 4,503 - 4,5650

Table  2.6.2.4:  Potential  Energy  from the  two sides  of  the
slabs and the Fermi level for relaxed Cu (111) slabs.

Table  2.6.2.4  contains  the

workfunction from two sides the

slab.

In Figure 2.6.2.4, it is clear that

at  positions  that  atoms  are

located, there is a minimum peak.

The explanation of the height of

the curve of the edge atoms is the

same  as  previously  at  (100)

plane. Observing the total Figure

2.6.2.4,  the  potential  energy

looks  like  a  cosine  function,  as

previously.

The potential energy from the left

side is about 4,520 eV and at the

right  4,503  eV.  These  energies

are calculated from the differnce

between the Fermi Level and the

point  that  begins  the  potential

energy. 



atom X – axis Y – axis Z - axis
0 0.0000 0.0000 9,994

12 0.0000 0.0000 35,017

The last is at the position z 0 = 35,017.
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The same comments apply as before. The distance

of the edge atoms to the rest of slab is the same

and is 2,09 Å on z-axis. The atoms of the rest slab

are 2,08 Å away. 

Table 2.6.2.5: Cartesian coordinates (in Å) of edge atom
for a relaxed 13-layer slab. 

Figure 2.6.2.5:  Fitted values on the last atom of the Density Probability of Cu(111)  at the case of a 13-layers slab
after relaxation.  



In the case that describes the Figure 2.6.2.5, it is:

{y=0,925⋅e
−

(z−10,0245)
1,030 ⋅sin2

(
π

2,083
(z−10,025)+1,5) , for z≥z0

y=0,925⋅e
(z−10,014)

0,423 , for z<z0

Consequently, {2q=
1

1,030

2k=
1

0,423

⇒{q=0,485
k=1,182

 and  V 0=|Ek−Eq|=
ℏ

2

2m
|(k 2−q2)|=4,423138eV

The computational value of the workfunction holding 6 decimal points is 4,519910 eV. The

Table 2.6.2.4 contains values of workfunction holding 3 decimal points.

The percentage difference is 
|V 0

comp
−V 0

fitted values|
V 0

comp ⋅100 %=
|4,519910−4,423138|

4,519910
⋅100%∼2,14%

For the  Figures 2.6.2.1,2.6.2.2 and 2.6.2.5,  the corresponding Figures  for  the atoms of  the

opposite edge are at the appendix.
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Conclusions

In this thesis we perform a comprehensive study of electronic structure of surfaces of fcc

metals Au and Cu within the framework of density functional theory. 

We calculate characteristic electronic and structural properties of these surfaces like the

electron density and workfunction. Surface States are being observed at “similar” band number,

n, of Bloch States  ψn k⃗ as the slab thickness increases at constant  difference between the

enegy of that band and the Fermi level. The degeneracy of the bands that surfaces states are

being observed on the Au(111) are due to the symmetries of the system.

Atomic relaxation enhances the probability's of localization. Furthermore, surface state

is presented at lower bands, so the SS Energy is lowered.

We calculate the workfunction directly and by fitting our surface states to the theory

Schockley. The percentage difference between these methods was too small, giving a direct

verification of the validity of this theory to metals. It is the first time that Schockley's theory is

verified for non-semiconductors.

Repeating the process for Cu(100) and Cu(111), we observed similar results.

So far,  Schockley's  theory was applied and explained results  in  semiconductors.  We

confirmed that this theory could be applied also to metalic surfaces.

Future work could include comparison of the observed surface states to Tamm theory.
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APPENDIX

Surface State on the last atom Plane (100)

Layers Band no. Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

10
53 -6,7467 -4,8850 -1,8617 ~ 55 %

54 -6,7484 -4,9442 -1,8042 ~ 85,5 %

11
57 -6,7994 -4,9488 -1,8506 ~ 73,5 %

60 -6,7870 -5,0386 -1,7484 ~ 86,5 %

12
64 -6,7774 -4,9137 -1,8637 ~ 61 %

64 -6,7680 -4,9788 -1,7892 ~ 85,2 %

13
69 -6,7800 -4,9259 -1,8538 ~ 72 %

70 -6,7796 -5,0054 -1,7742 ~ 86,2 %

14
75 -6,7822 -4,9261 -1,8561 ~ 74 %

75 -6,7861 -4,9965 -1,7896 ~ 84,2 %

15
81 -6,7795 -4,9084 -1,8711 ~ 74 %

80 -6,7827 -4,9966 -1,7861 ~ 86,4 %
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Table A.1: Surface State for the last layer of Au (100) slabs. For every atom-laywer slab, the first line gives the 
surface state before the relaxation and the second after relaxation of atomic coordinates.
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Figure A2: The diagramm of the DOS for the Au(100) after relaxation. There are all slabs 
and its Fermi Level.

Figure A1: The diagramm of the DOS for the Au(100) before relaxation, using only the
xc. There are all slabs and its Fermi Level.



Surface State on the last atom Plane (111):

Atoms Band Energy (eV) Efermi (eV) E - Efermi (eV) Probability on
surface atom

Similarly Bands

10
32 -9,0378 -4,9778 -4,0600 ~ 44 % 33 , 34 , 35

34 -8,8995 -5,0505 -3,8490 ~ 94,6 % 35

11
38 -9,0481 -5,0091 -4,0390 ~ 87 % 37

38 -8,9272 -5,1017 -3,8255 ~ 93,3 % 39

12
41 -9,0566 -4,9881 -4,0685 ~ 87 % 42

42 -8,9375 -5,1027 -3,8348 ~ 94,6 % 43

13
43 -9,0745 -5,0381 -4,0364 ~ 87 % 44

45 -8,8856 -5,0691 -3,8165 ~ 95 % 46

14
47 -9,0797 -5,0187 -4,0610 ~ 87 % 48

48 -8,9395 -5,1029 -3,8366 ~ 94,2 % -

15
50 -9,0554 -5,0061 -4,0493 ~ 88 % 51

53 -8,9286 -5,1151 -3,8135 ~ 95 % 54
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Table A2: Surface State for the last layer of Au (100) slabs. For every atom-laywer slab, the first line gives the surface state before
the relaxation and the second after relaxation of atomic coordinates.
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Figure A3: The diagramm of the DOS for the Au(111) before relaxation, using only the
xc. There are all slabs and its Fermi Level.

Figure A4: The diagramm of the DOS for the Au(100) after relaxation.  There are all slabs
and its Fermi Level.
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Figure A5: Probability of localization for the last layer of a
Cu(100) slab with 15 layers.

Figure A6:Contour plot of |ψ| 2 for band 84 in Cu(100) 
slab with 15 layers. Compare to Fig. A5 .

Figure A6: Probability Density for Cu(100) slab with 15-layers. Fitted values on the firs atom after
relaxation.The computational workfunction is 4,313575 eV and from the fitted values is 4,417400 eV.
The percentage difference is about 2,4 %.
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Figure A7: Probability of localization for for the last atom of a Cu(111)
slab with 10 layers.

Figure A8: Plane (111) of the Cu-11 atom layer
slab (yz  plane).  the  first  atom has ~  87,1%
probability. It is a clear surface state.

Figure A9: Probability Density for Cu(111) slab with 13-layers. Fitted values on the last
atom after relaxation. The computational workfunction is 4,503352 eV and from the fitted
values is 4,465295 eV. The percentage difference is about 1,2%.



Plane 211

• For the first 3 atom of the layer

Layers no. of Atoms Band no. Energy (eV) Efermi (eV) Probability on
surface atom

3 9 66 6,7423 -0,8786 ~  46 %

4 12 32 -3,6802 0,0049 ~  41 %

5 15 42 -2,9012 0,9211 ~  41 %

6 18 98 0,2350 1,5458 ~  44  %

7 21 113 0,8117 2,1513 ~  64 %

8 24 74 -1,1057 2,6835 ~  66 %

9 27 148 1,7596 3,0827 ~  66 %

10 30 165 2,1567 3,5066 ~  68 %

11 33 180 2,5107 3,8520 ~  67 %

12 36 196 2,8342 4,1734 ~  68 %
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Figure  A10:  Simulation  cell  picturing  a  (211)  slab  with  3  atomic-
layers (3 atoms per layer)

Figure  A11:  Unit  cell  of  (211)
plane  of  FCC  structure  ((110)
plane)

Table A3: Electronic States localized at the first layer of each Cu(211) slab. For each slab, we present the energy 
at the localized state, the Fermi Level and the probability that this electron will be found at the first layer (both 
three atoms).



• For the last 3 atom of the layer

Layers no. of Atoms Band no. Energy (eV) Efermi (eV) Probability on
surface atom

3 9 66 6,7423 -0,8786 ~  46 %

4 12 32 -3,6802 0,0049 ~  41 %

5 15 43 -2,9008 0,9211 ~  42 %

6 18 97 0,2313 1,5458 ~  43  %

7 21 114 0,8153 2,1513 ~  64 %

8 24 76 -1,0896 2,6835 ~  66 %

9 27 147 1,7573 3,0827 ~  66 %

10 30 164 2,1527 3,5066 ~  68 %

11 33 181 2,5152 3,8520 ~  67 %

12 36 197 2,8385 4,1734 ~  68 %
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Table A4: Electronic States localized at the last layer of each Cu(211) slab. For each slab, we present the energy 
at the localized state, the Fermi Level and the probability that this electron will be found at the last layer (both 
three atoms).

Figure A12: The diagramm of the DOS for the Au(100) after relaxation. There are
all slabs and its Fermi Level.


