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Chapter 1

Introduction

Here I will provide an outline of the proof and the path we follow in order
to prove the Kadison-Singer problem
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Chapter 2

Preliminaries

The basic result of this chapter is to prove that there is an infinite sequence of
bipartite Ramanujan graphs and in addition an infinite sequence of irregular
bipartite Ramanujan graphs. The steps we follow in order to derive a simple
proof of this statement are the following: Firstly we will provide definitions
about the matching polynomial and the path tree. Attributes that make the
matching polynomial really useful, are also stated. We will continue to state
some theorems about the real rootedness of certain polynomials.

2.1 Some basic definitions

Definition 2.1. Biregular bipartite graph
A (c, d)- biregular bipartite graph is a graph whose vertices can be divided
into two disjoint and independent sets U and V such that every vertex in
U has exactly c neighbors in V and none in U , and every vertex in V has
exactly d neighbors in U and none in V .

Definition 2.2. Adjacency matrix of a graph
Let G be a graph with n vertices. We define a matrix A with n rows and
columns, such that in its (i, j) entry we put the number of edges that connect
the vertices i and j.
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Definition 2.3. Ramanujan graph
Let G be a graph with adjacency matrix AG and maximum degree d. We say
that this graph is Ramanujan if all the eigenvalues of its adjacency matrix
lie in the interval [−2

√
d− 1, 2

√
d− 1]

Definition 2.4. Biregular Ramanujan graph
Let G be a (c, d)-bipartite graph with adjacency matrix AG. We call this
graph Ramanujan, should all the eigenvalues of AG be bounded in absolute
value by

√
c− 1 +

√
d− 1.

Definition 2.5. Matching polynomial of a graph
Let G = (V,E) be a graph with n vertices . Also let mi denote the number
of matchings on the graph with i edges. We define the matching polynomial
to be Qx(G) =

∑
i≥0(−1)imix

n−2i

Definition 2.6. Path tree
Let again, G = (V,E) be a graph with n vertices. Also chose a vertex a
of G. For this vertex, the path tree, written TaG is a tree whose vertices
correspond to all paths in G that start at a ∈ G and do not contain any
vertex twice. One path is connected to another if one extends the other by
one vertex.

Definition 2.7. Universal cover
Let G = (V,E) be a graph. The universal cover of a this graph, written as U ,
is the infinite tree T such that every connected lift of G is a quotient of the
tree. It can be defined concretely by first fixing a ”root” vertex v0 ∈ G and
then placing a vertex in U for every non backtracking walk (u0, u1, ..., ul) of
any length l ∈ N, where a walk is non backtracking if ui−1 6= ui+1 for all i’s.
Two vertices are adjacent if and only if the walk corresponding to one can
be obtained by appending one vertex to the walk corresponding to the other.
That is, the edges of T are all of the form (v0, v1, ..., vl) ∼ (v0, .., vl, vl+1)).

The following definition is crucial.

Definition 2.8. Interlacing zeros of polynomials
Let f be a polynomial that has exactly n zeros at the points a1, ..., an. And
also let g be a polynomial with its only roots being at the points b1, b2, .., bn−1.
We say that g interlaces f if we have the following relation

a1 ≤ b1 ≤ a2 ≤ ... ≤ bn−1 ≤ an
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Definition 2.9. (Spectral radius)
Let G be a graph with adjacency matrix A. Then its spectral radius is the
absolute value of its maximun eigenvalue, which we denote by ρ(G)
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Chapter 3

Theorems about the matching
polynomial

Now we can state our first theorem. It was first proved by E.Lieb and
O.Heilemann in their paper [1].

Theorem 3.1. For every graph G = (V,E) the roots of its matching poly-
nomial are all real.

In order to prove this theorem we need first to establish the validity of the
following theorems.

Theorem 3.2. Recurrence relation for the matching polynomial
The matching polynomial obeys the recurrence relation:

Qx(G) = Qx(G− i)−
∑
j∼i

Qx(G− i− j)

where G− i is the graph with the i-th vertex deleted.

Proof. Let’s denote by M the set of all matchings of our graph. We fix a
vertex i and divide the matchings of G into two classes: those that involve
vertex i and those that do not. The number of matchings of size k that do
not involve i is mk(G−i). On the other hand, those that do involve i connect
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i to one of its neighbors. To count these we enumerate the neighbors j of
i. A matching of size k that includes the edge (i, j) can be written as the
union of (i, j) and a matching of size k − 1 in G− i− j. So, the number of
matchings that involve i is ∑

j∼i

mk−1(G− i− j)

So,

mk(G) = mk(G− i) +
∑
j∼i

mk−1(G− i− j)

To turn this into a reccurence for Qx(G), we can write:

xn−2k(−1)kmk(G) = xxn−1−2k(−1)kmk(G−i)−xn−2−2(k−1)(−1)k−1
∑
j∼i

mk−1(G−i−j)

this proves the desired reccurence relation.

Now we will review a relation that arises when studying trees

Lemma 3.3. A relation about trees
If G is a tree then its characteristic polynomial is the same as its matching
polynomial

Proof. Let AG be the adjacency matrix of our tree. And let χG(x) denote its
characteristic polynomial. Then, by definition:

χG(x) = det(xI − AGs) =
∑
σ∈Sn

sign(σ)
n∏
i=1

(xI − AG)i,σ(i)

=
∑
σ∈Sn

sign(σ)x|i:i=σ(i)|
∏
i 6=σ(i)

(−AG)i,σ(i)

We will prove that the only permutations that contribute to this sum
are the ones for which σσ(a) = a. They correspond to matchings. If σ
is a permutation for which there is an a such that σ(σ(a)) 6= a then a k
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must exist such that ∃a1, .., ak such that σ(ai) = ai+1 ∀i ∈ (1, .., k − 1) and

moreover σ(ak) = a1. For the term (−As)i,σ(i) to contribute it must be the
case that (AG)i,σ(i) = 1 for all i’s, and of course (AG)ak,a1 = 1. Now lets
remind ourselves that G is a tree. But, the only cycles that can occur in a
tree with non repeating vertices are cycles of length 2. Thus the number of
permutations with k cycles of length 2 is equal to the number of matchings
with k edges. As the sign of a permutation with k cycles of length 2 is (−1)k,
the coefficient of xn−2k is (−1)kmk(G)

In the next theorem we will derive a somewhat strange equality:

Theorem 3.4. For every graph G and vertex a ∈ G ,

Qx(G− a)

Qx(G)
=
Qx(Ta(G)− a)

Qx(Ta(G))

Let us first note that the upper-right hand side is a little odd. It is a
forrest obtained by removing the root of the tree Ta(G). We may write it as
a disjoint union of trees as:

Ta(G)− a =
⋃
b∼a

Tb(G− a)

Proof. If G is a tree, then the left and right sides are identical, and so the
equality holds. As the only graphs with less than 3 vertices are trees, the
theorem holds for all graphs on at most 2 vertices. We will now prove it by
induction on the number of vertices. We will use the recurrence relation of
our matching polynomial to expand the reciprocal of the left hand-side.

Qx(G)

Qx(G− a)
=
xQx(G− a)−

∑
b∼aQx(G− a− b)

Qx(G− a)
= x−

∑
b∼a

Qx(G− a− b)
Qx(G− a)

By applying the inductive hypothesis to G− a, we see that this equals:

x−
∑
b∼a

Qx(Tb(G− a)− b)
Qx(Tb(G− a))

(3.1)
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To simplify this expression, we examine these graphs carefully. By the ob-
servation we made before the proof,

Tb(G− a)− b =
⋃

c∼b,c 6=a

Tc(G− a− b).

Similarly,

Ta(G)− a =
⋃
c∼a

Tc(G− a),

which implies

Qx(Ta(G− a) =
∏
c∼a

Qx(Tc(G− a))

Now let ab be the vertex in Ta(G) corresponding to the path from a to b.
We also have

Ta(G− a− ab) =
⋃

c∼a,c6=b

Tc(G− a) ∪
⋃

c∼b,c 6=a

Tc(G− a− b) =

⋃
c∼a,c6=b

Tc(G− a) ∪ Tb(G− a− b)

which implies

Qx(Ta(G− a− ab)) =
∏

c∼a,c6=b

Qx(Tc(G− a))Qx((Tb(G− a)− b))

Thus,

Qx(Ta(G− a− ab))
Qx(Ta(G)− a)

=

∏
c∼a,c6=bQx(Tc(G− a))Qx((Tb(G− a)− b))∏

c∼aQx(Tx(G− a))

Plugging this in to equation 3.1 we get:

Qx(G)

Qx(G− a)
= x−

∑
b∼a

Qx(Ta(G)− a− ab)
Qx(Ta(G)− a)

=

xQx(Ta(G− a))−
∑

b∼aQx(Ta(G)− a− ab)
Qx(Ta(G)− a)

=

Qx(Ta(G))

Qx(Ta(G)− a)

We obtain the equality claimed in the theorem by taking the reciprocals of
both sides.
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We will now use theorem 3.4 to prove that the matching polynomial of a
graph divides the matching polynomial of its path tree (the path tree starts
from a random vertex a ∈ G)

Theorem 3.5. For every vertex a ∈ G, the polynomial Qx(G) divides the
polynomial Qx(Ta(G))

Proof. We again prove this by induction in the number of vertices in G, using
as our base case graphs with at most 2 vertices. Now by induction for b ∼ a,
Qx(G− a) divides Qx(Tb(G− a))
As

Ta(G)− a =
⋃
b∼a

Tb(G− a)

we can easily obtain that

Qx(G− a) | Qx(Ta(G)− a)

and so
Qx(Ta(G)− a)

Qx(G− a)

is a polynomial with variable x. To finish the proof we apply theorem 3.4,
which gives out

Qx(Ta(G)) = Qx(Ta(G)− a)
Qx(G)

Qx(G− a)
=

Qx(G)
Qx(Ta(G)− a)

Qx(G− a)

which finally implies that the matching polynomial of our graph divides the
matching polynomial of its path tree.

Now in order to complete the proof of theorem 3.1 we just need to show
that the roots of the matching polynomial of the path tree are all real. In
other words, since we proved that the matching polynomial of any tree is
the same as the characteristic polynomial of its adjacency matrix, we just
need to show that the eigenvalues of the adjacency matrix of any tree are all
real. Since the matching polynomial is of degree n and divides the matching
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polynomial of its path tree, it can easily be concluded that it has n real roots.
Well the characteristic polynomial of any tree is a real symmetric matrix (of
any graph in general), therefore it is a Hermitian matrix and as a result has
only real eigenvalues.
We now continue to another very significant theorem that bounds the roots
of the matching polynomial.

Theorem 3.6. Let G be a graph whose maximum degree is d. Then the roots
of the matching polynomial are bounded by 2

√
d− 1.

Proof. Lets first make the observation that the maximum degree of a path
tree of G, lets say Ta(G) would also be d. Therefore if we show the theorem
for trees then since the matching polynomial of a graph divides the matching
polynomial of its path tree, we can generalize it for arbitrary graphs. So lets
take a tree T and its adjacency matrix A. Choose a random vertex to be
the root of the tree, and define its height to be 0. For every other vertex α,
define h(a), to be its distance to the root. Now define D to be the diagonal
matrix whose (a, a) entry is

D(a, a) = (
√
d− 1)h(a)

Recall that the eigenvalues of A are the same as the eigenvalues of DAD−1.
We will use the fact that all eigenvalues of a non-negative matrix are upper
bounded in absolute value by its maximum row sum.
So we need to prove that all row sums of DAD−1 are at most 2

√
d− 1. There

are three types of vertices to consider. First, the row of the root has up to
d entries that are all 1√

d−1 . And for d ≥ 2 we know that d√
d−1 ≤ 2

√
d− 1.

Every leaf only has one non-zero entry in its row, and that entry equals√
d− 1. The intermediate vertices have one entry in their row that equals√
d− 1, and up to d − 1 entries that are equal to 1√

d−1 . If we sum that up

we get 2
√
d− 1.

Therefore the roots of the matching polynomial of the path tree of our graph
are bounded by 2

√
d− 1, therefore our matching polynomial has zeros that

do not exceed in absolute value 2
√
d− 1.

Lemma 3.7. Let G be a graph and let U be its universal cover. Then the
roots of Qx(G) are bounded in absolute value by ρ(U)
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3.1 2-lifts and the matching polynomial

Bilu and Linial [2] suggested constructing Ramanujan graphs through a se-
quence of 2-lifts of a base graph. Given a graph G = (V,E), a 2-lift is a graph
that has two vertices for each vertex in V. This pair of vertices is called the
fiber of the original vertex. Every edge in E corresponds to two edges in the
2-lift. If (u, v) is an edge in E, {u0, u1} is the fiber of u, and {v0, v1} is the
fiber of v, then the 2-lift can either contain the pair of edges:

1. {(u0, v0), (u1, v1)}

2. {(u0, v1), (u1, v0)}

To analyze the eigenvalues of a 2-lift, Bilu and Linial study signings
s : E → {±1} of the edges of G. They place signings in one-to-one corres-
pondence with 2-lifts by setting s(u, v) = 1 if edges of type (1) appear in
the 2-lift and s(u, v) = −1 if edges of type (2) appear. Then they define the
signed adjacency matrix As to be the same as the adjacency matrix of G,
except that the entries corresponding to an edge (u, v) are s(u, v).
The central theorem of this section is stated bollow. This is the first use of
the probabilistic method in this paper.

Theorem 3.8. Let G be a graph and As the adjacency matrix with entries
s(u, v). We define fs(x) = det(xI − As) for an arbitrary 2-lift s. Then by
letting s to be uniformly random we get

Es∈{±1}mfs(x) = Qx(G)

Proof. Let sym(S) denote the set of permutations of a set S and let |π| denote
the number of inversions of a permutation π. Expanding the determinant as
a sum over permutations σ ∈ sym([n]), we have:
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Es[det(xI − As)] =

= Es
∑

σ∈sym[n]

(−1)|σ|
n∏
i=1

(xI − As)i,σ(i)

= Es
∑

σ∈sym[n]

(−1)|σ|x|{i:i=σ(i)|
∏
i 6=σ(i)

(−As)i,σ(i)

=
∑

σ∈sym[n]

(−1)|σ|x|{i:i=σ(i)|}Es
∏
i 6=σ(i)

(−si,σ(i))

Since si,j are independent with E[si,j], only those products which contain
even powers (0 or 2) of the si,j survive. Thus, we may restrict our attention
to the permutations σ which contain only orbits of size two, or in other words
in permutations that can be written as the product of disjoint 2-cycles. These
are the k-matchings on S. Now we change the index of the summation. The
index was the permutation itself, now we change it to k, which counts the
number of 2-cycles this permutation has. So if |{i : i = σ(i)| = n− 2k then
the sign of the permutation would be (−1)k and the coefficient of (−1)kxn−2k

would be mk(G), since the number of permutations with k-cycles correspond
to the number of k-matchings. As a result:

Es[det(xI − As)] = Qx(G)

In order to demonstrate the importance of the signed matrix of a graph
G, namely As the following theorem must be stated.

Lemma 3.9. Let A be the adjacency matrix of a graph G, and As the signed
adjacency matrix associated with a 2-lift Ĝ. Then every eigenvalue of A and
every eigenvalue of As are eigenvalues of Ĝ. Furthermore, the multiplicity of
each eigenvalue of Ĝ is the sum of its multiplicities in A and As.

Proof. It is not hard to see that the adjacency matrix of Ĝ is Â =[
A1 A2

A2 A1

]
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where A1 is the adjacency matrix of (V, s1(1)) and A2 the adjacency matrix
of (V, s−1(−1)). So A = A1 + A2, As = A1 − A2. Let v be an eigenvector of
A with eigenvalue µ. It is easy to check that v̂ = (v, v) is an eigenvector of
Â with eigenvalue µ. Similarly, if u is an eigenvector of As with eigenvalue
λ, then û = (u,−u) is an eigenvector of Â with eigenvalue λ. As the v̂’s and
û’s are perpendicular and 2n in number, they span all the eigenvectors of Â.



Chapter 3. Theorems about the matching polynomial 22



Chapter 4

Interlacing families

Definition 4.1. We say that the polynomial g(x) =
∏n−1

i=1 (x− ai) interlaces
a polynomial f(x) =

∏n
i=1(x− bi) if

b1 ≤ a1 ≤ b2 ≤ ... ≤ an−1 ≤ bn

We say that the polynomials f1, f2, ..., fk have a common interlacing if there
is a polynomial g so that g interlaces fi for each i.

Lemma 4.2. Let f1, .., fk be polynomials of the same degree that are real-
rooted and have positive leading coefficients. Define

f∅ =
k∑
i=1

fi

If f1, .., fk have a common interlacing, then there exists an i such that

maxrootfi ≤ maxrootf∅

Proof. Let the polynomials be of degree n. Let g be a polynomial that
interlaces all the fi and let an−1 be the largest root of g. As each fi has a
positive leading coefficient, it is positive for sufficiently large x. As each fi
has exactly one root that is at least an−1, each fi is non positive at an−1. So,
f∅ is also non-positive at an−1, and eventually becomes positive. This tells
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us that f∅ has a root that is at least an−1, so the largest root is at least an−1.
Let bn be this root. As f∅ is the sum of the fi, there must be some i for which
fi(bn) ≥ 0. As fi has at most one root that is at least an−1, and fi(an−1) ≤ 0,
the largest root that is at least an−1 and fi(an−1) ≤ 0, the largest root of fi
is at least an−1 and at most bn.

Now lets introduce a significant definition.

Definition 4.3. Interlacing Family
Let S1, .., Sm be finite sets and for every assignment s1, . . . , sm ∈ S1 × · · · ×
Sm, let fs1,...,sm be a real-rooted degree n polynomial with positive leading
coefficients. For a partial assignment s1, . . . , sk ∈ S1 × · · · × Sk with k < m
define

fs1,...,sk =
∑

sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm

as well as

f∅ =
∑

s1,...,sm

fs1,...,sm

We say that the polynomials {fs1,...,sm} form an interlacing family if for all
k = 0, . . . ,m− 1 and all s1, . . . , sk ∈ S1×. . .×Sk, the polynomials

{fs1,...,sk,t}t∈Sk+1

have a common interlacing.

Theorem 4.4. Let S1, . . . , Sm be finite sets and let {fs1,...,sm} be an interla-
cing family of polynomials. Then, there exists some s1, . . . , sm ∈ S1×· · ·×Sm
such that maxrootfs1,...,sm ≤ maxrootf∅.

Proof. It is an easy consequence of the previously stated lemma.

Lemma 4.5. Let ε > 0 and f a real-rooted polynomial of degree n. Then
the polynomial

fε = (I − ε∂)nf

is real rooted and has simple roots.
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Proof. Lets first take the operator Tε = I − ε∂. It suffices to prove that Tεf
is real rooted with n− 1 distinct roots. If this statement holds, then one can
repeat this process n times. Let {xi}n1 be all the real roots of f . Lets suppose
that the polynomial Tεf = f − εḟ has a non-real root z0. Take a sufficiently
small contour around this root, and a sufficiently small ε, such that

|ε
∑
i

1

z − xi
| < 1 ⇐⇒ |ε ḟ

f
| < 1 ⇐⇒ | − εḟ | < |f |

on this contour. Using Rouche’s theorem we can deduce that inside this
contour f and Tεf have the same number of zeros. Therefore Tε is real
rooted. To continue, lets assume that f has a zero z0 of multiplicity m.
Namely f(z) = (z − z0)mg(z), and z0 is not a root of g(z). Then

Tεf = (z − z0)m−1((z − z0)g(z)− εmg(z)− ġ(z)(z − z0))

One can easily see that the multiplicity of z0 has dropped by 1.

Lemma 4.6. Suppose f1, . . . , fm are monic, real-rooted polynomials of de-
gree n. Let λk(fj) denote the k-th largest root of fj and let µ be any probab-
ility measure on the set {1, . . . ,m}. If f1, . . . , fm have a common interlacing,
then for all k ∈ {1, . . . , n}:

min
i
λk(fi) ≤ λk(EI∼µ(fI)) ≤ max

i
λk(fi)

Proof. Fix k ∈ {1, . . . , n}. Let an ≤, . . . ,≤ a1 be the roots of the common
interlacing of the polynomials f1, . . . , fm i.e. ak+1 ≤ λk(fi) ≤ ak. The
polynomials (fi) are all monic, so they all have the same sign at ak+1 and the
same opposite sign at ak. Hence their average changes sign in the interval
[ak+1, ak], so it has to vanish in the same interval by the intermediate value
theorem. It is therefore real-rooted by a simple counting argument. Moreover
it is easy to see that the root is sandwiched between the smallest and the
largest root of the fi’s on the interval [ak+1, ak].

Lemma 4.7. Let f1, . . . , fk be (univariate) polynomials of the same degree
with positive leading coefficients. Then f1, . . . , fk have a common interlacing
if and only if

∑k
i=1 λifi is real rooted for all convex combinations λi ≥ 0,∑k

i=1 λi = 1.
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Proof. Instead of proving this theorem for an arbitrary k, we will prove it for
k = 2, and the generalized one follows by induction. Namely, we will prove
that the following two statements are equivalent

1. f and g have a common interlacing.

2. The polynomial ht = tf + (1− t)g is real-rooted for all t ∈ [0, 1].

The statement (1. ⇒ 2.) follows from the previous lemma. Assume as a
first step that f and g have no common roots and that their roots are simple.
Under these assumptions the roots of ht trace n different intervals Ii on the
real line as t varies from 0 to 1, starting from the roots of g and ending at the
roots of f . Each one of these intervals contains exactly one root of f and one
root of g. Otherwise, (taking g as an example) there would exist a t 6= 0 and
z ∈ R such that ht(z) = g(z) = 0 which would imply that f(z) = 0 which in
turn contradicts the no-common-roots assumption. Therefore one can choose
subintervals Ji ⊂ Ii with pairwise disjoint interiors containing one root of f
and one root of g only, hence establishing interlacing. To prove the general
case, notice that the no-common-roots assumption is not problematic since
one can always factor the common roots out and put them back at the end.
One could easily get an interlacing sequence for f and g from an interlacing
sequence of the factored-out.



Chapter 5

Real Stable polynomials

In this chapter we will establish the real-rootedness of a class of polynomials.
We will do this by considering a multivariate generalization of real-rootedness
called real-stability. In particular, we will show that the univariate polyno-
mials we are interested in are the images, under well-behaved linear trans-
formation, of a multivariate real stable polynomial.

Definition 5.1. A multivariate polynomial f ∈ R[z1, . . . , zn] is called real
stable if it is the zero polynomial or if

f(z1, .., zn) 6= 0

whenever the imaginary part of every zi is strictly positive.

Lemma 5.2. Let A1, .., Am be positive semi definite matrices. Then

det(z1A1 + ...+ zmAm)

is real stable

Proof. By a standard continuity argument using Hurwitz’ theorem it suffices
to prove the result only in the case when all matrices A1, .., An are positive
definite. Set z(t) = α + λt with α ∈ Rn,λ ∈ Rn

+ and t ∈ R. Note that
P = λ1A1 + ...+λnAn is positive definite and thus it has a square root. Then

f(z(t)) = det(P ) det(tI + P 1/2HP−1/2)

27
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where H = α1A1 + ... + αnAn. Since f(z(t)) is a constant multiple of the
characteristic polynomial of the Hermitian matrix H, it has only real zeros.

Lemma 5.3. Let p, q ∈ R+ and u, v variables. Let T = 1 + p∂u + q∂v be an
operator acting on polynomials of two complex variables. Then T preserves
real stability.

Proof. Let f(u, v) be a real stable polynomial of two complex variables u, v.
Should we fix v we can get for f(u, v), since it is a one variable complex
polynomial that f(u, v) = c1

∏
i(u − wi,1). On the other hand, should we

fix u, we get that f(u, v) = c2
∏

j(v − wj,2). Now we compute Tf(u, v). We
easily get that:

Tf(u, v) = f(u, v)+pfu(u, v)+qfv(u, v) = f(u, v)(1+
∑
i

p

u− wi,1
+
∑
j

q

v − wj,2
)

Since f(u, v) is real stable then the imaginary parts of wi,1, wj,2 are non-
positive. Should we suppose that the imaginary parts of both u, v are posit-
ive, the the imaginary part of∑

i

p

u− wi,1
+
∑
j

q

v − wj,2

is negative. Therefore establishing that Tf(u, v) is real stable.

Before giving the proof to a very important lemma, let’s first state the
celebrated matrix-determinant lemma:

Lemma 5.4. Matrix determinant lemma
Let A be an invertible matrix and u, v vectors in Rn. Then

det(A+ uvT ) = det(A)(1 + vTA−1u)

.



29

Proof. If det(I +uvT ) = 1 + vTu is shown then the result of the lemma is an
easy consequence. Lets set B = uvT =

u1v1 . . . u1vn
u2v1 . . . u2vn

...
. . .

...
unv1 . . . unvn


Let us start by finding the characteristic polynomial pB(x) = det(B− xI) of
B. Since B has rank(B) ≤ 1, we know that it has at least n−1 eigenvectors
associated to the eigenvalue 0. Since the sum of all eigenvalues must be
tr(B) = vTu, we see that

pb(x) = det(B − xI) = (−1)nxn−1(x− vTu)

Now plug in x = (−1) and deduce the required formula:

pB(1) = det(B + I) = 1 + vTu

Lemma 5.5. Let A be an invertible matrix, and let a, b be vectors in Rn

and p ∈ [0, 1]. Also suppose that Zu is an operator that acts on multivariate
polynomials induced by setting the u variable equal to zero. Then:

ZuZv(1+p∂u+(1−p)∂v) det(A+uaaT+vbbT ) = p det(A+aaT )+(1−p) det(A+bbT )

Proof. Using the matrix-determinant lemma, which states that for every non-
singular matrix A and every real number t that

det(A+ taaT ) = det(A)(1 + taTA−1a)

One consequence of this is Jacobi’s formula for the derivative of the determ-
inant:

∂t det(A+ taaT ) = det(A)(aTA−1a)

This formula implies that:

ZuZv(1+p∂u+(1−p)∂v) det(A+uaaT+vbbT ) = det(A)(1+p(aTA−1a)+(1−p)(bTA−1b)).

By the matrix determinant lemma this equals

p det(A+ aaT ) + (1− p) det(A+ bbT )

.
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Using the above results we can prove our main result on real rootedness.

Theorem 5.6. Let a1, . . . , am and b1, . . . , bm be vectors in Rn, and let p1, . . . , pm
be real numbers in [0, 1], and let D be a positive semidefinite matrix. Then
every (univariate) polynomial of the form

P (x) =
∑
S⊂[m]

(
∏
i∈S

pi)(
∏
i/∈S

(1− pi)) det(xI +D +
∑
i∈S

aia
T
i +

∑
i/∈S

bib
T
i )

is real rooted.

Proof. Let u1, . . . , um and v1, . . . , vm be formal variables and define

Q(x, u1, . . . , um, v1, . . . , vm) = det(xI +D +
∑
i

uiaia
T
i +

∑
i

vibib
T
i )

Lemma 5.2 implies that Q is real stable. We claim we can rewrite P (x) as

P (x) = (
m∏
i=1

ZuiZviTi)Q(x, u1, . . . , um, v1, . . . , vm),

where Ti = 1 + pi∂ui + (1 − pi)∂vi . To see this we prove by induction on k
that

(
k∏
i=1

ZuiZviTi)Q(x, u1, . . . , um, v1, . . . , vm) =∑
S⊂[k]

(
∏
i∈S

pi)(
∏
i∈[k]§

(1− pi)) det(xI +D +
∑
i∈S

aia
T
i +

∑
i∈[k]§

bib
T
i +

∑
i>k

(uiaia
T
i + vibib

T
i ))

The base case (k = 0) is trivially true, as it is the definition of Q. The
inductive step follows from the matrix determinant lemma, stated earlier.
The case k = m is exactly the claimed identity. Starting with Q (a real
stable polynomial) we can then apply Lemma 5.3 and the closure of real
stable polynomials under the restrictions of variables to real constants to see
that each of the polynomials above, including P (x), is also real stable. As
P (x) is real stable and has one variable, it is real rooted.

Having established the above useful theorem, we need to apply it to deduce
another theorem, that will finally prove a stronger version of a conjecture of
Bilu and Linial, regarding Ramanujan graphs.
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Theorem 5.7. We need to prove that the polynomial∑
s∈{±1}m

(
∏
i:si=1

pi)(
∏

i:si=−1

(1− pi)) det(xI − As)

is real rooted.

Proof. For each vertex u, let du be its degree, and let d = maxudu. This is
of course equivalent to proving that the following polynomial is real-rooted:∑

s∈{±1}m
(
∏
i:si=1

pi)(
∏

i:si=−1

(1− pi)) det(xI + dI − As) (5.1)

as their roots only differ by d. We now define for each edge (u, v) ∈ E, the
rank 1 matrices

L1
u,v = (eu − ev)(eu − ev)T

L−1u,v = (eu + ev)(eu + ev)
T

where eu is the elementary unit vector in the direction u. Consider a signing
s and let su,v denote the sign it assigns to edge (u, v). Since the original
graph has maximum degree d, we have

dI − As =
∑

(u,v)∈E

Lsu,vu,v +D

where D is the diagonal matrix whose uth diagonal entry equals d− du. As
the diagonal entries of D are non-negative, it is positive semidefinite. If we
now set au,v = (eu − ev) and bu,v = (eu + ev) we can express the polynomial
5.1 as∑
s∈{±1}m

(
∏
i:si=1

pi)(
∏

i:si=−1

(1− pi)) det(xI +D +
∑
su,v=1

au,va
T
u,v +

∏
su,v=−1

bu,vb
T
u,v)

which we know from the previous theorem 5.6, to be real rooted.

Before moving to the proof of some conjectures on Ramanujan graphs,
we will provide a theorem that is useful in the proof of the Kadison-Singer
problem. It is also a theorem about real stability.
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Theorem 5.8. If p ∈ R[z1, . . . , zm] is real stable, then so is

(1− ∂z1)p(z1, . . . , zm)

Proof. If we fix z2, . . . zm then the resulting polynomial is also real stable.
Let’s then study that one with fixed all variables but one, which we call z.
Then:

(1− ∂z)p(z) = p(z)− ∂zp(z)

We study that polynomial when Im(z) > 0 to check whether it has any roots.
We know that Im(z) > 0 =⇒ p(z) 6= 0. Then

p(z)− ∂zp(z) = p(z)(1− ∂zp(z)

p(z)
) = p(z)(1−

∑
i

c

z − zi
)

where zi are the roots of p(z). Since Im(zi) < 0 and Im(z) > 0 then
Im(z − zi) > 0 ∀i. That implies that Im(

∑
i

c
z−zi ) > 0, and therefore the

theorem holds.



Chapter 6

Results on a conjecture of Bilu
and Linial

Now it is time to state a theorem about the characteristic polynomials of the
2-lifts.

Theorem 6.1. The polynomials {fs}s∈{±1}m are an interlacing family.

Proof. We will show that for every 0 ≤ k ≤ m− 1, every partial assignment
s1 ∈ ±1, . . . , sk ± 1 and every λ ∈ [0, 1], the polynomial

λfs1,...,sk,1(x) + (1− λ)fs1,...,sk,−1(x)

is real-rooted. The theorem will follow then from Lemma 4.7. To show
that the above polynomial is real-rooted, we will apply Theorem 5.7 with
pk+1 = λ, pk+2, . . . , pm = 1/2, and pi = 1+si

2
for 1 ≤ i ≤ k.

Theorem 6.2. Let G be a graph with adjacency matrix A and universal
cover T . Them there is a signing s of A so that all of the eigenvalues of As
are at most ρ(T ). In particular, if G is d-regular, there is a signing s so that
the eigenvalues of As are at most 2

√
d− 1.

Proof. The first statement follows immediately from theorems 4.4 and 6.1
and lemma 3.7. The second statement follows by noting that the universal

33
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cover of a d-regular graph is the infinite d-regular tree, which has spectral
radius at most

√
d− 1.

Lemma 6.3. Every non-trivial eigenvalue of a complete (c, d)-biregular graph
is zero.

Proof. The adjacency matrix of this graph has rank 2, so all its eigenvalues
other than ±

√
cd, must be zero.

Theorem 6.4. For every d ≥ 3 there is an infinite sequence of d-regular
bipartite Ramanujan graphs.

Proof. By lemma 3.9 and theorem 6.2, for every d-regular bipartite Ramanu-
jan graph G, there is a 2-lift in which every non-trivial eigenvalue is at most
2
√
d− 1. As the 2-lift of a bipartite graph is bipartite, and the eigenvalues of

a bipartite graph are symmetric about 0, this 2-lift is also a regular bipartite
Ramanujan graph. Thus, for every d-regular bipartite Ramanujan graph G,
there is another d-regular bipartite Ramanujan graph with twice as many
vertices.

Theorem 6.5. For every c, d ≥ 3, there is an infinite sequence of (c, d)-
biregular bipartile Ramanujan graphs.

Proof. We know from Lemma 6.3 that the complete (c, d)-biregular graph
is Ramanujan. We will use this as a base for a construction of an infinite
sequense of (c, d)-biregular bipartile Ramanujan graphs. Let G be any (c, d)-
biregular Ramanujan graph. As mentioned in the definitions chapter, the
universal cover of G is the infinite (c, d)-biregular tree, which has spectral
radius

√
c− 1 +

√
d− 1. Thus Theorem 6.2 tells us that there is a 2-lift of G

with all its eigenvalues at most
√
c− 1+

√
d− 1. As this graph is bipartile, all

of its non-trivial eigenvalues have absolute value at most
√
c− 1+

√
d− 1. So,

the resulting 2-lift is a larger (c, d)-biregular bipartile Ramanujan graph.



Chapter 7

The Mixed Characteristic
Polynomial

This is essentially the second part of this thesis, in which the Kadison-Singer
problem is proved.

Lemma 7.1. For every square matrix A and random vector v, we have

E det(A− vv?) = (1− ∂t) det(A+ tEvv?)|t=0

Proof. First, we assume that A is invertible. For the general case just choose
a sequence of invertible matrices that approach A. By the ‘matrix determ-
inant lemma’ we have

E det(A− vv?) = E det(A)(1− v?A−1v)

= E det(A)(1− Tr(A−1vv?))
= det(A)− det(A)ETr(A−1vv?)
= det(A)− det(A)Tr(A−1Evv?)

On the other hand, with the use of Jacobi’s formula

(1− ∂t) det(A+ tEvv?) = det(A+ tEvv?)− det(A)Tr(A−1Evv?)

The claim follows by setting t = 0

35
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Now let’s introduce the mixed characteristic polynomial and give a theorem
about it.

Theorem 7.2. Let v1, . . . , vm be independent random column vectors in Cd

with finite support. For each i, let Ai = Eviv?i . Then:

µ[A1, . . . , Am](x) = Eχ[
m∑
i=1

viv
?
i ](x) =

m∏
i=1

(1−∂zi) det(xI+
m∑
i=1

ziAi)|z1=···=zm=0

Proof. The proof of this theorem relies on Lemma 7.1 We will show by in-
duction on k that for every matrix M ,

E det(M −
k∑
i=1

viv
?
i ) =

k∏
i=1

(1− ∂zi) det(M +
k∑
i=1

ziAi)|z1=···=zk=0

The base case k = 0 is trivial. Assuming the claim holds for i < k, we have:

E det(M −
k∑
i=1

viv
?
i ) = Ev1,...,vk−1Evk

det(M −
k−1∑
i=1

viv
?
i − vkv?k) by independence

= Ev1,...,vk−1
(1− ∂zk) det(M −

k−1∑
i=1

viv
?
i + zkAk)|zk=0 by Lemma 7.1

= (1− ∂zk)Ev1,...,vk−1
det(M + zkAk −

k−1∑
i=1

viv
?
i )|zk=0 by linearity

= (1− ∂zk)
k−1∏
i=1

(1− ∂zi) det(M + zkAk +
k−1∑
i=1

ziAi)|z1=···=zk−1
= 0|zk=0

=
k∏
i=1

(1− ∂zi) det(M +
k∑
i=1

ziAi)|z1=···=zk=0

as desired.

Of course the mixed characteristic polynomial is real rooted.

Finally, we use the real rootedness of mixed characteristic polynomials to
show that every sequence of independent finitely supported random vectors
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v1, . . . , vm define an interlacing family. Let li be the size of the support of the
random vector vi, and let vi take the values ωi,1, . . . , ωi,li , with probabilities
pi,1, . . . , pi,li . Where: ωi,1 = (ui, 0

d, . . . , 0d), ωi,2 = (0d, u2, 0
d, . . . , 0d), . . .

where u1, . . . , um ∈ Cd vectors.

Now for j1 ∈ [l1], . . . , jm ∈ [lm], define:

qj1,...,jm =
m∏
i=1

pi,jiχ[
m∑
i=1

ωi,jiω
?
i,ji

](x)

Theorem 7.3. The polynomials qj1,...,jm form an interlacing family.

Proof. For 1 ≤ k ≤ m and j1 ∈ [l1], . . . , jk ∈ [lk], define the partial assign-
ment

qj1,...,jk(x) =
k∏
i=1

pi,jiEvk+1,...,vmχ[
k∑
i=1

ωi,jiω
?
i,ji

+
m∑
k+1

viv
?
i ](x)

Also let

q∅(x) = Ev1,...,vmχ[
m∑
i=1

viv
?
i ](x)

We need to prove that for every partial assignment j1, . . . , jk (possibly empty),
the polynomials

{qj1,...,jk,t(x)}t=1,...,lk+1

have a common interlacing. By Lemma 4.7, it suffices to prove that for every
nonnegative λ1, . . . , λlk+1

summing to one, the polynomial

lk+1∑
t=1

λtqj1,...,jk,t(x)

is real rooted. To show this, let uk+1 be a random vector that equals ωk+1,t,
with probability λt.
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Then, the above polynomial equals:

k∏
i=1

pi,jiEvk+1,...,vmχ[
k∑
i=1

ωi,jiω
?
i,ji

+ uk+1u
?
k+1 +

m∑
i=k+2

viv
?
i ](x)

which is a multiple of a mixed characteristic polynomial and therefore real
rooted.



Chapter 8

The Multivariate Barrier
Argument

In this chapter we will prove an upper bound on the roots of the mixed
characteristic polynomial µ[A1, . . . , Am](x) as a function Ai, in the case of
interest

∑m
i=1Ai = I. Our main theorem:

Theorem 8.1. Suppose A1, . . . , Am are Hermitian positive semidefinite matrices
satisfying

∑m
i=1Ai = I and Tr(Ai) ≤ ε for all i. Then:

maxroot µ[A1, . . . , Am](x) ≤ (1 +
√
ε)2

We begin by deriving a slightly different expression for µ[A1, . . . , Am](x)
that allows us to reason separetely about the effect of each Ai on the roots.

Lemma 8.2. Let A1, . . . , Am be Hermitian positive semidefinite matrices. If∑
iAi = I, then

µ[A1, . . . , Am](x) =
m∏
i=1

(1− ∂yi) det(
m∑
i=1

yiAi)|y1=···=ym=x

Proof. For any differentiable funtion f , we have

∂yi(f(yi))|yi=zi+x = ∂zif(zi + x)

39
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So, the lemma follows by substituting yi = zi + x into the previous product
and observing that it produces the expression on the right hand side of The-
orem 7.2.

We will often use the polynomial

Q(y1, . . . , ym) =
m∏
i=1

(1− ∂yi) det(
m∑
i=1

yiAi)|y1,...,ym

To be more specific µ[A1, . . . , Am](x) = Q(x, . . . , x) holds, as seen in
lemma 8.2

Definition 8.3. Above the roots
Let p(z1, . . . , zm) be a multivariate polynomial. We say that z ∈ Rm is above
the roots of p if

p(z + t) > 0 for all t = (t1, . . . , tm) ∈ Rm, ti ≥ 0

i.e. if p is postive on the nonnegative orthant with origin at z. We will denote
the set of points which are above the roots of p by Abp

Definition 8.4. Barrier function
Given a real stable polynomial p and a point z = (z1, . . . , zm) ∈ Abp, the
barrier function of p in direction i at z is

Φi
p(z) =

∂zip(z)

p(z)
= ∂zi log p(z)

Equivalently, we may define Φi
p by:

Φi
p(z1, . . . , zm) =

q̇z,i(zi)

qz,i(zi)
=

r∑
j=1

1

zi − λj

where the univariate restriction

qz,i(t) = p(z1, . . . , zi−1, zi+1, . . . , zm)

has roots λ1, . . . , λr which are real.

Now lets give out first theorem about the barrier functions.
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Lemma 8.5. Convexity of the barrier function
Let p real stable polynomial of m variables. Then:

(−1)k
∂k

∂zkj
Φi
p(x) ≥ 0

whenever k = 0, 1, 2, . . . and x lies above the roots of p. In particular the
function t 7→ Φp(x + tej) is non-negative, non increasing, and convex for
non-negative t, where ej is the vector with zeros except a 1 in the j-th entry.

Proof. The first case is when i = j. Since we are only interested in z such
that z ∈ Abp, we can study p(z) = p(z1, . . . , zi, . . . , zm) for all variables fixed
and real, except zi, which would just vary on the real line. We get:

(−1)k
∂k

∂zki
Φi
p(z) = (−1)k

∂k+1

∂zk+1
i

log p(z) = k!
d∑
j=1

(
1

zi − yj
)k+1

where yi are all real roots. Since zi − yj is positive when z ∈ Abp the claim
follows.
Of course, if k = 0, then by fixing all variables except one, let’s suppose it is
x1, we get that:

Φp(x1) =
d∑
i=1

1

x1 − yi

We know that x1 − yi > 0, so Φp > 0

Now for the second case i 6= j. By freezing all the other variables and
relabeling, we may assume that there are only two variables z1 and z2, which
we call from now on x1, x2, since they are real and x = (x1, x2). Thus p(x1, x2)
is a real stable polynomial. The task is to show

(−1)k
∂k

∂xk2
Φ1
p(x) ≥ 0, ∀k ∈ N

This is equivalent to

(−1)k
∂k

∂xk2

∂

∂x1
log p(x) =

∂

∂x1
(−1)k

∂k

∂xk2
log p(x)
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So it suffices to show that (−1)k ∂k

∂xk2
log p(x) is non-decreasing in the x1 direc-

tion. By continuity, it suffices to do this for generic x1 (thus we may exclude
a finite number of exceptional x1 if we wish)

For fixed x1, the univariate polynomial px1 : x2 7→ p(x1, x2) is real stable, and
thus has real roots, which we denote as y1(x1), . . . , yd(x1). For generic x1,
the number d of roots does not depend on x1, and the yi(x1) can be chosen
to vary smoothly in x1, and the multiplicity of each root yi(x1) is locally
constant in x1. We then have:

(−1)k
∂k

∂xk2
log p(x) = −(k − 1)!

d∑
i=1

(
1

x2 − yi(x1)
)k

So it suffices to show that each of the ( 1
x2−yi(x1))

k is a non-increasing function

of x1. But if (x1, x2) lies above the roots of p, then the yi(x1) all lie below x2,
so it suffices to show that the yi(x1) are all generically non-increasing. If this
were not the case, then yi(x1) would have a positive derivative for all x1 in
an open interval. In particular, there would be a x0 such that the root yi(x1)
has a positive derivative and a constant multiplicity m for all x1 sufficiently
close to x0. By analytic continuation we conclude that for complex z1 near
x0, the polynomial z2 7→ p(z1, z2) has a complex root yi(z1) near yi(x0). We
expand the function φ(z1, z2) = z2 − yi(z1) in Taylor series around (x0, y0),
and we get

φ(z1, z2) = −ẏi(x0)(z1 − x0) + (z2 − y0) + lower order terms

These lower order terms don’t matter at all in our analysis. Thus we see by
Taylor that we can choose ẏi(x0)(z1−x0) = iθ1 and z2−y0 = iθ1, with θ1 > 0.
Thus we get z1, z2 with positive imaginary parts such that p(z1, z2) = 0, which
contradicts stability, and the claim follows. Note that this was possible,
because yi(x0) > 0.

The real purpose of the barrier function is to allow us to reason about
the relationship between Abp and Abp−∂zip. In particular the monotonicity
statement alone immediately implies the following lemma.
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Lemma 8.6. Suppose that p is real stable, that z ∈ Abp, and that Φi
p(z) < 1.

Then z ∈ Abp−∂zip

Proof. Let t be a non-negative vector. As Φ is nonincreasing in each coordin-
ate we have Φi

p(z + t) < 1 therefore:

∂zip(z + t) < p(z + t) =⇒ (p− ∂zip)(x+ t) > 0

as desired

The above Lemma allows us to prove that a vector is above the roots of
p− ∂zip. However we need the barrier function to be bounded away from 1.
To remedy this, we present the following lemma.

Lemma 8.7. Suppose that p(z1, . . . , zm) is real stable, that z ∈ Abp, and
that δ > 0 satisfies:

Φj
p(z) ≤ 1− 1

δ

Then for all i:

Φi
p−∂zj

(z + δej) ≤ Φi
p(z)

Proof. We will write ∂i instead of ∂zi to ease notation. We begin by the left
hand-side of the wanted result.

Φi
p−∂jp =

∂i(p− ∂jp)
p− ∂jp

=
∂i((1− Φj

p)p)

(1− Φj
p)p

=
(1− Φj

p)(∂ip)

(1− Φj
p)p

+
(∂i(1− Φj

p))p

(1− Φj
p)p

= Φi
p −

∂iΦ
j
p

1− Φj
p

(∂iΦ
j
p = ∂jΦ

i
p)

= Φi
p −

∂jΦ
i
p

1− Φj
p
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We would like to show that Φi
p−∂jp(z + δej) ≤ Φi

p(z). By the above identity
this is equivalent to

−
∂jΦ

i
p(z + δej)

1− Φj
p(z + δej)

≤ Φi
p(z)− Φi

p(z + δej)

By the convexity of the barrier function we get that

Φi
p(z+δej) ≤ Φi

p(z)+δ∂jΦ
i
p(z+δej) ⇐⇒ δ(−∂jΦi

p(z+δej)) ≤ Φi
p(z)−Φi

p(z+δej)

Thus it is sufficient to establish that:

−
∂jΦ

i
p(z + δej)

1− Φj
p(z + δej)

≤ δ(−∂jΦi
p(z + δej))

We know about the numerator of the above inequality that it is nonnegative
from Lemma 8.5, so we may divide both sides by the numerator to obtain:

1

1− Φi
p(z + δej)

≤ δ

Now use the monotonicity of the barrier function Φj
p(z + δej) ≤ Φj

p(z) and
conclude that in order for the claim to follow we need

1

1− Φi
p(z)

≤ δ

which we know to be true from the assumption Φj
p(z) ≤ 1− 1

δ
.

Now let’s give the proof of theorem 8.1 that will inevitably prove the
conjecture of Kadison- Singer. We have all the tools necessary to move
closer to the conjecture.

Proof. Of theorem 8.1
Let

P (y1, . . . , ym) = det(
m∑
i=1

yiAi)
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and set t = ε+
√
ε.

The vector t1 = t(1, . . . , 1) is above the roots of P , since if we choose t̃ ∈
Rm,+, then

P (t1 + t̃) = P (t+ t̃1, . . . , t+ t̃m) = det(
m∑
i=1

(t+ t̃i)Ai) = det(tI +
m∑
i=1

t̃iAi) ≥ 0

The last equality holds because it is the determinant of the sum of positive
semidefinite matrices.

Now by the ‘matrix determinant lemma’, and the ‘Jacobi’s formula’, we
get that

Φi
P (y1, . . . , ym) =

∂iP (y1, . . . , ym)

P (y1, . . . , ym)
= Tr((

m∑
i=1

yiAi)
−1Ai)

Also,

Φi
P (t1) =

Tr(Ai)

t
≤ ε

t
=

ε

ε+
√
ε

:= φ

Now let δ = 1
1−φ = 1 +

√
ε. Define for k ∈ [m],

Pk(y1, . . . , ym) =
k∏
i=1

(1− ∂yi)P (y1, . . . , ym)

Note that Pm = Q
Set x0 to be the all-t vector, and for k ∈ [m] define xk to be the vector that
is tδ in the first k coordinates and t in the rest.

x0 = (t, . . . , t)

xk = (t+ δ, . . . , t+ δ, t, . . . , t)

By inductively applying lemmata 8.6, 8.7 we get that xk is above the roots
of Pk, and that for all i:

Φi
P (xk) ≤ φ

It follows that the largest root of

µ[A1, . . . , Am] = Pm(x, . . . , x)
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is at most
t+ δ = 1 +

√
ε+
√
ε+ ε = (1 +

√
ε)2



Chapter 9

Proof of the Kadison-Singer
problem

In this chapter we will state and prove the Kadison-Singer problem, using
the technics developed in this thesis.

The original question of Kadison singer was the following

Conjecture 1. Kadison-Singer Problem
Does every pure state on the (abelian) von Neumann algebra D of bounded
diagonal operators on l2 have a unique extension to a pure state on B(l2),
the von Neumann algebra of all bounded operators on l2?

This conjecture has been shown to be equivalent to a number of conjectures
including Anderson’s Paving conjecture[5, 6, 7], Weaver’s discrepancy theor-
etic conjectures[11], the Bourgain-Tzafriri Conjecture[8, 10], the Feichtinger
Conjecture and the Rε-Conjecture [9].

These conjectures are proven in this thesis by proving Weaver’s Conjecture,
as amended by [11, Theorem 2], and says:

47
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Conjecture 2. There exist universal constants η ≥ 2 and θ ≥ 0 so that the
following holds. Let ω1, . . . , ωm ∈ Cd satisfy ‖ωi‖ ≤ 1 for all i and suppose:

m∑
i=1

|〈u, ωi〉|2 = η

for every unit vector u ∈ Cd. Then there exists a partition S1, S2 of {1, . . . ,m}
so that ∑

i∈Sj

|〈u, ωi〉|2 ≤ η − θ

for every unit vector u ∈ Cd and each j ∈ {1, 2}

A proof of Anderson’s projecton paving conjecture is also given:

Conjecture 3. Paving Conjecture
For every ε > 0 there is an r ∈ N such that for every n×n self-adjoint complex
matrix T with zero diagonal, there are diagonal projections P1, . . . , Pr with∑r

i=1 Pi = I such that

‖PiTPi‖ ≤ ε‖T‖ for i = 1, . . . , r

The paving conjecture can be extended to infinite operators T ∈ Bl2 by an
elementary compactness argument, which then gives an immediate solution
to the Kadison-Singer problem.

Now we prove two theorems, the second of which implies conjectures 2
and 3. The first will be proved using the technics developed earlier, and the
second one using the first.

Theorem 9.1. If ε > 0 and v1, . . . , vm are independent random vectors in
Cd with finite support such that

m∑
i=1

Eviv?i = Id

and
E‖vi‖2 ≤ ε for all i
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Then:

P[‖
m∑
i=1

viv
?
i ‖ ≤ (1 +

√
ε)2] > 0

Proof. We will make extensive use of the theorems presented earlier, partic-
ularly theorem 8.1.
Let Ai = Eviv?i . We have

Tr(Ai) = ETr(viv?i ) = Ev?i vi = E‖vi‖2 ≤ ε for all i

The expected characteristic polynomial of the
∑

i viv
?
i is the mixed char-

actersitic polynomial µ[A1, . . . , Am](x). Theorem 8.1 implies that the largest
root of this polynomials is at most (1 +

√
ε)2.

For i ∈ [m], let li be the size of the random vector vi, and let vi take the
values ωi,1, . . . , ωi,li with probabilities pi,1, . . . , pi,li respectively. Theorem 7.3
tells us that the polynomials qj1,...,jm are an interlacing family. So, theorem
4.4 implies that there exist j1, . . . , jm so that the largest root of the charac-
teristic polynomial of

m∑
i=1

ωi,jiω
?
i,ji

is at most (1 +
√
ε)2

Corollary 9.2. Let r be a positive integer and let u1, . . . , um ∈ Cd be vectors
such that:

m∑
i=1

uiu
?
i = I

and ‖ui‖2 ≤ δ for all i. Then there exists a partition {S1, . . . Sr} of [m] such
that

‖
∑
i∈Sj

uiu
?
i ‖ ≤ (

1√
r

+
√
δ)2

Proof. For each i ∈ [m] and k ∈ [r], define wi,j ∈ Crd to be the direct sum of
r vectors from Cd, all of which are 0d except for the kth one, which is a copy
of ui. Namely:
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wi,1 =


ui
0d

...
0d

 , wi,2 =


0d

u2
...

0d

 and so on

Now let v1, . . . , vm be independent random vectors such that vi takes the
values {

√
rwi,k}rk=1 each with probability 1/r

These vectors satisfy:

Eviv?i =


uiu

?
i 0d×d . . . 0d×d

0d×d uiu
?
i . . . 0d×d

...
. . .

...
0d×d 0d×d . . . uiu

?
i

 , and ‖vi‖2 = r‖ui‖2 ≤ rδ

So,
m∑
i=1

Eviv?i = Ird

and we can apply Theorem 9.1 with ε = rδ to show that there exists an
assignment of each vi so that

(1 +
√
rδ)2 ≥ ‖

m∑
i=1

viv
?
i ‖ = ‖

r∑
k=1

∑
i:vi=wi,k

(
√
rwi,k)(

√
rwi,k)

?‖

Therefore by setting Sk = {i : vi = wi,k}, we obtain:

‖
∑
i∈Sk

uiu
?
i ‖ = ‖

∑
i∈Sk

wi,kw
?
i,k‖ ≤

1

r
‖

r∑
k=1

∑
i:vi=wi,k

(
√
rwi,k)(

√
rwi,k)

?‖ ≤ (
1√
r

+
√
δ)

and this is true for all k.

Having established this Corollary, we can now prove the equivalent forms
of the Kadison-Singer problem quite simply. If we set r = 2 and δ = 1/18
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this implies Conjecture 2 for η = 18 and θ = 2. We can also get Conjecture
3 by this Corollary, however it is somewhat more involved. We will prove it
in the following chapter.
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Chapter 10

The Paving Conjecture, a proof

The main result of this section is the following quantitative version of conjec-
ture 3. We will say that a matrix T can be (r, ε)-paved if there are coordinate
projections P1, . . . , Pr such that

∑r
i=1 Pi = I and ‖PiTPi‖ ≤ ε‖T‖ for all i.

We will need a lemma presented in 3

Lemma 10.1. (Theorem 3 of [3]) Suppose there is a function r : R+ 7→ N so
that every 2n×2n projection matrix Q with diagonal entries equal to 1/2 can
be (r(ε), 1+ε

2
)-paved for all ε > 0. Then every n×n self-adjoint zero-diagonal

matrix T can be (r2(ε), ε)-paved for all ε > 0

Now we are ready to prove the paving conjecture.

Theorem 10.2. The paving conjecture For every ε > 0, every zero-
diagonal complex self-adjoint matrix T can be (r, ε)-paved with r = (6/ε)4.

Proof. Let Q be an arbitrary 2n×2n projection matrix with diagonal entries
equal to 1/2. Then Q = (u?iui)i,j∈[2n] is the gramian matrix of 2n vectors
u1, . . . u2n ∈ Cn with ‖ui‖ = 1/2 = δ. Applying Corollary 9.2 to these
vectors for any r yields a partition S1, . . . , Sr of [2n]. Letting Pk be the
projection onto the indices in Sk, we have for each k ∈ [r] :

53
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‖PkQPk‖ = ‖(u?iuj)i,j∈Sk
‖ = ‖

∑
i∈Sk

uiu
?
i ‖ ≤ (

1√
r

+
1√
2

)2 <
1

2
+

3√
r

Thus every Q can be (r, 1+ε
2

)-paved for r = 36/ε2. Applying Lemma 10.1
yields the result.
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