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Abstract

In this thesis, a novel methodology has been developed that allows for the

identification and analysis of configurational patterns in alloys. This meth-

odology explicitly incorporates the symmetry properties of the parent lattice

and is based on unsupervised machine learning approaches. More specifically,

unit cells of various sizes and symmetries are used to describe the configura-

tions. These configurations are represented by vectors with lengths equal to

the number of atoms enclosed by the unit cells.

To search for patterns and dominant configurations within the thousands of

vectors, a self-consistent clustering algorithm has been developed. By applying

this approach, cluster centers are constructed, and the representation vectors

are assigned to these cluster centers. Moreover, a degree of order parameter

is defined, allowing the assignment of the highest symmetry cluster center to

each lattice site.

The aforementioned methodology is applied to pseudobinary InGaN alloys.

As input, large alloy structures consisting of more than 105 atoms, produced

by Monte Carlo calculations, are used. The results confirm the tendency of

In atoms to align as second nearest neighbors in InGaN, leading to
√

3 ×
√

3 translational symmetry. The outcome of the developed methodology, i.e.,

cluster centers, can be directly used in density functional theory calculations

or to produce special quasirandom structures with modified probabilities for

the occupation of the lattice sites.
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Chapter 1

Introduction

A necessary prerequisite for the design, growth, and synthesis of alloys is to gather

insights into the thermodynamics of these materials and specifically derive and

understand the corresponding phase diagrams. These diagrams provide crucial

information regarding constraints and growth conditions such as temperature and

partial pressures.

One of the most crucial factors underlying the construction of phase diagrams is the

atomistic configurations present at the nanoscale, which simultaneously dictate the

properties of alloys at the macroscopic level. These configurations can significantly

impact the optoelectronic properties of semiconducting materials or the mechanical

properties of metallic structural materials.

In Computational Materials Science, a workhorse in the study of these properties

is methodologies that combine the accuracy of first principles calculations with

techniques such as Cluster Expansion (CE) calculations and Monte Carlo simula-

tions. In this approach, a CE Hamiltonian is trained and validated against Density

Functional Theory (DFT) calculations. The CE Hamiltonian enables the efficient

and accurate description of the energetics of numerous alloy systems comprising

thousands or even millions of atoms. With an efficient computational Hamiltonian

at hand to describe the energetics, Monte Carlo calculations are executed. These

calculations, conducted in various ensembles such as canonical, grandcanonical,
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1. Introduction

Figure 1.1: Phase diagram of InGaN pseudobinary alloys. The color code is the
difference in the In and Ga chemical potentials: ∆µ = µIn − µGa in eV. The
phase diagram has been calculated my employing canonical MC calculations in a
40 × 40 × 40 cell consisting of 128000 atoms [16]

etc., yield valuable information including chemical potentials, total energies, and

heat capacities as functions of temperature. This wealth of data can be leveraged

to derive phase diagrams and discern order/disorder transitions within the system

(see Fig. 1.1).

A significant outcome of these calculations is the generation of atomic config-

urations at different temperatures and alloy compositions. These configurations

provide invaluable insights into the structural evolution of the material under vary-

ing thermodynamic conditions, shedding light on the intricate interplay between

composition, temperature, and order/disorder phenomena.

III-Nitride alloys hold significant importance in the realm of materials science and

technology due to their diverse range of applications and unique properties. InGaN

alloys are extensively utilized in optoelectronic devices such as light-emitting di-
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1. Introduction

Figure 1.2: Bandgap energy as a function of the lattice constant for various techno-
logically important semiconductors [18]. The value of the InN band gap has been
corrected to 0.7 eV (instead of the value of 2 eV used in the original figure).

odes (LEDs), laser diodes, and photovoltaic cells. Their tunable bandgap spanning

the visible spectrum makes them versatile materials for producing efficient light

emission across a wide range of wavelengths (see Fig. 1.2). Understanding the

thermodynamics of InGaN alloys, specifically phase separation and order-

disorder transitions, is crucial for optimizing device performance and enhancing

their efficiency.

As can be deduced from Fig. 1.2, to access the green region of the spectrum, InGaN

films with In content as high as ≈30% are required. However, the growth of high-

quality and high In content InGaN films is challenging: In and Ga atoms have

very different atomic radii (136 pm for GaN vs 156 pm for InN [3]). Moreover, the

bond strength In-N and Ga-N bonds are very different: The cohesive energy of InN

has been calculated by DFT-GGA calculations to be equal to 7.695 eV and that of

GaN 9.265 eV [21]. These disparity in the properties of the end constituents, i.e.,

InN and GaN, has been suggested to result in spinodal decomposition and phase

separation (see Ref. [19] and references therein).
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1.1. Phase diagram of InGaN alloys

Figure 1.3: (a) Left: Displacement of Ga (denoted by brown balls) and N (denoted
by white balls) atoms in the (0001) plane of GaN, around an In atom ((denoted by
green balls). Small blue spheres indicate the relaxed position of Ga and N atoms
after. Right: Schematic representation of the displacement channeling mechanism
that allows for efficient strain accommodation. The figure has been adopted from
Ref. [[15]]. (b) Ball and stick model the

√
3 ×

√
3 structure of the In1/3Ga2/3N. Big

brown and green balls denote In and Ga atoms, respectively. Small gray balls are
N atoms.

Spinodal decomposition is a phenomenon governed by bulk diffusion limitations,

commonly observed in binary or pseudobinary alloys. This occurs when the Gibbs

free energy associated with mixing, exhibits partial convexity, presenting dual min-

ima. In regions where the second derivative of the Gibbs free energy concerning

composition is negative, the uniform alloy structure becomes susceptible to com-

position fluctuations, thus resulting in phase segregation. Various theoretical in-

vestigations have investigated the bulk thermodynamics of InGaN alloys, unveiling

a substantial miscibility gap [2, 8].

All the above mentioned calculations considered incoherent growth for InGaN. This

entails an assumption that, for any given composition, the InGaN alloy is fully

rexaled from the strain induced by the lattice mismatch between the substrate

and the epilayer. However, it has demonstrated that when considering coherent

growth, wherein InGaN is biaxially strained to GaN, the width of the miscibility

gap diminishes significantly and/or shifts towards the In-rich region of the phase

diagram [5, 12, 20].
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1.1. Phase diagram of InGaN alloys

1.1 Phase diagram of InGaN alloys

More recently it has been shown that at In1/3Ga2/3N alloys ordering can be induced

at the surface during N-rich Molecular Beam Epitaxy (MBE) growth [16]. By com-

bining DFT calculate surface calculations, MBE and High Resolution Transmission

Electron Microsopy (HR-TEM) experiments it was demonstrated that a
√

3 ×
√

3

reconstruction (see Fig. 1.3(b)) for In content 33% is energetically favorable at the

surface and thermodynamically stable at temperatures as high as 950 K. In this

ordered InGaN structurethe In atoms are spatially distributed as 2nd nearest neigh-

bors aligned along the ⟨11̄00⟩ direction. The origin of this structure is the interplay

between two mechanisms: (a) Efficient strain accommodation (see Fig. 1.3(a)) [15]

and (b) a novel reconstruction mechanism, elastically frustrated rehybridization.

In bulk InGaN alloys the surface reconstruction mechanism is not present. How-

ever, efficient strain accomodation is relevant. Indeed it has been shown that the

above mentioned ordered structure is favorable [15]. Nevertheless, MC calculations

revealed that in bulk and at xIn = 1
3 an order-disorder transition will occur at a

≈200 K lower temperature (see Fig. 1.1). The phase diagram of bulk InGaN bi-

axially strained to GaN in Fig. 1.1 reveals that phase separation towards the end

constituents is suppressed. However, it also reveals the presence of miscibility gaps

(areas where equipotential trajectories are not present) at low temperatures.

1.2 Motivation

Monte Carlo simulations offer a vast array of insights into alloys, enabling thor-

ough exploration, comprehension, and even design of their properties. A prime

illustration is the phase diagram of InGaN, which elucidates the thermodynamic

intricacies of such alloys. Additionally, these simulations yield invaluable insights

into atomic arrangements, crucial for understanding the electronic properties of

compound semiconductors. Notably, the spatial distribution of alloy constituents

5



1.2. Motivation

profoundly impacts these properties, as evidenced by the redshift of the bandgap

observed due to ordering in AlGaN alloys [1, 11].

Atomic geometries obtained through Monte Carlo (MC) calculations offer a means

to derive the Warren–Cowley ordering parameters [4]. While these parameters can

offer insights into alloy ordering and can aid in exploring order-disorder transitions,

they do not directly quantify the ratio of ordered structures, their spatial distri-

bution, or their translational and rotational symmetry. Such details are essential

prerequisites for density functional theory (DFT) calculations, particularly when

utilizing codes with periodic boundary conditions.

To address the above mentioned, in the present thesis a methodology based on

Machine Learning clustering algorithms is implemented to investigate the structural

properties of binary and pseudobinary alloys obtained by MC calculations.
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1.3. Crystal Structure of InGaN

1.3 Crystal Structure of InGaN

In the realm of solid-state physics and materials science, the understanding of crys-

tal structures and their properties plays a fundamental role. The Bravais lattice,

named after Auguste Bravais (1850), is a fundamental concept in crystallography.

A Bravais lattice is a mathematical concept used in crystallography to describe the

periodic arrangement of points (atoms, ions, or molecules) in a crystal structure.

The Bravais lattice describes the periodicity and symmetry of the crystal lattice.

There are 14 Bravais lattices in three dimensions which are grouped in seven lattice

systems. These are the following:

• Triclinic.

• Monoclinic.

• Orthorhombic.

• Tetragonal.

• Rhombohedral.

• Hexagonal.

• Cubic.

Essential concepts in describing the Bravais lattices are the primitive and unit

cells. Unit cells constitute the basic building blocks from which larger cells or even

the entire crystal structure through translational symmetry operations. Primitive

cells are the smallest possible unit cells. Primitive cells are parallelepiped and are

defined by three vectors called primitive vectors which are also translational vectors

of the crystal.

In topic of the present thesis is the development and application of ML approaches

to investigate the configurational space of the pseudobinary InGaN alloys. As

7



1.3. Crystal Structure of InGaN

Figure 1.4: Schematic representation in ball and stick model of the wz structure.
N denotes that Nitrogen atoms and M the group III atoms.

has already been mentioned in the introduction, these alloys belong to the family

of group III-Nitrides which include InN, GaN, and AlN as well as their alloys.

The thermodynamically most favorable structure of these alloys is the hexagonal

wurtzite structure (Space group: P63mc). This structure can be described by

two sublattices, the metal and the Nitrogen sublattice. The primitive vectors that

describe the translational symmetry are the following:

a1 =
[

1
2a, −

√
3

2 a, 0
]

a2 =
[

1
2a,

√
3

2 a, 0
]

(1.1)

a3 = [0, 0, c]

a and c are the lattice constants. In the ideal wurtzite crystal c =
√

8
3a.

Crystal points that belong to the metal sublattice are at positions (in direct or

reduced coordinates):

b1 = [0, 0, 0]

b2 =
[

2
3 , 1

3 , 1
2

]
(1.2)

8



1.3. Crystal Structure of InGaN

and the Nitrogen atoms at:

b3 = [0, 0, u]

b4 =
[

2
3 , 1

2 , u + 0.5
]

(1.3)

Here, u is an internal lattice parameter which describes the shift of the one sub-

lattice with respect to the other. In the ideal wurtzite structure u = 3
8 . Vectors bi

are called basis vectors. The wurtzite structure is shown in Fig. 1.4.

Antisite point defects denoted as MN and NM, (M stands for In, Ga, or Al) are

defects where metal atoms sit at N sites and vice-versa and have high formation

energies. Therefore, their concentrations are typically very small. Hence, in the

present study, we treat the InGaN system as a pseudobinary InxGa1−x alloy with

hexagonal symmetry, i.e., the primitive vectors are the same but we use only the

b1 and b2 basis vectors.

As it becomes clear from the discussion above, the primitive cell of our system is

described by the primitive vectors in Eq. 1.1, and the two basis vectors in Eq.

1.2. The primitive vectors can be used to define larger translational vectors of the

crystal:

R = n1a1 + n2a2 + n3a3 (1.4)

where a1, a2, and a3 are the primitive vectors.

Moreover, the volume of the primitive cell is given by the following equation:

V = |a1 · (a2 × a3)| (1.5)

We should also note that the primitive cell contains exactly the two atoms defined

by the two basis vectors. However, due to the crystal translational symmetry,

lattice points exist at the eight vertices of the unit cell. These points are considered

to be shared with neighboring cells. Hence each cell is considered to contain 1
8 of

each site at the eight vertices. This argument will be used extensively in our code

in order to achieve the minimum representation of our structures.

9



1.3. Crystal Structure of InGaN

At this point, it is important to make a distinction between the usage of the terms

"unit" and "primitive" cells in the present thesis. As primitive cell, we refer to the

cell described by Eqs. (1.1) and (1.5) above. In our study, the different structures

will be described by cells that are equal or larger than the primitive and may

contain more than two basis atoms. We will refer to these larger cells as unit cells

and keep the term "primitive cell" for the primitive cell of the wurtzite crystal,

which represents the smallest repeating unit within a crystal lattice.

In the present methodology we employ unit cells to invesigate the configurational

space of the pseudobinary alloys. More specifically we will search for and apply

clustering to configurations that are contained in unit cells. More details are given

in the next Section (Sec. 2).

10



Chapter 2

Datasets

To address the challenge of identifying highly symmetric ordered structures within

an alloy, we developed a specialized approach. This approach efficiently shifts

through millions of diverse configurations to pinpoint structures of particular in-

terest. Central to our efforts is the necessity for a robust method capable of identi-

fying patterns amidst this extensive array of configurations, with a primary focus

on configurations exhibiting high symmetry.

In our developed approach, we use unit cells as fundamental descriptors. These unit

cells are defined by translation vectors, establishing translational symmetry, as well

as basis vectors representing lattice points within the unit cell and their occupation,

such as Ga or In atoms. This systematic approach facilitates the categorization

and analysis of the multitude of configurations present in the alloy. Efficiency is a

critical factor underlying our methodology. With millions of configurations to sort

through, computational efficiency is non-negotiable. Our algorithm is meticulously

designed to optimize computational resources.

Another challenge we face is that our approach needs to be robust, i.e., the ability

to uniquely identify structures of interest. In order to achieve this, the underlying

rotational and translational symmetries have to be explicitly incorporated and util-

ized in our methodology and algorithm. It is paramount to ensure that symmetry

equivalent configurations are not erroneously treated as different structures.

11



2.1. Input Structures

2.1 Input Structures

The atomic structures provided as input are the results of Cluster Expansion Monte

Carlo calculations for InxGa1−xN pseudobinary alloys, conducted across temperat-

ures ranging from 400 K to 2000 K. These structures are represented by 40×40×40

cells, each containing 40 × 40 × 40 × 2 atoms. Ga and In atoms are represented by

0 and 1, respectively.

Our approach involves exploring the configurations in the aforementioned cells.

These cells are defined by three translational vectors. These are a linear combina-

tions of the wurtzite primitive cell’s translational vectors (the primitive cell being

the smallest group of atoms with the overall symmetry of a crystal, as explained in

Section 1.3). We also prioritize unit cells that contain structures with low mixing

enthalpy, as determined by a DFT calculations as well as by CE Hamiltonian (see

Introduction). The mixing enthalpies of these structures are at most 5/;meV per

cation above the convex hull line (see Fig. 2.1). Eventually we include 65 symmetry

inequivalent unit cells.

Before we discuss the main part of the code, let us describe how we define and

construct the different structures and how we represent them with vectors. As has

already been mentioned, the translation and basis vectors define the shape and size

of the unit cell as well as the lattice points contained by the unit cell. The lattice

points within and at the boundaries of this cell are occupied by In or Ga atoms.

In our approach we go through all lattice points and for each of the aforementioned

65 unitcells we construct a vector. This vector contains the occupations Ga (0) or

In (1) of the lattice points of the unit cell. The dimension of the vector is equal to

the number of lattice points. There are numerous ways to map the lattice points

to the vector components/indices. The mapping between the lattice points and

the vector components is done using the coordinates of the lattice points: The

lattice points are sorted using their direct coordinate with respect to the local

12



2.2. Vector description of the configurations.

Figure 2.1: Calculated mixing enthalpies of various configurations of InxGa1−xN
alloys. Blue triangles and red dots indicate enthalpuies cal;culated with a CE
Hamiltonian and DFT calculations. Taken from Ref. [].

Figure 2.2: Schematic representation of a 2D unit cell with a
√

3×
√

3 translational
symmetry. Blue and red points denote Ga and In atoms, respectively. The vector
representation of this structure is [0, 0, 1, 0, 0, 0].

frame of reference: First by their z-coordinate, then by their y- and finally by

their x-coordinate. This ordering of the components allows for a global and unique

description of the structures with vectors.

13



2.2. Vector description of the configurations.

2.2 Vector description of the configurations.

Figure 2.2 depicts a selected representative 2D cell wherein lattice points are oc-

cupied by Ga (0) or In (1) atoms. The corresponding vector serves as a unique

descriptor of the structure: The first component of the vector corresponds to the

lattice point located at the origin of the local frame of reference defined by the

translational vectors. This lattice site, occupied by a Ga atom, is designated with

a value of 0. The second component of the vector corresponds to the lattice point

at the lower edge of the cell, assigned a value of 1, indicating occupancy by an In

atom.

2.3 Rotational Symmetry

To fully incorporate the rotational symmetry of the parent crystal structure, at

each lattice point, we construct representation vectors. We do this by rotating the

unit cell 0, 120, and 240 degrees. A schematic representation of this is shown in

Fig. 2.3. This process yields three representatiion vectors for each lattice point in

our input structure. As a result, we obtain a total of 128, 000 × 3 representation

vectors.

2.4 Pseudo-periodic unit cells.

As has already been mentioned, in our approach, we employ unit cells to construct

the structures and the corresponding vector represention. Nevertheless, the unit

cells in computational materials exhibit translational symmetry, implying period-

icity and hence order within. However, it’s important to note that not all generated

unit cells are inherently periodic. This occurs when atoms positioned at the edges

or opposite sides of the cell differ. To address this discrepancy, we adopt a strategy

to enforce periodicity. For atoms within the unit cell connected by translational

14



2.4. Pseudo-periodic unit cells.

Figure 2.3: Schematic representation of a 2D unit cell with a
√

3×
√

3 translational
symmetry and its vector representation. The color code is as in Fig. 2.2. The three
diamonds indicate the theree unit cells produced by 0 (black) and 120 and 240o

(gray) rotation.

vectors, i.e. they are translationally symmetry equivalent, we assign an average

occupation. For instance, at the 8 edges where 6 atoms are Indium (0) and 2 are

Ga (1), we assign a value of 0.25 to these sites. This approach renders nonperiodic

cells pseudo-periodic.

Pseudo-periodic unit cells enable the application of a minimal representation of the

structure. Instead of necessitating indices for all atoms within the cell, including

those at boundaries and edges, we only consider the indices of atoms incapable of

being connected via translational vectors. This approach enhances the efficiency

of our approach significantly. Moreover, the concept of partial occupation within

these cells serves as a key indicator of disorder. Drawing inspiration from entropy

in statistical physics, we proceed to define a descriptor of order within the cell (see

below). By characterizing the extent of partial occupation and the arrangement of

atoms within the unit cell, we can quantify the level of disorder present, providing
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2.5. Downsampling

valuable insights into the overall structural properties of the alloy system.

Figure 2.4: (a) Schematic representation of a unit cell that obeys periodic boundary
conditions, i.e., translational. All translational symmetry equivalent lattice sites
are occupied by the same species (In or Ga). (b) The same unit cell but the four
symmetry equivalent sites at the four edges of the cell are occupied by both In and
Ga atoms. This cell disobeys periodic boundary conditions. (c) Pseudoperiodic
unit cell constructed from the cell in (b). A partial average occupation of 0.5
is assignes to lattice sites at the corners of the cell. (d) The unit cell in (a) in
the minimum representation. Since periodic boundary conditions are justified, all
corner/edge atoms but one, are not included in the representation.

2.5 Downsampling

For each input unit cell, i.e., for each temperature and content, datasets consisting

of 128000 × 3 representation vectors are constructed. This renders the application

of clustering methodologies computationally cumbersome. In order to address this,

we apply downsampling to our datasets. This entails condensing a smaller data-

set’s size while retaining its critical features. In this context we select from our

datasets atoms that are homogeneously distributed in the volume of the input cells.

The aim is to construct a representative set of atoms that preserve the essential

characteristics of the whole input lattice while significantly reducing the dataset’s

size.

To execute downsampling we select atoms with a step equal to 5 along each dimen-
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2.6. Translational Symmetry

sion. We have carefully checked if this approach provides a consistent description

of the properties of the whole system. Our check indicate that (to be updated at

the end)... By downsampling with a step equal to 5 along each dimension, the

resulting downscaled dataset has dimensions of 128000×3
125 . This downscaled dataset

serves as a condensed yet representative sample of the original lattice, facilitating

more efficient data processing and analysis. The procedure of downsampling is

schematically shown in Fig. 2.5

Figure 2.5: Schematic representation of an ordered structure. Blue and red balls
indicate Ga and In atoms, respectively. The representation vectors are taken at
the sparse/downsampled matrix. These points are located at the origin of the unit
cells represented by the diamonds. The rotated unit cells are also shown. As can
be seen, despite the downsampling of the input data, the sparse matrix includes
the majority of lattice points and hence can provide a good representation of all
different configurations.

2.6 Translational Symmetry

Within the set of representation vectors, there’s a possibility of encountering vec-

tors that could be erroneously perceived as symmetrically inequivalent, indicated

by the norm of their differences not being equal to zero. This discrepancy can

arise when translational symmetry-equivalent cells exhibit varying arrangements

of indices. In essence, despite the cells being translationally equivalent, differences
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2.6. Translational Symmetry

Figure 2.6: Schematic representation of an ordered configuration and a
√

3 ×
√

3
unit cell placed at three different origins.

in the atomic arrangement can lead to variations in the representation vectors,

potentially resulting in misinterpretations of symmetry.

To make this clear, in Fig. 2.6 we show an ordered configuration and a
√

3×
√

3 unit

cells placed at three different origins. Due to the long range ordering the structures

contained by the three unit cells shiuld be the same. The representation vectors

of these are: v1 = [1, 0, 1, 1, 0, 1], v2 = [0, 1, 1, 0, 1, 1], and v3 = [1, 1, 0, 1, 1, 0].

However, the distance between any of these two is |vi − vj | = 2, i ̸= j. Therefore,

these vector representations will erroneously be treated as different configuration

in a clustering algorithm.

Failure to address this issue could lead to complications in the clustering algorithm,

potentially resulting in the erroneous assignment of vectors to incorrect cluster cen-

ters. Moreover, it might generate cluster centers that do not accurately represent

the underlying data. Inaccuracies stemming from the misinterpretation of symmet-

rically inequivalent vectors could distort the clustering process, undermining the

algorithm’s ability to effectively identify meaningful patterns and structures within

the dataset. Therefore, addressing this concern is crucial to ensure the reliability

and validity of the clustering results.

To address this issue, we implement a procedure where we iterate through all rep-

resentation vectors. At each vector, we apply translational symmetry operations,

corresponding to rearrangements of the vectors components. This process allows us
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2.7. Summary

to identify all symmetry-equivalent representations at each lattice point. Among

these equivalents, we selectively retain only the representation vector that matches

an existing representation vector at another lattice point in the dataset. If none

of the equivalents match any existing representation vector, we retain one of them

arbitrarily. By doing so, we ensure that all symmetry-equivalent vectors share the

same representation vector. This method effectively prevents discrepancies that

could adversely affect the clustering algorithm’s.

2.7 Summary

In this chapter the preperation of the our datasets have been described in details.

Our input datasets are alloys configurations consisting of 124000 atoms. Employ-

ing 65 different unit cells, considering rotation and translational symmetries, and

downsampling our data, we end with 1024×3 representation vectors for each of the

65 unit cells. The aim to (1) identify representative configurations for each unit

cell and (2) for each lattice point to asign a certain unit cell and configuration. To

achieve this we develop and apply a ML clustering approach which is described in

the nect Chapter.
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Chapter 3

Unsupervised Learning

Unsupervised learning (UL) stands out in the realm of machine learning (ML) as an

approach that effectively eliminates human bias from the analysis, as acknowledged

in numerous studies [10] [13] [9] [1,2,3]. Going a step further, it can be argued

that UL not only addresses human bias but also plays a pivotal role in mitigating

computational bias and reducing uncertainty associated with numerical algorithms

and processes. In UL, computational groups are determined by the algorithm itself

rather than predefined by the researcher, making it particularly well-suited for

tackling problems of higher complexity when identifying groups.

Furthermore, UL proves advantageous in scenarios where obtaining unlabelled

data—whether experimental, computational, or derived from field measurements—is

more feasible than acquiring labelled data requiring user intervention. The absence

of pre-defined labels in UL, though posing challenges, makes it a valuable approach

for navigating problems that lack readily available labels. UL represents a founda-

tional machine learning approach that has endured over time and remains crucial in

a number of diverse research and application domains, including image processing,

sleep stages classification, and mechanical damage detection.
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3.1. Existing Challenges

3.1 Existing Challenges

UL algorithms, while powerful and versatile, do face significant challenges when it

comes to particle clustering tasks:

• Ambiguous cluster boundaries: Defining clear boundaries for complex

spatial distributions or overlapping clusters poses challenges, impacting the

accurate separation and identification of distinct particle clusters.

• Sensitivity to hyperparameters: Selecting optimal hyperparameter val-

ues, such as the number of clusters, can be difficult and may lead to varied

results, requiring careful parameter tuning.

• Dimensionality and feature selection: Handling high-dimensional particle

data and selecting meaningful features are challenges, with poor choices im-

pacting clustering performance.

• Cluster shape and size variability: Assumptions of predefined cluster

shapes may not align with irregular shapes and varying sizes in particle

clusters, affecting accurate representation.

• Robustness to noise: Sensitivity to noise can result in spurious clusters or

inaccuracies in clustering results due to measurement errors or outliers.

• Limited supervision: Unsupervised algorithms lack external guidance, po-

tentially missing valuable information that could enhance clustering accuracy.

• Scalability: Some algorithms become computationally expensive with larger

datasets, posing challenges in efficiently handling large-scale particle data due

to memory and processing limitations.

To address the above mentioned optimization problems we apply the RUN-ICON

algorithm which is based around the K-Means clustering method.
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3.2. Clustering

Figure 3.1: Schematic representation of K-Means clustering algorithm. Taken from
https://www.e2matrix.com/blog/2018/01/01/kmeans-clustering-with-example/.

3.2 Clustering

Clustering is a method used to group similar items together. It works by organizing

data into clusters, where each cluster contains items that are more alike to each

other than to those in other clusters. In this project, clustering was utilized to

analyze the 3 × 1024 representation vectors from the simulation. This allows

us to identify groups of vectors, and hence of configurations, that share common

characteristics, revealing patterns in the data.

K-Means is a widely used algorithm for clustering data into groups. The goal is

to divide a set of data points into a specific number, k, of clusters. The process

begins by randomly selecting k initial points from the dataset, which will serve as

the centers or centroids of the clusters.

Once the centroids are chosen, each data point in the dataset is assigned to the

nearest centroid. This step forms k clusters based on the proximity of the data

points to the centroids. After all the points are assigned, the algorithm calculates

new centroids by finding the average position of all the points in each cluster.

These steps of assigning data points to the nearest centroid and updating the

centroids are repeated until the centroids no longer change significantly, or the
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3.3. The RUN ICON algorithm

algorithm reaches a maximum number of iterations. The final result is k clusters

with data points grouped around each centroid. This shows how the data naturally

forms groups.

K-Means is a simple and efficient method for clustering, making it a popular choice

for many applications. It helps to uncover patterns and structures in data, which

can be useful for further analysis and decision-making. In my research, I use K-

Means to analyze the 3× 1024 representation vectors from the simulation, helping

to identify meaningful patterns within the configurational space.

3.3 The RUN ICON algorithm

In this project, the RUN-ICON UL algorithm was employed. The primary object-

ive of RUN-ICON [17] is to overcome various challenges associated with cluster

selection, ensuring a high level of confidence and low uncertainty. Unlike tradi-

tional methods that rely on intuitive criteria for determining the optimal number of

clusters, RUN-ICON employs a unique approach. It identifies the optimal number

of clusters by consistently identifying dominant centers across multiple repetitions

of the K-means algorithm. Instead of relying on the Sum of Squared Errors, the

algorithm introduces innovative metrics such as the Clustering Dominance Index

(CDI) and Uncertainty.

The CDI is associated with the frequency of a specific clustering configuration

occurring when splitting the dataset into a certain number of clusters. It can be

interpreted as the probability of that particular configuration occurring. On the

other hand, uncertainty represents the relative difference between upper and lower

CDI bounds for a clustering configuration, indicating the maximum variance from

the mean for that configuration.

The RUN-ICON algorithm enhances the traditional K-Means clustering method

by repeating the process multiple times with different numbers of clusters. For

each iteration, it performs K-Means clustering, varying the number of clusters
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3.3. The RUN ICON algorithm

Figure 3.2: Left Panel: Averaged percentage Cluster Dominance Index (i.e., fre-
quency of occurrence of a specific clustering configuration when requesting a par-
ticular number of clusters) for different clustering requirements ranging from 3 to
10 clusters. Right Panel: Optimal clusters generated by the RUN-ICON algorithm
for the data sets tested in the left panel. Different colours correspond to different
clusters. The black stars correspond to the cluster centres. Ref [17]. Right:

to explore different clustering configurations. This repetition helps in identifying

the most dominant cluster centers across different runs, reducing uncertainty and

increasing the confidence in the clustering results.

By analyzing the outcomes of these repeated runs, the RUN-ICON algorithm calcu-

lates the probability of occurrence for each cluster center. This means it determines

how often certain cluster centers appear as the dominant ones in various clustering

configurations. The result is a more robust and reliable clustering, as it highlights

the most consistent and significant patterns in the data, providing a clearer un-

derstanding of the underlying structure. Clustering results from the RUN-ICON

algorithm are presented in Fig. 3.2, where the ability of the algorithm to correctly
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3.4. Self Consistent Clustering

identify dominant clusters is demonstrated through the use of a number of test

datasets.

The efficiency of RUN-ICON has been demonstrated in recent studies, showcasing

its superiority over various UL algorithms, such as Repeat K-means [7], which

iteratively refines cluster centers for improved stability in the presence of noisy

data, Bayesian K-means [14], incorporating Bayesian inference principles for a

more flexible and probabilistic clustering approach, and DBSCAN [6], a density-

based algorithm capable of identifying arbitrarily shaped clusters and noise points.

3.4 Self Consistent Clustering

As has already been mentioned, clustering is a fundamental unsupervised learning

technique used to identify inherent structures within a dataset by grouping similar

data points together. In the context of atomic configurations represented as vectors,

clustering serves to organize atoms into coherent groups based on their spatial

arrangements. However, traditional clustering algorithms may face challenges when

dealing with complex systems exhibiting translational symmetry.

The essence of clustering lies in partitioning the dataset into subsets, or clusters,

such that data points within the same cluster share similarities, while those in dif-

ferent clusters are dissimilar. This is typically achieved by optimizing an objective

function that quantifies the compactness of clusters and the separation between

them.

In clustering, we optimize the norm of the vectors. However, here we face the

same problem as we had with the construction of the representation vectors and

the effect of translational symmetry (see Section 2.6). More specifically, due to

translational symmetry, some vectors may erroneously be assigned to more distant

cluster centers. To correct for this issue, we developed and applied an iterative self-

consistent approach. After determining the optimal number of clusters using RUN-

ICON algorithm, the clustering process is refined iteratively. This involves applying
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3.5. Order descriptor.

translational symmetry operators to the representation vectors and assessing their

similarity to existing cluster centers. If a transformed configuration is closer to

a cluster center other than the original, the vector is updated by applying this

translational and/or rotational operators. Once all vectors have been tested and,

where neccesary, updated, RUN-ICON algorith is employed again. This iterative

refinement continues until no further updates can be made. This ensures that each

vector is assigned to the cluster that best represents its configuration.

3.5 Order descriptor.

At the end of the self-consistent clustering process, each lattice point is assigned

to 65 different cluster centers (one for each unit cell). In order to uniquely assighn

a single cluster center to each lattice point we define an order descriptor, termed

"entropy" . The equation for the “entropy” is as follows:

SCC =
n∑

i=1

(
x−xi

i

)
·
(
(1 − xi)−(1−xi)

)
(3.1)

where the index i runs over all the sites of cluster center and xi is the occupation

of the site i.

The cluster with the smallest ”entropy” SCC is chosen, i.e., “more ordered” and

higher symmetry cluster centers are chosen. In cases where more than one cluster

center exhibit the same value of SCC , priority is given to the center with the smaller

volume. Ultimately, for each lattice point, one cluster center is assigned.
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Chapter 4

Results and Discussion

In this chapter, we present the results of our investigation into the behavior of

cluster centers across various temperatures Tand compositions x. Applying the

methodology described in the previous Chapter we investigated the different alloy

configurations for x = 0.2, 0.25 , 0.30, 0.35, and 0.40 and T in the range from 400

to 1000 K. This methodology provided for each lattice site the most representative

cluster center.

4.1 Order-Disorder

In a first step we estimate the degree of order at different temperatures and com-

positions. To achieve this for each T and x we define the a degree of diosder S (T, x)

as:

S (T, x) = 1
N

N∑
i=1

Si(T, x) , (4.1)

where Si(T, x) is the degree of order of the cluster assigned to the lattice site i at

T and x (see Eq. 3.1). N is the number of lattice sites. Smaller/larger values of

S (T, x) indicate higher/lower degree of ordering in our system.

In Fig. 4.1 the degree of order is plotted against temperature for different selected

compositions. As expected the general trend is that the degree of order is reduced

as the temperature increases, since configurational entropic contributions dominate
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4.1. Order-Disorder

Figure 4.1: Degree of order plotted against temperature for selected compositions.

Figure 4.2: Ratio of lattice sites at ordered (blue) and disordered (red) configura-
tions with respect to the total number of sites as function of temperature for slected
compositions.

at elevated temperatures. Nevertheless, fluctuations in this parameter are present,

i.e., the degree of order seems not to be monotonous with temperature. This

is attributed to the following two reasons: (i) At regions of the phase diagram

where order/disorder transitions occur, longer MC runs are neccesary in order to

accurately describe the thermodynamics of the system. However, this is not the

case for the MC claulcations from which the input structures have been derived.

(ii) Due to available computational power restrictions we had to downsample our

data and use a sparse representative set of representation vectors.
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4.1. Order-Disorder

Figure 4.3: Distribution of ordered (blue) and disordered (red) configurations at
T=800 K at (a)20%, (b) 25%, (c) 30%, (d) 35%, and (d) 40% In content.

In the next step we identify the ratio of lattice sites that belong to ordered and

disordered configurations. To achieve this we define a critical degree of order para-

meter Scrit, which is a function of composition x:

Scrit = x−x (4.2)

This critical value serves as a threshold, distinguishing between ordered and dis-

ordered cluster centers within the alloy. Specifically, if a cluster center surpasses

this critical value, it is considered disordered. Conversely, if it falls below Scrit,

the cluster center is considered to demonstrate an ordered configuration. Although

this definition is arbitrary, it allows to group the different onfigurations into two

different classes and at least qualitatevely describe the degree of ordering.

The ratio of ordered and disordered configurations as function of temperature are

plotted in Fig. 4.2. A notable revelation from the findings is the presence of phase

transitions from ordered to disordered phases for each content. This transition

signifies a critical shift in the alloy’s configuration, indicative of a change in its state.

As with the dependence of the degree of order on temperature, the aforementioned

dependence is not monotonous and exhibit some fluctuations. This is attrubuted to

the same two sources, i.e., not sufficiently long MC runs and sparse representation

of the configurational space.

T=800 K is a temperature that is typically applied at the growth of InGaN alloys.

Therefore, in order to investigate the distribution of ordered and disordered struc-

tures in the bulk of the alloy, in Fig. 4.3 the distribution of ordered and disordered
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4.2. Representative configurations

configurations is schematically shown for x = 0.2 − 0.4. As can be clearly seen,

there is no separation between the ordered and disordered configurations for all

contents.

4.2 Representative configurations

The investigation into the results of the problem revealed a consistent pattern

across all content analyses conducted within the scope of this study. Notably, each

structure analysis consistently yielded unit cell, i.e. translational symmetrie, that

exhibited a high frequency of appearances, particularly under conditions of low

temperature.

In the following we examine and discuss the most probable to occur cluster centers.

VASP format is adopted to describe the crystal structure ∗:

• The first line includes the cluster center (in vecto format). In fully ordered

structure all indeces would be 0 (In) or 1 (Ga). A partial occupation x, i.e.,

an index between 0 and 1, should be treated as a probability of find a Ga (x)

or an In (1 − x) atom.

• The second line includes a rescale factor applied to the primitive vectors of

the lattice. In all cases we use 1.0

• The next three lines include the three primitive vectors of the unit cell.

• The next three lines are species (here we denote them as X, Y, Z), the number

of atoms of each type, and the type of coordinates (direct or cartesian).

• The atom positions are listed next in ascending order with respect to occu-

pation, i.e., sites of lowest occupation are listed first.
∗VASP is on of the most widely used DFT codes.
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4.2.1. x=0.20

Figure 4.4: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 1, at x=0.20. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations.

4.2.1 x=0.20

Structure 1

30% of lattice sites are in T=300 K belong to this luster center. The atomic geo-

metry of this structure is shown in Fig. 4.4. This structure has the
√

3 ×
√

3 unit

cell. One c-plane has a content of x = 1
3 and integer occupancies of all three lattice

sites. The second basal lattice plane contains 2 Ga atoms, and in the third lattice

site, we have a 50% probability of finding an In atom. The content of this plane is

x = 1
6 . This gives a total In content of 25%. The In atoms are arranged as second

nearest neighbors in both planes. The detailed information of this structure in vasp

format follows:
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4.2.1. x=0.20

#[1. 0. 1. 0.5 1. 1. ]

1.0

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932

X Y Z

1 1 4

Direct

0.3333333 0.3333333 0.0000000

0.6666667 0.0000000 0.5000000

0.0000000 0.0000000 0.0000000

0.6666667 0.6666667 0.0000000

0.0000000 0.3333333 0.5000000

0.3333333 0.6666667 0.5000000

Structure 2

39% of lattice sites are in T=700 K belong to this luster center. The atomic geo-

metry of this structure is shown in Fig. 4.5. The structure has the
√

3 ×
√

3 unit

cell. The first lattice plane contains 1 Ga atoms and the other two lattice sites 60%

and 70% probability of being occupied by a Ga atom. The second lattice plane

contains 2 Ga atoms, and the third site has 20% probability of finding an In atom.

This gives a total In content of 15%. The detailed information of this structure in

vasp format follows:

#[0.6 1. 0.7 0.8 1. 1. ]

1.0

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932

32



4.2.1. x=0.20

Figure 4.5: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 2, at x=0.20. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations

X Y

3 3

Direct

0.0000000 0.0000000 0.0000000

0.6666667 0.6666667 0.0000000

0.6666667 0.0000000 0.5000000

0.3333333 0.3333333 0.0000000

0.0000000 0.3333333 0.5000000

0.3333333 0.6666667 0.5000000
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4.2.2. x=0.25

Figure 4.6: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 1, at x=0.25. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations

4.2.2 x=0.25

Structure 1

54% of lattice sites at T=700 K belong to this cluster center. The atomic geometry

of this structure is shown in Fig. 4.6. The structure has the
√

3×
√

3 unit cell. The

first lattice plane contains 2 Ga atoms and the other lattice site has 0.5 occupancy,

i.e., 50% probability of being occupied by an In atom. The second lattice plane

contains 2 Ga atoms, and the third site has 70% probability of finding an In atom.

This gives a total In content of 20%. The detailed information of this structure in

vasp format follows:

#[0.5 1. 1. 0.3 1. 1. ]

1.0
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4.2.3. x=0.30

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932

X Y

2 4

Direct

0.6666667 0.0000000 0.5000000

0.0000000 0.0000000 0.0000000

0.3333333 0.3333333 0.0000000

0.6666667 0.6666667 0.0000000

0.0000000 0.3333333 0.5000000

0.3333333 0.6666667 0.5000000

4.2.3 x=0.30

Structure 1

52% of lattice sites at T=650 K belong to this cluster center. The atomic geometry

of this structure is shown in Fig. ??. The structure has the
√

3 ×
√

3 unit cell.

This cluster center is rather disordered compared to the other structures we have

examined so far. The first lattice plane contains one Ga atom and the other lattice

sites have 0.5 and 0.8 occupancy, i.e., 50% and 80% probability of being occupied

by an Ga atom. The second lattice plane contains 2 Ga atoms, and the third site

has 80% probability of finding an In atom. This gives a total In content of 25%.

The detailed information of this structure in vasp format follows:

#[0.8 0.5 1. 0.2 1. 1. ]

1.0

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932
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4.2.3. x=0.30

Figure 4.7: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 1, at x=0.30. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations

X Y Z

1 1 4

Direct

0.6666667 0.0000000 0.5000000

0.3333333 0.3333333 0.0000000

0.0000000 0.0000000 0.0000000

0.6666667 0.6666667 0.0000000

0.0000000 0.3333333 0.5000000

0.3333333 0.6666667 0.5000000
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4.2.3. x=0.30

Figure 4.8: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 2, at x=0.30. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations.

Structure 2

60% of lattice sites at T=600 K belong to this cluster center. The atomic geometry

of this structure is shown in Fig. 4.8. The structure has the
√

3 ×
√

3 unit cell.

The first lattice plane contains two Ga atoms and the other lattice site has 10%

probability of being occupied by an Ga atom. The second lattice plane contain

one Ga atom, and the other lattice sites have 0.6 and 0.7 occupancty. This gives a

total In content of 26%. The detailed information of this structure in vasp format

follows:

#[0.1 1. 1. 0.6 0.7 1. ]

1.0

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000
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4.2.4. x=0.35

0.0000000 0.0000000 1.6329932

X Y Z

1 2 3

Direct

0.0000000 0.0000000 0.0000000

0.6666667 0.0000000 0.5000000

0.0000000 0.3333333 0.5000000

0.3333333 0.3333333 0.0000000

0.6666667 0.6666667 0.0000000

0.3333333 0.6666667 0.5000000

4.2.4 x=0.35

Structure 1

49% of lattice sites at T=670 K belong to this cluster center. The atomic geometry

of this structure is shown in Fig. 4.9. The structure has the
√

3 ×
√

3 unit cell.

The first lattice plane contains two Ga atoms and the other lattice site has 80%

probability of being occupied by an In atom. The second lattice plane contain

one Ga atom with inenger occupancy, and the other lattice sites have 0.2 and 0.8

occupancy. This gives a total In content of 30%. The detailed information of this

structure in vasp format follows:

#[0.2 1. 1. 0.2 0.8 1. ]

1.0

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932

X Y Z

2 1 3

Direct
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4.2.4. x=0.35

Figure 4.9: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 1, at x=0.35. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations.

0.0000000 0.0000000 0.0000000

0.6666667 0.0000000 0.5000000

0.0000000 0.3333333 0.5000000

0.3333333 0.3333333 0.0000000

0.6666667 0.6666667 0.0000000

0.3333333 0.6666667 0.5000000

Structure 2

50% of lattice sites at T=650 K belong to this cluster center. The atomic geometry

of this structure is shown in Fig. 4.10. The structure has the
√

3 ×
√

3 unit cell.

The first lattice plane contains one Ga atom and the other lattice sites have 30%

and 80% probability of being occupied by an In atom. The second lattice plane

contain one Ga atom with intenger occupancy, and the other lattice sites have 0.1.
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4.2.4. x=0.35

Figure 4.10: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 2, at x=0.35. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations

This gives a total In content of 33%. The detailed information of this structure in

vasp format follows:

#[0.7 0.2 1. 0.1 1. 1. ]

1.0

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932

X Y Z

2 1 3

Direct

0.6666667 0.0000000 0.5000000

0.3333333 0.3333333 0.0000000

0.0000000 0.0000000 0.0000000
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4.2.5. x=0.40

Figure 4.11: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 1, at x=0.40. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations.

0.6666667 0.6666667 0.0000000

0.0000000 0.3333333 0.5000000

0.3333333 0.6666667 0.5000000

4.2.5 x=0.40

Structure 1

59% of lattice sites at T=500 K belong to this cluster center. The atomic geometry

of this structure is shown in Fig. 4.11. The structure has the
√

3×
√

3 unit cell. The

lattice sites at the first lattice plane has no intenger occupancies. Nevertheless, the

probability of find a Ga at each of these sites is 20%, 80%, and 80%. The second
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4.2.5. x=0.40

basal plane contains two Ga atoms and one In atom. This gives a total In content

of 36%. The detailed information of this structure in vasp format follows:

#[0.2 0.8 0.8 0. 1. 1. ]

1.0

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932

X Y

2 4

Direct

0.6666667 0.0000000 0.5000000

0.0000000 0.0000000 0.0000000

0.3333333 0.3333333 0.0000000

0.6666667 0.6666667 0.0000000

0.0000000 0.3333333 0.5000000

0.3333333 0.6666667 0.5000000

Structure 2

The percentage of the cluster center in addition with others is about 42% at 400K

42% of lattice sites at T=400 K belong to this cluster center. The atomic geometry

of this structure is shown in Fig. 4.12. The structure has the
√

3 ×
√

3 unit cell.

The first c-plane includes one Ga and one In atom. The third latticde site has

60% probabillity to be occupied by a Gatom. The second basal plane has one In

atoms. The other two lattice sites have 80% and 90% probability to be occupied

by a Ga tom. This gives a total In content of 40%. The detailed information of

this structure in vasp format follows:

#[0.6 1. 0. 0. 0.8 0.9]

1.0
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4.2.5. x=0.40

Figure 4.12: Schematic representation of the atoms at the two basal planes (top two
figures) and in side view (bottom figure) of the Structure 2, at x=0.40. Blue balls
represent occupation less than 0.2, red occupation above 0.8, and purple denotes
intermediate occupations.

1.5000000 0.8660254 0.0000000

0.0000000 1.7320508 0.0000000

0.0000000 0.0000000 1.6329932

X Y Z

2 1 3

Direct

0.6666667 0.6666667 0.0000000

0.6666667 0.0000000 0.5000000

0.0000000 0.0000000 0.0000000

0.0000000 0.3333333 0.5000000

0.3333333 0.6666667 0.5000000

0.3333333 0.3333333 0.0000000
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4.3. General trends

4.3 General trends

Based on the aformentioned analysis we see that the most probable configuration

for InGaN alloys is described by a
√

3 ×
√

3 unit cell. As has already described in

the Introduction (see Fig. 1.3) at 33% In content, In atoms preferencially allign as

second nearest neighbohrs. This is due to efficient strain relaxation. This alligne-

ment results in a
√

3×
√

3 unit cell. The methodology developed and applied in the

present thesus indicate that the same mechanism is active at other compositions

as well. Another key outcome of these calculations is that unit cells with
√

3 ×
√

3

symmetry can be used in DFT calculations either to investigate ordered structures

of random structures. For the later, special quasirandom structures, where the oc-

cupacion probabilities are adjusted according the occupancies of the cluster center,

can be applied.
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Chapter 5

Conclusion

In this thesis, we have developed and implemented a novel methodology to investig-

ate the configurational space of binary alloys, specifically focusing on InGaN alloys.

This methodology integrates symmetry properties of the parent lattice and employs

unsupervised machine learning approaches to identify and analyze configurational

patterns.

We introduced a self-consistent clustering algorithm that uses vectors representing

unit cells of varying sizes and symmetries to search for patterns within thousands

of configuration vectors. This algorithm effectively identifies cluster centers and

assigns representation vectors to these centers, allowing for the construction of a

degree of order parameter and the assignment of high symmetry cluster centers to

lattice sites.

Our methodology was applied to pseudobinary InGaN alloys, utilizing large alloy

structures produced by Monte Carlo calculations. The results confirmed the tend-

ency of indium atoms to align as second nearest neighbors, leading to a
√

3 ×
√

3

translational symmetry. This key structural motif is prevalent across different

compositions of InGaN alloys due to efficient strain relaxation, particularly at 33%

indium content.

The cluster centers derived from our methodology can be directly used in Density

Functional Theory (DFT) calculations or to produce special quasirandom struc-
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5. Conclusion

tures (SQS) with modified probabilities for the occupation of lattice sites. This

demonstrates the robustness and versatility of our approach in modeling both

ordered and random alloy behaviors while maintaining computational efficiency.

In conclusion, the novel methodology developed in this thesis provides a powerful

tool for investigating and understanding the configurational
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