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Statement of the problem 
 
Earthquakes have always been one the most intriguing natural phenomena for the mankind. 
However, the complexity of the earth’s interior makes the investigation of this system more 
and more complicated. Among the years many models have been proposed for the 
description of the seismic behavior and the last years has been made significant progress, 
since now we are in position to understand many aspects of the seismic behavior and how 
this extremely complex system works. The most promising and adequate model for 
describing systems such as the Earth seems to be the Non Extensive Statistical Physics 
model, introduced by Tsallis in 1988. This model is strongly supported by the fact that this 
type of statistical mechanics is the appropriate methodological tool to describe entities with 
(multi) fractal distributions of their elements and where long-range interactions or 
intermittency are important, as in earthquakes. The NESP approach starting from the classic 
Boltzman-Gibbs statistics develops an entire model , based on the maximization of the 
Tsallis entropy, that gives us the opportunity to study the collective properties of even very 
large earthquakes (mega earthquakes ), such as the earthquake occurred occurred in 
Sumatra ( 2004 ) with magnitude Mw=9.0 and the recent Japan mega earthquake with 
magnitude Mw=9.1 (2011) .  
 
In the present work we study the distribution of worldwide shallow strong seismic events 
occurred from 1981 to 2011 extracted from the CMT catalog, with magnitude equal or 
greater than Mw5.0. Our analysis based on the subdivision of the Earth surface into seismic 
zones that are homogeneous with regards to seismic activity and orientation of the 
predominant stress field. We analyze the magnitude-frequency distribution along with the 
interevent time distribution between successive earthquakes using the Tsallis entropy 
approach in each of the seismic zones.  
 
Our aim is to understand how this model works, under which conditions is valid and how 

non extensive parameters, such as the entropic index qM and qT , extracted from the 

frequency magnitude and interevent time distributions respectively, are affected by factors 

such as the magnitude threshold and the earthquake depth and finally what information can 

we extract by applying the NESP model in global seismicity catalogs.    

The present thesis is organized as follow:  
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CHAPTER 1: Theoretical background 

 

1.1 The Gutenberg-Richter Law 

 

Although it is very difficult to explore the behavior of complex dynamic systems, such as the 

Earth’s interior, which is characterized by inhomogeneous areas with different seismic 

activity, some simple empirical relations are valid, such as the Gutenberg-Richter law (1944), 

which gives the relationship between the frequency and magnitude of earthquakes. The 

Gutenberg-Richter law ( hereafter, GR law ), is an empirical relation between the magnitude 

M of a seismic event and the number of events N(>M) with magnitude higher than M, 

introduced in 1944 by Beno Gutenberg and Charles Richter. The mathematical expression of 

the GR law is: 

logN(M)=a-bM                                                      (1.1) 

,where a,b are constants for a fixed earthquake data set. 

                                

Figure 1.1.1: frequency-magnitude distribution according to the Gutenberg-Richter law (extracted from 

simscience.org) 

 

By plotting on a logarithmic scale the number of earthquakes higher than or equal to the 

magnitude M, in a predefined period of time, against magnitude, we determine the b-value 

of the above equation, which is a basic characteristic of the seismicity rate and for most 

regions is close to unity (b≈1). 
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1.2 Boltzmann-Gibbs entropy 

 

The term “entropy” was introduced in statistical mechanics, in order to to explain the 

behavior of macroscopic systems in terms of the dynamical laws governing their microscopic 

consituents. Boltzmann was the first to propose a probabilistic definition of entropy, 

characterizing it as “ a measure of disorder” of the system suggesting the following 

equation: 

S =KlnW                                                          (1.2) 

Where K refers to the Boltzmann’s constant and  W to the number 

of microstates corresponding to a given macrostate. The above form was refined a few 

years later by Gibbs leading to the now known Boltzmann-Gibbs entropy expressed by: 

                                       SBG=           
                                                 (1.3) 

where                                         
                                                        (1.4) 

 for a set of W discrete states and 

SBG=-KB                                                     (1.5) 

with                                                                                                 (1.6) 

when the appropriate variable is a continuous one. 

In this form, x/s ∈ RD , D ≥ 1 being the dimension of the full space of microscopic states 

where x and s carry the same physical units as x, so that  x/s is a dimensionless. 

In general, for at least two different values of i , Pi<1 so the main form transforms to: 

                           SBG=-kB<lnPi>=k<ln
 

  
>                                             (1.7) 

As a conclusion, the B-G entropy is always positive, except if we know with certainty the 
state of the system, in which case we can easily conclude that SBG=0. The B-G entropy also 
has its maximum at equal probabilities and it is expansable, which means that if we add at 
the system a new state with zero probability the entropy remains unaffected. In 
mathematicals terms this is translated as: 
 
                                                SBG(P1,P2,…,PW,0)=SBG(P1,P2,…,PW)                            (1.8) 
 
If two states A, B are independent then: 
 
                                                   SBG(A+B)=SBG(A)+SBG(B)                                               (1.9) 
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Therefore, the B-G entropy is additive. 
 
1.3 Non-extensive statistical physics 
 
The concept of the classical Boltzmann- Gibbs statistical mechanics explains perfectly the 
behavior of classical systems, however in more complex systems, where long-range 
interactions are important, this model does not seem to be the most adequate tool for 
describing them. This leads to the conclusion that the B-G statistical mechanics has its 
limitations and at this point a new framework is introduced in 1988 by Constantino Tsallis, ( 
Tsallis,1988) named non extensive statistical physics (Tsallis, 1998). Non-extensive statistical 
physics refers to the non-additive entropy Sq (Tsallis 2009), which is an advanced form of 
Boltzmann-Gibbs (BG) entropy, introducing an entropic expression symbolized as “q”, which 
reflects the degree of non-additivity. The Tsallis entropy, Sq is defined as: 
 

                                  Sq=KB
       

   

   
      , q ∈R                                       (1.10) 

Where KB is Boltzmann’s constant, W is the total number of microscopic configurations and 
Pi is a set of probabilities. When q=1, Boltzmann-Gibbs statistical mechanics is recovered ( 
S1=SBG ). 
In contrast to the Boltzmann-Gibbs entropy, the Tsallis entropy is non-additive. Specifically, 

for two probabilistic independent events A, B: 

                       
       

 
 

     

 
 

     

 
      

     

 

     

 
                   (1.11) 

Using the Lagrange multipliers method we can maximize the non-extensive entropy under 

appropriate conditions in order to find the probability distribution P(X) of a certain 

parameter X. 

The Tsallis entropy can be also expressed in an integrated formulation as (Abe and Suzuki, 
2005) : 

                                                Sq=kB
          

   
                                                       (1.12) 

With the normalization condition: 
 

                                                          
 

 
                                                       (1.13) 

 
where Pq stands for the escort probability: 
 

                                              Pq(X)=
     

        
 
 

                                                             (1.14) 

 
The probability distribution after applying the Lagrange multipliers method is given as: 
 

                                        P(X)=
           

 
    

  
 

          

  
                          (1.15) 
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Where the q-exponential function is defined as : 

 

 ,                      
 

          
 

    
  when                      (1.16) 

expq(X)=         
                             0                                    ,when                         (1.17) 
 
 
The inverse given by the expression of the q-exponential is the q-logarithmic function : 

                                   ln(q)=
 

   
      - 1)                              (1.18) 

 

1.4 The frequency-magnitude distribution according to NESP 

It is already mentioned that the energy distribution of earthquakes exhibit power law decay, 

as it is prevised by the G-R law ( Gutenberg and Richter, 1942 ). In 2004 a new model for 

earthquake’s dynamics was proposed by Sotolongo and Posadas (Sotolongo and Posadas, 

2004 ), based on a non-extensive formalism. They introduced a new relationship that 

describes the cumulative distribution of the number of events N greater than the magnitude 

M in a seismic region, in which the G-R law is considered as a particular case. Since 

fragments are the result of the violent fractioning between the fault planes then long-range 

interactions are expected between the existent fragments. 

If P(s) express the probability of finding a fragment of surface s and          : the sum of 

all possible states, then the Tsallis entropy Sq is given by: 

                                    Sq=kB
          

   
                                                                      (1.19) 

Where  the probability P(s) is obtained under the constrain that it is normalized according to 

the equation: 

                                            
 

 
                                               (1.20)  

And the q expectation value obeys the condition: 

                            sq=<s>q=
         
 
 

    
 

     
                                               (1.21) 

By using the Lagrange-multipliers technique we obtain: 

                           δSq*=δ(Sq+α           
 

 
                             (1.22) 
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where α,β represent the Lagrange multipliers. 

 

After some algebra, we arrive at the following relationship for the fragment size distribution 

function: 

                                        P(s)=   
     

     
       

 
    

                                   (1.23) 

The proportionality between the released energy E and the tree dimensional size of the 

fragments ( r3 ) now becomes: 

                                                      
 

  
 
 

                                                          (1.24) 

Introducing (1.24) to (1.23), the energy distribution function can be written ( Telesca, 2012) 

as: 

                             
 
  

  

   
 

  
 
 

       
  

  
   

     

     
 

 

  
 
 

   

 

   
                   (1.25) 

where 
  

  
 can be obtained by changing equation (1.24) into: 

                                                    
     

  
 

 

 

     

  
                                                             (1.26) 

Using the aforementioned expression we lead to the probability distribution function P(E) 

as: 

                                          
       

          
 

   

                                                (1.27) 

with  C1=
 

   
     and  C2= 

     

       
    

In the latter expression, the probability of the energy is P(E)=n(E)/N0, where n(E) 

corresponds to the number of earthquakes with energy E and N0 is the total number of 

earthquakes. A more viable expression can now be obtained by introducing the normalized 

cumulative number of earthquakes given by the integral of Eq. (1.25): 

                                         
        

  
        

 

   
                                            (1.28) 

where N(E > Eth) is the number of earthquakes with energy E greater than the threshold 

energy Eth and N0 the total number of earthquakes. Introducing eq. (1.27) to (1.28) we lead 

to: 
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                            (1.29) 

 

Considering that M≈
 

 
        ( Kanamori, 1978) we can easily derive : 

                                 
        

 
     

    

    
  

   

  
    

    
                                   (1.30) 

The constant aE expresses the proportionality between the released energy E and the 

fragment size r, while q is the entropic index that from now on we will refer to as qE. 

Applying the above model in various geotectonic environments, it seems to describe better 

the earthquake energy distribution in a wide range of magnitudes than the G-R law, which 

above some threshold magnitude can be considered as a particular case of the non-

extensive model of eq. (1.30) with b=(2-qE)/(qE-1). 

 

1.5 Interevent times distribution 

Applying the Boltzmann-Gibbs statistical mechanics in the probability distribution of a  set of 

uncorrelated events, we expect as a result a Poisson distribution. But when we apply the 

known models of B-G mechanics in an earthquake catalog, we notice a deviation from the 

expected exponential distribution, which leads to the conclusion that long-range 

correlations do exist at the interevent times series. Several analysis of the temporal space 

between successive earthquakes have been done over the years and they have evidenced 

that the seismic time series undergoes over several transitions between quasi-equilibrium 

states, each of which obeys the aforementioned q exponential distribution with q greater 

than 1, which is derived after maximization of Tsallis entropy Sq ( Abe and Suzuki, 2005). The 

q-exponential distribution consists a generalization of the Zipf-Mandelbrot distribution 

(Mandelbrot, 1983), where the standard Zipf-Mandelbrot distribution corresponds to the 

case q>1 (Abe and Suzuki, 2003). In the limit q→1 the q-exponential and q-logarithmic 

functions lead to the ordinary exponential and logarithmic functions respectively. If q>1 

asymptotic power-law behavior is observed with slope -1/(q-1). In contrast, for 0<q<1 a cut-

off appears (Abe and Suzuki 2003). 

More detailed, if P(T) : the interevent times (T) distribution and  if we assume KB   the 

entropy Sq becomes: 
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                                                      (1.31) 

under the normalization:          
 

 
 and the condition for the q- expectation value 

(Tsallis,2009):          
        
 
 

         
 

 

Applying the Lagrange multipliers method we lead to: 

  

                                          
    

 
                           (1.32) 

 

where α and β represent the Lagrange multipliers. Thus we obtain the physical probability: 

 

                         
            

       

  
 

           

  
                                   (1.33) 

where  Zq is the q-partition function 

 

                                       
    

 
                                                        (1.34) 

  

 

with    
 

           
  and             

    

 
                       (1.35) 

 

 

The inverse of the above equation is the q-logarithmic function already presented in 

chapter 1.2 (eq. (1.18)) 

 

1.6 Earth’s seismicity and seismic zones 

 

Since the seismic activity of the earth is not homogeneous there was a need  to subdivide 

the Earth’s surface in zones that are homogeneous and have similar seismic behavior. For 

the purpose of our analysis, we used the Flinn-Engdahl regionalization technique, also 

known as F-E code ( Flinn, Engdahl and Hill, 1974 ), which was originally introduced in 1974 

and revised in 1995( Young, 1995 ).   

The  F-E Region sceme is a list of  boundary definitions used by Earth scientists in order to 

identify the geotectonic regions of the Earth. The original regionalization was achieved by 

Gutenberg-Richter (Gutenberg and Richter, 1954), who created a map with 51 regions from 

which the regions with high seismicity  where smaller in area than those of low seismicity. 
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As a result, the oceanic regions, which are less seismically active, covered the biggest part of 

the map. 

The F-E regionalization is a reorganization of the Gutenberg-Richter division and consists of 

50 large areas called “seismic regions” and 729 subdivisions completing the puzzle, called 

“geographical regions”. In our study, we only used the seismic regions,presented in table 

1.6.1. 

Region 1                                           Alaska - Aleutian Arc 

Region 2                              Southeastern Alaska to Washington 

Region 3                                  Oregon, California and Nevada 

Region 4                             Baja California and Gulf of California 

Region 5                                       Mexico - Guatemala Area 

Region 6                                              Central America 

Region 7                                               Caribbean Loop 

Region 8                                          Andean South America 

Region 9                                          Extreme South America 

Region 10                                             Southern Antilles 

Region 11                                          New Zealand Region 

Region 12                         Kermadec - Tonga - Samoa Basin Area 

Region 13                                             Fiji Islands Area 

Region 14                                             Vanuatu Islands 

Region 15                               Bismarck and Solomon Islands 

Region 16                                                 New Guinea 

Region 17                                         Caroline Islands Area 

Region 18                                               Guam to Japan 

Region 19                 Japan - Kuril Islands - Kamchatka Peninsula 

Region 20                  Southwestern Japan and Ryukyu Islands 

Region 21                                             Taiwan Area 

Region 22                                       Philippine Islands 

Region 23                                       Bornea – Sulawesi 

Region 24                                              Sunda Arc 

Region 25                             Myanmar and Southeast Asia 

Region 26                          India - Xizand - Sichuan - Yunnan 

Region 27                              Southern Xinjiang to Gansu 

Region 28                            Lake Issyk-Kul to Lake Baykal 

Region 29                                           Western Asia 

Region 30                   Middle East - Crimea - Eastern Balkans 

Region 31                          Western Mediterranean Area 

Region 32                                         Atlantic Ocean 

Region 33                                           Indian Ocean 

Region 34                                    Eastern North America 

Region 35                                    Eastern South America 

Region 36                                     Northwestern Europe 
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Region 37                                                 Africa 

Region 38                                              Australia 

Region 39                                           Pacific Basin 

Region 40                                            Arctic Zone 

Region 41                                           Eastern Asia 

Region 42        Northeasterb Asia, Northern Alaska to Greeland 

Region 43                 Southeastern & Antarctic Pacific Ocean 

Region 44                                 Galapagos Islands Area 

Region 45                                       Macquarie Loop 

Region 46                          Andaman Islands to Sumatera 

Region 47                                                Baluchistan 

Region 48                                 Hindu Kush and Pamir Area 

Region 49                                         Northern Eurasia 
Region 50                                                Antarctica 
 
              Table 1.6.1 : The Flinn- Engdahl regions 

 

 

 

 

                                   Figure 1.6.1: Map of the Flinn-Engdahl seismic Regions 
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Lombardi and Marzzochi (2007) merged some of the above seismic regions into larger 

tectonically homogeneous zones, applying a new regionalization technique. They computed 

a representative mean focal mechanism for each one of the 50 zones using the cumulative 

moment tensor method introduced by Kostrov (1974), which consists of summing all 

moment tensors of the earthquakes in a given area and then computing the best double 

couple for this cumulative tensor. As a result, the 50 regions decreased to 39, as shown in 

figure 1.6.2. 

 

 

Figure 1.6.2: Lombardi and Marzocchi’s regionalization 

The new zones are now marked with asterisk and explained in table 1.5.2: 

New Zones FE regions 

R2* 2-3-4 

R14* 14-15 

R17* 17-18 

R19* 19-20-21 

R22* 22-23 

R25* 25-26-27-28-47 

                                   Table 1.6.2: The new zones created by Lombardi and Marzocchi 
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1.7 Declustering the earthquake catalog 

 

Every independent earthquake that occurs leads to triggering new earthquakes known as 

aftershocks while all the events occurred during the preparatory stage are termed as 

foreshocks. Since there is no way to distinguish these dependent events from the 

independent one from just their waveform, there was a need to create an algorithm that 

could isolate the “mother earthquake”, which is caused by tectonic loading and natural 

processes from the earthquakes born due to the first one. This is exactly the purpose of “ 

declustering”, to remove the foreshocks and aftershocks, that form clusters and isolate a 

catalog that consists of only mainshocks. Over the years, many declustering methods have 

been proposed and used by seismologist and, among them, the Reasenberg method ( 

Reasenberg, 1985) which we are going to use in our study. 

Reasenberg’s method is based on identifying the dependent earthquakes according to 

spatial and temporal interaction zones. The process of more and more aftershocks has as a 

result the extension of the earthquake clusters. The spatial extent of  the interaction zone is 

chosen according to stress distribution near the “mother earthquake” and leads to an after-

slip as shown in figure 1.5.3. 

 

 

Figure 1.7.3: Aftershocks identification windows in space (a) and in time (b) 

 

The spatial interaction relation is expressed by (Molchan and Dmitrieva, 1992) :     

                                                                            (1.36) 

where k=1 for the distance to the largest earthquake and 0 for the distance to the last one. 

The temporal extension is based on the Omori law ( Omori, 1894 ), expressed by the 

following equation:     
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                                                           (1.37) 

Where n(t) refers to the rate of events, p modifies the decay and typically falls in the range 

0.7-1.5 and k, c are fitting coefficients. 

All linked events define a cluster, in which the largest earthquake is considered as the 

mainshock and the rest of them as aftershocks and foreshocks. So, providing in our program 

an earthquake catalog which contains information about the space, time and magnitude of 

the events, we can easily take back the cluster and the new declustered catalog. 

 

CHAPTER 2: Methodology and Results 

To analyze the global seismicity a seismic catalog than contains all the seismic events with 

magnitude Mw greater than 5.0 from 1/01/1981 until 31/12/2011 and seismic depth until 

50 kilometers was created. Our source was the global centroid moment tensor catalog 

hosted in www.globalcmt.org. We subdivided the whole catalog into subcatalogs each of 

which contains events from 5 successive years with a three-year overlap, so that we can 

obtain a smooth transition over time. Furthermore, we analyze the seismicity evolved in the 

zone defined by the Flinn-Engdahl regionalization.  

2.1 Calculation of b-value of the Gutenberg-Richter law 

As first step we calculated the b-value from the Gutenberg-Richter law (logN(M)=a-bM), 

which was achieved using the ZMAP matlab program extracted from the ETH Zurich 

(Eidgenössische Technische Hochschule Zürich ) webpage. Zmap is a useful set of tools that 

allows as to analyze the data of seismic catalogs, calculate variable quantities and create 

seismicity maps. The ZMAP program is available at: 

http://www.seismo.ethz.ch/prod/software/zmap/index_EN. 

The b-value was estimated by the maximum likelihood method (Pfanzagl  1994) in each one 

of the constracted subcatalogs. In order to achieve that we set a minimum magnitude and 

the program tries to make the best linear fit  in a diagram of the logarithm of the cumulative 

number distribution to the magnitude of the earthquakes following the maximum likelihood 

estimation’s principles. We did this for threshold magnitude 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5 and 

the results are shown in table 2.1.1 as well as examples of the graphs of the calculation. ( 

The symbol “-“ indicates that we did not have the appropriate number of events in order to 

estimate the b value in the specific time period). As an example, figures 2.1.1 to 2.1.8 

present the calculation of b-value for period 1981-1985 for the threshold magnitudes setted 

each time. The GR relations for the other cases referred to table 2.1.1 are presented in 

Appendix 1. 

 

 

http://www.globalcmt.org/
http://www.seismo.ethz.ch/prod/software/zmap/index_EN
http://en.wikipedia.org/wiki/Maximum_likelihood#CITEREFPfanzagl1994
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years M≥5 M≥5.5 M≥6.0 M≥6.5 M≥7.0 M≥7.5 M≥8 M≥8.5 

1981-1985 1,12 

±0.15 

1,21 

±0.11 

1,31 

±0.10 

1,43 

±0.10 

1,68 

±0.06 

2,08 

±0.08 

- - 

1984-1988 1,1 

±0.12 

1,18 

±0.09 

1,26 

±0.08 

1,32 

±0.08 

1,56 

±0.06 

1,79 

±0.08 

- - 

1987-1991 1,15 

±0.17 

1,25 

±0.15 

1,36 

±0.14 

1,48 

±0.13 

1,87 

±0.11 

2,40 

±0.09 

- - 

1990-1994 1,17 

±0.17 

1,24 

±0.17 

1,31 

±0.17 

1,43 

±0.17 

1,59 

±0.19 

1,53 

±0.24 

- - 

1993-1997 1,05 

±0.10 

1,08 

±0.10 

1,11 

±0.11 

1,17 

±0.12 

1,27 

±0.13 

1,82 

±0.07 

1,50 

±0.08 

- 

1996-2000 1,05 

±0.11 

1,07 

±0.11 

1,10 

±0.12 

1,18 

±0.13 

1,35 

±0.14 

2,05 

±0.07 

3,01 

±0.00 

- 

1999-03 1,05 

±0.10 

1,07 

±0.10 

1,10 

±0.11 

1,15 

±0.11 

1,33 

±0.1 

1,47 

±0.1 

0,90 

±0.09

0 

- 

2002-2006 0,98 

±0.06 

0,97 

±0.06 

0,94 

±0.06 

0,91 

±0.06 

0,92 

±0.06 

0,87 

±0.07 

0,87 

±0.08 

0,60 

±0.09 

2005-2009 1,00 

±0.06 

0,99 

±0.07 

0,98 

±0.07 

0,98 

±0.08 

1,07 

±0.08 

1,23 

±0.05 

1,13 

±0.07 

0,00 

2008-2011 0,97 

±0.12 

0,96 

±0.12 

0,94 

±0.13 

0,91 

±0.14 

0,85 

±0.15 

0,73 

±0.14 

0,40 

±0.08 

0,77 

±0.07 

 

                        Table 2.1.1 : b values of the Gutenberg –Richter law for the global shallow seismicity 
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              Figure 2.1.1: Example of calculation of the value b with Mw (min) = 5 (1981-1985) 

 

 

 

             Figure 2.1.2: Example of calculation of the value b with Mw (min) = 5.5 (1981-1985) 
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                 Figure 2.1.3: Example of calculation of the value b for Mw (min) =6 (1981-1985) 

 

 

 

  

               Figure 2.1.4: Example of calculation of the value b for Mw (min) =6.5 (1981-1985) 
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               Figure  2.1.5: Example of calculation of the value b for Mw (min) = 7 (1981-1985) 

 

 

 

 

              Figure 2.1.6: Example of calculation of the value b for Mw (min) = 7.5 (1981-1985) 
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              Figure 2.1.7: Example of calculation of the value b for Mw (min) = 8 (1981-1985) 

 

 

 

 

                Figure 2.1.8: Example of calculation of the value b for Mw (min) = 8.5 (1981-1985) 
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2.2 The Nonextensive Model for Earthquake Frequency-Magnitude distribution 

The Gutenberg–Richter (GR) law (Gutenberg and Richter, 1944) log-linearly relates the 

cumulative number of earthquakes with magnitude greater than M  with the magnitude 

Mth. However,  this is an empirical relationship that was not expressed from any principles 

of physics. Therefore, Sotolongo-Costa and Posadas (2004) proposed a model for 

earthquake generation mechanism, in which an energy distribution function was derived 

starting from first principles. The Sotolongo-Costa and Posadas (2004, SCP, hereafter) model 

considers as earthquake triggering mechanism the interaction between the asperities of the 

fault planes with the fragments between them, originated by the local breakage of the 

tectonic plates, from which the faults are generated. Based on the nonextensive Tsallis 

formalism (Tsallis,1988),a fragment size distribution is derived, which, combined with the 

roughness of the fault planes, leads to a mechanism of earthquake triggering. Two years 

later, Silva (2006) reinvestigated the above-mentioned method, developing  a more realistic 

model, which assumes that the eventual relative position of fragments filling the space 

between two irregular faults can hinder their relative motion. Stress increases until a 

displacement of one of the asperities, due to the displacement of the hindering fragment, or 

even its breakage in the point of contact with the fragment leads to a relative displacement 

of the fault planes of the order of the size ρ of the hindering fragment, with the subsequent 

energy release E (Sotolongo-Costa and Posadas, 2004). Because large fragments are more 

difficult to release than small ones, the energy scales as ε∼ρ3, in agreement with the scaling 

relationship between seismic moment and the product of the fault rupture area with the 

average displacement of the fault (Lay and Wallace, 1995). Such relationship differs from 

that given by Sotolongo-Costa and Posadas (2004), where E∼ρ, leading to a difference in the 

estimate of the parameter a, which is the proportionality constant of each of the proposed 

relationships. 

Starting from the main principle of maximization of the Tsallis entropy (Tsallis, 1988) we 

take: 

                                                    
     

      

   
                                             (2.1) 

we derive the expressions (2.9) and (2.10) as described in section 1.3: 
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We have applied the non-extensive model of the last equation to the magnitude distribution 

of the earthquake activity of the whole catalog and the results are summarized in table 

2.2.1: 
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Table 2.2.1: The entropic index qM for the global catalog with events with magnitude Mw≥5.0 and depth H≤150 

km. 

 

 

 

Figure 2.2.1: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.421. The lines represent the 95% confidence error (1981-1985) 

Years    

1981-1985 1,4211 

1984-1988 1,4342 

1987-1991 1,4160 

1990-1994 1,4253 

1993-1997 1,4686 

1996-2000 1,4727 

1999-2003 1,4746 

2002-2006 1,4848 

2005-2009 1,4695 

2008-2011 1,4760 

year 
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Figure 2.2.2: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.434. The lines represent the 95% confidence error (1984-1988) 

 

 

Figure 2.2.3: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.416. The lines represent the 95% confidence error (1987-1991) 
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Figure 2.2.4: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.425. The lines represent the 95% confidence error (1990-1994) 

 

 

Figure 2.2.5: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.467. The lines represent the 95% confidence error (1993-1997) 
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Figure 2.2.6: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.473. The lines represent the 95% confidence error (1996-2000) 

 

 

Figure 2.2.7: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.475. The lines represent the 95% confidence error (1999-2003) 
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Figure 2.2.8: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.485. The lines represent the 95% confidence error (2002-2006) 

 

 

Figure 2.2.9: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

q=1.470. The lines represent the 95% confidence error (2005-2009) 
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Figure 2.2.10: The magnitude-frequency distribution of earthquakes along with fitting based in eq (2.10) with 

qM=1.476. The lines represent the 95% confidence error (2008-2011) 
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2.3 The frequency-magnitude distribution for the regionalized catalog 

To integrate our search there is an obvious need to estimate the entropic index qM, as well 

as the b-value from the Gutenberg-Richter law inside these regions, in order to reach a 

conclusion. 

Following the same procedure, described in chapter 2.2 for the magnitude distribution for 

the regionalized catalog that contains earthquakes with magnitude equal or greater than 

Mw=5 we take the results shown in table 2.3.1. 

Region qM 

Region 1 1,491 

Region 2* (2-3-4) 1,418 

Region 5 1,498 

Region 6 1,470 

Region 7 1,474 

Region 8 1,516 

Region 9 1,195 

Region 10 1,421 

Region 11 1,555 

Region 12 1,471 

Region 13 1,295 

Region 14*(14-15) 1,424 

Region 16 1,463 

Region 17*(17-18) 1,472 

Region 19*(19-20-21) 1,507 

Region 22*(22-23) 1,425 

Region 24 1,493 

Region 25*(25-26-27-28-47) 1,494 

Region 29 1,466 

Region 30 1,429 

Region 31 1,368 

Region 32 1,354 

Region 33 1,459 

Region 34 - 

Region 35 - 

Region 36 - 

Region 37 1,481 

Region 38 - 

Region 39 1,429 

Region 40 1,346 

Region 41 1,267 

Region 42 1,470 

Region 43 1,285 

Region 44 1,184 
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Table 2.3.1: The entropic index qM for the regionalized catalog with events with magnitude Mw≥5.0 and depth 

H≤150 km. 

 

Finally, the calculation of the Gutenberg-Richter’s law gives as the following b-values for the 

F-E regions: 

 
b value 

No 
events 

Region 1 0,96 1135 

Region 2* (2-3-4) 0,99 517 

Region 5 1 674 

Region 6 1,06 559 

Region 7 0,79 283 

Region 8 1,03 1608 

Region 9 1,18 105 

Region 10 1,07 660 

Region 11 0,81 323 

Region 12 0,89 2392 

Region 13 1,19 299 

Region 14*(14-15) 1,03 3361 

Region 16 1 1097 

Region 17*(17-18) 1,08 872 

Region 19*(19-20-21) 0,95 3006 

Region 22*(22-23) 1,13 2372 

Region 24 0,85 1265 

Region 25*(25-26-27-28-47) 0,91 822 

Region 29 0,97 313 

Region 30 1,03 377 

Region 31 1,31 160 

Region 32 1,36 1268 

Region 33 1,23 1104 

Region 34 1,03 40 

Region 35 - 2 

Region 36 1,65 14 

Region 37 0,96 271 

Region 38 1,12 23 

Region 39 0,92 90 

Region 40 1,28 230 

Region 41 1,03 62 

Region 45 1,267 

Region 46 1,470 

Region 48 1.482 

Region 49 - 

Region 50 - 
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Region 42 0,69 74 

Region 43 1,7 1052 

Region 44 1,67 230 

Region 45 1,33 315 

Region 46 0,84 963 

Region 48 1,11 200 

Region 49 - 0 

Region 50 - 4 
Table 2.3.2: b values of the Gutenberg-Richter law for the regionalized catalog with events with magnitude Mw≥5 and 

depth H≤150 km. 

 

Starting from equation 2.2 and considering that the GR law is given by the expression: 

logN(M)=a-bM, we can easily derive, after some algebra, the relationship: 

                                              b=
    

    
                                          (2.4) 

, that connects the b value with the entropic index qM.  The table that follows presents the 

b-value estimated from equation 2.4 inside the FE regions, while the b value calculated from 

the GR law can be found in table 2.3.2. 

 

b=
    

    
 

Region 1 1.04 

Region 2* (2-3-4) 1.39 

Region 5 1.01 

Region 6 1.13 

Region 7 1.11 

Region 8 0.94 

Region 9 4.13 

Region 10 1.38 

Region 11 0.80 

Region 12 1.12 

Region 13 2.39 

Region 14*(14-15) 1.36 

Region 16 1.16 

Region 17*(17-18) 1.12 

Region 19*(19-20-21) 0.97 

Region 22*(22-23) 1.35 

Region 24 1.03 

Region 25*(25-26-27-28-47) 1.02 

Region 29 1.15 

Region 30 1.33 

Region 31 1.72 

Region 32 1.83 

Region 33 1.18 

Region 34 - 

Region 35 - 
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Region 36 - 

Region 37 1.08 

Region 38 - 

Region 39 1.33 

Region 40 1.89 

Region 41 2.75 

Region 42 1.13 

Region 43 2.51 

Region 44 4.44 

Region 45 2.75 

Region 46 1.13 

Region 48 1.08 

Region 49 - 

Region 50 - 
 

Table 2.3.3: The b value estimated from eq. 2.4 inside the FE regions 

 

 

Figure 2.3.1: linear fitting between the b value calculated from the GR law (vertical axis)  and the b value estimated from 

eq. 2.4 (horizontal axis). 

 

2.4 The interevent times 

In the whole 30-year worldwide seismicity catalog that we are using for our study there are 

in total 28138 seismic events ( Nο=28138 ). We successively calculated the interevent time 

between all successive earthquakes and created a catalog, which describes the number of 

earthquakes with inter-event time equal or greater than T. By dividing the number of 

earthquakes with inter-event time equal or greater than T with the total number of seismic 

events we take the probability of occurrence of an earthquake with inter-event time equal 

or greater than T. We repeated the procedure for all the subcatalogs analysed. The results 

are presented in figures 2.4.1 to 2.4.11. 
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Figure 2.4.1 : The interevent time probability distribution for years 1981-1985 

 

 

 

Figure 2.4.2 : The interevent time probability distribution for years 1984-1988 
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Figure 2.4.3 : The interevent time probability distribution for years 1987-1991 

 

 

 

 

Figure 2.4.4 : The interevent time probability distribution for years 1990-1994 
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Figure 2.4.5: The interevent time probability distribution for years  1993-1997 

 

 

 

Figure 2.4.6 : The interevent time probability distribution for years 1996-2000 
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Figure 2.4.7 : The interevent time probability distribution for years 1999-2003 

 

 

 

 

Figure 2.4.8: The interevent time probability distribution for years 2002-2006 
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Figure 2.3.4.9 : The interevent time probability distribution for years 2005-2009 

 

 

 

 

Figure 2.4.10: The interevent time probability distribution for years  2008-2011 
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Figure 2.4.11: The interevent time probability distribution  for the whole catalog of global seismicity within the 

period of 1/01/1981 to 31/12/2011. 

 

An important point to non-extensive analysis is that the quantity to be compared with the 

observed distribution is the associated escort distribution (Tsallis 2009, Abe and Suzuki 

2003, 2005). Following the latter approach, the cumulative distribution function is given by 

the expression: 

                                              
 

 
                                                          (2.4) 

where :                                     
     

 
 
        

                                                      (2.5) 

and combining with the probability function 

                                p(T)=
                  

  
 

         

  
                                            (2.6) 

we obtain  P(>T) = expq (–BT). This implies that after the estimation of the appropriate q that 

describes the observed distribution for  P(>T)  the  q-logarithmic function  lnq (P(>T))  

anexpressed as 

                                         
 

   
                                                                    (2.7) 

is approximately linear with T (Vallianatos 2011). 
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2.4.1 Analysis of global shallow seismicity. 

Following the latter approach, the analisis of the inter-event time distributions gives us the 

semi-q-log plot of the cumulative distribution for the inter-event times, where the straight 

line represents the q-logarithmic function described earlier. Our results are presented in 

table 2.4.1.1 and graphs that follow (see figure 2.4.1.1, 2.4.1.2) 

 

 
qT cor.coeff. 

1981-1985 1,046 -0,9994 

1984-1988 1,030 -0,9995 

1987-1991 1,033 -0,9992 

1990-1994 1,035 -0,998 

1993-1997 1,026 -0,9984 

1996-2000 1,025 -0,9989 

1999-2003 1,010 -0,9994 

2002-2006 1,049 -0,9992 

2005-2009 1,063 -0,9953 

2008-2011 1,062 -0,9984 

1981-2011 1,031 -0,9702 
Table 2.4.1.1 : The qT parameter after the analysis of the global catalog with events with magnitude Mw≥5.0 

and depth 0-150km 

 

Figure 2.4.1.1: The semi-q-plot of the cumulative distribution for the interevent times for the data set of period 

2005-2009 with earthquakes with magnitude equal or greater than the threshold magnitude Mw=5.0 and 

depth H≤150km. The straight line represents the q-logarithmic function with value qT=1.063 
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Figure 2.4.1.2:The cumulative distribution for the interevent times for the data set of period 2005-2009 with 

earthquakes with magnitude equal or greater than the threshold magnitude Mw=5.0 and depth H≤150 km. 

The value of the logarithmic function qT is 1.063. 

Our results for the initial unmodified global catalog indicate that the value “qT”  is close to  1 

and the dependence of the worldwide events is negligible.  Trying to find a dependence 

between the times that the earthquakes occur , we have created new seismic catalogs 

which contain only the events with magnitude greater or equal to Mw=5.5, Mw=6 , both 

with maximum depth 150 km, as well as a catalog with earthquakes with magnitude equal 

or greater that Mw=5.0 and depth Η≤50 km and, as described above, we fitted  the 

interevent times distribution using the q-exponential function. The results that came out are 

shown in  tables 2.4.1.2, 2.4.1.3, 2.4.1.3: 

 
q cor. Coeff 

1981-1985 1,029 -0,999 

1984-1988 1,089 -0,998 

1987-1991 1,102 -0,998 

1990-1994 1,048 -0,999 

1993-1997 1,054 -0,998 

1996-2000 1,075 -0,999 

1999-2003 1,080 -0,999 

2002-2006 1,038 -0,999 

2005-2009 1,060 -0,999 

2008-2011 1,058 -0,999 

1981-2011 1,055 -0,999 

   Table 2.4.1.2  :The qT parameter after the analysis of the global catalog with events with magnitude Mw≥5.5 

and depth H≤150 km. 
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q cor.coeff 

1981-1985 1,023 -0,998 

1984-1988 1,07 -0,998 

1987-1991 1,07 -0,998 

1990-1994 1,051 -0,999 

1993-1997 1,017 -0,999 

1996-2000 1,02 -0,996 

1999-2003 1,001 -0,996 

2002-2006 1,001 -0,995 

2005-2009 1,018 -0,999 

2008-2011 1,091 -0,998 

1981-2011 1,008 -0,999 

   Table 2.4.1.3 : The qT parameter after the analysis of the global catalog with events with magnitude Mw≥6.0 

and depth H≤150km. 

 

 
q cor. Coeff 

1981-1985 1,001 -0,992 

1984-1988 1,001 -0,991 

1987-1991 1,001 -0,996 

1990-1994 1,001 -0,994 

1993-1997 1,001 -0,991 

1996-2000 1,001 -0,994 

1999-2003 1,001 -0,984 

2002-2006 1,018 -0,996 

2005-2009 1,056 -0,992 

2008-2011 1,001 -0,994 

1981-2011 1,001 -0,995 
Table 2.4.1.4 : The qT parameter after the analysis of the global catalog with events with magnitude Mw≥5.0 

and depth 0-50km. 

2.4.2 Analysis of seismicity in Flinn-engdahl regions based on Tsallis entropy. 

Our next step was to divide the globe into geographical regions according to the framework 

of regionalization proposed from Flinn and Engdahl with the changes made by Lombardi and 

Marzocchi  and investigate the seismicity behavior into these regions. We simply applied the 

above mentioned methodology in the seismic catalog of each region and calculate the 

values of the exponential q and the correlation coefficiency.  The boundaries of the Flinn- 

Engahl ( FE regions) regions were found in the U.S Geological Survey’s website 

(http://earthquake.usgs.gov/learn/topics/flinn_engdahl.php ) and the coordinates with 

their names (see table 1.5.1 and 1.5.2) as well as the results  are included in the following 

tables and graphs (see table 2.3.2.1 to 2.3.2.5 and figures 2.3.2.1, 2.3.2.2) 

 

 

http://earthquake.usgs.gov/learn/topics/flinn_engdahl.php
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qT corcoeff 

Region 1 1,081 -0,997 

Region 2* (2-3-4) 1,073 -0,996 

Region 5 1,048 -0,997 

Region 6 1,142 -0,996 

Region 7 1,117 -0,996 

Region 8 1,117 -0,997 

Region 9 1,271 -0,997 

Region 10 1,181 -0,998 

Region 11 1,135 -0,992 

Region 12 1,125 -0,998 

Region 13 1,162 -0,997 

Region 14*(14-15) 1,087 -0,996 

Region 16 1,126 -0,999 

Region 17*(17-18) 1,138 -0,997 

Region 19*(19-20-21) 1,112 -0,997 

Region 22*(22-23) 1,166 -0,996 

Region 24 1,172 -0,998 

Region 25*(25-26-27-28-47) 1,157 -0,998 

Region 29 1,001 -0,999 

Region 30 1,226 -0,998 

Region 31 1,043 -0,992 

Region 32 1,091 -0,999 

Region 33 1,216 -0,997 

Region 34 - - 

Region 35 - - 

Region 36 - - 

Region 37 1,353 -0,995 

Region 38 - - 

Region 39 1,342 -0,986 

Region 40 1,001 -0,995 

Region 41 1,243 -0,982 

Region 42 1,148 -0,997 

Region 43 1,210 -0,997 

Region 44 1,237 -0,999 

Region 45 1,249 -0,998 

Region 46 1,328 -0,978 

Region 48 1,163 -0,995 

Region 49 - - 

Region 50 - - 
Table 2.4.2.1: The qT parameter inside the F-E regions for earthquakes with magnitude Mw≥5.0 and depth 0-

150km 

The symbol “-“ indicates that there was not a sufficient number of earthquakes in this region in 

order to take a reliable result. 
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Figure 2.4.2.1: The semi-q-plot of the cumulative distribution for the interevent times for region 25 for a data 

set of earthquakes with magnitude equal or greater than the threshold magnitude Mw=5.0 and depth H≤150 

km. The straight line represents the q-logarithmic function with value qT=1.157. 

 

Figure 2.4.2.2:The cumulative distribution for the interevent times for region 25 for a data set of earthquakes 

with magnitude equal or greater than the threshold magnitude Mw=5.0 and depth H≤150  km. The value of 

the logarithmic function qT is 1.063. 
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At this point it is becoming evidential that when we are focusing in a specific area there is a 

much stronger dependence between the seismic events and, according to the main principle 

of NESP,  the investigated system is s subadditive one, that obeys at the laws of the NESP 

framework. 

Since the above hypothesis of the NESP applied for the interevent times inside the  FE 

regions is confirmed the following questions are born. “ What happens if we discard the 

smaller events from the catalogs and keep only earthquakes with greater magnitude? How 

does the magnitude affect the system? Does the depth of the earthquakes affect our 

results? ” 

In order to answer the above questions we created three new catalogs, the first consisting 

of earthquakes with magnitude equal or greater than 5.5 (Mw), the second with events with 

magnitude equal or greater than 6.0 (Mw) for each region and a third one, in which the 

foreshocks and aftershocks have been removed.  We applied the non-extensive statistical 

physics formulation, fitting the inter-event times of these events with the appropriate q-

exponential function, leading to the qT values  indicated in table 2.4.2.6 and 2.4.2.7. 

 

 
q Corcoeff 

Region 1 1,04 -0,997 

Region 2* (2-3-4) 1,001 -0,996 

Region 5 1,092 -0,993 

Region 6 1,113 -0,998 

Region 7 1,001 -0,996 

Region 8 1,086 -0,997 

Region 9 1,174 -0,99 

Region 10 1,05 -0,998 

Region 11 1,216 -0,995 

Region 12 1,071 -0,998 

Region 13 1,001 -0,992 

Region 14*(14-15) 1,117 -0,997 

Region 16 1,065 -0,998 

Region 17*(17-18) 1,343 -0,993 

Region 19*(19-20-21) 1,079 -0,996 

Region 22*(22-23) 1,06 -0,997 

Region 24 1,124 -0,998 

Region 25*(25-26-27-28-47) 1,037 -0,996 

Region 29 1,09 -0,992 

Region 30 1,14 -0,995 

Region 31 1,001 -0,99 

Region 32 1,1 -0,993 

Region 33 1,069 -0,998 

Region 34 - - 

Region 35 - - 
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Region 36 - - 

Region 37 1,324 -0,992 

Region 38 - - 

Region 39 1,265 -0,993 

Region 40 1,314 -0,995 

Region 41 - - 

Region 42 - - 

Region 43 1,02 -0,997 

Region 44 1,075 -0,996 

Region 45 1,235 -0,992 

Region 46 - - 

Region 48 - - 

Region 49 - - 

Region 50 - - 
Table 2.4.2.6: The qT parameter inside the F-E regions for a data set with earthquakes with magnitude Mw 5.5 

and depth H≤150km. 

 

 
q Corcoeff 

Region 1 1.02 -0,996 

Region 2* (2-3-4) 1,001 -0,996 

Region 5 1,001 -0,995 

Region 6 1,001 -0,997 

Region 7 1,161 -0,992 

Region 8 1,178 -0,996 

Region 9 - - 

Region 10 1,156 -0,990 

Region 11 1,165 -0,991 

Region 12 1,064 -0,996 

Region 13 1,184 -0,959 

Region 14*(14-15) 1,181 -0,998 

Region 16 1,012 -0,996 

Region 17*(17-18) 1,409 -0,996 

Region 19*(19-20-21) 1,030 -0,996 

Region 22*(22-23) 1,062 -0,997 

Region 24 1,001 -0,994 

Region 25*(25-26-27-28-47) 1,016 -0,996 

Region 29 1,001 -0,981 

Region 30 1,001 -0,994 

Region 31 - - 

Region 32 1,096 -0,989 

Region 33 1,011 -0,992 

Region 34 - - 

Region 35 - - 

Region 36 - - 



46 
 

Region 37 - - 

Region 38 - - 

Region 39 - - 

Region 40 - - 

Region 41 - - 

Region 42 - - 

Region 43 1,001 -0,993 

Region 44 - - 

Region 45 1,053 -0,991 

Region 46 1,449 -0,984 

Region 48 - - 

Region 49 - - 

Region 50 - - 
Table 2.4.2.7: The qT parameter inside the F-E regions for a data set with earthquakes with magnitude Mw 6.0 

and depth H≤150 km. 

 

In order to examine how the above function is affected from the depth of the earthquakes, 

we created a catalog with events with seismic depth from 0 to 50 kilometers.  After fitting 

the exponential q- function we take the results presented in Table 2.4.2.8: 

 

 
q corcoeff 

Region 1 1,070 -0,995 

Region 2* (2-3-4) 1,002 -0,996 

Region 5 1,037 -0,996 

Region 6 1,141 -0,996 

Region 7 1,154 -0,995 

Region 8 1,174 -0,997 

Region 9 1,133 -0,998 

Region 10 1,157 -0,989 

Region 11 - - 

Region 12 1,162 -0,997 

Region 13 1,156 -0,995 

Region 14*(14-15) 1,168 -0,998 

Region 16 1,001 -0,992 

Region 17*(17-18) 1,027 -0,989 

Region 19*(19-20-21) 1,034 -0,990 

Region 22*(22-23) 1,116 -0,993 

Region 24 1,098 -0,994 

Region 25*(25-26-27-28-
47) 1,217 -0,997 

Region 29 1,001 -0,997 

Region 30 1,125 -0,997 

Region 31 1,051 -0,995 
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Region 32 1,094 -0,999 

Region 33 1,217 -0,997 

Region 34 - - 

Region 35 - - 

Region 36 - - 

Region 37 1,178 -0,993 

Region 38 - - 

Region 39 - - 

Region 40 1,001 -0,995 

Region 41 - - 

Region 42 - - 

Region 43 1,210 -0,997 

Region 44 1,237 -0,998 

Region 45 1,249 -0,998 

Region 46 - - 

Region 48 1,001 -0,996 

Region 49 - - 

Region 50 - - 
Table 2.4.2.8: The qT parameter inside the F-E regions for a data set with earthquakes with magnitude Mw 5.0 

and depth H≤50km. 

Our last step was to examine the behavior of the “ declustered catalog” , the earthquake 

catalog where the foreshocks and aftershocks have been removed in each F-E region. This 

procedure was achieved using the Reasenberg declustering method, as described in chapter 

1. Then, we applied the same method of fitting the q-exponential function in the new 

catalog that contains only the mainshocks of the investigated period and our results are 

shown in table 2.4.2.9. 

 

 
q corcoeff 

Region 1 1,066 -0,998 

Region 2* (2-3-4) 1,048 -0,9973 

Region 5 1,038 -0,997 

Region 6 1,137 -0,996 

Region 7 1,11 -0,996 

Region 8 1,108 -0,998 

Region 9 1,269 -0,998 

Region 10 1,176 -0,998 

Region 11 - - 

Region 12 1,116 -0,998 

Region 13 1,149 -0,997 

Region 14*(14-15) 1,118 -0,999 

Region 16 1,118 -0,999 

Region 17*(17-18) 1,123 -0,998 

Region 19*(19-20-21) 1,041 -0,997 
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Region 22*(22-23) 1,135 -0,998 

Region 24 1,164 -0,998 

Region 25*(25-26-27-28-47) 1,151 -0,999 

Region 29 1,001 -0,999 

Region 30 1,223 -0,997 

Region 31 1,001 -0,989 

Region 32 1,082 -0,999 

Region 33 - - 

Region 34 - - 

Region 35 - - 

Region 36 - - 

Region 37 1,33 -0,996 

Region 38 - - 

Region 39 - - 

Region 40 1,099 -0,993 

Region 41 1,25 -0,98 

Region 42 1,384 -0,988 

Region 43 1,203 -0,998 

Region 44 1,232 -0,998 

Region 45 1,248 -0,998 

Region 46 1,345 -0,983 

Region 48 1,163 -0,995 

Region 49 - - 

Region 50 - - 
Table 2.4.2.9: The qT parameter inside the F-E regions for the declusttered data set of earthquakes with 

magnitude Mw 5.0 and depth H 150km. 
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Chapter 3: Con clusions 
 

Looking back into all these procedures that have been followed in this research it is 

becoming obvious that the NESP model combined with geotectonic regionalization 

techniques can give us important information about the spatial distribution of seismic 

activity of the regions and the sequences of the earthquakes inside them. Furthermore, it 

seems that the known Poisson distribution could approximate the worldwide seismicity 

catalog, but when we focus on regions that are categorized according to their geological 

characteristics the Poisson model is no longer in position to describe the seismic behavior 

within each region. This seems quite rational since we are confronting a very complex 

system that is geologically inhomogeneous. There are regions in the earth with scarce 

seismic activity or no activity at all, such as Australia ( Region 38), Antarctica ( Region 49), 

Northern Eurasia (Region 50)  and on the other hand extremely active regions that have 

given in the past very large earthquakes, mega earthquakes, such as the Sumatra 

earthquake with magnitude Mw=9.0 ( 26/12/2004 ) and the Japan earthquake with 

magnitude Mw=9,1 ( 11/3/2011 ). These are obviously regions that differ significantly on 

their geological properties and their faults release energy in a different way. The above are 

important factors that need to be taken into account in order to investigate the properties 

of the seismic activity and this became evidential also from the results of our research. 

The calculation of the b-value from the G-R law for the worldwide catalog gave us a value 

that is close to 1 and as we increase the magnitude threshold from 5 to 5.5 and then to 6, 

the b-value becomes greater, defying the so-called high magnitude b (bH). Looking into the 

G-R relation              we understand that this change is quite logical, since 

when we are increasing the magnitude limit we automatically decrease the total number of 

the earthquakes that we investigate and that leads to a higher b-value. The average of the 

b- value, calculated inside the seismic regions, defined by Lombardi and Marzocchi is 1.087, 

which is a value that differs insignificantly from the worldwide b value. The b-values 

estimated from eq. 2.4 are significantly greater than the values calculated from the GR law 

and the diagram between the estimated and the calculated values leads to a linear 

distribution, with all the values lying around the line as shown in figure 2.3.1. 

Applying he Sotolongo-Costa and Posadas model for earthquake generation for the whole 

catalog we calculate an entropic index  with an average of qM=1.454 and the same result 

from the regionalized catalog gives us an average value for the entropic index qM equal to 

1.419. The important fact here is that we realize that the maximum values for the qM can be 

found in regions that have given at least one large earthquake (Region 11, qM=1.555, 

contains an earthquake of Mw=8.1, Region 8, qM=1.516, contains earthquake of Mw=8.8, 

Region 19, qM=1.507, contains earthquake with Mw=9.1 ). For increasing q, the physical 

state goes away from equilibrium, and in case of seismicity, this means that the fault planes 
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and fragment filling the gap between them are not in equilibrium leading to an increasing 

seismic activity. On the other hand, the smallest values of the parameter qM are observed in 

regions, characterized by the occurrence of moderate magnitude events. When a strong 

earthquake occurs, more correlated behavior of the system constituents is assumed to take 

place, with the emergence of short and long range correlations, which induce an increase of 

the nonextensivity parameter qM (Telesca, 2011 ). 

The NESP approach to the interevent times distribution of the worldwide seismic events 

leads to a non-extensive thermodynamic parameter  qT  that waves around  1, with an 

average of  qT=1.037 for the catalog that contains earthquakes with minimum magnitude 

Mw=5. The value qT=1.063 estimated for the catalog with Mw(min)=5.5 ,while  qT=1.034 for 

the earthquake catalog with Mw(min)=6.The value  qT=1.007 estimated for the catalog that 

consists of earthquakes with seismic depth until  50km in agreement with the Poisson’s 

model . 

The same model, based on non extensive statistical physics, applied inside the regions 

estimates an average value of qT=1.160 for events with minimum magnitude Mw=5, 

qT==1.118 for Mw(min)=5.5 , qT=1.090 for Mw(min)=6 and qT=1.115 for earthquakes with 

maximum seismic depth 50km, indicating that there is a temporal connection between the 

earthquakes occurred inside these regions. The fact that the parameter qT differs from 1, 

leads us to the conclusion that, a simple model, such as the Poisson model, is no longer the 

appropriate formula to describe the generation and the sequence of the earthquakes inside 

the FE regions and that there is an obvious  need to take into consideration the complexity 

of the system using for our analysis a much more qualified method, such us the NESP 

approach. 

The model used fits rather well to the observed distributions, implying the complexity of the 

spatiotemporal properties of seismicity and the usefulness of NESP in investigating such 

phenomena, exhibiting scale-free nature and long-range memory effects. Furthermore, we 

notice that the parameter qT tends to decrease as we increase the magnitude threshold 

leading to the assumption that the correlation between them weakens when we cut out the 

smaller earthquakes and the conclusion that these small and moderate events take place in 

the generating process of the earthquakes. As far as the seismic depth is concerned we 

observe a negligible variation, however we cannot reach a conclusion since most of the 

earthquakes occurred in seismic depth until 50 km. 
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