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Preface

This thesis is the product of a series of chance-and-necessity events. My home village,
my father and a book ! made me appreciate nature and think highly of the relationship
between humans and their environment. The first two, they also made me, among other
things, rather stubborn. This stubbornness led me to first join the Technical University
of Patras, even if Biology was my passion since secondary school, but then, somehow
back to biology and the University of Athens. Yet, it was only chance that got me in the
city that shaped me the most. A few months before defending my bachelor’s thesis, Prof.
Pedro Jordano, who has contributed the most to the study of ecological networks and
interactions, pointed out to me that I need first to get some expertise in Bioinformatics if I
am interested in his work. This was the first time I ever considered of Bioinformatics. It
was the same year that a relative MSc in the University of Crete ran for the first time. A few
years later and mostly thanks to Dr. Christina Pavloudi it is hard to tell what if I was not
studying microbial assemblages.

Therefore, it is all the good and bad circumstances and choices as well as the people
related to each of those that brought me here today, and it is them that I would like to
acknowledge first.

I would like to thank my promotors; Prof. Manolis Ladoukakis, a university teacher
with whom we met when I invaded his office crying for help and he just said "breathe; we
will figure this out”". Since then, I enjoy his guidance for which I am grateful. Dr. Evangelos
Pafilis with whom we started working together back in 2017 in the framework of my MSc
thesis and 6 years later, here we are. Dr. Christoforos Nikolaou was also among our MSc
teachers and has been an influence to me since I first came in Crete. Also, Dr. Christina
Pavloudi with whom we met during my MSc and since then, she has not stopped triggering
my curiosity and has (almost) never complained with my endless questions to her. Special
thanks to Dr. Apostolos Chalkis, probably the greatest example of a necessity-and-chance
case in my research story so-far, with whom we met on the streets of Athens and a few
years later he called me to ask me if I had ever heard of metabolic networks; this was the
first time I ever heard of them. Prof. Elias Tsigaridas and Dr. Vissarion Fisikopoulos thank
you for your patience and spirit; I learnt more than a lot working with the GeomScale
group. I would also like to say a great thank you to the Area52 lab. To Prof. Jens Carlsson
who convinvced me to look for "aliens" and proved me there are people that have no idea
about how a good olive oil tastes like! To Dr. Sanni Hintikka and to Dr. Laura Gargan that
would always make some time for me, even from the back seat of a car during lunch time.
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Last but not least, Dr. George Kotoulas who has been an inspiration to me from so many
and different aspects.

I'would also like thank and fairwell all members of the Biodiversity lab and colleagues
in HCMR. X\amndtoo, Niki, Eva, Emma, Eirini, George, Bill, Antoni, Stelio, Natassa, Noche
Sangre, Adrianouko, Eirini, Despoina, thank you for making the every-day-life so compan-
ionable; I will miss you all. The most special thanks to Savvas Paragkamian; over the last
years, we shared a desk, a great number of issues and bugs, our ideas and our temper.

Last, I would like to declare my respect and gratitude to all those that set the example
for me at every turn. At a collective level, the Communist Liberation youth; it might gets
tough from time to time, but struggling to interpret this world and fighting to change it, is
most nobel fight one might fight. And of course, to my corner; Tsocha, Nef, Angelique,
Annoula, Leo, xoAUtepa tn¢ mdtoag, in the most various ways, you have been my lee side.
I love you all and you are in my heart. >xouni{tia this applies for all of you too! My parents
that have tought me that there is nothing common in common people. I am proud of you
and there is no way I can thank you enough. My sister, my super hero. Last, oto dintha
wo&hdpt optotepd/ xowdton o dvipwrog o gihog xou 1 hoor pou. Aol thank you for
being my friend, my inspiration, my boxing bag, my colleague, my courage, my caress, my
coffee and my tobacco.
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To a little seed, meant to join us any time now
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Abstract

Microbial communities are a cornerstone for most ecosystem types. To elucidate the
mechanisms governing such assemblages, it is fundamental to identify the taxa present
(who) and the processes that occur (what) in the various environments (where). Thanks
to a series of technological breakthroughs vast amounts of information/data from all
the various levels of the biological organization have been accumulated over the last
decades. In this context, microbial ecology studies are now relying on bioinformatics
methods and analyses. Therefore, a great number of challenges both from the biologist-
and the computer scientist point-of-view have arisen; one among the most emerging
ones being: "what shall we do with all these pieces of information?". The paradigm of
Systems Biology addresses this challenge by moving from reductionism to more holistic
approaches attempting to interpret how the properties of a system emerge.

Aim of this PhD was to enhance microbiome data analyses by developing software
addressing on-going computational challenges on the study of microbial communities.
On top of that, to exploit such state-of-the-art methods to study microbial assemblages in
extreme environments. To this end, the Tristomo marsh in Karpathos island (Greece), was
chosen as a study case.

Environmental DNA and metabarcoding have been widely used to estimate the bio-
diversity (the who) and the structure of communities. Vast amount of sequencing data
targeting certain marker genes depending the taxonomic group of interest become avail-
able thanks to High Throughput Sequencing technologies. However, the bioinformatics
analysis of such data require multiple steps and parameter settings as well as increase
computing resources. Workflows along with computing infrastructures ease this need to a
great extent; in this nontion, a Pipeline for environmental DNA Metabarcoding Analysis
(PEMA) was developed (Chapter 2.1). However, eDNA metabarcoding has limitations
too. Cytochrome c oxidase subunit I (COI) marker gene is a commonly used marker gene,
especially in studies targeting eukaryotic taxa. It is well known that in COI studies a great
number of the derived Operational Taxonomic Unitss (OTUs) get no taxonomic hits. The
presence of pseudogenes but also of non-eukaryotic taxa among the amplicon data, with
the simultaneous absence of the latter from the most commonly-used reference databases
justify this phenomenon to a great extent. To identify such cases the Dark mAtteR iNvesti-
gator (DARN) software was developed; DARN makes use of a COI-oriented tree of life to
provide further insight to such known unknown sequences (Chapter 2.2).

Amplicon and shotgun metagenomics approaches along with the rest of the omics
technologies, have led to vast amount of data and metadata, recording the who, the what
and the where. To enable optimal accessibility and usage of this information, a great
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ABSTRACT

number of databases, ontologies as well as community-standards have been developed.
By exploiting data integration techniques to bring such bits of information together, as
well as text mining methods to retrieve knowledge "hidden" among the billions of text
lines in already published literature, the PREGO knowledge-base returns thousands of
what - where - who potential associations (Chapter 3).

The driving question though is how the different microbial taxa ascertain their en-
durance as part of a community. Metabolic interactions among the various taxa play a
decisive role for the composition of such assemblages. Genome-scale metabolic networks
(GEMs) enable the inference of such interactions. Random sampling on the flux space
of such metabolic models, provides a representation of the flux values a model can get
under various conditions. However, flux sampling is challenging from a computational
point of view, especially as the dimension of a metabolic model increases. To address
such challenges, a Python library called dingo was developed using a Multiphase Monte
Carlo Sampling algorithm (Chapter 4).

Finally, sediment and microbial mat samples as well as microbial aggregates from a
hypersaline marsh in Tristomo bay (Karpathos, Greece) were analyzed. Both amplicon
(16S rRNA) and shotgun sequencing data were used to characterize the microbial structure
of the communities and environmental parameters (e.g. salinity, oxygen concentration)
were measured at the sampling sites. Key functions supporting life in such environments
were identified and metagenome-assembled genomes (MAGs) of novel species found
were built (Chapter 5).

Similar to microbial communities, bioinformatics methods tend to build assemblages
while "living" on your own is quite rare. The methods developed during this PhD project
combined with state-of-the-art methods anticipate to build a framework that enables
moving from the community to the species level and then back again to the one of the
community. Such a framework is described for the study of microbial interactions at
real-world communities.
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[TeplAndn

Or pixpoPloxéc xowdtnTeg anoteAoly axpoywvialo Aldo yia Toug TepocdTEROLS TOTOUG
oxocLo TNUdT®Y. T va SieuxpvicToly oL unyaviouol tou xadopilouy TéToleg xovoTN-
te¢ elvan xodoplo TS omnuaciag 1 avaryvaelon Twy TEmv tou Ti¢ anaptilouvy (totog)
%S AL TOV BLERYAOLOY TIOL TEOYUATOTOUVTOL (TL) GTOUC SLdPopous TUTOUS TEpL-
Bodldviwy (tov). Xdpn oe pla OElpd TEYVONOYIXDY ETUTELYHATWY, WOLiTERH UEYANES
TOCOTNTES ﬂ)\npocpopiaq/Bs:Bopévwv amd Oho oL eninedo opydvewong g {wng €youv
OowWEEVTEL TI¢ TeEAeuTaleg dexaeTieg. Ye autd To TAACL0, oL HEAETES UxEoPBLoxnc oLxo-
hoylog elvon dppnxta cuvdedeuéveg xou Booilovton oe Blomhnpogopinéc pedodoug xau
avolloec. 201600, €yel mpoxlel évag onuavTindg apldudc TEOXANoEWY TOCO and
™V Broloyixn oxomd 660 xou amd aUTAY TNV ETCTAUNG UToAoYIoT®Y. Metadl autdy,
#xadopIoTIXO EPMTNUA ATOTEAEL TO TL UTOPOVUE VoL XAVOUUE UE ONOL AUTE TAl ETULUEPOUC
xoppdtior thnpogoplac . To napdderyuo tng Blohoylog Yuotnudtewy aravid o autd To
EPOTNUA TEQVOVTOS OTO TUO AVAYWYIXEC OE TO ONCTIXES TPOCEYYIOEIC TPOooTAdMVTAS
VO EQUNVEVOEL TO WS TEOXVOTTOLY X0l GUVOEOVTAL Ol WOLOTNTES EVOC GUC TAUATOC.

Y1oyoc authg TNE BLdaxTopXNS SLaTEBNE Tay VoL EVIoYDGEL TNV OVIAUGT| GEBOUEVLV
OO UXEOPBLOUOTA OVITTUGCOVTOSC AOYIOUXE EQYUAELN TTOU VoL OTAVTOUY GE TEEYOUOGES
UTIOAOYLO TIXEC TPOXANOELS Yol TNV PEAETY Uxpofloxmy xowvoThtwy. Emniéov, vo pe-
heThoel uxpoflaxéc xowotnteg o axpalo TepBdihovia epopuoloviac olyYyEOVES Ue-
Y600oug Yo TNV avary voplon TaEwmY xat dipyaotadv. o tny eniteudn avtod tou otdyou,
70 éhog Tewotépou oto vnot tng Kaprddou, emhéydnxe we neployr| perétng.

To mepiBariovtind DNA xou 1 pédodog Tng UeToxwOIXOToiNoNg €0V YENoWOoTOL-
nOel onuavtixd yio v extipnon e Ponoddtac (Toog) xon TN Souh TwV %ot
VOTATWY. LNUovTixdg aprduog aAANAouyixwy BEBOUEVLY TIOU GTOYEVOUY GE OPLGUEVAL
yovidla BelxTeC xou oL €C0ETOVTAL Amd TIG TOEWVOULXES OUABES GTOYOUS, elvon Blardéatua
Xden oTIC TEYVIXES aAAnAolyiong ulmArc anddoang HTS. Qotdoo, 1 Lromhnpogpopuxt
AVIAUGCT] TETOLWY OEDOUEVWY ATATOOY PEYAAO aptIUd BNUdTLy Xou TopoUETEMY XonOg
%o ONUAVTIX00S UTOAOYLoTIX0UE Topous. Ol po€g EQYAOLOY OE GUVOLAOUS UE UTOAOYL-
O TXES UTOOOMES UTOROVY VA ATAVTHCOUY GE AUTEC TIG AnATHOES OE onuavTixd Badud.
Ye autd 1o mhadolo avortuydnxe 1 pon epyaciac PEMA ye 6téyo tnv avdiucr dedo-
HEVWY peToxwoxonoinong and mepBorroviind DNA. Kegdhawo 2.1. Qct600, 1 uédodog
ueToxwdwonolnong yapaxtneileton and oed mepoptoucy. H umoyovdda I tne xuto-
Yewuwhc oewwdong ¢ (COI), amotelel évav Belxtn Mou yenolponoteitol EUPENS, EWBXA
OTNY TEPITTWOT EUXAPUWTIXWDY TAEWY - OTOYWYV. Eivon yvwoTto nwg o pyeréteg 6mou o
OEXTNG AUTOC YPNOULOTIOLELTAL, VUG UEYAHAOS OELIUOC TWV AELTOLRYIXWY TAELVOULXWY UO-
védwv (OTUs) mou mpoxdnTouy, 6ev xatapépvouy va tautonotnioly. H mapousio toco
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Peudoyovidiny 660 GUMS XoL UNFEUXAPUOTIXOY TAEWY AVAUECH G TETOL AAANAOLY X
OEBOPEVA, UE TNV TAUTOYEOVT AToUGio TwV TeEAeuTaiwY and Tig Bdoelg avapopds, e&nyel
TNV U1 TavTonoinot| Toug o€ onuavTixd Bodud. o Ty avory viplon TETOLY TEQITTOOE-
oV, avamtOyinxe To utohoyloTixd epyoleio DARN 1o omolo a&lonolel Eval UAOYEVETIXO
0€VTPO TOL XAAOTTEL Xou TIC 3 EMXEATEIES Tou BEvTpou Tng Lwrg, Bacioyévo oe aAAT-
houyiec tou Selxtn Kegpdhaio COI, Kegpdhowo 2.2.

MédodotL yovidlwy BeXTiv Xt UETHYOVIBIWUATIXAS (M %ol T0 GUVONO TV WE-
V60wV alknholytone LYNAH anddoone, €YouV OBNYNACEL GTNY CWEEVUCT) CNUAVTIXG UE-
Yéhou aprduod SEGOUEVKDY Xl UETUBEBOUEVWY XATAYRAPOVTAC TAEa Xou SlEQYAOIEC O
oelpd Tumoug TepPolhoviny. Ta va emtpédouv tny BéErTiotn npocBaciudtnTa xou oa&lo-
molnomn auTthg TNg TANeogoplag, Eyouv dnuovpynUel oelpd BAcEwmY BEBOUEVKY, OVTOAO-
YUV AAAG X0 TEOTOTWY - XOVOVLY Yol VoL aXOAOLUEL 1) XOWVOTNTOL YO TNV XATOYWOENOT
Touc. AZomowdvtog pedddous evowudtwons/oloxhfpwong dedouévwy data integration
Yoo TNV €0PECT TWV OLAPORWY XOUUATILV TANEOQORIG Xou TNV CUCYETION TOUG, XOo-
VO xo TEYVIXOY €E6pLENC xewévou text mining yia Ty avdxTtnon yvwong and To
cLVoAog Tng dnuocla dladéoung BiBhoypaploc avamntdydnxe 1 Bdon-yvwong PREGO,
Kegdhao 3. 1 omolo emoteépel yihiddeg oyéoeic PeTolld TEEWY, TEPBAAAOVTILY xal
OLERYACUDV.

Kodoplotixd epdtnuo woTt600 o8 0TL apopd T IUXEOPLIXES XOWOTNTES, AmOTEAEL
T0 "G oL BLdpopat wxpoliomd tdEa eZacparilouy Ty VEor Toug wg UEAT TNG XOWVOTT-
tac. MetoBohuéc ahhnhemdpdoeic YeTadlh Twv Oidpopwy Talwy Tailouv xadopio Tixd
eOMO Yl TNV CLYXEOTNON TETOLWY XOWVOTHTWY. MetaBolnd dixTua oTny XxAldoxa Tou
yoviduopatog (GEMs) emtpénouy Ty avary vpton Tétotwy ahkniemdpdoemy. H tuyada
derypotohnla otov ywpeo mou opiletar and Tig mavée Tiwég mou umopel vo Tdpouv ol
POEC TV avTdpdoewy (flux sampling) emtpéner TNV avVmoEdo TUOT TWY TYMY TOU UTo-
el var AMdfBouy auTéC oL poEC XAtk amd cLYXEXPLWEVES oLV XES. 20TO00 1 uédodog flux
sampling eivon WBLaltepa AmoUTNTIXY A6 UTOAOYLOTIXY| OXOTIE, WOLalTEPA GGO 1) BLACTACT)
Tou uetaBolxod povtéhou auldvel. T'a tov oxond autd avartiydnxe 1 Biiothxn
dingo 7 omola xdvel yprion evog molugactxod alyoptduou Monte Carlo, Kegdiowo 4.

Téhog, avorbinxay detypota Whvatoc and 1o €éhoc Teiotopou Koapndiou, xodog
enlong delyporta omd ixpoflaxolc Témnteg mat xou omd LixpoPlaxd cLCCWUATMUUTY (ag-
gregates). ['io tov oxond autd, yenowwonotiinxe oo 1 uédodoc uetoxmdixonoinong
HE Yovidlo-0eixtn T0 16S 600 xou 1 péVodog uetoryovdiwuatixrc shotgun. Eriong
peteROnxoy TeptBolhovinés TopdueTpol (GTme ahatdTNTO, CUYXEVTEWOT 0ZUYGVOU).
Boaowxée Aettovpyieg mou unoctneilouy T Lwr ot TéToleC GUVIAXES EVIOTUO TNXAY EVE
XU YOVIOLOUATO TAEWY oV eVTOTHLLOVTOL VLol TEWTY POEE AVACHEVAAT TNV ATO TIS
aMnhouyiec tou petaryovdidpoatoc (MAGs), Kegdhato 5.

‘Onwg oupPaivel xou 6Tic xpoflaxés xowotnTeg, ol flotAnpopopixéc uédodot omdvia
OTEXOLY ATMOPOVWUEVES, avTideTo TEVOUY Vo GUYXEOTOUY XL AUTES TIC OXES TOUC “XOL-
votnted”. Ot pédodol mou avamtiynxoay oo Thaiolo aUTAS TN SLTEBTG ETLOLOXOLY VoL
CLYXEOTHOOLY €va TAA(CLO UEAETNE oo TO ETUMEDO TNE XOWVOTNTAC OE AUTO TOU eldoUC
xan omo exel, tiow Tl oty xowotnTa. ‘Eva tétolo mAalolo avahOeTon Yot TV UEAETN
UXEOPBLOXGY AAANAETLORACEWY.
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Chapter 1

Introduction

1.1 Microbial communities: composition , functions &
interactions

1.1.1 Microbial diversity: life under extraordinary conditions

Microbes are considered to be omnipresent in the various ecosystems on Earth [Falkowski
et al., 2008]. It was only until recently (2019), when Belilla et al. discovered for the first
time a place on Earth where no microbial forms of life are present. Extremely low pH, high
salt and high temperature had to be at the same place at the same time to stop microbes
from "conquering" them. However, microbes are not just abundant but exceedingly
variant too. Locey and Lennon using a unified scaling law and a log-normal model of
biodiversity, estimated microbial diversity at about 1 trillion species [Locey and Lennon,
2016]. However, despite the extensive studies of the scientific community, less than 1% of
the microbial species on Earth have been identified [ism].

Microbes are distinguished by multiple properties. Based on their morphology mi-
crobes can be spherical (cocci), rod-shaped (bacilli), arc-shaped (vibrio), and spiral
(spirochete) [Dunlap, 2001]. Based on their metabolic characteristics, microbes are fur-
ther distinguished. More specifically, according to their energy source, a microbe can
either oxidate inorganic compounds (chemotrophs) or sunlight (phototrophs). Simi-
larly, microbes can use CO; (autotrophs) as their carbon source, or organic compounds
(heterotrophs) or both (mixotrophs). Finally, based on their electron source, microbes
are distinguished between those using inorganic compounds (lithotrophs) and those
using organic compounds (organotrophs) [Madigan et al., 2018]. Microbial taxa combine
combining alternatives of the aforementioned categories shape a range of microbial pro-
file of all the possible combinations; for example chemolithoautotrophic bacteria, e.g.
nitrifying and sulfur-oxidizing bacteria, as well as photoautotrophic bacteria, e.g. pur-
ple bacteria and Green sulfur bacteria. Finally, microbial taxa can also be distinguished
by their various ecological distributions and activities, and by their distinct genomic
structure, expression, and evolution [Dunlap, 2001].
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1.1.2 Functional diversity: shaping the conditions of life

However, it is not only the number of microbial taxa and their massive biomass that make
the study of microbial communities essential; it is mostly their functional potentials. Life
on Earth would not be as we know it, if existed at all, if it was not for the microbes and their
long contribution on ensuring life-supporting conditions. Nevertheless, these are the
biological machines responsible for planetary biogeochemical cycles [Falkowski et al., 2008];
meaning that biogeochemical cycling to a global extent is powered by the metabolic
processes of the microbial taxa [Louca et al., 2016]. In Figure 1.1 the contribution of
microbial communities in the cycle of CO; is shown.

The biological fluxes of most of the major elements (i.e., carbon, hydrogen, oxygen,
nitrogen and sulfur) required for any biological macro-molecule, are driven largely by
microbially catalyzed, thermodynamically constrained redox reactions [Falkowski et al.,
2008]. Phosphorus the last of the 6 fundamental elements for life, is also included in
the metabolic pathways catalyzed by microbes. Thus, microbial communities consist of
hundreds or even thousands of metabolically diverse strains and species [Leventhal et al.,
2018], and their functions and determine the fitness of most organisms on Earth. In case
of human health, specific microbial enzymatic pathways and molecules necessary for
health promotion have been well known. Some of these "beneficial factors" are already
known for probiotics and species in the human microbiome [Marco, 2021].

The relationship between the taxonomic and the functional profile of a microbial com-
munity has been an open question for scientists; is the who or the what more important
to distinguish communities [Xu et al., 2014]? And how does each of these profiles respond
to the various perturbations of an environment; Do they tend to converge [Estrela et al.,
2022]2 Do perturbations of the taxonomic composition of a community influence the
robustness of the community’s functional profile [Eng and Borenstein, 2018]? divergence
of each under and from an evolutionary point-of-view. Does it matter who is doing what
and how does this affect the niche of a species [Louca et al., 2018]? And what about the
rare taxa and their corresponding functions in an assemblage [Chen et al., 2020a, Jousset
etal., 2017]2

Microbial Ecology focuses on the study of the following interactions:

* those between microbial taxa and their environment
* those among the various microbial taxa present in a community, and

¢ those between microbial taxa and their host [ism]

Microbial ecologists also investigate the role of microbial taxa in biogeochemical cy-
cles [Falkowski et al., 2008] and their interaction with anthropogenic effects e.g. pollution
and climate change [Cavicchioli et al., 2019].

Even though HTS has allowed a massive extension of our knowledge in specific en-
zymatic reactions that regulate these pathways the rules that determine the assembly,
function, and evolution of these microbial communities remain unclear. Thus, both in
case of environmental and human the underlying mechanisms for how microbial as-
semblages work and affect their environment, remain to be discovered. Understanding

2
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FIGURE 1.1: The cycle of sulfur (S) (up) and the contribution of microbial communities
on it (down, image source: OpenStax).

the underlying governing principles is central to microbial ecology [Giri et al., 2021] and
crucial for designing microbial consortia for biotechnological [Giri et al., 2020] or medical
applications [Kong et al., 2018].

Studies such as the one of Louca et al. have opened new frontiers in our understanding
on microbial assemblages. After building metabolic functional groups and assigning more
than 30,000 marine species to these groups, Louca et al. showed that the distribution of
these functional groups were influenced by environmental conditions to a great extent,
shaping metabolic niches. At the same time though, the taxonomic composition within
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individual functional groups were not affected by such environmental conditions [Louca
etal., 2016].

1.1.3 Ecological interactions in microbial communities

Moreover, to elucidate how these assemblages work the biotic interactions have to be
considered too. Microbial interactions play a fundamental role in deciphering the un-
derlying mechanisms that govern ecosystem functioning [Braga et al., 2016, Faust and
Raes, 2012]. Microbes secrete costly metabolites (called byproducts) to their environ-
ment, which other microbes can absorb and exploit [Pacheco et al., 2019]. By exchanging
metabolic products, mostly as there are also other ways of interactions e.g. quorum
sensing, microbial taxa establish various interactions.

The interaction between two taxa can either be neutral or positive / negative (Fig-
ure 1.2). In case of a positive interaction, there is a case where both taxa benefit one from
another. This win-win relationship is called mutualism (or "cooperation") and it can be a
result of cross-feeding, in which two species exchange metabolic products [Faust and Raes,
2012]. Such is the case in biofilms where multiple bacterial taxa are working together
building a structure that provides them antibiotic resistance [Santos-Lopez et al., 2019].
There is also the case where only one of the two taxa benefits without helping or harming
the other; this interaction is called commensalism [Faust and Raes, 2012]. For example,
Nitrosomonas oxidize ammonia (NHjz) into nitrite (NO, ™), so Nitrobacter can use it to
obtain energy and oxidize it into nitrate (NO3 ™) [Laanbroek et al., 2002]. Such interactions
are quite common in microbial communities.

In case of a negative interaction, can harm each other either way (competition).
That is the case between Listeria monocytogenes and Lactococcus lactis in the study
of Freilich et al. where their resource competition is high enough contributing to their non-
overlapping existence [Freilich et al., 2010]. Moreover, similarly to commensalism, there
is also the case when a taxon has a negative affect on the other without getting any harm
(amensalism). Such is the case for Acidithiobacillus thiooxidant that produces sulfuric
acid (H»SO4) by oxidation of sulfur [Bobadilla Fazzini et al., 2013] which is responsible for
lowering of pH in the culture media which inhibits the growth of most other bacteria [Jin
and Kirk, 2018]. Finally, one of the taxa may have a positive affect (host) on the other, but
the latter (parasite) can be harmful to its benefactor (parasitism) [Faust and Raes, 2012].
There are multiple cases of parasitism in real-world communities; species of the genus
Bdellovibrio for example, are parasites of other (gram-negative) bacteria [Stolp, 1979].

However, we have a very limited understanding of such interactions and the ways
that are combined to rule community-level behaviors. Thus, we cannot predict com-
munity responses to perturbations (community stability) [Venturelli et al., 2018]. Over
the years, various methods have been used to infer such interactions. co-occurrence
modells [Faust and Raes, 2012], time series data and causal models [Mainali et al., 2019],
through metabolic interactions as proxy [Levy and Borenstein, 2012]. Dynamic models,
such Ordinary Differential Equations (ODEs) and the Generalized Lotka—Volterra (gLV)
model [Gonze et al., 2018] have been also widely used. Finally, in recent years, metabolic
networks and constraint-based models have been also used to predict microbial interac-
tions [Heinken et al., 2021, Dukovski et al., 2021]. This last approach allows predictions

4
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FIGURE 1.2: Microbial interaction types along with their corresponding metabolic ones.
Due to certain metabolic interactions, two taxa may have a positive, a negative or a neutral
effect one another. Figure based on [Perez-Garcia et al., 2016]

for the metabolic dynamics of the community as well as of the exact set of compounds
the taxa of the community exchange [Levy and Borenstein, 2012]. Still though, microbial
interactions inference is a challenging task and several questions are still open.

Apparently, the environmental conditions affect the ecological interactions to a great
extent. A pair of taxa may be competitors in one case but have a neutral interaction in
another one. In addition, evolutionary processes may change certain interactions; for
example moving from commensalism to parasitism [Parmentier et al., 2016]. Both eco-
logical and environmental interactions play a part in the composition and the functional
potential of microbial assemblages. On top of that, pairwise microbial interactions can be
modified by a third organism, leading to higher-order effects that influence community
behaviors [Bairey et al., 2016].

1.1.4 Reverse ecology: transforming ecology into a high-throughput field

For decades, reductionism has been the main conceptual approach in biological re-
search [Noble, 2008]. Traditionally, for studies relating genetics and ecology scientists
first identify an ecological adaptive phenotype and then they try to detect causal genetic
variation [Noble, 2008]. However, as described in the previous sections, HTS data have
turned the page in Biology research in numerous ways. Therefore, it is nowdays possible
to reverse this framework and by using the genomic information retrieved, to study the
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ecology of a species. The Reverse Ecology framework uses advances in both systems
biology and genomic metabolic modeling to implement community ecology studies with
no a priori assumptions about the organisms under consideration [Cao et al., 2016]. There-
fore, Reverse Ecology attempts to interpret HTS (genomic) data as large-scale ecological
data [Levy and Borenstein, 2012].
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FIGURE 1.3: Without any previous knowledge of the species present in a community
(A) and using HTS data (B) one can have an overview of the species present as well as
in the functional profile of the community (C). Especially when the complete genome
of a species has been retained (either using metagenomics (MAG) or using targeted
approaches to get this (SAG)) researchers can build its corresponding GEM (D) and then
infer the ecology of a taxon predicting the exogenously acquired compounds as well as
ecological interactions between the taxon under study and other species present in a
community (E). Both network topology - and constraint - based methods can be used to
this end. Created with BioRender.com.

As shown in Figure 1.3, the Reverse Ecology framework has multiple alternatives
and various methods can exploit this concept. The analysis of metabolic networks (see
Section 4) plays a great part in several Reverse Ecology approaches. Most parts of this
dissertation have been influenced by this, especially chapters 3, 4 and 5.

1.2 High Throughput Sequencing in Microbial Ecology

1.2.1 ’Omics methods to access the who and the what

To discover the microbial taxa present in a sample, scientists have explored multiple ways
through the years. Only a particularly limited proportion of the microbial species can be
cultured [Steen et al., 2019]. Therefore, mono-cultures and enrichment cultures allow us
to observe only a small fraction of the actual diversity. As a consequence, other methods
for the taxonomic identification of theses species are required. Based on molecular
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characteristics of the microbial taxa, over the last decades, a series of methods have been
developed.

Moving from single species to assemblages, molecular-based identification and func-
tional profiling of communities has become available through marker (metabarcoding),
genome (metagenomics), or transcriptome (metatranscriptomics) sequencing from en-
vironmental samples [Goldford et al., 2018]. To a great extent, these methods address
the problem of how to produce and get access to the information on different biological
systems and molecules.

In case that the taxonomic assessment of a sample is the aim of a study, metabar-
coding (amplicon-targeted metagenomics) and shotgun metagenomics can be used as
alternative options. Metabarcoding studies are common, well-established, cheaper and
less computationally demanding than shotgun metagenomics [Bell et al., 2021a]. Its
primary drawbacks are the limited information present in the short barcoding sequence
and the possible taxonomic bias arising from differential efficiency of PCR primer pairing
in different species [Blazewicz et al., 2013]. On the other hand, shotgun metagenomics
offers a better taxonomic resolution at the species level by obtaining information from
random sampling of virtually all genomic regions, and can address microbiome metabolic
functions and entire biochemical pathways [Sharpton, 2014]. Unfortunately, it requires
higher sequencing coverage and, consequently, more complex and demanding down-
stream bioinformatics analysis [Laudadio et al., 2018]. Nevertheless, it has recently been
suggested that shotgun metagenomics provides a deeper characterisation of microbiome
complexity that metabarcoding recently enabling to profile up to the level of strains,
whose non-core genome is responsible for crucial functional differences within the same
species, as the fundamental units of the community [Davila-Ramos et al., 2019, Clooney
et al., 2016, Segata, 2018].

Targeting community composition and functional profiles in several ecological niches,
microbial ecologists produce vast amount of sequencing data [Harrison et al., 2021].
These approaches enable the study of ecosystems with no prior knowledge of the resi-
dent species, while at the same time a number of challenges for their management and
bioinformatics analysis is rising.

1.2.2 Bioinformatics challenges in the analysis & management of HTS data

Moving from raw data to taxonomic and functional profiles of a microbial community
comes with high computational costs, especially in the case of metagenome studies [Yang
etal., 2021]. Sequence pre-processing, assembly, classification, and functional annotation
consist of several steps the most of which a significant number of algorithms or/and
software tools are available [Breitwieser et al., 2019, Roumpeka et al., 2017]. Tailoring each
tool’s execution parameters to reflect each experiment’s idiosyncrasy is vital for legitimate
findings, yet it makes analyses of metagenomics data even more complex.

In addition, there are several challenges on the bioinformatics analysis per se. Taxon-
omy assignment in both amplicon- and shotgun metagenomics studies has several issues
to meet [Simon et al., 2019]; the taxonomy of microbes is a challenge per on its own [Parks
et al., 2020].
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In amplicon studies, among the most major issues is the one of the abundances
of the taxa found [Fonseca, 2018, Bélint et al., 2016] as well as the presence of pseudo-
genes [Song et al., 2008]. In the first case, issues such as the usually unknown number
of marker gene copies per cell in the various taxa, PCR - related biases such as primer-
template mismatches, length difference of amplicon, artificial base changes, chimeric
molecules and library preparation - related issues such as chimera formation by the mix of
amplicons from different samples makes hard for the method to have robust quantitative
results [Balint et al., 2016]. Reads on the other hand resulting from pseudo-genes or/and
highly divergent nuclear mitochondrial pseudo-genes (NUMTS), nonfunctional copies of
mtDNA in the nucleus that have been found in major clades of eukaryotic organisms [Ben-
sasson et al., 2001], can lead either to false positive taxonomic hits or to non-hits at all,
adding extra noise to the amplicon results returned.

In shotgun metagenomics studies there are also several challenges. Meta-genome
assembly comes with a great number of challenges. Due to the uneven (and unknown)
representation of the different organisms within a metagenomic mixture, simple coverage
statistics can no longer be used to detect the repeats, while unrelated genomes may
contain nearly-identical DNA (inter-genomic repeats) representing, for example, mobile
genetic elements [Ghurye et al., 2016]. At the same time, binning is a rather tricky step too;
several algorithms have been developed to address it [Yue et al., 2020] while approaches
combining the output of individual algorithms have been introduced too [Song and
Thomas, 2017].

The vast amounts of data that come with metagenomic studies and the computational
complexity for implementing multiple steps mentioned earlier imply immense compu-
tational requirements for their analysis that usually exceed the capacity of a standard
personal computer [Merelli et al., 2014].

For HTS data to be available to the scientific community for further exploitation, it
is required to be accompanied by comprehensive metadata [Vangay et al., 2021]. The
potential of HTS data is revealed when they are available to the community; this way
studies that could never been performed by individual researchers, labs or institutes are
now possible. This way, a single researcher can now investigate how a certain environ-
mental type reacts in response to an environmental variable by making use of hundreds
of metagenomic samples that fulfill the criteria of his/her study. Finding data of interest
however, can be particularly difficult. This is so because of a combination of reasons.
HTS data can be particularly heterogeneous based on both the data generation and the
data processing methods used. However, it is mostly the vague or even absent metadata
accompanying the HTS data set several limitations in their re-usage [Hu et al., 2022].
The concept of FAIR data (Findability, Accessibility, Interoperability & Reuse) and
the FAIR principles' along with community - driven standards and resources such as
the Genomic Standards Consortium (GSC)?, the Minimal Information about any Se-
quence (MIxS) [Yilmaz et al., 2011b,a] and the National Microbiome Data Collaborative

Thttps:/ /www.go-fair.org/fair-principles/
2https://gensc.org/
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(NMDC)? [Wood-Charlson et al., 2020] aim to address these challenges [Wilkinson et al.,
2016].

1.3 Dataintegration in the service of microbial ecology

1.3.1 Moving from partial to more comprehensive data interpretation

Over the last decades, based on computational and mathematical analysis and modeling,
and by exploiting interdisciplinary data and knowledge, Systems Biology focuses on
complex interactions within biological systems [Tavassoly et al., 2018]. The more data
becoming available from all the different levels of hierarchy of life, the more feasible for
scientists to move from reductionism to more holistic approaches for interpreting how
the properties of a system emerge [Noble, 2008].

Microbial ecology as a field would have not been the same if it was not for resources
such as Integrated Microbial Genomes (IMG) and GOLD [Chen et al., 2021], SEED and the
Rapid Annotation of microbial genomes using Subsystems Technology (RAST) [Overbeek
et al., 2014], Pathosystems Resource Integration Center (PATRIC), [Zhulin, 2015] and
many more that thousands of researches use in their every day work. All these approaches,
regardless on what they focus, they are all based on data aggregation and data integra-
tion approaches. Data aggregation denotes the gathering of data from diverse sources
in a certain scheme that will allow them to be used as a combined data-set for further
analysis [Simpson et al., 2010]. In case of microbial ecology, that means that data focus-
ing on the genetic information can be combined with phenotypical data or even with
environmental and ecological data. Data integration on the other hand, is the process of
combining everything retrieved on the data aggregation step, to get a summarization and
unified view of all the accumulated data [Schneider and Jimenez, 2012]. Such summa-
rizations may lead researchers to new hypotheses that in turn, will be tested through new
experiments (Figure 1.4).

Data integration comes with great challenges. Apparently, data integration methods
are based on the existence of primary databases. Each of these database resources come
with its own assumptions and schemas. Therefore, it is not a straight-forward task to
recognize or assign and maintain the correct names of biological entities across the various
databases [Stein, 2003]. Taxonomy is quite an indicative example. As there is no a global
taxonomy system, even the species name can be a great challenge in such approaches;
how to retrieve information about a species that does not have the same name on the
various databases to integrate? Therefore, retrieving and mapping entities can be rather
complex. Similarly to taxonomy, most biological databases are constantly changing. Thus,
integration approaches need to be periodically so the always keep updated [Stein, 2003].
In addition to the heterogeneity of the data per se, further challenges that make data
integration even harder in case of biological data, is the lack of unique standards [Triplet
and Butler, 2011]. In the case of HTS data, great efforts to address this challenge have
been made (see Section 1.2.2).

Shttps://microbiomedata.org/metadata/
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FIGURE 1.4: A data integration scheme for microbial ecology oriented data. Measure-
ments from experiments at every level of organization of life are gathered and their
summary provides researchers with new insight. Created with BioRender.com.

One of the most typical examples of data integration and its potential is the STRING
database®, where multiple channels of information are combined to retrieve protein -
protein interactions [Mering et al., 2003, Szklarczyk et al., 2021]. In addition to databases
of interaction experiments and others of interaction predictions, text-mining methods
of the scientific literature enhance further the PPI predictions [Szklarczyk et al., 2021].
Focusing on bacterial information, BacDive® [Reimer et al.,, 2019] is a great example -
resource of the added value that data integration methods can provide.

Multiple integration approaches attempt to address the challenges described. The
data warehousing approach is a widely used data integration approach and has two mains
steps; first, a unified data model that can accommodate all types of information from the
various source databases is schemed. Then, software is developed aiming at gathering
the data from the source databases, convert them to match the unified data model and
then load them into the warehouse [Stein, 2003]. Once these steps have been completed,
further analysis of the once several bits of information - now a single data-set, can be
performed. New insight may come up either from statistical analyses on the unified
data-set or from their visualization [Leonelli, 2013].

4https://www.string-db.org/
Shttps://bacdive.dsmz.de/
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1.3. Data integration in the service of microbial ecology

1.3.2 Ontologies & metadata standards: cornerstones for efficient data
integration

Data integration in general, is strongly dependent by the extent that standards are used.
Especially in case of vast and heterogeneous data, data integration cannot return valid
results when there is not a certain way of denoting the entities included. Thus, it is
dependent on the way data are distributed in the fist place as well as on whether their
content follow certain principles or not. To address these challenges, several ontologies
and standards have been established through the years, trying to cover all the different
types of needs of the microbial ecology community.

According to Stevens et al. an ontology is the "concrete form of a concepcualisation
of a community’s knowledge of a domain" [Stevens et al., 2000]. Ontologies attempt to
capture the main concepts in a knowledge domain, i.e. a body of knowledge that is often
associated with a specialized scientific discipline. For example, considering where a
species live or where a process occurs, one need to describe the environment where the
phenomenon under study takes place. Thus, the Environment Ontology (ENVO)® aims
to provide descriptions of environments [Buttigieg et al., 2016]. Using sets of entities,
meaning entities sharing several attributes (concepts), descriptions of the interactions
between concepts (relations), entities - members of a concept (instances) and properties
of relations that aim to constrain the value a class or an instance may get (axioms) aim to
create an agreed vocabulary and semantic structure for exchanging information about
that domain [Stevens et al., 2000]. A vocabulary includes definitions and an indication of
how concepts are inter-related which collectively impose a structure on the domain and
constrain the [Uschold et al., 1998]. Ontologies are fundamental for data integration as
they ensure that the knowledge included in a text or in a data set, can be captured by both
humans and computers.

Metadata are essential for most if not all types of data. Consider sampling from a set of
healthy and patients. Then what if you do not know what samples are coming from each
group? You data have been already degraded.

In arecent study Furner gave a list of several definitions of metadata. The one of Zeng
and Qin is probably the more inclusive one: " Structured, encoded data that describes
characteristics of information-bearing entities (including individual objects, collections,
or systems) to aid in the identification, discovery, assessment, management, and preser-
vation of the described entities." Structured are data that are highly organized and easily
decipherable by machine learning algorithms while encoded are those that have been
converted into digital signals.

Moreover, for the most efficient design and implementation but also to ensure the
Interoperability of structured metadata across various computing systems and environ-
ments, a range of standards have been developed. Data structure (schemas) standards and
rules for formatting the contents of metadata records along with encoding and exchange
standards are combined to build up metadata.

6https://sites.google.com/site/environmentontology
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As mentioned in Section 1.2.2, great efforts have been made on setting HTS - related
metadata standards [Yilmaz et al., 2011b,a, Wood-Charlson et al., 2020]. That is so because
comprehensive metadata is the only way to ensure:

* humans will be able to contextualise where and how the data originated as well as
how they were analysed

* computing systems will be able to exploit this metadata provenance further

Thus, details regarding when, where and how samples were collected can be provided.
Moreover, these metadata may align against community developed standards where
possible. For example, addressing the question of where a sample was collected, the
answer could be "lake" or ENVO:00000020. The difference in terms of computer science is
huge; it is probably trivial for a human to think that a lake is an aquatic environment and
in fact a freshwater one. However, it is only the relations of an ontology that would allow a
computer to come up with the same "conclusions".

Regarding the environmental metadata of a sample, ENVO [Buttigieg et al., 2016] and
MIxS [Yilmaz et al., 2011b] are working together to build a solid framework [Environmen-
tOntology, 2021]. The broad-scale environmental context value is representing the major
environmental system a sample came from; thus, biome " ENVO terms should be used
as values. An ENVO biome term represents an ecosystem to which resident ecological
communities have evolved adaptations. The local environmental context value, stands for
entities which are in a sample’s local vicinity and may have significant causal influences on
the sample; ENVO featureterms may be used for that. Finally, as values of the environmen-
tal medium category, environmental material® (one or more) immediately surrounded
the sample prior to sampling. However, other resources use different schemes for de-
scribing the environment of a sample. For example in the GOLD database [Mukherjee
etal., 2021], a five-level ecosystem classification path that includes Ecosystem, Ecosystem
Category, Ecosystem Type, Ecosystem Subtype and Specific Ecosystem has been adopted.

Besides the environmental metadata that describe the origin of the sample, the se-
quencing technology used (in case of raw data) along with metadata about the the com-
putational steps implemented and a thorough description of the results retrieved, for
example taxa found to be linked to a taxonomy scheme (in case of processed data) are
required.

Figure 1.5 highlights both the potential and the challenges related to HTS - oriented
metadata. Metadata describing the sample in case 1.5a are limited and neither a hu-
man nor a computer is able to capture the actual environment from where the sample
was collected. In the 1.5b case, accompanying metadata are clearly more informative.
Both a human and computing systems, can capture that the sample comes from an
oceanic epipelagic zone biome (ENVO_01000035) and more specifically oligotrophic water
(ENVO_00002223). However, two of the challenges for HTS metadata are demonstrated in
this case; first, the use of Deep Chlorophyll Maximum denotes the need for extra terms to
be added in ENVO. On top of that, the need for extra training of the community in these

7http://purl.obolibrary.org/obo/ENVO_00000428
8http://purl.obolibrary.org/obo/ENVO_00010483
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methods is shown as the the ENVO term denoting oligotrophic water should be provided
as the feature and Deep Chlorophyll Maximum should be used to describe the material.

Sample metadata [-]

Collection date: 2011-08-01/2011-08-31

Geographic location (country and/or sea,region):

Pacific Ocean

Geographic location (latitude): 22.45
Geographic location (longitude): -158.0
Instrument model: lllumina MiSeq

(A) Poor, non machine readable metadata
Sample metadata [-]

Collection date: 2014-06-22
Depth: 20.0

ENA checklist: ERC000027
Environment (biome): ENV0:01000035
Environment (feature): ENV0:00002223
Environment (material): Deep Chlorophyll Maximum
Environmental package: water
Geographic location (latitude): 35.35
Geographic location (longitude): 25.29
Instrument model: lllumina MiSeq
Project name: Micro B3
Salinity: 39.11
Temperature: 23.13

(B) Rich, partially machine readable metadata

FIGURE 1.5: Example cases of HTS - sequencing metadata. Metadata in case 1.5a fail to
describe the origin of the sample both to a human and a computer. In case 1.5b further
metadata have been added while most environmental metadata are provided as ENVO
terms.

Challenges associated with metadata deposition as the one described above, mean
submitters: may lack of training and outreach resulting or they do not fully realise the
importance of metadata and how to comply with standards. On top of that, the non-
existence of standards in many cases or the use of more than one standards lead to extra
complexity. Only by a concerted effort on the part of the database providers, and with
the encouragement and support of the research community, will we be able to tame the
explosion of biological data [Stein, 2003].
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1.4 Metabolic modeling: an interface for the genotype -
phenotype relationship

1.4.1 Constraint-based modeling for the analysis of metabolic networks

The relationship between genotype and phenotype is fundamental allowing to elucidate
mechanisms that govern the physiology of a species as well as those ruling at the com-
munity level [Morris et al., 2020]. Meta- bolism penetrates most of the different levels
of living entities horizontally [Schramski et al., 2015] and while it reflects the genomic
information it indicates what is actually going on on a cell at a certain time as a response
to genetic or environmental changes [Lima et al., 2021]. One can use the Reverse Ecology
framework (Section 1.1.4) to move all the way from genomic information to metabolism
and the environment and back. To this end, metabolic networks and their analysis are
essential. The vast number of reaction taking place in a cell are interlinked (the prod-
uct of the first acts as the substrate for the next) building up metabolic pathways, while
their stoichiometry allows their mathematical representation. The rate of turnover of
molecules through a metabolic reaction is called flux. The metabolic network of a species
consists of the sum of all the reactions that take place in its cell, while metabolic model is
its representation in a mathematical format (Figure 1.6)°. We call Genome-scale metabolic
models (GEMs) incorporate the vast majority of the processes that occur in a cell or an
organism in a mathematical format [Feist et al., 2009].

Once the complete genome is retrieved the enzymes and thus the potentially catalyzed
by the organism reactions can be listed. However, the reconstruction of a GEM is not
a straight forward task and the more the complexity of the species increases, the more
effort is required for this task [Thiele and Palsson, 2010]. Thermodynamics, metabolome,
physiological and labelling data as well as literature can be also integrated in such models
[Saldida et al., 2020].

The analysis of GEMs has been interwoven with constraint-based modeling ap-
proachess [Lewis et al.,, 2012]. As all compounds are finite the concentration of each
metabolite is bounded [Palsson, 2015], meaning that the models derived from the metabolic
networks have constraints. Likewise, as the laws of thermodynamics need to apply in
such systems, the flux of each reaction is also bounded. Therefore, the flux value of
each reaction is constraint too. We call steady state the condition where the production
rate of each metabolite equals its consumption rate [Cakmak et al., 2012]. Equation 1.1
represents the main concept of constraint-based modeling at a steady state.

S-v=0,

S.E.Vhi SV < Vyp,i

(1.1)

where S is a m* n table (m being the number of metabolites and n the number of reactions
of the model) that stands for the stoichiometric matrix of the model. The columns of S
consists of the stoichiometric coefficients, i.e. the number of molecules a biochemical
reaction consumes and produces, of the model’s reactions. v € R” is the flux vector

9The Escherichia coli model of Figure 1.6 can be found at:
http://bigg.ucsd.edu/static/models/e_coli_core.xml
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FIGURE 1.6: Part of the Escherichia coli BIGG metaboic network and the Transketolase
reaction of it as integrated in the model
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that contains the fluxes of each chemical reaction of the network. As all the fluxes are
bounded, for each coordinate v; of the vector v, there are constants v, ; and vy, ; such
that vy ; < v; < vyp,;, for i € [n], where n is the number of reactions of the model. The
solution space of systems such as the one of equation 1.1 "live" in a polytope. Further
introductory material on computational geometry can be found at Appendix B.

As discussed in [Reed, 2012] a great range of constraints govern the cells’ operations;
for a thorough overview on the constraints cells operate under, you may see [Palsson,
2015], Chapter 16.5. (Bio)physico-chemical- (e.g., thermodynamics, nutrient uptake, oxy-
gen availability etc.) as well as connectivity-, capacity- and rates-related constraints are ap-
plied on the functions of such a network.metabolic Each of the aforementioned constraint
categories include multiple constraints, such as thermodynamics- and gene-expression-
oriented constraints that add extra complexity in the model. The more constraints a
model incoroporates, the more accurate the flux distributions it returns.

Using constraint-based modeling scientists can predict not only potential interac-
tions, topology-based metabolic models are adequate for this task, but also specific
metabolic dynamics in a community [Levy and Borenstein, 2012]. The most commonly
used constraint-based methods for the analysis of metabolic networks are Flux Balance
Analysis (FBA) [Orth et al., 2010] and Flux Variability Analysis (FVA) [Gudmundsson and
Thiele, 2010]. Both have been used to a great number of studies, providing fundamental
isngight [Shastri and Morgan, 2005, Chapman et al., 2015]. Models estimate the minimum
or the maximum of a specific (linear) objective function over the polytope. It is com-
mon for the biomass function of an organism to be used as the objective function. The
biomass function aims at representing all metabolites needed for a cell or an organism
to double. In this setting the optimization of the biomass function is like optimizing
the growth of the organism itself [Feist and Palsson, 2010]. On top of that, dynamic
FBA approaches have tried to to study the transience of metabolism due to metabolic
reprogramming [Mahadevan et al., 2002].

1.4.2 Sampling the flux space of a metabolic model: challenges & potential

As mentioned, constraint-based approaches cover a great range of methods [Lewis et al.,
2012]. FBA has been proved particularly useful however, it is a biased method due to the
selection of the objective function. To study the global features of a metabolic network
unbiased methods are required. On top of that, FBA is a method that addresses the
question of what is the minimum or the maximum of a specific objective function, by
identifying only a single optimal flux distribution. However, by construction, there is an
infinite number of optimal steady states lie on a certain face of the polytope — which is
also a polytope. In addition, there is no guarantee that the system under study would
select the optimal steady state that FBA computes.

Using uniformly distributed steady states one could estimate the probability distribu-
tion for the flux of any reaction [Herrmann et al., 2019], which can lead to a deep statistical
analysis of the metabolic network.

To overcome these obstacles, we sample uniformly from the set of optimal steady
states and we express and quantify our uncertainty about each flux by estimating the
univariate marginal probability densities [Schellenberger and Palsson, 2009]. Each prob-

16



1.4. Metabolic modeling: an interface for the genotype - phenotype relationship

ability density corresponds to a reaction flux. With this information at hand we can
compute credible confidence intervals, estimate the average flux value, or employ other
statistical methods. This procedure relies on collecting, that is sampling, a sufficient
number of uniformly distributed points in the interior of the corresponding polytope.

To obtain an accurate picture of the whole solution space, once more, we sample
uniformly distributed points. This way instead of a single and optimal solution, the
distribution of each each reaction’s flux is returned (Figure 1.7). This way, we can now
investigate the properties of certain components of the whole network that potentially
can lead to biological insights [Palsson, 2015].

Solution space Optimal solution Sampling

Vs

Vo

FIGURE 1.7: A visual comparison of the insight FBA ("Optimal solution") and flux sam-
pling ("Sampling") return

Flux sampling has been proved rather valuable for a great range of applications;
from design experiments and studying enzymopathies [Price et al., 2004] to the study
of metabolism under changing environmental conditions [Herrmann et al., 2019] and
the discovery of strain-dependent differences that affect the aroma production in wine
yeasts [Scott et al., 2021].

Implementations of Markov Chain Monte Carlo algorithms such as Hit-and-Run
(HR) [Smith, 1984], the Artificial Centering Hit-and-Run (ACHR) [Kaufman and Smith,
1998] and Coordinate Hit-and-Run with Rounding (CHRR) [Haraldsdottir et al., 2017]
have been adopted and used to a great extent. Similarly to FBA, flux sampling algorithms,
e.g. CHRR, have been integrated in cobra [Heirendt et al., 2019], the most widely used
software package for metabolic network analysis.

On top of that, over the last few years, flux sampling has been used in computa-
tional approaches for inferring microbial interactions The Computation Of Microbial
Ecosystems in Time and Space (COMETS) project and software [Dukovski et al., 2021]
first focused on the interactions between a single species and its environment. Nowdays,
metabolic modeling moves to the community level. Approaches such as the one of Diener
et al. in their MICOM software [Diener et al., 2020], set a new era for the study of microbial
ecology.

However, flux sampling is rather challenging from the computational point of view.
The "dimensionality curse" is not a problem to a small GEM such as those of single
bacterial taxa. However, to more complex species and especially in the case of com-
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munity modeling the dimesion of the derived polytope can be notably high. Moreover,
polytopes derived from metabolic networks are usually rather skinny, partially due to
the great range the various flux values may get, making mixing hard and adding extra
complexity [Haraldsdottir et al., 2017, Schellenberger and Palsson, 2009].

1.5 Aims and objectives

The key role of bioinformatics on microbial ecology studies was described in the previous
chapters and especially when it come to HTS - oriented challenges. The potentials of
addressing a subset of these challenges was also described. As HTS technologies become
better and better (lower cost, higher accuracy) and HTS data become more and more
available, efforts to overcome these issues are undoubtedly of great importance.

The aim of this PhD was double:

1. to enhance the analysis of microbiome data by building algorithms and software
that address limitations and on-going computational challenges

2. to exploit state-of-the-art methods to identify taxa and functions that play a key
part in microbial community assemblages in hypersaline sediments.

All parts of this work are purely computational. Both samples and their corresponding
sequencing data used in Chapter 5 have been collected and produced by Dr. Christina
Pavloudi 1°.

In Chapter 2, challenges derived from the analysis of HTS amplicon data are exam-
ined. A bioinformatics pipeline, called PEMA, for the analysis of several marker genes
was developed, combinining several new technologies that allow large scale analysis of
hundreds of samples. In addition, a software tool called darn, was built to investigate the
unassigned sequences in amplicon data of the COI marker gene.

In Chapter 3, data integration, data mining and text-mining methods were exploited
to build a knowledge-base, called prego, including millions of associations between:

1. microbial taxa and the environments they have been found in
2. microbial taxa and biological processes they occur
3. environmental types and the biological processes that take place there

In Chapter 4, the challenges of flux sampling in metabolic models of high dimensions
was presented along with a Multiphase Monte Carlo Sampling (MMCS) algorithm we
developed.

In Chapter 5, sediment samples from a hypersaline swamp in Tristomo, Karpathos
Greece were analysed using both amplicon and shotgun metagenomics. The taxonomic
and the functional profiles of the microbial communities present there were investigated.
Key metabolic processes for ensuring life at such an extreme environment were identified.

10https:/ /scholar.google.com/citations?user=3zs1-NKAAAAJ&hl=en&oi=sra
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Microbial interactions of the assemblages retrieved were also studied by exploiting data
integration and reverse ecology approaches.

In Chapter 6, the history of the IMBBC-HCMR HPC facility was presented indicating
the vast needs of computing resources in modern analyses in general and in microbial
studies more specifically.

Finally, in Chapter 7, general discussion and conclusions that have derived from this
research were presented.
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Chapter 2

Software development to establish
quality HTS-oriented bioinformatics
methods for microbial diversity
assessment

2.1 PEMA: a flexible Pipeline for Environmental DNA
Metabarcoding Analysis of the 16S/18S ribosomal RNA, ITS,
and COI marker genes '

Citation:

Zafeiropoulos, H., Viet, H.Q., Vasileiadou, K., Potirakis, A., Arvanitidis, C., Topalis, P,
Pavloudi, C. and Pafilis, E., 2020. PEMA: a flexible Pipeline for Environmental DNA
Metabarcoding Analysis of the 16S/18S ribosomal RNA, ITS, and COI marker genes. Giga-
Science, 9(3), p.giaa022,

DOI: 10.1093/gigascience/giaa022.

2.1.1 Abstract

Background: Environmental DNA and metabarcoding allow the identification of a mix-
ture of species and launch a new era in bio- and eco-assessment. Many steps are required
to obtain taxonomically assigned matrices from raw data. For most of these, a plethora of
tools are available; each tool’s execution parameters need to be tailored to reflect each
experiment’s idiosyncrasy. Adding to this complexity, the computation capacity of high-
performance computing systems is frequently required for such analyses. To address the
difficulties, bioinformatics pipelines need to combine state-of-the art technologies and

1For author contributions, please refer to the relevant section. Modified version of the published review;
extra features have been added and discussed on this thesis.
You may find the Supplementary files of this study through PEMAs publication
(https://academic.oup.com/gigascience/article/9/3/giaa022/5803335#supplementary-data) Here a
modified version of the published version is presented in terms of relevance, coherence and formatting.
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2.1. PEMA: a flexible Pipeline for Environmental DNA Metabarcoding Analysis of the
16S/18S ribosomal RNA, ITS, and COI marker genes

algorithms with an easy to get-set-use framework, allowing researchers to tune each study.
Software containerization technologies ease the sharing and running of software packages
across operating systems; thus, they strongly facilitate pipeline development and usage.
Likewise programming languages specialized for big data pipelines incorporate features
like roll-back checkpoints and on-demand partial pipeline execution.

Findings: PEMA is a containerized assembly of key metabarcoding analysis tools that
requires low effort in setting up, running, and customizing to researchers’ needs. Based on
third-party tools, PEMA performs read pre-processing, (molecular) operational taxonomic
unit clustering, amplicon sequence variant inference, and taxonomy assignment for 16S
and 18S ribosomal RNA, as well as ITS and COI marker gene data. Owing to its simplified
parameterization and checkpoint support, PEMA allows users to explore alternative
algorithms for specific steps of the pipeline without the need of a complete re-execution.
PEMA was evaluated against both mock communities and previously published data sets
and achieved results of comparable quality.

Conclusions: A high-performance computing-based approach was used to develop
PEMA; however, it can be used in personal computers as well. PEMA’s time-efficient
performance and good results will allow it to be used for accurate environmental DNA
metabarcoding analysis, thus enhancing the applicability of next-generation biodiversity
assessment studies.

2.1.2 Introduction

Environmental DNA (eDNA) metabarcoding inaugurates a new era in bio- and eco-
monitoring [Pavan-Kumar et al., 2015]. eDNA refers to genetic material obtained directly
from environmental samples (soil, sediment, water, etc.) without any obvious signs of
biological source material [Thomsen and Willerslev, 2015]. Metabarcoding is the com-
bination of DNA taxonomy, based on taxa-specific marker genes (e.g., 16S ribosomal
RNA [rRNA] for Bacteria and Archaea, cytochrome oxidase subunit 1 [COI] and 18S rRNA
for Metazoa, ITS for Fungi), and high-throughput DNA sequencing technologies; thus,
simultaneous identification of a mixture of organisms is attainable [Ji et al., 2013]. eDNA
metabarcoding attempts to turn the page on the way biodiversity is perceived and moni-
tored [Ji et al., 2013]. This combination is considered to be a potential holistic approach
that, once standardized, allows for higher detection capacity and at a lower cost com-
pared to conventional methods of biodiversity assessment. However, from the raw read
sequence files to an amplicon study’s results, the bioinformatics analysis required can be
troublesome for many researchers.

Well-established pipelines are available to process metabarcoding data for the case of
16S and 18S rRNA marker genes and bacterial communities (e.g., mothur [Schloss et al.,
2009], QIME 2 [Bolyen et al., 2018], LotuS [Hildebrand et al., 2014]). However, certain
limitations accompany each of these and occasionally they can be far from easy-to-use
software. Moreover, there is a great need for similarly straightforward and benchmarked
approaches for the analysis of other marker genes. With respect to the COI and ITS marker
genes, a number of pipelines have been implemented, e.g., Barque 2 ScreenForBio [Axtner

2https://github.com/enormandeau/barque
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et al., 2019], and PIPITS [Gweon et al., 2015]. However, there is still need for a fast, flexible,
easy-to-install, and easy-to-use pipeline for both COI and ITS marker genes.

The pipelines mentioned above, although entrenched, are still hindered by a series
of hurdles. Among the most prominent are technical difficulties in installation and use,
strict limitations in setting parameters for the algorithms invoked, and incompetence in
partial re-execution of an analysis.

Moreover, given the computational demands of such analyses, access to high - per-
formance computing (HPC) systems might be mandatory, e.g., to process studies with
alarge number of samples. This is timely given the ongoing investment of national and
international efforts ( e.g., see European Strategy Forum on Research Infrastructures * ) to
serve the broad biological community via commonly accessible infrastructures.

2.1.3 Contribution

PEMA (Pipeline for Environmental DNA Metabarcoding Analysis) is an open source
pipeline that bundles state-of-the-art bioinformatics tools for all necessary steps of
amplicon analysis and aims to address the aforementioned issues. It is designed for
paired-end sequencing studies and is implemented in the BDS [Cingolani et al., 2015]
programming language. BDS’s ad hoc task parallelism and task synchronization supports
heavyweight computation, which PEMA inherits. In addition, BDS supports "check-
point" files that can be used for partial re-execution and crash recovery of the pipeline.
PEMA builds on this feature to serve tool and parameter exploratory customization for
optimal metabarcoding analysis fine tuning. Switching effortlessly between (molecular)
operational taxonomic unit ([M]OTU) clustering and amplicon sequence variant (ASV)
inference algorithms is a pertinent example. Finally, via software containerization tech-
nologies such as Docker [Rad et al., 2017] and Singularity [Kurtzer et al., 2017], with the
latter being HPC-centered, PEMA is distributed in an easy to download and install fashion
on a range of systems, from regular computers to cloud or HPC environments.

From the biological perspective, monitoring biodiversity at all its different levels is of
great importance. Because there is not a single marker gene to detect all taxa, researchers
need to use different genes targeting each great taxonomy group separately [Coissac
etal., 2012]. To that end, PEMA supports the metabarcoding analysis of both prokaryotic
communities, based on the 16S rRNA marker gene, and eukaryotic ones, based on the ITS
(for Fungi) and COI and 18S rRNA (for Metazoa) marker genes [Coissac et al., 2012].

As high-throughput sequencing (HTS) data become more and more accurate, ASVs,
i.e., marker gene amplified sequence reads that differ in = 1 nucleotide from each other,
become easier to resolve [Callahan et al., 2017]. The use of ASVs instead of OTUs has been
suggested [Callahan et al., 2017]; however, the choice of which approach to use should be
based on each study’s objective(s) [Pauvert et al., 2019].

PEMA supports both OTU clustering and ASV inference for all marker genes (see
“OTU clustering vs ASV inference” in the “Results and Discussion” section). Two clustering
algorithms, VSEARCH [Rognes et al., 2016] and CROP [Hao et al., 2011], are used for the
clustering of reads in (M)OTUs—the former for the case of the 16S/18S rRNA marker

3https://Www.esfri.eu/sites/default/ﬁles/u4/ESFRLSCRIPTA?VOLS?INNO?doublefpage.pdf
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genes, the latter for the case of COI and ITS. Swarm v2 [Mahé et al., 2015] allows ASV
inference in all cases.

Taxonomic assignment is performed in an alignment-based approach, making use of
the CREST LCAClassifier [Lanzén et al., 2012] and the Silva database [Quast et al., 2013]
for the case of 16S and 18S rRNA marker genes; the Unite database [Nilsson et al., 2019b]
is used for the ITS gene. In the 16S marker gene case, phylogeny-based assignment is also
supported, based on RAXML-ng [Kozlov et al., 2019], EPA-ng [Barbera et al., 2019], and
Silva [Quast et al., 2013]. For the COI marker gene, the RDPClassifier [Wang et al., 2007]
and the MIDORI database [Machida et al., 2017] are used for the taxonomic assignment.
In addition, ecological and phylogenetic analysis are facilitated via the phyloseq R package
[McMurdie and Holmes, 2013].

All the pipeline- and third-party module-controlling parameters are defined in a plain
"parameter-value pair" text file. Its straightforward format eases the analysis fine tuning,
complementary to the aforementioned checkpoint mechanism. A tutorial about PEMA
and installation guidance can be found on PEMA’s GitHub repository *.

2.1.4 Methods & Implementation

PEMA’s architecture comprises 4 main parts taking place in tandem (Figure 2.1). A detailed
description of the tools invoked by PEMA and their licenses is included in Additional File
1: Supplementary Methods.

Part 1: Quality control and pre-processing of raw data

First, FastQC [fas, 2015] is used to obtain an overall read-quality summary; visual inspec-
tion of each sample’s quality may recommend removing those insufficient quality, as well
as samples with a low number of reads, and rerunning the analysis. To correct errors
produced by the sequencer, PEMA incorporates a number of tools. Trimmomatic [Bolger
et al., 2014] implements a series of trimming steps, which either remove parts of the
sequences corresponding to the adapters or the primers, trim and crop parts of the reads,
or even remove a read completely, when it fails to reach the quality-filtering standards
set by the user. Cutadapt [Martin, 2011] is used additionally for the case of ITS to address
the variability in length of this marker gene (see Additional File 1: Supplementary Meth-
ods). BayesHammer [Nikolenko et al., 2013], an algorithm of the SPAdes assembly toolkit
[Bankevich et al., 2012], revises incorrectly called bases. PANDAseq [Masella et al., 2012]
assembles the overlapping paired-end reads, and then the obiuniq program of OBITools
[Boyer et al., 2016] groups all the identical sequences in every sample, keeping track of
their abundances. The VSEARCH package [Rognes et al., 2016] is then invoked for chimera
removal; however, if the Swarm v2 algorithm is selected, this step will be performed after
the ASV inference (see next section).

4https://github.com/hariszaf/pema
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FIGURE 2.1: PEMA comprises 4 parts. The first step (top left) is the quality control
and pre-processing of the Illumina sequencing reads. This step is common for both
16S rRNA and COI marker genes. The second step (top right) is the clustering of reads
to (M)OTUs or their inferring to ASVs. The third step (bottom left) is the taxonomy
assignment to the generated (M)OTUs/ASVs. In the fourth step (bottom right), the results
of the metabarcoding analysis are provided to the user and visualized. *noun project icons
by: ProSymbols (US), IconMark (PH), Nithinan Tatah (TH). clustering figure adapted from
DOI: 10.7717/peerj.1420/fig-1

Part 2: (M)OTU clustering and ASV inference

Quality-controlled and processed sequences are subsequently clustered into (M)OTUs
or treated as input for inferring ASVs. For the case of 16S and 18S rRNA marker genes,
VSEARCH [Rognes et al., 2016] is used for OTU clustering, while ASVs can be identified by
the Swarm v2 algorithm [Mah¢ et al., 2015]. VSEARCH is an accurate and fast tool that
can handle large data sets; at the same time it is a great alternative for USEARCH [Edgar,
2010] because it is distributed under an open source license.

For the ITS and COI marker genes, CROP [Hao et al., 2011], an unsupervised proba-
bilistic Bayesian clustering algorithm that models the clustering process using birth-death
Markov chain Monte Carlo (MCMC), is used. The CROP clustering algorithm is adjusted
by a series of parameters that need to be tuned by the user (namely, b, e, and z). These
parameters depend on specific data set properties such as the length and the number of
reads. PEMA automatically adjusts b, e, and z by collecting such information and apply-
ing the CROP recommended parameter-setting rules [Hao et al., 2011]. ASV inference is
conducted by Swarm v2 [Mahé et al., 2015] in this case too.
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Because the Swarm v2 algorithm is not affected by chimeras (E Mahé, personal com-
munication), when Swarm v2 is selected, chimera removal occurs after the clustering (see
Additional File 1: Supplementary Methods: Swarm v2). This leads to a computational
time gain as chimeras are sought among ASVs, instead of ungrouped reads.

Last, any singletons, i.e., sequences with only 1 read, occurring after the (M)OTU
clustering or the ASV inference may be removed according to the user’s parameter settings.

Part 3: Taxonomy assignment

Alignment-based taxonomy assignment is supported for all marker gene analyses. In the
case of the 16S/18S rRNA and ITS marker genes, the LCAClassifier algorithm of the CREST
set of resources and tools [20] is used together with the Silva [Quast et al., 2013] and the
Unite [Nilsson et al., 2019b] database, respectively, to assign taxonomy to the OTUs. Two
versions of Silva are included in PEMA: 128 (29 September 2016) and 132 (13 December
2017). Because classifiers need first to be trained for each database they use, for future
Silva [Quast et al., 2013] versions new PEMA versions will be available.

For the COI marker gene, PEMA uses the RDPClassifier [Wang et al., 2007] and the
MIDORI reference database [Machida et al., 2017] to assign taxonomy of the MOTUs. The
MIDORI database contains quality-controlled metazoan mitochondrial gene sequences
from GenBank [Benson et al., 2018].

Intended primarily for studies from less explored environments, phylogeny - based
assignment is available for 16S rRNA marker gene data. PEMA maps OTUs to a custom ref-
erence tree of 1,000 Silva-derived consensus sequences (created using RAXML-ng [Kozlov
et al., 2019] and gappa [phat algorithm] [Czech et al., 2019], Figure 2.2A). PaPaRa [Berger
and Stamatakis, 2012] and EPA-ng [Barbera et al., 2019] combine the OTU clustering
output and the reference tree to produce a phylogeny-aware alignment and map the 16S
rRNA OTUs to the custom reference tree. Beyond the context of PEMA, users may visualize
the output with tree viewers such as iTOL [Letunic and Bork, 2021] (Figure 2.2B).

Part 4: Ecological downstream analysis of the taxonomically assigned (M)OTU/ASV
tables

PEMA'’s major output is either an (M)OTU or an ASV table with the assigned taxonomies
and the abundances of each taxon in every sample. For each sample of the analysis, a
subfolder containing statistics about the quality of its reads, as well as the taxonomies
and their abundances, is also returned.

Via the phyloseq R package [McMurdie and Holmes, 2013], downstream ecological
analysis of the taxonomically assigned OTUs or ASVs is supported. This includes a— and
B—diversity analysis, taxonomic composition, statistical comparisons, and calculation of
correlations between samples.

When selected, in addition to the phyloseq [McMurdie and Holmes, 2013] output, a
multiple sequence alignment (MSA) and a phylogenetic tree of the OTU/ASVs retrieved
can be returned; for the MSA, the MAFFT [Katoh et al., 2002, Nakamura et al., 2018] aligner
is invoked while the latter is built by RAXML-ng [Kozlov et al., 2019].
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FIGURE 2.2: Phylogeny - based taxonomy assignment. A: Building a reference tree for the
phylogeny-based taxonomy assignment to 16S rRNA marker gene OTUs: from the latest
edition of Silva SSU, all entries referring to Bacteria and Archaea were used and using
the “art” algorithm, 10,000 consensus taxa were kept. B: Using PaPaRa and the OTUs that
come up from every analysis, an MSA was made and EPA - ng took over the phylogeny -
based taxonomy assignment. *noun project icons by: Rockicon and A Beale.

PEMA installation and main output
PEMA container-based installation

An easy way of installing PEMA is via its containers. A Dockerized PEMA version is
available °. Singularity users can pull the PEMA image from as described in PEMA GitHub
repository °. Between the 2 containers, the Singularity-based one is recommended for
HPC environments owing to Singularity’s improved security and file accessing properties,
see here /. PEMA can also be found in the bio.tools (id: PEMA) and SciCruch (PEMA,
RRID:SCR_017676) databases. For detailed documentation, see here 8.

PEMA output

All PEMA - related files (i.e., intermediate files, final output, checkpoint files, and per
- analysis parameters) are grouped in distinct (self - explanatory) subfolders per major
PEMA pipeline step. In the last subfolder, i.e., subfolder 8, the results are further split into
folders per sample. This eases further analysis both within the PEMA framework (e.g.,
partial re-execution for parameter exploration) and beyond. An extra subfolder is created
when an ecological analysis via the phyloseq package has been selected.

Shttps:/ /hub.docker.com/r/hariszaf/pema
6https://github.com/halriszaf/pcma
“https://dev.to/grokcode/singularity-a-docker-for-hpc-environments-i6p
8https://hariszaf.github.io/pema_documentation/
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2.1.5 Results & Validation
Evaluation

To evaluate PEMA, 2 approaches were followed. First, PEMA was benchmarked against
mock community data sets. Second, PEMA was used to analyse previously published data
sets. PEMA's output was then compared with the original study outcome, as well as with
the output of QIIME2, LotuS, Mothur, and Barque (where applicable).

Four mock communities, 1 for each marker gene, were used. With respect to the 16S
rRNA marker gene, a mock community of Gohl et al. [Gohl et al., 2016] with 20 different
bacterial species was studied. Correspondingly, in the case of the 18S rRNA marker gene, a
mock community of Bradley et al. [Bradley et al., 2016] with 12 algal species was used; for
the ITS, one of Bakker [Bakker, 2018] including 19 different fungal taxa; and for the case of
the COI marker gene, a mock community of Bista et al. [Bista et al., 2018] containing 14
metazoan species. More information on the mock communities, their original studies, and
the results of PEMA for various combinations of parameters can be found in Additional
File 2: Mock Communities.

Complementary to the mock community evaluation, 2 publicly available data sets
from published studies were investigated through PEMA. For the 16S rRNA marker gene,
the data set reported by Pavloudi et al. [Pavloudi et al., 2017a] was used; the origi-
nal study aimed at investigating the sediment prokaryotic diversity along a transect
river-lagoon—open sea. For the COI case, the data set of Bista et al. [Bista et al., 2017] was
used; this study investigated whether eDNA can be used for the accurate detection of
chironomids (a taxonomic group of macroinvertebrates) in a freshwater habitat.

In both approaches, the respective .fastq files were downloaded from the European
Nucleotide Archive (ENA) of the European Bioinformatics Institute ENA-(EBI) using ENA
File Downloader version 1.2 [Harrison et al., 2019] and PEMA was run on the in-house
HPC cluster.

All analyses were conducted on identical Dell M630 nodes (128 GB RAM, 20 physical
Intel Xeon 2.60 GHz cores).

Mock community evaluation

PEMA was tested against mock communities. An evaluation of its accuracy must capture
(i) how many of PEMA’s predictions are true (i.e., the percent of correctly assigned taxa
among all predicted taxa) and (ii) how many of the taxa existing in the mock community
were recovered successfully by PEMA. The precision statistical metric was used to assess
the former, and recall, the latter. In addition, the F1-score was used as a combined metric
of both precision and recall. Precision is calculated as the ratio of true-positive results
(TP) over the total number of true- (T'P) and false-positive results (FP) predicted by a
model, as follows: precision = TP/(TP + FP); recall is the ratio of TP over the total
number of TP and false-negative results (FN): recall = TP/(TP + FN). The F1-score
is the precision and recall harmonic mean and is calculated by means of the following
formula: F1 =2 x (precision xrecall)/(precision+recall) [Sammut and Webb, 2011].

Adequate accuracy was achieved when PEMA was used to recover the marker gene
- specific mock communities at the genus level. Precision and recall scores of ~80% or
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Marker gene Precision Recall F1

16S rRNA 0.81 0.85 0.83
18S rRNA 0.75 0.90 0.82
ITS 0.79 094 0.86
COlI 0.62 093 0.74

TABLE 2.1: Summary benchmark of PEMA marker - gene — specific mock community
recovery (precision)

more were observed, with 2 exceptions in precision but also 3 very high scores in recall.
Overall the F1-scores ranged from 74% to 86%. A detailed description of the benchmark
methodology and statistics analysis is given in Additional File 2: Mock Communities.

Detailed presentation of per-marker-gene—specific mock community recovery via
PEMA is provided in the following sections. Several different sets of parameters were cho-
sen for each marker gene. Each marker gene has special features (e.g., length variability,
sequence variability), and each Illumina run has its own intrinsic biases (e.g., primers used,
PCR protocol); thus, parameter tuning plays a crucial part in metabarcoding analyses.

In an attempt to thoroughly analyse the sequence data from the mock communities,
various sets of parameters were tested on the basis of the experimental details of the
published studies but also in an exploratory way. Many different parameter settings were
tested, especially for the steps of quality trimming of the reads and the OTU clustering/ASV
inference. The differences in their output indicate how sensitive this method is, as well as
the great need of a mock community in every metabarcoding study—both as a control
but also as a tuning system for the parameter setting of the pipeline used.

Evaluation using real-world data
16S rRNA

When PEMA was performed with the Swarm v2 algorithm (d = 3, strictness = 0.6) without
removal of singletons, 18 of the 20 taxa were identified to the genus level and 3 of these
even to the species level. There were 2 species that were not found in any of the PEMA runs.
According to Gohl et al. [Gohl et al., 2016], there was a discrepancy in the identification
of those 2 species that was dependent on the amplification protocol used. It is worth
mentioning that as d increases, taxa cannot be identified to species level at all; however,
FP assignments decrease. Thus, when d = 30 and strictness = 0.6 for the KAPA samples,
Enterococcus was not identified at all; however, PEMA finds its greatest F1 value (at the
genus level, see Table 2.1) as the FP assignments returned are minimized. When PEMA
was run using the VSEARCH clustering algorithm, high precision values were returned
in all cases (>0.79). However, the recall values were decreased when using Swarm v2
(0.65-0.68).
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18S rRNA

When PEMA was performed using the Swarm v2 algorithm (d = 1, strictness = 0.5), 3 of 12
community members were identified to species level (Isochrysis galbana, Nannochloropsis
oculata, and Thalassiosira pseudonana), 6 to genus, and the remaining 3 to class; the latter
were all the green algae species (Chlorophyta) of the mock community. However, a better
F1-score (0.82) was achieved when the class of Chlorophyceae was not found at all (d =1,
strictness = 0.3) because the FPs were decreased to only 1. When the VSEARCH algorithm
was used, I. galbana was identified only to the genus level, the Nannochloropsis to the
order level (Eustigmatales), and the Poterioochromonas genus to its class (Chrysophyceae).

ITS

When PEMA was performed using the Swarm v2 algorithm (d = 20) and targeting the
ITS2 region, ASVs from 5 of the 19 species of the mock community were assigned to
species level, 10 to genus, 2 to family, and 2 to class level. Contrary to the study by Bakker
[Bakker, 2018], PEMA identified the genus Chytriomyces in all 3 samples, as well as the
Ustilaginaceae family. Only 1 FP assignment was recorded. When the CROP algorithm
was used, PEMA’s output was less accurate; the Fusarium species contained in the mock
community were not identified further than their family (Nectriaceae). As mentioned by
Bakker [Bakker, 2018], many reads deriving from the Fusarium spp. were not assigned to
species level because of the quality-trimming step. In addition, a manually assembled
reference database for the taxonomy assignment was used in the initial study, containing
only sequences of the mock community species, which biased this step, making the results
not directly comparable to our case.

COIl

When PEMA was performed on the Bista et al. data set [Bista et al., 2018] and using
Swarm v2 (d = 10), it identified 12 of the 14 species included in the mock community.
The sole non - identified species were Bithynia leachii and Anisus vortex. For B. leachii
no entry exists in the MIDORI database, version MIDORI_LONGEST_1.1. However,
the existence of another species of the genus Bithynia was recorded. With respect to A.
vortex, PEMA returned a high abundance ASV assigned to the Anisus genus but with a low
confidence level. PEMA managed to identify all the members of the mock community.
This includes Physa fontinalis, which was originally not designed to be a member of the
mock community but, as Bista et al. [Bista et al., 2018] explain, was recorded owing to
cross - contamination. In the case of the COI marker gene, unique sequences with low
abundances (singletons or doubletons) often lead to spurious MOTUs/ASVs. Thus, as
shown in Additional File 2: Mock Communities, the FP assignments are decreased when
these low-abundant sequences are removed; also, the abundance of the assignments
(i.e., read counts) retrieved can indicate FP assignments. Thus, TP assignments occur
in greater abundance, with hundreds or even thousands of reads—contrary to most of
the FP results, whose abundance is < 10 read counts. That is mostly for the case of the
COI marker gene because eukaryotes are under study; eukaryotes have a great number of
copies of this marker gene — different numbers of copies among the different species —
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Feature LotuS QIIME2 mothur Barque PEMA
16S rRNA v v v v
18S rRNA v v v v
ITS v v v
Co1 v v
diversity indices v v v
allgnment-pased v % % v v
taxonomy assignment
phylogenetlc‘-based v % v
taxonomy assignment
Parameters a831gn'ed v v v
in the command line
parameters assigned
through a text file v v v
step-by-step execution v v v v
all steps in one go possible v v v

available for any
Operating System v v v
(Linux, OSX, Windows)
traditional application installation v
available as a virtual machine
available as a container
available for HPC as a container
(Singularity container)

SNSNS

TABLE 2.2: Comparison of the basic features of the different pipelines

and not just a single one as is almost always the case in bacteria. Therefore, assignments
with such low abundances should be doubted as TP results in analyses on real data sets.

Comparison with existing software

PEMA’s features were compared with those of mothur [Schloss et al., 2009], QIIME
2 [Bolyen et al., 2018], LotuS [Hildebrand et al., 2014] and Barque. Table 2.2 presents a de-
tailed comparison among the 4 tools’ features in terms of marker gene support, diversity
and phylogeny analysis capability, parameter setting and mode of execution, operation
system availability, and HPC suitability. As shown, PEMA is equally feature - rich, if not
richer in certain feature categories, compared with the other software packages. In partic-
ular, PEMA’s support for COI marker gene studies is distinctive; 2 methods for taxonomy
assignment are supported, and PEMA’s easy parameter setting, step - by - step execution,
and container distribution render it user and analysis friendly.
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QIIME 2
Parameter LotuS mothur Deblur DADA2 PEMA Pavloudietal.*
No. of OTUs 9,849 142,669 517 1,023 6,028 7,050
Execution time (h) ~9 ~67** 2.5 ~5 ~1.5 ~26

TABLE 2.3: OTU predictions and execution time for the different pipelines.
* data from [Pavloudi et al., 2017a]
** ~ 56 if the reference database is already built

Evaluation on real datasets and against other tools

In the following sections, a comparative study on real datasets of the 16S rRNA and COI
marker genes is presented. Analyses using PEMA and the pipelines mentioned above
that support each of these 2 marker genes were performed, both with multiple sets of
parameters. It is typical for pipelines to invoke a variety of established tools. In many
cases, a number of tools are common among different pipelines. Therefore, it is important
to stress that such comparisons should not be taken into account strictly; declaring that
one pipeline is better than another is not trivial. Potentials and limitations of both the
pipelines and the metabarcoding method, as well as the importance of the role of the
pipeline user, are underlined in the following sections.

16S rRNA marker gene analysis evaluation

To evaluate PEMA’s performance, a comparative analysis of the Pavloudi et al. [Pavloudi
et al., 2017a] data set with mothur [Schloss et al., 2009], QIIME 2 [Bolyen et al., 2018],
LotuS [Hildebrand et al., 2014] and PEMA was conducted.

It is known that the choice of parameters affects the output of each analysis; therefore,
it is expected that different user choices might distort the derived outputs. For this reason
and for a direct comparison of the pipelines, we have included all the commands and
parameters chosen in the framework of this study in Additional File 1: Supplementary
Methods. The results of the processing of the sequences by PEMA are presented in Table
S1. All analyses were conducted on identical Dell M630 nodes (128 GB RAM, 20 physical
Intel Xeon 2.60 GHz cores). LotuS, mothur, and QIIME 2 operated in a single-thread (core)
fashion. PEMA, given the BDS intrinsic parallelization [Cingolani et al., 2015], operated
with up to the maximum number of node cores (in this case 20).

The execution time and the reported OTU number of each tool are presented in
Table 2.3. LotuS and PEMA resulted in a final number of OTUs comparable to that
of Pavloudi et. al [Pavloudi et al., 2017a]. Clearly, owing to PEMA’s parallel execution
support, the analysis time can be significantly reduced (~ 1.5 hours in this case). The
execution time depends on the parameters chosen for each software (see Additional File
1: Supplementary Methods).

Owing to the non - full overlap of the sequence reads, mothur resulted in an inflated
number of OTUs; thus, it was excluded from further analyses. The results of all the
pipelines were analysed with the phyloseq script that is provided with PEMA. The taxo-
nomic assignment of the PEMA - retrieved OTUs is shown in Figure 2.3. The phyla that
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FIGURE 2.3: OTU bar plot at the phylum level. Bar plot depicting the taxonomy of the
retrieved OTUs from PEMA for the data set of Pavloudi et al. [Pavloudi et al., 2017a], at
the phylum level for the case of the 16S marker gene. AR: Arachthos; ARO: Arachthos
Neochori; ARDelta: Arachthos Delta; LOin: Logarou station inside the lagoon; LOout:
Logarou station in the channel connecting the lagoon to the gulf; Kal: Kalamitsi.

were found in the samples are similar to the ones that were found in the original study
[Pavloudi et al., 2017a]. Although the lowest number of OTUs was found in the marine
station (Kal) (Supplementary Table S3), which is not in accordance with Pavloudi et. al
[Pavloudi et al., 2017a], the general trend of a decreasing number of OTUs with increas-
ing salinity was observed as in the original study (Supplementary Figure S1). Notably,
this result was not observed with the other tested pipelines (Supplementary Table S3).
Furthermore, each of the pipelines resulted in a different taxonomic profile (Supplemen-
tary Figures S2-S4), with an extreme case of missing the order of Betaproteobacteriales
(Supplementary Figures S5-S7).

Moreover, when the PERMANOVA analysis was run for the results of PEMA, LotuS, and
DADA?2, it was clear that the microbial community composition was significantly different
in each of the 3 sampled habitats (i.e., river, lagoon, open sea) (PERMANOVA: EModel =
7.0718, P < 0.001; EModel = 6.5901, P < 0.001; EModel = 2.2484, P < 0.05, respectively),
which is in accordance with Pavloudi et al. [Pavloudi et al., 2017a]. However, this was not
the case with Deblur (PERMANOVA: P > 0.05). Overall, PEMA’s output is in accordance
with the original study [Pavloudi et al., 2017a], and seen through this perspective PEMA
performed equally well with the other tested pipelines, along with having the shortest
execution time.
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Parameter d=1 d=2 d=3 d=10 d=13

MOTUs after pre-process
and clustering steps
MOTUs after chimera removal 80,347 57,863 32,539 7,339 4,796

83,791 59,833 33,227 7,384 4,829

Non-singleton MOTUs 6,381 4,947 2,658 1,914 1,634
Assigned species 62 83 86 86 84
Execution time (h) 2:01:35 2:09:49 1:51:44 2:17:26 2:31:15

TABLE 2.4: PEMA's output and execution time; PEMA’s output and execution time (using
a 20-core node) for different values of Swarm’s d parameter.

COI marker gene analysis evaluation

Bista et al. [Bista et al., 2017] created 2 COI libraries of different sizes: COIS (235 -bp
amplicon size) and COIF (658 - bp amplicon size). The sequencing reads of COIS were
selected for PEMA’s evaluation; the COIF sequencing read pairs had no overlap so as to be
merged and therefore were not considered appropriate for the analysis.

As previously, PEMA’s performance was evaluated through a comparative analysis
of the Bista et al. [Bista et al., 2017] dataset with Barque ?; the commands and param-
eters chosen can be found in Additional File 1: Supplementary Methods. Regarding
the creation of the MOTU table, in the Bista et al. [Bista et al., 2017] study VSEARCH
[Rognes et al., 2016] was used with a clustering at 97% similarity threshold. Afterwards,
the BLAST+ (megablast) algorithm [Camacho et al., 2009] was used against a manually
created database including all NCBI GenBank COI sequences of length > 100 bp (June
2015) while excluding environmental sequences and higher taxonomic level information
[Bista et al., 2017]. As discussed in the publication, this approach resulted in 138 unique
MOTUs of which 73 were assigned to species level. For PEMA’s evaluation, the chosen
clustering algorithm was Swarm v2, using different options for the cluster radius (d) pa-
rameter (Table 2.4); according to Mahé et al. [Mah¢é et al., 2015], this is the most important
parameter because it affects the number of MOTUs that are being created. The resulting
MOTUs were classified against the MIDORI reference database [Machida et al., 2017]
using RDPClassifier [Wang et al., 2007]. The results of the processing of the sequences
are reported in Supplementary Table S3. For the case of Barque, the BOLD Database was
used [Ratnasingham and Hebert, 20071].

As shown in Table 2.4, PEMA resulted in 83 species-level MOTUs with a cluster radius
(d) of 2, which is similar to the findings of the published study (i.e., 73 species). Although
both the clustering algorithm and the taxonomy assignment methods were different
between the original [Bista et al., 2017] and the present study, the results regarding the
number of unique species present in the samples are in agreement to a considerable
extent.

The computational time required by PEMA for the completion of the analysis is
also reported in Table 2.4. Regardless of the value of the d parameter, all analyses were

https://github.com/enormandeau/barque
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Barque

PEMA

Bista et al. [50]

Ablabesmyia monilis*

Ablabesmyia monilis*
Crangonyx pseudogracilis*
Radix sp.*

Chironomidae sp.*
Ancylus sp.**

Ablabesmyia monilis
Crangonyx pseudogracilis
Radix sp.

Chironomidae sp.
Ancylus fluviatilis

Athripsodes aterrimus,
Athripsodes cinereus**
Chironomus sp.,
Chironomus anthracinus,
Chironomus pseudothummi,
Chironomus riparius**

Athripsodes albifrons

Chironomus anthracinus** Chironomus tentans

Polypedilum sordens™*
Athripsodes aterrimus**

Polypedilum nubeculosum
Athripsodes albifrons

TABLE 2.5: Comparison of the taxonomy of retrieved MOTUs among PEMA, Barque, and
the positive controls of Bista et al. [Bista et al., 2017] ; * Taxonomies identical to the
published study (species level), ** Taxonomies identical to the published study (genus
level).

completed in ~ 2 hours, i.e., fast enough to allow parameter testing and customization.
Regarding Barque, the analysis resulted in the identification of 51 species-level MOTUs
and was concluded in 15 minutes. This difference is due to the error correction step of
PEMA (BayesHammer algorithm [Nikolenko et al., 2013]), which plays an important part
in the enhanced results that PEMA returns, but it also requires a certain computational
time; Barque does not have an analogous step, and therefore its overall execution time is
shorter.

PEMA performed better than Barque at identifying taxa that were included in the
positive control contents of the published study (Table 2.5).

2.1.6 Discussion
OTU clustering vs ASV inference

There is an ongoing discussion about whether ASVs exceed OTUs. The strongest argument
to this end is that ASVs are real biological sequences. Hence, they can be compared
between different studies in a straightforward way; considered as consistent labels. In
comparison, de novo OTUs are constructed, or “clustered,” with respect to the emergent
features of each specific dataset. Therefore, OTUs defined in 2 different datasets cannot
be directly compared.

However, the OTU concept is not compulsorily related to the clustering approach; it
is widely used to describe results based on its biological meaning but it does not imply
clustering. In addition, according to Callahan et al. [Callahan et al., 2017], "ASV methods
infer the biological sequences in the sample prior to the introduction of amplification
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and sequencing errors, and distinguish sequence variants differing by as little as one
nucleotide." As a result, ASVs could be considered as OTUs of higher resolution.

It is due to this concept confusion that algorithms whose rationale is considerably
closer to the variant-based approach are still considered as OTU clustering algorithms [Calla-
han et al., 2017]. Swarm v2 produces all possible microvariants of an amplicon to im-
plement an exact-string comparison [Mahé et al., 2015]. Furthermore, real biological
sequences, clouds of microvariants are produced as its output, which can be used for com-
parisons between different studies. Thus, Swarm v2 can be considered as an ASV-inferring
algorithm.

Traditional clustering methods have certain limitations such as arbitrary global clus-
tering thresholds and centroid selection because they depend on the input order and
are time-consuming, etc. [Mahé et al., 2014], which variant-based approaches manage
to address. However certain algorithms for OTU clustering such as VSEARCH have been
proven to be especially reliable, and they are widely used by many researchers. Further-
more, ASVs intend to improve taxonomic resolution; however, a vast number of inferred
ASVs (see here ' for more) can lead to inflation of diversity estimates, especially in the
case of microbial communities, thus making the analysis even more complicated.

ASV or OTU approaches are supported by PEMA, although we have found that similar
ecological results are produced by both these methods, as also suggested by Glassman
and Martiny [Glassman and Martiny, 2018].

Beyond environmental ecology, ongoing and future work

PEMA is mainly intended to support eDNA metabarcoding analysis and be directly ap-
plicable to next - generation biodiversity / ecological assessment studies. Given that
community composition analysis may also serve additional research fields, e.g., microbial
pathology, the potential impact of such pipelines is expected to be much higher. Ongoing
PEMA work focuses on serving a wide scientific audience and on making it applicable
to more types of studies. The easy set - up and execution of PEMA allows users to work
closely with national and European HPC / e - infrastructures (e.g., ELIXIR Greece '!,
LifeWatch ERIC, ' EMBRC ERIC '3). To that end and in a mid - term perspective, a CWL
version of PEMA will be explored. The aim of this effort is to reach out to a wider scientific

audience and address both their ongoing as well as future analysis needs.

By supporting the analysis of the most commonly used marker genes for Bacteria and
Archaea (16S rRNA), Fungi (ITS), and Metazoa (COI/18S rRNA), a holistic biodiversity
assessment approach is now possible through PEMA and eDNA metabarcoding; although,
from a mid-term perspective, it is our intention to allow ad hoc and in - house databases
to be used as reference for the taxonomy assignment.

Ohttp://fiererlab.org/2017/05/02/lumping-versus-splitting-is-it-time-for-microbial-ecologists-to-
abandon-otus/

11https://www.(,‘lixir—grcccc.01'g/

12https:/ /www.elixir-greece.org/

Bhttp:/ /www.embrc.eu
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Conclusions

PEMA is an accurate, execution - friendly and fast pipeline for eDNA metabarcoding
analysis. It provides a per - sample analysis output, different taxonomy assignment
methods, and graphics - based biodiversity / ecological analysis. This way, in addition
to (M)OTU/ASV calling, it provides users with both an informative study overview and
detailed result snapshots.

Thanks to a nominal number of installation and execution commands required for
PEMA to be set and run, it is considered essentially user friendly. In addition, PEMA’s
strategic choice of a single parameter file, implementation programming language, and
multiple container - type distribution grant it speed (running in parallel), on - demand
partial pipeline enactment, and provision for HPC - system — based sharing.

All the aforementioned features render PEMA attractive for biodiversity / ecological
assessment analyses. By supporting the analysis of the most commonly used marker
genes for Prokaryotes (Bacteria and Archaea), as well as Eukaryotes (Fungi and Metazoa),
PEMA allows assessment of biodiversity in different levels of biodiversity. Applications
may mainly concern environmental ecology, with possible extensions to such fields as
microbial pathology and gut microbiome, in line with modern research needs, from low
volume to big data.

2.1.7 Advances and PEMA modules added since its publication

PEMA has been under continuous development and testing. Custom databases can
be now used to train both classifiers used in the PEMA framework, thus the taxonomy
assignment step is not limited by the reference databases included on PEMA. With the
release of the v.2.1.3 '* version, PEMA was re-architectured completely aiming at an easier
way for people to contribute. On top of that, several modules have been added, mostly
in an attempt to address requests from users and e-infrastructures (e.g., LifeWatch ERIC
115 ) (see Figure 2.4). Similar efforts have been done so PEMA will be integrated in the
HYPATIA 6, the Cloud infrastructure of the ELIXIR-GR community.

On its current version (v.2.1.5) it now supports the analysis of one extra marker gene,
the 12S rRNA gene, by exploiting the 125 Vertebrate Classifier v2.0.0-ref database [Porter,
2021]. For the case of 18S rRNA marker gene, the PR2 database [Guillou et al., 2012] was
integrated so now the user may select between Silva and PR2, while Silva v.138 has been
also added. Furthermore, thanks to the ncbi-taxonomist tool [Buchmann and Holmes,
2020], PEMA now provides an extended OTU/ASV table where in the last column the NCBI
Taxonomy Id for the taxonomic level closer to the species name rank for which there is
one, is available. Last but not least, a new version of the parameters file has been made to
provide a machine-readable version of it so the values set by the user can be parsed for
potential errors in an automatic way.

The potential of the eDNA metabarcoding method as well as the valid PEMA out-
put were emphasized in a recent study where Autono-mous Reef Monitoring Structures

14https://github.com/hariszaf/ pema/releases/tag/v.2.1.3
I5https:/ /www.lifewatch.eu/internal-joint-initiative/
18https:/ /hypatia.athenarc.gr
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FIGURE 2.4: PEMA is now available through the LifeWatch ERIC portal called Tesseract
which is currently under a beta version. A web interface is now available allowing users
that are not familiar with Unix to use PEMA. Most importantly, users that have no access
to computing resources required for their analyses can now use the capacity of Tesseract.

(ARMS) data were combined with amplicon studies to record, for the first time in Greek
waters, the nudibranch Anteaeolidiella lurana (Ev. Marcus & Er. Marcus, 1967) [Bariche
et al., 2020].

Supplementary Material

You may find the Supplementary files of this study through PEMA’s publication !’
Additional File 1: Supplementary Methods: Description of tools invoked by PEMA
and their licenses. Description of the commands, along with their parameters, used to
run PEMA, mothur, LotuS, and QIIME 2.
Additional File 2: Mock Communities: Details about the mock communities chosen
and their corresponding studies, as well as the returned output of PEMA for each for a
number of sets of parameters.

17https://academic.oup.com/gigascience/article/9/3/giaa022/5803335#supplementary-data
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Supplementary Table S1: Number of sequences after each pre-processing step for
the case of 16S rRNA gene.

Supplementary Table S3: Number of sequences after each pre-processing step for
the case of COI, dataset from Bista et al. [Bista et al., 2017].

Supplementary Table S2: Diversity indices of the samples.

Supplementary Figure S1: Linear regression between the number of OTUs (averaged
per sampling station) and the salinity of the sampling stations. L: Lagoon; S: Sea; R:
River; AR: Arachthos; ARO: Arachthos Neochori; ARDelta: Arachthos Delta; LOin: Logarou
station inside the lagoon; LOout: Logarou station in the channel connecting the lagoon to
the gulf; Kal: Kalamitsi.

Supplementary Figure S2: Bar plot depicting the taxonomy of the retrieved OTUs
from LotusS at the phylum level.

Supplementary Figure S3: Bar plot depicting the taxonomy of the retrieved OTUs
from QIIME 2 using Deblur at the phylum level.

Supplementary Figure S4: Bar plot depicting the taxonomy of the retrieved OTUs
from QIIME 2 using DADA?2 at the phylum level.

Supplementary Figure S5: Bar plot depicting the taxonomy of the retrieved OTUs
from LotusS at the class of Betaproteobacteriales.

Supplementary Figure S6: Bar plot depicting the taxonomy of the retrieved OTUs
from QIIME 2 using Deblur at the class of Betaproteobacteriales.

Supplementary Figure S7: Bar plot depicting the taxonomy of the retrieved OTUs
from PEMA at the class of Betaproteobacteriales.
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2.2.1 Abstract

The mitochondrial cytochrome C oxidase subunit I gene (COI) is commonly used in
environmental DNA (eDNA) metabarcoding studies, especially for assessing metazoan
diversity. Yet, a great number of COI operational taxonomic units (OTUs) or/and amplicon
sequence variants (ASVs) retrieved from such studies do not get a taxonomic assignment
with a reference sequence. To assess and investigate such sequences, we have developed
the Dark mAtteR iNvestigator (DARN) software tool. For this purpose, a reference COI-
oriented phylogenetic tree was built from 1,593 consensus sequences covering all the
three domains of life. With respect to eukaryotes, consensus sequences at the family
level were constructed from 183,330 sequences retrieved from the Midori reference 2
database, which represented 70% of the initial number of reference sequences. Similarly,
sequences from 431 bacterial and 15 archaeal taxa at the family level (29% and 1% of
the initial number of reference sequences respectively) were retrieved from the BOLD
and the PFam databases. DARN makes use of this phylogenetic tree to investigate COI
pre-processed sequences of amplicon samples to provide both a tabular and a graphical
overview of their phylogenetic assignments. To evaluate DARN, both environmental and
bulk metabarcoding samples from different aquatic environments using various primer
sets were analysed. We demonstrate that a large proportion of non-target prokaryotic
organisms, such as bacteria and archaea, are also amplified in eDNA samples and we
suggest prokaryotic COI sequences to be included in the reference databases used for the
taxonomy assignment to allow for further analyses of dark matter. DARN source code
is available on GitHub at https://github.com/hariszaf/darn and as a Docker image at
https://hub.docker.com/r/hariszaf/darn.

2.2.2 Introduction
Metabarcoding: concept and caveats

DNA metabarcoding is a rapidly evolving method that is being more frequently employed
in arange of fields, such as biodiversity, biomonitoring, molecular ecology and others
[Deiner et al., 2017, Ruppert et al., 2019]. Environmental DNA (eDNA) metabarcoding,
targeting DNA directly isolated from environmental samples (e.g., water, soil or sediment,
[Taberlet et al., 2012a]), is considered a holistic approach (Stat et al. 2017) in terms of
biodiversity assessment, providing high detection capacity. At the same time, it allows

18Eor author contributions and supplementary material please refer to the relevant sections.
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wide-scale rapid bio-assessment [Stat et al., 2017] at a relatively low cost as compared to
traditional biodiversity survey methods [Ji et al., 2013].

The underlying idea of the method is to take advantage of genetic markers, i.e. marker
loci, using primers anchored in conserved regions. These universal markers should have
enough sequence variability to allow distinction among related taxa and be flanked by
conserved regions allowing for universal or semi-universal primer design [Deagle et al.,
2014]. In the case of eukaryotes, the target is most commonly mitochondrial due to
higher copy numbers than nuclear DNA and the potential for species level identification.
Furthermore, mitochondria are nearly universally present in eukaryotic organisms, es-
pecially in case of Metazoa, and can be easily sequenced and used for identification of
the species composition of a sample [Taberlet et al., 2012b]. However, it is essential that
comprehensive public databases containing well curated, up-to-date sequences from
voucher specimens are available [Schenekar et al., 2020]. This way, sequences generated
by universal primers can be compared with the ones in reference databases, assessing
sample OTU composition. The taxonomy assignment step of the eDNA metabarcoding
method and thus, the identification via DNA-barcoding, is only as good and accurate as
the reference databases [Cilleros et al., 2019].

Nevertheless, there is not a truly “universal” genetic marker that is capable of being
amplified for all species across different taxa [Kress et al., 2015]. Different markers have
been used for different taxonomic groups [Deiner et al., 2017]. While bacterial and
archaeal diversity is often based on the 16S rRNA gene, for eukaryotes a diverse set of
loci is used from the analogous eukaryotic rRNA gene array (e.g., ITS, 18S or 28S rRNA),
chloroplast genes (for plants) and mitochondrial DNA (for eukaryotes) in an attempt
for species - specific resolution [Coissac et al., 2012]. The mitochondrial cytochrome
c oxidase subunit I (COI) marker gene has been widely used for the barcoding of the
Animalia kingdom for almost two decades [Hebert et al., 2003]. There are cases where COI
has been the standard marker for metabarcoding, such as in the assessment of freshwater
macroinvertebrates [Elbrecht and Leese, 2017] even though not all taxonomic groups can
be differentiated to the species level using this locus [Deiner et al., 2017]; for example, in
case of fish other loci are widely used such as 12S rRNA gene (hereafter referred to as 12S
rRNA) [Miya et al., 2020].

The COI locus

The mitochondrial cytochrome c oxidase subunit I (also called cox1 or/and COI]) is a gene
fragment of 700 bp, widely used for metazoan diversity assessment. Here we present
some of the reasons that microbial eukaryotes and prokaryotes are also amplified in such
studies, raising the issue of the known unknown sequences. COI is a fundamental part of
the heme aa3-type mitochondrial cytochrome c oxidase complex: the terminal electron
acceptor in the respiratory chain. Even if aa3-type Cox have been found in bacteria, there
are also other cytochrome c oxidase (Cox) groups, such as the cbb3-type cytochrome c
oxidases (cbb3-Cox) and the cytochrome ba3 [Ekici et al., 2012, Schimo et al., 2017].
Furthermore, the presence of highly divergent nuclear mitochondrial pseudogenes
(numts) has been a widely known issue on the use of COI in barcoding and metabarcoding
studies, leading to overestimates of the number of taxa present in a sample [Song et al.,

40



2.2. The Dark mAtteR iNvestigator (DARN) tool: getting to know the known unknowns in
COI amplicon data

2008]. Numts are nonfunctional copies of mtDNA in the nucleus that have been found in
major clades of eukaryotic organisms [Bensasson et al., 2001].

Thus, as Mioduchowska et al. (2018) [Mioduchowska et al., 2018] highlight, when
universal primers are used targeting the COI locus, it is possible to co-amplify both non-
target numts and prokaryotes [Siddall et al., 2009]. This has led to multiple erroneous
DNA barcoding cases and it is now not rare to encounter bacterial sequences described
as metazoan in databases such as GenBank [Mioduchowska et al., 2018].

Even though there are various known issues [Deagle et al., 2014], COI is indeed consid-
ered as the “gold standard” for community DNA metabarcoding of bulk metazoan samples
[Andujar et al., 2018]; bulk is an environmental sample containing mainly organisms from
the taxonomic group under study providing high quality and quantity of DNA [Taberlet
et al.]. However, as highlighted in the same study, this is not the case for eDNA samples. As
Stat et al. (2017) [Stat et al., 2017] state, in the case of eDNA samples, the target region for
metazoa is found in general at considerably lower concentrations compared to those from
prokaryotes because most primers targeting the COI region amplify large proportions of
prokaryotes at the same time [Yang et al., 2013, 2014, Collins et al., 2019]. Cold-adapted
marine gammaproteobacteria are an indicative example for this case as shown by Siddall
et al. (2009) [Siddall et al., 2009].

2.2.3 Contribution

The co-amplification of prokaryotes explained above, is a major reason for why many Op-
erational Taxonomic Units (OTUs) and/or Amplicon Sequence Variants (ASVs) in eDNA
metabarcoding studies cannot get taxonomy assignments when metazoan reference
databases are used (c.f. Aylagas et al. 2016 [Aylagas et al., 2016]) or they are assigned
to metazoan taxa but with very low confidence estimates. Despite the presence of such
OTUs/ASVs to a varying degree in metabarcoding studies using the COI marker gene [Sid-
dall et al., 2009], to the best of our knowledge, there has not been a thorough investigation
of the origin for these sequences. Although unassignable sequences could be informative,
there have been few attempts to further investigate this dark matter (e.g., [Sinniger et al.,
2016, Haenel et al., 2017]).

The aim of this study was to build a framework for extracting such non-target, poten-
tially unassigned (or assigned with low confidence) sequences from COI environmental
sequence samples, hereafter referred to as “dark matter” as per Bernard et al. (2018)
[Bernard et al., 2018]. We argue that the vast majority of these sequences represent
microbial taxa, such as bacteria and archaea.

More specifically, based on the previously described methodology by Barbera et al.
(2019) [Barbera et al., 2019] (see also full stack example of the EPA-ng algorithm) for
large-scale phylogenetic placements, we built a framework to estimate to what extent the
OTUs/ASVs retrieved in an environmental sample represent target taxa or not. That is,
to evaluate the taxonomy assignment step in a metabarcoding analysis, by checking the
phylogenetic placement of dark matter sequences. Similar studies have provided great
insight into other marker genes, e.g. [Jamy et al., 2020].
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2.2.4 Methods & Implementation
Building the COI tree of life

Sequences for the COI region from all the three domains of life were retrieved from curated
databases. Eukaryotic sequences were retrieved from the Midori reference 2 database
(version: GB239) [Machida et al., 2017]. Initially, 1,315,378 sequences were retrieved
corresponding to 183,330 unique species from all eukaryotic taxa. With respect to bacteria
and archaea, 3,917 bacterial COI sequences were obtained from the BOLD database
[Ratnasingham and Hebert, 2007]. Similarly, 117 sequences from archaea were obtained
from BOLD. In addition, for all the PFam protein sequences related to the accession
number for COX1 (PF00115 '9), the respective DNA sequences were extracted from
their corresponding genomes. This way an additional 217 archaeal and 9, 154 bacterial
sequences were obtained (see Table 1). In total, sequences from 15 archaeal, 371 bacterial
families and 60 taxonomic groups of higher level not assigned in the family level, were
gathered. An overview of the approach that was followed is presented in Figure 2.5.

The large number of obtained sequences effectively prevents a phylogenetic tree
construction encompassing their total number in terms of building a single phylogenetic
tree covering all of the three domains of life (archaea, bacteria, eukaryota). Therefore,
consensus representative sequences from each of the three datasets were constructed
using the PhAT algorithm [Czech et al., 2019]; based on the entropy of a set of sequences,
PhAT groups sequences into a given target number of groups so they reflect the diversity
of all the sequences in the dataset. As PhAT uses a multiple sequence alignment (MSA) as
input, all the three domain-specific datasets were aligned using the MAFFT alignment
software tool v7.453 [Katoh et al., 2002, Nakamura et al., 2018].

bacteria archaea
Resources

#of sequences #ofstrains # of sequences # of strains
BOLD 3,917 2,267 117 117
PFam-oriented 9,154 4,532 217 115

TABLE 2.6: Number of sequences and taxonomic species per domain of life and resources.
The (#) symbols stands for "number".

In the case of Eukaryotes, the alignment of the corresponding sequences would be
impractically long because of their large number ( 183K sequences). To address this chal-
lenge, a two-step procedure was followed; a sequence subset of 500 sequences (reference
set) was selected and aligned and then used as a backbone for the alignment of all the
remaining eukaryotic COI sequences. All sequences were considered reliable as they
were retrieved from curated databases (Midori2 and BOLD). To build the reference set, a
number (n) of the longest sequences from each of the various phyla were chosen, propor-
tionally to the number (m) of sequences of each phylum (see Supplementary Table 2.6).
The —min-tax-level parameter of the PhAT algorithm corresponded to the class level, for
the case of eukaryotes and to the family level for archaea and bacteria. This parameter

http:/ /www.ncbi.nlm.nih.gov/nuccore/PF00115
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forced the PhAT algorithm to build at least one consensus sequence for each class and
family respectively. The taxonomy level was not the same for the case of eukaryotes
sequence dataset and those of bacteria and archaea, as the number of unique eukaryotic
families was one order of magnitude higher. The PhAT algorithm was invoked through
the gappa v0.6.1 collection of algorithms [Czech et al., 2020].

A total of 1,109 consensus sequences (70% of total consensus sequences) were built
covering the eukaryotic taxa, while 463 (29%) bacterial and 21 (1%) archaeal consen-
sus sequences were included. The per-domain, consensus sequences returned can be
found under the consensus__seqgs directory on the GitHub repository (see _consensus.fasta
files). These sequences were then merged as a single dataset and aligned to build a ref-
erence MSA; this time MAFFT was set to return using the —globalpair algorithm and the
—maxiterate parameter equal to 1,000. The MSA returned was then trimmed with the
ClipKIT software package [Steenwyk et al., 2020] to keep only phylogenetically informative
sites. The final MSA is available on GitHub;
see the trimmed_ all__consensus_aligned__adjust_dir.aln file.

The reference tree was then built based on this trimmed MSA using the IQ-TREE2 soft-
ware [Hoang et al., 2018a, Minh et al., 2020]. ModelFinder was invoked through 1Q-TREE2
and the GTR+F+R10 model was chosen based on the Bayesian Information Criterion
(BIC) among 286 models that were tested. The phylogenetic tree was then built using 1,000
bootstrap replicates (-B 1,000) and 1,000 bootstrap replicates for Shimodaira—Hasegawa-
like approximate likelihood ratio test (SH-aLRT) (1,000 1000).

In the .igtree file there are the branch support values; SH-aLRT support (%) / ultrafast
bootstrap support (%).

A thorough description of all the implementation steps for building the reference
tree is presented in this Google Collab Notebook ?° . The computational resources of the
IMBBC High Performance Computing system, called Zorba [Zafeiropoulos et al., 2021c],
were exploited to address the needs of the tasks.

Investigating COI dark matter

The COI reference tree was subsequently used to build and implement the Dark mAtteR
iNvestigator (DARN) software tool. DARN uses a .fasta file with DNA sequences as input
and returns an overview of sequence assignments per domain (eukaryotes, bacteria,
archaea) after placing the query sequences of the sample on the branches of the reference
tree. Sequences that are not assigned to a domain are grouped as "distant". It is necessary
for the input sequences to represent the proper strand of the locus, i.e. input reads should
have forward orientation. Optionally, DARN invokes the orient module of the vsearch
package [Rognes et al., 2016] to implement this step, in case the user is not sure about the
orientation of the sequences to be analysed.

The focal query sequences are aligned with respect to the reference MSA using the
PaPaRa 2.0 algorithm [Berger and Stamatakis, 2012]. The query sequences are then split
to build a discrete query MSA. Finally, the Evolutionary Placement Algorithm EPA-ng
[Barbera et al., 2019] is used to assign the query sequences to the reference tree.

20https://colab.research.google.com/drive/1XorHsBm1ugx5TTZsH7SeVRkUA2SS8dnY
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FIGURE 2.5: Overview of the approach followed to build the COI reference tree of life.
Sequences were retrieved from Midori 2 (eukaryotes) and BOLD (bacteria and archaea)
repositories. Consensus sequences at the family level were built for each domain specific
dataset. MAFFT and consensus sequences at the family level were built using the PhAT
algorithm. The COI reference tree was finally built using IQ-TREE2. Noun project icons
by Arthur Slain and A. Beale.
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To visualise the query sequence assignments, a two-step method was developed. First,
DARN invokes the gappa examine assign tool which taxonomically assigns placed query
sequences by making use of the likelihood weight ratio (LWR) that was assigned to this
exact taxonomic path. In the DARN framework, by making use of the —per-query-results
and —best-hit flags, the gappa assign software assigns the LIWR of each placement of the
query sequences to a taxonomic rank that was built based on the taxonomies included in
the reference tree. The first flag ensures that the gappa assign tool will return a tabular file
containing one assignment profile per input query while the latter will only return the
assignment with the highest LWR. DARN automatically parses this output of gappa assign
to build two input Krona profile files based on

* the IWR values of each query sequence and

* an adjustive approach where all the best hits get the same value in a binary approach
(presence - absence)

In the final_outcome directory that DARN creates, two .html files, one for each of
the Krona plots; Krona plots are built using the ktiImportText command of KronaTools
[Ondov et al., 2011]. In addition four .fasta files are generated including the sequences
of the sample that have been assigned to each domain or as "distant". A .json file with
the metadata of the analysis is also returned including the identities of the sequences
assigned to each domain.

DARN also runs the gappa assign tool with the —per-query-results flag only. This way,
the user can have a thorough overview of each sample’s sequence assignments, as a
sequence may be assigned to more than one branch of the reference tree, sometimes even
to different domains. However, in cases with sequences assigned to multiple branches,
the likelihood scores are most typically up to 100-fold to 1000-fold different.

DARN source code as well as all data sequences and scripts for building the reference
phylogenetic tree are available on GitHub 2!

2.2.5 Results & Validation
Evaluation of the phylogenetic tree

The inferred phylogenetic tree is shown in Figure 2.6, with the bacterial (light blue) and
archaeal (dark green) branches highlighted; in Supplementary material 3: Figure S1 the
distribution of the eukaryotic phyla on the tree is presented. As shown, bacteria and
archaea can be distinguished from eukaryotes. Scattered bacterial branches that are
present among eukaryotic ones represent the diversity of the COI locus. To evaluate the
phylogenetic tree, the set of consensus sequences were placed on it using the EPA-ng
algorithm. The placements (see .jplace through a phylogenetic tree viewer, e.g. iTOL)
verified that the phylogenetic tree built is valid, as the consensus sequences have been
placed in their corresponding taxonomic branches (Supplementary material 4: Figure S2;
the figure was built using the heat-tree module of the gappa examine tool).

2lhttps://github.com/hariszaf/darn
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1.5

0.5

FIGURE 2.6: Phylogenetic tree of the consensus sequences retrieved; the tree that DARN
makes use of. Light blue: bacterial branches. Dark green: archaeal branches. White:
eukaryotic branches.

DARN using mock community data

To examine whether the phylogenetic-based taxonomy assignment addresses a real-world
issue, a local blast database was built using the total number of the consensus sequences
retrieved. As expected, when the consensus sequences were blasted against this local
blastdb, all were matched with their corresponding sequences. However, when a mock
dataset was used to evaluate the two approaches (blastdb and the phylogenetic tree)
none of the bacterial sequences were captured as bacteria after blastn against the local
blastdb (see output file here >?). All bacterial sequences returned an incorrect eukaryotic
assignment. Contrarily, when the phylogenetic tree was used, all the bacterial sequences
were captured.

22nttps:/ /github.com/hariszaf/darn/blob/pfam/evaluation/consensus_blast_assignments.txt
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DARN using real community data

To evaluate DARN on the presence of dark matter we analysed a wide range of cases to
show the ability of DARN to detect and estimate dark matter under various conditions.
Both eDNA and bulk samples, from marine, lotic and lentic environments, were selected
to reflect various combinations of primer and amplicon lengths, PCR protocols and
bioinformatics analyses (Table 2.7).

More specifically, 57 marine, surface water, eDNA samples from Ireland were analysed
through a. QIIME2 [Bolyen et al., 2018] and DADAZ2 [Callahan et al., 2016] and, b. PEMA
[Zafeiropoulos et al., 2020]. Similarly, 18 mangrove and 18 reef marine eDNA samples
from Honduras, were analyzed using a. JAMP v0.74 * and DnoisE [Antich et al., 2021]
and b. PEMA Furthermore, a sediment sample and two samples from Autonomous Reef
Monitoring Structures (ARMS) one conserved in DMSO and another in ethanol from
the Obst et al. (2020) [Obst et al., 2020] dataset were analysed using PEMA. In addition,
one lotic and two lentic samples from Norway were analysed using PEMA. For the case
of the lentic samples, multiple parameter sets regarding the ASVs inference step were
implemented; i.e the d parameter of the Swarm v2 [Mahé et al., 2015] that PEMA invokes
was set equal to 2 and 10 to cover a great range of different cases [Kamenova, 2020]. DARN
was then executed using the ASVs retrieved in each case as input. All the DARN analyses
and the PEMA runs were performed on an Intel(R) Xeon(R) CPU E5649 @ 2.53GHz server
of 24 CPUs and 142 GB RAM in the Area52 Research Group at the University College
Dublin.

The number of sequences returned, using various bioinformatic analyses, ranged
from circa 3k to 214k (Table 2.7) in the different amplicon datasets used. A coherent
visual representation of the DARN outcome for all the datasets is available here’*. The
visual and interactive properties of the Krona plot allow the user to navigate through the
taxonomy. Furthermore, DARN also supports a thorough investigation per OTU/ASV, as it
returns a .json file with all the OTUs/ASVs ids that have been assigned in each of the four
categories (Bacteria, Archaea, Eukaryotes and distant).

Significant proportions of non-eukaryote DARN assignments were observed in all ma-
rine eDNA samples (Table 2.7). Bacterial assignments made up the largest proportion of
the non-eukaryotic assignments (35.3% on average and more than 75% of the OTUs/ASVs
in some cases), however, archaeal assignments were also detected to a great extent as
well (18.4% on average). The lentic samples were those with the shortest amplicon length
among those analysed (142 bp); hence, for their orientation a database with only the
shortest consensus sequences (< 700 bp) was used, as otherwise a great number of se-
quences did not have sufficient number of hits and was discarded (see Suppl. material 2:
Table S2). It is worth mentioning that in this case, the initial number of raw reads ranged
from 53,000 (ERS6488992, ERS6488993) to 88,000 (ERS6488993) while the number of
ASVs returned (using Swarm with d parameter equal to 10) ranged from 365 (ERS6488993)
to 823 (ERS6488993). This relatively low number of ASVs could indicate that targeting
such small COI regions could decrease the co-amplification of non-targeted sequences.
In the case of bulk samples (Table 2.7) only a low proportion of the sequences were not

23nttps:/ /github.com/VascoElbrecht/JAMP
24https:/ /hariszaf.github.io/darn/
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accession number Sample type Primer set length (bp) pipeline(s) # of ASVS (if PEMA™
Eukaryotes 7 Bacteria 7 Archaea 7 distant
jgHCO2198 - QIIME2 - 13,376 11 88.0 0.02 0.003
ERS6449795- DNA jgLCO1490 & 658 Dada2
ERS6449829 LoboF1 - PEMA 39,454 25 75.0 0.1 0.4
LoboR1
JAMP
dada2
ERS6463899— PEAR 1,304 35 65.0 - 0.2
ERS6463901 vsearch
DnoisE
Nﬂmmmmﬁﬂwwmmoﬂmﬂl ¢DNA H.S_OO:D% - 313 PEMA 11,545 46 50.0 1 3
ERS6463913— JgHCO2198
ERS6463918
ERS6463920-
ERS6463922
JAMP
dada2
ERS6463744— PEAR 663 40 60.0 - 0.6
ERS6463761 vsearch
DnoisE
PEMA 5,879 49 47.0 1.0 2.0
ERR3460466 bulk . 193 99 1 - -
ERR3460467 bulk mlCOTintE - 313 PEMA 74 97 0.0 - 3
ERR3460470 eDNA JgHC02198 (d=2) 184 71 28.0 0 1
ERS6488992 fwhE? - 416 85 7 3 5
ERS6488993 eDNA EPTDr2 142 PEMA 315 99.2 0.4 0.4 -
ERS6488994 823 90 4 2 4
ERS6488995 eDNA BE3 - BR2 458 PEMA 1,940 64 34.0 2 0.3
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%The d parameter equals 10 except mentioned otherwise



2.2. The Dark mAtteR iNvestigator (DARN) tool: getting to know the known unknowns in
COI amplicon data

assigned as Eukaryotes, suggesting that non-eukaryotic sequences are more abundant in
environmental samples. This could be expected since prokaryotes are amplified as whole
organisms from environmental samples, while metazoa that are usually the targeted taxa
in COI studies, are amplified from DNA traces or/and other parts of biological source
material.

2.2.6 Discussion

By making use of a COI - oriented reference phylogenetic tree built from 1,593 consensus
sequences, to phylogenetically place sequences from COI metabarcoding samples onto it,
the surmise for including bacteria, algae, fungi etc. [Yang et al., 2013, Aylagas et al., 2016]
was verified. Our results demonstrate that standard metabarcoding approaches based
on the COI gene region of the mitochondrial genome will not only amplify eukaryotes,
but also a large proportion of non-target prokaryotic organisms, such as bacteria and
archaea. Clearly, dark matter, and especially bacteria, make up a significant proportion of
sequences generated in COI based eDNA metabarcoding datasets. The large proportion
of prokaryotes observed in the present study is corroborated by the findings of [Yang
et al., 2013]. Furthermore, dark matter seems to be particularly common in eDNA as
compared to bulk samples [Andtjar et al., 2018]. However, it should be mentioned that
the high number of prokaryotic sequences in COI metabarcoding data is also reflecting
known issues with contamination [Kumar et al., 2013, Dittami and Corre, 2017, De Simone
et al., 2020], incorrectly labeled reference sequences [Steinegger and Salzberg, 2020] and
holobionts [Gilbert et al., 2012, Salvucci, 2016] in eukaryotic genomes.

As publicly available bacterial COI sequences are far too few to represent the bacterial
and archaeal diversity, their reliable taxonomic identification is not currently possible.
This way, bacterial, i.e. non-target, sequences that were amplified during the library
preparation have at least the possibility of a taxonomy assignment. Our implementations
using DARN indicate that it is essential both for global reference databases (e.g., BOLD,
Midori etc) and custom reference databases which are commonly used, to also include
non-eukaryotic sequences.

While our approach specifically addressed the COI gene, DARN can be adapted to
analyse any locus fragment. For instance, metabarcoding of environmental samples for
the 12S rRNA mitochondrial region is often employed to assess fish biodiversity [Weigand
etal., 2019, Miya et al., 2020] and the approach presented here could be adjusted to allow
further analyses of the 12S rRNA data. In addition, our approach can be used to identify
non-target eukaryotes when the target is bacterial taxa [Huys et al., 2008].

The approaches implemented in DARN can benefit both bulk and eDNA metabar-
coding studies, by allowing quality control and further investigation of the unassigned
OTUs/ASVs. The approach is also adaptable to other markers than COI. Moreover, the
approach presented here allows researchers to better understand the known unknowns
and shed light on the dark matter of their metabarcoding sequence data.
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3.1 Abstract

To elucidate ecosystem functioning, it is fundamental to recognize what processes occur
in which environments (where) and which microorganisms carry them out (who). Here,
we present PREGO, a one-stop-shop knowledge base providing such associations. PREGO
combines text mining and data integration techniques to mine such what-where-who as-
sociations from data and metadata scattered in the scientific literature and in public omics
repositories. Microorganisms, biological processes, and environment types are identified
and mapped to ontology terms from established community resources. Analyses of co-
mentions in text and co-occurrences in metagenomics data/metadata are performed to
extract associations and a level of confidence is assigned to each of them thanks to a scor-
ing scheme. The PREGO knowledge base contains associations for 364,508 microbial taxa,
1090 environmental types, 15,091 biological processes, and 7,971 molecular functions
with a total of almost 58 million associations. These associations are available through a
web interface (https://prego.hcmr.gr), an Application Programming Interface (API), and
bulk download. By exploring environments and/or processes associated with each other

For author contributions and supplementary material please refer to the relevant sections. This is a
modified version of the published version, in terms of relevance, coherence and formatting.
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3.2. Introduction

or with microbes, PREGO aims to assist researchers in design and interpretation of experi-
ments and their results. To demonstrate PREGO’s capabilities, a thorough presentation
of its web interface is given along with a meta-analysis of experimental results from a
lagoon-sediment study of sulfur-cycle related microbes.

3.2 Introduction

Microbes are omnipresent and impact global ecosystem functions [Falkowski et al., 2008]
through their abundance [Bar-On et al., 2018], versatility [Delgado-Baquerizo et al., 2016],
and interactions [Rottjers and Faust, 2018]. These facts have inspired microbiologists
from diverse scientific fields to study their genotype and phenotype [Morris et al., 2020],
their metabolism [Biggs et al., 2015], and their interactions with the environment [Hall
et al.,, 2018]. All this work has resulted in a wealth of knowledge available in the forms
of literature and experimental data. Literature contains vast amounts of information in
the free text form that overwhelms researchers. Advanced text mining methods [Jensen
et al., 2006] have been developed to assist this issue. Experimental data and their meta-
data require mining [Delmont et al., 2011] as well for their integration, mostly through
metagenomic mining from online repositories. Hence, the combination of this knowledge
about microbial life (who), their metabolic functions (what), and the environment they
influence (where) is an important step to study ecosystem function [Raes and Bork, 2008].
High Throughput Sequencing (HTS) has turned the page on microbial ecology studies
[Nilsson et al., 2019a]. Over the past 20 years, both the taxonomic and the functional
profiles of microbial communities from both local and large-scale regions (e.g., Tara
Oceans [Pesant et al., 2015], Earth Microbiome [Gilbert et al., 2014]) are being accumulated
at a higher and higher rate. Extreme environments, i.e., areas with high salinity, low pH,
etc., are being studied, providing us with unprecedented insight [Shu and Huang, 2021].
Both amplicon and shotgun metagenomics studies have played a crucial part in this
development. Latest technological breakthroughs, such as Metagenome-Assembled
Genomes (MAGs) and Single Amplified Genomes (SAGs), are enhancing the assessment
of the taxonomic and functional repertoire of microbiomes even further. However, the
mass use of these technologies and their consequent data have led to a number of needs
and challenges, with metadata curation being among the most crucial ones.
Standards-promoting communities, like Genomic Standards Consortium (GSC)?, their
efforts, like Minimum Information about any (x) Sequence (MIxS) [Yilmaz et al., 2011b],
and projects endorsing those, like National Microbiome Data Collaborative (NMDC)
[Wood-Charlson et al., 2020, Vangay et al., 2021], offer guidelines and best-practices to
assist the annotation of microbial ecology samples. Controlled vocabularies and on-
tologies contribute to these efforts as they describe each subject area with formal terms
[Walls et al., 2014]. Environment types, for example, are described by the Environment
Ontology (ENVO) [Buttigieg et al., 2016]. Other key biological aspects that have been
captured include molecular functions (Gene Ontology Molecular Function (GOmf) [Ash-
burner et al., 2000, gen, 2021], Enzyme Commission nomenclature [noa, 1999], etc.), and
the pathways carrying out different biological processes (GO Biological Process (GObp),

2https://gensc.org/
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MetaCyc [Caspi et al., 2020], etc.). These knowledge structures, along with taxonomic
centralized resources like the National Center for Biotechnology Information (NCBI)
Taxonomy [Schoch et al.,, 2020] and LPSN (List of Prokaryotic names with Standing in
Nomenclature) [Parte et al., 2020], provide the means for a standardized representation
of, for example, environments, process-oriented terms, and microbial taxa, respectively.
Global-scale public resources (like MGnify [Mitchell et al., 2020], JGI/IMG [Chen et al.,
2021], MG-RAST [Wilke et al., 2015]) combine some of the aforementioned resources
to support the collection, analysis, and distribution of multiple types of HTS data (e.g.,
amplicon, metagenomics, metatranscriptomics, etc.).

Besides the data and the analyses per se, the related scientific literature stores valu-
able information in billions of text lines. PubMed [Schoch et al., 2020] and PubMed
Central (PMC) [Roberts, 2001] are gateways to relationships among microbes (who), the
environments they live in (where) and their associated processes and functions (what)
hidden in text [Harmston et al., 2010]. Text mining (on both literature and metadata)
can serve the extraction of these relationships. Named Entity Recognition (NER) can, for
example, locate organism names [Pafilis et al., 2013], ENVO and GO terms [Pafilis et al.,
2016] mentioned in text and map them to their corresponding identifiers. Association
statistics, like co-mention analysis, can subsequently suggest ranked association among
such entities [Von Mering et al., 2005, Franceschini et al., 2012]. The new era of omics has
been interwoven with data integration [Gomez-Cabrero et al., 2014] by bringing together
scattered and fragmented pieces of information.

The time is ripe for tools that integrate all this knowledge and henceforth assist
researchers to tackle major challenges like climate change [Cavicchioli et al., 2019], sus-
tainability [D’'Hondt et al., 2021], and synthetic ecology [Conde-Pueyo et al., 2020]. Many
resources have emerged in this realm [Baltoumas et al., 2021a], each one serving a specific
purpose, such as BacDive [Reimer et al., 2019]. BacDive is a large-scale curated database
with prokaryotic information about phenotypic, morphological, and metabolic infor-
mation. Other resources like Microbe Directory [Shaaban et al., 2018], Web of Microbes
(WoM) [Kosina et al., 2018], and Microbial Interaction Network Database (MIND?) fo-
cus on microbial environmental conditions, metabolite interactions with microbes and
microbe-microbe interactions, respectively. In addition, taking advantage of aforemen-
tioned resources, novel pipelines, e.g., [Tang et al., 2020], are emerging with the aim to
explore the network associations of who (microbial taxa) is performing what (microbial
processes) and where (environments) directly using graph theory [Koutrouli et al., 2020].
These analyses and resources are important because microbiologists can enrich their data
to explore hypotheses but also to identify potential gaps in knowledge regarding these
associations [Li et al., 2021].

Here, we present PREGO, a hypothesis generation web resource that is designed to
be useful to microbiologists—in particular microbial ecologists and environmental mi-
crobiologists. Its specific aims include: (a) the gathering of source data, metadata, and
literature followed by the extraction of microorganism, process, environment associations
contained therein, (b) making such a mined knowledge base available to life sciences re-
searchers via an easy to use and explore web portal. As such, PREGO can be useful also to

Shttp://www.microbialnet.org/mind_home.html
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system microbiologists and large-scale data analysts through bulk download and program-
ming access. We document the principles, analysis methodology, and contents behind
PREGO. Last but not least, we demonstrate PREGQO'’s capabilities for researcher-support
related to the above through a case study involving sulfate-reducing microorganisms.

3.3 Methods & Implementation

PREGO is a resource designed to assist molecular ecologists in acquiring a single point
overview of what-where-who process—environment-organism associations. The sys-
tem is comprised of two main parts: (a) a server that periodically harvests data and
extracts process-environment-organism associations from the scientific literature, en-
vironmental samples, and genome annotation sequences (Figure 3.1, step 1 to 5) and
(b) a web-based interface as well as an Application Programming Interface (API) that
provides users and programmers with a friendly way to extract and navigate across the
process—environment-organism associations (Figure 3.1, step 6).

1. Web Resources 3. NER + Mapping 5. Association Network
)
NCBI:txid1129

o Synechococcus Ao
g @,
8 Hot spring ©
3 g T

) Photosynthesis |envo 00000051 (PRzG0)

aPl G0:0015979

(@) () (#2)

@O -- .
] ] y &
‘@ PRGN
NCBI:txid1129

5 - 5 ENVO_00000051 | Score = £(x,y)
S =TT G0:0015979

— “~—
2. Data Retrieval 4. Co-occurrence + Score 6. Web upload

Environmental samples

Genome Annotation

FIGURE 3.1: PREGO analysis methodology: PREGO periodically retrieves three distinct
types of data from open access resources. Scientific text, environmental sample data, and
genomic annotations are handled with respective methodologies in order to standardize
their entities. Named Entity Recognition and Comention/Co-occurrence analysis is the
common framework in order to build a weighted association network with nodes being
the entity identifiers. Lastly, all these associations are available through a Web interface
and an API. All these steps have been implemented in an autonomous way with regular
cycles of updates (see Appendix A.2). Icons used from the Noun Project released under
CC BY: Books by Shakeel Ch., Bacteria by Maxim Kulikov, ftp by DinosoftLab, Mountain by
Diane, Ship on Sea by farra nugraha, River by Chanut is Industries.
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3.3.1 Entity Types, Channels, and Associations

PREGO supports three entity types: Process, Environment, and Organism. For interop-
erability and consistency, an ontology or taxonomy is adopted for each type of entity.
Processes are represented as Gene Ontology (GO) terms and are grouped either as Biologi-
cal processes (GObp) or as Molecular functions (GOmf). In addition, Environments are
represented by terms from the Environmental Ontology. Organisms are represented by
the microbial NCBI Taxonomy Ids (Bacteria, Archaea, and unicellular eukaryotes). For the
unicellular eukaryotes, a custom list was populated with the unicellular eukaryotic taxa
using a curated list. PREGO’s contents are mainly divided into three distinct channels of
information based on data origin and format (Figure 3.1, step 1). The Literature channel
exploits scientific publications, i.e., abstracts and full text open access scientific publica-
tions (Table 3.1 and Section 3.3.2). Through the Annotated Genomes and Isolates channel,
PREGO retrieves genome annotations and their accompanying metadata (Table 3.1 and
Section 3.3.3). Finally, the Environmental Samples channel supports the integration of
metagenomic analyses from both amplicon and shotgun studies. These include taxo-
nomic and functional profiles along with their corresponding metadata (Table 3.1, more
details in Section 3.3.4).

Source # items Data type Metadata License
MEDLINE and - .
PubMed 33 million abstracts (text) no NLM Copyright
PubMed Central 2.7 million full article (text) no CC for Commer?lal,
OA Subset non-commercial
Isolates A tated
JGIIMG 9,644 solates Alnotate yes JGI Data Policy
genomes
Struo 21,276 Annotated genomes no MIT, CCBY-SA 4.0
. . Annotated genomes .
BioProject 18,752 with abstracts (text) yes INSDC policy
MG-RAST 16,096 markergen? samples yes CCo
7,965 metagenomic samples yes CCo
MGnify 10,500 markergene samples yes CC-BY, CCo

TABLE 3.1: Source databases that are integrated in PREGO and the number of items
retrieved. The Open Access subset of PubMed Central has a Creative Commons license
available for commercial and noncommercial use. JGI has its own license, the same
applies for BioProject, MEDLINE®, and PubMed® as well.

In cases in which the retrieved data and metadata are in text form, they are standard-
ized to the aforementioned identifiers and taxonomies using Named Entity Recognition
(NER) tools, namely the EXTRACT tagger [Pafilis et al., 2016, Jensen, 2016]. In cases where
data contain KEGG Orthology terms and/or Uniref identifiers, they are mapped to the
respective GOmf using the mapping files available from the UniProt (see Appendix A.1).
Associations are extracted after the mapping and standardization of the entities from each
resource (Figure 3.1, step 3). The association extraction pipeline is distinct for each chan-
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nel and resource because of differences in the data type origin (see prego_ gathering_ data
in the Availability of Supporting Source Codes section). By the means of navigation, the
large number of associations returned to the user require a type of sorting; ideally, one
that ranks the most trustworthy associations at the top. For those reasons, each channel
of PREGO has a dedicated scoring scheme bounded within the (0,5] space for consistency.
In Appendix A.1, the scoring scheme of each channel is elaborated.

3.3.2 Text Mining of Scientific Literature

PREGO implements a text mining methodology to extract associations of the aforemen-
tioned entities from literature. The origin of text mining is a corpus that comprises
scientific abstracts and full text articles from MEDLINE® and PubMed® and PubMed
Central® Open Access Subset (PMC OA Subset) [Sayers et al., 2021], respectively. The
building and periodic update of the corpus is possible through the NCBI File Transfer Pro-
tocol (FTP) services. PREGO also has a dedicated text-mining dictionary (see Availability
of Supporting Source Codes section) that contains the entities ids, names, synonyms, and
neglected words (stop words). PREGO dictionary incorporates the ORGANISMS [Pafilis
etal., 2013] and ENVIRONMENTS [Pafilis et al., 2015] evaluated dictionaries as well as the
experimental dictionaries of Gene Ontology Biological Process and Molecular Function.
Text mining is subsequently performed on the corpus using the dictionary through the
EXTRACT tagger [Pafilis et al., 2016, Jensen, 2016]. The tagger recognizes the entities of
the dictionary in each abstract and full text article and assigns their co-mentions with
a score. The score is sensitive to the text structural level of co-mention; higher to lower
scoring when co-mention appears in the same sentence, then, in the same paragraph,
and lastly in the same article. All these are integrated and normalized to a single score for
each association, as implemented in STRING 9.1 [Franceschini et al., 2012] (see Appendix
A.3 for more details). In addition, the tagger extracts each mention in every article to
provide the origin of each association it extracts.

3.3.3 Annotated Genomes and Isolates

Annotated genomes and isolates comprise the most trustworthy data in PREGO’s knowl-
edge base because they refer to a single species/strain and also have manually curated
metadata. Among other data types, JGI-IMG [Chen et al., 2021, Mukherjee et al., 2021]
includes millions of genes from isolated genomes (isolates), SAGs and MAGs. Such an-
notations, along with their corresponding metadata, were collected using web-parsing
technologies. Their metadata, describing their related environment/ecosystem, were
tagged using the EXTRACT tagger to infer organisms—environments associations. The
annotated KEGG terms were mapped to GOmf terms (see Appendix A). The GOmf terms
were then used to extract organisms—processes associations.

The Struo pipeline [de la Cuesta-Zuluaga et al., 2020] and its outcome when using
the Genome Taxonomy DataBase (GTDB) (v.03-RS86) [Parks et al., 2020] was exploited
to enrich organisms—processes associations. A set of 21,276 representative genomes,
accompanied by UniRef50 annotations, was retrieved using the provided FTP server.
The annotations were then mapped to GOmf terms (see Appendix A.1). Related GTDB
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genomes were mapped to their corresponding NCBI taxa (see Appendix A.1). All associa-
tions extracted from these resources were assigned arbitrarily a confidence level of four
out of five. This score choice reflects the high-quality of these data and metadata.

In addition, BioProject data were integrated to PREGO using the NCBI FTP/e-utils
services [Sayers et al., 2021]. The BioProject ids that were integrated are the ones that
have been assigned a PubMed abstract, a unicellular taxon, and Genome sequencing as
data type. Then, using the text mining pipeline, associations were extracted connecting
the assigned taxon with the rest of the entities that appear in the abstracts. This method
resulted in associations that were assigned a confidence level of three (out of five) because
of the combined method of curated data with text mining.

3.3.4 Environmental Samples

MGnify [Mitchell et al., 2020] and MG-RAST [Wilke et al., 2015] repositories provide
a great number of public metagenomic records. In the PREGO framework, both am-
plicon and shotgun metagenomic analyses are retrieved periodically along with their
corresponding metadata. Data retrieval from these resources is possible from their Ap-
plication Programming Interfaces (APIs). Marker gene analyses are retrieved and by
measuring the co-occurrence of taxa present in the various environmental types (e.g.,
biomes, materials, features, etc.) organisms—environments associations are extracted.
These associations emerge when a taxon is reported together with a certain environmen-
tal type, being mentioned in the metadata of a sample (metadata based co-occurrence).
Similarly, analyses of metagenomic samples along with their corresponding metadata
and annotations are also retrieved and organisms—environments, organisms—processes
and processes—environments are extracted. The processes—environments associations
are possible through co-occurrence of the functional annotations of metagenomes with
the environmental metadata of the samples.

In all cases, the EXTRACT tagger is used on the microorganism names and the corre-
sponding metadata of each sample to identify their identifiers (NCBI ids, ENVO terms,
GOmf, GObp). All associations in this channel are scored based on the number of sam-
ples the entity of interest co-occurs with specific sample metadata (e.g., environmental
type) or annotations (functional annotations or taxonomic annotations). The same scor-
ing scheme was implemented across the channel resources (see Appendix A.3 for more
details), which ranks these associations with a value in the (0,5] space.

3.3.5 Sequence Search

In the case of organisms, PREGO enables sequence-based queries, meaning a sequence
(amplicon) can be used as an entry point like it was a taxon name. To this end, a custom
database was built using a set of reference custom databases for four commonly used
marker genes. For 16S and 18S rRNA, the SILVA database (v.138) [Quast et al., 2013] and
the PR2 database (version_4.14.0) [Guillou et al., 2012, Del Campo et al., 2018] were used.
Cytochrome c oxidase I (COI) [Suter et al., 2021] is another commonly used marker gene;
for this reason, Midori 2 (version GB243) [Leray et al., 2018] was integrated in PREGO’s
custom database. Finally, for the Internal transcribed spacer (ITS), common in studies
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focusing on Fungi, the Unite (version 8.3, accessed 10.05.2021) [Nilsson et al., 2019b]
database was added.

3.3.6 Back-End Server and Front-End Implementation

PREGO is a multi-tier web-based application. It is hosted on a 64 GB RAM DELL R540, 20
core, Debian server. Custom API clients (written in Python) are responsible for retriev-
ing the data and metadata from each source (Figure 3.1, step 2). These clients as well
as the subsequent methodology (Figure 3.1, step 3 to 6) are updated in regular cycles
using custom daemons (see Appendix A.2, Figure A.1). The mamba/blackmamba web
framework underlies communication to the Postgres association-holding database and
the client-side communication. HTML 5, Ajax, JQuery, and custom Javascript enhance
the user web experience. PREGO supports widely used browsers (e.g., Chrome, Firefox,
Safari, Edge) in various operating systems, such as Windows 10, Linux (Ubuntu 18), and
MacOS (10.12, 11).

3.4 Results & Validation

3.4.1 The PREGO Web Resource

Users can access the PREGO contents through its web User Interface (UI) (Figures 3.2
and 3.3), its Application Programming Interface (API) (Figure 3.4), or bulk download of
all associations (Appendix D). The User Interface comes with two search fields: a plain
text search and a sequence search (Figure 3.2a). The latter is used when the user wants to
search for a taxon sequence (see Section 3.3.5 for supported sequence databases). The
plain text search supports three types of entry points; the user can search for a taxon name,
e.g., Methanosarcina mazei, an environmental type, e.g., lagoon, or a biological process
e.g., methanogenesis. In all entry points, PREGO returns an overview page consisting
of tabs with associations of the entity of interest with the entities of the two other types
(Figure 3.2b-d) as well as Documents and Downloads tabs (Figure 3.2e,f).

Regarding the association tabs, when a taxon is used as a query, PREGO returns an
overview page consisting of tabs for environments, biological processes, and molecular
functions. When an environmental type is used as input, PREGO returns the organisms
that have been found to be related to it, as well as the Biological Processes observed
in the given environment. Lastly, if a biological process is under study, PREGO returns
a tab with the organisms along with another tab with the Environments related to the
process. Notably, only the associations with scores higher than 0.5 are presented in
the web platform and are sorted in descending order based on their score. The score
is visualized with a five-star system (see Appendix A.3 for the scoring scheme). Every
association tab contains three tables with associations derived from the PREGO channels
(see Section 3.3) along with their supported evidence. The user can both search and
scroll through these tables, which makes knowledge extraction easier in cases where, for
example, Isolate data contain hundreds of associations. In the Literature channel, each
association is supported by the scientific articles with text-mining identified co-mentions.
When a user clicks on an association, a popup window appears. This window displays
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FIGURE 3.2: PREGO web user interface. (a) There are two search fields, plain text and taxa
sequences. (b-d) three associations tabs each one presenting associations of the querred
entity with the respective entities, Environments (b), Biological Process (c ) and Molecular
Function (d). Three channels of information are distinguishing the associations based
on the original data. (e) Documents tab presents the scientific articles that mention the
queried entity highlighted with color. (f) Downloads tab provides the associations of each
channel (when available) to be downloaded in JSON and TSV format.

abstracts or excerpts of full text with the associated entities highlighted (Figure 3.3a).
Additionally, the Environmental Samples and Genome annotations and Isolates channels
support evidence for each association by providing links to more detailed information.
In the former channel, when the users click on an association, they are redirected to
pertinent sample pages of MGnify (Figure 3.3b). Similarly, the latter redirects users
to JGI and NCBI genomes when the associations originated from JGI—IMG and Struo,
respectively (Figure 3.3c).

The Documents tab includes a list of scientific publications where the queried entity is
mentioned. Through the Downloadstab, users are able to get all of the PREGO associations
found for their query, per entity type (e.g., all the environments found related to an
organism) and per channel (e.g., all the Environments found related to an organism
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FIGURE 3.3: Each association is supported by original data. (a) Literature channel has
a pop-up functionality that displays the scientific articles that each specific association
occurs with highlighted color. (b) Environmental Samples channel redirects to the samples
that support the specific association (currently only is supported MGnify). (c) Annotated
Genomes channel similarly redirects to the isolates ids that each association is based on
(both Struo and JGI IMG are supported).

through the Literature channel). This data retrieval functionality is also available via the
PREGO API (syntax described in Figure 3.4). Finally, all PREGO associations are available
for bulk download from each channel (see Table A.1).
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FIGURE 3.4: The PREGO API schema.

3.4.2 PREGO in Action

To demonstrate PREGO’s potential, we present four different ways that PREGO can assist
molecular ecologists. The demo focuses on the sulfate-reducing microorganisms (SRMs)
as well as the processes and environments that relate to sulfate reduction. Through this
demo, we highlight how the different channels may provide complementary insights
regarding different taxonomic levels and different association types.

Which Environments Are Related to a Taxon?

Based on Pavloudi et al. (2017) [Pavloudi et al., 2017b], several bacterial and archaeal
SRM were found in lagoonal sediments, after amplifying and sequencing the dissimila-
tory sulfite reductase -subunit (dsrB). Using PREGO for the case of Desulfobacteraceae,
the family in which the majority of the observed OTUs of the study belonged to, several
environmental types similar to lagoons were retrieved from both the Literature and the
Environmental samples channels (Figure 3.3a,b). Moreover, most of them had a high
z-score, such as "sediment", "sludge", and "activated sludge". Several dissimilar environ-
mental types were associated with Desulfobacteraceae, e.g., "oil reservoir” indicating them
as potential environments where sulfate reduction takes place. However, the presence
of taxa within that family in different environments, from "sea water” to "forest” and
"Wastewater treatment plant”, may suggest that this family has ubiquitous representatives
in diverse conditions.

Searching for Desulfatiglans anilini (examplel*, accessed on 24 December 2021) at
the species level, the most abundant species in Pavloudi et al. (2017) and, for Desul-
fatiglans anilini DSM 4660 strain (example 25, accessed on 24 December 2021), PREGO

4https://prego.hcmr.gr/examplel
Shttps://prego.hcmr.gr/example2
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provides associations with the "Anaerobic sediment", "Marine oxygen minimum zone", and
"Anaerobic digester sludge" terms. These associations further corroborate the relationship
between the species and sulfate reduction. More specifically, the "sulfur spring” ENVO
term was retrieved from the Environmental samples channel as well.

Which Biological Processes and Molecular Functions Are Related to a Taxon?

According to Pavloudi et al. (2017), Desulfatiglans anilini plays an important role in
sulfate reduction. The Biological Processes provided by PREGO’s Literature channel are
the GO terms "Sulfate reduction”, "Sulfide oxidation", and "Sulfide ion homeostasis", which
support this claim. In addition, the "Denitrification pathway" term was also retrieved.
This is rather interesting as it is in line with what Pavloudi et al. (2017) discussed about
the SRMs and their ability to use various electron acceptors, e.g., nitrate and nitrite.

Furthermore, PREGO’s Molecular Function tab provides more insight on this example.
Several GO terms related to sulfate reduction (e.g., terms related to "sulfite reductase")
were associated with DSM 4660 strain and Desulfatiglans anilini species in multiple
channels. Interestingly, in the case of the strain query, the Annotated Genomes channel
returned many GO terms related to the nitrogen fixation, e.g., "nitric oxide dioxygenase
activity".

Which Taxa Are Related to a Biological Process?

PREGO can be also used to report organisms that relate to a certain biological process.
Searching for "dissimilatory sulfate reduction" associations with taxa (example 3%, ac-
cessed on 24 December 2021) resulted in several taxa that were mentioned in the Pavloudi
et al. (2017) study. For example, taxa such as Thermodesulfobacteria and Thermodesul-
fovibrio were found among the entries with the highest score (e.g.,) based on the Literature
channel. The other two channels did not contain any associations. Using the "Sulfate
assimilation" (example 47, accessed on 24 December 2021) as the biological process input,
PREGO results showed several genera that were missing from PREGO results concerning
the "dissimilatory sulfate reduction". Hence, manual search of GObp terms that describe
the actual biological process of interest is more insightful.

Are There Any Associations between Environments and Biological Processes?

Are there other environmental types, except the lagoonal sediments, in which sulfate
assimilation occurs? In that question, and in "dissimilatory sulfate reduction"” (example
3) in particular, PREGO assigns the highest score to “sediment” while, among others,
"anoxic water", "oil reservoir"”, "mud volcano", and "basalt" are potentially associated with
environments related to sulfate reduction.

Inversely, PREGO is insightful about occurring processes in a specific environmental
type. For example, searching for the biological processes that take place in "basalt"

(example 5%, accessed on 24 December 2021), processes like "Nitrogen fixation" and

Shttps:/ /prego.hcmr.gr/example3
7https:/ /prego.hcmr.gr/ example4
8https://prego.hcmr.gr/example5
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"Reactive nitrogen species metabolic process" stand out. However, sulfate reduction is not
among the associations. However, when asking for "Mafic lava" (example 67, accessed on
24 December 2021), both the "nitrogen fixation" and "Sulfur compound metabolic process"
terms are returned. This highlights the suggestions of Pavloudi et al. (2017), regarding the
potential use of various electron acceptors from the different strains present in different
environmental types.

3.4.3 PREGO Contents

PREGO contains the literature, environmental samples, and genome annotations of the
resources shown in Table 3.1. The extracted contents of these resources have resulted to a
knowledge base with 364 K distinct taxonomic groups (out of a pool of 620K Bacteria,
Archaea, and microbial eukaryotes, based on NCBI Taxonomy) from which 258K are at the
species level (Table 3.2). These taxa are associated with 1 K Environment Ontology terms,
15 K GObp terms, and with 7.9 K GOmf terms. Combining the above, PREGO maintains
a knowledge base of entities and associations between them that form a multipartite
network with entities as nodes and scored associations between them as weighted links.

As shown in Figure 3.5, in its current version (December 2021), PREGO knowledge base
covers 157 bacterial phyla (107 are Candidatus), 23 phyla from archaea (18 are Candidatus),
and 22 unicellular eukaryotic phyla described in the NCBI Taxonomy database. The
number of bacterial taxa present among the associations of each phylum ranges from
the order of 10s, as in the case of Candidatus Coatesbacteria, to hundreds of thousands,
e.g., Actinobacteriae. The number of environmental types, found among the PREGO
associations for each phylum, ranges from just a few to up to 1000. Similarly, the number
of biological processes that have been related to the various phyla may range from less
than a dozen, e.g., Yanofskybacteria to up to several thousands, e.g., Bacteroidetes. On the
contrary, the number of molecular functions found to be related to taxa of each phylum is
rather constant in all three domains.

3.5 Discussion

3.5.1 PREGO Contents

On its current version and according to the NCBI Taxonomy that it is based on, PREGO
manages to cover a great range of microbial taxa, as most (if not all phyla) are present in
the knowledge base (Figure 3.5). The different number of organisms’ entities per phylum
highlights the diverse number of the members of the various phyla. On the contrary, the
similar number of molecular functions in all cases indicates the robustness of the main
metabolic processes required for life. With respect to biological processes, their number
per phylum varies to some extent, especially for the case of Bacteria and Archaea. That
could be observed as, in many cases, phyla that have been recently described using molec-
ular techniques have not been studied extensively yet, e.g., Candidatus Delongbacteria.
As expected, the number of environmental types that have been associated with members

https://prego.hcmr.gr/example6
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FIGURE 3.5: Summary of all the unique entities per phylum for each of the four entity types
(in log10 scale) that appear in PREGO. Phyla are grouped based on their superkingdom
(in log10 scale). Only phyla for which associations are available in the PREGO platform
are mentioned.
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MICROORGANISMS, BIOLOGICAL PROCESSES, AND ENVIRONMENT TYPES

Environ- Biological Molecular

Channel Source Taxonomy .
ments Processes Functions

MEDLINE Strains 8,929

Literature PubMed - Species 240,377 1,077 15,079 7,318
PMC OA Total 342,506
Strains 1,392
?ﬁéﬁ?gg Species 4,324 162 - -
Total 5,859
Environ- Strains 2,522
mental mﬁ(jgzﬁszle Species 4,406 258 - 3,839
samples Total 7,157
. Strains 2
aﬁiﬁfgﬂ Species 1,471 216 11 -
Total 2,955
Strains 2,398
JGI IMGisolates Species 11,203 241 - 3,670
Total 13,849
Annotated Strains 6
Genomes & STRUO Species 19,289 - - 2,789
Isolates Total 19,325
Strains 5,754
BioProject Species 3,373 309 626 -
Total 9,393
Strains 12,840
Total All 1,090 15,091 7,971

TABLE 3.2: The entities of PREGO after the NER and mapping of every source. Counts of
distinct entities of Taxa, Environments (ENVO terms), Biological Processes (Gene Ontology
Biological process) and Molecular Function (Gene Ontology Molecular Function).

of each phylum varies, as a phylum may be universally present, while others could be
strongly niche-specific (e.g., Hydrothermarchaeota).

Because of its three different channels, PREGO manages to extract associations both
in the species and higher taxonomic levels. The Isolates channel supports explicit as-
sociations at the species level (Table 3.3 and Figure S3). Interestingly, the number of
such genomes seems to have reached a plateau for now, as PREGO-like platforms in-
clude the same order of magnitude. The Literature channel, on the other hand, promotes
the extraction of associations at higher taxonomic levels (Table 3.3 and Figure S1). This
also applies to environment—organisms associations derived from the Environmental
Samples channel (Table 3.3 and Figure S2). Associations regarding biological processes,
though, are strongly enhanced by the Literature channel and the massive increase of
literature.

Additionally, the text mining methodology of the Literature channel has retrieved most
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3. PREGO: A LITERATURE- AND DATA-MINING RESOURCE TO ASSOCIATE
MICROORGANISMS, BIOLOGICAL PROCESSES, AND ENVIRONMENT TYPES

of the entities present in PREGO knowledge base (Table 3.2). A significant contribution to
the taxa with associations is due to the PMC OA processing by the text mining pipeline of
the Literature channel. This is in-line with reports in other applications of text mining
when using full text articles [Westergaard et al., 2018]. However, the resulting associations
are suggestive because of the text mining nature, and therefore subject for further review
by the users.

3.5.2 Related Tools’ Functionality and Content

There is an emerging niche for tools similar to PREGO to bring forward microbe associa-
tions and metadata. Table 3.4 summarizes the common and different features of BacDive,
WoM, NMDC data portal, and PREGO. All of them commonly share the environmental
associations and biological/metabolic processes with the microbes.

BacDive is a well-established platform with a focus on phenotype and cultivation
information for about 100,000 prokaryotes, bacteria, and archaea. It has a high level
of curation for most of its input types, like literature, internal databases, and personal
collections. The NMDC data portal has published the scheme, the user interface, and a
demonstrative collection of samples that will be populated later on. Standout features are
the spatial visualization with coordinates and the detailed information of the samples,
e.g., sequencing instruments and methodology. An alternative approach is facilitated
by WoM, which aims to bind chemistry to microbes. An environment, in particular, is
defined as the starting metabolite pool that is transformed by an organism. Another tool
is The Microbe Directory that contains fully curated metadata for about 8000 microbes
from all superkingdoms. This tool focuses on conditions of growth and on host taxa.

Complementary to these tools, PREGO contains associations of bacteria, archaea,
and eukaryotes. Distinctive features are the associations of environments with pro-
cesses/functions and the large-scale literature integration with text mining. Most impor-
tantly, most of the tools are complementary to each other with minimum overlap, an
indication of the opportunities for further innovative synergies.

3.5.3 PREGO Next Steps

PREGO is a user-friendly association mining and sharing platform. Its modular web-
architecture grants it the flexibility for further improvements in the aforementioned
aspects, namely: source datasets, user interface, entity, and association scope expansion.
Regarding datasets, additional data, such as transcriptomes from MGnify and other
records annotated with metadata from studies in EuroPMC, accessed on 24 December
2021) [Ferguson et al., 2021], could be incorporated. Similarly, the NMDC data platform
standards-compliant annotated records'® (accessed on 24 December 2021) could serve as
an additional resource with its high-quality metadata [Wood-Charlson et al., 2020, Vangay
et al., 2021]. Reciprocally, if requested, pertinent literature and association summaries
could be programmatically offered to interested third parties.

Furthermore, the entity types supported by the PREGO system could be expanded.
For example, GOmf terms could be upgraded as a search-entry point to the system. In ad-

10https://data.microbiomedata.org/
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3.5. Discussion

Functionality BacDive Web of Microbes NMDC PREGO
manual curation high high intermediate low
literature integration limited no no yes
environment—taxa associations yes yes yes yes
environment—process/

. S no no no yes
function associations
process/function—taxa associations yes yes yes yes
phenotypic data yes no no no

. original . original . .
data origin . . original . . integration
integration Integration

spatial coordinates yes no yes no
application programming interface  yes no yes yes
bulk download limited yes yes yes

TABLE 3.4: Feature comparison among platforms that facilitate knowledge discovery and
integration of microbial data.

dition, disease and tissue describing terms, already supported by the PREGO-underlying
EXTRACT system [Pafilis et al., 2016], could enter the PREGO ecosystem of associated
entities. From a statistics perspective, the calculation of a combined association score,
when an association is reported by more than one channel of information, could be
another feature to add.

The user interface can be enhanced to support multiple entity and/or sequence
queries, instead of single ones. Sequences can be processed by taxonomy assignment
pipelines (e.g., PEMA [Zafeiropoulos et al., 2020]) and be converted into searching PREGO
for associations. In addition, network visualization tools, like Arena3Dweb [Karatzas et al.,
2021], could allow interactive browsing of associations through multi-layered graphs.
Enrichment analyses, like those performed by OnTheFly2.0 [Baltoumas et al., 2021b] or
Flame [Thanati et al., 2021], can be incorporated. Omics data analysis pipelines, like
MiBiOmics [Zoppi et al., 2021], environment associations with sequences using SeqEnv
[Sinclair et al., 2016] and biogeochemical associations with metagenomic data with DiT-
ing [Xue et al., 2021] could be enabled by comparing the associations pertinent to different
groups of entities. The computationally intensive tasks of multiple queries, taxonomy
assignments to sequences and enrichment analysis could be offered by our in-house
High Performance Computing facility (https://hpc.hcmr.gr/, accessed on 24 December
2021) [Zafeiropoulos et al., 2021c] in synergy with pertinent Research Infrastructures
like ELIXIR!! (accessed on 24 December 2021) and LifeWatch ERIC!? (accessed on 24
December 2021).

11https://elixir—europe.org
Rhttps:/ iwwwlifewatch.eu/
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3. PREGO: A LITERATURE- AND DATA-MINING RESOURCE TO ASSOCIATE
MICROORGANISMS, BIOLOGICAL PROCESSES, AND ENVIRONMENT TYPES

Availability of Supporting Source Codes:

The PREGO software modules are available under BSD 2-Clause “Simplified” License.
Scripts, where additional libraries have been used, are subject to their individual licenses.
More information on each module can be found as listed below:

* prego_gathering data github.com/lab42open-team/prego_gathering data
e prego_daemons github.com/lab42open-team/prego_daemons

* prego_mappings github.com/lab42open-team/prego_mappings

* prego_statistics github.com/lab42open-team/prego_statistics

Additional software and curated lists along with their individual license are:

e tagger: https://github.com/larsjuhljensen/tagger, BSD 2-Clause "Simplified" Li-
cense

e mamba: https://github.com/larsjuhljensen/mamba, BSD 2-Clause "Simplified"
License

e tagger dictionary: https://download.jensenlab.org/ and there in:
https://download.jensenlab.org/prego_dictionary.tar.gz, CC-BY 4.0 license
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Chapter 4

A New MCMC Algorithm for Sampling
the Flux Space of Metabolic Networks

Citation: Chalkis, A., Fisikopoulos, V., Tsigaridas E. and Zafeiropoulos H.
Geometric Algorithms for Sampling the Flux Space of Metabolic Networks.
37th International Symposium on Computational Geometry (SoCG 2021)
DOI: 10.4230/LIPIcs.S0CG.2021.21 !

4.1 Abstract

Systems Biology is a fundamental field and paradigm that introduces a new era in Biology.
The crux of its functionality and usefulness relies on metabolic networks that model the
reactions occurring inside an organism and provide the means to understand the under-
lying mechanisms that govern biological systems. Even more, metabolic networks have a
broader impact that ranges from resolution of ecosystems to personalized medicine.
The analysis of metabolic networks is a computational geometry oriented field as one
of the main operations they depend on is sampling uniformly points from polytopes; the
latter provides a representation of the steady states of the metabolic networks. However,
the polytopes that result from biological data are of very high dimension (to the order of
thousands) and in most, if not all, the cases are considerably skinny. Therefore, to perform
uniform random sampling efficiently in this setting, we need a novel algorithmic and
computational framework specially tailored for the properties of metabolic networks.
We present a complete software framework to handle sampling in metabolic net-
works. Its backbone is a Multiphase Monte Carlo Sampling (MMCS) algorithm that unifies
rounding and sampling in one pass, obtaining both upon termination. It exploits an
improved variant of the Billiard Walk that enjoys faster arithmetic complexity per step. We
demonstrate the efficiency of our approach by performing extensive experiments on vari-
ous metabolic networks. Notably, sampling on the most complicated human metabolic

1 Authors’ names are in alphabetical order. This is a modified version of the published version, in terms of
relevance, coherence and formatting. Proofs for the lemmas mentioned and parameter tuning can be found
in the original publication. The dingo Python library, a wrapper of the C++ code of the MMCS algorithm, is
available at https://github.com/geomscale/dingo and a relative publication is under preparation.
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4. ANEw MCMC ALGORITHM FOR SAMPLING THE FLUX SPACE OF METABOLIC
NETWORKS

network accessible today, Recon3D, corresponding to a polytope of dimension 5335, took
less than 30 hours. To our knowledge, that is out of reach for existing software.

4.2 Introduction

4.2.1 The field of Systems Biology

Systems Biology establishes a scientific approach and a paradigm. As a research approach,
it is the qualitative and quantitative study of the systemic properties of a biological
entity along with their ever evolving interactions [Klipp et al., 2016, Kohl et al., 2010]. By
combining experimental studies with mathematical modeling it analyzes the function
and the behavior of biological systems. In this setting, we model the interactions between
the components of a system to shed light on the system’s raison d’étre and to decipher its
underlying mechanisms in terms of evolution, development, and physiology [Ideker et al.,
2001].

Initially, Systems Biology emerged as a need. New technologies in Biology accumulate
vast amounts of information/data from different levels of the biological organization, i.e.,
genome, transcriptome, proteome, metabolome [Quinn et al., 2016]. This leads to the
emerging question "what shall we do with all these pieces of information"? The answer,
if we consider Systems Biology as a paradigm, is to move away from reductionism, still
the main conceptual approach in biological research, and adopt holistic approaches
for interpreting how a system’s properties emerge [Noble, 2008]. The following diagram
provides a first, rough, mathematical formalization of this approach.

components — networks — in silico models — phenotype [Palsson, 2015].

Systems Biology expands in all the different levels of living entities, from the molecular,
to the organismal and ecological level. The notion that penetrates all levels horizontally is
metabolism; the process that modifies molecules and maintains the living state of a cell or
an organism through a set of chemical reactions [Schramski et al., 2015]. The reactions
begin with a particular molecule which they convert into some other molecule(s), while
they are catalyzed by enzymes in a key-lock relationship. We call the quantitative rela-
tionships between the components of a reaction stoichiometry. Linked reactions, where
the product of the first acts as the substrate for the next, build up metabolic pathways.
Each pathway is responsible for a certain function. We can link together the aggregation
of all the pathways that take place in an organism (and their corresponding reactions)
and represent them mathematically using the reactions’ stoichiometry. Therefore, at
the species level, metabolism is a network of its metabolic pathways and we call these
representations metabolic networks.

4.2.2 From metabolism to computational geometry

The complete reconstruction of the metabolic network of an organism is a challenging,
time consuming, and computationally intensive task; especially for species of high level
of complexity such as Homo sapiens. Even though sequencing the complete genome of
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a species is becoming a trivial task providing us with quality insight, manual curation is
still mandatory and large groups of researchers need to spend a great amount of time to
build such models [Thiele and Palsson, 2010]. However, over the last few years, automatic
reconstruction approaches for building genome-scale metabolic models [Machado et al.,
2018] of relatively high quality have been developed. Either way, we can now obtain the
metabolic network of a bacterial species (single cell species) of a tissue and even the
complete metabolic network of a mammal. Biologists are also moving towards obtaining
such networks for all the species present in a microbial community. This will allow us to
further investigate the dynamics, the functional profile, and the inter-species reactions
that occur. Using the stoichiometry of each reaction, which is always the same in the
various species, we convert the metabolic network of an organism to a mathematical
model. Thus, the metabolic network becomes an in silico model of the knowledge it
represents.

In metabolic networks analysis mass and energy are considered to be conserved
[Palsson, 2009]. As many homeostatic states, that is steady internal conditions [Shishvan
etal., 2018], are close to steady states (where the production rate of each metabolite equals
its consumption rate [Cakmak et al., 2012]) we commonly use the latter in metabolic
networks analysis.

Stoichiometric coefficients are the number of molecules a biochemical reaction con-
sumes and produces. The coefficients of all the reactions in a network, with m metabolites
and n reactions (m < n), form the stoichiometric matrix S € R™*" [Palsson, 2015]. The
nullspace of S corresponds to the steady states of the network:

S-x=0, (4.1)

where x € R" is the flux vector that contains the fluxes of each chemical reaction of the
network. Flux is the rate of turnover of molecules through a metabolic pathway.

All physical variables are finite, therefore the flux (and the concentration) is bounded
[Palsson, 2015]; that is for each coordinate x; of the x, there are 2n constants x,;; and
X1p,; such that x5 ; < x; < xp;, for i € [n]. We derive the constraints from explicit ex-
perimental information. In cases where there is no such information, reactions are left
unconstrained by setting arbitrary large values to their corresponding bounds according
to their reversibility properties; i.e., if a reaction is reversible then its flux might be negative
as well [Lularevic et al., 2019]. The constraints define a n-dimensional box containing
both the steady and the dynamic states of the system. If we intersect that box with the
nullspace of S, then we define a polytope that encodes all the possible steady states and
their flux distributions [Palsson, 2015]. We call it the steady-state flux space. Figure 4.1
illustrates the complete workflow from building a metabolic network to the computation
of a flux distribution.

Using the polytopal representation, a commonly used method for the analysis of a
metabolic network is Flux Balance Analysis (FBA) [Orth et al., 2010]. FBA identifies a single
optimal flux distribution by optimizing a linear objective function over a polytope [Orth
et al., 2010]. Unfortunately, this is a biased method because it depends on the selection
of the objective function. To study the global features of a metabolic network we need
unbiased methods. To obtain an accurate picture of the whole solution space we exploit
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FIGURE 4.1: From DNA sequences to distributions of metabolic fluxes. (A) The genes of
an organism provide us with the enzymes that it can potentially produce. Enzymes are
like a blueprint for the reactions they can catalyze. (B) Using the enzymes we identify the
reactions in the organism. (C) We construct the stoichiometric matrix of the metabolic
model. (D) We consider the flux space under different conditions (e.g., steady states);
they correspond to polytopes containing flux vectors addressing these conditions. (E)
We sample from polytopes that are typically skinny and of high dimension. (F) The
distribution of the flux of a reaction provides great insights to biologists.

sampling techniques [Schellenberger and Palsson, 2009]. If collect a sufficient number
of points uniformly distributed in the interior of the polytope, then the biologists can
study the properties of certain components of the whole network and deduce signifi-
cant biological insights [Palsson, 2015]. Therefore, efficient sampling tools are of great
importance.

4.2.3 Metabolic networks through the lens of random sampling

Efficient uniform random sampling on polytopes resulting from metabolic networks
is a very challenging task both from the theoretical (algorithmic) and the engineering
(implementation) point of view. First, the dimension of the polytopes is of the order of
certain thousands. This requires, for example, advanced engineering techniques to cope
with memory requirements and to perform linear algebra operations with large matrices;
e.g., in Recon3D [Brunk et al., 2018] we compute the null space of a 8399 x 13543 matrix.
Second, the polytopes are rather skinny (Section 4.5); this makes it harder for sampling
algorithms to move in the interior of polytopes and calls for novel practical techniques to
sample.

There is extended on-going research concerning advanced algorithms and implemen-
tations for sampling metabolic networks over the last decades. Markov Chain Monte Carlo
algorithms such as Hit-and-Run (HR) [Smith, 1984] have been widely used to address the
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FIGURE 4.2: Flux distributions in the most recent human metabolic network Re-
con3D [Brunk et al., 2018]. We estimate the flux distributions of the reactions catalyzed by
the enzymes Hexokinase (D-Glucose:ATP) (HEX), Glucose-6-Phosphate Phosphatase, Edo-
plasmic Reticular (G6PPer) and Phosphoenolpyruvate carboxykinase (GTP) (PEPCK). As
we sample steady states, the production rate of glc__D_c should be equal to its consump-
tion rate. Thus, in the corresponding copula, we see a positive dependency between HEX,
i.e., the reaction that consumes glc__D_c and G6PPer, that produces it. Furthermore, the
PEPCK reaction operates when there is no glc__D_c available and does not operate when
the latter is present. Thus, in their copula we observe a negative dependency between
HEX and PEPCK. A copula is a bivariate probability distribution for which the marginal
probability distribution of each variable is uniform. It implies a positive dependency
when the mass of the distribution concentrates along the up-diagonal (HEX - G6PPer) and
a negative dependency when the mass is concentrated along the down-diagonal (HEX -
PEPCK). The bottom line contains the reactions and their stoichiometry.

challenges of sampling. Two variants of HR are the non-Markovian Artificial Centering
Hit-and-Run (ACHR) [Kaufman and Smith, 1998] that has been widely used in sampling
metabolic models, e.g., [Saa and Nielsen, 2016], and Coordinate Hit-and-Run with Round-
ing (CHRR) [Haraldsdottir et al., 2017]. The latter is part of the cobra toolbox [Heirendt
et al., 2019], the most commonly used software package for the analysis of metabolic
networks. CHRR enables sampling from complex metabolic networks corresponding to
the highest dimensional polytopes so far. There are also stochastic formulations where
the inclusion of experimental noise in the model makes it more compatible with the
stochastic nature of biological networks [MacGillivray et al., 2017]. The recent study
in [Fallahi et al., 2020] offers an overview as well as an experimental comparison of the
currently available samplers.

These implementations played a crucial role in actually performing in practice uni-
form sampling from the flux space. However, they are currently limited to handle poly-
topes of dimension say < 2500 [Fallahi et al., 2020, Haraldsdottir et al., 2017]. This is also
the order of magnitude of the most complicated, so far, metabolic network model built,
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Recon3D [Brunk et al., 2018]. By including 13543 metabolic reactions and involving 4 140
unique metabolites, Recon3D provides a representation of the 17% of the functionally
of annotated human genes. To our knowledge, there is no method that can efficiently
handle sampling from the flux space of Recon3D.

Apparently, the dimension of the polytopes will keep rising and not only for the ones
corresponding to human metabolic networks. Metabolism governs systems biology at
all its levels, including the one of the community. Thus, we are not only interested in
sampling a sole metabolic network, even if it has the challenges of the human. Sampling in
polytopes associated to network of networks are the next big thing in metabolic networks
analysis and in Systems Biology [Bernstein et al., 2019, Perez-Garcia et al., 2016].

Regarding the sampling process, from the theoretical point of view, we are interested
in the convergence time, or mixing time, of the Markov Chain, or geometric random
walk, to the target distribution. Given a d-dimensional polytope P, the mixing time of
several geometric random walks (e.g., HR or Ball Walk) grows quadratically with respect
to the sandwiching ratio R/r of the polytope [Lovasz et al., 1997, Lovdsz and Vempala,
2006]. Here r and R are the radii of the smallest and largest ball with center the origin that
contains, and is contained, in P, respectively; i.e., r B; < P < RB,;, where B is the unit ball.
It is crucial to reduce R/r, i.e., to put P in well a rounded position where R/r = o (Vd); the
@ () notation means that we are ignoring polylogarithmic factors. A powerful approach
to obtain well roundness is to put P in near isotropic position. In general, K c R? is
in isotropic position if the uniform distribution over K is in isotropic position, that is
Ex-x[X] =0 and [EXNK[XTX] = I;, where 1; is the d x d identity matrix. Thus, to put
a polytope P into isotropic position one has to generate a set of uniform points in its
interior and apply to P the transformation that maps the point-set to isotropic position;
then iterate this procedure until P is in c-isotropic position [Cousins and Vempala, 2016,
Lovasz and Vempala, 2006], for a constant c. In [Adamczak et al., 2010] they prove that
O (d) points suffice to achieve 2-isotropic position. Alternatively in [Haraldsdottir et al.,
2017] they compute the maximum volume ellipsoid in P, they map it to the unit ball, and
then apply to P the same transformation. They experimentally show that a few iterations
suffice to put P in John’s position [John, 2014]. Moreover, there are a few algorithmic
contributions that combine sampling with distribution isotropization steps, e.g., the
multi-point walk [Bertsimas and Vempala, 2004] and the annealing schedule [Kalai and
Vempala, 2006].

An important parameter of a random walk is the walk length, i.e., the number of
the intermediate points that a random walk visits before producing a single sample
point. The longer the walk length of a random walk is, the smaller the distance of the
current distribution to the stationary (target) distribution becomes. For the majority of
random walks there are bounds on the walk length to bound the mixing time with respect
to a statistical distance. For example, HR generates a sample from a distribution with
total variation distance less than € from the target distribution after 5((13) [Lovasz and
Vempala, 2006] steps, in a well rounded convex body and for log-concave distributions.
Similarly, CDHR mixes after a polynomial, in the diameter and the dimension, number of
steps [Laddha and Vempala, 2020, Narayanan and Srivastava, 2020] for the case of uniform
distribution. However, extended practical results have shown that both CDHR and HR
converges after 0 (d?) steps [Chalkis et al., 2020, Cousins and Vempala, 2016, Haraldsdottir

74



4.3. Contribution

et al,, 2017]. The leading algorithms for uniform polytope sampling are the Riemannian
Hamiltonian Monte Carlo sampler [Lee and Vempala, 2018] and the Vaidya walk [Chen
et al., 2018], with mixing times & (md?'®) and & (m'/2d®'?) steps, respectively. However, it
is not clear if these random walks can outperform CDHR in practice, because of their high
cost per step and numerical instability.

Billiard Walk (BW) [Gryazina and Polyak, 2014] is a random walk that employs linear
trajectories in a convex body with boundary reflections; alas with an unknown mixing time.
The closest guarantees for its mixing time are those of HR and stochastic billiards [Dieker
and Vempala, 2015]. Interestingly, [Gryazina and Polyak, 2014] shows that, experimentally,
BW converges faster than HR for a proper tuning of its parameters. The same conclusion
follows from the computation of the volume of zonotopes [Chalkis et al., 2020]. It is not
known how the sandwiching ratio of P affects the mixing time of BW. Since BW employs
reflections on the boundary, we can consider it as a special case of Reflective Hamiltonian
Monte Carlo [Chevallier et al., 2018].

For almost all random walks the theoretical bounds on their mixing times are pes-
simistic and unrealistic for computations. Hence, if we terminate the random walk earlier,
we generate samples that are usually highly correlated. There are several MCMC Conver-
gence Diagnostics [Roy, 2020] to check if the quality of a sample can provide an accurate
approximation of the target distribution. For a dependent sample, a powerful diagnostic
is the Effective Sample Size (ESS). It is the number of effectively independent draws from
the target distribution that the Markov chain is equivalent to. For autocorrelated samples,
ESS bounds the uncertainty in estimates [Geyer, 1992] and provides information about
the quality of the sample. There are several statistical tests to evaluate the quality of a
generated sample, e.g., potential scale reduction factor (PSRF) [Gelman and Rubin, 1992],
maximum mean discrepancy (MMD) [Gretton et al., 2012], and the uniform tests [Cousins,
2017]. Interestingly, the copula representation we employ in Figure 4.2 to capture the
dependence between two fluxes of reactions was also used successfully in a geometric
framework to detect financial crises capturing the dependence between portfolio return
and volatility [Cales et al., 2018].

4.3 Contribution

We introduce a Multi-phase Monte Carlo Sampling (MMCS) algorithm (Section 4.4.2 and
Algorithm 2) to sample from a polytope P. In particular, we split the sampling procedure
in phases where, starting from P, each phase uses the sample to round the polytope.
This improves the efficiency of the random walk in the next phase, see Figure 4.3. For
sampling, we propose an improved variant of Billiard Walk (BW) (Section 4.4.1 that enjoys
faster arithmetic complexity per step. We also handle efficiently the potential arithmetic
inaccuracies near to the boundary, see [Chevallier et al., 2018]. We accompany the MMCS
algorithm with a powerful MCMC diagnostic, namely the estimation of Effective Sample
Size (ESS), to identify a satisfactory convergence to the uniform distribution. However,
our method is flexible and we can use any random walk and combination of MCMC
diagnostics to decide convergence.
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The open-source implementation of our algorithms? provides a complete software
framework to handle efficiently sampling in metabolic networks. We demonstrate the
efficiency of our tools by performing experiments on almost all the metabolic networks
that are publicly available and by comparing with the state-of-the-art software packages
as cobra (Section 4.5). Our implementation is faster than cobra for low dimensional
models, with a speed-up that ranges from 10 to 100 times; this gap on running times
increases for bigger models (Table 4.1). The quality of the sample our software produces is
measured with two widely used diagnostics, i.e., ESS and potential scale reduction factor
(PSRF) [Gelman and Rubin, 1992]. The highlight of our method is the ability to sample
from the most complicated human metabolic network that is accessible today, namely
Recon3D. In Figure 4.2 we estimate marginal univariate and bivariate flux distributions in
Recon3D which validate:

¢ the quality of the sample by confirming a mutually exclusive pair of biochemical
pathways, and that

* our method indeed generates steady states

In particular, our software can sample 1.44 - 10° points from a 5335-dimensional polytope
in a day using modest hardware. This set of points suffices for the majority of systems
biology analytics. To our understanding this task is out of reach for existing software. Last,
MMCS algorithm is quite general sampling scheme and so it has the potential to address
other hard computational problems like multivariate integration and volume estimation
of polytopes.

4.4 Methods & Implementation

4.4.1 Efficient Billiard walk

The geometric random walk of our choice to sample from a polytope is based on Billiard
Walk (BW) [Gryazina and Polyak, 2014], which we modify to reduce the per-step cost.

For a polytope P = {x € R4 | Ax < b}, where A € R¥*4 and b € R*, BW starts from a
given point pg € P, selects uniformly at random a direction, say vy, and it moves along
the direction of v for length L; it reflects on the boundary if necessary. This results a new
point p; inside P. We repeat the procedure from p;. Asymptotically it converges to the
uniform distribution over P. The length is L = —7Inn, where 7 is a uniform number in
(0,1), thatisn ~ %(0,1), and 7 is a predefined constant. It is useful to set a bound, say p,
on the number of reflections to avoid computationally hard cases where the trajectory
may stuck in corners. In [Gryazina and Polyak, 2014] they set T = diam(P) and p = 10d.
Our choices for T and p depend on a burn-in step that we detail in Section 4.5.

At each step of BW we compute the intersection point of aray, say ¢ := {p+ tv, t € R;},
with the boundary of P, P, and the normal vector of the tangent plane at the intersection
point. The inner vector of the facet that the intersection point belongs to is a row of A. To

2https://github.com/GeomScale/volume_approximation /tree/socg21
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compute the point 8P n ¢ where the first reflection of a BW step takes place, we solve the
following m linear equations

ajT(pO+ tivo) =bj=>tj=(bj - a]-Tpo)/aijo, jelkl, 4.2)

and keep the smallest positive ¢;; a; is the j-th row of the matrix A. We solve each
equation in 0(d) operations and so the overall complexity is G (dk). A straightforward
approach for BW would consider that each reflection costs € (kd) and thus the per step
cost is O(pkd). However, our improved version performs more efficiently both point and
direction updates by storing computations from the previous iteration combined with a
preprocessing step. The preprocessing step involves the normal vectors of the facets, that
takes m?d operations, and the amortized per-step complexity of BW becomes @ ((p + d) k).

Lemma 1. The amortized per step complexity of BWis O ((p + d) k) after a preprocessing
step that takes O (k*d) operations, where p is the maximum number of reflections per step.

The use of floating point arithmetic could result to points outside P due to rounding
errors when computing boundary points. To avoid this, when we compute the roots in
Equation (4.2) we exclude the facet that the ray hit in the previous reflection.

Algorithm 1 Billiard Walk(P, p, p, 7, W)

Require: polytope P; point p € P; upper bound on the number of reflections p;
parameter 7 to adjust the length of the trajectory; walk length W.
Ensure: a pointin P (uniformly distributed in P).
forj=1,...,Wdo
L——-tlnn; n~%(0,1) {length of the trajectory} i — 0 {current number of reflec-
tions} po — p {initial point of the step} pick a uniform vector u, from the unit sphere
{initial direction}
while i < p do
—{pi+tu;,0<t<1L} ({thisisasegment}
if 0PN ¢ = O then
pi+1— pi+Lu; break
end if
pi+1 —O0PN¥¢; {point update}
the inner vector, s, of the tangent plane at p,
s.t.]ls|l=1, L—L—|PN¥|, ujr1 — u; —Z(Ltl.TS)S {direction update}
i—i+1
end while
if i = p then
p—Ppo
else
p—pi
end if
end for
return p

77



4. ANEw MCMC ALGORITHM FOR SAMPLING THE FLUX SPACE OF METABOLIC
NETWORKS

At each step of Billiard Walk, we compute the intersection point of a ray, say ¢ :=
{p+ tu, t € R;}, with the boundary of P, 0P, and the normal vector of the tangent plane
of P at the intersection point. The inner vector of the facet that the intersection point
belongs to is a row of A. To compute the point P n ¢ where the first reflection of a Billiard
Walk step takes place we need to compute the intersection of ¢ with all the hyperplanes
that define the facets of P. This corresponds to solve (independently) the following m
linear equations

aj (po+ tjug) = bj = tj = (bj - aj po)/ a; uo, j € K], 4.3)

and keep the smallest positive #;; a; is the j-th row of the matrix A. We solve each equation
in @ (d) operations and so the overall complexity is @ (d k), where k is the number of rows
of A and thus an upper bound on the number of facets of P. A straightforward approach
for Billiard Walk would consider that each reflection costs & (kd) and thus the per step
cost is O(pkd). However, our improved version performs more efficiently both point
and direction updates in pseudo-code by storing some computations from the previous
iteration combined with a preprocessing step. The preprocessing step involves the normal
vectors of the facets and takes k?d operations. So the amortized per-step complexity of
Billiard Walk becomes & ((p + d) k). The pseudo-code appear in Algorithm 1.

4.4.2 Multiphase Monte Carlo Sampling algorithm

To sample steady states in the flux space of a metabolic network, with m metabolites and
n reactions, we introduce a Multiphase Monte Carlo Sampling (MMCS) algorithm; it is
multiphase because it consists of a sequence of sampling phases.

Let S € R™*" be the stoichiometric matrix and x;p, X, € R” bounds on the fluxes. The
flux space is the bounded convex polytope

FS:={xeR"|Sx =0, x; < x < x,p} cR"™. (4.4)

The dimension, d, of FS is smaller than the dimension of the ambient space; that
is d = n. To work with a full dimensional polytope we restrict the box induced by the
inequalities x;;, < x < x,; to the null space of S. Let the H-representation of the box

be {xEIR{”

I
( ;_l )x < (J;C”b) }, where [, is the n x n identity matrix, and let N € R"*4 be
—1in b

the matrix of the null space of S, thatis SN = 0,,xq. Then P = {x € R4 | Ax < b}, where

A= ( I’;A]]V) and b = (i”b ) N, is a full dimensional polytope (in R?). After we sample
—in Ib

(uniformly) points from P, we transform them to uniformly distributed points (that is

steady states) in FS by applying the linear map induced by N.

MMCS generates, in a sequence of sampling phases, a set of points, that is almost
equivalent to n independent uniformly distributed points in P, where n is given. At
each phase, it employs Billiard Walk (Section 4.4.1) to sample approximate uniformly
distributed points, rounding to speedup sampling, and uses the Effective Sample Size
(ESS) diagnostic to decide termination. The pseudo-code of the algorithm appears in
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Algorithm 2.

Overview.

Initially we set Py = P. At each phase i = 0 we sample at most A points from P;. We
generate them in chunks; we also call them chain of sampling points. Each chain contains
at most [ points (for simplicity consider I = ©'(1)). To generate the points in each chain we
employ BW, starting from a point inside P;; the starting point is different for each chain.
We repeat this procedure until the total number of samples in P; reaches the maximum
number 1; we need ’71 chains. To compute a starting point for a chain, we pick a point
uniformly at random in the Chebychev ball of P; and we perform @ (v/d) burn-in BW steps
to obtain a warm start.

After we have generated A sample points we perform a rounding step on P; to obtain
the polytope of the next phase, P;,;. We compute a linear transformation, T;, that puts the
sample into isotropic position and then P; = T;(P;). The efficiency of BW improves from
one phase to the next one because the sandwiching ratio decreases and so the average
number of reflections decreases and thus the convergence to the uniform distribution
accelerates (Section 4.5). That is we obtain faster a sample of better quality. Finally, the
(product of the) inverse transformations maps the samples to Py = P. Figure 4.3 depicts
the procedure.

Termination.

There are no bounds on the mixing time of BW [Gryazina and Polyak, 2014], hence
for termination we rely on ESS. MMCS terminates when the minimum ESS among all the
univariate marginals is larger than a requested value. We chose the marginal distributions
(of each flux) because they are essential for systems biologists, see [Bordel et al., 2010]
for a typical example. In particular, after we generate a chain, the algorithm updates the
ESS of each univariate marginal to take into account all the points that we have sampled
in P;, including the newly generated chain. We keep the minimum, say 7;, among all
marginal ESS values. If Z;:o n;j becomes larger than n before the total number of samples
in P; reaches the upper bound A, then MMCS terminates. Otherwise, we proceed to the
next phase. In summary, MMCS terminates when the sum of the minimum marginal ESS
values of each phase reaches n.

Rounding step.

This step is motivated by the theoretical result in [Adamczak et al., 2010] and the
rounding algorithms [Lovasz and Vempala, 2006, Cousins and Vempala, 2016]. We apply
the linear transformation 7T; to P; so that the sandwiching ratio of P;; is smaller than
that of P;. To find the suitable T; we compute the SVD decomposition of the matrix that
contains the sample row-wise [Artstein-Avidan et al., 2020].

Updating the Effective Sample Size.

The effective sample size of a sample of points generated by a process with autocor-
relations p; at lag t is function (actually an infinite series) in the p;’s; its exact value is
unknown. Following [Geyer, 1992], we efficiently compute ESS employing a finite sum

79



4. ANEw MCMC ALGORITHM FOR SAMPLING THE FLUX SPACE OF METABOLIC
NETWORKS

FIGURE 4.3: An illustration of our Multiphase Monte Carlo Sampling algorithm. The
method is given an integer n and starts at phase i = 0 sampling from Py. In each phase
it samples a maximum number of points A. If the sum of Effective Sample Size in each
phase becomes larger than n before the total number of samples in P; reaches A then the
algorithm terminates. Otherwise, we proceed to a new phase. We map back to Py all the
generated samples of each phase.

of monotone estimators p; of the autocorrelation at lag ¢, by exploiting Fast Fourier
Transform. Furthermore, given M chains of samples, the autocorrelation estimator p;
isgiven by, p;=1-— %, where C and B are the within-sample variance estimate
and the multi-chain variance estimate given in [Gelman and Rubin, 1992] and p,; is an
estimator of the autocorrelation of the i-th chain at lag ¢. To update the ESS, for every
new chain of points the algorithm generates, we compute p;. Then, using Welford’s
algorithm we update the average of the estimators of autocorrelation at lag ¢, as well as
the between-chain variance and the within-sample variance estimators given in [Gelman
and Rubin, 1992]. Finally, we update the ESS using these estimators.

To update the ESS, for every new chain of points the algorithm generates, we compute
the estimator of its autocorrelation. Then, using Welford’s algorithm we update the
average of the estimators of autocorrelation at lag ¢, as well as the between-chain variance
and the within-sample variance estimators [Gelman and Rubin, 1992]. Finally, we update
the ESS using these estimators.

Lemma 2 (Complexity of MMCS per phase). Let P = {x € R? | Ax < b}, where A€ R**? and
b € R¥, be a full dimensional polytope inR®. To sample n points (approximately) uniformly
distributed in P, MMCS (Algorithm 2) performs 6 (W (p + d)kA + A?d + d®) arithmetic
operations per phase, where W is the walk length of Billiard Walk, p is an upper bound on
the number of reflections, and A and upper bound on the points generated at each phase.

In Section 4.5 we discuss how to tune the parameters of MMCS to make it more
efficient in practice. We also comment on the (practical) complexity of each phase, based
on the tuning.
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Algorithm 2 Multiphase Monte Carlo Sampling(B n,[,A, p,7, W)

Require: A full dimensional polytope P € R?;
requested effectiveness n € N (number of sampled points);
I length of each chain;
A upper bound of the number of generated points in each phase A;
upper bound on the number of reflections p;
parameter 7 to adjust the length of the trajectory; walk length W.

Ensure: a set n of approximate uniformly distributed points S € P

Set Pp — B, sum_ess—0,S—@,i—0, Ty=14
while sum_ess < ndo
sum_point_phase —0, U — @
while sum_point_phase < A; do
Set Q — @; Generate a starting point gg € P;;

forj=1,...,1do
q;j —Billiard_Walk(P;, g;-1,p,7, W), Store the point g; to the set Q
end for

S—Su Tl._l(Q), U—UuQ, sum_point_phase — sum_point_phase+1 Up-
date ESS n; of this phase
if sum_ess+ n; = n then
break
end if
end while
sum_ess — sum_ess+n;, Compute T such that T'(U) is in isotropic position, P;; —
T(P;), Tix1 — TjoT, i—i+1
end while
return S

4.5 Results

This section presents the implementation of our approach and the tuning of various
parameters. We present experiments in an extended set of BiGG models [King et al., 2016],
including the most complex metabolic networks, the human Recon2D [Swainston et al.,
2016] and Recon3D [Brunk et al., 2018]. We end up to sample from polytopes of thousands
of dimensions and show that our method can estimate precisely the flux distributions.
We analyze various aspects of our method such as the run-time, the efficiency, and the
quality of the output.

We compare against the state-of-the-art software for the analysis of metabolic net-
works, which is the Matlab toolbox of cobra [Heirendt et al., 2019]. Our implementation
for low dimensional networks is two orders of magnitude faster than cobra. As the dimen-
sion grows, this gap on the run-time increases. The workflow of cobra for sampling first
performs a rounding step and then samples using Coordinate Directions Hit-and-Run
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(CDHR).

In [Jadebeck et al., 2020] they provide a C++ implementation of the sampling method
that cobra uses and they show that their implementation is approximately 6 times faster
than cobra. Nevertheless, we choose to compare against cobra, since it additionally
provides efficient preprocessing methods that are crucial for the experiments, and give an
implicit comparison with [Jadebeck et al., 2020].

The fast mixing of billiard walk allow us to use all the generated samples to approxi-
mate each flux distribution and so we compute a better flux distribution estimation. To
estimate each marginal flux distribution, using the samples, we exploit Gaussian kernel
density estimation. This is a non-parametric way to estimate the probability density
function of a random variable. For more details we refer to [Jones et al., 1996].

We provide a complete open-source software framework to handle big metabolic
networks. The framework loads a metabolic model in some standard file formats (e.g.,
mat and json files) and performs an analysis of the model, e.g., it estimates the marginal
distributions of a given reaction flux. All the results are reproducible using our publicly
available code

The core of our implementation is in C++ to optimize performance while the user
interface is implemented in R. The package employs [Guennebaud et al., 2010] for linear
algebra, number generation, [Chalkis and Fisikopoulos, 2020], an open-source package
for high dimensional sampling and volume approximation.

All experiments were performed on a PC with Intel Core i7-6700 3.40GHz x 8 CPU
and 32GB RAM. In the sequel, MMCS refers to our implementation.

We test and evaluate our software on 17 models from the BIGG database [King et al.,
2016] as well as Recon2D and Recon3D from [Noronha et al., 2019]. In particular, we
sample from models that correspond to polytopes of dimension less than 100; the simplest
model in this setting is the well known bacteria Escherichia Coli. We also sample from
models that correspond to polytopes of dimension a few thousands; this is the case for
Recon2D and Recon3D. We do not employ parallelism for any implementation, thus we
report only sequential running times.

We assess the quality of our results by employing both the Effective Sample Size (ESS)
and the potential scale reduction factor (PSRF) [Gelman and Rubin, 1992]. In particular,
we compute the PSRF for each univariate marginal of the sample that MMCS outputs.
Following [Gelman and Rubin, 1992], a convergence is satisfying according to PSRF when
all the marginals have PSRF smaller than 1.1.

In Table 4.1, we report the results of MMCS and cobra. For cobra, we report only
the run-time of the sampling phase (we do not add to it the preprocessing time). We
run MMCS until we get a value of ESS equal to 1000; i.e. we stop when the sum over all
phases of the minimum values of ESS among all the marginals is larger than 1000. All the
marginals of the MMCS samples reported in Table 4.1 have PSRF < 1.1. This is a strong
statistical evidence on the quality of the generated sample.

The marginal flux distribution of reaction Thioredoxin in Recon2D was estimated also
in [Haraldsdottir et al., 2017] and used as an evidence for the quality of the sample. In
Figure 4.2, we employ the copula representation to capture the dependency between two
fluxes of reactions and confirm a mutually exclusive pair of biochemical pathways.
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MMCS cobra

model m n d Time (sec) N Time (sec) N
e_coli_core 72 95 24 6.50e-01 3.40e+03 (8) 7.20e+01 4.61e+06
iLJ478 570 652 59 9.00e+00 | 5.40e+03 (5) 4.54e+02 | 2.79e+07
iSB619 655 743 83 1.70e+01 8.20e+03 (5) 9.56e+02 5.51e+07
iHN637 698 785 88 2.00e+01 6.80e+03 (4) 1.03e+03 6.19e+07
iJIN678 795 863 91 2.50e+01 | 8.10e+03 (4) 1.17e+03 | 6.62e+07
iNF517 650 754 92 1.70e+01 | 6.20e+03 (4) 1.33e+03 | 6.77e+07
iJN746 907 1054 116 5.70e+01 | 8.70e+03 (3) 2.22e+03 | 1.07e+08
iAB_RBC_283 342 469 130 5.20e+01 1.07e+04 (5) 7.85e+03 4.05e+08
iJR904 761 1075 227 2.98e+02 1.62e+04 (4) 8.81e+03 4.12e+08

iAT_PLT_636 738 1008 289 3.25e+02 | 1.04e+04 (2) 1.73e+04 | 6.68e+08
iSDY_1059 1888 | 2539 509 2.813e+03 | 2.31e+04 (3) 6.66e+04 | 2.07e+09

iAF1260 1668 | 2382 516 6.84e+03 | 5.33e+04 (6) 7.04e+04 | 2.13e+09
iEC1344_C 1934 | 2726 578 4.86e+03 | 3.95e+04 (4) 9.42e+04 | 2.67e+09
iJO1366 1805 | 2583 582 6.02e+03 | 5.14e+04 (5) 9.99e+04 | 2.71e+09
iBWG_1329 1949 | 2741 609 3.06e+03 | 4.22e+04 (4) 1.05e+05 2.97e+09
iML1515 1877 | 2712 633 4.65e+03 | 5.65e+04 (5) 1.15e+05 3.21e+09
Reconl 2766 | 3741 931 8.09e+03 1.94e+04 (2) 3.20e+05 6.93e+09

Recon2D 5063 | 7440 | 2430 2.48e+04 | 5.44e+04 (2) || ~140days | 1.57e+11
Recon3D 8399 | 13543 | 5335 1.03e+05 1.44e+05 (2) - -

TABLE 4.1: Several, 17, metabolic networks from [King et al., 2016]; also Recon2D and
Recon3D from [Noronha et al., 2019]. The semantics of the tables are as follows: (m) the
number of Metabolites, (n) the number of Reactions, (d) the dimension of the polytope;
(N) is the total number of sampled points x walk length; for MMCS we stop when the
sum of the minimum value of ESS among all the univariate marginals in each phase is
1000 (we report the number of phases in parenthesis); for cobra we set the walk length to
8d? and 1.57e+08 for Recon2D stop when all marginals have PSRF < 1.1; the run-time of
cobra for Recon2D is an estimation of the sequential time and we report it to have a rough
comparison with our implementation.

Comparing runtime performance, MMCS is one or two orders of magnitude faster
than cobra and this gap becomes much larger for higher dimensional models such as
Recon2D and Recon3D. Considering the experiments reported in [Jadebeck et al., 2020],
they report the run-time of CDHR for each model until it generates a sample with PSFR
1.2; for Recon3D they report ~ 1 day. Interestingly, for Recon3D, MMCS achieves PSRF 1.2
after ~ 1 hour while reach PSRF 1.1 after ~ 1 day.

For some models -we report them in Table 4.2— we introduce a further improvement
to obtain a better convergence. If there is a marginal in the generated sample from MMCS
that has a PSRF larger than 1.1, then we do not take into account the k first phases, starting
with k = 1 until we get both ESS equal to 1000 and all the PSRF values smaller than 1.1
for all the marginals. By "we do not take into account" we mean that we neither store
the generated sample —for the first k phases— nor we sum up its ESS to the overall ESS
considered for termination by MMCS. Note that for these models it is not practical to
repeat MMCS runs for different k until we get the required PSRF value. We can obtain
the final results —reported in Tables 4.1- in one pass. We simply drop a phase when the
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model k | Time (sec) | PSRF<1.1 | M N
iAF1260 0 6955 41% 6 | 56100
1 6943 56% 6 | 54100
2 6890 76% 6 | 55200
3 6867 95% 6 | 53200
4 6840 100% 6 | 53300
iBWG_1329 | 0 3067 50% 4 | 42100
1 3189 97% 5 | 48800
2 4652 100% 5 | 56500
iEC1344 0 4845 77% 4 | 41100
1 4721 96% 4 | 42500
2 4682 100% 4 | 39500
iJO1366 0 3708 66% 5 | 51500
1 6022 100% 5 | 51400

TABLE 4.2: During our experiments we do not take into account the sample of the k first
phases, thus we do not also count the value of the Effective Sample Size (ESS) in these
phases, before we start storing the generated sample and sum up the ESS of each phase.
In all cases MMCS stops when the sum of ESS reaches 1000. For each case we report the
total run-time, the percentage of the marginals that have PSRF smaller than 1.1, the total
number of phases (M) needed (including the k first phases), and the total number of
Billiard Walk steps (N), including those performed in the k first phases.

ESS reaches the requested value but the PSRF is not smaller than 1.1 for all the marginals.
In Table 4.2, we separately report the MMCS runs for different k just for performance
analysis reasons.

Interestingly, the total number of Billiard Walk steps —and consequently the run-time-
does not increase as k increases in Table 4.2. This means that the performance of our
method improves for these models when we do not take into account the k first phases of
MMCS. This happens because the performance of Billiard Walk improves as the polytope
becomes more rounded from phase to phase.

In Table 4.3, we analyze the performance of Billiard Walk for the model iAF1260.
We sample 20d points per phase with walk length equal to 1 and we report the average
number of reflections, the ESS, the run-time, and the ratio o'max/ 0 min per phase. The latter
is the ratio of the maximum over the minimum singular value of the point-set. The larger
this ratio is the more skinny the polytope of the corresponding phase is. As the method
progresses from the first to the last phase, the average number of reflections and the
run-time decrease and the ESS increases. This means that as the polytope becomes more
rounded from phase to phase, the Billiard Walk step becomes faster and the generated
sample has better quality. This explains why the total run-time does not increase when we
do not take into account the first k phases: the initial phases are slow and they contribute
poorly to the quality of the final sample; the last phases are fast and contribute with more
accurate samples.
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4.6 Conclusions and future work

We propose a novel method for sampling that can sample from a convex polytope in a
few thousands of dimensions within a day on modest hardware. This way, we are able, for
the first time, to perform accurate sampling from the latest human metabolic network,
Recon3D.

Sampling from iAF1260
Phase || Avg. #reflections | ESS ‘;Lmz‘ Time (sec)
1st 7819 67 | 43459 2271
2nd 4909 68 922 1631
3rd 3863 77 582 1278
4th 3198 71 360 1080
5th 1300 592 29 454
6th 1187 4821 3.5 417
7th 1181 4567 2.8 415

TABLE 4.3: We sample 20d = 10320 points per phase with Billiard Walk and walk length
equal to 1, where d = 516 is the dimension of the corresponding polytope. For each phase
we report the average number of reflections per Bllliard Walk step, the minimum value of
Effective Sample Size among all the univariate marginals, the ratio between the maximum
and the minimum singular value of the SVD decomposition of the generated sample, and
the run-time.

Regarding future work, parallelism could lead to a speedup in the run-time of our
method as the algorithm is rather straightforward to parallelize. An additional improve-
ment would be to exploit the sparsity of the stoichiometric matrix S and sample directly
from the low dimensional polytope in R” without projecting to a lower dimensional space.

Moreover, our method could be extended to any log-concave distribution restricted
to the flux space and combined with bayesian metabolic flux analysis, to sample from
multivariate, possibly multi-modal target distribution [Heinonen et al., 2019] addressing
multiple challenges of the method from the biological point of view (e.g., unrealistic
assumptions, uncertainty etc.). Last but not least, flux sampling in metabolic models built
out from multiple metabolic networks, e.g., representing a microbial community, could
also lead to important biological insights.

The scenario presented in Figure 4.2 demonstrates an essential issue of steady-state
oriented methods, that leads to obscure, non-viable flux vectors. As mentioned, flux
sampling like FBA, it also assumes that the system is at a steady state. That means that
no matter of the flux of each reaction, the total concentration of each metabolite is
constant. Therefore, in the example shown in Figure 4.2 (left copula) glucose is converted
to G6P by HEX at the expense of ATP. At the same time, glucose is produced again by the
G6PPer phosphatase. Such a scenario leads to a dead cell but allows us to make sure that
the sampling has been implemented the way it should. To use flux sampling in actual
scenarios, there must be an uptake flux for glucose and a production of some end product
which is excreted in order to force the sampling to produce a viable flux and some more
meaningful result. In the near future, several tests will be added in the dingo Python
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library ensuring the viability of the samples returned. Our main goal is to sample on the
flux space of a microbial community to infer microbial interactions (see Conclusion 7.4)
and maybe, start getting some answers on the how and why questions that have made an
"entangled bank" out of the mechanisms that govern such assemblages.
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5.1 Abstract

Microbial mats are vertically stratified communities of microorganisms characterised
by pronounced physiochemical gradients allowing for high species diversity and a wide
range of metabolic capabilities. High Throughput Sequencing has the potential to reveal
the biodiversity and function of such ecosystems in the cycling of elements and organic
matter recycling.

The present study combines 16S rRNA amplicon sequencing and shotgun metage-
nomics on sediments and microbial mats from a hypersaline marsh in Tristomo bay
(Karpathos, Greece). Sampling was conducted in July 2018 and November 2019. Samples
were collected from the microbial mats and the deeper sediment; orange and pink micro-
bial aggregates observed in the water overlying the sediment were also collected, as well
as sediment samples with no apparent layering.

Metagenomic assembly and binning in the sample level, revealed 250 bacterial and
39 archaeal metagenome-assembled genomes, with completeness estimates higher than
70% and contamination less than 5%. Halobacteria and Bacteroidetes were among the
most abundant taxa in the microbial mats. Photosynthesis was most likely performed by
purple sulphur and non-sulphur bacteria.

Overall, both the sequencing methodologies seemed to result in similar taxonomic
compositions. All samples had the functional capacity for sulphate reduction, dissimila-
tory arsenic reduction and conversion of pyruvate to oxaloacetate.
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5.2 Introduction

Microbial mats are vertically stratified communities of functional groups of microorgan-
isms embedded in an organic matrix, which may also contain minerals such as silicates
and carbonates [Stal, 2012, Bolhuis et al., 2014, Prieto-Barajas et al., 2018]. They grow on a
solid substrate (e.g. sand) and the vast majority of microbial mats utilise inorganic carbon
as carbon source, hence they are autotrophic [Bolhuis et al., 2014]. Microbial mats are
characterised by pronounced physiochemical gradients which allow for the presence of
high species diversity, encompassing a wide range of metabolic capabilities; thus, mats
are ideal models to study a whole ecosystem [Al-Thani et al., 2014] and are considered
as natural laboratories [Villanueva et al., 2007]. These physicochemical gradients pro-
vide microenvironments for various microbial functional groups, which exhibit a certain
physiology with which they fulfil a specific function [van Gemerden, 1993].

Microbial mats comprise millions of microorganisms belonging to different species
which are embedded in a matrix of extracellular polymers (EPS) and exchange signals
and nutrients, thus enabling a flow of resources and energy for the survival of the overall
community [Ruvindy et al., 2016, Prieto-Barajas et al., 2018]. The role of microbial mats
has been vital throughout Earth’s history since they produced and released reduced gases,
e.g. O, Hp, CHy, in the early earth’s atmosphere [Hoehler et al., 2001]. In addition, they
constitute the first ecosystems, along with stromatolites [Santoyo, 2021], and probably
are the oldest structured ecosystems on earth [van Gemerden, 1993].

Regardless of the vertical structure, marine microbial mats are comprised of four main
functional groups: i) oxygenic phototrophs (CYN) (primarily Cyanobacteria), ii) aerobic
heterotrophic bacteria (HET), iii) sulphate-reducing bacteria (SRB) and iv) sulphide-
oxidising bacteria (SOB) [Visscher and Stolz, 2005]. Microbial mats function as a consor-
tium where coupling of biogeochemical cycles and processes occurs [Paerl et al., 2000],
allowing the products of the metabolism of one group to be available and used by an-
other [Santoyo, 2021]. In addition, the metabolic rates of mat microorganisms are so
high that the community production per unit mass competes with that of rainforests
[Jorgensen, 1994, Krumbein et al., 2003].

Microbial mats can be distinguished in six categories [Bolhuis et al., 2014, Prieto-
Barajas et al., 2018]: i) intertidal or coastal, ii) hypersaline, iii) hot spring, iv) mats in
oligotrophic environments, v) psychrophile and vi) acid microbial mats. Intertidal mats
are formed on beaches with low slopes and fine sandy sediments [Stal, 2012] and they
experience strong salinity fluctuations, large temperature changes [Bolhuis et al., 2014]
and irregular floods [Prieto-Barajas et al., 2018]. On the other hand, hypersaline microbial
mats are found in natural occurring salt lakes and man-made salterns [Bolhuis et al., 2014]
and are exposed to salinities up to the crystallisation point of halite [Jorgensen, 1994],
high temperatures and high solar radiation [Bolhuis et al., 2014].

The present study was conducted in the Tristomo marsh in the island of Karpathos
(Aegean Sea, Greece) (Figure 5.1 A). The marsh is located at the northern end of Karpathos.
The study area is included in the Natura 2000 network (site GR4210003) and also in the
catalogue of small island wetlands (Government Gazette Issue on Compulsory Expropri-
ations and City-Planning 229/19.6.2012) with the code Y421KARO0O01 (total area: 1.9 ha)
(Figure 5.1 B). It is a seasonal brackish water marsh formed at the edge of a small plain
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where a seasonal stream ends, characterised as an intertidal marsh (type H) according to
the Ramsar convention. In the past, it probably occupied a larger area and was connected
to the stream. Most of the area is fenced with dry stones that used to be cultivated sys-
tematically. Today crops exist in only a small part and there is livestock grazing around
the marsh. On the coastal front, the cobbled beach is full of garbage carried by the waves.
Freshwater enters the marsh from the precipitation and drainage basin, while the wetland
interacts mainly with the sea through the waves but also underground [Greece, 2022].
Due to the close proximity of the marsh with the sea, it occasionally receives saline water,
therefore could be characterised as intertidal; however, crystallised salt forms an upper
layer above the actual microbial mat, something that is observed in hypersaline mats
(Figure 5.1 C and D). High Throughput Sequencing (HTS) technologies and methods have
been widely used to study real-world microbial communities. They have enabled the
study of ecosystems with no prior knowledge of the resident species, uncovering unknown
and uncultivated strains [Hedlund et al., 2014]. Metabarcoding studies are common, well-
established and less computationally demanding than shotgun metagenomics [Bell et al.,
2021b]. However, taxonomic biases may arise from differential efficiency of PCR primer
pairing in different species [van der Loos and Nijland, 2021] while the short barcoding
sequences may limit the resolution. On the other hand, shotgun metagenomics by obtain-
ing information from random sampling of virtually all genomic regions, enables profiling
up to the level of strains [Clooney et al., 2016, Segata, 2018, Davila-Ramos et al., 2019].
Therefore, microbiome metabolic functions and entire biochemical pathways that occur
in a sample can be explored after processing the metagenomic information [Sharpton,
2014].

Over the recent years, HTS approaches have been used to study the taxonomic and the
functional profiles of the microbial communities present in microbial mats [Chen et al.,
2020b, Wong et al., 2020, Kindler et al., 2022]. Several novel high-level taxa have been
discovered, e.g. Zixibacterial order GN15 [Wong et al., 2020], and a better understanding
on both their adaptive responses in such environments has been established. On top of
that, further insight on the mechanisms governing such assemblages has been gained, e.g.
the role of photoheterotrophy [Kindler et al., 2022]. The aim of the present study was to
identify the microbial communities present in samples from the hypersaline Tristomo
marsh, as well as their functional and metabolic capabilities.

5.3 Methods

5.3.1 Sample collection

Samples were collected in July 2018 and November 2019 from the Tristomo marsh (Fig-
ure 5.1). Details on the sample collection are given in Table 5.1. Sediment samples were
collected using cylindrical sampling corers (internal sampling surface 15.90 square cen-
timetres) (Figure 5.1.E). In the cases where microbial mat layers were clearly observed
(July 2018), the top layer was collected separately from the bottom layer. In addition,
microbial aggregates observed floating in the marsh were also collected. In the cases
where microbial mat layers were not clearly formed (November 2019), there was no slicing
during sample collection. In November, samples were collected from three different
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FIGURE 5.1: A) Location of Karpathos island (red pin) in the south east of the Aegean
Sea, B) satellite image of Tristomo bay and the Tristomo marsh (red pin), C) overview of
the marsh in July 2018, D) overview of the marsh in July 2018, where orange aggregates
floating in the water are shown and E) a sediment core from 2018 including salt crust,
microbial mat, sediment and an orange aggregate. (Map data: ©2022 Google Earth).

locations in the marsh, distinguished by the colour of the sediment’s upper layer (black,
purple and orange).

Samples were placed in 50 ml falcon tubes (Sarstedt, Niimbrecht, Germany) and were
stored at —20 °C, until further processing in the laboratory. Upon return to the laboratory,
they were used for molecular analysis, i.e. DNA extractions, as well as for the measure-
ment of the Particulate Organic Carbon (POC) and chloroplast pigments concentration
(chlorophyll-a, phaeopigments and chloroplastic pigment equivalents (CPE)). For the
latter, the samples were processed at the Environmental Chemistry Lab of the IMBBC
(HCMR), based on standard techniques [Yentsch and Menzel, 1963, Hedges and Stern,
1984]. Water temperature and dissolved oxygen concentration were measured in the
water overlaying the sediments by means of a portable multi-parameter (WTW Multi 3420
SET Q). Salinity was also measured with the portable multi-parameter but after dilution of
samples with dH20 since the initial measurement was out of limits (TetraCon® 925 sensor
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range: 0 - 70). Sampling was conducted under authorization from the relevant licensing
authority (Directorate General for the Protection and Development of Forests and the
Rural Environment, Directorate of Forest Management) of the Ministry of Environment
and Energy. Additional authorization was also provided from the Management Agency of
Dodecanese Protected Areas.

Phylum

Relative abundance

o

Samples

FIGURE 5.2: Bar chart showing the abundances of the main microbial taxa, at the phylum
level, at each sample, based on the 16S rRNA amplicon sequencing.

5.3.2 DNA extraction, PCR amplification and 16S rRNA sequencing

DNA was extracted as in [Henckel et al., 1999] and [Lueders et al., 2004]. Approximately
0.7 g of wet sediment were added to a 2-ml screw-cap vial, prefilled with 0.7 g of 0.1
mm (diameter) zirconia/silica beads (11079101z, BioSpec, USA). The vials were filled
with 750 pl of 120 mM NaPO4 buffer (pH 8) and 250 pl TNS solution (500 mM Tris-
HCI pH 8, 100 mM Nac(l, 10 % SDS (w/v)) and placed horizontally in a vortex for 10
minutes at maximum speed. Immediately after that the vials were centrifuged for 10
min at 20,800 rcf and 4 °C and the supernatants were transferred to new 2-ml vials. One
volume of phenol/chloroform/isoamylalcohol (P/C/I; 25:24:1; pH 8; Carl-Roth, Karlsruhe,
Germany) was added to the aqueous supernatant. Vials were vigorously shaken for 20 s
and centrifuged for 5 min at 20,800 rcf and 4 °C. Supernatants were transferred to new 2-ml
vials, and one volume of chloroform/isoamylalcohol (C/I; 24:1; Carl-Roth) was added.
Vials were again vigorously shaken for 20 s and then centrifuged for 5 min at 20,800 rcf
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and 4 °C. Supernatants were transferred to new 2-ml vials and C/I extraction was repeated
to successfully remove all phenol remnants. Supernatants were transferred to new 2-ml
vials and 1.5 ml of polyethylene glycol (30 % (w/v) polyethylene glycol 6000 in 1.6 M NaCl)
was added to precipitate nucleic acids and the vials were centrifuged for 90 min at 20,800
rcf and 4 °C. Supernatants were discarded and the pellets were washed with 1 ml 70%
ethanol (4 °C) and centrifuged for 30 min. Supernatants were again discarded, pellets
were left for air drying ( 5 min) to remove leftover ethanol and resuspended with 50 pl
10mM Tris. PCR amplification, library preparation and MiSeq sequencing was performed
asin [Pavloudi et al., 2017a]. The PCR negative control sample (blank) was also sequenced,
so that possible contamination during the library preparation could be assessed. The
raw sequence reads were processed with PEMA (version 2.1.4) [Zafeiropoulos et al., 2020]
using VSEARCH for the creation of OTUs. Taxonomic assignment was performed with the
SILVA database (version 132) [Quast et al., 2013]. The detailed parameters of the PEMA
processing are given in Supplementary File 1. The phyloseq (version 1.36) [McMurdie
and Holmes, 2013], vegan (version 2.5.7) [Oksanen et al., 2020] and ggplot2 (version 3.3.5)
[Wickham, 2016] packages were used in R (version 4.1.1) (R Core Team 2021) for the
creation of barcharts, for the nMDS and PERMANOVA, variation partitioning analysis,
db-RDA and mantel test. The scripts of Steinberger (2020) [Steinberger, 2020] were used
for the simper and the Kruskal-Wallis tests.

5.3.3 Shotgun metagenomics sequencing

Six samples were selected for shotgun sequencing (Elos01, Elos02, Elos03, Elos07, Elos10
and Elos12). Sample preparation was performed using the Nextera’™ DNA Flex Tagmen-
tation and sequencing was done at two lanes of a HiSeq 4000 (2x150bp) at the Norwegian
Sequencing Centre (NSC). All the raw sequence files of this study (both 16S rRNA and
shotgun metagenomes) were submitted to the European Nucleotide Archive (ENA) [Cum-
mins et al., 2022] with the study accession number PRJEB46254 (available at:
http://www.ebi.ac.uk/ena/data/view/PRJEB46254).

5.3.4 Assembly and binning

Since the samples were sequenced in two lanes, the fastq files of each sample were con-
catenated before proceeding with the analyses. Metagenome raw reads were processed
with the MetaWRAP workflow (version 1.3.2) [Uritskiy et al., 2018]. Reads were trimmed
and qualified using Trim Galore (version 0.5.0) [Krueger, 2022], which is a wrapper around
Cutadapt (version 1.18) [Martin, 2011] and FastQC. The clean reads were concatenated
and their co-assembly was implemented through the corresponding MetaWRAP module,
using MEGAHIT v1.1.3. The quality of the co-assembly was evaluated using QUAST [Gure-
vich et al., 2013] (see assembly_report.html). Binning was then performed using the clean
reads and the co-assembly. The MetaWRAP module for binning was performed using
MetaBAT 2 (version 2.12.1) [Kang et al., 2019] and MaxBin 2 (version 2.2.6) [Wu et al.,
2016]. CheckM (version 1.0.12) [Parks et al., 2015] was used by the MetaWRAP module
to assess the quality of the bins produced by MetaBAT 2 and MaxBin 2. Bins were then
consolidated and refined using Binning__refiner [Song and Thomas, 2017] as wrapped in
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the Bin_refinement module of MetaWRAP. The Bin_refinement module was invoked
with the default values for minimum completion (70%) and maximum contamination
(5%); see binning_results.png. The consolidated bins set was further improved using the
reassemble_bins module of MetaWRAP. To this end, bwa (version 0.7.17-r1188) [Li and
Durbin, 2009], spades (version v3.13.0) [Nurk et al., 2017] and CheckM were used; see
binning_reassembled.png. To estimate bins’ abundances in each sample (in genome
copies per million reads), the corresponding MetaWRAP module was performed invok-
ing Salmon (version 0.13.1) [Patro et al., 2017]. The refined bin-set was also used for the
blobology module of MetaWRAP; taxonomic annotation of the co-assembled contigs
was performed using megaBLAST and the nt database of NCBI.

The co-assembled contigs and the refined bins set were then used as input to Anvi'o
(version 7.1) [Eren et al., 2015]. Bowtie 2 (version 2.3.5) [Langmead and Salzberg, 2012]
was used to build BAM files and mapping and Prodigal (version 2.6.3) [Hyatt et al., 2010]
for gene prediction. BAM files were also made out of the clean reads of each sample. A
contigs database was built (using the anvi-gen-contigs-database program) after converting
the contigs name as Anvi'o suggests (see contigs-per-bin.sh script) and it was decorated
with hits from HMM models (anvi-run-hmms). An anvi profile was then built for each
of the samples’ bam file (anvi-profile) and they were merged (anvi-merge) into a single
profile. The refined bins along with their corresponding renamed contigs were imported
as a collection in the merged profile database (anvi-import-collection). At this point, a first
Anvi'o summary was recovered (anvi-summarize) (see 1st_bins_summary.txt). Bins with a
redundancy >10% were manually refined and a second summary of the bins set was made
(see SECOND_SUMMARY folder).

5.3.5 Taxonomic composition

Based on the returned co-assembly from MetaWRAP and the clean reads, communities’
taxonomic composition was assessed using Kraken2 [Wood et al., 2019] and the standard
Kraken 2 database (NCBI: January 2022); Krona plots of the community profiles can be
viewed through the kronagram.html. GTDB-Tk (version 1.7.0) [Chaumeil et al., 2020]
was used to classify genomes with the Genome Taxonomy Database (GTDB, version
r202) [Parks et al., 2022]. GTDB-Tk made use of pplacer (version 1.1.alphal9-0-g807{6f3)
[Matsen et al., 2010] and FastANI (version 1.32) [Jain et al., 2018].

5.3.6 Functional annotation

Functions were predicted at two levels: both at the MAG level, as well as at the sample
level. For the functional annotation at the MAG level, using the anvio’ contigs database
and the anvi-run-kegg-kofams program, the anvio’ contigs database was annotated with
HMM hits from KOfam, a database of KEGG Orthologs (KOs). Likewise, using the anvi-run-
ncbi-cogs, NCBI's Clusters of Orthologous Groups (COGs) based annotations were added.
The MAGs that correspond to the refined bins as they were retrieved after the MetaWRAP
and the anvio refinement steps, were annotated with KEGG modules; manually defined
functional units of gene and reaction sets [Kanehisa et al., 2012]. MAGs were “translated”
to an anvio collection (i.e., a virtual construct storing bins of items in an Anvi'o profile
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database) and this collection was used along with the anvi-estimate-metabolism program
to determine which enzymes are present in each MAG and compute the completeness
of each metabolic module (scripts can be found under the anvio folder). An nMDS was
constructed based on the presence/absence of modules in the MAGs using the jaccard
similarity index. For the functional annotation at the sample level, the clean reads as they
were returned by the corresponding MetaWRAP module and the DiTing tool [Xue et al.,
2021] were used to estimate the contribution of each sample to the biogeochemical cycles
incorporated in DiTing. DiTing used MEGAHIT [Li et al., 2015] to build the assembly of
each sample separately (so, the co-assembly described in the “Assembly and binning”
section was not used for this step) and Prodigal to retrieve the Open Reading Frames
(ORFs). KofamScan [Aramaki et al., 2020] was used for the annotation of the ORFs using
KEGG ORTHOLOGY terms. The relative abundances of metabolic and biogeochemical
functional pathways in each sample were then determined by DiTing (see DiTing folder
on the GitHub repository for more information).

5.3.7 MAGs reference phylogenies

The intersection of single copy genes from the Anvi'o [Eren et al., 2015] Bacteria_76 and
Archaea_71 sets was used to build the phylogenetic tree of the reconstructed MAGs (n
= 25). The anvi-get-sequences-for-hmm-hits program of Anvi'o was used to extract and
align the amino acid sequences of each of these genes from all the MAGs independently.
This Anvi'o program makes use of MUSCLE (version 3.8.1551) [Edgar, 2004] to return an
alignment of the extracted sequences. Once all the amino acid sequence alignments were
extracted, they were trimmed using Clipkit (version 1.1.5) [Steenwyk et al., 2020]. A super
matrix was then built using the single copy genes of the intersection. In cases where a
MAG lacked a gene, gaps were filled with dashes; both the initial and the trimmed per
gene alignments as well as the final super matrix alignment are available on the project’s
GitHub repository under the SCG folder. Using IQ-TREE2 [Hoang et al., 2018b, Minh et al.,
2020] the phylogeny of the reconstructed MAGs was built using 1,000 bootstrap replicates
(-B 1,000) and 1,000 bootstrap replicates for Shimodaira—Hasegawa-like approximate
likelihood ratio test (SH-aLRT) (-alrt 1000). The best-fit model (LG+R10) was retrieved
using ModelFinder [Kalyaanamoorthy et al., 2017]. Using Barrnap [Seemann, 2014a]
the 16S rRNA gene was extracted from the retrieved MAGs. The phylogeny of the MAGs
and their relative abundances were integrated and visualised using GraPhlAn [Asnicar
et al., 2015]. All bioinformatics analyses were supported by the IMBBC High Performance
Computing system [Zafeiropoulos et al., 2021d].

5.4 Results

5.4.1 Taxonomic composition from 16S rRNA amplicon analysis

The results of the processing of the sequences are shown in Table S1. Sequencing of
samples Elos08 and Elos11 was not successful and therefore, they were not included in the
following analyses. The final number of OTUs, after removal of the OTUs that were also
found on the blank sample, was 2,689. The most abundant phyla, as assessed by the rela-
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tive abundance percentages of each replicate sample averaged per sampling station, were
Bacteroidetes ( 17%), Euryarchaeota ( 16%), Proteobacteria ( 15%) and Halanaerobiaeota
(10%, class Halanaerobiia) (Figure 5.2). Among the Bacteroidetes, the most abundant
class was Bacteroidia ( 14%), followed by Rhodothermia ( 3%). Euryarchaeota had very
low abundances in samples Elos09, Elos10 and Elos13 and the higher abundances in the
top sediment layers, i.e. in the microbial mat samples (Elos01 and Elos04). In addition,
among the Euryarchaeota, the most abundant class was Halobacteria ( 14%) followed by
Thermoplasmata ( 2%). Proteobacteria were almost equally distributed among the classes
Alphaproteobacteria ( 7%), Gammaproteobacteria (4%) and Deltaproteobacteria (4%).
Although Patescibacteria had a low average abundance ( 6%), they were dominant in
Elos09 ( 46%). Halanaerobiaeota had low abundances in the orange and pink aggregates
(Elos03, Elos06, Elos07) as well as in Elos09, Elos10 and Elos13. In addition, Chloroflexi
were almost absent from the top layers and the aggregates but they were found in the
bottom sediment layer and in the combined sediment samples. Cyanobacteria were
about 1% on average of all the samples. The nMDS of the microbial OTUs (Figure S1)
showed that their spatial pattern differs both by their type and the year of sampling, which
was also confirmed by the PERMANOVA results (Type: EModel = 2.0396, p < 0.05; Year:
EModel = 2.3098, p < 0.05).

5.4.2 Co-assembly, binning & taxonomic composition from shotgun
metagenomics analysis

Shotgun metagenomic sequencing of the chosen six samples resulted in 744 million
reads totalling 112.3 Gbp, with each sample ranging between 16.77 and 21.78 Gbp. Co-
assembling of all the samples resulted in 1,5 million contigs totalling 5.04 Gbp. The
per-sample assemblies returned a total of 11.2 million contigs with a sum of 10.15 Gbp.
Number of reads per sample, before and after the quality control, their length and the
corresponding number of contigs are shown in Table S2. Based on the taxonomic profiles
retrieved from Kraken2 (Figure S2), after removing sequences belonging to Viruses and
sequences that could not be classified ( 1%), Euryarchaeota (class Halobacteria) represent
the majority of the total archaeal taxa ( 30% on average); however, they are almost absent
from sample Elos10 (abundance 1%) while they are dominant in sample Elos01 ( 59%).
As far as bacterial taxa are concerned, the most abundant ones were Alphaproteobacteria
(19%), followed by Actinobacteria ( 13%) and Gammaproteobacteria ( 10%). Betapro-
teobacteria, delta/epsilon Proteobacteria subdivisions and Bacteroidetes/Chlorobi group
had similar abundances ( 5%, 4% and 5% respectively). Cyanobacteria were limited in
all samples (2% on average). Also Kraken?2 analysis did not identify any Nanoarchaeota,
it identified in sample Elos01 the other archaeal taxa that are their hosts and namely a)
Ignicoccus hospitalis, b) Acidilobus sp. 7A, ¢) Vulcanisaeta spp., d) Pyrobaculum spp., e)
Metallosphaera spp., f) Caldivirga sp. and g) Sulfolobus sp.

Krona plots with the taxonomic profiles of each sample are available on GitHub.
Prodigal predicted millions of genes per sample ranging from 2.1 millions (Elos03) to 4.3
(Elos10). Their metabolic capacity/potential is further described in the “Biogeochemical
cycles” section. Based on the blobology results, among the 1,513,505 co-assembled contigs
a set of 102,250 were binned (see Figure S3); according to megaBlast and the nt database
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adjustedR2 p

Oxygen + Temperature 0.64 *
Oxygen with Temperature as condition variable 0.46 o
Temperature with Oxygen as condition variable 0.75 non sign.

TABLE 5.2: The percentage of variation explained of each explanatory physicochemical
variable, as well as their combinations. *:<0.1, **:<0.05

of NCBI, among the binned contigs 53,536 were bacterial and 2,230 archaeal while 60
contigs were assigned as viral and 739 as eukaryotic. The corresponding numbers for the
case of the unbinned contigs were 1-2 orders of magnitude higher; thus, the number of
unbinned contigs were 430,028 bacterial, 126,690 archaeal, 15,828 eukaryotic and 1,805
viral correspondingly (see Figure S4).

5.4.3 MAGs phylogeny, functional annotation and distribution across samples

In line with the quality definitions described in [Bowers et al., 2017], metagenome binning
generated a total of 289 MAGs; details are shown in the Supplementary File 2. According
to the CheckM software 194 MAGs were reconstructed with a completeness higher than
90% and a contamination lower than 5% and all the rest had a completeness >70% and
a contamination score <6%. According to the anvio summary (using the co-assembly
as contigs database, the merged samples as profile and the reconstructed MAGs, i.e.
the refined bins, as a collection) the redundancy of 10 (bin127, bin114, bin156, bin243,
bin268, bin276, bin12, bin269, bin252, bin226) of the reconstructed MAGs was >10%.
After the manual refinement of these 10 MAGs, a total of: (i) 178 bacterial high quality
(completeness > 90%, contamination <5%), (ii) 70 bacterial and 39 archaeal medium
quality (50% < completeness <90% and 5% <contamination <10%), and (iii) 2 bacterial
MAGs of low quality (bin263 and bin182 with a completeness score <50%) were retrieved.
Combining the anvio summary results (see bin_by_bin folder in SECOND_SUMMARY)
and the Barrnap outcome (see arc_rrnas and bac_rrnas on GitHub repo), the 16S rRNA
gene was identified in 100 out of the total 250 bacterial MAGs. Likewise, from a total of 39
archaeal MAGs, 16S rRNA gene was found in 28 of them. Contigs included on those MAGs
represented 1.03 Gbp of assembled reads. A set of 25 MAGs had a completeness of 100%
and contamination less than 5% while 5 bacterial (MAG 143, MAG 66, MAG 129, MAG 189
and MAG 76) and 1 archaeal (MAG 232) MAGs among them had a contamination of 0%.
Overall, bacterial MAGs had higher completeness scores.

5.4.4 MAGs phylogenomic placement

The GTDB-Tk returned phylogenetic trees of the GTDB partition and the MAGs assigned
to the corresponding domain for the cases of bacteria and archaea including the 2 low
quality included (bin_182 : Proteobacteria and bin_263: Verrucomicrobiota). The phy-
logeny of the reconstructed MAGs (Figure 5.3) was built based on single-copy genes
present on both Archaea and Bacteria, using the total number of MAGs even if some of
the MAGs did not have all the 25 single-copy genes. Although not all these 25 single-copy
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genes were found in every MAG, still, the mean number of occurrences of a gene among
the 289 MAGs was 266.68, ranging from 211 to 278. In general, the archaeal MAGs had the
fewer single-copy genes, most probably due to their lower completeness. The number
of MAGs in which a single-copy gene was found ranged from 211 to 278 (mean = 266.68).
Using the total number of MAGs the phylogeny of the reconstructed MAGs highlight the
robustness of the method as even for those MAGs the phylogenetic signal was enough to
place them among the representatives of their phylum. Thorough investigation of the tree
pointed out that the only two discrepancies were that the sole MAG of the RBG-13-61-14
phylum (bin_124) that was placed among the Myxococcota representatives and that a
representative of the Patescibacteria phylum (bin_61) was not placed close to the rest
of Patescibacteria but as the closest relative of the representatives of the Chloroflexota
phylum. The novel candidate phylum (bin_202) was placed within the same clade with
Eisenbacteria (bin_31). In general, bootstrap values were >90% with only exceptions
a number of clades with representatives of the Nanoarchaeota phylum (of which the
completeness and the number of single-copy genes present was relatively lower).

5.4.5 Distribution of MAGs across samples

Based on the taxonomic end results of the shotgun metagenomic survey (Figure S5;
MAG abundances per sample (MetaWRAP)), the most phylum was Bacteroidota ( 28%
on average), which almost dominated sample Elos03 ( 57%) and Elos07 ( 40%). The
second most abundant phylum was Proteobacteria ( 13% on average), with abundances
ranging from 2% in Elos02 to 23% in Elos01 and 22% in Elos07. Planctomycetota and
Desulfobacterota were found at about 8% and 7% respectively, with the latter being
absent from Elos03 and very rare in Elos07 (2%). The only phylum that was present only
in the microbial aggregates, i.e. in Elos03 and Elos07, and was absent from all the other
samples was Myxococcota. The most abundant archaeal phylum was Nanoarchaeota (5%
on average), which was mostly found in Elos01 ( 16%) and in much lower abundances
in the other samples. Thermoplasmatota and Asgardarchaeota were found in similar
abundances (3% and 2% on average respectively) and they were also absent from Elos03
and Elos07. Halobacteriota ( 2% on average) were not found in Elos10 and Elos12 and
were mostly present in Elos01 (6%). Elos10 was the sample with the highest number of
bins (Figure S6) even if it was the one with the lowest number of reads. In addition, it
seems to be closer to Elos02, the bottom layer sediment sample from July, and to sample
Elos12. The microbial aggregates (Elos03 and Elos 07) form another cluster, distinct from
the other samples, but closer to Elos01, the microbial mat sample. The MAG 202 that
represents a novel phylum is present in samples Elos12, Elos10 and Elos02.

5.4.6 Functional annotation of MAGs

The reconstructed MAGs were annotated with KofamScan with a range of KEGG OR-
THOLOGY terms ranging from 354 to 2,879 terms (Figure S7), leading to 1 to 87 complete
KEGG modules (Figure S8). The archaeal MAGs had, in general, lower completeness
scores, lower number of KO terms assigned and less complete modules. As it is shown
in Figure S9, MAGs form distinct clusters both based on the taxonomy, i.e. if they are
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FIGURE 5.3: Concatenated marker gene phylogeny of the Karpathos’ marsh MAGs. Phy-
logeny of the 289 MAGs recovered from a hypersaline marsh in Karpathos island, based on
25 concatenated, single-copy genes present both in Archaea and Bacteria. From inside to
outside, the concentric circles around the phylogeny indicate: the bin id, phylum level tax-
onomy, bin relative abundance in the i) top layer of the sediment (i.e. the microbial mat),
ii) bottom layer of the sediment, iii) orange aggregate, iv) pink aggregate, v) combined
sediment layers (black upper layer) and vi) combined sediment layers (orange upper
layer). Stars indicate high quality bins. The novel phylum (bin_202) is highlighted in grey.
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bacterial or archaeal (PERMANOVA: EModel = 35.767, p<0.001), as well as based on their
completeness (PERMANOVA: EModel = 5.2156, p<0.001). The modules that contribute
most to this clustering, as identified by the simper analysis, as well as the significance of
any given module’s contribution, are shown in Table S3. Examples of these modules are
related to oxygenic photosynthesis and nitrogen, sulphur and carbon cycles. When exam-
ined separately, again they differ significantly by completeness (PERMANOVA: Bacteria:
EModel = 3.4053, p < 0.001; Archaea: EModel = 2.4452, p < 0.001).

5.4.7 Comparison of taxonomies between amplicon and metagenomic
analysis

As expected, the taxonomic composition of the microbial communities in our samples
depends on the analytical procedure that was followed in each case. However, when the
similarity matrices of the samples are compared, the pattern deriving from the relative
abundances of the microbial OTUs as derived from the amplicon survey, is highly cor-
related with the one deriving from the shotgun metagenomic survey (Mantel statistic:
r=0.83, p<0.001). The pattern deriving from the Kraken?2 analysis is also correlated both
with the amplicon survey, as well as with the end result of the shotgun metagenomic
survey (Mantel statistic: r=0.45, p<0.05; r=0.52, p<0.05, respectively), but on a lesser
degree.

5.4.8 Physicochemical analysis

The physicochemical variables are given in Table S4. According to the variation partition-
ing analysis (Table 5.2), the combination of oxygen and temperature explained 64% of the
total variation in the Kraken2 community similarity matrix. For the other cases, i.e the
amplicon data matrix and the end result of the shotgun metagenomic analysis, residuals
were higher than 0.60 and therefore no significant models were retrieved.

5.4.9 Functional profiles at the sample level

A set of 783,693 unique proteins were predicted from a total of 3,532,725 hits with NCBI
COGs. The MEGAHIT assembler as implemented in the framework of DiTing, returned
the assembly of each sample ranging from 1,323,538 (Elos03) to 2,773,933 (Elos10) contigs.
As shown in Figure 5.4, pathways belonging to the carbon cycle, central metabolism and
other metabolism are the most abundant (23%, 19% and 18% of the total pathways on
average respectively). More specifically, the Reductive citrate cycle and the Dicarboxylate-
hydroxybutyrate cycle dominate the carbon cycle (8% and 5%, 18% respectively). In
the central metabolism, pathways like the Embden-Meyerhof glycolysis pathway and
tricarboxylic acid (TCA) cycle are most abundant ( 7% each). In contrast, the Entner-
Doudoroff pathway, i.e. an alternative glycolytic pathway, is found in abundances an
order of magnitude lower than the Embden-Meyerhof glycolysis pathway (Figure S10).
Wood-Ljungdahl pathway that enables the use of hydrogen as an electron donor, is mostly
found in bottom sediment layer sample (Elos02), but also in the combined sediments
from the November 2019 sampling (Elos10 and Elos12) and to a lesser extent in the other
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samples. Bacterial chemotaxis, flagellar assembly and dissimilatory arsenic reduction
are also among the most abundant pathways (9% and 7%, 3% respectively). Regarding
the methane cycle, methanogenesis pathways were found in the bottom sediment layer
sample (Elos02), but also in the combined sediments from the November 2019 sampling
(Elos10 and Elos12), as the Wood-Ljungdahl pathway; the most abundant methanogenesis
pathway was the formation of methane from acetate. Interestingly, methane oxidation
was almost absent in the samples. Regarding the sulphur cycle, the most abundant
pathways were the assimilatory and dissimilatory reduction of sulphate to sulphite ( 1%
each). As shown in Figure 5.5, thiosulphate oxidation as well as sulphite oxidation, but to
alesser extent, contribute to the sulphate pool. Sulphur disproportionation to sulphide
and sulphite is absent in the aggregate samples, i.e. Elos03 and Elos07. In addition,
although DMSO reduction is an abundant pathway in all the samples, DMS oxidation is
very rare and mostly found in Elos03, i.e. the orange aggregate (Figure S11). As shown
in Figure 5.6, dissimilatory nitrate reduction to nitrite and nitrite to ammonia (DNRA)
is prevalent in all samples, but it is mostly found in the combined sediment samples
(Elos10 and Elos12). Denitrification (i.e. nitrite to nitric oxide and nitric oxide to nitrous
oxide) is mostly found in sample Elos12. Nitrification, i.e. conversion of hydroxylamine
to nitrite, is almost absent from samples Elos01 (the microbial mat) and the microbial
aggregates (Elos03 and Elos07). Nitrogen fixation is mostly abundant in the sample Elos07
(the pink aggregate). Anaplerotic genes were also very abundant in our samples ( 2%),
and in particular the Pyruvate Carboxylase Pathway which produces oxaloacetate from
pyruvate and replenishes the intermediates of the TCA cycle.

5.5 Discussion
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