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Abstract

Over the past few decades, computing power, storage capabilities, and network technolo-
gies have experienced exponential growth, driven by breakthroughs in hardware and soft-
ware development. These advancements have brought profound transformations in vari-
ous aspects of human life, making computing devices, from desktops and laptops to smart-
phones and embedded systems, affordable and readily available to everyday users. Also,
the widespread adoption of the Internet, the emergence of mobile networks, and the ad-
vent of cloud computing have interconnected these devices like never before, revolution-
izing the way information is shared, collected, stored, and analyzed.

However, these rapid technological advancements have led to the development of com-
plex hardware and software ecosystems and come with serious challenges and concerns
regarding their security and the privacy of their users. The traditional systems tasked to
safeguard the various layers of modern computing systems are becoming more complex,
while adversaries utilize years of experience and advanced techniques to exploit the ever-
increasing attack surfaces. To address this issue, the research community and the industry
propose novel systems, targeting specific use cases, that manage to achieve their goal but
often are too specialized to be interoperable or adopted by the end users.

In this work, we explore the design and implementation of a modular framework that
aims to raise the security bar at four core layers, providing interoperable components that
can be utilized by a wide range of devices, ranging from end-user systems to cloud in-
frastructure. We base our work on Trusted Execution Environments (TEEs), a technology
available to complex systems as well as common computing devices and prove that this
platform can serve as a common base for building efficient and interoperable security sys-
tems, able to safeguard hosts, computations, communications, data management, and
the security mechanisms themselves. In addition, we propose techniques to extend the
capabilities of modern TEEs, enabling secure execution of unmodified applications de-
veloped with high-level languages, secure distributed execution of such applications, and
leverage the sandboxing properties of TEEs to enable privacy-preserving computations in
the cloud. Finally, we evaluate our work using off-the-shelf hardware with real applica-
tions and datasets to highlight the efficiency and practicality of the proposed architecture.

Supervisor: Sotiris Ioannidis
Associate Professor

School of Electrical and Computer Engineering
Technical University of Crete
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Περίληψη

Τις τελευταίες δεκαετίες, η υπολογιστική ισχύς, οι δυνατότητες αποθήκευσης και
οι τεχνολογίες δικτύου έχουν δεχθεί εκθετική ανάπτυξη, οδηγούμενες από τις επα-
ναστατικές εξελίξεις στην δημιουργία υλικού και λογισμικού. Αυτή η πρόοδος έχει
επιφέρει σημαντικές αλλαγές σε διάφορες πτυχές της ανθρώπινης ζωής, καθιστώντας
τις συσκευές, από σταθερούς και φορητούς υπολογιστές έως τα έξυπνα κινητά τη-
λέφωνα και τα ενσωματωμένα συστήματα, προσιτές και εύκολα διαθέσιμες στους
καθημερινούς χρήστες. Επίσης, η ευρεία υιοθέτηση του ∆ιαδικτύου, η εμφάνιση των
ασύρματων δικτύων και το υπολογιστικό νέφος έχουν συνδέσει αυτές τις συσκευές
όπως ποτέ άλλοτε, επαναπροσδιορίζοντας τον τρόπο με τον οποίο κοινοποιούνται,
συλλέγονται, αποθηκεύονται και αναλύονται τα δεδομένα.

Ωστόσο, αυτές οι ταχείες τεχνολογικές εξελίξεις έχουν οδηγήσει στην ανάπτυξη
πολύπλοκων οικοσυστημάτων υλικού και λογισμικού και συνοδεύονται από σοβαρές
προκλήσεις και ανησυχίες όσον αφορά την ασφάλειά τους και την ιδιωτικότητα των
χρηστών τους. Τα παραδοσιακά συστήματα που χρησιμοποιούνται για την προστα-
σία των διαφόρων επιπέδων των σύγχρονων υπολογιστικών συστημάτων γίνονται
όλο και πιο πολύπλοκα, ενώ οι επιτιθέμενοι εκμεταλλεύονται την πολυετή εμπειρία
τους και προηγμένες τεχνικές για να εκμεταλλευτούν τις αυξανόμενες επιφάνειες
επίθεσης. Για να αντιμετωπίσουν αυτήν την απειλή, η ερευνητική κοινότητα και η
βιομηχανία προτείνουν καινοτόμα συστήματα, που ειδικεύονται σε συγκεκριμένες
περιπτώσεις χρήσης, τα οποία καταφέρνουν να επιτύχουν τον στόχο τους, αλλά συ-
χνά είναι πολύ εξειδικευμένα για να είναι διαλειτουργικά ή για να υιοθετηθούν από
τους τελικούς χρήστες.

Σε αυτήν την εργασία, εξετάζουμε τον σχεδιασμό και την υλοποίηση ενός ευ-
έλικτου πλαισίου προστασίας που στοχεύει στην αύξηση του βαθμού ασφάλειας σε
τέσσερα βασικά επίπεδα, παρέχοντας διαλειτουργικά συστήματα που μπορούν να
εγκατασταθούν και να χρησιμοποιηθούν από μια ευρεία γκάμα συσκευών, από απλά
συστήματα χρηστών έως υποδομές υπολογιστικού νέφους. Βασίζουμε την εργα-
σία μας σε Ασφαλή Περιβάλλοντα Εκτέλεσης (ΑΠΕ), μια τεχνολογία η οποία είναι
διαθέσιμη για πολύπλοκα συστήματα καθώς και για κοινές συσκευές. Επιπλέον,
αποδεικνύουμε ότι αυτή η τεχνολογία μπορεί να λειτουργήσει ως κοινή βάση για την
κατασκευή αποτελεσματικών και διαλειτουργικών συστημάτων ασφαλείας, τα οπο-
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ία μπορούν να προστατεύουν τις συσκευές, τους υπολογισμούς, τις επικοινωνίες, τη
διαχείριση δεδομένων καθώς και τους ίδιους τους μηχανισμούς ασφαλείας. Επίσης,
προτείνουμε τεχνικές για την επέκταση των δυνατοτήτων των σύγχρονων ΑΠΕ, ε-
πιτρέποντας την ασφαλή εκτέλεση μη τροποποιημένων εφαρμογών που έχουν ανα-
πτυχθεί σε γλώσσες υψηλού επιπέδου, την ασφαλή κατανεμημένη εκτέλεση τέτοιων
εφαρμογών και την αξιοποίηση των ιδιοτήτων απομόνωσης των ΑΠΕ για την εκτέλεση
υπολογισμών που διαφυλάσσουν την ιδιωτικότητα στο υπολογιστικό νέφος. Τέλος,
αξιολογούμε την εργασία μας χρησιμοποιώντας κοινό υπολογιστικό υλικό με πραγ-
ματικές εφαρμογές και δεδομένα για να επιδείξουμε την αποδοτικότητα και την
πρακτικότητα της προτεινόμενης αρχιτεκτονικής.

Επόπτης: Σωτήρης Ιωαννίδης
Αναπληρωτής Καθηγητής

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πολυτεχνείο Κρήτης
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Chapter 1

Introduction

With the rapid technological advancement in the areas of the Internet of Things (IoT), mo-

bile and smart devices, and the growing reliance on digital connectivity in various indus-

tries, the number of devices and connections raises exponentially. This trend is expected

to persist as technology continues to advance and more devices become interconnected,

resulting in a greater need for robust security measures to protect devices and connections

from potential cyber threats. More specifically, Cisco’s forecast [62] predicts that the aver-

age number of devices per capita will grow from 2.4 in 2018 to 3.6 by 2023, while the share

of Machine-To-Machine (M2M) connections (also referred to as IoT) will grow from 33%

to 50%. In addition, the percentage of usage of mobile devices grows and it is expected

that over 70% of the global population will have mobile connectivity by 2023. In the mean-

time, cyber threats are constantly evolving, bypassing state-of-the-art countermeasures.

For instance, Symantec’s Threat Hunter Team reported [182] that ”Ransomware groups

these days employ quite a diverse toolset, making use of a mixture custom malware, legiti-

mate software, and operating system features (also known as living off the land)”.

The protection of the higher levels of a system’s software stack is traditionally achieved

using malware analysis tools, Network Intrusion Detection Systems (NIDS), permission

control mechanisms, data tracking, etc. However, such systems are nowadays very com-

plex and require powerful processors to handle modern attacks, yielding high power con-

sumption. Recently, the advent of cloud computing has led to the outsourcing of many

middlebox applications, including deep packet inspection and virus scanning. The ad-

vantages are numerous, such as the ability to be utilized by almost every end-user device,

lower costs spent on equipment, operation, and maintenance and better performance

and scalability. However, offloading functionality and sensitive personal data (e.g., user

network traffic or files) to a possibly untrusted third-party entity automatically broadens

the attack surface and aims to solve the security and performance problems without tak-

ing user privacy into account.

One of the most crucial security problems to completely safeguard devices and appli-

cations is to ensure the integrity of the Operating System (OS), as it has a direct impact
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to the security of the executing processes and their data. At the same time, adversaries

and attackers are becoming more and more powerful, utilizing years of experience and ad-

vanced tools, creating attacks that stay under the radar of modern anti-malware systems.

While various works aim to protect operating systems against sophisticated rootkits, they

often utilize external hardware or hypervisors. Such solutions cannot always be deployed

on end-user devices since the necessary hardware is usually complex and non-commodity

or the required hypervisor is not available.

These limitations also apply for the Android OS which has become a very popular

open-source operating system, targeting a large variety of devices. Mobile devices play

a core part of our everyday life and usually process and store a vast amount of privacy-

sensitive data, such as personal information, financial accounts, cryptographic keys and

high-profile enterprise assets. Android is also used as a hub for a diverse set of smaller

devices, such as wearables and IoT, sending their data to a corresponding application that

runs on an Android device. As such, protecting the operating system, the applications,

and enabling them to compute on sensitive data that external devices generate, while pre-

serving their integrity and preventing any unwanted or malicious modifications of these

data, is an important problem.

However, regardless of the available systems guarding the host and its communication

channels, the need to secure the executing applications still remains. One of the most pop-

ular approaches to this issue is enabling confidential computing with Trusted Execution

environments (TEEs) that are becoming increasingly widespread in the computing land-

scape. However, their development and deployment remains challenging due to several

reasons. The lack of high-level TEE abstractions complicates application development

and forces the use of low-level memory-unsafe and type-unsafe abstractions. These chal-

lenges are exacerbated by technical issues regarding runtime extensibility, management of

cryptographic operations, and restricted interfaces — even porting existing applications

requires manual partitioning, recompilation, and extra linking steps.

1.1 Motivation

While various works exist in the areas of kernel integrity monitoring, malware detection

and secure code execution, they oftentimes introduce heavy system modifications or ex-

ternal/custom hardware. These modifications are usually not trivial or assume the exis-

tence of hardware devices or architectures that cannot be found in commodity systems.

Also, these properties render them non-interoperable, preventing the ability to combine

multiple solutions on a single host to protect various software levels.

In the area of mobile devices, developing security tools for Android, especially based

on TrustZone [39], is even more complicated despite the fact that it is available as a feature

for almost all ARM CPUs. Many times it cannot be directly used since it requires control
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of the device’s firmware, which is not always available, preventing TrustZone-based soft-

ware to be seamlessly deployed across different devices. This leads to the development of

custom solutions that target a single device, usually a prototype or a development kit. For

these reasons, while most proposed solutions manage to mitigate the security issues they

are addressing and provide useful research results, they rarely get commercially adopted.

Leveraging trusted execution environments appears to be a very appealing approach

for building a protection stack based on a common technology with interoperable sub-

components. This stack can address various security issues across the entire system’s soft-

ware layers and can be executed on off-the-shelf systems without modifications. Also, this

approach allows the extension of such a stack by building upon established, tested, and

documented libraries and APIs.

The currently available trusted execution environments offer a plethora of mechanisms

for handling some very important security issues. First, deploying security mechanisms

inside enclave-like TEEs offers protection for the mechanisms themselves; an aspect that

is not comprehensively discussed in the literature. This is a realistic threat as many real-

world attacks are known to disable or disrupt the execution of the protection mechanisms

to achieve their goal — an isolation property that is usually achieved with custom hard-

ware, hardware modifications or hypervisors. Also, secure enclaves are able to store or

seal sensitive and private data and provide mechanisms for integrity checking upon reuse.

Another benefit of building a security stack based on enclaves is the ability to utilize lo-

cal and/or remote attestation. In this way, the various components of the security system

can be attested via a local service or a remote trusted party. Finally, many capabilities

of TEEs are not yet thoroughly explored by the literature, such as (i) repurposing their

functionality to address the privacy issues raised by security software, especially when ex-

ecuted remotely, (ii) the option of enabling dynamic or type-safe code execution, as well

as (iii) their potential to assist in establishing CPU-to-CPU communication channels with

stronger security guarantees than mechanisms performing encryption using unprotected

memory spaces.

For this work, we choose to utilize Intel’s x86 platform as it provides, up to this date, the

most versatile and extendable user-level enclave-based trusted execution environment,

namely Intel Software Guard eXtensions (SGX) [67]. The work proposed in this thesis is

not directly dependent on SGX or the x86 architecture and the proposed paradigms can

be implemented on any TEE platform that offers user-level enclaves and attestation capa-

bilities, such as SANCTUARY [55], which offers enclaves based on TrustZone. However, at

this point, neither SANCTUARY nor any other enclave-based TEE (other that Intel SGX) is

available to developers and since SANCTUARY is based on TrustZone, it requires access to

the device’s firmware to be deployed, thus it cannot be seamlessly installed across devices.

SGX enables the creation of secure and hardware-assisted isolated software containers

in the user space, called enclaves, whose code and data cannot be read or modified by
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any other process aside from the one utilizing them. This reverse-sandbox property also

restricts the OS kernel or debuggers from reading or tampering their contents. Intel SGX

utilizes hardware assisted encryption, performed by the CPU, using a supplied on-chip

mechanism called Memory Encryption Engine (MEE). The MEE is responsible for encrypt-

ing a portion of the live memory and providing it to SGX where the data and the code of

several enclaves may reside. Data from the trusted enclave are decrypted on the fly during

execution within the CPU and are accessible only by the enclave. When enclave memory

pages need to be swapped out and moved to the DRAM, SGX encrypts them using the

MEE. As a result, every process is restricted from accessing the enclave’s contents. Also,

enclave data can be securely sealed and exported in the untrusted file system in an en-

crypted format, accompanied by metadata used for integrity checking upon reuse. With

these mechanisms, SGX protects the confidentiality of the enclave pages, even when as-

suming an untrusted or even a malicious operating system, hypervisor or firmware. These

properties render SGX the best of the available TEE platforms to build this work on.

1.2 Thesis Statement

In this work we prove that user-level enclave-based Trusted Execution Environments
can be leveraged to implement a modular security framework consisting of interopera-
ble components, able to protect various software layers and provide user privacy while
operating with off-the-shelf software and hardware infrastructure. To address the mul-

tiple security issues discussed above, we develop such a framework and partition it into

four different layers: (i) host protection, (ii) operating system service protection, (iii) secure

communications, and (iv) secure dynamic code execution. In total, our stack provides six

components: (i) a malware detection engine, (ii) a kernel integrity monitor, (iii) a service for

providing secure and attested end-to-end communications, (iv) a TEE-enhanced Android

OS, (v) two protected high-level language runtimes that enable secure dynamic code exe-

cution, and (vi) a scheduling system that dynamically scales high-level code execution over

multiple TEEs, aiming to cover all aspects of modern system security.

Our security framework includes a signature-based malware detection solution, de-

ployable either locally or on remote infrastructure, that operates without compromising

user privacy by exposing sensitive files and data to infrastructure providers. The frame-

work also provides a lightweight snapshot-based kernel integrity monitor able to detect

persistent or transient rootkits without the need for external hardware or hypervisors.

To cover the field of mobile devices, we extend our security stack by porting the Intel

SGX SDK and PSW to the Android x86 platform and implement the first, to our knowledge,

SGX-enabled Android OS. We design simple APIs and a custom cross-compiler toolchain

for developers that wish to extend our security stack or implement new tools based on

enclaves, able to be deployed across different mobile devices without requiring firmware
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flashing or other intrusive modifications.

We also extend the abilities of secure enclaves to overcome their limitations and repur-

pose their functionality. An idea not proposed in the literature yet, is the deployment of

such reverse-sandboxes in the cloud to ensure user privacy. By establishing secure end-

to-end communication channels between the end-user device and the remotely executed

enclave, the users can offload sensitive data and applications without the risk of honest

but curious providers taking access to them. In this way, we handle the offloading privacy

risks that are often not taken into consideration by academic or commercial works.

Finally, we further extend our framework beyond providing interoperable malware de-

tection tools, OS enhancements and protected communication. While the TEEs offered

by the major vendors provide a large set of security features, they mandate secure code

development in C/C++. This property does not allow for dynamic code execution or appli-

cation development in a modern high-level and type-safe language. Also, the integration

of a TEE technology in a new or existing software ecosystem requires heavy modifications

and expertise on codebase partitioning. With this work, we address the common limi-

tations of available TEE technologies which prevent them from being widely adopted in

modern software ecosystems, built using high-level type-safe languages. The main idea

for reaching this goal is to treat code as data, enabling it to be transferred to and from the

enclave in an attested way and then execute it in the secure and attested environment.

Building on this idea, we provide dynamic software execution inside enclaves by utilizing

custom-ported popular language runtimes, such as Lua and JavaScript. The combination

of secure dynamic execution and attested communication also enables the trusted execu-

tion via offloading for devices not equipped with TEE-capable hardware.

1.3 Contributions

More specifically, this work contributes the following in the areas of (i) malware detection,

(ii) kernel integrity monitoring, (iii) trusted execution for Android, (iv) secure and attested

end-to-end communications, (v) secure dynamic code execution, and (vi) secure distributed

dynamic code execution:

Malware Detection

• A practical cloud-based malware detection solution that provides users with strong

privacy-preserving guarantees regarding the processing of their personal and sensi-

tive data remotely by utilizing hardware assisted enclaves.

• Our work mitigates the performance constraints introduced by user-level enclaves,

specifically for signature-based detection approaches, such as malware and intru-

sion detection systems.
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Kernel Integrity Monitoring

• A kernel integrity monitor that leverages user-level enclaves to protect its code and

data from identification and modification.

• Proof of the effectiveness of the proposed system in identifying transient kernel-side

attacks as well as a study of the appropriate monitoring intervals that guarantee that

transient rootkits are not able to perform any malicious actions and remain unde-

tected at the same time.

Trusted Execution for Android

• A systematic methodology that can be used to port the SGX framework to the An-

droid OS, including the SGX kernel driver, the required libraries and background ser-

vices needed for its operation and a custom cross-compiler. This work has lead to

the first and only, to our knowledge, SGX-enabled Android OS.

• Popular Android services, enhanced with SGX capabilities and a programming para-

digm tailored for externally paired devices that enables efficient and trusted data and

code flow between external devices that pair with the SGX-enabled Android OS.

Secure and Attested Communications

• A system that provides seamless establishment of enclave-to-enclave (CPU-to-CPU)

attested and encrypted network communication between two or more parties.

• A caching system for SGX RA responses that reduces the latency of consecutive con-

nections, rendering them comparable or faster than a standard TLS handshake.

Secure Dynamic Code Execution

• Two lightweight secure execution systems that enable confidential computing using

high-level languages, namely Lua and JavaScript, eliminating the need to learn or

port code to device-specific TEEs.

• Implementation and evaluation of several low-level optimizations, such as enclave

pre-allocation and reuse, as well as runtime-specific optimizations to accelerate their

performance and allow transparent execution of legacy code without modifications.

Secure Distributed Dynamic Code Execution

• A scheduling middleware and a tag interpreter that enable the secure distributed

execution of tagged functions across multiple server nodes hosting instances of TEE-

protected runtimes.
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• Proof that the proposed systems can be used to securely execute and distribute a

diverse set of new and legacy applications, from simple popular benchmarks to real-

world toolkits, with little-to-zero code modifications.

1.4 Outline of this Dissertation

This dissertation is structured as follows. Chapter 2 presents an overview of the currently

available TEE solutions and discusses their various characteristics in detail. The informa-

tion provided in this chapter also explains our choice for building the proposed framework

based on Intel SGX. Chapter 3 offers a high-level overview of our framework’s components

and the software layer that each one of them targets, as well as our framework’s general

threat model. Then, Chapters 4 to 9 provide detailed descriptions regarding the design

and implementation of each component composing our security framework. Also, these

chapters offer thorough evaluation of the discussed components and a summary of the

contributions derived by the research work that led to their development. Chapter 10 sur-

veys previous work related to the field that each framework’s component addresses as well

as related work in the general field of trusted execution environments. Finally, Chapter

11 summarizes the key points of this dissertation and offers some directions for future

work. A list of publications produced so far by the activities related to this dissertation is

presented in Appendix A.
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Chapter 2

Background

A Trusted Execution Environment (TEE) is a secure, trusted, and integrity-protected envi-

ronment, offering secure execution, memory, and storage capabilities, usually assisted by

dedicated hardware. However, the term TEE is redefined many times through the years,

depending on the marketing purposes of each vendor and the scope it is used in. So far,

there is no common and precise definition of the term and the properties of each available

TEE are redefined with each implementation. To emphasise on this, we present the seven

most cited definitions of the term, in chronological order, spanning two decades.

1. Garfinkel et al., Terra, 2003 [86]: A TEE is a dedicated closed virtual machine that is

isolated from the rest of the platform. Through hardware memory protection and

cryptographic protection of storage, its contents are protected from observation and

tampering by unauthorized parties.

2. OMTP, Advanced Trusted Environment, 2009 [140]: A TEE resists against a set of de-

fined threats and satisfies a number of requirements related to isolation properties,

life cycle management, secure storage, cryptographic keys and protection of applica-

tion code.

3. GlobalPlatform, TEE System Architecture, 2011 [150]: A TEE is an execution environ-

ment that runs alongside but isolated from the device’s main operating system. It

protects its assets against general software attacks. It can be implemented using mul-

tiple technologies and its level of security varies accordingly.

4. Vasudevan et al., Trustworthy Execution on Mobile Devices, 2014 [194]: The set of fea-

tures intended to enable trusted execution are the following: (i) isolated execution,

(ii) secure storage, (iii) remote attestation, (iv) secure provisioning, and (v) trusted

path.

5. Sabt et al. Trusted execution environment, 2015 [157]: A TEE is a tamper-resistant pro-

cessing environment that runs on a separation kernel. It guarantees the authenticity

9
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of the executed code, the integrity of the runtime states (e.g., CPU registers, memory

and sensitive I/O), and the confidentiality of its code, data and runtime states stored

on a persistent memory. In addition, it shall be able to provide remote attestation

that proves its trustworthiness for third-parties. The content of TEE is not static; it

can be securely updated. The TEE resists against all software attacks as well as the

physical attacks performed on the main memory of the system. Attacks performed

by exploiting backdoor security flaws are not possible.

6. GlobalPlatform, TEE System Architecture V1.3, 2022 [151]: At the highest level, a Trust-

ed Execution Environment (TEE) that meets the TEE Protection Profile (TEE PP) is an

environment where the following are true: (i) All code executing inside the TEE has

been authenticated. (ii) Unless explicitly shared with entities outside the TEE: (ii.a)

The ongoing integrity of all TEE assets is assured through isolation, cryptography,

or other mechanisms. (ii.b) The ongoing confidentiality of the contents of all TEE

data assets is assured through isolation or other mechanisms such as cryptography.

Data assets include keys. (iii) TEE capabilities, such as isolation or cryptography, can

be used to provide confidentiality of the TA code asset. (iv) The TEE resists known

remote and software attacks, and a set of external hardware attacks. (v) Both code

and other assets are protected from unauthorized tracing and control through debug

and test features.

7. Evervault, What is a Trusted Execution Environment?, 2023 [78]: A Trusted Execution

Environment (TEE), also known as a Secure Enclave, is a highly constrained com-

pute environment that allows for cryptographic verification (attestation) of the code

being executed. TEEs are designed with no persistent storage, no shell access, and

no network connectivity by default. As a result, they provide a completely isolated

environment with heavily restricted external access, making it possible to run sensi-

tive workloads securely. Attestation proves that a TEE is running the exact program

that was selected and that its code has not been tampered with.

As we observe from the aforementioned definitions of a TEE, the general common

points are (i) a TEE should be able to provide a secure execution environment for sensi-

tive code, (ii) secure persistent data storage, (iii) a form of attestation and (iv) facilities to

protect the system against external factors that could compromise its integrity. However,

the first, third and seventh definitions do not include secure storage in the set of prop-

erties, something that we regard as essential. Also, the second definition indicates a set

of defined attacks while other definitions do not. Moreover, the first definition describes

the TEE as a ”closed virtual machine” while the fifth and sixth definitions imply hardware

assistance or hardware as part of the TCB.
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2.1 Hardware-assisted TEE

As described above, there are multiple definitions of a TEE and in this work we consider

that the fundamental properties of a TEE should include (i) a Secure Execution Environ-

ment (SEE), (ii) secure persistent storage, (iii) attestation mechanisms for the executed

software and the underlying hardware platform, and (iv) mechanisms that, up to a certain

degree, can verify the integrity of the overall system. While software-only TEEs exist in the

literature, we do not elaborate on solutions following the ”secure VM ” or ”secure kernel”

approach as their scope is quite limited. Instead, we focus on hardware-assisted TEEs as

they are able to provide a more robust set of features, cover a larger attack surface and al-

low the development of more sophisticated software solutions. Also, we do not elaborate

on solutions built upon an existing technology such, as Scone [41], as they rely on existing

hardware-assisted TEE technologies, such as Intel SGX.

A list of some of the most popular hardware-assisted TEEs, currently available, is pre-

sented in Table 2.1. ISA indicates the Instruction Set Architecture that each technology

supports. IE indicates whether the target TEE supports Isolated Execution, DS indicates

secure Data Storage and RA indicates support for Remote Attestation. Moreover, SCP in-

dicates if the TEE provides mechanisms for Side-Channel attack Protection and M/BP for

Memory or Bus Probing. The AR column indicates if the TEE is purposed for Academic Re-

search. The Usability of each solution is represented with W for widespread, S for Seldom

used and U for Unused. Finally, all TEEs are sorted by their protection Ring level with each

level indicating the following.

• Ring 3: The TEE hardware allows for securing user space applications without the

need to trust a privileged operating system running at Ring 0 or below.

• Ring 0: The TEE hardware aims to implement secure execution environments at the

operating system level.

• Ring -1: The TEE hardware provides mechanisms to instantiate a secure stack based

on a trusted hypervisor.

• Ring -2: The TEE hardware is implemented in the processor and is also able to oper-

ate below the hypervisor.

• Ring -3: The TEE hardware relies on independent coprocessors.

In this section, we particularly focus on Intel’s SGX and AMD’s TrustZone as they pro-

vide the most of the security properties that we think are essential for a TEE, they cover

the two most popular ISA’s, and their implementation can be found on the vast majority

of commercially available CPUs and devices. They also provide, to an extend, SDKs for ap-

plication development targeting popular operating systems, such as Linux distributions
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Table 2.1: Trusted execution environments.

TEE Ring ISA IE DS RA SCP M/BP U AR

Intel SGX 3 x86 64 Y Y Y N Y W N
Sanctum 3 RISC-V Y Y Y Y N U Y

AEGIS 0 n/a Y Y Y N Y U Y
AMD SEV-SNP -1 x86 64 Y N N N Y S N

Bastion -1 UltraSPARC Y Y N N Y U Y
AMD PSP -2 x86 64 Y Y N N n/a W N

ARM TrustZone -2 Arm Y N N N N W N
SMM -2 x86 Y N N N N S N

Apple Secure Enclave -3 ARM Y Y N n/a Y W N
TPM -3 n/a N Y Y n/a n/a W N

Intel ME -3 x86 64 Y N N n/a n/a S N

and Windows, and there is a lot of published and ongoing academic research, as well as

commercial interest for their applications.

The rest of this chapter (Section 2.1.1 through Section 2.1.11) elaborates on each TEE

presented in Table 2.1. Section 2.2 discuses other available hardware-assisted TEEs that

either target embedded devices, are academic works with unpublished codebases or are

industry proposals with closed codebases. Moreover, some of them require heavily mod-

ified hardware or software stacks or target ISAs with limited popularity. Finally, Sections

2.2.1 and 2.2.2 present TEE solutions based on Graphics Processing Units and FPGAs.

2.1.1 Intel Software Guard eXtensions (SGX)

Intel Software Guard Extensions (SGX) [67] is a set of security instructions offered by mod-

ern Intel x86 CPUs, firstly introduced with the Skylake family of processors. These instruc-

tions provide secure and hardware-assisted isolated software containers, called enclaves,

whose code and data cannot be read or modified by any other process aside from the

one utilizing them. This reverse-sandbox property also restricts the OS kernel or debug-

gers from reading or tampering their contents. An example of the reduced attack surface

provided by SGX enclaves is depicted in Figure 2.1. Intel SGX utilizes hardware-assisted

encryption, performed by the CPU, using a supplied on-chip mechanism called Mem-

ory Encryption Engine (MEE). The MEE is responsible for encrypting a portion of the live

memory and providing it to SGX where the data and the code of several enclaves may re-

side. Data from the trusted enclave are decrypted on the fly during the execution within

the CPU and are accessible only by the enclave. When enclave memory pages need to be

swapped out and moved to the DRAM, SGX encrypts them using the MEE. As a result, ev-

ery process is restricted from accessing the enclave contents. The available live memory
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of Intel SGX enclaves ranges between 64MB and 128MB and is defined by BIOS settings.

However, this does not limit the developer from accessing more memory by utilizing swap-

ping. Yet, memory page swapping is only available for Linux while Intel’s SGX driver does

not offer this functionality on Windows, limiting the available usable memory to 128MB.

Also, enclave data can be securely sealed and exported in the untrusted file system in an

encrypted format, accompanied by metadata used for integrity checking upon reuse.

App App App

Operating System

Hypervisor

Hardware

App App App

Operating System

Hypervisor

Hardware

  Attack Surface Without Enclaves       Attack Surface With Enclaves

Figure 2.1: Application attack surface without and with using Intel SGX.

SGX Application Life Cycle

A typical SGX application consists of two parts: (i) the untrusted application that resides in

the untrusted OS and communicates with the enclave and (ii) the secure enclave that may

be bound to one or multiple applications. Communication between the two is achieved

by specific functions and APIs that are declared in SGX Enclave Definition Language (EDL)

during the software development and cannot be modified or extended after compilation

and enclave signing. Enclaves are prohibited from directly performing undeclared I/O,

accessing any system calls, or invoke privileged instructions, since the host OS kernel can-

not be trusted and is rendered inaccessible. The developer has to proxy such requests to

the untrusted part of the application. Such calls, known as OCALLs, transfer the execution

outside of the secure enclaves and can only be invoked by the enclaves. Similarly, an appli-

cation can perform ECALLs, which transfer the execution from the untrusted application

to the trusted enclave, in predefined entry points, invoking a predefined enclave function.

Both ECALLs and OCALLs are defined in the EDL file during the application’s development

and cannot be modified afterwards. The typical execution flow of an SGX enabled applica-

tion is presented in Figure 2.2.
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4. Enclave sees all process data 
     in the clear. External access 
     to the enclave data is denied

5. Function returns. Enclave data 
    remains in trusted memory

6. Normal execution resumes

Figure 2.2: Intel SGX application execution flow.

SGX Remote Attestation

Remote attestation is the process of verifying the authenticity of a software component,

running inside an isolated container, to some remote party. In the case of SGX, the soft-

ware being attested is a secure enclave created by the trusted CPU hardware. For the re-

mote attestation procedure, the CPU generates a measurement for the attested enclave

which uniquely identifies it. This information is then signed by the privileged Quoting

Enclave, resulting in an attestation signature (QUOTE).

Intel has access to the SGX hardware attestation key that signs the measurement. The

attestation signature is generated using the EPID group signature scheme [104] to preserve

privacy. The communication between the two enclaves must also be done in a secure

way. This is achieved by performing a local attestation between the two communicating

enclaves as a means to establish a secure channel.

The attestation signature can then be sent to the remote party, who will relay this infor-

mation to the Intel Attestation Service (IAS) to verify its validity. Thus, the remote party can

be aware if the enclave has been tampered or if the attested software is not running within

a genuine hardware-assisted SGX enclave. This information is critical as it verifies that the

SGX enclave is executed on SGX-enabled hardware and not in simulation mode, which

makes the enclave accessible by debugging utilities. The SGX Remote Attestation process

utilizes a modified SIGMA [113] protocol, therefore at the end of the process the remote

party and the enclave establish a shared secret for secure communication. An overview of
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the Intel SGX attestation process is shown in Figure 2.3.

Contrary to Trusted Platform Module (TPM), SGX Remote Attestation has the benefit

that attested software runs within the CPU, thus achieving better performance. Moreover,

SGX utilizes an EPID group signature scheme and attested enclaves cannot be uniquely

linked back to a specific CPU through their attestation signature.

Application 
Enclave

Application

Quoting
Enclave

Challenger

Attestation 
Verification

(5)(4)

(3)

(2) (1)

(6)

(7)

User Platform

Figure 2.3: Intel SGX remote attestation process.

Intel SGX Version 2

Intel SGX2, is the latest version of Intel SGX which provides new key features that enhance

the functionality of the technology compared to its predecessor. Some notable features

include the provision of more live protected memory (increased to 512GB compared to

128MB for SGX1), enabling larger secure enclaves and facilitating the execution of more

complex and memory-bound applications. Also, SGX2 enables permission modifications

of regular enclave pages, support for dynamic addition of regular enclave pages, support

for removing pages from an enclave and expanding an enclave to allow dynamic thread

creation. This feature is called Enclave Dynamic Memory Management (EDMM).

Furthermore, SGX2 introduces Flexible Launch Control (FLC), a feature that allows

the platform owner to control which enclaves are launched instead of Intel, substituting

Launch Enclave for one not signed by Intel. This includes which enclaves are granted

access to the Platform Provisioning Identifier (PPID) used with the Certificate Retrieval

Service. The enclave requesting access to the PPID can be signed by the attestation Ser-

vice Provider. One of the purposes of the Launch Enclave is to prevent abuse of the PPID

in privacy sensitive environments and with FLC, the Launch Enclave can be written by

other companies (other than Intel) but must be signed with the key corresponding to the

one locked in the MSR. The MSR can also stay unlocked and then it can be modified at

run-time by the VMM or the OS kernel.
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With the Linux kernel version 6.2, SGX2 enclaves can use the Asynchronous Exit (AEX)

Notification mechanism offered with the latest Intel CPUs. The AEX Notify path allows

for running a handler on exit events that in turn can mitigate issues like the SGX-Step

vulnerability [190]. This feature aims to toughen the defenses around Intel’s SGX against

an entire class of attacks.

Despite the improvements introduced with SGX2, we base our work on SGX1 for mul-

tiple reasons. First, SGX1 was the only version available to us during the development of

most of the work presented in this dissertation, as SGX2 was only recently released and

mainlined with Linux kernel version 6.0 [10]. Second, most of the available hardware sup-

porting SGX enclaves is only compatible with SGX1, as SGX2 instruction extensions are

only supported by some (mainly Intel Xeon Scalable) CPUs. Also, Being able to implement

this work despite the various constrains of SGX1 proves that such a framework can be

designed even for enclave-based TEEs with very limited secure memory capabilities and

operate on commodity hosts. Utilizing SGX2 for our framework in the future will directly

benefit our work as the increased memory limits and ability for dynamic thread creation

can further enhance the performance and scalability of its modules.

2.1.2 ARM TrustZone

ARM TrustZone [34] is a hardware feature that enables physical separation of different

execution environments and was introduced with ARMv6. TrustZone provides two envi-

ronments called secure world or Trusted Execution Environment (TEE), and normal world

or Rich Execution Environment (REE) respectively. Processes executed in the secure world

are called Trusted Applications (TAs) while there are various TEE frameworks available,

used to develop TAs, with OP-TEE [18] being the most popular. A list of some available

TrustZone TEEs, also called secureOS’s is presented in Table 2.2.

The complete isolation between the two worlds is achieved by security extensions, pro-

vided by TrustZone for the various hardware components, such as the CPU die, memory,

and peripherals. The CPU on a TrustZone enabled ARM platform has two security modes,

the secure mode and the normal mode. Each processor mode has its own memory access

region and privilege. The code running in normal mode cannot access the memory in the

secure mode while the code executed in the secure mode can access the memory in normal

mode. The secure and normal modes can be identified by reading the NS-bit in the Secure

Configuration Register (SCR), which can only be modified in the secure mode.

ARM involves different Exception Levels (EL) to indicate different privileges in ARMv8

architecture and lower EL owns lower privilege. The EL3, which is the highest EL, serves

as a gatekeeper, managing the transitions between the normal mode and the secure mode.

The normal mode can trigger an EL3 exception by calling a Secure Monitor Call (SMC)

instruction or by triggering secure interrupts to switch to the secure mode. On the other
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Table 2.2: Some of the available TrustZone TEEs (secureOS).

secureOS Platform Licence

OP-TEE [18] TrustZone BSD
TLK [29] NVIDIA Tegra BSD

Trusty [3] TrustZone Apache 2.0
Open TEE [128] TrustZone Apache 2.0

OpenEnclaves [17] SGX & TrustZone MIT
Kinibi [187] TrustZone Commercial

TEEGRIS [159] TrustZone Commercial
QSEE [155] TrustZone Commercial

hand, the secure mode uses the Exception Return (ERET) instruction to switch back to the

normal mode. Recent Cortex-A processors support SMC calls by the kernel in the normal

world. Entry to a different world is performed on a core basis, thus limiting the parallel

execution of TAs to the number of available cores. Also, it can be called from user space

processes residing in the REE or from other TAs. The latter is particularly useful in order to

reduce code duplication and to keep the TA’s attack surface minimal. Data is passed back

and forth between worlds by memory pointers or direct copies. Moreover, there are two

types of hardware interrupts, (i) Interrupt Requests (IRQs) and (ii) Fast Interrupt Requests

(FIRQs). Both of them can be configured as secure interrupts by configuring the IRQ and

FIQ bits in SCR respectively. The secure interrupt is directly routed to the secure EL3, ig-

noring the configuration of the normal world. ARM recommends that the IRQ-bit is used

as the interrupt source of the normal world and the FIQ-bit is used as secure interrupt.

TrustZone uses a Memory Management Unit (MMU) mechanism to support virtual

memory address spaces in both the secure and normal worlds. The same virtual address

space in the two worlds is mapped to different physical regions. The MMU is secure-world

aware, and secure and non-secure descriptors are stored alongside each other. The dif-

ferentiation is done by the Non-secure TLB ID (NSTID) which is an extra TLB bit. The

TAs must fit in the on-chip memory. However, the secure memory is quite costly and it

only ranges from 3MB to 5MB, limiting the secure code’s memory even further than SGX.

For this reason, TAs are expected to have small memory footprints and only contain the

minimal subset of features required, aiming to reduce the TCB and its attack surface.

TrustZone also incorporates a key manager which starts with a device-specific key

named Secure Storage Key (SSK). This key is derived from two pieces of information,

unique to each device’s processor, (i) the chip identifier and (ii) the hardware key. The

TA Storage Key (TSK) is a per TA key that can be derived from the SSK and the TA’s UUID.

The File Encryption Key (FEK) is a per file key that can be generated upon file creation. It

is used to protect the file contents, including its metadata, and is encrypted using the TSK.
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Since TrustZone provides a key manager, it is also able to support secure persistent data

storage for TAs (must be implemented and provided by the TA), with objects/files stored

on disk in an encrypted format and signed for anti-tampering verification. TAs can access

the objects in clear-text format since the TEE layer runs the cryptographic stack transpar-

ently. The securely stored files can have a unique numeric name based on a counter and

an encrypted index of objects/files is maintained alongside them. Operations on the in-

dex are atomic, ensuring integrity protection by means of a hash-tree data structure that

guards the index. To protect against storage replay attacks, an embedded Multi-Media

Card (eMMC) storage device is required, which is a non-volatile and non-removable solid-

state means of storage. This security feature is entirely implemented in the eMMC storage

in the form of Replay Protected Memory Block (RPMB).

2.1.3 AMD SEV-SNP

AMD SEV-SNP (Secure Nested Paging) [35] is a security feature designed to enhance the

protection of virtualized environments. SEV-SNP extends the existing AMD Secure En-

crypted Virtualization (SEV) [105] technology to provide enhanced memory protection for

virtual machines. SEV-SNP isolates virtual machines from each other and the hypervi-

sor and protects them from both software and hardware attacks. The system is designed

to protect virtual machines against attacks such as speculative execution attacks, side-

channel attacks, and hypervisor vulnerabilities. It achieves this by encrypting virtual ma-

chine memory and isolating it from the rest of the system. It also uses hardware-enforced

memory protection to prevent unauthorized access to virtual machine memory.

SEV-SNP builds on the existing SEV technology by introducing nested page tables, al-

lowing for more efficient memory management in virtualized environments. It also pro-

vides a hardware-based root of trust for virtual machine encryption keys, which ensures

that only authorized virtual machines can access their encrypted memory. Additionally,

SEV-SNP provides support for live migration of encrypted virtual machines, allowing them

to be moved between physical hosts while remaining encrypted and protected.

2.1.4 Sanctum

Sanctum [68] proposes a design similar to Intel’s SGX, providing isolation for enclaves

at user-level, using minimal hardware modifications and a trusted software component

called security monitor. Unlike SGX, Sanctum cannot prevent DRAM attacks since there

is no Memory Encryption Engine (MEE). Each Sanctum enclave manages its own page

tables and page faults, and is assigned with a separate DRAM region corresponding to dis-

tinct sets in the shared Last-Level Cache (LLC) to protect against software side-channel

attacks and cache timing attacks. The security monitor manages enclave creation and

destruction, enclave state transitions, and interrupt handling, and enclaves are restricted
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from performing system calls or I/O. Sanctum modifies the MMU with two Page Table

Base Registers (PTBRs) that only the security monitor can change and ensures that only

certain memory pages can be referenced by enclave page tables which are verified during

initialization.

2.1.5 AEGIS

AEGIS [179] is a Tamper-Evident Environment (TE), and one of the oldest architectures,

that detects any memory tampering caused by software or hardware modifications. The

Private and Authenticated Tamper-Resistant Environments (PTRs) provided by AEGIS of-

fer even stronger guarantees and protect the confidentiality of security-critical source code

and data. The CPU die is considered a trusted component, while DRAM and other periph-

erals are not considered part of the Trusted Computing Base (TCB). AEGIS executes legacy

code and its protection mechanisms are enabled by calling the enter aegis instruction

which isolates the program and detects any memory tampering. AEGIS utilizes a hash-

tree data structure to validate data integrity when data chunks are read into the on-chip

caches. Also, the system provides remote attestation triggered by the sign msg instruction,

which hashes the provided data along with the protected process’s hash and signs the re-

sult with a CPU-specific private key, asymmetrically. AEGIS can be implemented in hard-

ware or software utilizing a Security Kernel (SK), and in PTR mode, the CPU guarantees

confidentiality by encrypting the blocks with AES-CBC using 32-bit random initialization

vectors (IVs).

2.1.6 Apple Secure Enclave

The Apple Secure Enclave [38] is a dedicated, secure subsystem integrated into the com-

pany’s A-series chips that provides an isolated execution environment for sensitive oper-

ations on Apple devices. The Secure Enclave is independent of the main CPU and has its

own isolated memory and processing resources. It uses a unique ID and secure boot pro-

cess to establish a chain of trust that verifies the integrity of the device’s software, ensuring

that only authorized code can access sensitive data. The Secure Enclave is used for sev-

eral security features on Apple devices, including biometric authentication via Touch ID

and Face ID, secure payments using Apple Pay, and encrypted data storage. The Secure

Enclave also provides a secure environment for executing sensitive code and data, pro-

tecting against both software- and hardware-based attacks. The system is designed with

multiple layers of security features, including hardware-based encryption, anti-replay and

anti-tamper protection, and a dedicated hardware random number generator. Addition-

ally, the Secure Enclave cannot be accessed by the main CPU or other components, further

reducing the attack surface.
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2.1.7 Bastion

Bastion [57] is a system that combines a hardware and software architecture to ensure

confidentiality and integrity for security-critical software modules. It relies on a trusted

hypervisor and a modified processor that provides memory protection to guard against

physical attacks but only single-core processors are currently supported. Bastion aims to

mainly protect the hypervisor since everything apart from the microprocessor and the hy-

pervisor is considered untrusted. The secure launch computes a cryptographic hash over

the code and data of the hypervisor and stores the result in a CPU register. The implemen-

tation of secure launch and the register contents are not modifiable via software. After the

hypervisor is loaded, the software modules can invoke a new secure launch hypercall for

initialization purposes. The modified CPU ensures that the hypervisor is invoked for every

TLB miss and is responsible for checking whether the virtual address responsible for the

access corresponds to the one associated with the physical page and a specific software

module. All untrusted software not belonging to a specific module is treated as a module

with a zero ID, ensuring that untrusted software cannot access code or data belonging to

protected modules. The hypervisor saves all the required state information, such as regis-

ter contents, and wipes all sensitive data before calling the interrupt handler.

2.1.8 Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) [93] is a coprocessor located on the motherboard that

can store cryptographic keys and perform attestation. The TPM interacts with software ex-

plicitly and provides limited protection against physical attacks. The TPM is equipped

with an Endorsement Key (EK) that serves as a master key for all operations provided by

the TPM, Attestation Identity Keys (AIKs), and storage keys. The TPM contains Platform

Configuration Registers (PCRs) that can store successive hash values for code or data sent

to the TPM and are important for remote attestation. The minimum functionality that

a TPM can perform is divided into three operations: (i) binding code or data to a given

device, (ii) attesting to another party that the device is currently running a certain soft-

ware configuration, and (iii) sealing code or data to a given device in a certain software

configuration. Attestation and sealing only work correctly if the platform configuration

is measured from the earliest boot step up to the currently running software component.

The biggest disadvantage of the standalone TPM is its restriction in excluding malicious

software from the measurement.

2.1.9 AMD PSP

Unlike Intel’s CPUs that employ Platform Trust Technology (PTT), AMD processors use a

Platform Security Processor (PSP), also referred to as AMD Secure Technology. This sys-



2.1. HARDWARE-ASSISTED TEE 21

tem is a trusted runtime environment that was integrated into AMD processors around

2013. The PSP is responsible for several tasks including managing the boot process, initial-

izing various security-related mechanisms, monitoring the system for suspicious activity,

and implementing appropriate responses. Essentially, the PSP is an ARM kernel with the

TrustZone extension integrated into the main CPU as a coprocessor. The PSP firmware is

signed by AMD and redistributed via UEFI image files. It runs before the main CPU and

the firmware boot process begins right before the basic UEFI loads. The firmware runs

within the same system memory space as user applications and has unrestricted access

to MMIO. For practical purposes, the difference between AMD’s PSP and Intel’s PTT is

negligible as both comply with the TPM security protocol.

2.1.10 Intel Management Engine (ME)

The Intel Management Engine (ME) [156] is an autonomous subsystem embedded in all

Intel processors since 2008. It is used to support the Intel Active Management Technology

(AMT) and has recently been used as a Trusted Execution Environment (TEE) for execut-

ing security critical processes. The ME is composed of a processor, cryptography engine,

Direct Memory Access (DMA) engine, Host Embedded Communication Interface (HECI)

engine, Read-Only Memory (ROM), internal Static Random Access Memory (SRAM), timer,

and other I/O devices. It always runs as long as the motherboard is receiving power, even

when the host system is turned off. The ME runs on the Intel Quark x86-based 32-bit CPU

and the MINIX 3 operating system, with its state stored in a partition of the SPI flash us-

ing the Embedded Flash File System (EFFS). The ME has its own MAC and IP address for

the out-of-band interface with direct access to the Ethernet controller and communicates

with the host via the PCI interface. The ME also uses a reserved DRAM region on the host

which is dedicated to the ME and is not accessible by the operating system.

2.1.11 x86 System Management Mode (SMM)

The x86 System Management Mode (SMM) [66] is an execution mode similar to Real and

Protected modes available on x86 platforms. SMM provides a hardware-assisted isolated

execution environment for implementing platform-specific system control functions, such

as power management, and it is initialized by the BIOS. SMM is triggered by asserting the

System Management Interrupt (SMI) pin on the CPU. This pin can be asserted in a variety

of ways, such as writing to a hardware port or generating message signaled interrupts with

a PCI device. Once triggered, the CPU saves its state to a special memory region called Sys-

tem Management RAM (SMRAM) and then atomically executes the SMI handler, stored

in SMRAM by the BIOS during boot time. The SMRAM cannot be addressed by the other

modes of execution and by default the requests for SMRAM addresses are forwarded to

video memory. This design property allows the SMRAM to be used as a secure storage lo-
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cation. Moreover, the SMI handler has unrestricted access to the physical address space

and can run privileged instructions; thus, SMM is often referred to as Ring -2. Exiting the

SMM and resuming to the previous mode is done via executing the RSM instruction.

2.2 Further Research on TEEs

The AMD Secure Memory Encryption (SME) [105, 106] is a security feature that addresses

physical access attacks. It utilizes a randomly generated encryption key, using the AMD

secure processor. The key is loaded into the memory controller at boot time to encrypt

the memory. The OS is able to leverage the SME by setting the encrypted bit (C-bit) in

the x86 page table. When the C-bit is set, access to that memory page is directed to the

AMD Memory Encryption Engine. In the SME design, all devices can access the encrypted

memory pages through DMA. The Transparent Secure Memory Encryption (TSME) [105,

106] is a hardware security feature in which all memory pages are encrypted transparently

at boot time. This feature is enabled through a BIOS setting. This encrypted memory is

transparent to the underlying OS and user software.

Sancus [134] is a hardware-only Protected Module Architecture (PMA), designed by

Noorman et al., for lightweight embedded devices such as wireless sensor nodes. In ad-

dition to isolating an application’s code and sensitive data, it also provides support for re-

mote attestation. It adds secure linking functionality as well, enabling applications to ver-

ify modules that they depend on. Soteria [91] is an extension of Sancus which takes advan-

tage of the architecture’s functionality to add code confidentiality. Brasser et al. propose

TyTan [54], an architecture for lightweight devices which provides isolation between tasks,

secure IPC with sender and receiver authentication and real-time guarantees. TyTan’s TCB

consists of both hardware and software components. TrustLite [111] is a generic PMA for

low-cost embedded systems, developed by the Intel Collaborative Research Institute for

Secure Computing. In TrustLine, a trustlet isolates software components, providing con-

fidentiality and integrity guarantees for both its code and data. The architecture provides

OS-independent isolation of trustlets, attestation of trustlets, trusted inter-process com-

munication, secure peripherals, and interrupt support. The system was implemented as

an extension to the Intel Siskiyou Peak research platform. One of the first designs to use

hardware and software co-design to built a lightweight trust architecture is SMART [77],

proposed by El Deffawy et al. SMART establishes a DRoT in remote embedded devices,

providing a minimal architecture that only requires the smallest possible set of hardware

changes to implement remote attestation. SMART prototypes that demonstrate the feasi-

bility of the design are built on open-source clones of the ATmega103 and openMSP430.

SecureBlue++ [53, 206] is PMA proposed by IBM which isolates Secure Executables

(SEs) from each other and protects the confidentiality and integrity of their data and code.

The main architectural changes involve a Memory Protection Unit (MPU), using differ-
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ent mechanisms at each level of the memory hierarchy. It also protects against physi-

cal memory attacks as well as the introduction of new instructions. Iso-X [79] is an iso-

lated execution architecture where memory can be assigned dynamically to Untrusted and

Trusted Partitions which contain compartments. These compartments are essentially pro-

tected modules and a developer can indicate which parts of the code should be compart-

mentalized. The architecture also includes a remote attestation mechanism in hardware,

based on asymmetric signatures. Intel also proposed the Trusted Execution Technology

(TXT) [92], aiming to overcome the restriction of all software having to be part of the TCB

when relying on the TPM. Intel TXT uses the TPM chip but allows for the dynamic estab-

lishment of a new Root of Trust (RoT) for software running in a virtualised environment,

besides the usual software stack.

2.2.1 GPU-assisted TEEs

Vasiliadis et al. proposed PixelVault [192], a GPU-assisted TEE developed using NVIDIA

GPUs, able to store cryptographic keys and carry out cryptographic operations exclusively

on the GPU. The system can protect the secret keys from leakage even in cases where the

host becomes completely compromised. This is achieved by exposing secret keys only in

GPU registers, keeping PixelVault’s critical code in the GPU instruction cache and prevent-

ing any access to both of them from the host, leveraging the non-preemptive execution

model of the external GPUs. Cook et al. [65] presented a mechanism to transfer encrypted

video that is only decrypted once on the GPU. In 2018, Volos et al. presented Graviton

[197], a system that enables applications to offload security-sensitive and performance-

critical GPGPU kernels and data to a GPU. Graviton enables GPGPU kernel execution in

isolation from other code running on the GPU and all software on the host, including the

device driver, the operating system, and the hypervisor. Graviton can be integrated into

existing GPUs with relatively low hardware complexity and is one of the most complete

GPU-based TEEs. DeepAttest [59] is the first on-device DNN attestation framework that

verifies the legitimacy of the deployed DNN before allowing it to execute normal inference.

While DeepAttest is not a TEE system on its own, it extends and utilizes Graviton to offer

the proposed functionality. Yu et al. [211] introduced a system that relies on a privileged

host component to enforce isolation between virtual machines and display. Jang et al. pro-

posed a hardware/software architecture, called HIX (Heterogeneous Isolated eXecution),

that aims to isolate GPUs even from possibly malicious high-privileged software, such as

the OS or hypervisor, by modifying the I/O interconnect between the CPU and GPU. Fi-

nally, Telekine [99] is a system that provides secure access to cloud-based GPUs using a

data-oblivious communication between the client and the GPU-based TEE.
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2.2.2 FPGA-assisted TEEs

Recently, FPGAs have become a popular tool for designing and implementing trusted exe-

cution environments. Pereira et al. [146] proposed a new TEE designed, named Trusted Ex-

ecution Environments On-Demand (TEEOD), that utilizes FPGAs to dynamically provide

secure execution environments for security-critical applications with high-bandwidth con-

nections, physical on-chip isolation and configurable software and hardware TCBs. MeetGo

[139] is an FPGA-based TEE, targeting remote computing, that operates independently

of the host system. The system offers a remote attestation mechanism to verify the in-

tegrity of the applications implemented as hardware logic, an isolation mechanism that

prevents unauthorized CPU access to these applications, and a secure communication

mechanism for protected transmissions of sensitive data between the applications and re-

mote users. SGX-FPGA [208] is a system that provides a trusted hardware isolation path,

aiming to bridge SGX enclaves and FPGAs in heterogeneous x86 CPU/FPGA architectures,

and protects data either stored in both devices or in transmission. On the other hand,

Ambassy [101] targets hybrid ARM/FPGA architectures with a framework that enables sec-

ondary TEEs and two-way sandboxing of the new TEE running third-party TAs.

BOYTee [40] is a novel framework that enables users to build general-purpose enclaves

with configurable hardware and software TCBs while the authors demonstrate the system

and its toolchain on the Xilinx SoC FPGA. More recently, Zhao et al. introduced ShEF [218],

a TEE that targets cloud-based reconfigurable accelerators. ShEF provides a secure boot

and remote attestation process that relies solely on existing FPGA mechanisms for RoT,

as well as a component for secure data access on the accelerator. Zhu et al. [222] intro-

duced a heterogeneous TEE, called HETEE, that leverages the PCIe ExpressFabric to al-

locate accelerators to a server node on the same rack during non security-critical tasks,

and allocates them back into a secure enclave in response to requests for confidential

computing. Finally, Coughlin et al. [69] proposed a mechanism, based on a Xilinx Zynq

UltraScale+ FPGA, that removes the RoT dependency to third-party processes, offering a

self-provisioning stage for key generation and a secure update mechanism.
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Security Framework Overview

In this work, we design, implement, and evaluate a modular TEE-based framework, com-

posed of interoperable components, that aims to address the security issues of key soft-

ware layers found in modern desktop and mobile systems. Our goal is to raise the bar in

the areas of (i) host protection, (ii) OS service protection, (iii) secure communications, and

(iv) secure dynamic code execution. Also, we aim to prove that enclave-based trusted ex-

ecution environments can serve as a readily available common platform to base such a

framework on, enabling the development of the required security modules as well as the

protection of the framework itself.
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Figure 3.1: Enclave-based security framework overview.

In this chapter, we briefly present the six interoperable components that compose our

TEE-based security framework. The system provides two attack detection systems (mal-

ware scanning and kernel monitoring), an enclave-enhanced mobile OS, a secure CPU-to-

CPU communication system and two secure runtimes with one of them providing scale-

out capabilities. One or more components can simultaneously co-exist on the same host,

25
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sharing the common SGX infrastructure, and can be utilized through our provided clients,

libraries and APIs. An overview of the framework’s architecture is presented in Figure 3.1.

3.1 Host Protection

To cover the area of host protection against malware and rootkits, our framework provides

two distinct components: (i) a malware detection solution, named TrustAV, and (ii) a ker-

nel integrity monitor, named SGX-Mon.

TrustAV is a cloud-based malware detection system that utilizes the underlying Intel

SGX enclaves for privacy and security. The system protects user data by offloading mal-

ware detection to a remote SGX-enabled server, ensuring privacy even in untrusted envi-

ronments. The detection engine relies on binary signatures and regular expressions and

provides client applications for various devices. The architecture aims to address the per-

formance constraints of Intel SGX and provides a caching scheme to reduce the required

protected memory footprint.

SGX-Mon is a kernel integrity monitor that aims to ensure the operating system’s ker-

nel integrity. The monitor resides in the user space, utilizing the trusted execution envi-

ronment to avoid detection and tampering. This component scans, analyzes, and verifies

critical kernel memory pages and regions for integrity. The system periodically compares

the contents of these regions against known benign values. Kernel memory locations can

be acquired during a secure bootstrap phase and are mapped into enclave memory us-

ing our custom driver. The system also provides attestable heartbeats, monitors potential

adversary mappings, and operates alongside the rest of the framework’s components.

3.2 Operating System Service Protection

To provide trusted execution capabilities to mobile and low-power devices, we extend the

framework with our SGX-enabled Android OS, named Andromeda. This component is

an enhanced Android operating system with trusted execution capabilities, achieved by

porting the SGX framework to Android. This includes the necessary drivers, libraries, ser-

vices, and APIs, allowing developers to utilize SGX for their mobile applications. The en-

hanced Android OS supports the installation and execution of SGX-based applications on

compatible devices without modifications. Andromeda also improves popular Android

services by incorporating enclaves, enhancing security and enabling secure management

of cryptographic keys and sensitive data. These enhancements are transparent to existing

Android APKs, maintaining forward and backward compatibility. Additionally, this compo-

nent enables the execution of multiple enclaves simultaneously, providing isolated secure

environments on a per-application or per-function basis. Furthermore, Andromeda facil-

itates trusted data flow control between externally paired devices and the SGX-enhanced
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Android host, enabling secure offloading of data storage and computations without requir-

ing TEE-enabled CPUs on the external devices.

3.3 Secure Communication

Our framework’s fourth component targets the area of secure and attested communica-

tions. This system provides secure communication between SGX-enabled applications,

even when one end is potentially located in an untrusted remote environment. The mod-

ule utilizes Intel’s Remote Attestation process for secure key exchange and attestation.

Also, it offers a simple API for entities to verify and attest each other, creating an encrypted

SGX-to-SGX (CPU-to-CPU) communication channel. The system implements an optional

caching system to reduce connection latency and can operate either as a stand-alone com-

ponent or serve as the default communication agent between the rest of the framework’s

modules, when applicable. Our comparative analysis conducted against commonly used

secure communication methods, such as TLS, showcase its performance and practicality.

3.4 Secure Dynamic Execution

The last two components of our security framework focus on the area of secure dynamic

code execution and provide transparent trusted execution for dynamic languages, such

as Lua and JavaScript, without requiring modifications of legacy code, knowledge of the

underlying TEE or explicit code partitioning. Both systems are based on language inter-

preters implemented in C/C++, which we port into enclaves, that serve as the static and

protected environments where code can be loaded as data and executed securely.

The first system, named LuaGuardia, is developed to provide secure execution of new

and legacy applications developed in Lua. The secure execution functionality is offered as

a service, either locally on the target device, or remotely, allowing developers to run exist-

ing or new applications without the need to develop enclave code and link it via custom

bindings. This component also enables embedded and low-power devices that are not

equipped with enclave capabilities to execute code securely via offloading. Additionally,

LuaGuardia’s runtime provides optional tags that can be used to designate specific code

blocks or functions for secure execution, enabling fine-grained secure partitioning.

Our framework’s final component, named Atlas, is designed and built based on the

same principles that led to the development of LuaGuardia but targets the secure execu-

tion of JavaScript code. Atlas also extends LuaGuardia’s model with a scheduling system

for scaling out components on TEEs to facilitate secure distributed applications. This com-

ponent automatically offloads function calls and distributes the load among secure nodes,

ensuring minimal developer effort. Splitability annotations and code analysis are also uti-

lized to confirm compatibility with the original program’s semantics.
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3.5 Threat Model and Assumptions

In this work, we assume powerful and active adversaries who possibly have root privileges

and access to the physical hardware hosting our framework’s component(s). The adver-

saries may be able to control the entire software stack, including the OS kernel and other

system software. However, we explicitly exclude denial-of-service (DoS) attacks on en-

claves, given that the design of SGX allows the host OS to control an enclave’s life cycle

anyway. As a result, an attacker can prevent or abort the execution of enclaves, but should

not gain any knowledge by doing so. Moreover, side-channel attacks that exploit timing

or page faults, or attacks based on vulnerabilities of the application running inside the en-

clave are proven to be feasible on SGX enclaves. However, protecting SGX enclaves from

side-channel attacks that either focus on software or hardware bugs is orthogonal to our

work and thus we consider them to be out of the scope of this work. However, any success-

ful attempt to protect SGX-enabled software/hardware has a direct benefit to our frame-

work. Finally, we assume the design and implementation of SGX itself (including all cryp-

tographic operations, the SGX SDK and PSW, the driver, and the required SGX services) is

secure and does not contain any vulnerabilities.

When client applications or client libraries are involved, we assume that they may be

distributed over different networks and geographical areas. These nodes are connected

over a public, not necessarily trusted, network, over which they are reachable and able

to transmit and exchange data. We also assume that the SGX-enabled client nodes may

be compromised by a powerful adversary with full-privileged access or even access to the

physical hardware. All client-side enclaves running on SGX hardware-mode are consid-

ered part of our TCB, as well as the Intel SGX Attestation Service that verifies that the SGX

hardware is genuine. We also assume that client software is installed and initially executed

when the devices are in a clean state, so no malicious executable has taken the control of

the client or the device prior to the execution of our components. Finally, we assume that

a secure bootstrap phase is available in the context of kernel integrity monitoring.
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Privacy-preserving Malware Analysis

In this chapter, we present the first component of our security stack, a cloud-based mal-

ware detection solution designed for a plethora of device types, named TrustAV. The sys-

tem is able to offload the processing of malware analysis to a remote server, where it is

executed entirely inside hardware-assisted secure enclaves. By doing so, TrustAV is ca-

pable to shield the transfer and processing of user data even in untrusted environments

with tolerable performance overheads, ensuring that private user data are never exposed

to malicious entities or honest-but-curious providers. TrustAV also utilizes various tech-

niques to overcome performance overheads introduced by the Intel SGX technology and

reduce the required enclave memory — a limiting factor for signature-based malware anal-

ysis executed in secure enclave environments — offering up to 3x improved performance

compared to its unoptimized implementation.

4.1 Signature-based Malware Detection

Our malware detection engine is based on signature scanning, a commonly used tech-

nique in state-of-the-art antivirus systems. The data under malware analysis are pro-

cessed against a set of malware signatures to identify the presence of malicious software.

The Aho-Corasick algorithm [32] is considered an efficient option for multiple pattern

searching, since it matches all signatures in a ruleset simultaneously. For this reason,

Aho-Corasick is utilised by popular open source security solutions, such as the ClamAV

antivirus [6] and the Snort network intrusion detection system [25]). The algorithm con-

structs a finite state machine that resembles a tree, along with failure links between the

nodes. Failure links are followed when there is no matching transition, allowing fast tran-

sitions to other branches of the tree with a shared prefix, avoiding costly backtracking. To

provide a more efficient approach, a Deterministic Finite Automaton (DFA) can be built by

unrolling the failure links in advance and adding relevant transitions to map each failure

directly to a node without the need to follow multiple failure links at runtime. This prop-

erty enables us to represent the DFA as a single-dimensional integer array with greatly

29
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decreased memory footprint, compared to representing the automaton as a tree, and im-

plement the DFA traversal function using simple arithmetic operations. Leveraging this

serialized DFA, we can achieve malware detection entirely inside the SGX enclaves with a

small code and memory footprint.

4.2 Threat Model

Providing security applications as a service (AAS) has become a very convenient trend due

to lower cost and maintenance complexity. Still, these workloads contain important in-

formation about the end-user(s). More specifically, a malware detection tool has privi-

leged access among the user files, e-mails and network traffic. Processing such sensitive

information needs to be taken seriously by complying to security and privacy-preserving

standards to guarantee confidentiality.

To specify the treat model for this component, where user data are not handled by the

users themselves, we define three different entities: (i) the TrustAV client, (ii) the TrustAV

server, and (iii) the cloud provider. The malware scanning engine lives inside the TrustAV

cloud-based server, which communicates with the clients through a network connection.

We assume that a TrustAV client is installed and initially executed when the device is in

a clean state, so no malicious executable has taken the control of the client or the device

prior to the execution of our malware detection system. The environment that hosts the

TrustAV server is considered untrusted, since there is no control over the operating sys-

tem, the hypervisor, the drivers, the management stack, the system’s memory, I/O devices,

etc. Furthermore, even in a fully healthy environment, there is always the possibility of an

honest-but-curious cloud provider, willing to learn and extract information regarding the

users or the system utilization. In this work, we safeguard both users and the TrustAV sys-

tem from the aforementioned conditions. Obviously, the client and the server are required

to safeguard the transmission and the processing of the user’s data. For the purpose of

completeness, we assume an uncompromised Intel SGX-enabled processor hosting the

remote server. Finally, we stress that handling any side-channel attacks against Intel SGX

or software flaws in SGX’s implementation is out of our scope.

4.3 Design

In this section, we describe the design and implementation of the TrustAV architecture.

The overview of TrustAV is presented in Figure 4.1. The two entities that compose our sys-

tem are: (i) the TrustAV client, which transmits the necessary files to the remote server for

scanning, and (ii) the TrustAV server, which is responsible for performing the malware de-

tection in a privacy-preserving way. The entire malware scanning operation is performed

on the cloud-based server, encapsulated inside Intel SGX enclaves. This encapsulation
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enables the protection of the data processing algorithms, the signature set, and most im-

portantly the privacy of the user’s data.
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Figure 4.1: Architecture overview of the malware detection service.

4.3.1 TrustAV Client

The TrustAV client implements three distinct functionalities, using three different compo-

nents. The client (i) prompts the users to select files or file system regions that they wish

to scan and provides a set of actions for each file that is found to be infected. Once the

selection is defined, (ii) it gathers the data and periodically checks their status by compar-

ing their hash values against known benign hash values kept in a whitelist. Finally, the

client (iii) transfers the files whose hash values did not match with the whitelist to the

cloud-based TrustAV server which performs the malware scanning and reports the results.

The client is required to provide minimum effort and functionality, while the compu-

tationally intensive malware scanning is performed by the TrustAV cloud-based server. In

this way, the server remains independent from the client implementation, while multiple

client versions can be developed to support different platforms and operating systems.

The hashing component is responsible for retrieving the data from the client’s file sys-

tem. The data can be found in the form of various files present in the file system, such as

photos, videos, audio files or applications. The client periodically hashes all selected files

and directories and forwards the hash values to the whitelist component. The window

of the periodic scanning can be defined by each user, depending on the device type and

its current status. For example, the user can opt for a larger window when the system is

running on battery in power-saving mode to avoid exhausting the device’s resources.

The client’s whitelist component is responsible for comparing the hash values obtained

by the hash computation module against a list of hashes that have been calculated from a
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known clean state of each file. If the hash values do not match a given file, it is marked as

suspicious and the client has to forward it to the cloud-based TrustAV server for malware

scanning. Moreover, the client is responsible for the maintenance of the whitelist by man-

aging the entries of new or deleted files and updating existing entries with new benign

hash values. The module flags each file whose hash value does not match with its corre-

sponding value in the list as potentially infected and thus dangerous. Once this process

is finished, all the marked files are forwarded to the Data I/O module to be transmitted to

the TrustAV remote server.

The motivation for this periodic hash-checking functionality is threefold. First, calcu-

lating and comparing hash values against a set of known hashes — which represent the

clean state of files — can be quick and efficient given the plethora of different hash algo-

rithms available. Second, it is a fast preliminary way to filter out benign files from possibly

infected ones without having to perform complex malware analysis on every file and ap-

plication of a device. This allows the TrustAV client to be easily implemented for a wide

variety of commodity devices (e.g., desktops, smartphones, IoT devices, etc.). Third, by

marking only a limited subset of files as potentially infected, we minimize the amount of

data that need to be transferred to the remote TrustAV server, improving the overall perfor-

mance of our system and minimizing the cost for users who perform virus scanning using

metered connections, mobile data plans or are connected via a low bandwidth channel.

Also, our microbenchmarks indicated that using the whitelist mechanism improves power

consumption for battery-powered devices.

The most important component of the TrustAV client is the secure communication

with the remote server. This component ensures that all the potentially infected files are

transmitted to the TrustAV remote server for a thorough malware analysis, in a secure and

privacy-preserving manner. Each file is first encrypted using a secret cryptographic key,

that is established with the server. After the successful transmission of the marked files, it

awaits for the remote server’s response. This response is received in an encrypted format

and contains details about the infected files, such as the risk level and the actions to be

taken by the user. According to the information provided by the TrustAV server, the client

prompts the user with possible actions to handle the infected files in the file system. Then,

the whitelist module updates the list for every file whose contents changed in a benign way,

thus leading to the generation of a new hash value, and removes the entries of the deleted

files. When applicable, Remote Attestation can be leveraged by the client to further ensure

that the contacted TrustAV server operates on genuine SGX-enabled hardware.

4.3.2 TrustAV Server

The second entity of our malware detection system is the TrustAV server, composed of

three distinct modules. The server is able to accept connections from multiple TrustAV
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clients and perform malware detection on the incoming data. Also, it can be hosted in

private or even public cloud infrastructure, or on a dedicated host.

The server maintains an updated signature set, used for the malware analysis. By keep-

ing the entire signature set on the remote server, the system is able to benefit in two ways.

First, the detection does not rely on each user to maintain the latest ruleset locally, on

the client device. The local update process could often be neglected by a large number of

users, thus allowing the latest malware to operate undetected on multiple devices. More-

over, the users do not have to store the signature set on their device, typically sacrificing

valuable storage space in case the device is a smartphone, tablet or an IoT device with

limited storage. Second, a major benefit of offloading the entire malware analysis on the

cloud-based TrustAV server is the ability to utilize Intel SGX enclaves, even when not sup-

ported by the client device. Using SGX enclaves we are able to execute the entire life cy-

cle of the virus scanning process in a trusted environment, ensuring that any sensitive

data obtained by the users, cryptographic keys and malware signatures are never exposed

in the server’s DRAM or file system. This attribute is crucial for two reasons. First, we

can guarantee that users can securely offload sensitive data to the remote server for mal-

ware analysis without risking leakages. Second, even if malicious actors manage to com-

promise the server, they are not be able to identify the signatures used in the ruleset or

tamper them in any way. Moreover, Intel SGX enclaves ensure the secure execution of

the malware detection engine. This makes the virus scanning algorithms immune to at-

tacks while they are executed, preventing code tampering or data leakage from variables

in use. Finally, since enclaves operate as reverse sandboxes and the enclave hosting the

malware scanning engine only communicates with the client, user data are not accessi-

ble even by honest-but-curious providers hosting the server, ensuring the privacy of the

offloaded user data. Any attempt to read or tamper SGX-protected memory during the

server’s execution is prevented by the runtime.

User data are received in an encrypted format by the TrustAV server and are forwarded

inside the Intel SGX enclave hosting our system’s engine. Once inside the secure enclave,

the data are decrypted and prepared for processing. The cryptographic keys required for

the successful decryption of the client’s data exclusively reside inside the SGX enclave. In

this way, the secret keys and sensitive data, such as personal documents or photos, are

never present in plain-text format in the server’s file system or DRAM and they remain in-

accessible even by the server’s host/provider. Moreover, even if the non-SGX part of the

TrustAV server or the hosting infrastructure gets compromised, the keys, malware signa-

tures and private user data cannot be obtained.

The malware scanning component constitutes the core of our system and is responsi-

ble for processing the incoming data using a given malware signature set. The entire func-

tionality of this component along with all required data, such as the ruleset, reside only

inside the Intel SGX enclave. Each rule is assigned with a unique ID and consists of a set
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of patterns and information metadata, describing the malware functionality, the risk level

and suggested actions. The virus scanning process is performed inside the enclave once

the data are decrypted using each client’s secret key. When a rule is successfully triggered

by an input file, the corresponding metadata along with the file information are processed

to be forwarded to the client as a status report.

The report generation is performed by a separate component, which also resides in-

side the secure enclave. During this process, the TrustAV server receives results from the

malware scanning engine and generates a report that will be processed by the TrustAV

client. This report contains information about the malicious files detected, such as file-

names, risk level, scanning date, etc. When the report is constructed, the server encrypts

it, while still inside the enclave, and then it is forwarded to the corresponding client. En-

suring that the scanning report never lives outside of the SGX enclaves in plain-text format

is very important for the user’s privacy. By rendering the report inaccessible outside the

user’s device or the server’s SGX enclave, attackers or honest-but-curious entities, such

as the service provider, cannot obtain any information about the user’s private data. In

combination with protecting the signature set inside the enclaves, we also eliminate the

possibility of malicious entities injecting custom signatures and observe the generated re-

port to infer information that could threaten the privacy of the user’s data. Moreover, the

report is randomly obfuscated so that its size cannot be used to infer information about

the number or type of identified patterns.

4.3.3 Service Registration

The registration process is the first task performed by TrustAV when the client is initi-

ated on a user’s device. At the first step of this process, the client communicates with the

TrustAV cloud-based server and establishes a shared key. During this process, the server

generates a client ID and stores the shared key along with the corresponding ID inside the

SGX enclave. The second step is the generation of the list containing the hashes of each

file at a clean, uninfected state. For this reason, the client hashes every selected file and

temporarily populates the whitelist. Then, every file is transmitted to the remote server

for malware analysis. Once the server responds with the first report, the hash values of

the uninfected files are considered permanent in the whitelist and all the malicious files,

if any, are handled by the user according to the report’s suggestions. When the registration

process is finished, the TrustAV client prompts the user for a periodic hashing interval and

the system defaults in automated periodic scanning.

4.3.4 Remote Attestation

TrustAV can leverage the Remote Attestation services, provided by Intel, to further increase

the security and level of trust of the SGX-enabled server. Using remote attestation, the
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TrustAV client challenges the server to verify that the core part of the engine is located

inside a signed SGX enclave, executed on an SGX-enabled processor in hardware mode.

In this way, we eliminate the possibility of a malicious entity posing as an SGX-enabled

TrustAV server to obtain access to users’ private data. Moreover, we prevent entities exe-

cuting the TrustAV server in SGX debug or simulation mode, trying to obtain access to the

user’s sensitive data and the server’s secret keys using debuggers.

4.4 Implementation

In this section, we present the implementation of the applications that compose TrustAV.

We provide detailed description of the malware detection process as well as the steps re-

quired to develop an SGX-enabled malware scanning engine, operating on a cloud-based

server to protect and preserve the privacy of the user’s data.

4.4.1 Malware Scanning Inside SGX Enclaves

Our malware scanning engine is based on the Aho-Corasick pattern matching algorithm,

as it is one of the most efficient and widely used algorithms, found in many signature-

based solutions, such as the popular open-source ClamAV antivirus. TrustAV performs

the entire malware scanning process inside Intel SGX enclaves to preserve the privacy of

the offloaded data, the security of the executed code and the integrity of the signature set.

As described in this chapter’s introduction, in most implementations, the patterns are

compiled into a state machine (DFA) which is constructed as a tree, with each node con-

taining information about the state it represents, as well as various metadata and pointers

to the connected nodes. However, this state machine structure is not optimized to be used

inside SGX enclaves. The reason is twofold: (i) the generated tree requires a lot of mem-

ory to be represented while the live available enclave memory is quite limited (when SGX2

hardware is not available), (ii) traversing the nodes scattered in memory during the pattern

matching process eliminates all caching effects and reduces the sustainable performance.

To address these constraints that can play a significant role in terms of performance,

we choose to represent the DFA as a serialization of the state machine tree to a single-

dimensional integer array. We describe the serialization process using a two-dimensional

array (for better visualization) and the tree presented in Figure 4.2(a), produced by the

patterns {he, she, his, hers}, as an example.

First, we compile all the available malware signatures into a single Aho-Corasick DFA.

Next, we serialize the produced tree as a two-dimensional integer array. This array consists

of 256 columns, which represent the size of the American Standard Code for Information

Interchange (ASCII) set (i.e., all the values that a single input byte can take), and N rows,

where N is the number of the states in the DFA. Each row represents a DFA state and each
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(b) Aho-Corasick DFA serialized as an integer array.

Figure 4.2: An overview of the Aho-Corasick DFA serialized as an integer array. The
DFA contains the patterns {he, she, his, hers}. In sub-figure (a), dark blue
nodes indicate final states (i.e., end of a pattern) while the same informa-
tion is indicated with negative values in sub-figure (b).

cell contains the ID of the next valid transition, corresponding to the ASCII character that

the cell represents. An example of this array can be found in Figure 4.2(b).

To traverse the serialized DFA tree, the matching process starts from state 0 (row 0)

and selects the appropriate column, according to the ASCII value of the first character of

the input. In this cell, it finds the next valid state, which is located in another row of the

array. Then, it fetches the next character from the input and moves to the cell pointed

to by the row given in the previous step and the column given by the ASCII value of the

current character. The final states in the array are annotated with a negative sign to re-

duce memory utilization. When the task encounters a negative state, a match has been

successfully found. Then, the search is continued using its absolute value for the next step.

The fail states either point the matcher to a previous valid state or to the initial state 0. In

practice, as we stated earlier, this array is single-dimensional and all the rows mentioned

in our example are concatenated. Since the size of every row is 256 integers, the matcher

traverses the array as follows: state = dfa[state * 256 + current input byte]. For this reason,

the serialization of the state machine provides a second important benefit to our system.

The malware scanning function requires only a few lines of code, rendering it very fast and

efficient but, most importantly, produces a minimal Trusted Computing Base (TCB) which

is very easy to audit and eliminate any security threatening software bugs.

4.4.2 SGX Enclave I/O

With the malware scanning process and the signature set secured inside SGX enclaves, the

second, and most important, part of our implementation is to provide secure and efficient

I/O with the enclave. The only entry point offered by the enclave is utilized for user data
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entry. Since the SGX enclaves do not have access to system calls, the network sockets, nec-

essary for receiving client data, are managed by the non-SGX enabled part of the TrustAV

server, as SGX’s model dictates. The data arrive encrypted over the network while the se-

cret keys required for their decryption exclusively reside inside the SGX enclave. Entering

the enclave is achieved using an ECALL function. However, multiple consecutive calls to

this function can impose a performance overhead to the system. For this reason, we bach

incoming encrypted client data using a buffer in the non-SGX enabled part of the appli-

cation and transfer the buffer into the enclave once it is full. The size of this buffer can

be optimized dynamically according to the current workload. Once a batch of user data is

gathered, it is forwarded into the enclave for processing.

Before the malware scan can take place, the matcher decrypts the user data with the

corresponding key, inside the secure enclave. This ensures that while a compromised

server can block data forwarding to the enclave, the data and the secret keys never reside

in main memory or the file system in plain-text format. The malware analysis results are

compiled as a report that can be then parsed by the client. This report contains informa-

tion about the infected files and the identified malware, as well as recommended actions

that the user could perform to mitigate each threat. The only data output point of the en-

clave is utilized to transmit the report back to the TrustAV client. Once again, the report is

encrypted inside the SGX enclave using the client’s secret key. This action is performed to

guarantee that external observers are not able to gain any useful information that could

disclose the user’s file contents or types. After its successful encryption, the report is for-

warded to the non-SGX enabled part of the TrustAV server to be transmitted to the client

via the network. As an extra privacy-preserving guarantee, the report is generated each

time with an arbitrary size (obfuscated) to prevent attackers from inferring information by

monitoring the report’s size.

4.4.3 Performance Optimizations

One of the biggest challenges of modern signature-based intrusion/malware detection so-

lutions (such as Snort, ClamAV, etc.) is minimizing the memory footprint of the signature

automata. Usually, the performance of applications that utilize multi-pattern matching

algorithms, such as Aho-Corasick, is limited by the cache size provided by the CPU. Once

the signature automaton exceeds the cache size, cache misses can greatly hinder the sys-

tem’s performance — a problem that only gets worse as the automaton increases in size

when new rules are added. This challenge reaches a new dimension when such an an-

tivirus engine is designed to be executed inside secure SGX enclaves. During execution,

enclave code and the required data are placed in a special memory region called Enclave

Page Cache (EPC). This region is protected by being encrypted by a dedicated chip called

Memory Encryption Engine (MEE). In this way, memory pages are only decrypted inside
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the physical processor core while external reads on the memory bus can only observe en-

crypted data. The EPC size is set in the BIOS and can reach up to 128MB. The SGX driver for

the Linux platform supports page swapping, allowing SGX to remove pages from the EPC

and place them encrypted in unprotected memory, as well as restore them when they are

referenced. Pages cannot be removed until all cache entries referencing them have been

removed from all processor logical cores. This property of the SGX driver provided for

Linux allows the allocation of the memory required to store automata exceeding 128MB.

However, the random accesses in the automaton’s states during the matching process pro-

duce a substantial number of accesses to pages stored in unprotected regions, triggering

the expensive process of restoring such pages — an overhead that is being added to the

one already introduced by the increased number of cache misses, as at this point the au-

tomaton size is greater than the cache size by orders of magnitude. During the preliminary

testing of our system, we discovered that this issue becomes very prominent when more

than 50% of the input data are infected with malware. Similar behaviour deriving from

EPC size is also observed in the literature [41]. Moreover, the SGX driver for Windows does

not support this page swapping functionality, meaning that automata greater than 128MB

cannot be stored inside enclaves at all. Considering that automata containing 5000 pat-

terns exceed 128MB, even after serialization, the EPC size is a strong limiting factor for

porting our application to Windows, as well as for signature-based solutions that wish to

utilize SGX enclaves with the commonly available SGX1-compatible hardware.

To address this constraint, we develop two custom caching systems, aiming to min-

imise accesses to pages stored out of EPC as well as enable the protection of big automata

for the Windows platform without sacrificing security. Our first approach is a simple cache

with configurable size that is limited to 90MB, allowing other data and code to be stored

inside the EPC without triggering swapping. This cache stores the first N automaton states

while the rest are stored in untrusted memory. To protect this part of the automaton, we

encrypt each individual transition separately using AES-GCM as provided by the SGX SDK.

This process is performed using SGX enclaves for the entire automaton during its compila-

tion, enabling the reconfiguration of the cache size, while the keys required for decrypting

the transitions are exclusively stored in the enclave. The SGX enclave is able to access un-

trusted memory with minimal overhead. During execution, if a transition is not found in

the cache, the matcher fetches a copy of its encrypted counterpart, decrypts the contents

inside the enclave and proceeds with the malware scanning. In this way, we eliminate the

need of costly secure swapping of EPC pages and enable the use of big protected signature

sets for Windows. As we describe in Section 4.5, this caching system is very efficient due

to the fact that according to our microbenchmarks, in most cases, caching 25% of the au-

tomaton results to an average cache hit ratio of 85% when the data are 100% infected (i.e.,

all automaton states are utilized), which also is the worst possible case.

Utilizing the same encryption scheme, we further optimize the caching system by re-
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placing the simple mechanism with an LRU cache. Our goal at this step is to further im-

prove the cache hit ratio while decreasing the cache’s memory footprint to minimise cache

misses and possibly enable the simultaneous operation of several caches, serving different

ruleset automata. To achieve this, we implement the LRU as a double-linked list with each

node holding information about the cached transitions. LRU look-ups are performed us-

ing a hash table with each entry being a pointer to a queue node to minimise the mem-

ory footprint. Finally, we eliminate constant memory allocations when transitions are in-

serted or evicted from the cache by implementing a custom memory pool that performs

all required allocations during the system’s initialization phase.

4.4.4 TrustAV Clients

Aiming to cover the vast majority of available devices and platforms, we implement both

desktop and mobile clients. The desktop version is targeted for traditional desktop/server

devices while the latter is developed as a standard Android APK that can be utilized by

smartphones, tablets and Android-enabled IoT devices. Both clients perform the service

registration with the server, as described in Section 4.3. The hashing of the selected files

is performed using SHA-256, utilizing the appropriate libraries offered by each platform.

Moreover, the clients implement secure persistent storage of the whitelist by exporting it

to the file system in an encrypted format. The exported whitelist is also paired with check-

sums to ensure its integrity. The main difference between the two clients is the fact that

the desktop implementation is always able to utilise remote attestation to further enhance

the security of the connection with the server. This functionality is not available for the An-

droid platform for every use case but is not a strong requirement for the execution of our

system. Finally, the mobile client offers several options for the fine-grained configuration

of the scanning intervals to minimise network traffic when the device is using a metered

connection and optimise battery consumption. Clients targeting other platforms can be

easily developed by implementing the described functionality, using our API.

4.5 Evaluation

In this section, we present TrustAV’s evaluation. First, we analyze the performance char-

acteristics of our malware scanning engine and explain the performance overhead intro-

duced by the usage of hardware assisted enclaves (i.e., Intel SGX enclaves). Then, we eval-

uate the performance of our caching systems and present their effectiveness compared to

default SGX secure memory page management.
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4.5.1 Evaluation Setup

Hardware Setup

The TrustAV server is hosted on an commodity desktop, based on an eight-core Intel i7-

8700K CPU, running at 3.7GHz, providing support for Intel SGX enclaves. The system is

also equipped with 32GB of DDR4 RAM clocked at 2400MHz and is connected to the net-

work using a 1 GbE NIC.

Malware Signatures and Workloads

We evaluate the performance of our system using real malware signatures utilised by Cla-

mAV. Specifically, we generate sets that contain a varying number of randomly selected

signatures (i.e., 10, 100, 1000, 10000, 20000 and 30000), extracted by ClamAV’s malware

signature database. Each set is compiled into a separate automaton, as described in Sec-

tion 4.4. In addition, we generate four different input streams for each signature set, con-

taining 512MB of data. These streams are composed of various files, injected with signa-

tures, so that they report 0%, 10%, 50% and 100% matches. The first two streams represent

expected scenarios when the system is deployed while the latter are used to test the max-

imum capabilities of our system. To stress the limits of TrustAV, all input streams that

contain matches are crafted so that every signature of each corresponding set is present in

the data and every automaton state is accessed at least once.

The input data streams are synthetic but contain data that trigger all the malware sig-

natures used. We choose to evaluate our system using synthetic input to be able to control

the infection rate as well as provide input that triggers the worst possible access patterns

in the automata. In this way we can stress the limits of our system and provide a thorough

evaluation. In the future, we also plan to evaluate the end-to-end performance of our

system using real input streams collected by various threat intelligence sharing platforms,

such as STIX/TAXII [141].

4.5.2 Malware Analysis

Figure 4.3(a) illustrates the sustained throughput achieved by our malware analysis system

when executed without using Intel SGX enclaves, while Figure 4.3(b) presents the perfor-

mance, when TrustAV is entirely executed within secure enclaves. In addition, each au-

tomaton used in each execution is located inside the enclave memory space. Both figures

display the throughput for various signature set sizes and different inputs, resulting to a

varying number of matches.

Comparing the results, we can see that securing the execution within SGX enclaves

adds no more than 19% overhead in execution time when the signature set is able to

entirely fit in the EPC. This overhead occurs due to: (i) the execution of the added CPU
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Figure 4.3: Throughput evaluation of our malware scanning engine when executed
with and without Intel SGX enclaves. Six different signature sets are tested
against custom input streams infected by 0%, 10%, 50% and 100%. The Y2
axis indicates the DFA size.

instructions, (ii) the accesses inside the enclave’s encrypted memory, and (iii) the time re-

quired to enter and exit an enclave. On the other hand, we can see that the overall through-

put is reduced for automata exceeding the EPC size when the input streams are infected

by 50% or more. In such cases, the multiple frequent random accesses to every automa-

ton state produce a high number of accesses to EPC pages stored in untrusted memory.

This behaviour triggers the costly process of restoring them in EPC and evicting others

that might be shortly needed after processing only a few bytes from the input. Despite

the fact that this issue is not observed with low input stream infection rates, it should be

addressed as it severely affects highly infected input data streams by reducing the overall

performance by an order of magnitude and could be possibly exploited for DoS attacks.

To identify the performance penalty introduced by protecting the signature automata,

storing them inside the SGX enclave, we re-evaluate the throughput of our malware scan-

ning engine with a different setup. In this case, we execute the TrustAV server with enclave

support but we store the automata in unprotected memory in plain-text format. Since

SGX enclaves have full access to unprotected memory with minimal overhead, our engine

is still able to process the input streams without exposing the user’s data which are still

secured and processed inside the enclave. The results of this analysis are presented in Fig-

ure 4.4. Comparing the sustained throughput achieved with automata that exceed EPC

size against the performance reported in Figure 4.3(b), we notice that with this setup the

overall performance is significantly increased, exceeding 1Gbps for almost all cases. This

benchmark also provides us with useful information for the implementation and evalu-

ation of the caching systems, described in Section 4.4.3, as this is the maximum single-
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Figure 4.4: Performance evaluation of TrustAV when executed within enclaves while
the automata are stored in untrusted memory in plain-text format.

threaded performance that could theoretically be achieved if the EPC page swapping is

minimized by 100%. If the TrustAV hosting facility can be completely trusted and the in-

tegrity of the signature sets can be guaranteed or in cases where system performance is a

strong requirement, this setup can still be utilized as user data are still never exposed out

of the secure enclaves. However, it is not the optimal scenario as potential tampering of

the signature set is possible and in such cases frequent integrity checking of the automata

should be performed in parallel as a minimum countermeasure.

4.5.3 Performance Optimization Analysis

In this section, we evaluate the performance of the two caching systems that we imple-

ment to address the performance penalty introduced by severe EPC page swapping, dis-

cussed in Section 4.5.2. By analysing our system’s performance with the automaton pro-

tected inside the secure enclaves as well as stored in untrusted memory in plain-text for-

mat, we are able to identify the introduced overhead for protecting the automaton and the

possible maximum performance.

Aiming to preserve TrustAV’s security and privacy guarantees, we explore the possibil-

ity of encrypting each automaton state using AES-GCM, provided by the Intel SGX SDK,

and storing the automaton in unprotected memory in cipher-text format. In this setup,

every referenced state is only decrypted inside the SGX enclave during processing and

remains protected but without being allocated in EPC pages. We evaluate this setup for

automata exceeding the EPC’s capacity using input streams containing only infected files

and present the results in Figure 4.5. While this setup eliminates the need for EPC page

swapping, we notice that the performance is lower compared to storing the automaton in-
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Figure 4.5: Performance comparison of the four ruleset protection schemes when the
automaton size exceeds the ECP’s capacity and the infection rate is 100%.

side the enclave and letting the SGX driver perform EPC page swapping. The main reason

for this is that the decryption of each state using AES-GCM is slower than EPC page swap-

ping, which is backed by the MEE implemented in hardware. Moreover, we notice that this

is also the worst case performance for a cache implementation with minimum complexity,

operating at 100% cache misses. After exploring the theoretical maximum and minimum

performance boundaries of our system, we implement the two caching systems described

in Section 4.4.3 and present their performance evaluation in Figure 4.5. For this evalua-

tion we use the three signature automata that exceed the EPC memory limits, processing

the input streams containing only 100% infected files that produce the worst memory ac-

cess patterns in the automata. For the simple cache setup, we store up to 90MB of each

automaton in the EPC, leaving enough memory for the application code, the batches of

input data and the malware report generation process. The rest of the automaton is stored

in cipher-text format in unprotected memory. Upon a cache miss, the state is fetched from

the untrusted memory, decrypted inside the enclave and discarded after usage. We notice

that this setup eliminates EPC page swapping while at the same time reduces the accesses

to encrypted states in untrusted memory as it offers high cache hit rate, especially for the

automata containing 10000 and 20000 patterns. More specifically, we notice that for the

utilized rulesets, caching 25% of the automaton yields an 85% cache hit ratio, meaning

that performance can be significantly improved by caching only a small portion of the au-

tomaton, as shown in Figure 4.5. However, this performance benefit gradually decreases

as the automaton increases in size and a lower percentage of its states can be stored with-

out violating EPC memory limits.

We conclude our evaluation by presenting the sustained throughput achieved by re-
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placing the simple caching system with an LRU cache and executing TrustAV with the

same automata and input streams as described above. As we can see in Figure 4.5, the

LRU cache yields the best results for the automata containing 10000 and 20000 patterns

by further increasing the cache hit ratio, efficiently utilising the available EPC space. How-

ever, we notice that it cannot outperform the simple cache when processing the input

stream using the automaton containing 30000. The reason for this behaviour is that with

the given EPC memory limit, the LRU cannot store enough states to provide substantial

cache hit rate increase, compared to the simple cache, while LRU cache misses are more

expensive since at each cache miss a state has to be evicted and a new one has to be stored,

constantly updating the LRU data structures. In the future we aim to implement and eval-

uate more caching schemes (e.g., MRU) to address this, non critical, worst case scenario.

4.6 Summary

In this chapter, we presented our framework’s first component, a practical and privacy-

preserving cloud-based malware detection solution. TrustAV offloads the intensive pro-

cess of malware analysis to a remote server with Intel SGX support to protect offloaded per-

sonal data as well as the malware scanning execution against untrusted parties. TrustAV

is capable to perform with a minimum performance overhead, which is introduced by

the utilization of hardware assisted enclaves. To reduce the memory footprint of our im-

plementation, an important limiting factor for the majority of equivalent state-of-the-art

solutions, we develop a caching scheme that eliminates EPC page swapping and offers up

to 3x speedup, compared to the unoptimized implementation. With this component, we

make the following contributions:

• We propose a practical cloud-based malware detection solution that provides users

with strong privacy-preserving guarantees regarding the processing of their personal

and sensitive data remotely by utilizing hardware assisted enclaves.

• We identify and present the performance constraints that are introduced by the Intel

SGX technology, specifically in relevant signature-based analysis systems (such as

intrusion detection or malware detection systems).

• We reduce the enclave memory footprint of our implementation, a limiting parame-

ter for the majority of signature-based solutions in the state-of-the-art, by develop-

ing a caching scheme that eliminates EPC swapping and offers up to 3x speedup.

• Our proposed architecture enables the protection of signature-based automata that

exceed the enclave memory limits in architectures where swapping of protected mem-

ory pages is not supported.
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4.6.1 Discussion

Our proposed cloud-based malware scanning solution relies on a pattern matching tech-

nique to identify infected data. As discussed in this chapter, such approaches can face

performance limitations when the automata required for the data processing are not able

to entirely fit in secure enclaves and the input data are highly infected. Also, it is possible

that, in certain applications, our component’s server might operate with more than 30000

virus signatures in total when the underlying hardware only supports SGX version 1. De-

pending on the use case, preliminary testing should be applied to identify the properties

of the automaton as different rules might generate automata with different caching char-

acteristics while the access patterns on each automaton depend on the nature of the input

data. As future work, we plan to extend our system so that the server can identify which

rules should be applied on each input stream. In this way, the server will be able to utilize

subsets of the ruleset so that smaller automata are generated, providing smaller memory

footprints and better caching properties. We expect that this technique will further im-

prove our system’s overall performance, regardless of the infection rate of the input data.



46



Chapter 5

Kernel Integrity Monitoring

In this chapter, we present the second component of our security framework, named SGX-

Mon, an external kernel integrity monitor that verifies the operating system’s kernel in-

tegrity using a very small TCB without requiring any OS modifications or external hard-

ware. SGX-Mon is a snapshot-based monitor, residing in the user space, and utilizes the

trusted execution environment offered by Intel SGX to avoid detection from rootkits and

prevent attackers from tampering its execution and operation-critical data. Our system is

able to perform scanning, analysis, and verification of arbitrary kernel memory pages and

memory regions and validate their integrity. The monitored locations can be specified by

the user and can contain critical kernel code and data. SGX-Mon scans the system period-

ically and compares the contents of critical memory regions against their known benign

values. Our experimental results show that SGX-Mon is able to achieve 100% accuracy

while scanning up to 6,000 distinct kernel memory locations.

5.1 Design

Our kernel integrity monitor puts its integrity evaluation component, which represents its

entire Trusted Computing Base, in an SGX enclave. Hence, the monitor is safe from at-

tacks that can potentially compromise the Linux kernel and affect its execution. Moreover,

attackers cannot inspect its code and identify that SGX-Mon exists in the system, scan-

ning the kernel for malicious modifications. In addition, we use techniques to deprive an

attacker from modifying the operating system’s kernel to prevent running unauthorized

code on the target system, as well as stop attacks that involve modifying the system’s mem-

ory layout (e.g., through changing virtual memory mappings). This is an important step

towards complete security protection of the kernel.

In its core, the integrity monitor is snapshot-based and provides programmability and

easy deployment. During the secure bootstrap phase, SGX-Mon obtains the benign values

of selected kernel memory regions that are not expected to be modified during normal

execution. Then, it hashes these values and securely stores them inside the SGX enclave.
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Figure 5.1: Architecture overview of the kernel integrity monitor.

During its execution, SGX-Mon periodically rescans these regions, computes their hash

values and compares them with the benign ones. If a value is found to be modified, the

system reports the existence of a possibly malicious action. Besides the static text parts of

the kernel or the already loaded LKMs that can be easily hashed, the OS kernel consists of

additional parts that frequently change; for example the VFS layer’s data structures change

when new file systems are mounted or removed. Also, every LKM can add function point-

ers. The memory regions to be monitored can be specified by the user and can include

pages that contain kernel text, loadable kernel modules, or function pointer arrays (i.e.,

jump tables). Our system’s architecture is depicted in Figure 5.1.

5.2 Implementation

5.2.1 Mapping Kernel Memory to SGX Enclaves

During its secure bootstrap phase, the integrity monitor needs to acquire the kernel mem-

ory regions that need to be monitored. Since these regions are located in the kernel virtual

address space, the first step is to map them to the address space of the user process that

issues the execution of the secure enclave which performs the monitoring.

To provide the desired integrity monitoring functionality from the user space, we need

to develop a mechanism to reference kernel memory regions. The Linux kernel prohibits

user space applications to directly access memory regions that have not been assigned

to them. Typically, all memory accesses to pages that are not mapped to the process’s
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Figure 5.2: Mapping OS kernel memory to the address space of the integrity monitor.
In step 1, we locate a desired kernel virtual address pointing to a physical
address. In step 2, we duplicate this mapping to user space using our page
table manipulation kernel module. In step 3, we pass the user space virtual
address to the SGX-enclave using the user check option.

virtual address space result in a segmentation violation since they are considered illegal.

For this reason the memory regions where the kernel and its data structures reside have to

be mapped to the integrity monitor’s address space.

To bypass this OS functionality without modifying the operating system kernel, we de-

velop a loadable kernel module, named pamess, able to map user-specified memory re-

gions to user space. These regions can correspond to pages that contain kernel function

pointers, data, as well as LKM or kernel text. The virtual addresses of the aforementioned

memory locations are obtained via the /proc/kallsyms interface. In our case, the Linux

kernel under test is built with CONFIG KALLSYMS=y and CONFIG KALLSYMS ALL=y, so no re-

compilation of the kernel is required. However, these two options are not a strict require-

ment for the proper operation of our system.

Since the kernel symbol lookup table is present, we are able to simplify the develop-

ment in two ways. First, no custom memory scanner is required to locate all the kernel

memory regions subject to monitoring. Second, it allows us to easily locate the address

of the kernel page table by acquiring the address of the init mm symbol without explicitly

exporting it via modifying the kernel. In this case, no modifications to the host’s operating

system are required and our system is able to operate at its full potential just by loading our

custom kernel module. In scenarios where the access to the kernel lookup table has to be

restricted, we would locate the various memory locations using either an external symbol

table or via a custom memory pattern scanner. The pamess kernel module is only required

during the secure-bootstrap phase, to acquire the correct memory mappings, and can be

unloaded afterwards as it is not needed during SGX-Mon’s execution.
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The process of making the aforementioned memory pages available to the SGX enclave

is depicted in Figure 5.2. During the secure bootstrap phase, we allocate a data structure

inside the SGX enclave responsible for storing all the available data and metadata of each

kernel region, such as the correct checksum, number of required pages, offsets, etc. Our

kernel loadable module resolves the physical mapping of each desired kernel virtual ad-

dress and instructs the integrity monitor to allocate the appropriate amount of pages in

its address space, as shown in step 1. Then, in step 2, the module makes the allocated page

to point to the same page as the kernel virtual address by duplicating the PTE in the user-

page table. Finally, in step 3, we update the data structure inside the enclave by passing a

pointer to the virtual page of the monitor’s address space using the user check option. By

issuing read operations of the appropriate size, the enclave side of the monitor is now able

to inspect the contents of the desired kernel memory regions.

However, an attacker could manipulate the kernel memory mappings, defined by page

tables, to fool the SGX-enabled integrity monitor and bypass detection. The attacker could

manipulate the CR3 register and map the kernel code to a different physical page. In this

work, we assume that the kernel runs in a known state and is not compromised prior to the

secure bootstrap of the monitor, thus by monitoring the CR3 register we limit the possibility

of such an attack.

5.2.2 Kernel Integrity Monitoring in SGX

The process of monitoring the specified memory locations is entirely performed inside

the SGX enclave. The first part of the process is acquiring the correct checksums of the

specified memory regions. During the secure bootstrap phase, once the page mapping

process is finished, the monitor obtains the hashes of the contents of all specified locations

and stores them in its data structures. Since this operation is performed during a secure

bootstrap phase, the state of the entire system is considered benign, thus these checksums

are considered a reference point for the system’s security.

After the process of obtaining the checksums is finished, we assume that the secure

bootstrap phase has finished and the system can be put at risk at any time. The monitor

operates as a daemon, running in an infinite loop, constantly iterating through all the

memory regions and hashing their contents. The hashes are compared for changes against

the values obtained during the previous phase. Since the entire checksumming process, as

well as the clean-state checksums, reside inside the SGX enclave, the monitoring operation

remains untampered.

SGX-Mon is able to perform the checksumming operations by using either the CRC-32

or the SHA-256 hashing algorithm. In its default operation, the monitor opts for CRC-32,

implemented in accordance with ISO 3309. We choose CRC-32 mainly due to its speed,

simplicity, and ability to cover a large number of individual memory locations without a
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severe performance overhead that penalises the safety of the system (see Section 5.3 for

performance comparison). The system is also able to perform the monitoring by entirely

using SHA-256 in scenarios where CRC-32 is not considered sufficient enough to provide

collision free results. However, SHA-256 is significantly slower and while it offers higher

collision resistance it is not able to cover the same amount of kernel memory regions in

the same frequency. In such cases, the integrity monitor can be tuned to use CRC-32 for

the majority of memory locations and SHA-256 for regions that are regarded to be highly

security critical. However, SGX-Mon can be easily extended to provide a wider range of

hashing algorithms.

5.3 Evaluation

In this section we present the evaluation of our SGX-enabled Kernel Integrity Monitor in

terms of performance and accuracy. We explore the characteristics of CRC-32 and SHA-

256 in respect to the detection rate of a kernel-side attack. We choose to evaluate SGX-Mon

with CRC-32 and SHA-256 as the former stands as a good representation of the fast hash

generation algorithm family while the latter provides higher collision resistance with the

penalty of lower performance. Other algorithms, such as MD5 or SHA1, yield performance

and collision resistance results between these bounds. Moreover, we measure the impact

of each algorithm to the system’s overall performance and ability to identify such attacks

by covering a reasonable amount of kernel memory regions.

5.3.1 Evaluation Setup

The system used for the evaluation of our kernel integrity monitor consists of an SGX-

enabled Intel Core i7-6700 CPU, clocked at 3.40GHz, and 16GB of DDR4 memory, clocked

at 2400 MHz. The system is running Arch Linux with kernel version 4.14 and the latest

version of the SGX1 software stack.

5.3.2 Snapshot Frequency

We begin the evaluation of our kernel integrity monitor by identifying the achievable snap-

shot frequency of each hashing algorithm in respect to the number of kernel memory

regions provided. In this set of experiments, the system is instructed to monitor 8-byte

long kernel memory regions, obtained using the /proc/kallsyms interface. Setting the

system to its default mode of operation, using CRC-32, we perform constant monitoring

of the provided memory regions while measuring the sustained snapshot frequency. We

conduct the same experiment, each time increasing the number of monitoring addresses

by 2,000, starting with 1,000 entries up to 20,000. The outcome of this evaluation is de-

picted in Figure 5.3. As expected, we notice that as the number of memory locations in-
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Figure 5.3: Sustainable scanning frequency using CRC-32 and SHA-256 in respect to
the number of monitored regions.

creases, the frequency of monitoring the locations decreases. Overall, the system is able to

achieve a frequency of 42 KHz when monitoring 1,000 distinct kernel memory regions and

provides monitoring frequencies greater than 10 KHz for configurations containing up to

4,000 memory locations.

We also perform the same set of experiments, this time by tuning the integrity moni-

tor into using SHA-256 for the checksumming operations. The results of this experiment

are also shown in Figure 5.3. We observe that SHA-256, being a more computationally

intensive algorithm compared to CRC-32, yields lower sustained monitoring frequencies.

On average, its performance is one order of magnitude lower than CRC-32 and SGX-Mon

achieves a scanning frequency of 4.3 KHz when monitoring 1,000 kernel memory regions.

5.3.3 Monitoring Accuracy

After obtaining the performance characteristics of our system using the two available hash-

ing algorithms in multiple configurations, we want to determine its ability to accurately

identify kernel-side attacks. We base this analysis on the monitor’s ability to detect the

presence of a malicious self-hiding kernel loadable module. Similar case studies have also

been conducted for the evaluation of other kernel integrity monitoring systems [112, 121].

To perform this evaluation, we develop a custom self-hiding loadable kernel module

(LKM) that performs zero malicious operations other than deleting itself from the loadable

kernel modules list after it is being loaded. With this setup we are able to stress SGX-Mon

to the maximum extend since this artificial module does not execute any code useful to an

attacker, thus being exposed to the system for the minimum possible extend.
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Figure 5.4: Detection rate of the self-hiding LKM with different snapshot frequencies.
Frequency configurations of 8 KHz or more achieve a 100% detection rate.
For each frequency configuration we monitor the head of the kernel mod-
ules list and load a module that deletes its entry from the list 100 times.

In typical Linux environments, loadable kernel modules are handled using the various

available utilities, such as insmod and rmmod. These utilities are responsible for loading

the modules into memory and invoking the appropriate system calls for their initializa-

tion. The reverse operation is performed when a module needs to be unloaded from the

system. During the initialization phase, the insmod tool opens the module object file and

invokes the finit module system call. This operation adds a handle to the kernel’s load-

able module list data structure, initializes any parameters given to the module and invokes

the module’s init() function. All modules currently present to the system can be obtained

by iterating through this list. Once our artificial module is loaded, it hides itself from the

system by removing its entry from the kernel’s loadable module list. This transient mali-

cious operation can be detected by our kernel integrity monitor by scanning the head of

the loadable kernel modules list with a sufficient frequency.

With the following experiment we determine the minimum required monitoring fre-

quency for the successful detection of such modifications of the kernel’s data structure.

We measure the detection rate using multiple frequency configurations while loading the

self-hiding module 100 times. The outcome of this experiment is displayed in Figure 5.4.

We observe that SGX-Mon is able to reliably detect the presence of the malicious module

with 100% accuracy when operating with a snapshot frequency of 8 KHz or more.

We conclude our evaluation by performing the first set of experiments, this time in-

cluding the head of the kernel’s loadable module list in each kernel memory region config-

uration, while at the same time loading the self-hiding module into the system. Figure 5.5

presents the comparison of the sustained detection rate when monitoring with CRC-32
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Figure 5.5: Scanning frequency and detection rate of the self-hiding LKM using CRC-
32 and SHA-256 in respect to the number of monitored regions.

and SHA-256, using an increasing number of kernel memory locations. As we can see in

the Y2-axis, our system is able to achieve 100% detection rate, using a single thread, while

scanning up to 6,000 distinct memory locations by using CRC-32 for the checksumming

operations. On the other hand, when SHA-256 is used, the system achieves a maximum of

87% detection rate while scanning 1,000 memory locations. The increased level of security

provided by SHA-256 comes with a substantial penalty to the system’s overall performance.

Nonetheless, for our specific hardware, SHA-256 can be used to successfully monitor up

to 850 distinct memory locations of significant security importance.

5.4 Summary

In this chapter, we presented our framework’s second component, an external snapshot-

based integrity monitor able to identify kernel-side attacks that tamper and modify criti-

cal Linux kernel memory regions and data structures. Our system is executed in the user

space, without any need for external hardware, kernel modifications or hypervisors, and

resides inside a secure Intel SGX enclave. The module is able to remain untampered and

undetected by malicious third parties and operates with a minimal TCB. SGX-Mon is able

to achieve up to 100% accuracy while scanning up to 6,000 distinct memory locations us-

ing CRC-32 and up to 87% accuracy while scanning up to 1,000 memory locations using

SHA-256. With this component, we make the following contributions:
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• This module is the first, to our knowledge, kernel integrity monitor that leverages

Intel SGX to protect its code and data from identification and modification. SGX-

Mon utilizes a very small TCB, able to be contained in a single SGX enclave and is

easily audited.

• SGX-Mon is purely software-based, running in the user space, and does not require

external or non-commodity coprocessors, devices, TPMs or hypervisors. This re-

stricts potential memory leaks and vulnerabilities that are introduced by extra hard-

ware or complex system management software.

• We evaluate the effectiveness of our system in identifying transient kernel-side at-

tacks and study the appropriate monitoring intervals that guarantee that transient

rootkits are not able to perform any malicious actions and still be able to remain

undetected.

In the future, we aim to explore the effectiveness of random intervals to increase the

system’s overall accuracy when scanning more memory locations using highly collision

resistant algorithms, such as SHA-256. Moreover, we plan to extend our system with a rule

engine able to perform specific user-defined actions when a threat is detected as well as

identify complex attacks targeting kernel code and registers. Also, we plan to identify our

system’s maximum effectiveness and performance to CPU utilization ratio using a multi-

threaded setup.
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Chapter 6

Enhancing a Modern Operating System

In this chapter, we present Andromeda, our security framework’s component that provides

secure enclaves for the Android operating system. Developers can explicitly use them for

their applications, either via the native API in C/C++ or our Java interface that provides

access to the secure enclaves through JNI bindings. In contrast to other TEE approaches

targeting the Android OS, Andromeda has the potential for multiple enclaves in a system

simultaneously, making it more flexible for general-purpose security-critical operations,

offering per-application or per-function isolated secure environments.

In addition, Andromeda implements popular Android services, enhanced with enclave

capabilities, hence securing and protecting their functionalities. We provide two represen-

tative services: (i) a secure key management system, and (ii) a data protection scheme for

data flows, that enhance the security of Android OS and offer protection schemes for sev-

eral applications that deal with sensitive data (such as cipher keys, personal data, medical

data, etc.). These services enable Andromeda to support an efficient and robust end-to-

end encrypted data flow model in which external devices that pair with Android can se-

curely transfer and process their data on the Android device, or even pair with a remote

Android cloud-based service.

We have currently implemented the Andromeda prototype for Intel processors with

SGX1 support. Any device that is equipped with an SGX-enabled processor can run An-

dromeda natively, out of the box, including handheld devices, convertibles, set-top boxes,

and car entertainment units. However, we have to point out that Andromeda is not bound

to Intel SGX; instead the proposed mechanisms could be implemented on top of other

architectures offering secure user-level enclaves. For instance, there are approaches that

implement user-level secure enclaves, compatible to SGX, either independent of the un-

derlying CPU (such as Komodo [83]) or on top of ARM TrustZone (such as Sanctuary [55]).

Andromeda is not fundamentally tight to Intel SGX and, as such, could be implemented

on top of such approaches instead. Besides that, we note that a number of vendors are de-

veloping similar hardware protection mechanisms, including Apple Secure Enclave [38]

and IBM SecureBlue++ [53]. Even though these mechanisms are not identical, many of
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the proposed techniques of Andromeda can be adapted to use these hardware features,

the need of which will increase in the future.

6.1 The Android OS

Android is an operating system mainly designed for small handheld smart devices, in-

cluding but not limited to mobile phones, tablets and watches. It is being developed by

Google LLC, first released in 2007, and is currently the most widespread OS for smart de-

vices [15, 103]. Android’s backbone is based on the Linux kernel, thus granting it exten-

sively tested security features and stability, and also allowing developers and manufactur-

ers alike to develop hardware drivers for a well known kernel. Google also had to make

a few additions to provide a more customised kernel functionality for Android’s require-

ments. A few key additions are the wakelocks, a power management component crucial

for mobile devices, a unique out of memory (OOM) handling, also informally known as

Viking Killer, the ashmem, a new shared memory allocator for low-memory devices, pmem,

a process memory allocator and also Binder, an Android specific interprocess communi-

cation mechanism and remote method invocation system, essential to Android due to the

fact that it does not support the use of the Linux SysV IPC [26].

Android is built on top of the Linux kernel with components such as the hardware ab-

straction layer (HAL), which provides various standard interfaces that allow higher Java

APIs and code to make use of a device’s hardware components, and the Android Runtime

(ART), a special virtual machine similar to Java’s JVM, designed to run on low-memory de-

vices. There are also native C/C++ libraries and both HAL and ART are written in C/C++.

However these native libraries do not provide the same functionality as they would in

a traditional Linux machine. On the top layer of the Android architecture, there is the

Java API Framework, which provides applications a means to access the other layers in

a constant way throughout different machines. All Android applications, while able to

use native C/C++ code, are developed in Java, enabling them to be executed on multiple

and different devices. The majority of cryptographic operations in Android, including en-

cryption, decryption, message authentication (MAC), key generation and agreement, are

handled by the Android Keystore [74], that also provides a central place for storing cryp-

tographic keys for all applications. Keymaster is a part of the Android Keystore service

responsible for generating new keys for encrypting, decrypting and hashing data. It sup-

ports various cryptographic functions like AES, RSA, SHA and more. To generate such an

encrypted key for an application and perform cryptographic operations, one has to gen-

erate a SecretKey, initialize a Cipher with the desired mode (encrypt, decrypt or other),

and choose the appropriate algorithm and its properties for the current operation. An-

droid defines an abstract programming interface that can be used for the third-party im-

plementations, plugged in seamlessly as needed. Therefore application developers may
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take advantage of any number of provider-based implementations without having to add

or rewrite code.

6.2 Threat Model

In this work, we assume a powerful and active adversary who has root privileges and ac-

cess to the physical hardware. The adversary can control the entire software stack, in-

cluding the OS kernel and other system software. However, we explicitly exclude denial-

of-service (DoS) attacks on enclaves, given that the design of SGX allows the host OS to

control an enclave’s life cycle anyway. As a result, an attacker can prevent or abort the

execution of enclaves, but should not gain any knowledge by doing so. Moreover, side-

channel attacks that exploit timing or page faults or attacks based on vulnerabilities of the

application running inside the enclave are proven to be feasible on SGX enclaves. How-

ever, protecting SGX enclaves from side-channel attacks that either focus on software or

hardware bugs is orthogonal to Andromeda and thus we consider them as out of scope

of this work. However, any successful attempt to protect SGX-enabled software/hardware

has a direct benefit to our system. Finally, we assume the design and implementation of

SGX itself is secure and does not contain any software or hardware vulnerabilities.

6.3 Design

Our objective is to offer secure enclaves for the Android OS to protect sensitive services

from the threats defined in Section 6.2. This enables Android developers to explicitly lever-

age them for their applications. We also want to utilize secure enclaves inside Android ser-

vices that operate on sensitive data (such as Keystore), so they can be used transparently

by applications with forward and backward compatibility. Overall, Android developers

should be able to build their applications and use the secure enclaves as transparently as

possible, ideally without writing extra code or heavily modifying existing applications.

An enclave cannot be initiated on its own and the Intel Launch enclave must be used

to generate the appropriate launch token. In addition, an enclave’s code always has to

be executed in Ring-3 with a reduced set of allowed instructions and a limited amount

of available memory. Thereby, we decide to build an architecture that runs solely in user

space, providing the interface and the services that Android applications can use in an

expressive and flexible way. Figure 6.1 gives an overview of the Andromeda architecture.

It comprises of different layers that can be used by different kinds of applications for dif-

ferent purposes. Using these mechanisms, we enhance popular Android services, such as

the Device Pairing and Keystore service, to leverage secure enclaves internally to increase

their security in a robust and transparent way. Finally, we also implement an environment,

within SGX, so external devices that have paired with Android can securely transfer and
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Figure 6.1: Andromeda architecture overview.

store sensitive data on the Android device. Andromeda is responsible to protect all sensi-

tive data by encrypting them across the full path from the external device to the Android

OS. Further, Andromeda optionally enables the processing of these data via functions that

the data-publishing applications have submitted for execution in the SGX enclaves.

6.3.1 Trusted Execution and Storage

Andromeda provides trusted execution and data storage services on top of SGX. The ser-

vices can be used by local Android apps, as well as from remotely paired devices, as de-

scribed in Section 6.3.2. At the lowest level, applications can use the native API provided

by the SGX runtime libraries, to achieve the maximum performance. The process of util-

ising secure enclaves in an application developed in native C/C++ code remains the same

as for every other native C/C++ Android application. The developer needs to prepare and

integrate the Intel SGX counterpart of the application (similar to the Linux environment)

and then cross-compile the application with our custom Android toolchain, which is able

to handle the compilation of both trusted and untrusted parts of the code. Developing

Intel SGX enclaves for an APK implemented using Java requires the use of JNI bindings.

For this reason, we provide a Java API (described in Section 6.5.3), which wraps the SGX

functionalities in appropriate classes. The developer needs to extend these classes with

methods that will be eventually executed in the application’s enclave and compile the code

using the Andromeda toolchain, which also provides JNI bindings for each SGX-enabled

function requested. In this way, the developers can easily interface with the enclaves from

the APK level. Moreover, Andromeda provides a secure data vault system and exposes a

simple Java API for Android applications. Using the data vault service, applications can

securely store data inside the SGX enclaves or seal them for secure file system storage.
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6.3.2 Andromeda Services

Keystore Service

The main purpose of Android Keystore is to store cryptographic keys and offer crypto-

graphic operations in a secure container, protecting them from tampering. However, if

not implemented with secure hardware support, it is vulnerable to a broad set of attacks,

as described in Section 6.2. Having the secret and private keys stored in clear-text makes

them an easy target for malicious software running on the device. Andromeda offers the

mechanisms to keep the secret keys in a protected space, within secure enclaves, thus

solving and overcoming leakage scenarios and cold boot attacks.

The Keystore is implemented in C/C++ while Android uses a binder to communicate

with the Java counterpart. Internally, the Keystore can handle various types of entries.

Some of them are PrivateKey, SecretKeyEntry, and TrustedCertificateEntry. Each en-

try is identified by an alias name which corresponds to the Keystore entry. When gener-

ating such an entry, it is possible to choose from a range of available cryptographic algo-

rithms or use the default. In this way, the Android Keystore is able to store multiple keys

simultaneously, regardless of type, name and algorithm. At the same time, different appli-

cations can utilize the Keystore and store their keys without having to deal with collisions.

An overview of our SGX-enabled Keystore operation is illustrated in Figure 6.2. A major

advantage of Andromeda Keystore is that it can be used even by legacy apps without any

code modifications or recompilation. The simplest way is to have the entire Keystore in-

side a single enclave. However, this design leads to a large TCB that is generally harder to

review, or possibly verify, and is assumed to have more vulnerabilities. To overcome this

problem, we place only three core operations in the secure enclaves, which are used by

the majority of cryptographic algorithms: (i) the key generation, (ii) the data encryption,

and (iii) the data decryption. By doing so, we ensure that all private and secret keys reside

in secure enclaves while having a small TCB that can be easily verified. The memory for

the keys is allocated inside the SGX enclave and only their pointers are returned to the

user space, preventing any attempt to read them, extract them or modify them, even via

physical access to the device’s DRAM.

Our current implementation uses RSA-1024 and AES-CTR; we note though that other

modes can be easily implemented. AES divides each plain-text into 128-bit fixed blocks

and encrypts each block into cipher-text with a 128-bit key. The encryption algorithm

consists of 10 transformation rounds. Each round uses a different round key generated

from the original key using Rijndael’s key schedule. The whole encryption and decryp-

tion occurs inside the SGX enclave, ensuring that keys and all intermediate states are well

protected. Similarly, we have implemented RSA encryption and decryption.
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Figure 6.2: The Andromeda Keystore architecture. Cipher keys are stored only in SGX
enclaves. Encryption and decryption is performed using the default Key-
store API, internally redirecting to Andromeda’s trusted implementation.

Trusted Device Pairing

Andromeda provides secure device pairing between devices, even when only one (i.e., the

Android device) is equipped with an SGX-enabled processor. Such scenarios are typical

when small external devices, such as sensors and wearables with limited security capabil-

ities, need to be paired with more powerful Android devices (i.e., a smartphone or gate-

way). To accomplish secure device pairing and attestation in such use cases, Andromeda

offers the functionality that enables the external devices to securely connect with the SGX-

capable Android device. The main concept is that data-publishing wearable or external

devices can protect their sensitive data, so they only reside and being processed within

designated functions that run in SGX-provided enclaves.
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First, Andromeda generates a key pair and distributes the public key to the external

device and the corresponding private key to a local secure enclave. Each external device is

assigned to its own secure enclave to ensure isolation between each other. These keys can

be used later to establish a session key using Diffie-Hellman. The process of establishing

and storing the keys is performed entirely inside SGX enclaves in the case of the Android

device. We assume that the external device runs on a minimal codebase with limited I/O,

thus the integrity of the key management can be attested and preserved. While this end-

to-end encryption of the I/O channel ensures data protection during transfers, the need

of attestation between the two devices remains a critical point to prevent malicious users

impersonating as one of the two devices. In cases where the external device is capable

to execute the Intel Remote Attestation process, it is able to verify that it is indeed com-

municating with a secure enclave, running on SGX-capable hardware without emulation.

However, in some cases, Intel Remote Attestation cannot be performed due to the limited

computing capabilities of many external devices. To overcome this, we utilize one-time

passwords (OTP) instead, which are an essential part for our remote attestation alterna-

tive procedure. More specifically, we use Google key generator to create an arbitrary key

that we can then register with a secure SGX enclave. The registration is performed at the

first connection and Andromeda (optionally) prompts the user to verify the registration.

Once the key has been successfully registered, the attestation procedure starts with the

external device demanding a 6-digit OTP to be exchanged. The generated OTPs are based

on RFC 6238 [22]. Upon receiving the OTP, the external device calculates an OTP with the

same key. If both match, the external device can be certain that it communicates with the

SGX enclave, since the entire OTP process is performed inside the enclave. Once the OTP

is verified, the secure communication channel is established as described above.

6.4 Implementation

6.4.1 Setting up SGX for Android

Cross-compiling Intel SGX for the Android OS is an extensive and challenging task. Due

to the complexity of the software and the many differences between a standard Linux dis-

tribution and Android, we have to split the porting process into several smaller tasks to

constantly keep proving the potential and validity of our goal. For this reason, we per-

form the Android port in the following steps. First, we compile the SGX SDK for a differ-

ent Linux distribution than Ubuntu, which is the officially supported distribution for Intel

SGX, namely Arch Linux. Since Android is also based on Linux, this process lets us under-

stand how different compiler and library versions affect the possibility of porting SGX on

Android. Second, we validate that we can build the Android Open Source Project (AOSP)

form scratch and successfully install and run it on an SGX-capable x86 machine. Finally,
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we integrate the SGX functionality into the AOSP source tree by cross-compiling it and

providing the necessary libraries for its correct operation.

The whole process of building the SGX environment for an officially unsupported Linux

distribution, such as Arch Linux, is a quite tedious procedure. The main reason for this

are the kernel, compiler, and library version incompatibilities since Arch Linux uses a

rolling release system providing the latest version of each package, oftentimes a few ma-

jor versions higher than what the SGX runtime expects. While analyzing the dependen-

cies of the SGX SDK, we find the following to be essential for a standard enclave execu-

tion: (i) the SGX kernel driver, (ii) the aesm service, which is a background daemon serv-

ing as a management agent for SGX enabled applications, (iii) the libsgx urts.so and

libsgx uae service.so, needed for executing enclaves in hardware mode, (iv) the libsgx

urts sim.so and libsgx uae service sim.so, needed for the software emulation mode,

and finally (v) the le prod css.bin and (vi) libsgx le.signed.so. By analysing the ba-

sic components of the SGX environment and their software dependencies, we manage to

understand, in practice, the software requirements and the process of building it for an

unsupported platform.

Porting SGX on Android is an even more complicated process. First, AOSP has to be

built from scratch and installed natively on an SGX-enabled x86 machine. Then, porting

the SGX environment requires a lot of effort since each change to the source tree requires

the following: (i) rebuilding the Android image, (ii) flashing it on the host machine, and

(iii) verifying the correctness of each change as well as the stability of the system. During

the development of this system, utilizing virtual machines was not an option since no vir-

tualisation system offered guest support for Intel SGX. After successfully booting Android

on x86, we prepare the SGX environment to be ported.

Intel SGX1 requires to be built on a desktop-based Linux distribution that utilizes GCC-5

and above while Google’s NDK (Native Development Kit for Android) offers GCC-4 and

clang. The errors were excessive and most of the time could not be resolved so we needed

an alternative compiler, closer to Intel’s SGX requirements. To build Intel SGX for Android,

we use the CrystaX NDK (Native Development Kit) [7], a drop-in replacement for Google’s

Android NDK, offering GCC-5.3 compatibility.

The first task that needs to be performed is to configure the environment and the cross-

compiler by exporting all the required libraries for the building environment. Intel SGX

needs several libraries, such as protobuf, libssp, curl, and ssl, which we manually cross-

compile from scratch. We also edit the configuration files of gperftools and libuwind,

and manually set the cross compiling field to true, to fix the incompatibilities between

Android and Ubuntu header sources (which Intel SGX is targeted to). In addition, we re-

move all links to libpthread, since this library is integrated in the Android source. More-

over, due to the stripped-down kernel version that is used by the Android OS, the RDRAND

instruction used by sgx read rand to perform random number generation is not available.
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To overcome this issue we use a software-based implementation for random number gen-

eration that is fully compatible with the existing API and works both on Android and SGX.

After successfully cross-compiling the SGX source tree, the final step is to cross-compile

the SGX kernel driver and port it to Android. Unfortunately, there are inconsistencies be-

tween the supported kernel used by Ubuntu and the Android kernel headers, thus, the

signatures of several kernel functions are different. For this reason, some patches are

required in order to build the driver while it also requires to be built in-source with An-

droid. For this reason, we modify the Intel SGX driver code and add it in the Android ker-

nel source tree, edit the corresponding KConfigs and Makefiles in the kernel source, and

create a custom kernel configuration that includes our modified driver. By doing so, we

manage to successfully build, install and run an Intel SGX-enabled Android x86 instance

on bare metal hosts.

After completing all the steps described above, the final step is building a testing appli-

cation that utilizes SGX enclaves in both hardware and simulation modes. Every enclave

binary must be signed by the sgx sign tool which is provided by the SDK, responsible

for signing every enclave during compilation time. However, cross-compiling the whole

Intel SGX SDK and PSW, produces a sgx sign binary that is only executable on Android;

preventing developers to build applications and sign them on their development environ-

ment. To address this issue, we rebuild the SGX source tree once more, this time using

only Ubuntu’s default tools, keeping only the sgx sign tool which is now used by our cross-

compiler toolchain. With this configuration, every SGX-enabled Android binary can now

be cross-compiled and signed on the development host.

6.4.2 Running an SGX Application

An SGX application can run either in hardware or simulationmode. To make use of the un-

derlying hardware and leverage Intel SGX as a service, we cross-compile SGX applications

using SGX MODE=HW which links against libsgx urts.so. Of course, since these libraries

are not available in Android’s source tree they must be provided to the LD LIBRARY PATH

of the corresponding application by exporting the paths of each one of them. Apart from

the required SGX dependencies, the libraries that were linked during the SDK compilation

must be also provided and exported to the LD LIBRARY PATH of the given application. Ad-

ditionally, we use insmod to load the driver and then start the aesm service on boot. The

Android service system has several differences compared to Linux. Editing a system ser-

vice file, like init.d, is not enough for Android to deploy a new system service. Instead,

a new application, marked as a service, has to be created and meet specific code require-

ments [2]; i.e., all native functions of aesm service need to be wrapped with JNI calls for it

to be accessible by the Java part.

To overcome this issue, we simply adjust the aesm service source code to run as a
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daemon in the background and interact directly with the native part. The other solu-

tion would be to discard the whole Android application part and interact with the native

part directly. By examining the source code of aesm service we manage to run the ap-

plication as daemon (which is essentially a service) so the app can start and stay alive.

Whereas, if we start it without the specified input, it would just terminate with no output.

Also, the aesm service requires the le prod css.bin and libsgx le.signed.sobinaries to

properly execute so we transfer these binaries from the Intel SGX output directory to the

aesm service directory in Android, before its execution. Finally, running a C/C++ applica-

tion in Android requires it to be built with the -pie and -fPIE flags. These flags instruct

the linker that the program’s code can be executed regardless its absolute address. After

all the aforementioned requirements are met, we are able to cross-compile and execute

SGX-enabled Android applications.

Enclaves can be created using the ECREATE instruction, which initializes an SGX en-

clave control structure (SECS) in the EPC. The EADD instruction adds pages to the enclave,

which are further tracked and protected by the SGX (i.e., the virtual address and its per-

missions). The EINIT instruction creates a cryptographic measurement, after loading all

enclave pages. The cryptographic measurement can be used by remote parties for attes-

tation. After the enclave has been initialized, enclave code can be executed through the

EENTER instruction, which switches the CPU to enclave mode and jumps to a predefined

enclave offset. The EEXIT instruction causes execution to leave the enclave.

6.5 Andromeda Framework

The Andromeda framework is split into three parts: (i) the enclave-enhanced Android Key-

store, which can be utilized transparently, (ii) the native C/C++ API, used to initialize and

configure SGX using native C/C++ code, and (iii) the Java API, which provides a set of build-

ing blocks for APKs.

6.5.1 Andromeda Keystore

Android apps can transparently utilize the Andromeda Keystore service to securely per-

form cryptographic operations. Private keys and other sensitive information are kept in

an encrypted format in an array that resides in SGX memory and cannot be accessed in

any way by the host. To perform a cryptographic operation: (i) the required (encrypted)

key is fetched from the array, (ii) it is decrypted inside the enclave, and (iii) the actual oper-

ation is performed on the input data. This extension of the Android Keystore, provided by

Andromeda, is completely transparent to the developer. All necessary modifications are

performed at the native C/C++ part of Android’s Keystore while the corresponding Java API

remains unmodified, rendering it completely backwards compatible with legacy applica-
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tions. Persistent secure storage of keys and important metadata can be achieved using the

SGX sealing technique. The Keystore service seals and exports the contents of the secure

enclaves to the specified file system locations, protecting them during unexpected execu-

tion termination or device power-off. The exported data are encrypted and accompanied

with the necessary metadata that ensure their validity. Once Keystore’s enclaves need to

be re-enabled, the service repopulates them by loading and unsealing the data. If the data

is invalid or tampered, the service provides the necessary exceptions.

6.5.2 Native Development

Using the Andromeda SGX toolchain, developers can create their own SGX enclaves for

their Android applications. To do so, native code in C/C++ has to be developed for the

enclave functionality as well as the respective ECALLs and OCALLs that manipulate the data

(sensitive or not) in the trusted and the untrusted part. To access the SGX code and func-

tions, JNI bindings must be provided to the Java part of the APK to connect it with the

native C/C++ and SGX counterparts. These JNI functions must be developed to initialize

the enclave instance, setup the environment and access the secure enclave code, func-

tions, and data. The process is quite similar to a Linux environment; the basic difference

with SGX-enabled Android applications is that all native C/C++ code that implements the

SGX enclaves and the native C/C++ code that handles their execution should be cross-

compiled with the Andromeda toolchain which handles all the steps required to build the

source tree.

6.5.3 Andromeda Java API

To assist the development of SGX-enabled Android applications, Andromeda also offers an

API that developers can use to offload specific parts of the application into secure enclaves.

The Andromeda Java API provides a set of building blocks for APKs and automates the

generation process of secure enclaves that execute only minimal parts of the application

logic in the trusted environment. The Andromeda Java API calls are shown in Table 6.1 and

allow the creation of enclaves, the configuration of input and output between enclaves,

and the execution of user-defined functions.

Secure Execution

The Java functions provided by the Andromeda API offer the following functionality. The

developer can create a new secure enclave Java class instance using the TrustedEnviron-

ment() constructor. To establish the trusted environment, the secure enclave Java class

provides the load()method that passes configuration settings and user-defined configu-

ration extensions to the enclave. This operation generates a new enclave using the C/C++
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Table 6.1: Andromeda Java API for SGX enclave utilization.

Constructor Summary
Constructor Description

TrustedEnvironment() Creates a new secure enclave class instance

Method Summary
Modifier and Type Method Description

void
load(EnclaveConfig config)
Initializes the secure enclave

EnclaveOutput
run(int index, EnclaveInput i)
Performs the trusted execution

int
store(byte[] data)
Stores the data and returns its index

byte[]
retrieve(int index)
Retrieves the data using its index

SealedData
seal(Object d)
Seals the enclave data and stores to file system

Object
unseal(SealedData d)
Unseals the data and populates the enclave

void
pair(ChannelConfig config)
Creates a secure connection with the external device

void
transmit(ChannelConfig config, byte[] data)
Securely transmits data to the external device

byte[]
receive(ChannelConfig config)
Securely receives data from the external device

void
terminate()
Disconnects the external

void
destroy()
Destroys the secure enclave

layer of the Andromeda API and provides the necessary handles to the Java counterpart to

interface with the enclave. The enclave and its metadata can be securely erased using the

destroy() method, which optionally passes finalization data to the enclave. Developers

can use the run()method to perform a trusted execution in the secure enclave. The run()

method is extensible and includes the code that performs the desired computations inside

the SGX enclave. Andromeda also provides the option to implement multiple functions to

be executed in the trusted environment which can be invoked using their respective index

(using the corresponding run() method argument). The run() method can be called an

arbitrary number of times with different inputs.

In contrast to the manual development of SGX-enabled Android applications, when us-

ing the Andromeda Java API, the Andromeda toolchain generates the appropriate native

C/C++ SGX code that implements the functionality defined in the run() method. More-

over, the toolchain generates the enclave driver code that handles I/O and function calling

and establishes connection with the Java API by creating the necessary JNI bindings.
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Secure Vault API

The Java functions provided by the Andromeda secure vault API enable both short term

and persistent secure storage functionality. The developer can use the store() function

to store a data object within a secure enclave. The data object can be of any kind, such

as cryptographic keys, certificates, fingerprints, tokens or any other data considered sensi-

tive in the scope of the application. Upon successful data storage, the API returns an index

which can be used to retrieve the actual data through the retrieve() function. Moreover,

the Andromeda Java API provides access to the SGX sealing and unsealing functionality,

via the seal() and unseal()methods respectively. Using the seal() function, the devel-

oper can encrypt the data within the enclave using a secret key derived within SGX. Once

the data are sealed, they can be stored in main memory or storage, with assurances for

their integrity and authenticity, and can only be unsealed using unseal(). These func-

tions can also be used to periodically generate backups of the secure storage to prevent

data loss (e.g., from unpredictable execution termination).

Secure Pairing API

The secure device pairing functionality is provided by dedicated Andromeda API meth-

ods. These methods can be utilized by the Android application controlling the external

device, as long as the external device includes Andromeda’s connection libraries, which

do not require SGX support, in its software stack. The developer is able to establish a

secure communication channel with an external device using the pair()method. The ex-

ternal device can be connected either via Bluetooth or Wi-Fi. Andromeda then performs

the attestation procedure for both devices. The configuration data passed to this method

indicate the device ID, the attestation procedure (Remote Attestation or OTP), the option

of notifying the user with a verification pop-up and other metadata, essential for initiat-

ing the connection. Once the attestation process is completed, Andromeda performs the

communication channel establishment automatically, as described in Section 6.3.2. Once

communication is initiated, the devices are able to exchange data using the transmit()

and receive() functions respectively. Finally, the developer can execute the terminate()

function for a TrustedEnvironment instance to securely disconnect the external device.

6.6 Evaluation

6.6.1 Security Analysis

In this section, we discuss Andromeda’s security properties by describing possible attacks

and showing how our proposed design protects against them.
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Memory Attacks

We implement Andromeda in a way that nothing but a pointer to enclave memory is ever

written into host memory. The pointer’s content cannot be read or modified since it re-

sides into the enclave. When Andromeda performs the desired operations, the output is

transferred back to Android memory. In the meantime, we keep the enclave’s execution

alive and completely isolated from the Android system, without being affected by side ef-

fects of the OS or hardware, such as interrupt handling, scheduling, swapping, and ACPI

suspend modes.

Controlling the Kernel

In cases where the attackers have successfully taken full control of the Android OS kernel,

any sensitive data manipulated by Andromeda is still sound and safe. Once again, even

though the attackers may have full read/write/execute rights in the whole system, they can-

not read/write/execute code inside the enclave. As a result, any attempt to modify or read

enclave code will result in a segmentation violation since this memory is not mappable

outside the enclave, keeping the data secured.

Integrity of data

In a typical scenario, attackers can exploit software vulnerabilities and manage to inject

code of their choice to a running service. Sensitive data, such as secret keys and check-

sums, stored in the address space of the process, can be easily acquired. In contrast, hid-

ing sensitive data in a secure enclave prevents access even to fully privileged processes. To

verify this, we attach our process with gdb to check the allocated pointers in the enclave

code and trace the calls. However, no such data can be extracted since the enclave code

and data are neither accessible from non-enclave code nor from the function calls or the

memory stack. Such operations always result in segmentation violations.

6.6.2 Performance Analysis

We now assess the performance of Andromeda and the extra overhead introduced for the

execution of the secure enclaves.

Evaluation Setup

For our evaluation, we use an Intel NUC 8i5BEK kit with an SGX-enabled Intel i5-8259U

CPU, clocked at 2.3GHz, and 8GB of DDR4 RAM. The system is running Andromeda OS

(SGX-enabled Android x86 version 7.1.2 r33).
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AES Evaluation

We compare the performance of the AES-CTR algorithm, as achieved by the vanilla An-

droid Keystore system, versus the SGX-enabled implementation provided by Andromeda,

using a custom benchmarking tool that we develop explicitly for this evaluation. In each

processing loop, the tool generates a random secret key and a random stream of data. The

data vary in size from 32B up to 32MB. To avoid any potential caching effects that may

result in inaccurate results, we generate a new key and data stream in each processing

loop. Once an AES key and a stream of data are prepared in memory, the tool performs

cryptographic operations on the data using AES-128 in CTR mode, using both the vanilla

and the SGX-enhanced Keystore system, provided by Andromeda. Figure 6.3(a) shows the

performance characteristics of the native AES code execution. We achieve this by monitor-

ing only the AES functions found in the native C/C++ part of the Android Keystore system.

Our evaluation indicates that the overhead introduced by the SGX-enabled implementa-

tion ranges between 51% and 84% for the encryption operations and from 51% to 78% for

decryption.
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Figure 6.3: Throughput comparison between the AES-128 CTR found in Android’s
Keystore and the SGX-enabled version provided by Andromeda’s Keystore.
Figure (a) presents the throughput achieved by Keystore’s low-level func-
tions while Figure (b) presents the throughput perceived at the APK level.

In the next experiment, we explore the throughput sustained in the APK scope. We

achieve this by performing the same evaluation but in this case we monitor the execu-

tion time of the Java cryptographic functions provided to the APK by the Keystore system

(Figure 6.3(b)). The execution time includes the entire execution path and the overhead

introduced by the various layers of the Android architecture, including the IPC, the binder

and the numerous function calls until the actual cryptographic operations are performed.
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We notice that the sustained throughput perceived by the APK is one order of magnitude

lower, compared to Figure 6.3(a), due to the overhead introduced by the various layers of

the software stack involved in the process (i.e., JNI, IPC, and the binder). Similarly, the

perceived overhead introduced by the SGX enclaves is minimised, ranging between 0.6%

to 13% for encryption and 0.6% to 11% for decryption.

RSA Evaluation

We now present the performance comparison between the vanilla and our SGX-enabled

implementation of the RSA algorithm. We perform the evaluation as follows. We develop

a benchmarking application capable to perform RSA key generation, encryption and de-

cryption. In each processing loop, the tool generates a new RSA key-pair and performs

cryptographic operations against a set of input data. The data set consist of 10,000 ran-

dom data chunks, varying in size from 32B up to 32KB, with each set containing chunks

of the same size. We choose to generate a new set of random data in each processing loop

to eliminate any caching effects. We execute the benchmarking application for every data

set, each time monitoring the number of sustained cryptographic operations per second.

The outcome of this evaluation is displayed in Figure 6.4.
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Figure 6.4: Sustained throughput achieved for the vanilla and the SGX-enabled im-
plementation of the RSA-1024 cryptographic algorithm.

We notice that the SGX-enabled implementation introduces a maximum overhead of

16%, observed when processing a 64B input, with the lowest introduced overhead being

2.3% during the encryption of 2KB sized data blobs. The maximum sustained decryption
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rate is observed for the vanilla implementation during the encryption of 32B data blobs

with the introduced overhead being 12.6%. The minimum observed overhead introduced

by the use of SGX enclaves is 0.9%, encountered during the decryption of 2KB cipher-texts.

For both cryptographic operations, we observe that the perceived overhead introduced by

the I/O between the benchmarking application and the SGX-enclave is minimised due to

the processing complexity of the RSA algorithm.

Secure Device Communication Evaluation

In this section we present the performance evaluation of the data transmission between

our central hub, an Andromeda-enabled device, and an IoT device, namely a Raspberry Pi.

More specifically, we perform the evaluation as follows. We develop a benchmark appli-

cation, able to utilise the secure device pairing described in Sections 6.3.2 and 6.5.3. The

application generates and transmits data from the IoT device to the central hub with sizes

varying from 32B to 32MB. At each transmission we measure the sustained throughput at

the central hub. The measurements are performed twice, first measuring the achieved

throughput using an unencrypted channel and secondly using end-to-end encryption,

measuring the sustained throughput and latency introduced by the secure channel pro-

vided by our device pairing mechanism. We evaluate our system using two different wire-

less channels, a Wi-Fi 802.11g and a Bluetooth 4.0 connection. In the Wi-Fi setup, the IoT

device and the central hub are interconnected via a public Wi-Fi access point while in the

Bluetooth setup the two devices are connected directly. The reported values presented are

the average of 100 executions.

Wi-Fi Evaluation The results of the Wi-Fi evaluation are displayed in Figure 6.5. The Y-

axis represents the reported throughput in Mbps while the Y2-axis represents the per-byte

latency introduced by the secure channel in nanoseconds. The X-axis represents the total

amount of transmitted data. The maximum throughput achieved by our setup is mea-

sured at an average of 14 Mbps, using iperf [12], prior to performing any measurements.

We observe that for small data streams, up to 2KBs, our secure channel introduces a maxi-

mum overhead of 7.5% in comparison to the unencrypted channel. The maximum achiev-

able bandwidth is achieved with data sizes varying from 4KB to 32MB, with a maximum

reported overhead of 3.8%, introduced by the data encryption and decryption processes

at the sender and transmitter ends.

Finally, the latency evaluation reveals that for small data streams, up to 512 bytes, the

initialisation time of the encryption and decryption processes introduce per-byte latency

varying from 2937 to 183 nanoseconds. The introduced latency stabilizes for data streams

larger than 1KB and averages at 38 nanoseconds per transmitted byte.
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Figure 6.5: Sustained throughput of the vanilla and SGX-enabled data transfers be-
tween the host and the securely paired device using Wi-Fi.

Bluetooth Evaluation Figure 6.6 presents the evaluation results of the secure commu-

nication channel using Bluetooth. The X-axis represents the size of the transmitted data.

The Y-axis represents the achievable throughput in Mpbs while the Y2-axis displays the

per-byte latency introduced by the secure channel in nanoseconds. Prior to executing our

benchmark application, we measure the maximum achievable throughput of our Blue-

tooth connection at 1.5 Mbps using a custom bandwidth measurement application, since,

to our knowledge, no Bluetooth bandwidth benchmarks were available for Android.
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Figure 6.6: Sustained throughput of the vanilla and SGX-enabled data transfers be-
tween the host and the securely paired device using Bluetooth.
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During our experiments, we notice that the Bluetooth connection is quite unstable

and various environment variables, such as physical obstacles and distance between the

devices, have a great impact on the achievable bandwidth. For data streams up to 32KB,

our secure channel implementation, using Bluetooth, introduces a maximum overhead of

0.71%. For streams varying from 64KB to 8MB, the sustained throughput increases and

gradually tends to stabilize at an average of 1.3 Mbits/sec, with an introduced overhead

of 0.7%, caused by the end-to-end encryption. We observe that the per-byte latency is the

same as reported during the Wi-Fi setup measurements, since the size of the encrypted

and decrypted data is the same in both cases.

Computation Offloading

We conclude our evaluation by presenting the performance of three benchmarking appli-

cations, executed using the different methods provided by the Andromeda framework, as

well as the overhead introduced by executing them remotely. In particular, we compare

the execution of the vanilla Java implementations against their secure implementations

using C/C++ and SGX natively, compiled with our custom cross-compiler, and their im-

plementations using the Andromeda Java API for SGX. These benchmarks represent some

typical operations that external devices or wearables may perform on sensitive data (e.g.,

analytics on finance or health data, image processing, etc.) and also exhibit different per-

formance characteristics (i.e., I/O-bound, memory-intensive, computationally-intensive).

The first benchmark performs matrix multiplication on two tables with 10K rows and

columns. The second performs bubble sort on an array of 20K random integers. Finally,

the third benchmark is a convolutional neural network that performs image classification

using as input images sized at 800x600 pixels, generated by an external device.
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Figure 6.7: Performance comparison of the different Andromeda-enabled execution
methods, including offloading, against the vanilla Java-based versions.
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As we can see in Figure 6.7, the vanilla Java implementation requires 5.4% to 11.2%

more time to finish its execution than the respective SGX-enabled implementations (de-

veloped either in native C or using the Andromeda SGX Java API) whereas the time needed

for code offloading ranges from 5.13% to 7.5% for the Java-based implementation. The rea-

son for this is that in both SGX-enabled versions, the functions are executed natively using

C. The overheads introduced by the I/O with the secure enclave, the JNI layer (in the SGX-

enabled Java implementation) and the data offloading on the socket level are minimal in

these cases and do not overshadow the speedup gained by the native execution.

6.7 Summary

In this chapter, we presented the design, implementation, and evaluation of Andromeda,

our framework’s component that provides the first SGX interface for the Android OS. Us-

ing Andromeda, developers can explicitly use SGX enclaves for their applications via the

native API, in C/C++, or via our Java interface that provides access to the secure enclaves

through JNI bindings. Also, Andromeda offers services that enhance Android’s security

and provides protection schemes for applications that deal with sensitive data. The con-

tributions of this work are the following:

• We present a systematic methodology for porting the SGX framework to Android, in-

cluding the SGX kernel driver, the required libraries and its background services and

the development of a custom cross-compiler. Android developers can explicitly use

SGX for their applications either via the native API in C/C++, or via our Java interface.

• We implement popular Android services, enhanced with SGX capabilities, hence se-

curing and protecting their functionalities. The SGX enclaves enable multiple secure

spaces that can be used simultaneously by different applications, in contrast to other

TEE ecosystems, such as ARM TrustZone, that allow only a single secure space that is

shared among applications and often times requires control of the device’s firmware.

• We implement a programming paradigm tailored for externally paired devices, that

enables a robust, efficient, and trusted data flow between external devices that pair

with the Android OS. Such devices can securely offload data storage and computa-

tions to the Android OS in a trustworthy manner, without necessarily being equipped

with TEE-enabled CPUs.

As part of our future work, we plan to port Andromeda to SGX-compliant approaches

that do not depend on specific CPU models, either using software-only techniques [83] or

on top of ARM TrustZone [55]. Also, we plan to enhance our secure pairing mechanism by

utilizing protocols that offer mutually trusted secure communication channels between

enclaves that reside in different physical devices, similar to [64].



Chapter 7

Secure and Attested Communications

In this chapter, we present the design and implementation of our secure communication

module that provides attested channel establishment for SGX-enabled devices where at

least one of the communicating ends may reside in a potentially untrusted remote loca-

tion, such as a third-party cloud platform. For this purpose, we build our system based

on Intel’s Remote Attestation process to enable secure key exchange and authorization of

the communicating ends. Our system exposes a simple API with which two communicat-

ing entities can verify and attest each other, identifying if signed SGX-enclaves are used at

both ends, running with hardware support, and create an SGX-to-SGX encrypted commu-

nication channel. Moreover, we implement a caching system for SGX Remote Attestation

responses which greatly reduces the latency of new connections and benefits applications

that require multiple short-term connections.

7.1 Intel SGX Remote Attestation

Remote attestation is the process of verifying the authenticity of a software component,

running inside an isolated container, to some remote party. In the case of SGX, the soft-

ware being attested is a secure enclave created by the trusted CPU hardware. For the re-

mote attestation procedure, the CPU generates a measurement for the attested enclave

which uniquely identifies it. This information is then signed by the privileged Quoting

Enclave, resulting in an attestation signature (QUOTE). The Quoting Enclave is a special

trusted enclave software, issued by Intel, and has access to the SGX hardware attestation

key that signs the measurement. The attestation signature is generated using the EPID

group signature scheme [104] to preserve privacy. The communication between the two

enclaves must also be performed in a secure way. This is achieved by performing a lo-

cal attestation between the two communicating enclaves as a means to establish a secure

channel. The attestation signature can then be sent to the remote party, who relays this in-

formation to the Intel Attestation Service (IAS) to verify its validity. Thus, the remote party

can be aware if the enclave has been tampered or if the attested software is not running

77
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within a genuine hardware-assisted SGX enclave. This information is critical as it verifies

that the SGX enclave is executed on SGX-enabled hardware and not in simulation mode,

which renders the enclave accessible by debugging utilities. The SGX Remote Attestation

process utilizes a modified SIGMA [113] protocol, therefore at the end of the process the re-

mote party and the enclave establish a shared secret for secure communication. Contrary

to Trusted Platform Modules (TPMs), SGX Remote Attestation has the benefit that attested

software runs within the CPU thus having better performance. Moreover, SGX utilizes an

EPID group signature scheme and attested enclaves cannot be uniquely linked back to a

specific CPU through their attestation signature.

7.2 Threat Model

For this component, we assume a set of client nodes that may be distributed over different

area networks or even different geographical areas. These nodes are connected over a

public, not necessarily trusted, network, over which they can transmit and exchange data.

We also assume that the client nodes may be compromised by a powerful adversary with

full-privileged access or even access to the physical hardware, while the CPU is further

equipped with at least SGX1 capabilities.

Client

Hardware ComponentsCPU

Hypervisor

Operating System
(Drivers, File System, etc.)

Process A

Enclave

Code

Data

Process C

Enclave

Process B

Service
Provider

Trusted
Untrusted

Network
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Figure 7.1: Assumed TCB and possibly malicious components.

The entities that are part of our TCB are the Intel SGX enclaves that can run in each

client (excluding the container application and the hosting OS), the Service Provider, which

acts as a directory server responsible for resource and user discovery, and the IAS, that ver-

ifies that the SGX hardware is genuine. Any other components, such as the host applica-

tion and the underlying OS are not part of this module’s TCB. An overview of our TCB and

possibly malicious components is presented in Figure 7.1. Overall, our primary aim is to
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defend against adversaries that can: (i) control and tamper applications and the client’s

operating system, (ii) observe and tamper data transmitted over the network channel, (iii)

conduct man-in-the-middle attacks between either a client and the SP or between two

client enclaves, and, (iv) perform replay attacks that utilize information from previous ses-

sions. We note that our threat model excludes denial-of-service (DoS) attacks on enclaves

since the life cycle of the process containing the enclave can be controlled by a malicious

operating system or superuser. While adversaries can prevent or abort the execution of

enclaves, they are not able to obtain any valuable information by doing so. Furthermore,

side-channel attacks that exploit page faults or timing information are excluded from this

work, even though we assume a small and well audited TCB. Finally, we assume that the

design and implementation of the Intel SGX framework is free of vulnerabilities.

7.3 Design

7.3.1 Involved Parties

Our protocol involves three parties in total, namely (i) the clients, (ii) the service provider,

and (iii) the attestation service. Each entity is shortly described bellow.

Clients The remote parties that want to communicate and support Intel SGX enclaves.

For simplicity, in the rest of this chapter, we assume only two clients, Alice and Bob, where

Alice wants to communicate with Bob via a secure communication channel, using Intel

SGX. We notice though that our design can scale by nature and operate independent of

the number of connected peers.

Service Provider (SP) The application’s vendor who signs and ships the clients’ SGX en-

claves. Signing verifies that the code cannot be changed, tampered, or altered. Service

Providers must register themselves with the Intel Attestation Service to make use of the

provided services. To do so, the Service Providers must fulfill a set of standard require-

ments in order to submit their attestation results to the attestation service and verify that

the system is sound. Consequently, this process assigns a TLS certificate to the Service

Provider ID (SPID), thus granting access to the attestation services.

Intel Attestation Service (Intel Attestation Service (IAS)) The IAS is used to verify the

attestation evidence that the Quoting Enclave generates and reports it back to the Service

Provider. The Quoting Enclave (QE) is provided by Intel and its goal is to receive and verify

reports from other enclaves, which converts and signs using the Intel EPID Key, which is a

device specific asymmetric key. The attestation flow is the following:
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1. The application receives an attestation request (REPORT) from a third party and for-

wards it to its enclave.

2. The enclave sends the local attestation request to the Quoting Enclave.

3. The Quoting Enclave validates the request and transforms it in a remote attestation

request.

4. The request is returned to the application which forwards it to the challenger.

5. The challenger uses the Attestation Verification service to perform the verification.

7.3.2 Protocol Design

In this section, we present our protocol in detail, describing the messages exchanged be-

tween two clients, namely Alice and Bob. In our setup, we assume that Alice wants to

initiate the communication. A graphical representation of the message flow is depicted in

Figure 7.2. More specifically, the actions performed by the two parties are the following:

1. Alice requests communication with Bob from the Service Provider.

2. The Service Provider challenges Alice with a message containing a nonce.

3. Alice attests to the Service Provider by sending her generated QUOTE. The Service

Provider sends the QUOTE to the IAS and checks the response. By doing so, the Ser-

vice Provider verifies that Alice utilizes an untampered enclave, running on genuine

Intel SGX hardware. In this step, the Service Provider also checks the key used to

sign the enclave (MRSIGNER), the hash value of the enclave (MRENCLAVE), the software

version of the enclave (ISV SVN) and the enclave’s product ID (ISV PROD ID), which

allows multiple enclave instances to be distinguishable. Intel [36], Hile Vill [195] and

others [67] have thoroughly described this remote attestation process.

4. If the attestation is successful, the Service Provider challenges Bob.

5. Bob performs the same attestation process as Alice.

6. If the attestation is successful, the Service Provider notifies Bob that Alice wants to

communicate with him. Then, the SP generates a shared secret for the establishment

of the secure enclave-to-enclave encrypted channel between the two clients. For

each client, the secret is distributed via a secure channel that has its client-side end-

point within the enclave and has been established during the IAS attestation step.
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Figure 7.2: Attestation protocol.

After completing the aforementioned steps, the enclave-to-enclave channel between

the two clients is established and Alice can communicate securely with Bob. The shared

secret is used to guarantee the confidentiality, integrity and authenticity between the two

enclaves and is never exposed outside of the SGX environment.

The protocol follows a serial approach and we leave its parallelization as part of our

future work. Additionally, we assume that Alice does not know how to directly communi-

cate with Bob and that Bob does not trust anyone that has not been verified by the Service

Provider. This introduces a level of centralization which we discuss in Section 7.3.4.

7.3.3 Attestation Caching

The remote attestation procedure, as shown in Figure 7.2, consists of multiple stages across

different entities and, as a consequence, it may require a significant amount of time to

complete. These times are accumulated when applications require to communicate with

multiple enclaves at the same time, since they would have to attest to the SP for each in-

dividual session. To make matters worse, the overhead of session establishment becomes

even more notable for short-term sessions, in which the time required for the initiation of

the session can be significantly larger than the overall communication time itself.
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To reduce the remote attestation overheads, we extend our basic protocol, described in

Section 7.3.2, introducing a caching mechanism at the Service Provider. The mechanism is

responsible for caching the remote attestation results produced by IAS, aiming to increase

the protocol’s performance. Our approach also allows the fine-tuning of the caching pe-

riod, based on the security requirements of the enclave that the Service Provider is attest-

ing. During protocol initiation, the enclaves inform the Service Provider about their intent

to use cached attestation results. However, the SP is the final arbiter of whether or not a

full remote attestation should take place. We implement two caching approaches:

1. TTL-based ephemeral session keys In this approach, the Service Provider and the

client enclaves store the session keys in memory for future use. This is a safe operation

since the enclave’s memory is encrypted, checked for integrity violations, and is also inac-

cessible from the untrusted environment. The Service Provider can define a Time-To-Live

(TTL) for which the keys are assumed to be valid before requiring the client enclave to per-

form a complete remote attestation again. In each attestation attempt, the SP challenges

the enclave with a nonce and expects the correct HMAC value as a response.

2. Session key hashes During the first protocol instantiation with the client enclaves,

the Service Provider uses a secure hash function H to store the hash value of a session key,

H(KEYSK), as opposed to storing actual keys in the previous approach. Afterwards, each

time the client’s enclave attests to the Service Provider, the SP issues a nonce to the enclave

and expects it to respond with the correct H(H(KEYSK)||nonce) value. This method is simi-

lar to remote user authentication using passwords [178] but since the keys are ephemeral

there is no need for salt. The stored hash values can be associated with a TTL field or a

fixed number of maximum N sessions to be initiated using the same ephemeral key.

Both approaches can be applied by the Service Provider, meaning that different en-

claves that attest to the Service Provider can follow different approaches. Additionally for

the implementation of the caching mechanism, the Service Provider can decide on which

key will be used as caching key. This can be achieved in two different ways:

1. Enclave session key caching The Service Provider uses as caching key the session key

established with the attested enclave during the remote attestation with the IAS in order

to implement caching for that particular enclave.

2. Enclave-to-Enclave channel shared secret caching The Service Provider uses as cach-

ing key the shared secret generated by the Service Provider during the establishment of the

secure communication channel between the two enclaves in order to implement caching

for that pair of enclaves.
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Figure 7.3: Attestation protocol with response caching.

It is important to note that the Service Provider can force the enclaves to perform a

complete remote attestation at any protocol instance or even opt-out of caching, depend-

ing on the security requirements and access control policies of the enclaves. Furthermore,

when attestation caching is used, the IAS is not involved. This reduces the privacy foot-

print of an enclave regarding how frequently it attests to Intel. A graphical representation

of the protocol using remote attestation caching with Session key hashes and Enclave-to-

Enclave channel shared secret caching, is presented in Figure 7.3.

7.3.4 Protocol Centralization

During our research of the enclave-to-enclave communication problem, we came across

the option of either including an intermediary remote party, namely the Service Provider,

or implement a completely decentralized approach. We chose to include the Service Provider

because it offers the following benefits:

• Remote Attestation is a complex procedure involving trust policies which can vary

based on the required security and strictness of the application. These policies be-

come even harder to define when there are multiple and different enclaves involved.
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The Service Provider can dynamically change those policies without any modifica-

tion to the enclave code or redeploying them.

• Different policies for different enclaves can be established. The Service Provider can

allow different types of enclaves communicating with each other and then control

the various trust levels between them.

• Only the Service Provider knows the communicating parties (Alice and Bob) and the

protocol does not depend on other peer discovery primitives which can have privacy

implications.

• We can assume that an entity with the role of the Service Provider exists as enclaves

are signed before being deployed in a production environment. Any enclave that

is to be provisioned secrets from the network should always be attested, thus rais-

ing the need for such a remote party. Moreover, since enclaves cannot be tampered,

techniques like certificate pinning in combination with Enclave Signature Revoca-

tion Lists [195] can enhance the security even further.

• The Service Provider does not have to be a single point of failure as many instances

can coexist. The remote party acts mostly as a policy enforcing entity and coordi-

nator between communications. Also, the Service Provider(s) can also offer custom

attestation infrastructure [163] to replace the IAS and mitigate cases where SGX’s

EPID and attestation report do not hold onto their claimed anonymity and privacy

guarantees [163].

7.4 Evaluation

7.4.1 Evaluation Setup

We implement the clients and the Service Provider utilizing our proposed protocol using

C/C++ and the Intel SGX SDK v2.6. Also, we use OpenSSL version 1.1.0, build on top of the

SGX framework to perform all the required cryptographic operations. The overall system

consists of 7290 lines of code. Three different machines are used to evaluate and test the

implementation of our protocol, involving two clients and one SP. The two clients run Arch

Linux with LTS kernel version 4.19 and utilize an Intel Core i7-8700K processor clocked at

3.70GHz along with 32GB of DDR4 memory. The SP is hosted by an Ubuntu 18.04 sys-

tem, running Linux kernel version 5.0.0-36-generic, utilizing an Intel Core i7-8565U CPU

clocked at 1.80GHz along with 16GB of DDR4 memory. All the enclaves and the SGX re-

lated binaries are built and executed in SGX1 Hardware Mode to take advantage of the

SGX capabilities.
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7.4.2 Performance Evaluation

For the evaluation of our protocol, we measure the time required for establishing a secure

enclave-to-enclave communication channel between two clients, using our custom RA

approach. Then, we compare the results to the time required to perform a standard TLS

handshake with a valid certificate signed by an Intermediate Certificate Authority (CA).

We perform 200 TLS handshakes and measure the time required for the client to es-

tablish the TLS connection with the server. Also, we perform an additional 400 secure

channel establishments using our Remote Attestation protocol, out of which half are per-

formed without caching while the other half are performed with Session key hashes and

Enclave-to-Enclave channel shared secret caching.
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Figure 7.5: Execution time comparison.

As seen in Figures 7.4 and 7.5, our protocol, when no caching schemes are utilized, is

approximately 3.5 times slower compared to the TLS handshake. We also observe that the

standard deviation for the TLS handshake is 62.15ms while for our protocol it is 138.03ms.

This is due to the fact that our protocol relies on the IAS, meaning that the time required

for communicating with the IAS over the network and performing the remote attestation is

also measured. However, as presented in Figure 7.5, we observe that our approach, when

caching is deployed, is three orders of magnitude faster than the TLS handshake, with

mean establishment time of 4.20ms and standard deviation of 0.27ms. These time statis-

tics are more thoroughly presented in Table 7.1.

Table 7.1: Execution time statistics in milliseconds.

TLS Handshake
Remote Attestation
(without caching)

Remote Attestation
(with caching)

Average 974.93 3269.66 4.2
Standard
Deviation

62.15 138.03 0.27

Minimum 733.07 3113.54 3.43
Maximum 1088.67 3940.94 5.06
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7.5 Summary

In this chapter, we introduced our secure communication protocol leveraging the Remote

Attestation feature provided by the Intel SGX framework to build mutually trusted secure

communication channels between two enclaves, residing in different physical machines.

Furthermore, we proposed a caching scheme for the remote attestation results that does

not compromise the security and privacy of our model and speeds up consecutive remote

attestation processes. Finally, we evaluated our system by comparing the time required

for establishing a secure channel between two enclaves using our approach to the time

required for a TLS handshake to be completed. Our results show that our system has 3.5

times more overhead compared to the TLS protocol when we do not utilize any caching

schemes. However, our protocol instantiation has substantially increased performance

when attestation caching is applied, rendering it faster than a standard TLS handshake.

This work’s contributions are the following:

• We design and implement a protocol that provides remote attestation of communi-

cating ends executing inside SGX enclaves.

• We extend our framework with a module that provides seamless establishment of

enclave-to-enclave (CPU-to-CPU) encrypted network communication between two

or more parties.

• We propose a caching system for SGX remote attestation responses that reduces the

latency of consecutive connections, rendering them substantially faster than a stan-

dard TLS handshake.

• We provide a comparison of our secure communication method against commonly

used methods such as TLS.

In the future, we plan to explore the performance and privacy benefits of entirely ex-

cluding Intel’s infrastructure from the loop and utilizing our own infrastructure at every

protocol step, as enabled by the latest SGX2 capabilities. Also, we aim to parallelize our

protocol to further improve is performance.
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Trusted Execution of High-level
Dynamic Languages

This chapter presents LuaGuardia, a system that aims to simplify the development of

confidential computing on Trusted Execution Environments. LuaGuardia offers a set of

high-level abstractions for building applications for, or porting applications to, TEEs. Lu-

aGuardia’s key insight is to embedded the runtime environment of a high-level program-

ming language into the TEE — in this case, the language is Lua and the TEE is Intel SGX.

We choose Lua due to its high-level semantics, its dynamic meta-programming facilities

(which include runtime code evaluation), and its small memory footprint; the LuaVM con-

sists of∼ 24,000 LoC, consuming minimal enclave memory and thus leaving more memory

resources available for the applications running atop LuaGuardia. Our system packages a

small runtime library for dealing with application signing, extensibility, system call for-

warding, and other technical challenges.

We apply LuaGuardia to a large set of programs, among which are three large and high-

performant applications, ported to leverage TEE facilities: (i) an HTTP telemetry tool that

TEE-offloads its sensitive analytics, (ii) a packet-filtering tool that TEE-offloads its packet

matching facilities, and (iii) a VPN as a service that TEE-offloads its encryption and de-

cryption phases. The effort of porting these applications is lowered significantly by Lu-

aGuardia’s abstractions and services. The overall overhead introduced by the TEE utiliza-

tion ranges between 13% and 41% (avg: 18%). Applying several optimizations significantly

lowers the introduced overheads, especially for short-lived program fragments.

8.1 TEE Computing Challenges

Developing a program to execute on a TEE poses several challenges. To make these chal-

lenges concrete, we describe a set of example applications, none of which can trivially be

implemented on, or ported to, today’s TEE abstractions. These examples illustrate key

requirements for the design of a framework for confidential computing.

87
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Let’s consider a few confidential computing scenarios where part of an application

needs to run on untrusted but TEE-enabled devices. One such example is an HTTP teleme-

try tool that can be deployed in SDN/NFV, or 5G environments to gather periodic per-

formance statistics into a TEE, where it runs analytics (e.g., to extract average latency or

detailed latency percentiles). Another example is a packet-filtering system that offloads

sensitive packet filtering tools and associated matching to the TEE. A final example is the

ad hoc establishment of secure connections between private networks and public cloud

providers (e.g., VPN as a service) that uses the TEE to protect the key establishment with

the remote peers and the corresponding cipher operations.

In all these examples, a TEE offers critical security benefits to the application part that

operates on sensitive data in untrusted environments. Unfortunately, reaping these ben-

efits requires the manual development or porting of TEE-executing fragments using low-

level interfaces provided by the TEE manufacturer, causing several practical challenges.

1. Manual Effort Developing in a low-level language requires significantly more effort

and care than developing in high-level languages — an effort that is even more pronounced

for short program fragments for analytics or pattern matching like the ones described

above. Even if the program is already implemented in a low-level language such as C/C++,

which would simplify the use of TEE APIs, it still requires manual partitioning, recompi-

lation, library porting, and linking of the entire application, including the components

running out of the TEE.

2. Extensibility In many domains, such as analytics, learning, and telemetry, there is a

need for extending or updating a program during its execution. This causes an impedance

mismatch with the static nature of TEE — executing code where adding new functionality

dynamically is impossible. In these cases, adding even a single-function module requires

compilation, linking, and redeployment of the entire TEE-executing component, includ-

ing starting the TEE afresh. This entire process is on the order of tens of seconds, rather

than tens of millisecond required for simply shipping a function to the TEE.

3. Safety Finally, by rewriting the analytics component in a low-level programming lan-

guage, such C/C++, makes the analytics program susceptible to traditional memory cor-

ruption attacks. After all, memory and type safety, and their effects to security are a key

reason why developers use a high-level programming language.

8.2 Addressing the Challenges

LuaGuardia embeds a Lua runtime inside a TEE to address the challenges of: (i) manual

effort, (ii) dynamic extensibility, and (iii) runtime safety, by piggy-backing on the char-
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acteristics of a high-level programming language. Lua is a general purpose embeddable

programming language, offering memory and type safety, data description facilities, and

runtime meta-programming, including ones that allow a program to manipulate its own

environment [102].

1. Manual Effort LuaGuardia offers significant development economy compared to low-

level abstractions, because of the productivity benefits stemming from a high-level, dy-

namic programming language. Our example applications can leverage the Lua library

ecosystem, without having to develop them from scratch, such as analytics, learning, and

inference. We note that LuaGuardia does not require the entire application to be written

in Lua. Since Lua is embeddable in C/C++ programs, LuaGuardia can be used to create

a high-level TEE interface even for programs developed in low-level programming lan-

guages, as we show this in our evaluation section.

2. Extensibility Based on a dynamic language, LuaGuardia is naturally extensible via

runtime evaluation of Lua code. Using LuaGuardia’s interface at runtime, the engineer in

our example would be able to extend and configure the available runtime functionality by

sending and evaluating additional functions during the execution of the platform.

3. Safety Finally, as Lua is a memory- and type-safe programming language, the engi-

neer does not need to worry about low-level attacks in the code. LuaGuardia provides

additional wrappers to limit the access of TEE-executing code to key interfaces, offering

a lightweight sandbox that provides additional protections beyond the base type- and

memory-safety guarantees provided by the Lua environment.

8.3 Threat Model

LuaGuardia assumes a powerful malicious party, possessing root privileges, who also has

physical access to the hardware but cannot physical tamper with the CPU. Moreover, the

adversary is able to manipulate the entire software stack, including the operating system

kernel. However, denial of service attacks (DoS) on key components, including but not

limited to blacklisting the SGX or NIC drivers, preventing access to the file system etc., are

out of the scope of this work. Since a malicious party manipulating the operating system is

able to control an enclave’s life cycle, we assume that they are able to prevent or abort the

execution of the SGX enclaves or disrupt network communications but they should not be

able to gain any useful information by doing so.

Moreover, side-channel or other types of attacks targeting the Intel SGX hardware com-

ponents, such as timing or page fault exploitations, are orthogonal to LuaGuardia and any

work that successfully manages to mitigate such attacks on SGX in the future can have a
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direct benefit to our system. Furthermore, LuaGuardia assumes that the design and im-

plementation of the Intel SGX framework is free of vulnerabilities. Finally, we assume that

the implementation of the enclave-protected code as well as its untrusted driver-code are

free of software vulnerabilities or bugs that could compromise them via remote input.

8.4 Architecture

The architecture of LuaGuardia is shown in Figure 8.1. The system provides two execution

entities: the untrusted, where the request handling is managed, and the trusted, where the

LuaGuardia protected LuaVM resides along with any sensitive data. LuaGuardia provides

the necessary secure communication mechanisms between the two entities. Typically, an

application that runs in the untrusted domain aims to offload security-sensitive computa-

tions to the trusted component. The latter is responsible for accepting such requests and

performing secure code execution, encapsulated within SGX enclaves.
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Figure 8.1: LuaGuardia architecture overview and secure execution life cycle.

8.4.1 Interpreter Enclaves

In the trusted environment, LuaGuardia provides a language interpreter environment,

based on Lua. It mainly consists of an SGX-enabled LuaVM, responsible for performing
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the code execution entirely within SGX enclaves. The code running in LuaGuardia can

only perform computations and has no access to system calls or peripherals. The handling

of the incoming client connections, as well as the serving of the required system calls and

I/O is the responsibility of the enclave driving code. By doing so, we limit our system’s TCB

while being able to offer enough functionality to meet the security requirements of many

applications. In Section 8.6 we evaluate three such representative real-world applications.

The execution circle of the LuaGuardia server is the following. Initially, a client that re-

quires to perform secure Lua code execution has to perform a remote execution request to

the server, providing its public key (step 1). The server stores the client’s public key inside

the enclave and performs a session key exchange, entirely inside the SGX enclave. The

posted and generated cryptographic keys are never exposed to the untrusted part of the

server. Once the session key is generated and exchanged with the client, the two entities es-

tablish a client-to-server-enclave communication channel that prevents data leakage out-

side of the enclave. Then, the server receives the offloaded Lua code from the client along

with all the required modules and input data in an encrypted format, unusable outside of

the enclave (step 2). The untrusted part of the LuaGuardia server provides the encrypted

data into the enclave where they are decrypted. Once all the required Lua scripts and data

are decrypted in the enclave, they are loaded into the protected LuaVM where they are

executed (steps 3-10). The generated results are then encrypted with the session key and

then exported to the untrusted part of the server, responsible for transmitting them back

to the client.

8.4.2 LuaGuardia Client Stub

The LuaGuardia client stub is designed as a thin library. It enables applications to securely

connect with the LuaGuardia server, over a client-to-server-enclave encrypted communi-

cation channel, and request the execution of a Lua script in a protected memory space.

The library-based design enables new and legacy applications to easily utilize the remote

service with minor modifications. Moreover, the LuaGuardia client does not require SGX

capabilities and its only crucial operation is to establish the secure communication chan-

nel with the server, using commodity cryptographic operations that do not require spe-

cial ISA extensions or acceleration. This enables the client library to operate even on low-

power mobile or embedded devices.

Every time an application requires secure Lua code execution, it performs the follow-

ing steps. First, it generates a new key-pair and posts its public key to the remote server,

requesting, dynamically, a new code execution environment (step 1). Once the server is

informed about the request, both entities perform a key exchange. On the client side, the

key establishment is performed in untrusted memory since we assume that the request-

ing application is executed on a host that does not provide a TEE, although a TPM can
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be used for that matter. On the server side, the communication channel establishment is

entirely performed inside the server’s SGX enclaves. Moreover, the cryptographic keys as-

sociated with the new request as well as any generated session keys are always secured in

the server’s trusted memory space and are never stored in the untrusted DRAM or the file

system. This process generates a client-to-server-enclave communication channel that

prevents malicious eavesdroppers, monitoring the network or the remote server’s mem-

ory and file system, from obtaining the exchanged data.

Once the communication channel is established and the session key is exchanged, the

client packs the Lua code that needs to be securely executed along with its required Lua

modules and input data, and encrypts them using the newly generated session key. Then,

it transmits the encrypted data to the server and awaits for the result (steps 2-10).

8.4.3 Local Execution

The LuaGuardia server optionally supports a local execution mode where the client and

the server are co-located into the same physical host. This option enables newly devel-

oped or legacy applications to utilize SGX to securely execute Lua scripts without the need

to transfer the code and its required data over the network. We note that this mode can be

used only under certain conditions. More specifically, this operation mode can be consid-

ered successful only if we assume that the malicious party cannot control the operating

system or the file system, while other user space applications can be compromised, even

completely. The reason for this is that both code and data will reside in plain-text format

in untrusted memory or in file system locations before they are loaded into the secure Lu-

aVM. However, this follows SGX’s standard, local, execution model. Performing code and

data encryption in this scenario is meaningless since this operation will take place in un-

protected memory. In such cases, an adversary controlling the file system can tamper the

Lua scripts or their input data prior to their execution or whilst they are being transferred

into the SGX enclave.

8.5 Implementation

In this section, we present the implementation details of LuaGuardia as well as the chal-

lenges we encountered while porting the LuaVM into SGX enclaves.

8.5.1 Porting the LuaVM

LuaGuardia is based on Lua version 5.3.5 [13]. Compiling the vanilla Lua project from

source generates two distinct binaries. The first one, named lua, is the standalone Lua in-

terpreter, able to load and execute Lua scripts either is source code or pre-compiled binary

format. The second one, namely luac, is the Lua compiler, responsible for translating Lua
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source code into binary files that contain pre-compiled chunks that can later be loaded

and executed by the interpreter at a different point in time. We choose to utilize the of-

ficial Lua interpreter instead of the third-party developed LuaJIT [143], despite the latter

offering considerable performance increase, for several reasons. First, using the official

interpreter guaranties that all language features will always be up to date, according to its

standards. Second, the LuaJIT project has a bigger TCB, a property that we wish to keep as

small as possible for memory efficiency and auditing reasons. Finally, SGX1 enclaves do

not support the creation of additional executable memory pages during execution.

Our LuaGuardia implementation utilizes the Lua interpreter instead of the Lua com-

piler as the former is the one that provides the execution environment required to execute

either Lua source code scripts or pre-compiled Lua binaries. The vanilla Lua interpreter

codebase utilized for the development of LuaGuardia consists of 25 header files, contain-

ing 4269 LoC, and 35 source code files containing 19482 LoC in native C. The total code-

base spans 23751 LoC, rendering the Lua interpreter a perfect candidate for a protected

dynamic language environment as it has a small TCB that can be easily audited.

We port the Lua interpreter into Intel SGX enclaves on an Arch Linux based host, run-

ning kernel version 5.7.6, using the Intel SGX SDK version 2.8 for Linux and GCC version

9.2.1. The implementation consists of 26132 LoC, where 1377 LoC comprise the untrusted

part of LuaGuardia while the rest 24755 LoC comprise the trusted part of the application,

residing in SGX enclaves.

While the interpreter has a quite minimal codebase, the implementation of the Lu-

aVM with SGX support is not straightforward. First, several modifications to the original

source have to be made since signals and the dl* family of functions are not supported

by SGX. Moreover, supporting them could potentially compromise the integrity of the en-

claves. For these reasons, we make the appropriate modifications to disable or replace

their functionality without affecting the proper operation of the protected Lua interpreter.

Also, several function calls resulting in system calls, such as fopen, fwrite, clock, ops etc.,

cannot be executed as SGX enclaves do not support system calls. For this reason, we de-

velop wrapper functions to proxy them to the untrusted part of LuaGuardia, where they

are served as SGX’s model dictates.

Apart from providing a secure SGX port of the Lua interpreter, we also have to develop

the appropriate functionality so that LuaGuardia can operate as a remote service, able to

establish secure communication channels with the candidate clients. Moreover, the server

has to be able to handle and parse encrypted Lua code blobs which are going to be exe-

cuted within the protected Lua interpreter. Finally, we develop a protected Lua interpreter

instance manager, responsible for handling the various clients and provide each one with

a separate instance for isolation purposes.
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8.5.2 System Call Handling

A common issue with many TEEs, including Intel SGX, is the lack of system call support.

Given that only the software that runs inside the TEE can be considered trusted, any calls

to components that reside outside, including the operating system kernel or the hypervi-

sor, can pose security risks. A direct system call from an SGX enclave may compromise

and expose enclave code as well as protected data, thus rendering its security scheme use-

less. However, almost all SGX-enabled applications need to invoke system calls to perform

basic functionalities, such as access to the network or the file system. When utilizing Intel

SGX, these calls are usually requested from within the enclave and are forwarded to the

untrusted part of the application where they are handled. In essence, it is up to the devel-

oper to design and implement the appropriate intermediate software layer that serves the

system call requests and hands their result back to the trusted enclave.

While a custom built SGX-enabled application might require only a few system calls,

which can be easily wrapped by the developers, this is not the case for our system. Lua-

Guardia needs to provide a full-scale Lua virtual machine, enclosed in SGX enclaves, which

introduces two challenges that need to be addressed. First, we need to handle the system

calls required by the LuaVM itself in order to properly operate. Second, new system call

requests can be issued with each different executed Lua script. The former case can be

considered more straightforward, as the required system calls can be easily accounted for,

which unfortunately is not the case of the latter, that cannot be known a priori.

The straw man approach for handling system calls is to implement custom wrappers

for each and every one of them. However, modern operating systems provide several hun-

dreds of system calls, about 400 in Linux, without necessarily being called by the LuaVM

or an executed script. Moreover, many of these system calls could be triggered by an of-

floaded script and abused to perform malicious operations on the remote host. For this

reason, we decide to provide interfaces only for the bare minimum number of functions re-

quired for the proper execution of the LuaVM inside the SGX enclave, aiming to minimize

the potential attack surface without providing interfaces to the system calls directly.

The most commonly used functions, resulting to system calls, are the those associated

with data I/O such as fopen, fwrite, fread, etc. To provide system call support to the

LuaVM residing in the SGX enclaves, we have to develop custom functions that proxy the

system call requests to the untrusted part of the application, performing one OCALL for

each request. Once a request reaches the untrusted part, the appropriate system call is

issued and served, and the results are forwarded back into the enclave. According to SGX’s

programming model, as soon as the execution transfers between the trusted boundaries, it

is the programmer’s responsibility to validate and verify the content of the returned results.

Since we do not trust any other entity other than the enclave, all data required for the

execution of the offloaded Lua scripts must be provided with the client request, in en-
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Table 8.1: Functions issuing system calls, ported to the enclave-protected Lua runtime.

Functions

fopen fread fwrite fclose freopen fseek ftell feof
fgets fputs ferror exit close getenv clock time

crypted format, and we prohibit read and write operations to arbitrary file system loca-

tions at the server side. Optional file offloading and handling can be performed by the

client in predefined server-side file system locations in an encrypted manner, using SGX’s

sealing and unsealing functionality, enabling secure persistent storage in the untrusted

file system. A list of the supported functions resulting in system calls available to the pro-

tected LuaVM are presented in Table 8.1.

8.5.3 External Modules

By design, Lua is an extensible programming language that offers dynamic module load-

ing capabilities. It has built-in support for two types of libraries: (i) libraries that are im-

plemented entirely in Lua code, and (ii) dynamic libraries written in native C/C++ that can

be registered through the native Lua C API. To support the former, we first need to imple-

ment the system call proxy layer described in the previous section. Second, we integrate

the FILE data structure in the enclave’s codebase as it is not originally available. With these

two infrastructures in place, the LuaVM can read the module’s code through LuaGuardia’s

untrusted part and perform Lua module loading without any other modifications. How-

ever, as previously described, proxying a read system call to the untrusted part does not

guaranty data validity and, at this point, LuaGuardia is not able to verify if a target module

is tampered by a malicious party. To lift this limitation, we further modify LuaVM’s I/O

functions responsible for module loading in the following way. LuaGuardia expects that

a Lua module bound for loading will be read in an encrypted format. In this way, the un-

trusted part issues the read system call and delivers the encrypted module in the enclave.

Afterwards, the module is decrypted, inside the SGX enclave, and its integrity is verified via

a known checksum. If the checksum is correctly verified, the protected LuaVM loads the

module. This design prevents attackers from modifying or replacing modules found in the

host system’s memory/file system or modules received over the network. The checksums

required for module validation can either be pre-stored in LuaGuardia’s enclaves, such as

checksums for standard libraries, or received in encrypted format by the client wishing to

load the module. With this mechanism in place, any require(<module name>) snippets

found in a Lua script can import the declared library, assuming it is available, and the

module’s API is exposed to the developer.

Native C/C++ libraries, compiled as shared objects, can only be loaded in LuaGuardia’s
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untrusted part, using the dl* family of functions. This property prevents us from provid-

ing dynamic C/C++ library support for the following reasons. First, since shared objects

cannot be loaded in LuaGuardia’s enclave, the system is not able to verify their integrity.

Second, the functions loaded in LuaGuardia’s untrusted part can only be interfaced by the

enclave-protected code via a function proxy layer, similar to the one described for serving

system calls. However, the implementation of this layer requires knowledge of each func-

tion’s prototype, something that is not possible for functions found in dynamic libraries.

8.5.4 Maintaining Global State

Typically, the lifespan of a trusted execution within LuaGuardia, consists of the following

phases: (i) the setup of the trusted execution environment, including attestation and key

establishment, (ii) the setup of the code and the necessary data, (iii) the subsequent code

execution within the enclave, (iv) the transmission of the execution results back to the user,

and (v) the termination of the session and the wipe-out of any program state or data.

The steps above enable a functional execution paradigm, without requiring to keep

any state across program executions. By the end of each session, any state has been wiped

out and the execution environment is dynamically reset to handle new code execution

requests. It could be useful though for users to be able to export the given snapshot of

the stack/heap, and start a new execution on a different Lua State. To accommodate such

cases, we have added builtin support to LuaGuardia that enables users to preserve and

restore the context of the stack/heap on demand, at any given execution.

More specifically, LuaGuardia makes use of the environment table that is maintained

by the LuaVM to hold information and metadata regarding all the global variables of the

current Lua session. At each new Lua session, a new environment is assigned to it and

it is stored inside the G global variable. The entries of G can be accessed and iterated

normally, thus injecting and restoring data is also feasible. LuaGuardia uses these mech-

anisms to export the current heap/stack state of the variables, as well as preserve all the

function code and data at any given moment of the execution, and restore the state at a

completely different Lua session/context. This is achieved by a special set of functions,

provided by LuaGuardia’s API: (i) the LuaGuardia dump, which extracts the current state

of the global variables from G, extracts the code/functions and writes them in JSON for-

mat to a file, and (ii) the LuaGuardia parse which takes as input a file in JSON format,

created by the LuaGuardia dump function, and injects the found entries in G. Moreover,

LuaGuardia dump is responsible for the encryption of the exported data as well as the cre-

ation of the required metadata for their later validation. Consequently, LuaGuardia parse

decrypts and performs integrity checks on the exported data prior to restoring them in G.
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8.5.5 Code and Client Isolation

By utilizing SGX enclaves, LuaGuardia guaranties that the protected LuaVM is isolated

from the rest of the system, including other applications and the operating system kernel.

To further guaranty client isolation, LuaGuardia registers a new protected LuaVM, residing

in a separate enclave, for each client. Moreover, each client session is established with a

different unique secret key that can optionally be preserved across different sessions with

the same client. In this way, attackers cannot gain access to protected LuaVM instances

utilized by other clients, aiming to tamper the executed scripts or monitor their results.

8.5.6 Optimizations

One of the main challenges with LuaGuardia’s implementation is providing support for

protected Lua script execution within reasonable performance overheads. While the steps

described in the previous sections enable the execution of the protected LuaVM inside the

SGX enclaves, they are not optimal in terms of performance.

Initialization As described above, each client connection triggers the instantiation of a

new protected LuaVM instance at the LuaGuardia server. This process begins with the

initialization of a new SGX enclave and afterwards the initialization of the encapsulated

LuaVM with a clean state. However, we notice that this initialization overhead can sig-

nificantly affect the execution of multiple short-lived scripts that are continuously issued

by a client. This happens since each consecutive execution request mandates the initial-

ization of a new SGX enclave and LuaVM instance. To improve the performance in such

scenarios, we choose to initialize the SGX enclave only once, upon the first client request.

Afterwards, each subsequent initialization requires only the creation of a new clean Lua

state in the protected LuaVM. As presented in our evaluation, Section 8.6.4, this design

can significantly increase the overall performance as the main initialization overhead de-

rives from the creation of the SGX enclave. Moreover, this overhead is increased as the

chosen maximum enclave memory is expanded via LuaGuardia’s configuration.

System Call Batching Any optimizations in the network stack, such as TCP reconfigura-

tions or data compression, are not universally applicable as they can offer increased per-

formance only in certain cases, or negatively affect others. Instead, we choose to explore

the benefits of system call batching. The motivation behind this choice is that the sys-

tem call overhead becomes significant when dealing with large I/O operations, due to the

fact that SGX enclaves do not have direct access to system calls. As a result, each time the

protected enclave code requires to use a system call, it has to forward the request to the un-

trusted part of the application, where it is served, and wait for the results to be forwarded

back to the enclave. After extensive evaluation, we found that the switch between the en-
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clave and its untrusted driver code is an expensive operation which negatively affects the

overall performance and, in many cases, can be optimized by system call batching. By

doing so, system calls that are not dependent to one another, can be buffered and served

with a single, or at least much fewer, OCALL(s) in certain parts of the Lua script’s execution.

8.6 Evaluation

In this section, we present LuaGuardia’s performance and security evaluation. First, we

describe possible attacks scenarios against LuaGuardia and discuss how our architecture

is able to thwart them. Then, we provide a thorough performance evaluation and com-

parison using a series of different and diversified microbenchmarks, as well as with three

popular Lua-based real-world applications, namely (i) wkr2 [1], (ii) pflua [19], and (iii) a

custom VPN proxy built on top of the snabb [24] framework.

Evaluation Setup Our main server, hosting LuaGuardia, is based on a SGX-enabled Intel

Core i7-8700k CPU clocked at 3.7GHz with 32GB of RAM, running on Arch Linux with ker-

nel version 5.4.23-1-lts. LuaGuardia is compiled in hardware/signed SGX mode, prevent-

ing any debugging or enclave monitoring. The client is running on a separate machine

with the same hardware and software specifications. We also use a system based on an

Intel Core i7-6700 CPU with 16GB of RAM, acting as an HTTP server. All machines are in-

terconnected over a 1GbE wired network. Both the client and the HTTP server host have

SGX disabled in BIOS to simulate non SGX-enabled devices.

8.6.1 Security Analysis

We validate LuaGuardia’s security properties by attempting different attacks and showing

how our SGX-enabled runtime is able to mitigate them.

1. Data Integrity and Confidentiality It is common for attackers to exploit software vul-

nerabilities, either found on the target Lua script or on the LuaVM itself, to inject mali-

cious code. Such attacks target the control flow of the executing script, oftentimes aiming

to extract or tamper sensitive data. LuaGuardia encapsulates the entire LuaVM in secure

enclaves — any Lua code that needs to be execute, along with the corresponding data and

modules, arrive at the server securely in an encrypted format and is decrypted only when

inside the VM’s enclave. Since data and scripts never reside in plain-text format out of the

enclave, our system is able to prevent access even to fully privileged attackers.

Similarly to incoming data, the output of the executed Lua scripts is encrypted inside

the enclave and transmitted back to the client securely, in a cipher-text format. To verify

this, we use gdb to attach the LuaGuardia process, using administrative permissions (i.e.,
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root access). By attaching the process we can attempt to tamper the execution in order to

dump the executing code and the data being processed. However, no such information

can be extracted since the enclave’s code and data are completely inaccessible from the

untrusted environment, always resulting in segmentation violations.

2. Controlling the Kernel In case of a full system compromise, the execution of an un-

protected LuaVM, the file system and the network interfaces can be monitored or manip-

ulated. However, even if adversaries can monitor the network traffic between LuaGuardia

and its clients, or the file system, they cannot obtain the client requests and server re-

sponses as they are encrypted throughout the entire path and are only decrypted inside

the enclave. The same applies for data stored persistently in the file system as they are

sealed before leaving the enclave and unsealed upon reuse. The unsealing operation takes

place in the enclave and validates the persistently stored data before reuse. Moreover, even

if the attackers manage to acquire full read/write/execute rights in the whole system or

manipulate process execution via the kernel, they still cannot tamper or monitor the code

executing in the enclave due to its reverse-sandbox property. As a result, such attempts

will result in segmentation violations as the enclave’s protected memory is not mappable

outside of the enclave.

8.6.2 Microbenchmarks

In this section, we provide the evaluation of LuaGuardia using a series of microbench-

marks, aiming to understand and explain the variables that affect our system’s perfor-

mance as well as how it compares to a vanilla LuaVM. It is known that the execution perfor-

mance of an SGX-enabled application is almost identical to its non-SGX variant, as long

as no system calls or I/O are involved and all the required data are accessible in the en-

clave. However, system calls cannot be triggered from an SGX-enabled application and

have to be served from the untrusted part. Moreover, the I/O between the enclave and the

untrusted world can be quite expensive as the execution has to be transferred between the

enclave and its driving application, and data are encrypted and decrypted each time they

enter or leave the enclave. An additional overhead, linked with the storage and manipu-

lation of data in the enclave is the 128MB live protected memory limitation enforced by

SGX version 1. Storing and accessing data that exceed the live protected memory trigger

expensive page swapping that requires the encryption of the page to be swapped and the

decryption of the retrieved page, each time, as we discussed in previous chapters.

Data Retrieval To understand the impact of system call serving via transferring the ex-

ecution outside of the enclave, as well as the overheads introduced by triggering the pro-

tected memory page swapping, we perform the following experiments. First, we develop a
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Figure 8.2: Performance comparison between the vanilla LuaVM and our SGX-
protected LuaVM when reading a 32MB file with variable read buffer sizes.

simple Lua script that reads a 32MB file from the file system in chunks ranging from 64B up

to 4MB. We execute the script using both the vanilla LuaVM and LuaGuardia and present

the performance results in Figure 8.2, where Vanilla indicates the performance of the un-

modified LuaVM and SGX the end-to-end performance of LuaGuardia. The overall execu-

tion of LuaGuardia is broken down to SGX Init and SGX Exec, indicating the time required

to initialize LuaGuardia and the time required only for the Lua script execution respec-

tively. As we can see in the figure, increasing the read data buffer, significantly reduces the

execution time as fewer system calls are involved and the execution is transferred fewer

times between the secure and unprotected spaces of LuaGuardia. Also, the encryption

process for the enclave inbound data is triggered less frequently. However, we notice that

increasing the read data buffer beyond 2KB has little to no effect in further increasing the

performance. Furthermore, the overall end-to-end execution time of LuaGuardia is in-

creased compared to the vanilla LuaVM due to the expensive server initialization while

the required script execution time is almost identical to the stock LuaVM. This indicates

that SGX does not introduce significant performance overheads when carefully designing

the enclave I/O channels.

Memory Accesses The next step is to evaluate the performance overhead introduced

by randomly accessing the enclave-protected memory with and without triggering page

swapping. To achieve this, we design a simple Lua benchmark that performs 1 million

random accesses to consecutive protected memory spaces, ranging from 1KB to 4MB. We

execute the script twice, the first time performing 1-byte random writes and the second

1-byte random reads at each random access. The results of this analysis are presented in

Figure 8.3. We notice that the memory access times achieved by LuaGuardia, both for read
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Figure 8.3: Performance comparison between the vanilla LuaVM and the SGX-
enabled runtime when performing one million random accesses
(read/write) to memory locations ranging between 1KB and 4MB.

and write operations, are almost identical to those achieved by the vanilla LuaVM when

enclave page swapping is not triggered and the target memory space resides in the live

protected memory area. Moreover, we plan the allocation of consecutive memory spaces

exceeding 1MB so that enclave memory page swapping is triggered. In such cases, we can

see that page swapping affects the overall execution, enforcing a performance overhead

as the amount of non-live protected memory increases.

8.6.3 Benchmark Applications

Cryptographic Benchmarks Once we understand the properties that affect LuaGuardia’s

performance, we proceed with our evaluation by executing 12 popular cryptographic algo-

rithms using the vanilla LuaVM and LuaGuardia, recording only the script execution time

for both methods. The selected cryptographic algorithms provide a representative com-

bination of heavy arithmetic operations along with memory resource utilization, which

can stress the systems under test in terms of computations. The results are presented in

Figure 8.4. The execution time is normalized to indicate the processing of 1MB input for

each algorithm. Also, we present the performance overhead on top of each bar cluster,

roundup to 0.5. The results indicate that the average performance overhead introduced

by LuaGuardia is 23%, with SHA256 yielding the highest performance overhead, reaching

46%. This behaviour reported for SHA256 is mainly attributed to the increased memory

requirements of this implementation which triggers protected memory page swapping.
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Figure 8.4: Execution time achieved by the vanilla LuaVM and LuaGuardia when ex-
ecuting 12 cryptographic benchmarks. The overhead introduced by Lua-
Guardia is indicated on top of each bar.

Benchmark Suite In this section, we evaluate and profile LuaGuardia using 12 popu-

lar benchmark applications, developed in Lua. The purpose of this evaluation is to un-

derstand LuaGuardia’s performance properties when utilizing its two different execution

methods, (i) local and (ii) remote. As described in Section 8.4.3, when LuaGuardia oper-

ates in local mode, both the target Lua scripts and their data reside on the same physical

machine, in contrast to remote mode, where the Lua scripts and their data are securely

transmitted by the client over the network.

Table 8.2 provides a short description of each benchmark chosen for this analysis. Over-

all, they cover a wide range of different properties, including computational-, memory-,

and I/O-intensive workloads. By doing so, we are able to exercise different characteristics

of LuaGuardia and compare it against the vanilla LuaVM when applications with different

workloads are executed.

We execute each benchmark ten times, using the vanilla LuaVM and the two opera-

tion modes provided by LuaGuardia, and report the average end-to-end execution time

in Figure 8.5. The values reported for LuaGuardia contain the time required to initialize

the server, including the initialization of the SGX enclaves and the LuaVM, as well as the

encryption and decryption operations required to secure the incoming Lua scripts, their

input data, and the results. Moreover, in the case of remote execution, the overall time also

includes the network I/O.

As we can see in the figure, the stock LuaVM yields significantly better results com-

pared to LuaGuardia when benchmarks with very low computational needs are executed.

However, the delta between the stock LuaVM and LuaGuardia decreases as the bench-

marks become more computational intensive or demand more I/O, thus requiring more
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Table 8.2: Benchmark algorithms and their operation.

Microbenchmark Description

deltablue Object-oriented constraint solver
life Game of Life puzzle
mandelbrot Mandelbrot computation
queens Solves the Queens puzzle
coll.detect Airplane collision detection simulation
fasta Generates DNA sequences
ray Ray casting simulation
richards Operating system kernel simulation
bin.trees Creates perfect binary trees
havlak Looping recognition algorithm
nbody n-body solar system simulation
recurs.fib Performs recursive Fibonacci

time to execute. Also, the performance overhead introduced by the network I/O when Lu-

aGuardia is executed remotely is quite minimal as the encryption and decryption of the

incoming data and each script’s output is performed in both methods and is not offloaded

to the network layer. These results indicate that the major overhead introduced by Lua-

Guardia mostly derives by its expensive initialization, as between executions the server is

always terminated and re-initialized.
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Figure 8.5: End-to-end performance comparison of the vanilla LuaVM with Lua-
Guardia’s two operation modes when executing 12 Lua benchmarks.

8.6.4 Performance Optimizations

As described in the previous section, the initialization time of the SGX enclaves and the Lu-

aVM introduce a significant performance overhead, especially when executing lightweight
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Figure 8.6: Execution time breakdown with and without initialization optimizations.

scripts that are not computation-intensive, yielding sub-second execution times. To fur-

ther understand the various overheads introduced by LuaGuardia’s software stack, we re-

evaluate LuaGuardia with the same benchmarks, reporting the execution time breakdown

into three different categories: (i) network I/O, (ii) initialization and (iii) execution. The

values reported for the initialization contain the time required for initializing both the en-

claves and the protected LuaVM, while the execution time includes the required crypto-

graphic operations. As shown in Figure 8.6, the initialization time overshadows the exe-

cution of the faster benchmarks when the initialization optimizations are disabled. This

overhead can be further exaggerated in cases where clients need to repeatedly offload the

execution of lightweight, self-contained, functions that yield very small execution times

(e.g., sub-second). To overcome these start-up overheads, we re-design LuaGuardia to use

pre-initialized enclaves, as described in Section 8.5.6. In particular, the enclave hosting the

LuaVM, as well as its driving code, are initialized only once during bootstrap and remain

active throughout the server’s lifetime. Afterwards, each client request yields the initializa-

tion of the protected LuaVM, each time reusing the always-active enclave. The LuaVM is

always re-initialized upon each client request, discarding the previous Lua state, to ensure

the confidentiality of previous executions. As we can see in Figure 8.6, the initialization

optimizations allow for faster end-to-end execution, especially for short-lived scripts.

To evaluate our second optimization, the system call batching, we design and imple-

ment a Lua benchmark that iteratively performs a system call, in this case write(). We

execute the script multiple times, each time increasing the number of requested system

calls, ranging between ten thousand up to one million, using the vanilla LuaVM and Lu-
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Figure 8.7: Performance comparison between the vanilla LuaVM and LuaGuardia
with and without system call batching.

aGuardia with and without system call batching. When system call batching is enabled,

LuaGuardia hooks the function and stores the results to be written in a local buffer, that

resides in the enclave, instead of performing an SGX OCALL each time. At the end of the

execution, the results are written to the script’s desired location using a single OCALL. As

displayed in Figure 8.7, we notice that the overall execution performance is increased by

an average of 70% for applications performing multiple system calls.

Optimization Results We re-evaluate LuaGuardia with all optimizations enabled, using

the same experimental setup. Figure 8.8 compares the execution time achieved by the

stock LuaVM with the unoptimized and optimised LuaGuardia implementations. The out-

come of this evaluation clearly indicates that the aforementioned optimization increased

the performance capabilities of LuaGuardia and significantly decreased the delta between

the vanilla LuaVM and our system when executing short-lived Lua scripts. Moreover, for

more computationally intensive scripts, the performance achieved by LuaGuardia is al-

most comparable to the stock LuaVM, with the only exception being havlak due to its

high live memory requirements which constantly trigger enclave memory page swapping.

8.6.5 Real-world Application 1: wrk2

In this section we evaluate wrk2’s performance when executing over LuaGuardia. wrk2 [1]

is a modified version of the original wrkHTTP benchmarking tool, which uses Lua scripts

for the generation of HTTP requests, the processing of the responses, and any kind of re-

porting, which at its original implementation are executed via LuaJIT. However, the scripts

are also executable via the stock LuaVM, and consecutively by LuaGuardia. We choose to

evaluate our system using wkr2 since it serves as a good example of networking applica-

tions that generate synthetic loads and require external services, such as an HTTP server.
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Figure 8.8: Performance comparison between the vanilla LuaVM and LuaGuardia
with and without optimizations when executing 12 Lua benchmarks.

Experimental Setup Except from the two machines hosting the LuaGuardia server and

client, we also setup an external HTTP server, running darkhttpd, which wrk2 connects to

and performs the benchmarking operations. For our analysis, we execute three different

wrk2 Lua scripts: (i) Auth, (ii) Counter and (iii) Report. The first script performs response

handling and retrieves an authentication token. The second script changes the request

path and header for each request while the third Lua script implements a custom done()

method that reports latency percentiles in a CSV format.

Evaluation Process We evaluate LuaGuardia using wrk2 by initially setting up the dark-

httpd service on a dedicated machine. Afterwards, we use the LuaGuardia client to ex-

ecute wrk2 which connects to the HTTP server and each time initiates one of the three

different Lua scripts. For each HTTP request, wkr2 executes the target script by offloading

it to the LuaGuardia server. Upon script execution, the client receives the script’s output

and finalizes the operation. This is a particularly different design compared to the other

applications since each script is re-executed upon each HTTP request. This means that for

each packet transmitted to the HTTP server, LuaGuardia’s protected LuaVM is reinitialized

to execute the appropriate wrk2 script. The design followed by wrk2 serves as a good exam-

ple of clients constantly requesting script executions with minimal data and computation

requirements and is ideal to stress LuaGuardia’s initialization optimizations.

Results The results obtained after executing the three wrk2 Lua scripts using both the

stock LuaVM and LuaGuardia are presented in Figure 8.9. The X-axis indicates the ex-

ecuted scripts while the Y1-axis indicates the sustainable throughput in Kbps. The bar

clusters follow the Y1-axis and the throughput achieved by the stock LuaVM is marked as

Vanilla xput while the values reported by LuaGuardia are marked as SGX xput. The Y2-axis

indicates the average requests per second while the achievable values are presented with

lines/points, following a similar marking. The overhead introduced by LuaGuardia is also
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Figure 8.9: Performance comparison between the vanilla LuaVM and LuaGuardia us-
ing wrk2 with three benchmarks.

reported on top of each bar cluster with each value being round up to 0.5. Observing the

results, we notice that LuaGuardia introduces 34% overhead for the Auth benchmark and

28% overhead for the Counter benchmark. The main reason behind this behaviour is that

Auth triggers an authentication token retrieval that stresses the I/O path more than the

other benchmarks. On the other hand, Report yields almost the same throughput since

the script is only executed once and requires very minimal processing and I/O.

8.6.6 Real-world Application 2: Snabb/pflua

The second real-world application that we choose to evaluate our system with is Snabb

[24]. Snabb is a virtualised Ethernet toolkit that allows the implementation of network-

ing applications using Lua. Originally, Snabb utilizes the LuaJIT instead of the LuaVM,

however, the developed scripts can be executed with the stock LuaVM as well as with Lu-

aGuardia. One of the many applications provided by Snabb is a packet filtering module,

namely pflua. The pflua packet matcher is developed with Lua, using ∼9,600K LoC, and

filters incoming packets based on pflang [20], a filter that is also used by tcpdump [27].

Dataset To execute Snabb/pflua, we use a dataset of 12 pcap traces, each one containing

32,000 packets. One of the traces, labeled uni, is a properly de-anonymized and GDPR

compliant real traffic trace, collected at an educational institute. The rest of the traces are

provided by Snabb as test cases, each one divided by its protocol. To properly evaluate

LuaGuardia with these traces, we expand Snabb’s synthetic traces by replaying them to

increase their size to 32,000 packets. The ruleset provided to pflua contains 100 custom

rules, defined in pflang, and is used to process all pcap traces. We design the ruleset in

such a way that multiple rules are being triggered by each trace, making the workload

uniform and comparable across all input data.
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Figure 8.10: Performance comparison between the vanilla LuaVM and LuaGuardia us-
ing Snabb/pflua with 100 user-defined rules.

Evaluation Process Once all the required data and the ruleset are gathered, we proceed

with the evaluation of Snabb/pflua in the following way. First, we execute Snabb to ex-

tract the packet information from each pcap trace and transform it to a pflua-compatible

format. Internally, Snabb uses an L7 firewall which at each iteration extracts the packet

data, transforms it, and then forwards the output to LuaGuardia that executes the pflua

Lua code. The ruleset utilized by pflua also resides in LuaGuardia’s SGX enclave. In this

way, it is not readable or modifiable by malicious parties that wish to monitor the packet

filtering process or alter the applied rules. Once each packet reaches the SGX enclave, it

is being processed by the pflua module which buffers the results and returns them back

to the Snabb client when the entire trace is processed. We repeat this operation for every

trace, using both the vanilla LuaVM and LuaGuardia.

Results The results of this analysis are presented in Figure 8.10. The X-axis indicates the

pcap trace being filtered while the Y-axis indicates the overall execution time. The end-to-

end execution time achieved by the stock LuaVM is tagged as Vanilla while SGX reports

the execution time required by the LuaGuardia server with all optimizations enabled. On

top of each bar cluster we report the overhead introduced by LuaGuardia, round up to

0.5. As we can see in the figure, LuaGuardia introduces less than 20% overhead for most of

the traces while the average overhead is 19%. The biggest delta is reported when process-

ing the bittorrent pcap trace, reaching 41%. We attribute this overhead to the design of

pflua’s filtering for the following reason. Each packet in the trace contains a significantly

big payload that has to be transferred inside LuaGuardia’s SGX enclave, despite the fact

that our filtering only applies rules based on packet headers. For this reason, a consid-

erable amount of data has to be encrypted, transferred, and decrypted without actually
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being required by the packet filtering process. Moreover, the processing required to filter

each packet based on its header is quite minimal, thus it is not able to hide such an over-

head. In contrast, the stock LuaVM does not need to perform these costly transfer and

cryptographic operations. However, we can see that our runtime is able to process the

real-world traffic trace, namely uni, with a minimal overhead of 14%.

8.6.7 Real-world Application 3: Snabb/VPN

As described in the previous section, Snabb is a simple Ethernet toolkit that enables the

development of networking applications using Lua. For our third real-world application,

we design and implement a custom module for Snabb. The module utilizes Snabb to de-

code pcap traces and transform them into JSON. Afterwards, the transformed packets are

forwarded to our secure Lua module, executed by LuaGuardia, which is responsible for

encrypting end decrypting each packet, operating as a lite VPN module.

Data We evaluate our custom module using the pcap traces described in Section 8.6.6.

Since our module is based on Snabb, similar to the previously discussed Snabb/pflua, we

choose not to modify our pcap dataset for consistency. Moreover, in this way, we are able

to observe and compare the overhead introduced by LuaGuardia when operating on the

same data but performing a different type of computation. More specifically, we aim to

observe if the performance delta between the stock LuaVM and LuaGuardia is decreased

when a computational intensive task takes place alongside an I/O intensive operation,

such as transferring network traffic to and from the SGX enclaves.

Evaluation Process We begin our Snabb/VPN module development by implementing

a configuration that specifies the functions responsible for parsing and processing pcap

traces. More specifically, we replace the I/O facility provided by Snabb with our own im-

plementation which exposes an SGXreader and an SGXwritter object. Upon initialization,

we create a new SGXreader and SGXwritter context. Afterwards, using the pull()method,

exposed by the SGXreader, we iterate each packet found in a pcap file and encode it using

JSON. Each encoded packet is then written to the output using the push() method pro-

vided by the SGXwritter. Once the entire trace is processed, it is forwarded to our VPN

module, executed securely by the LuaGuardia server.

Internally, the module receives the JSON-encoded packets and performs the encryp-

tion and decryption of each packet payload. This operation is performed using ChaCha20-

Poly1305. Once every packet in the pcap trace passes a round of encryption and decryp-

tion, the results are forwarded back to the client. After carefully inspecting the module’s

correctness, we execute Snabb/VPN using both the vanilla LuaVM as well as LuaGuardia

with every optimization enabled, each time processing a different pcap trace.
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Figure 8.11: Performance comparison between the vanilla LuaVM and LuaGuardia us-
ing our custom Snabb/VPN module.

Results The evaluation results obtained after the module’s execution are presented in

Figure 8.11. In a similar fashion to the previous analysis, the X-axis indicates the pcap

trace being processed while the Y-axis indicates the overall execution time. We mark the

end-to-end execution time achieved by the vanilla LuaVM as Vanilla and the results ob-

tained by the execution of the LuaGuardia server as SGX. On top of each bar cluster we

report the overhead introduced by LuaGuardia, round up to 0.5. The evaluation indicates

that the processing of most of the traces using LuaGuardia, introduces a 15% performance

overhead. The average overhead is 17%; 2% lower than the value reported for Snabb/pflua.

This observation, along with the fact that the execution times are one order of magnitude

bigger than those reported for Snabb/pflua, is an initial indication of our expectation —

computational-intensive tasks tend to overshadow the I/O overhead introduced by the

SGX enclaves. This is more evident when comparing the overhead introduced by Lua-

Guardia when processing the bittorrent pcap trace using Snabb/pflua and Snabb/VPN.

We can see that the overhead is reduced by 18% since the high execution time required

to encrypt and decrypt each packet in the trace tends to overshadow the time needed to

transfer the big packet payloads into the enclave.

8.7 Summary

In this chapter, we presented our framework’s secure Lua runtime module, a system that

aims to simplify the development of confidential computing. This module addresses: (i)

the lack of high-level TEE abstractions that forces the use of low-level memory- and type-

unsafe abstractions, (ii) the technical issues regarding runtime extensibility, management

of cryptographic operations, and restricted interfaces, and (iii) the need for manual appli-
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cation partitioning, recompilation, and linking, by offering a set of abstractions around a

TEE-embedded runtime environment of a high-level programming language. LuaGuardia’s

abstractions simplify the development and deployment of such applications in a type- and

memory-safe manner. It also offers a runtime library, solving technical challenges such

as code signing, system call offloading, access control, and dynamic code loading. A se-

ries of optimizations accelerate the protected code execution. Our evaluation applies Lu-

aGuardia to a diverse set of applications, with an average overhead of 18%, the majority of

which is due to I/O delays. This work’s contributions are the following:

• We design and implement a lightweight code offloading system, based on user-level

enclaves, that enables confidential computing with a high-level language, namely

Lua, eliminating the need to learn or port code to device-specific TEEs.

• We perform several low-level optimizations, such as enclave pre-allocation and sys-

tem call batching, to significantly accelerate our runtime’s performance, especially

when executing short-lived scripts.

• We show how our secure runtime can be used by a diverse set of applications, from

cryptographic algorithms and simple popular benchmarks to real-world networking

toolkits. Our evaluation results show that LuaGuardia introduces an average over-

head of 18% to real-world applications, compared to their unprotected counterparts.
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Chapter 9

Automated Scaling of Trust-Oblivious
Systems to TEEs

In this chapter, we present Atlas, our framework’s sixth and final component that provides

TEE-scaleout of new and legacy JavaScript applications with substantial speedups. Our

system utilizes a series of techniques that allow a program oblivious to trusted execution

to dynamically scale its execution over multiple TEEs, all with minimal-to-zero developer

effort. As long as the developer provides the necessary hints about which parts have to

be securely offloaded, averaging a couple of lines for large applications, our component

automatically detects and dynamically scales the execution leveraging off-premise TEEs.

To allow delineating program fragments that are candidates for TEE scaleout, Atlas pro-

vides a domain-specific language with splittability annotations. To address correctness

concerns, the system analyses the scripts to confirm that candidates for TEE scaleout do

not run the risk of breaking the semantics of the original program. Atlas packs a series

of automated program transformations that operate at runtime to detect load and scale

program fragments over the available TEE resources. The system provides a TEE-enabled

language runtime, language-aware serialization support, end-to-end encrypted commu-

nication, remote module loading and offloading, and other system functions. To develop

this component, we use a JavaScript interpreter packed within user-level enclaves. Based

on [50], we choose to extend, port, and embed the QuickJS [21] engine due to its supe-

rior performance compared to other embeddable JS runtimes, minimal codebase, and its

ES6 [76] support. Our evaluation shows that Atlas’s TEE-enabled scaleout achieves signifi-

cant speedup on completely unmodified applications. Also, a series of benchmarks show

attractive elasticity characteristics, with Atlas responding almost immediately to changes

in load, applied to nine real-world applications.
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9.1 JavaScript

JavaScript (JS) is a popular scripting and programming language that allows users to cre-

ate multiple kinds of applications and multi-purpose programs. The types of applica-

tions range from small command line applications to complex web-based frameworks.

JavaScript is a dynamically typed language, meaning that it is able to change the type of a

variable while a script is executing. Also, any JavaScript program can terminate when an

error appears at runtime. Another important feature is the module ecosystem that ampli-

fies the modular programming characteristics via third-party modules.

From a developer’s perspective, importing a module makes its functionality available

to the calling code by means of binding its functionality to a name in the caller’s scope.

This is achieved by some form of exporting, where the module developer expresses which

values should become available to the importing code.

One of the most prominent JavaScript standards is ECMAScript 6 (ES6), used among

different web browsers to ensure the interoperability of web pages. ES6 includes syntacti-

cal support for classes implemented in pure JavaScript, following a similar trend to other

languages with class-based features [176]. Using the keyword class, the developer may

define a new class object, the constructor initializes the internal data of the class, while

extends and super offer the same functionality as found in other languages.

9.2 Design

9.2.1 Atlas Components

The overall architecture of Atlas is presented in Figure 9.1. The system consists of two en-

tities: (i) the client, which can be any device able to execute code, and (ii) the SGX workers

that reside in the cloud. The client holds all the logic for wrapping the function call(s) with

all necessary data and metadata as well as the scheduler’s logic. Each Atlas computing

node residing in the cloud is equipped with the QuickJS JavaScript engine, encapsulated

within SGX enclaves, thus preventing kind of malicious operation on the served data.

9.2.2 Atlas Execution Flow

In this section, we present a step-by-step execution flow on the Atlas environment. The

two principal components in the setup are: (i) the client, which is the one initiating and

requesting task distribution, and (ii) the trusted SGX-enabled Atlas worker nodes, residing

in a remote infrastructure.

Let’s assume that every available Atlas node is known and available via a public config-

uration file, including all the required metadata to establish a new connection. First, the

client parses the configuration and initiates a connection request to each worker it wishes
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Figure 9.1: Atlas architecture and execution life cycle overview.

to utilize and each worker accepts the connection and marks the client as a source for in-

coming requests. Once the connections are established, the client performs a handshake

with each worker using asymmetric keys, as described in previous chapters. After this

point, the client and the workers generate unique symmetric cipher keys which are always

stored in the SGX enclaves at the worker’s side. Once the secure channel is established, the

work distribution can begin.

The next step requires the developer to define which functions will be scaled-out to

the remote Atlas workers by simply wrapping them with the atlas wrap() function. At

this point, the executable script is forwarded to the client’s modified QuickJS engine and

it is analyzed. For each wrapped function encountered by the parser, the Atlas task sched-

uler picks the next available worker, crafts a new message containing the function code,

arguments and other metadata required for the remote execution. The message is then

serialized, encrypted, and forwarded to the respective Atlas worker.

When a worker receives the offloading request, it forwards the encrypted blob to its

trusted counterpart, residing in the enclave, where the decryption takes place. The plain

text then is de-serialized and evaluated inside the worker’s protected QuickJS runtime.

Once the execution is completed, the results are serialized and encrypted within the en-

clave. The encrypted blob containing the results is then returned to the worker’s untrusted

part, out of the enclave, and is forwarded back to the client. Finally, the client gathers all

the results from each worker and proceeds with its normal execution.
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9.2.3 Atlas Workers

As mentioned in the previous sections, Atlas workers play the most vital role in the Atlas

ecosystem. They are the entity responsible for handling incoming requests, de-serializing

execution requests, and most importantly preserving and ensuring the integrity of the

code execution and client data. A trusted worker contains several discrete sub-modules

that reside inside the SGX enclaves. To establish an end-to-end communication channel

with the client, Atlas offers a cryptographic engine responsible for handling messages ex-

changed between the client and the remote workers. The cryptographic engine along with

any cryptographic keys used for the encrypted communication and the handshake only

reside inside the enclave, thus, no code or data are ever exposed to the untrusted DRAM.

Another critical Atlas worker component is the serialization engine responsible to mar-

shal the messages before and after any cryptographic operations are performed. This

engine can serialize complex data structures, objects, basic data types, and even pure

JavaScript functions, assuming that the code can be deemed safe. Moreover, since the

code executing inside the Atlas worker’s enclave is developed in pure JavaScript, direct sys-

tem calls and other I/O related functions have to be forwarded out of the enclave, as the

SGX execution model dictates.

9.2.4 Scaling Out

The Atlas scheduler is our system’s component responsible for client side message han-

dling, worker allocation, and task distribution. More specifically, Atlas supports two con-

figurations for remote scheduling: (i) static allocation, where the number of workers and

servers are pre-defined in user-provided configuration files and are simultaneously allo-

cated during the initialization of the client end-point, and, (ii) dynamic allocation, where

the number of workers increases proportionally to the average message latency. In the

latter, the user has the option to provide a threshold that will trigger the dynamic node al-

location or use the default values, provided by Atlas’s standard configuration. The requests

are served to the workers based on their availability in a simple round-robin fashion.

9.3 Implementation

In this section, we present Atlas’s implementation details, the challenges encountered dur-

ing the development and the enclave-porting process, as well as the optimizations we ap-

plied on the system to boost its overall performance.
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9.3.1 Porting QuickJS

Atlas is based on the QuickJS JavaScript engine [21] which is developed in pure ANSI C,

making it a great candidate for our needs. Compiling the original QuickJS codebase pro-

duces two distinct binaries, the first one being a high-level interpreter that parses and

executes ES6 compliant JavaScript code, named qjs, while the second binary is capable

of compiling and executing JavaScript code into native code, called qjsc. We choose to

utilize the former since native modules developed in pure C, combined with the QuickJS

low level API, are not supported by our implementation as we describe in Section 9.5.1.

The official QuickJS codebase consists of ∼90K LoC and Atlas utilizes ∼80K LoC from

the original sources. As described in previous chapters, the Intel SGX1 execution model

limits the number of functions available to the enclaves. System calls for example can-

not be served within the enclave and thus several changes have to be performed to the

runtime’s components, either by wrapping and proxying the unsupported functions or ex-

cluding them entirely but without breaking legacy compatibility of pure JavaScript code.

Some JavaScript components are completely scrapped off the original codebase to pro-

vide enclave support without exposing the system to external threats. For example, SGX

version 1 does not support the creation and allocation of threads within a single enclave.

Additionally, code inside the trusted Atlas workers is executed sequentially. For these rea-

sons we choose to remove the ATOMICS and WORKERSmodule from our runtime.

Porting the QuickJS runtime to the Atlas worker’s enclaves is not a straightforward task.

First, due to the lack of system call support in the enclave, several functions related to the

execution environment have to be modified. As a result, signals are completely removed

from the codebase. To avoid breaking normal normal code execution, we have to manually

provide trusted bi-directional bridges from the enclave to the untrusted part of Atlas and

vice versa to support the system calls required for the runtime’s execution.

Apart from the trusted interpreter, we also have to provide the necessary functionality

to the untrusted part of the modified QuickJS engine to transform it to a functional worker.

The main two components that have to be added is the Request Handler and the Function

Handler. The former is responsible to manage client requests, forward the results, and

interface with the enclave appropriately to help establishing the communication channel.

The latter is responsible for serving function execution requests initiated by the enclave,

in cases where they cannot be served within the enclave (e.g., system calls).

9.3.2 Bootstrapping

Enclave creation and initialization are costly operations. To ameliorate these unwanted

costs that impact the workers’ performance and slow down the overall execution, we choose

to perform the following optimizations: (i) initialize the enclave and load the required li-

braries during the enclave creation time, and (ii) re-use the same enclave with the pre-
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loaded libraries for each new client offloading request, after having reset the enclave’s

state. In this way, for each execution request, we provide an enclave with all the required

code, common libraries and modules, since the initialization occurs only once. After this

point, for each new client request, the only thing that has to be transferred to each Atlas

worker is the encrypted blob containing the offloaded code, arguments, data, and custom

modules. Once a previously unloaded module or library is loaded for a specific client, the

client’s trusted module database is updated so new remote execution requests from the

same client can utilize the available custom modules.

9.3.3 Distribution Steps

For a client to successfully offload and scaleout tasks to the remote Atlas workers, a set of

steps has to be followed as described bellow.

1. Serialization

Prior to offloading task execution requests to an Atlas worker, we have to first serialize

each client message. A typical client request contains information and metadata related

to the required libraries, the target function that has to be executed, its respective argu-

ments, that may either be simple data types or more complex data structures (e.g., graphs,

hash-maps, arrays, lists, etc.) and the worker’s unique identifier. To do so, we have ex-

tended the functionality of the built-in JavaScript functions offered by the vanilla QuickJS

engine, such as JSON parse() and JSON stringify(), to support the serialization of the

client’s message. Our custom parsing process can be invoked using the atlas.parse()

and atlas.stringify() functions. The client can call atlas.stringify() to serialize its

data blob before sending it to the remote worker. Similarly, each Atlas remote worker has

to invoke atlas.parse() to de-serialize the data. The reverse procedure is performed

when the worker sends the results back to the client.

2. Encryption

Since the main goal of this component is deploying and distributing tasks on remote work-

ers, we assume that malicious parties may have full control of the network channel and

can monitor Atlas’s traffic and connections. To overcome this issue, we add an extra en-

cryption layer to the serialized data before sending them on the wire. Our main goal is

to offer fast encryption/decryption operations while achieving the best security to per-

formance ratio. For this reason, we extend our custom QuickJS implementation in the

client-side to natively provide encryption, decryption, and key generation functionalities

in pure C. This is achieved by utilizing the tweetnacl [51] toolkit that provides streaming

encryption and decryption, implemented in native C. The Atlas clients perform the re-
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quired cryptographic operations transparently, via their modified QuickJS engine. At the

Atlas worker side, the cryptographic operations are strictly performed in the SGX enclaves

to prevent code, data and metadata from being exposed in the untrusted DRAM or storage

in plain-text format.

3. Networking

The final piece in the remote execution process is secure networking which is split to

two separate steps: (i) secure end-to-end communication establishment and, (ii) data

exchange. To achieve secure communication, we initiate simple TCP connections from

the client(s) to each one of the Atlas workers that we need to utilize by modifying the

vanilla QuickJS implementation. This socket connection is transparently performed when

a client performs a task offloading request. We opt for such a simple and lightweight ap-

proach since the only functionality required in this case is managing a standard socket, as

the cryptographic operations are already handled in the previous step.

Once all the steps mentioned in this section are completed, the client can start to asyn-

chronously offload execution requests to each worker based on a simple round-robin al-

gorithm. The client spawns a group of local workers, each one assigned with a remote

Atlas worker, based on the configuration. This option reduces the need for synchroniza-

tion primitives, since two client workers cannot access the same remote Atlas worker at

once. Furthermore, both local client workers as well as the remote Atlas workers are not

required to generate a unique session key for each of the possible connections.

To provide optional, on-demand, secure communication between the client(s) and the

remote worker(s), we provide a simple JavaScript API that transparently binds the network

operations with the cryptographic operations discussed above. This API contains four

functions, namely atlas.connect(), atlas.close(), atlas.send(), and atlas.recv().

Using these functions, we can perform cryptographic handshakes with all the remote work-

ers in our setup, and consequently exchange cryptographic keys to protect the data.

9.3.4 External Modules

By design, JavaScript is a programming language that offers dynamic module capabilities

in two ways and has built-in support for two types of libraries: (i) libraries that are imple-

mented entirely in pure ES6 compliant code, and (ii) libraries that are developed as native

modules, built in C/C++, that may be registered using the native QuickJS C API. To support

pure JavaScript module loading, there are two main functionalities that have to be sup-

ported inside the enclave. The first is the correct operation of the FILE structure, required

to handle module files and I/O. Second, all the functions invoked during the bootstrap-

ping phase of the QuickJS engine such as fopen, fread and fwrite have to be available.

These functions are required to fetch and load QuickJS compliant encrypted modules from
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the untrusted file system and perform the decryption and necessary content verification

in the trusted part of the Atlas runtime for integrity purposes. With these functionalities

in place, our secure runtime can load pure JavaScript modules and start executing them.

This specific design prevents attackers from modifying or replacing modules found in the

host system’s memory/file system or modules received over the network, as part of a re-

mote execution request. The checksums required for module validation can either be

pre-stored in Atlas’s worker enclaves, such as checksums for standard libraries, received

in encrypted format during the data transferring phase, or be part of the encrypted blob,

if SGX Data Sealing is used. With this mechanism in place, any import or require snip-

pets encountered in a JS script during the execution within the Atlas enclave assume that

the target source code exists in the untrusted file system in an encrypted format and can

thus be loaded. This intermediate loading layer is transparent to the developer and offers

the same functionality as the vanilla QuickJS module loading process. To further optimize

this process, Atlas’s standard configuration pre-loads all the standard libraries and a set of

popular JavaScript modules to speed up the script execution.

On the other hand, native C/C++ libraries, are compiled as shared objects using Quick-

JS’s C API and may only be loaded by Atlas’s untrusted part, residing out of the enclave,

using the dl* family of functions. However, this functionality prevents us from provid-

ing trusted dynamic C/C++ library support for the following reasons. First, since shared

objects cannot be loaded in Atlas’s enclave (dlopen is a system call whose functionality

cannot be wrapped and proxied), their integrity cannot be verified by the system. Second,

the functions loaded in Atlas’s untrusted part may only interface with the enclave code via

a predefined, before compilation, proxy layer called Enclave Definition Language (EDL)

file. Thus, each function’s prototype is not known a priori and this proxy layer cannot be

constructed. Additionally, since the shared objects are stored in the file system, and the

dl* family of functions is not available in the enclave, module verification cannot be per-

formed enabling a malicious entity to tamper the native module.

9.3.5 System Call Handling

The most common issue with many TEE technologies, including Intel SGX, is the lack of

system call support. This is expected since only the underlying hardware and the SDK pro-

vided by the vendor are considered as trusted components, thus system calls, peripherals

and even the OS kernel are considered untrusted and excluded from the TCB. So, directly

performing calls to the untrusted kernel, such as I/O and network operations, is not al-

ways considered sound since a malicious user can intercept the calls and control/monitor

the context and the data of each call. When utilizing SGX, such calls have to be offloaded

to the untrusted part of the application, using proxies defined in the EDL file, where they

are handled, and the results are forwarded back to the enclave. Meanwhile, the enclave
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has no means of validating the results unless they are generated in an attestable way.

Normally, custom built SGX-enabled applications might require only a few system calls

that can be easily wrapped by the developers. However, this model does not apply to Atlas.

Since our implementation leverages and utilizes a full-fledged, drop-in replacement of the

QuickJS engine, enclosed in SGX enclaves, several challenges have to be addressed. First,

we need to accommodate the system calls required by the JavaScript virtual machine itself

to function properly. Second, new system calls may be issued during the execution of the

various scripts. The former case may be considered a more straightforward approach, as

the required system calls can easily be accounted for. This unfortunately does not apply in

the latter case, where all required system calls may be known a priori but will be resolved

at execution time.

The most common approach to handle this issue is to implement custom system call

wrappers for each required system call. However, modern operating systems provide hun-

dreds of system calls, but the majority of them are not required by the QuickJS runtime

or the executing scripts. Furthermore, many of these system calls, could be triggered by

an offloaded script and abused to perform malicious activities on the remote host. For

this reason, we decide to provide interfaces only for the bare minimum of the system calls

required to support the normal operation of the interpreter inside the enclave and min-

imize the potential attack surface without having to keep proxying functions calls to the

untrusted part of the Atlas runtime.

By analysing the original source code, we notice that the most commonly used func-

tions resulting to system calls are those associated with data I/O such as fopen, fwrite,

fread, etc. To provide system call support to the JavaScript engine residing within the SGX

enclaves, we have to develop custom functions, defined in the EDL file and implemented

in the non-enclave part of the Atlas worker, performing OCALLs for each pending request.

Once such a request is handled to the OCALL interface, and since the untrusted part of

the application has full access to the entire system, it will be served and the results will

be returned to the enclave after performing the typical SGX-enforced checks on the data.

However, the validity of the data transferred from the untrusted part within the enclave has

to be explicitly checked for integrity with mechanisms that have to be implemented by the

application developer, in cases were the returned data are critical and can lead to landing

an attack. In the Atlas model, extending SGX’s model, the only entity assumed trusted is

the enclave, the SGX driver, and the SGX services and SDK, whereas the JS scripts, modules

and input data required for the execution must be provided with each client request in en-

crypted and attestable format. Thus, we prohibit read and write operations to arbitrary

file system locations at the worker’s side. To help minimize the I/O constraints as much as

possible, we provide optional file offloading and handling in predefined Atlas worker file

system locations in an encrypted manner, using SGX’s sealing and unsealing functionality,

enabling secure and persistent storage in the untrusted file system.
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9.4 Evaluation

In this section, we evaluate Atlas’s security and performance characteristics. First, we de-

scribe the methodology used for the evaluation by presenting the experimental setup and

the real-world applications we use to put Atlas under test. Then, we discuss our system’s

dynamic response and scalability characteristics. Finally, we conclude with a series of

benchmarks and microbenchmarks that provide insight into our system’s properties.

9.4.1 Evaluation Setup

We evaluate Atlas in two distinct test beds, as follows:

Large Multiprocessor This test bed is based on an Intel Xeon E7-8830 processor, clocked

at 2.13GHz, providing 8 physical cores. The system is equipped with 512GB of memory

and runs on Debian 4.19.160-2 with Linux kernel version 4.19.0-13. This setup is used as a

local multiprocessor, using the official Intel SGX SDK and PSW.

Small Distributed Cluster The remote distributed cluster used for the evaluation of At-

las is based on the Azure cloud services and it contains several DCsv2 machines which

offer native Intel SGX hardware support. The nodes are equipped with Intel Xeon E-2288G

processors and we utilize one virtual CPU and 4GB of memory per instance. The installed

Operating System is Ubuntu Server 18.04 LTS - Gen 2 with Linux kernel version 5.4.0-147.

9.4.2 Applications

To evaluate Atlas’s performance capabilities, we use the following real-world applications:

Contact Discovery This application is a custom lite implementation of Signal’s [23] con-

tact discovery service in JavaScript. It uses an oblivious hash table containing all submit-

ted contacts. The application collects a batch of contact discovery requests and builds a

hash table containing all submitted contacts. Then, it iterates over the list of all registered

users and, for each registered user, indexes the hash table containing the batch of client

contacts, performing a constant-time comparison against every contact in that line. In

this application, we send a discovery message per request that contains 100 user contacts

with some additional metadata. As requests arrive to each node, the list of all the registered

users is iterated and the node performs a comparison against every received contact.

Secure Hashing This cryptographic benchmark executes the SHA-512 secure hash al-

gorithm, implemented in pure JavaScript. Upon receiving the input, the application re-

sponds with its hash value. The client generates a buffer of fixed length (500KB).
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Natural Language Processing This real-world application performs natural language

processing using the Compromise [16] Natural Language Processing library which has a

codebase of 375KB. On each offloading request, we send chunks of document data (sized

at 1.629KB). The application first finds all the verbs, nouns, adjectives and adverbs in the

input. Then, it transforms all the verbs to past and present tense. Finally, the application

transforms all the nouns to singular and plural form.

Unweighted Shortest-Path In this application, each worker executes Dijkstra’s algorithm

to find the shortest path from the source to the destination. The client sends the size of the

graph to be generated. The application works in three phases: (i) generation of the distinct

vertices based on the user input, (ii) construction of the graph that connects all the vertices

through edges, (iii) execution of the actual shortest distance calculation algorithm.

K-means Clustering K-means Clustering is an unsupervised machine learning algorithm,

meaning that it makes inferences from the given dataset using only input vectors without

referring to known or labelled outcomes. The main goal of the algorithm is to group sim-

ilar data points in order to discover underlying patterns. Upon receiving the user data,

the application generates an array of 2500 data-points to cluster, in a (x, y, z) format, and

sets the number of iterations to max. In a similar way, an array of centers is generated

and passed as an argument for the initialization. Finally, the algorithm returns a cluster of

identifiers for each data dot and centroids containing the array of indexes for the clusters,

the array of the resulting centroids and the number of iterations it took to converge.

Decision-Tree Learning Decision-Tree Learning is a supervised machine learning algo-

rithm, meaning that the user has to specify what the input represents and what the corre-

sponding output is in the training data, where the data continuously keep splitting based

on a certain parameter. The algorithm uses a decision tree that consists of two primary en-

tities: (i) decision nodes and (ii) leaves. Decision nodes is the point where the data are split

and may contain filters whereas leaves are the final outcome that may be either a match

or not. The algorithm first generates two arrays (as set and values) with 2000 entries and

then trains the decision tree using regression as the gain function, to obtain the best split.

Finally, it predicts the values given the set array as input matrix.

Lexicographic Sorting This real-world application executes the Gnome sorting algorithm.

Upon message arrival, the application generates an array of 2500 random numerical en-

tries to be sorted, performs a series of swap operations and then responds to the user with

an array containing every integer in descending order.
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Term Edit Distance The Term Edit Distance application tries to quantify how dissimilar

two character sequences are by finding the minimum number of steps required to trans-

form the one into the other. Upon receiving the user input, the application generates two

strings of 2000 bytes and by performing a series of subtractions and Min calculations, re-

turns the minimum distance between the two strings.

Password Manager This application implements a simple password manager that pro-

vides four basic operations: (i) dynamic password database creation across Atlas’s nodes,

(ii) password and metadata retrieval, (iii) database entry modification and (iv) entry dele-

tion. We use this application to evaluate Atlas’s performance by executing thousands of

the supported commands. The client packs a message with the size of the database to be

generated (10K). Then 1 million operations are performed on each node. The application

iterates all the available database entries and then compares each entry with the opera-

tion ID. If the comparison is correct, the fields of the found entry are modified and then

the application handles the next operation.

More Benchmarks We further explore Atlas’s performance characteristics using a set

of sorting algorithms and a benchmark suite. The sorting algorithms set contains seven

benchmarks, namely Merge-, Heap-, Bubble-, Cocktail-, Gnome-, Insertion- and Radix-

sort. Finally, the benchmark suite contains seven algorithms found in real-world JavaScript

applications, with different memory requirements.

9.4.3 Dynamic Response

In this section, we evaluate how Atlas responds to load spikes. To do so, we execute the

Contact Discovery application with the following setup. We allocate four servers, hosted

in the Azure cloud, providing SGX capabilities in hardware mode. Also, we allocate a local

QuickJS process responsible to execute the application on the large multiprocessor. Then,

we execute the contact discovery application on both systems and compare the results.

Bootstrap To bootstrap our application, we generate a random list of 160,000 entries

which are split to four sets of 40,000 entries. Each set is transmitted to the four servers re-

siding in the Azure cloud. The client issues a bootstrap request to each server instructing

them to generate their private contact database. Once this process is completed, a done

reply is sent back to the client. Then, the client generates locally a record of 100 contacts

along with their metadata. Finally, the client issues the contact discovery requests, based

on this set, at each worker. This process is performed 10 times to warm up the system.
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Request Offloading Once the bootstrapping phase is completed, the application enters

the main execution phase. At this point the worker queues are empty and the client starts

to issue contact discovery requests, based on our custom interval algorithm. The client se-

rializes and encrypts the data, and forwards them to the workers using the Atlas scheduler.

Intervals Algorithm To generate load spikes, we implement an interval-based algorithm

which the client uses to issue the contact discovery requests. The algorithm issues a vari-

able number of requests with six distinct intervals, each starting at the reference times

T0 to T5, as follows. The first interval, T0, is 800ms at which the client issues 11 requests.

Then, at T1, the interval is set at 700ms and the load at 15 requests. At T2, the interval is

set at 400ms and the client offloads 30 requests. Then, at T3, the interval is decreased to

200ms, so that the requests are rapidly issued, and the client offloads 25 requests. At T4,

the algorithm tries to reduce the load by increasing the interval to 500ms and the load is set

to 20 requests. Finally, at T5, the interval is set at 900ms and the client offloads 20 requests.

Each request contains 100 contacts to be discovered. The benchmark is completed when

the entire request load is served and the client issues a session termination message. The

goal of this algorithm is to emulate load spikes that appear in real workloads and enable

us to assess our system’s dynamic response capabilities.

Contact Discovery Process Each server performs the execution sequentially and only a

single request message is received at a time. Upon a contact discovery request, each server

parses the input, de-serializes the included contacts and their metadata, and then starts

comparing each client contact with the existing contact database. For every accessed con-

tact in the database, it writes a value in the respective entry in a way that a malicious party

cannot track the memory access patterns. When the process is finished, and all the mem-

ory entries are touched, the attacker cannot identify which contact corresponds to which

memory row. Finally, each worker responds with the serialized and encrypted results.

Evaluation Results We execute the contact discovery application as described above and

report the results in Figure 9.2. The first sub-figure presents the ingress throughput – the

rate at which the client issues contact discovery requests to the workers. The Y-axis in-

dicates the issued requests per second while the X-axis indicates the wall clock time in

seconds which is common for all three sub-plots in this figure. The labels E0 to E5 mark

the interval change events, happening at the reference times T0 to T5, as described above.

The peaks and troughs reported after the occurrence of each event are caused by shifting

the interval value and number of issued requests according to the algorithm.

The second sub-figure presents our system’s response latency when executed on the

multiprocessor. The X-axis remains the same while the Y-axis indicates how much time

is required by Atlas’s workers to serve each contact discovery request. The points marked
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Figure 9.2: Dynamic response capabilities when executing the contact discovery ap-
plication on the multiprocessor and the cloud with variable load spikes.

as SGX-static-* indicate the number of pre-assigned nodes used. The orange points, la-

beled SGX-dynamic, report the response latency when taking advantage of the dynamic

scheduler that detects incoming load and allocates more worker nodes, in this case up to

four. We notice high latency during the first events despite the dynamic mode. This hap-

pens because before dynamic scheduling is triggered, the requests are stacking up on the

first remote worker. Then, when the system detects heavy load, it starts allocating more

remote workers with empty work queues but the first worker has already been assigned

with a big load to be processed. This is the reason why some orange data points are higher

even after the dynamic scheduling is enabled. Once the extra load is processed (E4 to E5),

the first worker catches up with the rest and the overall response latency decreases.

The third sub-figure reports Atlas’s response latency when executed on the Azure cloud

instances, leveraging SGX enclaves in hardware mode, and provides a solid picture of our
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Figure 9.3: Dynamic response capabilities during the first event (E0) when executing
the contact discovery application on both setups.

system’s real capabilities. The first thing we notice is that the execution time is much lower

since the cloud is equipped with newer and more powerful hardware while each worker

resides in a separate instance. For this reason as well, Atlas is able to detect the latency

changes faster and the dynamic scheduling is enabled during the half of the first interval.

This is also clearly shown in Figure 9.3 which focuses on the first event (E0). This means

that fewer requests are assigned to the first remote worker as more workers are spawned

during the first four seconds.

To understand if the achieved performance gain is consistent among other use cases,

we perform the same evaluation using eight more real-world applications, as described in

Section 9.4.2. We summarise our findings in Figure 9.4, reporting the sustained latency

during each event (E0 to E5) for every application, using remote workers on Azure cloud

instances. We notice that the addition of multiple workers provides a significant improve-

ment to our system’s ability to handle load spikes. On E3 event, when the client starts

offloading execution requests more aggressively, the overall response latency starts to in-

crease rapidly. On this event, a single worker is not able to handle the incoming requests,

while using four workers masks the load spike almost completely.

Also, we notice that in cases where the time required to serve a single request is sig-

nificantly higher than the request interval, the system requires more time to recover. Un-

weighted Shortest-Path is the most prominent example due to its continuous array gener-

ation and costly graph calculations, needing several seconds to process a single request.

For this reason as well, we observe some high latency results spanning beyond E4 when

dynamic scheduling is utilized, as multiple events are still pending on the first worker’s

queues. This behaviour is not observed when all four workers are statically pre-allocated,

indicating the need for a more aggressive scalability configuration. Finally, on E4-E5, the
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Figure 9.4: Dynamic response capabilities when executing the real-world applica-
tions using Azure cloud instances with variable load spikes.

offloading frequency starts to decline. However, when using a single worker, the response

latency still increases due to the pending requests. At the E4 and E5 events, the system is

able to recover from the load spike, in most cases, when using multiple remote workers.

9.4.4 Scalability Characteristics

We proceed our evaluation aiming to identify our system’s scalability characteristics when

executed on distributed clusters, allowing for multiple worker instances. To do so, we exe-

cute the real-world applications, described in Section 9.4.2, using Atlas workers residing in

the Azure cloud. The evaluation process is performed as follows. We begin the assessment

by executing each application 10 times, using a single worker and a significant workload
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Figure 9.5: Atlas speedup gain on Azure cloud using up to eight worker instances
when executing real-world applications.

that can later be distributed to multiple workers. Then, we calculate average execution

time required to complete each application and set this value as its performance baseline.

Next, we repeat this process 7 more times using the same workloads, each time increasing

the available Azure instances by one, thus adding an extra worker. Once a set of 10 execu-

tions with the same configuration is completed, we calculate the average execution time

and report the achievable speedup based on the application’s the sequential execution

(i.e., using only one Atlas remote worker).

The results of this analysis are presented in Figure 9.5. As we can see in the figure,

increasing the number of available workers provides a noticeable performance benefit to

Atlas. We notice that for most applications, the gained speedup is linear to the number

of utilized Atlas remote workers when adding up to five Azure instances. On average, the

speedup gain when utilizing 8 remote workers is ∼6.9x.
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9.4.5 Benchmarks

In this section, we evaluate Atlas with a series of benchmarks containing algorithms with

different properties and summarize the reported results. With this evaluation we aim to

assess Atlas’s performance when executing various types of algorithms and identify the

performance overhead that SGX enclaves introduce.

We execute the sorting algorithms and the algorithms found in the benchmark suite,

first using the vanilla QuickJS engine and then using Atlas with a single worker node. We

choose appropriate workloads so that both the vanilla and the SGX-enabled engine re-

quire several seconds to complete the execution, limiting the I/O and bootstrap costs. The

results of this analysis are presented in Figure 9.6. The Y-axis indicates the overall execu-

tion time while the introduced overhead is presented on top of each bar cluster.

The reported results show that Atlas with a single node introduces an average perfor-

mance overhead of ∼25% when executing the sorting algorithms, while four out of the

seven are executed with a performance penalty of no more than 10%. The highest over-

head is reported for Merge-sort, at 90%, mainly due to the extensive memory require-

ments of this particular implementation, triggering expensive encrypted memory page

swapping. Similar results are also reported for the execution of the algorithms found in

the benchmark suite. Four out of the seven benchmarks are executed by Atlas with up to

6% performance overhead while the average performance penalty is ∼13.6%. In a similar

fashion, algorithms generating multiple memory allocation requests tend to execute with

higher performance overhead.
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Figure 9.6: Performance comparison between the vanilla QuickJS implementation
and Atlas with a single worker node when executing various benchmarks.
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9.4.6 Microbenchmarks

In this section, we present the evaluation of Atlas with a series of microbenchmarks, re-

porting how Intel SGX enclaves affect our system’s performance.

Data Retrieval Performance

To understand the impact of retrieving data from the untrusted environment in the secure

enclave, we develop a simple JavaScript benchmark that reads a 20MB file from the file

system in chunks ranging from 64B up to 4MB. Then, we execute the script using both

the vanilla QuickJS engine and Atlas with a single node and report the results in Figure 9.7.

We mark the execution time required by the vanilla QuickJS interpreter as Vanilla and

the end-to-end time required by Atlas’s SGX enclave as SGX. Furthermore, we present the

time required for booting our system from scratch as SGX Init while SGX Execmarks the

actual execution time of the JS script inside the enclave. We notice that increasing the

read data buffer, significantly reduces the script’s execution time as fewer system calls are

involved and the execution is transferred fewer times between the enclave and Atlas’s un-

protected environment. However, the encryption process for the enclave’s inbound data

is responsible for increasing the execution time by an order of magnitude. Also, we notice

that increasing the read data buffer beyond 2KB has little to no effect in further increasing

the performance. Furthermore, the overall end-to-end execution time of Atlas is increased

compared to the vanilla QuickJS engine due to Atlas’s required boot time as in this case the

system is re-initialized from scratch upon each execution.
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Figure 9.7: Performance comparison between the vanilla QuickJS and Atlas when
reading a 20MB file with variable read buffer sizes.
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Memory Access Performance

We proceed the evaluation of the enclave’s performance properties by measuring the over-

head introduced by SGX when randomly accessing memory spaces, performing read and

write operations. For this reason, we develop a simple benchmark that performs 1 million

random writes to consecutive memory spaces, ranging from 64B to 2MB and afterwards,

1 million random reads to the same locations. We execute this microbenchmark using

both the vanilla QuickJS engine and Atlas, where the memory accesses are performed on

protected memory. The results of this analysis are presented in Figure 9.8. As we can see,

the memory access times achieved by Atlas, both for read and write operations are almost

identical to those achieved by the vanilla QuickJS runtime. We also notice the same cache

effects for both protected and unprotected environments with a small performance degra-

dation starting to appear at 2MB due to the encrypted memory, also reported by [181].
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Figure 9.8: Performance comparison between the vanilla QuickJS and our SGX-
enabled runtime when performing one million random accesses
(read/write) to memory locations ranging between 64B and 2MB.

QuickJS’s Default Memory Usage

The final step is to measure the memory footprint of the QuickJS interpreter. To achieve

this, we execute a plain JavaScript script and measure the memory usage and object count

using the JS ComputeMemoryUsage() and JS DumpMemoryUsage() functions. In this way, we

are able to get a view of QuickJS’s initialization memory footprint. QuickJS has very min-

imal memory requirements, allocating only 23KB of memory and 2975 objects, with each
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object sized at an average of 8B. Totally, the runtime uses 305KB of memory and 3203 ob-

jects. These characteristics render QuickJS an ideal runtime to be encapsulated within

SGX enclaves as its minimal memory requirements do not violate the 128MB protected

live memory restriction and provides enough headroom for script execution without trig-

gering SGX’s expensive page swapping mechanism even on SGXv1 hardware.

9.5 Summary

In this chapter, we presented Atlas, our framework’s final component that enables us to

automatically scaleout JavaScript components on TEEs. The system uses program trans-

formations to offload function calls of a given application and distribute load among TEE

nodes, with respect to the original sequential execution. A modified TEE-embedded lan-

guage runtime environment, namely QuickJS, and a set of optimizations complete the

picture, supporting the secure execution of offloaded code fragments. Atlas’s evaluation

shows success at TEE-scaleout of legacy applications, not initially developed for TEEs, sub-

stantial speedups over naive decomposition, and attractive elasticity characteristics, all

achieved with minimal developer effort. This work’s contributions are the following:

• We design and implement a secure JavaScript runtime that allows distributed secure

execution of new and legacy JavaScript applications with minimal developer effort.

• We present how Atlas successfully offloads secure computations for a wide set of real-

world applications and benchmarks using custom and commercial infrastructure.

• We show that user-level enclave-based TEEs can be utilized to perform secure and

private distributed computations, providing a significant performance improvement.

9.5.1 Discussion

SGX Enclave Constraints As mentioned in previous chapters, Intel SGX version 1 has

a memory limitation of 128MB live encrypted memory. Exceeding this memory cap re-

sults in triggering the SGX EPC swap mechanism in Linux. In such cases, Intel’s Memory

Encryption Engine starts encrypting the trusted pages and storing them to the untrusted

DRAM before fetching new ones. Consequently, developers have to efficiently handle data

management since memory-bound scripts and functions can still execute on Atlas, but the

overhead introduced might be noticeable. In such cases, it is optimal to utilize our system

on SGX2 hardware.

Native Module Support As described in Section 9.3.1, native module support is not en-

abled on Atlas. Dynamically loading and executing shared object libraries require using

the dl* family of functions. Since these functions need to dynamically allocate and map
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the memory as executable, functionality which is not supported on SGX version 1. By

offloading such unsupported requests to the untrusted part of the Atlas workers, we can

indeed enable and execute shared libraries. However, the mapping process will take place

in the untrusted DRAM, resulting in exposing the dynamic library to a potential attacker

that could monitor or tamper its execution. Also, systems that enable binary compatibility

for SGX enclaves can be possibly utilized to provide secure native module support [173].



Chapter 10

Related Work

In this chapter, we present the research works found in the literature, related to the var-

ious modules composing our framework, as well as works that aim to advance the SGX

technology or mitigate its limitations.

10.1 Malware Detection

As expected, the research community in the area of security focuses on malware detection

to protect users and organizations from the cyber threats that are continually evolving.

ClamAV [6] is the most popular open-source anti-malware solution, heavily based on mal-

ware detection through pattern matching. CloudAV [137] was one of the first works to put

forward the notion of cloud-based malware scanning while [138] extends CloudAV to the

mobile environment. Although CloudAV achieves high detection rates, it exposes sensitive

information without preserving the user’s privacy. SplitScreen implements a distributed

anti-malware system to speed up the malware scanning using bloom filters [56]. RScam

is another cloud-based anti-malware system which provides an efficient security service

and data privacy protection for resource-constrained devices [180]. Still, RScam assumes

a trusted server environment. In this work, we propose a cloud-based malware detection

module using hardware-assisted enclaves to shield user data and preserve their privacy.

CloudNet is a GPU-accelerated anti-malware engine for cloud services [95]. While some

works focus on improving the performance of malware detection systems (e.g., [193]), in

this work we tackle the urge for strong privacy-preserving guarantees when it comes to

computational offloading to untrusted environments, where users have no control over

the manipulation of their personal data.

Hand-held devices contain a lot of personal data, as for instance pictures or transcripts,

making them a promising target for frauds [158, 175]. Some of the most popular com-

mercial applications on mobile malware detection are the AVG Antivirus [4] and Avira

mobile security [5] solution. Google provides its own service, namely Google Play Pro-

tect, as a built-in application that automatically scans and verifies installed Android ap-

135
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plications [8]. Unlike our proposed system, this solution is destined only for Android

applications retrieved from Google’s Play Store. Similar research works, based on signa-

ture scanning, proposed systems that aim for low power consumption [107, 126]. Other

techniques for malware detection are code and API call analysis, used in ScanMe Mo-

bile [217] and [30] respectively. In Paranoid Android [153], security checks are applied

on remote security servers that host exact virtual replicas of devices, applying multiple

detection techniques simultaneously. Other works, utilize machine learning techniques

to apply malware detection on mobile devices [31, 210]. In general, machine learning

techniques for malware detection have recently gained increased popularity, with mul-

tiple works utilizing various models and behavioural analysis to identify malicious code

samples [33, 42, 70, 98, 177]. However, these works do not focus on real-time protection.

Finally, we have previously proposed a GPU-assisted antivirus solution on Android de-

vices through edge offloading [72]. While our work is based on the same grounds (i.e., the

malware detection with support for mobile devices), we advance the state-of-the-art by

proposing a practical, yet secure, malware detection engine that strongly focuses on pre-

serving user privacy, offloading the processing of personal data inside a trusted execution

environment.

10.2 Kernel Integrity Monitoring

Kernel integrity monitors can be divided into two main categories, (i) software based and

(ii) hardware based, with the former often relying on a hypervisor. Azab et al. [44] pro-

posed a system, similar to our design, that leverages ARM TrustZone [39] to perform ker-

nel monitoring. The benefit of this approach is that the mappings and the virtual address

translations of the kernel are transferred directly inside the trusted application, rendering

the normal world unable to view or modify them. However, this model is only applica-

ble to TrustZone-capable devices such as IoT and mobile phones. HyperCheck [201] is

a hardware-assisted tampering detection framework that leverages the CPU System Man-

agement Mode (SMM) and aims to protect the integrity of VMMs and the host’s OS against

certain classes of attacks. In contrast to our system, where the analysis is performed in the

secure enclave executed on the target system, HyperCheck transmits the entire system

state to an external server. Feng et al. introduce BehaviorKI [82], a behavior-triggered in-

tegrity checking system that extracts a set of behavior patterns by analyzing attacking pro-

cesses and triggers checking with kernel invariants. OCsk [97] is a virtual machine based

approach able to detect rootkits by determining violations to operating system invariants.

Also, SecVisor [167] is a hypervisor based approach that protects the kernel’s integrity by

verifying that only user-approved code can execute in kernel mode, thus protecting the OS

against code injection attacks and rootkits.

Copilot [148] is a snapshot based kernel integrity monitor that, similar to our proposal,
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requires no modifications to the monitored system but is implemented on a custom FPGA.

Moon et al. proposed Vigilare [130], a hardware- and snooping-based integrity monitor

that scans the bus for memory accesses that can possibly affect the kernel’s security. Also,

KI-Mon [121] extends Vigilare by offering event-triggered protection for mutable objects.

Hypernel [119] is a security framework that combines a software and a hardware compo-

nent, enabling a word-granularity monitoring capability on the kernel memory. Finally,

Koromilas et al. proposed GRIM [112], an external kernel integrity monitor that performs

snapshot-based scanning by utilizing an external GPU. Our proposed module is able to

successfully monitor the underlying OS kernel without the need for external hardware or

hypervisor, residing in the user space in a protected enclave, while it can be used in com-

bination with the rest of our stack’s components.

Similar to our approach, EPA-RIMM [71] periodically verifies the kernel’s integrity by

checking the SHA-256 hash values of specific memory regions, control registers, and model-

specific registers but does so by leveraging the System Management Mode (SMM). Win et

al. [207] suggested the utilization of only 8 bytes by hashing from the initial starting off-

set of the 9th byte, aiming to reduce performance overheads. Also, in CloudMon [205],

the authors utilize system call addresses and system call hash values to detect kernel-level

rootkits in cloud environments. Finally, SBCFI [149] is a system using state-based control

flow integrity that also utilizes a hash function to validate the kernel text, including static

control flow transfers.

10.3 Trusted Execution for Android

In the area of mobile devices, ARM TrustZone [39] is the most popular TEE which en-

ables the development of two separate environments, the trusted and the untrusted world.

This split enables the execution of the rich OS (that runs in the untrusted world) and the

system software that controls basic operations that must be protected and runs in the

trusted world. Santos et al. [161] use TrustZone for securing mobile applications by es-

tablishing and isolating trusted components. However, their approach requires a trusted

language runtime in the TCB, due to the fact that there is only a single trusted world.

DroidVault [123] presents a security solution for storing and manipulating sensitive data.

The data are stored in an encrypted format on the file system and are only processed (de-

crypted) in TrustZone. TZ-RKP implements a low-TCB system-level safe security monitor

on top of the TrustZone architecture [44] that provides a real-time OS kernel protection.

The monitor routes privileged system functions through secure world for examination.

Samsung KNOX [160] is a secure container framework, leveraging ARM TrustZone, that

offers protection from both the software and the hardware. However, KNOX is primarily a

closed-source system available only to flagship Samsung devices and its internals and APIs

are not documented in the open literature. A major limitation of the proposed TrustZone-
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based systems, which our solution is able to address, is their inability to provide secure

containers on-demand to support the development of new applications. Also, these ap-

proaches fail to protect against attackers with physical DRAM access. Moreover, Trust-

Zone is not best suited to be securely shared by multiple applications, as there is only one

shared TEE provided by the hardware, offering limited or no isolation granularity between

applications compared to SGX. This prevents it from being leveraged simultaneously by

multiple applications, either in user space (e.g., banking, medical applications, etc.) or

kernel-space (e.g., security monitors, device keystore, etc.).

In the context of safeguarding common services offered by operating systems, Kumar

et al. [116] proposed SecureFS, a secure file system leveraging Intel SGX enclaves. Also,

Peters et al. introduced BASTION-SGX [147], a system that enables trusted I/O at the ar-

chitectural level for the Bluetooth stack. SGXIO [203] is another work that enables support

for trusted paths to generic I/O devices by combining SGX’s features and a programming

model with traditional hypervisor-based trusted path architectures.

Haven [49] aims to execute unmodified legacy Windows applications inside SGX en-

claves by porting a Windows library OS into SGX. Graphene-SGX [188] encapsulates the en-

tire libOS, including the unmodified application binary, supporting libraries, and a trusted

runtime with a customized C library and ELF loader inside an SGX enclave. VC3 [164]

uses SGX to achieve confidentiality and integrity for the Map Reduce framework. Also,

SCONE [41] is a shielded execution framework that enables developers to compile their C

applications into Docker containers.

In contrast to these works, we propose the first approach, to the best of our knowl-

edge, that enables native SGX enclaves for the Android OS. Moreover, there are recently

proposed approaches that implement user-level enclaves, similar to SGX, either indepen-

dent of the underlying CPU [83] or on top of ARM TrustZone [55]. Recently, Zhao et al.

proposed vSGX [219], a system that aims to virtualize SGX execution in SEV-enabled AMD

processors, enabling the execution of SGX enclaves through instruction emulation and

integration with SEV-based memory protection. Our proposed Android services are not

fundamentally tight to Intel SGX and, as such, could be implemented on top of such ap-

proaches instead, provided that they can be ported transparently across multiple Android-

based devices.

10.4 Secure and Attested End-to-End Communication

Many applications and recent research utilize Intel SGX, a TEE that has been integrated

in many large-scale projects that have needs for increased security. SGX has been used

to enhance the Snort IDS [117] and the TOR network [109], while efforts have also been

made to move TLS endpoints inside SGX enclaves [110] and provide SGX-enabled VPN ser-

vices [145]. More related to our work, Balfe et al. [46] have shown how TPMs can be used
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in peer-to-peer networks to provide security. In their work, they use the Trusted Comput-

ing technology to establish pseudonymous identifiers and build secure channels between

peers. Additionally, mutual attestation with TPMs has also been used in creating proto-

cols for trusted RFID systems [132]. Shepherd et al. [168] raise the challenge of secure

TEE-to-TEE communication between remote sensing devices. Most recently, Ghaffar et

al. [87] proposed an improved model to achieve data privacy when handling in cloud envi-

ronments using proxy re-encryption. Also, [73] utilizes remote attestation in the proximity

verification process to enable secure connections between enclaves and trusted embed-

ded devices. In [43], the authors proposed TaLoS, a library that aims to replace standard

TLS libraries by providing connection endpoints inside SGX enclaves. Similar approaches

are also followed by other works [11, 14, 28], aiming to integrate SGX in SSL.

Furthermore, Intel SGX technology has been used for secure many-party applications

[114] and secure multiparty computations [45], where the enclaves act as middleboxes.

For example, ShieldBox [186] utilizes Intel SGX to provide secure middleboxes for high

performance network functions that can be deployed on untrusted servers. Our work can

be applied on middleboxes to provide communication using mutually trusted channels.

Based on TrustZone, SANCTUARY [55] is a system that enables the execution of security-

sensitive applications within strongly isolated compartments. These compartments are

mutually distrusted and reside within ARM’s TrustZone world, thus being comparable to

SGX’s enclaves. Their framework offers attestation service to a third party using a Proxy

Sanctuary Application which is comparable to Intel’s Quoting Enclave. Our work could

also be applied to the model offered by SANCTUARY.

10.5 Trusted Dynamic Code Execution

Since SGX’s initial release, many works aim to provide dynamic trusted code execution us-

ing enclaves as well as execution of legacy applications. In this area, VC3 [164] uses SGX to

achieve confidentiality and integrity only for the Map Reduce framework. Haven [49] aims

to execute unmodified legacy Windows applications inside SGX enclaves by porting a Win-

dows libOS into SGX. Similarly, Graphene-SGX [188], later evolved to Gramine [9], encap-

sulates an entire libOS, including the unmodified application binary, supporting libraries,

and a trusted runtime with a customized C library and ELF loader inside an SGX enclave.

SCONE [41] is a shielded execution framework that enables developers to compile their

C applications into Docker containers. These works are either domain-specific, provide a

container-based, or a libOS-based approach in which users can run general-purpose ap-

plications. Our work provides a balance between these approaches by providing general

purpose program execution through high-level programming languages, such as Lua and

JavaScript that also keeps the TCB size minimal and highly optimized, contrary to Docker-

or libOS-based approaches.
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Ryoan [100] provides a distributed framework that utilizes SGX enclaves to protect

sandbox instances, written in C, from potentially malicious computing platforms. It is

designed so that confined modules operate on the given input once and do not hold their

state (similar to our work) preventing potential data and state leakage. Glamdring [125] is

a source-level partitioning framework that secures applications written in plain C. The de-

veloper has to explicitly pinpoint the sensitive and crucial data using annotations. Then,

Glamdring automatically identifies and partitions the code into untrusted and enclave

code parts. In contrast with our proposed secure execution modules, the developer has

to recompile the code with the newly added annotations and then perform the analysis to

partition the code. On our security stack, additional annotations are optional and used to

achieve isolation granularity when explicitly needed.

Similar to our work, Civet [189] is a framework developed concurrently with our sys-

tem and partitions Java applications into SGX enclaves. The framework also provides

garbage collection but introduces significantly greater overhead compared to our pro-

posal. TrustJS [90] also explores the possibility of bridging JavaScript with SGX enclaves

to protect security-sensitive JavaScript components inside browser applications. How-

ever, TrustJS requires script partitioning for the trusted code segments, data, and meta-

information. Additionally, it does not attempt to provide a general-purpose execution

sandbox for legacy JavaScript applications. ScriptShield [199] enables development in SGX

enclaves using high-level scripting languages. In contrast to our work though, it fails to

demonstrate its practicality on real-life applications in terms of performance. Also, none

of the discussed systems enables secure distributed execution, utilizing multiple trusted

computation nodes. [96] introduces a reactive middleware framework approach for data

stream processing on the cloud based on Intel SGX. Overall, our solution builds on the

same objectives and also provides many optimizations that are necessary to make it prac-

tical in terms of performance and multiple concurrent instance execution.

Aiming to protect high-level code execution, Ghosn et al. introduced GOTEE [88], a

backward-compatible fork of the Go compiler. The system, tries to extend Golang func-

tionality by enabling trusted execution of goroutines inside an SGX enclave, relying solely

on the compiler to extract the source code and the data. RUST-SGX [200] provides an SGX

SDK extension to enable enclave utilization from applications developed in Rust while [75]

enables secure compartmentalization of Rust-based applications. Focusing on JIT com-

pilers, JITGuard [84] leverages enclaves to provide a trusted environment for emitting dy-

namic code, thus rendering it tamper-proof. Finally, SGXPy [215] introduces an integrity

preserving tool for Python applications utilising SGX and a library OS.

The research community has also proposed various systems to protect Java-based ap-

plications using SGX. Montsalvat [213] utilizes enclaves along with the GraalVM and code

annotations to protect sensitive code segments. Also, many other works leverage annota-

tions to generate smaller TCBs and protect critical code and data [81, 135, 136].
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10.6 Remote Confidential Computations

As the need for lower costs, higher performance and scalability rises, outsourcing network

processing applications to the cloud has become tempting. APLOMB is a service for out-

sourcing enterprise middlebox processing to the cloud [169]. To provide confidentiality,

BlindBox proposes the processing of encrypted traffic [170], something that leads to un-

practical computational requirements. Likewise, Embark, aiming to offer security and

confidentiality, enables a cloud provider to support middlebox functionality by processing

encrypted traffic [120]. A common service that cloud providers offer is storage, yet, there

is no transparency over the manipulation of user data [133, 191, 198, 209]. CloudFence

provides transparent data tracking capabilities to both service providers and users [144].

As discussed, TEEs, such as Intel SGX, can guarantee data and code protection. Thus,

many works focus on the exploitation of this technology for applications outsourced in the

cloud. For instance, VC3 [164], Opaque [220] and [58] offer privacy-preserving data analyt-

ics in the cloud using Intel SGX. In addition, EndBox [89], ShieldBox [186] and SafeBricks

[152] focus on securing middlebox functionality using Intel SGX.

The data protection mechanisms provided by trusted execution environments, such as

Intel SGX, have been widely utilized in the context of securing databases. EnclaveDB [154]

is a database engine that can guarantee confidentiality, integrity, and freshness for data

and queries. StealthDB [196] also proposed an SGX-based database system with a mini-

mal TCB. A similar approach has also been followed by VeriDB [221] that further leverages

enclaves to provide additional data verification. Also, Azure utilizes enclaves to protect

sensitive data stored in the Azure SQL Database, Azure SQL Managed Instance, and SQL

Server database [37] while ProDB [94] proposes and architecture that utilizes both SGX

and oblivious RAM to provide database security.

While there are works that enable the execution of unmodified applications in enclaves

(e.g., [41, 49, 174, 185, 188]), we choose not to follow such approach (i.e., execute our mod-

ules on top of SGX using one of the aforementioned tools) since these systems result to

an increased trusted computing base with many dependencies, which widens the attack

surface [52, 162] and significantly decreases the end-to-end performance.

SGX is also heavily utilized in the context of blockchain applications. One of the ear-

liest work in this field, named Town Crier [216] introduces SGX’s utilization in bridging

smart contracts and known websites, handling authentication and user credentials. Also,

a plethora of other works focus on handling private contracts [61, 80, 122, 124, 202, 212],

leveraging SGX’s capabilities. Furthermore, SGX has been exploited by many works in the

field of digital rights management, data streaming and licensing [47, 60, 63, 85, 115, 165].

Finally, Madsen et al. [127] transform general omission resilient algorithms into Byzantine

fault-tolerant algorithms using SGX.
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10.7 Improving Intel SGX

Several improvements for SGX have been recently developed to protect it against mem-

ory bugs [166] or controlled-channel attacks [171]. SGXBOUNDS [118] enables bounds

checking with low memory overheads to fit within the limited EPC size. SGX-Shield [166]

implements Address Space Layout Randomization (ASLR) in enclaves, with a scheme to

maximize the entropy, and the ability to hide and enforce ASLR decisions. Eleos [142]

proposed to reduce the number of enclave exits by asynchronously servicing system calls

outside of the enclaves and enabling user space memory paging. Also, SGX-Elide [48] aims

to protect the secrecy of SGX code itself by enabling dynamic updates of the enclave code.

T-SGX [171] is an approach that combines SGX with Transactional Synchronization Exten-

sions to mitigate controlled-channel attacks. All these works are orthogonal to our security

stack and can be integrated to our proposed framework.

Furthermore, SGXPecial [129] introduces an interface specialization tool, extending

the Edger8r SGX SDK tool, that performs API specialization at build time thus restricting

the valid control flows between the host and the enclave. Also, [131] proposed a technique

to attest the enclave runtime and enables a remote verifier to assess its integrity. Shimizu

et al. [172] aim to reduce the overheads introduced by SGX’s cryptographic operations with

a cache replacement system, called Ea-plru, that favors an enclave cache line over a non-

enclave cache line. Our framework also utilizes caching systems to improve the enclave’s

performance in multiple cases (e.g., DFA-state caching, RA response caching, etc.).

Aiming to improve SGX’s performance, Weisse et al. [204] introduce a system that lever-

ages shared memory and enclave thread bound to an untrusted thread using spinlocks to

synchronize the communication between the two contexts, while VAULT [183] extends

this approach enabling multiple enclave function execution. Also, focusing on reducing

the overhead introduced by frequent OCALL/ECALL context switches, [108, 184] and [214]

propose techniques for optimizing switchless calls.
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Conclusion

In conclusion, this work has demonstrated the potential of user-level enclave-based Trust-

ed Execution Environments (TEEs) in developing a modular security framework for desk-

top and mobile systems. The framework consists of interoperable components that safe-

guard various software layers and prioritize user privacy, operating seamlessly with off-

the-shelf software and hardware infrastructure.

Aiming to address multiple security concerns, the framework is divided into four lay-

ers: (i) host protection, (i) operating system service protection, (iii) secure communica-

tions, and (iv) secure dynamic code execution. The framework encompasses six vital com-

ponents: (i) a malware detection engine, (ii) a kernel integrity monitor, (iii) a secure and

attested end-to-end communication service, (iv) a TEE-enhanced Android OS, (v) two pro-

tected high-level language runtimes for secure dynamic code execution, and (vi) a scalable

secure execution system utilizing multiple TEE-enabled worker nodes.

Key outcomes of this research include a signature-based malware detection solution,

capable of local or remote deployment without compromising user privacy. The system

performs rule-based malware detection using our lightweight pattern detection engine,

providing a minimal TCB, and a set of caching systems that enable secure pattern match-

ing even with memory-restricted TEEs. Additionally, a lightweight integrity monitor that

leverages user-level enclaves to remain secure and undetected in user space, scanning

memory regions that are expected to be immutable.

Also, the security stack extends to the Android platform through our custom port of the

Intel SGX SDK, PSW, driver, and required services. This results in the development of the

first SGX-enabled Android OS, providing TEE-protected services, simple APIs for enclave

utilization and a custom cross-compiler toolchain for seamless deployment on a diverse

set of mobile devices without intrusive device modifications. Moreover, our SGX-enabled

handshake protocol and RA response caching system allows for enclave-to-enclave secure

and attested network communications.

Finally, the framework aims to tackle common limitations of existing TEE technologies

that hinder their widespread adoption in modern software ecosystems built with high-

143
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level, type-safe languages. By treating code as data and leveraging two custom ported

language runtimes, namely LuaVM and QuickJS, the framework offers two modules that

provide dynamic software execution within enclaves.

In summary, this research presents a complete security framework that leverages user-

level enclave-based TEEs to provide robust protection, privacy, secure and attested com-

munications, as well as dynamic execution capabilities across desktop and mobile sys-

tems. The advancements made in malware detection, kernel integrity monitoring, secure

communication, protected language runtimes, and enclave utilization lay a solid founda-

tion for enhancing system security and promote the wider adoption of TEE technologies

in modern software ecosystems. A list of publications produced so far by the activities

related to this dissertation is presented in Appendix A.

11.1 Synopsis of Contributions

The main contributions of this work cover the areas of (i) host protection, (ii) operating

system service protection, (iii) (iv) secure communications, and (v) secure dynamic code ex-

ecution, and are summarized as follows:

• We design and implement a practical malware detection system that provides users

with strong privacy-preserving guarantees regarding the processing of their personal

and sensitive data remotely, utilizing hardware assisted enclaves.

• We propose techniques to mitigate the memory constraints introduced by modern

TEEs that affect signature-based analysis solutions, such as malware or intrusion de-

tection systems.

• We implement an integrity monitor that leverages user-level enclaves to protect its

code and data from identification and modification, residing in the monitored host.

• We demonstrate the effectiveness of the proposed system in identifying transient

kernel-side attacks and explore the appropriate monitoring intervals that guarantee

that transient rootkits are always detectable and ineffective.

• We describe a systematic methodology for porting the SGX framework to the Android

OS and the development of the required cross-compiler toolchain. This methodol-

ogy can be used as a baseline for porting SGX to other officially unsupported plat-

forms.

• We develop the first, to our knowledge, SGX-enabled Android OS, providing multi-

ple SGX-enhanced Android services and APIs that enhance the system’s security and

enable externally paired devices to utilize TEE technologies.
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• We design and develop a system that provides seamless establishment of enclave-

to-enclave (CPU-to-CPU) attested and encrypted network communication between

two or more parties.

• We extend our secure communication protocol with a caching system for RA responses

that renders it comparable to a standard TLS handshake.

• We implement two lightweight secure execution runtimes that enable confidential

computing using high-level type-safe languages, namely Lua and JavaScript, elimi-

nating the need to port code to device-specific TEEs.

• We enhance the secure JavaScript runtime with a scheduling middleware and a tag

interpreter that enable the secure distributed execution of selected functions across

multiple server nodes hosting instances of TEE-protected runtimes.

• We provide thorough evaluation that proves that our protected runtimes can be used

to securely execute and distribute a diverse set of new and legacy applications with

little-to-zero code modifications.

11.2 Directions for Future Work

In previous chapters, we have discussed the limitations of each component as well as pos-

sible solutions or partial directions for future work. In this section we summarize the steps

we can follow to improve our framework, extend its capabilities, or repurpose the function-

ality of some of our framework’s components.

The first and most obvious direction for our future work is to utilize SGX2 hardware

and exploit its capabilities. This will allow us, with specific modifications applied on some

components, to lift existing encrypted memory constraints and further improve the perfor-

mance of most modules. For example, we will be able to process more malware patterns

simultaneously, provide our custom attestation infrastructure or execute memory-bound

high-level applications with lower overheads. Also, the multi-threading capabilities and

dynamic memory management provided by SGX2 are expected to further improve our

framework’s performance and allow us to internally parallelize most modules’ execution.

An other direction we wish to explore is utilizing the secure execution environments,

namely LuaGuardia and Atlas, to develop a wide set of security tools and general purpose

libraries and applications. These environments can be used to develop traffic analysis

toolkits, complex firewall and VPN solutions, PKI and authentication services, as well as

cryptographic libraries, that could directly be used by new and existing software devel-

oped in Lua or JavaScript. Also, our secure runtimes can be extended to build a set of pro-

tected distributed black-box systems that serve as building blocks for secure and private
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remote execution, providing general purpose services, such as analytics, NLP and senti-

ment analysis, etc. Moreover, our ecosystem could provide secure drop-in replacements

for popular modules that could benefit from private and secure execution, especially in

remote execution environments.

Finally, we wish to leverage our extended knowledge on porting complex systems in

user-level enclaves to design, from scratch, a secure JavaScript runtime specifically opti-

mized for execution within TEEs. We wish to further extend such a secure runtime with

techniques to automatically identify which components need to be securely offloaded and

aim towards enabling transparent protected scaleout of complex existing platforms.
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AAS As a Service

ACPI Advanced Configuration and Power Interface

AEX Asynchronous EXit

AIK Attestation Identity Key

AMT Active Management Technology

ANSI American National Standards Institute

AOSP Android Open Source Project

API Application Programming Interface

APK Android Package Kit

ART Android RunTime

ASCII American Standard Code for Information Interchange
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CSV Comma-Separated Values
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DRAM Dynamic Random Access Memory

DRoT Dynamic Root of Trust

EDL Enclave Definition Language

EDMM Enclave Dynamic Memory Management

EFFS Embedded Flash File System

EK Endorsement Key

EL Exception Level

eMMC embedded Multi-Media Card

EPC Enclave Page Cache

EPID Enhanced Privacy Identifier

ERET Exception RETurn

ES6 ECMAScript 6

FEK File Encryption Key

FIRQ Fast Interrupt ReQuest

FLC Flexible Launch Control

FPGA Field Programmable Gate Array
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GDPR General Data Protection Regulation
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IoT Internet of Things
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IPC Inter Process Communication

IRQ Interrupt ReQest

ISA Instruction Set Architecture

IV Initialization Vector

JIT Just-In-Time

JNI Java Native Interface

JS JavaScript

JSON JavaScript Object Notation

JVM Java Virtual Machine

LKM Loadable Kernel Module

LLC Last-Level Cache

LoC Lines of Code

LRU Least Recently Used

MAC Message Authentication Code

ME Management Engine

MEE Memory Encryption Engine

MMIO Memory Mapped I/O

MMU Memory Management Unit

MPU Memory Protection Unit

MRU Most Recently Used

MSR Model Specific Register

NDK Native Development Kit

NFV Network Functions Virtualization

NIC Network Interface Card

NIDS Network Intrusion Detection System

NLP Natural Language Processing
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OOM Out Of Memory

NS-bit Non-Secure bit

NSTID Non-Secure TLB ID

OS Operating System

OTP One Time Password

PCI Peripheral Component Interconnect

PCR Platform Configuration Register

PKI Public Key Infrastructure

PMA Protected Module Architecture

PPID Platform Provisioning Identifier

PSP Platform Security Processor

PSW Platform SoftWare

PTBR Page Table Base Register

PTE Page Table Entry

PTR Private and authenticated Tamper-Resistant environment

PTT Platform Trust Technology

QE Quoting Enclave

RA Remote Attestation

RAM Random Access Memory

REE Rich Execution Environment

ROM Read-Only Memory

RoT Root of Trust

RPMB Replay Protected Memory Block

SCR Secure Configuration Register

SDK Software Development Kit

SDN Software Defined Network
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SE Secure Executable

SECS SGX Enclave Control Sequence

SEE Secure Execution Environment

SEV Secure Encrypted Virtualization

SGX Software Guard eXtensions

SK Security Kernel

SMC Secure Monitor Call

SME Secure Memory Encryption

SMI System Management Interrupt

SMM System Management Mode

SMRAM System Management RAM

SNP Secure Nested Paging

SP Service Provider

SPI Serial Peripheral Interface

SPID Service Provider Identifier

SRAM Static Random Access Memory

SSK Secure Storage Key

TA Trusted Application

TCB Trusted Computing Base

TEE Trusted Execution Environment

TEEOD Trusted Execution Environment On-Demand

TLB Translation Lookaside Buffer

TLS Transport Layer Security

TPM Trusted Platform Module

TSK TA Storage Key

TSME Transparent Secure Memory Encryption
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TTL Time-To-Live

TXT Trustex eXecution Technology

UEFI Unified Extensible Firmware Interface

UUID Universal Unique IDentifier

VFS Virtual File System

VMM Virtual Machine Manager
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