Computer Science Department
School of Sciences and Technologies

University of Crete

Deformable 2D Shape Matching based on Shape
Contexts and Dynamic Programming

Master’s Thesis

Oikonomidis Iasonas

March 2009

Heraklion, Greece

Tuduoa Emotiung Yrohoylotdy
Yyohh Oty xan Teyvoroydy Emotnudy

IMovemotiuto Keftng

Toatpraoua Hopapoppdotpwy 2A Yynudtwy pe Xenon Tomuxdy
Iepiypagpdy Xyruatog xow Avvouxd Hpoypapuatiowd

Metantuyloxnt; Epyaota mou exnovilnxe and tov
I&dcova Owovoulidn
WS LEPLXT EXTANPWOT) TWV ATALTHCEWY YLl TO

Metantuytond Ainhwua Ebixevone oty Entotiun Yrohoyiotéhvy

ErKPIXH METAIITYXIAKHY EPTAYIAY

Yuyypapéas:

I&dcovag Owovouldng

"Eyxpion Enttponvic:

Avtdvne Apyupde
Avaminpwtic Kabnyntig, Enéntne Epyaoiag

IIévog Tpayavide

Kabnynic

Hevopdvtag ZoumoVAng

Epevvntic III-ITE

"Eyxpion Tufuatoc:

IIévog Tpayavide
Kofnyntiic

Arevbuvtric Metantuytaxdy Ynouddy

23 Maptiov 2009
Hpdxhero, EXN&Sa

Agiepwuévo

oe 6houc exelvouc

TOU UE EUTVEOLY

Abstract

Shape matching is an important problem of computer vision and pattern recognition
which can be defined as the establishment of a similarity measure between shapes and
its use for shape comparison. A byproduct of this task might also be the estimation of
point correspondences between shapes. The problem has significant theoretical interest.
Producing shape matching results that are intuitively correct for humans is a demanding
problem that remains unsolved in its full generality. Applications of shape matching
include but are not limited to object detection and recognition, content based retrieval
of images, and image registration.

In this work, it is assumed that a 2D shape is well described as a single closed contour.
We present a method for deformable shape matching based on shape contexts, a shape
descriptor that has proven to be useful in many applications. Under the mentioned
assumption, it is efficient to match two shapes in sub-cubic runtime using a recently
published algorithm that performs cyclic string matching employing an efficient iterative
scheme based on dynamic programming. The representation power of shape contexts
combined with the capability of the matching algorithm to exploit the order in which
points appear on a certain contour, result in an effective shape matching method.

Several experiments have been carried out to assess the effectiveness and the perfor-
mance of the proposed method on several benchmark data sets. The method is quanti-
tatively assessed through the Bull’s Eye test applied to the MPEG-7 CE-shape-1 part B
data set. Additional shape retrieval experiments have been carried out on the “gestures”
and “marine” datasets. Additionally, the proposed shape matching method has been
used to detect the articulation points of a human figure in monocular image sequences.
More specifically, twenty five human postures have been manually annotated with the
articulation points of the human figure. Shape matching between a segmented human
figure and the prototype postures results in point correspondences between the human
figure and its best matching prototype. These correspondences guide the deformation of
a thin plate spline that enables the identification of the articulation points on the human

figure.

Overall, the experimental results demonstrate that the proposed method performs
very satisfactory in diverse shape matching applications. Additionally, its low compu-
tational complexity makes it a good candidate in shape matching applications requiring

real-time performance.

ITepiindm

To talplaocua oynudteov anotehel €va onuavtixd mEOBANUA TNS UTOAOYLOTIXNG 0P~
ONC XOL TNS AVAYVORLOTE TEOTUTWY TO 0Tolo UTOREL Vol 0ploTel WE 0 TPOGBLOPLOUSS EVEHC
xpLtnelou ouoldTNTAC UETAEY OYNUATWY XAl 1 YENOLUOTONGT Tou Yo T oUYXELoT TOuC.
[I0avé unompoidy g dradixaciag Tatpldouatog oynudtey etvat Ledyr avTioTolyldy UeTaly
onuetwy toug. To ev AMoyw mpdBhnua éyel onuoavtixd Oewpntixd evdiagépov. To unoloyt-
o6 TalplIoUd oY NUATOY UE TPOTO Tou Vo Lxavorolel Thtpwe v avbpdrivn dalobnon
arotehel TEOPBANUA Tou dev €xel emAubel oty TAEn Tou YevixdTnTa. A6 TNV OnTLXY Y-
vie Tov eQapuoy®dy, To Talplacua oynudteny urogel va yenowwonolnletl yia v aviyvevon
XAL TNV AVOYVORLOT AVTLXELUEVODY, TNY avVaXANoT exévey Ue Bdon To mepleybuevd toug,
%4

Yy epyoota auth, yivetaw n undleon otL éva 2A oyfua tepLypdgeTtal TAHows and éva,
uovadixd xheotod meplypoupa. I[lepiypdgetol pla uéhodog talpldountoc TapAUOPPOCLUWY
oYnudTLY Baoclouévn otny avarapdotaor Twy eshape contextsy), ula Tomxr teptypagy| Tou
o Nuatog mou Eyel anodely Tel anoteleouatiny| oe ddpopeg epapuoyés. Kdtw and tny ulo-
Oetoluevrn undbeon, elvol Wiaitepa anodotind To Talplacua dVo oyNudTwy Ue TN YeYon evog
TpboQaTA dNUOCLELUEVOLU ahyoplBuou yia To xuxAxd Talplaoua ouuBolocelpdy. O yen-
oLUOTOLOVUEVOS aAYORLOUOC YeNnoLUOTOLEL €Val am0dOTIXG, ETAVAANTTIXG oYU BaoLoUévo
oto Auvauwé Ipoypapuatioud. H exgpaotixd dOvaurn twv shape contexts, ouvduacuévn
ue v SuvatdtnTa Tou ahyopluou tolpldouatog vo exuetalieeTal T SudTaln ue Ty
orola to onuelo eugaviCovtal oe éva meplypouua, €Youy KOS ATOTEAECUI €VO ATOB0TIXO
akybeliuo TapLdcUATOS Y NUATWY.

"Eva extetauévo olvoro melpaudtov Sieldynxe ntpoxewuévou va ailoloynlel tocotixd
XAl TOLOTLXA 1) OMOTEAEOUATIXOTNTA TN TEOTELVOUEVNS Uebddou oe ula oelpd and xabie-
pwuéva olvoha TelpauaTix®y dedouévwy. H mpotetvéuevn uébodoc amotiudtol tocotind
ue Bdon to Bull’s Eye teot 10 omolo eqopudletar oto MPEG-7 CE-shape-1 part B oi-
volo Bedouévwv. Emnpboleta melpduata avdxhnong oynudtwy exteléotnxay ue Bdon Tta
oUvoha dedouévmy “gestures” xat “marine”. H npotetvéuevn uéfodoc tarpidouoatog oynud-
TV EPAPUOGTNIXE ETLoN TpoXeELWEVOL va emALlel To TEdBANUA evToTiouol Ty aplpdoewy
utag avipdrivng guryolpag oe axoloulieg exdvwy wag xduepag. Ilo cuyxexpluéva, ol ap-

Bodoec Tou avbpdmivou cOUATOC TPOGBLOPIOTNXAY GE ELXOCLTEVTE UOVTEAX avOpdTLVKDY

pryolpwy Tou anexovilouv to avlpdnivo cduo ot SlapopeTiés otdoelc. To talplacua
oyfuoatog Uetaly ulag TUNUAToTotNUEVNS avlpdmyng @ryoloog xal TwV UOVTIEAWY EYEL WS
ATOTEAEOUN AYTLOTOLYLOELS TWV TEPLYPAUUAT®Y TNS avBpdmvng @ryolpac xal Tou TANCLE-
otepou wovtélou. Autéc ol avtiotolyioelc xafodnyolv tny napaudegpworn evoc thin plate
spline 1 omola emitpénel Tov evtonioud towv apbpdoewy ot Pryolpa elcddou.

Yuvolxd, Ta melpouaTixd anoteléouota delyvouv OTL 1 mpotewvduevn Uébodog Aet-
Tovpyel amotehecuaTixd oe TouAla eQapUOYdY ToLpldouaToS oynudtey. Emnpbdcbeta,
OL YAUNAES UTOAOYLOTIXES TNG ATALTACELS TNV XAVoLY Ula XaAr eTLAOYY) OE EQUPUOYES 6TV

amouteltol Talplacua 2A oYNUATOY O TEAYUATIXO YpdVO.

Evyoaplotieg

NudOw v avdyxn va euyaplothiow xdmoloug avlp®droug ol omolol, Ue Tov dixd Toug
TeéTO 0 xubévac, €youve cuUPdiel otny Tpoondfeld uou yia TNV Taeovod SOUAELd, ohAd
XAl OTNY YEVIXOTERT) WS TMOEA TOPELd UOU €S TNY andXTnon autod Tou TThou.

Kotapynv 0éhw va euyoplothion toug yovels uou, Nixo xar Mapla, mou ue éyouve
otnptéel e xdbe dabéoiuo uéoo xal oe xdbe gdon tng Lwrc Uou uéypL ofucpa, divovtag
UOU TNV SUVATOTNTA AAAG XoL TNV TAEATEUYCT) VAL XUV YHOW oL VoL ETLTUY W To OVELRE UOoU.

Ae 0Oo unopoloo va mapaleldo to adéppla wouv XAém, Hadlo xar Xpiotdva, Ue Ta
omolo malloue, YEAGOAUE, XoL UOLOUGTAXOUE Ta Toudxd xon e@npBixd poag ypdvia. Ildvrote
Bo elvar Tpelg dixol uou dvbpwnot.

Y11 oUvtpopd uou Elevbepla opelhw €vo ueydio euyaplotd yia T oTHELEY, T CUUTA-
eAoTAOT TNS, XoL Yo TO YEYOVOS OTL 0Tdlnxe dimha Lou o AN TN didpxela aUTAS UOL TNg
mpoondfelog xat Oyt wovo. Ot dixée tne embLdielc elval Lo ATOLTHTLXES ATO TS WS TOPA
dixéc uou, ahhd ndvta Beloxel To xoupdylo va avTlUeTwTIlel TS 6Toleg SUoXOALES Ue éva
YAULOYENO.

Ogethw éva Oepud evyaplotd 6to Avtdvn Apyupd, endntyn authc TN epyaciac. Amoté-
Aeoe uLo Ty Wedy uéoa and ovolaoTixég oulntioelc. Aev TeploploTnxe udvo oTa TUTILXS
Tou xabnxovta, elye mdvtote TNy xohy) didbeon vo axoloel onolodAnoTe Uxpd 1 UeYSAO
me6BAnuo avtwetdmla. Extéc tov dhhwv, Tou ogellw €va euyoploTd XoL Yol TNV eUTL-
otoclvn Tou €delle 010 TPOoWTH Uou, xol ToTelw OTL Do gavd avtdilog auThg XaL ot
OLVEYELXL TNG CLVEPYASLAS LS.

Ogeldow éva euyaplotd xol ota dhha duo UEAN NS TewueloUg emtponhc Uou, Tov Ildvo
Toayavid xor tov @dvta ZoumoVdr, av un t dAlo yatl agépwoay o euéva ypdvo Toug,
YWPLC VoL £Y0UVE TNY TUTLXY) UTOYPEWTT) VO TO XEVOULV.

To epyaotiplo Yrohoyiotixrc 'Opaone xat Pourotixfic adAd xat yevixdtepa to 'ISpuua
Teyvohoylac xar "Epeuvac elvar yio péva éva guhdZevo meptBdAhoy. Zuu@oltntég, UEAN
Tou epyaoTnplou, akhd xol dvlpwrol and 6ho To Bpuua €youve xdver TNV Unapln uou
og AUTO TOV YOPO ATl Tapamdvew and dvetn. Idwaitepec euyopiotie o mpénel va ddow
oto Nixo yutl, extég Twv dAhwy, elye ™ ueyahitepn cuuPolr) oyetxd ue TN Soukeld
auth. Ogello SULC éva eUYaELeTd o8 Gho aveCoLpETwS To UEAT TOU epYaoTnolou ohhd

xat oe avBpdroug mépa and autd. T uixpdtepouc 1B ueyalltepoug AdYous, ALYOTEPO

1) TEPLOGOTEQO OYETLXOUC UE TO TEPLEYOUEVO AUTHS TNG EpYAciaug, OVOUUCTIXY TEETEL Vo
avagepbolv: o Mdpxoc, o Mdvoc, o ['dpyoc, o I'dvwng, n Mapla, o Owudc, n &hin
Mopla, o Muydine, o dihoc Miydine, o Mavding, o 'Axng, o Xdpeng, o Xtdbne, n Aéva, o
dhhoc I'idpyog, n Xetotiva, n Yogla, n Kateplva xat o Baoting.

Yy madela pou €yel ovuPBdiier To IavemotAuio Kerjtng, xatr ogelio éva euyaplotd
oe uéhn tou Turuatog Entotiune Yrokoyiotdy, ahhd xou tou Mabnuotixod tujuatog, and
T0 onolo e To TEKOTO Uou Ttuyto. Ialadtepa woté6co and to Iaveriothuto Kerng,
xafopLoTint| yia uéva uhple 1) emlppot| TeLdv avlpdrwy: tou [Ndeyou Kdota, tou Aouxd
Kdota, xow tou Nuerra Xoavilnxovotaviivou tou uou édwoav yepés BAoelg yia Ty g
TP oTadlodpoula Uov.

Téhog BN va Tw €va euyapELoTd oe GlAoug mou, ue To dxd Tou TEéTo 0 xabévac,
€youve oLUPBAALEL 6TO va elpal TeAxd autoc mou elual. Katapyhv o Aeutépne, mou ue ta
XOLVE Log eVOLAPEPOVTA AANG XL T1) SLUQOPETIXTY, OF UPXETEC TEPLITMOELS, TPOGEYYLOT| LOC
o€ oUTA, TAVTA LoU Slvel uia geéoxia xol oUVRBWS AVUTEETTIXY dmodn Lo To TEdyUATA.
O Xprotog ndvta elvon mnyh xohric ddfeone, xau uog déong teéhac. O Avtdvng elvau
évo. otalepd onueio avagopds, mou uropel vo axoloel, vo xataldPBel, aAld xal vo SGoEL
arodm. O Tdooc, o Anootdhng x o I'idpyog elval Tpelg axdua glhot Tou E€pw GTL UTOREK

v UToAOY L W.

Contents

2

1 Introduction 1
1.1 Problem definitiono 2
1.1.1 Definition of shape L. 2

1.1.2 Definition of shape matching 3

1.2 Literature review 4
1.2.1 Shape matching 5

1.2.2 Shape contexts 8

1.3 Introduction to the proposed methodology 10
Methodology 12
2.1 Necessary tools 12
2.1.1 Dynamic Programming 12
2.1.1.1 Levenshtein / DTW as order-preserving matching tools . 15

2.1.1.2 Using Dynamic Programming to match cyclic strings . . 20

2.1.2 Spline interpolation Lo 24
2.1.3 Thin plate splineso 27
2.1.4 Shape contexts 30

2.2 Method 31
2.2.1 Scale estimation and orientation L. 32
2.2.2 Shape context computationo 33
2.2.2.1 Rotation invariance 34

2.2.3 Shape context comparison - 2 statistic 36
2.2.4 Cyclic matching L 36

2.2.5 Thin plate spline computation

2.3 Method Summary

3 Results
3.1 Marine - Gestures

3.2 Bulls-eyetest

3.3 Detection of articulation points in human figures

3.3.1 Preprocessing for figure extraction.

3.3.2 Edge extraction - Point selection

3.3.3 Model creation
3.3.4 Matching and annotation

3.4 Implementation and practical issues

4 Discussion

41 Futurework

Bibliography

i

43
43
44
47
48
49
49
ol
ol

54
28

59

List of Tables

2.1 The set of standard equations for a cubic spline

2.2 The two additional constraints for the natural s

il

pline.

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7

A cup that undergoes an affine transformation. 4
The call tree of the naive implementation of fib(n). 15
The call tree of the memoized implementation of fib(n). 17
Visualization of the graph G. 21
Visualization of the unfolded cyclic G'. 22
The cubic spline interpolation of the sinus function. 27

An example of interpolating a one-dimensional curve using multiple splines. 28

Visualization of an arbitrary plane warping using thin plate splines. . . . 29
The process of sampling and calculating shape contexts. 31
Similar and dissimilar parts with the corresponding shape contexts. . . . 32
The process of sampling and computing local orientation. 35
Each shape context is aligned to the local tangent estimation. 36
Visualization of the comparison matrix C. 37
The result of the cyclic matching. 38
The final warping between the shapes. 39
Results for the marine database. 44
Results for the gestures database. 45

The bulls-eye performance of the method as a function of the recall depth. 47

The five different model configurations for the right hand. 48
Results of the joint detection method. 20
Visualization of the mpeg7 bulls-eye test results part 1 52
Visualization of the mpeg7 bulls-eye test results part 2 53

v

List of Algorithms

1 fib(n) // naive recursive implementation 14
2 fib(n) // memoized implementation 16
3 levdist(sy, S2) . ..o 18
4 shapepreprocess(pts)o 41
5 shapematching(pts;,ptsy) 42

Chapter 1

Introduction

Shape matching is an important problem of computer vision and pattern recognition. It
is an actively researched topic with a significant amount of scientific literature, facts that
reflect to a steady performance improvement of the established benchmarks. This activity
can be explained because of the importance of the problem due to its diverse applica-
tions including, but not limited to, object detection, classification and possibly tracking,
content based retrieval for images, optical character recognition and image registration.
Many methods and systems have been proposed to solve these and related problems, with
diverse mathematic and computational approaches. Common characteristics of methods
that can be denoted as shape matching techniques are the establishment of correspon-
dences between two given shapes, and the computation of a similarity or ‘shape distance’

metric .

Throughout this work, only the planar case is considered. The case of 3D shapes
has also significant scientific interest. Relative research on this subject is mentioned in

section 1.2. Throughout this work however, the term shape always refers to a 2D shape.

'Here the word metric is used with a broad sense, and does not necessarily imply that this function

satisfies the properties of metric functions as defined in metric spaces.

1.1 Problem definition

1.1.1 Definition of shape

Geometrically, shape is “what is left when the differences which can be attributed to
translations, rotations and dilatations have been quotiented out” [19]. A way to define
shape is to represent it as a simple closed curve of R2. Formally, a curve ¢ is defined as a
function ¢ : [0, 1] — R? with ¢(t) = (c.(t), ¢,(t)),t € [0, 1] where ¢, ¢, are continuous and,
usually (but not necessarily), smooth functions. A curve on R? is called simple if it does
not cross itself except perhaps at the endpoints. This constraint can be formally expressed
as Vi1, 1t € [0,1]c(t1) =c(ta) = (t1 =tV (t1 =0Ata =1)V (t1 = 1 Aty = 0)). A curve
is called closed if the endpoint coincides with the starting point or ¢(0) = ¢(1).

For specific applications it is adequate to represent a closed curve as the polygon that
occurs by sampling the curve at sufficient distinct positions since the coarse characteristics
are preserved. This means that a shape can be described by a simple closed polygon, a
definition that will be followed throughout this work?. A polygon is a piecewise linear
curve. Each linear segment is called an edge of the polygon and a point where two
consecutive edges meet is called a vertex. A polygon can be represented as an ordered
set. of points, namely the vertices in a counterclockwise order. To sum up, a shape
sh described by a curve ¢ will be represented as an ordered set of points in R?: sh =
(p1,D2,- -, Pn) With p; = c(;;_ll) fori =1,2,...n. The number n will be properly selected.

The usual way to factor out the parameter of position is to consider only polygons with
barycenter at the origin. Orientation invariance can be achieved by aligning the shape
according to the covariance matrix of its points. Finally for scaling, one can take the mean
of all the distances among points of the shape as the scale of this shape, and normalize
properly. Notice that, although these normalizations fulfill the requirement that two
instances of the same shape have the same representation, no mention to the notion of
“similarity” is made. These normalizations may in practice align disproportionally two
shapes that a human might consider similar.

As a side note, the following is an alternative definition of shape that inherently

2Tt should be noted here that the term “silhouette” instead of the term “shape” is sometimes used

for this concept in the relevant bibliography.

possesses the properties of location, scale and rotation invariance: shape can be defined
as the set of all (semi®)invertible linear transformations of a set of points on the plane
[19]. In practice it is inefficient to search exhaustively in the space of all affine transforms.

Also, this might not be desirable for certain cases or applications (see below).

1.1.2 Definition of shape matching

Humans intuitively understand the notion of shape matching as the establishment of
correspondences between parts of two given objects. Moreover, it follows naturally to
estimate a degree of similarity between the objects. The matched parts may have similar
appearance, or something more complex in common. For example, it would be natural
(and rather easy) for a human to match the various limbs of two human figures viewed
by a different viewpoint, despite the fact that the appearance of these parts may change
significantly.

No matter how complicated the process providing the answers is, it is straightforward
to mathematically formulate the result. Given a pair of shapes shy = {(z1;,114) | i =
1,2,...k} and shy = {(x24,%2;) | 7 = 1,2...1}, shape matching is defined as a process
that computes a set C' = {(p1;,p2:) | # = 1,2,...n, p1; € shi,pa; € sh2} of n (with
n < k and n < [) corresponding point pairs as well as a number d > 0 that represents
the similarity between these shapes. The goal is to establish matches that are intuitively
acceptable, i.e. points that have a similar appearance.

A variety of properties may be desirable for a shape matching method:

e Translation invariance. The movement of a shape should not affect its correct

detection and matching.

e Rotation invariance. Similarly, the rotation of a shape should not affect the match-

ing.
e Scale invariance. Scaling of an object usually needs special handling to detect.

e General affine transform invariance. Viewing a planar object from a different view-

point (as well as other types of affine transformations) can result in a significantly

3Degeneracies may of interest, as long as the whole shape does not collapse to a single point.

different shape.

e Occlusion handling. Occlusions occur regularly in real world situations and humans

exhibit significant ability to ignore them:.

e Noise tolerance. Occlusion can be considered as a type of noise, but usually uncor-

related white noise is treated separately.

e Viewpoint change (of a non-planar object). A combination of almost all of the

above, it can be an especially demanding case.

x/20

Figure 1.1: A cup (left) that undergoes a 20-fold compression on one axis (right)

looks more like a pen.

However, not all of these properties may be desirable for a specific task. The needs vary
depending on the target application. For example in OCR it is important to be able to
discriminate between a 6 and a 9, so rotations of more than half a cycle should not be
considered. Also, heavy affine transformations have the potential to introduce unexpected
results: a cup can look more like a pen if it is stretched a lot along the horizontal axis
as in figure 1.1. This indicates that complete affine transform invariance may introduce

false matches.

1.2 Literature review

This section references selected research work on shape matching and specifically shape

contexts (the method of choice for this work).

4

1.2.1 Shape matching

Many methods have been proposed for shape matching proposing different approaches for
varying purposes. Numerous survey studies have organized and classified this significant
amount of work. Loncaric in [23] adopts three different classifications proposed by Pavlidis

in [29]. A brief outline of these classification follows:

e The first classification concerns the distinction between boundary or external vs
global or internal methods. Methods that exploit only the shape boundary fall in
the first category. This category includes most methods based on shape contexts,
including the present work. Methods that consider the interior of the shapes (such
as decompositions to simpler parts, articulation points etc.) fall in the second

category.

e The second classification is based on the type of computational result of each
method. The goal of many shape matching methods is to compute a similarity
measure, represented by a single number. Thus they are named numeric methods,
and they comprise the first category in this distinction. On the other hand, methods
that compute an alignment of the shapes fall in the second category of non-numeric

methods.

e The third classification is based on the portion of input information that each
method actually utilizes. Methods that transform the boundary of the shape in
a way that the original shape can be recovered, are called information preserving
methods. On the contrary, the non-preserving methods are those that use incom-
plete descriptors, in the sense that they do not contain enough information to

recover the original shape.

Veltkamp and Hagedoorn in [41] present shape matching methods that focus on the
geometric aspect of the problem. They distinguish different types of problems. They

formulate the dissimilarity problem in a computation and a decision version:
e compute the dissimilarity between two shapes,

e and decide whether the dissimilarity is below a given threshold.

They continue by recognizing two problems involving shape transformations and a dis-

similarity measure. They formulate a decision and an optimization problem:

e decide whether there exists a transformation that transforms one of the shapes so

that the two shapes are dissimilar within a given threshold,

e and find the optimal transformation between two shapes, i.e. the one that minimizes

the dissimilarity between the shapes.

Finally they formulate an approximation problem: compute a transformation between
two patterns that makes the dissimilarity between them close to the optimum within a
specified factor.

Hoffman and Richards in [17] propose that humans have the natural tendency to split
shapes into parts. They provide psychological evidence supporting the assumption that
humans tend to segment 3D objects along their local curvature minima contours. They
assume that the human visual system reconstructs a 3D shape of the object from the 2D
image on the retinas, and then proceeds with this method to partition it.

In [5], Basri et al. propose a method to estimate shape similarity based on both part
articulation and local deformation cost. They specify a set of desirable conditions for a
shape distance, that implicitly take into account the part nature of objects. They proceed
to define three different distance measures as well as a strategy to compute them using
Dynamic Programming.

In [9], Chi and Leung propose a general approach towards object identification based
on shape contours. Shapes are broken down to a set of lines and arcs. A voting scheme
is applied to the extracted shape description for the purpose of robust object recognition
under clutter or occlusion.

Wu et al. in [44] employ genetic algorithms to search over the space of affine transfor-
mations. They describe representation and resampling schemas suitable for the specific
application, and propose variations to improve the time and accuracy of matching.

Backes et al. in [3] use as descriptor the distribution of the distances between points on
the boundary of the shape. They propose two different distributions as descriptors, and
use them for shape classification with the aid of Linear Discriminant Analysis (LDA). The

experiments show that the method is robust to noise and other types of shape distortions.

Latecki et al. in [20] propose a variation of open shape matching based on Dynamic
Programming. The method tries to exploit the strengths of both the Dynamic Time
Warping [35] as well as the Longest Common Subsequence technique [42]. They use local
tangent for the purpose of shape description, and provide experimental evidence showing
that the method matches correctly and robustly open contours.

Adamek and O’Connnor propose a multiscale representation of shape contours in [1].
Initially, they apply different levels of smoothing on the shape contours. They further
process this result by applying a transformation that detects concave and convex parts
of the contour. They then proceed to match such shape descriptions with the use of an
appropriate comparison distance, and Dynamic Programming.

Arica and Vural in [2] propose a simple geometric transformation for the purpose of
shape description. They compute the bearing angle of three consecutive contour points
for variable offsets between these points. The values obtained for each point of the
contour and for various offset sizes are considered as random variable measurements.
They proceed to calculate the moments of these measurements, forming the proposed
descriptor. The matching of the descriptions is performed using Dynamic Programming.
Despite its simplicity (or possibly because of it), this method is almost invariant to affine
transformations, and performs robustly under non-rigid distortions.

Torres and Falcao in [11] extend their work with Costa in [40]. They compute image
skeletons at multiple scales, and use them to detect salient points on the contour of
the shape. Their extension handles better the concave points, by eliminating spurious
branches on the skeletonization process. They also propose a second descriptor that
can describe segments of the shape instead of single points. They match these shape
descriptions with a Dynamic Programming method, the same as in [2].

Felzenszwalb et al. present in [14] a method based on an elegant and powerful idea.
They propose the representation of each shape as a tree, with each level representing
a different level of description. The root of the tree represents a properly selected cut
on the curve while the left and right children represent cuts on the occurring subcurves.
They propose an iterative matching scheme that can be efficiently solved using Dynamic
Programming. They proceed to formulate an algorithm that can locate query shapes in

real-world color images.

Ebrahim et al. present in [12] a method that employs as a descriptor the Hilbert curve.
This curve is a fractal pattern that covers an entire square grid without crossing itself.
The authors transform the raster of each shape to a one-dimensional signal according
to the occurrence of shape points on a Hilbert curve. This signal is then smoothed by
keeping the largest coefficients of a wavelet transform. Experimental evidence illustrates

the performance of the method in several established test.

An important work is presented in [45]. It is related to shape matching although it
is not a shape matching technique. Specifically, the goal of this work is to improve the
performance of any shape matching method, by exploiting all the information that is
available after every shape in a database has been compared to all others. In practice,
different poses of an object may look quite different. However, if enough intermediate
postures are present in the database, one can reach to the logical result that the shapes
come from the same class by looking to the intermediate comparisons. Algorithmically
this is achieved by representing the full result of the comparisons as a fully connected
graph, and performing a kind of flooding on it. A significant experimental result of this
method is that triangle inequalities between many triplets of shapes are restored. The
mathematical definition of a metric function requires the triangle inequality. It can thus
be argued that, qualitatively, this technique improves the properties of any comparison

method.

1.2.2 Shape contexts

Shape context is a shape descriptor introduced by Belongie et al. in [7]. The main idea is
that the local distribution of points for the purpose of local description is well captured
using a log-polar histogram. In the original form, selected points from the contour of an
image were used as centers, and the distribution of the other contour points around each
center was used as a descriptor vector. Shape contexts capture the fact that local features
play a more important role than more distant ones for the purpose of local matching.
Effectively, the used logarithm weighs more the proximate features, and less the more
distant ones. Shape contexts have been employed in many applications. Numerous

extensions to the original method have been proposed.

Mori and Malik in [27] present an algorithm based on shape contexts that can break a
visual CAPTCHA system. CAPTCHA stands for “Completely Automated Public Turing
test to Tell Computers and Humans Apart”. The task is artificially hard since computers
should not be able to pass it. The authors employ and extend shape contexts to detect
letters in the cluttered images. The proposed extension is the use of local tangent vectors
as the sampled quantity instead of contour points. This allows the shape contexts to
perform robustly in the cluttered environment, since no automatic segmentation method
would provide acceptable contours of the shapes of interests (letters).

Mortensen et al. in [28] propose an improvement of the SIFT descriptor [24] using
shape contexts. The authors coin the term global context for the variation of shape con-
texts that they propose. The descriptor is sampled over a larger area of the image, in
contrast to most of the other applications of shape contexts. Also, the sampled quantity
is not edge points. Instead, the authors propose the quantity of local curvature argu-
ing that edge detection is more prone to noise than curvature. They concatenate the
SIF'T descriptor and the global context of a point and they proceed to compare this new
descriptor with the standard SIFT.

The goal of the work presented in [26] by Mori and Malik is to estimate the 3D posture
of humans. They use the framework that they originally proposed in [7] to establish
correspondences between contours of human figures. They then proceed to reconstruct

the 3D posture using the method that Taylor proposes in [39].

In [15] extensions of shape contexts to 3D shapes are discussed. The natural extension
of the log-polar to the log-spherical coordinate system is proposed, and the details that
need attention are outlined. Specifically, the large volume variations between the bins
need careful treatment, and the extra degree of freedom with respect to rotation is another
consideration. The authors proceed to propose another descriptor named harmonic shape
context. This descriptor uses the aforementioned 3D histogram. A spherical harmonic
transform of this histogram is computed, and a predetermined number of coefficients is
discarded keeping only the largest ones in absolute value. This is effectively a low pass
filter of the data, aimed at reducing noise. A useful property of this transform is rotation
invariance. Both descriptors are evaluated in the retrieval of 3D shapes, and compared

to others.

An important work that utilizes shape contexts is presented in [22]. The goal of this
work is to exploit the articulated nature that many common shapes possess to improve
shape matching. The authors suggest that the distances and angles to be sampled should
be measured only inside the closed contour of a figure. This means that articulations are
handled quite well by this improved descriptor. The main idea is that the inner distance
of articulated shapes is invariant to articulation (in contrast to the classic Euclidean
distance). Any descriptor that uses distances as input is thus suitable. The selected
descriptor for all their experiments is shape contexts.

In [32], Rodriguez and Shah employ shape contexts to create an occlusion-resistant
representation of segmented human figures. They use this descriptions along with already
extracted human figures as their training set. They also use shape contexts in the detec-
tion stage to find possible positions of the learnt features. A voting scheme determines

the final detections of human figures in the scene.

1.3 Introduction to the proposed methodology

In the following chapters, the proposed methodology and experimental results are pre-
sented and discussed.

The proposed method is thoroughly presented in chapter 2. First, computational tools
used throughout this work are described. In order these are: Dynamic Programming
and Dynamic Time Warping, cubic spline and thin plate spline interpolation and shape
contexts. The main method for shape matching follows the methodology presented by
Belongie et al. in [6]. The shape contexts are formed and compared as presented in [6].
The main difference is the next step of the method, namely the matching step. In the
present work, the method used for matching is the one proposed in [36].

Experimental results of this methodology are presented in chapter 3. Qualitative tests
on well-known datasets are firstly presented. Experimental comparison of the method us-
ing the well established bulls-eye test is also presented. Finally, an application that utilizes
the proposed method is outlined. Objective of this application is to localize the joints
of human figures. This is possible because the matching method can choose the most

similar human figure from a set of models. Also, the method produces correspondences

10

between the observed and the model figure, enabling the estimation of a transformation
between the shapes which can be used to transfer known joints positions from the model
to the observed figure.

Strong points and limitations of the method are discussed in chapter 4. Issues for

further investigation are finally proposed.

11

Chapter 2

Methodology

2.1 Necessary tools

Well established algorithmic and numerical analysis methods for the manipulation of
observational data are utilized in various steps of this work. An introduction to them is

provided below.

2.1.1 Dynamic Programming !

Dynamic Programming is a technique commonly used to accelerate the solution of op-
timization problems. It takes advantage of the properties of optimal substructure and
overlapping subproblems that some problems exhibit.

Optimization problems are used to formulate a variety of interesting questions which
cover a vast spectrum of sciences and disciplines. Defining an objective function and
searching for an optimum set of parameters for it, is a useful way to formulate scientific
questions. Assume a real-valued function f that takes as argument x from a subset of
R™. Concisely f : A C R" — R. The optimization problem related to f is the task
of finding the global minimum of it. This means finding an z,,, € A that satisfies
Ve € Af(zmin) < f(x). The function f is referred to as the objective or target function.

Note that this formulation covers the cases when the global maximum of a function is

!This presentation of Dynamic Programming is loosely based on that of chapter 15 of the book

”Introduction to Algorithms” by Thomas H. Cormen[10]

12

needed. It suffices to take the negative function as objective, and subsequently find the
minimum. Optimization in the general case of a function with domain in the real numbers
is studied in real analysis. The used tools for this kind of problem are differentiation
and some kind of gradient following strategy, provided that f is smooth enough. This
is necessary because the domain set is uncountably infinite and so it is impossible to
evaluate f in each point of its domain and choose the one with the lowest value. Instead
of that, only a finite subset of the domain is chosen for evaluation, and the properties of

the function ensure local or even global optimality.

Dynamic Programming is applied to problems that have objective functions with
finite domain sets (conventionally in the natural numbers). In these cases (unlike the
continuous case) the global optimum is mathematically trivial to find, since all that is
needed is to evaluate the target function in each point of the domain and keep the point
with the preferred score. In practise however, this strategy can quickly become infeasible
as the cardinality of the domain set increases. The problems that can benefit from
Dynamic Programming are usually optimization problems with a domain set that grows
exponentially with respect to the input size of the problem. This behaviour can quickly
render a naive approach useless for even small instances of a problem. The properties of
optimal substructure and overlapping subproblems help to find a way to reduce this large

amount of computations turning an exponential time solution into a polynomial one.

An optimization problem is said to exhibit optimal substructure if the (optimal) solu-
tion to an instance of the problem ‘contains’ (in the sense that it is efficient to compute)
solutions to smaller instances of this problem. It is then efficient to find a solution to
a large instance of the problem by combining the solutions to smaller instances of this
problem. In general, a problem that exhibits optimal substructure can be solved using
several different methods, one of them being the technique of Dynamic Programming.
A general term used for these methods is divide and conquer. By definition a divide
and conquer algorithm solves the requested instance of a problem by recursively break-
ing it into smaller subproblems until they become simple enough to solve directly. It
then constructs efficiently the solution to the more complicated problems all the way up
to the start of the recursion. However not all problems with the optimal substructure

property are solved using Dynamic Programming. Alternative divide and conquer tech-

13

niques include greedy algorithms and simple divide and conquer ones that do no fall into
any subcategory. A problem that exhibits the optimal substructure property as well as
overlapping subproblems will most certainly have an efficient solution based on Dynamic
Programming.

The overlapping subproblems property refers to the recurrence of the subproblems
into which the original problem is divided. It is useful because one can compute once
the solution to each reoccurring subproblem, and then reuse the result in all the needed
places. A trivial example is the computation of the Fibonacci numbers: the nth Fibonacci

number is given by

fib(n) = fib(n — 1) + fib(n — 2)

with initial conditions fib(0) = fib(1) = 1. Ignoring the fact that it is easy to compute
this sequence in linear time with respect to n using just a loop and two variables, the

naive recursive implementation would be:

Algorithm 1 fib(n) // naive recursive implementation
Input: n € N

Output: The nth Fibonacci number
if n < 2 then
return 1
else
return fib(n — 1) + fib(n — 2)
end if

With this approach, the call fib(5) will need fib(4) and fib(3), and each one of them
would recalculate the value of fib(2). The resulting call tree is show in figure 2.1. The
call fib(2) is made 3 times resulting in two unnecessary additions. This number will grow
rapidly. In fact, the number of calls to fib(k) is the Fibonacci sequence delayed by k, and
the total number of additions needed to compute fib(n) is fib(n) — 1 (the number fib(n) is
calculated by adding fib(0) and fib(1), both equal to 1, as many times as needed, which is
fib(n) —1). The sequence fib(n) is closely approximated by an exponential function. This

implies that the computation of fib(n) becomes infeasible for small values of n, even less

14

£ib (5)

£ib(2) £ib(2) | fib (1) |

fib(2) | fib (1) | fib (1) | £ib (0) | fib (1) | £ib (0) |

fib (1) |

£ib(0) |

Figure 2.1: The call tree of the naive implementation of fib(n).

than 100 (fib(100) is 573147844013817084101 — more than 9000 years of computations
assuming 2 billion additions per second).

The improvement that renders efficient the calculation of fib(n) — as well as many
problems that exhibit the overlapping subproblems property, is the use of memoization.
Memoization is the technique of keeping already computed values for subproblems, and
the subsequent reuse of them. There are many ways to achieve this practically, and
the design of the algorithm may actually perform it implicitly. Keeping the computed
values of interest in an array for later lookup is an explicit way to perform memoization.
Explicit ways are the more straightforward ones for demonstration purposes, and also
for clarity of the implementation. Regarding the Fibonacci sequence example, assuming
access to a map data structure (available in most modern programming languages) that
can associate a key to a value, a simple trick can reduce an exponential time recursion
to a linear one.

The change in the call tree is obvious. It is almost reduced to a simple chain as can

be seen in 2.2.

2.1.1.1 Levenshtein distance / DTW as order-preserving matching tools

V. Levenshtein in [21] presents a way to compare two strings by counting how many
operations are required to transform one string to the other. The allowed operations
that were originally proposed are single character insertions, deletions and replacements.

Generalizations of this method allow the cost of operations to vary (one can assume a cost

15

Algorithm 2 fib(n) // memoized implementation
Input: n € N

Output: The nth Fibonacci number
// assume that an empty map of name fibmap is initialized
if n < 2 then
return 1
else
if fibmap does not have association for n then
associate pair (n, fib (n — 1) + fib (n — 2)) in fibmap
end if
return association of n in fibmap

end if

of 1 for each operation in the original form of the method). The result of the algorithm is
the minimum transformation cost, along with the actual steps that perform this transfor-
mation. The cost of trying every possible sequence of transformations is prohibitive, but
proper use of Dynamic Programming allows the calculation to be performed in O(m - n)

steps where m, n are the respective sizes of the two strings under comparison.

To solve the problem of varying speed in speech, the speech recognition community
uses Dynamic Programming in a similar form under the name Dynamic Time Warping
(DTW). Algorithmically the technique is a generalized Levenshtein distance with symbol
matching costs representing similarities of phonemes. Some of the first works towards
this direction are [35], [43] and [34]. Conventionally the result of the Levenshtein distance
computation is the cost itself while the Dynamic Time Warping gives the transformation

rules sequence.

The DTW is useful for the aforementioned purpose because speech is assumed to keep
an order that is already known. This means that the assigned task is not one of finding
the permutation of symbols that best matches the given string. Instead, the problem is

to use a known order as extra information to align the given strings.

The strategy to solve the problem starts by arranging a matrix with dimensions ex-

ceeding by one the lengths of the two strings. Each row of the matrix after the first one

16

£ib (5)

RN

£ib (4) £ib (3)
/N
£ib (3) £ib (2)
fib (2) £ib (1)
fib (1) £ib (0)

Figure 2.2: The call tree of the memoized implementation of fib(n).

corresponds to one symbol of the first string, and each column after the first one to a
symbol of the second string. Each cell of the matrix then represents a subproblem of the
original one, and specifically the subproblem of matching the two substrings that reach
to this row and column. The necessity for an extra row and column occurs because the
possible positions for insertions and deletions on a string of length n are n + 1, including
the beginning and the end of the string. The convention followed here is that each op-
eration takes place after the current symbol of the string, hence the need for an empty
row and column at the beginning of the two strings. The reason that there needs to
be an extra row and column is that it must be possible to insert and delete characters
before considering the first character of a string. The originally proposed metric can be

calculated with the Algorithm 3.

After the end of this algorithm, it is easy to obtain the sequence of operations that
achieves the minimum. The way to do this is to backtrack on the matrix C' starting from
the bottom-right position. From there, one recalls the choice that lead to the current
square, and reverses the movement. In the case of a tie, it suffices to choose one of

the previous squares at random. At the end of the backtrack a path from the top-left

17

Algorithm 3 levdist(sy, so)

Input: s; and sy are strings of symbols

Output: The Levenshtein distance between s; and s»
Let m = length(sy), n = length(ss)
Initialize a matrix C' of size (m + 1) X (n 4 1) containing zeros
C(1:m,0)=1[1:m]
C(0,1:n)=[1:n]
for : =1 tom do
for j =1ton do
cost = ((s1(i — 1) == s9(j — 1))70: 1)

Ci,j—1)+1 // insertion
C(i,j) =min{ C(i—1,5)+1 // deletion
C(i—1,j—1)+cost /] replacement/match
end for
end for

return C(m,n)

to the bottom-right is formed that consists of right, down, and diagonal (right-down)
movements. Each type of movement corresponds to one type of operation as follows: a
movement to the right represents an insertion, down represents a deletion, and a diagonal

movement represents a match or substitution. For example, one run of the algorithm with

input s; = “antonis” and sy = “markos” can be visualized by the following matrix:

m a r k o s

01 2 3 456

all 1 1 2 3 4 5

ni2 2 2 2 3 45

t13 3 3 3 3 4 5

ol4 4 4 4 4 3 4

ni{b 5 5 5 5 4 4

1|6 6 6 6 6 5 5

s|7 7T 7T 7T 7 65

—_
oo

The highlighted numbers denote a possible backtrack path (for this particular example
it is actually the only valid path) on the cost matrix C' representing a transformation
sequence of length 5. For the specific example, the highlighted sequence along with the

intermediate results is:

antonis
insert ‘m’ mantonis
match the ‘a’ ’s (0 cost), replace ‘n’ by ‘r’ martonis
replace ‘t” by ‘k’ markonis

delete ‘n” markois

delete ‘i’ markos

The Levenshtein distance can be computed using Dynamic Programming because
the problem possesses the necessary properties of optimal substructure and overlapping
subproblems. The problem indeed exhibits optimal substructure since each step for the
best operation can be decided among three different subproblems. What is more, as these
decisions ask for the solution of more and more subproblems, the same substrings reoccur,
hence the property of overlapping subproblems. Memoization is explicitly performed with

“notes” are kept.

the use of the cost matrix C' where intermediate

As mentioned earlier, a generalization of the Levenshtein distance allows for arbitrary
matching costs between symbols. The implementation shown in Algorithm 3 almost
supports this. The single line that has to change is the one where the variable cost is
calculated. Instead of a simple zero-one comparison, one can replace this by a matching
cost defined by an arbitrary function. The values of this function need not be integers.
As long as the values are non-negative, the single constraint is that the matching values
must follow arithmetically the cost of insertions and deletions. If the matching cost for
any symbol is larger than the sum of an insertion and a deletion, it is obvious that
substitutions will never be preferred. On the other hand, if the matching cost is too low,
all symbols will match, and no insertions and deletions will be chosen.

This generalization allows the Levenshtein distance to be used in continuous signals.

In these cases the continuous signal must be discretized, and the discrete parts must

be compared somehow. Every symbol of the first string is compared to all the symbols

19

of the second string, and the results of this comparison are provided as input to the
generalized Levenshtein Distance. This is the way Dynamic Time Warping uses Dynamic

Programming to match varying speed signals.

2.1.1.2 Using Dynamic Programming to match cyclic strings 2

In the case of interest for this work, the input signal is the contour of a figure. The
discretization can be assumed already performed since the input image is usually repre-
sented by a matrix of pixels. The comparison of the discrete parts is possible with the use
of shape contexts. All that remains is to input these matching costs to a DTW algorithm
and obtain an alignment sequence. The case of contours however has a complication.
The contours are circular, and there is no safe way to align them before the DTW run.
The naive solution to this problem is to run many times the DTW, each with a different
starting point, and keep the result with the lowest transformation cost. However this
would raise the time complexity of the comparison. Specifically, assuming that each of
the contours is represented by n shape contexts, the time complexity for one DTW run
is O(n?) and so the total runtime for all the n different initial matches would be O(n?).

In [36], Schmidt et al. present a way to find this initial match and the occurring
alignment sequence in O(n*log(n)). The speedup is possible through the reduction of
the problem to one of shortest paths on a graph, as well as with clever reuse of the already
computed intermediate costs.

Specifically, the problem of aligning two strings using DTW is equivalent to the
problem of finding the shortest path on the graph G defined as follows. Let the two
strings s; and sp be represented by sequences of symbols: s1 = (51,1, 51,2, - -, S1,m—1, S1.m)
and sy = (S21,522,...,52n-1,5,). Let now G = (V,E) a directed graph having
nodes V', and edges E C V x V. In this case V = {(s14,520)|k = 0,1,2,...m,l =
0,1,2,...n} with s19 and so special starting symbols. The edge set E is then defined
E = {((s1,i, 52,5)s (51,6, 524))|0 < k —4 < 1,0 <1 —j < 1}. That is, each node represents
one square of the memoization matrix, and each edge represents a possible movement
between squares. It follows naturally to visualize the graph on a rectangular grid as in

figure 2.3. Each horizontal edge is assigned a fixed length or cost of insertion, and each

2The presentation of this section is based on the respective publication [36]

20

S14

Figure 2.3: Visualization of the graph G.

vertical a cost of deletion. To keep the distance symmetric, these two costs should be
equal. The diagonal edges are assigned matching costs according to the input of the algo-
rithm. The shortest path of G' between (s1, S20) and (S1,m, S2,n) represents the solution

to the generalized Levenshtein distance problem.

However, in the case of cyclic strings, the situation is a little more complicated. The
topology of the graph is no longer a grid, but a torus. The last symbol s ,, is followed
by s1,1 and the same holds for the respective symbols on s;. One can unfold the graph
to resemble that of figure 2.3 but to preserve and exploit its cyclic properties, it is more
convenient to replicate another copy of it to the right, as in figure 2.4. On this new graph
G, the starting symbol s; o of the second string is not necessary, and all the other symbols
of this string are repeated once. For the cyclic case, the assumption that both strings
have length n is made. To simplify the notation, let v; ; = (s1,, 52;). Any closed path
starting at a circled node vg; on the top-left of the graph and ending at the corresponding

node vy, 1 at the bottom right of the graph represents an alignment sequence between

21

Figure 2.4: Visualization of the unfolded cyclic G'.

the two strings. The whole problem can now be formulated as follows: find the number
k along with the corresponding shortest path vgy ~ v, .4 that jointly minimize the
alignment cost between the two strings.

As stated before, searching among every possible initial match has a computational

complexity of O(n?). An algorithm to reduce this is based on the following theorem:

Theorem 1. Let G = (V, E) with V- = {V;}; be a graph and let py = v;1v;2... vy and
P2 = Uk1Vk2 ... Ukm be two minimum-cost paths. Then, if p1 and py have two nodes v,

and v, in common, there is a path py = vy, ... vy, with the same cost as py, which has a

m

common sub-path v, ~ v, with path p;.

A proof is sketched below.

Proof. The path p) can be constructed as p), = vp1 ~ v, 2 Vg ~ U,m Where v, 2 Uq
denotes the sub-path of the path p».

There are two cases:

e The sub-path v, ~ v, on the path p; coincides with that on p,. This case needs
no further examination, since the path pf, is identical to ps and obviously they have

the same cost.

e The sub-path v, ~ v, on P, does not fully coincide with the respective one on

p1. Then the path sub, = v, &> v, has the same cost as sub; = v, <> v,, because

22

any sub-path of a shortest path is itself a shortest path between the nodes that
it connects. This means that any alternative path cannot have less cost than the
sub-path under consideration. Since both sub; and suby are sub-paths of shortest
paths, they possess this property. This in turn means that c¢(suby) < ¢(subg) and
c(suby) > c(subs) and hence c(suby) = c(suby), where ¢(.) denotes the cost function

for a path. This concludes the proof. O

The theorem provides a way to split the problem into subproblems. Specifically, a
shortest path vg ; ~ vy, n1r On the rectangular grid shown in figure 2.4 defines two regions
on it. If one is searching for the shortest path vg,, ~» vy pim, with m < k, then there
is no reason to consider nodes on the right of the existing shortest path. The opposite

restriction would hold for m > k. The algorithm is divided in five steps.

e Step 1: Compute the shortest path p, = vo1 ~ v, 41 and copy it shifted by n

elements to the right p, = v, 1 ~ vop 1.

e Step 2: Use the paths p;, and p, as boundaries on the 2n by n + 1 matrix of costs,
and compute shortest paths starting from the node v(,)/2. Shortest paths for the

whole range among the bottom nodes of p; and p, can be computed in one pass.

e Step 3: Estimate the largest &’ with [+n < k' < (I + r)/2 4+ n such that the
shortest path from v(,)/20 ~ Vnyr,n41 has a common sub-path with p;. Similarly,
estimate the lowest £” with [+n < k” < (I +r)/2 + n for which the shortest path

from v(1yy/2,0 ~ Unsrrne1 has a common sub-path with p,.

e Step 4: Let the node v, be the first of a common subpath in the order from top to
bottom. Use this node as start for a DTW pass, thus finding in two passes (one for
each v,) all the shortest paths vg, ~> vy pim with m € {1,... L} U{R, ldots,n}. It

is now possible to identify the shortest circular path in these ranges.

e Step 5: Recurse two times from step 2, one for [= &'+ 1 and r = (I+r)/2—1 and
one for [l = (I+7)/2+1 and r = k” — 1. The bounding paths that must accompany

each number are already computed at the previous step.

23

2.1.2 Spline interpolation

Interpolation is a useful tool that allows to predict missing values of a function given
some samples of this function. For the univariate case, the input (or conditions) to an
interpolation method is a set of n measurements X = {(z;,v;) C R?i=1,2,...n} with
i # j = x; # xj, and the result is a function f : R — R. Usually, the distinction
between exact and inexact interpolation is made. In the first case it is required that the
resulting function f passes through all input points (hence the term conditions), that is
f(z;) = y; for all i = 1,2,...n while in the second case this restriction is relaxed. The
inexact interpolation is useful to smooth out noisy data and possibly to filter outliers.
The function f is usually called the interpolant. The way to compute the interpolant
is to fit the data points with a predetermined model. Important classes of models used
for interpolation include: piecewise constant (alternatively nearest neighbor), piecewise

linear, polynomial interpolation and spline interpolation.

Spline interpolation can be described as piecewise polynomial interpolation. One
of the earliest references of the word “spline” in the context of piecewise polynomial
functions for the purpose of numerical approximation is found in [37]. The model is
based on a mechanical one that was used by draftsmen to draw smooth curves. Thin
strips of wood or other flexible material were pinned to specific points on the plane, and
the shape that occurred is the one that minimizes the total bending energy of the object.

For more details, the interested reader is referred to [4].

The input data to a spline interpolation defines a partition on the horizontal axis.
Without loss of generality, the input can be assumed to be ordered on the horizontal
axis: r; < x;41 for all 2 = 1,2,...n — 1. A partition of R defined by these numbers is
R = (—o0, 21 U (21, 22) U ... U (2p_1, 2,) U (x,,00). For each interval of this partition, a
polynomial of predetermined degree is fitted. Usually, the degree for these polynomials
is 3 (cubic splines). This choice is common because the extra degrees of freedom allow
for sufficiently smooth interpolants without the extra computational overhead that a
higher degree would imply. More precisely, it is possible to obtain interpolants that
have continuous second order derivatives. Cubic spline interpolation is a common choice

because the method is arithmetically stable without requiring special care to the sampling

24

pi(zi) = ¥i i=1,2,...n—1
Pi(Tit1) = Yis1 1=1,2,...n—1

(l‘i+1):p;+1(l‘i+1) z:1,2n—2

3

V(i) =i (X)) 1=1,2...n—2

s

Table 2.1: The set of standard equations for a cubic spline, ensuring continuity

up to the second order derivative of the interpolant.

pi(z1) =0

Pn-1(an) =0
Table 2.2: The two additional constraints for the natural spline.

points. This is in contrast to the polynomial interpolation which is rather sensitive to

the position of the samples on the horizontal axis.

The following describes the implementation of natural cubic splines that was used in
this work. There exist faster and more stable methods to achieve this [4], but they are less
intuitive. The presented implementation however proved to be sufficient in both speed

and stability for the needs of the present work as discussed at the end of the section.

For n input data points, the piecewise polynomials that have to be computed are
n — 1. This makes a total of 4(n — 1) parameters (since each cubic polynomial has four
coefficients). Let one such third degree polynomial be denoted as p; fori =1,2,...n—1.
It can be written as p;(z) = a;x® + b;z? + ¢;x + d;. The values of the parameters can be
obtained by solving a linear system of size 4(n—1). The first 2n—2 constraints are imposed
by the values of the polynomials at the two ends of their respective segments: p;(z;) = y;
and p;(x;11) = yuq for i = 1,2,...n — 1. The next n — 2 constraints are imposed by
the requirement to have smooth first derivatives: pj(z;) = p;,(#;) fori =1,2,...n — 2.
Because of the requirement for second order derivative continuity, n — 2 more constraints
are obtained: p} (z;) = p/,,(z;) for i = 1,2,...n—2. To sum up, the constraints are listed
in table 2.1. This is a total of 4(n — 1) — 2 linear equations on the 4(n — 1) unknowns.

To solve this system exactly, one needs two more extra constraints. The usual choice

25

for these constraints involves the first or second order derivatives. Setting the second
order derivatives at the edges of the interpolation interval equal to zero as shown in table
2.2 yields the so called natural spline. Other choices include predetermined values for
the first or second derivatives. With the number of equations completed, all that is now
needed is to solve the system and obtain the interpolant f. The form of the interpolant

is
.

p1(x) = ay2® + b1 + cyw + dy if v <mxy
p2(7) = asx® + byx? + cox + do if 7 <2 < a9
p3(x) = azz® + b3x? + c3x + d3 if v < < a3

Pr1() = an 12 + by 12® + ot +dyy 2y 0 <z <2

() = ap2® + bpa® + cpr + d, ifa, 1 <x

\

The result of a cubic spline interpolation is displayed in figure 2.5. In this example
the “unknown” quantity is the function sin(z). The input to the interpolation method is
a set of seven points equally spaced on the interval [0, 27]. This particular example is a
little easier than average since both assumptions made by the natural spline are actually
true: sin”(0) = sin”(27) = 0. Nevertheless, the performance of the natural spline is rarely
unacceptable and usually quite good. Of course, by construction, the cubic spline cannot
predict discontinuities of the interpolated quantity up to second derivative.

Although the definition of cubic splines only mentions the univariate case, it is easy to
extend this tool to interpolate any one-dimensional curve g embedded in an n-dimensional
space g : R — R". To achieve this, one has to compute n cubic splines f; with i =
1,2...n, where f; interpolates the i-th dimension of the sample data. The interpolant is
then the function z — (fi(x), fa(x),... fu(x)). An example of this method is provided
in figure 2.6. Note that the left-hand side of the linear system does not depend on the
values of the function, but only depends on the function parameters which are common
to all the interpolations needed in this case. This allows to compute once the inverse of
the matrix, and then use the inverse with different right-hand sides to compute all the
fi-

As previously stated, the speed and stability of this method are sufficient for the

26

10} =

0.5 7

-05+

-10r

Figure 2.5: The cubic spline interpolation of the sinus function using only seven

samples (shown as dots), along with the original curve (dashed).

needs of this work. Speed is not an issue because of the reuse of the inverted matrix as
discussed in the previous paragraph. The matrix of the linear system is the same for all
the cases of shapes with the same number of points, and needs to be inverted only once.
Also, numerical stability is acceptable in practice, since the presented method works with
adequate accuracy using double precision arithmetic. Specifically, the determinant of the
resulting matrix is usually in the order of 107%°. However the calculated inverse leaves
negligible residuals in the magnitude of round-off error if multiplied by the original matrix

and the result is subtracted by the identity matrix.

2.1.3 Thin plate splines 3

Thin plate splines is a form of multidimensional interpolation. The interpolant is a func-
tion f : R? — R that fits the input data using radial basis functions. The interpolation
conditions are represented by n triplets of reals {(x1,y1,21), (22, Y2, 22), - - . (Tn, Yn, 2n) }
with ¢ # j = |z; — x| + |yi — y;| # 0. For every such triplet (z,y, z), it is required that
the interpolant f satisfies f(z,y) = 2. This restriction is relaxed in the regularized case.
Similarly to the cubic spline case, the thin plate spline is based on a physical model,

satisfying a solution to a minimum bending energy problem subject to the imposed con-

3This presentation is based on the respective part of ref. [6].

27

Figure 2.6: An example of interpolating a one-dimensional curve using multiple

splines.

straints. Specifically, the bending energy for a function f is

B 2F\> R2FN\° (2F\°
= [LLG) +2 (o) +(5)

The parametric form of the model is:

f(l';y) = a1 + azT + ayy + ZwlU(H(xzayl) - (x,y)H)
=1

with the kernel function U defined as U(r) = r?log(r?). The limit

lir% U(r)=0
resolves the indeterminate form U(0) = 0 at r = 0. The number of free parame-

ters of this model for n input points is n + 3. These parameters can be estimated

28

On the other hand, for large

H[f] = Z(z — fl@iyi))* + My

(1, x;,y;) complete the linear system:

LWy | ay,ag,a,)T. On the right-hand side of the system, the vector of the z

.zn | 0,0,0)". The matrix K with K;; = U(||(x;,y:) — (z;,y;)||) and the matrix

by solving a linear system. First, the vector of unknowns is formed as (w | a)7 =
coordinates is padded with three zeroes to reach the necessary length of n+3: (v | 0)" =

In the regularized case, the bending energy term is not the complete objective function.
thus relaxing the restriction f(z;,y;) = z;. The parameter A can be thought as the trade-
off between smoothness of the interpolant, and exactness of the interpolation. Note that
values of A the model degenerates to a least-squares affine one. All that one has to do to
compute the parameters for this case, is to substitute the matrix K on the left-hand side
of the equation by the matrix K + A\I, where I is the appropriately sized identity matrix.

A term of square error is weighed with it, for an objective function of the form:

for A = 0 the regularized case reduces to the exact one.

P with P,

(21, 22, - -

(’U)l,UJQ, ..

P S il P N SRRSO,
P P A O ONARRNNNONNSNN
S et A TSN ORI,
S et RN ORI
P A T B VNN
TSI AT A A gy e aaama o wwwA N R S OO
H\«\\C«\x\\i\\««A 444444444444 R NN S RN
e A IR I I U T U SN NN NN
TSI AT A A A 4y, A b sk ksoww———w NNy A NN NN
ST I E T A A Yy A b kbbb AT N .
AT Ittt e N bk ERNXN N Y LA L4, -
ey, V»»\\\\\\\k?I/NMNNM,44,, ,,,,,, ~=
\\\~:«M»»‘\\\\\\\\\%fﬂ/////m,”444» rrrrr =
\\\\\\ Prs ST A N T N
uuuuu resL D RN R e
,,,,,,,, \\\\\\\\\\:,/// NNNN ..y,
‘‘‘‘‘‘‘‘‘ oz \\\\ AN N N NS N
LSS A AN
\\\\\\\\\\ \\\\\\\‘A,V.vx A R T S
vvvvvvvvvvv P N S e R
vvvvvvvvvvvvvvv RTINS SIS S
vvvvvvvvvvvvvvv YU e N b e < < < =
44444444444 NNNNN D A v e NNy s et A
4444444444 SNNIRNNN N a e, aaa A e
PSS *
,,,,,,,, SN L, h o a A e
~ NN IAS S v
—aarAr v S~ WY NN~ o< s s a vy
s NNNN\NN\NN s L L LD
Tl AN NN NN A A Tl
~aaariAa vy S e s e
/}&rrrrr««41///////1?\\\\\\\\\‘»‘ «««««« -
~Nawaaaasn VNYINNNNNS s r e P
NN N RN AAAAL S YNNI~ YA RIR R AR R AR Al
O N N 2 SR SRR PR S A el
R N R N I P T Pl
R I I P E s
R B T P it td
R P R O S Pt
D I I B IR B Y P R ettt al
R N g M H \\«W\UW‘M«‘UH“NM
R e g
HMHHNNNN/’///’/ I g A T
P S e E g P it

Figure 2.7: Visualization of an arbitrary plane warping using thin plate splines.
29

The interpolation of multivariate quantities is as straightforward as in the cubic splines
case. An interpolant of the form R? — R" is created by concatenating n thin plate splines.
An example for the case R? — R? is shown in figure 2.7. Note that, as in the cubic spline
case, it is possible to use the same matrix inverse for both dimensions.

The vector a represents a linear transformation of the R? domain. The vector w rep-
resents the non-linear distortion imposed by the provided conditions. One can interpret
these two sets of parameters as a rough linear alignment with an additional non-linear

one. For a study on the algebra of this model in the case of R? to R? see [8].

2.1.4 Shape contexts

As previously stated, the shape context is a local shape descriptor proposed by Belongie
et al. in [7] for the purpose of shape matching. They observe that a rather small set
of points on the contour of an object can capture its shape. They thus propose that
all objects are sampled, and the local distribution of these points is the information
captured by shape contexts. More specifically, around each center, the distribution of all
the other centers is used to calculate the description. Points that are within a maximum
distance are kept, and the rest are discarded, in order to capture the local information.
The distribution of the selected points is sampled in the log-polar space to emphasize
on the detail closer to the center and allow more variation further away. As a side note,
the actual density of the selected points is application dependent and it is ultimately
a parameter to be determined primarily by trial and error. Also, this type of sampled

shape satisfies the definition of shape as presented in 1.1.1.

The steps of the sampling process are shown in figure 2.8. The input (a) is a shape
contour of potentially infinite accuracy (it can be defined as a continuous parametric
curve). This curve is subsampled to a reasonable level as in (b) aiming to preserve the
features of the shape. Around each selected point in the sampled contour, a log-polar

histogram of the other points is calculated (c).

These resulting histograms can be used for the purpose of local matching. This
is illustrated in figure 2.9. Similar-looking parts of two shapes have also similar shape

contexts, while the opposite holds for dissimilar parts. In the figure, each shape is sampled

30

(a)) ©

Figure 2.8: The process of sampling and calculating shape contexts.

with the bins exactly as presented. The resulting histogram is displayed below each shape.
Lower values are denoted by darker color. The horizontal axis corresponds to angle, and
the vertical to (increasing) logarithmic distance.

The description of each shape is formed as the (possibly ordered) set of all the com-
puted histograms. A number of methods are available to compare and match these points.
For comparison, the choice in [7] is the z? statistic, while any other histogram compar-
ison statistic can be used. For matching, the method proposed in [7] is the Maximum

Weighted Bipartite Matching, while the present work uses the method proposed in [36].

2.2 Method

The objective of this work is to present a shape matching technique. As stated earlier,
the technique utilizes shape contexts to describe selected points on the figure contour.
Each descriptor of the first shape is then compared to all the descriptors of the other,
giving matching costs between them. These costs are provided as input to the cyclic
DTW matching and correspondences between the shapes are established. These corre-
spondences are used to calculate an aligning transformation (using thin plate splines)
between the two shapes. The DTW cost along with the TPS transformation energy are

balanced and this comprises the final distance between the shapes.

31

(d) (e)

Figure 2.9: Similar and dissimilar parts with the corresponding shape contexts.

Every input figure will be assumed to have a fixed number of n points. The order of
the points is also important, as it is assumed to be the natural order on the contour of
the figure. Furthermore, it is important to ensure that each figure is listed in the same
cyclical order, a requirement imposed by the DTW method. This order can be assumed

to be counter-clockwise.

2.2.1 Scale estimation and orientation

The first step of the method is to perform a rough scale estimation of each input figure.
As in [6], the mean distance between all the (n(n —1))/2 point pairs is evaluated and the
figure is scaled accordingly. A similar possible choice for this step is the Median Absolute
Deviation (MAD) discussed in [33]. This alternative was also evaluated, but the result

was not significantly different, and so the less computationally expensive method was

32

selected. Denoting the ¢th input point as pt;, the scale a is estimated as

Consequently, every point of the input is multiplied by 1/a.

During this first pass, the orientation of the contour at each point can also be de-
termined. The order of the points is an important hint for the matching technique in
use, so it is important that all the points of the shapes are listed in a fixed order. It is
decided that all shapes are listed in a counter-clockwise order. To achieve this, the sign
of the area of the polygon is calculated using the formula A = % Z?:l TilYiv1 — Tip1Y; with
Tpi1 = 21 and y,+1 = y1. If the sign of A is negative, then the order of the input points

is reversed.

2.2.2 Shape context computation

The next step of the method is to compute shape contexts. For each of the n (now scaled)
points, a log-polar histogram of the other points’ positions is computed. The number of
bins in each dimension plays role in the performance of the descriptor. Generally, very
dense discretization would result in aliasing artifacts (points falling in adjacent bins),
while very sparse would result in reduced discriminative power. In practice it proved
sufficient to use values similar to the ones proposed in [6]. For specific details on the
present work see section 3.

The size of the shape contexts is another important parameter. The scale normaliza-
tion on the previous step allows for choices independent of the input. The majority of
the methods employing shape context use them as local feature descriptors. The partial
nature of the problem is thus exploited. However, choosing too small diameter for the
shape contexts can lead to increased sensitivity to noise, since the sampling may become
disproportionally dense. Another issue that can arise in this case is reduced discrimina-
tive power. This may happen because all the descriptors may look similar if they include
just one or two samples. Since the sampling is performed exponentially, there is also
need for a minimum radius. This parameter should be chosen in a range that allows the

smallest ring to actually have samples, while no significant fraction of the samples falls

33

in the unsampled inner circle. A rough estimate for this range is J/ 2 < Fin < d, where
d denotes the average distance between consecutive points of the shape and 7, is the
minimum radius. Again, for specific details on the choices for this work, see section 3.
Let b, by represent the number of bins in the radial and angular dimension respec-
tively. Also, let r;, and 7, denote the minimum and maximum sampling radius

respectively. Each bin of the histogram is bound in the log dimension by

log(Tmaz) — 10g(Tmin)
b,

(k—1)

and
log(rm(m) - 1Og (rmin)
br

where k is the bin number ranging from 1 to b,. In the angular dimensions, the corre-

k

2

sponding bounds are >

(l—1) and i—jl, again with [in the range 1 through by denoting
the bin number. For each point of the shape, the logarithm of distance and bearing angle

for all the other points is computed, and binned according to the previous bounds.

2.2.2.1 Rotation invariance

For the purposes of the present work, rotation invariance is a desirable property. The
method proposed by Belongie et al. in [6] is used. Specifically, they propose the alignment
of each shape context along the local tangent of the shape. The estimation of a reliable
local tangent vector is not straightforward. Since the local tangent is essentially the local
derivative, it is sensitive to noise. The usual way to treat noise is to smooth the input
signal, something that in this methodology is already performed prior to the sampling of
the contour.

In this work, the local tangent is estimated using cubic spline interpolation. First, the
2D curve is fitted by a cubic spline model as described in section 2.1.2. The next step is
to compute the derivatives of the two cubic spline models at each point of interest. For
each such pair of derivatives, it is now straightforward to compute the local tangent by
taking the generalized arc tangent function with two arguments. This method has the
advantage that the computed angles are consistently aligned not only to a good estimate
of the local derivative, but also to a consistent direction. The three steps of this process

are displayed in figure 2.10. In (a), the input to the process is shown, a set of points

34

sampled from the original input curve. The parametric curve computed by the cubic

spline model is shown in (b), and the resulting local tangent estimations are shown in

(c).

Ed
“
p ," Ry
N |
A \
\§ \
p |
7 3
Y
A’ \
A AN
A PR
E\ { \
N Y
W ¥
N y
¥, Y
% Y
/ '\
y \
A \
| :
A
Ly I4
A y
X /’
\ /
3 y
N 4
. y
X y
P ’f/
Al
P p
\
/ h)
N \
o .44‘)/ "
(a) (b) ()

Figure 2.10: The process of sampling and computing local orientation.

After a reliable local estimation of the contour orientation has been established, it is
straightforward to compute rotation invariant shape contexts. The origin of the angular
dimension is determined by the local tangent, and all the computations are performed in
this reference frame. The process is illustrated in figure 2.11. At the implementation level,
it is sufficient to subtract the local orientation angle from each bearing in the log-polar

space, before the histogram computation.

The resulting shape contexts are indeed rotation invariant, since the local tangent
is dependent on the global rotation of the shape. A rotated version of an otherwise

identical shape will have identical shape contexts if they are rotated according to the local

35

tangent. This essentially exploits the corresponding property for translation. Since global
translation does not affect the distances between points of the shape, shape contexts are
invariant to translation. The same holds for local tangents: their relative angles are

invariant to local rotation, making the described method rotation invariant.

Figure 2.11: Each shape context is aligned to the local tangent estimation.

2.2.3 Shape context comparison - 22 statistic

The method has reached to the point where a shape is described by a set of shape contexts.
The next step is to compare the shape contexts of two shapes. This can be achieved with
a number of different histogram comparison statistics, and the z? statistic is selected as

in [6]. The comparison of two shapes can be represented by a matrix C. The element

2

(1,7) of this matrix is the result of the x* statistic of shape context i of the first shape,

and shape context j of the second shape. Specifically:
K
. 1 hi(k) — h;(k)]?
i) = L3 10~ ()
2 £~ hi(k) + h;(k)

where h,,(n) is the shape context histogram (flatten to one dimension with K bins) of

the mth shape at the nth point. An example comparison is shown in figure 2.12.

2.2.4 Cyclic matching

The local similarity of point i of the first shape with point j of the second shape is C(i, j).

Any such pair is a potential correspondence between the shapes. In the general case, any

36

e) %30
30 :
10@_ b0 10?‘ 040
0" -
0¢ 450 3 250
90°© 90‘O d-: - .. .
.. .60 L% -
805 0. -
J . [c] . N
L. °70 - o 1
70 =y
(a) 0 10 20 30 40 50 60 70 8 90
(b)

(c)

Figure 2.12: Visualization of the comparison matrix C. The shape in fig. (a)
corresponds to the horizontal axis of the matrix. Dark colors denote low values

i.e. similar shape contexts.

one-to-one relationship between the points of the shapes can be considered as a possible
matching. Belongie et al. in [6] use a Maximum Weighted Bipartite Matching formulation
to establish a set of one-to-one correspondences between the shapes. However, assuming
that the points of the shapes are listed in an order that is naturally imposed by the
contour, the search space can be reduced.

For the purpose of matching, the selected method in this work is [36], presented
in section 2.1.1.2. The matching cost matrix needed for the cyclic matching as input,

2 comparisons. Along with the matching pairs, a total

is naturally the matrix C of z
matching cost ¢, is calculated as the sum of all the operations that were used. The
result of this matching step can be visualized in 2.13. In the figure, the selected pairs
are shown in (a), and some of them are displayed over the shapes in (b). The specific
example is not the general case, since the resulting matches are close to the main diagonal
of the matrix. In the general case, the result will look like a cyclic shift of the displayed
one.

The cyclic matching method has a single parameter, which is the insertion and deletion
cost (the case where these costs are different is not considered). The insertion and deletion

cost is manually set to a level that experimentally gives acceptable results. There is no

reliable method to automatically determine this value. It might be possible to determine

37

-3 8 a
s c-41 5
2” .4 2
n c-a7
86~ e 86~
~50
. 83”7 ™50 8-
:]
! 807 3 : 53 80~
B — 56 .. ~56
5 L L «59 7 740 +59
i n,.o " .
{ I - 1. .62
o '.h- ,i
0 10 20 30 40 50 60 70 80 90 L & o s
(a) (b)

Figure 2.13: The matched path on the cost matrix is shown in (a), and some of

the pairs are shown in (b)

it on a per-case basis, as a function of the matching cost matrix.
At the end of this step, the result is a set of matched points on the shapes. This
matching is the result required by the definition in 1.1.2. Also, the total matching cost

¢m can be used as a distance measure between the shapes.

2.2.5 Thin plate spline computation

The final step of the presented technique is the computation of the planar deformation
that aligns one shape to the other. The alignment is performed using thin plate splines, as
presented in 2.1.3. Input is the result of the previous step, i.e. a set of pairs of 2D points,
and the output is a deformation of the plane, as well as a deformation cost. This cost
is properly weighted along with the cost of the previous step to form the final matching
cost or distance between the shapes.

The regularized version of the thin plate spline model is used, with parameter A\ as
discussed in 2.1.3. This parameter acts as a smoothness factor. The model tolerates
higher noise levels for higher values of A and vice versa. Since the scale of all shapes is
roughly estimated at the first step of the methodology, the value of A can be uniformly set
to compensate for a fixed amount of noise. For all the experiments, A is fixed to 1 as in
[6]. The resulting transformation of the shapes is displayed in figure 2.14. Notice that the

regularized model preserves the characteristics of the shape even after the transformation.

38

AN s

(a) o © (d)

Figure 2.14: The calculated thin plate spline model visualized in (a) warps the
shape displayed in (b) to the one displayed in (¢). This result is quite similar to

the compared shape, displayed in figure (d).

The tail and fin of the fish in (c¢) share common appearance with those of the original in
(b), despite the fact that their relative positions follow the respective ones of the matched
fish in (d).

The final outcome of the presented method is the warping between the compared
shapes, along with the total matching cost d. This total cost is a weighted average of the
cyclic matching cost ¢, and the thin plate spline bending cost ¢,: d = [y ¢, + 5 ¢, for
[; > 0 and [> 0. The weight factor between the costs is manually chosen.

Belongie et al. in [6] propose an iterative scheme after the warping of the shape. The
new shape is again compared to the other, in an attempt to use the new information
contained in the warped shape in order to match more points. This proved to be rather

useless and so it was not included in the proposed method.

2.3 Method Summary

This concludes the proposed methodology. The methodology is summarized below. The
input to the algorithm is a pair of shapes, and the output a matching cost and a plane-

to-plane deformation that best aligns the first shape to the second. The algorithm has

39

a number of parameters which are application dependent. These are: The number n of
points per shape contour, the number of bins in the radial and angular dimensions b, and
by respectively, the minimum and maximum sampling radius 7,,;, and 7., respectively,
the insertion/deletion cost for the cyclic DTW, the regularization parameter A of the

TPS model and the final weighting parameters [; and [s.

40

Algorithm 4 shapepreprocess(pts)

Input: pts € (R?)"

Output: Scale and rotation invariant shape contexts of the points pts

a=3 0> i w // scale estimation
pts = Lpts // and normalization
A= % St @iyis1 — Tiy; (addition is modulo n) // signed area computation

if sign(A4) < 0 then
// the shape is in clockwise order
reverse the order of the points pts

end if

// compute local tangents

fz(t) = cubicspline(pts,,)

fy(t) = cubicspline(pts,))

tangents = atan2(f, (t), f,(t)), t =1,2,...,n

// compute shape contexts
for each point p € pts, create a histogram for the values

(log, ||p — pil|, bearing(p, p;) — tangent of p), p; € pts — p

the bins have log boundaries:

IOW: 10g(7'maz)b_r10g(rmin) (k _ 1)

high: '8Umezlloglmin) g — 1 9 . p,

polar boundaries:
low: i—:(l - 1)

high: i—:l,l:1,2,...,ba

41

Algorithm 5 shapematching(pts;, pts,)

Input: pts, pts, € (R?)"

Output: The matching cost d, along with the TPS model T
// pre-process the shapes
shapepreprocess(pts,)
shapepreprocess(pts,)

compute z? statistic matrix C

L 1K [hilk)—hy (k)2
Cl:5) = 3 2 k=1 “huthrrhy)

cyclic DTW using C' as input
output of DTW: a matching consisting of pairs between the points of the shapes
also output of DTW: matching cost ¢,

computation of the TPS transform 7" with input the pairs of the previous step

the bending cost of the transformation 7T is ¢,

final results: T and d =1, ¢,, + la ¢

42

Chapter 3

Results

Experimental results evaluating the proposed method are presented in this chapter. The
first section presents a qualitative assessment of the method in datasets that are fre-
quently used for the purpose of shape matching. The second section is dedicated to the
quantitative performance of the presented method. Specifically, the results of the method
for the bulls-eye test are presented. An application of the method for the localization of
joints in human figures is described in the next section. Some implementation notes in

the last section conclude the chapter.

3.1 Marine - Gestures

Experiments on two datasets are presented in this section. These are the “marine” and
“gestures” datasets used in [31]. They were acquired from [13], and the “marine” dataset
is also referred to as the SQUID dataset from the respective work [25]. The first dataset
consists of 1100 marine creature figures, and the second consists of 980 synthetically
generated gestures. In figures 3.1 and 3.2, the first row depicts the query shape, and in
each column the results in order of relevance are displayed. The retrieved shapes are in
most cases very similar to the input, while in every case there is some resemblance. It is

experimentally exhibited with these results that the method is suitable for varying tasks.

43

I e
AR B TS TR L NY 2 6 SR

W P e M B - G @ P S G T O ST DD - YD @ @i
L .t £ 2 2 4 € 2% . b ¥ J £ £ 2 2 @ 4 X 3 2 2
O 000 B § 9 H B W €W BB &P G B < &<
e = b Wi e Ugo 48 JGo Wi <Co Yo LG Cho o ol P ot "W 40 oo G
P 909 00 G O VW H <SP D G & PP
o+ e b o et <D o e
00008000 ¢ 0006006y ¥¥
P QPEONBRB OO AUPWO OO NBN
>0 0geoseo ot NjoooBulNeoe
P D <t St < U SO Ty e Wt < < G < e e e < fn <
AP AR~ Aos A< AP AR Bo< AN R ST G DB WD o, o« o< o CPo< it it
) aabaab el T P Y SR 8 SE 22 T 2 ¢ 1¢ X 32 ¥ ¢ Y O X
4‘ < < A it e P bt s A0 e < wPo< ’ Pt s ol @< DA T <

Figure 3.1: Results for the marine database.

3.2 Bulls-eye test

Apart from the qualitative assessment presented in the previous section, more experiments
quantitatively assessing the method were conducted. The presented methodology was
evaluated quantitatively by performing the bulls-eye test on the MPEG-7 CE-shape-1
part B dataset [18], a widely used evaluation method for shape matching methods. The
shape database for this experiment consists of 70 categories of 20 shapes each, for a total
of 1400 shapes. There are many types of shapes including faces, household objects and

other human-made objects, animals, and some more abstract shapes.

The mpeg7 bulls-eye test is performed as follows: it is assumed that the shape match-

ing method can rank all the shapes in the database according to their similarity with a

44

kbbbt
0080000008000 00000 S
bbb bbbhbbbbbbbbbddd
C & 2 o 2 & S o o o & oF 2F 2F o oF ZF o o o
B-bbbbbbbbbbbbbbbbbbbs
4868600606000 a8088a88
"'Rad N A A A idai i Eidiiiiaina
bbb bbbbbdbbbbbbbbbbbdbdbs
' d 4 d d d 4 d 0 d 4 44 444444
EEEEEEEEEEEEEEEEEEESESSs
a0
N R R R R R L R
ey rere,rs
0060000 00000060000606006
> 000000
SO bbb b bbbl bbb b b
I P Y Y I I rIrrIrrr|

Figure 3.2: Results for the gestures database.

given query shape. Each one of the shapes in turn plays the role of the query, so the full
all-to-all comparison must be evaluated. Among the first forty results of each ranking,

the number of objects similar to the query is counted. The percentage of the correct

retrievals in these places is the final bulls-eye score.

The result of the present method for the bulls-eye test is 72.35%. The method parame-
ters are: 100 points per shape, 12 bins in the angular and 5 in the radial dimension, shape
context radius 2 (this refers to sizes after the scale normalization) and small radius .125,
thin plate spline regularization parameter A = 1 as stated earlier and insertion/deletion
cost for the cyclic matching manually chosen to be 1.5. The cyclic matching cost is only

taken into account, not utilizing the TPS cost (I; = 1 and Iy = 0). This set of param-

45

eters is used throughout all the experiments of this work. The presented method does
not natively handle mirroring, so the minimum of the costs to the original or mirrored
shape is used where necessary. Using the graph transduction method [45] with the values
proposed by the authors, the percentage is increased to 75.42%. As a comparison, the
claimed performance for [7] is 76.45%.

The result of the proposed method without graph transduction is presented in figures
3.6 and 3.7. The shapes at the top row are the queries, and for each query the first forty
retrieved shapes are displayed in the column in order of relevance.

A way to visualize the bulls-eye test results is presented in figure 3.3. This graph
essentially turns the rather arbitrary limit of forty best results discussed earlier into a
variable. The horizontal axis of the graph is this variable recall length, and the vertical
axis is the percentage of correct results among the examined ones. The first twenty points
of the curve follow a downward trend, which is then reversed. This happens because after
the twentieth point the denominator of the percentage (the number of possible correct
answers) remains constant, while the numerator still increases, since many shapes that
were not matched absolutely correctly in the first twenty places still happen to occur
close to this range. The reported score of the test is the fortieth point of this curve.

The lowest of the three dashed profiles corresponds to the results of the proposed
method. The first point of this profile denotes a performance of 100%, since each shape
has zero matching cost to itself. The second point denotes a performance of 98.5%,
meaning that the second best match for each shape (that is, after itself) is at almost all
the cases from the same category. However this number quickly drops to 66% at the first
20 matches, and only increases to the reported value of 72.35% for the first 40 matches.
This is in contrast with the other dashed profile corresponding to transduction results:
the first twenty shapes already contain most of the relevant shapes, since the curve after
this point is almost flat.

Similar behaviour but with lower overall performance is observed when substitut-
ing the cyclic string matching algorithm of the proposed method with the Maximum
Weighted Bipartite Matching (MWBM). This is an attempt to evenly compare the pre-
sented method with the method proposed in [7]. The iterative scheme proposed in [7] is

not used in any of these results. The lower performance of this method (the proposed

46

1007~ — - — — Proposed
DA
L REAN

90 - RN Proposed with
[RN Gr. Tr. [45]
[N N

80 - SN
I B B Belongie
L \\\ \
L N \ -

0F \\////”’/ Belongie with

Gr. Tr. [45]

Figure 3.3: The bulls-eye performance of the method on the mpeg7 dataset as
a function of the recall depth. The lowest of the dashed profiles corresponds
to the original method, while the other corresponds to the result after graph
transduction [45]. The dotted profiles correspond to the same method with the
bipartite matching algorithm utilized in [7].

with MWBM instead of cyclic matching) can be partly attributed to the fact that this
algorithm cannot match correctly shape contexts that have been rotated according to the
local tangent as described in section 2.2.2.1. As shown in the graph, the bulls-eye score
of the proposed method with MWBM instead of cyclic matching is 67.8%, a figure that

increases to 74.3% after graph transduction.

3.3 Detection of articulation points in human figures

For the purpose of human joint detection, the system uses a set of model figures. Each one
of them is accompanied by hand-labeled points on it, indicating the positions of joints.
This constitutes the initialization of the system. Each figure that is provided to the system
for detection undergoes a comparison with each one of the model figures. The model with
the lowest score is picked as corresponding to the input. The TPS transformation between
the model and the input is subsequently used to warp the labeled control points on the

input image. This concludes the outline of the joint detection method, enabling the

47

estimation of a stick-figure that follows the pose of the observed human figure.

For experimental purposes with real data, images acquired by a camera in a realistic
situation should be used. However, the input of the methodology presented in section 2
is a shape as defined in section 1.1.1. The process that outputs shapes given raw images

as input is described in the following.

Figure 3.4: The five different model configurations for the right hand.

3.3.1 Preprocessing for figure extraction

Throughout all the joint detection experiments presented below, the image acquisition
was performed using the Dragonfly 2 camera by Point Grey Research [30]. The first
processing step, right after image acquisition is to segment the foreground objects from
the background, thus forming figures for further processing. For this work, the image
sequences were segmented using the method presented in [46]. The input to this method
is an image sequence, and the output is an image sequence with foreground marked as
white (grey level 255) and background as black (grey level 0). The method has the ability

to use another grey level value (in the implementation the value 127 is used) to indicate

48

shadows, and so anything that is not white is not of interest for the purpose of figure
extraction.

Briefly, this method utilizes a separate background model for each pixel. This model
uses Mixtures of Gaussians with a varying number of distinct Gaussian kernels. For each
frame, the mixture model is updated so as to “forget” old observed values, and adapt
to new permanent situations. The update rules for the Gaussian Mixture Model follow
the method presented in [38] and [16]. Also, in every update, the number of samples
that support each Gaussian curve are taken into account and the less supported ones are

discarded.

3.3.2 Edge extraction - Point selection

Each image of the sequence is treated separately, first by extracting edges. Although in
general the process of edge extraction requires time proportional to the size of the image
(one has to look at each pixel at least once), in the case of binary images this time can
be reduced to be proportional to the number of edge pixels (edgels). This number is
usually considerably smaller than the total number of pixels in the image. This speedup
can be achieved by exhaustively searching the pixels for an edgel, and then following this
edge. In the case that there exist more than one connected components on the segmented
image, the one with the largest area is selected for further processing. After a list of edge
pixels is formed, it is easy to select a fixed number of roughly equidistant pixels. These

pixels are the actual input to the method of chapter 2.

3.3.3 Model creation

As previously stated, the joint detection system needs labeled models. For this purpose,
a simple figure generator with four parameters was created. The four parameters are
the angles at each shoulder and elbow. Labeled points are automatically generated for
each figure. There are sixteen labeled points for each figure: ankles, hips, waist, neck,
shoulders, elbows, wrists and four control points for the head. Figures produced by this

generator are displayed in figure 3.4 along with marked points on them.

49

EYEIANANAS

3.3.4 Matching and annotation

The implemented system is initialized with labeled human figures as previously stated.
Specifically, five different poses for each hand are utilized, for a total of twenty five models.
The five poses for the right hand are displayed in figure 3.4. After the initialization, the
system processes each input image as already described to produce a shape. This shape
is compared with all the models, and the one that better matches the observed shape
according to the shape distance as defined in chapter 2 is selected. The thin plate spline
transformation that was calculated for the matching step is used to calculate the positions
of the labeled points of the matched model. This concludes the process, enabling the

estimations shown in figure 3.5.

3.4 Implementation and practical issues

Heavy use of morphological processing was necessary because the segmentation process
in some cases failed to output consistent results. Specifically, the segmented figures
displayed large holes, comparable in size to the figure itself, something that is evident in
image 3.5, even after the processing. The morphological operations that were used are
equivalent to heavy smoothing. However, smoothing is generally not necessary for the
proposed method, since it performs well in the presence of white noise. It can be argued
for the particular case that the shape is altered by the specific type of noise. The case
resembles occlusion, something that was not explicitly accounted for in the method. As
a conclusion, the method exhibits moderate tolerance to occlusion, but the performance

deteriorates as the amount of occlusion is increased.

51

ifwruhm jom JIPRFXRBATEXTOVRY
hifwruhml jom JIPRFXRBATEXTOVRY
(Wsrvmm oo JAR N AEBATEXTOMY
SWarnmmy jom YD L RBA-RXTO>™§

[

[

[

{

(= Wy = | sm JAPLEERBATRXTON
| =ylparnmml § o AP A RBE-XXT @
| =lpnrimmly | o= JRP AN EO+X XTI
| =wWnrrumr = | o= JRPLAEXHOB+XXTO
t*#h*mﬂ-¥!*ﬂliﬂﬁ***'V+@*Ai
{
\
|
A
)
\
\
[
|

llllil!!l
4
¥
'
i
1
|
"
\
)
-
o
s
A
X
*
*
[]
a
+
*
*
4
L
3
3
L

4
e it aramr =y | om § CWTFRMOON K AT
JERAL RIS J g B ST Ry O
—o Mo =y | o [AWS X OBAGKA
e AW | oo X BAKKI® § X MK
- Fearitymi | an JOBNEXTAV XK XY@
i i mE | oo IRDPTEFOVAXEX+OTRD
i Fariammi | om S KO AT HOL XA K TOL A
|k B mB} 4o SHIAKKKI AXESAOT™ S
[~miWe} o Tmera XU KXBY XX XA ine
Ay P PP Y PPN P Toey I IOX R S 1Y
Hi-—=sboanapaeea®é™it XOBECK, o+ w
Lol =maRetmaT e XPHitXVOXX LR §ale
Ab=) | ¥halmad| «m=NoRhkARVOKAA+ET A
LAY~ | ¥ Ra LW i | emo kg kiKIOKNEL Ot ue
(323 P oS L AR AW AR A2 S Y2 ad KA 2 0 £ X 12 1)
IR eSS I Y R S A S T T T T Y

00000000

AP P TPV TP)

MEIIBIIVEIDIID
e scccccccce

A K AN X I e e e e K He 96 B mc meomem N N
DD oo e e i o e e B B B B . 0 3 0 0 O O

HE P CSOHAKALCAlTrrIrIYSy
NONTNASNLNNNINN NSNS NSNS

80000000 000000000000000000
AR AP AN ALY (AP -HA-dAA ¢ L))y

[]
14
s
v
-
§
I
..,
=)
|
%
$
',.
J
b
]
)
*
[2
*
L
.»
o
€
-
*
¥*
3
+
@
X
~
)

OF ko = dXmE | bmmn=F dMURKOORK AV ST §
$THV ol m | maW o PROEK LRI IR RAOTRS
IR R PRI M P TS ¢ X) S L R Y R
BYEDbr=mia Bl r [| meem WA ARBIKTHL 6L 5O
birOn(=latelf s onmdhlLikVvekitlSTRa
bA+Bi =Moo nB s A IVOXKLXAG+RO
$TAP o= ol {Nofaydand®rkiAeOLXCoNnR@®
S B P e T D LI I e
GAX D+ (\ KB | # | RromoE@XAIVERAKAITAS
bhroimmalBalhmbme =l @K LEVOKE XL PR
T POEEPNS T T R 2 T OO T R

Figure 3.6: Visualization of the mpeg7 bulls-eye test results part 1

52

20X BTV —RPVHONI-CER—=$ LT\ PR AL~
X BTV —RPIYNOVI-COER—=§ L QT PR L2~
~oX ! &3Y i RPNV O-DBR—=@ LOIJa\PA KL+ 2o—
el 20 NE T S it llaond LART A L2 Ve R EL 3 Eo
=341 STV BIVYHNO-O)=EM\ =9 (= /O Rhi=»—
el L AR TSGR 1 L Aol Lalolg TRART EA N ond DX T L Sols
~0%) 4Yr—BPYAN@-N~BA\ = LW (=—@ & V=N
FB¥ 1 3T r Ta)PYNNS-)=-IR— =g L®J= | PrHhtamw—-
o RS Dl § R ulof Lotaiad 3 Sl B 22l NN 22 Tl Ains
=~ kol Tr (RPN =ER— = L P I=~—@ % 4 =NV~
~Q¥=aBY > 2 PYNOQI-O-ER—=w B =—0O0 & { »\—

= 8*+-69Tr a)PYNNé- N~ EN—=$ LB o=—@ 4R+ =S
1841\ SADONO o) | IM—=@ LWt —@ KA —
aal LS SEEST YR AL Tl LAR T R4 Sl ol Ba R Lot
«34L- a3 —HPVYTOITO(ER— = O \a—@TRHM=~—
~AX T &Y | —mpOomor (=R LPO=—@ RM>~>—
| B+ adI=-TadOANI-OIVvER— =@ P (w—@ 1R Mare—
S LI Sl PL Faeldorall Tt Ral g Sl Nk ¥ £ 0 2og

=%/ aRTY-THIYNROA-\—kM-n@gi®(=—0@ | thee|
| AT SRTIN- APV RQ G-t | =920+ -0T Ewreo—
~BAVNSRI| | *BVHNONI—OotN—=@xPs\ P i iBro—
\ A= PR [~aad U rc=lir—w@g@c=\) s Eoeas—
~l+-Ph% | 22§DVl K/ =@NE />~) 2 PH=e\
LON <G | -QPIACITOVAR =@ rPO= ") wEBA=S |
*B4—-—@R37 P8I \ér AL PN =@MOeI| P BN=e|
bl £) Pl B K E AT NEORE L AN 171 [Lo e R £ 3 2.0
—0%-ARG | — S4B TAVEPR-L@XAEID~—@wdone |
el et 2 1%l L1 DL ARAL LAk Il T hdad B & totnd]
ML /RRTI—PIINBOT OB U\ =@B¢N="0"EKi=] |
~Q4— AR/ \28B"O® | AR —moNné | +—@wEA+A)\
=Y [ARTN—9mahN e-NLBu—~ | 9GO~ D+ JPme—
A Yk S A AR AN LA T LA E LAY IR Lt |
~AXSART\—CoIN /o= SPi—anlts=—@f N Nae |
~W0k—4RE2 | /¢ AROO A AN—2@%ké™=\ ¢ kdorn—-
~@4—-ARAIN\0 0406 TU=»EAM— | @Fd>—@Enwe|
bt SIS S Sl NI L b dd YERE RE T Ot ot
~H¥%X - 2T\ IO O@a | N - A =— @Y T Haea—

=kl | —StBWOGO NEBU— | Qi dr——ON¥ELAnre |
s ~@IN N, QAdd@P TNUAR W | | @L@2=\ D %D hkre—
s | PR-——Qalwd® [DFRv—=2@wéd = B-@Nan|
el & BR8] P 2 1 Bl 1 ALY L ol N LS ol Vg £ 2 8 A

Figure 3.7: Visualization of the mpeg7 bulls-eye test results part 2

53

Chapter 4

Discussion

The method proposed by Belongie et al. in [7] utilizes the information that shape contexts
capture regarding local shape similarity. Under the assumption that the shapes of interest
are well described by a single closed contour, an extra piece of information is available for
use. This is the global order of the points on the contour. Belongie et al. use Maximum
Weighted Bipartite Matching (MWBM) as the matching method [7], which does not
take into account any ordering information. Enforcing the constraint that the points of
each shape are matched according to their relative order demands a different matching
method. As already described, the cyclic string matching method presented in [36] fulfills
the requirements.

This decision reflects the basic assumption made about shapes, namely that each
shape consists of a single closed contour. The method performs well when this assumption
holds, but the shapes handled correctly using MWBM may consist of more contours. As
exhibited in the experimental sections of [6], this feature is useful since many real-world
shapes consist of more than one contour.

The computational complexity of the presented method is dominated by the matching
step. Assuming that the number of points of each shape is n', the computations of the
shape context descriptors and of the cost matrix C' are both O(n?). The cyclic string
matching employed in this work has a computational complexity of O(n?log(n)), while the
MWBM is at the order of O(n?log(n) +nE) = O(n?) (for the case in study, the number
E of edges in the graph is O(n?)). The final warping step has also a complexity of O(n?).

IThe extraction of these points is also a runtime consideration as discussed in sections 3.3.1 and 3.3.2.

54

This difference of complexities is justified since the MWBM has a larger search space
than the cyclic string matching. Notice also that these complexities are not necessarily
lower bounds for the respective problems.

The theoretical time complexity advantage of the method can also be a practical one.
The implementation used for the presented results is not optimized for speed, yet the
system can perform joint detection at a rate that was higher than one frame per second,
that is, 25 comparisons per second. The processing time for the edge extraction at each
frame was comparable to the time required for all the comparisons. This means that an
implementation explicitly designed to perform this task in real time is feasible.

The properties of the discussed method are:

e Translation invariance. The method is fully translation invariant since all measured

distances are relative to the position of a point on the shape.

e Rotation invariance. The method is robustly rotation invariant for the same reason

as above: all measured angles are relative to the local tangent.

e Scale invariance. The method is partially scale invariant, however there is room for

improvement in this domain.

It should be noted that the method is mathematically invariant to these three trans-
formations (similarity transformations). A set of n points undergoing only similarity
transformations will have precisely 0 distance from the original shape (using the present
method). Practically, even in the case of “similar” (in the sense of similarity transfor-
mations) shapes, the actual compared points may be slightly different if they occur as a
sampling of an edge map. In any case however, the distance between “similar” shapes will
be quite small. In practice, for the cases of interest, similarity transformations are not
the only type of distortion that is observed. In the presence of more complex distortions,
the method is invariant to translation, robust to rotation, but has room for improvement

in the scaling transformation.

e Affine transformation invariance. The general projective transformation is not ex-
plicitly handled, however the nature of the descriptor makes the method robust to

small amounts of affine transformation.

%)

e Occlusion handling. Small amounts of occlusion are handled adequately, however
the performance quickly deteriorates as the occlusion size grows. This type of de-
formation essentially affects the rough scale computation and the contour sampling
process. These estimations are the basis of the whole method, and so the method

is sensitive to occlusions.

e Noise handling. The nature of the descriptors makes the method robust to small
amounts of noise, and the performance deteriorates gracefully with the amount of

noise.

e The method does not match mirrored shapes. If this is desired, one has to compare
the shape two times: one time as usual, and one after mirroring one of the shapes.

The final match will then be the one with minimum distance between the shapes.

e It should be also noted that the proposed method cannot be used for partial match-
ing. Even if a subset of the points has identical shape (under similarity transfor-
mations), the method will not be able to locate this similarity unless the common

subset is actually the biggest part in both shapes.

In the introductive chapter of this work, the issue of affine transform is discussed. The
presented method exhibits reasonable robustness but is sometimes prone to the problem
exhibited in figure 1.1. The output of the proposed method contains an estimation of the
affine transformation that roughly aligns the shapes (the linear part of the TPS transfor-
mation). It is possible to decompose this linear map and use the ratio of its eigenvalues as
an extra measure of similarity. The ratio will be close to one for similar shapes, but large
for spurious cases like the one of figure 1.1. Also, in the case that full rotation invariance
is undesirable, one can either omit the derotation step in section 2.2.2.1, or extract and
penalize the rotation from the linear part of the TPS transformation.

The properties of the proposed method as a comparison function are discussed below.
One can view the result of the proposed method (or any other shape matching method
that estimates a distance between the compared shapes) as a mapping from the space of

pairs of shapes to the positive reals. Using the definitions of this work, the mapping can

56

be written as a function comp:
comp : R x R — R,

while by restricting the first argument of this function to a given shape sh; the function
compy (sh) = comp(shy, sh)

comp, : R*™ — R,

is derived. This function represents the final value d that will be the result of the process
of comparing a given shape sh with the specified shape shy; and can be studied for its
properties. An important property of this function is the level set of comp, for varying
values of the distance d. Level set of a function f on a parameter vector x for a value
[is defined to be the set {x;|f(x;) = [}, essentially denoting the contour line(s) of the
function f (given that f is smooth enough to form lines). In the case under study, the
level set for a given value d is the set of all shapes that yield distance d to the shape sh;.
This set is interesting because it allows us to understand the behavior of the comparison
method under consideration.

The case d = 0 defines the set of all shapes that are “identical” to the shape sh;. As
already stated, this set contains all the shapes that are rotated, translated and scaled
versions of sh;. For small perturbations of the points that comprise the shape, it is
possible that every shape context does not change at all (for every computed shape
context, the points that fall in each bin remain the same). The matching cost will then
be again 0, as in the case of identical shapes. However, the TPS energy will not be 0 any
more, and so, unless the parameter /5 is set to 0, the method will yield 0 distance only in
the case that the compared shape sh is the shape sh; under a similarity transformation.

Another interesting case occurs for small values of the distance d, defining a level
set of shapes that are close to sh; but not identical under similarity transforms. The
function cost; is not smooth, since it has a discrete step, namely the establishments
of correspondences between the compared shapes. This makes the analysis of the level
set, under consideration non-trivial. However, it is reasonable to assume that locally
transformed versions of shy with different specific transformations can belong in the set
under discussion.

The case of large values for d does not pose so much interest, since the set of shapes

57

that are dissimilar to sh; is very large. Many different shapes with no apparent similarities

can belong in a given level set of sh;.

4.1 Future work

An important issue that remains to be resolved is the automatic determination of the
insertion/deletion cost. A fixed value was experimentally estimated for all the experi-
ments. As already mentioned, it might be possible to devise a method that adjusts this
cost as a function of the matching matrix. However, it remains to be tested whether such
a scheme can result in better matches and ultimately a better overall performance.
Another issue directly related to the previous one is that of the contour sampling.
It proved sufficient to extract the contour of a shape, and then select the required fixed
number of points at roughly equal distances. However, one can reasonably argue that
such a selection is not optimal. The same holds for the case of the MWBM, but it is even
more important in the cyclic DTW case. Assume that a similar part of two shapes is
for some reason unequally sampled (bad scale estimation and occlusion can actually have
this effect). The cyclic matching algorithm will have to use insertion and/or deletion
operations to match these similar parts, adding unnecessary cost to this matching. It
can be argued that this matching may still have the lowest cost, but the nature of the

problem makes it difficult to be certain about such a claim.

58

Bibliography

1]

4]

(6]

T. Adamek and N. O’Connor. A multiscale representation method for nonrigid
shapes with a single closed contour. Circuits and Systems for Video Technology,

IEEE Transactions on, 14(5):742-753, May 2004.

N. Arica and F. Vural. A perceptual shape descriptor. Pattern Recognition, 2002.
Proceedings. 16th International Conference on, 3:375-378 vol.3, 2002.

A. R. Backes, D. Casanova, and O. M. Bruno. A complex network-based approach
for boundary shape analysis. Pattern Recognition, 42(1):54 — 67, 20009.

R. H. Bartels, J. C. Beatty, and B. A. Barsky. An introduction to splines for use in
computer graphics € geometric modeling. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1987.

R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of de-
formable shapes. Vision Research, 38:135-143, 1998.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24:509-522, 2002.

S. Belongie, G. Mori, and J. Malik. Matching with shape contexts. In IEEE Work-
shop on Content-based access of Image and Video-Libraries, page 20, 2000.

F. L. Bookstein. Principal warps: thin-plate splines and the decomposition of de-
formations. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

11(6):567-585, 1989.

99

9] Y. Chi and M. K. H. Leung. A general shape context framework for object identifi-
cation. Comput. Vis. Image Underst., 112(3):324-336, 2008.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, 2 edition, September 2001.

[11] R. da S. Torres and A. Falcyo. Contour salience descriptors for effective image

retrieval and analysis. Image and Vision Computing, 25(1):3 — 13, 2007. SIBGRAPL.

[12] Y. Ebrahim, M. Ahmed, W. Abdelsalam, and S.-C. Chau. Shape representation and
description using the hilbert curve. Pattern Recogn. Lett., 30(4):348-358, 2009.

[13] Euripides Petrakis. Shape Datasets and Evaluation of Shape Matching Methods for

Image Retrieval, January 2009. http://www.intelligence.tuc.gr/ petrakis/.

[14] P. Felzenszwalb and J. Schwartz. Hierarchical matching of deformable shapes. Com-
puter Vision and Pattern Recognition, 2007. CVPR °07. IEEE Conference on, pages
1-8, June 2007.

[15] A. Frome, D. Huber, R. Kolluri, and T. Bulow. Recognizing objects in range data
using regional point descriptors. In in Proceedings of the European Conference on

Computer Vision (ECCYV), pages 224-237, 2004.

[16] E. Hayman and J. olof Eklundh. Statistical background subtraction for a mobile
observer. In In Proceedings ICCV, pages 67-74, 2003.

[17] D. D. Hoffman, W. Richards, A. Pentl, J. Rubin, and J. Scheuhammer. Parts of
recognition. Cognition, 18:65-96, 1984.

[18] S. Jeannin and M. Bober. Description of core experiments for mpeg-7 motion/shape,

1999.

[19] D. G. Kendall. Shape manifolds, procrustean metrics, and complex projective spaces.

Bull. London Math. Soc., 16(2):81-121, March 1984.

[20] L. J. Latecki, V. Megalooikonomou, Q. Wang, and D. Yu. An elastic partial shape
matching technique. Pattern Recogn., 40(11):3069-3080, 2007.

60

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

V. 1. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Technical Report 8, 1966.

H. Ling and D. Jacobs. Shape classification using the inner-distance. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on, 29(2):286-299, February 2007.

S. Loncaric. A survey of shape analysis techniques. Pattern Recognition, 31:983—

1001, 1998.

D. G. Lowe. Object recognition from local scale-invariant features. In ICCV ’99:
Proceedings of the International Conference on Computer Vision-Volume 2, page

1150, Washington, DC, USA, 1999. IEEE Computer Society.

F. Mokhtarian, S. Abbasi, and J. Kittler. Robust and efficient shape indexing
through curvature scale space. In In Proceedings of British Machine Vision Confer-

ence, pages 53-62, 1996.

G. Mori and J. Malik. Estimating human body configurations using shape context
matching. In ECCV °02: Proceedings of the 7th European Conference on Computer
Vision-Part 111, pages 666—680, London, UK, 2002. Springer-Verlag.

G. Mori and J. Malik. Recognizing objects in adversarial clutter: breaking a visual
captcha. Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, 1:1-134-1-141 vol.1, June 2003.

E. Mortensen, H. Deng, and L. Shapiro. A sift descriptor with global context. Com-
puter Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, 1:184-190 vol. 1, June 2005.

T. Pavlidis. A review of algorithms for shape analysis. Computer Graphics and

Image Processing, 7(2):243-258, 1978.

Point Grey Research, Inc. Imaging Products - Dragonfly2, January 20009.
http://www.ptgrey.com/products/dragonfly2/index.asp.

Z. Rao, E. Petrakis, and E. Milios. Efficient retrieval of deformed and occluded

shapes. volume 4, pages 67-71 vol.4, 2000.

61

[32] M. D. Rodriguez and M. Shah. Detecting and segmenting humans in crowded scenes.
In MULTIMEDIA °07: Proceedings of the 15th international conference on Multi-
media, pages 353-356, New York, NY, USA, 2007. ACM.

[33] P. J. Rousseeuw and C. Croux. Journal of the American Statistical Association,

88(424):1273-1283, December 1993.

[34] H. Sakoe. Dynamic programming algorithm optimization for spoken word recog-
nition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26:43—49,
1978.

[35] H. Sakoe and S. Chiba. A dynamic programming approach to continuous speech
recognition. In Proceedings of the 7th International Congress on Acoustics, Budapest,

1971.

[36] F. Schmidt, D. Farin, and D. Cremers. Fast matching of planar shapes in sub-cubic
runtime. Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1-6, October 2007.

[37] 1. J. Schoenberg. Contributions to the problem of approximation of equidistant data
by analytic functions. Quart. Appl Math. 4, pages 45—49 and 112-141, 1964.

[38] C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for real-

time tracking. volume 2, page 252 Vol. 2, 1999.

[39] C. J. Taylor. Reconstruction of articulated objects from point correspondences in a

single uncalibrated image. Comput. Vis. Image Underst., 80(3):349-363, 2000.

[40] R. Torres, A. Falcao, and L. Costa. Shape description by image foresting transform.
Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on,
2:1089-1092 vol.2, 2002.

[41] R. C. Veltkamp and M. Hagedoorn. State-of-the-art in shape matching. Technical

report, Principles of Visual Information Retrieval, 1999.

[42] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-

dimensional time-series with support for multiple distance measures. In KDD °03:

62

[43]

[44]

[45]

[46]

Proceedings of the ninth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 216-225, New York, NY, USA, 2003. ACM.

G. White and R. Neely. Speech recognition experiments with linear prediction, band-
pass filtering, and dynamic programming. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 24(2):183-188, April 1976.

A. Wu, P. Tsang, T. Yuen, and L. Yeung. Affine invariant object shape matching
using genetic algorithm with multi-parent orthogonal recombination and migrant

principle. Applied Soft Computing, 9(1):282 — 289, 2009.

X. Yang, X. Bai, L. J. Latecki, and Z. Tu. Improving shape retrieval by learning
graph transduction. In ECCV (), pages 788-801, 2008.

Z. Zivkovic. Improved adaptive gaussian mixture model for background subtrac-
tion. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on, 2:28-31, August 2004.

63

