
Cosmic Structures in Alternative Gravity
Models

By

Dialektopoulos F. Konstantinos

under the supervision of

Tomaras N. Theodore

Institute of Theoretical and Computational Physics
University of Crete

A master thesis submitted to the University of Crete
in accordance with the requirements of the degree of
Masters of Science in the Faculty of Physics.

June 2015





Abstract

The present thesis is a study of cosmic structures in modified gravity models. In par-
ticular, we are interested in Brans-Dicke like, scalar-tensor theories in the presence
of a positive cosmological constant Λ. We discuss the validity of the no-hair theorem
in the context of such theories. We first prove that regular, stationary black-hole
solutions exist if and only if the scalar field is constant and the Brans-Dicke pa-
rameter, ω, is infinite. These solutions coincide with the General Relativity ones.
We also prove perturbatively that, in the absence of the stationary cosmological
horizon, black-holes exist with non-trivial φ−hair. In addition, it is shown that the
presence of a stationary cosmological event horizon rules out any regular spherical
stationary solution, appropriate for the description of a star. Thus, to describe a
star one has to assume deviation from de Sitter asymptotics. Under this assumption
generic cosmic structures are studied perturbatively and shown than only for ω > 0
or ω . −5 their predicted maximum sizes are consistent with observations. Fi-
nally, we use the perturbative solutions to solve numerically the full (unperturbed)
equations and calculate the maximum turnaround radius of different structures, for
different values of ω.

Περίληψη

Η παρούσα εργασία είναι μια μελέτη κοσμικών δομών σε τροποποιημένα βαρυτικά μον-

τέλα. Συγκεκριμένα, ενδιαφερόμαστε για θεωρίες τύπου Brans-Dicke που έχουν ένα
βαθμωτό και ένα τανυστικό πεδίο με την παρουσία μιας θετικής κοσμολογικής σταθε-

ράς Λ. Μελετήσαμε την εγκυρότητα του θεωρήματος no-hair στο πλαίσιο αυτών των
θεωριών. Αρχικά, αποδείξαμε ότι ομαλές, στάσιμες λύσεις για μαύρες τρύπες υπάρ-

χουν μόνο αν το βαθμωτό πεδίο είναι σταθερό και η παράμετρος Brans-Dicke, ω, είναι
άπειρη. Οι λύσεις στην περίπτωση αυτή, συμπίπτουν με αυτές τις Γενικής Σχετικότη-

τας. Αποδείξαμε επίσης, ότι διαταρακτικά και ελλείψη ενός στάσιμου κοσμολογικού

ορίζοντα, υπάρχουν μαύρες τρύπες με μη τετριμμένη συνεισφορά από το βαθμωτό πε-

δίο φ. Επιπρόσθετα, δείξαμε ότι η παρουσία ενός στάσιμου κοσμολογικού ορίζοντα
γεγονότων αποκλείει κάθε ομαλή, σφαιρικά συμμετρική λύση, κατάλληλη για την πε-

ριγραφή αστέρων. ΄Ετσι, για να περιγράψει κάποιος ένα αστέρι πρέπει να υποθέσει ότι

ο χωρόχρονος δεν είναι ασυμπτωτικά de Sitter.Υπό αυτή την προϋπόθεση, μελετούμε
διαταρακτικά κοσμικές δομές και δείχνουμε ότι, για ω > 0 ή ω . −5, το προβλεπόμενο
μέγιστο μέγεθός τους είναι συνεπές με τις παρατηρήσεις. Τέλος, χρησιμοποιούμε τις

διαταρακτικές αυτές λύσεις για να λύσουμε αναλυτικά τις εξισώσεις και υπολογίζουμε

την μέγιστη πιθανή ακτίνα δομών, για διαφορετικές τιμές της παραμέτρου ω.
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Notation and Conventions

Symbol Meaning
gµν (gµν) metric (inverse) tensor

δµν = gµαgαν Kronecker delta
ds2 = gµνdx

µdxν line element
g = det(gµν) determinant of the metric tensor

ηµν = diag(−1, 1, 1, 1) Minkowski metric
Γαµν = 1

2g
αβ (gµβ,ν + gβν,µ − gµν,β) Christoffel symbols

Rα
βγδ = Γαβδ;γ − Γαβγ;δ + ΓαγρΓρβδ − ΓαδρΓρβγ Riemann curvature tensor

Rαβ = Rγ
αγβ = gµνRαµβν Ricci tensor

R = gαβRαβ Ricci (curvature) scalar
Gαβ = Rαβ − 1

2Rgαβ Einstein tensor
� = ∇µ∇µ = gµν∇µ∇ν box/D’Alembertian operator in curved spacetimes

κ = 8πG/c4 constant factor that appears in the action
dΩ2 = dθ2 + sin2 θdϕ2 2-sphere
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“When I heard the learn’d astronomer
When the proofs, the figures, were ranged in columns before me

When I was shown the charts and the diagrams, to add, divide, and measure them
When I, sitting, heard the astronomer, where he lectured with much applause in the

lecture-room,
How soon, unaccountable, I became tired and sick

Till rising and gliding out, I wander’d off by myself,
In the mystical moist night-air, and from time to time, Look’d up in perfect silence

at the stars.”

Walt Whitman
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Chapter 1

Introduction

In this chapter we will introduce the basic concepts of Einstein’s theory of relativ-
ity. We will define the action that describes the theory and derive the equations of
motion, we’ll discuss how the latter change if we add a cosmological constant and
provide some identities that follow the theory. Moreover, we’ll present why a mod-
ification of gravity is important and how is this possible. Finally, we will describe
the ΛCDM cosmological model, which nowadays is the most acceptable according
to observations and also we’ll introduce the notion of the turnaround radius and
calculate its maximum value in the framework of this model.

1.1 General Relativity
On November 1915, Einstein presented the General Theory of Relativity (GR) to
the Prussian Academy of Sciences1. The radical idea in this theory is that gravity is
not just an attractive force, as it was believed since Newton. Gravity is an intrinsic
property of the geometry of space-time and it arises from its curvature.

Einstein’s equations in vacuum can be easily derived, by varying the, very well
known, Einstein-Hilbert (EH) action with respect to the metric. If, in this action,
we add a matter action, we get the action of GR

SGR = SEH + Sm =
∫
d4x
√
−g

( 1
2κR + Lm

)
(1.1)

where κ = 8πGc−4. By varying this action with respect to the metric, we obtain
the Einstein’s equation under the presence of matter

Gµν = Rµν −
1
2Rgµν = κTµν (1.2)

where Tµν is the stress-energy tensor of the matter fields and is defined as

Tµν ≡
−2√
−g

δ(√−gLm)
δgµν

= −2δLm
δgµν

+ gµνLm . (1.3)

1The Royal Prussian Academy of Sciences was an academic academy established in Berlin on
11 July 1700, four years after the “Arts Academy”, to which “Berlin Academy” may also refer.
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14 CHAPTER 1. INTRODUCTION

Since the metric tensor is a 2-rank tensor, in d dimensions it contains d2 components.
Its symmetry constrains d(d − 1)/2 of them, thus ending up with d(d + 1)/2 inde-
pendent components. Hence the Einstein equations in 4 dimensions are 10. These
are not all independent and can be constrained with the four Bianchi identities,
ending up with 6 independent non-linear partial differential equations. The physical
interpretation the of equations (1.2) is that matter/energy, Tµν , tells space-time,
Gµν , how to curve and respectively space-time tells matter/energy how to move.

If we add by hand a constant term in the action (1.1), this will become

SGR = 1
2κ

∫
d4x
√
−g (R− 2Λ) + Sm (1.4)

and the corresponding equations will be

Rµν −
1
2Rgµν + Λgµν = κTµν (1.5)

This term has the meaning of a cosmological constant and if its value is positive it
explains the acceleration of the universe.

In order for the energy to be conserved, which is a physical requirement of every
theory, it has to be

∇µT
µν = 0 (1.6)

and thus from eq. (1.2)
∇µG

µν = 0 (1.7)
which yields also from the Bianchi identity

∇µR
α
βγν +∇νR

α
βµγ +∇γR

α
βνµ = 0 (1.8)

1.2 Modifying Gravity: why and how
Although Einstein’s theory is a very successful and well-tested theory, it could be
that it is not the final theory of gravity. The recent discovery of the accelerated
cosmic expansion suggests that our universe may be endowed with a positive cos-
mological constant Λ. If we assume a homogeneous and isotropic Universe in the
framework of GR (which we know from observations that is reasonable), we obtain
an equation for the scale factor a(t),

ä

a
= −4πG

3 (ρ+ 3P ) + Λ
3 .

2 (1.9)

Hence, if Λ is not positive, from the fact that the universe accelerates, we get
P < −ρ/3. This means that we have two options, either accept a positive Λ, or add

2This is the second of the two independent Friedmann equations. The other one is

ȧ2 + k

a2 = 8πG+ Λ
3

where k is constant throughout a particular solution, but may vary from one solution to another
and has to do with the shape of the Universe.
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an exotic component to the energy storage of the Universe with negative pressure.
This is called Dark Energy. But, even if we accept the existence of a positive
cosmological constant, we then face a problem with its value. The effective energy
density in Λ is

ρΛ = Λ
8πG = M2

plΛ ∼ 10−47GeV 4 ∼ (10−3eV )4 . (1.10)

but from quantum field theory we estimate a vacuum energy of

ρvac ∼M4
pl ∼ 1076GeV 4 . (1.11)

This large discrepancy in the value of the cosmological constant is called “fine-
tuning” problem and has led many researchers to pursue alternative explanations,
by modifying GR. Furthermore, best fit cosmological model, ΛCDM, which considers
GR to be the gravity theory that describes the Universe at all scales, suggests that
more than eighty percent of the matter content of the Universe, is “invisible”, or
even worse “unknown”, the so-called Dark Matter.

These two “strange things”, dark matter and dark energy, are the biggest prob-
lems of modern cosmology. There have been many attempts to modify gravity from
different points of view. Soon after Einstein’s presentation of the theory3, proposals
had been made (Eddington, Weyl, Kaluza-Klein etc.) to incorporate it into a more
general theory. Dirac was the first who proposed that Newton’s constant could vary
with time, because he realized that there was a relation between this and the ratio
of the mass and scale of the Universe. In the early ’60s Brans and Dicke, based on
this argument, formulated a new theory of gravity, by introducing a scalar field to
standard GR, and thus leading to what are today known as scalar-tensor theories.

Higher derivative and non-local theories of gravity, such as f(R), Hořava-Lifshitz
and Galileons were proposed (and are still of interest) as an alternative explanation
for the accelerated expansion of the Universe (for details see e.g. [1], [2], [3], [4]
and references therein). In addition to these, higher dimensional theories of grav-
ity, such as Kaluza-Klein, Randall-Sundrum, Dvali-Gabadadze-Porrati and Gauss-
Bonnet gravity are also models that have been proposed through time as alternatives
to GR. Finally, there are also attempts to alternatively explain the rotation curves
of galaxies by modifying the dynamics of Newton’s theory at small accelerations, by
introducing a new constant acceleration, under which Newton’s law change. This
was firstly proposed by Milgrom and is known as Modified Newtonian Dynamics
(MOND). Bekenstein generalised Milgrom’s idea, when he formulated a relativistic
covariant field theory, TeVeS, by introducing a tensor, a vector and a scalar field.
This theory has MOND characteristics in the weak acceleration limit and provides
a setting for constructing cosmological models [5], [6].

3At the time there was no need to modify gravity, unless someone wanted to incorporate it into
a more general theory. In fact, even Newton’s theory was very successful and continues to be used
as an excellent approximation of the effects of gravity in most applications. Einstein’s motivations
to formulate the theory of relativity were more philosophical and less scientific.
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Summarizing, what we mean by modifying gravity is any change of the following
properties: general covariance4, universal couplings to all matter fields5, as well as
satisfaction of the Einstein’s field equations6.

1.3 Turnaround Radius in ΛCDM
Let us now briefly review the ΛCDM model and also introduce the notion of the
turnaround radius of a structure.

The ΛCDM model is the so-called standard model of cosmology. It assumes
that, GR, in the presence of a cosmological constant (which is usually associated
with dark energy), is the correct theory of gravity on cosmological scales. Its suc-
cess in describing observations, such as the existence and the structure of the cosmic
microwave background (CMB), the large scale structure in the distribution of galax-
ies and the acceleration of the universe observed from supernovae, is remarkable.
It accepts the dark matter hypothesis and, in particular, it predicts the existence
of weakly interacting and slow moving particles which constitute the “cold dark
matter” in the universe (CDM).

From CMB observations we know that the whole universe was in a hot, dense
state approximately 14 billion years ago but, today it contains stars, planets, galaxies
and galaxy clusters. All these structures were formed from the fluctuations of the
primordial plasma in the very early universe. According to ΛCDM the structure
formation in the universe cannot last forever. Nowadays, since the dark energy
is dominant in the universe (ΩΛ,0 ' 0.73), structure formation should be almost
finished [7],[8].

The acceleration of the universe is caused due to the negative pressure of the
cosmological constant. From classical thermodynamics, we know that, a change
in volume dV requires work done equal to a change of energy −PdV , where P
is the pressure. The energy is equal to ρV , where ρ is the energy density and
thus in the “empty” universe, when the volume increases, the energy will increase
too [9]. Therefore, P is negative and specifically P = −ρ, which agrees also with
observations.

This negative pressure means that the effect of dark energy in the universe is
opposite to the gravitational attraction created by normal matter. On small scales,
this attraction is dominant, due to the mass while on large scales Λ causes repulsion.
As a consequence, there should be a region where these two opposite forces are
neutralized. The acceleration of a test particle in this region has to be zero and
thus, if this particle lies at rest outside that region, it will follow the expansion
of the universe due to Λ and if it lies inside, it will fall towards the center of the

4As general covariance is defined the invariance of the form that the physical laws have, under
arbitrary differentiable coordinate transformations. Since there exists no a priori correct coordinate
system, a covariant physical law should have the same form in all coordinate systems.

5This means that independently of the number of the degrees of freedom, whatever other
interactions may occur, the effect of gravity on the matter fields can only be through interactions
with the rank-2 tensor, the metric tensor.

6If the equations of the modified gravity are any other than the Einstein equations, we consider
the theory modified.
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mass shell. We call this unstable equilibrium position maximum turnaround radius,
because it gives a bound on the maximum sizes of the structures in the universe.

Let us calculate the maximum value of the turnaround radius in the ΛCDM
model. Consider a spherical mass M embedded in a de-Sitter universe with cosmo-
logical constant Λ > 0. The metric that describes the space-time is the Schwarzschild-
de-Sitter metric and is given by

ds2 = −F (r)dt2 + F−1(r)dr2 + r2dΩ2 (1.12)

where F (r) = 1 − 2M/r − Λr2/3 in units G = c = 1. The maximum turnaround
radius is given by the maximum of the norm of the timelike Killing vector field
(= F (r)), and thus

F ′(r) = 2M
r2 −

2Λr
3 = 0⇒ (1.13)

rta =
(3M

Λ

)1/3
. (1.14)

For a more thorough derivation of this formula as well as for observational tests of
this bound, see [10], [11] and [12].





Chapter 2

An alternative theory of gravity:
Brans-Dicke theory

Brans and Dicke proposed a more general theory of gravity than this of Einstein,
in order to be more satisfactory from the standpoint of Mach’s principle. In this
chapter, we present the formulation of the theory they proposed, as well as the
generalisation of this in the presence of a cosmological constant. We discuss also the
limit in which this theory reduces to GR and derive the equations of motion for the
dynamical fields of the theory.

2.1 Brans-Dicke model

Newton claimed that inertial frames were determined by absolute space. But, since
absolute space is not observable, Berkeley and Mach suggested that, it is more
satisfactory to attempt to correlate the inertial frames with observable features of
the universe. In particular, what is known as Mach’s principle, says that inertial
are the frames that do not accelerate relative to the “fixed stars”, that is relative
to a suitably defined mean of all the matter in the universe. In other words “local
physical laws are determined by the large scale structure of the universe” [13].

If we assume the validity of this principle, it implies that kinematically equivalent
motions must be dynamically equivalent as well. For example [14], the fact that the
earth is rotating and the universe is at rest should be dynamically equivalent to
the fact that the universe is rotating and the earth is at rest, which is not true if
we assume absolute space. In addition, Mach’s principle implies that, the inertial
reaction experienced in an accelerated laboratory, relative to the distant matter of
the universe, is the same as a gravitational force acting on a static laboratory, due to
the presence of distant accelerated matter. Einstein tried to make general relativity
compatible with this idea but as he said [14, 15], he failed to do so. In fact, Einstein
showed that his field equations imply that a test-particle in an otherwise empty
universe has inertial properties. That is why Brans and Dicke (and others before
them) wanted to find a theory that is (more) compatible with Mach’s principle.

Sciama [16] and others, assuming that Mach’s principle is valid and using di-

19
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mensional arguments only1, showed that the gravitational constant G is related to
the mass distribution in a uniform expanding universe in the following way

GM

Rc2 ∼ 1 (2.1)

where M is the finite mass of the visible universe, and R its radius. From this
relation we can conclude that either the ratio M/R should be fixed by the theory,
or alternatively that the gravitational constant observed locally should be variable
and determined by the mass distribution about the point in question. As we’ll see
below, Brans and Dicke consider a varying G.

General relativity is described by the Einstein-Hilbert action which is given by

S =
∫
d4x
√
−g

(
R + 16πG

c4 Lm
)

(2.2)

where as we can see the gravitational constant G is directly coupled to the matter
Lagrangian. An action of this form, but with varying gravitational constant, would
change the geodesic equation of test-particles and possibly violate the weak equiva-
lence principle (for details see chapter (6)). Eötvos experiments verified the validity
of the weak equivalence principle (but not the strong), so the new theory has to be
compatible with it.

Brans and Dicke decided to add in the Lagrangian of GR, the Lagrangian of a
scalar field φ, after dividing by c4/16πG. This scalar field couples to the metric gµν
through a dimensionless constant ω which is, in principle, arbitrary. The action of
this theory is given by [17],

S = c4

16π

∫
d4x
√
−g

[
φR− ω

φ
(∇φ)2

]
+ SM [gµν ] (2.3)

where g is the determinant of the metric, R is the Ricci scalar and SM the matter
action. In this way, “we are allowing for a possible violation of the strong equivalence
principle, since gravity, the universal interaction of mass, can influence local physics,
not only through geometry, but also by changing the local universally coupled φ,
thus changing internal gravitational structure” [18].

Brans and Dicke decided to work on the so-called Jordan frame, in which the
scalar field φ, plays the role of a varying gravitational constant, like G−1. As in any
other scalar-tensor theory, there is also another conformally related frame, the Ein-
stein frame in which the scalar field plays the role of a source matter field. Although
the “real” frame is actively pursued and has been the issue of lively debates, which
are not yet settled (see the “classification of authors” in [19]), we are considering
only the case of Jordan frame, in which the theory was originally formulated and
in which the particles have constant mass and move on geodesics of the physical
metric, so that the physical stress-energy tensor is conserved [20].

The action (2.3) reduces to the Einstein-Hilbert action when ω goes to infinity.
In that limit, the scalar kinetic term becomes dominant, implying that the only
physically accepted solution for the scalar field is the constant one. Thus, φ = φ0 =
1/GN .

1They thought that since Mach’s principle has its origins in philosophy, it could be described
in the absence of a theory in a qualitative way only.
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2.2 Adding a Cosmological Constant
The generalisation of BD theory in the presence of a positive cosmological constant
implies

S = c4

16π

∫
d4x
√
−g

[
φR− 2Λ− ω

φ
(∇φ)2

]
+ SM [gµν ] (2.4)

As we can immediately see, in the large ω limit, the action becomes

S = c4

16π

∫
d4x
√
−gφ0

[
R− 2Λ

φ0

]
+ SM [gµν ]

= c4

16πGN

∫
d4x
√
−g [R− 2GNΛ] + SM [gµν ] (2.5)

If we compare with Einstein-Hilbert action with cosmological constant we obtain

GNΛBD = ΛGR = 10−52m−2 (2.6)

The above value for the cosmological constant is obtained by measurements based
on the standard model of cosmology, ΛCDM. From now on, we will work in units
GN = c = 1⇒ φ0 = 1.

By varying (2.4) with respect to (w.r.t.) the metric we obtain2

Gµν + Λ
φ
gµν = 8π

φ
TMµν + ω

φ2

(
∇µφ∇νφ−

1
2gµν (∇φ)2

)
+ 1
φ

(∇µ∇νφ− gµν�φ)

(2.7)
As we can see, the difference from the Einstein equations is that there is also a con-
tribution from the scalar field to the stress-energy tensor of the theory. Analytically
it is

Tµν = TMµν + T (φ)
µν , (2.8)

where
TMµν = − 2√

−g
δSM
δgµν

(2.9)

is the stress-energy tensor of the matter fields and

T (φ)
µν = ω

φ2

(
∇µφ∇νφ−

1
2gµν (∇φ)2

)
+ 1
φ

(∇µ∇νφ− gµν�φ) . (2.10)

Similarly, by varying the action (2.4) w.r.t. the scalar field φ we get2

R− ω

φ2 (∇φ)2 + 2ω
φ
�φ = 0 (2.11)

We contract the metric equations (2.7) to find the Ricci scalar

R = 4Λ− 8πT
φ

+ ω

φ2 (∇φ)2 + 3
φ
�φ (2.12)

2for the analytical derivation see the appendix (6).
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where T is the trace of the stress-energy tensor (2.9), and by substituting this into
(2.11) we obtain the equation of motion of the Brans Dicke field

�φ = 8πT − 4Λ
2ω + 3 (2.13)

We want now to solve this set of equations (2.7, 2.13) in order to see the behaviour
of the fields gµν and φ. But as we’ll see in chapter (4), this is a pretty difficult task.
We have to impose an ansatz for the metric, but even in this case it’s still impossible
to solve the equations analytically. We’ll discuss these in details later on.



Chapter 3

Generalization of the no-hair
theorem

In this chapter we present the generalization of the no-hair theorem in the context
of Brans-Dicke theory with a positive cosmological constant. In particular, we will
show that regular, stationary black hole solutions have necessarily constant scalar
field φ and ω = ∞, and thus coincide with the solutions of GR. Moreover, we
prove that if there exists a cosmological horizon, then the scalar field and the Ricci
curvature will diverge logarithmically on the horizon.

3.1 Basic tools and definitions
Let us first introduce the basic mathematical tools that we are going to use in this
chapter.

Symmetries of a space-time
A space-time is considered to be stationary when it admits a time-like Killing vector
field1, ξa. This means that there exists a coordinate system in which the metric com-
ponents can be time independent, or physically, that in this space-time an observer
can see no changes in the gravitational field. If, in addition, this Killing vector field
happens to be hyper-surface orthogonal, i.e. is orthogonal to a family of space-like
surfaces of constant time, the space-time is called static. A characteristic example
of a static space-time is the Schwarzschild solution, which in spherical coordinates
is given by

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2dΩ2 (3.1)

while a characteristic stationary metric is the Kerr metric which is given by

ds2 =
(

1− 2Mr

ρ2

)
dt2 − ρ2

∆dr2 − ρ2dθ2

−
(
r2 + α2 + 2Mrα2

ρ2 sin2 θ

)
sin2 θdϕ2 + 4Mrα sin2 θ

ρ2 dtdϕ (3.2)

1for the definition of a Killing vector field, see (6.3).

23
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where the length scales α, ρ and ∆ are given by

α = J/M, ρ2 = r2 + α2 cos2 θ, ∆ = r2 − 2Mr + α2 (3.3)

with J being the angular momentum of the mass M .
Spherically symmetric is the space-time whose isometry group contains a sub-

group which is isomorphic to the rotation group SO(3) and the orbits of this group
are 2-spheres. Alternatively we can say that it is a space-time whose metric is in-
variant under rotations. Similarly, axisymmetric is a space-time if there exists a
space-like Killing vector field ψa whose orbits are closed curves.

Stationary and axisymmetric metric
If the two Killing vectors ξa and ψa, that denote stationarity and axisymmetry
respectively, commute [ξ, ψ] = 0, we say that the space-time is stationary and
axisymmetric. This implies that we can always choose coordinates (x0 = t, x1 =
φ, x2, x3), such that ξa = (∂/∂t)a and ψa = (∂/∂φ)a are coordinate vector fields,
ending up with a metric that is independent of t and φ, gµν(xλ) = gµν(x2, x3).

A general 2-rank tensor is composed of 16 elements. If it is symmetric, as is
the metric, 10 of them are independent. Assuming also that the hypotheses of the
theorem (6.3) in the appendix are satisfied (which is happening in a wide range
of stationary, axisymmetric space-times of physical interest), we can choose the
coordinates x2 and x3 in one of the orthogonal 2-surfaces to ξa and ψa. So the
metric has a form

gµν =


−A B 0 0
B C 0 0
0 0 g22 g23
0 0 g23 g33

 (3.4)

where A = −g00 = −ξaξa, B = g01 = ξaψa, C = g11 = ψaψa and the 2× 2 block of
zeros expresses the orthogonality of ∂/∂x2 and ∂/∂x3 with ∂/∂t and ∂/∂φ.

Let us define now the scalar function ρ by ρ2 = AC + B2 which means that ρ2

is minus the determinant of the t−φ part of the metric. If we also assume ∇aρ 6= 0
we can identify ρ with one of the coordinates, say x2, of the 2-surface orthogonal to
the Killing vectors. We choose the other coordinate, z = x3, so that ∇az ⊥ ∇aρ.
So the metric takes now the form

ds2 = −A(dt− Edφ)2 + A−1ρ2dφ2 + F 2(dρ2 +Ddz2) (3.5)

where E = B/A. Thus we have reduced the unknown metric components to four
functions, A,E,D, F of two variables ρ, z and eq.(3.5) is the general form of a
stationary, axisymmetric space-time satisfying the hypotheses of theorem (6.3).

Energy conditions
As it is known, the distribution of the mass, momentum and stress due to matter
or any non-gravitational field is described, in Einstein’s equations, by the energy-
momentum tensor, T µν . However, the equations alone do not put any restriction
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on the kind of states of matter or non-gravitational fields. From a point of view,
this is not bad, because a good gravity theory should be independent of any as-
sumptions concerning non-gravitational physics, but, on the other hand, it is also
a weakness, because without some further criterion, the equations admit solutions
with un-physical properties. To eliminate these solutions we impose some energy
conditions to the theory. Mathematically speaking, these conditions are essentially
restrictions on the eigenvalues and eigenvectors of the stress-energy tensor. They
are all summarized in the following table [21].

Table 3.1: Energy conditions

Name Statement Conditions
Weak Tabu

aub ≥ 0 ρ ≥ 0 , ρ+ pi > 0
Null Tabk

akb ≥ 0 ρ+ pi ≥ 0
Strong (Tab − 1

2Tgab)u
aub ≥ 0 ρ+∑

i pi ≥ 0 , ρ+ pi ≥ 0
Dominant −T abub future directed ρ ≥ 0 , ρ ≥ |pi|

Congruences of null geodesics
Consider two neighbouring geodesics g0 and g1, each described by relations xα(t),
where t is an affine parameter. The geodesics can be either time-like, space-like or
null. We introduce an entire family of interpolating geodesics in the space between
g0 and g1. To each geodesic we assign a label s ∈ [0, 1], such that g0 comes with
the label s = 0 and g1 with s = 1. The vector field kα = ∂tx

α is tangent to the
geodesics, and it satisfies the equation kα∇αk

β = 0. It is easily proven that, there
exists a vector field ξα = ∂sx

α, which is tangent to the family of curves labelled by t
and parametrized by s (which are not geodesics in general). The physical meaning
of this vector field is that it represents the deviation vector between g0 and g1.

We can see at once that ∂skα = ∂tξ
α which can be written covariantly as

£kξ
a = £ξk

a = 0⇒ kβ∇βξ
a = ξβ∇βk

a . (3.6)

It is easy to see that ξαkα is constant along g0 and thus we can choose ξαkα = 0, i.e.
ξα is orthogonal to kα. We can see that g1 moves away from g0 with acceleration

D2ξa

dt2
= −Rα

βγδk
βξγkδ (3.7)

which is called geodesic deviation equation.
We define as a congruence of geodesics, a family of curves such that at each point

in an open region O in space-time, there passes one and only one curve from this
family. There are congruences of time-like and null geodesics. The case of space-like
geodesics does not require a separate treatment, as it is identical to the time-like
case and also less interesting from a physical point of view. Here we are going to
discuss only the congruence of null geodesics. We want to find the time evolution
of a congruence, or alternatively stated, to see how the deviation vector ξα behaves
in the region between two neighbouring geodesics in the congruence.
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As before, we consider kα = ∂λx
α to be the tangent vector field to the geodesics,

with λ an affine parameter. We also assume that kα is null. Furthermore, we
denote with ξα the deviation vector which is considered to be orthogonal to kα, i.e.
orthogonal to the geodesics, and also that its Lie derivative in the direction of kα
vanishes. These statements are mathematically translated as

kαkα = 0 , kβ∇βk
α = 0 , ξβ∇βk

α = kβ∇βξ
α , kαξα = 0 . (3.8)

Since we’ll be interested only in the transverse properties of the congruence, which
are determined by the deviation vector ξα, we’ll isolate the part of the metric, which
is transverse to the tangent vector. To do it, we introduce an auxiliary null vector
field Nα, such that kαNα = −1. Thus, the transverse part of the metric is given by

hαβ = gαβ + kαNβ +Nαkβ . (3.9)

We can easily verify that the relations

hαβk
β = hαβN

β = 0 , hαα = 2 , hαµhµβ = hαβ , (3.10)

are satisfied. From these we confirm that hαβ is purely transverse (orthogonal to
both kα and Nα) and thus two-dimensional. Sadly, hαβ is not unique, since Nα is
not uniquely determined by the null and the normalization conditions.

We wish now to determine the failure of the deviation vector to be parallel
transported along the geodesics and for this we introduce the tensor field

Bαβ = ∇βkα . (3.11)

such that
kβ∇βξ

α = Bα
βξ

β . (3.12)
From (3.8) we see that kαBαβ = 0 = Bαβk

β, but NαBαβ 6= 0, which means that, eq.
(3.12) has a non-transverse component that should be removed.

At first, we isolate the transverse part of the deviation vector in order to calculate
the transverse components of the relative velocity. Finally, we obtain

(∇β ξ̃
αkβ)∼ = B̃α

β ξ̃
β , (3.13)

where
B̃αβ = hµαh

ν
βBµν (3.14)

and the tilde (∼) denotes that is purely transverse. From eq. (3.9) we can write
(3.14) more explicitly

B̃αβ = (gαµ + kαN
µ +Nαk

µ)(gβν + kβN
ν +Nβk

ν)Bµν (3.15)
= (gαµ + kαN

µ +Nαk
µ)(Bµβ + kβBµνN

ν) (3.16)
= Bαβ + kαN

µBµβ + kβBαµN
µ + kαkβBµνN

µNν . (3.17)

Summarizing, eq. (3.13) describes the purely transverse behaviour of the null
congruence and the vector B̃α

β ξ̃
β can be interpreted as the transverse relative ve-

locity between two neighbouring geodesics.
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If we decompose now the transverse part of the tensor Bαβ, to its irreducible
parts, we get

B̃αβ = 1
2θhαβ + σαβ + ωαβ , (3.18)

where θ = B̃α
α is the expansion scalar, which is the trace part of B̃αβ and denotes

the fractional rate of change - per unit affine parameter distance - of the congruence’s
cross-sectional area, σαβ = B̃(αβ) − 1

2θhαβ is the shear tensor, the symmetric and
traceless part of B̃αβ and ωαβ = B̃[αβ] the rotation tensor, the antisymmetric part of
B̃αβ.

If there exists a tangent vector field such that, the rotation tensor vanishes, i.e.
ωαβ = 0, then the congruence is hyper-surface orthogonal.

The equation that describes the evolution of the expansion parameter θ with
respect to the affine parameter λ of the geodesics, is called Raychaudhuri’s equation
and is given by

dθ

dλ
= −BαβBβα −Rαβk

αkβ

= −1
2θ

2 − σαβσαβ + ωαβωαβ −Rαβk
αkβ (3.19)

We notice that the second and third terms are zero only when the tensors vanish.
Thus, since both the shear and the rotation tensor are purely transverse, it will be
σαβσαβ ≥ 0 and ωαβωαβ ≥ 0. From this, we conclude that if a congruence of null
geodesics is hyper-surface orthogonal, i.e. ωαβ = 0, the null energy condition holds,
i.e. Rαβk

αkβ ≥ 0, then the Raychaydhuri equation implies dθ/dλ ≤ 0, which means
that the geodesics are focused during the evolution of the congruence.

3.2 No-hair theorems
In this section we’ll describe the “no-hair” theorem and deviations from it, in the
context of GR as well as its generalization to Brans-Dicke-like theories with a cos-
mological constant and an arbitrary potential. In particular, we’ll show that

The black hole “no-hair” conjecture states that (see, for example, [22]-[23]) grav-
itational collapse reaches a stationary final state, characterized by a small number of
parameters [24]. Alternatively stated, all the black-hole solutions of the Einstein’s
equation in vacuum or in the presence of an electromagnetic field, which are station-
ary and asymptotically flat, can be described only by three parameters, their mass,
angular momentum and charge.

Therefore, black-holes are in general simple objects, whose geometry (exterior
to the event horizon) is a member of the Kerr-Newman family. The quantities that
characterize them are global charges, which can (at least in principle) be measured
far from the black hole event horizon. During the process of the formation of a black
hole (e.g. gravitational collapse of a dying star), an enormous amount of information
about the star which collapsed is being lost. Further progress in observational
astronomy and future gravitational wave detectors (e.g. LIGO, VIRGO) may even
be able to probe the validity of the “no-hair” conjecture for astrophysical black holes
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by verifying that the mass, angular momentum and quadrapole moment Q of the
black hole satisfy the relation Q = J2/M which holds for Kerr black holes.

This theorem, as we’ve already mentioned, has been proved under certain as-
sumptions, stationarity, asymptotic flatness, four-dimensional space-time and vac-
uum Einstein equations. If one of the aforementioned assumptions does not hold,
the theorem is not necessarily valid. For example, if a negative cosmological con-
stant is included, so that the space-time is asymptotically anti-de Sitter (AdS) and
not flat, then the event horizon of the black hole is not necessarily spherical, which
means that there could exist “topological” black holes (see for details [25, 26, 27]).

Brans-Dicke with a positive Λ
Hawking has proven [28] that stationary and asymptotically flat black holes in Brans-
Dicke theory (without a potential) are no different than in GR, i.e. they do not
support a non-trivial profile for the scalar field. This was extended [29], to a class
of f(R) gravity theories as well as scalar-tensor theories with ω = ω(φ) and generic
convex potential V (φ).

We are going to discuss the case where Λ > 0 in the framework of the Brans-
Dicke theory. Therefore, we assume a black hole surrounded by a stationary cos-
mological horizon. As we mentioned before, we’ll do our calculations in the Jordan
frame and we ’ll make no precise assumptions for the form of the asymptotic be-
haviour of the scalar field or the metric. We further assume that the space-time
is stationary, axisymmetric, torsion-free and with no naked curvature singularity in
the region between the black hole and the cosmological horizon. The trace of the
energy-momentum tensor on the right hand side of the equation (2.7) may have
several components. Firstly, conformally invariant matter fields like Maxwell, Yang-
Mills, conformal scalar or massless fermions, have T = 0. Each of the remaining
components will be assumed to be a perfect fluid with

Tµν = (ρ+ P )uµuν + Pgµν (3.20)

where uaua = −1. We consider the equation of state P = wρ with P being the
pressure and ρ the energy density of the fluid.

We assume that the components of the energy-momentum tensor satisfy the
weak energy condition: ρ ≥ 0 and since they are non-dark energy type, they also
satisfy the strong energy condition, which implies w ≥ −1/3. For non-relativistic
matter we have w � 1 and for radiation, w = 1/3, and finally we end up with
−1/3 ≤ w ≤ 1/3. Since

T = 3P − ρ = −ρ(1− 3w) (3.21)

it will always be T ≤ 0.
As for the geometric set up we are going to use, its details can be found in

[30] and [31] and references therein. It is motivated by the Kerr-Newman-de-Sitter
family of space-times.

Any stationary and axisymmetric space-time is endowed, as we mentioned in the
previous section, with two Killing vector fields ξa (time-like) and ψa (space-like),
which generate stationarity and axisymmetry, respectively. We assume that these
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two Killing vector fields commute,

[ξ, ψ]a = ξb∂bψ − ψb∂bξ = 0 . (3.22)

We assume that the 2-planes orthogonal to these commuting Killing vector fields
foliate the space-time.

For our convenience, we shall first construct a family of space-like hyper-surfaces,
by defining a vector field χa = ξa − (ξ · ψ/ψ · ψ)ψa, such that χaψa = 0 identically.
Then, it turns out that (e.g. [32] and references therein):

• χa is hyper-surface orthogonal and time-like in our region of interest, χaχa =
−β2 ≤ 0.

• χa is Killing and null in any compact β2 hyper-surface and thus any such hyper-
surface is a Killing horizon (has vanishing expansion, shear and rotation for
tangent null geodesic congruences).

• for our case we have two β2 = 0 hyper-surfaces, the smaller one is the black
hole and the larger one is the cosmological event horizon.

The form of the metric in this basis is

gab = −β−2χaχβ + f−2ψaψb + γab , (3.23)

where f 2 is the norm of ψa and γab is the metric of the integral sub-manifold or-
thogonal to both χa and ψa. Similarly, the Brans-Dicke scalar φ is also assumed to
be stationary and axisymmetric, i.e. to satisfy ξa∇aφ = 0 = ψa∇aφ, which implies
that χa∇aφ = 0 as well. Since both ξa and ψa are Killing vector fields, they have
vanishing divergence, so we have ∇aχ

a = 0.
In order to show that the scalar field φ is generically divergent on any stationary,

axisymmetric Killing horizon, we shall solve for it in an infinitesimal neighbourhood
of any Killing horizon, β2 = 0.

Now, by taking the trace of the eq. (2.7) we obtain

R = 4Λ− 8πT
φ

2ω
2ω + 3 + ω

φ2 (∇aφ)(∇aφ) , (3.24)

from which we conclude that if φ diverges on the horizon, the R will also diverge
and will lead to a naked curvature singularity.

We shall show below that solutions with these properties have necessarily con-
stant φ and exist only for ω = ∞. In other words, they reduce to solutions of
Einstein’s general relativity with a positive cosmological constant.

Indeed, using √−g = β
√
h, where h is the determinant of the metric hab of the

spatial hyper-surface orthogonal to χa, χa∇aφ = 0 and ∇aχ
a = 0, we obtain

�φ = 1
β
Da[βDaφ] , (3.25)

whereDa is the spatial derivative associated with hab. Thus, equation (2.13) becomes

Da(βDaφ) = β(8πT − 4Λ)
2ω + 3 . (3.26)
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We multiply this with eεφ (with ε = ±1), and integrate over the spatial hyper-surface
orthogonal to χa (say Σ) between the two horizons. We get∫

Σ
eεφDa(βDaφ) =

∫
Σ
βeεφ

8πT − 4Λ
2ω + 3∫

Σ
Da(eεφβDaφ) =

∫
Σ
βεeεφDaφD

aφ+
∫

Σ
βeεφ

8πT − 4Λ
2ω + 3∫

∂Σ
eεφβnaDaφ =

∫
Σ
βeεφ

[
ε(Daφ)(Daφ) + 8πT − 4Λ

2ω + 3

]
(3.27)

The surface integral is evaluated on the two horizons, where β vanishes, and na

is the space-like unit normal to the horizons. Then since β = 0 on ∂Σ, the left hand
side vanishes2 and we are left with a vanishing integral over Σ.

For 2ω + 3 > 0, we take ε = −1 in eq. (3.27). Given that the inner product
(Daφ)(Daφ) is space-like and hence always positive definite, T ≤ 0 and Λ > 0, the
integral is the sum of two negative-definite terms. Thus, the vanishing of the integral
over Σ implies ω →∞ and φ =constant. Similarly for 2ω + 3 < 0, with a choice of
ε = +1. Finally, for finite ω the scalar field and consequently the curvature scalar
diverge at the horizons [33].

If at least one of the horizons is not a true horizon, e.g. in the case of a normal
star or of a time dependent astrophysical black hole, the left hand side of (3.27)
will be non-vanishing and the scalar field cannot be argued to be constant. Let us
assume that outside such a stellar object, there exists a surface S, where the Brans-
Dicke field has an extremum. Then by (3.27) it becomes obvious that in between
S and the cosmological event horizon, φ is constant and ω = ∞. Now, for ω = ∞
the theory reduces to Einstein gravity, so that φ is constant inside S as well. Thus,
for finite ω and in the presence of a positive cosmological constant, the field φ of a
stationary non-black hole space-time must be monotonic.

We have concluded that for finite ω, φ necessarily diverges on the horizons (β2 =
0). We show next that its behaviour is φ ∼ ln β there. Let us define Za ≡ ∇aβ

2. It
satisfies χaZa = 0 = ψaZa. Thus, Za is one of the basis vectors spanning γab in eq.
(3.23). We recall that on any Killing horizon, we have

∇aβ
2 = −2κχa , (3.28)

where the constant κ, assumed non-zero, is the surface gravity, given by

κ2 = (∇aβ
2)(∇aβ2)
4β2 |β2→0 (3.29)

Let Z be a parameter along the vector field Za: Za∇aZ = 1. Then using eq. (3.29),
it is clear that infinitesimally close to the surface β2 = 0, we have

(∇aβ
2)(∇aβ2) = Za∇aβ

2 = dβ2

dZ
= 4κ2β2 (3.30)

which can be integrated to give

Z = 1
4κ2 ln β2 . (3.31)

2Clearly the same conclusion holds for more than one black hole horizons.
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With this, we shall now solve for the scalar field in an infinitesimal neighbourhood of
β2 = 0. We note that both χa and Za become null here as ∼ β2, eq. (3.28). Then we
write √−g = β2γ(x), where γ(x) is a non-vanishing and well behaved function. Let
Θa be a basis orthogonal to the near horizon equation of motion. This is essentially
the manifestation of the 1+1-dimensional dynamics close to a Killing horizon. Since
we are assuming stationarity, our theory becomes one dimensional.

Then using eq. (3.30),(3.31) in (2.13) it is easy to obtain

φ =
∫
dZ

4κ2

γ(x)

(∫ x

dβ2(x′)Γ(x′)
)

+ C1Z + C2 , (3.32)

with Γ(x′) ≡ 8πT−4Λ
2ω+3 γ(x′) and C1, C2 constants.

As β2 → 0, dZ = dβ2/4κ2β2 is unbounded infinitesimally close to the horizon.
Since Γ(x) is well behaved, the integral in (3.32) becomes∫

γ(x)dZ
(∫ x

Γ(x′)dβ2(x′)
)

= Z

γ(x)

(∫ x

Γ(x′)dβ2(x′)
)
β2→0

(3.33)

from which one concludes φ ∼ Z ∼ ln β2.

Generalization to Scalar-Tensor, Brans-Dicke-like theories
If in the action (2.4) we make ω a function of φ, ω = ω(φ) and also add an arbitrary
potential V (φ)3, eq. (2.13) becomes

(2ω(φ) + 3)�φ+ dω(φ)
dφ

(∇φ)2 + φ
dV

dφ
− 2V = 8πT − 4Λ (3.34)

If we now make a conformal transformation as

dψ ≡
√

2ω(φ) + 3d lnφ , Gαβ ≡ φgαβ , (3.35)

we go to Einstein frame, where eq. (3.34) becomes

�Gψ = U ′(ψ) ≡ 8πT − 4Λ
φ2
√

2ω(φ) + 3
+ V ′(ψ) , (3.36)

where φ = φ(ψ) as a function of ψ.
If we multiply both sides of the first equality of (3.36) with U ′ and integrate over

the spatial hyper-surface, orthogonal to the time-like Killing vector field (say Σ) we
obtain ∫

Σ
(U ′Dα(βDαψ) =

∫
Σ
U ′2 ⇒∫

Σ
(U ′′β(Dαψ)(Dαψ) + U ′2) =

∫
Σ
Dα(U ′βDαψ)

=
∫
∂Σ
βU ′nµDαψ , (3.37)

3The scalar field potential V (φ) constitutes a natural generalization of the cosmological con-
stant and may reduce to a constant, or to a mass term; it is often included in the action when
studying early universe or the present-day accelerated universe, as is customary for most scalar
fields in particle physics and inflationary theories [34].
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where, for the last equality, we have used Stokes theorem and nµ is the normal
vector to the boundary of Σ. The surface integral is evaluated between the horizons
where β vanishes. Then since β = 0 on ∂Σ the right hand side is zero, U ′2 ≥ 0
and (Dαψ)(Dαψ) is bounded and space-like, thus non-negative everywhere. Thus,
if U ′′ ≥ 0 is a local condition we conclude that ψ = ψ0 = const. and U ′(ψ0) = 0.
Let us see the different cases:

• For V = 0 the no-hair theorem is valid for arbitrary ω(φ), Λ ≥ 0 and T ≤ 0. To
verify this, we can write (3.36) in terms of the spatial derivative D, multiply
with e−ψ both sides and integrate by parts over the space between the two
horizons. Positivity of all terms in the resulting vanishing integral leads to the
conclusion that φ is constant and ω(φ)→∞.

• For Λ = 0 = T the no-hair theorem is always valid as long as V ′′ ≥ 0.

• However, once we switch Λ and/or T on, the validity of the theorem requires,
as we said, U ′′ ≥ 0, which restricts ω(φ). Thus the presence of Λ > 0 can lead
to hairy black holes even for T = 0 and V ′′ ≥ 0.

• Replacing Λ by generic dark energy with w < −1/3, does not modify our
conclusions provided there exists a cosmological horizon in that case as well.
However, although w < −1/3 implies repulsive effects, which is necessary for
the existence of a cosmological horizon [35], it is not known to be also sufficient.



Chapter 4

Solutions of BD Theory

In the beginning of this chapter, we will consider large ω, which agrees with astro-
physical and cosmological constraints [36, 37], and perturb the equations around
a Schwarzschild-de Sitter background, keeping linear terms in 1/ω to find an an-
alytical solution, for the dynamical fields. This solution will, of course, contain
undetermined integration constants which will be fixed by imposing some boundary
conditions in the next chapter. In the end of this chapter we will calculate the
maximum turnaround radius in the BD theory, which as we’ll see depends on the
boundary conditions.

4.1 Analytical Perturbative Solution
Let’s consider a static, spherically symmetric metric ansatz1 for the vacuum solution
(Tµν = 0)

ds2 = gttdt
2 + grrdr

2 + r2dΩ2

= −f(r)dt2 + h(r)dr2 + r2dΩ2 (4.1)

We will perturb the fields according to

gµν = ḡµν + 1
ω
δgµν , φ (r) = φ0 + 1

ω
δφ (r) (4.2)

where ḡµν = gSdSµν and φ0 = 1, while the SdS metric is given by

ds2 = −
(

1− 2M
r
− Λr2

3

)
dt2 +

(
1− 2M

r
− Λr2

3

)−1

dr2 + r2dΩ2 (4.3)

1Birkhoff’s theorem in general relativity [38] states that any spherically symmetric solution of
the Einstein’s equations in the vacuum must be static and asymptotically flat. Alternatively stated,
the Schwarzschild solution is the only static, spherically symmetric solution of the vacuum Einstein
equations. It can also be generalized to: any spherically symmetric solution of the Einstein-Maxwell
equations must be stationary and asymptotically flat (Reissner-Nordström electrovacuum solution).
In Brans-Dicke-like scalar-tensor theories, in order for the theorem to hold [39], the scalar field
has to be static and then the solution of the field equations can be different from Schwarzschild-de
Sitter. If this field is constant the theory reduces to GR and the Birkoff’s theorem is valid.
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This metric describes a spherical object embedded in a de Sitter space-time and
admits two Killing horizons at the vanishing points of the polynomial 1 − 2M/r −
Λr2/3. In general this polynomial has three real roots

rH = 2√
Λ

cos
(1

3 cos−1
(
3M
√

Λ
)

+ π

3

)
rC = 2√

Λ
cos

(1
3 cos−1

(
3M
√

Λ
)
− π

3

)
rH = − (rH + rC) (4.4)

with rH and rC to be the only positive solutions and thereby defining the two
horizons of the spacetime. For an analytical derivation see [31]. For 3M

√
Λ � 12,

the horizons are located at rH ' 2M and rC '
√

3/Λ.
The perturbed scalar equation (2.13) is

�̄δφ = −2Λ (4.5)

which can be easily solved to give up to an irrelevant additive constant

δφ(r) ' C1

rH
ln
(

1− rH
r

)
+
(

1 + C1

2rC

)
ln
(

1 + r

rC

)
+
(

1− C1

2rC

)
ln
(

1− r

rC

)
(4.6)

Assuming rH � rc and also that C1 � rc, we obtain

δφ(r) = C1

2M ln(1− 2M
r

) + ln(1− Λr2

3 ) (4.7)

which, in our region of interest, i.e. 2M � r �
√

3/Λ, can be further simplified to
give

δφ(r) = −C1

r
− Λr2

3 (4.8)

Let us now calculate the backreaction of this solution to the SdS metric. The
perturbed metric equations are given by

R(1)
µν = ∇µδφ∇νδφ+∇µ∇νδφ+ Λ

(
δgµν − g0

µνδφ− g0
µν

)
(4.9)

where R(1)
µν is the first order correction to the Ricci tensor and the solutions of these

equations are

δf(r) = 2M
r

(
C1

M
− C2

18M + 3C3

)
+ Λr2

3 (3C3 + 1)− 3C3 (4.10)

δh(r) = C2

9r −
2Λr2

3 (4.11)

The integration constants C1 and C2 can be fixed from the boundary conditions,
while C3 can be set to zero by time re-parametrization.

2which is true even for M ∼ 1017M� since Λ = 10−52m−2.
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Finally, the full solution (including the background) is given by

f(r) = 1− 2M
r

(
1 + 1

ω

(
C2

18M −
C1

M

))
− Λr2

3

(
1− 1

ω

)
(4.12)

h(r) =
(

1− 2M
r
− Λr2

3

)−1

+ 1
ω

(
C2

9r −
2Λr2

3

)

'
(

1− 2M
r

(
1 + C2

18Mω

)
− Λr2

3

(
1− 2

ω

))−1

(4.13)

Turn around radius
As we discussed in the first chapter the maximum turn around radius of a structure
is the distance at which the radial acceleration is zero [10], and corresponds to the
point where f ′(rta) = 0. From eq.(4.12) we obtain

rta =
(3M

Λ

)1/3 (18C1 − C2 − 18Mω

−18Mω + 18M

)1/3
(4.14)

or if we keep only terms of order 1/ω

rta =
(3M

Λ

)1/3 (
1 + 1

2ω
C2 − 18C1 + 18M

27M

)
. (4.15)

Obviously, this maximum bound becomes smaller or bigger, depending on the bound-
ary conditions, i.e. the values of the integration constants.





Chapter 5

Choice of Boundary Conditions

As we mentioned before in order to fix the integration constants we have to impose
some boundary conditions to the functions. Also to solve numerically the equations
some initial conditions have to be given. In this chapter we derive a solution in
the interior and exterior of a star. The exterior solution reduces to the weak field
solution, that Brans and Dicke derived in their original paper, for large ω. These
solutions are derived in the case where Λ = 0.

5.1 Exterior and Interior Star Solution
Let us consider a star at the surface of which we’re going to set the boundary con-
ditions. At first, we’ll find an exterior (≡ vacuum) solution for a static, spherically
symmetric metric and for the Brans-Dicke field. Afterwards, we are going to find
an interior solution for the metric and the scalar, considering the inside of the star
to be a perfect fluid. Finally, we will match the two solutions at the surface of the
star using Israel matching conditions.

We consider a static, spherically symmetric metric of the form

ds2 = gttdt
2 + grrdr

2 + r2dΩ2

= −e2Φ(r)dt2 + e2Ψ(r)dr2 + r2dΩ2 (5.1)

where dΩ2 = dθ2 + sin2 θdϕ2 is the 2-sphere. We also denote the scalar field as

φ = eχ (5.2)

where (as in the previous chapter) φ and consequently χ are only functions of the
radial coordinate and do not depend on any other coordinate. The equations of
motion (2.7) and (2.13) become respectively for this metric ansatz,

Gµν = 8πe−χ
(
Tµν −

Tgµν
2ω + 3

)
+ (ω + 1)∇µχ∇νχ+∇µ∇νχ−

ω

2 gµν(∇χ)2(5.3)

�χ + (∇χ)2 = 8πT
2ω + 3e

−χ (5.4)

The energy momentum tensor of a perfect fluid is given by

Tµν = (ρ+ P )uµuν + Pgµν (5.5)
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where the four-velocity is normalized so that uµuµ = −1, ρ is the energy density and
P is the pressure. Finally, for the metric ansatz (5.1) the tt, rr and θθ components
of the metric equations (5.3) become

2
r

Ψ′ + e2Ψ − 1
r2 = 8πρe2Ψ−χ + χ′′ + χ′

[2
r
−Ψ′ + (1 + ω

2χ
′)
]

(5.6)

2
r

Φ′ − e2Ψ − 1
r2 = 8πPe2Ψ−χ − χ′

[2
r

+ Φ′ − ω

2χ
′
]

(5.7)

Φ′′ + (Φ′ −Ψ′)(Φ′ + 1
r

) = 8πPe2Ψ−χ − χ′′ − χ′
[1
r

+ Φ′ −Ψ′ + (1 + ω

2 )χ′
]
(5.8)

while the scalar equation (5.4) becomes

χ′′ + χ′
[2
r

+ Φ′ −Ψ′ + χ′
]

= 8π
2ω + 3(3P − ρ)e2Ψ−χ . (5.9)

Exterior solution
Let us now find the exterior vacuum solution. We keep only linear terms of the
dynamical fields in equations (5.6-5.9) and we obtain respectively

2
r

Ψ′ + 2Ψ
r2 = χ′′ + 2

r
χ′ (5.10)

2
r

Φ′ − 2Ψ
r2 = −2

r
χ′ (5.11)

Φ′′ + Φ′ −Ψ′
r

= −χ′′ − 1
r
χ′ (5.12)

χ′′ + 2
r
χ′ = 0 . (5.13)

This is a system of differential equations and admits an exact solution given by

Φ(r) = c1

r
+ c2 , Ψ(r) = −c1 + c3

r
, χ(r) = c3

r
+ c4 (5.14)

where c2 can be set to zero by time re-parametrization. Hence, the exterior metric
(5.1) is approximately

ds2 = −(1 + 2c1

r
)dt2 + (1− 2(c1 + c3)

r
)dr2 + r2dΩ2 (5.15)

If we transform to isotropic coordinates, we can identify c1 = −M and c1 +c3 = γM ,
where γ is the PPN parameter1, which in GR is equal to one, and get

ds2 = −(1− 2M
r

)dt2 + (1 + 2γM
r

)(dr2 + r2dΩ2) (5.16)

Finally, the solution takes the form

Φext = −M
r

, Ψext = γM

r
, χext = χext0 + (1− γ)M

r
(5.17)

1“The formalism of Newtonian theory plus post-Newtonian corrections is called the “post-
Newtonian approximation”. It contains a set of parameters (called “PPN parameters”) that can
be specified arbitrarily”, C.W.Misner-K.S.Thorne-J.A.Wheeler Gravitation. (see chapter 6)
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Interior solution
In order to find the interior solution we define a scale L (to be determined), such
that ε = r/L� 1 within the range of interest, i.e. within the star. We expand the
equations (5.6-5.9) in ε, which means that ε� 1⇒ r � L inside the star.

e2Ψ0 − 1
ε2

+
2
((
e2Ψ0 + 1

)
Ψ1 − χ1

)
ε

− 3χ2 + χ1Ψ1 −
ω

2χ
2
1

−χ2
1 + 2Ψ2 + e2Ψ0

(
Ψ2 + 2Ψ2

1

)
− 8πρ0e

2Ψ0−χ0 = 0 (5.18)

1− e2Ψ0

ε2
+

2
(
Φ1 + χ1 − e2Ψ0Ψ1

)
ε

+ 2Φ2 + Φ1χ1 + 2χ2

−ω2χ
2
1 − e2Ψ0

(
Ψ2 + 2Ψ2

1

)
− 8πP0e

2Ψ0−χ0 = 0 (5.19)
Φ1 + χ1 −Ψ1

ε
+ 2Φ2 + Φ1χ1 − Φ1Ψ1 + Φ2

1 + 2χ2

−χ1Ψ1 + ω

2χ
2
1 + χ+ 12 −Ψ2 − 8πP0e

2Ψ0−χ0 = 0 (5.20)
2χ1

ε
+ Φ1χ1 + 3χ2 − χ1Ψ1 + χ2

1

−8πe2Ψ0−χ0
(3P0 − ρ0)

2ω + 3 = 0 (5.21)

where Ψ0 = Ψ(ε),Ψ1 = Ψ′(ε),Ψ2 = Ψ′′(ε),Φ0 = Φ(ε),Φ1 = Φ′(ε),Φ2 = Φ′′(ε), χ0 =
χ(ε), χ1 = χ′(ε), χ2 = χ′′(ε). These equations have to be satisfied for any ε and thus
the coefficients of all the terms in the expansion have to be zero, including the zero
order terms. We, thus, obtain a system of ten algebraic equations, but only seven
of them are independent. There are eleven parameters to be determined

{Ψ0,Ψ1,Ψ2, χ0, χ1, χ2,Φ0,Φ1,Φ2, P0, ρ0} (5.22)

so that we will be left with four undetermined quantities, while the other seven will
be expressed in terms of these four by solving the system.

After choosing to leave P0, ρ0, χ
int
0 ,Φ0 free we get

Φint = Φ0 + 2π
3 e−χ

int
0 (3P0 + ρ0)

(
1− 1

2ω + 3

)
r2 (5.23)

Ψint = 4π
3 e−χ

int
0

(3P0 − ρ0

2ω + 3 + ρ0

)
r2 (5.24)

χint = χint0 + 4π
3 e−χ

int
0

3P0 − ρ0

2ω + 3 r2 (5.25)

where we have substituted back r = ε.

Matching the two solutions
As we have seen in the previous sections we have four free parameters in the interior
solution, {P0, ρ0, χ

int
0 ,Φ0}, and three in the exterior solution, {χext0 ,M, γ}. We can

determine some of these parameters by matching the two solutions at the surface of
the star, at r = R0.
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Let us first, review how this matching can be done. Once a given four-dimensional
space-time is endowed with a metric tensor gαβ, we can define an induced metric on
a specified hyper-surface, which is three-dimensional. While this is pretty straight-
forward in the case of a time-like or a space-like hyper-surface, the null case requires
special care. It turns out that, we can further define a vectorial surface element that
allows vector fields to be integrated over the hyper-surface. The above properties
have to do with the intrinsic geometry of a hyper-surface, while the way that this
is embedded in the space-time manifold has to do with its extrinsic geometry. In
general, the space-time curvature tensor can be decomposed into a purely intrinsic
part, the curvature tensor of the hyper-surface, and an extrinsic part that measures
the bending of the hyper-surface in space-time; this bending is described by a three
dimensional tensor Kαβ known as the extrinsic curvature.

When a given hyper-surface “splits” the space-time into two regions and for each
region we have a metric tensor, in order for the union of the two metrics to form a
valid solution to the Einstein field equations, some conditions have to be satisfied.
These conditions are that, the induced metric and the extrinsic curvature must be
the same on both sides of the hyper-surface. In our case, it also must be satisfied
that the scalar field and its first derivative are continuous on the surface.

g
(int)
ij = g

(ext)
ij , K

(int)
ij = K

(ext)
ij (5.26)

χ(int)(R0) = χ(ext)(R0) ,
dχ(int)

dr
(R0) = dχ(ext)

dr
(R0) (5.27)

where i, j = 0, 2, 3 and Kij is the extrinsic curvature of the space orthogonal to ∂r.
Since g1i = 0 we find that Kij = −1

2e
−Ψg′ij. So the matching conditions are

Φ(int)(R0) = Φ(ext)(R0) , Ψ(int)(R0) = Ψ(ext)(R0) ,
dΦ(int)

dr
(R0) = dΦ(ext)

dr
(R0)

χ(int)(R0) = χ(ext)(R0) ,
dχ(int)

dr
(R0) = dχ(ext)

dr
(R0)

We can now solve the above system of five equations leaving ρ0, χ
int
0 free to get

P0 = 0 (5.28)

γ = 1 + ω

2 + ω
(5.29)

Φ0 = −3M
2R0

(5.30)

M = 4πρ0

3
4 + 2ω
3 + 2ωe

−χint0 R3
0 (5.31)

χext0 = χint0 −
3M

2R0(2 + ω) (5.32)

As we can see from (5.31), in this definition M is the dynamical mass rather than
the actual mass obtained by summing all the masses of the fluid particles (i.e. it
inherits a contribution from the BD parameter, ω). We can see from (5.31) that, if
we had considered G 6= 1 it would be

GM = 4πρ0

3
4 + 2ω
3 + 2ωe

−χint0 R3
0 (5.33)
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where we can identify from GR M = 4πρ0
3 R3

0 at r = R0 and thus

Geff = 4 + 2ω
3 + 2ωe

−χint0 = 4 + 2ω
3 + 2ω

1
φ0

= 4 + 2ω
3 + 2ωGN . (5.34)

It is clear that in the GR limit ω →∞ we recover Geff = GN .
Hence the full interior solution, is

ds2 = −e−
3M
R0 (1 + M

R3
0
r2)dt2 + (1 + 2γM

R3
0
r2)dr2 + r2dΩ2 (5.35)

χ = χint0 + (γ − 1)M
2R3

0
r2 (5.36)

It is convenient to identify the scale L =
√
R3

0/M . Now by rewriting the interior
solution, we obtain

ds2 = −e−
3M
R0 (1 + r2

L2 )dt2 + (1 + 2γr2

L2 )dr2 + r2dΩ2 (5.37)

χ = χint0 + (γ − 1) r
2

2L2 (5.38)

φ = eχ
int
0

(
1 + (γ − 1) r2

2L2

)
(5.39)

We can further fix the parameter χint0 if we consider the large ω limit. In that
limit it is γ ∼ 1 and consequently φ ∼ eχ

int
0 . Thus χint0 has to be set to zero, since

from GR we know that φ0 = 1. In this limit also, the metric reduces to the GR
solution.

Furthermore, the exterior solution is given by

ds2 = −
(

1− 2M
r

)
dt2 +

(
1 + 2γM

r

)
dr2 + r2dΩ2 (5.40)

χ = χint0 −
3M

2R0(2 + ω) + (1− γ)M
r

(5.41)

where, as we mentioned before, the mass M is given by (5.31). Thus, if we consider
that ω is large, and keep only up to 1/ω terms we get for the metric

ds2 = −
(

1− 2M
r

(
1 + 1

2ω

))
dt2 +

(
1− 2M

r

(
1− 1

2ω

))−1
dr2 + r2dΩ2 (5.42)

Finally, in the calculations we will have to give a value to R0 in order to solve the
equations. For the expansion in ε to be valid in the inside region of the star, we need
R0/L� 1, which implies that M/R0 � 1. This is a very natural assumption since
the Schwarzschild radius is well within the surface of any reasonable astrophysical
object of our present interest. So we have obtained a lower bound to the value of
R0. For an upper bound, the value of R0 is arbitrary, since we can consider an
interior structure of any size. However, for our purposes it should definitely be
smaller than the maximum turnaround radius. These two assumptions give a range
M � R0 < rta within which the interior solution can be expanded and the matching
procedure can be used to determine the parameters of the expansion.
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5.2 Weak Field Limit
In the paper at which Brans and Dikce introduced their theory [17], they derived also
an analytical solution considering the weak field approximation. They perturbed the
metric around flat space-time, gµν = ηµν + hµν and kept only linear terms in hµν .
This solution is of first order in mass densities and is equally important as the
one derived in general relativity. In order for our analytical, perturbative solution
(4.12,4.13) to reduce to this one at the Λ → 0 limit, we have to equate these two
and fix the integration constants. Their solution is

fwf (r) = 1− 2M
r

(
1 + 1

2ω + 3

)
∼ 1− 2M

r

(
1 + 1

2ω

)
(5.43)

hwf (r) = 1 + 2M
r

(
1− 1

2ω + 3

)
∼ 1 + 2M

r

(
1− 1

2ω

)
(5.44)

φwf (r) = 1 + 2M
(2ω + 3)r ∼ 1 + M

ωr
(5.45)

where in the right hand side we kept only 1/ω terms. As we can see, for large ω this
solution is exactly the same with the exterior star solution (5.42). By equating this
with (4.8,4.12,4.13) we obtain

C1 = −M , C2 = −9M . (5.46)

so our solution (with Λ 6= 0) becomes

f(r) = 1− 2M
r

(
1 + 1

2ω

)
− Λr2

3

(
1− 1

ω

)
(5.47)

h(r) =
(

1− 2M
r

(
1− 1

2ω

)
− Λr2

3

(
1− 2

ω

))−1

(5.48)

φ(r) = 1 + 1
ω

(
M

r
− Λr2

3

)
(5.49)

5.3 Other possible solutions
As we saw in chapter 3 and verified by the eq. (4.6), the scalar field diverges
logarithmically on both horizons. However, since in realistic astrophysical systems
either one or both horizon can be “hidden”, special cases of (4.6) are of physical
interest.

(i) If we assume that the cosmological horizon is absent, in the sense that it is
not stationary or Killing due to breaking of de Sitter symmetry by some matter
field, we see that (4.6) can be used only up to a certain r � rc. Thus, to avoid the
divergence at rH we set C1 = 0, ending up with,

δφ = ln
(

1− r2

r2
c

)
, (5.50)

which is finite, reliable for any rH ≤ r � rc and non-trivial at rH . Thus, black-holes
can support φ−hair if the stationary cosmological horizon is somehow “hidden”.
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(ii) If we now assume that the horizon at rH is “hidden”, e.g. in the interior of
a “star”, we choose C1 = 2rc in (4.6), so that

δφ = 2rc
rH

ln
(

1− rH
r

)
+ 2 ln

(
1 + r

rc

)
, (5.51)

is regular, monotonacally increasing, unique and certainly reliable in the region
where rc/ω � r ≤ rc.

We know that the interior solution of a star is decreasing at the surface. This
can be seen by integrating (3.26) from r = 0 to the surface r = R and is also verified
by (5.35). ∫ R

0
Dα(βDαφ) =

∫ R

0
β

8πT − 4Λ
2ω + 3 (5.52)

which for T < 0 and also 2ω + 3 > 0 gives∫
Σ
Dα(βDαφ) < 0 (5.53)

and for spherical configurations regular at r = 0, this implies

dφ

dr

∣∣∣∣∣
r=R

< 0 . (5.54)

Also let us assume for the exterior that asymptotically the space-time is not de
Sitter, but there is a cosmological horizon, on which the scalar field is regular. Let
P be a point inside the cosmological horizon and let us integrate the scalar equation
(3.26) from this point P to the horizon (H)

∫ H

P
Dα(βDαφ) =

∫ H

P
β

8πT − 4Λ
2ω + 3∫

H
(βnαDαφ)−

∫
P

(βεαDαφ) < 0

where nα and εα are the normal vectors on the horizon and on P respectively. On
the horizon β vanishes and inside it has to be positive so∫

P
(βεαDαφ) > 0

Dαφ|r=P > 0 . (5.55)

Any smooth exterior solution with positive slope on the horizon and negative
slope on the surface of a star has necessarily an extremum in between. This contra-
dicts the non-perturbative monotonicity relust for φ. Concluding, smooth solution
regular at both r = 0 and r = rc can exist only for ω = ∞ and φ =constant
everywhere, while the exterior is just the SdS space-time.

We saw that in order to describe a star in the context of BD theory with a
positive cosmological constant with finite ω, one has to search for solutions with a
“hidden” cosmological horizon.

(iii) This is the case we described at section (5.2).
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5.4 Numerical Solutions
We can use now the analytical, perturbative solution (5.47,5.48,5.49) as initial con-
ditions at r = R0 = 103M to integrate the equations numerically. The tt and rr
components of eq. (2.7) and also eq. (2.13) become for the metric (4.1)

f ′φ′

2hφ + f

(
1
r2 + h′

rh2 −
1
h

(
1
r2 + ω

2
φ′

φ2

))
= 2ω − 1

2ω + 3
Λf
φ

(5.56)

rf ′ − fh+ f

r2f
− φ′′

φ
+ h′φ′

2φh −
ω

2
φ′2

φ2 = −2ω − 1
2ω + 3

Λh
φ

(5.57)

f ′φ′

2fh −
h′φ′

2h2 + φ′′

h
+ 2φ′
rh

= − 4Λ
2ω + 3 (5.58)

The solutions are plotted in the fig. (5.4).
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Figure 5.1: Analytical (continuous black) and numerical (yellow dashed) solutions,
are plotted, in units of the maximum turnaround radius of the structure with M =
1017M�, R0 = 103M,ω = 100. Although the analytical solution is perturbative and
the numerical is not, the two solutions are in very good agreement in the region of
interest. In the bottom right plot the derivative of f(r) is plotted in units of the
ΛCDM turnaround radius. As it can be seen the turnaround radius, corresponding
to the vanishing point of f ′(r), is larger than in the ΛCDM case.
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Mass Maximum Turnaround Radius (m)
(M�) ΛCDM an.sol. ωBD = 102 an.sol. ωBD = 104 num. sol. ωBD = 102 num. sol. ωBD = 104

1011 1.64359× 1022 1.65181× 1022 1.64368× 1022 1.65176× 1022 1.64368× 1022

1013 7.62888× 1022 7.66703× 1022 7.62927× 1022 7.66681× 1022 7.62926× 1022

1015 3.54101× 1023 3.55872× 1023 3.54119× 1023 3.55862× 1023 3.54119× 1023

1017 1.64359× 1024 1.65181× 1024 1.64368× 1024 1.65176× 1024 1.64368× 1024

Table 5.1: The maximum turnaround radius is given, for different values of the
mass and of ω. In the second column are the values of the ΛCDM model. The other
columns are for the BD theory, calculated with the analytical and the numerical
solutions respectively.





Chapter 6

Appendix

6.1 Equivalence Principle
Einstein’s motivation for apprehending GR was the equivalence principle (EP), that
is the state of motion of an observer should not affect the laws of physics. In simpler
words, there measurement an observer makes in an inertial frame at rest, should be
the same with the one that another observer makes in moving inertial frame relative
to the first. If we exclude gravity, this immediately leads to special relativity. When
including gravity, we in fact have several choices as to how strictly we enforce the
EP [40]. In order of increasing restriction we have,

• Weak equivalence principle: all uncharged test-particles1 move (“free-fall”)
on the same space-time trajectory, if initial position and velocity is given,
independently of composition.

• Einstein’s equivalence principle: the WEP holds, and in addition the laws of
physics are the same for any “freely-falling” observer, following such a test
body.

• Strong equivalence principle: the WEP is valid also for small bodies, meaning
that any finite-size correction falls off as r−3 or faster, where r is the distance
to the body. This means that all freely-falling observers cannot see any change
in the laws of physics.

6.2 PPN formalism
After the discovery of general relativity from Einstein, a wide range of candidate
gravity theories was proposed over the years. In order to compare these theories
with astrophysical observations (such as solar systems tests), it was useful to have
a framework on which the predictions of different theories are parametrized in a
systematic way. This was provided in the form of parametrized-Post-Newtonian
(PPN) formalism by K. Nordtvedt, K. Thorne and C. Will.

1By test-particle we mean that its mass does not affect the gravitational field.
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Let us assume a theory of gravity which is similar to GR but differs in details. In
particular, let say that the geometry of the space-time outside an isolated star would
be an excellent approximation to Schwarzschild solution but would differ from it in
details. These differences could be summarized in a few PPN parameters.

The general static, spherically symmetric metric is given by

ds2 = −f(r)(cdt)2 + h(r)dr2 + r2dΩ2 . (6.1)

We could have another arbitrary function multiplying the angular part of the metric,
but we can always define a new radial coordinate such that the metric takes the above
form. The Schwarzschild metric has this form with

f(r) = 1− 2GM
c2r

, h(r) = f−1(r) . (6.2)

The mass M is the only parameter that determines the spherical geometry outside
the star, and thus let us expand (6.1) in powers of GM/c2r, which is the only
dimensionless combination of G, M , c and r, in order to get the Newtonian limit
plus some post-Newtonian corrections.

In the non-relativistic limit we should recover the Newtonian theory, and the
predictions for orbits in that limit are determined but the first relativistic correction
to the flat space, ending up with

f(r) = 1− 2GM
c2r

+ ..., h(r) = 1 + ... . (6.3)

To get the first post-Newtonian corrections, we keep the next terms in both f and
h

f(r) = 1− 2GM
c2r

+ 2(β − γ)
(2GM
c2r

)2
+ ... (6.4)

h(r) = 1 + 2γ 2GM
c2r

+ ... . (6.5)

The coefficients in front of the post-Newtonian terms are related to the PPN pa-
rameters β and γ according to standard usage. These parameters may be different
in different theories of gravity. For GR the values are those of the Schwarzschild
metric β = 1 = γ.

The bending of light by the sun, the precession of perihelion of a planet, and the
time delay of light can all be worked out for the PPN metric obtained by inserting
(6.4,6.5) into (6.1). The results to leading order in 1/c2 are as follows

• For the deflection angle δφdef of a light ray passing by a mass M at an impact
parameter b

δφdef =
(1 + γ

2

)(4GM
c2b

)
. (6.6)

• For the precession δφprec of the perihelion of a planet per orbit

δφprec = 1
3(2 + 2γ − β) 6πGM

c2a(1− ε2) (6.7)

where M is the mass of the orbited star, a is the orbit’s semi-major axis, and
ε eccentricity.
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• For the “excess” time delay of light, ∆texc, in the approximation that the radii
r⊕ of the emitter at the earth and responder rR are much greater than the
distance r1 of closest to the gravitating body

∆texc =
(
γ + 1

2

) 4GM
c3

[
log

(
4r⊕rR
r2

1

)
+ 1

]
(6.8)

We can use these tests to compare the values of the PPN parameters in different
gravity theories.

6.3 Symmetries
There are cases where a space-time is equipped with specific symmetries, the exis-
tence of which simplifies its study a lot. Specifically, as we will see below, geometri-
cal symmetries of a space-time turn out to be physical symmetries, since gravity is
interpreted as geometry.

Lie derivative
Let P be a point of a n−dimensional Riemannian space, Rn, with coordinates (xa),
at the {xa} frame of reference. Suppose that P is related a second point P ′ of the
same space, which has coordinates (x′a), at the same frame of reference. This is
called a representation of Rn on itself. Let us consider, the relation

x′a = xa + εξa (6.9)

where ε is an arbitrarily small (scalar) quantity and ξa = ξa(xb) is a vector field.
Eq. (6.9) gives the relation between P and P ′. Consequently, eq.(6.9) defines an
infinitesimal representation of Rn on itself, which is fully described by ξa.

Consider a scalar field φ = φ(xa) defined onRn and P, P ′ two points on this space,
which are related through (6.9). Furthermore, φ = φP = φ(xa) and φ′ = φP ′ = φ(x′a)
are the values of the scalar field at these points. If we take the Taylor expansion of
φ′ around P we end up with

φ′ ' φ+ εξa∂aφ . (6.10)
Except from φ′ at P ′, we can define a second scalar quantity, φ̃, from (6.9). We
denote the limit

(£ξφ)P = lim
ε→0

(
φ′ − φ̃
ε

)
(6.11)

as the Lie derivative of the scalar field φ at P in the direction ξa.
Assuming that eq. (6.9) preserves the scalar quantities, we have φ̃ = φ. Thus,

eq. (6.11) becomes from (6.10)

(£ξφ)P = [ξa(∂aφ)]P (6.12)

Finally, since P was chosen to be an arbitrary point the above relation leads to the
general definition

£ξφ = ξa∂aφ (6.13)
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of the Lie derivative of a scalar field φ in the direction of ξa.
Similarly, the Lie derivative of a (contravariant and covariant respectively) vector

field is given by

£ξu
a = ξb∂bu

a − ub∂bξa , (6.14)
£ξυa = ξb∂bυa + υb∂aξ

b . (6.15)

For a 2-rank covariant tensor we’ll have

£ξTab = ξc∂cTab + Tcb∂aξ
c + Tac∂bξ

c (6.16)

which in the case of a metric tensor in a Riemannian space becomes

£ξgab = ∇aξb +∇bξa . (6.17)

As a consequence, in contrast with the covariant derivative, the Lie derivative of a
metric tensor is not always vanishing.

Killing vectors and Isometries
Eq. (6.9) is called isometry when it preserves the line element of this space. In this
case, the vector field ξa, which causes the isometry, is called Killing vector.

Let gµνdxµdxν be the line element of the space at a point P and g′µνdx
′µdx′ν at

P ′ which is related to P through (6.9). Assuming that g′µν = gµν(x′ρ), if we Taylor
expand we obtain

g′µν = gµν + εξρ∂ρgµν , (6.18)
with the right hand side calculated at P . At the same time, we get from (6.9) that

dx′a = dxa + εdxb∂bξ
a (6.19)

Keeping only first order terms in ε, we conclude that (6.9) changes the line element
like

g′µνdx
′µdx′ν − gµνdxµdxν = ε (ξρ∂ρgµν + gρν∂µξ

ρ + gµρ∂νξ
ρ) dxµdxν . (6.20)

Thus, (6.9) will be an isometry if and only if the condition

ξρ∂ρgµν + gρν∂µξ
ρ + gµρ∂νξ

ρ = 0 , (6.21)

is satisfied. This can easily be written as

£ξgµν = ∇µξν +∇νξµ = 0 . (6.22)

This equation is known as Killing equation and is a necessary and sufficient condition
in order for (6.9) to be an isometry. Every vector (ξa) that satisfies (6.22) is called
a Killing vector. Hence, from (6.17) and (6.22), we conclude that the Lie derivative
of the metric tensor in the direction of a Killing vector will vanish.

Theorem: Let ξa and ψa be two commuting Killing vector fields such that

• ξ[aψb∇cξd] and ξ[aψb∇cψd] each vanishes at at least one point of the space-time
(which, in particular, will be true if either ξa or ψa vanishes at one point) and

• ξaRa
[bξcψd] = ψaRa

[bξcψd] = 0.

Then the 2-planes orthogonal to ξa and ψa are integrable.
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6.4 Variations
We present and prove here some of the basic variations that have, extensively, been
used throughout the derivations. Let us start by the definition of the inverse metric
tensor

gµνg
νρ = δµ

ρ (6.23)
and vary the last by noting that δµρ is constant, to get

(δgµν)gνρ + gµν(δgνρ) = 0 (6.24)

Now, contracting with gρσ we obtain

(δgµν)δνσ + gµνgρσ(δgνρ) = 0 (6.25)
⇒ δgµσ = −gµνgρσ(δgνρ) (6.26)

Let us now compute the variation of the square root of the determinant of the
metric tensor. We do the calculation for n-dimensional Riemannian spaces and then
apply it for pseudo-Riemannian 4-dimensional space of GR. Firstly, we write the
determinant simply as

g = det(gµν) (6.27)

⇒ δ(√g) = 1
2√g δg (6.28)

It is known that for any square n× n matrix A it holds that

det(A) = eTr(A) (6.29)

and substituting A → gµν in the above, we get

g = det(gµν) = eTr(gµν) (6.30)

which under the variation gµν → gµν + δgµν gives

det(gµν + δgµν) = eTr(gµν+δgµν) = eTr(gµν)eTr(δgµν) = geTr(δgµν) (6.31)

where we have used the linearity of the trace. Since the variations δg are small, in
the expansion of eTr(δgµν) we can neglect second and higher order terms and thus
simplify it as

eTr(δgµν) ' g (1 + Tr (δgµν)) (6.32)
but from the definition of the trace, we know that Tr(δgµν) = gµνδgµν and thus

det(gµν + δgµν) ' g (1 + gµνδgµν) (6.33)

It has been proven before that gµνδgµν = −gµνδgµν and finally

δg = −ggµνδgµν (6.34)

⇒ δ(√g) = −1
2
√
ggµνδg

µν (6.35)



52 CHAPTER 6. APPENDIX

Now, by replacing g → −g we end up with

δ(
√
−g) = −1

2
√
−ggµνδgµν (6.36)

After some non-trivial calculations, it turns out that for the metric variation

gµν = gµν + δgµν , g
µν = gµν + δgµν (6.37)

the Christoffel symbols will become

Γµαβ = Γµαβ + δΓµαβ (6.38)

where

Γµαβ = 1
2g

µν (∂αgβν + ∂βgνα − ∂νgαβ) , (6.39)

δΓµαβ = 1
2g

µν (∂αδgβν + ∂βδgνα − ∂νδgαβ) + Γραβδgµρ (6.40)

= 1
2g

µν (∇αδgβν +∇βδgνα −∇νδgαβ) (6.41)

where ∇α is the covariant derivative with respect to the background metric. After
some manipulations we can obtain

δRµν = ∇α∇(µδgν)α −
1
2 (�δgµν +∇µ∇νδg) (6.42)

δR = ∇µ∇νδgµν −�δg −Rµνδgµν (6.43)
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