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Abstract
This thesis consists of two main parts: 1) A presentation of all-dielectric polaritonic metasurfaces

consisting of properly sculptured cylinders to sustain the dynamic anapole, i.e. a non-radiating al-

ternating current distribution. This part is an attachment of a paper of which I am the first author,

and was recently submitted in Physical Review B a. In the paper, two ways for the anapole to emerge

are examined; first, by combining modes based on the first and the fourth mixed toroidal Mie reso-

nance of a cylinder made of high permittivity LiTaO3 and second, by breaking the circular symmetry,

enabling substantial toroidal dipole to emerge from the magnetic quadrupole Mie mode. In both de-

signs, the circular cross-section of each cylinder varies periodically along its length in a binary way,

from small to large, while its overall circular symmetry has to be broken in order to remove parasitic

magnetic modes. Segments of small cross-sections are the main source of the electric dipole Mie

mode, while large cross-section segments sustain the fourth, mixed toroidal dipole Mie mode (in the

first design) or the hybrid magnetic quadrupole Mie mode (in the second design). The sensitivity of

the anapole states to the material dissipation losses is examined leading to the conclusion that the

proposed metasurfaces offer a scheme for realistically implementing the anapole in the low THz. 2)

Another practical and convenient way for the realization of the dynamic anapole, is to exploit the

dielectric properties of water. Being a polar material of adjustable characteristics, water can lead

to novel applications, by being incorporated into a many-rod metasurface. The theoretical results

evaluate the resilience of the anapole state achieved by a collective toroidal super-mode for imple-

mentation in the low GHz; a widely-established and accurate in the low GHz, Debye model for the

water permittivity was used. The theory is further supported by an experiment conducted in one of

the labs at Forth IESL, and then the comparison of theory and experiment is examined concluding

to their good agreement, opening thus the path for the utilization of water in various applications.

a Evangelia Takou, Anna C. Tasolamprou, Odysseas Tsilipakos and Eleftherios N. Economou. "Dynamic

Anapole in Metasurfaces made of Sculptured Cylinders". Phys. Rev. B (submitted).
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I. INTRODUCTION

Non-radiating sources have attracted strong interest both from the fundamental point
of view of electrodynamics and for the applications of non-scattering objects [1, 2]. A type
of non-radiating source that attracts increasing attention in the photonic community is
the dynamic anapole, which is usually created by the superposition of electric and toroidal
dipole moments [3, 4]. The toroidal dipole is a peculiar excitation that differs from the fa-
miliar electric and magnetic dipoles; the latter involve back-and-forth currents and closed
circulation of currents respectively; the pure toroidal dipole rises from the poloidal currents
circulating on a surface of a torus along its meridians. In spite of these quite different cur-
rent distributions, both the electric and the toroidal dipoles emit radiation with the same
angular momentum and parity properties, rendering their radiation pattern indistinguish-
able for any distant observer [5]; this is one of the reasons that toroidal multipoles are
not considered in classical electrodynamics textbooks [6, 7]; it is also the reason that elec-
tric and toroidal dipoles appear to be ideal for destructive interference and, hence, for the
realization of the dynamic anapole, although it is quite difficult to match their strengths
and isolate them from adjacent contributions. The evolution of metamaterials, artificial
materials with engineered macroscopic electromagnetic properties, has provided the tool
for overcoming this last difficulty [8] and for the realization of the dynamic anapole, the
nontrivial, non-radiating source which is the objective of the present work.

As it was mentioned before, the dynamic anapole can be created by a toroidal dipole
(T) oscillating out of phase relative to the electric dipole (p) leading thus to destructive
interference of the radiated field in the far-field zone. The relation that guarantees this
interference reads:

p+ ikT= 0 (1)

where k =ω/c. Although in the far-field region the fields vanish, this is not the case for the
source region; this is due to the fact that the difference of the vector potentials AT(r,t) and
Ap(r,t) of a toroidal and an electric dipole emission, respectively, cannot be eliminated via
a gauge transformation. More explicitly, if one considers point-like sources (as there is no
limitation upon the size of the source) of electric and toroidal dipoles superimposed under
the relation of Eq. (1), the corresponding vector potential ∆A=AT −Ap reads:

∆A=∇
(
T ·∇

(
eikr

r

))
+4πδ3(r) ·T (2)

The second term in the expression for the net vector potential is not-trivial, since it does
not vanish upon application of the curl. In other words, this indicates that the net vector
potential cannot be eliminated at all points in space in any gauge [9]. In the static case,
k = 0, the electric dipole moment disappears, p = 0, making the static anapole synonymous
with the static toroidal dipole. It has been argued that the point dynamic anapole may be
viewed as the basic building block out of which an arbitrary non-radiating source can be
composed of [10].
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The first anapole state was verified experimentally in the GHz spectrum using metallic
split ring resonators [11]. Simpler geometries followed and the first experimental observa-
tion of the dynamic anapole in the visible, in a stand alone dielectric particle (Si nanodisk),
was reported in [12], as well as in structures of core-shell nanowires [13] and in spheres
[14]. Hybrid situations of coexisting magnetic and electric anapole states have also been
investigated for the case of a high index spherical particle [15]. The non-radiating response
of the anapole modes accompanied by the enhanced near fields has found numerous appli-
cations such as in cloaking [16], harmonic generation [17–19], nanoscale lasers [20], high Q
factor devices [21], sensing [22, 23], Raman scattering enhancement [24] and many more.
The far field extinction combined with the maximized electromagnetic energy concentra-
tion within the nanostructures has also opened the possibility of intensity enhancement in
all-dielectric nanostructures [12, 25, 26], which was accomplished by utilizing Si nanodisks
(slotted in the latter case).

Most of the works discussing the anapole excitation in metamaterials involve the ma-
nipulation of the toroidal moment through various structural schemes. Metallic metama-
terials with asymmetric inclusion, like asymmetric metallic bars [27] or properly adjusted
in U-shaped metaatoms [28] have been proven to provide control over the toroidal excita-
tion. Also in the case of all-dielectric metamaterials control over the toroidal excitation has
been provided by the shape, size and formation of the nanoparticles, for example the size of
silicon disks [12, 21], the formation of silicon fins [29], the number, shape and formation of
infinite length polaritonic rods [30–34] etc. Remarkably, it has been also recently realized
that toroidal dipole moment exists within the natural TE01 mode (fourth mode in ascending
frequency) of an infinite length single cylinder [13, 31, 35]. The toroidal dipole moment in
this mode is accompanied by a strong electric dipole moment due to the asymmetric positive
and negative polarization currents.

In the recent years, water has attracted great interest as a result of its outstanding
potential as an alternative form of a high-refractive-index material. The two prominent
properties of water are its convenience to adjust to the shape of its container enabling thus
the manufacture of a wide range of water-based objects, as well as the strong temperature
dependence of its dielectric function. Water also prevails over the scarce and expensive
high-index materials such as Barium Strontium Titanate of Lithium Tantalate. Many re-
cent researches exploit the advantages of water, opening the path for numerous applications
in tunable all-dielectric photonic structures and metamaterials. Examples of the tunability
properties of water are its thermal, mechanical and gravitational ones exploited in period-
ically positioned water-filled reservoirs [36]. Magnetic field enhancement of MRI coils has
been accomplished by controlling the water level in a tuning cavity of a spiral resonator [37].
The dielectric properties of water also enabled it to be developed as a dielectric spacer in
the substrate of metal-backed metamaterial absorbers, achieving thus a broadband perfor-
mance of the absorbers [38]. Enhanced broadband microwave absorption was also reported
in [39], while the guiding effects of water-filled elements were investigated in [40]. Recently,
it was proven in [41] that water offers control over the Mie resonances; water cubes were
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found to sustain thermally tunable magnetic and electric dipole resonances. Thus, it is
clear that water is becoming an excellent and competitive candidate for controllability, as is
covers effectively a wide range of practical applications.

The two parts of the thesis are organized as follows: In Sec. II A, the modes sustained
by an infinite and uniform cylinder are presented and an electromagnetic characterization
is performed with a focus on the electric and mixed toroidal dipole character. These modes
are properly modified by our design of a sculptured cylinder (with the binary distribution of
its cross-section) serving as the building block for the proposed metasurface. In Sec. II B we
present the simulation results of the reflection power by the metasurface designed to sus-
tain the anapole state due to the mixed toroidal and the electric dipole modes. In Sec. II C
we discuss the structure’s sensitivity to the dissipation losses. In Sec. II D we present the
design principles, implementation, and dissipation losses sensitivity of a modified metasur-
face based on a toroidal component emerging from quadrupole-like Mie mode and electric
dipole and then the first part of the work is concluded. In Sec. III A a short discussion is pro-
vided for the many-rod configurations and the collective toroidal super-modes, that emerge
when more than one cylinders are combined in a unit cell. In Sec. III B, a theoretical analy-
sis is preformed for two water-based systems, while in Sec. III C the experiment is described
regarding a water-filled system of five rods and the comparison of the experiment with the
theory is evaluated.

II. METASURFACES MADE OF SCULPTURED CYLINDERS

A. Mixed electric and toroidal modes of a cylinder and principles of design

We investigate the possibility of a dynamic anapole by considering a metasurface con-
sisting of dielectric cylinders; the circular cross-section of each of them varies periodically
along its length in a binary way as shown in Fig. 1(c). The values of the small and the
large cross-sections as well as their corresponding lengths are to be fixed in such a way as
to satisfy the anapole condition of Eq. (1), as accurately as possible. We begin the study
by focusing on the Mie eigenmodes of an isolated polaritonic cylinder, infinite and uniform
along its length coinciding with the ẑ-axis direction [Fig. 1(a)]. We assume Ez polarization
and eigensolutions whose wavevector remains strictly in the xy plane, kz = 0. Initially we
consider that the radius of the infinite LiTaO3 rod is equal to Rc = 15 µm. We have chosen
the LiTaO3 polaritonic material to drastically reduce the ohmic losses while maintaining
high permittivity. In a polaritonic material the induced polarization currents are due to the
AC motions of the cations and the anions; their dielectric function has the form:

ε(ω)= ε1 + iε2 = ε∞
ω2

L −ω2 − iωγ

ω2
T −ω2 − iωγ

(3)

ε(0)≡ ε0 = ε∞
(
ωL

ωT

)2
(4)
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FIG. 1. (a) First four transverse electric eigenmodes of a single infinite length and uniform cir-

cular cross-section polaritonic rod: polarization current distribution Jz (color), magnetic field lines

(arrows), resonant frequency and quality factor are shown. (b) Eigenmode identifier regarding the

contributions coming from the electric dipole moment pz, the toroidal dipole moment Tz, the mag-

netic dipole moment my, the magnetic quadrupole moment Qm
yx and the electric octupole moment

Oe
zxx; these radiation contributions are normalized in terms of the dominant one in each mode indi-

vidually. The character of the shown modes is: TE00, electric dipole; TE10, magnetic dipole; TE20,

magnetic quadrupole; and TE01, mixed toroidal dipole; the term mixed is adopted since both electric

and toroidal dipoles participate in the eignemode, in spite the fact that the magnetic field lines sug-

gest a predominantly toroidal moment. (c) The unit cell of each cylinder (the so called metaatom)

consists of two cylindrical pieces one of smaller and the other of larger cross-section such that the

TE00 eigenfrequency of the first to coincide with the TE01 eigenfrequency of the second, opening thus

the path for the realization of the dynamic anapole.

For LiTaO3 the transverse optical resonance frequency is ωT/2π = 26.7 THz, the longi-
tudinal resonance frequency is ωL/2π = 46.9 THz, ε∞ = 13.4 and γ/2π = 0.94 THz, with the
static permittivity equal to ε0 = 41.34. In the low THz regime, the dielectric function has a
real constant value of ε1 ∼ 41, while the dissipation losses are in the order of few 10−3. The
dissipation losses are low enough to be considered negligible for our initial investigation;
extensive study of the structures sensitivity to losses is provided in Sects. II C and II D.

Figure 1(a) presents the Ez polarized Mie eigenmodes in ascending frequency, the polar-
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ization current distribution, the resonant frequency and the quality factor, sustained by an
isolated, free-space standing, LiTaO3 cylinder of radius Rc = 15 µm and permittivity ε1 = 41.
They are calculated by eigenvalue analysis with the general purpose full wave, finite ele-
ment based solver [42]. Figure 1(b) presents an electromagnetic character identification of
each mode which is attained by calculating the dominant expected radiation contributions
(amplitude) by the multipole moments in each eigenmode. Multipole moments are vectorial
functions of the spatial distribution of polarization currents with expressions that incorpo-
rate the toroidal multipoles found in Refs. [34, 43] (Appendix C of Ref. [43]). Essentially,
they describe the electromagnetic character (electric, magnetic, toroidal) of the local sources
that are created by the circulation of alternating currents. In this case, the only nonzero
component of the polarization current is Jz and the nonzero multipole radiation contribu-
tions come from the electric dipole moment pz, the toroidal dipole moment Tz, the magnetic
dipole moment my, the magnetic quadrupole moment Qm

yx, and the electric octupole moment
Oe

zxx. There is also an additional contribution coming from the electric quadrupole moment
Qe

xz, which in the two-dimensional space coincides with the magnetic dipole moment my

and is therefore omitted from Fig. 1(b). Note also that the vector components depend on
the rotational symmetry of the modes and the reference cartesian unit system as defined in
Fig. 1(a). They are both selected to match the metasurface set up of Sec. II B. In Fig. 1(b),
in each individual eigenmode the expected radiation contributions by the multipoles are
normalized in terms of the dominant contribution. As seen in Figs. 1(a) and 1(b) the first
mode, TE00 (subscript denoting zero radial and zero azimuthal variation), corresponds to
the electric dipole and exhibits a very low quality factor Q00 ∼ 1.5 which means that, when
excited, is expected to strongly radiate in a broad frequency range. It is characterized by a
strong electric dipole moment contribution from pz and a residual toroidal dipole moment
contribution from Tz. The next mode, TE10 (subscript denoting one azimuthal and zero
radial variation), is the magnetic dipole with Q10 = 16 and is characterized by a strong con-
tribution coming from my alone. Next in frequency is the TE20 magnetic quadrupole with a
distinct magnetic quadrupole moment signature and a high quality factor Q20 ∼ 176; in this
case the dominant expected contribution comes from Qm

yx, but at the same time there is a
strong contribution that comes from Oe

zxx. The fourth mode is TE01, with a zero azimuthal
and one radial variation and a low quality factor Q01 ∼ 11 indicative of its radiative nature.
As seen in Fig. 1(b), the radiation contribution is expected to come mainly from the elec-
tric dipole pz and secondarily from the toroidal dipole Tz; therefore it is denoted as mixed
toroidal dipole in spite the fact that the magnetic lines suggest a predominantly toroidal
dipole moment.

The idea behind achieving the anapole in this system is to match the eigenfrequencies
of the mixed toroidal dipole mode TE01 and the electric dipole mode TE00. This can be
achieved by properly adjusting the diameter of the two sections in the binary metaatom,
as presented in Fig. 1(c), in such a way that the radiation by the electric dipole pz and
the toroidal dipole Tz cancels out. The extra degree of freedom offered by the height of
the two sections will be used in our goal to obtain the dynamic anapole. In the system
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discussed here, where the rod is isolated in free-space and only dielectric materials with
very low or no dispersion are involved, the frequency varies directly with the size of the rods.
Therefore, the matching of the TE00 and TE01 mode occurs in cylinders with ratio of the
two cross-sectional radii approximately equal to the ratio of the TE00 and TE01 frequencies
RS/RL ∼ 1/5. The subscripts ‘S’, ‘L’ stand for the small and large cross-section that sustain
the TE00 and TE01, respectively.

B. The anapole as a combination of electric and toroidal dipole modes in the dielec-
tric metasurface

Using the sculptured cylinders with the periodic binary cross-section as building blocks,
we construct the metasurface shown in Fig. 2. The radius of the small cross-section and
the large cross-section areas are RS, RL respectively and the corresponding heights are HS

and HL. The period along the ŷ-axis is equal to d = 40 µm. A linearly polarized (E parallel
to ẑ-axis) plane wave impinges normally on this metasurface provoking the generation of
currents that modify the scattered far-field as expressed in the transmission and reflection
coefficients. Our goal is to achieve the dynamic anapole initially by manipulating the elec-
tric and mixed toroidal dipole moments; as far as the latter is concerned, we enhance its
contribution by increasing the relevant volume of the larger cross-section [sustaining TE01

as depicted in Fig. 1(a) and 1(c)], while remaining in the subwavelength regime. In fact, if
the ‘S’ and ‘L’ lengths are equal the electric dipole fully dominates the response; to remedy
this, the TE00-sustaining section has to be much shorter, compared to the TE01-sustaining
section.

We begin our investigation by assuming the non-optimized values of the design parame-
ters for the metasurface: HL = 6 µm, HS = 1 µm, RL = 15 µm and RS = 3 µm and d = 40 µm.
The ratio between the large ‘L’ and small ‘S’ cross-section ensures the spectral matching for
the electric and mixed toroidal dipole modes. It should be noted here that the periodicity
along the ŷ-axis and the ẑ-axis corrugation is expected to change the landscape of the sus-
tained eigenmodes, their properties and moments identification with respect to the isolated
cylinder of Fig. 1. However, certain aspects such as some relative spectral positions, the
radiation trends and the current distributions of the electric, magnetic and toroidal modes
still survive. In Fig. 3(a), the eigenfrequencies (both real, f , and imaginary parts, f ′′) of the
ky = kz = 0 eigenmodes of the whole metasurface, shown in Fig. 2, are presented together
with the current distributions of these eigenmodes within the metaatom part [see Fig. 1(c)];
although the eigenfrequencies have been shifted considerably relative to the values of a
single uniform cylinder [shown in Fig. 1(a)], the current distributions are still, surprisingly,
almost identical to those of a single uniform cylinder. In fact, we used the same names
and the same notations for the eigenmodes of the metasurface as for those of a single uni-
form cylinder. Notice also that due to the electromagnetically small size of the cylinders
height (HL ∼ λn/2.5, HS ∼ λn/15, where λn is the wavelength within the dielectric atom,
λn = λ0/n = 15 µm for f = 3 THz), the corresponding modes have no considerable variation
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FIG. 2. Schematic representation of a metasurface composed by periodically repeating along the

ŷ-axis the sculptured cylinder shown in Fig. 1(c). The incident wave is ẑ-polarized and normal

incidence along the x̂-axis is assumed. The parameters for the small and large cross-sections of the

unit cell are radii, RS and RL and heights HS and HL, respectively.

in the ẑ-axis direction and this is the reason that they are denoted as TEmn0 [i.e. the third
subscript referring to the ẑ-axis (axial) variation is zero]; thus TE100 is the notation for the
magnetic dipole, TE000/TE010 for the mixed toroidal (or, more accurately, for the combined
electric dipole and mixed toroidal), and TE200 for the quadrupole.

Figure 3(b) presents the reflected power associated with the excited multipoles by a plane
wave normally incident on the metasurface. The reflected power from each multipole is a
function of the incident wave induced polarization currents at each frequency and adds up
to the total reflected field [34, 43]. The multipole moments that contribute mainly to the
scattered field are: the electric dipole moment, pz, the magnetic dipole moment my, the
toroidal dipole moment Tz, the electric quadrupole Qe

xz, the magnetic quadrupole Qm
yx and

the electric octupole Oe
zxx (in this ẑ-dependent metaatom, Qe

xz is not identical to my as in the
ẑ-independent case). There is also some weak contribution from QT

xz and Om
yxx (not shown

here). A surprise comes by comparing the eigenvalues of the metasurface shown in the
data of Fig. 3(a) with the data of Fig. 3(b). A normally incident plane wave is expected to
excite the eigenmodes of the metasurface possessing the same k character and hence local
extrema in the reflected power contributions are expected to appear at these eigenfrequen-
cies. Instead, this occurs only for the magnetic quadrupole excited mode which exhibits a
prominent peak at its eigenfrequency at 3.6 THz; however, no peaks appear in Fig. 3(b)
either at the magnetic dipole eigenfrequency (2.374 THz) or at the mixed toroidal eigen-
frequency (2.723 THz); a possible explanation of this unexpected feature can be attributed
to the very large imaginary parts of the eigenfrequencies of these eigenmodes which ap-
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FIG. 3. (a) Eigenfrequencies (real and imaginary parts), and polarization current distributions of

the ky = kz = 0, E = Ezẑ eigenmodes in the metaatom part of the whole metasurface as shown in

Fig. 2; the shown eigenmodes are the pure magnetic dipole TE100, the mixed toroidal TE010 and the

magnetic quadrupole TE200. (b) Reflected power contributions by the individual moments; notice the

significant strength and the almost coincidence of the contributions of the magnetic dipole my and

electric quadrupole Qe
xz. (c) Reflection coefficients for the frequency range 1.9-3.7 THz calculated

by the full wave analysis and the summation of all the amplitude contributions. Notice that the

reflection dip occurs close to the electric and the toroidal dipole dips, indicating that the magnetic

dipole/quadrupole and the electric quadrupole/octupole cancel out at the frequency of the reflection

dip.

parently round-off the expected peaks. In Fig. 3(c) the total reflection coefficient in the
frequency range 1.9-3.7 THz has been calculated by two methods: (i) by numerical full wave
simulations based on the finite element method [42] and (ii) by the summation of the vari-
ous multipole amplitudes that contribute to the reflected field. The agreement between the
full wave numerical simulation and the analytical multipole expansion formulation is ex-
cellent as shown in Fig. 3(c) (validating thus the imperative presence of the toroidal dipole
in the multipole expansion).

Returning to the fact that the imaginary parts of the eigenfrequencies of the magnetic
dipole and the mixed toroidal dipole are very large (implying that the corresponding Q fac-
tors are very small), we stress that this holds to even larger degree for the electric dipole
eigenmode associated with the larger section of the metaatom in spite of its much lower
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eigenfrequency. As a result of the consequent broadness of these eigenmodes, their con-
tribution to the reflection is substantial even for frequencies far away from their eigenfre-
quencies. With that in mind, we may interpreter the results of Fig. 3(b): There is a broad
spectral region of magnetic dipole/electric quadrupole my and Qe

xz dominance which comes
from the highly radiating magnetic dipole eigenmode with resonance at 2.374 THz, pos-
sessing the second lowest Q factor (after the electric dipole). The spectral signature of the
electric dipole contribution pz is more complicated due to the low Q factor of the electric
dipole sustained in each of the two sections of the metaatom shown in Fig. 1(c), as well
as the electric dipole character that is found in many excited modes originating from the
uneven distribution of upward and downward currents. In Fig. 3(b), we notice two electric
dipole, pz, reflection dips. As mentioned, there is a large pz tail coming from, the much
lower in frequency TE000 mode associated with the L section of the unit cell which is very
broad (due to its very low Q-factor) and thus overlaps with the frequency region of 2-3 THz.
The combined TE000/TE010 has also at the S section of the metaatom a pure electric dipole
moment [and an electric dipole moment at the L section, see Fig. 1(b) associated with the
TE01 eigenmode]. All these electric dipole contributions coming from different eigenmodes
suffer a destructive interference at frequencies around 2.85 THz and 3.55 THz. The first dip
comes mainly from the electric dipole contribution of the combined TE000/TE010. The second
dip in the electric dipole contribution occurs around the magnetic quadrupole excited mode,
at 3.6 THz, and is expected to be due, besides the TE200 and the combined TE000/TE010,
to higher frequency excited modes as well. The signature of the magnetic quadrupole Qm

yx
(accompanied by the electric octupole Oe

zxx) is more clear since it appears dominantly in the
spectral vicinity of the TE200 excited mode and exhibits a high Q factor as seen from the
sharp Qm

yx (and Oe
zxx) resonance at 3.6 THz.

For the realization of the anapole we need to achieve the condition of Eq. 1. As shown
in Fig. 3(b) the toroidal dipole reflection power Tz exhibits a rather weak but decent pres-
ence in the spectrum under consideration. In particular, in the spectral neighborhood of the
combined TE000/TE010, Tz is featureless. However, there is a Tz dip at 3.55 THz which
indicates that there is a significant amount of toroidal dipole within the excited TE200

quadrupole mode [the toroidal dipole stems from the modification of the Mie quadrupole
mode of Fig. 1(c) due to the ẑ-axis corrugation and the ŷ-axis periodicity] and interferes
destructively with the Tz tail of TE000/TE010. On the other hand, Fig. 3(b) seems to indicate
that the sought after anapole could potentially be found where the reflected power from pz

and Tz cross (two positions around 2.85 THz). Nevertheless, the toroidal dipole moment
is still significantly weaker than the electric one around this spectral region. A more seri-
ous obstacle is the dominance of the magnetic dipole and the electric quadrupole over the
toroidal in the spectral region of interest as witnessed in Fig. 3(b). Thus, in order to achieve
the anapole we need to enhance the toroidal dipole moment and eliminate the competition
coming from the magnetic multipole contributions. Up to now we exploited the different size
of the cross sections. Other degrees of freedom are the heights HS and HL of the small S
and large L parts of the metaatom. In fact, the resonant frequencies of the magnetic modes
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are expected, as a result of their complicated current distributions, to be much more sensi-
tive to the heights than the uniform electric modes; this provides a strong design tool for its
isolation. Thus, the strategy to strengthen the relative toroidal component is to assume a
greater height HL.

In this way, we can excite higher order modes in the ẑ-axis direction where the current
is allowed to flow reversely within a single metaatom. In particular, we have found that
if we set the parameters around the values HL = 40 µm, HS = 8 µm and RL = 15 µm and
RS = 3 µm for the heights and the cross-sectional radii respectively, while the periodicity
is d = 35 µm, we do get a relevant enhancement of the toroidal moment. At these heights,
HS ∼ λn/2 and HL ∼ 2.5λn (where λn = λ0/n = 15 µm for the central frequency of 3 THz)
a drastic modification of the combined TE000/TE012 mode occurs: while there is no ẑ-axis
variation in the small cross-section part of the metaatom, a strong variation appears along
the ẑ-axis for the large cross-section part as the third subscript "2" indicates.

The distribution of the polarization currents for the combined TE000/TE012 is shown in
Fig. 4(b). Figure 4(a) presents the schematic of the side-view of the metaatom. Notice that
we have induced an asymmetric placement of the smaller cylinder along the ŷ-axis at a posi-
tion y= 10 µm. By introducing this asymmetry, we are able to further modify the magnetic
excitations and in particular to suppress their contribution at the vicinity of the combined
TE000/TE012 eigenmode (the electric and the toroidal modes are not affected to the same ex-
tent as the magnetic ones by this asymmetry as they do not possess azimuthal variations).
Another way to tackle the magnetic quadrupole could be by assuming elliptical cross-section
and increasing its spectral separation like in [30], but this did not provide an improved re-
sult. By enhancing the toroidal contribution and by eliminating the magnetic quadrupole
we are able to satisfy the anapole condition of Eq. (1). Towards this goal, we also numer-
ically optimized the geometrical parameters of the structure as follows: HL = 39 µm and
HS = 7.8 µm, RL = 14.625 µm and RS = 2.95 µm and d = 34.125 µm. Figure 4(c) presents
the reflected (by the numerically optimized metasurface) power of the multipoles. The mul-
tipoles reflection contributions present more complicated yet as expected resonant features
compared with those in Fig. 3(b), as a result of the asymmetric positioning of the small
cross-section cylinder. In Fig. 4(d), the overall reflection R by the metasurface is presented
both by employing the direct full wave and by summing the amplitudes of all multipoles,
R = f (p,T,m,Qm,Qe,QT,Om,Oe); if in the last sum we keep only the amplitudes of the
electric and the toroidal dipoles we obtain what is denoted by R = f (p,T). The latter is com-
pared with the overall reflection coefficient, leading to the conclusion that the zero reflection
at the vicinity of the TE000/TE012 resonance ( f000/012 = 2.646 THz) is due to the destructive
interference of the electric and the toroidal amplitudes; this conclusion is further supported
by the fact that the toroidal and electric dipole moments meet with an opposite phase (e.g.
∆φ = −π) at this frequency. A minor discrepancy in frequency in the order of 0.2% is ob-
served and at the exact frequency of the anapole, a small radiation leakage of 10% coming
from the reflection power contributions of all other multipoles is recorded. Thus, we have
obtained beyond any doubt, the creation of an anapole by the destructive interference of
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FIG. 4. (a) Schematic representation (side-view) of the unit cell with a displaced smaller cylinder.

Its center is placed at y = 10 µm with respect to the axis of the larger cylinder. (b) Polarization

current distribution of the TE012 mode which is characterized by the reversal of the current flows

within the unit cell along the ẑ-axis (the third subscript "2" denotes this reversal). The TE012 mode

is sustained by the larger cylinder comprising the unit cell, while the small cross section sustains

the TE000 mode. (c) Moments contribution to the reflected power, for the optimized metasurface with

a unit cell as in Fig. 4(a). The combined TE000/TE012 eigenmode of Fig. 4(b) lies at 2.646 THz and

exhibits a Tz power exceeding the pz power. (d) Total reflection coefficient (directly from the full

wave, black; and by adding all amplitudes, blue) and reflection coefficient including only the electric

and toroidal dipole moments amplitudes (red) for the range 2.15-2.95 THz. The red curve is almost

identical to the total reflection coefficient (a small shift is due to the magnetic moments contribution)

showing that the sharp dip at 2.646 THz (i.e. the appearance of anapole behavior) is indeed mainly

due to the destructive interference of electric and toroidal dipoles. This is further supported by phase

difference ∆φ=−π between the pz and the Tz dipoles (inset).

electric and toroidal dipole amplitudes almost without interference of any other multipole
moments. This achievement was realized by our optimized metasurface composed of sculp-
tured cylinders periodically placed along the ŷ-axis; each cylinder is formed by asymmetric
metaatoms [see Fig. 4(a)] periodically repeated along the ẑ-axis. The circular symmetry
breaking was essential in removing parasitic magnetic contributions to the anapole.
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C. Metasurface sensitivity to material losses

Up to now, we have obtained the anapole excitation in the polaritonic metasurface as-
suming no material losses. In what follows, we examine the effect of the material losses on
the anapole state. Notably, it appears that the anapole excitation in our system exhibits
a considerable sensitivity to the material losses. Figure 5 presents the multipole contribu-
tions to the reflected power (top panels), as well as the overall reflection coefficient (bottom
panels) for the optimized metasurface presented in Fig. 4(a) assuming a material with vari-
able losses. The frequency range of the calculations is focused around the anapole state of
the optimized structure (Fig. 4) and is equal to 2.6-2.7 THz. For the real part of the material
permittivity we use the nominal value for the polaritonic LiTaO3, ε1 = 41, and various val-
ues of fictitious losses with tangent ranging from tanδ= 10−3 [Fig. 5(a)] to tanδ= 9×10−3

[Fig. 5(d)]. Low losses, with tangent in the order of few 10−3 have essentially little effect
for the anapole realization, which is the case of the LiTaO3 in the frequency range under
consideration (tanδ ∼ 2.5×10−3). Of course, the resonance is not as sharp and as deep as
in the absence of losses. This is to be expected, since in the anapole the fields at the meta-

FIG. 5. Moment contributions to the reflected power, for the optimized structure of Fig. 4(a) (top

panels) and total reflection (bottom panels) assuming material losses with (a) tanδ = 1×10−3, (b)

tanδ= 3×10−3, (c) tanδ= 8×10−3 and (d) tanδ= 9×10−3. Above tanδ∼ 8×10−3 the electric dipole

moment contribution increases extensively, it becomes dominant while the toroidal dipole moment

contribution decreases and the crossings between the power reflected from pz and Tz required for

the anapole condition, seize to occur.

surface are quite strong (in spite of their absence in the far zone) and consequently there
are substantial material (not radiation) losses. This behavior is evident in Fig. 5(a) and
Fig. 5(b), where the calculated response of the metasurface for material with tanδ = 10−3

and tanδ= 3×10−3 is shown, respectively. However, as losses increase, the crossing of the
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pz and Tz dipoles becomes borderline at tanδ = 8×10−3 [Fig. 5(c)] and beyond this value
there is no crossing indicating that the condition required for the anapole is not satisfied
anymore. As a result, the tendency of disappearance of the broad anapole dip is due to both
material and radiation losses. In the regime beyond tanδ= 8×10−3 the electric dipole mo-
ment contribution becomes more dominant, while the toroidal dipole moment contribution
diminishes. We note here that similar effect would be observed in a medium with presum-
able gain (not shown here), where an uneven increase of the electric dipole (dominant) and
the toroidal dipole tends to eliminate the crossing of the reflected power from pz and Tz and
consequently the existence of anapole.

D. Anapole attained by hybrids of mixed electric and toroidal dipole modes

Apart from the exploitation of the fundamental electric dipole and mixed toroidal dipole
mode, the binary metaatom offers the possibility to explore an anapole excitation generated
by the contribution of higher and hybrid modes that entail toroidal dipole moments. This
could for example be explored in the spectral vicinity of the TE200 resonance at 3.6 THz
[Fig. 3(a)]. This resonance includes a significant but hidden presence of toroidal dipole
moment Tz simultaneously with the magnetic quadrupole Qm

yx and the other multipoles.
By breaking the symmetry of the metaatom this hidden toroidal character is revealed and
isolated from the quadrupole and other contributions offering an effective tool towards re-
alization of the anapole. In Ref. [30], it has been shown that this can be accomplished by
introducing elliptical cross-sections in the metaatoms. In the present case, we further break
the circular symmetry by introducing an additional perforation in the large cross-section of
the metaatom of Fig. 4.

We apply this off-center perforation to a uniform cylinder as shown in Fig. 6(a). Split-
ings in the eigenfrequencies and changes in the current distributions are produced; the
latter may be as serious as to drastically modify the character of the eigenmodes [see the
TE20 case in Fig. 6(a)] and their multipole components [Fig. 6(b)]. As mentioned before,
the perforation greatly affects the magnetic type modes, causing their distinctive splitting
in frequency, and has minor effect on the electric type modes. We observe this in Fig. 6;
the perforated cylinder supports the fundamental TE00 mode, two splitted magnetic dipole
modes with x̂-axis and ŷ-axis orientation TEx

10 and TEy
10, the fundamental mixed toroidal

TE01 mode and two splitted magnetic quadrupole modes TE(1)
20 and TE(2)

20 . The expected ra-
diation contributions (calculated as in Fig. 1) presented in Fig. 6(b) provide further insight
in the electromagnetic character of each mode. Here we choose to discuss only the above
mentioned since they are the significant ones for our purposes. (For example, mode TEx

10
has a dominant mx contribution that will not be excited). What is interesting is that the
splitted quadrupole mode TE(2)

20 has a significant Tz contribution with respect to the non-
splitted TE20 mode seen in Fig. 1. This is the feature we plan to exploit in the present
approach, since the features of the perforated single infinite uniform cylinder presented in
Fig. 6 survive in the perforated large part of the metaatom [see Fig. 7(a)], the unit cell of the
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FIG. 6. (a) First six transverse electric eigenmodes of a single infinite length uniform polaritonic rod

with a circular perforation; current distribution (color), resonant frequency, quality factor, and mag-

netic field lines (arrows) are shown. We assume Ez polarization and eigensolutions whose wavevec-

tor remains strictly in the xy plane, kz = 0. The radius of the cylinder is Rc = 15 µm and the radius or

the perforation rp = 3 µm placed at y =−10 µm. The sustained modes are the electric dipole, TE00,

two splitted magnetic dipoles, TEy
10 and TEx

10, two splitted magnetic quadrupoles TE(1)
20 and TE(2)

20

and the mixed electric and toroidal dipole, TE01. Notice that the expected radiation corresponding to

the TE(2)
20 mode has been dynamically altered by the perforation compared to the TE20 eigenmode of

Fig. 1(b). (b) Eigenmode identifier with respect to the expected radiation contributions coming from

the electric dipole pz, the toroidal dipole Tz, the magnetic dipole my, magnetic quadrupole Qm
yx and

the electric octupole Oe
zxx. The radiation power contributions are normalized with the dominant one

in each mode individually.

sculptured cylinder. The perforation is a vertical circular hole placed at the symmetric posi-
tion (y =−10 µm) of the small off-center cross-section part and with the same radius. Note
that all the features depend on the size of the perforation which we here keep constant. The
new design of the metaatom involves the TE(2)

20 hybrid quadrupole mode of the perforated
cylinder, entailing electric and toroidal dipole moments with a pure electric dipole sustained
by the small-cross section part of the metaatom. The parameters are set at HL = 40 µm and
HS = 8 µm for the cross-sectional lengths, RL = 15 µm and RS = rp = 3 µm for the cross-
sectional radii and the radius of the hole. The cylinders are periodically arranged with the
ŷ-axis periodicity being equal to d = 40 µm. Fig. 7(c) presents the reflection response of
the metasurface and in the inset of Fig. 7(c) we present the power contribution of the var-
ious multipoles to the reflected power. The contribution from the toroidal dipole peaks at
∼2.56 THz where the electric dipole exhibits a dip. The pz and Tz power contributions cross
at two points, one of which produces a dip in the reflection, satisfying the anapole condition
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FIG. 7. (a) Schematic view of the perforated metaatom including the off-center small cross-section

part (rp = RS). The corresponding metasurface sustains a dynamic anapole generated by the cancel-

lation of the pz and Tz moments; the latter originates from quadrupole Mie mode split as a result

of breaking of the circular symmetry. (b) The distribution of the polarization currents of the hybrid

quadrupole mode that entails, amongst else, enhanced toroidal dipole moment Tz (c) Reflection co-

efficient, assuming Ez polarization and normal incidence, calculated by full wave analysis (black)

and as interference of the reflected amplitudes of only the pz and Tz dipoles (red); in the inset the

reflected power by several multipoles is shown.

of Eq. (1). This is also evident by the fact that the anapole dip almost coincides with the dip
produced by the interference of only the pz and Tz contributions, R = f (p,T) (red), although
there are at this frequency strong magnetic dipole and quadrupole and electric octupole
moments [see Fig. 7(c), inset], which apparently cancel each other out. The quite minor
discrepancy in the position of the R = f (p,T) and the total reflection dip is ∆ f / f0 = 0.1%,
while in this case a very small leakage in the order of 1% is recorded in the reflection (cal-
culated by the full wave analysis). Thus, we have obtained beyond any doubt, the creation
of an anapole by the destructive interference of electric and toroidal dipole amplitudes al-
most without interference of any other multipole. This achievement was realized by our
optimized metasurface composed of sculptured cylinders periodically placed along the ŷ-
axis; each cylinder is formed by metaatoms [see Figs 4(a) and 7(a)] serving as unit cells;
the breaking of the circular symmetry was critical in eliminating parasitic contributions
detrimental to both the existence and the nature of the anapole.

At the same time, the combination of the hybrid mixed toroidal and electric dipole modes
of Fig. 7(a) proves to be more resilient to material losses than those of Fig. 4(a). This is pre-
sented in Fig. 8, where the response of Fig. 7(a) metasurface around the anapole frequency
range, 2.5-2.7 THz, is calculated for a material with variable loss tangent, tanδ = 5×10−3

[Fig. 8(a)] and tanδ = 10×10−3 [Fig. 8(b)]. Top panels present the power contributions of
the variable multipoles to the reflection power and bottom panels present the full wave
calculated reflection. We observe that as material losses increase, the Q factors of the re-
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FIG. 8. Top panels: multipole contributions to the reflected power, for the optimized structure of

Fig. 7(a); bottom panels: total reflection assuming material losses with (a) tanδ = 5×10−3 and (b)

tanδ = 10×10−3. The electric dipole moment contribution increases extensively above tanδ = 10×
10−3 becoming dominant, while the toroidal dipole moment contribution decreases and the crossings

between the power reflected from pz and Tz required for the anapole condition, seize to occur.

sponses decrease, leading to less sharp resonances. Additionally, the electric dipole moment
contribution increases while the toroidal dipole moment contribution decreases. The cross-
ings between the contribution reflected from the electric dipole pz and toroidal dipole Tz

remain up to the loss tangent of tanδ = 10×10−3 [Fig. 8(b)]. For even greater losses, the
electric dipole moment contribution becomes dominant, while the toroidal dipole moment
contribution vanishes.

E. Conclusions

We presented the design principle, the optimized specifications, and the simulation re-
sults of all-dielectric, polaritonic metasurfaces, consisting of sculptured periodically ar-
ranged cylinders that sustain non-radiating alternating current distributions, i.e. the so
called dynamic anapole state. The sculptured cylinders are formed by the periodic repeti-
tion of a metaatom breaking the circular symmetry and serving as their building block; two
different designs of the metaatom were presented based on different origins for the toroidal
dipole. We show that the anapole emerges from the destructive interference of only two
properly modified (as a result of the circular symmetry breaking) multipole moments: the
origin of the first is mainly the TE00 electric dipole Mie mode and the origin of the second is
either the mixed toroidal dipole Mie mode TE01 or the split magnetic quadrupole Mie mode,
TE20; the notations TE00, TE01, and TE20 are those found in an infinite, uniform free-space
standing cylinder. It was proven that the breaking of the circular symmetry can effectively
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eliminate the persistent magnetic contributions from the frequency of interest and allow
thus the almost pure cancellation by destructive interference of the electric and toroidal
dipole radiation leading to the anapole state. In the case that the toroidal dipole moment
originates from the splitting of TE20 mode, an additional symmetry breaking perforation
in each metaatom enhances the performance with respect to the anapole realization. Both
designs of the metaatom have been evaluated regarding the anapole sensitivity to material
dissipation losses proving to be reasonably resilient for actual implementations. Notice that
the designed metasurfaces can be realized using established fabrication techniques such as
direct laser writing.

III. MANY-ROD CONFIGURATIONS - WATER-BASED METASURFACES

A. Many-rod configurations

Until now, the focus was placed on the TE01 mixed toroidal mode (and also on a hybrid
magnetic quadrupole mode) as the basic candidates from which the toroidal moment orig-
inates and is manipulated accordingly so as to achieve the anapole state. Another way to
create strong toroidal moment is by combining many magnetic dipole modes (the second in
ascending frequency in Fig. 1(a), TE10 eigenmode) in a unit cell configuration comprised
of many rods. The TE10 eigenmode thus, becomes the building block of what is denoted
as collective toroidal super-mode, and already has been reported previously in [31]. In fact,
other electromagnetic types of collective super-modes emerge from the combination of many
"meta-atoms" cylinders to form a many-rod unit cell; the electromagnetic character is af-
fected by the interactions amongst the constituents and can be retrieved via a calculation
of the moments for each of the sustainable collective eigenmodes. One distinctive feature of
the collective toroidal super-mode is the pattern of the magnetic field lines. In particularly,
the magnetic moments arrange themselves into a circular loop that threads all the current
distributions, as shown in Fig. 9.

FIG. 9. The basis of the collective toroidal super-mode in many-rod systems is the fundamental

magnetic dipole eigenmode of a single infinite uniform cylinder (TE10). From the single-rod unit

cell, unit cells of many-rods configured in canonical polygons are capable of effectively recreating the

toroidal pattern; the latter is witnessed by the orientation of the magnetic moments into a circular

loop which threads all current distributions of the meta-atoms.
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A calculation of the toroidal moment at the eigenfrequency of the collective toroidal
super-mode, reveals that adding more cylinders in the unit cell enhances the toroidal dipole
character of the respective super-mode. Thus, it would be deduced that this tendency easily
leads to a favourable situation to obtain an anapole state. Nevertheless, regarding the spec-
tral isolation of the toroidal super-mode in many-rod metasurfaces, the increased number
of unit cell constituents, deteriorates the spectral separation from neighbouring magnetic
type super-modes. The eigenvalue analysis was also in accordance with the scattered field
study. In the latter, it was observed that in the vicinity of the excited toroidal super-mode,
except for the toroidal reflection power, other multipoles participated substantially to the
reflection when more rods were considered; this posed problems to the realization of a po-
tential anapole state. On the other hand, more rods in the unit cell lead to advantageous
features as well, such as improved tolerance to dissipation losses alongside with the en-
hanced toroidal moment. Thus, a balanced result should be targeted that allows both the
beneficial effects to emerge, and also restricts the problem of spectral inseparability. This
was achieved for N = 5 rods in the unit cell; for six rods or greater, the improvement of
the toroidal moment is saturated, while the spectral inseparability is intensified. Thus,
this makes any effort to suppress the magnetic type contributions to the reflection rather
difficult in order to create a pure anapole state.

In subsequence, structures of four and then five water-based cylinders are considered, in
order to examine the response of the anapole state in the presence of dissipation losses orig-
inating from water; this is also a convenient scheme for an experimental implementation.

B. Water properties and theoretical examination of water-based metasurfaces

Water is one of the most abundant and inexpensive materials on Earth, with an advan-
tage over rare and expensive materials such as LiTaO3 (Lithium Titanate) or BaxSr1−xTiO3

(Barium Strontium Titanate). Its ability to take the size of its container and the fact that it
is volume preserving, alongside with its dielectric properties, renders it a pioneer candidate
in the engineering of varying-sized water-based configurations. The real part of the per-
mittivity of pure water at room temperature is relatively high ℜ(εr)≈ 80, however it is also
fairly lossy, especially when water contains impurity ions; this explains why water has been
neglected in the design of all-dielectric electromagnetic structures, while recently novel and
bold steps have been made towards its use in a variety of applications.

The complex dielectric function of water in the low GHz regime is linked to the collective
motion of the molecular dipole moments under the influence of an electric field. It displays
a temperature dependent dispersive profile which is given by the Debye formula [44, 45]:

ε(ω,T)= ε∞(T)+ ε0(T)−ε∞(T)
1− iωτ(T)

(5)

where ω is the angular frequency, ε0(T) is the static permittivity (expressing the response of
the material when exposed to a static field), ε∞(T) is the permittivity at a higher frequency
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beyond the electronic transitions and τ is the rotational relaxation time. The temperature
dependence of the dielectric function is useful for the optimization of the performance of
water-based metasurfaces. In Appendix IV B, the exact relations for ε∞, ε0 and τ of Eq. (5)
are provided.

In liquid water, the molecules are linked together via a disordered network of hydrogen
bonds. Each hydrogen atom of one molecule is attracted to the oxygen atom of another
molecule that is located within a distance of few angstroms. Reorientation refers to the pro-
cess that occurs when a water molecule breaks a hydrogen bond and then reforms with an-
other molecule. Up to ∼100 GHz the spectrum of water is dominated by this re-orientational
contribution. In Fig. 10 the real (ε′) and imaginary (ε′′) parts of the water permittivity are
depicted and reorientation is labelled with R. The three bands at higher frequencies are
denoted by B, S and L and refer to the bending and stretching (both of which belong to the
intermolecular vibrational modes) and librational motion of molecules about their centres
of mass [46].

FIG. 10. Complex permittivity of water as a function of the frequency. The lower frequency behavior

is accounted for by the reorientation (R) of the water molecules [46].

To test the dielectric properties of water and examine its role when it is implemented in
a metasurface, a design to retain the water needs to be introduced. Such a design should
be described by repeated containers, into which water can be incorporated and they should
have a simple enough geometry convenient for construction processes. One of the simplest
schemes could be cylindrical glass containers that can be filled with water. Since glass is a
material whose relative permittivity is to the order εr = 2−10, whereas the water permit-
tivity highly exceeds this values, an impinging wave is only affected by the electromagnetic
properties of water and not those of glass.

Therefore, the theoretical study for the anapole state in water-based metasurfaces begins
by considering water-based cylinders. For T = 20o, the permittivity preserves a significant
real value of ℜ(εr) ∼ 80 and displays a relatively low imaginary part to the order of ℑ(εr) ∼
4.46− 13 for frequencies 1 to 3 GHz. The loss-tangent in this case ranges from tanδ =
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0.056 for f = 1 GHz, to tanδ = 0.167 for f = 3 GHz at room temperature. Both the real
and imaginary parts of the dielectric function are decreasing, as the temperature of the
water increases. In fact, the loss-tangent as well, is a decreasing function of temperature
and therefore the dissipations are lower if heated water is considered. The reason for the
tendency of the loss factor to be shifted to higher frequencies is explained more thoroughly
in Appendix IV B.

In Fig. 11(a) the real and imaginary part of water permittivity is presented and in
Fig.11(b) the loss-tangent. In order to restrict the dissipation losses to low values, the
frequency range below 2 GHz was studied, where the re-orientational process of water is
responsible for its dielectric properties.

FIG. 11. (a) Temperature and frequency dependent profile of the dielectric function of water based

on Eq. (5), up to 5 GHz. Color-coded solid lines correspond to the real part of the permittivity and

dashed to the imaginary. (b) Loss-tangent as a function of frequency and water temperature.

As introduced in Sec. III A, the "conventional" many rod-configurations, could potentially
be manipulated so as to sustain an anapole state, due to the enhanced toroidal moment
originating from the excitation of the collective toroidal super-mode. The first system to be
examined theoretically, combining the water-based and the many-rod design, is that of four
water-filled uniform cylinders placed on the edges of a rectangle, and repeated periodically
so as to form a metasurface. This structure has already been discussed in [47, 48], in
the first one theoretically (not for water-based system thought) and in the second one both
theoretically and experimentally as a water-based structure with no temperature tunability.
Here, it will be proven that the high dissipation losses at room temperature do not enable
the emergence of a pure anapole state in the four-rod metasurface. An analysis of the
reflection power of each moment as well as the evaluation of the reflection and transmission
coefficients, reveals that there are many obstacles that need to be overcome. First of all, the
toroidal reflection power in frequencies close to the excited collective toroidal super-mode, is
severely weakened by the dissipation losses; these reach even 70% (at room temperature),
and especially above 2 GHz the situation is deteriorated. Therefore, the Tz reflection power
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is significantly lower than the pz power above 2 GHz. As a result of the high percentage
of losses, the expected transmission power (it would be equal to one in the ideal lossless
case at the excitation frequency of the anapole state) is also severely decreased. Thus,
careful inspection of all the available many-rod configurations needs to be employed and
the frequency range should be restricted below 2 GHz for lower dissipation. The most
advantageous number of cylinders to be used in the unit cell of the metasurface so as to
accommodate the anapole state is claimed to be N = 5. Indeed, this conclusion stemmed
from an extensive analysis of water-based metasurfaces composed of N = 3 until N = 9 unit
cell constituents. Those results are not presented in this thesis, but were used to determine
the most beneficial configuration.

The two systems chosen to be presented (four- and five-rod configurations), display the
distinctive differences and summarize the major changes that occur when the number of
the water-based cylinders within the unit cell of a metasurface is altered. To perform the
comparison amongst them, the period of adjacent unit cells is set to 109.2 mm and the diam-
eter of the cylinders to 16.1 mm. Also, a constant center-to-center adjacent rod separation
of 26 mm is considered. In this way, a "fair" comparison of the temperature effects on the
transmission and on the absorption losses, regarding each configuration, can be made. As
expected, the water temperature rise improves both the toroidal reflection power and the
transmission near the excitation of the collective toroidal super-mode, while the resonance
is shifted to a higher frequency. This stems from the fact that the water permittivity de-
creases with temperature [see Fig. 11(a)], thus the wavelength also decreases, and as a
result the frequency is shifted to a higher value.

For the four-rod system [cylinders positioned as illustrated in Fig. 12(a)], the transmis-
sion curves are depicted for varying temperatures as a function of frequencies that lie below
2 GHz [Fig. 12(b)]. A step of 10o temperature increase improves the maximum transmis-
sion attained near the collective toroidal resonance by ∼ 5%. The excitation of the collective
toroidal super-mode occurs at the first maximum in the transmission power of Fig. 12(b)
of each temperature case. If additionally the reflection powers of the electric and toroidal
moments are examined, it is concluded that the threshold temperature for a crossing-point
to exist is above 80o, as it is shown in Fig. 12(c). Thus, this structure is heavily affected by
the dissipation losses. An enhancement is observed to the power of Tz if the center-to-center
separation is increased, but this leads to a deterioration in the transmission and to a per-
sisting magnetic quadrupole (and magnetic dipole) reflection contribution to the vicinity of
the excitation of the toroidal super-mode. These additional contributions are also evident in
this case, by the fact that R = f (p,T) fails to reproduce the total reflection power, as shown
in Fig. 12(d).

Since the four-rod water-based configuration does not offer a broad temperature and fre-
quency range to be exploited for the realization of a potential anapole state, the attention
is turned to the five-rod system. As already stated, the N = 5 number of rods was the most
beneficial case, since it combined both decent spectral isolation of the collective toroidal
excitation, as well as significant toroidal dipole contribution. For the five-rod system [ar-
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FIG. 12. (a) Unit cell of the four-rod water-based metasurface. (b) Transmission power as a function

of the frequency for water temperatures ranging from 20o to 90o, for 1.1-2 GHz. The peak value in

each temperature occurs at the excitation of the collective toroidal super-mode. (b) Reflection power

from pz (solid) and Tz (dashed) for the same frequency range as in (a). The threshold temperature

to preserve the crossing of the two reflection powers is approximately 80o. Below this threshold, due

to the dissipation losses the toroidal moment fails to reach a power comparable to the electric dipole.

(d) Reflection power as a function of all multipoles (solid) and of only the toroidal and electric dipolez

R = R(p,T) (dashed) in the range 1.1-2.5 GHz, for the two temperature cases of lowest dissipation

losses. Notice the discrepancy between the total reflection coefficient and R = R(p,T); the latter is

both shifted and of lower amplitude, indicating extra contribution that needs to be considered and

originates from the my, Qe
xz and Qm

yx reflection powers.

ranged in a pentagon as shown in Fig. 13(a)], the threshold temperature for the crossing to
occur is approximately 65o.

Again, for each temperature the corresponding transmission is demonstrated [see Fig.
13(b)]. It is observed that this configuration is more tolerant to dissipation and the maxi-
mum transmission in this case is about 60−65% for T = 90o. In addition, it offers better
spectral separability from the collective magnetic quadrupole excitation. The anapole state
corresponds to the sharpest peak observed in Fig. 13(b), and the reflected powers from pz

and Tz are depicted in Fig. 13(c). In this case, the temperature range in which the anapole
state is resilient and still sustainable in the presence of losses, increases significantly by
∼ 25o compared to the four-rod water-based metasurface. Furthermore, the comparison of
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FIG. 13. (a) Unit cell of the five-rod water-based metasurface. (b) Transmission coefficient as a

function of the frequency for water temperatures ranging from 20o to 90o. (c) Reflection power

from pz (solid) and Tz (dashed) for different temperatures. Above 55o −60o the crossing of the two

reflection powers is observed, offering wider potential for operation than the corresponding four-rod

system. (d) Reflection coefficient as a function of all multipoles and of only the toroidal and electric

dipole R = R(p,T) in the range 1.1-2.5 GHz, for the two cases of lowest dissipation losses. Increase of

the temperature results in a sharper reflection dip and the anapole state occurs at ∼1.6 GHz, with a

δ f / f0 ∼ 1.3% for 80o and δ f / f0 ∼ 1.2% for 90o, regarding the comparison between the total reflection

and R = R(p,T). (e) Reflected power by multipoles for 1.2-2 GHz. The crossing point (indicated with

"x") of the pz and Tz powers corresponds to the minimum of the reflection coefficient in (d).

the total reflection power with the reflection when only the toroidal and electric dipole mo-
ments are considered is much more accurate; the minor shift is only ∼0.02 GHz [see Fig.
13(d)]. Finally, in Fig. 13(e) the reflected power by the individual moments is displayed.
The anapole state occurs at ∼1.65 GHz and it is also shown that only a negligible contribu-
tion by the my and Qe

xz powers contributes. Thus, this metasurface prominently succeeds
in attaining the long-sought dynamic anapole state by simply exploiting the most abundant
material in nature, the water.

The general conclusion is that if one follows the same procedure by adding one more rod
to the unit-cell, the toroidal reflection power is enhanced. Consequently, the temperature
threshold needed to be reached so as to sustain the anapole decreases by approximately
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∼ 10o, when the number of cylinders increases by one. Nevertheless, for N Ê 6 there is no
distinct improvement to the maximum transmission (and equivalently minimum reflection),
since the losses become more intense due to the increased occupied volume area of the
material within the unit cell (filling factor), whilst additional magnetic type contributions
at the vicinity of the cannot be suppressed.

C. Waveguide experiment using water-filled cylinders

In order to test the theoretical results, an experiment was performed in one of the labora-
tories of Forth IESL, by utilizing five water-filled glass cylinders. The relative permittivity
of the glass containers was εr = 4 and their width 2 mm. The inner region of the cylinders
was 16.1 mm and was filled with deionized water. The five cylinders were adjusted to an
adjacent center-to-center separation of 26 mm (in accordance with the theoretical analysis
in Sec. III B), and fixed onto a glass substrate as in Fig. 14(a).

FIG. 14. Experimental configuration of the five-rod unit cell. Five cylinders filled with deionized

water, forming a canonical pentagon, were adjusted onto a circular glass base.

The unit cell of Fig. 14 was then inserted inside a metallic waveguide, 10.9 cm wide. The
width of the waveguide is critical, and it must be at least λ/2 to accommodate a quarter-wave
stub on each side and still have nonvanishing conductor strips. This means that there exists
a low-frequency cutoff; wave propagation is not possible if the wavelength is greater than
2α, where α is the waveguide width. The one used in the experiment is the standard design
WR430 (Fig. 15), meaning "Waveguide Rectangular", and is 4.3 inches (10.9 cm) wide. The
standard width-to-height ratio is two-to-one, so the height of the waveguide is 54.61 mm
[49]. The transverse electric waveguide modes are denoted as TEmn, where the integers m
and n indicate the number of half wavelength or nodal lines which the interference wave
possesses in the rectangular cross-section. The cutoff frequency of lowest order transverse
electric mode (TE10) for this type of waveguide is 1.372 GHz, and for the next mode (TE20)
2.745 GHZ. Thus, it is now apparent why in the previous section the anapole state was
aimed to be obtained at frequencies exceeding 1.3 GHz, and why the periodicity was set to
109.2 mm. Placing a unit-cell within a waveguide of a certain width, is in quality equivalent
to an infinite metasurface of repeated unit-cells, due to the boundary conditions at the
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metallic walls, that in the low GHz regime for the fundamental waveguide mode mimic
the periodic boundary conditions of the E and B fields. The infinite elongation along the
axis of the cylinders (which applies to the case of the metasurface) is again equivalent with
cylinders filling exactly the height of the waveguide.

FIG. 15. A WR430 waveguide was used and the five-rod configuration was placed within the waveg-

uide. The lowest cutoff frequency of the fundamental TE10 mode is 1.372 GHz. The width of the

WR430 is 109.22 mm and the height 54.61 mm. These values refer to the inner dimensions of the

opening of the waveguide.

As stated, inserting one unit-cell within the waveguide is expected to reproduce closely
enough the conditions of an infinite metasurface with period of adjacent unit cells equiva-
lent to the width of the waveguide. As far as the height of the cylinders, they were a little
shorter than the height of the waveguide, so that they could be easily inserted and removed
from the waveguide. The fundamental mode of the waveguide, that is the TE10 mode, is
the one that resembles as closely as possible the TEM wave (plane wave that impinges on a
metasurface). It is known that a waveguide cannot support a TEM wave. The TEM wave is
different from the TE10 in a sense that every wavefront of the former has constant spatial
amplitude and a specific polarization. The TE10 also has a specific constant polarization
direction on each cross-section of the waveguide; however, there is a sinusoidal dependence
of the amplitude on the x, y coordinates in every cross-section (assuming propagation along
the ẑ-axis parallel to the length of the waveguide), but since only λ/2 fit in the waveguide for
this mode, each wavefront retains a constant direction of polarization within the two-node
envelope. This is the main difference between a TEM wave and the TE10 mode of the waveg-
uide, and the latter is the closest equivalence with a plane wave that could be obtained with
this experiment. Therefore, the expectations are that the theoretical results of Sec. III B,
for a plane wave impacting on the infinite metasurface, will exhibit some discrepancy with
the experimental ones.

Each side of the waveguide has two probes; the one is used to generate electromagnetic
waves that couple to the modes of the waveguide and propagate along its length, and the
second is used to record the signal related to the phase and amplitude of the transmission
coefficient S21. Also, the two opposite sides of of the waveguide have one quarter-wave
impedance transformer each, specially designed so as to avoid power being reflected back
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to the input port, when the waveguide is empty. This feature is wanted in order not to send
radiation back to the unit cell from the second end.

Within most of the recorded frequency range of this experiment, only the fundamental
TE10 was propagated along the waveguide. As it was emphasized in Sec. III B, control
over the temperature of the water is wanted, but a waveguide itself does not possess a
heating mechanism. To further allow temperature control, a heating belt [see Fig. 16(a)]
was wrapped around the waveguide directly above the location of the unit-cell. Since the
waveguide is metallic, it allows heat to permeate in the inner region, warming thus the
water that fills the cylinders. To prevent extensive heat loss, both the waveguide and the
belt are wrapped with an aluminum foil as shown in Fig.16(b). The temperature could then
be varied, and was measured via a sensor that was connected to the inner region of the
waveguide. All data regarding the transmission and reflection coefficients were collected by
means of a digital analyser [see Fig. 16(c)].

FIG. 16. (a) Heating belt wrapped around the waveguide to provide control over the temperature of

the water within the cylinders. The heat flows from the outer to the inner part of the waveguide.

(b) The waveguide is covered with aluminum foil for extra heat isolation. The air temperature of

the inner part of the waveguide can be measured as well. (c) An analyser is connected to the probes

located in the front and rear ends of the waveguide, to collect the data for the S21 and S11 parameters

The purpose of the experiment was to test if the feature of the anapole state would indeed
become apparent via the transmission characteristics that were obtained from the theoret-
ical analysis presented in Sec. III B. In the experiment, a wave was probed, coupled to
the TE10 mode of the waveguide, and guided onto the five water-filled cylinders; the cylin-
ders then either reflected, transmitted or dissipated the power of the impinging wave. The
amplitude and phase of the transmission coefficient S21 were measured for a specific tem-
perature of the water. Then the same process was repeated when the water temperature
was stabilized to a higher value. Beginning from 20o and until the final value of 90o, the
data related to the S21 coefficient were collected. The frequency range of the transmission
power lies from 1.4 GHz to 3.1 GHz and is presented in Fig. 17. In Fig. 17 it is interest-
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FIG. 17. Experimental data of the transmission power in dB for temperatures ranging from 20o to

90o. Notice that for temperatures lower than 50o there is only one transmission peak in the range

1.4-1.6 GHz; this is in agreement with the theoretical results in Sec. III B. A second transmission

peak in the corresponding frequency range appears distinctively for T > 60o. The experimental

spectral position of the first two peaks is also proven to be captured qualitative by the theoretical

analysis that preceded.

ingly observed that the appearance of a second transmission peak around 1.4-1.6 GHz for
temperature higher than ∼ 60o, coincides with the theoretical results of Sec. III B; in this
range the anapole state is excited.

In order to demonstrate the true comparison of the theory and the experiment however,
a waveguide was simulated with the exact dimensions as those of the WR430 design, as
well as the permittivity, width and inner dimensions of the glass containers were taken
into account. Using the Debye model of Eq. (5), for T = 20o the theoretical results from the
waveguide simulation are compared to the experimental ones in Fig. 18(b); their agreement
is excellent for f < 2 GHz. Another common feature is the improvement of the transmission
with the increase of the temperature. Thus, having presented the experimental data, the
previous theoretical analysis seems to capture the general qualitative features satisfacto-
rily.

In Fig. 19 the transmission power obtained from the waveguide simulation is presented.
The increase of the temperature improves the transmission as in the experiment, and a sec-
ond peak appears in the spectrum near the frequencies 1.4-1.6 GHz. The position of the two
first transmission peaks is also in relative accordance with the experimental observations.
The theory however, suggests a larger dependence of the features in the temperature, as
the curves are shifted more intensely to higher frequencies due to the temperature rise.

Many minor details are responsible for shaping the features of the experimental trans-
mission power and provide explanations for the deviations amongst the theoretical and
experimental results. For instance the actual value of the air gap above the five cylinders
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FIG. 18. (a) Schematics of the design in the simulation, employed to resemble the experiment as

closely as possible. (b) Comparison of the experimental transmission power with the theoretical one,

for water temperature 20o. It is noticeable that the theory stands in excellent agreement for fre-

quencies less than 2 GHz. Deviation is observed in the power at higher frequencies, but the overall

tendency dictated by the theoretical simulations resembles closely the experiment. The considera-

tion of the glass substrate on the bottom part of the five cylinders also affected significantly the S21

theoretical power.

within the waveguide (as it was stated that they were a little shorter from the inner height
of the waveguide) was observed to affect importantly the theoretical results. The experi-
mental data were also sensitive to the temperature variations, and when the measurement
of the S21 coefficient was performed there could have been temporal temperature changes

FIG. 19. Theoretical results of the transmission power obtained from the waveguide simulations, for

various temperatures. There is a close agreement of theory and experiment, as the basic trend is

reproduced. in the former the transmission peak around 1.4-1.6 GHz displays greater sensitivity to

temperature variations and is shifted more to higher frequencies than the experiment.
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that cannot be implemented in the theoretical simulations. Furthermore, it was the air
temperature that was measured inside the waveguide close to the five cylinders, but not
exactly the water temperature inside the configuration, which also accumulates an error in
the theoretical analysis. Another reason for the existing discrepancies, could be the qual-
ity of the water; the potential presence of residual ions or impurities dynamically changes
its properties, so deviations from the theoretical Debye model can also account for the dif-
ferences between experiment and theory. Additional losses in the experiment may have
occurred, since the theory suggests transmission ∼ 5−20% greater than the experimental,
for the high water temperatures that were studied.

The expectation of a transmission to the order of ∼ 60% (based on Sec. III B for the infi-
nite metasurface impinged by a plane wave), is significantly lower both in the experiment
and waveguide simulation. This reveals that the deviation of the waveguide’s mode from
an actual plane wave has the major consequence of affecting the response of the unit-cell.
Nevertheless, it is important that the experiment verified the expected characteristics that
accompany the excitation of an anapole state.

Another possibility for more qualitative equivalence to an infinite metasurface impinged
by a plane wave, would be to build a structure of a few repeated unit cells, and probe a
wave that impacts onto the configuration. This could possibly recreate more accurately the
results retrieved in the theoretical case of the infinite metasurface.

D. Conclusion

The characteristics and design principle of a many-rod water based metasurface, re-
silient enough for realistically implementing the anapole state, in the ever-present losses
was presented. The enhanced toroidal moment originating from a collective toroidal super-
mode was exploited so as to attain the destructive interference between the electric and
toroidal dipole moments. By means of optimization the, toroidal and electric dipole con-
tributions were isolated from the contributions of other participants in the radiation, and
the condition of the anapole was satisfied accurately. The controllability of the dielectric
properties of water was realized by the temperature dependent water permittivity, was ex-
ploited to sustain and preserve the anapole state in the presence of losses. The theoretical
analysis was further supported by a waveguide experiment, verifying the response of the
metasurface when impinged by the TE10 waveguide mode, which possesses the closest re-
semblance to a plane wave. The tunable capabilities of water create an enhanced interest
in exploring further its potential in water-based metamaterials. Combined with the new
emergent phenomena that originate from the implementation of metamaterials, water has
a lot to offer as a tuning mechanism not only for achieving the dynamic anapole state, but
in a variety of other applications as well.

33



IV. APPENDIX

A. Causality in the connection between D and E fields

Causality is the fundamental feature of electromagnetic wave theory. It is the simple
statement that the cause precedes the effect. In the relativistic theory it is referred to as
the principle of relativistic causality which states that the signal cannot propagate with a
velocity greater than the speed of light c in vacuum. The dielectric permittivity tensor is
temporarily dispersive meaning that it depends upon the temporal angular frequency (i.e.
ε̃ = ε(ω)). A temporary locally linear medium with no dispersion in frequency would imply
an instantaneous connection between the induction fields B(r,t) and E(r,t) with the induced
displacement vector D(r,t) and the magnetic intensity vector H(r,t) which is physically un-
reasonable [50].

A consequence of the frequency dependence of ε(ω) is a temporally nonlocal connection
between the displacement D and the E field [51]. If the monochromatic components of
frequency ω are related by:

D(r,ω)= ε(ω)E(r,ω) (6)

the dependence on time can be constructed by Fourier superpostition. Treating special
coordinate as a parameter, the integrals are written as:

D(r, t)= 1p
2π

∫ ∞

−∞
D(r,ω)e−iωtdω (7)

D(r,ω)= 1p
2π

∫ ∞

−∞
D(r, t′)eiωt′dt′ (8)

with similar equations for the E field. Inserting the Eq. (6) into Eq. (7) gives:

D(r, t)= 1p
2π

∫ ∞

−∞
ε(ω)E(r,ω)e−iωtdω (9)

Substituting the Fourier transform of the electric field E(r,ω) = 1/(2π)1/2 ∫ ∞
−∞E(r, t′)eiωt′dt′,

where t’ is a time prior to time t (causal effect), into Eq. (9) yields:

D(r, t)= 1
2π

∫ ∞

−∞
dωε(ω)e−iωt

∫ ∞

−∞
dt′E(r, t′)eiωt′ (10)

With the assumption that the orders of integration can be interchanged the last expression
is written as:

D(r, t)= 1
2π

∫ ∞

−∞

∫ ∞

−∞
dωdt′ε(ω)E(r, t′)e−iω(t−t′) (11)

The dielectric function is related to the susceptibility by the expression ε(ω) = ε0(1+χε(ω))
and can be substituted into Eq. (11). Also recalling the integral representation of the delta
function and the property 1/2π

∫ ∞
−∞ f (t′)e−iω(t−t′)dt′ = f (t), Eq. (11) is written as:

D(r, t)= 1
2π

{∫ ∞

−∞

∫ ∞

−∞
dωdt′ε0E(r, t′)e−iω(t−t′)dt′+

∫ ∞

−∞

∫ ∞

−∞
dωdt′ε0χe(ω)E(r, t′)e−iωτdt′

}
(12)
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And since χe(ω)= ε(ω)/ε+0−1 Eq. (12) takes the form:

D(r, t)= 1
2π

ε0E(r, t)+
∫ ∞

−∞

{
1

2π

∫ ∞

−∞

(
ε(ω)
ε0

−1
)

e−iωτdω
}

E(r, t−τ)dτ (13)

where τ= t− t′. In Eq. (13) the term in the brackets is the Fourier transform of the electric
susceptibility which is denoted as G(τ) = 1/2π

∫ ∞
−∞ ( ε(ω)

ε0
−1)e−iωτdω, so finally the displace-

ment vector reads:
D(r, t)= ε0

{
E(r, t)+

∫ ∞

−∞
G(τ)E(r, t−τ)dτ

}
(14)

Equation (14), as well as the Fourier transform of G(τ) give the nonlocal connection
between D and E, and show the dependence of D on the electric field at another time t.
When the dielectric function ε(ω) has no dependence on ω for all values of ω it is easily
retrieved that G(τ)∝ δ(τ) and therefore the instantaneous connection is obtained.

B. The Debye model of orientational polarization

The Lorentz model describes how the bounded electrons to the nucleus or lattice interact
with electromagnetic field and generally oscillate about their equilibrium positions. Clas-
sically, the Newton’s law is used to describe the oscillations by assuming a driving force, a
spring force and a damping force [50]. The external driving force is due to the electric field,
the spring force is the force exerted on the bound electrons to return to their equilibrium
positions (and is zero for the case of dielectrics) and the damping force takes into account
the decay of the oscillations. The Drude model is obtained by the Lorentz model, if one sets
the resonant frequency of the oscillator to zero, as there are free electrons and no spring
force "connects them" to the ions.

The Debye Model deals with another type of polarizing matter; it is associated with per-
manent dipoles rather than induced dipoles. The most distinctive example of a material
that is comprised of permanent dipoles, is water. The water molecules have inherent ran-
domly oriented dipole moments and when an electromagnetic field is applied, these tend
to align along the direction of the external electromagnetic field. In this case, the restor-
ing mechanism that tends to restore the dipoles to their equilibrium is the thermal motion
which causes the randomization of the dipole orientations, opposing thus the effect of their
alignment to the direction of the external field. This randomization is called relaxation. The
relaxation process can be expressed as an exponential decrease in the polarization, since
when the external field is turned of the material reaches equilibrium not instantaneously
but over a period of time. The exponential decay of the polarization reads:

P(t)=P(0)e−t/τ (15)

where τ is the relaxation time for the re-oritentation of the molecules. If the angular fre-
quency ω of the applied field is much larger than τ−1 the molecules become unable to ’follow’
the field. Debye proposed the decay function α(ω)∝ e−t/τ describing the gradual decrease of
the D field upon application of an external field E.
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Assuming that at time t′ an external field was turned on for a dt′ interval, outside this
interval the strength of the external field vanishes. The displacement D vector, in view of
the inertia of the polarization P will persist at times t > t′+dt′ , but will gradually vanish.
Thus, D is a function of t and t′ i.e.:

D(t− t′)=E(t′)a(t− t′)dt′ (16)

if t > t′+ dt′. The decay function a(t− t′) → . if t → ∞. The displacement vector contains
a part that can follow the external field practically immediately, and which in view of the
meaning of ε∞ is equal to ε∞E(t′). Also, α is assumed to remain the same value α(0) during
the short interval dt′. Thus:

D(t− t′)= ε∞E(t′)+E(t′)a(0)dt′ (17)

If another field E(t′′) is assumed to be in effect at a later time t′′ = t′+ dt′′ then by the
principle of superposition the displacement field D(t− t′′) is superposed linearly on the for-
mer one. If the E(t′) field is applied to the material at time t′ = 0, according to the principle
of superposition the displacement D(t) field at time t becomes:

D(t)= ε∞E(t)+
∫

0
E(t′)α(t− t′)dt′ (18)

According to Debye’s approach for how the molecules restore in their equilibrium the time
derivative of the exponential decay function gives da(t)/dt = −τ−1a(t). By taking the time
derivative of Eq. (18) and multiplying with τ one obtains [52]:

τ
dD(t)

dt
= ε∞τdE

dt
+τα(0)E−

∫ t

−∞
E(t′)α(t− t′)dt′ (19)

where the integral was safely extended to times t < 0 since the both the D and E fields
vanish. Addition of Eq. (18) and (19) gives:

τ
d
dt

(D−ε∞E)+ (D−ε∞E)= τα(0)E (20)

To determine α(0) the equilibrium condition is considered, so the time derivative is set
to zero (equilibrium in a constant field), implying also D= εsE. Therefore:

α(0)= 1
τ

(εs −ε∞) (21)

Now, Eq. (20) is written as:

τ
d
dt

(D−ε∞E)+ (D−ε∞E)= (εs −ε∞)E (22)

Equation (22) becomes the differential equation connecting D with E under the assump-
tion that the decay function is given by the equation a(t) = τ−1(εs − ε∞)e−t/τ. Assuming a
periodic field (i.e. E∝ e−iωt), then dE/dt =−iωE, D = ε(ω)E and dD/dt =−iωε(ω)E, so the
differential Eq. (22) reads:
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τ (−iωε+ iωε∞)E+ (ε−ε∞)E= (εs −ε∞)E (23)

Thus, solving for ε(ω) gives the Debye model for the dielectric function with one relax-
ation term:

ε(ω)−ε∞ = εs −ε∞
1− iωτ

(24)

The frequency dependence is expressed explicitly, but the temperature dependence ap-
pears implicitly through εs − ε∞ and τ, both of which usually depend on T. Solving for the
real and imaginary parts of 24 one obtains:

ε1(ω)−ε∞ = εs −ε∞
1+ω2τ2 (25)

ε2(ω)= (εs −ε∞)ωτ
1+ω2τ2 (26)

Assuming that the Debye equations are fulfilled, τ(T) can be found from the frequency
at which ε2 has its maximum. In fact at a constant temperature the angular frequency ωm

of this maximum is determined by:

∂ε2

∂ω
= 0 (27)

And since ∂ε2/∂ω = 0 when ω(T) = 1/τ(T) from the first Eq. (27), so from the frequency
at which ε2 has its maximum one can find τ, or similarly it can either be retrieved from
∂(tanφ)/∂ω = 0, where tanφ = ε2/ε1 is the loss-angle φ. Then ωm,φ(T) = 1/τ(T)(εs/ε∞)1/2,
which is nearly equal to ω(T) = 1/τ(T), for most substance for which the Debye equations
can be expected to hold.

At the frequency when ω=ωm where ε2 has its maximum the real and imaginary parts
of the dielectric function become:

ε1 = 1
2

(εs −ε∞) ε2 = 1
2

(εs −ε∞) (28)

An interesting feature of Eqs. (28) is that the values of ε1 and ε2 at the frequency ωm are
independent of this frequency and of the relaxation time; they only depend on εs and ε∞.
This gives a more clear insight about the meaning of ε∞. According to the Debye equations
ε1 decreases from εs to ε∞ in the frequency region in which ε2 has relatively large values.
Thus, it is the value which is asymptotically approached by ε1 at frequencies sufficiently
larger than ω=ωm to make ε2 relatively small.

The Debye model that was used in the theoretical simulations is based on a model found
in [36]:

ε0(T)= a1 −b1T + c1T2 −d1T3 (29)

ε∞(T)= ε0(T)−a2e−b2T (30)

τ(T)= c2ed2/(T+T0) (31)
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where a1 = 87.9, b1 = 0.404 K−1, c1 = 9.59× 10−4 K−2, d1 = 1.33× 10−6 K−3, a2 = 80.7,
b2 = 4.42× 10−3 K−1, c2 = 1.37× 10−13 s, d2 = 651o C, T0 = 133o C and T is the water
temperature in Celsius. The dependence of the parameters from the temperature as well as
the constants, have been determined in many works by measurements performed on pure
water.

The temperature of a material has significant effect on its dielectric properties. In gen-
eral, the loss factor increases with increasing temperature at low frequencies due to ionic
conductance, but decreases with increasing temperature at high frequencies due to free-
water dispersion. Debye related the relaxation time for spherical molecule to viscosity and
temperature as the result of randomizing agitation of the Brownian movement [53]:

τ=V
3v
kT

(32)

where v is the viscosity, V is the volume, k is the Boltzmann’s constant and T is the tem-
perature. For nonspherical water molecules the relation that holds is τ∝ v/T, while the
viscosity of all fluid decrease with increasing temperature exponentially i.e.:

v = v0eEa/RgT (33)

where Ea is the activation energy and Rg is the universal gas constant. The molecules in
a liquid have no fixed positions. If a molecule momentarily is forced out of its equilibrium
direction, its neighbours will tend to rearrange themselves in such a way so as to make this
new direction an equilibrium position. Thus, there are two concepts about the way in which
a dipole in a liquid alters its direction. It either jumps into a different direction, which
requires that at least for the duration of the jump the arrangement of its neighbours should
remain unaltered. The second is that such jumps occur rarely and that a dipole may change
its direction only in conjunction with a rearrangement of the positions of the neighbours.

The description of the motion of these neighbouring molecules might be described by
replacing them by a continuous medium with properties of a macroscopic viscous fluid.
This indeed led Debye to introduce in his model the concept of a spherical dipolar molecule
of radius α to be moving in a continuous viscous fluid with viscosity v and obeying the
macroscopic equations of flow. The fluid is also considered to adhere to the surface of the
molecule and on these assumptions the frictional constant of the sphere is given by Stokes’s
law (ξ= 8πvα3).

Equation (33) is an empirical law for the viscosity and suggests that the jumps over a
potential barrier of height Eα are carried out by the molecules of the liquid in processes
connected with viscous flow.

As the temperature rises, the relaxation time decreases which means that the bonds
break and reform much faster than in lower temperatures. The shifting of the relaxation
time toward a lower value (which means that the frequency at the maximum ℑ(ε) shifts
toward a higher value as temperature increases) reduces the value of ℑ(ε) for water at a
fixed microwave frequency.
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FIG. 20. Effect of the temperature on the dielectric constant ε1 =ℜ(εr) and the loss factor ε2 =ℑ(εr)

of free water. Notice how the maximum of the loss factor is shifted to higher frequencies as the

temperature rises, lowering thus the dissipation losses of water in the low GHz spectrum.

C. Expressions for calculating the moment terms of the multipole expansion

The decomposition of an E/M field that impinges in an infinite array of scatterers is pre-
sented in Savinov’s work [43]. This decomposition results in certain mathematical quanti-
ties; the moments/multipole terms, and describe in this case the far field scattered by the
infinite array. The summation of the far-field contributions of all moments at the position
of the observer, effectively reconstructs the total scattered field. In all parts of the analysis,
normal incidence was assumed along the x̂-axis and ẑ polarization of the impinging wave.

The scattered field by an isolated source is given by:

E(r)=E(l=1) +E(l=2) +E(l=3) + ...(l > 3) (34)

where l is the angular momentum index of the spherical functions Yl,m. The multipole
expansion being a mathematical series is dependent on the angles θ,φ on a sphere. As the
index l takes higher values, more information is acquired about the details of the angular
characteristics of each order. For example, the l = 0 order does not depend on the angles
and has a constant value. The next order l = 1 changes only once from positive to negative
around the sphere, with higher orders being characterized by more abrupt variations [54].

When the current density J(r) distribution within the metaatom is calculated and the
geometry is simple enough, an analytical expression can be extracted. The expression for
the total scattered field, if all the unit cells are considered, reads:

Es =
∑
r

E(r)≈ 1
∆2

∫
array

d2rE(r) (35)
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with ∆ being the area of an individual unit cell. If one begins with the far-field distribu-
tion of each isolated multipole and using the spherical functions [43], it is proven that the
equation for the scattered field is:

Es = µoc2

2∆2 {−ikp∥+ ikR̂×
(
m∥− k2

10
m(1)

∥

)
−k2

(
T∥+ k2

10
T(1)
∥

)
+k2

(
Q(e) · R̂

)
∥

− k2

2
R̂×

(
Q(m) · R̂

)
∥−

ik3

3

(
Q(T) · R̂

)
∥+ ik3

[(
O(e) · R̂

)
· R̂

]
∥

− ik3

180
R̂×

[(
O(m) · R̂

)
· R̂

]
∥}× e(−ikR)

(36)

In the above expression, we recognize the electric, magnetic and toroidal dipoles (p∥, m∥,
T∥) and the electric and magnetic quadrupoles (Q(e/m)) and octupoles (O(e/m)) respectively.
The notation ∥ means that the corresponding vector is parallel to the metasurface. In addi-
tion, the supersript (1) means that these moments are first order corrections (e.g. m(1)

∥ is a
correction to the magnetic dipole moment m∥).

The analytical equations of the moments in Cartesian coordinates used in all parts of
the thesis are provided below:

pα = 1
iω

∫
d3rJα (37)

mα = 1
2c

∫
d3r [r×J]α (38)

Tα = 1
10c

∫
d3r

[
(r ·J) rα−2r2Jα

]
(39)

Q(e)
α,β =

1
2iω

∫
d3r

[
rαJβ+ rβJα− 2

3
δα,β (r ·J)

]
(40)

Q(m)
α,β =

1
3c

∫
d3r [r×J]α rβ+ {α↔β} (41)

Q(T)
α,β =

1
28c

∫
d3r

[
4rαrβ (r ·J)−5r2 (

rαJβ+ rβJα
)+2r2 (r ·J)δα,β

]
(42)

O(e)
α,β,γ =

1
6iω

∫
d3r

[
Jα

( rβrγ
3

− 1
5

r2δβ,γ

)
+ rα

( Jβrγ
3

+ Jγrβ
3

− 2
5

(r ·J)δβ,γ

)]
+{α↔β,γ}+ {α↔ γ,β}

(43)

O(m)
α,β,γ =

15
2c

∫
d3r

(
rαrβ− r2

5
δα,β

)
· [r×J]γ+ {α↔β,γ}+ {α↔,γ,β} (44)

In order to clarify the above equations, it is imperative to find the multipole terms that
contribute to the far-field scattering, for the case of the array orientation that has been
studied in the previous sections. Each unit-cell is supposed to lay on the yz plane, recurring
periodically along the ŷ axis. Moreover, the ẑ-direction of the metasheet is extended to infin-
ity. For the incident ẑ-polarized plane wave, normal incidence is assumed and it translates
along the x̂-direction.
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The non-zero components of each multipole order, are evaluated based on the position of
the observer. In this circumstance, the observer’s position is R̂= Rx̂. Then, for the magnetic
dipole for instance, in order to get the component of the same polarization with the incident
wave (and also lying onto the plane of the array) we have to find the projection of the vector
onto the plane :

m∥ =m− (
m · R̂) · R̂= mxx̂+myŷ+mzẑ−mxx̂= myŷ+mzẑ (45)

Now we return to the equation for the total scattered field. The equation reads: Es ∼
R̂×m∥ = x̂×(myŷ+mzẑ)= myẑ−mzŷ. However, from these two components my, mz we want
to keep only the one parallel to the polarization vector of the E-field, so the my component
will contribute. In the same notion, the parallel components of the electric and toroidal
dipoles are Tz and pz. Continuing with the quadrupoles and using the Einstein summation
convention we have:(

Q(e) · R̂
)
∥ =

(
Q(e) r̂α (r̂ · x̂)β

)
∥ =

(
Q(e)
αβ

r̂αδβx

)
∥ =

(
Q(e)
αx r̂α

)
∥ (46)

Once again, we are only interested for the projection of the vector onto the plane of the
unit-cell. So this means that α→ y or z. Then the above equation becomes:(

Q(e)
αx r̂α

)
∥ =Q(e)

zx ẑ+Q(e)
yxŷ (47)

where we keep for the aforementioned reasons only the first term for the electric quadrupole.
The same proof follows for the toroidal quadrupole (Q(T)) term. For the magnetic quadrupole
(Q(m)) we deduce:

R̂×
(
Q(m) · R̂

)
∥ = x̂×

(
Q(m) r̂α (r̂ · x̂)β

)
∥

= x̂×
(
Q(m)
αβ

r̂αδβx

)
∥ = x̂×

(
Q(m)
αx r̂α

)
∥

= x̂×
(
Q(m)

zx ẑ+Q(m)
yx ŷ

)
=−Q(m)

zx ŷ+Q(m)
yx ẑ

(48)

where we result in Q(m)
yx term.

For the electric octupole:[(
O(e) · R̂

)
· R̂

]
∥ =

(
O(e)
αβγ

r̂αδβxδγx

)
∥ =O(e)

zxxẑ+O(e)
yxxŷ (49)

so the moment of interest is O(e)
zxx. Finally, for the magnetic octupole the equation reads:

R̂×
[(

O(m) · R̂
)
· R̂

]
∥ = x̂×

(
O(m)
αβγ

r̂αδβxδγx
)
∥ = x̂×

(
O(m)

zxxẑ+O(m)
yxxŷ

)
=−O(m)

zxxŷ+O(m)
yxxẑ. (50)

so the last term satisfies the above conditions.
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D. Waveguides and Cutoff frequency

Consider a hollow waveguide with z being the axis along the length of the waveguide
and xz plane parallel to any cross-sectional surface of the waveguide [51]. Beginning from
the Maxwell’s equations for the E and B fields and assuming a sinusoidal time dependence
e−iωt the equations take the forms:

∇×E= iωB ∇×B= 0 (51)

∇·B=−iµεωE ∇·E= 0 (52)

Application of the curl operator ∇× on the curl equations for the E and B fields yields
the Helmholtz equations:

(∇2 +µεω2)

{
E
B

}
= 0 (53)

The waves propagates along the z direction, along the length of the waveguide so the
fields can be written as: {

E(x, y, z, t)
B(x, y, z, t)

}
=

{
E(x, y)e±ikz−iωt

B(x, y)e±ikz−iωt

}
(54)

Now the fields can be decomposed into parallel and transverse components with respect
to the propagation along the ẑ axis:

E=Ez +Et (55)

where Ez = ẑEz and Et = (ẑ×E)× ẑ. In order to separate into transverse and parallel
components the laplacian operator is written as ∇2 =∇2

t +∂2/∂z2.
Beginning from the divergence equations for the E field:

∇·E= 0⇒ (∇t + k̂
∂

∂z
) · (Et + k̂Ez)= 0⇒∇t ·Et + ∂Ez

∂z
= 0 (56)

And similarly for the B field.

∇t ·Bt + ∂Bz

∂z
= 0 (57)

For the curl equation of the electric field one obtains:

∇t ×Et +∇t × k̂Ez + k̂× ∂Et

∂z
= iωBt + iωk̂Bz (58)

In Eq. (56), one recognizes that the first term in the LHS and the second term in the
RHS are parallel to the propagation of the waveguide, while the rest of the terms are per-
pendicular. Therefore:

∇t ×Et = iωk̂Bz ∇t × k̂Ez + k̂× ∂Et

∂z
= iωBt (59)
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The second expression in Eq. (59) is written as:

(î× k̂)
∂Ez

∂x
+ (ĵ× k̂)

∂Ez

∂y
+ k̂× ∂Et

∂z
= iωBt ⇒−ĵ

∂Ez

∂x
+ î

∂Ez

∂y
+ k̂× ∂Et

∂z
= iωBt (60)

Applying k̂× on Eq. (60) gives:

î
∂Ez

∂x
+ ĵ

∂Ez

∂y
− ∂Et

∂z
= iω(k̂×Bt)⇒ ∂Et

∂z
+ iωk̂×Bt =∇tEz (61)

Similarly for the B field the curl equation reads:

∇t ×Bt +∇t × k̂Bz + k̂× ∂Bt

∂z
=−iµεωEt − iµεωk̂Ez (62)

Once again separating the parallel and transverse components gives:

∇t ×Bt =−iµεωk̂Ez ∇t × k̂Bz + k̂× ∂Bt

∂z
=−iµεωEt (63)

Applying k̂× on Eq. (63) yields:

(î×k̂)
∂Bz

∂x
+(ĵ×k̂)

∂Bz

∂y
+k̂× ∂Bt

∂z
×k̂=−iµεωk̂×Et ⇒−ĵ

∂Bz

∂z
+î

∂Bz

∂z
+k̂

∂Bt

∂z
=−iµεωk̂×Et (64)

Therefore:
∇tBz =−iωµε(k̂×Et)+ ∂Bt

∂z
(65)

All equations collectively for the decomposition in transverse and parallel components to
the ẑ axis propagation are:

∇t ·Bt + ∂Bz

∂z
= 0 ∇t ·Et + ∂Ez

∂z
= 0 (66)

∇t ×Bt =−iµεωk̂Ez ∇tBz =−iωµε(k̂×Et)+ ∂Bt

∂z
(67)

∇t ×Et = iωk̂Bz
∂Et

∂z
+ iωk̂×Bt =∇tEz (68)

From the second expression of Eq. (53) solving in terms of Bt gives:

Bt = i
ω2µε−k2 (k∇tBz +ωµεk̂×∇tEz) (69)

and solving in terms of Et in the second expression of Eq. (52) gives:

Et = i
ω2µε−k2

{
k∇tEz −ωk̂×∇tBz

}
(70)

Now, the Helmholtz equations need to be solved (i.e.
{∇2

t +ω2µε−k2}Ez and similarly
for the Bz component) and from Eqs. (69), (70) the complete solution can be obtained.

For a perfect conductor the boundary conditions from the Maxwell’s equations result in:

n̂×E= 0 n̂ ·B= 0 (71)
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where n̂ is the unit normal at the surface S. Thus, on the surface, the tangential (along the
ẑ-axis component) Ez|S = 0 and the normal derivative of the B field is also zero, ∂Bz/∂n|S = 0.
The extra condition for a transverse electric is that there cannot be Ez component anywhere,
since this is the propagation of the wave. From the Helmholtz equation for Bz by denoting
γ2 =µεω2 −k2, one has to solve"

∇2
t Bz =−γ2Bz (72)

which is simply an eigenvalue problem with eigenvalues γ2
λ
= µεω2 − k2

λ
. In order for the

solution to be oscillatory and not decaying implies γ2 > 0 ⇒ωÊ γλ/pµε, where ωλ = γλ/pµε
is the cutoff frequency. So the wave number becomes kλ = µε(ω2 −ω2

λ
)1/2, and it is shown

that for ω<ωλ the wave number is imaginary; this means that such mode cannot propagate
and is called cutoff or evanescent mode.

For a rectangular waveguide (and TE modes) the Helmholtz equation reads:(
∂2

∂x2 + ∂2

∂y2 +γ2
)

Bz = 0 (73)

with boundary conditions Ez = 0 everywhere, and ∂Bz/∂n = 0 at x = 0,a and y= 0,b (see Fig.
21).

FIG. 21. Schematics of the cross-section of a rectangular waveguide. The boundary conditions for

TE modes is ∂Bz/∂n = 0 at x = 0,a and y= 0,b and Ez = 0 everywhere.

The solution is easily retrieved by separation of variables:

Bmn = B0 cos
(mπx

a

)
cos

(nπy
b

)
(74)

where α is the width of the waveguide and b is the height. Also, the eignevalues are given
by:

γ2
mn =π2

(
m2

a2 + n2

b2

)
(75)

and the cutoff frequencies by:

ωmn = πp
µε

(
m2

a2 + n2

b2

)1/2

(76)
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For a > b the lowest cutoff frequency, that of the dominant TE mode occurs for m = 1 and
n = 0, and is equal to ω10 = π/pµεa. For the WR430 waveguide with ε = 8.85×10−12 F/m,
µ = 4π× 10−7 H/m and a = 109.22 mm the angular cutoff frequency of the TE10 mode is
ω10 = 8.6252×109 rad/s and the cutoff frequency f10 = 1.3727 GHz.
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