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Evyopiotiec

ot apynv Béhm va evyopltoTom Tov Tatépa Lov Idvvn kol v odeAer] Lov
Evtuxio yioo tnv aydmn, v eumotootvn Toug Kot TV LROGTHPLEN TOL OV
nopeiyov oe dAeC TIG OVOKOAEG OTIYUEG KATA TN SLAPKELY EKTHVNONG TNG EPYOCiOg
oVTNG. Oepud eniong evyoPLET® TNV DAMPO YO TNV KOTOVONGT| KOL TNV VITOUOVN

me.

H nopovca dtotpiPr] ohokAnpddnke kétw ond Tnv enonteior ToL KoONYNTH X.
Z1éAov Opeovovddikn, TOV OTOl0 KO EVYOPLOTA YLOL TNV GLVEPYOGIOL TOVL KO TLG

evkopiec Tov oL 0MOE.

Oo 10eAo eniong vo evyoploTHo® Tol WEAN NG €EETOOTIKNIG EMTPOTHG TNG
dtotp1Prig pov, tovg kvpiovg Jan-Olof Eklundh (xabnynt tov Tunuotog AplOun-
TIKN g Avddvong kou Emoetiung Yrnoroyiotayv [NADA] tov Bacimko® Ivetitovtou
Teyvoroyiog g ZtoxyxoAung [KTH]), Ztépoavo  OAAo (kabnynt tov Tunuortog
HAextpoAdywv Mnyovikav tov EBvikov MetodPelov IToAvteyveiov), I'évvn Iito
(koo ynti tov Tunuortog IMANpoopiknc tov Apietotédelov Iovemotnuiov Oec-
caAovikng), Giulio Sandini (avorAnpmt| kabnynt tov Turuortog ITANpo@optkNg,
Svomudtowv kou Emtkowvovidy [DIST] tov IHoavemotnuiov g IT'évoPa), Tdpyo
TCpita (avomAnpot| kodnynti tov Tujuotoc Emetiung Ynoloyiotwy tov Io-
vemotnuiov pritng) kot IMévo Tpoyovid (ovoamAnpmt] Kodnynt tov TURUoTog
Emotiung YroAoylotdv tov I[ovemomnuiov  p1tng). Ot tapotnproelg Ko vwodel-

Ee1g Tovg cLVEBUALOY BTNV aPTLOTEPT GLYKPOTNOT TOV KEWEVOD TNG SLartpiPric.

Idwodtepn avopopd afilel 6T0 G0 Ko GUVASEAPS LoV AVIdvn Apyvpd. Av
Ko poxpld omd 1o HpdikAelo xotd tn didpkele Tmv 000 teAevtainv yxpdvav, M
ouvvepyaoio poli tov oto TAaiot g SikN g ToL AdakToptkrig StatpiPnig, amotédece

TOAVTLLO EPOSLO Y10l TLC OLKLEG LOV TPOGTAOELEC.

OEA® OKOULO VO EVYOPLOTIICM Ot KoPOLAG TOVG IAOVE LoV, 01 0TTol0L LoV €000-



GOV TNV OUEPLOTT CUUTOP A TOGT| TOVG, VITOUEVOVTOC OLOLOUAPTOPTN TO TIC TOPOEEVIEG

OV L0V TPOKAAOVGE 1 KOVPOLOT KOl TO Ly OC.

TelelvovTag, BEAM Vo ELYOPIGTHC® TO OLOIKNTIKO KO TEYVIKO TPOCHONLKO
1660 Tov Tujuotog Emotiung Yroloyiotdv tov Iovemotnuiov pritng 660 kot
tov Ivetitovtov IMAnpo@opikn¢ tov Idpvuatog Texvoloyiog kot 'Epevvag yiow tnv
dueomn Ponbeta mTov pov mopeixe 6mote TNV yperdiotnKoe. Idtaitepa evyaploTd TO
Ivotitovto ITAnpo@opikt¢ Tov ITE, 1 OIKOVOULKT] KO DALKOTEXVIKT] GLVOPOUT] TOL

omoiov VI PEE CNUAVTIKATOTN YIOL TNV OAOKATp®OOT THG EPYOCILOGC.
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ITAofynon Avtévouwv Pounotikodv Zvotnudtov

ue Bdon tmyv Avéivon ivnong
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Aldaktopikn Atortpipn

Tunuo Emotiung YroAoylotomv
[Mavemotiuo  pHRINg

Hepiinyn

To TAYp®G oL TEHVOUD T} KOO KoL TOL TNAEXELPLEOUEVO ULV TGVOLLD, POUTOTLKE
GULOTILOTO, UTTOPOVV VL E£X0VV TANOMPOL EPUPLOYADV GE TOUELS OGS O Prounyovikdg
KO OLK1oKGG OOTOUOTIOUOE, 1| €€gpehivnom TOV SLOGTHUNTOG, 1 OLOQAAEL KO M
QOAOEN xDp®V, N aVAEATTUEN OYNUATOV YioL X PHion O emKivduva Yo TOV GvOp®TO
neplEAAovVTO, N LTOGTHPIEN TOUWVY UE ELSIKEG aVAYKES, KA. [0 VoL UTTOPEGOLY TOL
GULOTILOTO LVTE VOL AELTOVPYTIGOVV GE AYVMGTO 1 U1 doUNUéVe Ko LETOBOAASUEVOL
neptBEALovTa, O TpEmeL VoL UTopOo vV Vo oV TIAOUBEVOVTON TO TEPLBAALOV TOVG KO VL
dpovv avéAoyo. Mol otd TIG IO CTIUOVTLKEG TKOVOTNTEG OV TIAN YN C VOGS UTOGVOLLOL
GLOTNUOTOG elval VT TN TAOTIYNONG, N duvorTdTnTa dNACdT cvTévoung kKivnong
670 TePIPEALOV Ue BAon TIg LETPNIOELS TOV TTOPEYOVY dLEpopol s Tripes. To KHpLo
6éua TN mopovoog epyociog elvar N ortixy sAorynon (visual navigation), émov n
6paon anoterel v Paocikn aicOnon kou n mrionynon Poocileton otnv avdivon

xivnong (visual motion analysis). TTo cuykexpiuéva, 1 dtatpiPry orvt) ooyoAreiton
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He tnv ueAétn g ddidototng kivnong onueiwv tor onoiot TOPATNPOVVIOL OE
woe eninedn ewtoevoicONT emedvela TpoPoAng (m.y. Kéuepa), Ue 6TéY0 TNV
e€oymyn mEPLYPOPDV OVOLPOPLKE, e TNV KIvNnom NG EMEEVELNG QTG O TPOG
10 TMEPLBAAAOV KoBMg Ko TNV yewuetpion tng ametkovi{opevng oknviig. TEtoleg
TEPLYPOQPEG LTOPOVV VoL XPNGLOTOIN 00UV Yo vor brtostnpi&ouvv tnv enitevén tov
OTOY MV KIVOOUEVOV POUTOTIK®V GLOTNUAT®Y. EmimAéov, ekt amd v e€orymyn
TANPOPOPLOV TOV UTOPOVV VO YPTCLULOTOINO0VV Yo TNV KO0 ynon UnyoviK®v
CLOTNUATOV, N HeEAéTN NG kivnong unopel vor cuUPAAAEL GTNV crVTOUATOTOINON
TEPITAOK®V SLOOIKAGLMOV GE EPEVVNTIKOVG TOUEIG OTmg elvon 0 evpeTnpLacuds Bivteo
(video indexing), n ocvvOeon véwv oamdyewv wog oknvig (novel view synthesis),
N eKoviKY Ko emovEnuévn mpoypotikdétnto (virtual and augmented reality), m

eneCepyoacio touvidy Bivieo (video post production), K.AT.

H nmpocéyyion mov viobeteiton oty gpyocio ot akorlovBel tnv Bewpio tng
TeAeOAOYLTG (purposive) 1) aAAL®g ovuteppoolxns (behavioral) dpaong, copemva pe
™V omoia éva GUGTNUO GPOONC TTPETEL VOL OPYOVAOVETAL UE BAOT TOVE GTOYOVE TOL
KO TLG TKOVOTNTEC TOL OtaiLTeiTon var €xel ko Oyt Ue BAom TNy AELTOLPYLKT| GNUocio
TV SOULK®OV TOL oTolyelwy. 6GBe 1kavoTNnTe VAoToEiTO amd Lo EgxmploTy| dlep-
yooio (process), n oroio €xel €évav KOAG OpLoUEVO GTOYO Ko elvail TPOCOPUOGUEVT
OTLC 18101 TEPOTNTEG TOL TTEPIPEALOVTOC Yo TO 0Toio Tpooplleton T0 GHOTNUO OPOL-
onc. 'Etot, n dpaomn emttuyydveton omd évor OvoAo cuvepyalduevmy dlepyasiav, ot
OTOlEg EMALOKOVV TOVG GTOYOVG TOV OVTIGTOLYXOV GLGTILOTOS LUE EVOL GUVEPYOTIKS
TpOT0. H GuUmepLopiLKY| TPOGEyylomn TNV SpaoT) TOPEYXEL GNUOVTIKA LEBOSOAOYLKE,
nAeovektinoto. TIpdtov, 1 teAeoroyia TV dlepyootdv TG OpaoNG EXLTPENEL TNV
SloTOmoN AmA0VOTEPWY KOl Gpo EVKOAGTEP®V TPOPANUAT®Y. Ag\TEPOV, KOBEVOL
ortd ovTé Tor TPOoPA Lot EMLOE ETON EVOL KPS optBUS od TBovEG AOGELS, 01 0ToleC
UTOPOVV VoL €0VV TOLOTIKO yopokTipo. Emouévmg, av uropotv vo Bpebovv GuUece
AMocelg oe tétola mpoPAuota, éva cHeTNUO OPUoNG UTOPEl VO AELTOVPYNGEL e
Baion pepikéc (partial) avomapootdcelg tov meptPdAlovtog. Ol ovomapOooTAGELS

otéc mepropilovtal 6e TANPoPopieg TOL APOPOVV TOL GLYKEKPIUEVO TPOPATLOTOL
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TOV TPEMEL VO OV TIUETONLGTOVV, KOTOPYDVTOC TNV OVAYKT KOTOOKEVTG LULOG TTAT-
POVC, YEVIKOU GKOTOU OVOmapEoTtaons. To xopakInpioTikd ovtd eivor 181onTépmg
onuovTikd, o ko 1 eEoy@yn Udg AETTOUEPOVG, YEVIKOD OKOTOU OVOTOPAOTHONG
etvor e€oupetikd SoKoAn. TéLog, | PuGLoAoYia EVEg CVOTHUOITOG GE GLVILOGUS e
TOL X OPOKTNPLOTIKE TOV TEPIPAAAOVTOC TOV, BETOVV TTEPLOPLOUOVE 1 EKUETEAAELON
TV onolwv unopel vor amAomoreel TpoAruoto Tor oroio eivorn ToAH dVGKOAO GTNV

YEVIKOTNTA TOVG.

H mopovoo dotpiPry meprypAoel 1ol AMOTEAEGULOTOL TV EPEVVNTIKADV TPOGTOL-
BeL®V OV OLPOPOVV TECGEPELS OMTIKEG LKAVOTNTEG, GLYKEKPIUEVOL TNV aviyveLon
aveEdptnng kivnong, v extiunon wiog kivnong, v oviyvevon eumodimv Ko
MV exTiunomn tov xpovov mpdokpovons. Idiaitepn éueoocn d66mke 1600 e Bew-
PNTIKEG 6C0 KOl GE MPOUKTIKEG TTLYEC TOV TOPOTEV®D TPOPANUGTOV. ApYLKdE, UE
Béon BempnTikég LeAéTeS, ovomTOXOMKOV VTOAOYIGTIKE LOVTEAD YLoL KAOE OTTTIK)
KovotnToL  Agdopévou 4Tl M VIOAOYLoTIKY Opaon elvon kvplog évog eumelptkdg
TOUEDS, TO EMOUEVO Pl NTOV 1 TELPOUOTLKT ENOAT|OELOT TOV VITOAOYIGTIK®V LLO-
VTIEAOV Ue xpNon TPAOTOHTLTOV VAOTOUGEMV KATAAANAWY oAyopibuwy. Idioitepn
TPOGOY d6ONKE OTNV OVATTVEN TEYVIKOV TOL KTOPEVYOLV TNV SLOTVTMGT| TOAD
TEPLOPLOTIKDV VITOBECEDV AVAUPOPLKA LE TOV TOPATNPNTH 1/Kon TO TEPLBEALOV, €i-
vo avekTikég oty YropEn Bopvpov kot Bacilovion 6e amAég ovomopUoTAGELS OL
omoieg dev amontovv TNV earymwyn TEPLTTAV TANPOPoPLdV. Epdcov KGO pio omd Tig
ovomTLY 0eioeg 1KOVOTNTEC Lo OAELTON LE TNV EMITEVEN EVOG KOAE OPLOUEVOL GTOHY OV
Ko dev eEaptdron Koiplo and To TEPIBAALOV, umopel Vo OmOTEAEGEL LD, TEYVIKT
YEVIKNG XPNONG, KOUTAAANAN Y10l OLAPOPES TPOKTIKEG EQOPULOYES. ZVUVOAKA, OVTEG
Ol OTTIKEG 1KOVOTNTEG OmOTEAOVV €var GOVOAD epyoreimy, 1kavd vor vootnpiget
GUVOETEG GLUUTEPLPOPES. TTN GLVEXELD, TEPLYPAPOVTOL LLe GUVTOUIOL 1) GUUPOAR KO

TOL MO TEAEGLOITOL CLLTIG TNG EPYOLICTLOG,

H tpdt™ omd T1g 1KavOTNTEG TOV UEAETHON KOV G OAELTOL UE TNV oLVOryVAPLON

OVTIKEWWEVOV ToL oToior Kivovvton aveEaptntor omd évoy KIVOUUEVO TopotnpnTY
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uéoo 6to onTIKS Tov Medio. Ol TePLoTOTEPES UM TIG TEXVIKEG TOV €(0VV TPOTAOEL
v v aviyvevon oaveEdptnng kivnong Poaocilovion ce meploploTikéc VITOBEELS
OYETLKE e To TePIBAAAOV M TNV kivnon tov mapotnpnt. Emniéov, Bacilovtol 6tov
VTOAOYIGUS VG TUKVOD Tediov ONTIKT G pOoNS, TO omoio avTioTol el otV eniAvon
TOV TPOPANUOTOC TNG avTLoTolX1oNG TO omoio eival acBevawg opiopévo (ill-posed).
>toL TAoUoLOL VTG TNG EPYOSTLOG, T OV veELOT aveEAPTNTNG KIvNONG OVAYETOL OF
éva TpOPANU €VPpOOTNG eKTIUNONG TopauéTpmy kivnong, to omoio epopudleton
OTOL OTITIKG €PEBICUATOL TOV OEYETAL €VOC CUUTOYDG KIVOVUUEVOS TopatnpnTtiic. H
TPOTELVOUEVT UEBOOOG EMAEYEL CLTOUOTOL LD EMUTTEDN EMLPAEVELOL GTNV GKNVT] KO
vroloyilel to medio KAOeTNG VIOAOLTNG POTig AdY® TapdALaENG (residual parallax
normal flow field) ce 600 Sadoyikéc xpovikéc oTIyUéc. XN GULVEYELD, TOL VO
TEAOL KABETNG POTC TOV TPOKVTTOLY cLuVALGLovTon e éva YpouuKo Loviédo. Ot
TOPAUETPOL TOV HOVTEALOL awToV oyetilovion [e TG TapAUETPOuS TG Kivnomg
TOV TOPOTNPNTH KoL 1) €0PWOOTN EKTIUNGT TOVE TOPEYXEL LD, TUNUOTOTOINGT TNG
oxnvN¢ ne Béon v tpredidototn kivnon. H uébodog amopevyetl pow TAfjpn Avon
G670 TPOPANUOL TNG OLVTLOTOIYXLONG UE TO VO OVTLOTOLYEL EMAEKTIKE VTOGHVOADL TV
onueilov tTov elkdvov kol vo xpnoluonotel medio k&dbetng pong. IMelpoportikd
OOTEAEGUOTOL OETY VOV TNV MOTEAEGULOTIKOTNTOL TNG TPOTELVOUEVI G LEBGOOV BTNV
aviyvevon aveEdpTnng KIvnong o€ TEPITTMGEL OKNVAV UE LEYEAEG SLOKVUEVOELS

B&OOVE KO YEVIK®V KLVI|GE®MV TOL TOPOTNPNTY.

H dettepn tkovdtnTor ooy oreiton e to TpoPANUa extiunong g diog Kivnong
(TG ToxvTNTOG MAXOT EVOS KIVOUUEVOL TTOPOTNPNTY] O TPOS TO TEPLPEALOV), LE
yprion ontikng mAnpoeopiog. H yvwon tng wdiog kivnong eivon moAd ypriociun yio
Stdipopeg dradikooiec faciouéveg oe onTIKN avAadpaon. TTOAAES amd Tig VAP OVGES
TEXVIKEG Yoo TNV e€miAvomn tov wpoPAruotoc ovtoh Boacilovion oe TEPLOPLOTIKEG
VIOOEGELG GYETIKA UE TNV KIvNoN TOL Topotnpn T 1) TN OOUT| TNG TOPOTNPOVUEVIG
oknvic. EmmAéov, ovyvd Kotoeevyouv 6e ovalfitnomn 6Tov TOALSLAGTUTO Y MPO
TOV SVVOTHOV AVGEWV. vy Vv, TEToleg TeXVIKES avalliTNoNG GLVERAyovVTOL LEYRAO

VTOAOYLGTIKO KOOTOG 1§ Topovotélovv mpofAuato cVOYKALoNG 6T owoTh Abon.
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>y epyocio ovt, e€dryeton évag VEOS YPOUULKOC TEPLOPLOUOS TTOV TEPLAOUPEIVEL
TOGOTNTEG EEOPTAUEVEG OTO TLG TOPOUUETPOVGS TNG dlag kivnong. O meploptopnde
oTo¢ opileton LEGM TV SLOVLGUATOV OTTIKTG POTIG TTOV OVTLGTOLYOVV GE TETPBOEC
GLVELOELOK®Y onuUeimv TV elKOvev Ko elvorl eQopuootuog oveEdptnto omd To
eldog ¢ ilag kivnong 1 ™ doun g oknviic. EmmAéov, eivon axpifiig vnd v
évvola 0Tt dev eEGYETOL LLE XPTION KATOL®V TPOGEYYIoEMV. & GUVILUGUOS UE TEXVIKEG
€VPWOTNG EKTIUNONG TOPAUETPWV, O TEPLOPLOUAS OVTAOG EMLTPEMEL TNV EKTIUNON TNG
KotevhOvvoNg ¢ petopoptknig kivnong (mA. tov FOE), dtoympiloviog €tol Tig
UETOPOPLKEG O TIG TEPLOTPOPLKEG GLVIOTMOEG TG Wilag kivnone. Exteveig mpo-
GOUELNOELS KAUOMG KOl TELPAUOTOL e TPOYUOTIKE TSl OTTTIKTG pOTiG, Oelyvouv TNV

oxpifela Tng peddoov pe ddpopo enimedor B0PVPOL KL KIVIGELS TOV TAPOTNPNTH.

H aviyvevon kot omwoeuyn eunodimv omotehotv de€lotnTeg amopoitnTeg yio
TNV OCQUAT LETOKIVNON €VOC OLTOVOUOV GLOTNUOTOS 6T0 TeptfdAiov. H tpitn
1KOVOTNTO TOL LEAET O KE ENMLTPENEL GE EVOL KIVOVUEVO POUTTOT VOL EVTOTLGEL EUTOOLOL
GTO OTTIKO TOL MEAIO YPNGLUOTOLDOVTOC OV0 €1kOVES TOV TepLBEALovTa ywpov. H
1éBodog Ta&vouet Tor onueion Ldg etkévog oe dVo kotnyopieg, xopaktnpilovtdg to
elte oav eundola eite ooy eEAeVBEPO Y WPO. YTOOETOVTOG GTL TO GVGTNUA KIVELTON TTEV®D
o€ o ToTLk G enimedn empdivero,  LEB0S0G ypNGLULOTOLEL Evor GUVOLO amd onueio To
omoia €xovv ovTIGTOLYLGTEL LETOED TV 300 SYEWV, Y10l VOL EKTIUGEL TNV OLOYPOLPLoL
(homography) mov opileton od To eNinedo TOL TAUTOUATOG. Me BAon TV opoypopio
oTH, elvar Suvarti 1 avaipeon TG Kivnong Tov ToTdUotog LETOED TV 000 ELKOVmY
KOl TN GUVEYELO T OviyveELOT EUTOMV OTLG TEPLOYES TMV ELKOVOV TOV TOLPAUEVOLV
KIWVOUUEVEG UETE Ko TNV owvoaidpeom g kivnong. H uébodog mov mpoxHtet dev omontel
Babuovounon (calibration) Tng kduepog, elvor epopUdoIUN TOGO GE GTEPEOGKOTLKA
Levyn 600 Ko oe akolovbieg eltkdvav, dev ypnoiponolel TLKVA eSO ToVLTHTOV
KOl TOPOKGUTTEL TO TPOPANUOL TNG TPLOOECTOTING OVOKOTAGKELNG TNG OKNVIG.
TTetpoLorTIK A TOTEAEGLOITOL OLTTO TNV EPOPLLOYT TNG LEBGOOV GE TPOLYLLOTIKEG ELKOVEG

QTOdELKVOOVV TNV EVPMOTIO KL TNV OTOTEAEGUATIKOTNTA TG,



H tétoptn xou teAevtoio 1KovotnTo elvoll GUUTANPOUOTIKY OTNV 1KOVOTNTO
aviyvevong eumodimv. ITo cuykekpiuéva, oxetileton pe o PéBodo exTiunong Tov
YPOVOL TPAGKPOVGNC, TOV XPOVIKOD SLUGTILOTOG ONAOOT TTOV OTOUEVEL UEY PLG OTOV
évoC KIVOUULEVOG TTapOrTN PN TG GLYKPOLOTEL e avTIKeEILEVO GTO OTTIKG TOL TEdiO.
O xpOVOG TPOCGKPOVON G TOPEXEL EVOL LETPO EKTIUNONG TNG EYYVTNTOG TOV EUTO WV,
10 omoio elvon ¥pHoLO YLoL TNV OmOPLYT] GLYKPOoVoewY. Ed® mopovoidletol po
véa, LEB0BOG yioL TNV eKTiuNnon tov ypdvov Tpdokpovong, n oroio Pacileton otnv
voBecT OTL O TOPATNPNTHG KIVEITOL TEAVE® Ge Lo eNimedn em@PAEVELD KOl KEVEL
xp1rion tov medlov ONTIKNG POTG TOV TPOKAAEiTOL Otd TNV Kivnomn ovtr|. ApyiKdé
vroAoyileton 0 xpEvog TPHGKPOVONG LE CUELD TOV TOTOUOTOS KOl GTT) GLUVEYELOL TO
Qovouevo ¢ TapdALaENG A0y emmédov (planar parallax) emitpénel Tnv ektiunon
TOV XPOVOL TPOCKPOVONG e Tor oNUeior Tov avTioToloVV ot eunddio. H uébodog
OTOPEVYEL TOV VTOAOYIOUS Topaydymv VYNANG TEENE Tov Tediov OTTIKNG POTC, Lo
KoL elvort yvowotd 0Tl 0 VTOAOYLIoUAG cLTOC elvat evaliodNnTog 6T0 BGpLPO. EmnAéov,
dev amonteiton xopio yvaon g dlog xivnong. IMoportifevion TA0g TELPOUOTIKA
OMOTEAECUOTOL OO TNV EQAPLLOYT] TNG LEBGOOV GE TPAYUOTIKE Ko GLVOETIKE TTediol

TOYVTATOV.
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Navigation of Autonomous Robotic Systems

Based on the Analysis of Visual Motion
Manolis I.A. Lourakis
Doctoral Dissertation

Department of Computer Science

University of Crete

Abstract

Fully autonomous or even teleoperated, semi-autonomous robotic systems can
have numerous practical applications in fields such as industrial automation, space
exploration, home automation, space monitoring and security, automatic guided vehicles
(AGV’s) for use in hazardous environments, support of people with special needs, etc. In
order to be able to function in unknown or unstructured and changing environments, such
systems should possess effective perceptual capabilities for sensing their surroundings
and acting accordingly. One of the most important perceptual capabilities of an
autonomous system is that of navigation, that is the capability of autonomous motion
in the environment, based on the measurements provided by various sensors. The main
theme of this work is visual navigation, where vision is the primary sensing modality and
navigation is based on the analysis of visual motion. More specifically, this dissertation
is concerned with the interpretation of the 2D motion of points observed on a planar

light-sensitive projection surface, in order to derive descriptions of the surface’s self
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motion and the geometry of the imaged scene. Such descriptions are intended to support
autonomous robots for achieving their goals. However, apart from producing results that
can be used for guiding mechanical systems, the study of visual motion is beneficial to
research areas such as video browsing and indexing, novel view synthesis, virtual and
augmented reality, animation, video post-production, etc, helping to automate tasks that

are either tedious or too complicated to perform manually.

The research approach adopted here follows the purposive or behavioral vision
paradigm, according to which a vision system should be organized on the basis of the
different capabilities that it should possess and not according to the functional role
of each component. Each capability is implemented by a separate process, having a
distinct, well-defined goal and being tailored to the environment the vision system is
expected to operate in. Thus, vision is realized by a set of cooperating processes, which
pursue the system’s goals in a synergistic manner. There are important methodological
reasons in favor of the behavioral approach to vision. First, the purposiveness of the
visual processes permits the formulation of simpler, therefore easier problems. Second,
each of these problems can admit a small number of possible answers that can have
a qualitative nature. Thus, if direct solutions to such problems can be found, a vision
system can operate on the basis of partial environment representations that capture only
those aspects relevant to particular tasks, hence alleviating the need for a complete,
general purpose representation. This is of particular importance, since the construction of
a detailed, general purpose representation is extremely difficult. Finally, the physiology
of a system along with its environment, impose constraints that when exploited, can

simplify problems which are very difficult in their general form.

This dissertation describes the results of investigations regarding four visual
capabilities, namely independent motion detection, egomotion estimation, obstacle
detection and time-to-contact estimation. Emphasis has been given both on theoretical
and practical aspects of the above problems. First, a computational model regarding

each visual capability has been derived from theoretical study. Since computer vision

viii



is primarily an experimental discipline, the next step was to demonstrate the validity
of relevant models through experiments involving prototype implementations of proper
algorithms. Special care has been taken to develop techniques that avoid making
restrictive assumptions which limit their applicability, are robust to noise and rely on
simple representations that do not require the recovery of redundant information. Since
each of the developed capabilities deals with a well defined goal and does not depend
critically on the environment, it can function as a generic navigational tool for various
practical applications. Collectively, these visual capabilities constitute a solid arsenal of
primitive algorithms that is able to support complex behavioral repertoires. The specific

contributions of this work are briefly discussed below.

The first of the capabilities studied deals with the identification of objects that
move independently of a mobile observer within his field of view. Most of the
existing techniques for detecting independent motion rely on restrictive assumptions
about the environment, the observer’s motion, or both. Moreover, they are based on
the computation of a dense optical flow field, which amounts to solving the ill-posed
correspondence problem. In this work, independent motion detection is formulated as a
problem of robust parameter estimation applied to the visual input acquired by a rigidly
moving observer. The proposed method automatically selects a planar surface in the
scene and the residual planar parallax normal flow field with respect to the motion of
this surface is computed at two successive time instances. The two resulting normal flow
fields are then combined in a linear model. The parameters of this model are related to
the parameters of egomotion and their robust estimation leads to a segmentation of the
scene based on 3D motion. The method avoids a complete solution to the correspondence
problem by selectively matching subsets of image points and by employing normal flow
fields. Experimental results demonstrate the effectiveness of the proposed method in
detecting independent motion in scenes with large depth variations and unrestricted

observer motion.

The second capability is concerned with the problem of using visual input to

X



estimate egomotion, i.e. the velocity of a mobile system with respect to its environment.
Knowledge of the egomotion is essential for various servoing tasks that are based
on visual feedback. Many of the existing techniques for solving this problem rely
on restrictive assumptions regarding the observer’s motion or even the scene structure.
Moreover, they often resort to searching the high dimensional space of possible solutions,
which might be inefficient and exhibit convergence problems. In this work, a novel
linear constraint that involves quantities that depend on the egomotion parameters is
derived. This constraint is defined in terms of the optical flow vectors pertaining to
four collinear image points and is applicable regardless of the egomotion or the scene
structure. In addition, it is exact in the sense that no approximations are made for
deriving it. Combined with robust linear regression techniques, the proposed constraint
enables the recovery of the direction of translation (e.g. the FOE), thereby decoupling the
3D motion parameters. Extensive simulations as well as experiments with real optical
flow fields provide evidence regarding the performance of the proposed method under

varying noise levels and camera motions.

Obstacle detection and avoidance capabilities are essential to an autonomous robot
for it to move safely in the environment. The third capability refers to a method that
enables a mobile robot to locate obstacles in its field of view using two images of its
surroundings. The method provides a binary labeling of image points, classifying them
either as obstacles or as free space. Assuming that the robot is moving on a locally
planar ground, the method uses a set of reference point features (corners), that have been
matched between the two views, to compute a robust estimate of the homography of
the ground. Knowledge of this homography permits us to compensate for the motion of
the ground and to detect obstacles as areas in the image that appear nonstationary after
the motion compensation. The resulting method does not require camera calibration,
is applicable either to stereo pairs or to image motion sequences, does not rely on a
dense disparity/flow field and circumvents the 3D reconstruction problem. Experimental
results from the application of the method on real images indicate that it is both effective

and robust.



The fourth and last capability is complementary to the obstacle detection capability.
In particular, it involves a method for estimating the time-to-contact, i.e. the amount of
time that remains before a mobile observer collides with objects in his field of view. The
time-to-contact provides a measure for assessing the proximity of obstacles that is well
suited to avoiding collisions. Here, a novel method for estimating the time-to-contact
is presented. The method is based on the assumption that the robot is moving on a
locally planar ground and employs the optical flow field induced by the robot’s motion.
First, the time-to-contact with points on the ground is estimated and then the concept
of planar parallax is exploited to recover the time-to-contact with obstacle points. The
computation of high order derivatives of image flow, which are known to be very
difficult to estimate accurately, is completely avoided. Moreover, no knowledge of the
egomotion is necessary. Experimental results from the application of the method on real

and simulated flow fields are also reported.
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Chapter 1

Introduction

The comprehension of the principles and mechanisms of visual perception has been
a long sought goal for science. As such, it has challenged many researchers from
diverse disciplines ranging from philosophy, physiology, psychology, ethology and
neurobiology to mathematics and engineering. The motivation behind their efforts
has been twofold. On one hand, it relates to man’s inquiry into his own nature and
the understanding of consciousness. On the other hand, it has to do with the practical
applications that can be devised for artificial vision systems. This second aspect has been
reemphasized by the advent of digital hardware, which provides cheap and powerful
computational engines for use in building intelligent robotic systems [126, 127, 70].
Based on representations of the environment delivered by artificial vision systems,
autonomous robots have the potential of perceiving their surroundings and adapting
their behavior to unforeseen changes. Vision is particularly attractive for this purpose,
since in principle it does not require any modifications of the environment and is passive
in the sense that it does not rely on the emission of any kind of signal. Thus, many
theories, computational paradigms and models have been proposed in order to explain
various aspects of vision [156, 107, 174, 121, 258]. The study of vision, however, is
no simple matter. The stimuli reaching a light sensitive sensor encode a tremendous

amount of information that is constantly changing with time. Using this information,
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visible objects should be located, categorized and characterized in a timely manner.
In other words, vision is responsible for relating a varying 2D light pattern to object
descriptions that facilitate appropriate actions. In the effort toward understanding vision,
the study of working solutions that nature has invented for biological vision systems can
prove to be fruitful. Although artificial seeing systems should not necessarily imitate
biological ones, a close look at the functioning of the latter provides invaluable insight
and inspiration [103]. Nevertheless, despite the fact that vision appears to be effortless
to living organisms, researchers in the field have realized that the processing of visual
information is extremely difficult to perform computationally. The situation is further
complicated by the fact that, apart from visual stimuli, biological vision also depends
upon a priori knowledge and context specific information, both of which are hard to
reveal and describe in detail. Consequently, computational issues have been the primary
subject of research in vision. Although the results of relevant research during the last
decades are by no means negligible, much work is still required both at the theoretical

and the practical level.

This thesis is concerned with the interpretation of the 2D motion of points observed
on a projection surface (retina, film or CCD array), in order to derive descriptions of
the surface’s 3D motion (egomotion) and the geometry of the imaged scene. Such
descriptions are intended to be used by autonomous robotic systems for sensing
their environment and acting accordingly. In the remainder of this chapter, the
prevalent theories of computational vision are presented and discussed. Based on
biological findings, the significance of the image motion cue to visual perception is then
emphasized. Later sections discuss various aspects of the problem of visual navigation,

which is the main theme of the work described in this thesis.



Section 1.1. Theories of Computational Vision

1.1 Theories of Computational Vision

Considering the vision problem primarily as a problem of deriving symbolic information
from images, has been one of the major early developments in the area of computational
vision [107]. Eyes focus images on the retina which through the optical nerve transmits
stimuli to the brain where they are processed my specialized neurons. The results of this
process comprise the symbolic descriptions of objects and their properties, which are

used by the brain to determine the interaction of an organism with its environment.

Such a description, however, does not supply answers to vital questions such
as which is the information encoded in images that is essential for perceiving the
environment, how is this information extracted and how it is represented at the symbolic
level. Such questions are crucial for the study of vision, since they define the problems
that have to be solved in order to fully understand vision and at the same time to be able
to construct useful artificial vision systems. During the sixties and seventies, researchers
in the field strived to resolve these issues, facing serious difficulties when attempting the
practical application of their theories. Therefore, the common practice was to formulate
oversimplifying assumptions, which lead to vision systems that worked only in carefully
controlled situations and did not contribute to the more general goal of understanding

vision.

1.1.1 Marr’s vision theory

David Marr was one of the first researchers to recognize that the main reason for the
failure of the early efforts in the field of computational vision was the lack of a complete
vision theory. Hence, he attempted to develop a theory for explaining vision, that could
also be exploited to build practical vision systems [156]. More specifically, he proposed
that most tasks that employ vision rely upon the solution of the following problem:

Given a set of images depicting the same scene, the goal is to recover an accurate, general

S
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purpose, 3D geometric description of the scene and a quantitative description of the
properties of visible objects. Tasks such as obstacle avoidance, recognition, grasping,
etc, are carried out by appropriate symbolic processing of the data provided by such a
representation. In other words, Marr’s theory calls for the reconstruction of a complete,
quantitative representation of the environment, which is capable of supporting any task
that relies upon the use of visual information. Marr concluded that the role of vision is
to capture every detail of the environment in the above representation. Marr’s theory
reflects the established beliefs of the neurobiologists of his time, which claimed that
the neurons assigned to visual processing analyze in detail all the information that is
available to them. It has also been influenced by philosophical ideas that were prominent
at the time. The roots of these ideas can be traced to Kant’s theories, who advocated that

the processes of ‘‘seeing” and ‘‘thinking” are separate [133].

Based on the principles of information theory, Marr attempted to systematize the

study of vision by focusing at three levels:

e The computational theory level
Based on a detailed mathematical analysis, the relation between the quantity that
is to be computed and the data provided by the vision sensors, is derived. This
analysis determines the cases in which the problem can be solved and whether it

has a unique solution.

e The level of algorithms and representations
Based on the derived computational theory, appropriate algorithms and data
structures are designed. At this level, issues related to the efficiency and robustness

of algorithms are addressed.

e The implementation level
The algorithms that were developed at the previous step are implemented on serial

or parallel hardware.

Marr’s theory proved to be very influential to the study of vision and of artificial

6
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intelligence in general. Most scientists were convinced that vision was responsible
just for the first component of the sense - think - act cycle, whereas other subfields of
artificial intelligence should deal with the remaining two. Following standard techniques
for designing complex systems, scientists dealt with the task of reconstructing the
environment by breaking it into functionally separate subsystems that could then be
studied separately. After studying the various subsystems in detail, they could be
implemented and integrated into a working practical system. Hence, research in the
various subfields of artificial intelligence progressed separately, with each subfield
ignoring the weaknesses of the remaining ones, but expecting from them results that
were far beyond those that could actually be obtained. For instance, researchers working
in motion planning expected that vision would provide them with accurate models of
the environment, those working in vision assumed that machine learning would provide
them with effective means for dealing with noise and uncertainty, etc. Until now,
such expectations have not been realized, resulting in the inability of understanding
the components comprising the phenomenon of intelligence. The vast majority of the
studies that have appeared during the last 25 years are affected by Marr’s theory, and
despite their elegant theoretical contributions, they cannot be applied to yield useful

artificial vision systems.

The weaknesses of these studies can be attributed to various reasons: First,
the process of fully reconstructing the environment has enormous computational
requirements. To appreciate this, it should be noted that more than half of the
neurons of the human brain are devoted to the processing of visual information and
yet there is strong evidence that the human visual system is confined to recovering
partial representations of the environment. Moreover, even in the case that a detailed
representation was indeed available, the computational burden for exploiting it would
be prohibitive. Second, although Marr’s theory addressed some aspects of perception
(stimuli, sensors and processing of sensor data), it completely ignored others, such as
the environment in which a vision system operates, the physiology of its body and the

goals that it has to achieve [80]. Third, the ultimate goals of most research efforts have
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been very ambitious, aiming to develop systems with advanced capabilities. Nature,
however, provides many examples of biological vision systems that are very simple in
terms of their capabilities but are nevertheless sufficient for accomplishing the goals of
the organisms possessing them. Fourth, modeling the vision process as a closed system
in order to study it with the aid of information theory, is unrealistic. Since it is impossible
to describe the environment in detail, the assumption of a closed system is violated.
Finally, many of the procedures for reconstructing the environment are very sensitive to
the accuracy of their input [262]. Therefore, they are unstable and thus inapplicable in

the presence of noise, uncertainty and missing data.

1.1.2 The purposive or behavioral vision paradigm

In the mid-eighties, a few researchers began to question the validity of Marr’s theory by
pointing out its weaknesses and putting forward alternative theories (see, for example,
the theory proposed by Feldman in [77]). At about the same time, researchers from the
fields of phychophysics and neurobiology [13] concluded that vision, as every other
sense, is adapted to the environment where an organism lives, and is designed to serve
the achievement of specific goals, while taking into account the organism’s physiology
and overall capabilities. Consequently, vision could be studied more effectively in
terms of the behaviors that an organism is expected to exhibit. This approach was
also found appealing by researchers in the field of general artificial intelligence, who
questioned the validity of the traditional methods and focused on what has been termed
‘‘autonomous agent research” [282, 41, 155]. Based on these premises, a new vision
theory has emerged, that is known by the names active, behavioral or animate vision
[4,23,6,189,24,241, 245]. According to this theory, a vision system should be constantly
controlling the parameters of its optical apparatus, so as to acquire images that facilitate
the tasks that it has to accomplish. In addition, a vision system should be decomposed
on the basis of the different behaviors that it should support and not according to the

functional role of each component (e.g. structure from motion, structure from shading,

8
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etc). Each behavior is implemented by a separate process, having a distinct, well-defined
goal and being tailored to the environment the vision system is expected to operate in.
Vision is realized by a set of cooperating such processes, which achieve the system’s
goals in a synergistic manner. Thus, the role of vision is to transform visual stimuli
to behaviors, i.e. sequences of actions, for interacting with the environment. In other
words, the emphasis is put on the development of behaviors rather than the delivery of
a representation suitable for visual tasks. Clearly, this is in complete contrast to Marr’s

theory, which separates vision from action.

Therefore, the key question that should be answered, before any study of vision, is
related to the goals that the latter is required to support. An artificial vision system for
example, may need some of the capabilities possessed by certain living organisms and
lack others. This is because every seeing system, be it an artificial or a biological one,
has a special relationship with its environment and its intelligence is an embodiment of
that relationship. There is no self-existent intelligence, that is intelligence without goals
to pursue and a body to interact with the environment. Each system has a set of visual
capabilities that are realized by a set of specialized processes that encode the system’s
intelligence and make use of different, partial representations of the environment. There
is no centralized control nor a single, coherent representation. This point of view is
consistent with the theory of evolution [80]: It is very probable that the species which
developed light sensitive sensors did not develop their visual capabilities at the same
time, but through different time periods according to their needs. Hence, the existence of
many different processes that perform different duties and are implemented by different
groups of neurons should not come as a surprise. The existence of such processes in
biological vision systems has been proven experimentally. For example, experiments
over long periods of time have led Zeki to the conclusion that distinct areas in the
cortex analyze different attributes such as color, shape and motion [288]. The functional
specialization of the brain has been demonstrated based on clinical evidence of certain
lesions causing the malfunction of specific visual capabilities, but not depriving the

patient of his vision.
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The purposiveness of the visual processes permits the formulation of simpler,
therefore easier problems. Each of these problems can admit a small number of possible
answers that can have a qualitative nature [247]. Thus, if direct solutions to such
problems can be found, a general purpose representation of the environment becomes
unnecessary. The physiology of a system along with its environment, impose constraints
that enable the solution of problems which are in general very difficult. Therefore,
the aim is to provide solutions that supply answers to specific problems under general
assumptions. In contrast, the solutions advocated by the reconstructionist paradigm

favor general solutions under very restrictive assumptions.

Apart from inhabiting a specific environment, an intelligent system is also
situated in time. This enables it to develop itself so as to improve its capabilities
by learning from experience. An intelligent system can benefit from unsupervised
machine learning techniques in various ways. For example, learning can help the
system cope with uncertainty and unpredictability. Learning can also be employed for
deducing the mapping of sensor information to appropriate motor commands. Tedious
preprogramming of all possible situations that the system might find itself in can be
avoided by using learning to infer the control laws for motor control. Time also allows
for the construction of incremental solutions to specific problems instead of the provision
of complete solutions in one step. These solutions evolve as they are implemented by
the execution of proper actions, resulting in a tight coupling between perception and
action. This is more tolerant to outdated or faulty representations and therefore yields
more flexible and robust intelligent systems. A related consequence is that the dynamics
of interaction between the system and its environment can lead to emergent complexity
[3, 39]. In other words, a simple, reflex-like interaction of a system with its environment

can result in a sophisticated behavior imposed by the complexity of the latter.

A multiprocess system has serious computational advantages over a monolithic,
centralized one. At the system level, a decentralized set of cooperating processes is easier

to distribute to different processing modules, is more fault tolerant and can adapt more
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easily to changing goals and interrupts. The lack of a unique, common representation
permits the processes to communicate by exchanging short, inexpensive messages. At
the process level, each process saves computational resources by avoiding irrelevant

computations and using a limited number of information processing layers.

1.2 The Role of Visual Motion Processing in Perception

In this section, neurobiological evidence is used to emphasize the central role played by

motion understanding in the way biological organisms perceive their environment.

Consider a seeing mobile observer who is moving relative to his environment.
Assuming that the observer is continuously acquiring images, objects in the environment
are projected on his retina and these projections appear to be moving in a manner that is
dependent on the object’s relative motion with respect to the observer and the geometry
of the viewed scene [144]. The branch of computational vision that deals with the
processing of time varying imagery is known as motion analysis. As demonstrated by
a plethora of experiments studying the phychophysics and the physiology of motion,
image motion analysis is a fundamental property of biological visual systems [173].
Color perception and stereopsis are also important visual cues, yet it is also clear that
color processing is not present in all species and that binocular vision is restricted to
animals with laterally placed eyes. Furthermore, stereo processing can be considered as
a special case of motion analysis, since the underlying principles are the same. Although
numerous animals lack color vision or significant binocular vision or both, none have
been shown to lack mechanisms for motion processing. Horridge [110], a neurobiologist
working on vision, argues that insects base their perception of the world on the detection
of relative motion between objects and their immediate background. In doing so, insects
employ brains with limited computational capabilities compared to those available to
species that stand higher in the evolution pyramid. According to the well established

belief that the principles underlying vision are shared among all living organisms, the
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implication of Horridge’s argument is that motion perception is of utmost importance
to all biological organisms possessing the sense of vision. All living organisms exist
in space and time and, since most of their objects of interest are moving, they should
be able to interpret visual motion. The analysis of visual motion helps an organism
maintain continuity of its perception of the constantly changing environment around it.
It should also be noted that motion is a precategorical cue to visual perception, i.e. it is
not necessary to recognize an object before its motion can be analyzed. Hildreth and
Koch [102] provide an extensive review of a number of aspects of visual motion analysis

in biological systems from a computational perspective.

/ |
[y R Lo

/ Vo
Figure 1.1: The optical flow field perceived by a pilot in level flight.

The observation that a sequence of images can be assigned a vector field that
describes the velocity of the visual motion of each image point and contains crucial
information regarding the environment, was put forward by Gibson [89]. Today, this
field for which Gibson coined the term optical flow, is generally accepted as one of the
most vital contributions to the research area of motion analysis. Figure 1.1 depicts the
optical flow field perceived by a pilot who is looking straight ahead in a level flight.
More details regarding the optical flow field can be found in chapter 2. Nakayama has

identified the following different roles that are played in vision by optical flow [173]:
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¢ Encoding of the third dimension
Retinal images are inherently two dimensional and yet the visual system is capable
of automatically extracting information about depth, i.e. the third dimension of
space that is lost by the projection of the 3D world on the retina. Velocity fields that
are extracted from moving images contain rich information regarding the slant of

surfaces and the relative depth of surfaces from the observer.

e Time-to-contact
Apart from providing information regarding the relative distances to environmental
points, velocity fields also supply distance information in the form of time-to-
contact. In other words, the time that remains before the observer collides with
points in his field of view can be recovered from image flow, without any

knowledge of absolute depths or relative velocity.

e Image segmentation
Also known as ‘‘figure-ground segregation”, this refers to the problem of
partitioning a viewed scene into a set of different physical objects. Image
points that belong to the same object move with similar retinal velocities and
object boundaries give rise to motion discontinuities which form a strong cue for

perceptual grouping.

¢ Kinetic stabilization
Visual motion is one of the primary proprioceptive sources of information enabling

a moving observer to estimate his own motion with respect to the environment.

e Occulomotor control stimulus
Image motion provides velocity signals that drive the occulomotor pursuit system,

through which an object of interest can be tracked through a scene.

¢ Detection of moving objects
Visual motion analysis enables an observer to sense the independent motion of
environmental objects. Such independently moving objects may be targets on

which the observer’s attention should be focused.
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The existence of the above very diverse functions suggests that several motion
analysis systems might exist simultaneously in living organisms [173]. Evidently, the
analysis of visual motion can be employed by an artificial vision system for the purpose
of autonomous movement in a dynamic environment. This is the task of vision-based

navigation, which is examined in more detail in the following sections.

1.3 Vision Based Navigation

One of the most important capabilities of an intelligent system is that of navigation, that
is the capability of autonomous motion in the environment, based on the measurements
provided by various sensors [39, 126]. This definition is broad enough to include a
plethora of biological and man-made systems. For instance, almost all living organisms
have capabilities enabling them to search for prey, to avoid predators and to find their
way to their nest (homing). To accomplish such tasks, nature has devised various
navigation mechanisms and navigation sensors. Ants and bees, for example, employ
inertial cues, bats use sonars, pigeons sense the earth’s magnetic field and dogs are
guided by smell and/or sound [49, 53, 217, 54, 111, 70]. Among the various sensing
modalities, vision is the most widely used, complemented by other senses. Apart from
the various biological organisms, there are a few man-made systems possessing some
autonomous navigation capabilities. Planes and ships combine inertial information with
beacons whose position is accurately known, military missiles are attracted by sources
of electromagnetic radiation and spaceships navigate using the position of planets. It
should be noted, however, that the man-made systems described above require limited
navigational competences. This is due to the fact that they are designed to operate
in simpler and more predictable environments compared to those of most biological

organisms.

In order to support a variety of complex navigational tasks in fields like industrial

automation, space exploration, home robotics, space monitoring and security, support

14



Section 1.3. Vision Based Navigation

of people with special needs, etc, an autonomous system should possess advanced
perceptual capabilities that will enable it to recognize the aspects of reality that are
essential to achieve its goals [126, 127, 70]. Since such systems are intended to function
in a 3D world, they should be capable of capturing the structure of their environment.
As has been argued already, vision has the potential to provide most of the information
necessary to navigate in unknown, unstructured and possibly changing environments.
Hence, this dissertation focuses on visual navigation, where vision is the primary sense
and navigation is based on the analysis of sequences of images. More specifically, due
to its widespread use by biological seeing systems, visual motion will be the cue on
which our investigation will be based. The study of visual motion will lead to a deeper
understanding of the mechanisms for visual perception and will produce results that can
be used to guide mechanical systems and can also be transferred to seemingly unrelated
application domains. Research and development areas, such as video browsing, video
indexing, view synthesis, virtual reality, augmented reality (i.e. merging of graphics
and video), animation, CAD modeling, video post-production, etc, can benefit from
the application of motion analysis techniques for the development of powerful tools
that will automate tasks that are either tedious or too complicated to perform manually
[293, 204]. A general overview of the state of the art in vision-based navigation can
be found in [69]. The next section presents an overview of the traditional approach
to vision-based navigation. Next, the purposive vision paradigm is considered and a

hierarchy of well defined visual capabilities are identified for further study.

1.3.1 Structure from motion

Todate, most research work on vision-based navigation has been influenced by
Marr’s reconstruction paradigm [156]. Consequently, vision-based navigation has
been considered as the solution to a more general problem, namely that of structure
from motion (SFM). Given a sequence of images, SFM can be defined as the problem

of recovering the 3D structure of world objects and their 3D velocities relative to the
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observer. Clearly, if SEM can be successfully solved, it provides sufficient information
for dealing with various navigation tasks. However, despite the enormous research
effort devoted to SFM, related issues remain unresolved for all practical purposes. The
main reason for this difficulty is that SFM is ill-posed, i.e. it can have multiple solutions

which do not depend continuously on the input.

Photosensitive surfaces such as an animals’ retina, a camera film or a CCD array
share in common the fact that they are all 2D. Since the natural world is 3D, a reduction
of dimensionality takes place during the process of image acquisition. In other words,
the depth of world points is lost when they are projected on a 2D surface. This fact
accounts for many of the difficulties involved in SFM. SFM attempts to invert the
projection process by taking advantage of the fact that the motion of the photosensitive
surface causes every object projected on it to appear moving in a manner dependent on
its relative motion with respect to the photosensitive surface and the structure of the

viewed scene.

It is customary to study SFM as a two-step process. Initially, accurate displacements
of image points due to the relative motion between the observer and the scene are
computed using successive image frames. This amounts to solving the so-called
correspondence problem, which involves the identification of image points in different
views that are projections of the same three dimensional world point. In case of
infinitesimal motions, the image sequence is regarded as a function of two temporal
and one time variables. The spatiotemporal derivatives of this function, combined with
some additional assumptions, permit the estimation of the optical flow, represented
by a vector field describing the motion of image points. When the motion between
successive images is significant, a solution to the correspondence problem is obtained
in the form of disparity maps. In this last case, instead of having a single camera moving
in space, the image sequence can be captured by a multioccular system composed of
multiple fixed cameras that have different 3D positions and orientations. In a second

step, the 3D motion and the structure of the scene are recovered from the equations

16



Section 1.3. Vision Based Navigation

relating the 2D image velocity to the 3D motion. Techniques that can be used to establish
correspondence and to recover motion and structure information, are examined below

in greater detail.

Establishing correspondence

Based on the two-step decomposition of SFM that was described above, research has
progressed in two directions. A large body of work has been devoted to the development
of algorithms for accurately estimating the motion of image points. In the case of
optical flow computation, three different approaches can be identified: gradient based
approaches, which assume conservation of image intensity [284, 78, 108, 170, 101, 257,
172, 266, 30, 278], correlation or area based approaches, which assume conservation
of the local intensity distribution [284, 151, 46, 10, 9, 87], and frequency or filter
based approaches [274, 1, 83, 99], which consider the problem of motion estimation
in the spatiotemporal frequency domain. Unifying theories of optical flow estimation
techniques can be found in [171, 228, 223] and a performance comparison of various
algorithms is carried out in [28, 88]. Mitiche and Bouthemy [165] provide an excellent

review of the state of the art in optical flow estimation.

Despite the fact that an enormous amount of research effort has been devoted to
the problem of estimating optical flow, estimates of image velocity are notoriously
error-prone. As it will be made clear by a detailed discussion in section 2.1.6, current
techniques cannot adequately cope with several difficult situations that occur frequently
in natural scenes. For instance, a fundamental assumption made by almost every
optical flow estimation algorithm is that the brightness variations observed in an image
sequence are strictly due to motion. However, this assumption is violated in the case of
moving shadows, change of illumination and specular reflections. Another problem has
to do with the fact that the motion of constant intensity regions is underconstrained. The
lack of sufficient texture results in more than a single motion being consistent with the

observed image sequence. A related shortcoming is the well-known aperture problem,
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which arises due to the fact that, based solely on local measurements, only the component
of optical flow along the gradient direction (known as normal flow) can be computed.
To overcome this indeterminacy, regularization techniques that are based on various
smoothness assumptions impose additional constraints. Unfortunately, smoothness
assumptions are very often violated due to depth discontinuities, independently moving
objects or non-rigid and articulated motion. Finally, when image motion is large
or temporal sampling is not adequate, the phenomenon of temporal aliasing further
complicates the estimation of motion, since in this case the assumption that motion is

infinitesimal is violated.

Regarding the computation of disparities, three different approaches have been
studied: 1) area correlation approaches [27, 240], that assume locally frontoparallel
surfaces; 2) feature matching approaches [160, 196, 184, 91, 138, 106, 290, 216, 145, 161,
201, 147], that correspond sparse image tokens such as lines, points and curves; and
filter based methods [125, 203], that prefilter images with banks of linear filters tuned to
different orientations and scales and use their responses to describe the local structure
of image patches. The problem of image matching is complicated by occlusions and
changes in object appearance observed in the images. Correlation approaches suffer
from sensitivity to brightness in the case of non-lambertian surfaces. More serious
problems can be caused by different amounts of foreshortening in the images and
surface boundaries that run through the region of the image that is used for correlation.
Feature matching approaches are in general more accurate, but have the drawback of
yielding sparse information. Typically, the interpolation of depth across surfaces in the
scene is employed as an additional step. Dhond and Aggarwal [67] provide a detailed

review of techniques for estimating disparities in the case of binocular stereo.

Recovery of 3D motion and structure from image correspondences

The second aspect research in SFM has focused on, is that of estimating the motion and

structure given correspondences between image points. Initially, issues regarding the
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existence and uniqueness of the solution were addressed. Ullman, in his well-known
SFM theorem [265], showed that a minimum of three distinct orthographic views of four
non-planar points in a rigid configuration allow the motion and structure to be completely
determined. In the case of perspective projection, two views are, in principle, sufficient.
Longuet-Higgins later showed that two perspective views of eight points allow SFM to
be solved with linear methods [142]. Faugeras and Maybank proved that five points in
two views yield ten possible solutions [74]. Early research also addressed the case of
simple parametric surfaces in motion. For example, Tsai and Huang showed that given
four coplanar points in two views, there exist two possible solutions for the plane normal
and its 3D motion [260]. When three views are available, a unique solution can be found
[261]. During the last few years, the application of tools from projective and algebraic
geometry has led to significant results, relevant to SFM [167, 72]. Recent theoretical
contributions to SFM include the fundamental matrix [153], which expresses the epipolar
constraint for an image pair and the trifocal tensor [221], which relates corresponding

points and lines in three views.

In recent years, many researchers have attempted to exploit the results of theoretical
analysis to develop computer algorithms for solving SFM. An assumption commonly
made by these algorithms is that 3D motion to be recovered is at least piecewise rigid,
since otherwise the observed 2D motion could have resulted from any arbitrary 3D
motion. The algorithms can be classified to various categories according to criteria,
such as the choice of the image projection model, the use of optical flow or disparities,
the use of closed form formulas or iterative methods for estimating the solution, the use
of long or short image sequences, the combination of monocular imagery with stereo
cues (motion stereo) and the use of calibrated or uncalibrated cameras. Representative
examples of the various approaches can be found in [104, 275, 276, 281, 280, 264, 251,
232, 233, 273, 140, 134, 130, 129, 279, 157, 287, 164, 268, 270]. Huang and Netravali
[113] provide an overview of techniques for motion and structure estimation from sparse

feature correspondences.
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A shortcoming of most current approaches to solving the SFM problem, revealed
by experimenting with the implemented algorithms, is that they are extremely sensitive
to noise [262, 232]. Thus, very few algorithms have proved to be successful in realistic
scenarios. The sensitivity to noise stems from the errors in image motion measurements
and the nonlinearity of the equations involved in SFM. In addition, image motion fields
can be ambiguous, giving rise to more than one 3D motion: An upward movement of a
camera, for example, induces an optical flow field that is locally indistinguishable from
the flow generated by a tilt rotation. Consequently, quantitative studies of robustness,
through statistical analyses such as those presented [232, 64, 65, 92], are of utmost

importance for building practical vision systems.

1.3.2 Visual capabilities

Sensitivity to noise is not the only reason for the failure of SFM algorithms. Many
of these algorithms have overambitious goals. The strategy of extracting and storing
as much information as possible wastes computational resources. As dictated by the
purposive vision paradigm [6, 247], vision should not be considered as a goal by itself,
but should be studied in conjunction with the visual tasks the system is engaged in.
This approach reduces the general SFM problem to a set of more tractable processes.
The purposive paradigm can make an efficient use of the available computational
resources, facilitating the supply of a continuous stream of environmental information
that will enable a system to perceive unforeseen changes in the environment as they
happen. Each visual process implements a specific visual capability and operates on the
basis of incomplete, but robust qualitative representations, instead of relying on precise
measurements of motion and structure that are susceptible to noise. For example, instead
of employing a complete, quantitative representation, an obstacle avoidance process can
depend on the answers to a set of simple questions. Such questions would be concerned
with whether the observer is approaching an obstacle, if the observer is in a collision

course with an obstacle, how much time with respect to the observer’s reaction time
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remains until collision, etc. These questions admit a small number of possible answers

and are thus of a qualitative nature.

According to their complexity, navigational capabilities fit into a natural hierarchy.
This hierarchy bears resemblance to the subsumption architecture proposed by Brooks
[40]. According to the latter, intelligence is achieved by a hierarchy of concurrent
processes pursuing a common goal, with processes higher in the hierarchy having
more general subgoals and lower level processes inhibiting higher level ones whenever
dynamic changes occur in the environment. Brooks’s point of view, however, is too
extreme, since it imposes a strict priority scheme among processes and refuses to use
any representation of the environment, arguing that the latter is the best representation
of itself [42]. Some of the most important visual capabilities are listed below in order
of increasing complexity. A few of them were also mentioned in section 1.2 and are
repeated here for completeness. These visual capabilities are the building blocks from

which more complex behaviors can be synthesized.

e Detection of independent motion [14, 2, 246, 220, 182, 16, 17, 18, 146, 19]
An intelligent observer should be able to perceive dynamic changes in his field
of view, since such events indicate areas of interest where his attention should be
focused and possibly maintained. One such dynamic change is due to the existence
of objects that move independently of the observer. The identification of these
objects is particularly challenging, since every point in the field of view appears
to be moving in a manner dependent on its relative motion with regard to the

observer and the (unknown) structure of the viewed scene.

e Egomotion estimation [197, 44, 100, 115, 8, 141, 175, 120, 62, 148]
This capability deals with the estimation of the velocity of a mobile observer with
respect to his environment. This information is essential for various servoing tasks

that are based on visual feedback.

e Obstacle detection and avoidance [180, 48, 68, 123, 214, 56, 295, 212, 86, 150]

In order to avoid collisions, a mobile observer should have a means for detecting
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and avoiding objects obstructing his route. The observer should differentiate

between the surface on which he is moving and the objects lying on it.

Time-to-contact estimation [238, 51, 250, 163, 21, 149]

A very useful visual measure for avoiding obstacles is time-to-contact, i.e. the
amount of time that remains before the observer comes into contact with the
objects appearing in his field of view. This measure is more useful compared
to some form of distance, since it is defined with respect to the velocity of the
observer, giving an estimate of the time period during which proper action to avoid

collision should be taken.

Object interception (docking) [57, 55, 213, 181]
A mobile observer often needs to maneuver, so that he can approach certain objects

of interest. This task is known as docking.

Wall and corridor following [219, 29, 105, 15]

In certain situations, a mobile observer needs to remain at a fixed, close distance
to a wall while following it, or keep himself centered with respect to the walls
of a corridor. These are the tasks of wall and corridor following respectively, and
can be considered as simplified versions of the problem of controlling the heading

direction in a cluttered environment.

Gaze maintenance (tracking) [7, 185, 188, 169, 190, 12, 43, 38]

Tasks such as visual surveillance require the observer to be capable of properly
controlling the motion of his eyes, so that a moving object of interest remains
approximately in the center of his field of view. Thus, the observer should be
able to estimate the object’s relative retinal velocity and then compensate for it by

rotating his eyes appropriately.

Hand-eye coordination [191, 192, 26, 116, 63, 93, 285]
Assuming an observer equipped with a gripper, hand-eye coordination refers to
the task of generating appropriate motor commands for positioning the gripper in

3D space and grasping objects. One of the main difficulties of this task is that all
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measurements derived from images are expressed in the camera coordinate frame,

which does not coincide with the coordinate frame attached to the gripper.

e Visual homing [139, 178, 59]
Visual homing is at the zenith of the visual navigation capabilities hierarchy. It
constitutes the ability of an autonomous system to use visual information for
reaching a target location outside its field of view, starting from an arbitrary
location. To achieve this, the system should extract, memorize and later recognize
distinct locations in the environment (landmarks). Landmarks can be used either
for determining the position of the system in the environment (localization) or
as intermediate destinations when planning an appropriate route towards a final

destination.

1.4 Overview of the Thesis

It is our belief that the behavioral approach to vision has the potential to provide in
real time visual information adequate for closing the motor control loop. Furthermore,
it allows the specification of a set of visual processes that permit the incremental
development of a navigation system, so that there is no need for the whole system to be
constructed before experiments can be conducted. This thesis describes the results of our
investigations regarding the first four of the visual capabilities presented in the previous
section, namely independent motion detection, egomotion estimation, obstacle detection
and time-to-contact estimation. Since each capability deals with a well defined goal and
does not depend critically on the environment, it can function as a generic navigational
tool for various practical applications. Collectively, these visual capabilities constitute
a solid arsenal of primitive algorithms that is able to support complex behavioral
repertoires. Below, the adopted research framework and the specific contributions of

this work are discussed.
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1.4.1 Research approach

Our research effort has focused both on theoretical and practical aspects. First, a
computational model regarding each visual capability has been derived from theoretical
study. Since computer vision is primarily an experimental discipline, the next step was
to demonstrate the validity of relevant models through experiments involving prototype
implementations of proper algorithms. Work on both aspects has progressed along the

following lines:

e Avoid complete solutions to SFM.
We have already argued that complete solutions to SFM are an overkill for
the application of vision-based navigation. As dictated by the purposive vision
paradigm, more accurate and efficient techniques can be developed by addressing

only the aspects relevant to the task at hand.

e Avoid assumptions regarding the egomotion and the scene structure that are not
always valid.
Restrictive assumptions regarding the egomotion and/or the structure of the
viewed scene are not uncommon in the literature. For example, the cases of purely
translational or rotational egomotion have been addressed and visible surfaces
have been assumed to have special properties such as planarity or smoothness.
With the exception of environmental constraints that are discussed below, such
assumptions cannot be guaranteed to always hold and should be avoided when
possible. This is because the violation of the assumptions on which the visual
processes are based can be devastating for the autonomous system employing
them. Imagine, for example, what could happen if a system moving with general
3D motion attempted to estimate its egomotion using an algorithm that assumes

pure translation.

e Exploit environmental constraints.

When designing the vision system of a mobile robot that will operate in a certain
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setting, generality can be traded for simplicity and reliability by exploiting special
constraints that might be satisfied in the specific environment. An indoor mobile
robot, for instance, rovers on a planar floor and therefore, this constraint can
be taken into account when designing the robot’s visual processes. Although the
visual processes that will result from such an assumption will be useless in the case
of an outdoor robot, they will hopefully be more efficient and accurate compared
to any visual processes that do not make a planarity assumption regarding the

floor.

e Develop algorithms that are robust with respect to noise.
Errors in the measurements of 2D image motion are unavoidable. Since the
problem of inferring 3D information from 2D data is inherently nonlinear, special
care must be taken to prevent corrupted, noisy measurements from yielding
completely erroneous 3D estimates. Some of the possible ways for achieving

robustness are indicated below.

-- Exploit redundancy.
Constraints derived from local data tend to be erroneous and should be
avoided when possible. Instead, overdetermined systems formed by multiple
constraints arising from global data should be used. Techniques borrowed
from the field of robust statistics can then be used to identify and mask out the
minority of invalid constraints [162, 252]. When estimating rigid egomotion
for example, methods that employ flow measurements from the whole visual
field perform better than methods relying on flow estimates in small image

windows.

-- Use qualitative, nonmetric information.
It is often the case that the task of answering questions that admit a limited
number of answers is easier and less sensitive to noise than the task of
estimating quantitative (metric) information. For example, deducing which
of a pair of objects is closer to the observer is easier than measuring their exact

distances. Therefore, obstacle avoidance could be implemented by a reactive

25



Chapter 1. Introduction

scheme based on the sign of the rate of approach for different obstacles. In
a similar spirit, to detect independent motion, one does not necessarily have
to estimate the exact 3D motions of the observer and other objects in the
scene. The quest for qualitative information is a powerful concept that can be

particularly beneficial to the stability of vision systems.

-- Rely on as simple representations as possible.
Since noise in image measurements is inevitable, methods that are direct in the
sense that they use the least amount of information possible, might be more
robust than the algorithms that compute more than they need. An algorithm,
for example, that solves a specific task using normal flow only is expected
to be more robust compared to an algorithm that employs optical flow. Also
sparse optical flows and disparity maps which supply no measurements over
underconstrained image regions are usually more accurate, and thus more

preferable compared to dense optical flow fields and disparity maps.

e Develop computationally efficient algorithms.
Our ultimate goal in studying vision-based navigation is to construct autonomous
seeing systems. Such systems will have to process huge amounts of data in real
time, i.e. at a rate comparable to the rate that the environment they operate in
changes. A mobile system poses restrictions regarding available onboard space,
power consumption, cost, etc. Although computers get faster all the time, the
computational requirements of visual processes should be of serious concern.
Issues such as time and memory space requirements, ease of parallelization, etc,

should be addressed and thoroughly understood.

1.4.2 Outline and contributions

The present section outlines the organization of the thesis and provides a synopsis

relevant results.

26



Section 1.4. Overview of the Thesis

Chapter 2 is devoted to the presentation of some background material that is essential
for the comprehension of the work presented in the subsequent chapters. Specifically,
this chapter discusses issues related to motion representation and derives the equations
relating 2D retinal velocities to the 3D motion and structure of the environment.
Moreover, a brief introduction to the field of robust statistics is provided, with emphasis

on the Least Median of Squares robust estimator.

The following four chapters describe in detail the developed and implemented
visual capabilities. Since each capability is independent of the others, the corresponding
chapter is self-contained and can be read independently. Each consists of a detailed
review of the relevant literature, the theoretical development of the corresponding
method, an experimental evaluation and a discussion of the advantages and weaknesses

of the method.

Chapter 3 considers a fundamental problem of visual perception of motion, namely
the problem of visual detection of independent 3D motion. This problem concerns the
identification of objects that move independently of a mobile observer within his field of
view. Most of the existing techniques for detecting independent motion rely on restrictive
assumptions about the environment, the observer’s motion, or both. Moreover, they
are based on the computation of a dense optical flow field, which amounts to solving
the ill-posed correspondence problem. In this work, independent motion detection is
formulated as a problem of robust parameter estimation applied to the visual input
acquired by a rigidly moving observer. The proposed method automatically selects
a planar surface in the scene and the residual planar parallax normal flow field with
respect to the motion of this surface is computed at two successive time instances. The
two resulting normal flow fields are then combined in a linear model. The parameters
of this model are related to the parameters of self-motion (egomotion) and their robust
estimation leads to a segmentation of the scene based on 3D motion. The method avoids
a complete solution to the correspondence problem by selectively matching subsets of

image points and by employing normal flow fields. Experimental results demonstrate
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the effectiveness of the proposed method in detecting independent motion in scenes

with large depth variations and unrestricted observer motion.

Chapter 4 deals with the problem of using visual input to estimate egomotion, i.e.
the velocity of a mobile system with respect to its environment. Knowledge of the
egomotion is essential for various servoing tasks that are based on visual feedback.
Many of the existing techniques for solving this problem rely on restrictive assumptions
regarding the observer’s motion or even the scene structure. Moreover, they often resort
to searching the high dimensional space of possible solutions, which might be inefficient
and exhibit convergence problems. In this work, a novel linear constraint that involves
quantities that depend on the egomotion parameters is derived. This constraint is defined
in terms of the optical flow vectors pertaining to four collinear image points and is
applicable regardless of the egomotion or the scene structure. In addition, it is exact in
the sense that no approximations are made for deriving it. Combined with robust linear
regression techniques, the proposed constraint enables the recovery of the FOE, thereby
decoupling the 3D motion parameters. Extensive simulations as well as experiments
with real optical flow fields provide evidence regarding the performance of the proposed

method under varying noise levels and camera motions.

Obstacle detection and avoidance capabilities are essential to an autonomous robot
for it to move safely in the environment. Chapter 5 presents a method that enables a
mobile robot to locate obstacles in its field of view using two images of its surroundings.
The method provides a binary labeling of image points, classifying them either as
obstacles or as free space. Assuming that the robot is moving on a locally planar
ground, the method uses a set of reference point features (corners), that have been
matched between the two views, to compute a robust estimate of the homography of
the ground. Knowledge of this homography permits us to compensate for the motion of
the ground and to detect obstacles as areas in the image that appear nonstationary after
the motion compensation. The resulting method does not require camera calibration,

is applicable either to stereo pairs or to image motion sequences, does not rely on a
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dense disparity/flow field and circumvents the 3D reconstruction problem. Experimental
results from the application of the method on real images indicate that it is both effective

and robust.

Chapter 6 is complementary to chapter 5. It presents a method for estimating the
time-to-contact, i.e. the time that remains before a mobile observer collides with objects
in his field of view. The time-to-contact provides a measure for assessing the proximity
of obstacles that is well suited to avoiding collisions. In chapter 6, a novel method for
estimating the time-to-contact is presented. The method is based on the assumption that
the robot is moving on a locally planar ground and employs the optical flow field induced
by the robot’s motion. First, the time-to-contact with points on the ground is estimated
and then the concept of planar parallax is exploited to recover the time-to-contact with
obstacle points. The computation of high order derivatives of image flow, which are
known to be very difficult to estimate accurately, is completely avoided. Moreover, no
knowledge of the egomotion is necessary. Experimental results from the application of

the method on real and simulated flow fields are also reported.

Finally, chapter 7 concludes the thesis by summarizing its contributions. In addition,

a brief discussion concerning possible directions of further research is provided.
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Chapter 2

Mathematical Preliminaries

Before proceeding to the description of the visual capabilities that have been studied,
issues related to visual motion representation are discussed. Models for representing
image motion describe image measurables such as the 2D displacement of image points
in terms of the scene depth and the relative 3D motion between the scene and the
camera. These models form the basis on which the theoretical developments of the
next chapters will be grounded. Depending on the frequency of the temporal sampling
used when capturing an image sequence, image motion can be modeled in two ways,
infinitesimally in time and over discrete time intervals. In the first case, it is termed as
the 2D instantaneous motion field or optical flow whereas in the second it is referred
to as the disparity map. In the following sections, the mathematical expressions for
both models are obtained. Furthermore, since the developed techniques involve the
solution of overdetermined systems of linear equations, a brief introduction to the field
of robust regression is provided. Special emphasis is given to the Least Median of
Squares (LMedS) estimator, since its characteristics make it particularly attractive for

the purposes of our work.
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2.1 Image Motion Equations in the Continuous Case

Relative motion between an image acquisition system and the environment it is observing
gives rise to image motion, that is motion of the projections of environmental points on
the imaging system’s retina. This is illustrated in Fig. 2.1, which shows a side view of a
camera (see also Fig. 2.2). Each point on the retina can be associated with a 2D velocity
vector and the set of such vectors defines a velocity field. Assuming infinitesimal motion
between successive images, the following subsections derive the equations describing

velocity fields and discuss other related issues.

Y

image plane

Figure 2.1: The displacement of a 3D point P to a new location P’, creates a projected

motion vector in the image.

2.1.1 The camera coordinate system

Consider a coordinate system OXY Z, the origin of which is at the optical center (nodal
point) of a pinhole camera, and such that the OZ axis coincides with the optical axis

(see Fig. 2.2). Under perspective projection, the 3D point P(X, Y, Z) projects to the point
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YTV

P(X,Y, 2Z)

Figure 2.2: The camera coordinate system.

p(z,y) on the image plane, according to the relations:

Y
A

(2.1)
_Yf
y = 7,

where f denotes the focal length of the imaging system. Note that the image coordinates
(x,y) are defined with respect to the coordinate system that is centered on the principal
point, i.e. the intersection of the optical axis with the image plane. This coordinate
system is often referred to as the normalized camera frame. However, actual image
acquisition systems provide image pixels in coordinate frames that have different origins
and axis units from the normalized frame. Here, the change of coordinate frames will be

studied and the camera intrinsic parameters will be defined.

Figure 2.3 depicts the normalized coordinate frame (o, i, j) and the new coordinate
frame (o0,,1,J), which we call the pixel coordinate frame. Usually, the origin of the
pixel coordinate frame is located at one of the image corners and, due to the electronics

of acquisition, the unit vectors on the two axes are scaled with respect to those of the
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normalized frame [71]. Therefore, we have that i = f,I and j = f,J, where f, and f,
is the focal length expressed in horizontal and vertical pixels respectively!. Let m be a
point in the image and (z, y) its coordinates in the normalized coordinate frame. Let also
(s, ¢y) be the coordinates of the principal point expressed in the pixel coordinate frame.
The quantities f,, f,, ¢, and ¢, depend on the camera only and are known as the camera
intrinsic calibration parameters. The process of determining them, often with the aid of
a calibration grid, is known as camera calibration [259, 159]. With reference to Fig. 2.3,
the coordinates (z,,y,) of point m in the pixel coordinate frame can be expressed in
terms of the normalized coordinates and the intrinsic calibration parameters by noting

that

op_> m:o?O +om (2.2)

Vector o m is equal to (z,y) in the normalized coordinate system or to (f, z, f, y) in

the pixel coordinate frame. Thus, Eq. (2.2) yields

(xzn yp) = (Cm Cy) + (fx oy fy y)

From this equation, it is clear that given the pixel coordinates, the normalized ones can

be computed as

(2.3)

In the following, we will assume that the intrinsic parameters are available and Eq. (2.3)
has been employed to convert pixel coordinates to the normalized coordinate frame with
f = 1. Therefore, the adjective ‘‘normalized” is omitted when we refer to normalized

image coordinates.

'In practice, image pixels are not square.
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m

Op |

Figure 2.3: Changing coordinate systems in the image plane.

2.1.2 The equations of image point velocities

Suppose that the camera of Fig. 2.2 is moving rigidly with respect to its 3D static
environment, with instantaneous translational and rotational velocity ¢ = (U, V, W) and
& = («, B,7) respectively. This situation is geometrically equivalent to the case of a
static camera, imaging a scene that is moving relative to it with translational velocity
—# and rotational velocity —@. The resultant velocity V of a point P = (X, Y, Z) with
respect to the O XY Z coordinate system can be computed as follows. With reference to
Fig. 2.4, let L be the axis of rotation defined by the vector —& and d be the distance of
P from this axis. Point P rotates around L in a counterclockwise direction. The velocity
V is the vector sum of the tangent velocity due to rotation ¢ and the translational motion
—t. The tangential component ¢ is perpendicular to the plane defined by L and P and its
magnitude is equal to the magnitude of rotational velocity times the distance from P to
L,thatis ||q]| = || — &|| d = || — &|| ||P]|sin® = || — & x P||, where “x” denotes vector

cross product. Thus, V' is equal to

V=-i-&xrF (2.4)
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Z
Figure 2.4: Rotation of a point P around the axis L.

where 7 is the column vector (X,Y, Z)". The above vector equation can be written in

component form as

X' = -U-pZ+vY
Y = -V -—yX+aZ 2.5)
7 = —W —aY +8X,

where ' denotes differentiation with respect to time.

Equations (2.5) can be used to relate image motion to the 3D velocity and structure,
as follows. The relative motion between point P(X,Y, Z) and the camera, results in a
motion of P’s projection p(z,y) in the image. More specifically, the retinal velocity

(u,v) at point (z, y) is given by:

_dw
YT
(2.6)
_
YT W
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After substituting Eq. (2.1) into Eq. (2.6), differentiating and employing the
expressions for the 3D velocity given by Eq. (2.5), it turns out that the equations
relating the 2D velocity (u,v) of an image point p(z,y) to the 3D velocity of the
projected 3D point P(X,Y, Z) are [144]:

(=Uf+aW) xy

ZUZ

2.7)

_ 2
v o= VW) Vf;yw)nLoz(yT—l—f)—ﬂ%—%v

Note that (u, v) in the above equations are expressed in the normalized coordinate frame.
By differentiating Eqs.(2.3) with respect to time, it is easy to see that the normalized

velocities are related to the velocities (u,, v,) expressed in the pixel coordinate frame by

"=
(2.8)

_ Y

v o= fy

Equations (2.7) can be written as

U = Utrans T Urot

V = Vtrans T Urot,

where

(=Uf + W) (=Vf+yW)

Utrans = 7 y  Utrans = 7

and

2

2
urot:a%_ﬂ(%_'_f)—i_’yy ) vrot:a(y?_'_f) _ﬁx_f:-y_’yx

Clearly, the image velocity equations are separable, i.e. they consist of two parts, one due
to translation and one due to rotation. It is interesting to note that only the translational
part depends on the structure () of the viewed scene. Another observation regarding the

above equations is that the motion field is invariant under scaling of the depth Z and the
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translational velocity (U, V, ). In other words, as explained in Fig. 2.5, absolute depths
and translation magnitudes cannot be recovered from retinal velocities. Consequently,

only the direction of translation (%,f, %Vi) and the depth up to an unknown scale factor

(i.e. shape) can be derived from an image velocity field. The point (z¢, yo) = (UWf, VWf)
is of central importance to motion understanding [202] and has the property that the
translational components of velocity vectors at each image point lie on lines going
through it (see Fig. 2.6). This point is known as the Focus of Expansion (FOE), since if
the observer approaches the scene, the translational components radiate outward from it.
In the case that the observer moves away from the scene, the translational components

move towards the FOE, which is then referred to as the Focus of Contraction (FOC).

Y
<P
//J’p////// 7‘/4/—‘/‘/’ P
/i;i:::'/rl/r/r Q
O p 7
image plane

Figure 2.5: Based on the image velocity alone, we cannot differentiate between a distant
point moving fast (i.e. point P moving to P’) and a close point moving slowly (point Q

moving to Q).

2.1.3 Optical flow field - Motion field

Equations (2.7) describe the 2D motion vector field, which relates the 3D motion of

a point to its 2D projected motion on the image plane. The motion field is a purely
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Y

FOE

Figure 2.6: The FOE is the point on the image plane where the vector defined by the 3D
translational velocity pierces the image plane. The translational components of image

velocity vectors emanate from the FOE.

geometrical concept and, perhaps surprisingly, it is not necessarily identical to the
optical flow field, which describes the motion of brightness patterns observed because
of the relative motion between an imaging system and its environment. Horn [107],
provides a classical example which demonstrates that the the optical flow field and the
motion field are not equal. Consider a perfectly uniform sphere rotating in front of an
imaging system. The curvature of the sphere’s surface will give rise to spatial variations
of brightness and shadows in an image of the sphere. This shading, however, does not
move with the surface and therefore, the image does not change over time. This implies
that the optical flow is zero everywhere, although the motion field is not. Conversely,
consider a stationary sphere illuminated by a moving light source. The motion of the
light source will result in a change of the shadings in the image over time. Clearly, in this
case, the optical flow field is nonzero while the motion field is zero everywhere. Since
the optical flow is the only source of information regarding motion that can be made
available from the processing of images, the above inequality is an inherent problem
for motion analysis. Fortunately, except for special cases such as the ones described

previously, the optical flow field does not differ much from the motion field. In practice,
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it is assumed that the optical flow field is equal to the motion field and the two terms
are used interchangeably to refer to image velocity fields. Verri and Poggio [267] have
quantified the difference between the motion and the optical flow fields and concluded
that the two are identical only in the case of purely translating and uniformly illuminated
Lambertian surfaces. Even in the cases that these two fields are indeed identical, the
computation of the optical flow field is a difficult problem for reasons that will be

explained in section 2.1.6.

2.1.4 The optical flow constraint equation

Assuming dense time sampling during image acquisition, a sequence of images can be
modeled as a continuous function I(x,y,t) of two spatial (z,y) and one temporal (¢)
variables. Thus, I(z,y,t) denotes the image intensity at point (z, y) at time ¢. Assuming
that irradiance is conserved between two consecutive frames, and that « and v are the z-
and y-components of the optical flow, we expect that the irradiance will be the same at

point (z + dz,y + dy) at time ¢ + ot, where 0x = udt and dy = vdt. That is:
I(x 4+ udt,y + vit, t + ot) = I(x,y,t) (2.9)

By expanding the left hand side of the above equation in a Taylor series, we obtain:

ol ol ol
I ty=1 t) +dr— + dy— + ot—
(@,y,8) = I(z,y,8) + oz + v, Tt te
where the term e corresponds to higher order terms and 4%, 9L 91 are the partial
z’ Oy t

derivatives of I with respect to z,y and ¢ respectively. Canceling out the term /(z, y, ),

dividing by ¢ and taking the limit as 6t — 0, yields

gd_$+g@+g—o
ovdt  Oydt Ot

Using the abbreviations

dz 4y
CdtT T dt
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and
ol ol ol
[x = 7 I, = a0 I, = a0
or’ Y oy ' ot
we obtain
Tu+ va +1I;,=0 (2.10)

Equation (2.10), which was originally developed by Horn and Schunck [108], is known
as the optical flow constraint equation (or the brightness constancy constraint equation)
because it gives one constraint for the components u and v of optical flow. Writing

Eq. (2.10) in the form of a dot product
(I:m[y) ’ (U,U) = _[t (211)

facilitates its geometrical interpretation as permitting the computation of the projection
of an optical flow vector along the intensity gradient direction (i.e. the perpendicular to
the edge at that point). This projection is also known as normal flow. Equation (2.11) can
be viewed as the mathematical expression of the aperture problem which is explained
schematically in Fig. 2.7. Assuming that an image feature such as a line is being watched
through a small aperture, it is impossible to determine where each point of the feature
has moved between two successive image frames. The only information that is readily
available from local measurements is the component of the actual velocity along the
direction that is perpendicular to the feature. On the contrary, the component of the
velocity that is parallel to the feature cannot be determined. The aperture problem
manifests itself regardless of the technique that is employed to estimate the optical flow.

It is also directly related to the normal flow field, which is further examined below.

2.1.5 Normal flow field - normal motion field

The algebraic value of normal flow can be computed from Eq. (2.11), by dividing both
sides with the gradient magnitude, and is equal to:

b (2.12)

VIZ+ 1
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e M ( N

N

Figure 2.7: A schematic view of the aperture problem. The solid line in the left image
has moved to a new position in the right image. Based on the information that is visible
through the aperture, it is not possible to decide which of the dotted vectors corresponds
to the motion of the line. However, whatever the motion might be, its projection on the

direction perpendicular to the line is unique and is denoted by the solid vector.

As defined previously, the normal flow is the component of the optical flow along the

image gradient and is given by:

L I, I,
JE+R\JB+L B+

( L1, 1t1y>
VI IR

where ||VI|| is the intensity gradient magnitude. Recalling that normal flow depends

or

on the image gradient direction, it is obvious that there are infinitely many normal
flow fields that can result from a particular optical flow field, depending on the actual
gradient directions present in a scene. This is shown in Fig. 2.8, where the thin vectors
denote some of the possible normal flow vectors that can be generated from the optical

flow vector designated by the thick vector.

The normal flow field is not necessarily identical to the normal motion field (the
projection of the motion field along the gradient), in the same way that the optical flow

is not necessarily identical to the motion field [267]. The algebraic value of the normal
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Figure 2.8: The set of normal flow vectors that can possibly originate from a single

optical flow vector defines a circle having the given optical flow vector as a diameter.

motion field is equal to

dv dy\ (I, 1))
dt ’ dt /12 + 2
de dy) VI _
dt ' dt) ||VI|]
1 dx dy
—— | [,— + [,— 2.13
||v1||< i ydt) -
The difference between the magnitudes of a normal flow vector and the corresponding
normal motion vector, is given by the difference of Egs. (2.12) and (2.13) and is equal to

[267]:
L
[|VI|| dt

Equation (2.14) shows that normal flow is a good approximation to normal motion flow

(2.14)

at points where ||VI|| assumes large values. Consequently, normal flow vectors at
points corresponding to image edges provide reliable information that can be used for

recovering the 3D motion and structure.

The expression relating the normal motion flow to the sought 3D quantities is
derived as follows. Let (n,,n,) be the unit vector in the gradient direction. The

magnitude un of a normal motion flow vector is given by

un = ung + vny (2.15)
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which, by substitution from Eq. (2.7), yields:

un = (-naf) -

W
+ (xnIerny)?
wy o2
e (o (5o
- A ) g
+  (yng — xny)y (2.16)

Equation (2.16) highlights some of the difficulties of motion analysis based on the
normal flow. Each image point (in fact, each point at which the intensity gradient has
a significant magnitude and, therefore, a reliable normal flow vector can be computed)
provides one constraint on the 3D motion parameters. In the case of an observer moving
in a static environment, the above equation holds for each point and for one specific
unknown set of 3D egomotion parameters (Ug, Ve, Wg), (g, Og, v£). In the case of rigid
independent motion, there is at least one more set of motion parameters (U, V7, W),
(ar, Br, 1) that is valid for some of the image points. Furthermore, if no assumption is
made regarding the depth Z, each point provides at least one independent depth variable.
In other words, N estimates of normal motion flows supply N equations in N + 6\
unknowns, where M is the number of different rigid motions within the camera field of

view.

2.1.6 Optical flow estimation

This section gives a brief overview of the existing approaches to optical flow estimation.

For more extensive treatments, the reader is referred to [228, 28, 165].

Optical flow is to be estimated from the time varying brightness patterns that are

recorded by an imaging system. Estimation is accomplished through the exploitation
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of a set of constraints regarding the observed patterns and the nature of the optical
flow. Singh [228] stresses the fact that all optical flow estimation algorithms progress
in two phases. First, based on the assumption that some image property is conserved,
local velocity information is derived. Image properties that are typically used for this
purpose include image intensity, spatiotemporal derivatives of intensity and intensity
distribution. Then, the local velocity information computed in the previous step is
combined with some additional constraints to recover the full velocity field. The
constraints that are employed solve the aperture problem by fusing velocity information
in small image neighborhoods. According to the image property that is exploited, optical

flow estimation techniques can be classified into the following three categories.

e Gradient based techniques
Techniques falling in this category assume the conservation of image intensity and
use Eq. (2.10) to constrain the optical flow [284, 78, 108, 170, 101, 257, 172, 266, 30,
278]. This yields an underconstrained system composed of a single equation in two
unknowns. Therefore, in order to estimate retinal velocities, such techniques rely
on additional assumptions such as smoothness of the optical flow field. In more
concrete terms, it is postulated that nearby points move in a similar manner and
normal velocities are integrated over image regions [108] or along image contours
[277, 172]. Next, the full velocities are recovered by minimizing an appropriate

function of these integrals.

e Correlation based techniques
These techniques rely on the conservation of local intensity distribution [284, 151,
46, 10, 9, 87]. Using two images of a time-varying scene, for each pixel in the
first image they search for the best matching pixel in the second image. This best
matching pixel is selected from a set of candidate matches that lie in an image
region called the search window. The selection of the best candidate match is
based on the maximization of a match measure, such as the correlation between a

small window around the pixel under consideration and a corresponding window
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centered on the candidate match. Obviously, correlation based methods suffer
from the aperture problem in areas of strongly oriented intensity gradients such as

edges, since in this case the correlation operation yields multiple local maxima.

e Spatiotemporal energy-based techniques
These techniques are analogous to gradient based techniques in the spatiotemporal
frequency domain [274, 1, 83, 99]. It has been proven that the spatiotemporal

frequencies of a moving stimulus are related to the velocity of the stimulus by
Watt + wyv + wy = 0, (2.17)

where w,, w, are the spatial frequencies and w; is the temporal one. This implies that
the above three frequencies lie on a plane in the spatiotemporal frequency space,
whose orientation depends upon the velocity of the visual stimulus. Spatiotemporal
energy filters that are tuned to certain frequencies are used to derive optical flow.
In the case of a textureless stimulus, there exists a single pair of spatial frequencies
and the corresponding power spectrum is concentrated along a line in the frequency
space. In other words, the motion plane cannot be fully determined, as dictated
by the aperture problem. However, in the case of a textured moving pattern, the
aperture problem does not exist. A textured pattern gives rise to a number of
spatial frequency components in the neighborhood of each pixel and therefore the

full optical flow can be derived.

Despite the considerable progress that has been made regarding optical flow
estimation, the problem remains challenging and a generally applicable solution is still
lacking. As pointed out by Mitiche and Bouthemy [165], the following difficulties

pertain to all formulations of the optical flow estimation problem:

i. The image motion explaining an image brightness change is not unique, i.e. the
problem of estimating optical flow is ill-posed [31]. Regularization techniques

which are often used to alleviate this problem, may yield optical flow fields that
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ii.

iii.

have no physical meaning. For example, the flow recovered around a motion

discontinuity might be the average of the underlying actual flows.

Regularization is a mathematical tool that permits the recovery of an unknown
function though the use of smoothness constraints [195, 244]. However, the optical
flow field is not smooth for a number of reasons. First, as Egs. (2.7) show, the
smoothness of optical flow depends on the continuity of the depth variable Z.
In most scenes depth discontinuities (e.g. occlusions) do exist and, therefore,
the optical flow cannot be regarded as smooth. Second, the smoothness of the
optical flow also depends on the constancy of 3D motion parameters. Thus,
independently moving objects induce discontinuities in the optical flow field.
Black and Anandan [34] provide a framework for estimating piecewise continuous
optical flow. This framework is applicable to standard formulations of optical flow
estimation, helping to reduce their sensitivity in the presence of phenomena such
as transparency, depth discontinuities, independently moving objects, shadows

and specular reflections.

Changes in the illumination, surface reflections and nonuniformities, sensor noise
and distortions, contribute to changes in the illumination that are not due to the
relative motion between the imaging system and the environment. This is the case

of unequal optical flow and motion field that was discussed in section 2.1.3.

Physical models that are explicitly or implicitly embedded in the estimation
process, are very often inadequate for accounting accurately for the image
brightness formation. For example, the projections of a moving point may
not have constant intensity, thus violating Eq. (2.10). Del Bimbo et al [33], consider
various forms of the optical flow constraint equation that have been proposed in
the literature and quantify their adequacy in modeling optical flow under different

conditions. employed for optical flow estimation and analyze
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2.1.7 Optical flow vs. normal flow

During the last decade, some researches have proposed the so-called direct methods,
which refute the need for estimating the optical flow by advocating the use of normal
flow as input to motion analysis algorithms [220, 16, 17, 18, 146, 8, 109, 176, 175, 222,
79,94, 179, 5, 76, 85, 180, 249, 21]. Unquestionably, there exist some important reasons
that favor direct approaches. To begin with, the problem of computing normal flow
is well-posed, involving local measurements only and avoiding restrictive assumptions
regarding the flow. In addition, it has low computational requirements compared to
expensive optimizations that are often carried out by optical flow estimation algorithms.
Hence, normal flow can be computed in real time with the aid of special image
processing hardware. There is also no need for integrating measurements in image
neighborhoods for solving the aperture problem. On the other hand, there are several
disadvantages associated with the use of normal flow. Normal flow estimation involves
the computation of intensity derivatives, an operation that is known to be sensitive to
noise. In contrast to optical flow estimation, normal flow cannot be estimated using
multiresolution techniques for coping with temporal aliasing caused by large time
sampling periods [208, 46, 30]. The use of point calculations precludes the infliction
of any kind of local spatial coherence on normal flow estimates. Even if the normal
flow can be accurately estimated, it should be noted that it provides partial information
regarding image motion, i.e. is less informative compared to the optical flow. Thus,
although it might prove adequate for tasks that involve redundant measurements, such
as the recovery of 3D motion, the lack of relevant publications probably implies that it

is insufficient for direct recovery of scene structure.

For the development of the visual capabilities that are described in this thesis we
have adopted a moderate approach for representing image motion. Instead of taking part
in the religious war in favor of abolishing optical flow, we choose to employ whatever
representation seems the most suitable for a particular problem. Our aim is to use the

least amount of information that is adequate for supporting a specific capability.
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2.2 Image Motion Equations in the Discrete Case

This section makes use of projective geometry to derive the equations relating discrete
image displacements (i.e. disparities) between two uncalibrated images. The pinhole
camera model that has been adopted in section 2.1 is also employed here. In contrast to
section 2.1, however, the 3D motion between the viewpoints from which the two images

have been captured can be arbitrarily large. More details can be found in [167, 71, 289].

2.2.1 Projective geometry and the projection equation

In the following, projective (homogeneous) coordinates are employed to represent image
and scene points by 3 x 1 and 4 x 1 column vectors respectively. The symbol ~ will be
used to denote equality of vectors up to a scale factor. Vectors and arrays will be written
in boldface. For more in depth treatments of the application of projective geometry to

computer vision, the interested reader is referred to [167, 168, 166, 131, 132].

Consider the n + 1 dimensional space R"™' — {(0,...,0)} with the following

equivalence relation:

(1, Tpgr)T (xll,...,aj;LJrl)T if and only if

I N£0, such that (z1,...,2501)" =My, .., 2,,)"

This space is the projective space P", in which the (n + 1)-tuples of coordinates
(21,...,2041)" and (21, ..., z, )T represent the same point. A projective transformation
from P" into P* is defined by a (k + 1) x (n + 1) full rank matrix. The usual Euclidian

space R"™ is embedded in the n-dimensional projective space P" through the mapping
R™ S (z1,...,2,)" = (21,...,2,,1) € P"

Projective geometry can elegantly model a pinhole camera imaging a three

dimensional scene. The scene geometry is captured by the Euclidian space R* embedded
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in the 3-dimensional projective space P?, and the image plane is described by the 2-
dimensional Euclidian space R?, embedded in P2. Then, perspective projection of a 3D
point on the 2D image plane can be modeled as a linear projective mapping from P? to

P? [71]. The projection matrix defining this mapping is given by

fe K ¢ 1 00O
0 f, ¢ 0100
0 0 1 0010

A K
where A is the matrix of intrinsic camera parameters and K is the perspective projection
matrix for the normalized camera frame [289]. More specifically, the elements f, and f,
represent the focal length of the camera expressed in horizontal and vertical pixel units
respectively, (c,, ¢,) is the principal point and «, often assumed to be zero, is a skew
parameter which is related to the angle between the horizontal and vertical axes of the
sensor array. The ratio }C—Z is referred to as the aspect ratio. Matrix A can be determined
either with the aid of a calibration grid [259] or through a self-calibration process by
observing an unknown scene [159, 296]. Thus, a point M” = [X,Y, Z, 1]* not on the

image plane, projects to the image point m” = [z, y, 1]T according to the relation

Zm=AKM (2.18)

2.2.2 The general disparity equation

Suppose now that two views of the same scene are available. The pair of views might
have been captured either by a stereo rig or by a single moving camera. Our aim is to
develop the equations relating the projections of a scene point in the two views. The two
camera coordinate systems can be aligned by a rotation followed by a translation. As
illustrated in Fig. 2.9, this change of coordinate systems is expressed by a 4 x 4 matrix
composed of a 3 x 3 rotation matrix R and a translation vector t. More specifically, a 3D

point M” in the first view is transformed to point M'" = [X’,Y”, 7', 1]” in the second
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view, according to

of 1

Figure 2.9: The O XY Z coordinate system is transformed to O’ X'Y'Z’ through a rotation
R followed by a translation t.
]T

Assuming that point M” projects to image points m and m'”" = [z/,3/,1]” in the

first and second view respectively, the disparity equation relating m and m’ is given by
Zm=AKM=ARttM=ZARA'"m + A't=ZH,m + ¢

where A’ is the intrinsic parameters matrix for the second view, H,, = A’ R A~! and
e’ = A’ t. Matrix H, is known as the homography of the plane at infinity and €’ is the
epipole, i.e. the projection of the focal center of the first view to the second. The above
relation implies that point m’ lies on the line going through e’ and the point H,, m (see
Fig. 2.10). This line is the epipolar line of point m and is given by the vector F m, where

F is the singular 3 x 3 matrix given by F = [e], H,; [€], is the 3 x 3 skew-symmetric

X

matrix of rank 2 representing the vector product, i.e.
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and [e'], x = €’ x x. The matrix F is the fundamental matrix [96, 95, 207, 153, 291, 253]

X
and expresses mathematically the epipolar constraint in the case of uncalibrated cameras.

This constraint can be compactly written as
T
m Fm=0 (2.19)

Matrix F depends on the relative position of the two views and their corresponding
intrinsic parameters, but not on the structure of the viewed scene. The fundamental
matrix is the equivalent of the essential matrix [142, 262] in the uncalibrated case and
plays a central role in applications involving the recovery of motion and structure
information from uncalibrated images [268]. Since detF = 0, F has seven degrees of
freedom and at least seven corresponding points in two views are required for estimating

it.

Figure 2.10: The epipolar constraint. The point corresponding to point m in the second
view, must lie on the epipolar line I’ which also contains the epipole €'. The plane O MO’
is the epipolar plane corresponding to point M and its image in the second view is the

line I'.

2.2.3 The case of a planar surface

Assume that the two views contain the image of a plane lying in the 3D space. Let the

plane equation in the first view be [n” — d] M = 0, where n is the unit vector normal
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to the plane and d is the plane’s distance from the optical center. Using Eq. (2.18), the

plane equation can be written as
n" KM — d=Zn"A7'm - d=0

If the plane does not go through the optical center of the first view, then d # 0 and the

disparity equation becomes
Z'm'=ZHm

or

!

m ~ Hm. (2.20)

where H is the 3 x 3 nonsingular matrix that is equal to H,, + € % A~!'. Matrix
H is known as the plane homography (also also known as plane projectivity or plane
collineation) and relates plane points in the first view to their corresponding points in
the second view, without any knowledge of the camera calibration. Because of the fact
that H is defined up to an unknown scale factor, it has 8 degrees of freedom. Therefore,
noting that each pair of corresponding coplanar points provides 2 constraints, 4 pairs of
corresponding coplanar points in general position (no three points are collinear) suffice
for estimating it. This implies that a plane projectivity represents a plane to plane
projective transformation which transforms any four points in general position to any

other four points also in general position.

Matrices F and H are related by the fact that the matrix FTH is skew-symmetric

[95, 207, 227], that is
FTH + H'F =0, (2.21)

where F7 and H” are the transposes of F and H respectively.
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2.3 Robust Regression

Regression analysis, in other words fitting a model to noisy data, is a very important

subfield of statistics. In the general case of a linear model given by the relation

Y, = $i191 +...+ xi,ﬁp + e;, (222)
the problem is to estimate the parameters 6;, £k = 1,...,p, from the observations y;,
i = 1,...,n, and the explanatory variables z;; [210]. The term e; represents the error

in each of the observations. In classical applications of regression, e; is assumed to
be normally distributed with zero mean and unknown standard deviation. Let § be the
vector of estimated parameters 6, ..., 9},. Given these estimates, predictions can be

made for the observations:
Gi = xab+...+ 2,0, (2.23)

Thus, a residual between the observation and the value predicted by the model may be

defined as;:

i = Yi— Ui (2.24)

Traditionally, @ is estimated by the least squares (LS) method, which is popular due
to its low computational complexity [90]. LS involves the solution of a minimization
problem, namely:

n
Minimaze Z ;i (2.25)

i=1
The LS estimator owes its popularity to the fact that a linear, closed-form solution
to Eq. (2.25) can be found employing matrix pseudoinverses and Singular Value
Decomposition (SVD) [200]. In addition, it can be proved that LS estimation achieves
optimal results if the underlying noise distribution is Gaussian with zero mean. However,
in cases where the noise is not Gaussian, the LS estimator becomes unreliable. The LS

estimator becomes highly unreliable also in the presence of outliers, that is observations
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that deviate considerably from the model representing the rest of the observations.
One criterion for measuring the tolerance of an estimator with respect to outliers is its
breakdown point, which may be defined as the smallest amount of outlier contamination
that may force the value of the estimate outside an arbitrary range. As an example, LS
has a breakdown point of 0%, because a single outlier may have a substantial impact on

the estimated parameters.

In order to be able to handle data sets containing large portions of outliers, a variety
of robust estimation techniques have been proposed. Many of them have been used in
computer vision and have been proposed within the vision field [37, 82, 117, 124, 297,
235]. From those, the RANSCAC method [82] is probably the most popular one. Other
methods have been borrowed from statistics [32, 136, 162, 210, 229, 234]. Meer et al
[162] and Zhang [292] provide excellent reviews of the use of robust regression methods

in computer vision.

A very popular class of robust estimators consists of the M-estimators. M-estimators
are based on the idea of replacing the squared residuals 7,2 by another symmetric function
of the residuals. The interested reader is referred to [114] for more details. M-estimators
have not been employed in the context of this work because of the following two major
drawbacks. First, it can be shown that although M-estimators behave better than least
squares in practical situations, their breakdown point is equal to 1/n [210], where n is
the number of observations. Clearly, this approaches zero as n increases®. Second, it can
be shown that they require a reliable initial estimate of the model parameters, otherwise

they can end up trapped in local minima.

In an effort to provide robust estimators with a higher breakdown point, Rousseeuw
[210] introduced the so-called S-estimators which are defined by minimizing a robust
measure of the scatter of the residuals. The most widely used S-estimator is the Least
Median of Squares (LMedS) estimator, which is described in detail in the next section.

LMedsS has a breakdown point of 50%, and forms a basic tool for developing the visual

Note that the least squares method is in fact an M-estimator.
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navigation capabilities described in subsequent chapters. It can be argued that 50% is
the highest possible breakdown point of an estimator, because for larger amounts of
outlier contamination it is impossible to distinguish the ‘‘good” from the ‘‘bad” data.
Recently, a new robust regression method, namely MINPRAN, has been proposed [235].
MINPRAN reports a breakdown point that is higher than 50%. However, MINPRAN
makes extra assumptions regarding the distribution of the outliers. More specifically,
it assumes a random distribution of the outliers and tries to group data according to a
linear model so that the probability of randomness of the grouped data is minimized.
Although the concept of MINPRAN is very interesting, it has the disadvantage of a very

high computational complexity.

2.3.1 The Least Median of Squares robust estimator

The LMedS estimator, which was originally proposed by Rousseeuw [209], is able to
handle data sets containing large amounts of outliers. LMedS involves the solution of a

non-linear minimization problem, namely:
Minimize {median;—,. ri?} (2.26)

Qualitatively, LMedsS tries to estimate a set of model parameters that best fit the majority
of the observations, while LS tries to estimate a set of model parameters that best fit all
the observations. The above statement gives an idea of the difference in the behavior
of the two estimators. The presence of some outliers in a set of observations will not
influence LMedS estimation, as long as the majority of the data fit into the particular
model. More formally, LMedS has a breakdown point of 50%, a characteristic which
makes it particularly attractive for the purposes of this work. Figure 2.11 demonstrates

a representative example of the performance of LMedsS relative to LS.

Once LMedS has been applied to a set of observations, a standard deviation estimate

may be derived:

& = Cy/med r;? (2.27)
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LMedS

Figure 2.11: The performance of LMedS vs. LS: Given five noisy observations of a
straight line, the solid line is the one fitted by LMedS while the dashed one is the one
estimated by LS. Notice how a single highly erroneous observation (the one indicated
with the dashed circle) can have a significant impact on the accuracy of the line estimated

by LS.

where C' is an application dependent constant. Rousseeuw and Leroy [210] suggest a

value of

C = 1.4826 (1 + > (2.28)

n—p
Based on the standard deviation estimate, a weight w; may be assigned to each

observation
1, ifltl<2s
w; = 7 (229)
0, iflil>2s5
All points with weight w; = 1 correspond to model inliers, while points with weight
w; = 0 correspond to outliers. The threshold in Eq. (2.29) controls the sensitivity
to outliers and its value reflects the fact that assuming a Gaussian distribution, very
few residuals should be larger than 2.56. Note that since the criterion according to
which observations are assigned the inlier/outlier binary label involves calculations

over the mean of the residuals, it is itself robust. This implies that the method adapts

automatically to the noise levels of the observations. The better the estimated model
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fits to the observations, the smaller the median residual is and, therefore, the finer the

outlier detection becomes.

LMedS minimization is solved by a search in the space of possible estimates
generated by the data. Since this search space is usually very large, a Monte-Carlo type
of speedup technique is employed, in which a certain probability of error is tolerated
[162]. More specifically, let p denote the number of parameters to be estimated; then
there are O(nP) different p-tuples that can be formed by the available observations.
Given that this search space grows exponentially with the number of observations, it
is obvious that exhaustive search is prohibitively expensive in terms of computational
complexity. In practical situations, this problem can be overcomed by a random,
iterative scheme which guarantees that if a p-tuple of uncorrupted observations exists in
the set of observations, it will be selected with high probability. Assuming that e is the
fraction of data contaminated by outliers, then the probability () that at least one out of

m randomly selected p-tuples has only uncorrupted observations, is equal to:
Q = 1-[1-(1—-¢ef" (2.30)

Thus, the solution of Eq. (2.30) for m, gives a higher bound for the number of p-tuples
that should be tried. Note that Eq. (2.30) is independent of the number of available
observations. Each of the m trials, requires the estimation of p candidate parameter
values and the computation of the squared residuals between the observations and the
predictions of the model. The set of parameter values that yields the minimum median
residual, is declared as the solution of the regression problem. This solution is refined by
a least squares estimation on the set of inliers [210]. At this point it is worth mentioning
that LMedsS supplies a general framework for dealing with multiple populations of data
and does not impose any constraint on how is a candidate solution to be obtained.
For example, the latter can be computed from a random sample of data using least
squares, orthogonal regression or even a nonlinear, iterative scheme. Thus, LMedS can

be employed even in cases of nonlinear regression.

As far as algorithmic improvements to reduce the execution time of LMedS are
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concerned, it should be noted that the computation of the median of squared residuals
that takes place at each iteration, can be attained without resorting to sorting the residuals.
Instead, an algorithm that finds the £th largest number out of » numbers can be employed
[218]. This algorithm has a time complexity of O(n), which compares favorably to
the O(nlogn) complexity of the best serial sorting algorithm [58]. It should also be
noted that the data dependency among the calculations involved in LMedS estimation
is very small. This is because the computation of the median of the residuals for one
candidate solution is independent of the computation of the residuals associated with
another candidate solution derived from a different set of observations. Therefore, it is
clear that LMedS estimation exhibits fine grain parallelism and thus its execution time

would benefit greatly from a parallel implementation.
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Development of Visual Capabilities
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Chapter 3

Independent Motion Detection

3.1 Introduction

Independent 3D motion detection (IMD) is a fundamental motion perception capability
of a seeing system. In a world where changes of state are often more important than
the states themselves, the perception of independent motion provides a rich input to

attention, informing a seeing system about dynamic changes in the environment [61, 14].

In the case of a static observer, the problem of independent motion detection can
be treated as a problem of change detection [112, 230, 193]. The situation is much more
complicated when the observer moves relative to the environment. In this case, even the
static parts of the scene appear to be moving in a way that depends on the motion of the
observer and on the structure of the viewed scene. The case of a moving observer, is
also of great interest because biological and most man-made visual systems are usually

in continuous motion.

In the case of a moving observer, IMD has often been approached as a problem of
segmenting the 2D motion field that is computed from a temporal sequence of images.

Wang and Adelson [272] for example, estimate affine models for optical flow in image
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patches. Patches are then combined in larger motion segments based on a k-means
clustering scheme that merges two patches if the distance of their motion parameters
is sufficiently small. Bouthemy and co-workers [36, 183] also address the problem of
segmenting the 2D velocity field and rely upon MRF models. Nordlund and Uhlin [182]
estimate the parameters of an affine model of 2D motion, assuming that the estimation
of the model parameters will not be considerably affected by the presence of small
independently moving objects. IMD is then achieved by determining the points where
the deviation of the measured from the predicted flow is large. Similar approaches have
been pursued by Torr and Murray [254], Ayer et al [22], Bober and Kittler [35] and Irani
et al [119] who combine normal flow with 2D parametric models for image velocities.
Independent motion is then detected at the discontinuities of the parameters estimated
for the adopted image motion model. The basic problem of the methods that employ
2D models is that they assume scenes where depth variations are small compared to the
distance from the observer. However, in real scenes depth variations can be quite large
and, therefore, 2D methods may detect discontinuities that are not only due to motion,

but also due to the structure of the scene (see for example [14], p. 134).

Solutions to the problem of IMD have also been provided using 3D models.
Employing 3D models makes the problem more difficult because extra variables
regarding the depths of scene points are introduced. This in turn requires certain
assumptions to be made in order to provide additional constraints to the problem. Most
of the methods depend on the accurate computation of a dense optical flow field or on
the computation of a sparse map of feature correspondences. Wang and Duncan [273],
for instance, present an iterative method for recovering the 3D motion and structure of
independently moving objects from a sparse set of velocities obtained from a pair of
calibrated, parallel cameras. Da Vitoria Lobo and Tsotsos [141] use a constraint defined
with respect to three collinear image points to estimate the egomotion from a dense
optical flow field and then detect independently moving objects having small spatial
extent. Other assumptions that are commonly made by existing methods are related to

the motion of the observer, to the structure of the viewed scene, or both. Jain [122] and
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Clarke and Zisserman [52] have followed the former approach and consider the IMD
problem for an observer pursuing restricted translational motion. On the other hand, Adiv
[2] performs segmentation by assuming planar surfaces undergoing rigid motion, thus
introducing an environmental assumption. Torr and Murray [255] detect independent
motion by recovering the set of fundamental matrices which optimally describes the
epipolar constraint for the set of the observed point correspondences. Thompson and
Pong [246] derive various principles for detecting independent motion when certain
aspects of the egomotion or of the scene structure are known. However, the practical
exploitation of the underlying principles is limited because of the assumptions they are
based on and other open implementation issues. Sinclair [224] assumes that surfaces are
locally planar and describes the motion of 3D points in terms of their angular velocity
relative to the camera. His method detects independent motion that violates the epipolar
constraint and recovers the orientations of the normals of planar patches. Sharma and
Aloimonos [220] assume known egomotion and propose a direct method which detects
independent motion at image points whose normal flow violates the epipolar constraint.
Nelson [177] also develops two direct methods for IMD. The first is based on geometric
constraints that are derived from a priori knowledge of the egomotion and upper bounds
on the depths of the viewed scene. The second method is designed to detect rapidly

accelerating objects rather than independent motion itself.

Argyros et al [16] present a method that uses stereoscopic information to segment
an image into depth layers, in an effort to decompose the 3D problem into a set of 2D
ones. The method provides reliable results at each depth layer, but there are certain
limitations regarding the integration of results from the various depth layers. In Argyros
et al [17], qualitative functions of depth estimated from stereo and motion are extracted
in image patches. Comparison of these functions leads to conclusions regarding the
number of 3D motions in a patch. The method is reliable and computationally efficient,
but the resulting map of independently moving objects is coarse. In Argyros et al [18],
the combination of depth and motion information extracted by a binocular observer

permits the elimination of depth from the motion equations. This leads to a linear
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model involving the 3D motion parameters and the problem of IMD is then solved by
estimating the linear model with robust regression methods. Although [16, 17, 18] avoid
any assumptions related to the egomotion or the scene structure and do not require the
correspondence problem to be solved, their main disadvantage is that they assume that
normal flow can be computed from a pair of stereo images, an assumption that is valid

in special cases only.

In order to overcome the limitations of existing methods, a novel method for IMD
is proposed in this chapter. This method is based on two key observations. The first
is that, although an accurate solution to the correspondence problem by recovering the
optical flow field is in the general case very difficult, the problem can be solved with
satisfactory accuracy in special cases. Such a case involves the estimation of the optical
flow field for points belonging to a planar surface, since once a planar surface in the
scene has been identified, the problem of estimating its optical flow is a well-posed
problem. The second observation is that the residual parallax field that remains after the
registration of the images of a planar surface in two frames is an epipolar field. The
proposed method exploits the information contained in the normal residual field, the
component of residual motion in the direction of the image gradient. This field is less
informative compared to the full residual flow, but can be more accurately computed
from a temporal sequence of images. The combination of two such residual normal flow
fields allows the elimination of the depth variables from the 3D motion equations, which
in turn leads to the derivation of a model that is linear in the 3D motion parameters.
IMD is then handled by applying a robust estimator to solve for the parameters of the
linear model. Points that conform to the estimated model are labeled as moving due
to the motion of the observer, while points that are characterized as outliers during
the estimation process are labeled as independently moving. The proposed method
assumes an observer that moves rigidly with unrestricted translational and rotational
egomotion. Independent motion can be rigid or non-rigid and no calibration information

1S necessary.
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The rest of this chapter is organized as follows. Section 3.2 develops a technique for
identifying the dominant planar surface in a scene. Section 3.3 turns to the estimation
of the dominant plane’s motion. Section 3.4 outlines the decomposition of a normal
flow field in terms of the normal flow field induced by the motion of a planar surface
and a residual parallax normal flow field. The proposed method for IMD is detailed
in section 3.5. Experimental results from the application of the method on real-world
image sequences are presented in section 3.6. Finally, the chapter is concluded with a

short discussion in section 3.7.

3.2 Dominant Plane Extraction

The traditional approach for identifying planar regions using two images of a scene
has been to recover the depth of each point in the field of view and then segment the
resulting depth map into planes. This process however, involves computations that are
numerically unstable and requires difficult problems such as point correspondence and
camera calibration to be solved. To avoid these difficulties, Sinclair et al [225] have
proposed a method for identifying coplanar sets of corresponding points, using simple
results from projective geometry. Based on [225], the dominant plane in a scene is

extracted using a method which is briefly outlined in the following subsections.

3.2.1 The invariants of five coplanar points

A well known result from projective geometry is that groups of five coplanar points give
rise to two projective invariants [168]. More specifically, two functions of five coplanar
points can be constructed, whose values do not change under perspective viewing (i.e.

under the application of arbitrary plane homographies). In other words, the invariants
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are identical for every quintuple of corresponding points and are expressed by

_ |M124||Miss|
|M134||Mi2s|

_ |Ma241||Ma23s]

I T T
: |Ma234||Mays|

I (3.1)

where |Mj;k| denotes the determinant of the matrix whose columns are the vectors
m;, m;, my formed by the homogeneous coordinates of three image points, i.e. Mjjx =
(m;, mj, my). Note that both I; and I, degenerate when any three of the five points
are collinear. Each of the two invariants defined above, corresponds to the cross-ratio
[168, 128] of a pencil of four lines, which is constructed by connecting one of the five
points with each of the remaining four. To prove that the quantities defined by Eq. (3.1)
are indeed invariant under any plane homography H, assume that H transforms point
m; to point m'i, 1.e. m; = \;Hmj;, where ); is an unknown scale factor. The quantity
corresponding to /; for the transformed points is equal to

¢ [Mi2q|[Miss | _ [(\Hmy, A;Hmy, \;Hmg)[|(A Hmy, \;Hms, \sHms )|
! IMi34'|[|[M125 | (A ‘Hmj, \sHmg, \sHmy)||(A\Hmj, \;Hmo, AsHmjg)|

A2 A3 0405 [H||[M124]| M35
AT A A3 A4 As [H|[Misg|[Mi2s|’

and thus is equal to I;. The proof for the invariance of I, can be obtained in a similar

manner.

To test whether a set of five points imaged in two views satisfy the above invariants,
a statistical test based on the variance in the values of the invariants is employed. This
variance is estimated from the variances in the positions of the points in an image. The

reader is referred to [225] for more details.

3.2.2 Estimation of the plane homography

Assuming a set of N pairs of corresponding coplanar points, the plane homography H
that they define can be estimated as follows: Equation (2.20) provides 2 « N constraints

regarding the elements of the homography matrix, which can be written more compactly
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as Ah =0, where A isa (2« N) x 9 matrix and h a9 x 1 vector. The plane homography

is then estimated from the solution of the following minimization problem:
ming||Ah||* subject to ||h||* =1, (3.2)

where || || denotes the vector 2-norm. As shown in appendix B, the solution to
this problem is the eigenvector of the matrix AT A that corresponds to the smallest
eigenvalue, where AT denotes the transpose of A. Similar to what noted in [97, 291],
AT A is inhomogeneous in image coordinates, and, therefore, ill-conditioned. To
improve its condition number and to derive a more stable linear system, the coordinates
of the set of corresponding points are normalized by a pair of linear transformations
L and L' as follows: L defines a translation of the points in the first image, such that
their centroid is brought to the origin of the coordinate system, followed by an isotropic
scaling that maps the average point coordinates to (1,1, 1). L’ is defined similarly for
points in the second image. These transforms result in a more stable system, from which

a homography matrix FI can be estimated. H is then computed from Fl as L' 'FIL.

Since the set of normalized matching pairs that is given as input to the estimation
process is very likely to contain errors, care must be taken so that these errors do not
corrupt the computed estimate. Thus, instead of using all NV points to estimate H, the
LMedS estimator is employed to find an estimate that is consistent with the majority of
the matched points. Using a predetermined number of iterations, LMedS picks random
samples of matching pairs and computes an estimate of H from each of them. The
estimate that yields the smallest median error is returned as the plane homography which

best fits the set of matched points.

3.2.3 Iterative algorithm for the extraction of planes

Based on the above discussion, an iterative method for extracting the dominant plane
can now be described. First, the SUSAN corner detector [231] is used to extract a

set of corners from a pair of images. Corners are distinct image features that can be
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accurately localized and correspond to 3D scene elements appearing in consecutive
images. Here it is assumed that the two images have been acquired from considerably
different locations in the 3D space. Such an image pair can be captured either by the
two cameras of a binocular system, or by the single camera of a monocular system at
two instants that are far apart in time. The extracted corners are then matched using a
similarity criterion based on normalized cross-correlation. The matching algorithm is
based on that proposed in [290, 294]. A random sample consisting of five pairs from the
set of matched corners is then formed. If the selected corners satisfy the invariants in
Eq. (3.1), they are likely to belong to the same plane. To ensure that the selected corners
are sufficiently far apart so that the invariants and the corresponding plane homography
are not swamped by noise, a bucket-based sampling technique similar to that discussed
in [291] is employed. Next, the plane homography corresponding to the selected corners
is computed as described previously. To verify that the five selected points lie on the
same plane, the estimated plane homography is used to find more coplanar points.
For every corner in one image, the plane homography can predict the location of the
corresponding corner in the second image. If this location is sufficiently close to the true
location of the matching corner, the corner in question is assumed to be coplanar with
the corners in the selected sample. If the number of coplanar points identified during this
step is above a threshold, the method concludes that a plane has indeed been found. The
corresponding plane homography is then refined using the LMedS estimator over the
whole set of matched coplanar points and this set is removed from further consideration.
The sampling process iterates until either the number of corners that have not been
assigned to a plane drops below a threshold or a predetermined number of iterations is

completed.

When the iterative algorithm terminates, a set of planes along with their
homographies have been computed. The application of Eq. (2.20) to each point in
the first view warps the second view with respect to the first and registers the image
of the corresponding plane in the two views. Change detection between the first and

the warped second view can label image points as changing in the two views or not.
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Points that remain unchanged belong to the plane under consideration. To account for
the fact that typical change detection algorithms fail in uniform, textureless areas, a
pixel is assumed to belong to a plane when it is labeled as not changing by the change
detection algorithm and the magnitude of its intensity gradient is above some threshold.
The plane having the largest number of points is declared to be the dominant one. As it
will be clear from the following sections, the result of change detection does not have to
be very accurate, since the part of the proposed method for IMD that makes use of the
location of the dominant plane is tolerant to errors. In our implementation, the change
detection algorithm described in [230] is employed. This algorithm is based on a test

regarding the variance of the intensity ratios in small neighborhoods of two images.

3.3 Robust Parametric Estimation of Optical Flow

The problem of estimating 2D image velocity, or optical flow, from image sequences is
generally very difficult. This difficulty mainly stems from the fact that transparencies,
specular reflections, shadows, occlusions, depth boundaries and independent motions
give rise to discontinuities in the optical flow field [165]. This in turn implies that
an optical flow field is typically only piecewise smooth [34]. Since the estimation of
optical flow involves the combination of constraints arising from an image region, no
guarantee is given that the selected region will contain only a single motion. In other
words, the primary difficulty of most optical flow estimation techniques is that they lack
any information regarding the region of support of a particular motion. This problem is

referred to in [34] as the generalized aperture problem.

In the case that an image region is known to correspond to a plane in the scene, the
optical flow within the region can be accurately modeled as a parametric function of
the image coordinates [2]. More specifically, assuming that the equation of the imaged
plane in image coordinates is % = px + qy + r, substitution into Eq. (2.7) yields an eight

parameter model for optical flow. This model is known as the quadratic model since it
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contains terms that are of degree two in the image coordinates:

uw=a+bx+cy+ g’ + hry
(3.3)

v=d+ex+ fy+ gry + hy?

At this point, it should be noted that, if the camera is not calibrated, the unknown
intrinsic parameters (i.e. focal lengths and location of principal point) are absorbed
in the eight parameters q, ..., h. By employing the quadratic model, the estimation of
optical flow amounts to the estimation of the eight parameters involved. Substitution
of Eq. (3.3) into Eq. (2.10), permits the derivation of a model relating the planar
flow parameters to the spatiotemporal intensity derivatives. This model is linear in
the parameters to be estimated and is overdetermined, since each point of the plane
contributes one constraint regarding the eight unknown parameters. To account for errors
in the computation of derivatives, violations of the intensity conservation assumption,
errors in the determination of the region corresponding to the image of the plane, etc,
the LMedS estimator is again employed to give a robust estimate of the parameters
satisfying the majority of the constraints. This ‘‘robustification” of the optical flow
estimation problem has already been suggested by Black and Anandan [34], with the
major difference being that they employed M-estimators which are less robust compared

to LMedS that is employed in this work.

3.4 The Residual Normal Flow Field with Respect to a Plane

Let (u,v) be the displacement field between two images Z; and Z, 4 acquired at time
instants ¢ and t + dt respectively. Let also IT be a 3D plane in the viewed scene and
let (u™,v™) be the 2D motion vector of a single point belonging to I1. As shown in
section 3.3, (u™,v™) is defined by a linear model with eight parameters. As explained
in appendix A, warping Z, towards Z,, 4 according to (u™,v™) will register Z, and Z; 4

over regions of I1, while regions not belonging to IT will be unregistered. According to
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Eq. (A.1), the residual flow (u", v") between the warped Z; and Z;, 4 is equal to

1 1

(3.4)
. 1 1
V= vt =W =V - o)

where % is the depth of the 3D plane at pixel (x,y). As can been seen from Eq. (3.4),
the residual flow field is purely translational, since the rotational components have been
canceled out by the warping step. It is also straightforward to show that the residual
normal flow field between the warped Z, and 7, 4 is given by:

1 1

Upr = UG +0"ny ={(aW =Uf)n, + yW =V fin,} (Z — %)

(3.5)

where (n,,n,) is the unit vector in the direction of the intensity gradient.

3.5 Using Residual Parallax Normal Flows to Detect
Independent Motion

Consider a rigid observer that is moving with unrestricted egomotion in 3D space. Due to
this motion, a reliable normal flow vector can be computed at each point where the image
intensity gradient is sufficiently large. Let (n,,n,) be the unit vector in the gradient
direction. The magnitude wu,, of the normal flow vector is given by u,, = un, +wvn,, which,

by substitution from Eq. (2.7), yields Eq. (2.16) which is repeated here for convenience:

U, = —nmf% — nyf% + (xng + yny) %

2
()

2
- {(% + f>nx + %ny} B+ (yng — xny)y

As it has been discussed in section 2.1.5, Eq. (3.6) shows that the problem of recovering

3D motion from a single normal flow field is underconstrained. This is because each
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normal flow provides one constraint on the 3D motion parameters but also introduces
one unknown variable corresponding to the depth Z. To overcome this difficulty, the
remainder of this section employs a pair of residual parallax normal flow fields that

provide additional constraints on the 3D motion parameters.

Let us begin by supposing that at least one of the surfaces in the scene is planar
or can be well approximated by a plane. This assumption is often satisfied in practice,
especially in scenes containing man-made objects [270]. Using the technique described
in section 3.2, the dominant plane in the scene can be extracted. Following this, the
parametric model describing the motion of this plane can be estimated as described in
section 3.3. The residual planar parallax flow can then be computed from Eq. (3.4).
Irani and Anandan [118] have recently described a method for IMD that computes
the relative projective 3D structure from this residual parallax flow. Their method,
however, requires the computation of a dense optical flow field, a difficult problem in
its own right. Noting that the residual flow field is translational, another approach to
detect independent motion is to locate the FOE and then, similar to [220], label points
that violate the epipolar constraint as independently moving. The major drawback of
this approach is that it depends critically on the correctness of the estimated FOE. To
avoid this problem, the proposed method for IMD does not attempt to estimate the FOE.
Instead, it combines the information from two residual normal flow fields computed at

consecutive time instants.

Assume that three consecutive images Z, 4, Z; and Z, ., 4 are captured at time instants
t — dt, t and t + dt respectively. Let Z; be a fourth image that along with Z; permits the
extraction of the dominant plane. Also, let u,, be the residual normal flow computed
by warping Z, towards Z,, 4; using the motion of the dominant plane. Similarly, let u',,,
be the residual normal flow computed by warping Z; towards Z;_4 using the dominant

plane. According to Eq. (3.4), u,, and u’,, are given by

1 1

tny = {@W =Uf)ne + W =V in} (5 = —

)
(3.7)
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1 1

W = W = U P+ (W =V} (5 = )

where (U,V,W) and (U',V',W') are the 3D translational velocity vectors for the
displacement between ¢ and ¢ + dt and ¢ and ¢ — dt respectively. Notice that here it
is implicitly assumed that the translational component of the observer’s velocity is

nonzero.

Both residual normal flow fields given by Egs. (3.7) are defined in the the same
reference frame, namely Z;. This implies that at each point (x, y) of Z, having considerable
gradient magnitude, two normal flow vectors along the same direction (n,,n,) can be
computed. Solving the first of Eqs. (3.7) for - — - and substituting into the second

results into the following equation

W(zn, +yny)u'n, — Ufngtn, =V 'y, — (3.8)

W' (zng + yny)tn, + U’ frgue, + V' fryu, =0,

in which the terms related to depth have been eliminated. The above equation is linear in
the variables ¢, =W, ¢ =Uf, 93 =V f, pa = W', ¢s = U'f, s = V' f. These variables
involve the 3D motion parameters and the camera focal length. Assuming that the
dominant plane is not independently moving, violations of Eq. (3.8) signal the presence of
independently moving objects. LMedS estimation can be applied to a set of observations
of the model of Eq. (3.8) as a means to estimate the parameters ¢;, i = 1,...,6. To
avoid the trivial solution ¢; = 0, the solutions tried by LMedS are computed with
an eigenvector technique that imposes the constraint ||(¢y, d, @3, B4, @5, d6)||> = 1 (see
appendix B). LMedS will provide estimates ¢; of the parameters ¢; and a segmentation
of the image points into model inliers and model outliers. Model inliers, which are
compatible with the estimated parameters ¢;, correspond to image points that move with
a dominant set of 3D motion parameters. A point may belong to the set of outliers if at

least one of the following holds:

1. The quantities u,, and/or u’,, for this point have been computed erroneously.
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2. The 3D motion parameters for this point are different compared to the 3D motion

parameters describing the majority of points.

The points of the first class will, in principle, be few and sparsely distributed over
the image plane. This is because only reliable normal flow vectors are considered.
The second class of points is essentially the class of points that are not compatible
with the dominant 3D motion parameters. Thus, in the case of two rigid motions in a
scene, the inlier/outlier characterization of points achieved by LMedsS is equivalent to
a dominant/secondary 3D motion segmentation. In the case that more than two rigid
motions are present in a scene, the correctness of 3D motion segmentation depends on
the spatial extent of the 3D motions. If there is one dominant 3D motion (in the sense that
at least 50% of the total number of points move with this motion), LMedS will be able to
handle the situation successfully. This is because of the high breakdown point of LMedS,
which tolerates an outlier percentage of up to 50% of the total number of points. The
inliers will correspond to the dominant motion (egomotion) and the set of outliers will
contain all secondary (independent) motions. A recursive application of LMedS to the
set of outliers may further discriminate the rest of the motions. The recursive application
of LMedsS should be terminated when the remaining points become fewer than a certain
threshold. There are two reasons for this [14]. First, if the number of points becomes
too small, then the number of constraints provided by Eq. (3.8) becomes small and the
discrimination between inliers and outliers is subject to errors. Second, at each recursive
application of LMedS, the set of outliers does not contain only points that correspond to
a motion different than the dominant one, but also points where normal flows have not
been computed accurately. The proposed algorithm for IMD is summarized in the block

diagram of Fig. 3.1. The postprocessing step is described in the following subsection.

When implementing the method presented in the preceding paragraphs, the residual
normal flow can be computed without actually warping the first image towards the
second according to the estimated planar flow. Knowledge of the eight parameters in

Eq. (3.3) enables the prediction of the normal flow that would result if the dominant
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Figure 3.1: Block diagram of the proposed method (see text for explanation).

plane covered the whole visual field. The residual normal flow can then simply be
estimated as the difference between the normal flow computed directly from the pair
of input images and the predicted planar normal flow. Normal flow between a pair of
input images is computed from the spatiotemporal derivatives I, I, and I, of the image
intensity function. To reduce the effects of noise, images are smoothed by convolution

with a 3 x 3 Gaussian prior to the computation of derivatives.

3.5.1 Postprocessing

According to the proposed method for independent motion detection, points are
characterized as being independently moving or not based on their conformance to
a general rigid 3D model of egomotion. The characterization is made at the point
level, without requiring any environmental assumptions, such as smoothness, to hold
in the neighborhood of each point. In order to further exploit information regarding
independent motion, it is often considered preferable to refer to connected, independently
moving areas rather than to isolated points. There are three reasons why the points
of a motion segment may not form connected regions [14]. First, the normal flow
field is usually a sparse field, because normal flow values are considered unreliable

in certain cases (e.g. at points with a small gradient value). Second, there is always
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the possibility of errors in measurements of normal flow and, therefore, some points
may become model inliers (or outliers) because of these errors and not due to their 3D
motion parameters. Finally, normal flow is a projection of the optical flow onto a certain
direction. Infinitely many other optical flow vectors have the same projection onto this
direction. Consequently, a normal flow vector may be compatible with the parameters
of two different 3D motions, and therefore a number of point misclassifications may

arise.

We overcome the problem of disconnected motion segments by exploiting the fact
that, in the above cases, misclassified points are sparsely distributed over the image
plane. Therefore, a simple majority voting scheme is used. At a first step, the number
of inliers and outliers is computed in the neighborhood of each image point. The label
of this point becomes the label of the majority in its neighborhood. This allows isolated
points to be removed. In the resulting map, the label of the outliers is replicated in
a small neighborhood in order to group points of the same category into connected

regions.

3.6 Experimental Results

The proposed method has been evaluated experimentally with the aid of several real-
world image sequences. During the course of all experiments, quantitative information
regarding camera motion and calibration parameters was not available. This section

reports two of the conducted experiments.

The first experiment is based on the well known ‘‘calendar” image sequence.
Frames 2 and 30 of this sequence are shown in Fig. 3.2. In this sequence, the camera
is panning with a right to left direction and the viewed scene consists of a planar
background and a nonplanar foreground. The background contains a stationary wall

and a calendar that is independently moving upwards. The foreground contains three
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(a) (b)

Figure 3.2: Frames (a) 2, and (b) 30 of the ‘‘calendar” sequence.

independently moving objects. A pair of spheres is rotating in the left side of the scene,
while a ball followed by a toy train are moving in a right to left direction. The dominant
plane was extracted using frames 2 and 30. Corners belonging to the dominant plane are

marked with white rectangles in Fig. 3.3(a), while all other corners are black.

The pair of residual parallax normal flow fields is computed between frames 2 - 3
and 2 - 1. The residual parallax normal flow for frames 2 - 3 is shown in Figure 3.3(b). As
can be seen from this figure, the residual flow field is zero over the area corresponding to
the dominant plane, indicating that the dominant plane has been successfully registered.
Figure 3.4 illustrates the results of motion segmentation on the ‘‘calendar” sequence.
Figure 3.4(a) shows the intermediate segmentation results. Black color corresponds to
egomotion and white color corresponds to independent motion. Gray color corresponds
to points where no decision can be made, due to low image gradient and, therefore, lack
of normal flow vectors. It can be verified that the largest concentration of white (i.e.
independently moving) points is indeed over the regions of the independently moving
objects. Note that independent motion was not detected along the vertical edges of
the calendar. This is because the intensity gradient is perpendicular to the direction of
motion on these edges, which results in the corresponding normal flow vectors being

equal to zero. The elongated areas below the calendar that are marked as independently
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Figure 3.3: (a) Corners belonging to the dominant plane for the ‘‘calendar” sequence, (b)

residual normal flow field for frames 2-3.

(@) (b)

Figure 3.4: Motion segmentation for the ‘‘calendar” sequence (a) before and, (b) after

postprocessing.
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moving are actually shadows, cast by the calendar and the rotating spheres, that are
moving during time. Figure 3.4(b) presents the same result after postprocessing, which
eliminates isolated outliers (inliers) in large populations of inliers (outliers) and, in the
resulting map, dilates the label of remaining outliers in a small neighborhood. Tt is
clear that after this step, the bodies of the four independently moving objects have been
successfully identified as such. An MPEG video demonstrating the results of applying
the proposed method on the first 10 frames of the ‘‘calendar”” sequence can be found at

http://www.ics.forth.gr/proj/cvrl/demos/lourakis/IMD/calendar.mpg

The second experiment concerns the ‘‘cars” image sequence. Frames 5 and 20 of

this sequence are shown in Fig. 3.5.

(a) (b)

Figure 3.5: Frames (a) 5, and (b) 20 of the ‘‘cars” sequence.

In this sequence, the camera is again panning with a right to left direction. The
two dark gray cars in the foreground move independently while the white car on the far
left is stationary. A few trees in the background form an approximately planar surface.
Frames 5 and 20 were used to extract the dominant plane. Figure 3.6(a) shows corners
belonging to the dominant plane marked with white rectangles, while all other corners

are black.

Frames 5 - 6 and 5 - 4 are used to compute the pair of residual parallax normal
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AT IR s

(a) (b)

Figure 3.6: (a) Corners belonging to the dominant plane for the ‘‘cars” sequence, (b)

residual normal flow field for frames 5-6.

(a) (b)

29

Figure 3.7: Motion segmentation for the ‘‘cars” sequence (a) before and, (b) after

postprocessing.
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flow fields. Figure 3.6(b) shows the residual parallax normal flow computed from
frames 5 - 6. The results of motion segmentation on the ‘‘cars” sequence before and
after postprocessing are illustrated in Figures 3.4(a) and 3.7(b) respectively. Black
color corresponds to egomotion and white color corresponds to independent motion.
Gray color corresponds to points with low intensity gradient, and thus without normal
flow vectors. As can be seen from Fig. 3.7, the two cars are correctly identified as
independently moving. Moreover, the independent motions of small parts of the tree

foliage are also detected.

3.7 Summary

Artificial seeing systems should operate in dynamic environments that consist of both
stationary as well as moving objects. The perception of independent 3D motion is
crucial because it provides useful information on where attention should be focused and,
possibly, maintained. In this work, independent 3D motion detection was based on a
pair of residual parallax normal flow fields that are computed by an observer that moves
freely in the 3D space. The proposed method employs 3D motion models and is able to
perform satisfactorily even in scenes with considerable depth variations. Both rigid and
non-rigid independent motion can be detected. Moreover, apart from the requirement for
the existence of a stationary planar surface in the viewed scene, no further assumptions
regarding the structure of the external world are made. The method avoids a complete
solution to the ill-posed correspondence problem by matching only carefully selected
sets of image points. To guard against errors caused by false matches, robust estimation
techniques are employed. Experimental results from the application of the proposed

method on real image sequences were also presented.
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Chapter 4

Egomotion Estimation

4.1 Introduction

Knowledge of the velocity of a mobile system with respect to its environment is
essential for various servoing tasks that are based on visual feedback. Such tasks include
collision avoidance, docking, gaze maintenance, etc. Given a sequence of images
acquired by a monocular observer pursuing unrestricted rigid motion, the problem of
egomotion estimation can be stated as the problem of recovering the translation and
rotation comprising the motion of the observer. Although simply stated, the problem of
estimating egomotion using visual input is particularly difficult. This difficulty primarily
stems from the fact that the only information available from images is related to the 2D
motion of image points, while the sought egomotion is a 3D quantity. The observed
2D motion depends not only on the egomotion, but also on the unknown structure of
the viewed scene. Since the dependence of the 2D motion on the scene structure is
nonlinear, small errors in the estimates of 2D motion can have a significant impact on
the accuracy of the recovered 3D motion [65, 248]. In addition, the confounding of
translation and rotation makes the problem of estimating unrestricted egomotion much

harder compared to the problem of estimating pure translation or rotation.

85



Chapter 4. Egomotion Estimation

Depending on the frequency of time sampling during the acquisition of an image
sequence, egomotion estimation algorithms can be subdivided into two broad categories.
The algorithms that belong to the first category assume an infinitesimal time sampling
period and employ vector fields to model the 2D motion of image points. The
second category includes algorithms that assume coarse time sampling and use sparse
displacement maps to describe the 2D motion of isolated features extracted from the
images. Although algorithms in the second category make less assumptions regarding
the image acquisition process, algorithms in the first category are more popular. This is
mainly due to the separability of the translational and rotational components in the 2D
motion equations and the fact that, in principle at least, the problem of correspondence
establishment is easier in the case of small motions. A typical assumption that is
implicitly made by most algorithms is that the viewed scene is static, i.e. there are
no objects moving independently from the observer. Since the egomotion estimation
algorithm proposed here assumes fine time sampling, we focus our review on algorithms
in the first of the categories defined above. Owing to the inherent scale ambiguity that
characterizes visual motion (see section 2.1.2), the information regarding the translational
component of egomotion that can be recovered by all these algorithms is at most the

direction of 3D translation, i.e. the FOE.

We start by reviewing algorithms that rely on the availability of a dense optical flow
field to describe 2D motion. Longuet-Higgins and Prazdny [144] and Reiger and Lawton
[205] solve for translation by exploiting a phenomenon known as motion parallax: A
pair of 3D points projecting to nearby retinal locations but having different depths, have
almost the same rotational motion. This approximation is exact when the two 3D points
project to the same retinal location, as is the case with a transparent surface. Reiger and
Lawton showed that the approximation is still valid when the depth difference between
the 3D points is large. Thus, subtracting the optical flow vectors at two appropriate
image locations yields a flow vector that is approximately pointing towards the FOE.
After recovering the translation, rotation can be estimated with linear regression on

projections of the optical flow that are perpendicular to lines through the FOE. The main
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drawback of these approaches stems from the fact that most optical flow algorithms
cannot give accurate estimates of optical flow in areas with large depth variations.
Recently, Irani et al [120] alleviated some of the difficulties related to the estimation of
motion parallax by decomposing image motion into the sum of the motion of a planar
surface and a residual parallax field that is purely translational. Prazdny [199] showed
that the difference between any pair of flow vectors gives a constraint on translation but

did not develop an algorithm exploiting this constraint.

In earlier work, Prazdny [197] assumes that surfaces in the viewed scene are
smooth and solves for rotation using a set of nonlinear equations that are independent
of translation. This nonlinear system is solved by numerical optimization techniques.
Apart from the smoothness assumption, this method suffers from high computational
costs. Prazdny [198] and later Burger and Bhanu [45] also suggested solving for rotation
first and employed a search in the space of rotational parameters. For each hypothesized
rotation, the corresponding rotational field was subtracted from the optical flow and
the remaining field was tested for how well it approximated a purely translational flow
field. Ballard and Kimball [25] assumed that the depth of the viewed scene is known and
employed a generalized Hough transform to solve for the 3D motion parameters. An
advantage of this approach is that multiple moving objects give rise to multiple peaks in
the Hough space. This method, however, is difficult to apply in practice since the depth
of the scene is usually unknown and the search through the multidimensional solution
space is very expensive computationally. Bruss and Horn [44] combine information
from the whole visual field to determine the 3D motion that is the best least squares
fit to the observed velocity field. They developed three different algorithms. The first
two algorithms give closed form solutions for translation and rotation, when the motion
is purely translational or purely rotational respectively. The third algorithm applies in
the case of general motion and provides a residual function that involves the unknown
translation only. Translation is then found by minimizing this residual function using
iterative numerical procedures. Adiv [2] utilized the same residual function developed by

Bruss and Horn, but suggested an alternative scheme for minimizing it. He subdivides
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the flow field in patches and estimates the 3D motion of each patch independently.
Iterative minimization of the residual function is achieved by sampling the solution
space of all possible candidate translations and declaring the direction with the smallest
residual function as the correct one. Patches that share the same 3D motion are then
merged, since they belong to objects undergoing the same rigid motion. Thus, Adiv’s
algorithm is capable of handling independently moving objects. Waxman and Subbarao
[237, 276] employ local estimates of flow velocities and their derivatives up to second
order for determining motion parameters and local surface structure. Apart from using
only local constraints, this approach has the drawback that the optical flow derivatives
it utilizes are extremely sensitive to noise. Heeger and Jepson [100] also make use of
the residual function used in [44, 2] and propose an efficient technique for locating its
minimum. The space of all possible translation directions is again sampled and the
residual function is evaluated as the linear sum of the flow vectors weighted by a set of

coefficients that have been computed off-line.

Hummel and Sundareswaran [115] present an algorithm for finding the rotational
motion and one for locating the FOE. The first algorithm, known as the flow circulation
algorithm, computes the curl of the optical flow field. It is based on the observation that
curl is approximately a linear function whose coefficients are proportional to the desired
rotational parameters of motion. The algorithm for locating the FOE extends the work of
Heeger and Jepson [100]. For each candidate FOE, the circular component field, defined
as the projection of the optical flow along vectors emanating from the hypothesized FOE,
is computed. The circular component field that corresponds to the true FOE is a quadratic
function of a special form. Three different techniques that can be formulated as quadratic
functionals of the observed circular component data are proposed for determining the
point having the appropriate quadratic form. MacLean et al [154] combine subspace
methods with a finite mixture model and apply the EM algorithm to cluster constraints
on the 3D velocity. Then, the results of clustering provide an initial guess for solving
for the parameters of the different 3D motions present in the scene. Da Vitoria Lobo and

Tsotsos [141] develop a constraint (the Collinear Point Constraint - CPC) involving
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three collinear image points, which provides a means for canceling rotation and at the
same time constraining the FOE to lie on the line defined by the collinear points. The
FOE is defined as the intersection of lines defined by triplets of collinear points that
satisfy the constraint. CPC is discussed in more detail in section 4.2. Rousso et al [211]
show that rotation can be computed from any three homography matrices. To compute
the homographies, they employ the trilinear tensor defined by three frames. Daniilidis
[62] employs fixation on a scene point to reduce the number of motion parameters to be
estimated from five to four. The spherical motion field is projected on two latitudinal
directions, effectively decoupling the motion parameter space. The motion parameters
are then found by two one-dimensional searches along meridians of the image sphere.
Fejes and Davis [76] also deal with the egomotion estimation problem by employing
projections of the flow field in various directions. These projections exhibit simple
geometric properties, independent of the scene structure, and are combined with the aid

of a recursive filter to yield the motion parameters.

To avoid problems related with the computation of optical flow [165], the so-called
direct paradigm to egomotion estimation has emerged. Instead of employing the full
optical flow field, its projections in various directions are used. These projections,
given by the spatiotemporal derivatives of the image intensity function, are easier to
compute than the full flow. Direct methods were first introduced by Horn and his
associates [109, 176, 175] and solve the egomotion problem in the case of translation
only. Aloimonos and Brown [5] address the case of an observer pursuing purely
rotational motion. They estimate rotation by exploiting the fact that in this case the
motion equations are linear in the rotational parameters of egomotion and do not
involve the scene structure. Nelson and Aloimonos [179] assume a spherical retina
and show that the spherical motion field has a focus of expansion and a focus of
contraction separated by 180 degrees if and only if the rotational component of motion
is zero. They also show how the problem of determining the motion parameters can be
separated into three two dimensional problems, which allow the rotation parameters to

be determined independently. The direction of translation can then be found from the
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vector joining the foci of expansion and contraction. Hanna [94] assumes that the viewed
scene can be locally approximated by planes and presents a direct iterative method
for recovering egomotion and scene structure at multiple resolutions. Taalebizhaad
[243] exploits the fact that fixation on a scene point reduces by one the dimensionality
of the 3D motion recovery problem, and suggests a method for direct recovery of
unrestricted egomotion. Aloimonos and Duric [8] assume a translating observer and
present a qualitative algorithm that uses a voting scheme based on the signs of optical
flow projections to locate the FOE. A similar method was independently developed by
Sinclair et al [226]. Fermidiller [79] addresses the case of unrestricted egomotion and
bases egomotion estimation on the geometrical properties of the normal flow field. The
signs of optical flow projections give rise to simple patterns on the image plane, which
depend on the egomotion parameters. However, although her method can be employed
to verify the correctness of a given set of motion parameters, it cannot be used for making
a hypothesis regarding them. In addition, the extraction of appropriate patterns is made
difficult by the fact that she employs sparse motion fields. Silva and Santos-Victor
[222] assume unrestricted 3D motion and locate the FOE as the intersection of two
constraint lines. Despite the fact that their method depends critically on the accuracy of
the recovered constraint lines, they do not present any results indicating the behavior of

their algorithm in the presence of different amounts of noise.

In this work, a new method for egomotion estimation is presented. The motivation
behind our effort is twofold. First, we are interested in estimating egomotion by means
of linear constraints. Second, we want to avoid making any restrictive assumptions
regarding the egomotion or the scene structure. Hence, we have developed a novel
linear constraint regarding the motion parameters, defined in terms of four collinear
image points. The constraint is applicable regardless of the egomotion or the scene
structure and combined with robust linear regression techniques, permits the recovery

of the direction of translation, thereby decoupling the 3D motion parameters.

The rest of this chapter is organized as follows. Section 4.2 develops the proposed
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constraint and shows how it can be employed to recover egomotion. Experimental
results from an implementation of the method are presented in section 4.3. The chapter

is concluded with a brief discussion in section 4.4.

4.2 Using Quadruples of Collinear Points to Constrain the

FOE

Before proceeding to the description of the proposed method, we state two lemmas
which are essential for its derivation. The symbolic calculations that are reported in the
following have been carried out with the aid of the MATHEMATICA symbolic mathematics

package [283].

4.2.1 Two precursory lemmas

Lemma 4.1 Suppose that two image points lie on a line that goes through the origin
of the image coordinate system (i.e. the principal point). The difference of the
projections of their corresponding optical flow vectors along the direction that is

normal to the line does not depend on the o and (3 components of rotation.

Proof. Let p1 = (71, y;) and p2 = (72, y,) be two points in the image and 1i = (n,, n,) be
the unit vector that is normal to the line £ defined by p; and p2. Since £ goes through
the image principal point, its equation is y = —7=z, and therefore Theorem C.1 from
appendix C yields for v =0

L Y ) 4.1)

uny — uny = [(x1 — xo)ne + (y1 — yo)ny]W(7 AR
1 2 y
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Lemma4.2 Let py = (x1,y1), P2 = (22,2) and p3 = (z3,y3) be three collinear image
points lying on a line whose equation is y = kx+wv. Let also (xg,yo) be the FOE and
assume that p, divides the vector pﬁh in ratio A\. For the projections un;, i =1...3
of the optical flow vectors at points py, p, and ps along a direction (n,,n,), the

following equation holds

1 A 1 1 1 Al doy 11
A DW(—— —— - 2 - -
W = T\ T T s 2W(Z2 1+ A2, 1+)\Z3) 1+AW(Z1 7
lid21(I2 - I3) d21(9€2 - 953)
— o —=""24 (4.2)
f f

In the above equation, D, = (x2—x0)ny+(y2—vo)ny and day = (v2—1)ng+ (Y2 —y1)ny.

Proof. The desired result follows directly from Theorem C.2 in appendix C.

By inspecting Eq. (4.2), it can easily be seen that in the case that the direction of
projection (n,,n,) is perpendicular to the line defined by the points p;, the term dy; is
zero, thus the sum of the rotational components vanishes. The remaining terms express
the Collinear Point Constraint (CPC), which has been previously derived in [141]. CPC
states that when an appropriate linear combination of the projections of optical flow
vectors in the direction perpendicular to the line joining them is zero, there exist two
possible situations. Either the three 3D points whose projections form the collinear
triplet are also collinear in the scene (i.e. 7= — {57 — 1357 = 0), or the line defined by
the collinear triplet passes through the FOE (i.e. D, = 0). By employing a voting scheme

to differentiate between these two cases, Da Vitoria Lobo and Tsotsos have exploited

the CPC for locating the FOE [141].
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4.2.2 The proposed constraint on egomotion

Assume now a mobile observer undergoing rigid motion in a static environment. Let
p1 = (x1,11), p2 = (22,¥2) and pg = (z3,y3) be three collinear image points lying on
a line £ through the image principal point. Let also y = kz be the equation of line £,
(ng,ny) be the direction normal to it and (n),n,) and (n,n,) two directions that are
not perpendicular to £. According to Lemma 4.2, for the projections of the optical flow
vectors along the direction (n,, n, ) the following holds

A 1 1 1 X 1. dy 1 1

- - un = DW(— - — — 2 -
Yo = T\ = T\ 2W(Z2 1+ A2, 1+)\Z3)+1+)\W(Zl 23)
d- —
(ko — B3) 721@2]0 x3)7 4.3)

where the primed terms are defined analogously to the unprimed ones in Eq. (4.2).

Similarly, for the projections along the normal direction (n,, n,), Eq. (4.2) gives

1 A 1 1 1 A1
- H_—)\W”h — l—i——)\un3 = DW(l=—-+———-————) (4.4)

Dividing Eq. (4.3) with Eq. (4.4) yields

un,

un,y — 1J%\un'l — Hi/\ung _ 2’2 dy, Z% - Z% n
un, — 1J%)\unl — Hi)\m% D, 14\ Dz(Z% — IJ%\Z% — HLAZ%)
d; 1
(ka — ) 2(%2 = 73) : 5 4.5)
f UNy — UMy — TixUNS
Applying Eq. (4.1) for points p; and pg results in
D (5 = )+ Las — ) 6
uny —uny = — — — )+ —(r3—x :
1 3 A R
Solving Eq. (4.6) for ;- — - and dividing in terms by Eq. (4.4) gives
Z%_Z% unl—ung—’”n;y’“fy
Do (] T 1 1)y T D 1 A (4.7)
Az~ o7 T a7 2(uny — mxuny — Fxuns)
Substituting Eq. (4.7) into Eq. (4.5) yields
D R A e o
un, — 1+L/\un1 - 11%\“”3 ds, D, 1+ A Dy(un, — 1J%\unl - 14%\“”3)
— 1
(o — §) T2 = %) : . (4.8)
f Un, — UM — 75U
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Let now p4 = (x4, y4) be a fourth point collinear with the triplet p;, p2 and pg and such
that point pz divides the vector py py4 in ratio 1. Eq. (4.8) gives for the projections along

the direction (n;, n, )

" 1 W " " " - _ T4—T
un, — 1Jruunl T Wy 1 B D, /d21 1 uUNy — UNg Thy Y N
_ _ A _ 1 _ kb
uny — uny — phuny dy D, L+ Dy(un, — muny — $huny)
(IL‘Q — 1‘4) 1
(ko =) f un, — ——un, — +L-un 49)
L B

Subtracting Eq. (4.9) from Eq. (4.8) results in

! . 1 ! . A ! unl! - 1 un o H‘ unl! 7 d, " d,,
Uny — 3 UNy — 1 3uns L e R T S E T e I D,/dy) — D, /dy, I
_ 1 _ A ! S _ B re
uny, — TyuUny — Tyung dy o uny TR Uy — T Uy dy, D,
1 1 un; — un3 1 uny — UNg )+
D, _ L N N _ L _
Dy 1+ X uny — gung — pisung - 1+ p uny — pouny — fiouny
*y( 1 a3 — 1 n 1 z4— 2 1 )+
D, L, — A L
Dy” 1+XA ny  uny— xun, — uns Ltp my  ung — ung — fung
Ty — I3 Ty — T4
(ke = B)( 1 X - 1 m )(4.10)
fun, — THun — —1+/\un3) fluny — T U — —1+#un4)
ry—r3 __ T1—T4 __ :
Noting that = =213 and 4 =1 T, Eq. (4.10) can be rewritten as
! . 1 ! 1 unli . 1 U/n” . “ unl{ 1 D, d’ D” d”
Uny — o un; — 1+AU”3 TR Tt T ot L 2/dy — D, /dy,
_ 1 _ A ! 1 _ K (O
uny — pxung — pixung dy o uny — poung — pioung dy D,
1 1 un; — uns 1 uUny — Uny )+
D, _ 1 DN N L
Dy 1+ X uny — ung — gisung 1+ p uny — uny — funy
vf Ty — T3 Ty — T4 411
(Dn +Ha_ﬂ)(f(un — Lun, — 2uny)  fluny — ——un, — Lun )) (11)
21y 27T T W T U 20 I4p L 14 Y4

The term M in Eq. (4.11) is independent of the FOE and can be computed using

the point retinal coordinates only. Indeed, it can be shown that

D, (nany, — nyny) (nany, — ngny) (T2 — 1)

Thus, Eq. (4.11) is linear in the two unknowns Diz and 5’?7% + ka — .
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Given a line £ through the image principal point, the proposed method relies on
Eq. (4.11) for estimating the term Diz corresponding to L. In theory, two quadruples of
image points lying on £ suffice to provide estimates of the unknown parameters Diz and
5’?7% + ka — 3. However, to enhance noise immunity, multiple quadruples of points on
L are selected at random and robust estimates of the two unknowns are computed using
the Least Median of Squares (LMedS) robust estimator [209]. Knowledge of the term D%
for a line £ provides one constraint on the location of the FOE, namely

xon§ + yong = x£n§ + y£n§ — Dzﬁ, (4.13)

L

=) is the unit normal for line £ and (2, y*)

where (x¢,10) is the sought FOE, (n%,n
is a point on £. Noting that each line £ through the image principal point supplies
one constraint of the form of Eq. (4.13) regarding the FOE, the constraints arising from
multiple such lines can be combined to yield the FOE. More specifically, using many

lines through the image principal point, robust estimates of the corresponding distances

oz are obtained as previously outlined. For each of the obtained distance estimates,
2

Eq. (4.13) gives rise to a linear constraint regarding the FOE. LMedsS is then applied once

again on these constraints to give a robust estimate of the FOE. If required, estimates

of the rotational velocity can be obtained in a similar manner by employing robust

regression on the constraints derived from the terms lf; + ka — (# computed for each
Yy

D2
line through the image principal point.

4.3 Experimental Results

The proposed method has been extensively tested with the aid of simulated and real
flow fields. Representative results from these experiments are given in this section. In
all the experiments reported here, at most 180 lines through the image principal point

and 200 quadruples of points along each line have been employed.
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4.3.1 Synthetic flow fields

The use of simulated data is justified by the fact that knowledge of the ground truth
facilitates a quantitative assessment of the accuracy of the results. Besides, simulation
enables us to vary in a controlled manner subsets of the parameters involved in the

problem of egomotion estimation and then study their effect on the recovered motion.

Therefore, a simulator has been constructed, which given appropriate values for
the intrinsic parameters of the simulated camera (focal length and principal point), the
translational and rotational motion parameters, the dimensions of the retina and the
depth corresponding to each image point, employs Egs. (2.7) to synthesize an optical
flow field. Depths of image points are generated by random variables following various
distributions. For the experiments reported here, a uniform distribution in the range
[Zmin, Zmaz) and a Gaussian distribution with nonzero mean have been employed. All
distances and sizes used by the simulator are specified in units of pixels. To account for
the fact that optical flow fields might be sparse, a percentage specifying the fraction of
image points having flow vectors can be specified. This percentage is termed the density
of the optical flow field. To make the simulated optical flow fields more realistic, noise
is added to the synthetic optical flows. The noise we employ is generated according to

the model suggested in [141]:

Unoisy = U + signy * N(a,b) x0.01 xu

Unoisy = U + signa * N(a,b) *0.01 x v

where sign; and sign, are binary values that are randomly chosen with equal probability
and N (a,b) is a Gaussian random variable with mean « and standard deviation b. This
noise model is referred to as ‘‘Gaussian noise with mean a% and o = b%”. As noted
in [141], 8% and 2% are realistic values for the noise mean and the standard deviation

respectively, accounting for most of the errors observed in actual flow fields.

Throughout all experiments, image size was 512 x 512 pixels, the principal point was

assumed to be in the center of the image and the focal length was 256 pixels, amounting
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to a field of view of 90 degrees. The density of the optical flow fields was 70%. Two
different scenarios for the scene depth were simulated. The first uses a random variable
that is uniformly distributed in the range [10000, 50000] pixels to model the depth of a
scene with large depth variations. The second scenario employs a Gaussian distribution
with mean 15000 pixels and standard deviation 3000, to emulate a scene with less depth
variation, in which the majority of the points lie at a dominant depth rather close to the
camera. To ensure that the results are independent of the exact depth values used to
synthesize the optical flow field, each experiment was run 100 times, each time using a

different depth population drawn from the distributions described above.

In the first set of experiments, the effect of noise on the accuracy of the estimated
FOE is examined. Employing increasing noise levels, Figures (4.1)(a) and (b) illustrate
the mean and the standard deviation respectively of the FOE error for both depth
distributions. Each point in the plots summarizes error statistics computed from 100
runs. If f is the focal length and the true FOE is at (xg, yo) while the estimated is at

(#0, o), the error in the FOE is defined as the angle between the vectors (o, yo, f) and
('an yAOa f)’ giVen by

COS_I( (.’L'(), Yo, f) ) (f07 Yo, f) ) (4.14)

||(l‘0, Yo, f)|| ||(f07 y/\Oa f)||

The 3D motion parameters used to synthesize flow were (U, V, W) = (—120, 100, 150)
(measured in pixels per frame) and («, 3, v) = (0.005,0.004,0.002) (measured in radians
per frame). The egomotion parameters and the depth values are such that the average
translational component of the flow fields is comparable to the average rotational
component. The angle between the direction of translation and the optical axis is about
46 degrees. The noise mean was increased to 12% in steps of 1% and the standard
deviation was kept equal to 2%. As expected, the error increases with noise but remains
acceptable even with very large amounts of noise. The error in the case of Gaussian
depths is smaller since in this case the translational component of motion is larger than
that in the case of uniformly distributed depths; this is further explained in the discussion

of the experiments related to the magnitude of translation below.
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Figure 4.1: (a) Mean FOE error versus noise and (b) Standard deviation of FOE error

Vversus noise.

It has been observed in previous work on egomotion estimation that the error of
the estimated FOE increases with the angle between the direction of translation and the
direction of gaze (i.e. the direction defined by the optical axis) [65]. The second set
of experiments studies the dependence of the FOE error on this angle for the proposed
method. Figures (4.2)(a) and (b) show the mean and standard deviation of the FOE
error with respect to the angle between the direction of translation and the direction of
gaze. The direction of translation was varied from (0,0, f) to (f,0, f), where f is the
focal length. In other words, the translations considered range from a straight ahead
motion to a sideways motion forming an angle of 45 degrees with the direction of
gaze. The rotation parameters were again equal to («, 3,7) = (0.005,0.004,0.002) and
the magnitude of translation has been kept constant, equal to 216.565 pixels per frame,
which is the magnitude of translation used in the first set of experiments. Each point
in the graphs has been computed from 100 trials, performed with Gaussian noise of
mean 8% and standard deviation of 2%. As can be seen from Fig. (4.2)(a), the FOE error
does not vary considerably when the angle between the direction of translation and the
direction of gaze is increased. This is a desirable characteristic of the proposed method,

since it implies that the observer does not need to fixate on the estimated FOE to ensure
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small errors in the FOE estimates.

Mean FOE error vs. angle between the FOE and the direction of gaze
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Figure 4.2: (a) Mean FOE error versus the angle between the direction of translation and
the direction of gaze and (b) Standard deviation of FOE error versus the angle between

the direction of translation and the direction of gaze.

The last set of experiments evaluates the performance of the method when the ratio
between the magnitude of translation and that of rotation is varied. More specifically,
assuming that the rotation is constant, Figures (4.3)(a) and (b) depict the effect of
varying translation magnitude on the mean and the standard deviation of the FOE error.
In this series of experiments, the direction of translation is identical to that defined
by (U,V,W) = (—120, 100, 150), but its magnitude is increased by a multiplicative
factor of 1.5 between successive experiments. The rotation has been kept constant
at («, ,v) = (0.005,0.004,0.002) and 100 runs were made for each set of motion
parameters. The noise was Gaussian with mean 8% and standard deviation 2%. As can be
clearly seen from the plots, the FOE error is significant when the translation magnitude
is small (less than 130 pixels per frame in Fig. (4.3)(a)). This is due to the fact that in this
case, the translational components of the optical flow vectors are negligible compared
to the rotational ones. Therefore, noise has a more pronounced effect on the translational
components from which the FOE is recovered. However, as the magnitude of translation

increases beyond 130 pixels per frame, the translational parts become comparable or
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Mean FOE error (degrees)
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even larger than the rotational ones. Thus, the translational parts are more immune to

noise, giving rise to small FOE errors which are almost constant with respect to the

magnitude of translation.
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Figure 4.3: (a) Mean FOE error versus magnitude of translation (b) Standard deviation

of FOE error versus magnitude of translation. Note that the scale on the horizontal axes

is logarithmic with base 1.5.

Assuming constant translation, Figures (4.4)(a) and (b) show the effect on the mean

and the standard deviation of the FOE error caused by altering the rotation magnitude.

Here, the behavior of the method is the converse of that observed in the case of constant

rotation investigated in the previous paragraph. As can be seen from Fig. (4.4)(a), the

error in the FOE estimates is almost constant for realistic amounts of rotation (less than

0.5 degrees per frame). When the rotation increases too much, the flow field becomes

mainly rotational, with the rotational components accounting for a large percent of the

full flow field. Thus, noise has an increased impact on the translational parts, resulting

in large errors for the FOE estimates. During the experiments outlined in Fig. (4.4),

translation was kept fixed at (U, V, W) = (—120, 100, 150), the rotation magnitude was

increased by a multiplicative factor of 2.0 between successive experiments and 100 runs

were made for each experiment. The noise was Gaussian with mean 8% and standard

deviation 2%. Note that a rotation of («, 3,7) = (0.005,0.004,0.002) has a magnitude

100



Mean FOE error (degrees)

Section 4.3. Experimental Results

of 0.3845 degrees. When assuming continuous image motion (i.e. fine time sampling),

rotations having magnitudes larger than one degree per frame are very large and thus
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Figure 4.4: (a) Mean FOE error versus magnitude of rotation and (b) Standard deviation
of FOE error versus magnitude of rotation. Note that the scale on the horizontal axes is

logarithmic with base 2.0.

4.3.2 Real Image Sequences

The method has also been tested using flow fields computed from real imagery for
which the ground truth was known a priori. Throughout all experiments, optical flow
was computed using an implementation of the Lucas & Kanade algorithm [151]. The
first experiment employed the ‘‘yosemite” image sequence, one frame of which is
shown in Fig. 4.5(a). This sequence contains both translation and rotation and depicts
a flight through Yosemite valley. Since the clouds are moving independently, only the
optical flow vectors computed at the lower portion of the images have been employed.
This portion of the original images corresponds to a field of view equal to 49.6 degrees

horizontally and 29 degrees vertically. The true FOE is rather close to the center of the
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field of view, namely at (0, 58)! while the estimate computed by the proposed method
was (-17.3, 72.3), a value that corresponds to an error of 22.4 pixels or 3.7 degrees.
This amount of error compares favorably to errors in the ‘‘yosemite” FOE estimates
appearing in the literature. More specifically, Heeger and Jepson [100] report an error

of 3.5 degrees for the ‘‘yosemite” sequence and Daniilidis [62] reports an error of 4.0

degrees.

Figure 4.5: (a) One frame from the ‘‘yosemite” image sequence (b) The optical flow

field used for egomotion estimation.

The second experiment refers to the ‘‘“marbled block” sequence, one frame of which
is shown in Fig. 4.6(a). The sequence is described in [187] and contains many sharp
discontinuities in depth and motion. The sequence was captured by a translating camera
mounted on arobot arm that was moving above a textured floor in a right to left direction.
The four dark blocks that lie on the floor are stationary, while the white block in the
middle of the scene is moving independently with a right to left direction. The images
of the ““marbled block” sequence subtend 25.6 degrees of visual angle. The true FOE is
outside the field of view, specifically at (777, 95.6). Thus, the angle between the direction

of translation and the optical axis is about 35 degrees. The proposed method estimated

IThese are *‘calibrated” image coordinates, defined with respect to the image principal point.
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the FOE at (625.0, 111.4), in error by 152.7 pixels or 5.65 degrees. For comparison, the

FOE estimate reported by Daniilidis in [62] amounts to an error of 7.17 degrees.

R
S

N
N
N
N

(@) (b)

Figure 4.6: (a) One frame from the ‘‘marbled block” image sequence (b) The optical

flow field used for egomotion estimation.

The last experiment is based on the ‘‘nasa” image sequence, shown in Fig. 4.7(a).
Since the camera undergoes a purely translational motion, a rotation of («, 3,v) =
(—0.00025,—0.0018,0.00030) was added synthetically in order to make the experiment
more challenging. The ground truth for the FOE is (-5, -8) while the recovered FOE was
(2.21, 49.29), in error by 57.74 pixels or 5.5 degrees. The images of the ‘‘nasa” sequence

subtend 24 degrees of visual angle.

At this point, it should be noted that the errors in the FOE estimate are larger for
small field of view image sequences. This observation agrees with the findings of
[81, 75], which conclude that due to the inhomogeneous flow characteristics of a large
field of view, the latter is more helpful for determining the singularities of the flow field

(i.e. FOE and axis of rotation) compared to a narrow field of view.
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(a) (b)

Figure 4.7: (a) One frame from the ‘‘nasa” image sequence (b) The optical flow field

used for egomotion estimation.

4.4 Summary

Accurate estimation of camera motion is important for many vision based tasks. In this
work, a novel constraint regarding the parameters of 3D motion has been presented.
This constraint was used to develop a method for egomotion estimation that has several
advantages. First, the method does not impose any constraints on the egomotion that can
be recovered or on the structure of the viewed scene. Second, egomotion is computed
through closed form solutions of linear equations, avoiding searching the space of
possible solutions. Third, instead of employing local information derived from small
image regions, redundancy is exploited by combining information across the whole
visual field. Fourth, the method does not assume the availability of a dense optical flow
field. This is very important for practical applications, since image sequences often have
uniform, textureless areas that give rise to sparse optical flow fields. Finally, the use of
a robust estimator such as LMedS safeguards against errors in the input, which could
otherwise have a significant effect on the accuracy of the computations. Experimental

results collected from extensive simulations as well as real image sequences indicate the
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effectiveness and robustness of the proposed method. Regarding future enhancements to
the proposed method, temporal filtering of the estimated FOE with the aid of a Kalman

filter would further increase the accuracy of the recovered egomotion.
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Chapter 5

Obstacle Detection

5.1 Introduction

In order to avoid collisions, autonomous vehicles need a means for sensing obstacles
obstructing their path. This can be achieved though the combination of two distinct tasks,
namely the tasks of obstacle detection and obstacle avoidance. The first task addresses
the questions of what is the visual information signaling the presence of obstacles and
how this can be extracted from a set of images. The second task, deals with employing
sensory input for generating an appropriate sequence of control commands that will
drive a mobile vehicle away from the detected obstacles. In this chapter, we assume
a vehicle capable of acquiring images of its surroundings and propose a vision-based

approach to obstacle detection.

Most approaches to visual obstacle detection exploit motion cues for locating
obstacles. Furthermore, an assumption that is often made is that vehicle motion is
confined to a surface that is either planar or can be approximated locally by planes
[68, 48, 123, 212, 85, 295]. The existence of a planar ground gives rise to a phenomenon
termed as motion parallax in the psychophysics literature [89]: A moving observer,

perceives objects extending vertically from the ground to move differently from their
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immediate background (see also appendix A). Various techniques for obstacle detection
based on motion parallax have been proposed. Enkelmann [68] for example, uses a
calibrated camera to compute a reference flow related to the motion of the ground
and then compares it with the flow estimated from images captured by a monocular
observer. Inconsistencies between these two flows signal the presence of obstacles.
Enkelmann assumes that the camera pursues a purely translational motion. However,
such an assumption about egomotion is not always valid and should be avoided when
possible. Carlsson and Eklundh [48] assume a camera with unrestricted motion and
predict the egomotion and the equation of the ground plane from long image sequences.
Obstacles are identified in regions whose motion differs from that predicted. Matthies
[158] employs stereo maps and uses the range of points to determine whether they lie
close to the ground plane or not. Jenkin and Jepson [123] apply the EM algorithm to
obtain maximum likelihood estimates of the parameters of a mixture model describing
the disparity field computed with phase-based techniques from a calibrated stereo pair.
The probability that a point does not belong to the floor is then computed from the
ownership probabilities of the mixture model. Santos-Victor and Sandini [212] employ
the normal flow field estimated with an uncalibrated camera and detect obstacles lying
on a planar floor by performing an inverse perspective transformation that maps the
normal flow onto a horizontal (parallel to the floor) plane. Their method, however,
uses an approximate parametric model of the flow generated by the ground plane, deals
with outliers in an ad hoc manner and requires the camera to remain in a fixed position
relative to the vehicle. Fornland [85] uses the normal flow field measured from a
camera moving parallel to the ground plane to derive a linear equation relating motion
parameters to the spatiotemporal derivatives of the image intensity function. Obstacles
are then detected as the outliers of a robust fit estimated by RANSAC [82] over the
image points. Zhang et al [295] present three algorithms for obstacle detection. The first
algorithm employs optical flow and a calibrated camera to derive a linear system whose
solvability implies the absence of obstacles. The second algorithm does not require
camera calibration and exploits the homography of the ground plane to derive a linear

system relating corresponding image coordinates in two views. Similarly to the first
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algorithm, inconsistency of this linear system signals the presence of obstacles. This
algorithm is discussed in more detail in section 5.3. The third algorithm uses sequences
of partially calibrated stereo pairs to estimate the equation of the ground plane and
the height of obstacles. Although not specifically intended for obstacle detection, the
scheme described by Sinclair and Blake in [225] can be used for finding the floor as the
dominant plane recovered from a scene. In doing so, they employ pairs of matched points
extracted from a stereo pair and assign them to planes according to the conservation
of the two five-point projective invariants [168] (see also section 3.2). Fornland and
Schnorr [86] solve a similar problem, with their major contribution being that they do

not assume that correspondence among points has been established.

Approaches that do not assume a planar ground have also been suggested. Nelson
and Aloimonos [180] show that the directional divergence of the 2D motion field
can be used as a qualitative cue indicating the presence of obstacles in the field of
view of a monocular observer pursuing unrestricted motion. Young et al [286] make
no assumptions regarding the structure of the viewed scene and examine geometric
properties of the flow field to achieve obstacle detection. Ringach and Baram [206]
define an immediacy measure, representing the imminence of collision between an
object and a moving observer. A diffusion process, initialized by estimates of the normal
flow, is shown to converge asymptotically to the immediacy measure, thus permitting
the detection of objects moving towards the camera. Santos-Victor and Sandini [214]
present a navigation system driven by a divergent stereo setup. The driving cue they use
mimics the behavior of free flying honeybees and is based on qualitative optical flow
information, computed on non-overlapping areas of the visual field of the two cameras.
Coombs et al [56, 47] also use the divergence of a wide angle optical flow field for
collision detection and employ two peripheral flow fields for steering. Kundur et al
[137] introduce the a cue that provides a measure for changes in relative range as well as
absolute clearances between a 3D surface and a moving observer. The cue is dependent
on translation only and can be extracted from a sequence acquired by a fixating camera

in motion.
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In this work, we propose a method that uses two images to detect obstacles along
the path of an autonomous vehicle. There are three main motivations behind our work.
First, a basic observation is that the task of establishing dense correspondences between
image points, either in the form of optical flow [165] or in the form of stereo disparities
[67], is both algorithmically and computationally difficult. We thus avoid one of the
major shortcomings of many of the previously published works by using very sparse
point correspondences. Second, we refrain from imposing any restrictive assumptions
regarding the acquisition of the image pair, since they are hard to guarantee in practice.
Finally, we seek to segment the obstacles out of the viewed scene, instead of giving a
binary answer concerning their presence or absence. Based on the above, our method
assumes that the ground is planar and starts by computing its motion in the two images
using the plane homography estimated from a small set of matched points. Subsequently,
compensation of the motion of the ground is performed by warping the second image
with respect to the first, according to the computed motion. This warping registers
the image of the ground in the two views, so that the obstacles exhibit relative motion
between the two images. Finally, a change detection operation between the first and the

warped second image locates the obstacles present in the scene.

The proposed method does not rely on the reconstruction of 3D structure, does
not require a solution to the correspondence problem for every image point, poses no
restrictions on egomotion and does not need any calibration information. This last
feature is particularly attractive in the context of active vision [6], where the camera
position in 3D as well as the zoom and focus are actively controlled, resulting in frequent

changes in the extrinsic and intrinsic parameters of the camera.

The rest of this chapter is organized as follows. Sections 5.2 and 5.3 present the
proposed obstacle detection method in detail. Experimental results from the application
of the method on real images are presented in section 5.4. The chapter is concluded with

a brief discussion in section 5.5.
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5.2 Estimation of the Ground Homography

The proposed method starts by extracting a set of corners from each of the two images,
using the SUSAN corner detector [231]. A local similarity measure based on normalized
cross-correlation assigns to each corner in the first image a set of candidate matches in
the second image. Corner correspondence is then established by an iterative algorithm
that disambiguates multiple candidate matches using a relaxation labeling scheme.
Relaxation labeling is based on the assumption that neighboring features have similar
disparities. More details regarding the matching algorithm can be found in [290, 294].
Matched corners are the reference points on which the procedure for estimating the
fundamental matrix F is based as follows: Let f be the 9 x 1 vector defined by the 9
unknown elements of matrix F, i.e. f = (Fyy, Fip, Fi3, Fay, Fr, P, F31, F3y, F33)T. Then,

Eq. (2.19) can be written as

/ / / / / /
(mlmla Moy, My, MMy, MMy, My, My, My, 1)f:O (51)

Considering N matched pairs, the N constraints given by Eq. (5.1) can be written

more compactly as the following linear homogeneous equation:

where A is a N x 9 matrix.

The fundamental matrix is then estimated from the solution of the following

minimization problem:
ming||Af|]> subject to ||f|]* =1, (5.2)

where || || denotes the vector 2-norm [90]. The solution to this constrained minimization
problem is known to be the eigenvector of the matrix A” A that corresponds to the

smallest eigenvalue (see appendix B for more details).

As noted in [98, 291], AT A is inhomogeneous in image coordinates and, therefore,

ill-conditioned. To improve its condition number and to derive a more stable linear
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system, the coordinates of the matched corners are normalized by a pair of linear
transformations L and L' as follows: L defines a translation of the corners in the first
image, such that their centroid is brought to the origin of the coordinate system, followed
by an isotropic scaling that maps the average corner coordinates to (1, 1,1). L is defined
similarly for corners in the second image. As shown in [98, 291], these transformations
result in a more stable system, from which a fundamental matrix F can be estimated. F
is then computed from F as F = L'" FL. At this point, it should be noted that there exist
more sophisticated nonlinear methods for estimating F [153, 291, 253]. However, for the
purposes of the present work, the simple linear technique outlined above gives results

with satisfactory accuracy.

Since the normalized matching pairs that are given as input to the estimation process
will contain errors due to false matches and errors in the localization of corners, care
must be taken so that these errors do not corrupt the computed estimate. Thus, instead of
using the whole set of matched corners to estimate F, the LMedS estimator is employed
to find an estimate that is consistent with the majority of the matched corners. Using
a predetermined number of iterations, LMedS picks random samples of matching pairs
and computes an estimate of F from each of them. The estimate that yields the smallest
median error is returned as the fundamental matrix which best fits the set of matched
corners. The singularity constraint detF = 0 can be enforced a posteriori, by using
Singular Value Decomposition (SVD) to compute the singular matrix that is closest to

the estimated one in terms of the Frobenius norm [98, 236].

The procedure for estimating the ground homography H is similar to that for
estimating F above. The 9 unknown elements of matrix H define a 9 x 1 vector h such
that h = (HH; le, ng, H21, sz, H23, H31, H32, H33)T. For each pair of Corresponding

points m and m/, Eq. (2.20) yields the following pair of constraints:

H11m1 +H12m2+H13 = Hglmlm'l —|—H32m2m'1 —|—H33mll
(5.3)
H21m1 + H22m2 + H23 = H31m1m'2 + H32m2m'2 + H33m'2
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Using N matching pairs, the 2N constraints given by Eq. (5.3), combined with the 6
constraints arising from the skew-symmetry constraint defined by Eq. (2.21) !, can be

written as

where B is a (2N + 6) x 9 matrix. H is then estimated by solving
miny||Bh|)* subject to ||h|]* =1 (5.4)

The solution to the above problem is the eigenvector of the matrix B? B that corresponds
to the smallest eigenvalue. As can be clearly seen from Eq. (2.21) and Eq. (5.3), BB
is inhomogeneous in image coordinates. Thus, the normalization procedure that was

previously employed for estimating F is also used for determining H.

Assuming that at least 50% of the matched corners belong to the ground, LMedS
is employed to compute a robust estimate of the ground plane homography H defined
by the normalized matching pairs. H is then computed as L' 'AL. It should be
noted that the use of F in estimating H is not necessary. H has 8 degrees of freedom
and, since each pair of corresponding ground corners provides 2 constraints, 4 pairs of
corresponding ground corners in general position (no three corners are collinear) give
rise to 8 constraints regarding the elements of H and, therefore, suffice to provide a
solution. However, knowledge of F provides 5 constraints regarding H, enabling us
to estimate H using only 2 pairs of matching corners. Thus, the size of the random
samples selected by LMedS during the estimation of H is equal to 2, implying that
fewer iterations are required to guarantee that the correct solution is found with a given
probability of error (see Eq. (2.30)). In the case of a robot that is continuously looking for
obstacles using a stereo rig where each camera remains in a fixed position with respect
to the other, F does not change in time. Hence, the extra cost of estimating it can be paid

only once.

Apart from corners, line segments that have been matched [145] between two images

!Actually only 5 of these 6 constraints are linearly independent; see [95].
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can be used for providing additional constraints regarding the ground homography. More
specifically, an image line defined by ax + by + ¢ = 0, is represented by the vector (a, b, ¢)
in projective coordinates. Every line in 3D, which belongs to the ground plane, projects
to two corresponding line segments in two images. Denoting these line segments with

the vectors 1 and 1, they are related by
1 ~H, (5.5)

where H T denotes the inverse transpose of H. The above equation provides 2 constraints
regarding H. However, corresponding line segments were not employed in our
implementation for estimating the ground plane homography. At this point, it should
be pointed out that the linear technique outlined above for estimating H minimizes
the algebraic distance expressed by Eq. (2.20). Nonlinear methods that estimate the
homography by minimizing the euclidian distance between the points in the second
view and the corresponding transformed points of the first view, can be found in

[152, 256, 298].

5.3 Ground Registration and Obstacle Detection

After the homography of the ground plane has been computed, we can compensate for
the motion of the ground by warping the second image with respect to the first using
bilinear interpolation and the motion defined at each image point by Eq. (2.20). This
transformation results in the image of the ground being registered in the two views,
leaving all obstacles extruding from the ground plane unregistered. Subtracting the first
image from the warped one, we can declare points where the absolute value of the
computed difference is above a threshold as belonging to obstacles. For more accurate
results that will not be sensitive to changes in the illumination, the change detection
method described in [230] is employed. This method is based on a test regarding the
variance of the intensity ratios in small neighborhoods in the two images. In some cases,

change detection can produce small noisy areas that do not correspond to obstacles. A
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size filtering step can effectively eliminate these areas as follows. Pixels that do not
belong to a connected component of a minimum size are assumed to be due to noise and
can be masked out. Only regions having area greater than some predefined threshold

are retained in the final obstacle map.

In the case that a fast binary decision regarding the presence or absence of obstacles
is required, the steps of ground registration and change detection in the process described
in the preceding paragraph can be omitted, with the process terminating immediately
after the application of LMedS. The presence of obstacles is signaled by the existence
of sufficient numbers of outlying corners that are closely located in the image plane. If
necessary, a rough estimate of the location of obstacles can be computed by a clustering
algorithm that will group nearby outlying corners together. Each cluster picked up by

the clustering algorithm is then assumed to correspond to an obstacle.

As mentioned in section 5.1, the second algorithm for obstacle detection proposed
by Zhang et al in [295] uses the homography of the ground plane, similarly to the method
proposed here. There are, however, important differences between the two methods.
Zhang et al use a test based on the ratio of singular values obtained from SVD to
determine whether the linear system relating corresponding image points in two views is
solvable or not. This test requires the specification of an ad-hoc threshold, and as shown
in the synthetic experiments reported in [295], is sensitive to noise. A single erroneous
correspondence can provide a constraint that makes the linear system unsolvable. The
noise sensitivity measured by Zhang et al is expected to increase when their method has
to cope with real noisy data instead of simulated ones. This is due to the fact that the
noise model they employ during simulation accounts only for small scale deviations
from the ground plane, ignoring many other possible sources of noise. In contrast,
the method described in this work uses robust regression techniques to ensure that the
existence of corresponding pairs of points that are contaminated by noise do not cause
the obstacle detection algorithm to fail. Moreover, the algorithm by Zhang et al provides

a simple yes/no answer regarding the presence of obstacles, while our method provides
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a map indicating the exact location of obstacles in the field of view of the observer.

5.4 Experimental Results

A set of experiments has been conducted in order to test the performance of the proposed
method. Representative results from three of these experiments are given in this section.
The first two experiments were performed with the aid of stereo pairs acquired by
a binocular head mounted on a mobile robot. The third experiment employs two
frames from a publicly available monocular image sequence. In all three experiments,
the estimates of the ground homography obtained with and without the use of the
fundamental matrix were almost identical. MPEG videos showing the results reported

here, are available at http://www.ics.forth.gr/proj/cvrl/demos/lourakis/ .

The first experiment refers to the stereo pair shown in Figure 5.1(a) and 5.1(b). The
viewed scene consists of a planar floor on which lies a textured poster. A box in the
middle and a flower-pot on the right side of the scene are the obstacles to be detected.
White rectangles in Fig. 5.1(c) indicate the corners that do not conform to the estimated
plane homography. Corners that agree with the estimated plane homography are marked
with gray rectangles. As can be seen in Fig. 5.1(c), some of the corners belonging to the
floor are marked as outliers after the estimation of the floor homography. These corners
have been erroneously matched between the two views, forming pairs that do not satisfy

Eq. (2.20).

Fig. 5.1(d) shows the right image warped according to the estimated homography
of the ground plane. It is clear from Fig. 5.1(a) and Fig. 5.1(d) that image warping
according to the estimated floor homography registers the image of the floor. The
obstacles detected after change detection between Fig. 5.1(a) and Fig. 5.1(d) are shown
in black in Fig. 5.1(e). No size filtering was necessary. Note that the detected obstacles

correspond to the box and the flower-pot.
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(@) (b)

() (d)

©)

Figure 5.1: First stereo pair: (a), (b) left and right view, (c) outliers detected by LMedS
during the estimation of the ground homography, (d) right image warped according to

ground homography, (e) detected obstacles (see text for explanation).
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The second experiment is based on the stereo pair shown in Figure 5.2(a) and 5.2(b).
A textured poster has been placed on a planar floor and a chair on the left side of the
scene, along with a box on the right side, are the obstacles to be detected. Corners that
do not belong to the floor are characterized as outliers by LMedS during the estimation
of the ground homography, and are shown as white rectangles in Fig. 5.2(c). Corners
belonging to the floor are marked by gray rectangles. In this particular experiment, a
large number of outliers was tolerated. More specifically, LMedS concluded that 91
matched corners from a total of 201 (a percentage of about 45%) are outliers. This clearly

demonstrates the robustness of the proposed method.

Fig. 5.2(d) shows the right image warped according to the estimated homography
of the ground plane. This warping registers the image of the floor between Fig. 5.2(a)
and Fig. 5.2(d). The obstacles detected after change detection between Fig. 5.2(a) and
Fig. 5.2(d) are shown in black in Fig. 5.2(e). Again, size filtering on the output of change
detection was not required. Note that the chair and the box have been successfully

identified as obstacles.

The third experiment tests the obstacle detection method using two frames from the
““marbled block” sequence. Frames 20 and 30 of this sequence are shown in Figure 5.3(a)
and 5.3(b). The sequence is described in [187] and contains many sharp discontinuities
in depth and motion. The sequence was captured by a camera mounted on a robot arm
that was moving above a textured floor in a right to left direction. The four dark blocks
that are standing on the floor are stationary, while the white block in the middle of
the scene is moving independently with a right to left direction. The ‘‘marbled block”
sequence has a lot of texture, which yields a large number of corners. Corners lying
above the floor violate Eq. (2.20) and are marked as outliers by LMedS. Outliers and

inliers are shown respectively with white and gray rectangles in Fig. 5.3(c).

Fig. 5.3(d) shows frame 30 warped according to the estimated ground homography.
The obstacles detected after change detection between Fig. 5.3(a) and Fig. 5.3(d) are

shown in black in Fig. 5.3(e). No size filtering was performed on this result. Clearly, all
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(a) (b)

()

Figure 5.2: Second stereo pair: (a), (b) left and right view, (c) outliers detected by LMedS
during the estimation of the ground homography, (d) right image warped according to

ground homography, (e) detected obstacles (see text for explanation).
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five blocks have been successfully identified as obstacles. This experiment demonstrates
that the proposed method can detect obstacles even in the presence of independent

motion.

5.5 Summary

The capability of obstacle avoidance is crucial for a robot moving in an unknown
environment. In this chapter, a novel method for obstacle detection has been presented.
The method is based on the registration of the ground between two views of the
environment, which leaves objects not belonging to the ground unregistered. Registration
exploits geometrical constraints imposed by the planarity of the ground and is achieved
with the aid of a sparse set of corners that have been matched in the two images.
The proposed method has several advantages. First, it does not require any calibration
information to be known. This feature is particularly important for a mobile vehicle,
since in this case the calibration parameters may be continuously changing. Second,
the method does not require the computation of a dense set of disparities between the
two views and, therefore, solving the correspondence problem for each image point
is avoided. Third, there is no need for explicitly recovering the 3D structure of the
viewed scene. Fourth, the method is usable either by a monocular vehicle moving in the
environment or by a binocular one. Finally, the use of a robust estimator such as LMedS
guards against errors in the input, which could otherwise have a significant effect on the

accuracy of the computations.

The main disadvantage of the proposed method is that it requires at least 50% of
the matched corners to be on the ground, a constraint imposed by the breakdown point
of LMedS. One way to overcome this limitation is to use robust estimators having
higher breakdown points, such as the one proposed in [235]. A related shortcoming
is that the method assumes that the ground is textured, in order to be able to extract

corners. It should be noted, however, that most vision algorithms are expected to run
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(©) (d)

()

Figure 5.3: The ‘‘marbled block” monocular sequence: (a), (b) frames 20 and 30,
(c) outliers detected by LMedS during the estimation of the ground homography, (d)

frame 30 warped according to ground homography, (e) detected obstacles (see text for
explanation).
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into difficulties in the absence of texture.
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Chapter 6

Time-to-Contact Estimation

6.1 Introduction

A vehicle which is intended to move autonomously in the environment should possess
a means for avoiding obstacles obstructing its path. According to the purposive vision
paradigm [6], the vision system of such a vehicle should attempt to recover only those
aspects of the world that are relevant to the task the vehicle has to perform, instead
of reconstructing a 3D representation of the world. Indeed, as it has been previously
demonstrated in [180], obstacle avoidance can be achieved using very little information,
namely the time-to-contact. The time-to-contact (also known as the time-to-collision or
time-to-impact) with a point in the field of view of a moving observer, is defined as the
time that remains before the point in question collides with the observer, provided that
they continue to maintain the same relative translational velocity. Knowledge of the time-
to-contact is more useful for obstacle avoidance compared to estimates of the distance
between the obstacles and the observer, since the former is by definition taking into
account the dynamics of the observer’s motion. There is also strong biological evidence
suggesting that insects rely heavily on estimates of the time-to-contact when landing
or avoiding obstacles [110]. Owing to the inherent scale ambiguity that characterizes

visual motion (see section 2.1.2), the information related to the scene structure that can
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be recovered from Egs. (2.7) is at most the time-to-contact.

The most common approach in the literature for estimating the time-to-contact is to
employ the first or even second order derivatives of the optical flow [238, 250, 11, 20].
Such methods share the drawback of being sensitive to errors in the estimates of optical
flow, since the latter are always corrupted by noise which is amplified by the process of
differentiation. Subbarao [238], for example, presents a theoretical derivation of upper
and lower bounds for the time-to-contact using retinal velocities and their first order
derivatives. Tistarelli and Sandini [250], exploit the geometric properties of special
space variant retinas to estimate the time-to-contact using the derivatives of the image
flow. Ancona and Poggio [11], employ a conventional image sensor and compute the
time-to-contact from the first order spatial derivatives of the optical flow. Arnspang et
al [21] assume an observer with constant egomotion and employ the concept of optic
acceleration [20] to develop a method for estimating the time-to-contact from the normal
flow field and its first order derivatives, without any knowledge of the camera intrinsic

calibration.

In an attempt to overcome the problems associated with the computation of retinal
velocity derivatives, Meyer [163] has proposed a technique for estimating the time-
to-contact from long monocular sequences. He assumes that the optical flow field
can be segmented into regions whose motion can be described by affine models. The
coefficients of these models along with their temporal derivatives are estimated through
a multiresolution scheme combined with temporal filtering by a Kalman filter. The
time-to-contact is then recovered using the estimated coefficients. It should be noted that
Meyer’s approach assumes that the viewed surfaces are smooth and far from the camera,
so that their motion can be approximated by affine models. An additional shortcoming is
that it is assumed that the vertical component of the translational velocity of the camera
is zero. However, even if the observer is moving on planar ground, this hypothesis is
valid only in the case that the camera optical axis is kept parallel to the ground. Cipolla

and Blake [51] take a different approach and relate the temporal derivative of the area of
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a tracked closed contour and its moments to the time-to-contact. Although they avoid
the computation of dense image velocity fields and their derivatives, their method is

likely to be sensitive to occlusions of the tracked contour.

At this point it should be pointed out that a few of the methods described above
(e.g. [51, 11]) estimate the time-to-contact in special cases only. This is because they
estimate the time-to-contact based on the image flow divergence. The divergence is one
of the differential invariants of the optical flow field [238] and expresses the isotropic
expansion or contraction of the flow around an image point. Although there is a
connection between the divergence and the time-to-contact which has been exploited
in [180] to achieve obstacle avoidance in a qualitative way, the time-to-contact can
be recovered from the divergence alone only in the case that the viewed surface is

frontoparallel with respect to the camera [163].

It is also worth noting that given the egomotion, i.e. the quantities UWf, VWf, a, 3 and
v, Egs. (2.7) can be solved for the time-to-contact. In practice, however, the egomotion
is computed from the optical flow and is therefore subject to errors. These errors are
thus propagated to the time-to-contact estimates. Besides, the estimation of egomotion
might require a considerable amount of time. Hence, our work is motivated by the need
to develop a method for time-to-contact estimation that will circumvent the problem
of egomotion estimation. Towards this direction, we propose a novel method which
assumes that the observer is moving on a planar ground. After estimating the time-to-
contact with points on the ground, the concept of planar parallax (see appendix A) is
employed to recover the time-to-contact with obstacle points. The method avoids both

the numerically unstable computation of high order derivatives of image flow and the

estimation of the egomotion.

The rest of this chapter is organized as follows. Section 6.2 develops a technique
for determining the time-to-contact with a planar surface and combines it further with
the concept of planar parallax for recovering the time-to-contact with points that do not

belong to the plane. Experimental results from a prototype implementation are presented
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in section 6.3, followed by a concluding discussion in section 6.4.

6.2 The proposed method

We start by presenting an overview of the proposed method for estimating the time-to-
contact. Following subsections present issues related to the method in more detail. The
basic assumption that we make is that the surface on which the robot is moving can be
locally approximated by a plane. Thus, the first step of the proposed method is to detect
obstacles in order to identify the image points that belong to the ground. To achieve
this, we have employed the technique developed in chapter 5 (see also [150]). Briefly,
this technique consists in recovering the ground homography for estimating the motion
of the ground between two successive images, then warping one of the two images so
as to compensate for the estimated ground motion and finally detecting obstacles as
those image regions that appear to be nonstationary after the motion compensation. The
second step of the proposed method is to estimate the coefficients of the parametric
model defining the motion of the floor. This is done by using Eq. (2.10) to fit an eight
parameter linear model directly to the spatiotemporal derivatives of image intensity. To
reduce the effects that noise in the estimates of the spatiotemporal derivatives might
have on the accuracy of the recovered coefficients, fitting is achieved through the use
of the Least Median of Squares robust estimator [209]. Using the estimates of the planar
flow coefficients, the time-to-contact with points on the plane is computed next. Finally,
based on the time-to-contact with plane points, planar parallax (see appendix A) is

employed to compute the time-to-contact with points not on the plane.

6.2.1 Time-to-contact with a planar surface

In this subsection, the time-to-contact with each point of a planar surface viewed by a

moving camera will be derived. Let (S, Sy) be the slopes of the plane at (X,Y") = (0, 0)
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and 7, the distance of the surface along the optical axis. The equation of the plane in the

3D camera coordinate frame that was defined in Fig. 2.2 is
Z = Zy+SxX+5Y

or

1 1

7 = 77U —Sxe=5v) (6.1)

in image plane coordinates. Substituting % from Eq.(6.1) into Egs. (2.7), the well-known

eight parameter linear model which describes the optical flow for a planar surface is

derived [239]:

Ut o= at + arxY + a3T + aqy + as
(6.2)
VT =yt + axy + agy + a7z + ag
where
04:—?—%5 s CLZZ%—%SY
a3 = Wo+UpSx , a4 =UySy +7v
(6.3)
as=—-Uof = Bf , as=Wo+ WSy
a; = VoSx — v , ag=-—Vof +af
and
U % W
Uy=— , o=— , Wo=—
0 ZO ) 0 ZO ) 0 Z()

In the following, we will assume that the camera rotation around its optical axis, i.e.
7, 1s zero. This is a reasonable assumption for a camera mounted on a mobile robot,
since in this case possible rotations are restricted to a combination of pan and tilt. The
problem of using the coefficients a; - - - ag of the optical flow field to recover the motion

and orientation of a moving planar surface has been extensively studied in the past
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[263, 143, 239, 194]. It has been proved that there exist two possible motions and plane
orientations that give rise to the same optical flow field. In other words, the problem
is ambiguous, having two possible dual solutions (see for example [239], p. 212). It is
also known that these two solutions share the same translational component 17, along
the optical axis. This component is equal to the middle root of a cubic equation whose
coefficients are defined in terms of the eight parameters a; of the optical flow field in
Egs. (6.2) (see [239], p. 220-221). Using the additional constraint v = 0, it will be shown

that given W, the ambiguity can be raised and a unique solution can be found.

As can easily be seen from Egs. (6.3),

% 1 az e — H/O
= _ 6.4
UO 2(a3 - WO + a4 ) ( )

and

SY 1 Q4 g — Wo
= 6.5
L o A — (6.5)

Denoting §—§ and % by A and « respectively, it can also be shown that

6l1f2 — a5 = Uof - WOSXf

(6.6)

a2f2 —ay = KU f — AWoSx f

Using the above system of two equations, Sx is found to be
g, = Q2f” —as — Kl f? — as) 67)

Wof(k—A)
and then Sy can be computed from the known ratio g_;i If required, solutions for U
and V; can be obtained in a similar manner. Knowledge of W, Sx and Sy enables us
to compute the inverse of the time-to-contact with the point of the planar surface that is
projected on image point (z,y) as

- w _% _
tter — Z7 f (f = S5z + 5vy) (¢

Knowledge of the time-to-contact with plane points is exploited in the next subsection

for estimating the time-to-contact with points not on the plane.
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6.2.2 Time-to-contact with points not on the plane

First we state and prove a lemma which will be combined later with planar parallax to

provide estimates of the time-to-contact with points not lying on a plane.

Lemma 6.1 Suppose that two image points lie on a line that goes through the origin
of the image coordinate system (i.e. the principal point). The difference of the
projections of their corresponding optical flow vectors along the direction that is

normal to the line does not depend on rotation.

Proof. Let p1 = (71, y;) and p2 = (72, y») be two points in the image and 1i = (n,, n,) be
a unit vector that is normal to the line £ defined by p; and p2. The assumptions that there
is no cyclotorsion in the egomotion and that £ goes through the image principal point,
result in the terms v and v in Theorem C.1 being equal to zero. Therefore, the rotational

component vanishes and the difference of the projections depends on translation only:

11 1 1
— — DW(— — —)=D(— — — _
T (Z1 Zz) (ttq ttcz) (69)

As shown in the proof of Theorem C.1, the term D in Eq. (6.9) expresses the distance of

the FOE from the line £ and is equal to (z — xo)n, + (y — yo)ny V (z,y) € L

Suppose now that gy is a point not lying on the plane and let g2 be a point on the line
defined by q; and the principal point. Let un; denote the projection of the optical flow
at q; along the direction that is normal to the line. Egs. (6.2) can be used to predict the
planar optical flow vectors at points q; and q2. Let unT and unj denote the projections
along the normal direction of these optical flow vectors. Using Eq. (A.1), the projection

of the residual optical flow field at point q; is equal to

1 1

—_— = — 1
tte ttc?) (6.10)

uny —unj = D(
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Also, according to Eq. (6.9), the difference of the planar flow projections in terms of the
corresponding times-to-contact is given by

1 1

uni —unj = D(—— — 6.11
! 2 (ttc;f ttcg) (611
Dividing the last two equations in terms yields
uny — uny el T e
1 — 1 tteq tte™
T T = r (6.12)

tter  tte

Consequently, after computing the quantities ﬁ and @ with the aid of Eq. (6.8), the
time-to-contact for point q; can be computed by solving Eq. (6.12) for ttc,. Note that in
the previous derivation it has been assumed that the FOE does not lie on the line defined
by q1 and the principal point, so that D is nonzero. In other words, the time-to-contact
with points on the line defined by the FOE and the principal point cannot be estimated

using the above method.

6.3 Experimental Results

A set of experiments has been conducted in order to test the performance of the described
method using both real and synthetic flow fields. Representative results from two of

these experiments are given in this section.

The first experiment aims to quantitatively evaluate the proposed method. In order
to achieve this, a simulator has been developed, which given appropriate values for
the intrinsic parameters of the simulated camera (focal length and principal point), the
translational and rotational motion parameters, the dimensions of the retina and the
depth corresponding to each image point, employs Egs. (2.7) to synthesize an optical
flow field. Range images are employed to supply the depths of image points. To make
the simulation more realistic, noise is added to the synthetic optical flows. The noise we

employ is generated according to the model suggested in [141]:

Unoisy = U + signy * N(a,b) x0.01 xu
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Unoisy = U + signa * N(a,b) % 0.01 x v

where sign; and sign, are binary values that are randomly chosen with equal probability
and N(a, b) is a Gaussian random variable with mean a and standard deviation b. This
noise model is referred to as ‘‘Gaussian noise with mean a% and o = b%”. As noted
in [141], 8% and 2% are realistic values for the noise mean and the standard deviation

respectively, accounting for most of the errors observed in actual flow fields.

For the first experiment reported here, a range image from the collection [84] has
been utilized and is shown in Fig. 6.1(a). To examine the effects of depth variations,
two different scenarios for the scene depth were simulated. In the first, all depths
have uniformly been scaled to the range [5000, 10000] pixels while in the second they
range within [5000, 20000] pixels. Throughout all trials, the simulated image size was
512 x 512 pixels, the principal point was assumed to be in the center of the image and the
focal length was 256 pixels, amounting to a field of view of 90 degrees. The 3D motion
parameters used to synthesize flow were (U,V,W) = (—120, 100, 150) (measured in
pixels per frame) and («, 3, ) = (0.005,0.004, 0.0) (measured in radians per frame). The
““ground” for this scene has been extracted manually. To assess the accuracy of the
recovered time-to-contact, the computed estimates have been compared with the known
ground truth values and the relative error has been computed as

W (6.13)
where tic is the estimated time-to-contact and ttc the correct value. The noise mean was
increased from 0% to 12% in steps of 1% and the standard deviation was kept equal to
2%. The average relative error computed from 10 runs versus the noise mean is shown
in Fig. 6.1(b) for both scenarios. As expected, the relative error increases with the noise
and assumes larger values for the scene having the largest depth variation. The latter is
due to the fact that points having large depths give rise to optical flow vectors having

small magnitudes, which are thus sensitive even to small amounts of noise.

The second experiment tests the method using two frames from the ‘‘marbled

block” sequence. Frames 20 and 30 of this sequence are shown in Figures 6.2(a) and
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Time-To-Contact relative error vs. noise mean

Depth in [5000, 10000] »—
Depth in [5000, 20000] -&--

0.16
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0.08
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0.04
/>K

6
Noise mean

(a) (b)

Figure 6.1: (a) The range image for the synthetic experiments; intensity is proportional to
depth, with distant objects being brighter. (b) The average relative error in the estimated

time-to-contact versus the noise mean.

(b). The sequence is described in [187] and contains many sharp discontinuities in depth
and motion. The sequence was captured by a camera mounted on a robot arm that was
moving above a textured floor in a right to left direction. The four dark blocks that lie
on the floor are stationary, while the white block in the middle of the scene is moving

independently with a right to left direction.

Optical flow was computed using an implementation of the Lucas & Kanade
algorithm [151] and is illustrated in Fig. 6.2(c). The obstacles detected by applying the
technique described in [150] are shown in Fig. 6.2(d), where white represents the union
of ground and textureless points and black corresponds to the detected obstacles. The
estimated time-to-contact for each point in the field view is shown in the form of an
image in Fig. 6.2(e). In this image, the intensity is proportional to the time-to-contact,
with dark points being closer compared to bright ones. Red pixels correspond to points
where the time-to-contact could not be computed either due to the lack of reliable optical
flow estimates or due to the denominator of the left hand side in Eq. (6.12) being very
close to zero. As can be seen from Fig. 6.2(e), the latter case is more frequent in a locus

of points along a line through the image center. This is due to the fact that this line goes
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through the FOE and as explained in section 6.2, the time-to-contact cannot be estimated

for points close to it.

Since the ground truth for the time-to-contact is unavailable, the results can only
be qualitatively evaluated. Clearly, the method has successfully recovered the spatial
ordering of the four stationary blocks, since closer blocks in Fig. 6.2(e) appear to be
darker than further ones. However, as indicated by the white color in Fig. 6.2(e), the
method is confused by the independent motion of the white block in Fig. 6.2(a), deducing
that is far away from the camera. This is because the block in question is moving in the
same direction with the camera (i.e. from right to left), which results in its combined
apparent motion being small. Therefore, the method mistakenly concludes that the
time-to-contact with the block is large, as if it were far from the camera. By fusing the
maps in Figs. 6.2(d) and (e), an autonomous system should be able to identify the free

space and also rank obstacles according to their potential for causing a collision.

6.4 Summary

The capability of obstacle avoidance is crucial for a robot moving in an unknown
environment. Knowledge of the time-to-contact with points in the robot’s field of view
is adequate for avoiding collisions with obstacles. In this chapter, a novel method for
estimating the time-to-contact has been presented. Assuming that the robot is moving
on a planar ground, the time-to-contact with ground points is first estimated using the
optical flow field and then planar parallax is exploited to recover the time-to-contact
with points not on the ground. The main advantages of the proposed method is that
it avoids the computation of high order derivatives of image flow and also does not
need to recover the 3D velocity of the camera. In addition, no strict restrictions on the
egomotion are posed. The method has been experimentally validated using both real

and simulated optical flow fields.
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(e)

Figure 6.2: The ‘‘marbled block” monocular sequence: (a), (b) frames 20 and 30,

(c) optical flow shown scaled and subsampled, (d) detected obstacles, (e) estimated

time-to-contact (see text for explanation)
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Conclusions

This thesis was concerned with visual navigation, that is the employment of vision
to achieve autonomous movement in the environment. The study of navigation is
interesting both from the practical standpoint of producing useful mechanisms, and
from the abstract standpoint of providing working systems that can be adequately
understood and described theoretically. The choise of employing visual motion as the
primary sensory input has been motivated by the fundamental role played by motion

processing in biological organisms.

It has been argued that the reconstructionist vision paradigm, according to which the
goal of vision is the recovery of an accurate representation which captures every detail
of the environment, is insufficient to study vision and visual navigation in particular.
Instead, the behavioral vision paradigm is better suited to study visual navigation. This
paradigm calls for the development of multiple, simple visual processes each of which
implements one of the behaviors the system is supposed to exhibit. Each behavior has
a distinct, well-defined goal and is tailored to the environment the vision system is
expected to operate in. In other words, each behavioral process is responsible for one of
the capabilities possessed by the system. Vision is thus realized by a set of cooperating

processes, which pursue the system’s goals in a synergistic manner.
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Based on the premise that the behavioral approach to vision has the potential to
lead to successful vision systems, this thesis is concentrated on the study of four visual
capabilities, namely independent motion detection, egomotion estimation, obstacle
detection and time-to-contact estimation. Independent motion detection refers to the
ability of a mobile system to detect objects that are moving independently of it in the
environment. Egomotion estimation deals with the problem of deducing the velocity of
a mobile system using the images of the surroundings that it captures as it is moving.
Obstacle detection addresses the problem of detecting obstacles obstructing the system’s
path. Time-to-contact estimation describes the ability of estimating the time that remains
before a mobile observer collides with objects in his field of view. These capabilities
can function as generic navigational tools for building various practical applications.
Collectively, they constitute a solid arsenal of primitive algorithms that is able to support

complex behavioral repertoires.

This thesis has also demonstrated the viability of a bottom up methodology for
studying vision. More specifically, it has made clear that the specification of a set of
visual processes that permit the incremental development of a navigation system, in
which there is no need for the whole system to be constructed before experiments can be
conducted. The research framework that was adopted is discussed in section 1.4.1 and
therefore it will not be repeated here. In the remainder of this section, a brief overview

of the contributions of the thesis is provided.

The problem of independent motion detection has been formulated as a problem
of robust parameter estimation applied to the visual input acquired by a rigidly moving
observer. The proposed method automatically selects a planar surface in the scene
and the residual planar parallax normal flow field with respect to the motion of this
surface is computed at two successive time instants. The two resulting normal flow
fields are then combined in a linear model. The parameters of this model are related
to the parameters of self-motion (egomotion) and their robust estimation leads to a

segmentation of the scene based on 3D motion. The method avoids a complete solution
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to the correspondence problem by selectively matching subsets of image points and by
employing normal flow fields. In addition, no constraints regarding the scene structure

or the observer’s motion are imposed.

The method proposed for estimating egomotion relies on a novel linear constraint
that involves quantities that depend on the sought egomotion. The constraint is defined in
terms of the optical flow vectors corresponding to quadruples of image points which lie
on lines going through the image principal point. Combined with robust linear regression
techniques, the constraint enables the recovery of the FOE, thereby decoupling the 3D
motion parameters. There is no need either for searching the high dimensional space
of possible egomotions or for imposing restrictions on the egomotion and/or the scene

structure.

The method for detecting obstacles uses two images of the environment and provides
a binary labeling of image points, classifying them either as obstacles or as free space.
Based on the assumption that the observer is moving on a locally planar ground, the
method is able to compute an estimate of the motion of the ground. Subtracting this
motion from the two images permits the compensation of the ground motion. Following
this, obstacles are detected as areas in the image that appear nonstationary after the
motion compensation. The method is particularly attractive, since it does not require
camera calibration, it is applicable either to stereo pairs or to motion sequence images

and it does not rely on a dense disparity/flow field.

For the case of time-to-contact estimation, a method has been developed that is
complementary to the obstacle detection capability and is capable of estimating the
time-to-contact without any knowledge of the egomotion. This method is again based
on the assumption that the observer is moving on a locally planar ground. First, the
time-to-contact with points on the ground is estimated. Then, the phenomenon of planar
parallax is exploited to yield the time-to-contact with obstacles. The method has the
desirable characteristic of avoiding the estimation of high order derivatives of image

flow, which are known to be very difficult to compute accurately.
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7.1 Further Research

The present section identifies and discusses possible extensions of the work described
in this thesis. To begin with, one direction of further research could be that of improving
the proposed navigational capabilities by eliminating any shortcomings that they might
have or by loosening the assumptions under which they operate. More details on such
improvements can be deduced from the descriptions of these methods in chapters 3, 4,
5 and 6. An other axis of future work would be to exploit deliberate motions of the
observer, according to the active vision paradigm [6]. It is probable that some of the
problems to be solved can be rendered simpler when the observer is actively involved

in the image acquisition process, so as to simplify related calculations.

The visual capabilities presented in chapters 3, 4 and 6 rely upon knowledge of the
intrinsic calibration parameters of the employed camera. However, this is an undesirable
assumption in the case of a mobile robot. This is because the intrinsic parameters might
change frequently due to changes in the camera zoom and focus, therefore any initial
calibration information is soon outdated. Obviously, requiring a calibration object for
periodic re-calibration is not practical. To remedy this, the continuous motion equations
in the uncalibrated case should be studied. Although calibrated cameras can deliver
more informative descriptions of the environment compared to uncalibrated ones', the
latter have proven to be sufficient for dealing with non-trivial vision tasks [289]. Hence,
it is a remarkable fact that despite the significant amount of research devoted to the
study of uncalibrated discrete motion, continuous uncalibrated motion has received little

attention [269].

Clearly, the behavioral repertoire of a system can be enriched by developing more
of the visual capabilities outlined in section 1.3.2. The simpler of these capabilities

employ precategorical visual processing, i.e. visual information is not linked to object

IFor example, it is known that using uncalibrated cameras, one can at most recover the scene structure
up to an unknown projective transformation [73]. In the case of calibrated cameras, scene structure can be

recovered up to an unknown scale factor [258].
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descriptions. However, in order to implement more complex capabilities such as
homing, visual recognition issues will have to be addressed. In addition, capabilities that
rely on other cues besides motion can also be investigated. Color, for instance, is a rich
source of information that has been successfully employed for object recognition [242].
Furthermore, non-visual sensing modalities can be employed in order to simplify and
accelerate vision tasks. Obstacle avoidance, for example, can be achieved with minimal
processing using sonar or laser range sensors, while egomotion estimation is easier and

perhaps more accurate when the rotational velocity is supplied by inertial sensors, i.e.

gyros.

Due to time and resource limitations, the integration of all the proposed navigational
capabilities on a mobile robot has not been attempted. Therefore, in spite of the fact
that the ties between the task and the information that must be extracted from visual
data have been established, visuomotor control issues have not been addressed. This
is also common in the literature, where the coupling between perception and action is
rarely studied in detail. Such studies, however, are essential for resolving many practical
issues concerning the coordination of behavioral processes. These issues include, but are
not limited to, action selection, resource allocation, real-time constraints, interprocess
communication, error recovery, motor control, etc. The related research effort should
aim at the specification of a framework that would allow the painless incorporation
of new visual capabilities in an already working system. Kosecka et al [135], for
example, propose a formalism based on Discrete-Event Systems for modeling the
coupling between different sensory and motor subsystems. This formalism provides
systems with composite visual behaviors and well-defined properties. In this respect,
machine learning techniques assume the important role of inferring the association
between visual patterns and patterns of motor control. Thus, a system can generalize
and employ its experience to react to unforeseen situations that are similar to situations

that have successfully been dealt with in the past.

All four visual capabilities developed in this thesis rely on a behavior-oriented
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notion of visual perception. This notion, however, has been applied only at the level
of algorithms and representations. The behavioral paradigm can be extended to cover
the visual sensors employed by an autonomous system as well. In other words, an
autonomous system could be equipped with visual sensors tailored to accomplish
different tasks. Factors determining the properties of each sensor, such as optics, the
shape of the retina, the pattern of light-sensitive retinal elements, etc, will be properly
selected to match the requirements of specific visual tasks. Early research in this
direction has produced fruitful results. For example, the space-variant sensor described
in [66], is characterized by high pixel density in the center of the CCD array and coarse
resolution towards the periphery. Thus, it achieves both a wide field of view and high
resolution foveal vision, while employing a limited number of pixels. As mentioned
in chapter 4, Nelson [179] has demonstrated that egomotion estimation is particularly
simple when a spherical eye is employed. Yet another example of an alternative camera
is supplied by the OmniCam [186], developed at Columbia University. This design
makes use of special optics to yield panoramic, i.e. 360°, views of the environment
from conventional CCD arrays. Apart from its obvious advantages in tasks such as
surveillance and monitoring, this camera can also be helpful for visual homing by
capturing in a single image all the visual information available from a specific location.
More details regarding existing designs of alternative visual sensors can be found in

[271].
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Appendix A

Planar Parallax

Most motion analysis methods express rigid image motion as the sum of two
displacement fields, namely a translational and a rotational one. Recently, however, it
has been shown that if image motion is expressed in terms of the motion of a parametric
surface and a residual parallax field, important problems in motion analysis become
considerably simpler [136, 215, 120, 146, 60]. In the following, the equations describing

the residual field are derived, assuming that the employed parametric surface is a plane.

Let IT be a 3D plane in front of a pinhole camera and let p be a point on the image
plane, as shown in Figure A.1. Assume that P and P™ € II are two 3D points located
on the optical ray defined by p, i.e. both P and P™ project on the same retinal point
p. This can happen, for example, when viewing a scene through a transparent surface.
Denoting the optical flow induced by the motion of points P and P™ by (u, v) and (u™, v™)
respectively, Egs. (2.7) can be employed to yield the residual flow (u", v") for points P
and P™ [120, 50]:

, W 11
u'= u—u :W(x—xo)(z—ﬁ)

(A1)
- . 1 1
U= v =Wy - )

where ~ and - are the depths of points P and P™ respectively. As can been seen from

1
VA
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o]

Figure A.1: Planar parallax. O and O’ are the camera focal points, IT a 3D plane and P7,

P are two 3D points with P™ € T1

Eq. (A.1), the residual flow field is purely translational. This is because the rotational
components are identical at both points, since they do not depend on depth and are
canceled out by subtracting the flow vectors. Consequently, all optical flow vectors of

the residual flow point towards the FOE.

In practice, it is difficult to identify image points where two distinct 3D points
project simultaneously. However, this difficulty can be alleviated by recalling that the
motion of a planar surface can be expressed parametrically by a linear model with eight
parameters [239]. Thus, assuming that the parameters defining the motion of the plane
in an image have been estimated, the motion that would be induced if the moving plane
covered the whole visual field can be predicted using the linear model. Then, subtracting
this predicted flow field from the actual optical flow field estimated from the image
sequence, yields a residual flow field which is zero at points belonging to the plane and

nonzero elsewhere (see also [120]).
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The Solution of the Vector Equation
Ax = 0 with |x|| =1

Let A be a N x M matrix with N > M and x a M x 1 column vector. The solution for x
of the (possibly overdetermined) vector equation Ax = 0 with ||x|| = 1, is equal to the

solution of the following optimization problem:
Minimize (Ax)'(Ax)=x"Bx subject to ||x|| =1, (B.1)
where B = AT A. In the following, it will be shown that the solution to this problem is

the eigenvector of the matrix B which corresponds to the smallest eigenvalue [292].

Recall that B is a M x M symmetric matrix, thus it can be decomposed as [90]
B=UEUT,

with E a diagonal array formed by the the A eigenvalues v; of B, i.e.
E = diag(vi,vy,...,vy) and U comprised by the eigenvectors e; of B, i.e.
U = [e},ey,...,ey|. Without loss of generality, let v; < v, < ... < wy. The

original problem described by (B.1) is now reduced to the following:

Find xi,2,,..., 2y with x =x1€1 + 280+ ...+ T €10,
such that x'Bx is minimized subject to 44 tayt=1
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Some algebraic manipulation reveals that

xI'Bx = 2,20 + 22°05 + . .. + Ty 200

Therefore, the problem becomes to minimize the following unconstrained function:
120+ 2ty 4 ooy MR a4yt - 1), (B.2)

where ) is the Lagrange multiplier. Equating the partial derivatives of the above function

with respect to zy, x; . .., z) and A to zero, yields

2.’L‘1U1+2l’1)\ =0
2x2v2+2x2)\ =0

2ZL‘MUM—|—2.’L'M)\ =0

s+ n’+ .y’ -1 =0
The above system of equations has M solutions, with the i—th solution given by
ri=1,2;, =0V j#1i and \ = —v;

The value of the objective function (B.2) corresponding to the i—th solution is v;. Since
the eigenvalues have been assumed to be ordered in ascending order, the function

assumes its minimum value for the first solution, i.e.
r1=1,2;=0 for j=2,....M

Thus, the sought solution to problem (B.1) is the eigenvector of B corresponding to the
minimum eigenvalue. In practice, the minimum eigenvalue is computed using Jacobi

transformations of the symmetric matrix B [200].
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Proofs of Theorems

This Appendix is devoted to the proofs of Theorems C.1 and C.2 which have been
employed in the developments of Chapters 4 and 6. Both Theorems are repeated below

for completeness.

Theorem C.1 Let £ be the line defined by a pair of image points py = (z1,y;)
and p, = (r3,v,). Let also un; and un, denote the projections of the optical flow
vectors at points p; and p, along the direction (n,,n,) that is normal to L. Then,
the difference of the two projections is independent of the « and (3 components of
rotation and, assuming that the equation of L is y = —Z—zx + v, equal to

1 1 UV Ny

AR o+ B+ Ly — )

f f Ty

uny — uny = [(x1 — To)ny + (Y1 — Yo)ny|W (

Proof. The projections of the optical flow vectors at points p; and p2 on the vector
(ng,n,) are equal to un; = u;n, + v;n,, @ =1, 2, which by substitution from Egs. (2.7)

yields

w
un; = Di?+Rf‘a+Riﬂﬂ+R;’%

where D; = (x; — zo)n, + (vi — yo)ny, i = 1, 2 and

2
a TiY; Y;
Ry = }lnx+(—+f)ny

f
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2

Rl = — ﬁ—irf Ny — iy
L Tﬁ Tﬁ
pl p2
D
g (FOE)

Figure C.1: The projections along 1 of all vectors defined by the FOE q and some point

on L are all equal to D.

As can be seen from Fig. C.1 where point q is assumed to be the FOE, qp1 i =q p2
-, i.e. D; = D, = D, which implies that the projection on 1 of all vectors defined
by the FOE and some point on £ are equal to the distance D of q from L. Therefore,
the difference of the projections un; and un, after some algebraic manipulation can be

shown to be equal to

ot ”f”yﬁ+ nly)(a;2 — ),

1 1 vV Ny
uny —unzzDW(Z—Z)+(

as ought to be shown.

A search scheme that exploits Theorem C.1 for recovering egomotion can be found in

[148].
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Theorem C.2 Let py = (z1,y1), P2 = (22,v2) and p3 = (x3,y3) be three collinear
image points lying on a line whose equation is y = kx + v. Let also (xo,yo) be the
FOE and assume that p, divides the vector pﬁh in ratio \. For the projections
un;,t = 1...3 of the optical flow vectors at points py, p, and p; along an arbitrary
direction (n,,n,), the following equation holds

1 A 1 1 1 DU da, el
— —un; — ———un; =
1+x 8 14058 Z, 14+XZ, 1+)\Z

un,

Hdzl(xz - $3) _ dzl(xz - 5U3)

[

In the above equation, D, = (x;—x0)n,+(y2—Yo)ny and dy = (x2—x1)ng+(Y2—y1)ny.

Proof. Due to the separability of the translational and rotational flow components, the

linear sum of the flow projections can be written as

1 A T YE

———un, — ——uny; = (Tp— i Aty
I TED L B R IS W

I+X 142X

un, )+ (I — ),

where 7; and R; are the projections of the translational and rotational part for point 7

respectively. More specifically,

W
T;=Di— with D; = (v1 — mo)ng + (y1 — yo)ny

i

and, employing the notation of Theorem C.1,
Ri=RYa+R'B+R]~y, i=1...3

Noting that D; = D, — dy; and D3 = D, + d—il, the sum of the translational parts can be

expressed as

n_ T A DWW 1 DIW A DW
2Tl EN 1N Z, 1N 7 1+ 73

1 A dy, 11

= DaWun, = qum = yum) + 5 Wi - 7)
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Regarding the sum of rotational parts, some algebraic manipulation reveals that it is

equal to

. R1 . )\R3 _ Hdzl(I2—$3)a_d21($2—$3)
1+X 1+ f f

R, 154

Adding the right hand sides of the two equations for the translational and rotational parts

above, yields the desired result.
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