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Abstract

The AdS/CFT correspondence has been a remarkable tool in understanding stongly cou-

pled quantum field theories through gravity. One of its most fascinating applications, are

considered to be quasinormal modes, which describe damped oscillations of a perturbed

gravitational background. Unlike normal modes, quasinormal modes are pure imaginary

and they provide us with vital information involving the decay of a field outside of a black

hole. In this thesis, we propose a definition of quasinormal modes in asymptotically AdS

spacetimes, with the boundary conditions imposed by the AdS/CFT dictionary. We then

proceed to compute the corresponding frequencies of a massless scalar field that perturbs a

five dimensional Schwarzschild AdS black hole and relate them to the poles of the retarded

Green’s function of the dual gauge theory at finite temperature. Furthermore, we investigate

the behavior of the retarded correlator for high and low frequencies and highlight that our

numerical results are verified in both regimes. In particular, we observe that in the low

frequency limit the viscosity over entropy ratio takes the universal value of 1/4π.
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Introduction

Characteristic modes of vibration of different objects are discernible all around us. Musical

instruments create sounds that are associated with the specific structure and composition

of the vibrating object. However, these modes govern not only strings and drums but also

black holes.

It is well known that when you perturb a black hole, it will undergo damped oscillations.

These oscillations are entirely fixed by the black hole and are independent of the initial

perturbation. When we study them, at first glance, they appear similar to normal modes of

fixed systems. Nevertheless, when the system is dissipative, the modes decay in time and

become complex. These frequencies are called “quasinormal modes” and they have been

studied extensively over the past years [1, 2, 3, 4, 5, 6].

The AdS/CFT conjecture [7, 8, 9, 10], stresses that certain string theories on specific

asymptotically anti de Sitter spacetimes are dual to quantum field theories in one lower

dimension. That is why this conjecture is sometimes referred to as a holographic correspon-

dence [11]. It connects a higher classical gravitational theory with a thermal gauge theory

in one lower dimension. A simple yet plausible example of such a duality that we are going

to employ in this review is given by the correspondence between the thermal N = 4 SU(N)

supersymmetric Yang-Mills (SYM) at finite temperature and the full type IIB string the-

ory on the AdS5 × S5 background. This background, as we shall see, is equivalent to the

Schwarzschild-AdS black hole with an infinite horizon radius.

Quasinormal frequencies of AdS black holes have a direct meaning in terms of the dual
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conformal field theory. According to the AdS/CFT duality, a black hole in AdS space cor-

responds to a thermal state in CFT at finite temperature. Specifically, small perturbations

of the black hole background can be interpreted as small deviations from thermodynamic

equilibrium in the dual theory. The timescale to thermodynamic equilibrium of the field

theory is given by the lowest quasinormal mode, since this mode is the least damped mode

and lives the longest. Furthermore, quasinormal spectra of the gravitational background,

give the location of the poles of the retarded correlators of the thermal gauge theory, pro-

viding useful information about the transport coefficients of the plasma. There have been

an abundance of studies [2, 12, 13, 14, 15] where various quantities of the strongly coupled

conformal field theory, such as the shear viscosity and conductivity, have been computed

using the gauge/gravity duality.

The outline of the paper is organised as follows. In Chapter 1 we present a brief intro-

duction to the AdS/CFT dictionary and compute various thermodynamic properties of the

Schwarzschild-AdS black hole. In the following chapter, we review the definition of quasi-

normal modes and describe the method we used in order to compute them numerically. In

Chapter 3, we formulate a recipe on calculating the retarded Green’s function numerically

and using our results we determine the viscosity over entropy ratio in the hydrodynamic

limit.
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Chapter 1

AdS/CFT dictionary

1.1 Preliminaries

In the year 1997 Maldacena [7] proposed a conjecture which equated two separate theories,

a gauge theory and a gravitational theory, known as AdS/CFT correspondence where AdS

stands for“Anti-de Sitter”, which is a spacetime with a constant negative curvature, and

CFT “Conformal Field Theory”, which is a quantum field theory that is invariant under

conformal transformations. In the original example, the full type IIB string theory on the

background of AdS5 × S5, where S5 is the five dimensional sphere, is conjectured to be

equivalent to the N = 4 SU(Nc) supersymmetric Yang-Mills theory in four dimensions. Let

us unravel these two sides of the correspondence in more detail.

First of all, the N = 4 SYM theory is a gauge theory of rank N which is scale invariant

both classically and quantum mechanically. Therefore, the physics do not change with the

change of the length scale. The N = 4 means that there are four supersymmetries, which

are the maximum amount of symmetries in a four dimensional field theory. This particular

gauge theory consists of a gauge field, six scalar fields and four Weyl fermions and they

transform as a adjoint representation of the SU(Nc) gauge group.

On the string theory side, we have the full IIB string theory with parameters namely
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the string length ls and the string coupling gs. The reason why we study 10 dimensional

spacetimes is because superstring theory is quantized consistently in these regimes. In

general, we consider the classical gravity approximation of string theory where the curvature

of the space is much larger than the string length.

The parameters of the gauge theory are the t’ Hooft coupling λ ≡ gYMNc and the number

of colours Nc. In the AdS/CFT correspondence, these parameters are mapped into the string

theory parameters gs and L as follows

N2
c =

πL3

2G5

(1.1)

and

λ ∼ gsNc ∼
L4

l4s
(1.2)

where L is the characteristic radius of AdS5 spacetime. When we study these separate

theories, we essentially choose one theory into being weakly coupled and the corresponding

theory becomes strongly coupled. That is the reason why it is often called as a strong/weak

duality.

The relations above are essential in order for someone to understand the classical gravi-

tational description of this duality. To do so, one needs to take the limit λ → ∞, Nc → ∞.

That means that, when the size of AdS space is much larger than the string scale L ≫ ls,

the graviton can be treated as a point particle and string theory can be approximated by

classical supergravity. Generally speaking, this duality provides a way of corresponding

ten dimensional classical gravity and a gauge theory at strong coupling in four dimensional

spacetime.

This equality is mainly understood as an equivalence of quantum partition functions

ZCFT = ZAdS5×S5 (1.3)
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where ZCFT is the generating functional of the gauge theory and ZAdS5×S5 is the generating

functional of the gravitational theory. More accurately, one could write the above statement

as

< e−
∫
ϕ0Od4x >CFT= e−Sgrav [ϕ|z=0=ϕ0] (1.4)

where ϕ acts as a particular field in the gravitational theory and O is a gauge-invariant

operator of the field theory. This equivalence means that the classical gravity action Sgrav

serves as a generating functional for correlation functions of operators O of the dual theory.

On the left hand side of 1.4, ϕ0 plays the role of the external source of the operator O.

On the right hand side, ϕ0 represents the boundary value of the background field ϕ of AdS

space. Namely, AdS/CFT claims that a four dimensional external source can have a five

dimensional origin. For example, the field ϕ can be replaced by the metric fluctuation hµν ,

which in turn corresponds to the boundary operator Tµν of the gauge theory.

An important property of this duality is the existence of D3-branes. In general, D-branes

are locations in ten dimensional spacetime where open strings can end and there motion is

restricted on the brane. Low energy excitations of a D3-brane can be described by a U(1)

gauge theory. If Nc coincident D3-branes are placed on top of one another then one finds

that it describes the N = 4 U(Nc) supersymmetric Yang-Mills gauge theory. It splits into a

U(1) gauge theory which describes the motion of the stack of the D3-branes and an SU(Nc)

part which is interacting and expresses the relative motions of the branes.

1.2 The SchAdS5 black hole metric and thermodynamic

quantities

In this section, we introduce the five dimensional Schwarzschild AdS Black Hole. In the

holographic correspondence, this metric corresponds to the dual N = 4 SYM gauge theory

at finite temperature, so computing thermodynamic quantities of the black hole one can
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derive thermodynamic properties of the N = 4 SYM theory.

The relevant non extremal metric of the black three-brane background at finite temper-

ature is the following

ds210 =
L2

z2
[−fdt2 + dx2

1 + dx2
2 + dx2

3] +
L2

z2
f−1dz2 + L2dΩ2

5 (1.5)

where f(z) = 1− z4/z4H and dΩ5 is the metric of the unit S5 with radius L. The horizon is

located at z = zH where f = 0. The N = 4 SYM is defined in flat Minkowski space with

coordinates t, x1, x2, x3 and the fifth radial coordinate z represents the energy scale of the

gauge theory. More specifically, the boundary z = 0 corresponds to the ultraviolet (UV)

of the CFT and the horizon corresponds to the infrared (IR). When we say non extremal,

we essentially mean a background at non zero temperatures. If one reduces the five sphere

part by dimensional reduction, the metric turns into the five dimensional Schwarzschild AdS

Black Hole with translationally event horizon

ds25 =
L2

z2
[−fdt2 + dx2

1 + dx2
2 + dx2

3] +
L2

z2
f−1dz2 (1.6)

obeying the Einstein equations

Rµν −
1

2
Rgµν + Λgµν = 0. (1.7)

with a negative cosmological constant Λ = −6/L2. Three flat directions x can be identified,

in contrast with the usual Schwarzschild metric. That is the reason why it is refered as the

black three-brane metric. With this metric we can also compute some useful thermodynamic

quantities of the dual N = 4 SYM at strong coupling.

We can derive the Hawking temperature in the following simple way. First, we introduce
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the Euclidean time tE = it so the metric 1.6 can be extended in the Euclidean space time as

ds2E =
L2

z2
(1− z4

z4H
)dt2E +

L2

z2
1

(1− z4

z4H
)
dz2 + ... (1.8)

Near the horizon z ≃ zH , the function f(zH) becomes zero. Thus, one can approximate the

above metric near the horizon by redefining z = zH(1− ρ2/L2) and at the lowest order in ρ

we have

ds2E ≃ dρ2 +
4ρ2

z2H
dt2E +

L2

z2H
(dx2

1 + dx2
2 + dx2

3). (1.9)

With this metric transformation our new coordinates take the form of a plane in polar

coordinates ds22d = dρ2 + ρ2dϕ2, if 2tE/zH has a periodicity of 2π (i.e ϕ = 2tE/zH = 2π).

The reason we set this constraint is because we require that the Euclidean spacetime, that

we just introduced with the metric (1.9), has to be smooth, otherwise it will have a conical

singularity at ρ = 0. The periodicity of tE is given by ∆tE = πzH and remembering that in

a Euclidean thermal field theory the temperature is given by ∆tE = β = 1/T , we get

T =
1

πzH
(1.10)

or

zH =
1

πT
. (1.11)

We observe that for high temperature T the black hole horizon is close to the boundary of

AdS space, while for low temperature the horizon is deep into the bulk.

Now, let us calculate the entropy S of the black hole, as well as the entropy density

s which will be a particularly useful quantity later in our discussion. From the Hawking-

Bekenstein area law [16], the entropy is given by

S =
A

4G5

, (1.12)
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where A is the horizon area and can be computed via the expression

A =

∫
dx1dx2dx3

√
|g3d|, (1.13)

where g3d = L6/z6 is the determinant of the part of the metric (1.6) in three dimensions

(x1, x2, x3). Thus, the entropy of the five dimensional Schwarzschild AdS Black Hole is

written as

S =
1

4G5

L3

z3H
V3, (1.14)

where V3 is the gauge theory volume. The entropy density is s = S/V3, so one may write

s =
1

4G5

L3

z3H
(1.15)

In this particular metric, z runs from z = 0 which is the boundary of AdS5 space to

z = zH . According to the AdS/CFT dictionary the four dimensional quantum field theory

“lives” at the boundary of the five dimensional AdS space. From this point forward we set

L = 1 for simplicity.

9



Chapter 2

Quasinormal modes

2.1 Defining quasinormal modes

Quasinormal modes are characteristic modes that characterize the decay of a perturbation

outside of a black hole. In general, they are solutions of a second order differential equation

that describe a classical perturbation given a specific gravitational background imposing of

course certain boundary conditions. In the case where the geometry is asymptotically flat,

the choice of boundary conditions is physically motivated: nothing should emerge from the

black hole and no radiation should originate from infinity. However, in an asymptotically

AdS spacetime we have to examine the boundary conditions more scrupulously.

In asymptotic AdS5 space, the horizon is located at zH , so a condition would be that no

outgoing waves should exit the black hole. On the other hand, at the boundary, a vanishing

Dirichlet boundary condition would be a natural choice. These boundary conditions, happen

only for a discrete set of complex ω called quasinormal frequencies.

Since we are interested in the correlation between classical high-dimensional gravity and

the dual four-dimensional gauge theory, a general definition for quasinormal frequencies pro-

posed by [2] is the following: Quasinormal frequencies of a perturbation in an asymptotically

AdS space are defined as the locations in the complex frequency plane of the poles of the
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retarded correlator of the operators dual to that perturbation. In the AdS/CFT context, the

retarded correlator or the so called Green’s function of the gauge theory translates into the

incoming wave boundary condition at the horizon. In the following section we compute the

quasinormal modes numerically for the massless scalar field.

2.2 Quasinormal modes of massless scalar field

The five dimensional action with a general scalar field ϕ can be written as

S =
1

16πG5

∫
d5x

√
−g

(
R− 1

2
∂µϕ∂

µϕ− V (ϕ)

)
(2.1)

where g ≡ detgµν and G5 is the five dimensional gravitational constant. For simplicity, we

set 16πG5 = 1. Varying the above action with respect to gµν we get the following expression

for the stress-energy tensor

Tµν = gµν

(
−1

2
∂αϕ∂

αϕ− V (ϕ)

)
+ ∂µϕ∂νϕ. (2.2)

In order for the SchAdS5 black hole to be a solution of Tµν , the potential of the scalar field

must be V (ϕ = 0) = −6/L2. On the other hand, varying the action with respect to ϕ we

get

1√
−g

∂µ
(√

−ggµν∂νϕ
)
= V ′(ϕ) (2.3)

or

1√
−g

∂µ
(√

−ggµν∂νϕ
)
= 0 (2.4)

where we have set V (ϕ) as a constant. In general, one may solve equation (2.4) using Fourier

decomposition which reads,

ϕ(z, t,x) =

∫
d4k

(2π)4
e−iωt+ikxϕk(z) (2.5)
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where k is the spatial momentum and x denotes the spatial coordinates of the metric. For

simplicity however, we set k = 0 and then substitute the “plane-wave” ansatz ϕ(xµ) =

e−iωtϕ(z) into (2.6) to obtain the following second order differential equation

z8Hω
2

(z4 − z4H)
2
ϕ(z) +

z4 + 3z4H
z5 − zz4H

ϕ′(z) + ϕ′′(z) = 0 (2.6)

where zH is the horizon of the SchAdS5 black hole and as we see it is also a regular singularity.

One can study this differential equation near the horizon (i.e. z → zH) and expand it as a

series ϕ(z) ≈ (z − zH)
α. The first few terms have been computed below

(zH − z)α

(
α2 +

z2Hω2

16

(z − zH)2
− 3(8α + z2Hω

2)

16zH(z − zH)
+O(z − zH)

)
= 0. (2.7)

The leading term of this expansion is

α2 +
z2Hω

2

16
= 0 (2.8)

which has two solutions α = iωzH/4 and α = −iωzH/4 so

ϕ+(z) ≈ (z − zH)
iωzH

4 and ϕ−(z) ≈ (z − zH)
− iωzH

4

From these two solutions we must obtain the physically acceptable one, i.e. the infalling

one, since nothing can escape the black hole. In order to find it, we rewrite them as follows

ϕ+(z) ≈ e(iωzH/4)log(z−zH) , ϕ−(z) ≈ e−(iωzH/4)log(z−zH)

Observe that ϕ(xµ) behaves as

ϕ ≈ e−iω(t± zH
4

log(z−zH))
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and if we want a constant phase to the exponential as t → ∞ we must keep the minus sign

i.e. for α = −iωzH/4.

Having identified the physically acceptable solution, we plug it into our differential equa-

tion (2.6) as ϕ(z) = (z − zH)
− iωzH

4 F (z) so it can help our numerical methods in becoming

more stable

−
z2H(z2 + 2zzH + 3z2H)ω(4(z − izH)(−iz + zH)(z + zH) + z(z3 + z2zH + zz2H + 5z3H)ω)

16z(z − zH)(z + zH)2(z2 + z2H)2
F (z)

+
2z4 + 6z4H + z(z − izH)zH(−iz + zH)(z + zH)ω

2(z5 − zz4H)
F ′(z) + F ′′(z) = 0.

(2.9)

This corresponds to looking for a Frobenius type solution of the form

F (z) =
∞∑
n=0

an(z − zH)
n. (2.10)

Numerically however, it is convenient to use a finite expansion

F (z) =
N∑

n=0

an(z − zH)
n, (2.11)

whereN can be set as high as we wish, but also make our numerics more precise. Substituting

(2.10) into (2.9), one may solve the coefficients of the above expansion an order by order in

terms of for example a0. Since the equation is linear, we can set a0 = 1 and we still have a

solution.

Evidently, our solution depends on ω and zH , the former being a property of the fluctu-

ation and the latter is related to the temperature of the black hole (i.e. zH = 1/πT ). These

two parameters have the same dimensions and one can rewrite them as a dimensionless ratio

ω̂ = ω/πT . As we can clearly see from Figure 2.1, our numerical approach provides us with

a good approximation of the true solution near the horizon zH . We can always increase the

value of N in the expansion so that our approximation near the horizon fits better with the

exact solution.
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Figure 2.1: The blue line is the numerical solution F (z) where we have set ω = 5− 5i and
zH = 1. The red dashed line is the near horizon expansion z → zH for N = 10.

In our coordinates we can set z = 0 for the boundary and zH = 1 for the horizon. In

order to find the quasinormal modes, one must solve the differential equation (2.9) in the

interval z = [0, 1] taking into consideration the appropriate boundary conditions.

The most simple and straightforward method of computing the quasinormal frequencies is

the shooting method. The basic idea behind this technique is essentially taking a boundary

value problem and turn it into an initial data problem with some educated guess of the

initial condition. In our case, we can specify our data at the horizon, considering that we

already found an approximation near it. Numerically, it is convenient to specify our data

very close to the horizon, since it is a singularity of equation (2.9), so we choose zmin = zH−ϵ

where zH = 1 and ϵ = 5 · 10−1. The value of ϵ is modified as such in order to give us the

best possible accuracy. Implementing this technique using the built-in function NDSolve

of Mathematica and integrating to the boundary zmax = 10−8, we get a numerical solution

of equation (2.9) for any given ω.

To search for quasinormal modes, one needs to create a function that provides the value

of the above solution at the boundary zmax for multiple ω. The zeros of this function tell

us the quasinormal modes. In order to identify approximately where the locations of the
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modes are, we simply use the “graphical inspection” method and subsequently apply the

FindRoot built-in function to gives us a precise value of the frequencies. A simple example

of such an inspection can be seen in Figure 2.2.

The first 10 quasinormal frequencies ω̂n that have been obtained are listed in Table 2.1

and ωn is written as

ωn = ωn,R − iωn,I (2.12)

so that ωn,I is positive for all n. According to AdS/CFT correspondence, the “minus” sign

represents the inverse damping time of the field theory side and the approach to thermal

equilibrium. We also observe that the frequencies appear to be symmetric about the

n Reω̂n Imω̂n

1 ±3.119452 -2.746676

2 ±5.169521 -4.763570

3 ±7.187931 -6.769565

4 ±9.197199 -8.772481

5 ±11.202676 -10.774162

6 ±13.206247 -12.775239

7 ±15.208736 -14.775979

8 ±17.210558 -16.776515

9 ±19.211943 -18.776919

10 ±21.213032 -20.777237

Table 2.1: The 10 lowest quasinormal frequencies ω̂n.

imaginary ω̂ axis, a property that does not seem to be trivial from (2.9). They seem to be

pairs of complex-conjucate solutions of (2.9). For the lowest ones our approach works well
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(a) The first 10 quasinormal frequencies. (b) A 3D plot of the first 3 lowest quasinormal
frequencies in the complex ω̂ plane.

Figure 2.2: Two graphs that depict the first few quasinormal modes.

and they are comparable with the work of Starinets [2] as well as the result of Horowitz and

Hubeny [1] for large 5d Schwarzschild AdS black holes. However, as we go to higher n terms

the results do not match well, since we need to go higher than N = 10 from 2.11 to achieve

better accuracy.

Another way of computing the quasinormal modes of the Schwarzschild AdS black hole

is to approximate the series near the horizon by a finite sum, as explained above, and solve

the equation below

Fn(0) ≈
N∑

n=0

an(ω) = 0 (2.13)

numerically for zH = 1. This method works for a large number of N and so it is somewhat

difficult for a computer to analyze it. Also, one may observe that some of the roots of (2.13)

do not match with the frequencies of the exact solution. Those particular roots are called

“false frequencies” and may be neglected for our particular purpose. However, knowing these

frequencies gives us confidence about the accuracy of the values of the quasinormal modes

that we have computed above.
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Chapter 3

Prescription for calculating the

Green’s function and the

viscosity/entropy ratio

In this chapter, we will examine the retarded Green’s function of the strongly coupled gauge

theory and provide a recipe on how to compute it numerically. With our numerical results,

we calculate the viscosity over entropy ratio in the hydrodynamic limit.

Let us take a closer look at what happens at the boundary z = 0. If we expand equation

(2.6) as a series near the boundary ϕ(z) ≈ z∆, we will get

z∆
(
∆(−4 + ∆)

z2
+ ω2 − 4∆z2

z4H
+O(z4)

)
= 0. (3.1)

The leading term of the expansion is

∆(−4 + ∆) = 0 (3.2)

so the two solutions are ∆− = 0 and ∆+ = 4. The local solution that satisfies the near the

horizon boundary condition (2.10) can be expressed as a linear combination of the other two

17



local solutions at the boundary

ϕ(z) = AFI(z) + BFII(z), (3.3)

where

FI(z) = z∆−(1 + ...) (3.4)

FII(z) = z∆+(1 + ...) (3.5)

and the ellipses denote higher powers of z. The coefficients A and B typically depend on

the parameters of the ODE (i.e. ω and zH).

Applying the gauge-gravity duality recipe for Minkowski correlators [17], one finds that

the retarded Green’s function of the operator O of the field theory that is dual to the

perturbation ϕ(z) is given by

GR(ω) ≈ 2ν
B(ω)
A(ω)

+ contact terms. (3.6)

The factor in front of the above two point function reads 2ν = 2∆ − d = 4, where ∆ is

the conformal dimension of the massless scalar and d = 4 is the dimension of the gauge

theory. Zeros of the coefficient A(ω) correspond to poles of the two-point function GR(ω).

On the contrary, from the general relativity side, A = 0 is precisely the vanishing Dirichlet

condition that we imposed for our ODE (2.6) at z = 0.

One may compute the coefficients of A and B simply by substituting the expression (3.3)

into (2.6) and then expanding it as a series in terms of z. However, in order to calculate the

coefficient B numerically, we need to add logarithms into our FI(z) series. The series that

we obtained can be written as

−3A1

z
+ (ω2A0 − 4A2) + (ω2A1 − 3A3)z + (ω2A2 + 4A4)z

2 + ... = 0 (3.7)
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where ... denotes higher powers of z. After that, we solve the A terms order by order in

terms of A0. Note that every coefficient in our series is set to zero, since our series is linear.

The equation that we derived looks something along the lines of the following expression

ϕ(z) = A0 +A0
ω2

4
z2 −A0

ω4

16
z4 log(z) + ...+ B0z

4 + ... (3.8)

Note that odd terms of z vanish; only even terms survive. The A0 coefficient can be found

in the same way that we computed the quasinormal modes, by identifying the numerical

solution of ϕ(z) at the boundary. For every given ω there is a A0, which is indeed complex.

The procedure is not the same for the B0 case. One way to find it is to subtract the A0

terms from ϕ and then divide it by z4 which is the first B0 term from the expansion of (3.8)

ϕ(z)− (A0 +A0
ω2

4
z2 −A0

ω4

16
z4 log(z) + ...)

z4
= B0. (3.9)

We can call the numerator of the above expression as ϕUV A, which now depends on ω,A0

and z. Plotting this new function with specific ω and A0 gives us the coefficient that we

are looking for. Two key features can be observed from Figure 3.1. The first one is that as
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-20
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Figure 3.1: Example of plots where we take the imaginary part of the new function that we
mentioned above ϕUV A over the radial coordinate z with fixed ω and A0.

we approach closer and closer to the boundary z = 0 the curve diverges. The second and

most important feature is that both graphs show a constant line which stops at a point and
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proceeds to diverge. That particular point gives us a rough estimate of the B0 coefficient.

However, while this “graphical inspection” method can give us an insight on the quantity

that we seek, it is prone to numerical error and rather time consuming.

Another similar but more precise method can be applied in this case. First, we create

a list of points from the numerical solution of ϕ for multiple z, points that are close to the

boundary, and then use the built-in Mathematica function FindFit to search for the best

possible value of B0 that fit the data that we specified above in equation (3.8).

Now, we have the necessary tools to obtain the Green’s function G(ω) for any given ω.

One may compute the Green’s function for the quasinormal modes that we found in Table

2.1 and notice that the correlator blows up to infinity due to the fact that A0 becomes

approximately zero.

A useful quantity that is related to what we have discussed so far in this section is the

imaginary part of the Green’s function, since it provides us with important information

about the transport coefficients of the N = 4 SYM theory, such as the shear viscosity η

[14, 13].

10 20 30 40 50
ω

100000

200000

300000

400000

500000

600000

ImG

Figure 3.2: The imaginary part of the two-point function Im(G(ω)) over the frequency of
the perturbation ω̂ = ω/πT .

In order to find this relationship between them, we need to take a closer look at Figure

3.2. The curve that is starting off near zero and blows up to infinity appears to be similar to
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a power law behavior. Plotting our data into a logarithmic plot we can see this point more

clearly.

1 5 10 50
ω

10

104

ImG

Figure 3.3: Log-Log plot of the imaginary part of the Green’s function Im(G(ω)) over the
frequency ω̂ = ω/πT .

In the following graph 3.3, there are two regions where the function looks to be linear,

one for low ω̂ and one for high ω̂. This clue suggests that these two regions have a separate

power law behavior.

In order to identify these power law behaviors, one can zoom into these two distinctive

areas. The power law equation that governs these areas could be written as

ImG = qωa, (3.10)

where q and a are both numerical constants. To determine these constants, one has to

rewrite equation (3.10) in logarithmic terms, so it becomes linear

log(ImG(ω)) = a log(ω) + log q. (3.11)

In order to extract the a and q values, we can perform a linear model fit for different ω.

Below, in Fig 3.4 we present logarithmic figures for both high and low frequencies. The

numerical values of the constants evaluated are a ∼ 1.00003, q ∼ 1.00018 for small ω̂ and
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a ∼ 3.97885, q ∼ 0.43336 for high ω̂. We observe from the values above that for very small

frequencies, the power law equation (3.10) becomes linear.
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Figure 3.4: The left graph is a logarithmic graph of the imaginary part of the Green’s
function over the frequency for small ω̂, while the right plot is for high ω̂; the red dots
represent the numerical data computed and the blue line the linear fit.

In the hydrodynamic limit ω → 0 (i.e. for very small frequencies) we can compute the

ratio of Im(GR(ω))/ω = q, since we found it is a constant. Then from Kubo’s formula, the

shear viscosity of the N = 4 SYM gauge theory is given by

η ∼ lim
ω→0

1

ω
ImGR

xy,xy(ω, k = 0) (3.12)

where GR
xy,xy is the Green’s function of the stress-energy tensor Txy, which acts as a response

to the metric perturbation hxy
1 . But, the equation of motion of hxy is identical to the

equation of motion we derived for the scalar field (2.6). One may now compute the ratio

of the shear viscosity over the entropy density η/s. Combining equation (1.15), with L = 1

and zH = 1, and recalling that G5 = 1/16π, we find the famous ratio

η

s
=

1

4π
(3.13)

in the limit of infinite ’t Hooft coupling λ and infinite number of colours Nc.

1The metric perturbation may take the form of gµν = g
(0)
µν +hµν , where we have taken the five dimensional

metric 1.6
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By applying the AdS/CFT dictionary from equation (1.1) and the temperature of the

black hole (1.11), we obtain the entropy density in terms of the temperature

s =
π2

2
N2

c T
3. (3.14)

Thus, the value of η itself from equation (3.13) is given by

η =
π

8
N2

c T
3. (3.15)

We have seen what happens at low frequencies, but what about high frequencies ω ≫ T?

If we take the scalar field fluctuation (2.6) and make a change of variables ζ = zω and

ζH = ωzH the equation transforms to

ζ8Hϕ(ζ)

(ζ4 − ζ4H)
2
+

(ζ4 + 3ζ4H)ϕ
′(ζ)

(ζ5 − ζζ4H)
+ ϕ′′(ζ) = 0. (3.16)

One can study this equation for very large ζH → ∞ and observe that it can be reduced to

ζ2ϕ(ζ)− 3ζϕ′(ζ) + ζ2ϕ′′(ζ) = 0, (3.17)

which is exactly the equation of motion of a scalar field in pure AdS space (without the

black hole). Making a change of variables ϕ(ζ) = ζ2g(ζ) in equation (3.17), we get

ζ2g′′(ζ) + ζg′(ζ) + (ζ2 − 4)g(ζ) = 0. (3.18)

The solutions of the above equation are just the Bessel functions and the equation has a

regular singularity at ζ = 0 and an irregular singularity at ζ = ∞. It is convenient to use the

Hankel functions H
(1,2)
2 since they can take the plane-wave form for large ζ. By reinstating
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the original variables ζ = ωz the Hankel function asymptotically behaves as

H
(1,2)
2 (ωz) ∼

√
2

πωz
e±iωz∓5πi/4. (3.19)

We want to impose the “incoming wave” boundary condition there, so we pick out the

solution of interest g ∝ H
(1)
2 (ωz) and the full solution takes the form

ϕ(z) ∼ z2ω2H
(1)
2 (ωz). (3.20)

Furthermore, we can expand the Hankel function close to the boundary z → 0 of AdS space

and the first few terms are written below

ϕ(z) ∼ −4i

π
− iz2ω2

π
+

z4ω4

8
− 3iz4ω4

16π
+

iγz4ω4

4π
+

iz4ω4 log( zω
2
)

4π
+ ..., (3.21)

where γ is Euler’s constant and ... represents higher orders of z. From this expansion and

equation (3.8) we can extract the A0 and B0 terms. If we want to examine the imaginary

part of the Green’s function, one would get

Im(G(ω)) ≃ 2ν
B0

A0

=
πω4

8
(3.22)

which gives us the correct power law behavior for high frequencies. One may also extract the

real part of the Green’s function, simply by taking the leading term of the Hankel expansion

from 3.21 (i.e. iω4 logω) and divide by the constant term A0 = −4i/π.
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Conclusions

In this thesis, we gave a definition and numerically computed the quasinormal modes of

the five dimensional Schwarzschild- AdS black hole. These modes, govern the late time

decay of a massless scalar field and have a direct interpretation as the poles of the retarded

thermal correlator in the holographically dual gauge theory. Moreover, we presented a

general approach on computing the retarded Green’s function of the strongly coupled N = 4

SYM gauge theory numerically applying the AdS/CFT framework and validated our results

by calculating the viscosity over entropy ratio η/s in the hydrodynamic limit.

The viscosity over entropy ratio has been computed in other strongly coupled quantum

field theories that have pure Einstein gravity duals, including Dp branes [18]. In these

examples the ratio is given by the same number 1/4π, which implies that this result is

universal and is independent of the metric or the dimensionality of the spacetime. Moreover,

there is an increasing amount of experimental data [19] that suggest that the strongly coupled

quark-gluon plasma, or better known as QGP, approaches this constant ratio. This fact, in

some sense, proves the power of the gauge/gravity duality.
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