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Abstract 

Historical note. At the close of 2019, WHO China Country Office was informed of a 

pneumonia of unknown cause, detected in the city of Wuhan in Hubei province, China. On 10 

January 2020 WHO declared the outbreak of 2019-nCoV (the first name assigned to the new 

disease), and on February 11 ,2020, it named the disease as COVID-19 (Coronavirus Disease 

2019). WHO declared the outbreak a Public Health Emergency of International Concern on 

30 January 2020, and a pandemic on 11 March 2020. Latest data from ‘Our World in Data’ 

report about 238 million SARS-CoV-2 confirmed infections and about 4.3 million deaths 

attributed to SARS-CoV-2 [access to ‘Our World in Data COVID-19 data explorer’ on 27 

December 2021]. 

Background. This postgraduate thesis is concentrated on SARS-CoV-2 infection. In 

particular, it focuses on exploring and investigating the molecular landscape that characterizes 

and governs the genes/proteins interactions and biological the processes taking place during 

the different infection stages. One basic quest of the thesis concerns the molecular patterns 

that differentiate SARS-CoV-2 infection stages, and which may guide to the so-called 

‘cytokine storm’ that underlie the infection’s acute respiratory syndrome. 

Methodology. The thesis is organized around four-(4) biological questions that we 

formulated and posted, and which are directly related to SARS-CoV-2 infection, namely: (i) 

Does SARS-CoV-2 exhibits a two-stage infection profile? (ii) SARS-CoV-1 vs. SARS-CoV-2: 

Do they differ? (iii) Does and how SARS-CoV-2 differs from Influenza infection? and (iv) Does 

SCOV2 two-stage profile relates to Covid-19 severity? We attempted to provide answers to 

these questions by analyzing and exploring the gene-expression profiles of (preserved cell-

lines or human) samples infected with wild-type SARS-CoV-2 (or SARS-CoV, the first SARS!) 

strains. All relevant datasets come from the GEO (gene expression omnibus) database 

repository of high throughput gene expression. We followed a Bioinformatics approach for the 

analysis of gene-expression profiles focusing mainly on the identification of differentially 

expressed genes (DEG) and enrichment/pathway (EP) analysis, organized around a 

multi-step analysis pipeline. We back-up and validate our findings with biological 

interpretation via the most relevant bibliographic references. DEG and EP analysis was 

performed using state-of-the-art analytical methods and tools like DESeq2, limma, EdgeR and 

the iDEP (integrated differential expression and pathway analysis) server. Finally, and relying 

on a Machine Learning framework and relevant techniques, we attempted to devise 

classification models that could forecast the severity of COVID-19 cases based on 

predictions for the expected duration of infection symptoms. 

Results. The fundamental finding of our research refers to the identification of a two-stage 

SARS-CoV-2 infection profile, an EARLY (or, EARLY-MID) and a LATE (or, MID-LATE). 

These stages are clearly differentiated by specific up-/down-regulated DEGs and engaged 

molecular pathways. Most of the differentiated DEGs and enriched molecular pathways play 

key-roles in fundamental host immune and viral defense biological processes and are 

found as down-regulated at the early stages of the infection. In addition, the performance 

of the devised classification/predictive models are quite encouraging, at-least for the prognosis 

of the duration of infection symptoms as a marker for the severity of the disease.   

Conclusions. DEG and enrichment/pathway analysis present a valuable and effective 

methodology to explore the molecular fingerprints of SARS-CoV-2 infection. In addition, the 

devise of prognostic models for the progress and severity of the infection seems feasible. 

Other questions that could be tackled with the same methodology in a future work concern the 

exploration and identification of putative antiviral drugs and their molecular targets, and even, 

the molecular events underlying vaccination and triggering of host immune responses. 
  

https://ourworldindata.org/
https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&time=2020-03-01..latest&facet=none&pickerSort=asc&pickerMetric=location&Metric=Confirmed+cases&Interval=7-day+rolling+average&Relative+to+Population=true&Align+outbreaks=false&country=~OWID_WRL
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Περίληψη 

Ιστορικό σημείωμα. Στο τέλος του 2019, το Γραφείο της ΠΟΥ στην Κίνα ενημερώθηκε για 

μια πνευμονία άγνωστης αιτίας, η οποία εντοπίστηκε στην πόλη Wuhan στην επαρχία Hubei 

της Κίνας. Στις 10 Ιανουαρίου 2020 ο ΠΟΥ ανακοίνωσε το ξέσπασμα του 2019-nCoV (το 

πρώτο όνομα που δόθηκε στη νέα ασθένεια) και στις 11 Φεβρουαρίου 2020 ονόμασε την 

ασθένεια ως COVID-19 (Coronavirus Disease 2019). Ο ΠΟΥ κήρυξε την ασθένεια έκτακτης 

ανάγκης για τη δημόσια υγεία διεθνούς ανησυχίας στις 30 Ιανουαρίου 2020 και πανδημία στις 

11 Μαρτίου 2020. Τα τελευταία δεδομένα από το ‘Our World in Data’ αναφέρουν περίπου 238 

εκατομμύρια επιβεβαιωμένες λοιμώξεις SARS-CoV-2 και περίπου 4,3 εκατομμύρια θανάτους 

αποδιδόμενων στη λοίμωξη με SARS-CoV-2 [πρόσβαση στον ‘Εξερευνητή δεδομένων της   

ΨΟΩΙΔ-19 του  Our World in Data’ στις 27 Δεκεμβρίου 2021]. 

Υπόβαθρο. Η παρούσα μεταπτυχιακή εργασία επικεντρώνεται στη μόλυνση από τον ιό 

SARS-CoV-2. Ειδικότερα, εστιάζει στην εξερεύνηση και τη διερεύνηση του μοριακού τοπίου 

το οποίο χαρακτηρίζει και διέπει τις αλληλεπιδράσεις γονιδίων/πρωτεϊνών και των βιολογικών 

διεργασιών οι οποίες λαμβάνουν χώρα κατά τα διάφορα στάδια μόλυνσης. Μια βασική 

αναζήτηση της εργασίας αφορά τα μοριακά μοτίβα τα οποία διαφοροποιούν τα στάδια της 

μόλυνσης και τα οποία μπορεί να οδηγήσουν στη λεγόμενη ‘καταιγίδα κυτοκινών’ η οποία 

βρίσκεται στη βάση του οξέος αναπνευστικού συνδρόμου της λοίμωξης. 

Μεθοδολογία. Η μεταπτυχιακή εργασία οργανώνεται γύρω από τέσσερα-(4) βιολογικά 

ερωτήματα τα οποία διατυπώσαμε και θέσαμε και τα οποία σχετίζονται άμεσα με τη μόλυνση 

από SARS-CoV-2, πιο συγκεκριμένα: (i) Εμφανίζει η λοίμωξη από SARS-CoV-2 προφίλ δύο 

σταδίων; (ii) Διαφέρουν ο SARS-CoV-1 από τον SARS-CoV-2; (iii) Διαφέρει και πώς ο SARS-

CoV-2 από τη μόλυνση από γρίπη; και (iv) Σχετίζεται το προφίλ δύο σταδίων της λοίμωξης 

SARS-COV-2 με τη σοβαρότητα της νόσου COVID-19; Προσπαθήσαμε να δώσουμε 

απαντήσεις σε αυτά τα ερωτήματα αναλύοντας και διερευνώντας τα προφίλ γονιδιακής 

έκφρασης δειγμάτων (διατηρημένων κυτταρικών-σειρών ή ανθρώπινων) μολυσμένων με 

στελέχη αναφοράς αρχέγονου-τύπου (wild-type) SARS-CoV-2 (ή SARS-CoV-1, ο πρώτος 

SARS!). Όλα τα σχετικά σύνολα δεδομένων προέρχονται από το αποθετήριο δεδομένων 

γονιδιακής-έκφρασης υψηλής απόδοσης (throughput)  GEO (gene expression omnibus). 

Ακολουθήσαμε μια προσέγγιση Βιοπληροφορικής για την ανάλυση των προφίλ γονιδιακής 

έκφρασης η οποία εστιάζει στον εντοπισμό διαφορικά εκφραζόμενων γονιδίων (differentially 

expressed genes / DEG) και στην ανάλυση εμπλουτισμού μοριακών διεργασιών και 

μονοπατιών (enrichment/pathway / EP analysis), οργανωμένη γύρω από έναν αγωγό 

ανάλυσης (pipeline) πολλαπλών βημάτων. Τα ευρήματα  μας επικυρώνονται με τη κατάλληλη 

βιολογική ερμηνεία τους μέσω σχετικών βιβλιογραφικών αναφορών. Η ανάλυση DEG και EP 

πραγματοποιήθηκε χρησιμοποιώντας αναλυτικές μεθόδους και εργαλεία Βιοπληροφορικής τα 

οποία αποτελούν αιχμή στο σχετικό πεδίο έρευνας, όπως τα DESeq2, limma, EdgeR καθώς 

και ο διακομιστής iDEP (διαδικτυακή εφαρμογή για την ολοκληρωμένη διαφορική ανάλυση 

γονιδιακών εκφράσεων και ανάλυσης μοριακών μονοπατιών). Τέλος, και βασιζόμενοι σε 

προσεγγίσεις και τεχνικές Μηχανικής Μάθησης, προσπαθήσαμε να δημιουργήσουμε μοντέλα 

ταξινόμησης τα οποία θα μπορούσαν να προβλέψουν τη σοβαρότητα περιπτώσεων COVID-

19 με βάση προβλέψεις για την αναμενόμενη διάρκεια των συμπτωμάτων μόλυνσης. 

Αποτελέσματα. Το θεμελιώδες εύρημα της έρευνας μας αναφέρεται στον εντοπισμό ενός 

προφίλ μόλυνσης του SARS-CoV-2 το οποίο ακολουθεί δύο στάδια, ένα EARLY (ή, EARLY-

MID) και ένα LATE (ή MID-LATE). Αυτά τα στάδια διαφοροποιούνται σαφώς από 

συγκεκριμένα υπό-/υπέρ ρυθμιζόμενων (up-/down-regulated) DEGs και σχετικών υπό-/υπέρ 

ρυθμιζόμενων βιολογικών διεργασιών και μονοπατιών. Τα περισσότερα από τα 

διαφοροποιούμενα DEGs και εμπλουτισμένα μοριακά μονοπάτια διαδραματίζουν βασικό ρόλο 

https://ourworldindata.org/
https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&time=2020-03-01..latest&facet=none&pickerSort=asc&pickerMetric=location&Metric=Confirmed+cases&Interval=7-day+rolling+average&Relative+to+Population=true&Align+outbreaks=false&country=~OWID_WRL
https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&time=2020-03-01..latest&facet=none&pickerSort=asc&pickerMetric=location&Metric=Confirmed+cases&Interval=7-day+rolling+average&Relative+to+Population=true&Align+outbreaks=false&country=~OWID_WRL
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στις θεμελιώδεις βιολογικές διεργασίες του ανοσοποιητικού και της ιικής άμυνας του 

ξενιστή/οργανισμού και βρίσκονται υπό-ρυθμισμένα στα αρχικά στάδια της μόλυνσης. 

Επιπλέον, η απόδοση των μοντέλων ταξινόμησης/πρόβλεψης είναι αρκετά ενθαρρυντική, 

τουλάχιστον για την πρόγνωση της διάρκειας των συμπτωμάτων μόλυνσης ως δείκτη για τη 

σοβαρότητα της νόσου. 

Συμπεράσματα. Οι τεχνικές DEG και ανάλυσης/εμπλουτισμού μοριακών μονοπατιών 

αποδεικνύονται  και αποτελούν μια πολύτιμη και αποτελεσματική μεθοδολογία για τη 

διερεύνηση των μοριακών αποτυπωμάτων της λοίμωξης SARS-CoV-2. Επιπλέον, η 

δημιουργία προγνωστικών μοντέλων για την εξέλιξη και τη σοβαρότητα της λοίμωξης φαίνεται 

εφικτή. Άλλα ερωτήματα που θα μπορούσαν να αντιμετωπιστούν με την ίδια μεθοδολογία σε 

μελλοντική εργασία αφορούν την εξερεύνηση και τον εντοπισμό δυνητικών αντ-ιικών 

φαρμάκων και των μοριακών στόχων τους, όπως και η εξερεύνηση των υποκείμενων 

μοριακών αποτυπωμάτων και συμβάντων μετά από τον εμβολιασμό για τη COVID-19 και του 

εντοπισμού των ενεργοποιούμενων ανοσολογικών αποκρίσεων του ξενιστή.  
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Purpose and Objectives 
 

1. Identification of key genes and molecular pathways that segregates SCOV2 early 

and late infection stages. 

2. Inference of molecular fingerprints that differentiate SCOV2 from other common 

viral infections (e.g., influenza). 

3. Identification of key molecular imprints that characterize different SCOV2 severity 

phenotypes (e.g., mild vs. severe) 

4. Induction and assessment of Covid-19 prognostic models that could aid 

therapeutic decision-making. 

▪ To meet our aims and targets, we state and post specific biological questions that 

relate to SCOV2 infection. Answers to these questions are approached and 

realized by a series of documented bioinformatics analysis methodologies such 

as differential gene expression and enrichment/ pathway analysis, as well as 

machine-learning/ML approaches for the induction of prognostic/predictive 

models.  

▪ The aforementioned tasks are accomplished by utilizing a spectrum of public-

domain gene expression datasets (RNAseq and microarrays) from respective 

well-documented studies. 
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1. Introduction 

1.1 COVID-19: The pandemic background 

Infectious diseases continue to make a huge impact on public health even though scientific 

research is evolving at a rapid pace. Some of these diseases are sporadic while others can 

cause pandemics such as bird flu and swine flu. In 2009 the World Health Organization (WHO) 

declared H1N1 flu as a pandemic. The H1N1 flu lasted about 1 year (March 2009 to August 

2010). The first cases of the virus appeared in Mexico and then spread to the United States 

and around the world. Thus, 3 months after the outbreak of the virus, the number of confirmed 

cases reported by WHO was 94,512 in 110 countries with 429 reported deaths. After 9 months, 

the number of cases increased significantly, as well as the number of deaths. From the end 

of the H1N1 flu pandemic until today, the flu virus continues to exist and is transmitted from 

person to person, albeit with a lower frequency and a much lower number of confirmed deaths.  

The story continues with SARS. At the close of 2019, WHO 

China Country Office was informed of a pneumonia of unknown 

cause, detected in the city of Wuhan in Hubei province, China. 

According to the authorities, some patients were operating 

dealers or vendors in the Huanan Seafood market. As of 3 

January ,2020, a total of 44 patients with pneumonia of 

unknown etiology have been reported to WHO by the national authorities in China. Of the 44 

cases reported, 11 were severely ill, while the remaining 33 patients were in stable condition. 

According to media reports, the concerned market in Wuhan was closed on 1 January 2020 

for environmental sanitation and disinfection1,2. On 10 January 2020 WHO declared the 

outbreak of 2019-nCoV (the first name assigned to the new disease), and on February 11 

2020 it named the disease as COVID-19 (COronaVIrus Disease 2019). WHO declared the 

outbreak a Public Health Emergency of International Concern on 30 January 2020, and a 

pandemic on 11 March 2020.  

Cause, Symptomatology and Epidemics. A new type of 

coronavirus is considered as the cause of COVID-19, severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2, for 

now on, SCOV2 for short). Coronaviruses (CoVs), named such 

because of the spikes on their surface when examined under a 

microscope, are a family of viruses that can cause illnesses 

such as the common cold, severe acute respiratory syndrome 

(SARS-CoV) and Middle East respiratory syndrome (MERS-

CoV)3. Symptoms of COVID-19 are variable (including fever, 

cough, headache, fatigue, breathing difficulties, and loss of 

smell and taste). Most of COVID-19 infected individuals (~80%) develop mild to moderate 

symptoms or, they are asymptomatic; about 14% develop severe symptoms (dyspnea, 

hypoxia, or more than 50% lung involvement on imaging), and 5% critical symptoms 

(respiratory failure, shock, or multiorgan dysfunction), with older people to be at a higher risk. 

It is estimated that more than a third of people who are infected do not develop 

noticeable symptoms, and this is one of the causes for the widespread of the disease 

(Oran & Topol, 2020, 2021). Relevant studies postulate that most people affected by SCOV2 

are adults; in general (>75% for ages over 18). Figure 1 shows the age distribution of COVID-

19 cases in 105 countries and Greece. 

  

https://web.archive.org/web/20200131005904/https:/www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
https://web.archive.org/web/20200311212521/https:/www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.niaid.nih.gov/diseases-conditions/covid-19
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Figure 1. Age-distribution of COVID-19 cases over 105 countries (left); from data.unicef.org/resources/ covid-19-
confirmed-cases-and-deaths-dashboard) and Greece (right);from EODY, 22/11/2021, eody. gov.gr/covid-gr-daily-
report-20211122 and from www.statistics.gr/en/statistics/-/publication/SPO18/2020), with reference to the 
respective population percentages. 

Mortality and Prevalence. As the COVID-19 pandemic is in progress, the figures about 

COVID-19 prevalence and mortality rates are still “under construction”(!). Nevertheless, 

searching over various sources and studies we were able to summarize some relative figures 

and estimates about COVID-19 incidents and deaths (see Error! Reference source not 

found.). Of interest is the comparison between Influenza (INFL) infection (all different types 

of the virus) and COVID-19. According to WHO, INFL results in 3-5 million serious cases 

worldwide every year, with about 300,000 - 650,000 deaths attributed to the disease. In 

addition, as the majority of INFL infected people do not seek for medical attention, it is 

estimated that the real INFL cases every year are about 100 times more!, i.e., ~4 billions (see 

the ‘mild/asymptomatic’ cases for the 2009 H1N1 pandemic at the right part of Error! 

Reference source not found.). Under this assumption, the INFL mortality rate is estimated 

at ~0.1% which, is less than the current estimates of COVID-19 mortality where, at present, 

about 80% of the cases (i.e., ‘mild/asymptomatic’) do not seek medical attention. 

 
Figure 2. (left) Number of reported cases and deaths attributed to COVID-19 –data are aggregated from  
‘OurWorldInData’ excellent source of relative information (cases, deaths); (right) related estimates for deaths, 
critical/ICU, sever and mild cases that contrast between the H1N1 pandemic at 2009 (pH1N1) and COVID-19 
respective figures, from (da Costa et al, 2020). 

Here we have to make an important note regarding the COVID-19 mortality figures reported 

in Error! Reference source not found.. The true severity of a disease as a measure for its 

mortality can be described by the Infection Fatality Ratio (IFR)1: 

 

1 “Estimating mortality from COVID-19”, WHO report, 4 August 2020. 

https://data.unicef.org/resources/covid-19-confirmed-cases-and-deaths-dashboard/
https://data.unicef.org/resources/covid-19-confirmed-cases-and-deaths-dashboard/
https://eody.gov.gr/covid-gr-daily-report-20211122/
https://eody.gov.gr/covid-gr-daily-report-20211122/
https://www.statistics.gr/en/statistics/-/publication/SPO18/2020
https://ourworldindata.org/
https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&time=latest&facet=none&pickerSort=desc&pickerMetric=new_deaths&Metric=Confirmed+cases&Interval=Cumulative&Relative+to+Population=false&Align+outbreaks=false&country=USA~CAN~Asia~Africa~South+America~European+Union~GRC~Europe~AUS
https://ourworldindata.org/explorers/coronavirus-data-explorer?zoomToSelection=true&time=latest&facet=none&pickerSort=desc&pickerMetric=new_deaths&Metric=Confirmed+deaths&Interval=Cumulative&Relative+to+Population=false&Align+outbreaks=false&country=USA~CAN~Asia~Africa~South+America~European+Union~GRC~Europe~AUS
https://apps.who.int/iris/rest/bitstreams/1289937/retrieve
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𝐈𝐅𝐑(%) =  
#Deaths_from_disease

#𝐢𝐧𝐟𝐞𝐜𝐭𝐞𝐝_𝐢𝐧𝐝𝐢𝐯𝐢𝐝𝐮𝐚𝐥𝐬
 

 

But it is difficult to measure the ‘true’ number of “infected individuals”, not only because the 

pandemic is still on, but mainly, because of the difficulty to assess the asymptomatic 

cases, and as a consequence, the difficulty to assess the prevalence of the disease. As 

a proxy, the Case Fatality Rate (CFR) can be utilized. It takes in consideration not, the difficult 

to assess, number of “infected individuals”, but the number of “confirmed cases”: 

𝐂𝐅𝐑(%) =  
#Deaths_from_disease

#𝐜𝐨𝐧𝐟𝐢𝐫𝐦𝐞𝐝_𝐜𝐚𝐬𝐞𝐬
 

Under the above observations, the mortality figures reported in Error! Reference source not 

found. reflect IFR estimates.  

In any case, an exact estimate for COVID-19 prevalence is still pending, and results from 

various studies are already published (mainly on regional, country, city, hospital etc.) levels. 

Some recent prevalence studies (see Table 1) are reported and used for the induction of a 

COVID-19 prevalence model (Toulis, 2021); all the studies refer to 2020. As it can be observed 

the figures are quite diverging, leaving the question about the ‘true’ prevalence rates of 

COVID-19 an open problem.  

Table 1. COVID-19 prevalence studies; midpoints (from the reference studies) are reported 

Prevalence Location 
Month 

(2020) 
Method Notes (Publication) 

6.14% China 1 PCR 
Used 80% of entire population in Vó, Italy (Lavezzo 

et al., 2020)  

2.60% Italy 2 PCR 
Used 131 patients with ILI symptoms (Spellberg et 

al., 2020)  

5.30% USA 3 PCR 
Sample of 215 pregnant women in NYC (Sutton et 

al., 2020)  

13.70% USA 3 PCR (Yadlowsky et al., 2020)  

9.40% Spain 3 SER* 
Sample of 578 healthcare workers (Garcia-Basteiro 

et al., 2020)  

3% Japan 3 SER 
Random set of 1000 blood samples in Kobe 

Hospital (Doi et al., 2020)  

36% USA 4 PCR 
Study in large homeless shelter in Boston (Baggett et 

al., 2020)  

1.50% USA 4 SER 
Recruited 3330 people via Facebook (Bendavid et 

al., 2020)  

9.10% Switzerland 4 SER 
Uses ILINet data; implies 96% unreported cases (Lu 

et al., 2020)  

14% Germany 4 SER 
Sample of 1335 individuals in Geneva (Stringhini et 

al., 2020)  

3.10% Netherlands 4 AntG* 
Self-reported 400 households in Gangelt. (Streeck et 

al., 2020)  
 

*SER: Serological; AntG: Antigen 

From a pandemic to an endemic disease? In a recent paper is Science (Lavine, Bjornstad, 

& Antia, 2021) some interesting results are reported regarding the immunological 

characteristics of COVID-19 and its) transition to an endemic disease (see Figure 3 at the 

next page). The authors postulate three rational assumptions that support their hypothesis 

and estimates: (i) faster transmission results in a quicker transition to the endemic state but 

more total deaths; (ii) social distancing saves lives, delays endemicity and allows crucial time 

for vaccine roll-out, and (iii) vaccination speeds up the transition to the endemic state and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574757/#b30
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reduces the death toll. Their modeling framework provides forecasts about the progress of 

SCOV2 IFR figures in a time scale of 2.5, 5, 7.5 and 10 years with relation to different disease 

reproduction numbers (R0), and contrasted with respective figures for SCOV1 (the 1st 

SARS!) and MERS-CoV. Furthermore, the guide researcher of the publication (Jennie Lavine) 

provides a very interesting figure which, summarizes the authors’ forecast. The forecast states 

that COVID-19 will reach in about 2.5 to 3 years after its emergence into an IFR of 0.001 

(the influenza rate!), and even less in the coming years. Of course, this will happen with a 

virus spread up to ~98% in the general population (follow the blue dotted line), either by 

early childhood infections (with no or low symptomatology) and/or mass vaccination 

programs2. 

 

Figure 3. Forecasts for the progress of SCOV2 infection compared to SCOV1 and MERS-CoV IFR figures (left); 

endemicity of SCOV2 infection is strongly influenced by the virus spread (right). 

1.2  A quick look at the molecular background of SARS-CoV-2 infection 

The pathogenesis of SCOV2 infection (not excluding other viruses) is quite complex, and the 

exact reasons of its fatality are still under exploration. SCOV2 shares many clinical features 

with INFL, both in terms of the transmission routes, as both spread very easily between people 

through oral and nasal drops, as well as in terms of symptoms, because both affect the 

respiratory system. But, there is a major difference, the severe and acute respiratory 

defects that comes as a syndrome to SCOV2 infection does not occur with INFL 

infection. So, a key question relates to the mechanisms underlying, govern and guide the 

SCOV2 syndrome as a consequence of the so-called “cytokine storm” (Fajgenbaum & June, 

2020). 

The cytokine-storm. Many studies have made evident that the cytokine-storm plays a 

decisive role in the progress of SCOV2 infection and is an important factor for severe and fatal 

outcomes (Chen et al., 2021). The cytokine-storm encompasses an excessive immune 

response elicited between cytokines and immune system cells. Under infective events, a 

strong and healthy host immune system releases more than 150 (pro)-inflammatory cytokines. 

Complex regulations may cause uncontrolled pro-inflammatory and anti-inflammatory 

cytokines to be elevated in the blood serum, with lethal interactions. Cytokine-storm may occur 

in many viral infections (e.g., Ebola virus, Dengue virus, H1N1 flu virus, SCOV1 and MERS-

CoV), in hematopoietic diseases as well as after the use of certain drugs. it can cause the 

 

2 Refer to “Just another common cold virus? Modeling SARS-CoV-2’s future fade” 

https://news.emory.edu/stories/2021/01/coronavirus_endemic_future/index.html
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severe acute respiratory distress syndrome (ARDS) and multiple organ failure. It is the leading 

cause of death for many diseases. Studies have also shown that COVID-19 patients with 

severe symptoms exhibit much higher levels of white blood cells, neutrophils, procalcitonin 

and other inflammatory markers compared to patients with mild symptoms (Tang et al., 2020). 

The postulate states: cytokine-storm presents a systemic inflammatory response to 

infections that leads to over-activation of immune cells and the uncontrolled 

production of pro-inflammatory cytokines. (Costela-Ruiz, Illescas-Montes, Puerta-Puerta, 

Ruiz, & Melguizo-Rodríguez, 2020). See Figure 4 for a high-level illustration of events taeking 

place during the cytokine-storm situation. 

 

Figure 4. Immune host response during SCOV2 infection (left); adapted from (Castelli, Cimini, & Ferri, 2020); 

Cytokine-storm causes organ injury (right); adapted from (Costela-Ruiz et al., 2020) 

Inflammatory and pro-inflammatory cytokines at a glance. Cytokines include interferons, 

tumor necrosis factors (TNFs), interleukins, and chemokines (see Appendix I for a full 

annotated list.) Table 2, is adapted from (Rabaan et al., 2021) and shows the most significant 

inflammatory factors involved in the cytokine-storm and their functional roles. 

Table 2. Significant inflammatory factors involved in the cytokine storm and their function. 

Inflammatory Factors Function 

Interferons 
Induces immunity and directs the expression of antiviral protein by 
expressing specific coding genes. 

TNF 

Tumor Necrosis Factor 

Released during severe infection and is an important indicator for 
chronic inflammatory and autoimmune diseases. 

Interleukins 
They help differentiate and activate cells and act as transporters of 
immune cells against infection. They also signal the production of 
secondary cytokines and are an indicator of the severity of the disease. 

Chemokines 
They help transport immune cells, regulate cell growth and 
differentiation, and control the immune response. Finally, they are an 
important indicator for controlling the severity of ARDS syndrome. 

These cytokines regulate host defense responses and play an important role in mediating 

innate immune responses, mainly by regulating inflammatory reactions. Pro-inflammatory 

cytokines act to aggravate the disease, while anti-inflammatory cytokines act to heal 

inflammation. Their excessive chronic production contributes to inflammatory diseases such 

as atherosclerosis and cancer, while their deregulation has been linked to the occurrence of 

neurological diseases. So, a balance between pro-inflammatory and anti-inflammatory 

cytokines to maintain a healthy state.  
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1.3   A closer look at SCOV2 infection progress 

It is reported, and in a large-extend established, that 

progress of COVID-19 disease presents a two-stage 

profile, which is directly linked to immune suppression 

actions (Tian et al., 2020). Most of the cases present a 

mild-to-moderate phenotype at the early stages, typically 

around seven to nine days after the initial onset of 

symptoms, followed by a severe phenotype presented with 

worsening of respiratory function (Hadjadj et al., 2020). 

Various studies demonstrate that SCOV2 causes a 

suppression of immune responses at the early stage 

of infection, which results to an uncontrolled replication of 

the virus. The early immune suppression is attributed to defective type I IFN (IFN-I, a special 

type of interferons) immunity in the first hours and days of infection that leads to 

uncontrolled viral replication, with subsequent excessive leukocyte recruitment, 

underlying uncontrolled inflammation (Q. Zhang, Bastard, Bolze, et al., 2020). A sketch 

that provides a background to such an infection progress profile (i.e., from early to late stage) 

is provided in the above side figure that shows and contrasts between the magnitude of normal 

and impaired immunity reactions to pathogen infections. The solid line shows the natural 

course immune response to infection over a period of days to weeks that then leads to a 

resolution phase as the pathogen is controlled (the figure is adapted from (Mangalmurti & 

Hunter, 2020)). The largely uncontrolled replicative profile of SCOV2 conforms to such an 

infection progress profile, clearly indicated and stated in (Mangalmurti & Hunter, 2020): “… for 

microorganisms with a high replicative potential, changes in the magnitude and duration of the 

immune response can result in systemic immune pathology associated with a cytokine storm 

through either an increased amplitude or a failure to enter the resolution phase”. It is essential 

to note that for severe COVID-19 cases with extended hospitalization, death events occur 

mostly after the virus is cleared, a fact that designates the continuation of host resistance 

mechanisms even if the threat is eliminated! (Lee et al., 2009). In recent study that included 

patients died from severe pneumonia, a two-phase COVID-19 disease evolution is also 

suggested, and it is also linked with viral RNA loads (Desai et al., 2020). 

In order to understand the COVID-19 disease we have to gain insight into the 

physiology and molecular mechanisms that putatively govern and guide the 

transition from an early to a late progress of the disease. 
 

1.3.1 Host defense response mechanisms 

A key to unlock and characterize the transition from 

suppressed immune responses at the early stage of 

SCOV2 infection to their over-activation at late stages, 

could be given in terms of two fundamental host defense 

strategies, namely: resistance and tolerance (D. S. 

Schneider & Ayres, 2008), with an interplay between 

them taking place (see side figure adapted from: 

(Carvalho et al., 2012)). Disease resistance engages 

various physiological and molecular host immunity 

processes (both innate and adaptive) and targets the 

reduction of the pathogen’s load. Disease tolerance triggers host responses aiming to 

constrain the damages in affected tissue and support its function, and in that sense, it 

‘tolerates’ the pathogen’s burden. In the upper respiratory tract (URT), the initial entrance and 
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replication site for SCOV2 (and other viruses as well), the tolerance defense mechanisms aim 

to sustain the exchange of gas and blood oxygenation. In the case of URT infection, host 

resistance triggers a dynamic immune response in order to constrain the spread of the virus, 

with type I and type III interferons to play a crucial role (see next sections for a more detailed 

explanation of their roles). When resistance 

is weakened and the virus spreads to the 

lower respiratory tract (LRT), tolerant 

defense processes are triggered in order to 

preserve the alveolar structures which are 

crucial for the exchange of gas. It is indicative 

that in severe COVID-19 cases with 

extended hospitalization, death events occur 

mostly after the virus is cleared, a fact that 

designates the continuation of host 

resistance mechanisms even if the threat 

is eliminated! (Lee et al., 2009). In a recent 

study that included succumbed patients with 

severe pneumonia a two-phase COVID-19 

disease evolution is suggested which also 

depends on the presence of high viral RNA 

loads (Desai et al., 2020). As a first hint to the 

molecular background of defense and 

resistance mechanisms to SCOV2 infection 

have a look at Error! Reference source not 

found.. It illustrates the key-molecular events 

and gene/protein products (with putative drug 

targets) associated with the SCOV2 

cytokine release syndrome during the 

progress of the infection (Moore & June, 

2020). 

1.3.2 The SCOV2 molecular framework 

In the course of SCOV2 infection various host defense processes are triggered including direct 
antiviral molecules and inflammatory mediators, such as type I/III interferons, tumor necrosis 
factor (TNF), interleukin 6 (IL-6) and other chemokines, with pathogen-associated molecules 
to be recognized by dedicated recognition receptors (e.g., retinoic acid-inducible gene I, RIG-

I) and Toll-like receptors (e.g., TLR3). As in most RNA viruses, SCOV2’s RNA is recognized 
by various genes with the role to trigger a series of pathways that lead to the production of 
type I interferons (IFN-I), other interferon stimulated genes (ISGs), as well as various 
proinflammatory cytokines (Tan, Sun, Chen, & Chen, 2015)3. But SCOV2 has employed 
several different mechanisms to escape the IFN response, as for example, its non-structural 
protein 1 (NSP1) binds host’s 40S ribosomal subunit to shutdown mRNA translation of IFNs 
and ISGs (Thoms et al., 2020). It is well-established that not only SCOV2, but other viral 
infections interfere with interferon signaling (Lei et al., 2020). But, in contrast to other viral 
infections (influenza for example; see section 0 for relative experiments and results), it is now 
clear that COVID-19 patients demonstrate downregulation of interferon signaling 
pathways at the early stages of the infection (Mudd et al., 2020).  As a guide to the 
aforementioned observations, Figure 6 illustrates the key molecular processes and genes 
engaged and triggered in the course of SCOV2 infection (Y.-M. Kim & Shin, 2021):   

 

3 Cytokines include chemokines, interferons, interleukins, and tumor necrosis factors, see Appendix I for a full 
annotated list. 

 

Figure 5. Key-molecular events and gene/protein 

products engaged with SCOV2 cytokine syndrome 
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Figure 6. The molecular regulatory framework of SCOV2 infection progress; adapted from (Y.-M. Kim & Shin, 

2021). 

(a) The part of KEGG Coronavirus pathway that relates to the initial (alveolar) epithelial cells 

infection; interference and role of the key ACE2 and IMPRS22 genes is highlighted in various 

pathway processes; note the blockage of ‘anti-inflammation’ and ‘tissue-repair processes’ 

caused by the interference of ACE2 => (b,c) Respiratory epithelial cells are infected, type I/III 

IFN responses are blocked (b), and viral load increases (c) => (d) Uninfected innate immune 

cells (monocytes, macrophages, and dendritic cells) are stimulated by viral components via 

Toll-like receptors (the KEGG Toll-like receptor signaling pathway is shown) and produce type 

I/III IFNs => (e) Type I/III IFNs further induce the accumulation and activation of monocytes 

and macrophages, leading to the production of large amounts of IFNs and proinflammatory 

cytokines; type I IFNs also enhance TNF-mediated inflammation by disrupting TNF-induced 

tolerance to TLR stimulation in monocytes and macrophages (the KEGG RIG-I-like receptor 

signaling pathway is shown); the figure is adapted from (Y.-M. Kim & Shin, 2021) and was 

accordingly enhanced and annotated. 

1.3.3 Going deeper: Deficiency of early IFN response in SCOV2 infection  

During viral infection the first task of host cells is to identify virus invasion via the recognition 

of particular viral molecular structures, the so-called pathogen-associated molecular patterns 

/ PAMPs; a type of foreign viral RNAs introduced or produced in viral life cycle to trigger innate 

immune responses (Min et al., 2021). In this course type I interferons / IFN-I4 are engaged 

with the role to block virus replication at many levels, via the triggering of interferon simulated 

genes / ISGs, a set of viral replication blocking genes (Katze, He, & Gale, 2002; McNab, 

Mayer-Barber, Sher, Wack, & O’Garra, 2015). But a series of studies indicate that IFN and 

especially IFN-I responses are weak during SCOV2 infection. As a consequence to such IFN-

I defected response, productive viral replication take place at the early stage of SCOV2 

infection, a situation that greatly contributes to COVID-19 pathology and severity (Hadjadj et 

al., 2020; Q. Zhang, Bastard, Liu, et al., 2020). Figure 7 highlights the different induction 

forms of ISGs as well as their role in the course of viral life cycle, presenting a canvas 

on which we may study, assess and finally uncover the unique molecular 

characteristics of SCOV2 infection. 

 

4 IFN-I is a pleiotropic cytokine composed by a family of IFN proteins which are encoded by at least 13 IFNα  (IFNA) 
subtype genes (IFNA1, -A2, -A4, -A5, -A6, -A7, -A8, -A10, -A13, -A14 -A16, -A17 and -A21), and IFNB1, IFNE, 
IFNK and IFNW1 genes, all of which bind to IFNAR1 and IFNAR2 receptors (López de Padilla & Niewold, 2016). 

https://www.genome.jp/pathway/hsa05171
https://www.genome.jp/pathway/hsa04620
https://www.genome.jp/kegg-bin/show_pathway?hsa04622
https://www.genome.jp/kegg-bin/show_pathway?hsa04622
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Figure 7. Induction of interferon stimulated genes/ISGs (upper-left) and their interference into the viral life cycle 
(down-right); figure and commentary captions accordingly adapted from (W. M. Schneider, Chevillotte, & Rice, 
2014). 

Based on the observations made so far, it should be clear that in order to elucidate SCOV2 

infection and uncover the underlying molecular regulatory background we have to 

focus on the evolution and progress stages of the disease. With this as a guide we state 

the fundamental aims and targets of the thesis. 
 
 

Aims and Targets of the Thesis 

1. Identification of key genes and molecular pathways that segregates SCOV2 

early and late infection stages. 

2. Inference of molecular fingerprints that differentiate SCOV2 from other 

common viral infections (e.g., influenza). 

3. Identification of key molecular imprints that characterize different SCOV2 

severity phenotypes (e.g., mild vs. severe) 

4. Induction and assessment of Covid-19 prognostic models that could aid 

therapeutic decision-making. 

Methodology 

❑ To meet our aims and targets, we state and post specific biological questions 

that relate to SCOV2 infection. Answers to these questions are approached 

and realized by a series of documented bioinformatics analysis 

methodologies such as differential gene expression and enrichment/ pathway 

analysis, as well as machine-learning/ML approaches for the induction of 

prognostic/predictive models.  

❑ The aforementioned tasks are accomplished by utilizing a spectrum of public-

domain gene expression datasets (RNAseq and microarrays) from respective 

well-documented studies. 
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2. Computational Framework and Bioinformatics Analysis Pipeline 
 

For our experiments and analysis, we utilized the well-known and widely utilized iDEP server. 

iDEP is an R-Shiny web-based application equipped with state-of-the-art bioinformatics 

methodologies via the exploitation and smooth integration of respective R-packages (Ge, Son, 

& Yao, 2018): (a) differential expression gene (DEG) analysis, e.g., DSEeq2, voom, EdgeR 

(Ge et al., 2018); (b) exploratory analysis (e.g., k-means clustering, PCA and MDS); (c) 

enrichment/pathway analysis (e.g., GSEA); (d) advanced visualization capabilities (e.g., 

heatmaps, hierarchical clustering trees, enriched pathway maps). A unique and very useful 

function of iDEP is that it can read and convert gene/transcript/probe annotations from various 

gene-expression platforms (RNAseq or microarray). The full spectrum of iDEP analytical 

operations can be inspected at  idepsite.wordpress.com. Figure 8 Illustrates the overall iDEP 

workflow with all relevant analytical operation utilized in the current thesis. 

 
Figure 8. The overall iDEP analysis workflow (adapted from the iDEP web-server site) with analytical operation 

utilized in the current thesis. 
 

To support our analyses we also utilized a series of other well-established genomics platforms 

including Ensembl/Biomart and g:profiler for the conversion/annotation of gene IDs between 

different gene-expression platforms, and STRING for functional annotation, clustering and 

visualization of associations between genes and proteins. 

2.1 Analysis pipeline: Outline 

❑ Data Pre-Processing. Gene-expression (microarray and/or RNA-seq) data are loaded to 

the iDEP duplicate gene/transcript IDs. Gene/Transcripts Filtering. The low expressed 

genes are filtered-out according to a (user-specified) minimum expression value; in most 

of our experiments we set a cutoff so that 30% of the low expressed gene/transcripts are 

discarded. For the genes/transcripts not recognized by iDEP we utilized the g:profiler and 

Ensembl/Biomart servers and services. Normalization. The reliability of gene-expression 

analysis results is heavily depended from the distribution of gene-expression values 

across samples iDEP offers various normalization methods, including DSEeq2’s vst 

http://bioinformatics.sdstate.edu/idep/
https://idepsite.wordpress.com/
https://www.ensembl.org/biomart/martview
https://biit.cs.ut.ee/gprofiler
https://string-db.org/
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(variance stabilizing transformation)5 and EdgeR’s log2(CPM+c)6 transformations, which 

according to the task at hand were appropriately utilized. Visualization/Quality control. 

The box- and density-plots of transformed data are visualized in order to evaluate the 

well-formed distribution of gene-expression values and get the respective mean and 

median values (these values are needed in further analysis in order to contrast between 

the gene-expression levels of differential expressed genes). 

❑ Exploratory analysis. First the input genes are ranked according to their 

correlation/distance across all samples, and then, using the top genes (a user-specified 

value, in most of our experiments we used 1000 genes) the hierarchical clustering tree 

of samples is formed. This is done in order to get at a glance the contrasting profile 

between the different samples’ classes. This is further supported by the respective 

samples’ PCA (principal component analysis) and MDS (multi-dimensional scaling) plots. 

Hierarchical clustering, PCA and MDS are unsupervised methods for examining 

relationships between samples. These methods are suitable for exploratory analysis 

because class membership of samples is used to obtain the graphical representation. The 

purpose of the hierarchical clustering algorithm is to separate the data into homogeneous 

groups. In such a clustering the measure of similarity can have a very large effect on the 

result as the algorithm consists of the measure of similarity or dissimilarity between each 

pair of samples. In a hierarchical grouping tree, each leaf corresponds to a sample. The 

samples which are similar to each other are combined into branches. The height of the 

fusion on our vertical axis shows the distance of similarity or dissimilarity between the 

samples. MDS is a statistical method used in order to get insight into hidden variables that 

putatively explain (dis-)similarities between analyzed objects. MDS doesn’t assume a 

specific relationship between objects and aims to optimize the fit of dissimilarities in the 

MDS (usually Euclidian) space. On the other hand, PCA assumes a linear relationship 

between the data objects which is represented by the induced principal components (PCs). 

As PCs do not maximize the separation between groups, PCA and MDS may provide 

different results. So, we utilize both plots in order to get insight into putative 

interdependencies in data. We also utilize the Correlation Matrix of samples in an effort 

to identify coherently contrasting profiles between specific samples, and then use 

these samples for further analysis. 

❑ Differential expression analysis. The well-known and widely utilized R packages 

DESeq2 (Anders, 2010) and/or limma (Smyth, Ritchie, & Thorne, 2011) were utilized for 

the identification of differentially expressed genes/DEG, setting a fixed minimum FDR level  

(0.05 was used in most cases), and different minimum fold-change/FC thresholds (in 

most cases the value of 2 was set). For datasets with big numbers of DEGs we used bigger 

FC thresholds in order to keep the identified DEGs in manageable numbers so that their 

biological interpretation is eased. The DEG’s heatmap as well as the respective Volcano, 

M-A and Scatter plots were used in order to visually inspect the degree to which the DEGs 

separate the different samples (a nice introduction to these plots and their use in the 

interpretation of gene-expression analysis results is provided in (McDermaid, et al, 2019)). 

❑ Enrichment/Pathway analysis. The Up- and Down-regulated DEGs are subjected to 

Enrichment and Pathway Analysis, founded on the utilization of hypergeometric 

distribution to compute the p-value of pathways in which the identified DEGs occur (Falcon 

 

5 Analyzing RNA-seq data with DESeq2 
6 edgeR: differential analysis of sequence read count data - User's Guide 

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiW352_o4H1AhVPNOwKHdjXDjAQFnoECBgQAQ&url=https%3A%2F%2Fwww.bioconductor.org%2Fpackages%2Frelease%2Fbioc%2Fvignettes%2FedgeR%2Finst%2Fdoc%2FedgeRUsersGuide.pdf&usg=AOvVaw2lYFNpp5ez9i37ZS-Ykql2
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& Gentleman, 2008). Pathway analysis was performed utilizing various methods available 

in iDEP, e.g., fgsea Bioconductor package. 

❑ Network analysis. The STRING server (Franceschini, 2013) was used in order to find 

significant connections and relations between the identified DEGs and form the respective 

genes’ interaction network. This network provides a kind of ‘orchestration’ of the 

molecular events underlying SCOV2 infection and proved a valuable tool for the biological 

interpretation of our results and findings. 

❑ SCOV2 prognosing modeling – The Machine Learning framework. For the devise of 

predictive models that could be used for the prognosis of SCOV2 severity we relied on 

the MLSeq R/Bioconductor package – a Machine Learning interface to RNA-seq data 

analysis (Goksuluk et al., 2019). We used four MLseq classifiers to build our initial models: 

SVM (support vector machines), Random Forests (RF), Voom Based Nearest 

Shrunken Centroids (VoomNSC) (Zararsiz et al., 2017), and Poisson Linear 

Discriminant Analysis (PLDA) (Witten, 2011), following either a train/test split or a k-

fold cross-validation procedure. In a second line of experiments, we utilized the Weka 

environment. Weka is an open-source software implemented in Java incorporating a 

collection of machine learning algorithms for data mining tasks, including tools for data 

preparation, classification, regression, clustering, attribute selection and other (Hall et al., 

2009). For the devise of prognostic models, we utilized the SVM (named SMO in Weka), 

Random Forests / RF, Decision Tree / DT and kNN (named iBK in Weka) algorithmic 

approaches. All experiments were conducted following a standard cross-validation 

procedure and in particular, Leave-One-Out-Cross-Validation (LOOCV). 

❑ Gene-expression datasets. The utilized datasets refer to samples infected with SCOV2 

or SCOV1, and all come from the NCBI’s Gene Expression Omnibus (GEO) database. 

The gene-expression profiles are acquired either by microarray of NGS/RNA-seq 

platforms and refer either to cell-line or human tissue. In the current thesis we utilized 

four GEO gene-expression datasets that cover a wide range of tasks related to SCOV1/2 

infection and COVID-19 disease, namely: 

• GSE151513. Contains human lung epithelial cells from specific cell-lines7 infected with 

SCOV2 (uninfected control samples are also included). RNAseq gene-expression 

profiles were acquired via the ‘Illumina HiSeq 2500’ platform. Cell-line samples were 

collected at different hours post-infection (hpi), namely 0, 1, 2, 3, 6 and 12 in triplicates 

(i.e., a total of 3 x 6 = 18 samples). This dataset was used in order to explore (and 

finally validate) the two-stage profile of SCOV2 infection. 

• GSE33267. Contains a total of 99 human lung epithelial cell-line samples (mock-treated 

samples are also included) infected with the wild-type SCOV1 strain, with the 

respective gene-expression profiles acquired via a specific Agilent microarray 

platform.  Cell-line samples were collected at different hpis, namely: 3, 7, 12, 24, 30, 

36, 48, 54, 60 or 72 hours. This dataset was used in order to explore (and finally 

validate) the resemblance between the molecular profiles underlying the early 

stages of the first SCOV1 and SCOV2. 

• GSE47960. Contains a total of 163 HAE (human airway epithelial) cell cultures which 

were infected with the first SARS-CoV and H1N1 influenza strains, with samples 

collected at different hpis: 0, 12, 24, 36, 48, 60, 72, 84 and 96 for SCOV, and 0, 6, 12, 

 

7 Human cell lines are commonly used for research investigation. For decades, cell lines have been the 
workhorse of programs to identify and interrogate mechanisms of action, discover and/or test 
drug/compounds/factors, and show relevance of findings to human disease. “Cell lines”, Elsevier/Science Direct 

http://bioconductor.org/packages/release/bioc/html/fgsea.html
https://string-db.org/
https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html
https://www.cs.waikato.ac.nz/ml/weka/
http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151513
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33267
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47960
https://www.sciencedirect.com/topics/neuroscience/cell-lines
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18, 24, 36 and 48 hrs for H1N1, as influenza progresses more quickly than SARS 

viruses! The gene-expression profiles were acquired via a specific Agilent microarray 

platform. This dataset was used in order to explore and contrast the progress of 

infection between SCOV and Influenza/H1N1. 

• GSE161731. Contains a total of 77 samples from respective COVID-19 patients, with 

the RNA-seq gene-expression profiles acquired via the ‘Illumina NovaSeq 6000’ 

platform Whole blood samples were collected between 1-35 days post infection and 

divided based on disease severity and time from symptom onset. This dataset was 

used: (a) in order to explore and contrast between the molecular backgrounds of 

COVID-19 patients that exhibit a short vs. medium vs. long periods of symptoms; 

and (b) in order to devise predictive models that could forecast the duration of 

symptoms for COVID-19 patients, and from that to estimate the putative severity 

of the disease. 

  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161731
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3. Uncovering SCOV2 infection: A bioinformatics approach 

The sections that follow posts specific biological questions related to SCOV1/2 infection 

which are tackled with a carefully designed Bioinformatics methodology. The main task is to 

uncover and identify the key-molecular events underlying SCOV2 infection and provide 

respective answers to the posted biological questions. 

3.1 Does SARS-CoV-2 exhibits a two-stage infection profile? 

Dataset. The utilized dataset was download from the Gene Expression Omnibus (GEO) under 

the code GSE151513. In this study, human lung epithelial cells (Calu-38) were infected with 

SCOV2 (18 samples) or kept uninfected (i.e., mock treated / CTRL, 18 samples), and their 

RNAseq gene-expression profiles were acquired via the ‘Illumina HiSeq 2500’ platform 

(GPL16791). Cell samples were collected at different six post-infection time-points/hours (hpi), 

namely 0, 1, 2, 3, 6 and 12 in triplicates (i.e., a total of 3 x 6 = 18 samples for SCOV2 and 18 

for CTRL), with a multiplicity of infection9 (MOI) of 2. The genes are presented as Ensembl 

transcripts. The results of this study are published in (Banerjee et al., 2021). 

3.1.1 SCOV2 vs. CTRL: Could they be contrast? 

We tried to induce differential expressed genes for SCOV2 vs. CTRL comparison. In other 

words, we were exploring if is there an indicative gene-expression profile, i.e., a molecular 

gene signature, that contrast SCOV2 infected from uninfected CTRL cases? The data 

was loaded to iDEP using the “Normalized expression values” option, as the available 

GSE151513 study data were already normalized (with the DSEeq2 'median ratio method’). 

Following the key-suggestion given in the help-guide of the iDEP server we filtered the data 

according to a minimum expression value in at least 3 samples (the number of replicates for 

each time-point) so that 30% of the low expressed transcripts are discarded. For the current 

dataset this cutoff value was set equal to 3.15, which left us with a total of 10,793 (from the 

original 15,761) gene/transcripts. The data was them log2 transformed in order to deal with 

too large expression values and avoid large kurtosis.  

 

We performed a PCA analysis in order assess the 

separability between SCOV2 and CTRL samples. 

As it can be easily observed from the PCA plot 

(side Figure 9), the samples between the two 

classes are mixed. In addition, PCA results 

indicate that both PC1 and PC2 components are 

strongly correlated with the hpi variable, i.e., with 

the infection time-points (p=9.01e-20 and 

p=2.90e-16 for PC1 and PC2, respectively). MDS 

analysis plot gave similar results. 

 
Figure 9. PCA plots of GSE151513 SCOV2 vs. CTRL data. 

(18+18 = 36 samples). 

 

8 Calu-3: a cell-line originated from lung adenocarcinoma human airway epithelial cells utilized for respiratory 
modeling and studying of the effects of gas concentrations, exposure time, biophysical stress, and biological 
agents on human airway epithelial cells (Y. Zhu, Chidekel, & Shaffer, 2010); calu-3 are used for studying SCOV2 
infection as they are sensitive and express ACE2, the main entry receptor of the virus (Tseng et al., 2005). 

9 MOI: https://www.virology.ws/2011/01/13/multiplicity-of-infection/  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151513
https://www.sciencedirect.com/topics/immunology-and-microbiology/calu-3-cell-line
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16791
https://www.ensembl.org/
https://idepsite.wordpress.com/pre-process/
https://www.virology.ws/2011/01/13/multiplicity-of-infection/
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The inability to separate SCOV2 from CTRL cases was further confirmed by the inability to 

infer any differentiable gene/transcript for the comparison SCOV2 vs. CTRL, even with 

relatively high FDR and relatively low fold-change cutoff values (0.1 and 1.5, respectively); the 

limma differential gene-expression (DEG) analysis method was utilized  (Law, Chen, Shi, & 

Smyth, 2014; Smyth, 2005). So we may safely state that: 

❑ Infected SCOV2 cases could not be contrasted to uninfected CTRL ones 

❑ The infection gene expression profiles are strongly correlated with and influenced by the 

progress of the infection (i.e., infection time-points) 

❑ The molecular background of SCOV2 infection needs to be explored according to the 

infection progress stages. 
 

3.1.2 Defining the SCOV2 progress stages 

Normalization. We focus just on the SCOV2 samples in order to search for putative molecular 

fingerprints that characterize the different infection stages. To this end, and in order to 

eliminate the ‘normal’ molecular events taking place in both SCOV2 and CTRL/mock-treated 

cell-lines, we normalized the gene/transcript expression values for each SCOV2 replicate case 

with reference to the respective CTRL/mock-treated replicate. For this we use following 

formula: 

𝑠𝑡,𝑟
′ = (

𝑠𝑡,𝑟

𝑚𝑡,𝑟
) × 100 

where, 𝑠𝑡,𝑟
′  is the normalized value of replicate 𝑟 for an SCOV2 sample 𝑠 at hpi time-point 𝑡; 

𝑚𝑡,𝑟 the (original) value of the respective CTRL/mock-treated sample; to take care of gene 

expression values equal to zero we add 0.1 to both nominator and denominator. The 

normalized gene/transcript value does not reflect anymore an absolute gene expression value 

but the degree it deviates from its respective mock-treated value, with the deviation expressed 

as a percentage. In other words, we are now seeking for molecular profiles that deviate 

(up- or down-regulated) from the ‘normal’ uninfected case, and contrast them between 

different SCOV2 infection stages.   

Designating EARLY / LATE infection 

stages. The normalized data were fed to 

iDEP using again the “Normalized 

expression values” option. The samples 

are labeled as, SCOV2_<hpi>_ 

<replicate>, hpi = 0, 1, 2, 3, 6, 12, 

replicate = 1, 2, 3. Inspecting the heatmap 

of samples’ expression values (side Figure 

10), two contrasting profiles may be 

identified. The first includes samples for hpi 

time-points 1, 2 and 3, and one for hpi time-

point 12. These samples are assigned to 

EARLY and LATE infection stages, 

respectively (a total of 12 samples). As we 

are interested to intensely contrast 

between different infection stage profiles 

the samples for time-points 0 (the infection 

is not established) and 6 (the ‘intermediate’ 

stage) were left out. 

 

Figure 10. Heatmap of normalized SCOV2 gene-
expression values. 
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Differentiating between EARLY and LATE SCOV2 infection stages. The gene-expression 

profiles of the retained 12 samples were uploaded to iDEP using again the “Normalized 

expression values” option. The experimental design includes now an extra variable with values 

EARLY and LATE assigned to the respective early and late staged samples. The data was 

also log2 transformed in order to deal with too large expression values and avoid large 

kurtosis. The upper-left part of Figure 11 shows the correlation matrix, and the down-left part 

the hierarchical clustering tree of samples, as formed by using the genes with maximum 

expression level at the top 75%. The hierarchical tree is induced using correlation as distance 

(i.e., 1 – correlation coefficient) and the average linkage method10. Note the separation of 

samples into EARLY (hpi time-points 1, 2, 3) and LATE (hpi time-point 12) into two groups, 

i.e., the two SCOV2 infection stages. This separation could be further justified by the 

respective MDS (upper-right of the figure) and PCA (down-right) plots. 

 

Figure 11. Correlation matrix (upper-left), hierarchical clustering tree (down-left), MDS (upper-right) and PCA 

(down-right) plots of the 12 SCOV2 samples. 

3.1.3 EARLY vs. LATE SCOV2 infection stages: Differential expression and 

enrichment analysis 

EARLY vs. LATE SCOV2 infection stages: Differential Expressed Genes (DEG analysis). 

The limma DEG method, as provided by iDEP for normalized gene-expression data., was 

applied. Setting FDR cutoff and minimum fold-change equal to 0.05 and 2, respectively, a total 

of 71 gene/transcripts were found as significantly differentiating between early and late 

SCOV2 infection stages; 41 Down- and 30 Up-regulated. The differentiation contrast is dual, 

that is: gene/transcripts down-regulated in the EARLY stage are up-regulated in the LATE 

stage. The respective heatmap of identified differentially expressed genes are shown in Figure 

12.  

 

10 towardsdatascience.com/introduction-hierarchical-clustering-d3066c6b560e  

https://towardsdatascience.com/introduction-hierarchical-clustering-d3066c6b560e
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Figure 12. Heatmap (left), of differentially expressed genes – Down- and Up-regulated genes refer to SCOV2 

EARLY and LATE infection stages, respectively. 

We focus on the identified down-regulated genes in the early SCOV2 infection stage (left part 

of Figure 13, 41 genes). Note the negative log2FC sign that indicates down-regulation. In an 

effort to get insight into the interactions between these genes and uncover their functional roles 

we input them into the STRING database. STRING database collects, scores and integrates a 

spectrum of publicly available sources (e.g., ENSEMBL, GeneCards, KEGG, NextProt, RefSeq 

and UniProt) of physical and functional protein-protein interaction information. It complement 

these interactions with computational predictions, offering operations that ease the formation 

of comprehensive protein networks (Szklarczyk et al., 2019). In order to explore the main 

molecular functions of the identified down-regulated genes we conducted a clustering 

analysis using the MCL algorithm11 (as provided by STRING). From the 41 down-regulated 

genes, 24 were coherently clustered and grouped into two main clusters (right part of Error! 

Reference source not found.). The coloring of genes (light-red and light-green) is made 

according to their cluster/group inclusion. 

 

Figure 13. Down-regulated differential genes in the EARLY SCOV2 stage (left); (Right) Clustered network 

organization of highly confident correlated genes inferred with MCL clustering (right); minimum correlation/edge 

confidence score was set to 0.7  

 

11 MCL Markov Cluster algorithm is a fast and scalable unsupervised graph clustering algorithm (Enright, Van 
Dongen, & Ouzounis, 2002) which, is effectively used in protein association network analysis (Enright et al., 
2002). 

https://string-db.org/
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Table 3 summarizes the functional annotation of these down-regulated genes, with a focus 

on their involvement in (anti-)viral activities and molecular regulations. 

Table 3. Functional annotation of down-regulated differential genes at the early SCOV2 infection stage 

Interferon Stimulated 

Genes (ISGs) 
Functional Annotation / Antiviral Activity 

IFI16, IFI27, IFI44, IFI44L, 

IFI6, IFIH1, IFIT, IFIT2, IFIT3 

IFIT5, IFITM1, IFITM3 

− Inhibit the entry of viruses to the host cell cytoplasm, permitting 

endocytosis, but preventing subsequent viral fusion and release of 

viral contents into the cytosol 

− Active against multiple viruses (e.g., influenza A virus, SARS 

coronavirus/SARS-CoV, Marburg virus/MARV, Ebola virus/EBOV, 

Dengue virus/DNV, West Nile virus/WNV, human 

immunodeficiency virus type 1/HIV-1, hepatitis C virus/HCV) 

IRF7, IRF9 

− IRF7: plays a critical role in the innate immune response against 

DNA and RNA viruses 

− IRF9: Associate with the phosphorylated STAT1:STAT2 dimer to 

form a complex termed ISGF3 transcription factor that enters the 

nucleus and binds to the IFN stimulated response element (ISRE) 

to activate the transcription of interferon stimulated genes, which 

drive the cell in an antiviral state 

MX1, MX2 

− Sensors of viral single-stranded (ss)RNAs; Inhibit expression of 

viral mRNAs 

− Provide a molecular signature to distinguish between self and non-

self mRNAs by the host during viral infection 

OAS1, OAS2, OAS3, OASL 

− Antiviral enzymes 

− Critical role in cellular innate antiviral response 

− Activation of RNaseL leading to degradation of viral RNA 

− OASL: antiviral activity against encephalomyocarditis virus 

(EMCV) and hepatitis C virus (HCV) via an alternative antiviral 

pathway independent of RNaseL 

RSAD2 (Viperin) 

− Plays major role in the cell antiviral state induced by IFN-I, II 

− Inhibit wide range of DNA/RNA viruses (cytomegalovirus/ HCMV, 

hepatitis C virus/HCV, west Nile virus/WNV, dengue virus, sindbis 

virus, influenza A virus, human immunodeficiency virus/HIV-1 and 

other) 

CMPK2 
− Adjacent to / Co-expressed with RSAD2 

− Restrict human immunodeficiency virus (HIV) infection 

ISG15 − Key role in the innate immune response to viral infection 

UBEL26, USP18 − Critical role in ISG15 regulation 

XAF1 − Apoptosis-related antiviral activity 
 

Inspecting Table 3 it becomes evident that most of the down-regulated genes are directly 

related to interferon regulation, especially to interferon stimulated genes (light-red 

colored genes). The down-regulation profile of these genes confirms the hypothesis and 

supports the discussion made in previous sections regarding impaired immune responses 

during early SCOV2 infection stage. In particular, all the INF-stimulated genes that 

interfere in the viral life-cycle genes are found as down-regulated. Figure 14 highlights 

(in blue rectangles) these down-regulated ISGs in the course of the viral life-cycle (recall also 

Figure 7 at section 1.3.3).  



Molecular landscape of SARS-CoV-2 infection Page 26 of 62 MSc Thesis, Polymnia Gkoublia 

 

 

Figure 14. ISGs (interferon stimulated genes), highlighted with in blue rectangles, involved in the viral life-cycle 

and found down-regulated in the EARLY stage of SCOV2 infection. 

The findings can be further justified by inspecting Figure 15, where the bar-plots for the 

expression levels of the key down-regulated genes in the EARLY SCOV2 infection stage are 

plotted. Note that for all these genes their expression level is nearly reaching the 

mean/median expression level of all input gene/transcripts; the inverse holds for the 

LATE SCOV2 infection stage. 

 
Figure 15. Bar-plots of down-regulated DEGs in the EARLY SCOV2 infection stage. 

EARLY vs. LATE SCOV2 infection stages: Enrichment/Pathway analysis. In order to gain 

insight into the molecular events that take place during the progress of SCOV2 infection we 

proceed to the identification of the enriched biological processes and pathways that 

contrast between early and late SCOV2 infection stages. The focus is on the processes 

and pathways which are down-regulated and in a way are ‘blocked’ at the EARLY stage of the 

infection. Based on the identified DEGs, and utilizing the fgsea Bioconductor package for 

enrichment analysis (Korotkevich et al., 2021), a series of GeneOntology/GO-biological 

processes as well as a series of Reactome and KEGG pathways were found as significantly 

enriched and down-regulated at the early ECOV2 stage. Table 4 summarizes the findings; 

biological processes and pathways are sorted according to their adjusted p-value.  

http://bioconductor.org/packages/release/bioc/html/fgsea.html
http://geneontology.org/
https://reactome.org/
https://www.genome.jp/kegg/pathway.html
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Table 4. Enriched down-regulated biological processes and pathways in the EARLY SCOV2 stage. 

 GO-Biological Processes adj.Pval #genes 

DOWN 

regulated 

at the 

EARLY 

SCOV2 

stage 

Defense response to virus  9.60E-37 27 

Type I interferon signaling pathway  7.60E-36 21 

Cellular response to type I interferon  7.60E-36 21 

Response to virus  2.00E-35 28 

Response to type I interferon  3.60E-35 21 

Defense response to other organism  1.40E-29 31 

Response to external biotic stimulus  9.80E-29 33 

Innate immune response  5.10E-27 28 

Defense response  3.20E-26 32 

Immune response  5.70E-24 33 

Response to cytokine  2.80E-22 28 

 Reactome Pathways adj.Pval #genes 

DOWN 

regulated 

at the 

EARLY 

SCOV2 

stage 

Interferon alpha/beta signaling  8.80E-35 19 

Interferon Signaling  2.80E-32 23 

Cytokine Signaling in Immune system  1.30E-20 24 

Immune System  2.80E-15 27 

Antiviral mechanism by IFN-stimulated genes  1.70E-14 11 

Interferon gamma signaling  1.10E-10 8 

ISG15 antiviral mechanism  2.50E-08 7 

OAS antiviral response  3.80E-08 4 

DDX58/IFIH1-mediated induction of interferon-alpha/beta  1.60E-07 6 

Negative regulators of DDX58/IFIH1 signaling  2.40E-07 5 

TRAF3-dependent IRF activation pathway  2.00E-03 2 

 KEGG Pathways adj.Pval #genes 

DOWN 

regulated 

at the 

EARLY 

SCOV2 

stage 

Influenza A  1.90E-09 9 

Hepatitis C  3.80E-08 8 

Coronavirus disease  2.40E-07 8 

Measles  2.20E-06 6 

NOD-like receptor signaling pathway  4.80E-06 6 

Epstein-Barr virus infection  2.50E-04 5 

RIG-I-like receptor signaling pathway  7.50E-04 3 

Viral protein interaction with cytokine and cytokine receptor 4.80E-03 2 
 

Furthermore, and in order to reveal the interplay between the identified enriched down-

regulated GO-biological processes, Figure 16 illustrates their network organization. 

 
Figure 16. Network organization of enriched down-regulated biological processes (edge thickness indicates the 
number of shared genes among the connected processes; a filter of 30% was set.  

http://amigo.geneontology.org/amigo/term/GO:0051607
http://amigo.geneontology.org/amigo/term/GO:0060337
http://amigo.geneontology.org/amigo/term/GO:0071357
http://amigo.geneontology.org/amigo/term/GO:0009615
http://amigo.geneontology.org/amigo/term/GO:0034340
http://amigo.geneontology.org/amigo/term/GO:0098542
http://amigo.geneontology.org/amigo/term/GO:0043207
http://amigo.geneontology.org/amigo/term/GO:0045087
http://amigo.geneontology.org/amigo/term/GO:0006952
http://amigo.geneontology.org/amigo/term/GO:0006955
http://amigo.geneontology.org/amigo/term/GO:0034097
https://reactome.org/content/detail/R-HSA-909733
https://reactome.org/content/detail/R-HSA-913531
https://reactome.org/content/detail/R-HSA-1280215
https://reactome.org/content/detail/R-HSA-168256
https://reactome.org/content/detail/R-HSA-1169410
https://reactome.org/content/detail/R-HSA-877300
https://reactome.org/content/detail/R-HSA-1169408
https://reactome.org/content/detail/R-HSA-8983711
https://reactome.org/content/detail/R-HSA-168928
https://reactome.org/content/detail/R-HSA-936440
https://reactome.org/content/detail/R-HSA-918233
http://www.genome.jp/kegg-bin/show_pathway?hsa05164
http://www.genome.jp/kegg-bin/show_pathway?hsa05160
http://www.genome.jp/kegg-bin/show_pathway?hsa05171
http://www.genome.jp/kegg-bin/show_pathway?hsa05162
http://www.genome.jp/kegg-bin/show_pathway?hsa04621
http://www.genome.jp/kegg-bin/show_pathway?hsa05169
http://www.genome.jp/kegg-bin/show_pathway?hsa04622
http://www.genome.jp/kegg-bin/show_pathway?hsa04061
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◼ Not unexpectedly, based on the discussion made in section Error! Reference source 

not found. and previous sub-sections, the results signify the fact that at the early SCOV2 

infection stage key biological processes and pathways engaged in first-line innate 

immune response, such as IFN and cytokine signaling, are down-regulated. The 

key gene/transcripts engaged in these processes/pathways, e.g., ISGs (interferon 

stimulated genes), are also down-regulated. 

◼ Down-regulation of key immune processes at the early course of SCOV2 infection may 

present the background for the later occurrence of acute inflammatory responses 

and severe disease outcomes. 
 

3.2 SARS-CoV-1 vs. SARS-CoV-2: Do they differ? 

3.2.1 Background to SARS-CoVs infections 

1st, 2nd, 3rd … SARS-CoVs: Epidemiology, Origins and Phylogeny. Despite the fact that 

SCOV2 became a pandemic, it is actually the third serious outbreak caused by Coronaviruses 

in the last 20 years. The ‘first SARS’ (SCOV1) outbreak happened at Hong Gong back to 

2002–2003 (Peiris et al., 2003), and MERS (maybe the ‘2nd SARS’ !) at Saudi Arabia and 

Jordan in 2012 (Assiri et al., 2013; Memish, Perlman, Van Kerkhove, & Zumla, 2020). Despite 

the still on-going research and argumentation, the zoonotic origin of all three infections 

presents the most justified theory so-far with two scenarios proposed for their evolution and 

transfer to humans: (a) natural selection in an animal host before zoonotic transfer; and (b) 

natural selection in humans following zoonotic transfer (Andersen, Rambaut, Lipkin, Holmes, 

& Garry, 2020). In any case, various studies evidence a strong similarity between the three 

infections in terms of their clinical manifestations (Bi et al., 2020; Z. Zhu et al., 2020). In 

addition, it is well established that SCOV2 shares 79% of its genome with SCOV1. This allows 

comparative analyses between SCOV1 and SCOV2 towards the discovery of 

commonalities in their molecular fingerprints. The background and context of the three 

infections is shown in Figure 17; notice the close phylogeny of SCOV1 and SCOV2 (right-part 

C of the figure). 

 

Figure 17. The background and context of the three SARS-CoVs (SCOV1, SCOV2 and MERS): (A) Epidemiology, 
(B) Infection origins and routes (adapted from (Z. Zhu et al., 2020)), (C) Phylogeny of the three SARS-CoVs and 
other CoVs (from (Hu, Guo, Zhou, & Shi, 2021).  
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Delayed immune responses: the common SCOV1/2 fingerprint. There is supporting 

evidence that SCOV2 infection portrayed strong suppression of innate immune response and 

inhibition of IFN-I responses (Vabret et al., 2020), and our results and findings in the previous 

section justifies this. Furthermore, studies with animal models show that SCOV1 and MERS 

infections also cause failures of IFN-I responses and link this dysregulation with severe 

disease outcomes. In particular, it is evidenced that timing in the induction of IFNs is the 

key for the pathogenicity of both SCOV1 and SCOV2 profiles, with early induction to be 

protective and later to cause pathologic situations (Channappanavar et al., 2016, 2019). 

Moreover, recent in vitro studies provide evidence that SCOV2 is sensitive to IFN-I 

pretreatment, even to a higher level than SCOV1 (Lokugamage et al., 2020; Mantlo, 

Bukreyeva, Maruyama, Paessler, & Huang, 2020). It is also likely that IFN-induced 

(transmembrane) IFITM proteins family prevent SCOV2 cell entrance, a fact already 

demonstrated for SCOV1 (Huang et al., 2011), but not clearly evidenced for other CoVs (Zhao 

et al., 2014, 2018). ACE2, the key receptor that mediates SCOVs cell entrance, is also 

implicated with this phenomenon. In a recent study it is demonstrated that a putative cause 

for the  inhibition of IFN-I in the early stage of infection is linked with the role of ACE2 

as an IFN-I induced/stimulated gene (Ziegler et al., 2020).  
 

The aforementioned observations validate and necessitate studies that contrast 

between SCOV1 and SCOV2 infections in an effort to discover and reveal a putative 

common molecular background for the two infections. 
 

 

3.2.2 The SCOV1 two-stage profile 
 

Dataset. To tackle this task we utilized the GSE33267 GEO dataset. In this study, Calu-3 cells 

were infected with SCOV1 (33 samples) or kept uninfected (mock/CTRL, 33 samples), and 

their microarray gene-expression profiles were acquired via the ‘Agilent-014850 Whole 

Human Genome Microarray 4x44K G4112F’ platform (GPL4133). Cell samples were collected 

at eleven different post-infection time-points/hours (hpi), namely 0, 3, 7, 12, 24, 30, 36, 48, 54, 

60 and 72 in triplicates (i.e., a total of 3 x 11 = 33 for each class), with a multiplicity of infection 

(MOI) of 5. The results of this study are published in (Sims et al., 2013).  
 

Filtering and contrasting the time-course of SCOV1 infection. Following an analogous to 

the previous experiment filtering process (section 3.1) we managed to identify critical hpi time-

points that could be used as a reference to contrast and differentiate between EARLY and 

LATE SCOV1 infection stages. To do so, we utilized the correlation matrix of samples in order 

to identify clearly contrasting samples’ gene-expression profiles. In particular, hpi time-points 

0,3,7 and 12 compose the EARLY, and 48,54,60 and 72 the LATE infection stages, 

respectively for the retained samples (see Figure 18). 

 
Figure 18. Filtering-out samples for hpi time-points 24,30 and 36 (left); The correlation matrix of retained samples 

that strongly contrast EARLY vs. LATE SCOV1 infection stages (right).   

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33267
https://www.sciencedirect.com/topics/immunology-and-microbiology/calu-3-cell-line
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL4133
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Figure 19 shows the PCA plot (left) and the hierarchical clustering tree of the retained for 

further analysis samples (hierarchical tree is induced as in the previous experiment, refer to 

Figure 11). The clear-cut contrasting profiles between EARLY and LATE SCOV1 infection 

stages is witnessed. 

 

Figure 19. PCA plot (left) and hierarchical clustering of EARLY (defined for samples at hpi time-points 0, 3, 7 and 

12 and LATE (defined for hpi time-points 48, 54, 60 and 72) SCOV1 infection stages (right). 

Differential expressed genes between early and late SCOV1 stages. Analogous to the 

previous experiment we filtered-out gene probes with minimum expression values lower than 

a specified threshold in an adequate number of samples. After inspection of the data the cutoff 

value was set to 7 in at-least 3 (the number of replicates) samples, leaving 22,286 gene probes 

for further analysis (the median and mean of the transformed gene expression values of these 

genes is near 10). The limma DEG method was then applied with FDR cutoff equal to 0.05, 

and minimum fold-change equal to 5, as we are looking for strongly differentiating genes 

(smaller values gave too many DEGs). A total of 573 genes were found as significantly 

differentiating between early and late SCOV1 infection stages; 494 Down- and 79 Up-

regulated. Again, we note that down-regulated genes refer to SCOV1 EARLY infection stage 

and up-regulated to the LATE stage (i.e., the duality of contrast between the two classes).  

Contrasting SCOV1 / SCOV2 early infection stages. We focus on the common, if any, 

down-regulated DEGs between the two infections. From the top DEGs of the two infections 

there are 13 genes in common namely: IFI44L, IFI6, MX1, MX2, OAS1, OAS2, RSAD2, all of 

which related to IFN signaling and belong to the ISGs family; and MT1E, MT1G, MT1H, 

MT1X and MT2A all of which are metallothioneins (MTs); refer to the end of this section for a 

special discussion on metallothioneins and their role in SCOV2 and other viral infections. Τhe 

down-regulated XAF1 gene is also shared between the two infections.  

So, all the differentially down-regulated expressed in SCOV2 early infection stage 

are also down-regulated in SCOV1 early infection stage, and all of them are ISGs 

that relate to IFN and cytokine signaling. In other words, both infection types share 

a common molecular background during their early progress stage. 
 

 

To further justify the findings, and following the same enrichment methodology as in the 

previous experiment, we were able to identify significantly enriched biological processes and 

pathways for the identified down-regulated DEGs (see Table 5). Comparing with the enriched 
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processes/pathways during the early stage of SCOV2 infection (please refer to Table 4) it can 

be easily observed that both viral infections share most of their down-regulated 

molecular processes during early infection stages, and all of them relate to IFN and 

cytokine signaling. For the Reactome pathways the observation is more profound.  

Table 5. Enriched down-regulated GO-biological processes and Reactome pathways in EARLY vs. LATE SCOV1 

infection stages. 

 GO-Biological Processes adj.Pval #Genes 

DOWN 

regulated 

at the 

EARLY 

SCOV1 

stage  
 

Response to cytokine  5.80E-28 79 

Response to biotic stimulus  7.90E-28 84 

Defense response  7.90E-27 88 

Response to external biotic stimulus  7.90E-27 81 

Response to external stimulus  2.40E-25 112 

Response to virus  9.40E-25 42 

Defense response to virus  1.90E-24 37 

Cytokine-mediated signaling pathway  2.60E-24 60 

Cellular response to cytokine stimulus  3.20E-24 70 

Defense response to other organism  4.40E-23 66 

Immune system process  1.40E-22 113 

Innate immune response  1.40E-21 58 

Immune response  4.00E-21 89 

Reactome pathways Adj.Pv #Genes 

Cytokine Signaling in Immune system  4.10E-22 58 

Interferon Signaling  3.70E-19 28 

Interferon alpha/beta signaling  4.70E-18 18 

Immune System  5.80E-12 71 

Antiviral mechanism by IFN-stimulated genes  1.20E-09 14 

Interferon gamma signaling  2.60E-06 10 

OAS antiviral response  2.60E-06 5 

ISG15 antiviral mechanism  5.60E-06 10 

Signaling by Interleukins  8.90E-06 27 

DDX58/IFIH1-mediated induction of interferon-

alpha/beta  

2.30E-05 9 

Interleukin-10 signaling  5.60E-05 7 

Metallothioneins bind metals  5.60E-05 4 

Negative regulators of DDX58/IFIH1 signaling  2.30E-04 6 

Chemokine receptors bind chemokines  5.80E-04 6 
 

 

Pathway analysis. Using the pathway analysis module of iDEP, and utilizing the 

PAGE/PGSEA enrichment analysis method (S.-Y. Kim & Volsky, 2005), we managed to 

identify a number of significantly down-regulated KEGG pathways during the early SCOV1 

infection stage. Figure 20 (left) shows these pathways alongside their down/up regulated 

profiles in the respective samples; note the down-regulation of all these pathways in the early 

stage of SCOV1 infection (hpi time-points 0, 3, 7 and 12) in contrast to their up-regulation 

status in the late infection stage (48, 54, 60 and 72). 

http://amigo.geneontology.org/amigo/term/GO:0034097
http://amigo.geneontology.org/amigo/term/GO:0009607
http://amigo.geneontology.org/amigo/term/GO:0006952
http://amigo.geneontology.org/amigo/term/GO:0043207
http://amigo.geneontology.org/amigo/term/GO:0009605
http://amigo.geneontology.org/amigo/term/GO:0009615
http://amigo.geneontology.org/amigo/term/GO:0051607
http://amigo.geneontology.org/amigo/term/GO:0019221
http://amigo.geneontology.org/amigo/term/GO:0071345
http://amigo.geneontology.org/amigo/term/GO:0098542
http://amigo.geneontology.org/amigo/term/GO:0002376
http://amigo.geneontology.org/amigo/term/GO:0045087
http://amigo.geneontology.org/amigo/term/GO:0006955
https://reactome.org/content/detail/R-HSA-1280215
https://reactome.org/content/detail/R-HSA-913531
https://reactome.org/content/detail/R-HSA-909733
https://reactome.org/content/detail/R-HSA-168256
https://reactome.org/content/detail/R-HSA-1169410
https://reactome.org/content/detail/R-HSA-877300
https://reactome.org/content/detail/R-HSA-8983711
https://reactome.org/content/detail/R-HSA-1169408
https://reactome.org/content/detail/R-HSA-449147
https://reactome.org/content/detail/R-HSA-168928
https://reactome.org/content/detail/R-HSA-168928
https://reactome.org/content/detail/R-HSA-6783783
https://reactome.org/content/detail/R-HSA-5661231
https://reactome.org/content/detail/R-HSA-936440
https://reactome.org/content/detail/R-HSA-380108
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Figure 20. (Left): Differential down-regulated KEGG pathways during SCOV1 early infection stage; (Right): 

differential KEGG pathways reported in (H. Zhang et al., 2021). 

Of considerable interest is the down-regulation of ‘Coronavirus disease’ pathway, as well 

as other, disease or biological molecular pathways which, relate to immune responses, e.g., 

‘Cytokine-cytokine receptor interaction’, NOD-like receptor signaling, ‘TNF signaling’, ‘NF-

kappa B signaling’, ‘Viral protein interaction with cytokine and cytokine receptor’, ‘Toll-line 

receptor signaling’, ‘JAK-STAT signaling’, ‘Antigen processing and presentation’, ‘RIG-I-like 

receptor signaling’, IL-17 signaling’, etc. To further validate our findings, the right part of Figure 

20 shows the differential KEGG pathways reported in (H. Zhang et al., 2021) for the 

comparison between SCOV2- vs. Mock-infected (i.e., CTRL) cell lines. Most of KEGG 

pathways are shared among our and reference study’s results. 

The findings add additional support to the postulate: 

SCOV1 and SCOV2 infections exhibit similar molecular profiles during the early 

stage of infection 
 

A special note on metallothioneins. Besides ISGs, another group of genes are also 

identified as down-regulated. This group is composed by genes solely belonging to the 

Matallothioneins (MT), namely: MT1E, MT1F, MT1G, MT1H, MT1X, MT2A. MTs are a family 

of small, highly conserved, cysteine-rich metal-binding proteins12. It regulates zinc (Zn) 

(Ruttkay-Nedecky et al., 2013) which exhibits a beneficial role in various physiological and 

molecular host defense mechanisms during various pathogen infections including SCOV2. (i) 

Anosmia/Taste. It is known that Zn deficiencies relate directly to anosmia and taste 

dysfunctions (ageusia), an established and common symptomatology in SCOV2 infected 

cases.  (Propper, 2021), especially when decreased levels occurs in the nasopharyngeal tract 

(Equils, Lekaj, Fattani, Wu, & Liu, 2020). There is evidence that acute viral infection of the 

nasopharyngeal mucosa lead to a decrease in local Zn levels as part of normal defense 

against respiratory pathogens (Wessels, Maywald, & Rink, 2017). (ii) Host defense and 

molecular machinery during infection. It is known than Zn contributes to host defense 

 

12 www.sciencedirect.com/topics/neuroscience/metallothionein  

https://www.sciencedirect.com/topics/neuroscience/metallothionein
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responses by maintaining the membrane barrier structure and function (Finamore, Massimi, 

Conti Devirgiliis, & Mengheri, 2008) via the modulation of cytokine-induced epithelial cell 

barrier absorptiveness (Bao & Knoell, 2006). In addition, there is evident that Zn helps to 

enhance IFN-I response during SCOV2 infection, it shows an inhibition capacity of SCOV2 

RNA polymerase, and its deficiency is associated with severe infection (Mayor-Ibarguren, 

Busca-Arenzana, & Robles-Marhuenda, 2020). (iii) MTs and Zn. In-vitro experiments on mice 

revealed direct and strong increase in the mRNA levels of MTs during acute influenza (A) 

infection of the upper respiratory tract (Ghoshal et al., 2001). The physiology underlying this 

increase is attributed to the beneficial antioxidant role, of MTs as they are triggered in order 

to effectively ‘clean-up’ the reactive oxygen species (ROS) generated by the host defense 

phagocytes during infection. A diverse of molecular signaling mechanisms are involved in the 

induction of MT in response to virus infection, including cytokines, glucocorticoids, and zinc. 

At the molecular level, recent studies demonstrate that Zn is required for interferon-, especially 

IFNL-mediated expression of MTs (Read et al., 2017). 

3.3 Does and how SARS-CoV-2 differs from Influenza infection? 

3.3.1 SARS-CoV-2 vs. Influenza: Background 

Influenza (INFL) is the most common and a long-standing viral infection worldwide with a well-

established epidemiological profile and an extensive scientific literature devoted to its 

physiological and molecular background13. As the knowledge about the SCOV2 infection and 

its disease manifestations in humans still accumulates, highlighting the similarities and 

differences between SCOV2 and INFL is a rational approach to follow towards 

uncovering and understanding the key physiological and molecular mechanisms 

guiding and governing the two viral infections. 

INFL vs. SCOV2: Epidemics and Phenotypes. As a starting-point, Table 6 summarizes and 

contrast between the basic epidemic figures that contrast between the two viral infections 

(Table 4a), as well as the pathogenesis profiles and phenotypes that characterize them (Table 

4b); adapted from (Flerlage, Boyd, Meliopoulos, Thomas, & Schultz-Cherry, 2021). 

Table 6. SCOV2 vs. INFL: Epidemics, Pathogenesis and Phenotypes 

(a) Epidemics and 
risk-factors 

SCOV2 INFL 

Yearly infections ~ 200 million  3-5 million  

Yearly deaths > 3 million  190.000 - 650.000  

Main risk-
factors 

for severe 
cases 

o Male sex 
o Obesity 
o Genetics (blood type; genes 

relate to interferon I, III) 
o Comorbidities [diabetes; chronic 

kidney disease; heart disease; 
hypertension]   

o Smoking 
o Obesity 
o Genetics (genes related to viral 

recognition and interferon signaling) 
o Comorbidities (heart diseases; COPD) 
o Age (bias towards type-2 immunity 

(e.g., Th2 vs. Th1 pathway activation); 
lack of prior immunity) 

o Pregnancy / Sex (tolerated 
immunological state; sex steroids 
influence on immune response) 

 

(b) Pathogenesis and Phenotypes 

 

13 ‘Influenza’, Nature Outlook, www.nature.com/collections/jicdgbcgda  

applewebdata://F9543769-4364-46B7-B63B-84BDF2AE4B95/Genetics%20(genes%20related%20to%20viral%20recognition%20and%20interferon%20signaling)
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://ourworldindata.org/explorers/coronavirus-data-explorer?time=2020-10-01..2021-10-01&facet=none&Metric=Confirmed+deaths&Interval=Cumulative&Relative+to+Population=false&Align+outbreaks=false&country=~OWID_WRL
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://www.nature.com/collections/jicdgbcgda
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Receptor usage  ACE2 Sialic acid  

Cellular tropism  

Respiratory epithelial cells: type II 
alveolar epithelial cells, ciliated cells 
and secretory cells; sustentacular 
and horizontal basal cells of the 
olfactory epithelium Intestinal 
epithelial cells; endothelial cells; 
renal parenchymal cells 

Respiratory epithelial cells: types I and II 
alveolar epithelial cells; ciliated cells  

Tissues 
affected and 
pathology  

Upper respiratory tract; lower 
respiratory tract; intestinal tract; 
cardiovascular or endothelial 
system; kidneys; nervous system 

Upper respiratory tract; lower respiratory 
tract (severe cases)  

Site of viral 
replication  

Cytoplasmic Nuclear  

Extrapulmonary 
complications  

Extensive; olfactory: anosmia; 
endothelial: thrombosis; 
neurological: stroke, encephalitis, 
neuropsychiatric; gastrointestinal: 
nausea, vomiting, diarrhea 

Limited; cardiac: myocarditis (rare); 
neurological: encephalitis (rare)  

Prior immunity  

No specific SARS-CoV-2 immunity 
prior to late 2019–2020; protective 
immunity from other human 
coronaviruses unclear; vaccination 
started December 2020 

Previous infection; vaccination (w. 
subtype specificity)  

 

INFL vs. SCOV2: Infection phenotypes and transmissibility: 

❑ INFL. Various studies have demonstrated that in most of the cases IFLN virus is detected 

on the first day after infection with viral titers coming at a peak in the second to third day 

after and falling to undetectable levels in the next six to seven days. Symptoms occur 

already from the first day after infection, coming to a peak on the second to third day, and 

diminish after five to six days (Carrat et al., 2008). Severe disease states are more frequent 

to individuals at high-risk (i.e., older people with comorbidities or even younger individuals 

not exposed to various INFL infections) and include, hospitalization, pneumonia, acute 

respiratory distress syndrome (ARDS), even death. 

❑ SCOV2. Symptoms start after an incubation period of about five days (after exposure to 

the virus) with the majority of cases to display symptoms for about two weeks after (Bi et 

al., 2020). From estimations, highest transmissibility occurs for a period of about four days 

−two days before and one day after symptoms occur; mainly from pre-symptomatic 

individuals (He et al., 2020). In a recent meta-study, comprising 35 studies and a total of 

3,385 participants (Yan et al., 2021), about SCOV2 symptomatology, a crucial factor that 

greatly differentiated SCOV2 from INFL infections, the following interesting figures are 

reported: the mean viral shedding time (VST) pooled mean is estimated to about 17 days 

(~17−20d), being significantly longer in symptomatic cases (19.7d) than in asymptomatic 

ones (10.9). It was also significantly longer in adults (23.2d) compared to children (9.9d). 

Furthermore, it was significantly longer for individuals with chronic diseases (24.2d) than 

in those without chronic diseases (11.5d). The aforementioned observations rationalize 

and evidence the postulate that the longer incubation and manifestation periods of 

SCOV2 as well as the longer shedding rates result into more pre- or asymptomatic 

cases into the population, making SCOV2 enough more transmissible than INFL. 

The aforementioned observations guide us to the formation and adoption of a rational 

hypothesis that designates the targets of our exploration: 
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◼ Uncovering the key molecular and regulatory mechanisms of SCOV2 that, in 

contrast to INFL infection, drive to delayed and uncontrolled immune responses 

at early stages of infection is of fundamental importance for a deeper 

understanding of SCOV2 progress. 

◼ Moreover, the similar molecular profiles of SCOV2 and SCOV1 during the early infection 

stages, as showcased and highlighted in the previous sections, allows us to contrast 

SCOV1 with INFL infection and make inferences that also holds for the SCOV2 

case, at least for the basic molecular processes. 

3.3.2 Early vs. Late immune responses in SCOV1 and INFL 

Dataset. We utilized again a relevant dataset from GEO under the code GSE47960. In this 

study HAE (human airway epithelial) cells14 were infected with SCOV1 (and other SCOV1 

strains) and compared to A/CA/04/2009 H1N1 influenza-infected cultures based on their gene-

expression profiles. The microarray “Agilent-014850 Whole Human Genome Microarray 

4x44K G4112F (Probe Name version)” platform (GPL6480) is used, with a total of 32067 

gene/probes. Cell samples were collected at various hours of post-infection (hpi): 0, 12, 24, 

36, 48, 60, 72, 84 hpi and 96 for SCOV1, and 0, 6, 12, 18, 24, 36 and 48 hpi for H1N1 (in 

triplicates or quadruplicates), at a multiplicity of infection (MOI) of 2. The results of this study 

are published in (Mitchell et al., 2013). 

Contrasting the SCOV1 and H1N1 infection time-course. In order to identify gene-

expression profiles that contrast between (sequential) hpi time-points we followed the same 

methodology as in the previous experiments. The original data, separately for H1N1 and 

SCOV1, were analyzed with the iDEP platform using the normalized gene-expression option. 

Filtering, using a cutoff value 9 for at-least 3 samples, left us with 15,262 gene/probes, from 

the original 32,067, for further analysis. The correlation matrices for both H1N1 and SCOV1 

were produced and visualized. With a careful inspection of these matrices we were able to 

identify contrasted hpi time-points that designate the early_to_medium and late stages for 

both infections. Figure 21 shows the respective correlation matrices, and the contrasted 

sample profiles for EARLY_MID and LATE infection stages are indicated by surrounding 

boxes. At the lower part of Figure 21 the respective PCA plots are shown from which it can 

easily observed the separated profiles between the two stages for both infections. The time-

points 6, 12 designate the EARLY_MID H1N1 infection stage, and the time-points 12, 24, 36 

and 48 the EARLY_MID stage for the SCOV1 infection. The bigger number and the extend 

of EARLY_MID time-points for SCOV1 is to be expected because the onset of SCOV1 

infection is generally delayed, mainly due to delayed immune responses, as it was 

showcased in the previous sections. This is to be justified in the next section where the 

EARLY_MID profiles between the two infections are contrasted. 

 

14 The pulmonary epithelium is divided into three regions; upper (nasal and oral cavities), lower (trachea and 
primary bronchi), and distal small airway epithelia (alveolar). Human airway epithelial (HAE) cell cultures 
effectively mimic the human bronchial environment, allowing the cultivation of a wide variety of human respiratory 
viral pathogens (Pickles, 2013; S Banach et al., 2009) 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47960
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6480
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Figure 21. Correlation matrix for H1N1 (upper-left) and SCOV1 (upper-right) samples; boxes indicate the identified 

EARLY_MID and LATE stages of infection. The lower part of the figure shows the respective PCA plots for the two 

infections. 

Differential expression analysis. Using the limma DEG method, with an FDR cutoff value 

equal to 0.05 and a minimum fold-change equal to 2, a total of 430 genes was found as 

differentially expressed, 364 down- and 66 up-regulated for the comparison SCOV1 vs. H1N1 

EARLY_MID infection stages; hpi variable were set as a factor in order to take care of 

experimental batch effects (Luo et al., 2010). The left part of  Figure 22 shows the hierarchical 

tree organization of samples, and the upper-right part the respective PCA plot; note the perfect 

separation of H1N1/SCOV1 samples into their respective EARLY_MID infection stage. At the 

down-right of the figure, the heatmap of identified DEGs is illustrated. Again, we note that 

down-regulated genes refer to SCOV1 EARLY_MID infection stage, and these genes are 

(dually) up-regulated the H1N1EARLY_MID infection stage.  
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Figure 22. SCOV1 vs. H1N1 EARLY_MID contrast: Hierarchical tree (left), PCA plot (upper-right) of samples, and 
heatmap of differentially expressed gene/probes (down-right). 
 

As in the case of SCOV2 experiment (see section 3.1.3) we concentrated on the identified 
down-regulated genes at the EARLY_MID SCOV1 infection stage. In order to get a better 
insight into the role of these genes, we focus on the gene/probes that: (i) exhibit fold-change 
values over 3, and (ii) are clustered into coherent groups; the MCL clustering algorithm was 
used (provided by the STRING server), as in the previous experiment. The result of these 
screening operations was a set of 118 genes (Table 7). The coloring of genes (light-red, green 
and yellow) is made according to their cluster/group inclusion. 
 

Table 7. SCOV1 vs. H1N1 EARLY_MID contrast: Coherently grouped 118 down-regulated differentially expressed 

genes at the EARLY_MID SCOV1 infection stage. 
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The network organization of these coherently clustered genes is illustrated in Figure 23.  

 

Figure 23. SCOV1 vs. H1N1 EARLY_MID contrast: Network organization of the 118 down-regulated differentially 

expressed genes at the EARLY_MID SCOV1 infection stage. 

The results could be further justified by inspecting the expression levels of these genes. Figure 

24 shows the bar-plots of those down-regulated genes that exhibit clearly contrasted 

expression levels; lower for SCOV1 and higher for H1N1 at the EARLY_MID respective 

infections’ stages; also, most of these genes exhibit higher/lower expression levels for 

SCOV1/H1N1 compared to the average expression value of all input gene/probes (it is about 

11). 

 

Figure 24. SCOV1 vs. H1N1 EARLY_MID contrast: Subset of the 118 down-regulated differentially expressed 

genes at the EARLY_MID SCOV1 infection stage with expression values over and down the average for H1N1 

and SCOV1 samples, respectively. 

Enrichment/Pathway analysis. As in the previous experiments, we conducted an 

enrichment/pathway analysis for all of the identified DEGs regarding GO-Biological Processes, 

Reactome and KEGG pathways. The left part of Figure 25 shows these processes and 

pathways, the left part of the figure the network organization of the GO-biological processes. 

It may be easily observed that most of the down-regulated, i.e., impaired biological 

processes and pathways during the EARLY_MID SCOV1 infection stage are engaged to 

interferon/cytokine signaling and to defense/immune responses.  



Molecular landscape of SARS-CoV-2 infection Page 39 of 62 MSc Thesis, Polymnia Gkoublia 

 

 

Figure 25. SCOV1 vs. H1N1 EARLY_MID contrast: Enriched down-regulated biological processes and pathways 

(left); network organization of the GO-biological processes (right). 
 

Most of the identified down-regulated biological processes and pathways at the 

EARLY_MID SCOV1 stage are in common with the down-regulated 

processes/pathways at the early SCOV2 infection stage, as showcased in the 

previous sections. This is in contrast to H1N1 infection where all these processes 

and pathways are up-regulated and functional at the early stage of the infection. 

 

Figure 26 illustrates the regulation of biological processes and KEGG pathways across the 

SCOV1 and H1N1 samples at the EARLY_MID stage of the two infections. It is noticeable that 

even the KEGG ‘Coronavirus’ as well as the ‘Influenza’ KEGG pathways are down-

regulated at the EARLY_MID SCOV1 stage! 

 

Figure 26. SCOV1 vs. H1N1 EARLY_MID contrast: Regulation of GO-biological processes (left) and KEGG 

pathways (right) across the SCOV1 and H1N1 EARLY_MID stages; blue color indicates down-

regulation/dysfunctional and red color indicates up-regulation/functional process/pathway. 
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The result are in line with the findings in the previous sections about (a) delayed 

immune/defense responses, mainly due to the down-regulation of 

interferon/cytokine signaling and activation; (b) relevant observations and 

discussion made in section 1.3 , and (c) in accordance with recent studies related 

to SCOV2 infection and Covid-19 disease (Vastrad, Vastrad, & Tengli, 2020). 
 

3.4 Does SCOV2 two-stage profile relates to Covid-19 severity? 

In this section we move our attention on a more clinical task, trying to explore the putative 

relation between Covid-19 disease severity and the two-stage SCOV2 infection profile. 

The aim is to explore the potential of SCOV2 delayed immune/defense responses to be 

linked with disease severity. In particular, we focus on different Covid-19 phenotypes as 

defined by respective patients’ clinical profiles, and especially by the duration of infection 

symptoms.    

Dataset. The utilized dataset comes again form GEO, under the code GSE161731. The 

relevant study includes the RNA-seq profiles of 77 Covid-19 patients, acquired via the ‘Illumina 

NovaSeq 6000’ platform (GPL24676) comprising a total of 60,675 ENSEMBL gene 

transcripts. Whole blood samples were collected between 1-35 days post infection and divided 

based on disease severity and time from symptom onset (based on patients’ self-reporting 

and subsequent follow-up): SHORT with ≤10 days duration of symptoms, MEDIUM with 11-

21 days, and LONG with >21 days. Peripheral blood sample, for NGS analysis and production 

of the respective RNA-seq data, was received from patients at the time of enrolment, and 

duration of symptoms was based on patients’ self-reporting and subsequent follow-up. The 

study and the available dataset include a total of 198 samples from patients with Covid-19 and 

other infections namely, ‘other CoVs’/CoV, INFL, bacterial, as well as healthy controls (77 

SCOV2, 61 CoV, 17 INFL, 24 bacterial, 19 healthy). The results of this study are published in 

(McClain et al., 2021). 

Data filtering and phenotype re-assignment. The original unformalized RNA-seq counts 

data for the 77 SCOV2 infected individuals were utilized (normalized version of data is also 

available from GEO) in which, the distribution of the three SCOV2 infection phenotypes to 

have as follows: 19 SHORT, 36 MEDIUM and 22 LONG. But self-reporting of the onset of 

symptoms is a bit ‘subjective’ and may not be so accurate. So, we followed a careful 

sample filtering process followed by re-assignment of samples to newly invented 

phenotypes. To this end we produced the heatmap of samples (see upper-left part of Figure 

27). Inspecting the heatmap it can be easily observed that the MEDIUM phenotypes are 

distributed and mixed with both SHORT and LONG samples (at the left and at the right part 

of samples’ dendrogram, respectively) but two tangibly contrasted groups may be clearly 

identified. Some samples that belong to either SHORT or LONG phenotypes and interfere 

within these groups are deleted from the dataset, i.e., LONG samples from the left part of the 

dendrogram, and some SHORT samples from the right part (this process was repeated two 

times until two clearly contrasted groups are formed). The result is a newly formed dataset 

with the samples re-assigned to two new phenotypes with a natural interpretation: 

SHORT_MEDIUM with 25 samples, and MEDIUM_LONG with 43 samples; see upper-right 

part of Figure 27, and note the perfect separation of samples into the newly formed SCOV2 

phenotypes. This may be also observed by inspecting the PCA plot of samples (see down part 

of Figure 27). 

  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161731
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL24676
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Figure 27. Heatmap of samples (in their original phenotypes, SHORT, MEDIUM, LONG) (upper-eft); Heatmap of 
filtered samples re-assigned to their new phenotypes, i.e., SHORT_MEDIUM, M~EDIUM_LONG (upper-right); 
PCA plot of samples (down); the heatmaps were produced using the 1000 most variable gene transcripts 
 

The duration of symptoms for Covid-19 patients is linked to the severity of the 

disease. Contrasting between SHORT_MEDIUM and MEDIUM_LONG SCOV2 

phenotypes is of great importance as it may reveal putative biomarkers that could 

support clinical decision making. 

3.4.1 Contrasting SHORT_MEDIUM with MEDIUM_LONG phenotypes  

Data filtering and pre-processing. The newly formed dataset, with the new phenotypes 
assigned to samples, was downloaded to iDEP. Following the same, as in the previous 

experiments filtering process (min CPM = 0.5 in at-least 25 samples; the number of samples 

for the phenotype with less samples, i.e., SHORT_MEDIUM), we were left with 15,998 gene-
transcripts (from the original 60,675). The data were also normalized using the EdgeR method 

(Robinson, McCarthy, & Smyth, 2010) based on the log2(CPM+c) transformation of CPM 

count values (c was set equal to 4); average and median of gene-expression values for all 
input samples was near to 9. 

Differential expression (DEG) analysis. The transformed data were analyzed using all the 

iDEP available DEG methods, i.e., DSEeq2 (Love, Huber, & Anders, 2014), limma-voom (Law 
et al., 2014) and limma-trend (Phipson, Lee, Majewski, Alexander, & Smyth, 2016) from the 

limma R package, with minimum FDR cutoff set to 0.05. Different minimum fold-change cutoffs 

(2, 3 and 5) were set and used in order to test the stability of results, each one giving different 
numbers of up- and down-regulated gene/transcripts (see Figure 28a). 

  

https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/limma.html
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Figure 28. (a) Differentially expressed genes from the three DEG methods (DSEeq2, limma-voom, limma-trend) 

for the comparison SHORT_MEDIUM vs. MEDIUM_LONG (duration of SCOV2 infected individuals); (b) Common 

up-regulated genes (n = 45) shared among the three DEG methods; (c) Coherent clusters of the 46 common up-

regulated genes. 

As we are mainly concerned to provide an interpretable biological background for the results 

we decided to go with minFC = 5 so that to induce a manageable number of highly 

contrasted DEGs. In an effort to produce robust results we found the common differentially 

expressed and up-regulated gene/transcripts among all DEG methods. The focus is set 

on the up-regulated gene/transcripts as we observed that host immune/defense-related 

gene/transcripts are included in these.  A total of 45 up-regulated DEG gene/transcripts were 

found as common among the three methods. Error! Reference source not found.b 

illustrates the Venn diagram of these DEGs. We focus on the up-regulated genes (103, 99 

and 57 for DSEeq2, limma-voom and limma-trend, respectively) after observing that most 

of the DEGs found by all three DEG methods are mainly related to host immune/defense 

operations. Uploading the 45 up-regulated genes to the STING server and following the same 

methodology as in the previous experiments, we were able to induce two robust and coherent 

clusters (Error! Reference source not found.c). 

The red-colored genes (11 genes, left part of Error! Reference source not found.c) are all 

ISGs (interferon stimulated genes), and all of them are shared with the DEGs found as down-

regulated at the early SCOV2/1 infection stage (as it was showcased in the previous 

experiments). A natural hypothesis amenable to this finding may be stated:  
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➢ For Covid-19 patients with relatively short duration of symptoms the delayed 

immune/defense response profile, mainly manifested by the down-regulation of 

ISGs, and which characterizes the early SCOV1/2 stage seems to be ‘canceled’. 

➢ In other words, the early induction of ISGs seems to be beneficial for the disease 

prognosis. 

 

Of special interest are the genes in the second coherent cluster (green-colored, right part of 

Error! Reference source not found.c). Some references from the gene annotations 

provided by STRING and other resources (from Wikipedia to published relevant papers) 

highlight their role in the pathophysiological features underlying SCOV2 infection. 

◼ SERPING1. A plasma protease of the 

(complement) C1 inhibitor; may play a potentially 

crucial role in regulating important physiological 

pathways including blood coagulation, fibrinolysis 

and the generation of kinins. fibrinolysis prevents 

blood clots from growing and becoming 

problematic. kinins mediate inflammatory 

responses by triggering the immune system; 

regulate cardiovascular and renal function through 

mediating the effects of ACE inhibitors. In a very 

recent paper that explores the links between gender 

and  SCOV2 infection (Russo et al., 2021), it is 

demonstrated that, for men individuals, “… the 

presence of SERPING1 in the testis could prevent 

thrombotic risk as SCOV2 may block SEPING1 

function increasing inflammatory processes, and 

deteriorated SERPING1 expression caused by SCOV2 interacting proteins could activate the 

intrinsic coagulation pathway, inducing a pro-coagulant state.” The side figure (an edited 

simplified version of Figure 3 in the aforementioned paper) illustrates and highlights the 

protective role of SRPING1 in the course of SCOV2 infection. Note the role of interferons 

IRF/IFNs in the inhibition of specific SCOV2 virus domains that inhibit the beneficial inhibition 

effect of SERPING1 to coagulation, complement and inflammation cascades.  ◼ C1QC/B. 

Both belong to the superfamily of SERPIN proteins. It is reported that C1Q complement 

proteins interacts with 7 different SCOV1 proteins and polypeptides, encoded by ORF3b, 

ORF7b, ORF14, nsp2ab, nsp13ab, nsp14ab and nsp8ab, with these SCOV1 proteins to be 

comparable to their SCOV2 homologous (Thomson, Toscano-Guerra, Casis, & Paciucci, 

2020).  It is also well established that the complement system rapidly and with high specificity 

detects, traces, targets and eradicates pathogens, by binding to antigen-antibody complexes 

during an adaptive immune response (Fodil & Annane, 2021). 
 

Enrichment/Pathway analysis. We performed enrichment/pathways analysis (using the 

respective iDEP operations) on GO-biological Processes and Reactome, KEGG pathways for 

the differentially expressed genes found by the three DEG methods (DSEeq2, limma-voom 

and limma-trend). As each method found different processes/pathways as enriched we looked 

for the common ones between the three methods. A set of six GO-processes, three Reactome 

and three KEGG pathways were found to be shared among the three DEG methods (Table 

8). As, in general, each method computes a different (adjusted) p-value for each 

process/pathway, we calculated the respective combined p-values. We utilized the metap R 

package for the Fisher and Edgington p-value combination methods (Heard & Rubin-

Delanchy, 2018).  

https://cran.r-project.org/web/packages/metap/index.html
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Table 8. Common up-regulated biological processes and pathways between three DEG methods (DSEeq2, limma-

voom, limma-trend) for Covid-19 patients of the EARLY_MEDIUM phenotype, and their combined (adjusted) p-

values. 

  
Combined adj.Pval 

Fisher Edgington 

GO-Biological Processes 

Type I interferon signaling pathway  5.13E-29 1.10E-20 

Cellular response to type I interferon  5.13E-29 1.10E-20 

Response to type I interferon  9.71E-29 1.46E-20 

Response to external biotic stimulus  8.51E-25 2.93E-17 

Response to virus  8.22E-23 1.37E-16 

Innate immune response  2.36E-21 7.18E-16 

Reactome pathways 

Interferon alpha/beta signaling  2.46E-35 2.04E-24 

Immune System  8.16E-13 3.01E-09 

Classical antibody-mediated complement activation  1.46E-07 6.61E-09 

KEGG pathways 

Coronavirus disease  1.98E-08 1.51E-07 

Staphylococcus aureus infection  1.29E-06 1.09E-07 

Complement and coagulation cascades  6.75E-06 4.29E-07 

 

As can be easily observed, all the GO-biological processes and Reactome pathways concern 

host immune/defense responses, with interferon signaling ones at the top. The enriched up-

regulated Reactome and KEGG complement-related pathways relates to the discussion made 

above about the SERPING1 and C1QB/C complement-related SCOV2 phenotype 

differentiating genes, which were also found as up-regulated.  

➢ It seems that the molecular profile underlying some Covid-19 patients (with 

SHORT_MEDIUM duration of symptoms) is characterized by early triggering of 

defense-immune responses, with early activation of specific IFN signaling 

pathways that allows the protective effects of various intrinsic host viral defense 

factors such as serpins (SERPING1) and coagulation (ICQ) inhibitors. 

➢ These factors need to be further explored as putative Covid-19 prognostic 

biomarkers. 

 

3.4.2  Last minute update –A special note on gene IFI27 

In the list of up-regulated gene in the SHORT_MEDIUM vs. MEDIUM_LONG comparison, 

gene IFI27 is found as with the highest differentiation between the two SCOV2 phenotypes 

(fold-change = 29.4). Figure 29 shows the (normalized) expression level of IFI27 in the two 

phenotypes (left), and the network of genes immediate connecting with it. The direct link of 

IFI27 with most of the identified, either as down-regulated during the early SCOV2 infection 

stage or as up-regulated in Covid-19 patients with SHORT_MEDIUM symptoms phenotype, 

indicate its central role in SCOV2 infection and Covid-19 disease development. 

http://amigo.geneontology.org/amigo/term/GO:0060337
http://amigo.geneontology.org/amigo/term/GO:0071357
http://amigo.geneontology.org/amigo/term/GO:0034340
http://amigo.geneontology.org/amigo/term/GO:0043207
http://amigo.geneontology.org/amigo/term/GO:0009615
http://amigo.geneontology.org/amigo/term/GO:0045087
https://reactome.org/content/detail/R-HSA-909733
https://reactome.org/content/detail/R-HSA-168256
https://reactome.org/content/detail/R-HSA-173623
https://www.genome.jp/pathway/hsa05171
https://www.genome.jp/kegg-bin/show_pathway?hsa05150
https://www.genome.jp/pathway/hsa04610
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Figure 29. Bar-plot of IFI27 expression level in SHORT_MEDIUM and MEDIUM_LONG SCOV2 (duration of 

symptoms) phenotypes; 9 is the average expression value over all input gene/transcripts, (left); The network of 

genes which are immediate connected with IFI27 (produced by the STRING server). 

❑ IF27 as a Covid-19 infection detector. In a recent publication in Lancet (Gupta et al., 

2021) that reports results from a large-scale nested, case-control diagnostic accuracy 

study, it is clearly noted and stated: “… blood transcriptomic biomarkers for viral infection, 

including IFI27, reflect IFN-I responses and detect early SARS-CoV-2 infection with 

high accuracy”. In addition, it is suggested that these biomarkers should be included in 

scalable point-of-care tests for SCOV2 in a way to facilitate early case detection and 

contact investigation. 

❑ New Covid-19 vaccines? Targeting, not the invasion, but the virus replication 

• Cover story. We quote verbatim from a recent cover article in Nature15. “In the study, 

published on 10 November in Nature, the authors examined blood samples collected in the first weeks of 

the pandemic from nearly 60 UK health-care workers. All worked in hospitals, putting them at high risk 

of contracting COVID-19, but never tested positive or produced any antibodies to the 

virus for four months after enrolling in the study. The researchers noticed that in 20 of these 

‘seronegative’ participants, T cells had multiplied — a sign that the immune system might be 

gearing up to fight an infection. Nineteen of these individuals also had increased levels of an 

immune-system protein called IFI27, which the authors say might be an early marker of SARS-CoV-2 

infection. The authors say that these data are evidence for ‘abortive infections’, meaning that the virus made 

an incursion into the body but failed to take hold. The authors hypothesized that T cells halt SARS-

CoV-2 by disabling a cluster of viral proteins called the replication transcription 

complex, which helps the virus to reproduce.” 

• The study that the cover article refers is titled “Pre-existing polymerase-specific T 

cells expand in abortive seronegative SARS-CoV-2” (Swadling et al., 2021), it is 

published as an ‘accelerated article’, a fact that highlights its importance, and includes 

intensively monitored health care workers (HCWs) as the trial subjects. Key findings, 

reports and suggestions from the article are: 

− some of the SCOV2 infected HCWs do not show PCR- or antibody-positivity (i.e., 

sero-negative), and this is an indication for a sub-clinical (before seroconversion 

takes place) rapid clearance of the virus; 

 

15 How do people resist COVID infections? Hospital workers offer a hint, Nature News, 11 November 2021. 

https://www.nature.com/articles/d41586-021-03110-4
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− this may be attributed to the pre-existence of memory T-cell responses as the 

result of previous infections from other coronaviruses, and results in early 

cross-recognition of SCOV2 infection; 

− candidates for the source of these pre-existing T-cells are the closely related 

human endemic common cold coronaviruses (HCoVs); 

− sero-negative HCWs (SN-HCWs) had: stronger, more frequently directed immune 

response against the replication and transcription complex (RTC)16 of the virus, and 

an increase in IFI27, a robust early innate signature of SCOV2 (Gupta et al., 

2021), suggesting abortive infection; 

− the results highlight RTC-specific T-cells as targets for vaccines against endemic 

and emerging infections from various coronavirus (in the family of Coronaviridae17 

where SCOV2 belongs). 

 

  

 

16 SCOV2 ORF1a and ORF1b domains encode 15–16 non-structural proteins (nsp), of which 15 compose the viral 
RTC (V’kovski, Kratzel, Steiner, Stalder, & Thiel, 2021). 

17 Family Coronaviridae, Viruses, 2017 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149805/
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3.5 COVID-19 prognosis: Predicting the duration of infection symptoms 

SCOV2 infection is challenging the health care systems worldwide as the percentages of 

infected patients needing hospitalization care range in high levels. Taking the latest figures 

from the US CDC (Center for Disease Control and Prevention)18, for the whole period of 

SCOV2 pandemic, about 7.5 million hospitalizations are estimated for a total of (symptomatic 

and asymptomatic) 146 million cases, a rate of about 5%. Projecting this estimate to Greece, 

with a total of about 750,000 reported cases in 2021, the estimate is about 38,000 

hospitalizations. If we divide this number by 3, the three COVID-19 waves during 2021, over 

12,000 hospitalizations are taking place at a period of 2-3 months, that is, about 5,000 each 

month. These estimates, but also the real-life events took place, showcase the burden of 

COVID-19 over the national health care systems worldwide. So, reliable predictive models 

for COVID-19 patients needing hospitalized care raises as an imperative need. 

Here we have to note that relevant predictive and prognostic models that rely solely or mainly 

on patients’ clinico-physiological measurements are already in place (Wynants et al., 2020). 

In this section and based on the results reported in the previous section, we tried to devise 

classifiers that predict the duration of symptoms (i.e., SHORT, MEDIUM, LONG) for 

SCOV2 infected individuals based solely on their gene-expression profiles. With a 

reliable estimate for the duration of symptom, informed clinical decision making may take 

place. For example, if a COVID-19 patient is predicted (by his/her gene-expression profile) as 

an individual that will display a SHORT or even SHORT-MEDIUM disease progression profile 

(according to the duration of his/her symptoms) then, this patient may not need hospitalization 

care or even, will not end-up to ICU care. Of course, the clinico-physiological profile of patients 

should be also considered. In addition, our study aims to demonstrate the feasibility of the 

approach and by no a ready-to-use tool in the clinical practice. After all, in a recent MIT 

Technology Review it is reported that, actually it is titled: “Hundreds of AI tools have been built 

to catch covid. None of them helped”19. The report exemplifies the situation and highlight the 

‘prons’ and ‘cons’ of relevant approaches. 

3.6 Initial line of experiments 

In our initial experiments for the devise of classification models we used the MLSeq 

R/Bioconductor package – a Machine Learning interface to RNA-seq data analysis (Goksuluk 

et al., 2019). We relied on four classifiers to build our models: SVM (support vector machines), 

Random Forests (RF), Voom Based Nearest Shrunken Centroids (VoomNSC) (Zararsiz 

et al., 2017), and Poisson Linear Discriminant Analysis (PLDA) (Witten, 2011). Data were 

split into training and test. Training set was used to build classification models and test set 

was used to assess the performance of each model. The ratio of splitting data was 80% for 

training and 20% for testing. The k-fold (k = 5) inner cross-validation/CV training process 

was followed in order to tune and optimize the model parameters. The tuned trained model 

was then applied on the left-out test set to get the final testing accuracy performance figures; 

performance figures (accuracy, sensitivity and specificity) from the 5-foldCV are also assessed 

and reported.  

❑ Multi-class model (SHORT vs. MEDIUM vs. LONG). For this experiment the multi-class 

labeled dataset was used, i.e., the samples are assigned into three classes, SHORT, 

MEDIUM and LONG (regarding duration of SCOV2 infection). Furthermore, we devised 

models using either all input gene/transcripts or just the identified differentially expressed 

 

18 Estimated COVID-19 Burden, US CDC  
19 www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/  

https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html
https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/
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genes (DEGs), as identified in the previous section. The results are summarized in Table 

9.  

Table 9. Performance results of the classification model for multi-class labeled data (i.e., samples are assigned to 

three classes, SHORT, MEDIUM or LONG). Bold figures in blue indicate superior performance for the dataset with 

ALL genes/transcripts, and bold figures in red indicate superior performance for the dataset with just the identified 

DEGs.  

Method Genes 
ACC 

(5-foldCV) 
SE SP 

ACC 

(test) 

SVM 
ALL 51.6% 40.0% 88.1% 50.3% 

DEGs 66.7% 70.0% 82.5% 62.5% 

RF* 
ALL 45.9% 35.0% 80.5% 68.8% 

DEGs 61.3% 65.0% 78.6% 56.3% 

VoomNSC 
ALL 80.3% 95.0% 80.5% 43.8% 

DEGs 67.2% 95.0% 70.7% 56.3% 

PLDA 
ALL 59.0% 85.0% 65.9% 50.0% 

DEGs 62.3% 85.0% 70.7% 62.5% 

*pre-specified number of random trees generated it was set equal to 500 

The VoomSNC model achieves the best k-foldCV ‘ACC’uracy and ‘SE’ensitivity performance 

(80.3% and 95.0%, respectively, when ALL gene/transcripts are used; and 67.2%, 95.0%, 

respectively, when just the identified DEGs are used). The best ‘SP’ecificity performance 

figures are achieved by SVM (88.1% for ALL, and 82.5% for DEGs). For the final accuracy on 

the test set, the best ‘ACC’uracy for ALL is achieved by RF (68.8%), and the best ‘ACC’uracy 

for DEGs is achieved by SVM and PLDA (62.5%). A general notice concerns the inability of 

the classifier models to increase their performance when a more ‘informed’ set of 

features (i.e., the DEGs) is used; in all metrics the performance figures are better when ALL 

gene/transcripts are used. This should be attributed to the fact that SHORT, MEDIUM and 

LONG phenotypes and their respective gene-expression profiles are not well separated 

and contrasted (as already demonstrated by the results in the previous section). So, we 

attempted to devise the same classifier models using just the samples assigned to the SHORT 

and LONG phenotypes, as these phenotypes are more well separated and contrasted. 

❑ Two-class model (SHORT vs. LONG). For this experiment the two-class labeled dataset 

was used, i.e., only the samples assigned to classes SHORT and LONG are kept. Again, 

we devised models using either all input gene/transcripts or just the identified differentially 

expressed genes (DEGs). The results are summarized in Table 10. 

Table 10. Performance results of the classification model for two-class labeled data (i.e., only the samples assigned 

to classes, SHORT and LONG are kept). Bold figures in blue indicate superior performance for the dataset with 

ALL genes/transcripts, and bold figures in red indicate superior performance for the dataset with just the identified 

DEGs.  

Method Genes 
ACC 

(5-foldCV) 
SE SP 

ACC 

(test) 

SVM 
ALL 87.5% 83.8% 81.3% 66.7% 

DEGs 100.0% 100.0% 100.0% 77.8% 

RF* 
ALL 93.8% 87.5% 100.0% 66.7% 

DEGs 100.0% 100.0% 100.0% 77.8% 

VoomNSC ALL 100.0% 100.0% 100.0% 77.8% 
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DEGs 90.6% 81.3% 100.0% 66.7% 

PLDA 
ALL 93.8% 87.5% 100.0% 66.7% 

DEGs 93.8% 87.5% 100.0% 55.7% 

*pre-specified number of random trees generated it was set equal to 500 

The VoomNSC model achieves the best k-foldCV ‘ACC’uracy, ‘SE’ensitivity, ‘SP’ecificity 

(together with RF and PLDA, 100.0%), and test ‘ACC’uracy (77.8%) when ALL 

gene/transcripts are used. When just the DEGs are used the best performing models across 

all metrics are SVM and RF (100.0% for 5-foldCV ‘ACC’uracy, ‘SE’ensitivity, ‘SP’ecificity and 

77.8% for test accuracy). In contrast to the previous results, all the models exhibit better 

performance figures when just the DEGs are used. The finding provides further evidence 

for the adequacy of the identified DEGs and their ability to differentiate between the two 

contrasting SCOV2 phenotypes, i.e., SHORT vs. LONG duration of symptoms. 

3.7 Second line of experiments: A LOOCV assessment approach 

Here we present results on the same (as in the previous experiment) dataset following a 

Leave-One-Out-Cross-Validation (LOOCV) procedure. In biomedical research, LOOCV is a 

common process followed in biomedical research for assessing the performance of prognostic 

models (Li, Wang, Chen, & Wang, 2020; Mistry, Davies, & Di Veroli, 2015; Qu, Zhao, & Yin, 

2019). With this process, and for a dataset with k samples, k-1 are used for training and the 

one left-out sample for testing; the process is repeated k times and the final performance 

figures are computed as the averages of the respective figures at each fold. It is demonstrated 

that when the number of instances in a data set is small or the number of instances in the 

classes is unbalanced, k-foldCV suffers from the independence and randomness assumption 

when splitting the data. With LOOCV both criteria are met, and the point estimate of accuracy 

for a given data set is constant (Wong, 2015). In our case, the number of samples is not big 

and the number of samples are unequal in terms of their class assignment. So, LOOCV seems 

a rational strategy to follow in order to assess the performance of our models. 

In our experiments we utilized the processed data from the experiments performed in section 

3.4 (i.e., the EdgeR log2 transformed counts). We utilized the Weka machine-learning 

framework for our experiments (Hall et al., 2009), and we devised models using the Random 

Forests (RF), SVM (called SMO in Weka), Decision Tree (DT, called J48 in Weka), and kNN 

(called iBK in Weka) methods. 

❑ Multi-class model (SHORT vs. MEDIUM vs. LONG). For this experiment the multi-class 

labeled dataset was used, i.e., the samples are assigned into three classes, SHORT, 

MEDIUM and LONG (regarding duration of SCOV2 infection). Again, we devised models 

using either ALL input gene/transcripts or just the identified differentially expressed (DEG) 

gene/transcripts. The results are summarized in Table 11. 

 

Table 11. LOOCV performance results of the classification model for multi-class labeled data (i.e., samples are 

assigned to three classes, SHORT, MEDIUM or LONG). Bold figures in blue indicate superior performance for the 

dataset with ALL genes/transcripts, and bold figures in red indicate superior performance for the dataset with just 

the identified DEGs.  

Method Genes ACC SE SP AUC 

RF* 
ALL 57.4% 57.4% 66.9% 0.722 

DEGs 61.8% 61.8% 73.5% 0.771 

SVM (SMO) ALL 63.2% 63.2% 72.7% 0.742 

https://www.cs.waikato.ac.nz/ml/weka/
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DEGs 57.4% 57.4% 73.6% 0.711 

DT (J48) 
ALL 58.8% 58.8% 71.5% 0.733 

DEGs 52.9% 52.9% 66.2% 0.650 

kNN (iBK) 
ALL 50.0% 50.0% 62.4% 0.562 

DEGs 48.5% 48.5% 65.7% 0.571 
*pre-specified number of random trees generated it was set equal to 100 

 

The SVM model achieves the best LOOCV performance across of metrics (‘ACC’uracy 63.2%, 

“SE’ensitivity 63.2%, ‘SP’ecificity 72.7% and Area Under the Curve/AUC 0.742) when ALL 

gene/transcripts are used. For the cased of DEGs, RF exhibits the best performance 

(ACC’uracy 61.8%, “SE’ensitivity 61.8%, and Area Under the Curve/AUC 0.771), except for 

‘SP’ecificity where SVM is slightly better (73.5% vs. 73.6%). Most of the models could not 

achieve better results when just the DEGs are used. This does not hold for RF which, 

manages to achieve significantly better results when just the DEGs are used. 

❑ Two-class model (SHORT vs. LONG). For this experiment the two-class labeled dataset 

was used, i.e., only the samples assigned to classes SHORT and LONG are kept. Again, 

we devised models using either all input gene/transcripts or just the identified differentially 

expressed genes (DEGs). The results are summarized in Table 12. 

Table 12. LOOCV performance results of the classification model for two-class labeled data (i.e., only the samples 

assigned to classes, SHORT and LONG are kept). Bold figures in blue indicate superior performance for the 

dataset with ALL genes/transcripts, and bold figures in red indicate superior performance for the dataset with just 

the identified DEGs.  

Method Genes ACC SE SP AUC 

RF* 
ALL 94.3% 94.3% 91.4% 0.991 

DEGs 100.0% 100.0% 100.0% 1.000 

SVM (SMO) 
ALL 94.3% 94.3% 91.4% 0.929 

DEGs 100.0% 100.0% 100.0% 1.000 

DT (J48) 
ALL 91.4% 91.4% 87.1% 0.893 

DEGs 97.1% 97.1% 95.7% 0.964 

kNN (IBK) 
ALL 80.0% 80.0% 79.5% 0.798 

DEGs 100.0% 100.0% 100.0% 1.000 

*pre-specified number of random trees generated it was set equal to 100 

 

The results from this experiment is quite encouraging. All classifier models exhibit highly 

performing figures, with RF and SVM achieving the best results (for both All and DEGs cases). 

It is noticeable that even kNN achieves perfect results for the case of DEGs. This is an 

additional indication for the suitability of the selected DEGs, and their potential to act as 

biomarkers that differentiate between SHORT (less severe / mild) and LONG (more severe) 

SCOV2 infection phenotypes, at-least with reference to the expected duration of symptoms.  

 

❑ Hybrid-class model (SHORT-MEDIUM vs. MEDIUM-LONG). For this experiment the 

hybrid-class labeled dataset was used, i.e., all the samples are used but assigned to the 

combined classes SHORT-MEDIUM and MEDIUM-LONG, as formed from the analysis in 

previous section. Again, we devised models using either all input gene/transcripts or just 

the identified differentially expressed genes (DEGs). The results are summarized in  

❑ Table 13. 
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Table 13. LOOCV performance results of the classification model for hybrid-class labeled data (i.e., all samples 

are used and assigned to the hybrid-classes SHORT-MEDIUM and MEDIUM-LONG). Bold figures in blue indicate 

superior performance for the dataset with ALL genes/transcripts, and bold figures in red indicate superior 

performance for the dataset with just the identified DEGs. 

Method Genes ACC SE SP F1 AUC 

RF 
ALL 92.6% 92.6% 89.0% 0.925 0.990 

DEGs 97.1% 97.1% 96.6% 0.971 0.996 

SVM (SMO) 
ALL 94.1% 94.1% 91.6% 0.941 0.928 

DEGs 100.0% 100.0% 100.0% 1.000 1.000 

DT (J48) 
ALL 82.4% 82.4% 79.7% 0.824 0.654 

DEGs 89.7% 89.7% 89.0% 0.897 0.800 

kNN (IBK) 
ALL 91.2% 91.2% 88.2% 0.911 0.897 

DEGs 100.0% 100.0% 100.0% 1.000 1.000 

 

Again, the results are very good, especially for SVM and kNN, which achieve perfect 

performance when just the differentially expressed gene/transcripts are used. The results are 

indicative for: 
 

➢ The well-formed hybrid SCOV2 phenotype classes (SHORT-MEDIUM / 

MEDIUM-LONG duration of symptoms) as they, except from their natural 

meaning, are also separable in terms of their respective patient’s 

differential gene-expression profiles, and 

➢ The identified DEGs are well suited for characterizing the SCOV2 

phenotypes and may present putative biomarkers for the prognosis of 

SCOV2 infection progress and severity (at-least in terms of the expected 

duration of symptoms period). 
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4. Conclusions & Future work 

COVID-19 is one of the largest and deadliest pandemics on the planet that still continues to 

plague humanity with thousands of deaths worldwide every day. Different studies show that 

the severity of the disease and the mortality rate are directly related to the excessive secretion 

of pro-inflammatory cytokines.  

Interferons/ISGs … 

Hyperinflammation in severe COVID-19 infected patients and overexpression of cytokines, 

such as interferons (IFNs), interleukins, and TNF-α can lead to the so-called ‘cytokine storm’ 

and finally to severe pneumonia, lung failure, and multiple organ damage, with potentially fatal 

outcomes. Recent studies link COVID-19 severity with viral-load and its relation to a two-stage 

(early vs. late) infection profile (Walsh et al., 2020). Furthermore, it is established that IFNs, 

especial type I IFNs (IFN-I), and the induced interferon stimulated genes (ISGs) encode a 

variety of antiviral effects throughout the whole viral life-cycle (entry, uncoating, genome 

replication, particle assembly and egress; refer to Figures Figure 7 and Figure 14). Well-

defined studies demonstrate and suggest that, targeting early, post-entry life cycle events is 

a common mode of ISG action (Schoggins et al., 2011). In particular, IFITMs, a specific ISG 

family, inhibit the life-cycle of various viruses (including Influenza A and H1N1, filoviruses that 

cause hemorrhagic fever such as Embola, and SCOV1) at their early steps, by blocking entry 

or viral particle trafficking (Brass et al., 2009; Huang et al., 2011; Lu et al., 2011; Mantlo et al., 

2020). In addition, several ISGs (including, IFI6, IFI27, IRFs (IRF1 and IRF9), MX1, OAS1 and 

RSAD2/Viperin) reduce HCV (hepatitis C virus) replicon20 activity (Itsui et al., 2006). 

… their inhibition by SCOV1&2 

As it is showed and reported in (Y.-M. Kim & Shin, 2021), in contrast to human common-cold 

coronaviruses that induce high expression levels of IFN-I SCOV1, SCOV2, and MERS-CoV 

induce reduced IFN-I responses. After the first SCOV1 outbreak, several studies showcased 

that SCOV1 and MERS-CoV use various mechanisms to avoid IFN-I-mediated immune 

responses (Totura & Baric, 2012), (Sa Ribero, Jouvenet, Dreux, & Nisole, 2020). As SCOV2 

genome has 82% nucleotide identity with the SCOV1 genome, and most of SCOV2 proteins 

have high amino acid sequence homology with the corresponding SCOV1 proteins, many 

SCOV2 proteins have inhibitory effects on IFN-I responses similar to those of SCOV1 

proteins. In the same study of Kim & Shin, a rational hypothesis is stated which demonstrates 

that initially (at early infection stages) delayed but then (at the late infection stage) 

exaggerated IFN-I responses are involved in hyperinflammation and contribute to the 

severe progression of COVID-19 (see section 1.3.2 The SCOV2 molecular framework and 

Figure 6).  

… demonstrated by thesis results 

In our study, we performed differential expression and enrichment / pathway analysis 

utilizing public-domain gene expression datasets (RNA-seq and microarrays) from respective 

well-documented studies, which associate with infectious diseases including SCOV1, SCOV2 

 

20 Replicons are self-amplifying recombinant RNA molecules expressing proteins sufficient for their own 

replication but which do not produce infectious virions; they resemble virus-like particles that enter a target cell, 
undergo limited transcription and translation to synthesize encoded proteins, but will not produce infectious progeny 
(Morrison & Plotkin, 2016); in the context of vaccine production, administration of replicon RNA vectors has 
resulted in strong immune responses and generation of neutralizing antibodies in various animal models 
(Lundstrom, 2016). 

https://www.sciencedirect.com/topics/immunology-and-microbiology/virus-like-particle
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and Influenza. We posted some basic biological questions and tasks challenging to 

uncover the molecular landscape of SCOV2 infection. We attempt to provide answers to 

these questions and tackle the respective tasks following a multi-step Bioinformatics 

pipeline realized by the utilization of state-of-the-art gene-expression and pathway analysis 

methodologies, services and tools. We were able to identify key genes and molecular 

pathways that: (a) segregate SCOV2 early and late infection stages; (b) differentiate 

SCOV2 from other common viral infections (such as influenza), (c) characterize different 

SCOV2 severity phenotypes according to the infection’s duration of symptoms, and (d) 

induce, based on Machine Learning methodology, classification models that could 

predict the progression and potential severity of the infection (in terms of the infection 

duration of symptoms). The overwhelming majority of identified differential expressed genes 

and biological processes/pathways: (i) relate to IFN/ISG genes and host immune/defense 

mechanisms, and (ii) these genes and pathways were found as down-regulated at the early 

stages of SCOV2 infection. It is evident that our findings are in accordance to the 

aforementioned discussion and observations and demonstrate that: the identification of key 

cytokines/IFNs/ISGs and molecular pathways that differentiate between: [i] early and 

late SCOV2 infection stages, and [ii] SCOV2 from other common viral infections, is 

crucial for the prognosis of COVID-19 disease and could aid therapeutic decision-

making.  

What’s next … 
 

A. The findings reported in this thesis should be coupled, validated and strengthen with 

additional experiments on similar datasets from other studies; ➔ the target is the 

formation of a reliable and strongly predictive gene-signature as a biomarker for the 

progression and staging of SCOV2 infection. 

B. As the scientific research in infection diseases continues to evolve, a variety of therapeutic 

drug candidates have shown potential to combat the disease severity and balance the 

hypersecretion of pro-inflammatory cytokines; ➔ utilizing sets of genes known to be 

associated with drugs (from relevant and well-established drug-gene association 

resources) we may follow an enrichment analysis process to prioritize putative 

SCOV2 treatment drug candidates.   

C. As COVID-19 continues to cause an ongoing pandemic, the scientific community is 

working rapidly to collect and process COVID-19 data. Thus, a challenging task is the 

creation of a meta-analysis framework with gene-expression data from the mass-

vaccination programs worldwide (relevant studies and respective data are slowly raising!). 

We have already highlighted the role of particular IFN/ISG genes as putative COVID-19 

diagnostic biomarkers as well as putative vaccine targets (refer to section 3.4.2 Error! 

Reference source not found. about gene IFI27); ➔ the target is the exploration of the 

molecular profiles of vaccinated individuals in an effort to identify the molecular 

fingerprints underlying COVID-19 vaccination.      
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Appendix I − Common human cytokines 

 

Interferons 

Reference Name Genes Name 

IFN-I (type I Interferons) 

IFNα 
IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, 
IFNA13, IFNA14, IFNA16, IFNA17, IFNA21 

interferon a 

IFNβ IFNB1 interferon beta 1  

IFNω IFNW1 interferon omega 1 

IFNɛ IFNE, IFNE1, IFNT1 interferon epsilon 

ΙFNк IFNK, IFNK1, IFNT1, IFNE1 interferon kappa 

IFN-II (type II Interferons) 
IFNγ IFNG, IMD69, IFI interferon g 

IFN-III (type III Interferons) 

IFNλ IFNL1, IFNL2, IFNL3, IFNL4  

  

Interleukins 

Reference Name Synonyms Name 

IL-1α IL1A, IL-1_alpha, IL-1A, IL1, IL1-ALPHA, IL1F1 interleukin 1 alpha 

IL-1β IL1B, IL-1, IL1-BETA, IL1F2, IL1beta   

IL-1RA IL1R1, CD121A, D2S1473, IL-1R-alpha, IL1R, IL1RA, P80   

IL-18 IL18, IGIF, IL-18, IL-1g, IL1F4   

Common g chain (CD132) 

IL-2 IL2, TCGF, lymphokine, T cell growth factor   

IL-4 IL4, BCGF-1, BCGF1, BSF-1, BSF1 interleukin 4 

IL-7 IL7 interleukin 7 

IL-9 IL9, HP40, IL-9, P40 interleukin 9 

IL-13 IL13, P600 interleukin 13 

Il-15 IL15, AI503618 interleukin 15 

Common b chain (CD131) 

IL-3 IL3, MCGF, MULTI-CSF interleukin 3 

IL-5 IL5, EDF, TRF interleukin 5 

Related 

GM-CSF CSF2, CSF, GMCSF 
colony stimulating factor 
2 

IL-6-like     

IL-6 IL6, BSF-2, BSF2, CDF, HGF, HSF, IFN-beta-2, IFNB2 interleukin 6 

IL-11 IL11, AGIF   

G-CSF CSF3, C17orf33, CSF3OS, GCSF 
colony stimulating factor 
3 

IL-12A IL12A, CLMF, NFSK, NKSF1, P35, NK cell stimulatory factor interleukin 12A 

IL-12B IL12B, CLMF, CLMF2, IMD28, IMD29, NKSF, NKSF2 interleukin 12B 

LIF LIF, CDF, DIA, HILDA, MLPLI, leukemia inhibitory factor LIF IL6 family cytokine 

OSM   oncostatin M 

IL-10 IL10, CSIF, GVHDS, IL10A, TGIF interleukin 10 

IL-20 IL20, IL10D, ZCYTO10 interleukin 20 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA1&keywords=IFN%CE%B1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA2&keywords=IFNA2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA4&keywords=IFNA4
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA5&keywords=IFNA5
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA6&keywords=IFNA6
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA7&keywords=IFNA7
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA8&keywords=IFNA8
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA10&keywords=IFNA10
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA13&keywords=IFNA13
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA14&keywords=IFNA14
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA16&keywords=IFN16
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA17&keywords=IFN17
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNA21&keywords=IFNA14
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNB1&keywords=IFNB1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNW1&keywords=IFNW1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNE&keywords=IFNE
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNK&keywords=IFNK
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNG&keywords=IFN%CE%B3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNL1&keywords=IFN%CE%BB
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNL2&keywords=IFN%CE%BB
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNL3&keywords=IFN%CE%BB
https://www.genecards.org/cgi-bin/carddisp.pl?gene=IFNL4&keywords=IFN%CE%BB
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Others 

IL-14 IL14, TXLNA, TXLN taxin alpha 

IL-16 IL16, LCF, FLJ42735, FLJ16806 interleukin 16 

IL-17A IL17A, CTLA8 interleukin 17A 

IL-17B IL17B, IL-20, NIRF, ZCYTO7 interleukin 17B 

 

TNF 

CD154 
CD40LG, CD40L, HIGM1, IGM, IMD3, T-BAM, TNFSF5, TRAP, gp39, 
hCD40L 

CD40 ligand 

LT-β LTB, TNFC, TNFSF3, TNLG1C, p33 lymphotoxin beta 

TNF-α TNF, DIF, TNF-alpha, TNFA, TNFSF2, TNLG1F, cachectin TNF 

TNF-β LTA, LT, TNFB, TNFSF1, TNLG1E lymphotoxin alpha 

4-1BBL TNFSF9, CD137L, TNLG5A 
TNF superfamily 
member 9 

APRIL 
TNFSF13, CD256, TALL-2, TALL2, TNLG7B, TRDL-1, UNQ383/PRO715, 
ZTNF2 

TNF superfamily 
member 13 

CD70 CD27-L, CD27L, CD27LG, LPFS3, TNFSF7, TNLG8A 
TNF ligand superfamily 
member 7 

CD153 TNFSF8, CD30L, CD30LG, TNLG3A 
TNF ligand superfamily 
member 8 

CD178 
FASLG, ALPS1B, APT1LG1, APTL, CD95-L, CD95L, FASL, TNFSF6, 
TNLG1A 

TNF ligand superfamily 
member 6 

GITRL TNFSF18, AITRL, TL6, TNLG2A, hGITRL 
TNF ligand superfamily 
member 18 

LIGHT TNFSF14, CD258, HVEML, LTg 
TNF ligand superfamily 
member 14 

OX40L TNFSF4, CD134L, CD252, GP34, OX-40L, TNLG2B, TXGP1 
TNF ligand superfamily 
member 4 

 

Chemokines 

Reference Name Synonyms Receptor 

CCL1 I-309, P500, SCYA1, SISe, TCA3 CCR8 

CCL2 
GDCF-2, HC11, HSMCR30, MCAF, MCP-1, MCP1, SCYA2, 
SMC-CF 

CCR2 

CCL3 G0S19-1, LD78ALPHA, MIP-1-alpha, MIP1A, SCYA3 CCR1 

CCL4 
ACT2, AT744.1, G-26, HC21, LAG-1, LAG1, MIP-1-beta, 
MIP1B, MIP1B1, SCYA2, SCYA4 

CCR1, CCR5 

CCL5 RANTES, D17S136E, SCYA5, SIS-delta, SISd, TCP228, eoCP CCR5 

CCL7 FIC, MARC, MCP-3, MCP3, NC28, SCYA6, SCYA7 CCR2 

CCL8 HC14, MCP-2, MCP2, SCYA10, SCYA8 CCR1, CCR2, CCR5 
CCL11 SCYA11, Eotaxin CCR2, CCR3, CCR5 

CCL13 CKb10, MCP-4, NCC-1, NCC1, SCYA13, SCYL1 CCR2, CCR3, CCR5 

CCL14 HCC-1, MCIF, Ckβ1, NCC-2, CCL CCR1 

CCL15 
Leukotactin-1, HCC-2, HMRP-2B, LKN-1, LKN1, MIP-
1_delta, MIP-1D, MIP-5, MRP-2B, NCC-3, NCC3, SCYA15, 
SCYL3, SY15 

CCR1, CCR3 

CCL16 
CKb12, HCC-4, ILINCK, LCC-1, LEC, LMC, Mtn-1, NCC-4, 
NCC4, SCYA16, SCYL4 

CCR1, CCR2, CCR5, CCR8 

CCL17 
A-152E5.3, ABCD-2, SCYA17, TARC 
, dendrokine 

CCR4 

CCL18 
AMAC-1, AMAC1, CKb7, DC-CK1, DCCK1, MIP-4, PARC, 
SCYA18 

 

CCL19 ELC, Ckβ11, Exodus-3 CCR7 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCR8&keywords=CCR8
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL2&keywords=CCL2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCR2&keywords=CCR2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL3&keywords=CCL3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCR1&keywords=CCR1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL4&keywords=CCL3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCR5&keywords=CCR1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL5&keywords=CCL3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL7&keywords=CCL3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL18&keywords=CCL3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL11&keywords=CCL11
https://www.genecards.org/cgi-bin/carddisp.pl?gene=CCR3&keywords=CCR1
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CCL20 
CKb4, LARC, MIP-3-alpha, MIP-3a, MIP3A, SCYA20, ST38, 
Exodus-1 

CCR6 

CCL21 6Ckine, CKb9, ECL, SCYA21, SLC, TCA4, Exodus-2 CCR7 

CCL22 A-152E5.1, ABCD-1, DC/B-CK, MDC, SCYA22, STCP-1 CCR4 

CCL23 
CK-BETA-8, CKb8, Ckb-8, Ckb-8-1, MIP-3, MIP3, MPIF-1, 
SCYA23, hmrp-2a 

CCR1 

CCL24 Ckb-6, MPIF-2, MPIF2, SCYA24, Eotaxin-2 CCR3 

CCL25 Ck_beta-15, Ckb15, SCYA25, TECK CCR9 
CCL26 IMAC, MIP-4a, MIP-4alpha, SCYA26, TSC-1, Eotaxin-3 CCR3 

CCL27 
ALP, CTACK, CTAK, ESKINE, ILC, PESKY, SCYA27, Eskine, 
skinkine 

CCR10 

CCL28 CCK1, MEC, SCYA28 CCR3, CCR10 

 

TGFB (transforming growth factor) 

TGF-β1 TGFB1, CED, DPD1, IBDIMDE, LAP, TGF-beta1, TGFB, TGFbeta 
transforming growth 
factor beta 1 

TGF-β2 TGFB2, G-TSF, LDS4, TGF-beta2 
transforming growth 
factor beta 2 

TGF-β3 TGFB3, ARVD, ARVD1, LDS5, RNHF, TGF-beta3 
transforming growth 
factor beta 3 
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